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ABSTRACT 

An initial review of the various theories of frost heave indicated 

that Miller's theory of secondary heave was the most convincing. 

The crucial area in this is the representation of the behaviour 

in the partially frozen region, known as the frozen fringe, which 

exists below the lowest ice lens. However, the computational 

difficulties of the associated mathematical model were likely to 

limit its application. A simpler quasi-static approach for a semi

infinite region had therefore been initiated, for a restricted 

range of conditions, by Holden. 

The work described in this thesis traces the development of the 

quasi-static approach and its application to the unidirectional 

freezing of a finite soil column. The resulting generalised model 

successfully predicts the freezing behaviour under a wide range of 

conditions. In particular, it is applicable to all overburden 

pressures, including zero. At low overburdens the frozen fringe 

disappears, but the final phase is nevertheless modelled to its 

ultimate equilibrium state. The predictions of the model agree with 

published experimental data from a number of investigators, and thus 

support the validity of Miller's theory. 

Parametric studies with the model have highlighted the importance of 

the hydraulic conductivity and the relationship between suction, 

temperature and ice content in the frozen fringe. Simulations are 



relatively insensitive to variations in thermal conductivity. 

The model has proved to be robust and stable and should form a 

sound basis for further studies. However, its full application 

will depend on the development of experimental techniques to 

determine the hydraulic conductivity in the frozen fringe. 
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NOTATION 

The notation adopted in this thesis is explained as it is introduced 

in the text. However. for reference purposes, the most commonly 

used symbols are defined below. 

A number of subscripts are employed, and these refer to the following: 

"w" denotes water 

"i" denotes ice 

"s" denotes the base of the latest ice lens 

"f" denotes the freezing front 

"ss" denotes the base of the (terminal) lens when no frozen fringe 

exists. 

Any exception to these definitions is clarified below: 

Symbol Quantity 

C Volumetric heat capacity 

g Acceleration due to gravity 

H Heave 

k Hydraulic conductivity 

ko Hydraulic conductivity of saturated unfrozen 

soil 

I Thermal conductivity 

Is Thermal conductivity of the solid frozen 

region 

Units 

m 
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Symbol Quantity 

Kf Thermal conductivity of the frozen fringe 

Ku Thermal conductivity of the unfrozen region 

L Latent heat of fusion of water 

P Applied overburden 

riw Radius of curvature of ice/water interface 

R Soil particle radius 

t Time 

T Temperature 

Tw Temperature at the base of the soil column 

(>0) 

Tc Temperature at the surface of the soil column 

«0) 

u 

v 

z 

a 

Freezing temperature of bulk water (273.15) 

Pressure (water pressure with s, f or ss 

subscript) 

Neutral stress 

Velocity or volume flux (usually of water) 

Space coordinate 

Base of soil column/level of water table 

Volume fraction 

Porosity 

Ice/water interfacial energy 

Suction parameter 

x Stress partition factor 

a Exponent in water pressure profile approxi-

mation 

Units 

W m-I °C I 

W m-I 0C- I 

J kg-1 

N m- 2 (Pa) 

m 

m 

s 

°c 

K 

m 

m 
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Symbol Quantity Units 

p Density 

Ps Density of frozen soil matrix 

~ Thermal diffusivity 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Motivation 

When certain types of moist soil are subject to freezing, an uplift 

or expansion of the soil occurs due to the phenomenon of frost 

heaving. The main cause of this expansion is the formation of 

segregated ice, that is distinct layers of more or less pure ice, 

which force apart the soil matrix. These ice "lenses" develop 

from the water which is drawn into the freezing zone from else

where, as a result of the soil freezing process. The expansion of 

in-situ pore water upon freezing makes only a very small contri

bution to the total heave. 

For frost heave to occur, three conditions must be present: a 

frost susceptible material, sub-zero temperatures and a supply of 

water. A frost susceptible soil is one which has a strong tendency 

to heave if the other two requirements are fulfilled. In general, 

the frost susceptibility of a soil is dependent on its permeability 

and capillarity (or suction characteristic). The permeability is 

a measure of the resistance of the soil to the flow of water through 

it, whilst the capillarity indicates the extent to which water can 

rise through the soil above a water table. 

Fine grained soils, such as clays, have high capillarity and adsorption 
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but a low permeability, which inhibits transport of water to a freez

ing front. On the other hand. coarse soils. for example sands and 

gravels. although highly permeable. have a low capillarity which 

also restricts water movement. Hence. both fine and coarse soils 

tend not to be frost susceptible. It is those soils with moderate 

permeability and capillarity. such as silts. silty-sands and silty

clays. which are found to be highly frost susceptible. 

Interest in the effects of freezing and thawing of soils has been 

motivated by the problems associated with both natural and arti

ficial ground freezing. 

In many parts of the world, particularly in the northern hemisphere, 

the climate is such that the temperatures are low enough to cause 

freezing of the ground. This is only a seasonal occurrence in some 

areas, but is permanent in others (known as permafrost). Nevertheless, 

in all these regions, damage to engineering structures, plants and 

agricultural crops due to frost action (both frost heaving and thaw 

weakening) is well known. In the past, the cost of repair and re

construction has been considerable. Nowadays, understanding of the 

phenomena is such that damage is largely avoidable, but only through 

application of expensive design procedures. One example of this is 

the Trans-Alaska oil pipeline, .constructed in the 1970s (see Williams. 

1979). Another is the design of the Alaska Natural Gas Transportation 

System, currently being developed in the United States and Canada. 

It has been estim~ted that more than $50 million has been spent in 

five years on establishing field test sites in permafrost areas, to 

obtain the information on ice segregation and frost heaving required 
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for the design (National Research Council, 1984). 

In the U.K., the main concern over natural freezing has been with 

regard to road construction, and the current specification demands 

that materials within 450 mm of the road surface should be non-frost 

susceptible (see Section 2.9). 

The increasing use of artificial ground freezing in construction 

projects has also stimulated investigations into the behaviour of 

freezing soils. This technique is used to stabilise weak ground 

and prevent groundwater intrusion during excavation for shafts, 

tunnels and other structures. However, refrigeration is expensive 

and there is a need for accurate predictions of the thickness of 

freezewalls. In addition, precautions must be taken to reduce the 

risk of damage to adjacent structures from frost heave and thaw 

settlement. Another example of "artificial" freezing which has 

focussed attention in this area is that due to the in ground storage 

of liquefied natural gas, the storage temperature being in the region 

of -160°C. 

Widespread interest has therefore been generated in the phenomena 

associated with frost action, and reliable predictive methods are 

required to improve design procedures and mitigate the effects of 

frost heave and ice lensing. The enormous research effort which has 

been, and continues to be, expended, is reflected in the number of 

international meetings which have been held since the early 1970s. 

These include: 
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International Symposia on Ground Freezing: 

First, 1978, Bochum, West Germany; 

Second, 1980, Trondheim, Norway; 

Third, 1982, Hanover, New Hampshire, USA; 

Fourth, 1985, Sapporo, Japan. 

International Conferences on Permafrost: 

Second, 1973, Yakutsk, USSR; 

Third, 1978, Edmonton, Alberta, Canada; 

Fourth, 1983, Fairbanks, Alaska, USA. 

Conferences on Soil Water Problems in Cold Regions: 

First, 1975, Calgary, Alberta, Canada; 

Second, 1976, Edmonton, Alberta, Canada; 

Third, 1979, Calgary, Alberta, Canada. 

International Symposium on Frost Action in Soils: 

1977, Lulea, Sweden. 

The published proceedings of these conferences provide comprehensive 

coverage of all aspects of the subject. References to individual 

papers are given in full in the usual way at the end of this thesis. 

Of special significance has been the publication recently of an 

increasing number of papers from Russia and China. This is import

ant in view of the fact that very little translated material was 
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previously available (see Miller, 1978, Loch, 1980). Also of 

particular interest are review articles which appear occasionally 

giving a state of the art summary at the time (e.g. Anderson and 

Morgenstern, 1973, Loch, 1980). 

1.2 Objectives 

The first task was to undertake a review of the literature, in order 

to provide the necessary background and to establish the state of 

the art in frost heave research. Particular emphasis was placed 

on assessing the theories put forward to explain the phenomena, 

and the mathematical algorithms proposed to model freezing soils. 

Having identified current thinking in these areas, the primary aim 

was to develop a mathematical model for frost heave capable of 

predicting the observed behaviour, including the initiation and 

growth of ice lenses, whilst minimising the computing effort re

quired for such a model. Indeed, it was hoped that the resulting 

program could eventually be run on a microcomputer to provide rapid, 

inexpensive estimates of frost heave under any applied boundary 

conditions. 

It was also felt that development of the model would inevitably 

involve examination of the mechanics of frost heaving, in order to 

isolate the key processes and parameters, and that in the long term, 

this would aid understanding and improve subsequent modelling of the 

physics of freezing soils. 
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CHAPTER 2 

RESEARCH INTO FROST HEAVE: A LITERATURE REVIEW 

2.1 Introduction 

As explained in Chapter 1, the worldwide interest in ground 

freezing has led to the publication of a vast amount of liter

ature on the subject, with contributions from many disciplines. 

This chapter however, concentrates on those areas relevant to 

the work described in this thesis, and hence provid~s a review 

of the literature relating to the theory and mathematical 

modelling of frost heave. 

A brief historical introduction to the problem is presented 

first, followed by a chronological account of the early theor

etical and experimental work. Sections 2.4 to 2.7 then trace 

the development of the various theories proposed to explain the 

phenomenon. Two other aspects which feature in the literature 

are subsequently discussed,before, in Section 2.10, the more 

prominent mathematical models of frost heave are reviewed. 

Finally, a summary of the recent trends in frost heave research 

is provided in Section 2.11. 

2.2 Historical Background 

It appears that the raising of the ground surface as a result of 
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freezing of soil was well known at least by the middle of the 

eighteenth century, when an account was given by E. O. Runeberg 

(1765) (see Beskow, 1935). He wrote: "We can say for certain 

that earth, stone, or houses, that rest on this (saturated soil 

that is freezing) must either resist or be displaced." However, 

it was not until the beginning of this century that the problem 

was taken seriously, due to the increasing significance of frost 

damage to roads, foundations and agricultural crops. 

The first major works to emerge were those of Taber (1929, 1930) 

and Beskow (1935). Until this time, it was widely thought that 

frost heaving was due just to the expansion of water upon freez

ing, but Taber (1929) found that the heaving of clay samples in 

the laboratory far exceeded that which could be attributed to the 

9% volume expansion. Indeed, he obtained frost heave in a sample 

in which water was replaced by benzene, which contracts on 

freezing. Taber published photographs of frozen clay samples 

containing layers of segregated ice, similar to those found in 

heaved ground, and explained that the layers of ice were formed 

as a result of additional water being drawn into the sample. Both 

Taber and Beskow recognised the significance of the adsorbed film, 

that is the thin film of water that eXists on the surface of a 

soil particle due to molecular attraction. Taber (1930) pointed 

out that this provides a mechanism for the growth of segregated 

ice. A thin film of water between a soil particle and an over

lying ice lens will permit water to be drawn up to feed the 

growth of the lens. 
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Beskow, on the other hand, related the presence of the adsorbed 

films to the depression of the freezing point of water in soils. 

He explained that this bound water needs an "extra force" 

(lowering of the freezing point) to pull the water molecules 

away from the surface of the soil particle and permit their 

formation into ice crystals. The freest water, in the centre 

of the pore space, freezes first, and hence determines the 

starting temperature of freezing. However, the greater the 

proportion of water held in adsorbed films in a soil, the larger 

the depression of the freezing point, and since the former is a 

function of the specific surface of the soil, the freezing point 

depression in, say, clays is greater than in sands. By way of 

illustration, some typical curves of unfrozen water content 

against temperature are given in Figure 2.1. A further explan

ation of the freezing point depression of water in soils, is 

given later in this chapter. 

2.3 Early Theories of Frost Heaving 

Among the first researchers to attempt to quantify the effects of 

freezing was Schofield (1935), who related the suction of the 

unfrozen water in a soil to the freezing point depression (see 

Croney and Jacobs, 1967). However, it was not until some years 

later that the pressures which exist in the water and ice phases 

during frost heaving were investigated by Penner (1957, 1959) 

and Gold (1957). 
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Penner (1957) carried out a number of unidirectional freezing 

tests on different soil samples blended artificially. First, he 

obtained suction (or "moisture tension") against moisture content 

curves for the soils, and then, after freezing, measured the 

water content of the unfrozen soil in order to estimate the 

suction induced therein due to freezing. A free water supply 

was provided at the warm end of the samples, so that when 

freezing commenced, water could be drawn into the soils (open 

system freezing). This situation was continued until the 

maximum rate of frost heave under these conditions was 

attained. The external source of water was then removed, 

and heaving continued only as a result of moisture movement 

from the unfrozen portion to the freezing zone (closed system 

freezing). The moisture content measurements of the unfrozen 

soil were carried out once the heave rate approached zero. 

Penner found that higher moisture tensions were induced in fine-

grained soils than in coarse-grained, producing higher moisture 

flows and higher heaves. He also found that in specimens pre-

pared in layers from two different materials, the moisture 

tension, or suction, in the unfrozen portion was dependent upon 

the material in which the freezing plane was located. 

Penner's (1959) attempts to explain the heaving mechanism 

theoretically were based on two equations. The first, given by 

Sill and Skapski (1956), describes the temperature dependence 

of the size of a stable spherical crystal in its own melt, 

thus: 

AT = 2 To C1iw 
r Pi L . •• (2.1) 
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where: r = radius of the crystal 

Pi = density of the ice 

°iw = ice/water interfacial energy 

L = latent heat of fusion 

To = temperature (absolute) of melting at zero 

curvature of the sOlid/liquid interface 

~T = the freezing point depression 

The second is a pressure-freezing point depression equation given 

by Edlefsen and Anderson (1943), namely: 

where: 

dut = 
dT 

L 
. .. (2.2) 

dUt = total change in pressure (i.e. the total change 

in pressure on the ice which equals that on the 

water) 

dT = change in freezing point temperature 

Vw = specific volume of water 

Vi = specific volume of ice 

To = the absolute temperature at which the phase 

change occurs 

L is as defined in Equation (2.1). 

Penner assumed the configuration of the ice/water interface at the 

freezing plane to be, typically, as shown in Figure 2.2. Here, he 

claimed, the ice front will be temporarily prevented from propagat-

ing down between the s.oil particles until the temperature has been 

lowered sufficiently to satisfy Equation (2.1). Before this occurs, 
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part of the adsorbed water above the particle will freeze, contribut

ing to the growth of the ice lens. As water is being removed from 

the adsorbed layer into the ice phase, it is replaced from below, 

and an equilibrium thickness of water is maintained around the 

soil particle. Equation (2.2) was used to explain the observation 

that ice lens growth can be stopped by loading the soil. If the 

soil, and hence the ice lens, is loaded, causing a pressure at 

the ice/water interface above the soil particle, the freezing 

point of the water will drop according to Equation (2.2). The 

limiting pressure to stop ice lens growth will occur when the 

freezing point of the water above the particle has been lowered 

to the same temperature as is necessary for ice to propagate 

through the pore constriction. 

Gold (1957) suggested a possible mechanism of frost heaving, 

starting from the Gibbs thermodynamic potential, or, as it is 

more commonly called, the Gibbs free energy, g, given by: 

g'= e + uV - 1s . .. (2.3) 

where: e = internal energy 

u = pressure 

V = specific volume 

T = absolute temperature 

s = entropy 

Assuming a situation at the ice/water interface similar to that 

given in Figure 2.2, Gold derived the conditions which must be 
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satisfied if ice and water are to be in equilibrium in a small 

space, that is local to a soil pore space, for a given temper

ature depression and water tension. He considered a simple 

spherical particle arrangement for a soil to illustrate that 

the theory agreed qualitatively with Penner's observations. 

It was research such as this that heralded the beginning of 

the formulation of the capillary theory of frost heave (so 

called because moisture movement is attributed to the capillary 

suction present at a curved ice/water interface), which will 

now be described more fully. It is worth noting at this point 

that, in spite of Taber's (1930) observation that ice formed 

in the soil voids below a growing ice lens, the assumption. 

central to the capillary theory. that an ice lens forms at the 

freezing front prevailed for many years, at least until the 

early 19705. 

2.4 The Capillary Theory of Frost Heaving 

In 1961. Everett discussed the problem of frost damage to porous 

solids from the point of view of equilibrium thermodynamics. and 

used a simple model to explain the phenomenon in soils. By con

sidering the chemical potential of a small crystal, immersed in 

and in equilibrium with a fluid subjected to hydrostatic pressure. 

ul. Everett derived a generalised form of the Laplace surface 

tension equation, that is: 
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• •• (2.4) 

where: A = area of the interface 

V = volume of solid 

Us = pressure within the crystal 

C1 = interfacial energy between solid and 
liquid 

For a spherical particle of radius r, this equation becomes: 

... (2.5) 

The simple model consisted of two cylinders, each closed by a 

piston and joined by a capillary tube. Initially, the cylinders 

are filled with liquid water. The temperature is lowered to O°C 

and freezing is nucleated in one of the cylinders (but not the 

other). Once this cylinder is completely filled with ice, Everett 

describes the pressure conditions under which preferential growth 

of bulk ice in the cylinder (lIice lensing") or ice in the capillary 

(lIfrost penetration") will take place. It is assumed that the 

interface adopts a hemispherical shape in the capillary, hence 

the significance of Equation (2.5) which, in fact, is fundamental 

to the capillary theory. 

This idealised model was thought to be appropriate because it was 

known that frost heave was associated with materials in which 

coarser pores were separated from one another by narrow pore 
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necks. Therefore, an equation such as (2.5) suggested that "for 

a material of given mechanical strength", or for a given over

burden, there might exist a critical pore size which, if present 

in the material, would lead to frost damage. 

It seems relevant at this point to introduce the concept of 

"heaving pressure". Everett, and several other authors, defined 

heaving pressure to be the quantity: 

6u = Us - U1 • .• (2.6) 

as in Equation (2.5). Penner (1959) had previously defined it 

as the positive pressure developed at the ice/water interface 

when vertical displacement is prevented in a frost heaving soil. 

The latter is, in fact, closer to the definition now in common 

use, that heaving pressure is the pressure of the ice. That is, 

the pressure of the ice corresponds to the weight effect, or 

resistance of the overlying material (Williams, 1979). 

Encouraged by the agreement between Penner's (1957) observations 

and the thermodynamic theory, Everett and Haynes (1965) general

ised the treatment of Everett (1961) to include any pore geometry. 

They considered the pressures existing in ice, solid and water in 

a "generalised" pore and then applied this theory to a number of 

simple pore systems. In particular, they looked at a close packed 

array of spheres of equal radius, and the tetrahedral cavities 

between the spheres, in the hope that such an arrangement would be 

amenable to both theory and experiment. Their estimates of heaving 
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pressure, as a function of particle diameter, were of the right 

order of magnitude, but no precise experimental data were avail-

able at the time to test the theory rigorously. 

It was left to Williams (1967) to present the most complete 

account up to that time of the capillary theory of frost heaving. 

Both experimental work and theoretical aspects were described in 

a series of studies, each of which was suggested by the con-

clusions arising from the preceding one. The last in this 

collection of papers, however, differed from the others in that 

it attempted a composite presentation of the soil freezing 

process, and included therefore a statement of the capillary 

theory and a description of the rhythmic formation of ice lenses. 

Williams explained that the pores of soils can be regarded as 

a series of interconnected capillaries, so that the pressures 

in an ice/water interface at a freezing front, such as that 

shown in Figure 2.2, can be represented by Equation (2.5). 

Using the suffices "i" for ice and ''w'' for water, this becomes: 

... (2. 7) 

where: = radius of (hemispherical) interface. 

It can easily be seen from Equation (2.7) that if the ice is 

under atmospheric pressure (that is, zero gauge pressure), the 

pore water must have a negative pressure, or suction. 
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Now, for the frost line or freezing front to advance through a 

pore of radius rc, the ice and water pressures must satisfy 

(following Equation (2. 7)) : 

... (2.8) 

Thus, according to the capillary theory, rc is an important 

characteristic for a given soil, since it determines the pore 

water pressure, relative to that of the ice, occurring at ice/ 

water interfaces at the penetrating frost line. If, on the 

other hand, the pore pressure is greater, such that: 

u;-n .. <~ 
... - rc ••• (2.9) 

the radius riw of the interfaces is greater than rc and the ice 

is unable to penetrate through the soil pore. Instead, freezing 

results in growth of an ice lens. The movement of water to the 

lens (which occurs as a result of the suction at the interface 

of radius riw) results in a decrease in the water pressure to the 

extent that the conditions of Equation (2.8) are approached. As 

soon as they are achieved, ice lens growth ceases, and instead 

the ice advances through the pore. 

The pore pressure, however. will usually then begin to rise again 

(since the removal of water to the ice lens has ceased) until 

eventually the condition for formation of a lens is once again 

reached. This explains the alternate layers of ice ~d frozen 
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soil in heaving soil. and this process continues until insuffic-

ient cooling takes place to permit further frost penetration. 

The latest ice lens then becomes the final. or terminal lens. 

The capillary theory also predicts the depression of the freezing 

point of pore water. Williams combined Equation (2. 7) with one 

similar to (2.1) to obtain: 

where: 

ui - Uw = -(T-To)L 
To Vw 

Vw = specific volume of water 

T = freezing temperature (Kelvin) 

and confirmed its validity experimentally. 

... (2.10) 

Equation (2.l0)is a form of the Clausius-Clapeyron equation which, 

in its various forms, has received almost universal acceptance in 

the field of frost heave research. Equations similar to this were 

quoted by earlier researchers (e.g. Gold. 1957. Penner. 1966). 

However. Williams appears to have been the first to discuss such 

an equation explicitly as part of the mechanism behind the capillary 

theory. If the ice pressure is known. Equation (2.10)provides an 

expression for the water pressure as a function of temperature. 

Throughout this thesis. the following alternative form of the 

Clausius-Clapeyron equation is used: 

!!i_~ 
Pi Pw = -LT 

To ... (2.11) 
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where: (defining all symbols for clarity) 

Ui, uw = ice pressure and water pressure 

Pi, Pw = densities of ice and water 

T = freezing temperature (oC) 

To = freezing temperature of bulk water 

at atmospheric pressure (273.15 K) 

L = latent heat of fusion of water 

As this equation plays such an important role in the work described 

herein, a simple derivation from equilibrium thermodynamics is 

given in Appendix A. 

Whilst these theoretical developments were taking place, experi

mental work continued in an attempt to verify the theory and to 

establish a criterion for frost susceptibility. That is, experi

mentalists sought to define a fundamental soil parameter which 

would provide a measure of a soil's susceptibility or tendency 

to frost heaving. 

Hoekstra et al (1965) carried out a number of constant volume 

freezing tests, including one on a silt saturated with benzene. 

A substantial heaving pressure developed, confirming Taber's 

(1929) observation that such pressures are not due to freezing 

expansion, since benzene contracts on solidification. In accord

ance with the capillary theory, Hoekstra et al attributed heaving 

pressures to the surface energy of the SOlid/liquid interface, 

and demonstrated with tests on layered samples that the pressure 



22 

originates at the freezing front. They concluded that pore size, 

and hence heaving pressure, ought to provide a reliable criterion 

for frost susceptibility. 

In contrast, Penner (1967) found that average grain size was a 

satisfactory basis for assessing frost susceptibility. Heave 

pressure measurements for various fractions of potter's flint 

indicated that the smaller pores of the system were responsible 

for the development of such pressures. To account for this, 

Penner suggested that at each point on the freezing plane, ice 

advances through larger pores until, depending on the temper

ature, further propagation through smaller pores is prevented, 

according to Equation (2.1). Penner therefore assumed that, on 

a microscopic scale, the freezing plane appeared as an undulat

ing surface. However, because each fraction contained a large 

range of pore sizes, heaving pressures were plotted instead 

against an average particle diameter for each fraction, and the 

results supported the use of particle size as a criterion for 

frost susceptibility. The subject of frost susceptibility 

testing is discussed further in Section 2.9. 

2.5 The Concept of Secondary Heaving 

Although the capillary theory was apparently capable of explaining 

the heaving process, and in spite of some encouraging experimental 

results, by the end of the 19605 there was mounting evidence that 

the theory was in fact inadequate. Hoekstra (1966) found that 
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ice lenses in an unsaturated soil form at a considerable distance 

behind the freezing front and he measured significant moisture 

flow in the frozen soil. The magnitude of this flow indicated 

liquid rather than vapour transfer was taking place, and the 

movement was attributed to the flow of water via the adsorbed 

films which, as mentioned previously, remain un fro zen at temper

atures several degrees below oOe. Later, in 1969, Hoekstra 

published a series of photographs showing an ice lens growing 

behind the freezing front in a saturated clay, and he also 

photographed an ice lens some distance behind the freezing front 

in a saturated granular soil (Fairbanks silt). Hoekstra noted 

that, notwithstanding Penner's (1967) work, attempts to find 

agreement between calculated and experimental heaving pressures 

had thus far failed. 

It was against this background that Miller (1972) proposed the 

concept of "secondary heaving" for saturated soil. He supposed 

that the ice does penetrate the pore system ahead of the latest 

ice lens and he referred to this region between the ice lens and 

the unfrozen soil as the "frozen fringe". Miller suggested that 

under these circumstances, the ice lens can continue to grow and 

the ice in the frozen fringe will move with it, while the particles 

remain stationary. This phenomenon was termed "secondary heaving". 

Heaving according to the capillary model was called "primary heav

ing" (Figure 2.3). Miller inferred that whenever heaving occurs 

as the freezing front is descending through the soil, the process 

must be secondary heaving. 
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Earlier work by Miller (1970) had suggested a mechanism for the 

ice in the frozen fringe to move as an integral part of the ice 

body that includes the ice lens. Ice that fills a large "pore" 

between two filter papers was found to move readily despite 

appearing to be stationary. When supercooled water was on 

opposite sides of the respective filters, an increase in water 

pressure on one side caused supercooled water to emerge from the 

opposite side. Concurrent melting and freezing on opposite sides 

of the ice caused the ice to be in motion between its stationary 

boundaries. It was therefore thought possible that in the frozen 

fringe water traverses the ice-filled pores in the ice phase, and 

moves around the ice and soil particles in the film phase. This 

bi-modal water movement was later described as "series-parallel" 

transport (Miller et aI, 1975). 

Miller (1972) argued that secondary heaving produces larger heaving 

pressures than primary heaving and explains why previous theories 

underestimated the maximum heaving pressure of saturated soil. A 

mathematical expression of secondary heaving however did not 

appear until later (Miller, 1977, 1978). This aspect is described 

in full in Chapter 3; further detail therefore is not included 

here. 

In the years following Miller'S (1972) original proposal, further 

evidence emerged supporting the concept of secondary heaving and 

the existence of the frozen fringe. According to Equation (2.9), 

the maximum heaving pressure predicted by the capillary theory is: 
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max ui = ... (2.12) 

where: re = effective radius of pore necks. 

Experiments conducted by Sutherland and Gaskin (1973) indicated that 

the maximum heaving pressure was somewhat larger than predicted by 

Equation (2.12), with re derived from air entry measurements. (Air 

entry tests measure the pressure at which air replaces water in a 

material, which is given by: 

ua = 

where: Ua = air pressure 

0aw = air/water interfacial energy). 

Similarly, Loch and Miller (1975) found that the limit of heaving 

pressures developed in a triaxia1 having test device exceeded that 

predicted by air entry data using the primary heaving model by 

factors as large as three to six. They concluded that their results 

apparently reinforced the concept of secondary heaving, but admitted 

that there was a need to learn more about transport phenomena in the 

frozen fringe beneath the ice lens. 

The possibility for the rigid pore ice phase and the soil skeleton 

to move in opposite directions in the presence of a temperature 

gradient was illustrated by RBmkens and Miller (1973). They performed 

experiments in which a temperature gradient caused particles embedded 
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in ice to migrate in the direction of increasing temperature. 

Another requirement of the secondary heaving theory is that water 

is able to flow through the frozen fringe to feed the growth of 

the ice lens. Using a "frozen permeameter". Williams and Burt 

(1974) measured the hydraulic conductivity. due to a hydraulic 

gradient. of various frozen materials at different temperatures. 

Significant hydraulic conductivities were measured at temperatures 

well below oOe and these were attributed to the unfrozen water 

remaining in the frozen soil (see Figure 2.1). However. Miller 

(1978) pointed out that with their apparatus, Williams and Burt 

must have measured the total flux due to both liquid transport via 

the unfrozen films and transport of water via the moving ice 

phase. In other words. they measured the "series-parallel" 

transport as if all the flux were in the liquid phase. 

The secondary heaving concept also received support from a study 

by Loch and Kay (1978). They measured the location of the growing 

ice lens relative to the freezing front in columns of saturated silt 

which were freezing under different overburden pressures and differ

ent temperature gradients. These data were then used to evaluate 

current models of water redistribution in freezing soils. Loch and 

Kay found that the ice lenses appeared to be located in the frozen 

soil a distance of 2-4 mm behind the freezing front. As a whole, 

their results tended to conform to the concept of secondary heaving, 

but they noted that the theory required a mechanism for predicting 

the distance of the ice lens behind the freezing front in the 

presence of an overburden. Such a mechanism was indeed proposed 
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by Miller (1977, 1978) and is described in the next chapter. 

Thus, by the end of the 1970s, considerable experimental evidence 

supporting the concept of secondary heaving, at least in principle, 

had been presented. However, around this time, two other theories 

of frost heaving were proposed, which also sought to explain the 

recent developments published in the literature. These were the 

adsorption force theory and the segregation potential theory, 

both of which will now be briefly discussed. It should first be 

noted however, that far from receiving universal acceptance, these 

two theories have attracted a good deal of controversy. Indeed, 

it is Miller's theory which has been credited most in the literature, 

perhaps because it is thought to have a firmer physical basis. 

Moreover, it makes fewer assumptions regarding the soil properties 

(e.g. thermal and hydraulic conductivity), and unlike the segreg

ation potential theory (Section 2.7), it does not rely upon an 

empirical parameter. Nevertheless, the controversy remains, and 

researchers have yet to agree upon a comprehensive theory of frost 

heave. 

2.6 The Adsorption Force Theory 

This theory was proposed by Takagi (1980a), based on earlier work 

by him (e.g. Takagi, 1977), and is centred on the adsorbed film 

water between the soil particle and the overlying ice lens. Takagi 

considers that this film has an equilibrium thickness which is 
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determined by the adsorption forces exerted by the particles and the 

ice. So, as water molecules become attached to the base of the ice 

lens, a suction is generated that draws water into the film to 

maintain its thickness. According to this explanation, the ice 

lens grows on the soil particle. Takagi refers to the freezing 

of the film water that generates suction as "segregation freezing". 

In contrast, the freezing of homogeneous free pore water, called 

"in-situ freezing", does not generate suction. That is, the in-situ 

freezing front advances as the in-situ freezing progresses. 

The adsorption force theory asserts that the film water, although 

a liquid, should be treated as a solid, because it can sustain the 

weight of the overburden. The primary cause of frost heaving is 

said to be the creation of a solid-like stress in the un fro zen 

film water between ice and soil surfaces. The freezing point of 

the film water is referred to as the "segregation freezing temper

ature", Ts, and this is always less than the in-situ freezing 

temperature, TI. A formula for the average segregation freezing 

temperature, Ts , is derived from classical thermodynamics, and is 

written: 

Ts = TI [1 - (w + Pigh)/(PiL)] ... (2.13) 

where: w + Pigh = increase in ice pressure 

w = surcharge overlying the ice lens 

h = thickness of the ice lens 

This equation can, in fact, be obtained from the Clausius-Clapeyron 
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Equation (2.11) by setting pore water pressure, Uw = 0, ice pressure, 

ui = w + Pigh, temperature T = Is - TI and To = TI' 

Takagi has used continuum mechanics to produce a mathematical 

structure for the theory, but admitted that this was incomplete 

due to the lack of a description of the mechanics of film water 

using continuum mechanics. However, Takagi expected that "modern 

continuum mechanics will, in the future, improve the theory of film 

water". These expectations appear not to have been fulfilled, as 

yet, since no further work on the adsorption force theory has been 

published, apart from Takagi's (1980b) short summary of the 

essential features. 

Finally, it should be mentioned that because reviews of Takagi's 

(1980a) paper revealed areas of controversy, Miller (1980) was in

vited by the editor of the publishing journal to submit a commentary, 

in which he presents an alternative point of view. 

2.7 The Segregation Potential Theory 

This theory was developed by Konrad and Morgenstern (1980, 1981), as 

part of a research programme aimed at developing a comprehensive 

engineering theory of frost heave. They adopted the position that 

any theory requiring local measurements of high accuracy such as 

temperature, unfrozen water content, or permeability of frozen soil 

cannot result in a theory that will yield practical results. They 
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therefore attempted to demonstrate that unique frost heave character

istics for soils are deducible from controlled laboratory freezing 

tests. 

Konrad and Morgenstern's view of the heaving process was in accord 

with that of Miller in that they recognised the existence of the 

frozen fringe and the continuous flow of water through it to feed 

ice lens growth. However, they postulated a different mechanism 

for the formation of rhythmic ice lenses. It was argued that a lens 

is initiated at a given location defined by its particular segreg

ation freezing temperature, Ts. With continued heat extraction, 

the lens grows and the freezing front advances. This produces a 

change in the temperature profile across the frozen fringe, and, 

more specifically, the temperature at the base of the ice lens 

becomes colder. Consequently, overall permeability of the frozen 

fringe decreases whilst the suction at the base of the lens in

creases. Further frost penetration results in a further decrease 

in the temperature at the base of the latest ice lens until, even

tually, the permeability of the upper part of the fringe becomes 

so small that water flow there is essentially stopped. Water now 

accumulates somewhere below the base of the former ice lens, at a 

level governed by the segregation freezing temperature of ice lens 

formation, Ts. This process is repeated until "steady state" 

conditions are reached and the final ice lens is formed at a 

temperature Tso. 

Konrad and Morgenstern (1980) initially concentrated on "steady 
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state" conditions which they defined to be the time when the freezing 

front becomes stationary (in a freezing test with constant temper

ature boundary conditions). They added that this coincides with 

the formation of the final ice lens. This was clearly an approx

imation since Konrad and Morgenstern's own experiments show that 

after the final lens has been formed in such a test, the freezing 

front normally retreats to some degree due to continued heaving. 

The freezing front then only becomes stationary when heaving ceases. 

Nonetheless, this steady state condition was assumed and also the 

thermal conductivity of the frozen fringe was taken to be the same 

as that of the unfrozen soil, so that the temperature profile 

throughout the "active system" (that is, the frozen fringe and the 

unfrozen soil) was essentially linear. Further assumptions led 

Konrad and Morgenstern to derive the relation: 

Vo = SPo grad Tf ... (2.14) 

where: = water intake flux 

grad Tf = temperature gradient in the frozen fringe 

SPo = segregation potential (constant) 

The "0" subscript refers to the formation of the final ice lens and 

SPo is defined as: 

. .. (2.15) 

where: hs = suction (head, cm of water) at the ice lens 
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hu = suction (head) at the oOe isotherm 

kfo = overall permeability of the frozen fringe 

Equation (2.14) was verified experimentally, and it was claimed that 

sPo was constant for a soil sample freezing under different co1d-

side step temperatures but with the same warm-side temperature (and 

under zero applied load). 

Still dealing only with the formation of the final ice lens, Konrad 

and Morgenstern (1981) went on to show the variation of SPo with 

suction at the freezing front. From this study, they concluded that 

it is possible to characterise any freezing soil at the formation of 

the final ice lens by a set of straight lines passing through the 

origin on a Vo versus grad Tf plot. Each line corresponds to a 

given suction developed at the freezing front, the gradient of the 

line is the appropriate segregation potential, SPo, and SPo decreases 

with increasing suction. 

Konrad and Morgenstern (1982a) then attempted to extend their analysis 

to conditions of transient freezing, or unsteady heat flow. They 

suggested that at any given time during transient freezing, the 

segregation potential, SP, defined by: 

SP = v . .. (2.16) grad Tf 

will be a function of both the suction at the freezing front and the 

"rate of cooling of the current frozen fringe". The rate of cooling 

was defined as the change in average temperature of the frozen fringe 
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per unit time, and was approximated by: 

where: 

dTf = 
dt 

dX = dt 

dX 
grad Tf dt 

rate of advance of the freezing front 

... (2.17) 

It was therefore claimed that a soil freezing under zero applied 

load, with an advancing freezing front, can be characterised by the 

segregation potential, the suction at the freezing front and the rate 

of cooling of the frozen fringe. These three parameters provide a 

"characteristic frost heave surface" that can be determined from 

experimental data and used as input to a heaving model. By way of 

illustration, Konrad and Morgenstern carried out instrumented freez-

ing tests to calculate this surface for Devon silt, and their 

results were shown in a three-dimensional plot. 

The final stage of the analysis was to evaluate the effect of applied 

pressure (Konrad and Morgenstern, 1982b). For this, steady state 

conditions were again considered and the variation of SPo with applied 

pressure, and with suction under different applied pressures, was 

obtained from tests on Devon silt. The following empirical relation 

was deduced: 

where: 

... (2.18) 

P = applied pressure 

a, b = "soil constants easily determinable from 

laboratory tests" 
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At the end of this latest study, Konrad and Morgenstern presented a 

simplified method of frost heave determination, in which they assumed 

that freezing under field conditions could be approximated by char

acteristics corresponding to the formation of the final ice lens in 

a laboratory freezing test. They argued that the use of the segre

gation potential in such a method was highly advantageous because 

the SPo could be calculated from two quantities easily measured in 

the laboratory, namely water intake flux and frozen fringe temper

ature gradient. It was thought that the method would provide an 

upper bound frost heave value in a field situation. 

Although the segregation potential theory has received rather more 

coverage in the literature than the adsorption force theory, there 

exists some doubt about its validity. Recently, Ishizaki and Nishio 

(1985) carried out a number of freezing tests in which they concen

trated on the behaviour after the formation of the final ice lens. 

They found that Equation (2.14) certainly did not apply after the 

formation of the final ice lens in their experiments. Since the 

segregation potential theory is founded upon this relationship, 

questions concerning its validity clearly remain. 

2.8 The Concept of "Shut-Off" Pressure 

As mentioned previously, the maximum heaving pressure of a soil was 

measured in constant volume freezing tests by a number of researchers 

(e.g. Hoekstra et aI, 1965, Sutherland and Gaskin, 1973). The 
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existence of a maximum heaving pressure was predicted by the capillary 

theory (Equation (2.12» and by the secondary heaving theory (Miller, 

1972). It was therefore assumed that for each soil there would 

exist an equivalent "shut-of~' pressure, at which the effective 

stress at the freezing front would cause neither flow of water into 

or away from the freezing front, thus preventing frost heave (Hill 

and Morgenstern, 1977). When the shut-off pressure is exceeded, 

water is then expelled ahead of the freezing front. Takashi et al 

(1978) proposed a critical effective stress below which water 

intake and above which water expulsion takes place. The belief 

in the existence of a shut-off pressure played an important role 

in the ultimately abortive design of the Mackenzie Valley chilled 

gas pipeline in Canada (Williams, 1979). It was thought that a 

berm of soil placed above the pipe would provide the necessary 

pressure to prevent frost heaving. 

However, experimental evidence has recently suggested that water 

expulsion is followed by water intake, provided that sufficient time 

is allowed for the experiment to run. Loch and Miller (1975) and 

Loch and Kay (1978) observed this flow reversal in their experiments. 

They attributed the expulsion to the formation of pore ice, reflect

ing the volume change in the freezing of pore water. Konrad and 

Morgenstern (l982b) extrapolated their experimental results to 

suggest a shut-off pressure for Devon silt. They found that the 

value obtained (in the range 1.0 - 1.2 MPa) was much greater than 

that under which laboratory tests are normally conducted. Hence, 

they concluded that although the concept was still valid, laboratory 
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freezing tests will exhibit water intake provided sufficient freezing 

time is allowed. Similarly. with surcharges up to 300 kPa, McCabe 

and Kettle (1983) observed that shut-off pressures were not achieved 

in their tests on a number of different materials. 

It is evident then that increased overburden pressures reduce the 

amount of heave, but it is now thought that heaving pressure can 

build up slowly but almost indefinitely as long as the process is 

given sufficient (geological) time (Penner and Ueda, 1978). 

2.9 Frost Susceptibility Testing 

Much of the research conducted into frost heaving has been stimulated 

by a desire to establish a reliable criterion for assessing the 

frost susceptibility of soils. The literature contains a great 

many publications on the subject and a thorough review here is both 

inappropriate and impractical (see Chamberlain, 1981). To summarise, 

however, amongst the numerous suggested criteria are grain size, pore 

size, heaving pressure, heave rate and heave. Testing methods have 

employed variations in sample preparation, water supply, load 

application, freezing procedure, and so on. Consequently, it has 

in the past proved difficult to reconcile results from different 

sources. However, most techniques now in use involve the measure

ment of heave or heave rate in unrestrained tests. Jones (1980) 

reviewed a number of these tests and discussed developments and 

applications of frost susceptibility testing. 
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In the United Kingdom, the main concern over frost heaving has been 

with regard to damage to roads. The current specification for 

major roadworks (Department of Transport, 1976 and 1986) requires 

that all materials within 450 mm of the road surface shall be non

frost susceptible as defined by the Transport and Road Research 

Laboratory (TRRL) Test (Roe and Webster, 1984, BSI, 1986). 

In the TRRL test, specimens are placed in a self-refrigerated unit 

so that the air temperature above them can be maintained at 

-17 ± 1°C. The base of each sample is in contact with water 

which is maintained at a constant level and at +4 ± 0.5°C. Freez

ing continues for 96 hours, and heave and water intake are recorded 

every 24 hours. Thermocouples are used to monitor the boundary and 

internal temperatures of the specimens. Subject to certain speci

fied limits on the test, the material is classified as non-frost 

susceptible if the "grand average" heave is less than 12 mm. 

Details of the TRRL test, including specimen preparation, are 

supplied by Jones (1987), who also describes the evolution of the 

test since the specification of Croney and Jacobs (1967). 

2.10 Mathematical Modelling of Frost Heave 

In the last ten years or so, a great deal of research effort has been 

devoted to the development of mathematical models coupling fluxes 

of heat and water in freezing soil-water systems. This work has 
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been stimulated by the need for predictive methods for use in the 

design of structures in and on naturally and artificially frozen 

ground. As O'Neill (1983) pointed out, it is often difficult to 

extrapolate beyond the specific conditions under which any given 

experiment is carried out, so investigators have attempted to 

develop more general mathematical models of the freezing process. 

As a result, there has been a proliferation in the number of 

mathematical models of frost heave. and this has emphasised the 

necessity of improving existing knowledge of the complex physical. 

chemical and mechanical processes involved in freezing (and thawing) 

of soils (Berg. 1984). 

A number of numerical simu1ations were discussed by Loch (1980) 

and. more recently, O'Nei1l (1983) presented a thorough state of 

the art review of mathematical frost heave models. A rather less 

detailed review is given here. the aim being to discuss those 

models most prominent in the literature. 

Every model in the very least must address the problem of heat 

transfer with phase change. Lunardini (1981) summarises some of 

the methods employed in the solution of phase change problems without 

mass transfer. that is. without heave. These range from the analytical 

solutions of Stefan and Neumann (see Carslaw and Jaeger, 1959) to 

approximate methods, including the use of finite differences. In 

most models, the soil-water system is considered to be a macroscopic 

continuum. This allows the assumption of Darcian-type moisture flux 

and the application of equations for conservation of mass and energy. 
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These equations typically take the following form in one dimension: 

Mass: 

Energy: 

where: 

aew -+ at 
Pi aai = 
Pw at ... (2.19) 

C aT _ p' L aai = a (KaT) a at 1. at az az - Cwaz (Tvz) ... (2.20) 

z = space coordinate 

aw. ei = volumetric water and ice contents 

• = total head 

k = hydraulic conductivity 

K = thermal conductivity 

Cw. C = water and soil volumetric specific heat 

capacities 

Vz = water flux 

A derivation of these two equations in three dimensions. and their 

subsequent reduction to one dimension. is given in Appendix B. 

Among the earliest models of simultaneous heat an,d moisture flow 

in partially frozen soil were those of Harlan (1973) and Guymon 

and Luthin (1974). They used equations similar to (2.19) and (2.20) 

although their methods of solution were different. Harlan used an 

implicit finite difference scheme whilst Guymon and Luthin employed 

a finite element method. The main concern of these models was the 

redistribution of pore water in the frozen and unfrozen ground. No 

heave characteristics were incorporated into the models and their 

accuracy was limited by unreliable input data. although good qualit

ative agreement with both field and laboratory observations was 
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achieved. This approach to the problem has subsequently been 

developed further. Heave was included by Guymon et al (1980), 

who again adopted a finite element method of solution with a 

Crank-Nicolson approximation for the time domain. Frost heave 

was defined to occur when the total water and ice content in an 

element exceeded the soil porosity. Following Guymon and Luthin, 

volumetric unfrozen water content was estimated by Gardner's (1958) 

relationship: 

ew = Aw IlI'ln + 1 lI' < 0 ... (2.21) 

and hydraulic conductivity was estimated by: 

ko 
k lI' < 0 . .. (2.22) 

where: lI' = pore water pressure head 

eo = porosity 

ko = saturated hydraulic conductivity 

Aw,Ak,n,m = constants for a particular soil 

Surcharge effects were modelled by computing the total weight of 

soil, water and ice above the freezing front, including the over-

burden. This weight was converted to an equivalent water pressure 

and added to the water pressure at the freezing front. This 

effectively reduces the suction at the freezing front which results 

in less water being drawn into the freezing zone. Simulations 

compared favourably with laboratory data, and it was noted that 
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the model was highly sensitive to hydraulic parameters and boundary 

conditions. 

The same model has been subjected to further verification by Guymon 

et al (1981. 1983) using both laboratory and field data. To improve 

the accuracy of the predictions, a correction factor. E, was included 

to account for the decreased hydraulic conductivity in the presence 

of ice. Hydraulic conductivity was therefore expressed as: 

.•. (2.23) 

where k(~) is determined from the relation between hydraulic conduc-

tivity and pore pressure for unfrozen soil. Heave estimates were in 

reasonable accord with field data after appropriate caJibration of 

the E factor. 

Sheppard et al (1978) presented a similar model, although the con-

vection term in the energy equation (the last term in Equation (2.20» 

was neglected. They stated that the influence of the overburden pres-

sure on the water pressure could be described by the expression: 

where: 

T 
Uw = Uo + aP + 6LPi To ... (2.24) 

Uo = water pressure in the unfrozen state under unloaded 

conditions 

P = overburden pressure 

The coefficients a and 6 are defined in terms of measurable parameters 
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which are characteristic of the specific soil system under study. 

However, since the model was only in fact tested under minimal load 

conditions, the water pressure was not adjusted according to 

Equation (2.24). Instead, the ice was considered to be at atmos

pheric pressure and the Clapeyron equation was used (Equation (2.11)) 

with the ice pressure set to zero. The hydraulic conductivity versus 

suction relationship was expressed by an exponential function, and 

the moisture content versus suction relationship expressed as a 

logarithmic function. Again, heave was accounted for when the sum 

of water and ice content exceeded the porosity. An explicit solution 

scheme was used and testing of the model was attempted with both 

laboratory and field data. 

Unfortunately, only twenty minutes of the laboratory experiment 

were modelled due to temperature fluctuations which occurred at the 

bottom of the soil column at later times. The authors stated that 

the model was being tested with experiments which were run for a much 

longer time, but no further data were supplied. Comparison with 

field results included only a check on temperature profiles because 

of lack of significant change in moisture content in the field. 

Tay10r and Luthin (1978) simulated the closed system freezing experi

ments carried out by Jame and Norum (1976). Convection was ignored 

in the heat transfer equation because the authors had previously 

found (Taylor and Luthin, 1976) that heat transfer by this method 

was between 0.1 and 1.0% of that due to conduction. Water content 

was assumed to be a function of temperature only, based on experimental 
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relationships similar to those shown in Figure 2.1. Experimental 

curves were also used to describe soil water diffusivity, 0, as a 

function of water content of ice-free soil. For diffusivity in 

frozen soil, Taylor and Luthin found it necessary to divide the 

unfrozen soil water diffusivity by a factor of 1010ei. That is: 

D (frozen) = 0 (unfrozen)/lOlOei . •. (2. 2S) 

so that for an ice content of 0.3, the "impedance factor" is 1000. 

When the ice content at any point exceeded 85\ pore saturation, 

the soil matrix was expanded to simulate heaving. Overburden 

effects were not considered and a finite difference scheme was 

used to solve the heat and mass transfer equations. Oddly, ice 

content was not treated as an unknown in the coupled differential 

equations. but determined at the beginning of each time step by 

an equation which in differential form is: 

. .. (2.26) 

The parameter R was adjusted between time steps so that the water 

content calculated by solution of the mass equation agreed with 

that given by the water content/temperature relation. Holden (1979) 

has shown however that Equation (2.26) is incorrect. 

Nonetheless, agreement between simulated and experimental temper-

atures and total water contents was reasonable: differences in 

temperature were less than O.SoC. while water content differences 

were less than 5\. The freezing front location was predicted within 
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1 cm. No heave was recorded in Jame and Norum's experiments, but 

simulation of some tests by Dirksen and Miller (1966) produced a 

heave of 2.8 mm as compared with the experimental value of 3.8 mm. 

Taylor and Luthin concluded that the model was sensitive to the 

soil water diffusivity and did not predict water movement behind 

the advancing freezing front. 

Recently, Fukuda and Nakagawa (1985) used Taylor and Luthin's 

approach in a model which was tested against field data obtained 

from an experimental site in Hokkaido, Japan, during the 1982/3 

winter. Included in the model was a method for simulating the 

variations in ground surface temperature over the four month 

period. Comparison of calculated and field results indicated good 

agreement for temperature profiles, similar trends in water con

tent profiles and discrepancies in heave and frost penetration 

predictions. Specifically, the model underestimated heave and over

estimated the depth of frost penetration. 

In reviewing a number of mathematical frost heave models, Hopke (1980) 

pointed out that most fail to incorporate the effects of overburden 

and none predict the presence of a frozen fringe. He then proposed 

a model to include both of these features as well as a criterion for 

lens initiation and growth. The Clapeyron equation, including the 

ice pressure term, was adopted and the model also used the capillary 

relationship: 

ui - Uw = a F (aw) •.. (2.27) 



where: B = oiw 
oaw 
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and F(6w) is a single-valued function of the volumetric water con-

tent. The value of B varies from 0.42 for granular materials up 

to 1.0 for clays. However, for unsaturated soils, due to assumpt-

ions about the ice pressure behaviour, a value of B less than 1.0 

led to computational problems. Therefore B was taken to be unity 

throughout. Ice pressure was assumed to be zero at the freezing 

front and also within the frozen soil when pores were not completely 

filled with liquid water and ice. Lensing was allowed to occur 

whenever the ice pressure was at least equal to the overburden. 

Hopke solved the conventional mass and energy equations (2.19) and 

(2.20), using a one-dimensional Galerkin finite element solution 

with a deforming mesh. The time derivatives were approximated by 

a backward difference, fully implicit method. 

The experimental data of Penner and Ueda (1977) provided a check 

on the accuracy of the model. Initially, the calculated heave 

versus time curves did not reproduce the shape of the experimental 

curves and an empirical variable was introduced to overcome this. 

Even so, although the reduction in heave rate with applied pressure 

was predicted, the match to the laboratory data was not good. 

Calculated frozen fringe thicknesses were apparently too small to 

give agreement with the experimentally observed heave rates. 

A rather simpler model, but one of the first to predict rhythmic 

ice lensing, was presented by Holden et al (1980). The development 
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of this model formed part of a larger research effort at Nottingham 

University, aimed at improving the design procedures for preventing 

frost heave damage to roads. Hence, overburden effects were not 

included in the model and the Clapeyron equation was used to ex-

press water pressure as a function of the freezing point depression. 

This was linked with capillary theory to provide a mechanism for 

heave and frost penetration. 

The freezing front, given by z = £(t), separated the frozen and un-

frozen regions in which simple heat conduction was assumed and 

described by: 

a at (CT) = .!.. (K 3T) 
az az .•• (2.28) 

In practice, the freezing front was taken to be a narrow zone of 

thickness 6z, in which the suction head, " increased from a small 

value '0 to the value 'm given by the Clapeyron equation for a 

freezing point depression 6T. Hydraulic gradient was then assumed 

to be ,m/Ilz, and a form proposed by Gardner (1958) was adopted for 

hydraulic conductivity, namely: 

ko • > 0 
k = { ... (2.29) 

, < 0 

This enabled calculation of the quantity of pore water sucked to the 

freezing front. 

The heat energy balance at the freezing front was written: 
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6Q = -Kf ~ + K ~ = az u az 
dE; 

-awL Pw- + t.Q' dt 

where: 6Q' = -L Pw k ~ az 

. .. (2.30) 

and the subscripts f and u refer to frozen and unfrozen regions 

respectively. Equation (2.30) was used to calculate heave in the 

following manner. 6Q was calculated from the heat conduction 

across the frozen/unfrozen boundary and compared with 6Q', the 

heat released due to freezing of migrating pore water. If 

t.Q > 6Q'. frost penetration and cooling of the freezing front can 

occur. If 6Q = 6Q', the heat extracted is only sufficient to 

freeze the water sucked to the front. and penetration cannot occur. 

Finally. if 6Q < 6Q', the temperature distribution must be re-

calculated with the front temperature increased to reduce the 

suction and bring 6Q = 6Q'. 

These decision processes were performed at each time step in a 

numerical scheme employing implicit Crank-Nicolson finite differ-

ences, together with an expanding/contracting mesh. The phenom-

enon of rhythmic ice lenses was predicted by allowing the pore 

radius to vary with position. The model was evaluated against 

laboratory tests on sand/limestone filler mixtures. Computed tem-

perature profiles agreed closely with the measured values, but 

heave results did not give such good agreement. The authors COD-

cluded that this may have been due to uncertainty in the values of 

the hydraulic conductivity of the material. Further details of the 

model, the numerical procedure and the experimental verification 
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are given by Dudek (1980). 

At the same time that the early models of Har1an (1973) and Guymon 

and Luthin (1974) emerged, a different, more complex approach was 

presented by Fremond (1974). By defining a new unknown, the freez-

ing index: 

t 
I(z,t) = I T(Z,T) dT 

o 
... (2.31) 

Fr6mond introduced a variational formulation, and solution of the 

Stefan problem. He then coupled the phase change problem with 

water propagation in the unfrozen region in order to model frost 

heave. The hydraulic head • was taken to be zero on the frost 

line and equal to a constant c > 0 on the water table boundary. 

On this occasion a more conventional mathematical formulation was 

used and the equations solved by a finite difference method with 

a variable space mesh. Heaving was defined to be proportional to: 

t 
10 grad. (Z,T) dT ... (2.32) 

Some results comparing computed and measured heave and frost pene-

tration for a road pavement were given, but were rather inconclusive. 

The variational approach to the coupled problem was developed further 

by Aguirre-Puente and Fr~mond (1976). The two unknowns in the system 

were the freezing index and the head of water. The head was now 

defined as follows: 
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,(z,t) = -d in the frozen region and on the frost line 

and: ,(z,t) ~ -d in the unfrozen region 

(d ~ 0) where d is a constant. The mathematics of the problem 

were described in considerable detail but, again, very few numer

ical results were presented. 

In the following year, Aguirre-Puente et al (1977) used a similar 

model to introduce variable permeability in the partially frozen 

soil. Here, calculated curves of heave and frost penetration versus 

time for different values of the freezing point depression were 

reasonably successful in reproducing laboratory data. Also, in 

the same paper, a new model was proposed to describe water movement 

in the frozen soil and its effect on the heave. Energy and mass 

conservation equations were written down in terms of parameters 

representing porosity, unfrozen water content and amount of seg

regated ice; that is, ice not occupying pore space. Unfortunately, 

no computations based on this model were presented. 

Finally, in this series of papers, Menot (1978) suggested another 

alternative formulation for frost propagation in unsaturated porous 

media, which led to a system of non-linear partial differential 

equations with the frost line as a free surface. The unknowns were 

temperature, water pressure and degree of saturation. Once more 

though, the absence of any numerical calculations prevented an 

assessment of the validity of the model. 

Thus, it was left to O'Neill and Miller (1980) to produce probably 
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the most complete numerical model of frost heave to date. The 

details of this are given in the next chapter and therefore only 

a brief description follows here. The model is based on the secon

dary heaving concept and represents an expression of Miller's (1978) 

earlier work in a form amenable to computation. The Clapeyron 

equation, a capillary equation and a "freezing characteristic 

curve" are used to relate temperature, liquid and ice pressures, 

and phase composition in each of the coupled heat and mass 

equations throughout a frozen fringe. Mass transfer above the 

latest ice lens is neglected, but beyond that, heat and mass trans

fer are simulated throughout a freezing column, with particular 

emphasis on activity within the frozen fringe. Only saturated 

granular soil is considered. 

The contribution to the overall pore (neutral) stress from water and 

ice is evaluated by a stress partitioning factor. When this neutral 

stress surpasses the overburden pressure in the frozen fringe, pore 

contents alone support the overburden. With continued freezing, a 

new lens is initiated at this level, which then grows as heave pro

ceeds. The model is therefore capable of predicting the formation 

of rhythmic ice lenses. O'Neill and Miller considered freezing of 

a soil column for which soil parameters were estimated or assigned 

values based on experimental data. A Galerkin finite element scheme 

was used for solution in space. with finite differences in time. 

For a fixed value of the overburden, predicted lens spacing in time 

and space, the expulsion of water and its reversal, and the overall 

magnitude of the heave were all qualitatively reasonable. 
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Q'Neill and Miller (1985) have subsequently improved parameter 

representation and computational procedures for the model, and 

carried out a number of small and large scale simulations with 

varying overburden pressures. Again, the results reproduced obser

vations in both form and magnitude. However, it is pointed out 

that efforts at strict verification are impeded by the difficulty 

of obtaining accurate values of certain key parameters, especially 

hydraulic conductivity in the frozen fringe. 

The other main drawback of the model is that many researchers have 

found it to be intractably complex. In an attempt then to aid under

standing of the theory and mechanisms behind the model, Holden (1983) 

reformulated the equations using quasi-static approximations for the 

temperature and pore water pressure profiles. This approach had the 

advantage of simplifying the mathematics and numerical computations 

without any serious loss in the ability of the model to predict the 

observed phenomena. Although Holden only considered a semi-infinite 

soil region, simulations were sufficiently successful to warrant 

further investigation and development of the method. It is the sub

sequent evolution of the model which forms the major part of the work 

described in this thesis. Therefore, in view of its significance, a 

detailed account of Holden's formulation is given in the following 

chapter. 

Finally, it should be acknowledged that Holden's quasi-static approach 

was similar to, although developed quite independently of, the model 

of Gilpin (1980). He also used quasi-static temperature profiles and 
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assumed that all water freezes either at the freezing front, or at 

the base of the warmest ice lens. Gilpin however, derived pressure 

relationships from his own previous work concerning regelation and 

behaviour of water in close proximity to a substrate. Unlike 

0' Neill and Miller, he reasoned that a "separation pressure" was 

responsible for forcing apart the soil particles as heave occurs. 

The model computed the initiation and growth of successive lenses 

and the redistribution of water between lenses. In terms of lens 

distribution, overburden effect and water expulsion followed by 

intake, the results were qualitatively good. 

The above, then, represents a brief review of mathematical frost 

heave models and, in conclusion, it seems appropriate to repeat 

comments made by O'Neill (1983) in the summary of his review. He 

noted that "no model is completely successful in a strict test of 

frost heave prediction, or in the unequivocal verification of any 

physics which has been assumed". This statement still reflects the 

current situation and was recently echoed by the remarks of Kay 

(1985), who suggested that there is perhaps a need to devote a 

greater research effort to understanding the processes involved in 

frost heaving. 

2.11 Recent Research Trends 

Despite the vast amount of time and money devoted in the past to 

research into frost heave, areas of conflict remain, and a great 

deal of effort continues to be expended on every aspect of the 



53 

problem. Evidence of this is provided by the proceedings of recent 

conferences and symposia (see Chapter 1), which illustrate the 

worldwide concern over problems associated with ground freezing 

and permafrost. 

As far as those areas of research relevant to the work in this 

thesis are concerned, recent work has, broadly speaking, tended to 

fall into one of the following four categories: 

(1) Development of mathematical and computational techniques 

for modelling ice lensing and frost heave; 

(2) Laboratory and/or field evaluation of numerical models; 

(3) Improving input data to numerical models, e.g. hydraulic 

conductivity and unfrozen water content measurements. 

(4) Improving understanding of the frost heaving process. 

The research reported herein falls into the first category, but it 

does, of course, have to account for results emerging from the other 

three areas. Reference is therefore made in the following chapters 

to publications under all four headings, thus providing some measure 

of the state of the art in frost heave research. 
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CHAPTER 3 

THE THEORY AND MODELLING OF SECONDARY FROST HEAVE 

3.1 Introduction 

The theory of secondary frost heaving, conceived and developed by 

Miller (1972, 1977, 1978), forms the basis of much of the work in 

this thesis and is therefore described in detail in this chapter. 

As explained in Chapter 2, Miller (1972) proposed his theory at a 

time when evidence began to emerge which cast doubt on the ability 

of the early capillary (or "primary") model to describe fully the 

heaving process. In the years following, Miller's ideas received 

increasing support from experimentalists, and it is now generally 

accepted that the heaving mechanism is most readily explained by the 

secondary heaving theory. 

However, with publication of the many other mathematical models, 

the computational aspects of the theory have received less coverage 

in the literature. Nevertheless, the success of computer simulations 

performed by O'Neill and Miller (1980, 1985, described later in this 

chapter) illustrates the advantages of this approach over other 

models such as the adsorption force and segregation potential 

theories. For example, Miller's theory has shown itself to be 

amenable to mathematical expression, and to subsequent computation, 



57 

without the need for any a priori assumptions concerning material 

properties. As pointed out by O'Neill (1983) in his review, this 

has produced perhaps the most detailed current model and in the 

simulations, predictions of rhythmic ice lensing, of the effects 

of overburden and the overall magnitude of heave are qualitatively 

accurate. 

It is for these reasons that Miller's view of heaving was adopted 

as the foundation for the work described herein. It should be 

said that the main criticism levelled against the O'Neill-Miller 

model is that it requires accurate experimental data in an area 

for which measurement is extremely difficult. 

In this chapter then, the main features of the secondary heaving 

theory are first described, including a mathematical formulation 

of the essential elements of the system. The mathematical model 

is then made complete with appropriate conservation equations and 

the results of some computations are briefly assessed. Finally, 

a simplified approach to the modelling task is presented which 

provides the introduction to the work subsequently detailed in 

Chapter 4. 

3.2 The Principal Co~onents of the Secondary Heaving Theory 

The feature of secondary heaving which renders it fundamentally 

different to the primary heaving mechanism is the existence of 

the so-called frozen fringe, whereby ice forms in the pores below 
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the ice lens proper whilst still permitting growth of the lens. 

This difference was illustrated in Figure 2.3 of Chapter 2. In 

addition, the secondary heave model defines where the ice lens 

will form within this frozen fringe. 

In primary heaving, the ice lens rests on films of water adsorbed 

onto the surface of soil particles. As freezing continues, some 

of this film water freezes, contributing to growth of the lens. 

Liquid water is then drawn into the films from below to restore 

the "equilibrium" thickness, thereby displacing the lens upward 

whilst simultaneously lowering the local pore water pressure, 

which in turn induces the necessary flow of ground water towards 

the growing ice lens. The ice lens is at a pressure determined by 

the overburden, P, whereas below the lens the load is borne by the 

soil skeleton and by the pore contents. Thus, the Terzaghi (1936) 

effective stress equation may be written: 

or: 

where: 

P = a' + Un ... (3.1) 

a' = P - un ... (3.2) 

a' = the effective stress (the portion of the overburden 

borne by the soil skeleton) 

Un = the neutral stress (the resultant pore pressure) 

If the pores contain only water, then: 

... (3.3) 
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and since the pore water pressure, uw, below the lens is negative, 

then in primary frost heaving a' > P. This means that below the ice 

lens, the effective stress always exceeds the maximum pressure at 

which ice could exist there, according to this model. Miller (1977) 

therefore argued that there was no obvious mechanism for initiating 

the regular sequence of lenses normally observed when a freezing 

front penetrates through a soil. 

The secondary heaving theory however overcomes this difficulty and 

the mechanism for the initiation of ice lenses is described later 

in this section. Miller reasoned that growth of ice into the pores 

below the ice lens (the frozen fringe) would not prevent the ice 

phase from moving providing, as in primary heaving, a continuous 

liquid phase always prevents direct solid-to-solid contact between 

moving pore ice and stationary soil particles. Instead, the ice 

phase moves as a continuous rigid body with velocity equal to the 

rate of heave, and pore ice movement is viewed as a process of micro

scopic regelation. This movement is driven and accompanied by a 

parallel transport of unfrozen water, the overall transport being 

referred to as series-parallel transport (Miller et aI, 1975). 

The presence of pore or "non-film" water required by the theory 

explains why it is only applicable, at least in principle, to non

colloidal or granular soils (see Koopmans and Miller, 1966, Miller, 

1978). ~~reover, only saturated, that is air-free, soils have been 

considered. 

It is worth echoing at this point Miller's (1977, 1978) own remarks 
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regarding work done along similar lines in the Soviet Union. It 

appears that as a result of careful observation, Soviet scientists 

had also concluded that ice lenses appear and grow in soil already 

containing pore ice, and had undertaken measurement of liquid water 

movement in frozen soil. However, as far as Miller could ascertain, 

the Soviet researchers had not proposed any model similar to the 

secondary heaving theory to explain the phenomenon. 

Two essential components of the model (which are also found in the 

primary heave formulation) are the Laplace surface tension equation: 

and the Clapeyron equation: 

.!!i. _ Uw = -LT 
Pi Pw To 

in which the effect of solutes has been neglected. 

strictly only applies to solute-free soils. 

· •. (3.4) 

· •. (3.5) 

Hence, the model 

In order to provide a mechanism for rhythBdc ice lensing, the neutral 

stress was partitioned in the manner of Bishop (1955) into contri-

butions from the two pore phases, ice and water, thus: 

un = XUw + (I-X) ui · .• (3.6) 

where X, called the stress partition factor, is a function of the 



61 

degree of saturation, i.e. the amount of water (as opposed to ice) 

contained in the pores. Hence, X = 1 for ice-free soil and tends 

to zero as the unfrozen water content tends to zero. An explicit 

form for this function, based on experiment, is given later. 

Before explaining the 1ensing mechanism, a definition of the freez

ing front is required. Often the oOe isotherm is taken to mark the 

extent of freezing or frost penetration. However, to allow for the 

depression of the freezing point of soil water, the freezing front 

is defined here as the macroscopic boundary between ice-free soil 

and soil in which some ice exists (Miller and Koslow, 1980). The 

frozen fringe is therefore the region lying between the base of 

the latest ice lens and the freezing front, and although the ice 

pressure is continuous within the frozen fringe, there is discontin

uity at the freezing front as shown in Figure 3.I(A). 

The stress profiles of Figure 3.1(A) illustrate the situation in the 

frozen fringe a moment before a new lens is initiated. The water 

pressure decreases more or less exponentially across the frozen 

fringe, due to the corresponding decay of the hydraulic conductiv

ity. It therefore falls from a slightly negative value at the 

freezing front to a very large negative at the base of the ice lens. 

The difference between ice and water pressure, ui - Uw, increases 

with elevation above the freezing front but not as fast as Uw de

creases. Thus, the ice pressure increases with elevation at a 

decreasing rate, and passes through a maximum some distance below 

the ice lens before falling to the overburden pressure, P, at the 
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base of the lens. 

Hence. the neutral stress. un. will also pass through a maximum 

implying that at the same level the effective stress, a'. passes 

through a minimum. If the minimum of a' falls to zero. correspond

ing to Un = p. the pore contents alone support the overburden and 

the soil grains are no longer held stationary against their neigh

bours. They therefore move along with the moving ice and a new 

lens is initiated at this level. The spacing between successive 

lenses can then be established since the base of the previous lens 

lies at the level at which the ice pressure is equal to the over

burden. 

As soon as the new lens is initiated. the pressure within it cannot 

exceed P and Ui immediately drops to this value (Figure 3.1(8)). 

Local adjustments in temperature and water pressure cause the effec

tive stress to rise and lens initiation is therefore prevented for 

the time being. However, with continued freezing. the new lens 

grows and the freezing front descends through the soil so that the 

maximum value of Un again approaches p. the minimum of a' approaches 

zero and the lens initiation cycle repeats at a new, lower level 

(Figure 3.1 (C)). 

If this next lens initiates at a time At later than the previous lens 

initiation. then the last lens will have grown to a thickness h given 

by: 

h = HAt . .. (3.7) 
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where: H = heave 

H = dH/dt = heave rate, assumed here to be constant 

over the time interval. 

Miller thus provided not only a mechanism for rhythmic ice lensing, 

but also a means of predicting the time and distance between lens 

formations and their thickness. Undoubtedly, this is one of the 

great advantages of the model. 

3.3 Miller's Mathematical Model 

It was in his paper of 1978 that Miller first attempted a complete 

mathematical expression of the theory, and he began by using the 

surface tension equation to define a variable, ,: 

... (3.8) 

, is a measure of the suction and is a convenient parameter to use in 

relating water (or ice) content and hydraulic conductivity to suction 

in the frozen fringe. It can be interpreted as a mean curvature of 

the ice/water interface. With the aid of the Clapeyron equation (3.5). 

the parameter, may be written as: 

, = A Uw + BT ••• (3.9) 

where A and B are constants, as follows: 



A 
1 (Pi_ 1) = oiw Pw 

... (3.10) 

B = -piL 
0iw To 

Koopmans and Miller (1966) had shown that, by considering the simi

larity between freezing (and thawing) and drying (and wetting) of 

a granular soil: 

... (3.11) 

that is, for the same water content, aw, in the two situations, 

~ = ~a' 'a is defined for ice-free unsaturated soil by: 

... (3.12) 

where: Ua = pore air pressure 

0aw = air/water interfacial energy 

It was therefore possible to obtain relatively easily a relationship 

between the unfrozen water content and , for a saturated soil under-

going freezing. Specific examples used in the computations are given 

in the next section. 

As the soil is considered to be saturated, the liquid phase is con-

tinuous from the water table or base of the soil column, through the 

frozen fringe to the base of the growing ice lens, where it terminates. 

Liquid volume flux then was assumed to obey Darcy's Law throughout 
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the region in which the liquid phase is continuous. Writing Darcy's 

Law with z as space coordinate, positive downward, gives: 

-k a 
Vw = pwg az (uw - Pwgz) ... (3.13) 

where: Vw = volume flux of water 

k = hydraulic conductivity 

Since the hydraulic conductivity is a function of the ice content, 

ai' and hence of~, it follows that Vw is also a function of ~. 

Similarly, pore ice flux, vi is a function of ~ and is related to 

the heave rate (or ice velocity), vI by: 

..• (3.14) 

where vI is variable in time but constant in space. in keeping with 

the "rigid-ice" assumption. 

To construct a governing set of differential equations, conservation 

of mass and energy were considered. Accounting for flux of both 

water and ice, the mass conservation equation was written: 

... (3.15) 

and energy conservation was of the form: 

~ aT a aT ae' ae 
L (pca)n at - az (K az) - PiL (~+ VI =it) = 0 

. •. (3,16) 
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K = thermal conductivity 

cn = specific heat capacity of the nth component 

of the soil 

where all soil components (particles, unfrozen water and ice) are 

included in the summation. Equations (3.15) and (3.16) are in a 

slightly different form, but essentially similar, to those derived 

in Appendix B and their derivation will not be considered further 

here. 

Miller (1978) concluded that Equations (3.8) to (3.10) and (3.13) 

to (3.16) formed the basis of a model amenable to computer simu

lation procedures, but no computations were attempted at this stage. 

However, Miller anticipated that simulations would provide predict

ions of rate of heave and rate of frost penetration as functions of 

overburden pressure and thermal regime. Moreover, with the lens 

initiation mechanism described in the previous section, information 

on position, time of origin and ultimate thickness of each ice lens 

was expected to emerge as part of the solution. This indeed proved 

to be the case, as the computations outlined in the next section 

illustrate. It was noted however, that successful simulations of 

real problems would depend on obtaining realistic data for water 

content, ew(.), hydraulic conductivity, k(~) and the stress partition 

factor, x(.), for the soil in question. 

3.4 Computed Results 

Before any simulations were attempted for transient boundary conditions, 
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Miller and Koslow (1980) presented some illustrative examples of 

numerical solutions for quasi-steady state freezing conditions. 

Their aim was to use a simple special case to demonstrate the way 

in which the rigid-ice model responds to thermal and mechanical 

boundary conditions. The following conditions were applied to 

an initially uniform column that had undergone monotonic freezing, 

to reach a state in which: 

(i) The temperature field is stationary in the unfrozen zone. 

This implies a steady and uniform flux of sensible heat 

through the unfrozen zone and a uniform temperature 

gradient there. 

(ii) The pore water pressure field is also stationary in the 

unfrozen zone. In other words, there is a steady and 

uniform volumetric flux of water through the unfrozen 

zone and a uniform gradient of pore water pressure. This 

further implies a steady rate of heave. 

The principal equations in Miller and Koslow's numerical scheme 

were Equation (3.9) relating the parameter. to pore water pressure 

and temperature, Darcy's law (3.13) for the flow of liquid water, 

and the Fourier heat conduction equation: 

q = 

where: 

-K dT 
dz 

q = the diffusive flux of sensible heat. 

.•. (3.17) 

Also. instead of defining a freezing front, in this particular model 
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a "psi-front" was defined as the boundary at which Uw and T satisfy 

Equation (3.9) when ~ = O. Hence, if the values of water pressure 

and temperature at the base of the soil column are specified, along 

with their respective gradients in the unfrozen zone, then the 

elevation of the psi-front above the base of the column can be 

obtained by combination of (3.9), (3.13) and (3.17). This allows 

an estimate of the water pressure at the psi-front which, in turn, 

gives a value for the steady heave rate by way of a simple mass 

balance equation. Miller and Koslow then adopted the following 

numerical procedure. 

First, experimentel data was provided for the soil functions ew(~) 

and k(,), with the data ewe,) then being used in theoretical esti

mates of the thermal conductivity function. K(,) and the stress 

partition function, xC,). With this information, values for AT and 

AUW are estimated, for a thin layer of soil of thickness Az (above 

the psi-front), using (3.13) and (3.17). These values yield an 

estimate for A, via (3.9). This allows estimation of ew(~) and 

hence estimation of changes in water and heat flux, which provide 

improved estimates of K and k. The original estimates of AT and 

AUw are now also improved, and this iteration cycle is repeated for 

the first layer until no further improvement is achieved. A value 

for the neutral stress (Equation (3.6)) is then recorded before 

proceeding to the next layer. Both ice pressure and neutral stress 

pass through a maximum and the layer-by-layer iterative process is 

terminated when the post-maximum value of ui reaches the value of 

the maximum of Un (equivalent to Ui = P at the base of the growing 

ice lens). 
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Results presented by Miller and Koslow were of illustrative rather 

than quantitative significance. This was because true stationary 

states normally attained in laboratory tests are rather different 

to the conditions imposed here, which are difficult to reproduce 

in the laboratory. A "true" stationary state implies zero heave 

rate, zero flux of water and a uniform flux of heat throughout the 

soil column. Nevertheless, the results showed the relative insens

itivity of the model to inaccuracies in thermal conductivity and 

stress partition functions, and exemplified the response of the 

model to different thermal and mechanical boundary conditions. 

3.4.1 O'Neill and Miller (1980) 

A thorough test of the model, however, was presented by O'Neill and 

Miller (1980), who tackled the more difficult, but more relevant 

problem of transient freezing conditions. They reported on test case 

solutions of the equations simulating the frost heave history of a 

soil column, heaving a specified surface load. 

O'Neill and Miller used Equations (3.8), (3.9) and (3.13) to (3.16). 

In addition, in order to express the governing equations in a form 

amenable to numerical treatment, the ice content was expressed as: 

... (3.18) 

and hence, its differential with respect to time as: 
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aej = aej [A ~ + B aT ] 
at o1jl at at ... (3.19) 

Since the soil is considered to be saturated and incompressible, the 

porosity, eo, is taken to be constant and can be written: 

.•. (3.20) 

It is then possible to write the mass and energy conservation 

equations (3.15) and (3.16) respectively, as two coupled non-linear 

partial differential equations in the unknowns Uw and T. 

These equations were solved using a finite element scheme in space, 

with finite differences in time. For the finite element system, 

the dependent variables were expressed as sums of "basis" or "shape" 

functions, each multiplied by its time dependent coefficient, as 

follows: 

where: 

N 
T = L Tj(t) Wj(z) 

j=l 

N 
Uw = L Uj(t) Wj(z) 

j=l 

Tj = temperature at node j 

Uj = water pressure at node j 

. .. (3.21) 

and Wj are the basis functions providing linear interpolation of the 

unknowns between nodes. The total number of nodes is N. If Y is the 

vector of unknowns, then time derivatives are expressed using a back

ward difference as: 
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. Vk+l _ Vk 
Y = - ... (3.22) 

6t 

where: yk = vector of unknowns evaluated at the kth time 

level 

6t = time step size 

Substitution of (3.21) into the governing partial differential 

equations and use of Galerkin finite element procedures coupled 

with (3.22) results in two matrix equations of the form: 

~ yk+l = S - B yk ... (3.23) 

where ~ is a vector of known quantities. The matrices ~ and ~ are 

essentially time dependent since they contain terms derived from 

the dependent variables, such as aei/a~. Thus, in the course of a 

simulation, they are updated iteratively as time proceeds. The 

solution cycle can in fact be summarised as follows: 

Knowing yk, either from the initial conditions or the solution at the 

previous time step, ~, ! and ~ are estimated and (3.23) is solved for 

the unknowns yk+l. This new solution is then used to recalculate ~. 

~ and B and the system is solved again for a new, presumably more 

accurate yk+l. This iterative process is repeated until a satisfactory 

degree of convergence is achieved. and the solution proceeds to the 

next time step. 

At any point in time, the heave rate is calculated by taking a mass 
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balance at the base of the latest lens. Throughout the lens, ice 

is moving upwards, giving a mass flux of PivI' Just below the 

lens, pore ice is rigidly connected to the lens ice, and has the 

same velocity but only occupies a fraction, ai, of the cross-

sectional area. Thus, the ice flux there is PivIai' A liquid 

mass flux, Pwvw, "also exists in the soil below the lens, so a mass 

balance at the lens boundary yields: 

••. (3.24) 

or: = 

When Darcy's law (3.13) is substituted into this equation, an ex-

pression for vI is obtained in terms of the current values of Uw 

and T. 

It is assumed that activity in the zone above the lowest lens is 

slight, in the sense that heat is conducted through the material, 

but insignificant additional phase change occurs there. Moreover, 

it is assumed that the freezing process is slow enough to allow the 

temperature distribution above the latest lens to be considered 

linear. A temperature boundary condition for the soil below the 

warmest lens is then obtained by taking a heat balance across the 

lens boundary, located at z = zs: 

= Kf (aT) L az - Pw Vs • •• (3.25) 
z=zs 



73 

where: Tc = specified soil surface temperature 

Ts = temperature at z = Zs 

d = the length of the frozen zone between the soil 

surface and z = Zs 

Ks = thermal conductivity of the material above the 

warmest lens 

Kf = thermal conductivity below the lens 

Vs = liquid flux at z = Zs 

This equation states that the difference in conductive heat fluxes 

across Zs is proportional to the rate of freezing there, as liquid 

flows into the lens. 

Finally, a boundary condition in Uw at the base of the latest lens 

is provided by a pressure balance there. Noting that ice pressure 

is continuous across the lens boundary and that ice in the lens is 

subjected to the overburden pressure, p. Equations (3.8) and (3.9) 

give: 

... (3.26) 

where: Us = Uw at z = Zs 

The boundary conditions (3.24) to (3.26) were incorporated into the 

governing set of equations. 

O'Neill and Miller performed simulations for a column of soil 153 mm 

in length, subject to a constant overburden pressure and initially at 

a uniform temperature of 1°C. During freezing, the warm end temperature 
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remained at lOe whilst the soil surface temperature was specified 

through all time. The pressure at the warm end was held at atmos

pheric, that is Uw = o. 

During the initial stages of freezing, as the surface temperature 

was lowered at a constant rate, heave was temporarily restrained by 

the overburden and the formation of pore ice caused liquid to be 

expelled from the soil column. In time this trend reversed with 

water being drawn into the column as heave and lens formation began. 

The equations were solved for the "active" region below the lowest 

lens with mesh point separations as little as 2.5 x 10-2 mm immed

iately below the lens, increasing to around 30 mm at the unfrozen 

end. the pOSition and time of each lens initiation were simulated, 

according to the procedure described earlier, with the maximum of 

the neutral stress in the frozen fringe being compared with the over

burden at each time step. In these simulations, the cold side 

temperature was decreased to -0.5°C and then held fixed, so that 

eventually lens formation ceases and a steady state is approached, 

with the heave rate tending asymptotically to zero. 

Information regarding soil properties is of course required by the 

model and, as pointed out by Miller and Koslow (1980), for a process 

that involves progressive downward freezing of a column of initially 

ice-free soil, hysteretic complications are absent, so that simple 

monotonic functions are sufficient to describe soil functions. 

O'Neill and Miller assumed hydraulic conductivity to be similar to 
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that in an unsaturated soil at the same liquid water content and 

used the following (cf. BresIer et aI, 1978): 

= k(O) (1 _ !L)7 
eo 

. .. (3.27) 

where the porosity eo was assumed to be 0.4. A convenient represent-

ation for ei(~) was suggested by data obtained by Horiguchi and Miller 

(1980) and is illustrated in Figure 3.2. The stress partition factor, 

X, also a function of the ice content, was given by: 

••. (3.28) 

Finally, soil specific heat capacity and thermal conductivity were 

given constant values in each of two regions, namely where ice was 

present and where it was absent. 

The success of the simulations was evident from the results presented 

by O'Neill and Miller for the test case described above. As well as 

being able to predict the cumulative frost heave, the computations 

yielded information such as the thickness of each ice lens. the time 

elapsed between successive lens initiations and the form of the pres

sure profiles in the frozen fringe. The latter proved to be as 

expected and as illustrated in Figure 3.1. Indeed, when compared 

with experiment and general experience with heaving systems, the 

results were both self-consistent and qualitatively reasonable. 

Perhaps most interesting was the diagram O'Neill and Miller were 

able to produce of the soil column, or at least a portion of it, 
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showing the thickness, time of initiation and location in the soil 

of each ice lens. This diagram is reproduced in Figure 3.3. 

Therefore, although O'Neill and Miller, and others, had some 

reservations (discussed later in this section), the model merited 

further exploration. 

3.4.2 O'Neill and Miller (1985) 

A more recent paper included a comprehensive description of the 

theoretical basis of the model (O'Neill and Miller, 1985), and 

attempted to clarify certain concepts. Phase equilibrium and ther

mally induced regelation were discussed in the context of frost 

heave in general, and this model in particular. The equations of 

the model were then restated and a number of modifications intro

duced. 

O'Neill and Miller explained that the overall theory and governing 

equations remained unchanged, "but the particular computational 

strategies and parameter representations have evolved in the direction 

of greater realism, relevance, efficiency and accuracy". Among the 

changes made was the introduction of an alternative means of calcul

ating the heave rate, VI. Previously, the mass balance equation at 

the base of the ice lens (3.24) was used. This was replaced by a 

mass balance taken over the entire length of lens-free soil, that is 

the fro~en fringe and unfro~en soil. The difference between the mass 

flux at the base of the lens and the mass flux at the warm end of the 
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column was equated with the rate of change of the aggregate mass 

content in between. Thus: 

. .. (3.29) 

where: Zw = the level of the base of the soil column 

In practice, the integral on the right-hand side of (3.29) was 

evaluated with Simpson's Rule, applied over each element, and its 

time derivative obtained using simple finite differences. 

Another significant modification made by O'Neill and Miller (1985) 

was the use of a "more realistic" representation for ei("'). This 

new interpretation is shown against the previous one as a broken 

curve in Figure 3.2. The curve is a regression curve fit to experi-

mental data (not given) in the form: 

5 
= r 

k=O 
k A)t (log "') ... (3.30) 

where the At are constants determdned by the regression. The import

ance of (3.30) is that it can be differentiated analytically to 

produce an expression for dei/d., which may be used in turn in the 

governing equations, and also in an updated formula for the stress 

partition factor, X, which is rather more complex than (3.28). 

A slight alteration was also made to the function used to calculate 

hydraulic conductivity. This was simply a matter of changing the 
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exponent, so that (3.27) now became: 

e. 9 
= k(O) (1 - ~) eo ... (3.31) 

Finally, O'Neill and Miller added two equations for the calculation 

of thermal conductivity in the frozen zone and in the frozen fringe. 

These are not quoted here, but involved the use of representative 

values for the thermal conductivity of pure water, pure ice, frozen 

silt and a solid sample of the soil minerals in simple formulae. 

These then were the most important modifications made by O'Neill and 

Miller (1985), along with some minor alterations in computational 

strategy. However. O'Neill and Miller were keen to point out that 

although the computed results were changed to some extent, indeed 

improved, their qualitative nature remained the same and it was the 

general character of the results, rather than the actual numerical 

values, which they wished to emphaSise. 

A series of simulations was undertaken to evaluate the sensitivity 

of the model to variations in overburden. Heave histories were 

computed for 100 mm soil columns under step freezing conditions, 

that is, the cold end of the column, initially uniformly at 1°C, 

was stepped down to -1°C at time zero. The resulting cumulative 

heave versus time curves are reproduced in Figure 3.4, and are 

"believable in relation to laboratory observations", illustrating 

that "the model evidently responds appropriately to variations in P." 

Cumulative heave was evaluated by numerical integration of the heave 
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rate over time. Once again, as observed in laboratory freezing 

tests (e.g. Penner and Ueda, 1977), water expulsion followed by 

water intake was modelled, the phenomenon being more pronounced in 

columns subjected to higher values of overburden. As already 

mentioned, subject to the variations in P, the general character 

of the results was as reported previously, and this fact was stressed 

by the reproduction of some of the earlier (O'Neill and Miller, 1980) 

findings, for example, Figure 3.3. 

As a further test of the capabilities of the model, a number of 

simulations were run on a much larger scale. A 35 rn vertical soil 

column was considered, at an initial temperature of 3°C throughout. 

The simulations began with an assumed temperature on the upper sur

face of _5°C, whilst the warm end temperature at the 35 m depth 

was held fixed at 3°C. It was further assumed that the top 100 mm 

of the column was solid frozen material. The initial overburden was 

taken as 5 kPa and water pressure at the warm end was kept at the 

initial hydrostatic value. These conditions were intended to bear 

some similarity to those beneath a buried chilled pipeline, and to 

provide a framework within which to assess the simulation of a field 

scale problem. The results of the tests appeared to be reasonable, 

although no comparison was made with actual field data. The chief 

difference between these and the small scale tests was the effect 

of overburden: in the large scale tests, as the depth of freeze 

increases, the weight of overburden on the frozen fringe increases 

significantly and hence plays a major role in suppressing heave, 

unlike the soil self-weight in the small scale tests. 
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Thus, with both small and large scale simu1ations, O'Nei11 and 

Miller provided further evidence in support of their model and the 

principles underlying the secondary heave theory. Therefore, to 

conclude this section, a summary of the so-called rigid ice model 

is given, with a discussion of its merits and drawbacks. 

The model, strictly speaking, is for air-free, solute-free, co1loid

free, saturated, incompressible soils, and is based primarily on: 

(1) governing equations in terms of temperature and water pressure, 

developed from basic conservation laws and from fundamental thermo

dynamics (the Clapyron equation); 

(2) concepts relating phase composition of the system, its state 

and its capillarity, all supported by experimental evidence; 

(3) rational mechanisms for pore stress partitioning and the 

ability of a new ice lens to form. 

The other major feature of the model is the rigid ice assumption 

which postulates that soil ice tends to form on pre-existing ice and 

hence grows through the pore system as one solid body. Whilst this 

body may have a very complex microscopic geometry, it moves as a rigid 

body. with a uniform velocity in space, as ice migrates through the 

soil. During this migration, the ice accommodates the stationary 

soil matrix where necessary, by melting on the warm side of soil 

grains and refreezing on the cold side. This concept of microscopic 

regelation is thus of fundamental importance to the rigid ice assump

tion, and it must be said that in the absence of strict proof. this 

is a physically motivated assumption. 

As described earlier. the results obtained mimic observation both in 
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form and in order of magnitude. For example, the suppression of 

heave and increased frost penetration with increasing overburden is 

predicted, as is water expulsion followed by water intake in the 

higher overburden cases. The model also simulates the rhythmic 

formation of ice lenses, with microscopic, closely spaced lenses 

during initial rapid freezing and larger lenses and lens spacings 

during later, slower freezing. 

Against these positive features, a number of disadvantages must be 

weighed. The model is computationally expensive because the form

ation and growth of each individual ice lens is simulated. This 

means that during early time when a great many very thin lenses form, 

a vast amount of repetitive computation of limited significance must 

be performed. Furthermore, as a consequence of the finite element 

analysis, mesh point separations in the region of greatest interest, 

namely the frozen fringe, are as little as 0.025 mm, which again 

places a heavy computational burden on the model. 

Another problem is that strict verification of the model requires 

accurate data for certain key parameters, in particular unfrozen 

water content and hydraulic conductivity in the frozen fringe. 

Measurement of these quantities is extremely difficult and challenges 

the limits of current laboratory techniques. 

Finally, O'Neill and Miller noted that although their approach pro

vides sufficient equations for a solution to be obtained, it is 

possible that certain interactions which ought to be included, es

pecially on a microscopic scale, have in fact been omitted. In other 
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words, it is not clear whether such interactions are implicit in the 

macroscopic equations or if additional mechanics and thermodynamics 

must be included to complete the description of the physical processes 

involved in frost heaving. In any case, generalisation of the theory 

to cover three phases (liquid water, ice and air) is necessary before 

the unsaturated case can be analysed. 

Bearing in mind the drawbacks discussed above, and recognising that, 

in spite of these, the model still has much to commend it, it seemed 

that what was needed now was a modified approach which retained the 

basic features of the rigid ice model, but embodied them in a simpler 

mathematical framework. Such an approach is described in the follow

ing section. 

3.5 Approximate Solutions for the Rigid Ice Model 

This simplified version of the model, presented by Holden (1983), 

in fact appeared prior to the later work of O'Nei11 and Miller (1985) 

but was in no way invalidated by the latter. Holden's basic strategy 

was to use quasi-static approximations for the temperature and pore 

water pressure profiles, along with energy and mass balance equations, 

to reduce the problem to that of the solution of two ordinary differ

ential equations. The quasi-static assumption was motivated by the 

slow nature of the freezing process and avoids the more difficult 

problem of solving a pair of non-linear coupled partial differential 

equations. Although developed quite independently, this approach was 

similar to that adopted by Gilpin (1980). Gilpin's work however was 
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not based so directly on the rigid ice model and the two therefore 

differ in their fine detail. 

For convenience and to test the usefulness of his model. Holden 

considered a saturated semi-infinite column of soil. as opposed to 

a finite column. Following Miller's secondary heaving theory. he 

envisaged a heaving column of soil to be made up of three distinct 

regions: 

1. a solid frozen region of soil that may contain distinct 

ice lenses; 

2. a partially frozen region of soil (the frozen fringe) 

containing soil. ice and unfrozen water; and 

3. an unfrozen region of saturated soil. 

This profile of a freezing soil is illustrated schematical1y in 

Figure 3.5. If z. the space coordinate, is measured downward and 

the cumulative heave is H(t), then the soil surface is z = -H(t). 

The position of the base of the lowest ice lens is denoted by z = zs. 

the position of the freezing front by z = zf and the level of the 

water table (since a semi-infinite column is being considered) by 

z = Zw. These different levels and their associated temperatures 

are also shown in Figure 3.5. 

The soil was assumed to be initially at a temperature Tl > O. At 

time t = 0 the surface z = 0 is cooled to a temperature Tc < o. 

The freezing front therefore descends through the soil. ice lenses 

form and the soil heaves. Due to the slow nature of the freezing 

process and the relative inactivity in the solid frozen region. 
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the temperature profile there is close to linear, as shown by a 

number of experimentalists (e.g. Jame and Norum, 1976, Fukuda, 1980). 

Accordingly, it may be written as: 

Zc:-Z T z+H T = ----H c + --H 1s, -H ~ z ~ Zs zs+ zs+ ... (3.32) 

O'Neill and Miller (1980) had also argued in favour of this linear 

profile, to produce a temperature boundary condition at the base of 

the lowest lens. 

Holden assumed further that the temperature profile in the frozen 

fringe was linear, and of the form: 

~ Z-Zs T = Ts + Tf, Zs ~ z ~ zf Zf-Zs Zf-Zs 
... (3.33) 

In the absence of supporting experimental evidence, this is a rather 

stronger assumption than the previous one. In the unfrozen region, 

a linear profile cannot be used because the column is semi-infinite. 

Holden therefore based the temperature on the classical solution 

(Cars1aw and Jaeger, 1959) which, with appropriate adjustment of the 

variables, gives: 

... (3.34) 

where ~ is the thermal diffusivity. This profile determines the 

temperature gradient just ahead of the freezing front. 

The other profiles needed were for the water pressure in both the 
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frozen fringe and the unfrozen region. At the level of the water 

table, zw' the water pressure is zero and it then decreases linearly 

up to the level of the freezing front. In the frozen fringe, the 

ice content increases rapidly with decreasing temperature, with a 

corresponding rapid decrease in the unfrozen water content. This 

produces a rapid decrease in the water pressure, Uw, from the small 

negative value uf at the freezing front, zf, to a large negative 

value Us just below the ice lens at zs. Holden assumed continuity 

of water pressure gradient at zf and a quadratic profile in the 

frozen fringe, which yielded: 

zw- z uf, zw-zf Zf < Z < Zw 

Zs < Z < zf , 

. .. (3.35) 

It was pointed out that the choice of a quadratic served merely as an 

illustration and that other choices were clearly possible. 

The ~ parameter was introduced in the manner of O'Nei11 and Miller 

(1980), via Equations (3.8) and (3.9), and the same criterion for the 

formation of a new lens was adopted, with the use of Equation (3.6) 

for the neutral stress. Adhering to the input data of O'Neil1 and 

Miller (1980) as far as possible, Holden used Equation (3.28) for the 

stress partition function and approximated the experimental curve 

for ei(~) partly by a quadratic and partly by a hyperbola, as follows: 
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o _ E 
1/I-F 1/1 > 1/12 

A = 0.01385 

C = 3.143 x 10- 14 

E = 2.8 x 105 

1/11 = 2.6 x 105 

. .. (3.36) 

B = -6.144 x 10-8 

0 = 0.4 (porosity) 

F = 2.2 x 106 

1/12 = 3.6 x 106 

The equations for the model were derived by applying conservation of 

heat energy and of mass at the base of the ice lens and at the freez-

ing front. In addition, Darcy's Law and a form of the Clapyron 

equation were employed to complete the set of equations. 

The energy balance equation at z = Zs is: 

where: 

. .. (3.37) 

Vs = liquid volume flux at the top of the frozen fringe 

Kf = thermal conductivity of the frozen fringe 

Ks = thermal conductivity of the solid frozen region 

At the freezing front z = zf, the energy balance equation is: 

... (3.38) 
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where: Ku = thermal conductivity of the unfrozen soil 

aif = volumetric ice content at Z = zf 

Substitution of the temperature profiles (3.32), (3.33) and (3.34) 

into Equations (3.37) and (3.38) yields: 

... (3.39) 

and: 

•.. (3.40) 

Applying conservation of mass now to the base of the ice lens (z = zs) 

gives: 

where: 

. •. (3.41) 

6is is the volumetric ice content at the top of the 

frozen fringe. 

At the freezing front, Holden assumed there is a jump in the ice 

content which causes a jump in the value of the hydraulic conductivity. 

Therefore, employing Darcy's Law for water flow, the mass balance 

equation at this level was written as: 

- [kf] Uf 
-,- Zw - zf . •• (3.42) 

where: [kf] denotes the jump in the value of kf, the hydraulic 
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conductivity at Z = zf. The gravity term normally present in Oarcy's 

equation is missing from (3.42) and it is not clear why this is so. 

Oarcy's Law is also assumed to hold at the top of the frozen fringe 

so that. again using (3.35): 

2] 2us } 
+ zf-zs uf - - Pwg 

zf-zs • .. (3.43) 

where: ks is the hydraulic conductivity at Z = zs. 

Finally, assuming that the ice pressure is continuous and equal to the 

overburden pressure P at z = zs. (3.8) and (3.9) combine to give: 

P - Us = 0iw (Aus + BTs) · .• (3.44) 

which, in fact, is another form of the Clausius-Clapeyron equation. 

Eliminating Vs in the process, the system of Equations (3.39) to (3.44) 

was then rewritten in the form: 

dH I [K T5 -T, _ K Tf-Ts] 
dt = PiL(I-6is) s zs+H f zf-zs 

= P - Baiw Ts 
Us I + Miw 

· .. (3.45) 

· .• (3.46) 

•.. (3.47) 

· .• (3.48) 
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dH - [kf] uf 
dt = Pig 6if Zw - zf 

... (3.49) 

At this stage, Holden found it advantageous to non-dimensionalise 

Equations (3.45) to (3.49) in order to make a further simplification. 

This was done using a length scale 10 , time to, temperature To. thermal 

conductivity Ko and pressure P. The following values were assigned 

to these quantities: 

10 = 10-3m (1 DDJl) 

to = 102 s 

Ko = 3 Wm- l °C l 

To = 1°C 

P = ISO kPa 

The effect of this non-dimensionalising was to show that if the heave 

rate is of the order 10-8 ms- l , as may be expected (Jones and Lomas. 

1983). the non-dimensionalised term Uf/(Zw-Zf) will be of the order 

10-8• This indicates that the first and third terms on the right-hand 

side of Equation (3.48) will have negligible influence on the heave 

rate. and (3.48) becomes: 

•.• (3.50) 

Equation (3.49) is now no longer required as it serves only to calculate 

u
f

' which is inSignificant. 

The system of Equations (3.45), (3.46). (3.47) and (3.50) has the form: 
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... (3.51) 

dH = dt ... (3.52) 

... (3.53) 

dH = dt ..• (3.54) 

By eliminating Ts and Us from Equations (3.51) to (3.54), Holden 

reduced the system to a pair of ordinary differential equations of 

the form: 

dZf _ 
dt - F (zs' zf, H, t) • •• (3. SS) 

and: 

..• (3.56) 

where: 

.•• (3.57) 

and: 

••. (3.58) 

The problem was therefore reduced to the solution of the two coupled 

non-linear ordinary differential equations (3.55) and (3.56), where 

Zs is a stepwise constant in time. Holden solved the non-dimensional 

form of these equations using a standard fourth-order Runge-Kutta 

formula, and employed a simple search procedure to locate the maxi-

mum of the neutral stress in the frozen fringe. It was explained 

that during the formation of a lens, Zs remains fixed. and the lens 
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grows at this level until the maximum value of un below the lens 

reaches the overburden and a new lens is initiated. At this time, 

Zs is set equal to the position of the maximum of Un for the new 

lens to fonn. Hence, Zs is a "stepwise" constant. 

For the computations, constant values, intended only to be repre

sentative, were chosen for the following quantities: thermal 

conductivities Ks ' Kf and Ku; hydraulic conductivity ks ; temper

atures Tc ' T1 and Tf; ice contents 8is and 8if. The computations 

were carried out for one value of the overburden only (P = ISO kPa) 

to evaluate the general performance of this approach. The results 

(for example, Figures 3.6 and 3.7) were found to be qualitatively 

reasonable. Allowing for the different geometries modelled (namely 

a semi-infinite as opposed to a finite soil column), Holden's results 

were of the same order as those of O'Neill and Miller (1980) and, 

equally well, the model was able to trace the formation and growth 

of each ice lens. 

Holden therefore felt that there was considerable merit in this 

quasi-static approach. Not least of the benefits was the marked 

saving in computing effort. As O'Neill and Miller found, to solve 

the full set of partial differential equations for the heat and mass 

flow in the frozen fringe is difficult and computationally expensive. 

Adequate modelling of this very narrow region over which dramatic 

changes take place requires a very small mesh size and a correspond

ingly small time step. With the exception of the early stages of 

the simulation, during which a small time step was required to 

accommodate the frequent ice lenses, Holden used a time step appropriate 
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for the movement of the freezing front, and no "mesh" as such was 

necessary. 

It was also argued that the simplified approach to the formulation 

of the equations would aid understanding of the rigid ice model 

and encourage a critical evaluation of the assumptions on which it 

is based. Finally, because the computer program Holden wrote was 

relatively short and inexpensive to run, parametric investigations 

could be performed readily. This would enable straightforward 

determination of the sensitivity of the heave to the various para

meters, and hence their relative importance as elements of the 

theory. 

Clearly then, as a model embodying the essential features of the 

rigid ice model in a mathematically and computationally simple frame

work, the quasi-static approach demonstrated sufficient potential to 

warrant further investigation. Holden (1983) in fact suggested a 

number of obvious refinements to improve the model immediately, thereby 

providing a platform from which to begin further development. 

3.6 Conclusions 

In this chapter, an account has been given of the theory of secondary 

frost heave, as conceived by Miller (1972, 1977, 1978), along with 

detail of its mathematical interpretation and attempts at numerical 

solution. 
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The model of O'Neill and Miller (1980, 1985), perhaps the most complete 

model of frost heave to date, has also been described. The model has 

been shown to be capable of predicting heave behaviour in a one

dimensional soil column, providing information such as heave as a 

function of overburden, and the time, location and thickness of each 

ice lens. The main disadvantage of the model is. its mathematical 

complexity; the computations are time-consuming and susceptible to 

numerical problems, particularly when a "steady-state" solution is 

approached. 

Against this background, Holden (1983) took the so-called rigid ice 

model and made a number of physically reasonable assumptions, in an 

attempt to simplify the modelling and reduce the computing effort 

required. This he achieved without loss of the predictive capability 

of the model. Holden, however, only went as far as testing the feas

ibility of his quasi-static approach and it was felt that further work 

on the model was warranted. 

Hence, the development of Holden's model in the direction of greater 

realism, accuracy and flexibility is the subject of the following 

chapter. 
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CHAPTER 4 

DEVELOPMENT OF A ONE-DIMENSIONAL MODEL FOR HEAVE AND ICE LENSING 

4.1 Introduction 

This chapter describes the development of a model for frost heave 

which uses Holden's (1983) approach as its basis. Holden's 

approximate solutions for Miller's theory of secondary heave were 

detailed in the previous chapter and their success provided the 

incentive to develop the model further. The primary aim was to 

produce a relatively simple model, and computer program, capable 

of simulating the mechanism and magnitude of frost heave in a soil 

column subjected to any applied temperature and pressure boundary 

conditions. 

The first step was to adjust Holden's formulation so that a finite 

soil column could be modelled. This was considered necessary to 

allow comparison with laboratory freezing experiments, which would 

be important for the verification of the model. Such comparisons 

would also require the model to cope with any applied temperature 

boundary conditions, and to predict the initial cooling of a soil 

sample prior to freezing. Attention was therefore given to these 

aspects in the early stages of development. 

Another critical area in frost heave modelling is the effect of 
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variations in overburden pressure. Whereas Holden dealt only with 

one value of the overburden, it was felt that the model would only 

gain credibility if it was able to simulate the behaviour of the 

soil under a range of overburden pressures, and, in particular, under 

zero overburden, when the soil self-weight plays a major role. Much 

effort was devoted to producing a model with this capability. 

Finally, improvement in the representation of certain parameters was 

sought. Holden had assumed constant values for key parameters in 

order to test the feasibility of his approach. However, greater 

vari~bility was now essential to permit parametric studies to 

establish the relative importance of the parameters. 

All these developments were carried out in the context of the over

all objective of mathematical and computational simplicity. Thus, 

whilst some increase in complexity has been inevitable, the final 

model described towards the end of this chapter still retains the 

basic elements of Holden's quasi-static approach. 

In the following sections, the changes made to Holden's original 

model are presented in detail and, for the most part, these are 

given in chronological order. This strategy was adopted because 

the model indeed evolved over a period of time, and a chronological 

account provides greater insight into how the final model was 

attained. The intermediate stages of development are therefore 

included and it should be emphasised that certain parts of the model 

were updated on more than one occasion. Hence, for clarity. a state

ment of the final model is given in Section 4.9. 
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Since this chapter concentrates largely on the evolution of the model, 

the results of computer simulations and parametric investigations 

based on the final model are the subject of Chapter 5. 

4.2 Modelling a Finite Soil Column 

The reader's attention is drawn to the idealisation of a freezing 

soil sample given in Figure 3.5 of the previous chapter, which is 

used again here. For a finite column of soil, the level z = Zw refers 

to the base of the column as well as the level of the water table. 

Holden (1983) considered only a semi-infinite column of soil and, 

in anticipation of comparison of computer predictions with the results 

of laboratory experiments, it was necessary to adapt the model to 

cope with a finite soil sample. This involved reassessment of the 

temperature profile ahead of the freezing front. Holden used an 

error function approximation for the temperature in this region, but 

this is inappropriate for a finite sample and an alternative approach 

had to be found. 

The temperature profile in the unfrozen region is required primarily 

to calculate the temperature gradient just ahead of the freezing 

front. This information is needed for the energy balance equation 

at the freezing front Z • zf, which is, recalling (3.38): 

K aT I -u~ 
zf+ 

Kf aT I oZ _ = 
zf 

... (4.1) 
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The temperature gradient just behind the freezing front (z = zf-) 

is provided by the linear profile approximation in the frozen fringe, 

but for the finite sample it was decided not to use an approximating 

profile in the unfrozen region. Instead, the temperature profile 

was computed by solving the one-dimensional heat equation: 

... (4.2) 

where: ~ is the thermal diffusivity, as before. 

The solution of (4.2) was achieved using a Crank-Nicolson finite 

difference approximation, based on a convected finite difference 

mesh. That is, a fixed number of mesh points was defined in the 

unfrozen region so that, as the freezing front advances and the 

length of the unfrozen region decreases, accordingly the finite 

difference mesh contracts. This solution technique followed that 

of Murray and Landis (1959) and is described in detail in Appendix C. 

The method used to calculate the temperature gradient just ahead of 

the freezing front was also adapted from Murray and Landis (1959). 

A parabola was fitted through the first three mesh points and an 

expression for the slope of the parabola at z = zf was obtained. 

Hence: 

aT 

Izr+ 
4T1 . - T2.j - 3Tf (4.3) = .J az 215z· ... 

J 

where: I5z· J = mesh point spacina at jth time step, and 
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T· . = temperature (jth time step) at point (zf + i~zJ·) 1,J 

The derivation of Equation (4.3) is also given in Appendix C. 

In practice, the temperature at the base of the sample is held 

constant at the initial temperature (TI > 0), and the unfrozen 

region temperature profile is evaluated at each time step. Equation 

(4.3) is then used to calculate the temperature gradient ahead of 

the freezing front and this is substituted into (4.1). This allows 

the system of equations to be solved as before and the new position 

of the front to be found. In other words, Holden's original solution 

procedure in essence remained unchanged. Indeed, by confining the 

calculation of the un fro zen region temperature profile to a separate 

subroutine in the computer program, the need for other programming 

changes was minimal. 

Having made the alterations necessary for the modelling of a finite 

column of soil, further modifications were needed to permit more 

accurate representation of laboratory temperature boundary conditions, 

and these are described in the next section. 

4.3 Represention of Laboratory Freezing Conditions 

In his simulations, Holden (1983) applied a step freezing condition 

to the surface of his soil column, that is, at zero time, the surface 

temperature was stepped down to a sub-zero temperature and then held 
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fixed. This condition is, of course, very easily written into a 

computer program but does not adequately reproduce the environment 

normally found in freezing experiments or in nature. 

In the laboratory, a sample, initially at a uniform temperature 

throughout, has its surface cooled at some finite rate, whilst the 

base of the sample is held at the initial temperature by means of, 

say, circulating fluid. Upon reaching the desired sub-zero value, 

the surface temperature is then usually kept constant for the duration 

of the experiment. Under these conditions, when freezing is initiated 

in a soil sample, the temperature profile in the sample is not only 

non-uniform, but probably also non-linear and this may have an effect 

on the rate of freezing, particularly in the early stages. 

It was therefore decided to build into the model the capability to 

predict the effect of any cooling "curve" applied at the surface of 

the sample. This meant generalising the application of thermal con

ditions so that either temperatures or heat fluxes could be specified 

at the surface. The resulting temperature profile in the soil was 

computed simultaneously. 

Once again, the favoured approach was that of solving the one

dimensional heat equation (4.2), subject to a fixed temperature 

at the base of the sample and a varying condition at the surface. 

Crank-Nicolson finite differences were used to approximate the 

derivatives in (4.2), producing a system of equations of the form: 

... (4.4) 
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where: ,!,j+l = vector of unknown temperatures at (j+l)th time step 

s· -J = vector of known quantities from previous (jth) time 

step 

A = matrix of coefficients 

Further details of the solution are not given here. since the procedure 

is essentially similar to that described in Appendix C. The problem 

is simpler on this occasion because the finite difference mesh is 

fixed. The result is that matrix ~ in (4.4) is both tri-diagonal and 

symmetric. and the system is easily solved using standard Gaussian 

elimination and back substitution. 

This modelling of the initial cooling of the soil was appended to 

the program as a separate subroutine, in the same way as the unfrozen 

region temperature profile calculation. Generally, a simple ramped 

temperature decrease was applied (see Chapter 5), that is a linear 

decrease of temperature with time down to the desired value. However, 

any form of cooling curve can be handled without difficulty, or, if 

preferred, the heat flux at the surface can be specified via a simple 

modification. 

The temperature profile in the cooling sample is computed at speci

fied time intervals until freezing begins at the surface. This is 

detected when the surface temperature drops marginally below OoC. 

At this instant, the temperature profile is transferred into the main 

segment of the program and becomes the first unfrozen region temper

ature profile. 
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Hence, at this stage, Holden's basic solution strategy has remained 

largely unaltered, whilst the program has become equipped to model 

the temperature conditions typically imposed in the laboratory 

freezing of soil samples. 

4.4 Improvement in Parameter Representation 

Among the refinements that Holden (1983) suggested could be made to 

the model, was an improvement in the representation of certain 

parameters, notably ice content and hydraulic conductivity. Holden 

used constants for the hydraulic conductivity at the top of the 

frozen fringe, ks' and for ice content at both top and bottom of 

the fringe, 9is and eif respectively. The values he chose were 

apparently reasonable, in view of the magnitude of the results. 

Nevertheless, it was desirable to allow these quantities to vary 

with the suction parameter ~ to achieve greater generality. 

The implementation of these changes was in fact prompted by a study 

of the behaviour of the model under varying overburden pressures. 

This revealed a serious flaw in prescribing a constant value for ks , 

which Holden had inevitably failed to detect because he considered 

only one value of the overburden. The study showed that above a certain 

value of the overburden pressure, the amount of frost heave increased 

with increasing overburden, contrary to all experimental evidence, 

and indeed common sense. 

Fortunately, the anomaly was easily explained. Under an increased 
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overburden, ice pressure and therefore ice content, would be expected 

to increase at the top of the frozen fringe, implying a corresponding 

decrease in permeability there. Thus, with a fixed value of the 

permeability, ks , a point was obviously reached beyond which the 

chosen value was unrealistically high, producing unreasonably high 

heaves. 

Clearly, the hydraulic conductivity needed to be expressed as some 

function of ice content, and the relationship used by O'Neill and 

Miller (1980, 1985) was adopted here, viz: 

s· m = k(O) (1 - ~) 
80 

where: 80 • porosity (taken to be 0.4). 

•.• (4.5) 

The exponent m was initially taken to be 7, after O'Neill and Miller 

(1980), but subsequently a value of m = 9 was used (O'Neill and Miller, 

1985). Details of parametric studies on (4.5) are contained in 

Chapter 5. 

In addition, calculation of the ice content as a function of • was 

necessary, not only for (4.5) but also to provide reliable values at 

the top and bottom of the frozen fringe. Ironically, this operation 

was already part of the program, since Si(.) had to be calculated 

throughout the fringe in order to evaluate the stress partition 

function, X(6i), and hence the neutral stress, Un. 

The above changes were therefore introduced into the model in a 
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straightforward manner. In the process, a minor alteration was made 

to the formula for computing the ice content. Holden had expressed 

O'Neill and Miller's (1980) experimental curve of ei versus ~ partly 

by a hyperbola and partly by a parabola (Chapter 3, Equation (3.36)). 

However, checks had revealed that the parabolic portion was inaccurate 

and, although in practice this is not the most important half of the 

formula, the error was accordingly corrected. 

Whilst not a problem of parametric representation, a further improve-

ment was made in the program's rigour at this stage and is included 

here for convenience. It concerns the numerical algorithm for locat-

ing the position of the maximum of the neutral stress in the frozen 

fringe, a crucial step in the lens initiation procedure. Holden had 

used a simple search method employing divided differences, which was 

based on finding a stationary point rather than a strict maximum. 

Normally, the correct location was found without difficulty, but 

occasionally the freezing front was returned as the required position, 

as the routine searched for the minimum value of the neutral stress. 

Thus, to optimise the reliability of this part of the program, an 

alternative algorithm was chosen which proceeds as follows: the 

frozen fringe is divided into ten step lengths: 

dz • Zf - Zs 
10 .•• (4.6) 

and, starting at zs. the neutral stress. Un. is evaluated at successive 

points Zo • zS' z1 = Zo + dz, z2 = z1 + dz etc. Each value of Un is 

compared with the previous one until Un at zr+l is found to be less 
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than Un at zr' that is when the maximum has just been passed. The 

maximum is then known to lie in the range (zr-l, zr+l)' length 2dz. 

The test is then restarted within this range with a reduced step size 

of dz/lO. This procedure is repeated until the position of the maxi

mum of Un is located, within the required tolerance limits. Both 

the position and value of the maximum are passed (via a common block) 

back to the main segment of the program, for testing against the lens 

initiation criterion. 

4.5 Modelling the Water Pressure 

As explained in Chapter 3, part of Holden's quasi-static approach was 

to use an approximating profile to describe the water pressure in 

the frozen fringe. This profile did not prescribe a priori values 

to the water pressure, but determined the shape of the profile in the 

frozen fringe once the values at the top and bottom of the fringe had 

been calculated by the model. To illustrate the method, Holden (1983) 

chose a quadratic profile, but pointed out that other choices were 

possible. 

In practice, Holden needed only to calculate the water pressure at 

the top of the frozen fringe, us' Non-dimensionalisation of the govern

ing equations had inferred that the value at the freezing front, uf' 

was negligibly small. As a result, Holden was able to ignore the mass 

balance equation at the freezing front (Equation (3.49)) with the 

effect that uf was taken to be zero. 
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For the sake of completeness, it was decided to re-introduce the 

mass balance equation at zf in order to allow a more precise assess-

ment of the magnitude and hence significance of ufo This decision 

was also prompted by the fact that Holden had omitted the gravity 

term from his equation. With the gravity term, the mass balance 

becomes: 

P1" e' f dH - - [W (uf + p g) 
1 dt - g Zw- Zf w • •• (4. 7) 

(cf. Equation (3.49)), which can be written in the form: 

... (4.8) 

In addition to Equation (4.8), an alternative approximating profile 

for the water pressure in the frozen fringe was incorporated into the 

model at this time. To some extent, this was done simply to see what 

effect a different profile would have on the overall behaviour. 

However, the results of O'Neill and Miller (1980, 1985) had suggested 

that a quadratic profile might not be appropriate, and instead a 

quartic approximation was chosen. Thus, the water pressure was 

defined as: 

Zs < Z < zf 

(4.9) 

Zw-z 
Uw • Zw-zf uf Zf < Z < Zw 
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Continuity of the water pressure gradient at the freezing front, zf, 

was still assumed, and the water flux at the top of the frozen 

fringe became: 

.•. (4.10) 

The above changes of course meant the introduction of another equation 

and another unknown (Uf) into the model. Nevertheless, the solution 

procedure remained the same, as follows: the system of equations 

(now five) was written: 

••• (4.11) 

••. (4.12) 

.•• (4.13) 

.•• (4.14) 

••• (4.15) 

As before, elimination between (4.11) to (4.15) led to the two ordinary 

differential equations: 

and: 

dz£ • F 
dt ••. (4.16) 
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dH 
dt = G ... (4.17) 

where now: 

•.. (4.18) 

and: 

... (4.19) 

Hence, computational simplicity was retained whilst augmenting the 

model's overall capability and accuracy. 

4.6 Ice Content in the Frozen Fringe 

Simulations performed at this stage in the development of the model 

produced qualitatively good predictions for relatively high over

burden pressures, which would have been encouraging were it not for 

the problems experienced at lower overburdens. For no apparent reason, 

attempts to compute the behaviour below say 125 kPa yielded unrealist

ically, and indeed unreasonably, high values for the heave (Piper and 

Holden, 1984). Even reducing the value of the saturated unfrozen 

permeability (k(o) in Equation (4.5», to a level which would in 

practice have eliminated the heave, served only to lower the over

burden threshold below which the "instability" remained. 
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In an effort to locate the source of the difficulty. thorough checks 

of all areas of the model and, in particular, the computer program, 

were carried out. After some considerable time, the problem was 

traced to the representation of ice content as a function of the 

suction parameter ~, which is used to calculate ice content in the 

frozen fringe. It became clear that the curve given by O'Neill and 

Miller (1980), and formulated algebraically in the current model, 

was unrepresentative of real soil behaviour. Comparison with suction-

water content curves for a number of soils (Thompson, 1981) high-

lighted the anomaly. 

(Koopmans and Miller (1966) demonstrated the similarity between 

water content versus suction curves, the "soil water characteristic", 

and ice content versus ~ curves, the "soil freezing characteristic". 

The two are related through the equation: 

.•• (4.20) 

for appropriate soil types and saturation conditions. See also Chapter 

3, Section 3.3.) 

Q'Neill and Miller (1980) and Holden (1983) considered only one 

(relatively high) value of the overburden and understandably failed 

to detect such behaviour. In any case, Holden imposed constant values 

for the ice content at the top and bottom of the frozen fringe, which 

would have effectively suppressed any potential problem in this area. 

It was then discovered that later, when evaluating their model over 
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a range of overburden pressures, O'Neill and Miller (1985) had used 

a Si versus ~ relationship substantially differen~ to their previous 

one. The two curves are shown together in Chapter 3, Figure 3.2. 

No explanation was given for the change, but it seems reasonable to 

suppose that O'Neill and Miller experienced difficulties similar to 

those described above. 

To rectify the situation, a more realistic expression for the ice 

content as a function of ~ was used. This was derived from the data 

of Thompson (1981) for Attenborough silt. For the purposes of the 

model, a bilinear approximation to the experimental data was made, 

based on linear regression. This produced the following relations 

for the determination of the ice content: 

Si = 0.1179 (log10 ~) - 0.5583, , < 4.25 x 107 

Si = 0.0198 (10g10 ~) + 0.19, .•. (4.21) 

Thompson's (1981) data, together with the straight line fits to it, 

are given in Figure 4.1. 

As expected, the introduction of (4.21) into the model removed the 

"instability" and allowed the heave to be successfully computed for 

overburden pressures down to around 5 kPa. Curves of heave against 

overburden were now qualitatively reasonable, as illustrated in 

Figure 4.2. 

This marked an important point in the development of the model. Having 
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adapted Holden's original formulation to cope with laboratory freez-

ing conditions, and eliminated the inconsistencies which subsequen~ly 

arose, the model as it now stood was presented in the Proceedings 

of the Fourth International Symposium on Ground Freezing (Holden 

et aI, 1985). Further developments however were still necessary 

to improve the quantitative accuracy of the model, and these are 

now described. 

4.7 The Water Pressure Profile 

The curves of Figure 4.2 demonstrate that whilst the model produced 

qualitatively reasonable results, the magnitude of the predicted 

heave was still higher than expected, especially at lower overburden 

pressures. Since the amount of frost heave is dependent on the 

water flux to the ice lens, it was decided to re-examine the mass 

balance equations and the validity of the water pressure profile 

approximation in the frozen fringe, in an attempt to establish the 

cause of the overestimated heave. 

The mass balance at the top of the frozen fringe (z = zs) is, 

recalling Equation (3.41): 

.•• (4.22) 

whilst at the freezing front, the mass balance was updated earlier 

(Equation (4.7» to: 



us 

Pi. aif ddH
t 

= - [kf] ( uf + Pwg) 
g zw-zf • .• (4. 7) 

It was found that from a simple analysis of these two equations 

(given below), an expression for the ratio vs/vw could be derived, 

providing an estimate of the relative magnitudes of the two quantities. 

According to Darcy's Law, the water flux just ahead of the freezing 

front, vw' is given by: 

vw = -k(o) ( -uf 
pwg Zw - zf - pwg) •.• (4.23) 

where k(o) is the hydraulic conductivity of the saturated un fro zen 

region, and the pressure gradient is obtained from (4.9). Equation 

(4.7) can therefore be rewritten as: 

dH pv 
Pi aif dt = -[kf] k(o) .•• (4.24) 

Eliminatina dH/dt between (4.24) and (4.22) yields: 

.•• (4.25) 

a~l:. m = k(o) - k(o) (1 - a) 
o 

. •. (4.26) 

accordina to (4.5). Hence, (4.25) can now be written: 
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• .. (4.27) 

For integer m, the minimum (non-zero) value of the term in square 

brackets is given by m = 1, so that: 

and, in the extreme case of 9is • 90 = 0.4: 

~ > 1.5 
Vw 

.•. (4.28) 

••• (4.29) 

Alternatively, using typical values of m • 7, 9is = 0.3 and 9if • 0.1 

in (4.27) leads to: 

~:= 6 0 . 
Vw 

• .• (4.30) 

In practice of course, neither (4.30) nor (4.29) can be true, and 

an inconsistency evidently existed in the mass balance equations 

(4.7) and (4.22). One of the assumptions made in formulating both 

(4.7) and the water pressure profile in the frozen fringe was that 

the water pressure gradient was continuous at the freezing front. 

It now appeared that this assUllption was too "strong" and might be 

responsible for artificially forcing too much water to the ice lens. 

Without the gradient continuity assumption, an alternative means of 

determining the water pressure profile in the frozen fringe was 
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required. One option that was considered was to calculate the 

water pressure by imposing a pointwise steady state continuity 

within the frozen fringe using: 

• •• (4.31) 

where v is the water flux. However, even if the steady state 

assumption had been sufficiently accurate, it was felt that the 

amount of extra calculation necessary to incorporate this into the 

program would have seriously compromised one of the overall aims 

of the model, namely that of computational simplicity. 

Therefore the preferred approach was still to use an approximating 

profile. Since the water pressure was known to decay more or less 

exponentially in the frozen fringe (Miller, 1977), an exponential 

profile was chosen, as follows: 

a > 0 • •• (4.32) 

The constants A and B are easily found as Uw = Us at z = Zs and 

Uw = uf at Z = zf' so that: 

A = u£ - use-a(zf-zs) 

1 - e-a (zf-zs) 

... (4.33) 

and: B 
Us - uf 

= e-a(Zf-ZsJ 1 -

The exponent a has dimensions of the reciprocal of length. 
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The water pressure profile in the unfrozen region remained as de-

fined in (4.9), but the assumption that the pressure gradient was 

continuous at the freezing front was now removed. From (4.32), 

the gradients at the top and bottom of the frozen fringe were now 

respectively: 

~I = -aB dz z=zs 

and: •.. (4.34) 

Clearly. the exponent a in (4.32) represented a new unknown in the 

system of equations and this aspect is dealt with shortly. 

The choice of a new water pressure profile also meant reformulation 

of the mass balance equation at the freezing front, and whilst this 

was being done it was found that the equation in its present form 

had a term missing from it. The equation (4.7) had previously been 

based on the simple balance: 

••. (4.35) 

where vf is the water flux just behind the freezing front and, as 

before, Vw is the water flux ahead of the freezing front. Equation 

(4.35) however omitted the term accounting for the advancing freezing 

front. As the freezing front progresses, a small amount of water 

(Sif) freezes and, due to the volume expansion, this affects the 
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mass balance. The correct equation is therefore written: 

... (4.36) 

Using Darcy's law for the water flux terms, and (4.34) for the new 

water pressure gradient just behind the freezing front, (4.36) can 

be expressed in the form: 

••• (4.37) 

which replaces (4.15). 

Of the two "final" ordinary differential equations (4.16) and (4.17), 

the right-hand side of one, given in (4.18), has of course to be 

amended with the introduction of (4.37). That apart, the solution 

procedure remained the same and the new water pressure profile in 

the frozen fringe (4.32) merely replaced the old one. 

The problem remained of how to handle the exponent a. This new 

unknown, which ultimately determined the precise form of the water 

pressure profile, had been introduced into the model without the 

introduction of another equation or condition which would allow its 

evaluation. 

At this stage therefore it had to be specified a priori. Of course, 

this made it possible to select an appropriate value for a, for a 

given overburden, which yielded accurate results in terms of the 
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magnitude of the predicted heave etc. However, it could then have 

been argued that this was a means of "tuning" the predictions to 

the experimental data, without proper physical motivation. 

The next section describes how this obstacle was overcome. 

4.8 Conservation of Mass Across the Frozen Fringe 

Although an approximating profile was being used for the water 

pressure in the frozen fringe, it was realised that it should never-

theless satisfy conservation of mass. It was therefore felt that 

if an equation governing mass continuity over the entire frozen 

fringe could be written down, as opposed to just mass balances at 

the boundaries, then this would provide phYSical justification for 

the value of the exponent a in the water pressure profile. 

Proceeding along these lines, a "control tI volume which spanned the 

frozen fringe was considered, as shown in Figure 4.3. 

The total mass M of water and ice (per unit area) within the control 

volume is given by: 

Zs zf(t) 
M = I Pi dz + I (Pi8i + pw8w) dz 

Zo Zs 

. •• (4.38) 



124 

By the conservation of mass law, the rate of change of M is equal 

to the rate at which mass enters the region. Hence: 

dM dH 
dt = -Pi dt - Pwvw ... (4.39) 

Now: 

JZf ( d8i dew) dz 
= Pi dt + Pw dt 

Zs 

.•• (4.40) 

But 80 = 8w + 8i = constant, so that: 

and ~:II -dei 
dt dt 

Therefore, with this and (4.40), (4.39) becomes: 

.•• (4.41) 



125 

It should be noted that this equation does not represent the sum of 

the mass balance equations at the top and bottom of the frozen fringe, 

due to the variation in (and rate of change of) the ice content 

within the region. 

The drawback with Equation (4.41) was the presence of the integral 

term, which threatened the mathematical simplicity which was sought 

in the governing equations of the model. However, by considering 

the behaviour of the ice content in the frozen fringe, a simple 

expression was found which closely approximated the integral term. 

Let: I = JZf dei dz 
dt 

Zs 

Using the finite difference approximation: 

dei = 6i(Z,t+dt) - Si (z,t) 
dt dt 

(4.42) can be written as: 

..• (4.42) 

... (4.43) 

... (4.44) 

Figure 4.4 illustrates two typical ice content profiles separated by 

a time interval dt. It can be seen from this that the term in square 

brackets in (4.44) is represented by the area of the strip between 

the two curves. What was needed was some estimate of this area and, 
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as a first approximation, it was assumed that the ice content pro

file at time t + dt is obtained simply by moving the profile at 

time t down a distance dZf, where: 

. . . (4.45) 

The area of the strip created at the top of the frozen fringe by 

this movement is then equivalent to the area of the strip between 

the two profiles. and is given by: 

"0 (4.46) 

Substituting (4.46) into (4.44) yields an approximation to the integral 

term, viz.: 

.. 0 (4.47) 

Independent studies of the accuracy of (4.47) in representing (4.42) 

showed an error of less than st. It was therefore felt that (4.47) 

provided a sufficiently good approximation for the purposes of the 

model. and the mass conservation equation (4.41) was now written as: 

or: ... (4.48) 

The conservation of mass equation across the frozen fringe was thus 
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obtained in a convenient form, and it was now used to determine 

the component a in the water pressure profile. 

First, the heave rate term was eliminated by solving (4.48) with 

the mass balance at Zs (4.22) to give: 

••. (4.49) 

Using once again Darcy's law for the water flux terms yields: 

where: k ,. k(o) o 

This can be rearranged to: 

_ ed (I_a) (1-8is)8. dz£] 
ks Pw 15 dt 

or, in short: 

a = £(a) 

••• (4.50) 

. .• (4.51) 

... (4.52) 
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The solution to (4.52) was found by simple iteration, that is by 

computing: 

... (4.53) 

successively until convergence was achieved. 

Hence, the "correct" value of a was obtained, so that the exact 

form of the exponential water pressure profile (4.32) was established 

by the model itself. 

In both this section and the previous one, a number of major develop

ments have been described, with the change in the water pressure 

profile in the frozen fringe, the amendment to the mass balance 

equation at the freezing front and the introduction of the equation 

for mass conservation across the frozen fringe. In contrast, the 

impact of these developments on the computer program was relatively 

small, with the addition of only one subroutine to perform the 

iteration scheme of Equation (4.53). 

This section in fact completes the description of the most important 

steps in the development of the model, and it is gratifying to note 

that throughout, the basic structure of the model has remained the 

same as that created by Holden (1983), thereby upholding the aims 

mentioned in the introduction to this chapter. The only area still 

to be discussed is that concerned with the prediction of the heave 

under zero overburden pressure, wherein the self-weight of the soil 

plays a prominent role. This aspect is closely linked with a 
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particular phenomenon which can occur when frost heave takes place 

under very low overburden pressures. Since accounting for this 

behaviour requires an extension to the model, it is treated as a 

special case and dealt with separately in Section 4.10. 

The frost heave model is otherwise complete and a summary is 

therefore provided in the following section. 

4.9 Statement of the Final Model 

The approximating profiles and governing equations of the final 

version of the model are all repeated here for clarity, but no 

derivations or explanations are supplied, since these appear else-

where. The aim is to provide a concise summary of the components 

of the completed frost heave model within one section, as a point 

of reference. The reader once again is referred to the schematic 

section of a soil column undergoing unidirectional freezing in 

Figure 3.5. It is emphasised that the model stated here is valid 

provided a frozen fringe exists and an overburden is applied to 

the soil (cf. Section 4.10). 

In both the solid frozen region and the frozen fringe, the temper

ature profiles are assumed to be linear and, recalling (3.32) and 

(3.33), are written, respectively, as: 

!s.:.,;. z+H 
T = zs+H Tc + zs+H Ts, • •. (4. S4) 
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and: T = Zf- z T Z-ZS T s + f, Zf-Zs Zf-Zs ... (4.55) 

In the unfrozen region, the temperature profile is computed by solving 

directly the one-dimensional heat equation: 

aT a2T at = l.I azT ... (4.2) 

using a finite difference formulation (Appendix C). In addition, 

(4.2) is also used to compute the temperature profile within the 

un fro zen soil column as the surface is cooled, prior to the onset 

of freezing. 

At the base of the sample zw, the water pressure is zero and de-

creases linearly up to the freezing front. In the frozen fringe, 

in accordance with the expected behaviour, an exponential profile 

is assumed. 

The water pressure is therefore expressed as: 

= Zw - Z 
1lw Zw - zf uf, ... (4.56) 

The constants A and 8 are given in (4.33). 

The governina equations of the model are obtained by writing down 
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mass and energy balances at the top and bottom of the frozen fringe. 

Darcy's law for water flux is also employed and the application of 

the Clausius-Clapeyron equation at the base of the ice lens completes 

the system of equations. 

The energy balance equation at z = Zs is, (from (3.37)): 

K aTI _ K aTI 
f az s az 

zs+ zs-
. .. (4.57) 

and at Z = zf, 

J( aTI _ K aTI 
''\1 az + f az _ 

zf zf 
.•• (4.1) 

Substitution of the temperature profiles (4.54) and (4.55) into 

(4.57) and (4.1) yields: 

Kf Tf - T5 _ Ks Ts - Tc = PwLvs 
zf - Zs Zs + H 

... (4.58) 

and: 

K aTI _ K Tf - Ts - L dZf f - - - -Pi e' f u az zf - Zs 1 dt Zf+ 
••• (4.59) 

The temperature gradient aT/az at zf+ is evaluated within the pro

cedure for computing the temperature profile ahead of the freezing 

front. 

The mass balance at z = Zs is: 
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•.. (4.22) 

whilst at z = zf' mass balance is given by: 

... (4.36) 

Each of the water flux terms vs. vf and Vw is rewritten using Darcy's 

law. In general, this is expressed as: 

v = -It duw 
pwg (dz - Pwg) (4.60) 

and the water pressure gradients are obtained from (4.56). 

Finally. the Clapeyron equation applied at the top of the frozen 

fringe yields: 

'" (4.61) 

With some rearrangement, Equations (4.22), (4.36) and (4.58) to (4.61) 

can be written as a system of five equations. in the following form: 

... (4.11) 

••• (4.12) 
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... (4.13) 

••• (4.14) 

dH = E C E dz£ + BS dt 2 Us + 2 uf + 3 dt ••• (4.37) 

By elimination, this system is reduced to two coupled non-linear 

ordinary differential equations: 

d:
t
f = F(zf,H,t) ..• (4.62) 

and: •.• (4.63) 

where: 

• .• (4.64) 

G1 = A2 B3 - A3B2 

G2 = A1B2 - A2Bl 

G3 = E2A3 + E3Al 

and: 

F = &. (G - B2) + B1 ... (4.65) A2 

The two ordinary differential equations (4.62) and (4.63) are solved 

using the standard fourth order Runge-Kutta formulae. 
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One other equation is included in the model. namely the conservation 

of mass across the frozen fringe. After some simplification. this 

is given by: 

... (4.48) 

This is used in conjunction with (4.22) to determine the value of 

the exponent a in the water pressure profile (4.56). In fact. an 

equation of the form: 

a = f(a) ••• (4.52) 

is obtained (see Equation (4.51)), and this is solved by simple 

iteration. During the course of a simulation, a is assumed to 

change only very slowly so that the equations (4.62) and (4.63) 

are solved using the value of a calculated at the previous time 

step. Iteration of (4.52) is then performed, with the new values 

of the relevant variables, to find the value of a to be used in the 

next time step. 

A number of soil parameters are represented in the model. Based 

on soil suction data for Attenborough silt (Figure 4.1), the ice 

content as a function of the suction parameter ~ is written as: 

ei = 0.1179 (loglO ,) - 0.5583. ~ < 4.25 x 107 

... (4.21) 

ei = 0.0198 (loglO ,) + 0.19 ~ > 4.25 x 107 
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The hydraulic conductivity is then expressed as: 

•.. (4.5) 

where: ko = k(O) 

m = 7 or 9 

60 = 0.4 

(60 is the soil porosity; a constant, since the soil is assumed to 

be incompressible). 

The criterion for the formation of a new ice lens depends upon the 

value of the neutral stress which, recalling (3.6), is calculated 

by the formul a: 

. •• (4.66) 

where (from Equation (3.28)) the stress partition function X is 

given by: 

. •. (4.67) 

. 
Finally, in each of the three regions of the freezing soil column, 

the thermal conductivity is taken to be constant, that is Ks , Kf 

and Ku are each assigned a fixed value. 

That concludes the summary of the mathematical model in its final 
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form. The next section describes the additional steps necessary 

to account for the application ·of zero overburden, and to cope with 

a special case which can arise under low overburden pressures. 

Chapter 5 then follows, which examines the results of the computer 

simulations performed with the model just described, and contains 

further details and discussion of the values of constants used in 

the computations. 

4.10 The Self-Weight and the Absence of the Frozen Fringe 

This section deals with the inclusion of the soil self-weight in 

the model, to enable simulations to be performed under zero over

burden, and also addresses a particular situation which arises 

under relatively low overburden pressures, namely the disappearance 

of the frozen fringe. Although this phenomenon can be expected, 

the model at present is unable to cope with it, since it assumes 

the existence at all times of a frozen fringe. It will however be 

shown that the problem can be handled in a straightforward manner. 

A saturated column of soil 150 mm in height, typically the size of 

a specimen in a laboratory freezing test, represents an overburden 

pressure of around 3 kPa. Therefore, for a sample undergoing 

freezing under an applied load of, say, 30 kPa, the contribution 

of the self-weight of the soil to the overburden is relatively 

small and becomes increasingly so with increasing overburden. The 

self-weight has thus been neglected up to this point. However, if 

the applied load is of the same order of magnitude as the self-weight, 
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then the latter should be included in the model. Moreover, if no 

overburden is applied, the self-weight must be included for the 

model to function at all. Recalling that, according to the secon-

dary heave theory, a lens is initiated when the maximum of the 

neutral stress in the frozen fringe reaches the overburden, clearly 

accounting for the self-weight in the overburden is essential to 

allow the observed sequence of ice lenses to be modelled. 

The adjustment to the model to accommodate the self-weight was 

very easily made. The total pressure pI at the base of the latest 

ice lens is the sum of the applied overburden P, the pressure due 

to the ice in the lenses (i.e. the total he~ve) and that due to the 

frozen soil between the lenses. Hence: 

pi = p + PigH + psgzs ••• (4.68) 

where Ps is the density of the frozen soil between the individual 

ice lenses. The Clapeyron equation at the base of the lens there-

fore became: 

... (4.69) 

(cf. Equation (4.61». 

The criterion for the formation of a new ice lens remained essentially 

the same except that now a lens was initiated when the maximum of the 

neutral stress in the frozen fringe became equal to pI, rather than 
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just the overburden P. To be strictly accurate, the gradient of 

pressure due to the self-weight in the frozen fringe should also 

have been considered, but it was felt that this could reasonably be 

neglected to a first approximation. Indeed, it was found that the 

absence of this term did not impair the performance of the model. 

Computer simulations performed at this time demonstrated that, under 

low applied overburden pressures (less than around 2S kPa) , it was 

possible for the frozen fringe to disappear, due to the retreat of 

the freezing front towards the base of the ice lens. That is, dZf/dt 

became negative and eventually zf became equal to zs, indicating 

that a frozen fringe no longer existed. This always occurred after 

the formation of the terminal ice lens when a steady state condition 

was approached in the soil colUDDl. Here, "steady state" refers to 

the situation wherein the heat flux throughout the column is con

stant, the temperature profile in each region is therefore linear, 

and the heave rate has decreased to zero. If a frozen fringe is 

present under these conditions, the freezing front is stationary. 

The lack of a frozen fringe under these circumstances does not 

contradict experimental evidence, as is explained fully in Chapter 

6. However, the simulations were unable to proceed past this point, 

since the model contained no mechanism for coping with the loss of 

the frozen fringe. 

In order that all simulations could be run until a true stationary 

state was achieved, it was decided that the model should be capable 

of handling this contingency. Fortunately, this was found to be 
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simply a matter of solving a reduced system of equations. 

In the absence of the frozen fringe, the base of the (terminal) ice 

lens is also the extent of freezing, and this level is referred to 

in the following by the subscript "ss". The freezing colUJJDl now 

contains only two distinct regions: the solid frozen and the un-

frozen, the boundary between the two being given by z = zss. Since 

a near steady state exists, the temperature profile in the unfrozen 

region is now assumed to be linear, so the energy balance at zss is 

given by: 

Ku Tw - Tss _ K Tss - Tc = PwLvss 
Zw - zss s zss + H .•• (4.70) 

(cf. Equation (4.58)) where, clearly, Tss and vss are the temperature 

and the water flux respectively at zss. 

With no frozen fringe, no ice exists just below the lens and the 

mass balance equation is a simplified form of Equation (4.22), that 

is: 

••• (4.71) 

The water flux to the ice lens is still described by Darcy's law and, 

recalling that the water pressure profile in the unfrozen region is 

linear, is written: 

vss • •. (4.72) 
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where uss is the water pressure just below the ice lens. 

Finally, the Clapeyron equation at z = zss is unchanged from (4.69), 

thus: 

= ElIL P' PwL T Pi + To ss ... (4.69) 

The equations (4.69) and (4.70) to (4.72) represent a system of 

four equations in the four unknowns Tss. vss ' uss and H. Substitution 

of (4.72) and (4.69) first into (4.70) and then into (4.71) gives 

two equations in Tss and H, and subsequent elimination of Tss yields 

a non-linear ordinary differential equation of the form: 

dH = g(H) 
dt •.• (4.73) 

The solution to (4.73) was obtained numerically using. as before. 

the standard fourth-order Runge-Kutta scheme. 

Prediction of the heave after the disappearance of the frozen fringe 

was therefore a relatively simple operation. in view of the reduced 

computational effort required. It did however mean the introduction 

of three new subroutines into the existing computer program. 

In the main segment of the program, a statement was added to check 

for the presence of the fringe at each time step. The moment that 

the fringe disappeared (that is, zf = zs), control was passed to 
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a new subroutine (IINOFRINGE") from where the remainder of the 

simulation was directed. Two other new subroutines respectively 

calculated the function g on the right-hand side of (4.73) and 

performed the Runge-Kutta solution of (4.73). The capability of 

the program was therefore augmented at the expense of an increase 

in its length. These add~tions nevertheless proved to be justified 

because it was now possible to run simulations successfully, under 

any applied overburden pressure, for any length of time and cer

tainly until the heaving effectively ceased. 

Full details of the simulations performed and their results are 

given in the next chapter. The computer predictions are then 

discussed in Chapter 6, which includes an explanation of the loss 

of the frozen fringe under the circumstances described above. 
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CHAPTER 5 

RESULTS OF THE COMPUTER PREDICTIONS 

5.1 Introduction 

At every stage during the development of the frost heave model, a 

considerable amount of computation was performed, much of which 

was described in Chapter 4. Of course, the predictions made with 

each update of the model inevitably superseded those at the previous 

stage. Therefore, having finalised the formulation of the model, 

simulations were carried out to assess its capabilities fully, 

and it is the results of these calculations which are reported 

in this chapter. 

The main aim was to see how well the model performed in reproducing 

the behaviour observed in laboratory freezing experiments. To this 

end, a common set of boundary conditions, typical of those found in 

the laboratory, was applied in the majority of the simulations. 

Under these conditions, different aspects of the model were exam

ined, with particular attention paid to the effect of variations in 

the overburden pressure. Thereafter, changes were made in the 

boundary conditions as part of a parametric investigation which 

sought to identify those variables having the greatest influence 

on the predicted heave. 

In the next section, a detailed description of the computational 
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aspects of the simulations is given, including such information as 

the length of soil column modelled, the number of mesh points used, 

the size of time steps, and so on. This is followed by an overview 

of the results of the predictions, with examples of the typical 

behaviour across a range of overburden pressures. Section 5.4 

examines more closely the ~ffect of a low applied overburden, 

illustrating how the model copes with the disappearance of the 

frozen fringe. Finally, details of the parametric studies under

taken are included in Section 5.5. 

It should be stated here that this chapter concentrates on simply 

reporting the results of the computer predictions and, as such, 

contains very little in the way of additional comment. The majority 

of the discussion on the outcome of the simulations is deferred 

until Chapter 6. 

5.2 Details of the Simulations 

In the previous chapter, the techniques used in the modelling of 

frost heave and ice lensing were described without reference to 

any specific freezing situation. Therefore, in this section, 

details of the actual physical problem modelled are provided 

along with the associated numerical data. First, though, some 

information on the computer program itself is presented. 

The program was written in FORTRAN 77 and run on the University 

of Nottingham ICL 2900-series mainframe computer. A flow diagram 
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for the program is given in Figure 5.1, which highlights the basic 

steps performed by the program and the order in which they were 

executed. Depending on the boundary conditions (overburden, 

temperatures, etc.), one complete simulation, to a steady state 

condition, typically took around ten minutes of c.p.u. time. The 

entire program, approximat~ly 450 lines in length (excluding 

comments), is reproduced in Appendix D. 

All of the computations simulated the heave of a soil column, 

150 mm in length, undergoing unidirectional freezing. Except 

where otherwise stated, the column was assumed initially to be at 

a uniform temperature of +4°C throughout. The surface was then 

cooled to _6°C whilst the temperature at the base of the sample 

was kept constant at +4°C. This size of soil colUDll and the boundary 

temperatures were deliberately chosen to reflect the conditions found 

in a typical laboratory freezing test (see for example Jones and 

Dudek, 1979, Dudek, 1980). 

For simplicity, the surface temperature was assumed to decrease 

linearly with time from +4 to -6°C, over a period of 105 seconds 

(around 28 hours). This rate of cooling is depicted by the solid 

line in Figure 5.2 and was chosen principally as a computational 

convenience. Clearly, other "cooling curves" are possible and are 

easily programmed or, as mentioned previously, the heat extraction 

rate rather than the temperature decrease could be specified. 

The first calculation performed by the program is that of the 

temperature profile in the soil column, as the surface cools from 
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its initial temperature (subroutine COOLDOWN). This is done using 

a Crank-Nicolson finite difference scheme, for which the region was 

divided into 25 "elements", giving a mesh point every 6 mm along 

the 150 mm length of the column. The time step chosen for the 

calculation was 100 seconds, which was thought to be more than 

adequate for the prescribe~ cooling of the surface. Both the mesh 

size and time step could of course be varied as desired. The 

temperature profile is printed out as often as required. Typically, 

output was requested every SO time steps, which is equivalent to 

a time period of approximately 1.4 hours. 

Computation of the temperature profile continues until the moment 

when freezing begins at the surface of the soil sample. That is, 

when the temperature at the surface falls below zero sufficiently 

to allow frost penetration to occur, the current temperature profile 

in the column is automatically printed out, and control then passes 

to the main segment of the program to allow the calculation of the 

frost heave and ice lensing to commence. 

The mathematical formulation of the frost heave model is such that 

it is necessary to prescribe initial non-zero values for the heave, 

. H, and the freezing front position, zf' in order to avoid numerical 

singularity problems (see also Gilpin, 1980). These starting values 

can be arbitrarily small, and are supplied as input to the program 

via the data file. For all the simulations described herein, a 

value of 0.1 mm was used for both quantities. 

The initial time step for the freezing calculation is another of 
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the input data items and the optimum step size was found to be one 

second. This was the largest interval which did not produce an 

error in the computed value of the heave in the first time step 

and which was small enough to model the initial, highly transient 

behaviour adequately. As the calculation proceeds though, such a 

small time step is no long~r needed and to reduce computation time, 

the step size is progressively increased. Based on experience, the 

time step was changed to 10 seconds after 104 seconds (2.8 hours) 

of freezing, and to 100 seconds after 105 seconds (27.8 hours). 

Among the other data supplied to the program are the overburden,P, 

the saturated unfrozen hydraulic conductivity, ko (see following 

sections), the temperature at the freezing front, Tf, and the 

initial value of the water pressure exponent, a. The freezing 

front temperature is assumed to be constant in the model and a 

value of -0.02°e was used in the simulations, as this was judged 

to be a reasonable measure of the freezing point depression. The 

full justification for this choice is given in Chapter 6. 

As described in Chapter 4, the water pressure exponent is calculated 

by the model using the mass continuity equation across the frozen 

fringe (subroutine NEWALPHA). It was therefore thought that what

ever initial value was chosen, it would not have a significant 

influence, since the model would adjust itself to the correct 

value as the computation proceeded. However, the calculation of a 

proved to be numerically unstable during the early stages of a 

simulation, due possibly to the initial rapid freezing which could 

cause the assumption of a slowly varying a to be violated. To 
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overcome this difficulty, a was kept constant for the first 2,500 

seconds (arolUld 40 minutes) of freezing~ From then on, the exponent 

was successfully computed by the model, with the aid of a simple 

"averaging" scheme to smooth out any oscillations. 

With a held fixed at the s~art of freezing, the choice of initial 

value became more important since a reasonable reproduction of 

the early behaviour was required. A range of values was therefore 

investigated and this led to a = 1000 m-I being used as the starting 

value in all the simulations. It should be emphasised that keeping 

a constant during the early part of the calculations did not affect 

the behaviour at later times, and was merely introduced to eliminate 

the initial numerical instability. The variation of a during the 

course of a simulation, and with respect to the overburden, is 

described in Section S.S. 

Having completed the initialisation of variables at the onset of 

freezing, the calculation of the frost heave and ice lensing 

proceeds in the manner detailed in Chapter 4 and illustrated in 

Figure 5.1. To summarise briefly. Equations (4.62) and (4.63) are 

solved first (subroutine RK) to give H and zf at the next time step. 

These are then used in (4.12). (4.13) and (4.14) to yield Ts. Us and 

uf (provided that a frozen fringe exists. If not, control passes 

to subroutine NOFRINGE, from where the remainder of the calculation 

is conducted). The value of the water pressure exponent to be used 

at the next time step is found (subroutine NEWALPHA), followed by 

the maximum of the neutral stress in the frozen fringe (subroutine 

MAXSIGMA). All relevant information is printed out as frequently 
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as desired, according to the value assigned to the variable NPR in 

the data file. In other words. information is output every NPR 

time steps and typically NPR = 1000 was used. 

If the maximum of the neutral stress is found to be greater than 

or equal to the overburden~ a new ice lens is initiated. In 

this instance, the time and the position of the new lens are 

automatically printed out. along with the thickness of the pre

vious lens. The location of the top of the frozen fringe. zs, 

is then set equal to the position of the new lens. 

Finally, the temperature profile in the unfrozen region is 

calculated (subroutine UNFROZEN). and this too is printed out 

every NPR time steps. Like the initial temperature profile cal

culation, a Crank-Nicolson finite difference scheme is employed. 

and, for convenience. the region was again divided into 25 elements. 

In this case however, the region and hence the mesh, contracts as 

frost penetration occurs. so that the position of each mesh point 

changes with each time step. Both the location and the temperature 

are therefore printed out for each point in the mesh. 

Normally, a period of 2 x 106 seconds (approximately 556 hours) of 

freezing was simulated with each run of the program. by which time 

a steady state condition was usually achieved within the soil column. 

Of course, if necessary. the simulation could be allowed to continue 

beyond this time. 

The numerical values used in the program for quantities such as 
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density, thermal diffusivity, latent heat of fusion etc. are all 

given in Appendix D. Details of other variables which were the 

subject of parametric investigations (e.g. hydraulic and thermal 

conductivities) are provided in the following sections. 

5.3 General Behaviour 

In this section, an overall view of the quality and magnitude of 

the predictions is presented with the aid of a number of figures 

illustrating the typical behaviour. For the most part, "standard" 

simulations are described, that is simulations performed with a 

chosen fixed set of values for certain parameters and boundary 

conditions. These were as follows: 

Boundary temperatures: -6/+4°C (see Section 5.2) 

Hydraulic conductivity function (Equation (4.5)): ko = Sx10-9 ms- 1 , 

m = 7 

Thermal conductivities: Ks = 4.0, Kf = 4.0, Ku = 3.0 W m- 1 °C-l 

The effect of variations in these conditions is discussed in Section 

5.5. 

To assess the overall capability of the model, predictions were 

obtained for a range of overburden pressures, and curves produced 

to aid analysis of the results. First, the heave is plotted against 

time for several different overburdens in Figure 5.3. The shape of 

these curves is as expected with the heave rate initially very high, 
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then decaying over time until a steady state (zero heave rate) is 

reached. In addition, the reduction in the predicted heave with 

increasing overburden is in accordance with experimental observation. 

This latter point is illustrated more clearly in Figure 5.4, which 

contains a plot of the total heave versus the overburden pressure. 

Here, "total heave" refers. to the computed value of the heave at 

the moment when the heave rate drops below 0.01 mm per hour (2.78 x 

10-9 ms- 1). 

One aspect of the heaving mechanism which is not apparent in the 

curves of Figure 5.3 is the "cycling" of the heave rate and the 

frost penetration rate between successive ice lens formations. 

This phenomenon is depicted in Figure 5.5, in which heave rate is 

plotted against penetration rate, for the closing stages of a 

simulation. The plot begins at the point a1, and between a1 and b2, 

the latest lens is growing and the frozen fringe is extending 

beneath it, whilst Zs remains constant. At b2, a new lens is 

initiated and Zs accordingly jumps to a new value. This produces 

a sudden change (broken line) in the heave rate and the penetration 

rate to the point a2' Between a2 and b3, Zs again remains constant 

as the new lens and the frozen fringe both grow. The cycle is 

repeated, with a decreasing mean penetration rate, until the pene

tration rate becomes negative at as. This indicates that the final 

or terminal lens has formed (initiated at bs), since now the frozen 

fringe begins to decrease in thickness. Figure 5.5 shows that both 

the heave rate and the penetration rate eventually drop to zero, at 

which time steady state (constant heat flux) conditions are achieved. 
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This cyclic behaviour can be detected on a heave versus time curve 

when it is plotted to an enlarged scale (Figure 5.6). Here, the 

initiation of the last four lenses is shown for the same simulation 

as depicted in Figure 5.5. 

Following the example of O.'Neill and Miller (1980, 1985), the 

ability of the model to predict the location, thickness and time 

of initiation of each ice lens is demonstrated by Figure 5.7, in 

which a section of a freezing soil column is drawn to an enlarged 

vertical scale. The figure highlights the fact that the time and 

spacing between, and the thickness of successive lenses increases 

as freezing progresses. It should be noted that the temperature 

boundary conditions in this instance have been changed. The soil 

column was initially at a uniform temperature of +loC, and the 

surface cooled (over a period of 27.8 hours) to -1°C, whilst the 

base was held at +loC. These conditions were chosen partly to 

match more closely those of O'Neill and Miller (1980, 1985), and 

partly because they produce thicker and therefore more identifiable 

lenses for the purposes of illustration. Further observation of 

the effect of a change in boundary temperatures is included in 

Section 5.5. 

A complete picture of the effect of freezing on a soil column is 

provided by Figure 5.8, which is an actual size (vertically) schematic 

view of a heaved soil sample, drawn froa the results of a typical 

simulation. The model predicts that, as in most laboratory frost 

heave tests, the terminal lens accounts for the majority of the 
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heave of the soil column, a feature which is clearly evident in 

Figure 5.B. 

5.4 Effect of Low Overburden Pressures 

As indicated in Figures 5.3 and 5.4, the computations produced the 

expected increase in the heave of the soil column with decreasing 

applied overburden. The overall behaviour of each simulation was 

otherwise essentially the same, provided that the overburden was 

greater than approximately 25 kPa. 

However, with an overburden pressure below this figure, a critical 

change in the frost heaving process was predicted by the model, 

namely the eventual disappearance of the frozen fringe. In Figure 

5.9, a plot of the thickness of the frozen fringe at thermal equil

ibrium (steady state) versus the overburden is given, and this shows 

that the model forecasts the frozen fringe to be ultimately absent 

if the overburden is below about 25 kPa. 

Whatever the overburden, Figure 5.5 demonstrated that frost pene

tration ceases and the freezing front retreats after initiation of 

the terminal ice lens. Under a low overburden, this reversal simply 

continues until the frozen fringe disappears completely. This phen

omenon can be explained physically and details are included in 

Chapter 6. Indeed, the value of the overburden below which the 

frozen fringe eventually disappears can be calculated a priori as a 
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function of Tf, the freezing front temperature (see Chapter 6). At 

this point, it is sufficient to note that for Tf = -0.02°e, the 

formula predicts the "threshold" value to be 22.5 kPa. Figure 5.9 

demonstrates that this is precisely the value produced by the model. 

As explained in the previops chapter, a mechanism was introduced 

into the model to allow the heave to be calculated even in the 

absence of a frozen fringe. This involves solving a reduced system 

of equations once the fringe disappears. A measure of the success 

of this procedure is provided in Figure 5.10, which shows the heave 

against time for a simulation with zero applied load. In spite of 

the loss of the frozen fringe after around 44 hours, the curve remains 

smooth in accordance with observation of laboratory tests. 

5.5 Results of Parametric Studies 

This section describes the outcome of a number of parametric studies 

which were performed to examine the effect on the heave of variations 

in the "standard" conditions given in Section 5.3. First, though, 

the value of the exponent a in the water pressure profile approxi

mation (Equation (4.56)) is discussed. Whilst this was not the 

subject of a parametric investigation, its behaviour is of interest 

and is included here for convenience. 

It was explained in Section 5.2 that numerical considerations made 

it necessary to keep a constant during the early part of each simu

lation. Thereafter, a was computed at every time step as an integral 
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part of the modelling. and its value was found to vary throughout the 

course of a simulation. Between ice lens formations, a fluctuates 

cyclically in a similar manner to that depicted in Figure S.S, with 

its value decreasing as the frozen fringe grows and abruptly increas

ing when a new lens is initiated. This behaviour continues during 

the ice lensing process. w~th a small but steady increase in the 

mean value of a over time. Then. after formation of the terminal 

lens when the freezing front begins to recede, a increases mono

tonically, eventually reaching a maximum when the freezing front 

becomes almost stationary. Although the system is close to thermal 

equilibrium at this stage. the value of a ultimately falls to zero 

upon reaching a true steady state some considerable time later 

(after more than 500 hours of freezing). 

The exact time at which a attained its maximum value was not recorded 

by the program. However, for each simulation, the value of a was 

printed out along with other variables at the point when the heave 

rate dropped below 0.01 mm/hour, and it was found that this value 

was always within 10\ of the maximum. The value of a thus obtained 

has been used to produce the curve of a versus overburden given in 

Figure 5.11. 

The curve does not extend below an overburden of 25 kPa because in 

this region the frozen fringe disappears before a reaches a maximum 

and before the heave rate drops below 0.01 mm/hour. Initial compar

ison of Figure S.ll with Figure 5.9 indicates that a increases as 

the thickness of the frozen fringe decreases, although the product 
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of the two in this instance increases with increasing overburden. 

The first variation in the "standard" conditions to be reported 

here is a change in the freezing rate, that is the rate of cooling 

of the surface of the soil column. In Figure 5.2, the solid line 
# 

shows the rate at which the surface was cooled in the majority of 

the simulations. In order to investigate the effect of a faster 

freezing rate, the surface of the soil was cooled from +4°C to -6°C 

over a period of 104 seconds rather than 105 seconds, represented 

by the broken line in Figure 5.2. The resulting heave and frost 

penetration are compared in Figures 5.12 and 5.13 with the previous 

solutions for an overburden of 25 kPa. These curves demonstrate 

that the model predicts precisely the behaviour expected, with the 

faster freezing producing inevitably more rapid frost penetration. 

This initially causes an increase in the heave rate, but in the 

longer term the ice lenses are narrower since they have less time 

to grow. The total heave is therefore lower than that due to the 

slower freezing. 

Figure 5.14 illustrates the effect of a change in the boundary 

temperatures of the soil column. In both cases, the surface was 

cooled from the initial uniform temperature of the soil (+4 or +loC) 

to the final sub-zero temperature (-6 or -1°C, respectively) over 

a period of 105 seconds (27.8 hours). It is perhaps most interest

ing to note that the heave due to the -l/+loC boundary temperatures 

eventually exceeds that in the -6/+4°C case, which highlights the 

fact that a lower surface temperature does not necessarily imply a 

greater heave ultimately. The model again successfully reproduces 
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what happens in reality and further discussion is included in the 

next chapter. 

The hydraulic conductivity function used in the computations was 

also the subject of a parametric study, and the results are given 

in Figure 5.15. Recalling.the form of the function (Equation (4.5)), 

the constant ko and the exponent m were varied and the total heave 

computed under a range of overburden pressures. Values of ma 7 and 

m=9 were employed, following O'Neill and Miller (1980, 1985), 

accompanied by either ko = 5xlO-9 or ko·lxlO-9• Three of the four 

combinations of the two parameters are plotted in Figure 5.15, and 

the effect on the heave is clearly evident. The curves confirm the 

findings of other researchers who have isolated the hydraulic con-

ductivity as being perhaps the most crucial parameter in frost heave 

modelling. Small variations in its representation or value can cause 

significant changes in the magnitude of numerical results. The 

subject is therefore covered in more detail in Chapter 6. 

Finally, the effect of changes in the thermal conductivity values 

was investigated. However, no graphical results are presented for 

this study as the outcome was as expected and is largely predictable. 

For example, when the three conductivities were made equal (see 

Table 5.1), the heave-time curve for an overburden of 25 kPa was 

almost unchanged with an increase in the total heave of less than 
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3%, whilst the total frost penetration decreased by around 18%. 

These effects could be anticipated by examdning the two energy 

balance equations in the model (4.58) and (4.59). Ks and Kf are 

equal, as they were in the "standard" simulations, so if the 

temperature gradients remain roughly the same, then no significant 

change would be expected in the heave. On the other hand, Kf and 

Ku are now equal whereas previously they were not, and (4.59) 

indicates that with this change the frost penetration rate would 

tend to decrease relative to the "standard" case. 

THERMAL TOTAL FROST 
CONDUCTIVITIES HEAVE PENETRATION 

(Wm- 1 ·C- 1) (mm) (mm) 

"Standard" values: 

Ks = Kf ... 4 56.7 80.5 

Ku ... 3 

Variant values: 

Ks = Kf = Ku 58.3 66.0 

= 3 

Table 5.1 Effect on the Heave and Frost Penetration 

of a Change in the Thermal Conductivity Values (overburden ... 25 kPa) 

Any errors caused by inaccuracies in the thermal conductivities can 

therefore be readily quantified. More complex representations of 

the thermal conductivity are possible (see Chapter 6), but the assump

tion of a constant value in each region of the freezing soil is 

considered to be justified. 
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In this chapter, the results of computer predictions made with the 

frost heave model have been presented. Full details of the simu

lations performed have been given, and the computer program with 

associated numerical data is included in Appendix D. Discussion 

of the results, and the model in general, now follows in Chapter 6. 
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CHAPTER 6 

DISCUSSION OF THE MATHEMATICAL MODEL 

6.1 Introduction 

This chapter contains a discussion of the frost heave model developed 

in this thesis, and includes an analysis of the results given in the 

previous chapter and a review of the model in the context of other 

published work. The first two sections concentrate on the computer 

simulations and offer evidence in support of the predicted behaviour. 

Sections 6.4 and 6.5 respectively assess the outcome of parametric 

investigations and the computational strengths of the model. Finally, 

the basis upon which the model is founded and the assumptions made 

therein are re-examdned in Section 6.6. 

6.2 Frost Heave and Ice Lensing 

For a range of overburden pressures, the calculated heave versus 

time curves were given in Figure 5.3. In each case, for the first 

30-50 hours of freezing, the curve is almost linear representing a 

near constant heave rate. After this period, the growth rate of 

the final ice lens, which was initiated some time earlier (see 

Table 6.1), begins to decrease until eventually heaving ceases as 

steady state conditions are attained in the soil column. 
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This is precisely the type of behaviour observed in laboratory 

freezing experiments on granular soils, as shown for example by 

Konrad and Morgenstern (1980) and McCabe and Kettle (1985). They 

respectively tested a silt and a sand/ground chalk mixture and, 

with samples similar in size to that chosen for the computations, 

the time periods over whi~h steady conditions were achieved were 

close to the predicted values. Berg et al (1980) also produced 

an experimental curve like those in Figure 5.3, but over a longer 

time since their soil column was one metre in length, with the water 

level maintained 450 mm below the surface. 

Several other researchers have traced only the linear portion of the 

heave versus time curve before terminating their experiments (e.g. 

Penner and Ueda, 1977 , Loch and Kay, 1978). Nevertheless, the 

computed time scales for this part of the heaving process again 

correspond well to those measured in the laboratory. 

In general, the magnitude of the heaves reported in the literature 

are lower than the values calculated by the model, but it is 

difficult to draw any firm conclusions from this. The actual heave 

is strongly dependent on the particular soil tested, the temperature 

boundary conditions and the applied overburden. The soil modelled 

in the simulations, Attenborough silt, is highly frost-susceptible. 

For this soil, Thompson (1981) measured a heave of 31 mm for an un

loaded specimen, but data were not available for other overburdens. 

However, Berg et al (1980) recorded around 60 mm of heave with a 

sample of Fairbanks silt, which has a similar grading curve to 
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Attenborough silt, with an overburden of 3.5 kPa. 

The relationship between the predicted total heave and the overburden 

pressure was plotted in Figure 5.4 and is in agreement with obser

vation, as demonstrated by McCabe and Kettle (1983). From their 

experiments on artificially blended granular materials, they con

cluded that frost heave is related to overburden by a hyperbolic 

curve that depends on the type of material. 

McCabe and Kettle (1985) have also investigated the effects of 

different temperature boundary conditions and freezing rates on 

the frost heave. Using cold temperatures of -8 and -10°C, increases 

in the heave of up to 7 mm were obtained with "slow" freezing tests 

as compared with "rapid" freezing. Figure 5.12 illustrates that 

this behaviour is successfully reproduced by the mathematical IOOdel. 

In this particular case, "fast" freezing led to a reduction in the 

total heave of around 8 mm. 

In another part of the same study, Mceabe and Ket~le showed through 

a series of five experiments that, all other things being equal, a 

lower surface temperature does not necessarily produce a greater 

overall heave. This provided evidence in support of the calculations 

depicted in Figure 5.14, which shows the results of two simulations 

with different temperarure boundary conditions. Effects such as 

these have given rise to the concept of an optimum heat extraction 

rate for a soil (Loch, 1979), the existence of which was confirmed 

by McCabe and Kettle. 
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One of the features of the ice lensing process which is clearly 

identified by the model is the cycling of the heave rate and 

penetration rate during successive lens formations (Figures 5.5 

and 5.6). Although this phenomenon has not been reported in the 

experimental literature, this is hardly surprising. The resolution 

of typical heave-time curves, plotted with time scales such as 

those in Figure 5.3, is not sufficient to manifest the fluctuations 

visible in Figure 5.6. Moreover, readings in the laboratory are 

often taken at discrete intervals, rather than continuously, and 

would therefore be unlikely to detect the formation of individual 

ice lenses. The "cycling" has however been predicted by other 

mathematical models, notably those of Gi1pin (1980) and Hopke 

(1980), and Miller (1984a) has indicated agreement with the form 

of Figure 5.6. 

In Table 6.1, the computed time of formation of the final ice lens, 

and temperature at the base of the final lens when it is initiated, 

are given for a range of overburden pressures. In each case, the 

final lens is formed after approximately 20 hours of freezing, 

which is in close agreement with experiments on granular soils 

under comparable conditions (Konrad and Morgenstern, 1981, 1982b, 

Ishizaki and Nishio, 1985). Therefore, as demonstrated by Figures 

5.3 and 5.8, the termdnal lens accounts for the majority of the 

heave in the simulations, and this is also in accord with most 

laboratory frost heave tests (e.g. Konrad and Morgenstern, 1980, 

Akagawa et aI, 1985). 
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OVERBURDEN TIME OF FORMATION TEMPERATURE AT BASE 

(kPa) OF FINAL ICE LENS OF FINAL LENS WHEN 
(Hours) FORMED (0C) 

0 20.4 -0.080 

5 18.8 -0.085 
25 19.7 -0.106 

50 20.1 -0.132 

75 23.8 -0.158 

100 19.6 -0.185 

125 19.2 -0.213 

150 22.1 -0.240 

175 19.6 -0.266 

200 19.7 -0.293 

Table 6.1 Time and Temperature of Formation of the Final Ice 

Lens as Predicted by the Model 

From Table 6.1, it can be seen that the temperature at the base of 

the final ice lens decreases with increasing overburden pressure. 

a trend which has been confirmed experimentally by Penner and Good-

rich (1980) and Penner (1982). Such variation is in fact reflected 

throughout the lensing process and not just for the terminal lens. 

The temperature data in Table 6.1 have been plotted against the 

overburden in Figure 6.1, which reveals an exactly linear relation-

ship between the two. Only Konrad and Morgenstern (1982b) have 

performed comparable measurements in this area with their studies 

of the formation of the terminal lens in samples of Devon silt. 

Tbey obtained a linear relationship between lens temperature and 

overburden almost identical to that in Figure 6.1. 
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6.3 The Frozen Fringe and the Freezing Front 

The penetration of the freezing front into the soil column during 

the course of a simulation was shown in Figure 5.13. for two 

different freezing conditions. The overall shape of these curves 

is similar to those produc~d in laboratory tests, as illustrated 

by Penner and Ueda (1978). Holden et al (1980) and Konrad and 

Morgenstern (1981). The model also predicts that the depth of 

frost penetration increases with increasing overburden, that is 

decreasing heave. That thi.s must be the case can be inferred 

from consideration of the conditions existing at thermal equil

ibrium (steady state). Given fixed boundary temperatures, the 

heat flux through the soil column is constant, the temperature 

profile in each region is linear, heaving has ceased and the 

freezing front is stationary. Therefore. a column with an in

creased overburden. and hence a decrease in the total heave, must 

have a greater depth of frost penetration in order to maintain 

the steady thermal regime. 

A plot of the calculated thickness of the frozen fringe at thermal 

equilibrium versus the overburden was given in Figure 5.9. A 

general increase in the fringe thickness with increasing overburden 

has been reported by Penner and Goodrich (1980). Penner (1982) and 

Konrad and Morgenstern (1982). although the linearity in Figure 5.9 

has neither been confirmed nor contradicted. The eventual disappear

ance of the frozen fringe below around 25 kPa is discussed shortly. 

It is apparent from Figure 5.S that. after initiation of the final 
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ice lens, the rate of frost penetration becomes negative, that is 

the freezing front begins to retreat back towards the ice lens. 

This is accompanied by warming of the base of the final lens, which 

results in a decrease in the ice content and the suction there. 

Consequently, the heave rate decreases since growth of the lens is 

now retarded. This behaviour is explained with the aid of Figure 

6.2. 

After formation of the terminal lens, the soil continues to heave 

as steady state conditions are approached. In Figure 6.2, steady 

conditions are represented by a linear temperature profile through

out the soil column. This of course will only be true if the 

thermal conductivities in each region are the same. Nevertheless, 

the approximation is sufficient for the purposes of illustration. 

As further heaving occurs, the fixed bolUldary temperatures cause 

the freezing front to be '~ulled upwards" in order to preserve the 

thermal balance. At the same time, the temperature at the base of 

the final lens increases. 

By its nature, this process takes place at an ever decreasing rate, 

since the heave rate is decaying due to warDdng of the lens. Even

tually, all movement stops when a true equilibrium state is reached. 

(Both the heave rate and penetration rate ultimately drop to zero 

in Figure 5.5). 

Experimental evidence of these phenomena in granular soils has been 

provided by a number of researchers, in particular Penner and Goodrich 
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(1980), Konrad (1980), Penner (1982) and Ishizaki and Nishio (1985). 

Indeed, in formulating their segregation potential theory, Konrad 

and Morgenstern (1980) initially assumed that in a constant temper

ature freezing test the final ice lens is created when the freezing 

front becomes stationary. However, they later (1982a) conceded that 

the final lens must form before a stationary position is reached. 

For relatively high overburden pressures, a frozen fringe remains 

after steady conditions have been attained in the soil column. 

Conversely, if the overburden applied to the soil is small or zero, 

the above description requires extension. After initiation of the 

terminal lens, the continuing frost heave may be so great as to 

cause the freezing front to retreat all the way back to the base of 

the lens. In other words, the frozen fringe can disappear completely, 

and this is precisely what is predicted by the mathematical model. 

As before, warming, but not melting, of the base of the ice lens 

then occurs until the heave rate eventually decays to zero. 

As explained in Chapter 4, Section 4.10, an additional mechanism 

was included in the model to allow the simulations to continue in 

the absence of a frozen fringe, and an example of this was shown in 

Figure 5.10. Thus it appears that, under low overburden pressures, 

the secondary heaving model reduces in time to the primary model. 

There is unfortunately very little discussion on this aspect in the 

literature. Konrad and Morgenstern (1980) stated that they expect 

the temperature at the base of the last ice lens to reach oOe, for 
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zero overburden, which implies the absence of a fringe. They have 

also (1982b) photographed an unloaded sample of Devon silt which 

apparently does not contain a frozen fringe ahead of the final lens. 

Jones (1980), who was concerned with the frost heave of roads, 

suggested that an overburden pressure not significantly greater 

than zero contributes to ~ special case in which secondary heaving 

reduces to primary heaving. Finally, Gilpin (1980) predicted the 

disappearance of the frozen fringe with his model. 

Certainly, the eventual loss of the frozen fringe under low over-

burden pressures is plausible. The retreat of the freezing front 

after formation of the terminal lens is a recognised occurrence 

and there is no reason to suppose that this must always cease before 

the fringe disappears completely. 

The overburden below which a frozen fringe will be absent can in 

fact be calculated from an analysis of the Clapeyron equation at 

steady state conditions. This yields a formula for the ''threshold'' 

overburden as a function of the freezing front temperature, Tf. The 

form of the Clapeyron equation used throughout this thesis and 

derived in Appendix A is: 

••• (6.1) 

When thermal equilibrium is reached, water flow ceases and Uw ~ 0, 

so that at the base of the ice lens: 

• •. (6.2) 
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For a frozen fringe to exist in the soil, the ice lens temperature, 

Ts must be less than Tf. Therefore, the overburden necessary to 

sustain a frozen fringe at steady state is given by: 

... (6.3) 

In the s imui"at ions , Tf was chosen to be -0.02°C, and hence from (6.3) 

the minimum overburden is 22.5 kPa. This is indeed the value obtained 

in the computations, as illustrated in Figure 5.9. 

The choice of freezing front temperature, or freezing point depression, 

is thus an important one and estimates are normally based on infor-

mation related to the particle size distribution of the soil. Re-

calling the Laplace surface tension equation: 

.•• (6.4) 

assumdng the ice pressure at the freezing front is zero, (6.4) can be 

combined with (6.1) to produce an expression for the freezing front 

temperature, as follows: 

... (6.5) 

Clearly, Tf depends on the radius of the ice/water interface, riw 

(see Figure 2.2), and methods of determining this from particle size 

distribution curves have been described by Sutherland and Gaskin 

(1973). For the current model, the following procedure was adopted: 
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the relationship between the soil particle radius, R and riw was 

taken to be R/rlw = 6.46, based on an arrangement of close-packed 

spheres. Typically, particle radius is approximated by R = 0.5 (050) 

and the grading curve for Attenborough silt given by Thompson (1981) 

yields 050 = 0.03 mm = 3 x 10- 5 m. This leads to riw = 2.32 x 10-6 m 

and, from (6.5), T f = -0.0.2 °e. This value for the freezing front 

temperature is unchanged (to two decimal places) if R/riw = 5.6, as 

recommended by Everett and Haynes (1965). 

In contrast, Gilpin (1980) used for his model: 

Tf = -40iw ~ (6 6) R PwL •. • • 

which, when compared with (6.5), implies R/riw = 2. Gilpin performed 

simulations for values of R between 0.5 and 4.0 x 10-6 M, resulting 

in a range of Tf from -0.22 to -0.03°C. For the case R • 2 x 10-6 m, 

Tf • -0.OS4°e and with an overburden pressure of SO kPa, Gilpin 

predicted the disappearance of the frozen fringe which would be 

expected from Equation (6.3). 

The value of -0.02°e used in the calculations for the freezing point 

depression appears to be reasonable, although there is evidently 

some debate as to how Tf should be determined. It would therefore 

be of benefit to investigate the effect of variations in Tf on the 

computed heave. 
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6.4 Analysis of the Key Parameters 

A description of the variation in the water pressure profile exponent 

a (Equation (4.56)), both during the course of a simulation and with 

respect to the overburden, was provided in Section 5.5 and Figure 5.11. 

It is however difficult t~ draw from this any specific conclusions 

regarding the particular shape of the profile since its form also 

depends on the pressures at the top and bottom of the frozen fringe, 

Us and uf, and on the fringe thickness (zf - zs), all of which are 

unknowns determined by the model. 

Nevertheless, the extent of the agreement between the computer 

predictions and experimental observation is sufficient to support 

the use of the exponential approximation. The main advantage of 

this approach is that it affords greater flexibility by allowing 

the precise form of the water pressure profile to be computed by the 

model. This is achieved by satisfaction of mass continuity across 

the frozen fringe. Moreover, it removes the need to impose additional 

assumptions, such as continuity of water pressure gradient at the 

freezing front (cf. Holden, 1983). With the exception of the initial 

stages of a simulation (see Section 5.2), the calculation of a is 

numerically stable and convergence of the iteration scheme is normally 

achieved in one or two iterations. The exponential profile is men

tioned again in Section 6.6. 

The main items of soil data required by the model are the hydraulic 

conductivity in the frozen fringe, the ice content (or unfrozen water 
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content) as a function of the suction parameter~, and the thermal 

conductivity of the freezing soil. Of these, the thermal conductivity 

presents the least difficulty from a modelling point of view. 

As explained in Chapter 5, the thermal conductivity was taken to be 

constant in each of the three regions (solid frozen, frozen fringe, 

unfrozen) of the soil. A similar strategy was adopted by Gilpin 

(1980), O'Neill and Miller (1980) and Konrad and Morgenstern (1984), 

reflecting the view that frost heave modelling is relatively in

sensitive to inaccuracies in the thermal conductivity. More accurate 

representations are possible and indeed could be easily included in 

the model. One example is the method of De Vries (1963), used by 

Harlan (1973), Taylor and Luthin (1976) and Hopke (1980), among 

others. Another alternative, chosen by O'Neill and Miller (1985), 

employs an effective conductivity in the frozen zone and a geometric 

mean formula in the frozen fringe. However, for present purposes, 

constant values in each region are thought to be adequate and. as 

shown by the simple parametric study discussed in Section 5.5, any 

errors are largely quantifiable. 

As a result of the findings of Koopmans and Miller (1966). ice content 

as a function of. (the soil freezing characteristic) is determined 

readily from suction-moisture content data (the soil water character

istic) for the soil, and the latter can be measured accurately in the 

laboratory. In spite of this, experience during the development of 

the model (Chapter 4) highlighted the need for reliable data in this 

area. When investigating the heave under a range of overburden pressures, 
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the representation given by O'Neill and Miller (1980) was found to be 

anomalous. It appears likely that they too had problems with this 

because they later (O'Neill and Miller. 1985) adopted a "more real

istic" soil freezing characteristic (see Figure 3.2). For the 

simulations described in the previous chapter. an approximation was 

made to soil water data fo~ Attenborough silt (Thompson. 1981). as 

illustrated in Figure 4.1. 

Without doubt. the most important input parameter in the mathematical 

formulation is the hydraulic conductivity in the frozen fringe, 

usually expressed as a function of unfrozen water or ice content. 

The difficulty arises because predictions of heave are highly sen

sitive to variations in its representation, and yet its measurement 

challenges the limits of current laboratory techniques. The require

ment for accurate hydraulic conductivity data in frost heave modelling 

has been established by a number of researchers, as indicated in the 

review of mathematical models in Section 2.10. The sensitivity of 

the present model was demonstrated in Figure S.lS. 

For convenience and in the absence of more appropriate data, Equation 

(4.5) was used to describe hydraulic conductivity as a function of ice 

content, followina O'Neill and Miller (1980, 1985). For Attenborough 

silt, the only information available on hydraulic properties was the 

saturated unfrozen permeability, ko• which is 10-8 ms- 1, according to 

Jones and Lomas (1983). This is slightly higher than the value 

assumed in the majority of the calculations, namely ko = 5 x 10-9 ms-le 

Attempts to measure water migration and hydraulic conductivity in 
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frozen soils at different temperatures have been made by Burt and 

Williams (1976), Perfect and Williams (1980) and Horiguchi and Miller 

(1980, 1983). Therefore, "the art of making direct measurements of 

hydraulic conductivity functions for frozen soils is developing • 

slowly" (Horiguchi and Miller, 1983). Nonetheless, strict veri

fication of the frost heav~ model will demand accurate data for 

this crucial parameter. Fortunately, for unidirectional freezing 

of an initially ice-free soil column, the hysteresis observed by 

Horiguchi and Miller need not be accounted for, except perhaps when 

the freezing front retreats after formation of the terminal ice lens. 

6.5 Computational Aspects 

As pointed out by Holden (1983), solution of the full partial differ

ential equations for mass and energy in the frozen fringe is difficult 

and computationally expensive. This is chiefly because the fringe is 

a relatively narrow region across which large gradients exist, partic

ularly in the water pressure. Consequently, a very small mesh size 

and a correspondingly small time step are necessary to model adequately 

the activity in the fringe. The problem is further aggravated by the 

need to iterate, since the equations are nonlinear. 

Therefore a major advantage of the quasi-static approach is that it 

provides a considerable saving in computing effort without any serious 

loss in the predictive capability of the model. This is achieved by 

reducing the numerical problem to that of a straightforward temperature 
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calculation and the solution of two ordinary differential equations. 

During the early stages of a simulation, a small time step is 

required to accommodate the rapid freezing and the initiation of 

many very thin lenses. This is true also of the finite element 

solution of O'Neill and Miller (1980, 1985). However, because of 

the simplicity of the pres~nt approach, the computational penalty 

paid for this initial repetitive calculation is very small compared 

with that of O'Neill and Miller. The model then uses a time step 

appropriate for the movement of the freezing front. 

The results presented in the previous chapter illustrate that the 

model is able to predict the frost heave of a soil column under any 

overburden pressure, and the computations remain stable throughout. 

This again is in contrast to O'Nei11 and Miller (1985), who reported 

that their simulations tended to become \D\stab1e during the "terminal 

stage of heave". This apparently did not occur Wlder relatively high 

overburdens, but "the lower the value of P, the more likely were 

stabili ty problems". It seems certain that these nwnerical diffiCUl

ties were associated with the shrinking and eventual disappearance of 

the frozen fringe after formation of the final ice lens. As suggested 

by O'Nei11 (1983), the physics built into the model was evidently not 

adequate to cope with this behaviour. 

Finally, O'Nei1l and Miller (1985) included in their program a routine 

to improve the accuracy of the calculation of lens initiation times. 

This operated in the following way: when the maximum of the neutral 

stress exceeded the overburden during anyone time step, the last time 
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step was shortened and recalculated. This process was then repeated 

iteratively until the moment when Un exceeded P was located precisely. 

After the initiation of each new lens, the time step was reset. In 

order to test its effectiveness, an attempt was made to incorporate 

a similar procedure into the current model. This was successful, but 

it was found to have negliiible effect on the number and thickness 

of ice lenses and the overall heave. As the improvements were thus 

relatively minor, the extra computing effort was not thought to be 

warranted. 

6.6 Summary of the Basis of the Model 

The model for frost heave described in this thesis is founded upon 

Miller's theory for secondary heaving, in which the rigid ice assum

ption plays a key role. The quasi-static approach then makes a 

number of simp1ifications regarding temperature and water pressure, 

based on a knowledge of the conditions existing in a column of 

freezing soil. 

The primary components of Miller's theory can be summarised as 

follows: 

(1) The C1apeyron equation, describing the thermodynamics 

of the pore system. 

(2) Concepts relating the different phases of the pore con

stituents, verified by experiment. These support the 
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use of the Laplace surface tension equation, Darcy's 

law for water flux and the soil freezing characteristic. 

(3) A criterion for the initiation of ice lenses derived 

from pore stress partitioning. 

In the strict thermodynamic sense, the Clapeyron equation is only 

applicable to equilibrium conditions. However, a number of researchers 

have confirmed its validity for predicting the conditions beneath a 

growing ice lens, in spite of the non-equilibrium environment 

(Penner and Goodrich, 1980, Konrad and Morgenstern, 1980, Yoneyama 

et aI, 1983). It may be that although globally the system is not 

in equilibrium, in the region of a soil pore equilibrium may be main

tained locally. Measurements have also shown, and it is now widely 

accepted, that Darcy's law can be applied to water flow through par

tially frozen soils (see for example, Horiguchi and Miller, 1980). 

Ultimately, solution of the equations of the model is made possible 

by the rigid ice assumption, wherein ice forms on pre-existing ice 

and thus grows through the soil pores to form one solid body. This 

implies that ice in the frozen fringe is rigidly connected to lens 

ice, and both move toward the cold boundary during heave. In order 

therefore to accommodate the stationary soil matrix, this motion 

involves a process of microscopic regelation. That is, as the ice 

migrates, melting takes place on the warm side of soil grains and 

refreezing on the cold side. 

The concepts of rigid ice and regelation are thus of fundamental 
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importance to the theory. Although strict proof of the existence of 

these mechanisms has yet to be found, the circumstantial evidence in 

their favour is strong (Miller. 1984~ RHmkens and Miller, 1973). and 

alternative assumptions seem implausible (O'Neill and Miller. 1985). 

Motivated by the slow natu!e of the freezing process. the quasi

static apprach uses approximating profiles for temperature and water 

pressure. to simplify the mathematical formulation of the theory and 

the subsequent computation. A linear temperature profile is assumed 

in the region above the base of the warmest ice lens and in the 

frozen fringe. The former is supported by the experimental obser

vations of. for example. Jame and Norum (1976) and Fukuda et al 

(1980). and has also been adopted by Gilpin (1980) and O'Neill and 

Miller (1980, 1985). The assumption of a linear profile in the 

fringe is a stronger one but Konrad and Morgenstern (1980) concur 

with this. Moreover, O'Neill and Miller (1980, 1985) computed the 

temperature distribution in the fringe from the full partial differ

ential equations and gave an example in which the temperature profile 

is almost linear. 

From a knowledge of the behaviour of the soil water suction, the 

water pressure profile in the frozen fringe is assumed to have an 

exponential form. This is in agreement with Miller's (1977. 1978) 

own description of the conditions in the fringe and adequately 

represents the profile visualised by most other researchers. 

The model is formulated by applying conservation of mass and energy 
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at the boundaries of the frozen fringe. In addition, the precise 

form of the water pressure profile is established by imposing mass 

continuity across the fringe. The basic equations are reduced to 

a pair of ordinary differential equations, which are solved by a 

standard numerical procedure. The model retains the ability to 

predict the time, position. and thickness of each ice lens. 

Finally, the comments of O'Neill and Miller (1985) regarding the 

"completeness" of the model are echoed. Clearly, it is possible 

to obtain a set of equations for which solutions exist for the 

quantities of interest. However, it may be that certain inter

actions which take place on a microscopic level should also be in

cluded in the model. For example, regelation is a complex process 

involving the recirculation of water and heat on a microscopic 

scale. Whether such processes are implicitly modelled in the 

macroscopic equations, or whether they should be quantified ex

plicitly is not clear. The general form and magnitude of computer 

predictions suggests that these effects, if absent, may be small 

but may nevertheless represent "corrections" to the macroscopic 

model. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Summary of the Model 

In this thesis, a mathematical model for frost heave and ice lensing 

has been developed, based on the theory of secondary heaving proposed 

by Miller (1972, 1977, 1978). Miller's theory was chosen as the 

foundation for the model following a critical review of research 

into frost heave and, in particular, the state of the art in mathe

matical modelling. 

The main aim was to simplify the mathematical formulation, and the 

subsequent computation, whilst retaining the capability to predict 

the observed phenomena. This has been achieved by USing a quasi

static approach to the solution of the governing equations, as 

suggested by Holden (1983). 

The results of computations simulating the unidirectional freezing 

of a finite column of soil have demonstrated that the model performs 

well under a range of boundary conditions. For any applied overburden 

pressure (including zero), predictions of frost heave and ice lensing 

can be made and the simulations continue to steady state conditions. 

In addition, under relatively low overburdens, the model not only 

predicts the disappearance of the frozen fringe after formation of 
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the terminal lens, but also contains a mechanism for calculating the 

heave after this has occurred. Thus, both primary and secondary 

heaving are modelled. The numerical problems experienced by O'Neill 

and Miller (198S) during the final stages of heaving have therefore 

been avoided. 

The results of the calculations are in agreement with laboratory 

freezing tests in both form and magnitude, and the model responds 

to changes in the boundary conditions in accordance with observ

ation. 

Moreover, parametric studies can be performed readily, particularly 

as the computer program is comparatively inexpensive to run. These 

investigations have shown that the frost heave model is most sen

sitive to variations in the hydraulic conductivity, which confirms 

the findings of other researchers. The importance of accurate 

input data for the soil freezing characteristic has also been high

lighted, whilst the influence of the thermal conductivity has been 

found to be relatively small. 

A major drawback of the model remains that it requires reliable 

data for certain critical parameters, notably the hydraulic con

ductivity in the frozen fringe, for which experimental determination 

is difficult. It may eventually be possible to simplify the repre

sentation of such parameters in the model, thereby reducing the 

need for detailed measurements. However, before this can happen, 

strict verification of the model is necessary which requires 



195 

development of laboratory techniques at the limits of current 

expertise. 

Against this, the model has much to commend it in that it has a 

number of advantages over models employing a more complex approach. 

The quasi-static assumpti~n permits formulation of the physical 

problem in terms of straightforward mathematics which, in turn, 

reduces considerably the programming effort required. As mentioned 

previously, experience with running the computer program has shown 

it to be economical, numerically stable and highly robust. 

The results of the simulations provide further evidence in support 

of Miller's theory and confirm the validity of the quasi-static 

approach. The development of the model has also yielded other 

benefits, particularly in identifying the key areas in frost heave 

modelling. Successive stages in the evolution of the model focussed 

attention on different aspects of the idealisation, and therefore 

provided valuable insight into the heaving process. It is felt 

that this experience will improve understanding of both the second

ary heave theory and the mechanics of frost heave as a whole. 

7.2 Recommendations for Future Work 

Having produced a model for frost heave and ice lensing which 

requires relatively little computing capacity, the next stage in 

the development would be to implement the program on a microcomputer. 
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This would meet the need identified by Baker et al (1987), the aim 

being to provide a rapid estimate of frost heave in quasi-one

dimensional situations. 

Some generalisation of the program would be necessary in this case 

to widen its applicability.. This would chiefly involve enlarging 

the input data file to include quantities such as the height of 

the soil column to be analysed, the mesh size and time steps to 

be used, the soil material data and so on. It may also be possible 

to make further simplifications according to the requirements of a 

particular problem. For example, an initial temperature profile 

could be assumed in the soil column at the onset of freezing, 

rather than calculating the profile during the cooling down period. 

These changes represent modifications only to the computer code, 

and not the mathematical model, and would therefore be accommodated 

easily. 

In accordance with Miller's theory, the model applies only to 

saturated, solute-free, granular materials, and generalisation of 

the theory to three phases (unfrozen water, ice and air) is nec

essary before the heave of unsaturated soils can be modelled. 

However, in certain circumstances, the model may be useful for 

design purposes in providing a conservative (upper bound) estimate 

of the heave of unsaturated, compressible materials. 

Finally, with the increasing use of artificial ground freezing 

techniques, there is a growing need for a theory of frost heave 
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applicable in two or three dimensions, from which to construct 

appropriate mathematical models. Such a theory must include 

stress analysis. coupled heat and moisture transfer and compres

sibility. and will therefore demand far more sophisticated soil 

.echanics than is contained in the one-dimensional theory. Thus, 

although significant prog!ess has been made in frost heave model

ling, as exemplified by the work described in this thesis, con

siderable challenges remain for future researchers. 
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APPENDIX A 

DERIVATION OF THE CLAUSIUS-CLAPEYRON EQUATION 

The following derivation i.s relatively simple and not entirely 

rigorous. but is considered to be sufficient for present purposes. 

A more complete derivation is provided by Loch (1978). 

Edlefsen and Anderson (1943) define the absolute free energy, f, 

of a material to be: 

f = e + uV - Ts • •• (A. 1) 

where: e = intemal energy 

u = pressure 

V = specific volume 

T = absolute temperature 

s = entropy 

and: f is equivalent to the Gibbs free energy, g, used by Gold 

(1957) (Section 2.3). For two phases to coexist in equilibrium, their 

absolute free energies must be the same. Therefore, using the suf

fices i and w for ice and water: 

'" (A.2) 

Furthermore, when any change occurs in the system, the two free 
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energies must change by an equal amount, that is: 

As no useful work is done, this implies: 

Vi dUi - si dT = Vw dUw - Sw dT 

where the temperature change is the same in both phases. 

Rearranging CA.4): 

Now: 
-L 
T 

. .. CA. 3) 

. .. CA.4) 

. •. CA. S) 

where: L = latent heat of fusion, so that (A.S) can be written: 

-LdT 
T • .. (A.6) 

If the changes are assumed to be from a reference state ui = 0, Uw = 0 

(gauge pressures), T = To (273.15 K), then: 

dT = T - To = -AT 

where: AT is the freezing point depression. 

Equation (A.6) then becomes: 



Vi ui - Vw lIw 

where it is assumed: 

6T l1T 
T = To 

200 

Ll1T 
= To 

An alternative expression of (A.7) is: 

~ _ ~ = -LT 
Pi Pw To 

where now: T = freezing temperature in °c 

• •. (A. 7) 

••. (A.B) 

Equation (A.8) is the form of the Clausius-Clapeyron equation used 

throughout this thesis. 
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APPENDIX 8 

FORMULATION OF CONSERVATION EQUATIONS TO MODEL HEAT AND 

MASS TRANSFER IN FREEZING SOIL 

Consider a fixed region R containing solid particles, water, air 

and possibly ice. The following assumptions are made: 

1. The material within the region is homogeneous; 

2. Heat transfer by movement of gases and vapours within the 

region is negligible; 

3. Free convection is negligible; 

4. Water in the material pores has the same properties as bulk 

water except that it freezes at a lower temperature; 

S. Energy losses due to evaporation are negligible. 

For the mass conservation equation, the rate at which mass is trans-

ported into R is equated to the rate of mass increase in R. 

The rate at which mass is transported into R is given by: 

where: 

- J q 
S ~ 

n dS 
~ 

9 = rate of mass transport 

•.. (8.1) 
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= outward normal to surface 5 of region R 

dS = surface element 

The rate at which mass is increased in R 

... (B.2) 

where: 6w, 6i = volumetric water and ice contents 

Pw, Pi = densities of water and ice 

dV = volume element 

Equating (B.l) and (B.2) and use of the Divergence Theorem yields: 

. •. (B.3) 

This holds for any region R, hence: 

... (B.4) 

Now: 9 = Pw y 

where: y = water flux vector 

and assuming Darcy's Law applies to water flux within the region, 

that is: 

'! = -k grad • . .. (B. 5) 
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where: k = hydraulic conductivity and 

~ = total head 

then (B.4) becomes: 

ae... ae· 
Pw at + P i ~ = Pw di v (k grad +) . .. (B.6) 

assuming densities remain constant. Rewriting (B.6) gives: 

~+ei. !ll = at Pw at div (k grad +) • .• (B. 7) 

The energy equation is obtained by equating the rate at which energy 

increases in R to the rate of flow of energy by conduction and 

convection into R. The rate at which heat is conducted into R is: 

where: 

- J g. n dS 
S 

9 = heat flux vector 

... (B.8) 

The rate of convection of heat into R is: 

- J CwTv.n dS 
S •• ..• (B.9) 

where: T = temperature 

Cw = volumetric specific heat capacity of water 

Within R. the heat energy may change due to the heat capacity of the 
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material or as a result of phase change. Thus, the rate at which 

heat energy increases in R is: 

a~ J (CT - PiLei) dV 
R 

• .. (8.10) 

where: C = volumetri~ specific heat capacity of the soil 

L = latent heat of fusion of water 

Equating (8.8) and (8.9) with (8.10) and using the Divergence Theorem 

gives: 

I [~ (CT - PiLei) + div (g + CwTv)l dV = 0 ... (8.11) 
R got -

and this holds for all regions R. Hence: 

.•. (B.12) 

Fourier's Law of heat conduction states that: 

Q = -K grad T - . .. (8.13) 

where: K = thermal conductivity 

and substitution of this into (8.12) yields: 

a at (CT - PiLei) + div (-K grad T) 

+ div (CwTy) = 0 ... (8.14) 
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If both heat and mass transfer occur in one dimension, then Equations 

(B.7) and (8.14) reduce to: 

and: 

as 0'; as· ~+l:.I..~ = at Pw at 

C aT p.L ae~ -_ 
it- 1 at 

aaz (k ~) 

'aaz (K ;!) 

assuming heat capacities and densities remain constant. 

... (B.15) 

. •• (B.16) 
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APPENDIX C 

COr.IPUTING TIiE TEMPERATURE PROFILE AHEAD OF mE FREEZING FRONT 

The finite difference formulation for computing the temperature 

profile in the unfrozen region is described below. The method 

uses Crank-Nicolson finite differences, based on a convected mesh. 

A formula for the temperature gradient just ahead of the freezing 

front is also derived. 

Let the equation of the freezing front be given by: 

Zf(t) = £(t) 

so that, at the jth time step: 

Zf = Ej 

The finite difference mesh is defined by: 

OZ" J 
Zw - £" = 1 ) n 

etc. 

.•• (C.I) 

•.• (C.2) 

• •• (C.3) 

where: n = number of "elements" into which region is divided. 

Hence, the total number of mesh points is (n+l). 

The temperature at a point z = £j + iozj is denoted by Ti,j' Now, 
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during the small time interval eSt, the velocity of the freezing 

front is assumed to remain constant, so that: 

= £. + ~.t5t 
J J .•. (C.4) 

where: £. = the speed of the front. 
J 

The distance travelled by the mesh point with temperature Ti,j in 

time eSt is! 

• •• (C. 5) 

which, with (C.3) and (C.4) yields: 

z (n-i:\!. cS uz· n J t;j t • •• (C. 6) 

Therefore, in the limit, the velocity of this point is: 

• .. (C. 7) 

Since the temperature T = T(z(t),t), the total time derivative is: 

dT -= dt 
aT dz aT --+-az dt at ••• (C.8) 

The one-dimensional heat equation is: 

•.. (C.9) 
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Thus, substituting for aTlat, and dz/dt from (C.7), into (C.S) 

gives: 

• •• (C. IQ) 

To obtain the numerical solution for the temperature, Crank-Nicolson 

finite difference approximations for the derivatives are used, as 

follows: 

dT = Tj ~*] - Tj ,j 
dt ' ot •.• (C.ll) 

... (C.12) 

••• (C.13) 

Substitution of (C.II) to (C.13) into (C.IO), along with (C.3) 

yields: 

(continued) 



209 

.•• (C.14) 

(C.14) represents a system of equations which can be written: 

or, in matrix form: 

where: A is a tri-diagonal matrix 

B is a vector of "known" quanti ties 

b T 1 . 1 = n- ,J+ 

• •• (C. 15) 

••• (C.16) 

!j+l is the vector of unknown temperatures at the next 
time step 
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1 lJn2 
+ T· . [--] 1,J eSt (zw-£j)2 

for i • 1, 2, •.• , (n-l). 

••• (C.17) 

The system (C.1S) is solved by the standard technique of Gaussian 

Elimination. The first equation is used to eliminate Tl,j+l from 

the second, leaving an equation in the two unknowns T2,j+l and 

T3,j+l. This is then used to eliminate T2,j+l from the third 

equation, and so on. This process eventually yields a value for 

Tn-l,j+l from the last equation, and the remaining unknown temper

atures are obtained by successive back substitution. (Note that 

To,j+l and Tn,j+l are known since these are the freezing front and 

warm boundary temperature, respectively). 

The procedure for computing the temperature profile in the un fro zen 
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region is then as follows: from the initial (or previous) temperature 

profile, the new position of the freezing front, Ej+l' and hence its 

speed, Ej' is calculated via the energy balance equation at the 

freezing front; this allows the equations (C. 15) to be solved, 

thus providing the temperature profile at the next time step; from 

this new profile, the te~erature gradient just ahead of the freezing 

front is evaluated (see below), in order to calculate the new position 

of the freezing front; the procedure is then repeated. 

The temperature gradient at the freezing front is computed by fitting 

a parabola through the first three mesh points, which, at the jth 

time step, are (zf,Tf ), (Zf+6zj,T1,j) and (zf+26zj,T2,j)' The para

bola is given by: 

••. (C.18) 

or, since T = Tf at Z • zf' 

••. (C.19) 

Clearly, from (C.19): 

... (C.20) 

Now, substituting the two other points given above into (C.19) leads 

to the simultaneous equations: 



T2 . .J 

212 

Solving these for k2 yields! 

aTI 4T1 • - T2 . - 3Tf k2 = = -,3 2&z~J 
az zf J 

• •• (C.2I) 

• •• (C.22) 

According to Beck (1977), the error in this approximation is of 

order 6zj2. The temperature gradient just ahead of the freezing 

front. as calculated by (C.22) is used in the energy balance equation 

at the freezing front (see Chapter 4). 
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APPENDIX D 

WE COMPUTER PROGRAM AND NUMERICAL DATA 

0.1 Numerical Data 

Below is a list of the numerical values used for the physical 

quantities in the computer program. The list includes only those 

values which remained unchanged throughout all the simulations. 

Those quantities, such as hydraulic conductivity, which were 

subject to variation (e.g. in parametric studies) are given in 

Chapter S. 

Density of un fro zen water, 

Density of ice, 

Density of frozen soil matrix, 

Latent heat of fusion of water, 

Volumetric specific heat capacity of 

saturated unfrozen soil, 

Thermal diffusivity of saturated 

Wlfrozen soil, 

Absolute freezing temperature of water 

at atmospheric pressure, 

Freezing front temperature, 

Pw a 1000 kg m-a 

Pi. 917 kg m- 3 

Ps • 2000 kg m-a 

L • 3.3SxIOS J kg-1 

lJ = 1.07 x 10-6 ~ s-1 

To • 273.1S K 

Tf = -0.02 °c 



Ice/water interfacial energy, 

Porosity of the soil, 

Acceleration due to gravity, 

0.2 The Computer Program . 
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eo = 0.4 

g = 9.81 m 5-2 

In the computer program, the calculation of frost heave and ice 

lensing is performed in terms of non-dimensionalised variables for 

length, time, temperature, pressure and thermal conductivity. The 

non-dimensionalisation is carried out as follows: 

Length, z' • t, where: z = 10- 3 m; 

Time, t' t where: t= 102s; =t=, 

Temperature, T' T where: T = 10°C· . -T ' , 

Pressure, u' u where: P = overburden; = -P 

Thermal conductivity, K' K where: K = 3 W m- 1 °C-1 = = K ' 

The primed quantities are the non-dimensional variables. 

A copy of the computer program, written in FORTRAN 77, is given in 

the following pages. The program contains regular comments, par

ticularly at the beginning of each subroutine, to aid understanding. 
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JOB(JOBNAME=:NUET.ETXDPOAB,STARTCLASS=4,OCPTIME=1000) 
FORTRAN77 

PROGRAM FIXEDOVERBDN 
CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1I1I1III1II111111 
CII This program performs the simulation of the freezing of a sol I I1 
CII sample. The surface of the sample, initially at TA, is cooled 11 
CII at a rate defined In the COOL DOWN rout ine. COOL DOWN also 11 
CII calculates the temperature profile in the sample as cooling 11 
CII proceeds. Freezing begins when the surface temperature, TO, 11 
CII falls below zero. N. B. Temperatures, time, lengths and pressures 11 
CII are al I non-dimensio~al ised quantities in this program. Some 11 
CII important variable names are: 11 
CII ZS - Position of lenslng/lce segregation front 1I 
CII ZF - Position of freezing/penetration front 11 
CII US, TS - water pressure and temperature at ZS 1I 
CII UF, TF - Water pressure and temperature at ZF 1I 
CII T - Time DT - Time step H - Heave 11 
CII OB - Overburden pressure I1 
CII TIS, TIF - Ice content at ZS and ZF 11 
CII HKS, HKF - Permeabll ity at ZS and ZF 11 
CII HKO - Saturated unfrozen permeab II I ty 11 
CII N.B. This version Includes the 5011 self - weight which Is 11 
CII important at low overburden pressures and necessary when 11 
CII simulating heave under zero overburden. Pressures are now I1 
CII non-dimensional ised with respect to some chosen value PND. I1 
CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII111I11111111111I1 

DIMENSION TIN(2b),TOUT(2b) 
COMMON ZS,ZF,ZFS,ZM,US,TS,TF,TA,TO,T,F,G,H,SIGMA,OT,OTDZ,HKO, 

?TIS,HKS,TIF,HKF,A2,B2,A3,B3,Cl,B4,El,UF,OB,ALPHA,PNO 
CII Height of sample (ZB) in mm and number of spatial 11 
CII steps for temperature calculations 11 

CII 

CII 
CII 
CII 

CII 
CII 

1 
CII 

CII 
CII 

ZB=150.0 
NST=25 

Pressure non-dimensional ised w.r.t. PNO (Pa) 11 
PND=1.0E3 

Read In OB, HKO and TF for this particular run, 11 
also initial value of ALPHA, the parameter in 11 
the water pressure profile approximation I1 

REAOCS,I)OB,HKO,TF,ALPHA 
Call subrout ine to begin cooling procedure and print 11 
the temperature profl le at the onset of freezing 11 

CALL COOLOOWN(TIN,NST+1,NST,100) 
WR ITE (b, qb) 
DO 1 I=1,NST+l 
ZPT=(I-l)IZB/NST 
WRITECb,Q7)ZPT,TIN(I) 
CONTINUE 

Read In initial values (variables given above) I1 
REAO(S,I)ZS,ZF,H,T,OT,NTS,NPR 

NTS=Number of time steps to be executed once freezing 
NPR=FreQuency of printout I.e. print every NPR steps 

TA=0.4 
TO=TIN(l) 
HO=H 
WRITECo,100) 
WRITE(o,101)T,H,ZS,ZF 
WRITE(b,102)OT,NTS 
WRITE(b,103)OB,HKO,ALPHA 
WRITE (o ,104) 

commences I1 
11 



KPR =O 
JPR =O 
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CII In i tial values for Ice content and hydraul ic conductivity II 
CII at t he base of the Ice lens and at the freezing front 11 

TIS =O. 3444 
HKS =5 . 0E - 15 
TIF =THETAIO . O,TF) 
HKF =HkO 
SUM=O. O 
COUNT =O. O 
ALPHAO =ALPHA 
IfLAG =O 

CII Begin freezing calculation proper II 
00 b I =l,NTS 
KPR =KPR+l 
JPR =JPR+l 
ZfO =ZF 

CII DTDZ =dT/dZ at Z=Z1+ I I.e. temp . gradient at freezing front> I I 
DZJ =(ZB -ZFI/NST 
OTDZ=(4 . 0ITIN(2) - TIN(3)-3.0ITIN(1»/(2.0IDZJ) 

CII Cal I subrout ine to calculate Hand ZF at next time step. This 11 
CII enables subsequent calculation of UF, US and TS, plus ice 11 
CII content and hydraul ic conductivity at ZS and ZF 11 

8 CALL RK 
CII However, if frozen fringe disappears, we need to solve the 11 
CII reduced system of equations . The following IF .. THEN enables I1 
C I a statement to be written when this situation occurs and 11 
Cl. control to be transferred for solution of the new system 11 

If(ZF .LE .ZS) THEN 

END IF 

AVE=SUM/COUNT 
WRITE(b,Q2)SUM,COUNT,AVE 
WR ITE (b, Q4) 
WRITE(b,110)T,H,ZF,US,TS,SIGMA,ZM,TO,UF,F,G,ALPHA 
CALL NOFRINGE 

CALL RHSIH,ZF,T> 
T5=(G- B2)1A2 
US= I A3ITS) +83 
Uf=(G-EIIUS - 841/Cl 
TIS=THETACUS, TS) 
HKS=HkO I (ll.0-TIS/O.4)117 . 0) 
TIF=THETA CUF , TF) 
HKF =HKOI«1.0-TIF/O.4)117.0) 

CII Cal I subroutine to calculate ne~ value of ALPHA, the parameter I1 
CII In the exponential water pressure profile approximation. ALPHA 11 
CI I is held constant initially unti I calculation settles down. 11 
Cl. Then a Hsmoothed H value of ALPHA Is used as input for the 11 
CII calculation at the next time step I1 

IF(T .GT . 25.0) THEN 

END IF 

CALL NEWALPHA 
ALPHA1=ALPHA 
ALPHA2=(ALPHAO+AlPHA1)/2.0 
AlPHA= (AlPHAO+AlPHA2) 12. 0 
AlPHAO::ALPHA 
SUM=SUM+AlPHA 
COUN T = COUNT+ 1 . 0 

CII Cal I subrout ine to find the maximum value, SIGMA, of the neutral 11 
CII stress and its position, ZM, in the frozen fringe 11 

CALL MAXSIGMA 
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CII Introduce new variable PRESS to define ice pressure at base I1 
CII of latest ice lens C = overburden + self-weight l 11 

PRESS=(OB+8.99S8IH+19.62IZSl/PND 
CII Printout results every NPR time steps I. 

IFCKPR .LT.NPRl GOTO 2 
KPR=O 
WRITECb,95)TIS,HKS,TS,US,UF,HKF 
WRITECb,110lT,H,ZF,US,TS,SIGMA,ZM,TO,UF,F,G,ALPHA 

CII If SIGMA Is greater than or equal to PRESS, a new lens is 1I 
CII formed . A message is printed and ZS is adjusted accordingly II 

2 IFCSIGMA .LT.PRESS) GOTO 3 
WRITECb,95lTIS,HKS,TS,US,UF,HKF 
DH=H - HO 
WRITECb,120lZM,T,DH 
ZS=ZM 
HO=H 

CII Calculate temperature profi le in unfrozen region and 11 
CII printout this profi le every NPR time steps 11 

3 CALL UNFROZEN(TIN,NST+l,NST /ZFO,ZF,TF,OT,TOUT) 
IF(JPR.LT.NPR)GOTO 5 
JPR=O 
WR ITE Cb, 98) 
DO 4 L=1,NST+1 
ZPT=ZF+C(ZB-ZFlICL-l)/NST) 
WRITE(b,99)ZPT,TOUT(L) 

4 CONTINUE 
CII Surface temp. continues to decrease until it reaches -b deg. C 11 
5 TO=TO-0.00II0T 

IFCTO.LE.-O.b)TO=-O.b 
CII Change time step length as calculation progresses 1I 

IFCT.GT.I00.0Qq) OT=O.l 
IFCT.GT.1000.0q) OT=1.0 

CII Condition to print message ~hen the heave rate becomes 11 
CII very small I.e. less than 0.01 mm/hour: 2.78E-9 m/s I1 

IFCG.LT .2.78E-4.ANO.IFLAG.EQ.0.ANO.T .GT.25.0) THEN 
WRITE Cb, 90 l 
WRITE(b,l10)T,H,ZF /US,TS,SIGMA /ZM,TO,UF /F/G,ALPHA 
IFLAG=l 

END IF 
DO b K=l,NST+l 
TIN (le) =TDUT (10 

b CONTINUE 
CII Calculate the average value of parameter ALPHA 1I 

AVE=SUM/COUNT 
WRITECb,Q2)SUM /COUNT /AVE 

90 FORMATC1HO, '111 HEAVE RATE LESS THAN 0.01 mm/hour', 
'!' II1 VALUES AT THIS POINT ARE:') 

92 FORMAT(lHO, 'TOTAL=' ,F12.2, '1' ,FS.1,' : ' ,F5.2) 
Q4 FORMATCIHO, '111 FROZEN FRINGE HAS DISAPPEARED - -NOFRINGEN', 

'!' ROUTINE CALLED III LATEST VALUES ARE:') 
Q5 FORMATCeX, 'ICE CONTENT=' ,Fb.4 / ', PERMEABILITY=' ,EI0.4, 

'!', TS=' ,Fe.S,', US=' ,E11.4,', UF:' ,E11.4,', HKF=' ,E10.4) 
Qb FORMATCIHO, 'TEMPERATURE PROFILE AT ONSET OF FREEZING:') 
97 FORMATC4X, 'Z=' ,F5.1,4X, 'TEMP.=' ,Fb.3) 
Qe FOAMATCbX, 'TEMPERATURE PROFILE IN UNFROZEN REGION IS:'l 
9q FORMAT(4X, 'Z:' ,F7.3,4X, 'TEMP.=' ,Fb.3) 
100 FOAMATCIHO , 'INITIAL CONDITIONS ARE ') 
101 FORMATC1HO,'AT TIME I,F10 . 3,' H=',Fb . 3,' ZS=',Fb.3,' ZF=',Fb.3) 
102 FORMATC1HO, 'USING TIME STEP' ,FS.4,' FOR' ,Ib,' STEPS.') 
103 FORMATCIHO, 'OVERBUROEN =' ,E10.3,' kCO}=',E10.3,' ALPHA=' ,FS.2) 
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104 FORMAT(1HO,' TIME' ,7X,'H' ,bX,'ZF',bX, 'US',bX,'TS', 
? 7X, ' S I GMA ZM' ,bX, ' TO' ,bX, ' UF ' , 7X, , F' , 7X, , G ' ) 

110 FORMAT(lX,FI0.3,10F8 .3,' ALPHA=' ,F5.2) 
120 FORMAT(lHO, 'NEW LENS AT ZS= ' ,FI0.3,' AT TIME ' ,FI0.4, 

" OLD LENS THICKNESS = ' ,FI0.5) 
STOP 
END 

SUBROUTINE COOLoOWN(TNEW,NoM,N,M) 
CIIIIIIIIIIIIIIIIIIII ••• I.I •••• I.II •• II •• I.I •••• IIII ••• 1111111111111111 
C.I This routine calculates the temperature distribution in the 11 
CII sample as it Is cooled from its initial temperature TG by I1 
CII appl icatlon of a specified temperature gradient at the surface. I. 
CII The calculation Is done by solving the 1-0 heat conduction I1 
CII equation using an implicit (Crank-Nicolson) finite difference 11 
C.I scheme. The array TOLD contains the temperature distribution 11 
CII prior to a decrement In the surface temperature TNEW(1). The new I1 
CII profile is then calculated and stored In the array TNEW. A 1I 
Cl. return is made to the main program once the surface becomes cold .1 
CII enough to initiate freezing. 1I 
CIIIIIIIIII.III.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1111111111111111I 

OIMENSION TNEW(NOM),TOLO(2b),RHS(2b),CA(2b),CK(2b) 
OATA OK,OT,OL,BK,SP/3.0,100.0,O.OOl,l.0,2.BEbl 

CII Initial ground temp.,time step and length step I1 
TG=O.4 
TST=100.0/M 
ZST=150.0/N 

BETA=(OKIOT/(OLIOL»I(BK/SP) 
AA=(BETA/2.0).TST/(ZSTIZST) 
88=-1.0-(2.0IAA) 
CC=(2.0IAA)-1.0 
oO=-AA 

CII Initial temperature distribution 11 
00 10 I=l,N+1 
TOLD <I) =TG 

10 CONTINUE 
CII Bottom boundary condition - temperature fixed at TG 11 

TNEW(N+l)=TG 
KOUNT=l 
KPRINT:O 

CII Specified surface temperature gradient I1 
15 TNEW(l)=TG-(O.OOlIKOUNTITST) 

RHS(2):(OOI(TOLo(3)+TOLO(1»)+(CCITOLO(2»-(AAITNEW(1)) 
00 20 J=3,N-l 
RHS(J):(Ool(TOLO(J+l)+TOLO(J-l»)+(CCITOLO(J» 

20 CONTINUE 

• 

RHS(N)=(OOI(TOLO(N+l)+TOLO(N-l»)+(CCITOLO(N»-(AAITNEW(N+1» 

CA(2)=B8 
CI(2)=RHS(2) 
00 30 K:3,N 
CA(I()=88-(AAIAA)/CA(K-1) 
CK(K)=RHS(K)-(AAICK(K-l»/CA(K-1) 

30 CONTINUE 
CII Calculate new temperature distribution and printout this II 
C •• every 50 time steps 11 

TNEW(N)=CK(N)/CA(N) 
00 40 L=N-i,2,-1 
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TNEW(L)=(CK(L) - AAITNEW(L+l»/CA(L) 
40 CONTINUE 

"PR INT=KPR I NT+l 
If(KPRINT.LT.50)GOTO 4b 
KPRINT=O 
TIMENOW=KOUNT I TST 
WRITE(b,300)TIMENOW 
00 45 J=1,N+1 
ZPT=ZSTI(J-1) 
WRITE(b,310)ZPT,TNEW(J) 

45 CONTINUE 
CI I Condlt Ion to return to main program when surface temperature " 
C I becomes cold enough -for frost penetration to occur 'I 

4b IF(TNEW(1) .LE.-0. 01)GOTO 55 

00 50 I=l, N 
TOLD(I)=TNEW(I) 

50 CONTI NUE 
KOUNT=KOUNT+1 
GOTO 15 

300 FOR MAT (bX, ' AT TIME' ,FS. 1,' I TEMPERATURE DISTRIBUTION IS :' ) 
310 FOR MAT( 4X , 'Z=' ,F5. 1 , 4X ,'TEMP .=' ,fb.2) 

55 RETURN 
END 

SUBROUTI NE UNFROZEN(TNOW,LP,NN,EJ,EJ1,TFF,TOT,TUNEW) 
CIIIIIIII.II.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII11I 
Cl. Once freezing has begun, this routine calculates the temperature 1I 
Cl. distribution In the unfrozen region, i. e . between ZF (EJ1) and I1 
CII ZB. It solves the 1-0 heat equation using a Crank-Nlcolson II 
CII finite difference scheme with a contrac t ing (or poss ibly 1I 
CII expanding) mesh. The Importan t temperature grad i ent at the II 
C •• freezing front (dT/dz at Zf+) is evaluated in the main program. I1 
CII Th e old d is tr ibut io n TUOLO is suppl ied via the array parameter I1 
CII TNOW . The new dis tr ibution Is written into array TUNEW. 11 
CI ••••• I •• III.II.' •• 11111111111111111111111111111111111.11111111111111. 

REAL TNOW(LP),TUNEW(LP),TUOLO(2b),AA(2b),CC(2b),MU(2b),LA(2b), 
?AO(2b),CO(2b) ,OO(2b) 

OATA OK,OT,OL,BK,SP/3.0,100.0,O.001,1.0,2.SEbl 
CII Height of sample and bottom boundary temperature 11 

ZB=150. 0 
TG=0 .4 
ZJ=ZB-EJ 
ZJ1=ZB-EJl 
BETA=(OKIOT/(OLIOL».(BK/SP) 

CII EOOT=Speed of the freezing front, i.e. I1 
CII (New POSition-Old posltlon)/Time in terval 11 

EOOT= (EJ1 -EJ)/TDT 

00 210 J=1,NN+1 
TUOLO(J)=TNOW(J ) 

210 CONTINUE 
CII Bottom boundary condition II 

TUNEW( NN+1 )=TG 

8N1=BETAINNINN/(ZJIZJ) 
8N2=8ETAINNINN/(ZJ1IZJ1) 
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80= (1 . OITOT) -BNl 
BB=(1.0/TDT)+BN2 
DO 215 I=2,NN 
AA(I)=«(NN+I-I)IEOOT)/(4.0IZJ1»-(BN2/2.0) 
CC(I)=«(NN+I-I)IEOOT)/(4.0IZJ1»+(BN2/2.0) 
AO(I)=(BNI/2.0)-«(NN+I-IlIEOOT)/(4.0IZJ» 
CO(I)=(BNI/2.0)+«(NN+I-I) IEOOT)/(4 .0IZJ» 

215 CONTINUE 
CI I Freezing front temperature I1 

TUNEW(l)=TFF 

00(2)=AO(2)ITUOLO(I)+BOITUOLO(2)+CO(2lITUOLO(3)-AA(2)1TUNEW(1) 
DO 220 I=3,NN-l 
00(I)=AO(IlITUOLO(I-l)+BOITUOLO(I)+CO(I)ITUOLO(I+1) 

220 CONTINUE 
00(NN)=AO(NN'ITUOLO(NN-1)+BOITUOLO(NN'+CO(NN)ITUOLO(NN+1)+ 

?CC(NN' ITUNEW(NN+l) 
CII Now calculate new temperature profile in unfrozen region 11 

LA(2,=BB 
MU(2'=00(2) 
DO 225 J=3,NN 
LA(J'=BB+(AA(J)ICC(J-l»/LA(J-l) 
MU(J) =00(J)-(AA(J) IMU(J- 1»/LA(J-1 ) 

225 CONTINUE 
TUNEW(NN)=MU(NN)/LA(NN) 
DO 230 J=NN-1,2,-1 
TUNEW(J)=(MU(J)+CC(J)ITUNEW(J+l»/LA(J) 

230 CONTINUE 
CII Main program contains write statement for these results I1 

RETURN 
END 

SUBROUTINE RI( 
CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1I111111111I11111 
CII This routine contains the standard fourth order Runge-Kutta I1 
CII scheme which Is used to solve the coupled O.o .E. 's I1 
CII dZf/dt = F, dH/dt = G. I1 
CIIIIIIIIIIIII.IIIIIIIIIII.IIIIIIIIIIIIIIIIIIIIIIIIIII1111I111111I1II11 

REAL K1,K2,K3,K4,L1,L2,L3,L4 
COMMON ZS,ZF,ZFS,ZM,US,TS,TF,TA,TO,T,F,G,H,SIGMA,oT,oTOZ,HKO, 

?TIS,HKS,TIF,HKF,A2,B2,A3,B3,Cl,B4,El,UF,OB,ALPHA,PNO 
CALL RHS(H,ZF,T> 
Kl=OTIF 
L1=OTIG 
ZZ=ZF+O.511(1 
HH=H+O.51L1 
TT=T+O. SlOT 
CALL RHS(HH,ZZ,TT) 
K2=OTlF 
L2=OTlG 
ZZ=ZF+O.51K2 
HH=H+O.SIL2 
CALL RHS(HH,ZZ,TT) 
K3=OTlF 
L3=DTIG 
ZZ=ZF+K3 
HH=H+LJ 
T=T+DT 
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CALL RHSCHH,ZZ, T) 
K4=OTIF 
L4=OTIG 
ZF=ZF+CK1+2ICK2+K3)+K4)/b 
H=H+CL1+2ICL2+L3)+L4)/b 
RETURN 
END 

SUBROUTINE RHSCHH,ZZ,TT) 
CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1I111111111111111 
CII This routine calculates the right-hand sides of the two O.O.E. 's I1 
CII dZf/dt = F, dH/dt = G. I1 
CII The variables arise ~rom the ful I set of five equations, viz. 11 
CII dZf/dt = AIITS t Bl, I1 
CII dH/dt = A21TS + B2, I1 
CII US = A31TS + 83, 11 
CII dH/dt = EIIUS + CIIUF + 84, 11 
CII and dH/dt = E21US + C21UF + E3ldZf/dt + B5. II 
CIIIIIIII.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII11111I11111111111 

COMMON ZS,ZF,ZFS,ZM,US,TS,TF,TA,TO,T,F,G,H,SIGMA,OT,DTOZ,HKO, 
?TIS,HKS,TIF,HKF,A2,B2,A3,B3,Cl,84,El,UF,OB,ALPHA,PND 

CII Non-dimensional Ised thermal conductivities 11 
CII FK=Kf, SK=Ks and UK=Ku I1 

FK=4.0/3.0 
SK=4.0/3.0 
UK=1.0 

ZW=150.0 
EE=1.0/CZZ-ZS) 
C=1.0/(ZW-ZZ) 
Al=FKIEE 
B2=SK/(ZS+HH) 
A2=q.7b581(Al+B2)/(1.0-TIS) 
B3=TFIAl 
B2=-Q.7b58ICB3+TOIB2)/Cl.0-TIS) 
Bl=Q.7b5BICB3-UKIDTDZ)/TIF 
Al=-q.7b58IAl/TIF 
A3=1.22b432E7/PNO 
B3=1.OQ051(08+8.QQ58IHH+1Q.b2IZS)/PNO 
EY=EXP(-AlPHAICZZ-ZS» 
EZ=l.O/Cl.O-EY) 
El=-1.111b34E4IPNOIHKSIAlPHAIEZ/Cl.0-TIS) 
Cl=-El 
B4=-1.0Q05E5IHKS/(1.0-TIS) 
E2=1.111b34E4IHKFIPNOIAlPHAIEYIEZ/TIF 
C2=-E2-(1.111b34E4IPNOIHKOIC/TIF) 
B5=1.0Q05ESICHKF-HKO)/TIF 
E3=O.OQ05 

Gl=ElICA2IB3-A3IB2) 
G2=A2ICl.0-Cl/C2) 
G3=A2IBSIC1/C2 
G4=E21(A3IB2-A2IB3)IC1/C2 
G5:(E2IA3+E3IAl)IC1/C2 
Gb=E3ICAIIB2-A2IBl)ICl/C2 
G:CG1+A2IB4-G3+G4+Gb)/CG2-EIIA3+GS) 
F=AIICG-B2)/A2+Bl 

RETURN 
END 
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SUBROUTINE MAXSIGMA 
CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1I1I11111I11I11I1 
CII This routine finds the position CZM) and the value (SIGMA) of II 
CII the maximum of the neutral stress in the frozen fringe. A simple 1I 
CII search method is used, as fol lows: the fringe is divided Into I1 
CII ten step-lengths COZ) and, starting at ZS, the neutral stress 11 
CII Cdefined by the function SIG) Is evaluated at successive points II 
GII CzO=Z5, 21=zO+OZ, z2=z1+oZ etc.) unti I SIGCzR+1) < SIGCzR). The I1 
GII maximum is then known to I le In CzR-1, zR+l), length 20Z . The II 
CII method is then repeated using a smaller step length (OZ/10) 11 
CII until ZM Is located to the required accuracy. II 
GIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1III1I11I111I1111 

COMMON ZS,ZF,ZFS,ZM,US,TS,TF,TA,TO,T,F,G,H,SIGMA,oT,oToZ,HKO, 
?TIS,HKS,TIF,HKF,A2,B2,A3,B3,C1,B4,E1,UF,OB,ALPHA,PNo 

ZFS=ZF-ZS 
oZ=ZFSI0.1 
ZO=ZS 

200 Z1=ZO+oZ 
Z2=Zl+oZ 
Sl=SIG(Z1) 
S2=SIGCZ2) 
IFCS2.GE.S1) THEN 

IFCZ2.GE.ZF) THEN 
ZM=ZF 
SIGMA=S2 
RETURN 

END IF 
ZO=Z1 
GO TO 200 

END IF 
IF(oZ.LT.5 . 0E-3) THEN 

ZM=ZO 
SIGMA=SIGCZM) 
RETURN 

END IF 
oZ=oZI0.1 
GOTO 200 
END 

FUNCTION SIG(ZZ) 
CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1I111111111111111 
CII Evaluates the neutral stress SIG at the level ZZ within the I1 
CII frozen fringe. CHI is the "stress partition factor", UW and UI I1 
CII are water and ice pressures respectively . UW is approximated by 11 
GII an exponential function (see comments In SUBROUTINE NEWALPHA) 11 
CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII11111111111111111 

COMMON ZS,ZF,ZFS,ZM,US,TS,TF,TA,TO,T,F,G,H,SIGMA,oT,oToZ,HKO, 
?TIS,HKS,TIF,HKF,A2,B2,A3,B3 !C1,B4,E1,UF,OB,ALPHA,PNo 

ZW=150.0 
ZFZ=(ZF-ZZ)/ZFS 
EZ=EXP(-ALPHAIZFS) 
ACON5T=(UF-USIEZ)/Cl.0-EZ) 
BCON5T=CU5-UF)/(1.0-EZ) 
UW=ACONST+8CONSTIEXPC - ALPHAICZZ-ZS» 
TZ=ZFZITS+(ZZ-ZS)ITF/ZFS 
PSI=(-2.507bE-3IPNDIUW)-3 . 3Q77ESITZ 
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UI =UW+33 . 1IPSI / PND 
THI =THETA (uW, T2) 
CHI =(1 . 0- THI / O. 4)111 .5 
SIG =CHIIUW+(1 . 0-CHI)IUI 
RETURN 
END 

SUBROUTINE NEWALPHA 
CIIIIIIIIIIIIIIIIIIIIIIIIII.IIIIIIIIIIIIIIIIIIIIIIIIII1111I1I1I11111111 
CII Calculates the new value of ALPHA , the parameter In the water 11 
CII pressure approximat ion, viz . UW = A + BIEXP( -ALPHAI(2-2S». The II 
CII new value is found using the old value In the Hoveral IN mass I1 
CII continuity equat ion : ' . 11 
CII dH/dt = alUF + bldZf/dt + c 11 
CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII11111111111111111 

COMMON 2S, ZF,2FS , 2M ,US,TS,TF,TA,TO,T,F ,G,H,SIGMA,DT,DTD2,HKO, 
?T IS,HKS,TIF,HKF ,A2,B2,A3 , B3,Cl , B4,El,UF,OB,ALPHA , PND 

DATA OT , OL , PW,PI,AG/I00 . 0,O .OOl,1000.0,Q17 . 0,q .al/ 
ALPHAZ=ALPHA 
2W=150 . 0 
PWG=PWIAG 
USF=US - UF 
W=1. 0/(ZW-ZF) 
Wl =PNDIUFIW/OL 
WA=HKOI(Wl+PWG)/HKS 
W2 =(OL/OT)I(PWG/HKS) 
WB =W21(1 . 0- PI/PW)ITISIF 

500 EX=1.0- EXP( - ALPHAI(ZF- ZS» 
WC=(OLIEX)/(PNDIUSF) 
WW=(1 .0- TIS)I(WA- WB) 
ALPHA=WCI(WW- PWG} 
IF(ABS(ALPHA-ALPHAZ) .LT . O.001) RETURN 
ALPHAZ=ALPHA 
GOTO 500 
END 

FUNCTION THETA(UX,TX) 
CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII11III1I111111111 
CII Calculates the Ice content THETA as a function of the parameter 11 
CII PSI . The function used here Is based on two straight line fits I1 
CII to suction/moisture content data for Attenborough Silt. 11 
CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1II1I11111111111 

COMMON ZS,ZF,ZFS , 2M,US,TS,TF,TA,TO,T,F,G,H,SIGMA,DT,DTDZ,HkO, 
?TIS,HKS,TIF,HKF,A2,B2,A3,B3,Cl,B4,El , UF,OB,ALPHA,PND 
PSI =(- 2 .507bE- 3IPNDIUX)-3.3Q77E5ITX 
IF(PSI . LT .55.0} THEN 

THETA=O.OOl 
ELSE IF(PSI.GE .4 .25E4)THEN 

THETA=0. 01Qal(ALDG10(PSI)+3 . 0)+O . lQ 
ELSE 

THETA=O. 117QI(ALOG10(PSI)+3.0) - O.5583 
END IF 
RETURN 
END 

SUBROUTINE NOFRINGE 
CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1111I111111111111 
CII Control is transferred to here If and when the frozen fr inge 11 
CII d isappears ( for overburden values P < -P I. L.Tf/273 . 15 ) . We now 1I 
CII need to solve the reduced system of four equat ions ( energy , 11 
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CII mass, Clapeyron, Darcy ) in the four un~no~ns H, UF, TF ( no 1I 
CII longer fixed) and V C ~ater fl.ux ). 8y elimination, this system I1 
CII can be reduced to the non-I inear O.O . E. 11 
CII dH/dt = FCH). 11 
CII The function FCH) Is evaluated in FUNCTION FN(HZ) below, and 1I 
CII SUBROUTINE RK2 solves the above equation using the standard II 
CII fourth order Runge-Kutta formula. Some important variable names: II 
CII H - Heave G - Heave rat e 11 
CII UFF, TFF - Water pressure and temperature at base of Ice 11 
CII I ens C =ZF=ZS ) I1 
CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1II1II1II11I1111I 

COMMON ZS,ZF,ZFS,ZM,US,TS,TF,TA,TO,T,F,G,H,SIGMA,DT,DTDZ,HKO, 
?TIS,HKS,TIF,HKF,A2~B2,A3/83,C1,B4,E1,UF,OB,ALPHA,PNO 

COMMON/SHARE/ZFF,TFF 
ZFF=ZF 
MPR=100 
LPR=O 
IFLAG=O 
WRITECo,402) 

400 LPR=LPR+1 
CII Change time step length as calculation proceeds 11 

IFCT.GT.I00.0qq) OT=0.1 
IFCT.GT.1000.0Q) OT=1.0 
CALL RK2 
G=FN(H) 
UFF=(A3ITFF)+B3 

CII Printout values every MPR time steps 11 
IF(LPR.LT.MPR) GOTD 401 
LPR=O 
WRITE(b,403)T,H,UFF,TFF,G 

CII Print message ~hen heave rate becomes very smal I I1 
401 IFCG.LT.2.7BE-4.AND.IFLAG.EQ.0) THEN 

WRITE Co ,404) 
WRITECb,403)T,H,UFF,TFF,G 
IFLAG=1 

END IF 
CII Stop program after a certain time C x100 seconds) II 

IF(T.GT.20000.0) THEN 
WRITE(o,403)T,H,UFF,TFF,G 
WR ITE (0,405 ) 
STOP 

END IF 
GOTO 400 

402 FORMAT( 1HO, , TIME' ,4X, 'HEAVE' ,5X, 'UW' , 7X, 'T' , 7X, 'G' ) 
403 FORMAT(1X,F10.3,4F8.3) 
404 FORMAT(1HO,' III HEAVE RATE LESS THAN 0.01 mm/hour', 

?' III VALUES AT THIS POINT ARE: ') 
405 FORMAT(1HO, '11 TIME OUT - PROGRAM STOPPED 11') 

RETURN 
END 

SUBROUTINE RK2 
REAL Jl,J2,J3,J4 
COMMON ZS,ZF,ZFS,ZM,US,TS,TF,TA,TO,T,F,G,H,SIGMA,DT,DTDZ,HKO, 

?TIS,HKS,TIF,HKF,A2,B2,A3,B3,Cl,B4,E1,UF,OB,ALPHA,PND 
J1=DTIFN(H) 
H1=H+0 .SIJ1 
J2=OTIFN(Hl) 
H1=H+0 .SIJ2 
J3=DTIFN(H1) 
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Hl=H+J3 
T=T+DT 
J4=DTlFN(Hl) 
H=Ht(Jl+2.01(J2+J3)+J4)/b .0 
RETURN 
END 

FUNCTION FN(HZ) 
COMMON ZS,ZF,ZFS,ZM,US,TS,TF,TA,TO,T,F,G,H,SIGMA,DT,DTOZ,HKO, 

?TIS,HKS,TIF,HKF,A2,B2,A3,B3,Cl,B4,El,UF,OB,ALPHA,PNO 
COMMON/SHARE/ZFF,TFF 
DATA OK,OT,OL,TB/3 .0,lOO.O,O.OOl,10.01 
DATA PW,PI,PS,AG,Al,TK/l000.0,Q17.0,2000 . 0,Q.81,3.35E5,273. 151 
Z8=150.0 
FK=4.0/3 .0 
UK=1.0 

R=1.0/(ZB-ZFF) 
~1=1.0/(ZFF+HZ) 

~2=(OKIOL)I(UKIRtFKIQ1) 

Q3=PWIALIALIHKOIR/(AGITKIOL) 
Q4=(TBIOK/OL)I(UKITAIR+FKITOIQ1) 
Q5=(OB/OLtPIIAGIHZ+PSIAGIZS)IR/(PIIAG) 
Qb=PWIALIHKOI(Q5+1.0) 

QQ=TBI(Q2+Q3) 
TFF=(Q4-Qb)/QQ 
Pl=-PWIHkOIOT/(PIIAGIOLIOL) 
P2=DB+ (PIIAGIOLIHZ)+ (PSIAGIOLIZS)+ (PIIALITBITFF/Tk) 

FN=Pll(P2IR/PI+OLIAG) 
RETURN 

CII First line of data is : OB, HKO, TF, ALPHA I1 
CII Second line of data Is : ZS, ZF,' H, T, OT, NTS, NPR 11 

END 
++t+ 
AOF 
0.0 5.0E-q -0.002 1.0 
0 . 0 0.1 0.1 0. 1 0.01 38000 1000 
++++ 
AOF(NAME=/SPOOL6200) 
EXEC(PROGRAM=FIXEOOVERBON) 
EJ 
1111 
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