[18F]FDG-6-P as a novel in vivo tool for imaging staphylococcal infections

Mills, Bethany and Awais, Ramla and Luckett, Jeni and Turton, Dave and Williams, Paul and Perkins, A.C. and Hill, P.J. (2015) [18F]FDG-6-P as a novel in vivo tool for imaging staphylococcal infections. EJNMMI Research, 5 . 13/1-13/11. ISSN 2191-219X

PDF (FDGP) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Available under Licence Creative Commons Attribution.
Download (1MB) | Preview



Management of infection is a major clinical problem. Staphylococcus aureus is a Gram-positive bacterium which colonises approximately one third of the adult human population. Staphylococcal infections can be life-threatening and are frequently complicated by multi-antibiotic resistant strains including methicillin-resistant S. aureus (MRSA). Fluorodeoxyglucose ([18F]FDG) imaging has been used to identify infection sites; however, it is unable to distinguish between sterile inflammation and bacterial load. We have modified [18F]FDG by phosphorylation, producing [18F]FDG-6-P to facilitate specific uptake and accumulation by S. aureus through hexose phosphate transporters, which are not present in mammalian cell membranes. This approach leads to the specific uptake of the radiopharmaceutical into the bacteria and not the sites of sterile inflammation.


[18F]FDG-6-P was synthesised from [18F]FDG. Yield, purity and stability were confirmed by RP-HPLC and iTLC. The specificity of [18F]FDG-6-P for the bacterial universal hexose phosphate transporter (UHPT) was confirmed with S. aureus and mammalian cell assays in vitro. Whole body biodistribution and accumulation of [18F]FDG-6-P at the sites of bioluminescent staphylococcal infection were established in a murine foreign body infection model.


In vitro validation assays demonstrated that [18F]FDG-6-P was stable and specifically transported into S. aureus but not mammalian cells. [18F]FDG-6-P was elevated at the sites of S. aureus infection in vivo compared to uninfected controls; however, the increase in signal was not significant and unexpectedly, the whole-body biodistribution of [18F]FDG-6-P was similar to that of [18F]FDG.


Despite conclusive in vitro validation, [18F]FDG-6-P did not behave as predicted in vivo. However at the site of known infection, [18F]FDG-6-P levels were elevated compared with uninfected controls, providing a higher signal-to-noise ratio. The bacterial UHPT can transport hexose phosphates other than glucose, and therefore alternative sugars may show differential biodistribution and provide a means for specific bacterial detection.

Item Type: Article
Keywords: Pre-clinical; NanoPET-CT imaging; S. aureus; Infection diagnosis
Schools/Departments: University of Nottingham UK Campus > Faculty of Science > School of Biosciences
University of Nottingham UK Campus > Faculty of Medicine and Health Sciences > School of Life Sciences
Identification Number: https://doi.org/10.1186/s13550-015-0095-1
Depositing User: Hill, Phil
Date Deposited: 12 May 2015 08:20
Last Modified: 15 Sep 2016 21:01
URI: http://eprints.nottingham.ac.uk/id/eprint/28818

Actions (Archive Staff Only)

Edit View Edit View