
Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/28891/1/Gardner%20and%20Poore%20published%20article%202013.pdf

Copyright and reuse:
The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:
The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk
Do Not Turn to the Hypothalamus for Feedback on Stress If You Are Growth Restricted

David S. Gardner and Kirsten R. Poore
School of Veterinary Medicine and Science (D.S.G.), University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom; and Faculty of Medicine (K.R.P.), University of Southampton, Southampton General Hospital, Southampton SO16 6YD, United Kingdom

Up-regulation of the Fetal Baboon Hypothalamo-Pituitary-Adrenal Axis in Intrauterine Growth Restriction: Coincidence with Hypothalamic Glucocorticoid Receptor Insensitivity and Leptin Receptor Down-regulation

Intrauterine growth restriction (IUGR) is clearly defined, allowing nongovernmental agencies to classify the proportion of babies born with IUGR (<10% percentile of the recommended gender-specific birth weight for gestational age reference curves) (1) or, where gestational age is not available, to be born of low birth weight (LBW) defined as below 2500 g. The distinction between these classifications is important, because a definition of LBW per se may seriously underestimate the true proportion of babies to have suffered IUGR relative to their growth potential. Even in affluent countries, the proportion of babies born LBW falls between 4% and 10% (2). The short-term outcome for these babies is a failure to thrive, greater susceptibility to infection, and consequently higher rates of neonatal mortality. Equally, the longer-term forecast is a greater risk of suffering metabolic disease in adulthood and a greater likelihood of multiple morbidities over the life course, a concept that has become known as the Developmental Origins of Health and Disease (3).

Fetal growth is primarily substrate driven, through an adequate supply of glucose, amino acids, and lactate, and in absolute terms, growth is greatest over the last third of gestation (4, 5). Poor fetal growth is largely due to 1) placental insufficiency or 2) maternal malnutrition, ie, under- or overnutrition. Each is characterized in the fetal compartment by either a gross reduction in nutrient availability or an altered pattern of micro/macronutrient flux (ie, fetal malnutrition). Near to term, when the fetus has the greatest demand for nutrients, it has been suggested that “nutritional stress” in the fetal compartment is a key factor responsible for initiating parturition (6). The fetal hypothalamus perceives the signal and responds by activating both adrenocorticotrophic hormone and cortisol production, which rise in parallel, facilitated by desensitization to negative feedback in the hypothalamus (6). The relationship between maternal and fetal nutrition is, however, not linear; the placenta substantially modifies the fetal nutritional milieu (7). Hence, such a complex and dynamic process has likely frustrated the progress of mechanistic research, causally linking maternal diet with fetal malnutrition and later adverse outcomes in the adult offspring. Rather, Developmental Origins of Health and Disease postulates that fetal malnutrition is engendered by maternal malnutrition through alterations in the relative pattern of micronutrient (eg, amino acids, methyl groups, polyamines, cofactors) availability in the fetal compartment, together with concomitant effects on fetal hormones. Inappropriate exposure to such an unbalanced micronutrient environment through key developmental phases such as when brain regions like the hypothalamus are acquiring, and fixing, structural, and functional relationships (8) may leave a permanent mark on the offspring such that later function is reset. For example, in a clinical study, mild birth weight variation within monozygotic twin pairs was accompanied by appreciable differences in postnatal intelligence quotient and brain anatomy that persisted at least into late adolescence (9). In an animal model of maternal diabetes (ie, very low maternal insulin throughout pregnancy in streptozotocin-treated rats), fetal hypothalamic feeding circuits were reorganized such

Abbreviations: HPAA, hypothalamic-pituitary-adrenal axis; IUGR, intrauterine growth restriction; LBW, low birth weight.

doi: 10.1210/en.2013-1412

Endocrinology, July 2013, 154(7):2257–2259 endo.endojournals.org 2257
that the ensuing adult offspring had consistently greater food intake and elevated fasted glucose levels. Effects mechanistically linked to an insensitivity to leptin action in the hypothalamus; effectively, the animals had a diminished satiety signal (10).

The vulnerability of brain regional development to malnutrition has largely been described in experimental animal models (11), because prospective, randomized trials in humans are unethical. In animal models, there are important comparative aspects of brain development to take into account. For example, the equivalent timing of growth for some brain regions is postnatal in rodents and prenatal in man (11). Thus, a strength of the study by Li et al (12) is that a mechanistic experiment has been conducted in a nonhuman primate model, a species with very similar brain anatomy and one in which the timing of regional brain development is virtually identical to man. Previous work from this group had characterized how maternal undernutrition of baboons (70% of ad libitum intake of controls) altered the pattern, but not total, availability of amino acids in the fetal compartment when measured at 90 days (0.5 gestation) (13) but still had marked anatomical effects on the immature and developing fetal neocortex (14).

Here, with continued nutrient restriction to 165 days (0.9 gestation), the authors have now characterized further effects of maternal undernutrition on the function of the fetal brain during late gestation, specifically now the paleocortex rather than neocortex. Fetal baboons exposed to maternal undernutrition had premature activation of their hypothalamic-pituitary-adrenal axis (HPAA), characterized by high plasma adrenocorticotrophin and cortisol (12). Such inappropriate exposure of the vulnerable brain to high glucocorticoids has been shown by others to have long lasting, even intergenerational, effects (15, 16). The study goes on to provide a mechanistic insight for premature HPAA activation, desensitization of the paraventricular nucleus to short-and long-loop feedback by adrenocorticotropic and cortisol, respectively, plus a diminution of sensitivity to alternative inhibitory inputs, such as leptin. If the effects reported here in the paraventricular nucleus (12), but also in the arcuate nucleus (17), persist into adult life, then potential effects on the long-term regulation of energy balance (with presumed obesity as a consequence) may be speculated. Note, a small positive energy balance, over a long period of time, can have a significant impact on adiposity (18).

The current study does, however, leave some questions unanswered. It is known that the fetal and adult HPAA functions differently between males and females (19–21), but the current study with a mixed sex sample population is likely underpowered to determine any potential sex-specificity. Furthermore, the primary outcome of the study, a central insensitivity to HPAA feedback, is based upon an association, rather than a direct measure, and so caution should be exercised when interpreting the results. In addition, any potential contribution from altered sensitivity to trophic input in the adrenal has not been addressed. Future studies using, for example, freshly harvested tissue explants whereby receptor-ligand interaction and subcellular translocation (or lack of) could be directly observed would provide more conclusive evidence. The study is based on spot-samples during late gestation: as such, the longer-term effects of these changes in HPAA remain unknown given the differences, sometimes opposite, effects observed between fetal and neonatal/adult life (22). Although the authors frame their rationale in the context of IUGR, an observed effect size of 17% (decrease in fetal weight as a result of maternal undernutrition) is a relatively mild retardation of fetal growth, making the current results all the more interesting; would individuals with true IUGR express a more extreme phenotype?

Lastly, taking an evolutionary perspective, it is an open question as to whether data on changes in the biology of hypothalamic nutrient signaling in a primate born lean (baboon, ~3% body fat) may be translated successfully to one born fat (human, ~15% body fat) (23).

Taken together with other work from this group, the study of Li et al (12) provides proof-of-principle evidence that mild variation in maternal diet can have marked impacts on the anatomy of the fetal brain with functional consequences later in gestation. The longer-term impact of these effects, and how they may be subsequently modified by the postnatal environment, will no doubt become known in the years to come.

Acknowledgments

Address all correspondence and requests for reprints to: David S. Gardner, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom. E-mail: david.gardner@nottingham.ac.uk.

Disclosure Summary: The authors have nothing to disclose.

References

3. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in


