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ABSTRACT 

ABSTRACT 

III-V semiconductors doped with Mn atoms have been studied recently for their 

potential applications in spintronic devices. These materials are referred to as diluted 

magnetic semiconductors (DMS) or ferromagnetic semiconductors. The lattice of these 

materials has Mn atoms (transition metal) and due to their half filled shell carries a spin 

and also donates carriers, "p-type" in case of Mn doping to the semiconductor lattice. 

Ferromagnetism is mediated by exchange interactions between localized d electrons and 

p-type carriers. A high transition temperature (in fact above room temperature) called 

Curie point, is necessary for these materials to have a practical value. The transition 

temperature T e depends on the densities of both Mn impurity and the resultant hole 

concentration. A low density of defects, a high crystal quality and a high concentration 

ofMn atoms are desirable to achieve a high Te. 

Additionally, cubic (zinc blende) structure offers several advantages over the 

hexagonal structure normally obtained for III-V semiconductors e.g. a higher crystal 

symmetry, smaller effective masses, higher carrier mobility, and significantly a higher 

doping density-which is expected to give a higher value ofT e. 

Both GaMnAs and GaMnN have been the materials of choice and have been 

studied intensely. The problems however, are related to fabricated technique, crystal 

quality and achieving a high doping concentration. The materials exhibit a so lubility 

limit beyond which doping concentration are difficult to achieve. 

This thesis describes the investigation of the electronic properties of the zinc 

blend GaMnAs and GaMnN films grown at low temperature by molecular beam epitaxy 

(MBE) for varies concentration ofMn doping over the temperature range 15-400 K. 

Metallc-GaAs: Mnlc-GaAs:Si p njunctions were studied by the I-V, C-V and 

C-F methods over the temperature range 15-400 K. It was found that I-V-T data could 

be interpreted on the basis of a back to back diode model. The c-GaAs:Mn made a 

Schottky contact with the metal and a p n junction with c-GaAs:Si. It was found that for 

the forward bias, where metal was biased negative with respect to the GaAs:Mn, the 1-
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v -T data could also be analysed on the basis of a Schottky behaviour. Here ideality 

factor n increased and the barrier height <Db decreased with temperature. This was seen 

to be a consequence of TFE through the metaVGaAs barrier. This was borne out by the 

Richardson's plots [In (lslT2) versus 103/nT] which exhibited straight lines. The slope 

indicated the barrier heights, which ranged between 1.1-1.4 eV. The backward diode on 

the other hand gave a barrier height of 1.4 eV, which was compatible with the proposed 

model. C-V -T measurements could also be accounted for, at least qualitatively, on the 

basis of the proposed back to back diode model. 

The device structure of c-GaMnN was planar. Both the Ohmic and Schottky 

contact were in the same plane on the top surface. I-V measurements were performed 

over the temperature range 100-480 K. I-V-T was explained in the terms of the 

Schottky model. The current was limited, however, by the Poole-Frenkel type centres in 

the bulk which behaved as an insulator (high resistivity semiconductor). The C-V -Twas 

satisfactorily accounted for on the basis ofMISIMOS model. 

Low temperature grown films had poor material quality which made any 

correlation between samples difficult. 

II 



Nomenclature 

List of abbreviations and variables 

~<l> 

<l>b 

~PF 
~s 
C-F-T 
c-GaN 
C-V-T 
OMS 
fcc 
FE 
I-V-T 
LEOs 
LT 
MBE 
MCD 
MOCVD 
n 
PA-MBE 
P.F. 
RHEEO 

SI 
SIMS 

TE 
TFE 
TM 
TES 
UHV 
u.i.d. 
ZB 

The barrier lowering amount 

The barrier height 
The Poole-Frenkel constant 
The Schottky field lowering constant 
Capacitance -frequency-temperature 
Cubic GaN 
Capacitance-voltage-temperature 
Diluted magnetic semiconductors 
Faces centreed cubic 
Field emission 
Cu rrent -voltage-te m peratu re 
Light emitting diodes 
Low-temperature 
Molecular beam epitaxy 
Magnetic circular dichroism 
Metal organic chemical vapor deposition 
Ideality factor 
Plasma-assisted molecular beam epitaxy 
Poole-Frenkel effect 
Reflection high energy electron diffraction 
Semi-insulating 

Ion mass spectroscopy 
Thermionic emission 
Thermionic field emission 
Transition metal 
Transmission electron microscopy 
Ultra high vacuum 

Unintentionally doped 
Zinc blende 
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CHAPTER 1 General Introduction 

CHAPTER 1 General Introduction 

1.1 Introduction 

In this thesis, the electrical characteristics of two diluted magnetic 

semiconductors (GaMnAs and GaMnN) are reported. Two III -V diluted magnetic 

semiconductor materials GaMnN and GaMnAs have been studied. Much attention has 

been given to the III-V diluted magnetic semiconductors (DMS) because it is a 

promising candidate for spintronic materials. However, above the Curie temperature 

(T d, the material no longer exhibits ferromagnetic order. All the commercial 

applications require the Curie temperature to be above room temperature. Therefore, 

further study is needed to improve the understanding of the nature of the 

ferromagnetism. The literature has paid particular attention to GaMnAs because of two 

factors: fIrstly, GaMnAs has high Curie temperature of up 173 K and secondly the 

similarity of GaMnAs to the GaAs which are used in a wide variety of semiconductor 

applications. Corresponding attention is currently being given to the GaMnN due to the 

theoretical model derived by Dietl et al. [1] which predicts aTe higher than room 

temperature. 

In order to have a ferromagnetic state, holes are required to couple the magnetic 

moment of the magnetic dopants [2]. In 1996, Ohno et al. [3] succeeded in fabricating a 

ferromagnetic p-type Mn doped GaAs. Later, Edmonds et al. [4] detected ferromagnetic 

behaviour in their p-type cubic GaMnN fIlm fabricated by plasma assisted molecular 

beam epitaxy (P AMBE). 

Zaja et al. [5] has studied the magnetic properties of Mn doped GaN and 

concluded that the magnetic properties of GaMnN are similar to those of Mn doped 

GaAs. Crystalline structures of Mn doped GaN films have been analysed by x-ray 

diffraction technique. They have found the presence of Mn3N2 phase- which according 
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to them- is a common phenomenon in III-V DMS which includes GaMnAs. Electrical 

properties ofthe GaMnN and GaMnAs are yet to be studied in details. 

The objectives of this thesis are to study the I-V-T, C-V-T and C-F-T behaviour 

of both GaMnN and GaMnAs. 

The thesis is divided into three sections. The first three chapters include the 

theories used as the basis of the analysis for the data, the theoretical background, and 

the setup of the equipment used in the study, respectively. The second section deals 

with the results of the analyses of GaMnAs. The last part attends to the electrical 

properties of the GaMnN. 

A review of the theoretical background is given in chapter two. Both Schottky 

and p 'n junctions are discussed. The experimental data has shown that the samples do 

not follow any set pattern. Therefore, attempts have been made to explain the behaviour 

of each sample in light of the existing models and different explanations are used to 

explain the data for different samples. The response of every sample has been 

interpreted separately based on the data and the proposed models. It seems that not one 

model explains the response of all the samples and the justification has been provided 

for separate explanations. 

Chapter three, a review of the theoretical background, is related to the diluted 

magnetic semiconductor (DMS) material. The growth conditions of III-V magnetic 

semiconductors are investigated. The electrical defects in both GaN and GaAs are 

discussed in detailed. Also, the recent developments in fabrication of GaMnN and 

GaMnAs materials and the difficulties facing many groups are discussed. 

Chapter four presents the setup of the equipment. The setup was tested on a 

commercially available Si and GaN-LED diodes, the results obtained were consistent 

with those reported by other workers, and this was taken to be a proof that the 

measurement setup was operating properly. 
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The results of the temperature dependence of I-V-T, C-V-T and C-F-T 

measurements on the GaMnAs are presented in chapter five. This data is analysed and 

the various parameters are extracted in order to explain the behaviour of this material. 

Chapter six, deals with the electrical characteristic of GaMnN samples for which 

the same measurements were made as the GaMnAs samples in the previous chapter. 

In chapters 5 and 6, the electrical response of the GaMnAs and GaMnN 

materials has been presented and attempts have been made to explain the behaviour 

based on a model derived from the device structure. 

Chapter seven discusses the general conclusions for both materials under study 

and outlines the similarities and differences. 
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CHAPTER 2 Electrical Measurements 

2.1 Introduction 

In this chapter, the theory of the p n junction and metal-semiconductor contact 

(Schottky) diodes are introduced. Also, the deviation of the current- voltage

temperature characteristics from ideal is given because they are used to study both 

diodes. The capacitance-voltage measurement will be discussed in terms of the presence 

of deep states inside of the depletion region. In addition, admittance spectroscopy 

technique has been addressed to gain information about the device parameters. These 

techniques are presented in this chapter in order to investigate the behaviour of deep 

impurities in semiconductors. 

2.2 I-V Measurements 

2.2.1 The ideal p n junction 

A P n junction is formed by connecting two different materials (p to n 

semiconductor) as shown in Figure 2.1. When the two materials are joined together, the 

excess of electrons in the n-type side diffuses into the p-type side and excess of holes in 

the p-type region diffuses into the n-type side. This diffusion effect produces a depletion 

of carriers at the interface which is known as depletion region. The resulting 

uncompensated charge at both sides of the junction caused by the fixed charged 

acceptors and donors atoms gives rise to an internal electric field. This electric field, in 

turn, generates a drift current opposite to the diffusion current until the Fermi energy is 

the same throughout the joined materials. At which point, equilibrium is achieved and 

the diffusion current and the drift current are equal but in opposite directions. 
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The potential drop across the junction is known as built-in voltage. It is given by 

the difference between the Fermi levels of the p and n type material and so it will 

depend on doping concentration on either side of the junction. In the abrupt junction 

model the field outside of the depletion region is zero and so the diode current can be 

obtained by calculating the diffusion current of the minority carriers on either side of the 

junction. The concentration of the minority carriers at the depletion region edge is 

strongly affected by the variations in the potential barrier between the two sides of the 

junction. 

The applied external bias adds (reverse bias) or subtracts (forward bias) from the 

built in field and consequently the depletion region width also changes. When the p n 

junction is forward biased, both the potential barrier and the depletion width decrease. 

The lower barrier results in an increase in the transport of majority carriers across the 

junction, thus enhancing the minority carrier concentration at the edge of the depletion 

region and the diode current. In reverse bias, the external potential bias increases both 

the depletion width and the barrier height. Consequently, the transport of carriers 

crossing the depletion width reduces. The concentration of minority carriers at the edges 

of the depletion region will decrease below the equilibrium value and a small reverse 

bias current will flow. This current will saturate when the approximate concentration of 

the minority carriers is equal to zero at the depletion edge. 
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Mathematically the ideal I-V characteristic is given by [6]: 

I = Is [ exp(~~) -1] (2.1) 

where the saturation current Is is related to the acceptors and donors concentration 

respectively through the equation [6]: 

(2.2) 

where Dn and Dp are the hole and electron diffusion coefficients respectively, nj the 

intrinsic carrier concentration and Ln and Lp are the hole and electron diffusion length 

respectively. The saturation current Is can also be expressed as: 

-E 
I = AA*T3 exp(--g ) 

s kT 
(2.3) 

where A is the area of the p n junction, A ** is the Richardson constant, Eg is the and gap 

of the semiconductor, k is the Boltzmann constant and T is the absolute temperature. 

2.2.2 Non-ideal p n junction 

Several affects perturb the current flowing through a diode from the ideal case 

presented in the previous section. Thus we have recombination in the depletion region, 

high injection and series resistance. 

Defects with the crystal structure will aid the recombination of electrons and 

holes throughout the diode. Outside the depletion region, these defects change the 

minority carrier lifetime and consequently are not taken into account by the simple 

theory presented in the previous section. However, the presence of these defects within 

the depletion region was neglected in the theory. The recombination current is taken 
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into account by including an additional term called the recombination current. This 

current is dominant at low bias levels and can be neglected at higher bias levels [7]. 

When the forward bias is applied to the p n junction, the barrier is reduced 

which permits more carriers to diffuse across the junction. The simple theory assumes 

the increase in minority carrier concentration does not affect the majority carrier 

concentration. However, as the forward bias increases the minority carrier concentration 

at the edge of the depletion region increases and it will eventually become comparable 

to the majority carrier concentration. Space charge neutrality means the majority carrier 

concentration will now increase and add an additional diffusion current term but in the 

opposite direction to the normal minority carrier diffusion current, thereby reducing in 

the diode current from that predicted by equation (2.1). In this region the current takes 

the form, 1- exp (qV/2kT) [8]. 

The effect of the series resistance Rs is observable in the forward bias. When a 

forward bias is applied, the current becomes almost linear with applied bias. The simple 

theory assumes that the whole voltage is dropped across the junction. However, the 

effect of the semiconductor outside the depletion region can be taken into account by 

defining a series resistance. The voltage drop across the undepleted semiconductor 

depends on the diode current and is given by IRs and the junction voltage is now given 

by Vj = Vapp.-IRs. 

2.2.3 Theory of metal-semiconductor contacts 

The schematic energy diagram of the Schottky contact between the metal and p

type semiconductor is shown in Figure 2.2. In Figure 2.2 (a), the two materials are 

physically separated from each other. The work functions of the metal and 

semiconductor are <l> m and <l> s respectively. (The work function is defined as the energy 

required for removing an electron from the Fermi level into vacuum.) Also shown in 

Figure 2.2 (a) is the electron affinity X, which is defined as the difference between the 

vacuum level and the lower edge of the conduction band Ec. 
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Assuming that the metal work function is less than the semiconductor work 

function (<1>m < <1>s) , on contact, carriers wi ll move across the junction until the Fermi 

leve l of the metal and the Fermi level in the bulk of the semiconductor have the same 

energy. The resulting band diagram is shown in Figure 2.2 (b). The valence band bends 

downwards towards the interface. There is a potential barrier preventing the flow of 

holes from the metal into the semiconductor. The size of this barrier is given by: 

(2.4) 

Holes in the semiconductor also experience a potential barrier preventing them 

from reaching the metal contact and the barrier is given by: 

(2.S) 

---

q <1>", 
qX 

q<l> Ec 
EFm 

Ec EFm EFS 

EFS 
q <l>b ...................... qVbi=q(<I>S-<I>rn) Ev 

Ev 
Metal p- type Metal P- type 

(8) (b) 

Figure 2.2 A metal-p-type semiconductor contact (a) band diagram before joining. (b) equilibrium band 
diagram after joining. 
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Figure 2.3 Ohmic contact on an p-type semiconductor (a) metal semiconductor contact before contact (b) 
metal semiconductor contact after contact at thermal equilibrium. 

The situation where the metal work function is greater than the work function of 

the semiconductor (<Dm ><1>s) is shown in Figure 2.3 (a) and the equilibrium state is 

shown in Figure 2.3 (b). The contact is called Ohmic or injecting because it offers no 

barrier to the flow of holes from the semiconductor to the metal contact. 

2.2.4 Deviation from Schottky theory 

a) Surface states 

Surface states are allowed energy states for electrons which exist at the surface 

of the semiconductor due to incomplete bonding [9, 10] and can playa significant role 

in the metal-semiconductor interfaces. In semiconductors like GaAs, there is a large 

density of states of surface states which have an energy inside the band gap, resulting in 

the Fermi-level being pinned at the surface. Consequently, the measured barrier height 

of a metal semiconductor contact is independent of the metal work function. 
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b) Image Force Lowering of Barrier 

When an electron in the semiconductor is at a distance x from the metal it will 

induce a positive charge on the metal side [7]. This is only valid when an electron 

leaves the metal. To maintain the charge neutrality, this electron should have a 

compensating positive charge. This positive charge is regarded as the image charge. 

When an external field is applied, it will be affected by both fields . This causes the 

barrier lowering by an amount L\<l> as shown in Figure 2.4. 

o 

qt.<!> 

""..... ",,-------- ---- ----- , ------------
, -' '\. ~\e\O 

' ,,' c,\~(, 
" , oe\,l; 

--- ----- -----------,- , , 1.-el , , 

Metal 

, 
"

'" 

Figure 2.4 The potential well in the presence of an electric field 16) 

x_ 

At high field the Schottky barrier is lowered by an amount which is given by [6]: 

(2.6) 

and in terms of built-in potential and the doping concentration it is given by: 

I 

tJ.<l> = J q [2qN D (V + Vb; - kT / q]4 
47rEs Gs 

(2.7) 
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If lowering effect is taken into account, the barrier seen by holes in the metal 

becomes: 

(2.8) 

c) Schottky effect and Poole-Frenkel effect 

In Schottky effect, electrons are transported by thermionic emission across the 

metal-semiconductor junction. While in the Poole-Frenkel effect, electrons are 

thermally emitted from the traps to the conduction band because of the lowering of the 

potential barrier by an external electric field. 

For Schottky effect, the current is given by [10]: 

I = AA' exp [ (-ki ) - Ps VI!2 ] (2.9) 

where A * is the effective Richardson constant, <Db the metal-semiconductor barrier 

height and J3s is the Schottky field lowering constant has the form: 

(2.10) 

where q is the electronic charge, Es the relative dielectric constant of the material and Eo 

the primitively of free space. 

In case of Poole-Frenkel effect, the current is given as [10]: 

(2.11) 

where J3PF is the Poole-Frenkel constant, which is given by: 

11 
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(2.12) 

therefore ~PF = 2 ~s. 

2.2.5 Mathematical approach to the current transport processes 

For a p-n junction, the current transport is due mainly to minority carriers while 

for Schottky it is governed by majority carriers. The equation which governs the 

current-voltage characteristic for both Schottky and p n junction is identical and is given 

in equation (2.1), while the saturation current is different. The saturation current for p n 

junction is given by equation (2.2) and equation (2.3), while for Schottky diode it is 

given by equation (2.14). The diode current-voltage relationship is written in terms of 

ideality factor n and series resistance Rs as [6]: 

(2.13) 

with Is for Schottky diode: 

(2.14) 

re-arranged equation (2.13) gives: 

v = nkT[ln(~)+l]+IRs 
q Is 

(2.15) 

where Is is the saturation current, Va is the applied voltage, k is the Boltzmann constant, 

T is the absolute temperature, A is the contact area, A--is the Richardson constant, and 

<Db is the barrier height at zero bias vo ltage. 
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A comparison of equation (2.3) and (2.14) reveals a linear relationship between 

a plot of In(ls/T3) versus 103 IT for the p n junction, whereas a plot between In(Is/T2) 

versus 103 rr will be a straight line for the Schottky contact. The slope in the former will 

yield the band gap of the semiconductor and the latter the Schottky barrier height. 

For the Schottky contact, n is the ideality factor which identifies the non-ideal 

thermionic emission behaviour defined as: 

(2.16) 

The ideality factor is very close to unity at low doping and high temperatures. It 

can be determined from the forward characteristic by plotting In IF versus VF. The slope 

of the linear part of plots extrapolated to cut the In I axis at V = 0 gives the saturation 

current density Js• The slope of this line is used to calculate the ideality factor n. The 

theoretical value of the ideality factor is equal to one. But, there are many factors which 

make ideality factor larger than unity like the barrier height dependence on the applied 

voltage, tunnelling across the potential barrier, and the carrier recombination in the 

space charge region [11]. Also, carrier trapping by interface states and the oxide layer at 

the metal- semiconductors interface can affect the ideality factor [12]. 

From equation (2.14), we can get the Schottky barrier height <l>b: 

kT [AA**T2] <Db = --In ---
q Is 

(2.17) 

Arrhenius plot of the forward current can be obtained by plotting In IF against 1 

rr for several fixed biases. The slope of the plot gives the activation energy according to 

the following equation: 

13 
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(2.18) 

and the activation energy is given by: 

E = k[lnIF] 
a liT 

(2.19) 

2.2.6 Thermionic field emission and field emission theory 

The current transport in metal-semiconductor contacts is mainly due to majority 

carriers. It is known that the width of the depletion region is proportional to the inverse 

of square root of the doping concentration (No·112) [6], so for low-doped semiconductors 

the space charge region can be wide and current arises from the carrier which can jump 

over the barrier as a result of thermionic emission. There are two other transport forms; 

field emission and thermionic field emission. The description below is given for an n

type Schottky contact but similar processes are expected to occur in p-type Schottky 

contact. 

In highly doped semiconductors, as a result of increasing the carrier 

concentration, the width of the depletion layer decreases and the barrier becomes thin 

enough for the electrons to tunnel through the potential barrier into the metal. This takes 

place close to the Fermi level in the semiconductor. This mechanism is known as field 

emission and only occurs in degenerate semiconductors at low temperature. 

In intermediate doped semiconductors, the potential barrier is thin enough for 

tunnelling but at energies above the Fermi level. At low temperatures there will be 

insufficient electrons with the appropriate energy to tunnel through the potential barrier. 

As the temperature increases, the concentration of electrons with the appropriate energy 

increases and the current rises. This mechanism is called thermionic-field emission [13] 
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If the current transport is dominated by thermionic field emission (TFE), the 

current is related to the voltage by [6]: 

(2.20) 

where Eo represents the efficiency of the tunnelling process as stated by Rodrigues [14]. 

Mathematical analysis of Padovani and Stratton [15] led to useful expressions in order 

to explain the TFE/FE theory. Their analysis is based on the Taylor expansion of the 

tunnelling probability (Eoo). The tunnelling ideality factor (ntun.) is given by [15]: 

n = qEo = qEoo coth[qEoo ] 
tun. kT kT kT (2.21) 

where Eoo is the characteristic tunnelling energy which is related to doping 

concentration by [8]: 

(2.22) 

where q is the electronic charge, Ii is the Planck constant divided by 2n, ND is the 

doping impurity density, ES is the dielectric constant,Eo is the permittivity of free space 

and m* is the effective mass. This equation indicates that the tunnelling current will 

increase exponentially with the square root of donor impurity density [6]. Note that 

according to equation (2.20), the logarithmic plot of the current, as a function of the 

applied bias V, gives a straight line of slope q/Eo, and thus the impurity concentration 

ND can be calculated using equation (2.22). 

As a rough guide, field emission occurs if q Eoo » k T, thermionic -field 

emission if q Eoo '" k T and thermionic emission if q Eoo« k T [16]. 
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The saturation current on the basis of TFE theory given by Padovani and 

Stratton [15] in terms ofEoo is represented by: 

(2.23) 

where A· is the classical Richardson constant for the semiconductor under study, E is 

the potential energy associated with the applied bias V between the metal and 

semiconductor and <Db is the barrier height. 

2.2.7 Schottky barrier inhomogeneity model 

The behaviour of the barrier at the interface between the metal-semiconductor 

(MS) contact was discussed by Tung [17] and Werner and GuttIer [18]. They explain 

the large variations in Schottky barrier height (SBH) with temperature. This model 

referred this to the spatially inhomogeneous barrier height at the MS interface, which 

consists of low and high barrier height or as called patches. They assume that the barrier 

height variations are represented by a Gaussian distribution [18]: 

(2.24) 

where the pre-exponential term is the normalization constant of the Gaussian barrier 

height distribution. The total current I(V) across a Schottky diode containing a barrier 

inhomogeneities can be expressed as: 

(2.25) 

integration of equation (2.25) yields [18]: 
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leV) = Is exp[~][I-exp[- qVJ] 
n~kT kT 

(2.26) 

with 

I -AAooT2 [q<D bO ] s - exp ---
kT 

(2.27) 

where <DbO and llap are the apparent barrier height and the apparent ideality factor 

respectively, given by [ 18] (equation 2.28 and equation 2.29): 

2 
<D = <D _ qaso 

bo bO(mean) 2kT (2.28) 

the mean barrier height at zero bias (<DbO (mean)) and the standard deviation (crso) are the 

distribution parameters. The lower the value of crso2, the more homogeneous the barrier 

height is. Equation (2.28) gives a straight line with <DbO (mean) and crso as the intercept and 

the slope respectively. 

[_1 -I] = P2 _ qP3 
nap 2kT 

(2.29) 

the plot of (n-1_l) against q/(2kT) should give a straight line with P2 and P3 as the y

intercept and the slope respectively, where P2 (dimensionless) and P3 are the voltage 

coefficients. Both of these parameters depend on temperature and quantify the voltage 

deformation of the barrier height distribution. 

It is known that the barrier height depends on the electric field and therefore on 

the applied bias (V). The barrier height <l>bis related to the bias coefficient P by [19]: 
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(2.30) 

where ct>bO (mean) is the mean barrier height at zero bias. Extending the linear bias 

dependence to the mean barrier height of the distribution parameters gives: 

<I> b(mean) = <I> bO(mean) + pV (2.31) 

The standard deviation for the barrier height is given by: 

(2.32) 

Comparing equation (2.31) and equation (2.32) and using equation (2.27) and 

equation (2.28) a modified Richardson's equation is obtained. This is given below as 

equation (2.33) [20]: 

(2.33) 

which leads to the following equation: 

(2.34) 

The plot between In OslT2)-(q2crso2/2k2T2) versus 103fT yields a straight line with 

the slope giving the mean barrier height and the intercept is equal to the (In AA **). 

Again this theory was developed for n-type Schottky diodes but the analysis will also 

hold for p-type Schottky barriers. 
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2.2.8 The temperature dependence of the ideality factor 

Brillson [21] attempts to predict the current conduction based on Saxena ' s work 

using the plot between (nkT/q) versus kT/q) as shown in Figure 2.5. An ideal case when 

the straight line goes through the origin with a slope equal to the ideality factor n which 

is represented by line (l) as predicted by thermionic emission (TE) theory. Pure TE 

gives an ideality factor of one. Slight deviations from TE give a value greater than 

unity. Recombination in the depletion layer gives a value of n=2 [22]. Higher value of a 

(9-12) has also been reported [23] and corresponded to either TFE or FE mechanisms. 

Line (2) corresponds to a straight line that passes through the origin; but with a value of 

n greater than 1. The "To" abnormality arises when the line does not extrapolate through 

the origin. This is line (3) in Figure 2.5 and n has abnormally high values due to TFE or 

FE. The case when the line approaches a constant value at low temperature is indicative 

of thermionic field emission (TFE) and is shown by line (4). The final case, the plot 

represented by a horizontal straight line as shown by line (5), indicates that the field 

emission conduction process (FE) dominates the current transport mechanism. 

(5) 
F.E. 

(2) / 

'\/ 

nkT/q 

o 
kT/q 

Figure 2.5 Plot of the nkT/q versus kT/q showing the temperature dependence of the ideality factor (24(. 
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According to Padovani and Stratton [15] the forward current is assumed to fit to 

exp[ q V /k(T + To)] where To is a parameter independent of the temperature and voltage. 

Maeda [25] states that the expression exp[ q V /k(T + T 0)] is equivalent to writing the 

ideality factor in the form 0 f n= 1 + TofT. At high temperature, n should go through one. 

Brillson [21] suggests that the only valid explanation of the To anomaly is the 

inhomogeneities of the Schottky barrier height (SBH). The function is in the form nT 

=T + T 0 where "To "is a measure of the temperature dependence of the ideality factor 

[24]. Then equation (2.14) becomes [26]: 

I - AA ooT 2 [qQ>b ] S - exp ---
nkT 

(2.35) 

which is called the modified Richardson equation [14, 27]. 

Several· authors [28-30] have explained the increase of the ideality factor with 

decreasing temperature on the basis of what is called the "To effect". This behaviour has 

been reported in various materials like Cr/n-GaAs and Auln-GaAs. To parameter is the 

evaluation of the dependence of the ideality factor on the temperature. This theory 

relates the ideality factor "n" to temperature by the relation n= no+ T olT. Ideally, the plot 

should pass through one and the slope of the plot should be To. 

2.2.9 Interpretation of "To" effect using Werner model 

Non-linear behaviour of the Richardson plot (In (lslT2) versus 103fT) for 

different materials has been widely discussed [14, 27,31,32]. The replacement ofT by 

nT solves this problem and the modified plot of In (lsfT2) versus 103fnT produces a 

straight line. These are based on the formula n(T)=1 +To/T. Although it is an empirical 

approach and not based on theoretical arguments, they obtained a good result. The 

values of the parameter To behave randomly for a set of Auln-GaAs Schottky contacts 

which are fabricated on the same slice of GaAs and where the temperature can vary 

from 10-100 K [13]. Werner and GuttIer [18] state that there is no general validity to 

predict the values of the parameter To and they invoke the concept of a distribution of 

surface states, already mentioned in the previous section, to explain the dependence of 
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the ideality factor on temperature (n(T» which is presented by n(T)= 1 + T olT by the 

following approximation of equation (2.29) : 

1 
(2.36) n=-------

1- P2 + P3 /(2kT / q) 

for the validity of -P2+ P3/ (2kT/q) « 1, equation (2.36) is approximated to [18]: 

n :::::: 1- P3 == 1 + To 
2kT/q T 

which implies that To ::::::-~ 
2k/q 

(2.37) 

The ideality factor "n" is related to the temperature by the relation n= no+To/T. 

The values of no and To are determined from the intercept and the slope respectively 

[33]. 

2.3 Capacitance- Voltage measurement 

In general, the diode capacitance arises either from the depletion region itself or 

is caused by the injection of minority carriers. The first type of capacitance is called 

depletion layer capacitance where there is a dipole of fixed positive and negative 

charge. It dominates the diode capacitance at reverse biased conditions. The second one 

is called the diffusion capacitance where minority carriers injection has introduced 

charges. It is dominant under forward bias conditions [34]. 

The capacitance of the diode can be determined by considering the depletion 

region as a dielectric of width W. The total space charge width W is given in terms of 

the built-in potential and the applied bias for a uniformly doped material by [6]: 
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w = 2GsGo [v.. -V -kT / ] N hI a q 
q D 

(2.38) 

where Eo is the permittivity of free space and Es is the dielectric constant of the material. 

When the applied reverse bias is increased by a small increment dV, the 

depletion width increases causing a small increase in the charge by dQ: 

(2.39) 

(2.40) 

From equation (2.39) and equation (2.40), the capacitance per unit area is given 

by: 

c =_ dQ = GSGo (2.41) 
dV W 

The depletion layer capacitance C per unit area in terms of the space charge Qsc 

per unit area is given by [6]: 

(2.42) 

(2.43) 
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We should therefore obtain a straight line by plotting I /C2 versus the reverse 

bias voltage. From the slope of this line doping concentration Nd, can be found and from 

the x-axis intercept the built in potential can be determined. 

2.3.1 The role of traps in Capacitance-Voltage measurement 

The effect of deep traps on the junction capacitance of a Schottky barrier will be 

discussed in detailed. The energy band diagram of Schottky barrier with depletion width 

XD, is given in Figure 2.6. The shallow donors with density ND, located close to the 

bottom of conduction band, will all be ionized at room temperature. 

electron 
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Figure 2.6 Schottky barrier on an n-type semiconductor containing deep states 1351 

The deep traps, of density NT, are located at an energy ET below the bottom of 

conduction band. These traps are assumed to be neutral if filled by an electron, and 

positive if empty i.e. they are donor like centres [10] . For a distance greater than XT, the 

traps are filled by electrons and so are neutral. On the other hand, if this distance is less 

than XT the deep traps as well as the donors will be ionized. The space charge density is 

given by [35]: 
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X<XT 
x< XT < Xo 

At high biases, qVa > EF-ET, in this case all the traps are ionized in the depletion 

region and XT ~ Xo. The net space charge density No in equation (2.42) is replaced by 

(No+ NT). So the capacitance becomes: 

C=A qcocs(ND+Nr ) 

2Va 
(2.44) 

With the assumption Va » kTI q, the applied voltage is higher than the built-in 

potential. At low biases, qVa < EF-ET, so in this case all the traps are below the Fermi 

level and the charge density is given by: 

(2.45) 

Consequently, for low biases lIC2 versus V plot is linear and proportional to 

(Norl while, for higher biases it is proportional to (No+ NTrl as in Figure 2.7. So the 

equations which represent the two situations are: 

(2.46) 

(2.47) 
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o 
Appli e d bio s 

Figure 2.7 Schematic plot of t/e2 versus V for n-type material 135\. 

2.4 Admittance Spectroscopy 

Admittance spectroscopy technique has been used to investigate the behaviour 

of deep impurities in semiconductors. This technique allows important information 

about the deep levels such as activation energy and capture cross section to be acquired 

[35 , 36]. The admittance Y is given by: 

y = i(cv) = G(m) + jo;C(m) 
v(cv) 

(2.48) 

where C is the capacitance, G is the conductance and ffi is the angular frequency of the 

small signal. The conductance gives the real part of the Y: 

G(cv) = ReallYJ = cosejyl (2.49) 

while the imaginary part ofY is: 

C(cv) = _IrnJ_YI = _sin_BI,---,-YI (2.50) 

cv m 
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At low frequencies, the admittance will be represented by purely the real part 

whereas at high frequencies it becomes purely imaginary [37]. 

2.4.1 The principal of Admittance Spectroscopy 

In this technique, the frequency dependence of the device's response to a small 

signal is measured.! Ifwe assume the small ac signal is v (t) as shown from Figure 3.6, 

then the total potential applied across the device is given by [35]: 

eVtotal =q[Va +v(t)] (2.51) 

In the absence of the trap levels, this will cause an alternating shift of the Fermi 

level EF• Thus, this motion will result in continuous change of the charges. This charge 

fluctuation leads to a decrease and increase in depletion width. In this case the charge 

responds in phase with ac voltage, and the resulting current which is the time derivative 

of the charges is 1tI2 in advance of vet) and therefore the device acts as a lossless 

capacitance [35]. 

In this case the admittance will be given by the capacitive contribution: 

Y(m) = joC (2.52) 

At low frequencies and high temperatures the trap charges which are located 

where the Fermi level crosses the trap energy are able to follow the ac signal because 

they behave like free carriers. As a consequence, they can contribute to the measured 

conductance and not to the capacitance. However, at high frequencies the traps cannot 

respond and the trapped charges lag behind v (t). Therefore, phase angle of the current 

will be less than nl2 and so there will be an imaginary component to the admittance, C 

(00). 

1 Small ac signal means that the amplitude of the ac signal is so small and that the depletion layer width 
does not change sufficiently. 
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At high frequencies, the traps are not able to respond to the applied field and so 

the junction capacitance is given by the depletion layer capacitance: 

(2.53) 

where E is the dielectric constant of the semiconductor, A is the junction area [38]. 

When the deep traps contribute to capacitance, they modify the parameters in equation 

(2.53) e.g. the built-in voltage Vbi, doping concentration No and the depletion layer 

width. At low temperature the electron emission rate is much smaller than the ac signal 

frequency and again the junction capacitance is just Cdep. [39]. 

Mathematically, the capacitance C( (0) and conductance G( (0) of the Schottky 

diode, as a function of the ac signal frequency are given [35]: 

C(w) = C dep + [ ]2 
1+ w1a>r 

(2.54) 

(2.55) 

where i1C is the capacitance change due to the trap charges response, which is also 

represented by the height of the capacitance step as shown in Figure 2.8 and (0 t is the 

angular characteristic frequency of the trap. The trap concentration and the trap 

emission time are related to i1C and (Or respectively. At (0 = (Or, the point of inflection in 

the C-(O curve is shown as a red dotted line in Figure 2.8, equation (2.54) and equation 

(2.55) become: 

(2.56) 
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Figure 2.8 The curve for C (0) as a function of logarithm of ac signal frequency 

2.4.2 The logistic equation 

(2.57) 

The value of the inflection frequency (OT is obtained from Co and Cdep.; these 

represent the high and low frequency capacitance values respectively (Figure 2.8). The 

equation for the capacitance is represented by: 

(2.58) 

This equation is similar to the logistic equation which is used to determine the inflection 

frequency. The mathematical formula is given by y=A2+[AI-A2/l+(xlxo)P] where AI 

and A2 are constants which can be estimated from the lower and upper asymptote line of 

the S-shaped curve. 

2.4.3 Analysis of the data: 

The admittance spectroscopy analysis is carried out to estimate the activation 

energy and capture cross section from the data. The angular characteristic frequency of 

the electron trap is related to the emission rate of the traps (OT given by the following 

equation [35]: 
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(2.59) 

where <v n> is the average thermal velocity of electrons in the conduction band, 

0' n is the capture cross section for electrons, Nc is the effective density of states in the 

conduction band, and Er is the energy of the trap measured from the bottom of the 

conduction band in the case of electron trap. Since both the thermal velocity and the 

effective density of states are temperature dependent (vn a Tlt2 and Nc a T 3(2), we can 

replace these two tenns by T2 in equation (2.59) [40]. It can be written as In(e n/T2) a 

(~E/kT). Thus we can obtain ~Er which is the free energy change for ionization or (E c -

Er ), from the slope in the plot of In (en IT2) versus liT when a temperature independent 

0' n is assumed. 
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CHAPTER 3 Theoretical Background and Literature Review 

3.1 Introduction 

Improvement in electronic and magnetic properties of semiconductors is of 

considerable commercial importance. It is possible to change radically the electronic 

properties of the semiconductor by the addition of impurities which control the nature 

and the transport properties of the carriers. In a similar way, the doping of 

semiconductors with magnetic impurities result in changed magnetic properties. Little is 

known about the electronic defects induced by these magnetic dopants and this thesis 

attempts to address this issue. The "magnetization" of conventional semiconductors in 

their regular structure leads to the use of electron spin which along with charge enables 

processing and data storage as well as the emission of polarised light [41, 42]. The 

electron spin is already used for the purpose of recording information in case of 

magnetic materials [43]. Spin polarized current injection into the semiconductors used 

to control the spin state of carriers. Therefore, spin polarized carriers in a ferromagnetic 

material will contribute to the net current of magnetization [44]. 

Non-magnetic III-V semiconductors can be made ferromagnetic by doping with 

transition metal (TM) atoms. These are known as diluted magnetic semiconductors 

(DMS) [43]. The most widely studied materials of the III-V magnetic semiconductor are 

(Ga, Mn)As and (Ga, Mn)N. 

Looking closely at the electronic configuration of Mn, which is [Ar] 4s
2
3d

5
, it 

has a half-filled 3d electronic shell. There are five 3d electrons in this shell which 

provide a total spin moment of5 Bohr magnetons (~B) [45]. 

When Mn atoms are added to a 111-V semiconductor they act as acceptors. The 

spins of the Mn atoms are anti-aligned and this leads to anti-ferromagnetic behaviour. 
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However, the interaction of the Mn atoms with the spin polarized holes results in 

ferromagnetic behaviour. Consequently, the existence of the ferromagnetic behaviour in 

III-V semiconductors is related to the presence of the free holes [2]. 

One of the requirements for ferromagnetism to occur is a high concentration of 

Mn atoms in III-V semiconductor materials [46]. A major hurdle facing researchers 

achieving these high concentrations is the low solubility limit of Mn in III-V 

semiconductors. For GaAs, the Mn solubility limit is 1019 cm-3 [3]. This problem is 

resolved by using the low-temperature molecular beam epitaxy (LT-MBE) which will 

be discussed in the next section. This method permits the doping of the III -V 

semiconductor with Mn above its solubility limit [3]. In contrast, the concentration of 

holes created by Mn ions is restricted by the presence of donor defects that compensate 

the holes [47]. Once the Mn atoms have been placed into the lattice, residual donors and 

the large activation energy of the Mn acceptors limit the hole concentration. 

The ferromagnetic order is affected by the temperature; above certain 

temperature called the Curie temperature T c, the material no longer exhibits 

ferromagnetic behaviour. The high concentration of both Mn atoms and free hole help 

achieve high T c, According to the formula [1, 48]: 

(3.1) 

where C is a constant specific to the host material, x is the mole fraction ofMn ions and 

p is the hole concentration [48]. Therefore, it is important to have high density of both 

Mn atoms and free holes in order to use this material in any applications. 

During the fabrication ofDMS III-V materials, there are many defects which are 

formed during growth by the LT-MBE method [49-51]. 
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3.2 Review of Growth conditions of III-V magnetic semiconductor 

There are many methods of growing high quality 1II-V semiconductors. The two 

most common are molecular beam epitaxy (MBE) [52] and MOCYO (metal organic 

chemical vapour deposition [53]. Both techniques have been used to grow OMS. All 

samples used in this thesis were grown by plasma assisted molecular beam epitaxy. 

Figure 3.1 shows a simplified scheme of an MBE machine used to grow the Mn doped 

111-V semiconductors. 

RHEEDGun RHEED Screen 

Shutler--+-~ 

4s AJ 

Figure 3.1 Schematic diagram of MBE machine 

Fluxes of atoms are produced by heating solid sources that are placed in 

evaporation cells also called effusion cells. To maintain a constant flux (flow) of atoms 

the temperature of these cells is controlled up to ±I K. Since the cells are placed in an 

ultra high vacuum, the atoms in the beam travel until they hit the hot substrate surface. 

In MBE, the growth of the film requires the constant arrival on to the surface of the 

constituent atoms. The composition of the deposited film can be controlled by changing 

the arrival rate of the different atomic species. The atoms diffuse along the surface of 

the substrate and react with the other species to form a film of the correct stoichiometric 

ratio. By this method, an extremely small and highly controlled amount of Mn atoms 

can be added to the GaN or GaAs films to produce DMS layers. 
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The use of an ultra high vacuum (UHV) environment facilitates a high degree of 

control over the background impurities. The mean free path of the atoms in the chamber 

is long compared to the space between the sources and the wafer and consequently the 

name molecular beams. The molecular beam does not interact with itself or other beams 

until it reaches the substrate. 

Growth rates are controlled by the temperature of the effusion cells which 

produces a stream of atoms depending on their temperature. It is essential that they 

provide flux stability, uniformity and material purity [54]. 

GaN and related materials require a source of nitrogen. Nitrogen atoms are 

highly reactive and consequently they are available only in stable molecular species 

such as N2 and ammonia. It is possible to use ammonia because ammonia absorbed onto 

a hot surface will react with the mobile Ga atoms to form GaN. This process requires 

very high substrate temperatures. An alternative way is to use nitrogen directly and 

dissociate the N2 molecules using RF plasma. Efficient RF sources are available and 

high growth rates can be achieved. MBE has a significant advantage over other growth 

techniques since in-situ monitoring using reflection high energy electron diffraction 

(RHEED) is available. An example of RF plasma source attached to effusion cell ports 

for GaN growth is given in [52]. A computer operated mechanical shutter triggers the 

flux. The shutters need to work much faster than the growth rate [55]. 

RHEED monitors the growth in situ, allowing the thickness of the layers to be 

precisely controlled [54]. The diffraction pattern, displayed on a phosphor screen in the 

growth chamber, provides information about the surface structure during growth and 

can differentiate (planar) 2D growth and unwanted 3D growth (columns). 

The use of MBE to grow GaN has many advantages over MOCVD (metal 

organic chemical vapour deposition). The low growth temperature of MBE is of 

particular use because it reduces thermally induced strain and phase separation [56]. In 

addition to this, at low temperatures the choice of substrate is more flexible and there is 

a reduction in thermal effects like diffusion. MBE allows precise control of thickness 
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and composition as well as high p-type doping concentration [57]. Furthermore, there is 

no post-growth annealing for p-type conductivity. 

The electrical characteristics of both GaMnN and GaMnAs are investigated in 

this study. Different aspects of these two materials like the preparation environment or 

different estimated parameters are discussed which gives better understanding of the 

devices. At the time this work started, there were no concerted attempts to study the 

electrical characteristics of these two materials. 

3.3 The Ferromagnetic behaviour of the devices used in this study 

a) GaMnAS: Ferromagnetic behaviour 

For GaMnAs devices used in this study, the Mn concentrations range between 

1 1019 -3 d 1 1021 -3 d' . x cm an x cm at lfferent growth temperatures. According to JungwIrth 

et al. [58] samples with doping concentration between lx1019 and lx1020 cm-3 show 

metallic behaviour. While a doping concentration _1020_1021 cm-3 is close to the metal

insulator transition [58]. 

In general it can be concluded that samples studied in this thesis covered the full 

range of Mn concentration which has been studied. However, the experiments 

performed for this thesis can not be used to clarify these materials as ferromagnetic in 

behaviour or otherwise. It should be noted that many factors such as solubility affect the 

Curie temperature T c and that those shown in the Table (3.1) may not be strictly 

applicable in other conditions e.g. samples studied here may not have aTe as reported 

by other workers for similar concentration. These results of various workers are 

summerised in Table (3.1). 
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Table 3.1 The atomic percent, doping concentration, T c and the condition of GaMnAs samples. 

X NA (cm-' ) Cond iti on Tc (K) Reference 
of sampl es 

0.015<x<0.08 - metallic 11 0 Edmonds at 
at. [59) 

x<0.03 or x>0.06 - Insul ator -
I x 10- - 125 

0.06 % Ix 10 1
" - - Jungwirth et 

at. [5 8) 

0.3 % 6x 10" Insul ator -

1 % 2.2xIOLU metallic -
1.5 % to 8% - Metallic 140 Campion et al. 

[60) 

2.2 % 5.1 x 10 1
" metallic 65 Yoon et al. 

[6 1) 

4.4 % 4.6 x 10' ~ Insulator 83 

x < 0.03 , x > 0.06 3.5xI0·u insul ator 128 (for Matsukura et 
x=0.053) at. [62) 

0.03 ~ x ~ 0.06 - metallic 120 (for 

Small x < 3% and large x 
x- 0.05) 

- insulator - Das Sarma et 
> 7% values ofx at. [63) 

Intermediate range of x - metallic -
- 5% 

b) GaMnN: Ferromagnetic behaviour 

The doping concentration of Mn in GaMnN devices used in this study is in the 

range 7-8xlO 17 cm-3
. Han et al. [64] detect ferromagnetic behaviour at 400 K for p-type 

zinc-blende GaMnN layers with carrier concentrations exceeding 10 18 cm-3• In another 

work Novikov et al.[65] predict in a theoretical study for room temperature carrier

mediated ferromagnetism in p-type GaMnN with hole concentration of 3.5x 1020 cm-3
. It 

is therefore highly probable that GaMnN films studied are not ferromagnetic in 

character. 

3.4 Impact of defects on electrical properties of materials 

Defects playa crucial role in determining the electrical properties (practically 

conduction) of semiconductors. An ideal lattice structure is difficult to achieve, in fact 

an ideal crystal does not exist. In a practical crystal there is a range of potential defects 
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which can be defined on the basis of their geometry as OD,ID,2D,3D defects 

[D=Oimensional]. 

Zero dimensional defects (OD) are also called point defects and may be present 

in crystal either "unintentionally" or may be introduced in a controlled manner as 

dopants. Shallow defects-situated close to the band edge- enhance conductivity. On the 

other hand deep point defects-defects which can communicate with both bands-tend to 

act as recombination centres or traps and are responsible for reducing conductivity [66]. 

In wide band gap semiconductors (like GaN or even GaAs) a large number of 

point defects are liable to be present. In GaN these have been associated with N-ion 

vacancy which gives it a strong n-type unintentional doping [66]. 

Some examples of point defects are interstitial, substitutional, vacancy and 

voids. 10 defects-like dislocations or line defects are also common and act as non 

radiative recombination centres in material like GaN [66]. 20 dimensional defects are 

called "stacking faults". Both point defects and line defects reduce mobility by 

scattering carriers. Stacking faults in GaN have a small "energy of formation" and are 

present in large quantities [67]. Other examples of 2D defects are screw dislocation and 

edge dislocation. An interface between two different materials will also constitute a 

defect. Grain boundaries between crystallite within the same material are also 2D 

defects. 3D-[three-dimensional] defects are cavities inside a solid like "bubble". 

Conversely, a different phase may also be present such as "complex" embedded inside 

the bulk of the material. 

All these defects affect the physical properties of solids- we are interested in the 

electrical behaviour of GaN and GaAs doped with Mn atoms. These are discussed 

separately later in this chapter. The type of defects in semiconductors and their affect on 

electrical properties are summerised in Table (3.1). 
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Table 3.2 Type of defects and their effect on electrical properties of semiconductors 

Reference Defect Defect kind The conducti vity 
symbol 

[68] point defects: voids, Shall ow defect: (dopants): increase 
conducti vity. Deep defects (recombination 

OD substitutional, interstitial, 
centres, trap): reduce conducti vity. Both 

anti sites cause sca ttering and reduce mobility. 

[66] ID Line defects: di slocation reduce mobility and conducti vi ty 

[67] 2D Surface defects: screw 
dislocation, stacking faults, reduce mobility and conducti vity 
interface, grain boundaries. 

[68] 3D Volume defects: voids, caviti es, reduce mobility and conductivity 
loca lized complexes. 

3.5 General features of the GaN 

The electronic structure of semiconductor surfaces and interfaces is of 

fundamental importance in modern technology. Gallium nitride semiconductors are 

currently the best materials for blue laser diodes and LEDs for their desirable properties 

like its large direct band gap (3.39 eV); high saturation velocity (2 x 10 7 cm2/s); high 

thermal stability, with a large breakdown field of2 MV/cm [53]. 

The structure of both hexagonal (wurtzite) and cubic (zinc blende) was 

discussed by Harima [69]. The primitive unit cell of hexagonal structure consists of two 

Ga- N atom pairs, whereas it consists of one such pair in case of cubic structure. Both 

have the same surrounding neighbours due to tetrahedral structure in which an atom of 

one species is surrounded by atoms of the other species. The only difference between 

the two structures is the stacking order which is denoted by A, Band C and represent 

the allowed sites of the Ga- N pair. It is ABCABC ... in case of cubic structure, while it 

is ABAB. . . in case of hexagonal. 

3.6 Advantages of cubic structure for GaN 

Since the material under study is cubic (c-GaMnN), this survey will be 

concerned more with c-GaN and c-GaMnN although only a few studies have been 

reported on these materials. The growth of high quality GaN with a cubic structure 
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remains of interest both commercially and academically because of unique properties 

including vertical device structure and integration of GaN based devices [70]. Cubic 

GaN (c-GaN) has many advantages with respect to the hexagonal structure such as 

higher crystallographic symmetry [71] as well as a smaller effective masses, higher 

carrier mobility and higher doping efficiency [72]. 

The main difficulty in the growth of cubic GaN arises from polytypism which 

leads to the formation of wurtzite subdomains within the cubic lattice [73]. Other 

problems result from a high density of threading dislocations and stacking faults which 

occur because of the large crystal lattice mismatch between GaN and GaAs. Also, 

etching ofGaAs by the N+ ion during growth also causes surface roughness [73]. GaAs 

is the most frequently used substrate for cubic GaN because of its commercial 

availability and the well known preparation procedures [74]. 

3.7 The electrical measurements on the GaN 

This study measures I-V-T, C-V-T and C-F-T for c-GaMnN. Most of the 

reported studies concentrate on the hexagonal (h-GaN). For instance, Kribes et al. [16] 

investigate the I-V and C-V characteristics of gold Schottky diode film ofn-GaN grown 

by MBE method on sapphire substrates. The growth temperature was 750°C with a 

carrier concentration of 7 x 1017 cm-3 and a Hall mobility 220 cm2Ns. The estimated 

barrier height and the ideality factor of Au/n-GaN were obtained from room temperature 

I-V measurements to be 0.98 eV and 1.4 respectively. From the C-V measurements, a 

barrier height of 1.16 eV and a doping concentration 4.3 x 10 17 cm-3 was found. The 

current transport mechanism through the Schottky diode was governed by thermionic 

field emission (TFE) and recombination. In the present work, the doping concentration 

is approximately the same but the barrier height is smaller due to inhomogeneous 

barrier height at the MS interface. 

Another study has been reported by Benamara et al. [75] of Au/n-GaN Schottky 

contact over the temperature range 80-300 K. The films were grown by MOCVD 

method on sapphire substrates with a carrier concentration of 10 17 cm-3 and a mobility 

250 cm2Ns. The ideality factor was found to be 1.18 at room temperature. The barrier 
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height value as computed from the I-V result at room temperature was equal to 0.84 eV. 

The reported conduction mechanism was thermionic field emission (TFE) and 

thermionic emission (TE) at lower temperature and higher temperature respectively. 

The estimated barrier height in this study is close to the one obtained by Kribes et al. 

[16] and they report the same reason for the conduction mechanism. 

In another study, Osvald et al. [76] reported I-V characteristic of GaN Schottky 

diodes films grown by MOCVD and MBE on sapphire substrates. Films grown by 

MOCVD were Ga faced and those grown by MBE were N faced. The barrier heights for 

Ga and N faces-GaN were found to be 1.17 V and 0.89 V respectively. The ideality 

factor was 1.72 at 320 K for N-polarity. The authors pointed out that thermionic 

transport mechanism at room temperature was the possible conduction mechanism. 

The barrier height as well as the activation energy had been studied by Miller et 

al. [77]. MBE GaN layer was grown at 600°C on sapphire substrate. The barrier height 

was extracted from I-V measurement and yielded a value of 0.798 V. The activation 

energy was estimated by the Arrhenius plot to be 180±20 meV. A trap assisted 

tunnelling process was the current transport mechanism process. 

To the best of our knowledge there is no complete study about the electrical 

properties of the c-GaN:Mn material. But, many were reported on wurtzite GaN:Mg 

which will be outlined below. 

Both growth techniques; MOCVD and MBE had been used for p-type GaN 

studied by D.J.Kim et al. [78]. The substrate temperature was kept between 750-790 °c 

in case of MBE and 1030 °c for GaN: Mg layer grown by MOCVD. The hole 

concentrations of Mg doped samples grown by MBE and MOCVD were measured 

using Hall effect. These gave values of 3-6 x 1017 cm"3 and 2 x 1017 cm"3 at room 

temperature respectively. They obtained activation energy ofMg doped GaN using I-V 

and admittance spectroscopy in the range 110-120 me V. 
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In a later study, lW.Kim et al. [79] investigated Mg-doped GaN grown by 

MOCVD where the wafer was annealed at 750°C. The carrier concentrations estimated 

from Hall and C-V measurements were found to be of 5.5 x 1016 cm·3 and 8 x 1018 cm·3 

respectively. It was found that the barrier height estimated from I-V data ranged from 

0.29 to 1.21 eV. The room temperature value measured from C-V measurements was 

1.43 eV. The activation energy determined from the Arrhenius plots obtained by 

admittance spectroscopy was 0.12 eV. Simulation program led the authors to consider 

the field-assisted emission phenomenon as current mechanism. 

Huang et al. [80] used the admittance spectroscopy technique to estimate the 

activation energy for GaN :Mg samples grown by metal organic vapour phase epitaxy 

(MOVPE). The activation energy was found to be 136 meV. The reported impurity 

concentration was 5 x 1017 em·3 as measured by C-V at IMHz while it was calculated 

from the charge neutrality equation to be 6.67 x 1018 cm·3
, The studies discussed above 

reported similar activation energy of Mg doped GaN which ranged between 110-150 

meV. Albeit, they grew their material using different growth methods, for instance, 

MBE, MOCVD and MOVPE methods. 

These studies were concerned with wurtzite GaN doped material which gave p

type GaN, while the material used in this study is c-GaN doped with Mn which also 

gives p-type GaN. Although the properties of these two materials differ significantly. 

Summary of all the results of various workers is listed in Table (3.2). 
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Table 3.3 Different device parameters of Shottky contact to hexagonal GaN as presented by different workers. 

Source 
The doping density No Ideality The barri er height The acti va ti on Current 

(cm·3) factor n <Db (V) energy (meV) mechanism 

Kribes et a l. 
0. 98 (I-V) 

TFE and 
[1 6) 

7x I 017 1.4 -
recombination 

l.l 6 (C-V) 

Benamara et 
Ix I 017 l.1 8 0.84 TFE and TE al. [75) 

-

Osva ld et al. 
1.17 (Ga faced) 

[76) - 1. 72 - TE 

0.89 (N faced GaN) 

Miller et a l. 
0.798 180±20 

Trap assisted 
[77) - - tunnelling 

D.J.Kim et 
3-6x I 0 (MB E) 

a l. [78] - - 110- 120 -
2xlO l7 (MOCVD) 

J.W.Kim et 
5.5xI0 'o (Hall meas.) 

Field-assisted 
al. [79] - 0.29-1.21 120 

emi ssion 8x lOI S (C-V) 

Huang et a!. 
6.67XIO ' S (C-V) [80] - - 136 -

3.8 The study of electrical defects in cubic GaMnN 

GaN can crystallize in the wurzite (hexagonal) or in the Z1l1C blende (cubic) 

structure. Most studies have relevance to the wurzite structure rather than cubic. As a 

result , few papers concentrate on cubic structure. 

3.8.1 The native defects of wurzite GaN 

In a recent paper Reshchikov and Mork09 [81] discussed the native defects in 

the GaN. On the basis of the information given in this paper, Table 3.4 was constructed. 

Table 3.4 Native defects in GaN 

Vacancy Interstitial s Anti site 

VGa VN Gal NI GaN NGa 
The 
material n-type p-type n-type p-type 
type 
Growth N-rich Ga-rich N-rich Ga-rich Ga-rich 
condition conditions conditions conditions conditions conditions 

Type of 
Acceptor 

Double 
impurity like defect donor donor Acceptor compensating Acceptor 

donor 
centre) 
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The main causes of point defects are non-stoichiometric growth and annealing 

[81]. They become a source of compensation in the doped material. According to 

Reshchikov and Morko~ [81] in n-type GaN, the Ga vacancy (V G) is the dominant 

native defect, while the Nitrogen vacancy (VN) is obtained in p-type GaN. The Ga 

vacancy (V G) and the N vacancy (VN) behave as acceptor and donor type defects 

respectively. When both types of defects are nearest neighbours, the resulting defect is 

called a divacancy (V Ga-VN) and creates two deep levels in the energy gap. The type of 

defect depends on the material type. In n-type, it is a double acceptor while in p-type it 

is a double donor. The other types of native defects, which occur at lower 

concentrations, are interstitials and antisite defects. Both the Ga interstitial (Gal) and the 

N interstitial (NI) can be introduced in the form of a donor or an acceptor respectively. 

The existence of a particular interstitial atom (GaI,NI) is determined by the small lattice 

constant of GaN as well as large "size mismatch" between Ga and N atoms, e.g. Ga 

atom, and due to its large size can be accommodated as a stable interstitial only at an 

octahedral site in the lattice. In P-type GaN, the Ga antisite (GaN) defects are the native 

defects which cause compensation under the Ga-rich conditions while the N antisite 

(NGa) acts as compensating double donor or an acceptor in p-type and n-type GaN 

respectively. 

The unintentional defects like hydrogen act as acceptor in p-type GaN while 

oxygen also introduced unintentionally during growth process acts as a shallow donor in 

GaN. 

3.8.2 The native defects of cubic GaN 

Jian-jun et al. [82] have discussed the structure of the zinc blende (ZB). They 

identified the nitrogen vacancy as the main defect in the intrinsic cubic GaN. A large 

concentration of nitrogen vacancies gives rise to a large concentration of electrons 

which results in an enhanced conductivity. They believe that there are eight point 

defects in GaN. Table 3.4 shows the calculated formation energies for point defects in 

zinc blende GaN. These point defects are as follows; nitrogen vacancy (VN), gallium 

vacancy (V Ga), GaN antisite, (NGa) antisite, a tetrahedral interstitial gallium surrounded 

by four N atoms (GaiN), a tetrahedral interstitial gallium surrounded by four Ga atoms 

42 



CHAPTER 3 Theoretical Background and Literature Review 

(GaIGa), a tetrahedral interstitial nitrogen surrounded by four Ga atoms (N IGa) and a 

tetrahedral interstitial nitrogen surrounded by four N atoms (N IN) . 

Table 3.5 Formation energies for point defects in 7jnc blcnde GaN 

VGa VN GaN NGa GaiN GaiN NIGa NIN 

E(eV) 7.57 0.89 16.56 2.30 15.69 12.70 1. 85 2.53 

In another study Lisker et at. [83] investigated the deep defects in cubic GaN. 

The samples were grown on SI-GaAs substrates by rf-plasma-assisted molecular beam 

epitaxy (MBE) at a substrate temperature of no°e. Deep levels in MBE samples have 

been studied using thermal admittance spectroscopy (T AS) to obtain information about 

the defects. Three different kinds of layers of GaN were studied. All were nominally 

undoped. The first group was nominally undoped p-type GaN-layers with carrier 

concentrations of(I-5) xI0 16cm-3
, (2) nominally undoped, p-type GaN-layer on top at a 

p-type GaAs buffer layer and (3) n-type GaN layers slightly Si-doped with carrier 

. b I 10 14 -3 concentratIOns e ow cm. Thermal admittance spectroscopy (T AS) detects a defect 

with energy level (530±30) meV located in the GaAs substrate. Using the same 

technique another defect with thermal activation energy of (1 05± lS) meV was detected 

which was located within the GaN layer. 

3.9 Studies of doped cubic GaN 

The electrical properties of cubic GaN doped with different impurities have been 

discussed by many authors. For instance As et at. [84] investigated Si doping of cubic 

GaN grown by (RF) plasma assisted molecular beam epitaxy on semi-insulating GaAs 

(00 I) substrates at no°e. The films exhibit n-type conductivity with concentrations 

reaching 5xlOI9 cm-3
. They found high density of the dislocation in c-GaN:Si. By 

measuring the electron mobility against carrier concentration, they concluded that the 

dislocations act as acceptors. 

In another study As et at. [85] discussed both p- and n- type doping under the 

same growth details. Acceptor activation energy (EA) of 0.230 eV was estimated for Mg 

by low temperature photoluminescence (PL) measurement. At concentrations above 
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1018 cm-3 the PL spectra contained more lines and they attributed these to complexes 

that act as compensating donors. 

Cubic (zinc-blende) GaMnN films grown under N-rich conditions by plasma

assisted molecular beam epitaxy (PA-MBE) on GaAs (001) substrate have been 

discussed in a comprehensive study by Novikov et al.[65] and Edmonds et aI.[4]. This 

data is important for this study since their samples were also grown at Nottingham 

University. Growth temperatures were in the range 450 to 680 °c. RHEED and X-ray 

studies showed that GaMnAs films had cubic symmetry and there was no evidence of 

the MI4N phase for Mn concentration of x < 0.1, while Auger measurements and 

secondary ion mass spectroscopy (SIMS) studies indicated that concentration of Mn 

atoms in the film increased with the MniGa flux ratio. SIMS studies showed that the Mn 

concentration was 4.5 x 1020 cm-3 with x - 0.01. Also, there was no indication of 

diffusion ofMn into the buffer layer. The hole concentration varied from 3 x 1016 to 5 x 

1 018 -3 d h . . . 
cm .an t e IOnIZatIon energy was 54 meV. These measurements were obtained 

from the Hall effect. The group conftrmed p-type conductivity in these Gal_xMnxN films 

with x > 0.05 by checking for the existence of other potential dopants like Mg and C. 

Lazarov et al. [72] studied cubic and hexagonal GaMnN and the role of Mn and 

H in these films. Films were grown by electron-cyclotron resonance (ECR) plasma

assisted MBE on 6H-SiC and MgO substrates and then annealed at 800°C. Two 

different growth schemes: (i) multilayer deposition of MniGaN (two samples), both 

samples were capped with 30 nm GaN, (ii) deposition with 5% Mn-doped GaN in the 

presence of hydrogen (one sample). The GaN buffer and capping layers were grown at 

550°C. There is no indication for GaxMny or MnxNy phases in the multilayer films 

although, they confusingly reported that MnxNy phase could be the source of 

ferromagnetism in hexagonal GaMnN. The examination of the film structure and 

surface morphology showed that Mn atoms diffuse to the surface. The surface 

protrusion of the cubic GaMnN was formed due to either the diffusion of Mn atoms 

through the capping layer or threading defects. They concluded that when Ga was 

substituted by Mn, the cubic phase became more stable and threading dislocations 

assisted in the diffusion of the Mn to the surface. 
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3.10 Generalfeatures of GaAs 

The zinc blende structure comprises two interpenetrating face cantered cubic 

(fcc) sublattices where one sublattice is offset from the other by one quarter of the body

diagonal. In cubic GaAs (zinc blende structure) every Ga atom has 4 nearest neighbour 

As atoms which form a tetrahedron around the Ga atom. The energy band gap at room 

temperature is 1.42 eV. 

3.11 Generalfeatures of the (Ga, Mn)As 

(Ga, Mn)As had been widely studied because of its relatively high Curie 

temperature T c currently recorded at 173 K [86]. As previously discussed, nonmagnetic 

III-V semiconductors such as GaAs could be made ferromagnetic via doping with Mn 

[43]. Haisy and Cronin (1964) [87] found a O.leV acceptor level ofMn in GaAs as a 

result of impurities while Ohno et a!. (1996) reported ferromagnetism in epitaxial films 

of GaMnAs grown by MBE [3]. GaMnAs had been successfully grown using MBE at 

low substrate temperatures [60]. 

The formation of As anti-sites (AsGa) and Mn interstitial (Mnl) defects occur 

which compensate substitutional Mn acceptors (MnGa). These defects can be removed 

by low temperature annealing at 175°C which leads to an increase in uncompensated 

(M~a) and enhancement of hole concentration [88]. The effect of the annealing is 

observed by the resistivity measurement. Annealing is a two step process involving; 

removal of the Mn interstitial (Mnl) and Mn from the Ga sites which leads to low 

activation energy in the former case and higher activation energy in the latter [88]. The 

low temperature annealing affects the lattice constant due to evaporation of excess As 

atoms that form complexes with Mn acceptors [89]. By substituting Mn for Ga in the 

GaAs lattice, Mn acts as an acceptor, mediating ferromagnetism [90]. 
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3.12 The electrical measurements on the GaAs 

There has been considerable interest in the measurement and understanding of 

Schottky contacts on GaAs and related compounds. This is clearly shown by using lSI 

index. Over 1250 papers were found with both Schottky and GaAs in their titles. Rather 

than giving an in depth discussion of Schottky contacts to GaAs a very brief review of 

papers relating to the measurements have been presented below. In many papers [13, 28, 

30,91-93], the temperature dependence of the ideality factors (n) has been explained by 

the "To" effect and the value of "To" determined by plotting n versus 103rr. In the 

following studies the ideality factor and "To" effect have been estimated in the GaAs 

grown by different methods. 

Bengi et at. [91] discussed the electrical characteristic of Auln-GaAs structure. It 

was grown by solid source molecular beam epitaxy (MBE) on Zn-doped (100) GaAs 

substrate and undoped GaAs as a buffer layer. On the top of the buffer layer there was 

layer of Si doped n-type GaAs. The ideality factor ranged between 3.97 and 1.04 at 79 

K and 400 K respectively. "To" effect, which represents a measure of the variation of 

the ideality factor with temperature [30], was observed with a value of "To" as 323.42 

K for Auln-GaAs structure. The temperature dependent behaviour of the ideality factor 

indicates that the thermionic field emission (TFE) is the likely conduction mechanism. 

The high value of the ideality factor at low temperatures suggests that there is a 

recombination of the carriers through the interface states and a potential drop in the 

interfacial layer and a significant difference between the apparent barrier heights 

obtained from forward bias I-V (0.36 eV) and reverse bias C-V characteristics (1.198 

eV) at room temperature. They conclude that the mechanism that dominates the forward 

current is the trap-assisted multistep tunnelling in the GaAs space charge region. 

The current-voltage characteristics of Aul n-GaAs Schottky diodes grown by 

MOCVD method were discussed by Hardikar et at. [92]. I-V characteristics were 

determined at various temperatures in the range of 77-300 K. The barrier height 

estimated from I-V data was 0.89 eV and C-V measurements yielded 1.012 eV for the 

barrier height. While the ideality factor exhibited a To effect with To = 17.1 ± 1.2K, TE 

and TFE were considered possible conduction mechanism. 
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Karatas and Turut [93] determined the barrier heights for n-type GaAs wafer 

from I-V and C-V measurements as 0.88 eV and 1.14 eV respectively. Not much 

information was given about the method of growth except for the surface treatment of 

the samples. In another work Karatas and Altindal [28] reported a value of 473 ± 1.2K 

for To factor. They considered the TFE as the mechanism controlling the current 

conduction. 

There appears to be a considerable variation in the values of To as reported by 

different workers in previous references. The reported values of To given by Rhoderick 

[13] varied from 10K up to lOOK and one of the exp lanations of the variation of To 

value was a non-uniformly doped surface layer. This may be considered as a possible 

reason in the materials under study; one of the results reported in this work is close to 

the value reported by Karatas and Turut [93]. The results of measurements reported by 

some workers are summerised in Table (3.5). 

Table 3.6 Results of some workers for Schottky contact to GaAs. 

Source To effect 
Ideality factor n 

The barrier The activation 
(K) height <Db (V) energy (meV) 

0.36 (I-V) 
TFE and trap-

Sengi et al. [91] 323.42 3.79-\.04 assisted multistep 
1.198 (C-V) 

tunnelling 

Hardikar et al. [92] 17.1 ± \'2K - 1.012 (C-V) TFE and FE 

Karatas and Turut 473 ± 1.2K 0.88 (I-V) 
TFE 

[93] - 1.l4(C-V) 

3.13 The native defects in the GaAs 

The growth temperature varies from 230 °c to 580°C for the GaMnAs samples 

used in this study and so the native defects in LT -GaAs need to be reviewed. 

Deepak and Lakshminarayana [94] believe that the defects in GaAs are native to 

the material. Their model consists of eight types of point defects, the vacancy ofGa and 

As, their antisites and interstitials of Ga and As on both sub-lattices of GaAs. The 

concentrations of the defects are easily affected by to the crystal stoichiometry. It is 

found that in the case of semi-insulating (SI) GaAs, grown under As-rich condition, the 
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concentrations of the defects are very high and pin the Fermi level in the centre of the 

band gap. The electronic structure of GaAs point defects are listed in Table 3.6 

according to the categories listed above where the subscripts represents the site and the 

interstitial II (12) has 4 As (Ga) neighbours. 

Table 3.7 The formation energy and the ionization energy of different defects given in 1941 

Defect VG• VAs Gall Gal2 AS II AS I2 ASGa GaAs 

Formation energy (eV) 4.55 2.97 2.14 2 6.14 6. 14 2.5 2.74 

In another study Nabet et al. [95] discuss the formation of deep traps in GaAs 

grown at low (200°C) and intermediate (400 °C) temperatures by molecular beam 

epitaxy (MBE). They conclud that the current transport in low temperature/intermediate 

temperature grown GaAs is dominated by defects and hopping conduction. They also 

postulate that since GaAs is grown from an As-rich melt, it will incorporate an excess of 

As antisites and interstitials defects. These defects are primarily responsible for 

tunnelling conduction. Such defects are located 0.5 eV below the conduction band. 

Their conclusions are also supported by the findings of other workers. Rubinger 

et al. [96] report hopping conduction among arsenic anti sites defect (AsGa) in LT -MBE 

GaAs samples grown between 265°C and 345 °c. Krambrockt et al. [97] and Look et 

al. [98] suggest the carrier hopping is between ASGa defects. They relate ASGa defects to 

the EL2 defects using magneto-optical and Hall-effect investigation. Hopping 

conduction is also reported by Weber [99] as possible mechanism in LT -MBE GaAs 

due to the existence of high concentration of ASGa defects using magnetic circular 

dichroism (MCD). According to Thomas et al.[100], Arrhenius plot for current

temperature measurements for as-grown LT -GaAs show small activation energies 0 f 

0.07 eV and 0.17 eV for samples grown at 200°C and 250 °c respectively compared to 

0.63 eV to that of SJ-GaAs. They relate the conduction mechanism to hopping. 
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3.14 The study of structural and electrical defects in LT-GaAs and 
GaMnAs 

Several authors have studied defects formed in low temperature (LT) grown 

GaAs films [101-103]. Low temperature (LT) GaAs is grown between 200-400 °c 

[101]. During LT- growth of GaAs defects such as arsenic antisites (AsGa) are created 

with densities around 1020 cm-3 [101]. Despite the high concentration of defects, the 

material behaves in a semi-insulating manner (SI-GaA). So a great majority of these 

defects are arsenic antisites (AsGa) and are neutral [102]. It has been reported that some 

of the ASGa sites are positively charged. The existence of positively charged ASGa sites is 

an indication that the "donor electrons" have been "accepted" at some location in the 

structure. Since Ga vacancies act as triple acceptors (V Ga), these are the most likely 

cause of compensation of ASGa sites [104]. It is believed that compensation results in the 

"pinning" of the Fermi level in the midband region and leads to a semi-insulating (Sl) 

material which is often used as a buffer layer in devices [102]. Salamov et al. [105] 

explain the semi-insulating behaviour of GaAs due to the presence of deep donors 

which results in shifting the Fermi level to the middle of the energy gap causing high 

resistivity properties. 

Gebauer et al. [104] studied vacancy defects in GaAs grown at low temperature 

L T -GaAs by positron annihilation. They found the Gallium vacancies (V Ga) 

concentration to be about 2 x 1018 cm-3 for samples grown at 200°C. This density ofGa 

vacancies (V Ga) was sufficient to compensate the ASGa +, which was found in the L T -

GaAs samples. Annealing at 600°C removed V Ga which was replaced by As -

agglomerates. 

Tanaka [103] reported arsenic antisites (AsGa) in both GaAs and GaMnAs 

materials grown by LT-MBE at 250°C using Hall measurement. While interstitial Mn 

(Mn)) defects with Mn content up to x- 10% had been found in GaMnAs. Both ASGa 

and Mn) acted as donors in GaAs and compensate holes. 
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S.Lee and D.Kim [106] reported metallic bebaviour for Gao.974Mno.026As/LT -As 

epilayer grown on semi-insulting GaAs (0 0 1) substrates by MBE method. They 

measured the resistivity as a function of temperature to prove the metallic conductivity. 

Tuomisto et al. [107] identified the native defects in their GaMnAs samples 

grown by LT -GaAs at temperature 210-240 °c. The Mn concentration extended 

between 0.5-5 %, while the hole concentrations were around 30% of the Mn 

concentration as determined from Hall measurements. These defects were arsenic 

antisites (AsGa) (donor-type) observed by positron annihilation with 1020 cm-3 

concentration and Ga vacancy (V Ga) ( acceptors-type) investigated with infrared 

absorption spectroscopy. The Ga vacancy concentration deceased while ASGa 

concentration increased with the Mn content. 

In another study, Tuomisto et al. reported Ga vacancies in LT-MBE GaMnAs 

layers with Mn concentration between 0.5-5 %. These Ga vacancies had been found in 

p-type material with As antisites. When the Mn contents increased these Ga vacancies 

decreased [51]. 

Different studies indicated that GaMnAs films had high conductivity at high Mn 

concentration while it ranged between metallic and insulating at lower Mn 

concentration. Annealing played an important role in removing defects in these samples. 

The electrical properties of the GaMnAs grown by MBE with Mn contents 

varying between 0.5-8% was discussed by Campion et al. [60]. The structural properties 

of these films were studied by x-ray diffraction, while the Hall measurement was used 

to obtain the carrier density. Their films showed high conductivity due to the reduction 

in both arsenic antisites (AsGa) and interstitial Mn (Mn,) defects. The latter effect was 

due to annealing process and was determined by observing the hole density which was 

reduced due to compensation of donors by Mn. They concluded that GaMnAs film with 

Mn concentration ranged from 1.5-8 % show metallic conduction. The removal of the 

Mn interstitial (Mn,) was related to an increase in Curie temperature after annealing. 
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In another study Campion et at. [49], discussed the procedures of removing the 

defects in GaMnAs film grown at low growth temperature. Among these procedures 

were to grow the films grown near the stoichiometic ratio (As:Ga) to remove ASGa 

defects as well as using As2-dimers for its shorter lifetime compared to AS4- tetramers. 

Annealing at low temperature was used to remove interstitial Mn (MnJ) and Mn at Ga 

site which acted as a double donor in GaMnAs. The annealing process caused the MnJ 

atom to diffuse to the surface where they were oxidized. 

Annealing the LT-MBE GaMnAs grown below 300°C, with Mn content more 

than I at.% had been discussed by Sadowski [50]. The structural defects (AsGa) were 

observed with concentration around 0.5 at. %. While 20% of the Mn content was in the 

form of the interstitial Mn (MnJ) which acted as a double donor and partially 

compensated MllGa acceptor. Unwanted phase like zinc-blende MnAs phase was formed 

as a result of annealing. On the other hand, this increased the ferromagnetic to 

paramagnetic phase transition temperature in the GaMnAs. 
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CHAPTER 4 Setup of the Equipment 

4.1 Introduction 

There are many electrical techniques used for detecting and characterising 

electrical defects in semiconductors. Invariably, these techniques require the 

temperature of the sample to be scanned. This requires the samples to be placed in a 

suitable cryostat. In this thesis, the samples were mounted in a closed cycle Janis CCS-

450 cryostat which allowed the temperature of the device to be varied between 5K and 

475K with the actual temperature being controlled by a Lake Shore temperature 

controller. The temperature controller and the measurement electronics, Keithley 238 

source measurement unit, Boonton model 7200 capacitance meter and Wayne Kerr 

6640B LCR analyser were all computer-controlled using the general Purpose Interface 

Bus (GPIB) for communication. 

4.2 The experimental setup 

All experiments were performed at King Fahd research centre in Jeddah Saudi 

Arabia. The apparatus used for measurements was setup, tested and calibrated during 

the course of the PhD work. The experimental setup used for measuring the I-V-T, C-V

T and F-C-T characteristic is shown schematically in Figure 4.1. Each individual block 

is described in the subsequent sections. 
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Computer I Labview 

Temperature Controner 

---. Cryostat I Sample 

I 
I 
I 
I 
I 

Vacuum System I 
I L __ 

Boonton 
72009 
C. meter 

Keithely 238 
source measure unit 

Wayne Kerr 
Precision Component 
Analyzer 64409 

I I I - - - __ 1 ___ ___ ____ J. _________ -' 

Figure 4.1 The setup of the equipment for this study 

4.2.1 Sample mounting 

8200 Helium 
Compressor 
Janis CT1 r.N'nn~~n 

oil free system 
Janis TP-70·0R 

Closed Cycle refrigerator 
systems 

_ "on" ... rr, Optical Systems 
Janis CCS-450 

Figure 4.2 Closed Cycle refrigerator (CCR) for the system used in this study 

The schematic arrangement of the cryostat, where the samples were mounted, 

and the associated vacuum system are shown in Figure 4.2. A Janis CCS-450 cryostat 

was used and the details are shown in the exploded view in Figure 4.3. The samples 

were mounted on a block inside the cryostat that could be maintained at any temperature 

from 5 K to 475 K on the basis ofa heater / refrigerator principle. Cooling was provided 

by an 8200 Helium Compressor Janis CT I-Cryogenics system which required water 
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cooling. Initially, water from the main water supply of the building was used to cool the 

compressor. However, the temperature of this water was found to be above 32 DC on 

many days . The hot cooling water affected the efficiency of the cooling system and 

hence the overall performance of the system. To solve this problem a closed cycle 

chilled-water system was especially designed and installed which resulted in a more 

efficient cooling. 

Figure 4.3 Closed Cycle Refrigerator Systems from Janis manual (1081 

Since the lowest temperatures attained were close to liquid Helium, IR-radiation 

from the body of the cryostat tended to heat the sample. To circumvent this problem the 

sample holder was surrounded by a jacket that acted as a radiation shield. This jacket 

was also actively cooled to prevent the sample from heating. The vacuum system 

consisted of a turbomolecular pump which was backed by a rotary pump. The ultimate 

vacuum attainable was better than 10-6 Torr. 
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4.2.2 Temperature Controller 

A Lake Shore 331 S automatic temperature controller was used to control the 

temperature of the sample holder block. The equipment was able to stabilize 

temperatures between 5 K and 475 K with an accuracy of about ± 0.25 K This 

controller used a silicon diode as a detector and a 25 n heater. The heater powers are 

250 mW, 2.5 Wand 25 W for low, medium and high heater range respectively. 

4.2.3 Keithley Source measure unit (SMU) 238 

This device integrates both the high voltage source-measure unit (SMU) and the 

current source-measure unit. The Keithley 238 can apply voltage while measuring the 

current response of the device or vice versa. DC I-V characteristics of semiconductor 

devices can be obtained by using Keithley 238. Moreover, the device under test (DUT) 

can be protected from damage by using current compliance limits. 

In order to gain accurate measurements, the transient effects of changing the 

source values need to have died down before the actual measurement is taken. The 

SMU provides a programmable source-delay measure (SDM) cycle which enables the 

source to stabilise before the measurements are taken. Operating functions can be 

selected either dc or sweep operation. In dc operation, just one source measurement 

cycles are undertaken before the data is transferred back to the computer. Since the 

GPIB bus data speed and handshaking is not particularly fast this method is slow. In 

sweep mode, multiple source measurement cycles are performed with the source 

changing after each measurement and the readings are stored internally in the SMU. 

After finishing the sweep, the whole data is transferred back to the computer. The SMU 

can store up to 1000 data points. 

One of the reoccurring problems in the measurement ofI-V characteristics is the 

inclusion of the resistance of the connecting leads. The classic way to overcome this 

problem is the use of 4 wires. The current is applied across the sample using two of the 

wires and the voltage across the device is measured using the other two wires. These 

wires are called the sense. The 'remote sense facility of the SMU implements this 
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measurement topology and allows the voltage to be measured across the DUT thus 

eliminating the voltage drop across the test leads or connections between SMU and the 

DUT. 

4.2.4 7200 Capacitance meter 

A Boonton model 7200, a microprocessor based capacitance meter was used in 

this study. Measurements of fixed capacitors showed that this instrument was very 

susceptible to mains board interference and/or supply voltage fluctuations. 

Consequently, an AC voltage stabilizer was required to clean the mains signal and to 

ensure that the reading is accurate and stable. The equipment measures capacitance 

using a 1 MHz signal with amplitude of down to 5mV. The device calculates and 

displays the series and parallel resistances, series and parallel capacitances, dispassion 

factor and the quality factor. This instrument is also capable of providing a voltage 

(internal bias) for biasing a DUT over a voltage range off 100 V. The accuracy of the 

measured capacitance is better than 0.5% of the measured value. Moreover, it has the 

facility for providing external biases. Stray capacitances can be eliminated from the 

measurements by an automatic zeroing facility. 

4.2.5 Precision Component AnaJysers 66408 

For any passive component, reactance (serial model) or admittance (paraIIel 

model) can be automatically measured as a function of frequency using the precision 

component Wayne Kerr 6640B analyser. It has an operating frequency range from 20 

Hz to 3MHz. The signal level can be chosen from I m V rms to 10 V nns. This is important 

because the measured reactance of a non linear device, like a Schottky diode will be 

averaged over the peak to peak value of the measurement signal. It also has a facility of 

trimming to cancel the stray capacitance or series impedance effects. The purpose of the 

trims and high frequency (HF) calibration is to remove the parasitic inductance, 

resistance and capacitance of the measurement cables from the measured result. Without 

trims and calibration, the measured result will be for the DUT plus the measurement 

leads. For open circuit trim the leads may be arranged so that they are in the same 

position as when they were connected to the device, but with the device removed. To 
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perform short circuit trim, the wires leading to the sample (DUT) are shorted by a wire. 

HF compensation is similar to short circuit trim, but the short is replaced by alSO pF 

capacitor supplied with the 6440B. 

4.2.6 Lab View program 

LabVJow Modulos 
';§-

Operating Compuler f ~ 
~ GPIB C~b"4m 

OPIB Cable 4m 

GPIB 

Boonton 7200 
Keithley 2381E 

Woyno KGrr 6440 B 

Figure 4.4 The arrangement of the GPIB connection 

The general purpose-interface bus (GPIB) is used to send information between 

two devices usually the instrument and the Pc. All the devices are connected to GPIB 

cables. Each device has an address, which is a number from 0 to 30. The important 

messages that the GPIB control carries are programming commands and measurement 

results. The arrangement of the GPIB connection for the devices used in this study is 

shown in Figure 4.4. 

The important step in GPlB control is to initialize the instrument to prepare the 

interface to be ready for operation. The next step is to send the different commands to a 

device. Immediately after an instrument has taken the measurements, these data are 

saved to a file where they can be transferred to a spreadsheet. All these commands are 

carried by the PC through LabView programs. 
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LabView programs are called virtual instruments (VIs). The VIs contain the 

front panel which represents the user interface that allows the user to set appropriate 

device parameters. The other important aspect of the VIs is the block diagram. The 

block diagram contains the objects which can represent either front panel objects, 

mathematical operations, or other Vis and computer interface VIs. By wiring these 

components together a program can be written that performs the necessary tasks to 

control the measurement equipment, retrieve and save the data. The flow charts of the 

LabView programs used in this study are shown in the appendix B, C and D. 

4.3 Verification of experimental setup 

4.3.1 Introduction 

In order to validate the experimental setup used in this study, several 

experiments were performed. The electrical properties of a commercial Silicon (Si) 

diode and a Gallium Nitride blue light emitting diode (GaN blue-LEDs) had been 

studied by current-voltage temperature characteristics (I-V-T), capacitance-voltage 

temperature characteristics (C-V -T) and admittance spectroscopy. 

4.3.2 Si diode 

A set of measurements were undertaken to identifY the electrical properties of a 

Si commercial diode (lN4001). Figure 4.5 (a) and (b) show the measured IV 

characteristics of the diode under both forward and reverse biases. Figure 4.5 (a) shows 

the current plotted linearly and in (b) on a log scale. Since the reverse bias current is 

negative, the modulus has been taken so that it can be plotted on the figure. The 

measurements were carried out at different temperatures in the range 50 to 420 K. 
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Figure 4.S The experimental linear (a) and semi-log (b) in forward and reverse I-V characteristics of the Si 
diode at different temperatures in the range 420-S0K 

The reverse current was in the order of 1 nA at -2 V and 1.3 nA at -3 V at room 

temperature. From simple theory, the reverse bias current should be constant at this 

voltage range. Plotting the I-V-T data on log I-V scale as shown in Figure 4.5 (b) gives 

a straight line relationship at lower forward biases where this region is governed by 

thermionic emission mechanism. 

Table 4.1 Some of the parameters estimated from I-V data shown in Figure 4.5. 

T Is (A) Rs (n) n 

420 4 .6E-06±2E-05 101.7±0.1 1.69±0.0005 

400 1.3E-06±8E-07 103±0.2 1.6±0.0006 

380 3E-07±2E-07 104±0.2 1.56±0.OO05 

360 7.5E-08±6E-08 103±0.2 1.54±0.0005 

340 1.85E-08± I E-08 102.4±0.2 1.57±0.0004 

320 2.5E-09±2E-09 102±0.2 1.5±0.0003 

300 7.3E-I 0±5E- \0 98.5±0.2 1.54±0.OO03 

280 I E-IO±I E-\O 92±0.2 1.55±0.OO03 

260 7.3E-I2±6E-05 87±0.2 1.55±0.OO02 

240 1.2E-I2±2E-12 85±0.2 1.6±0.0002 

220 I E-13± IE-II 82.8±0.3 1.67±0.0002 

200 1.3E-14±3E-14 81±0.4 1.8±0.0005 

150 2E-16±2E-14 76±0.3 2.4±0.0001 

Out of the forward characteristic, the saturation current (Is), the series resistance 

(Rs) and the ideality factor (n) can be found using least squares fit in Origin program. 
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The details of this method are given later. These parameters are listed in Table 4.1. The 

ideality factor is plotted as a function of temperature in Figure 4.6. This diode exhibits a 

lower value of n at higher temperature n=1.5±0.0003 of around 320 K compared to 

around 2.4±0.0001 at 150 K where the current mechanism can be explained on the basis 

ofthermionic emission (TE) and thermionic field emission (TFE). 

2.4 

2.2 

~ 

0 2.0 t5 
~ 

~ 1.8 Cij 
Q) 

~ 
1.6 

1.4 
150 200 250 300 

T(K) 

350 400 

Figure 4.6 Ideality factor versus temperatures for Si diode 

450 

Figure 4.6 shows that the ideality factor n decreases when the temperature is 

increased to 320 K. Above this temperature, it tends to increase again leading to an 

increase in the generation current of the depletion region. This indicates that the 

generation current becomes important at this temperature range. 
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Figure 4.7 Plot of the activation energy as a function of the inverse temperature of forward bias for Si diode 

The diode saturation current Is of a p n junction as a function of the temperature 

is given by equation (2.3). A plot of the natural logarithm of In (l sfT
3

) versus 103fT is 

shown in Figure 4.7. This plot yields a straight line with a slope giving the activation 

energy Ea (~ Eg) equal to 0.65±0.02 eV. This is represented slightly higher than the half 

energy gap of the Si diode (~O.56 eV). 

The estimated energy position of the gold-acceptor level in silicon given by 

Engstrom and Grimmesis [109] is 641 meV. This value compares favourably with the 

calculated value 654 meV. Thus, gold create strong recombination centres [110] . 
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Figure 4.8 In (I) versus In (V) at different temperatures (a) and at R. T. (b) 
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The conduction mechanism in this device was further studied by plotting both 

current and the voltage on the logarithmic scale as shown in Figure (4.8). The linearity 

of the In (I) versus In (Y) plot indicated the presence of space charge limited current 

mechanism at higher voltages. The forward current was related to voltage and took the 

form of (I a ym). The slope m ranged from 1.2±0.003 eV to 1.6±0.OO I eV over the 

temperature range 400 K to 150 K as shown in Table 4.2. 

Table 4.2 The slope between In (I) versus In (V) in Si diode 

T 400 380 340 300 240 200 ISO 

m 1.2±0.003 1.3±0.004 1.36±0.00S 1.4±O.OOS I.4S±0.007 1.5±0.009 1.6±0.001 

The C-Y characteristics of the Si diode have been studied at different 

temperatures. It has been observed that the plot of I/C 3 versus the reverse bias voltage is 

a straight line as in Figure 4.9 while, the plot of I /C2 versus the reverse bias (Y R) does 

not fit to a straight line. Therefore, the junction of the Si diode is considered to be 

linearly graded rather than abrupt. The same result is obtained by Lucia et al. [III], 

using Si commercial diode (IN4001). In addition, C-V plots show that the capacitance 

is strongly dependent on temperature as well as the bias voltage. 

At room temperature, the estimated built in voltage is 0.52 eV as shown in 

Figure 4.10. Close value was obtained by Lucia et al. [Ill] with a value of 0.59 V; also 

similar value for the built in voltage obtained by Sze [6] for Si diode. The silicon diode 

is assumed to be a p + n diode. In this case, a measurement of the capacitance-voltage 

curve contains information about the doping density in the n-type region. Since the area 

of this diode is unknown, the doping density profile cannot be estimated directly from 

the plot I/C3 versusYR. 
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Figure 4.9 The plot of I/CJ versus VR at various temperatures 

-3 .0 -2.5 -2.0 -1 .5 -1 .0 -0 .5 0 .0 0 .5 

Bias Voltage (V) 

1.4ut+33 

1 .20E+33 

1 .00E+33 

a .00E+32 

6.00E+32 

4 .00E+32 

2 .00E+32 

Figure 4.10 The plot between I/C2 and I/CJ as a function of reverse bias voltage 

In order to obtain information about the traps in the energy gap ofSi, admittance 

spectroscopy measurements was performed. The C-F characteristics of the Si diode had 

been investigated at different temperatures Figure 4.11. As discussed in chapter 2 

section (2.4.1), the inflection frequency of these curves could be easily estimated using 

logistic equation (2.58). 
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Figure 4.11 Capacitance -frequency curves temperatures between 300 and 460 K for Si diode 

The activation energy can be determined using equation (2.59), and the final plot 

is shown in Figure 4.12. The estimated value of the activation energy is O.ll±O.03 eV. 
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Figure 4.12 Arrhenius plot to get activation energy by admittance spectroscopy of Si diode 

4.3.3 GaN light emitting diode 

GaN as a direct band gap semiconductor is well suited for light emission. There 

are many applications for GaN blue light emitting diode LEDs. Lighting, displays and 

remote controls are examples of these applications. A light emitting diode (LED) is 

essentially a p-njunction diode [112]. 
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Figure 4.13 The structure of the light emitting diode similar to the Nakamura's device 11131 

The famous light emitting diode fabricated by Nakamura's group is shown in 

Figure 4.13, further description is given in [113] . Two AIGaN layers and one InGaN 

layer sandwiched between p n GaN form the light emitting diode similar to Nakamura's 

device. Most of the light comes from InGaN layer which represents the active region in 

the system, the diode emits blue light with A= 450 nm. The alloys ofGaN (bandgap 3.42 

eV) with AIN (bandgap 6.2 eV) or InN (bandgap 1.9 eV) have small fraction compared 

to GaN. The doping concentrations or thicknesses of each layer are not available for the 

commercial light emitting diode under study. 

The temperature dependence of current-voltage characteristics of GaN blue LED 

is shown in Figure 4.14 (a) and (b) for the temperature range 100 to 460 K. The nature 

of conduction mechanism can be determined from the 1-V behaviour. 
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Figure 4.14 The experimental semi-log forward and reverse I-V characteristics ofthe GaN blue LED at 
different temperatures in the range IOO-440K in linear and logarithm scale 

As expected, the current has a higher value in the case of forward direction and 

increases exponentially with applied voltage until it is limited by the series resistance, 

as shown in Figure 4.14 (a) . In both the forward and reverse bias cases, the IV 

characteristics are temperature dependent. In the reverse bias case, there is little sign of 

the diode breaking down. For example, at room temperature the leakage current is 67.9 

nA at -20 V, which does not show an abnormal increase up to this voltage. 

The forward I-V characteristics of GaN blue LEDs were analysed to determine 

the ideality factor and the saturation current. These were obtained from fitting a straight 

line to the linear regions of the log (l)-V curves at each temperature in Figure 4.14 (b) 

by the least square method using the origin program. The slope gives the ideality factor 

and the intercept on the current axis the saturation current. 

The ideality factor n was found to vary between l2±0.001 and 3.4±0.002 

between 1 00 K and 440 K. Therefore, this diode shows non-ideal behaviour because n is 

much higher than unity. The variation of the ideality factor n with temperature is shown 

in Figure 4.15. The curve shows that the ideality factor n is temperature dependent over 

the measured range of temperature. 
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Figure 4.15 The ideality factor (red) and series resistance (blue) versus temperature for CaN·LED 

Shah et al. [114] measured the ideality factors for three commercial GaN- based 

blue LEOs. They found that the ideality factors for these diodes were 3.2, 4.7 and 7.4. 

These values are close to the ideality factor measured for the device under study with a 

value of 4.7± 0.002 at R.T. The high ideality factor is attributed to the sum of the 

ideality factors of the individual rectifying junctions with n=Lj nj [114]. The ideality 

factor of the rectifying junctions for GaN-LED device consists of the p-n junction, the 

hetrojunctions and the metal-semiconductor junctions represented by nj . 

One of the quantitative attempts to explain the abnormally high ideality factor 

was given by Oi Zhu et al. [115]. They attributed high n (n>2) in GaN-LEO to both trap 

assisted tunnelling and carrier leakage mechanisms. 

In another study, Yang et al. [116] represent the total current injected into 

InGaN active regIon with radiative recombination current IR, and nonradiative 

recombination current lNR. The threading dislocation density of 108- 10 II cm - 2 is 

present in commercial Ill-nitride LEOs which tends to act as nonradiative 

recombination centres in the device [117]. 

The series resistance was obtained from the linear part of forward bias I-V plot 

which occurred at higher voltages where the current through the diode is limited by the 

series resistance Rs. The variation of the series resistance Rs with temperature is also 
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shown in Figure 4.1S. Its value ranges over 1380±37 .Q to 167±S n over a temperature 

range 100-400 K. In view of the results of Figure 4.1S one notes that the ideality factor 

and series resistance are strong functions of temperature. 
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Figure 4.16 J-V characteristic of the GaN-LED with the series resistance Rs (black dots) and the effect of series 
resistance removed (red dots) at room temperature 

The plot of the forward I-V characteristics of GaN blue LEOs corrected for the 

series resistance at room temperature is shown in Figure 4.16. It is observed that the I-V 

characteristics are linear over several order of magnitude of the current. Since the 

ideality factor was found at low bias currents, the effect of the series resistance should 

be very small. This was verified by fitting the I-V curves after removal of the effect of 

the series resistance. 

The temperature effect on the saturation current was discussed by Sze [6] . The 

equation which relates the Is/T3 versus lIT should give a straight line with slope giving 

the band gap. For the device under study this relation is not valid due to the complicated 

structure which involves several hetrojunctions. The plot log (I) versus liT is straight 

line at high temperature range at several fixed biases. The activation energy has been 

determined for forward biases from 1.4 V to 2.S V using Arrhenius plot as shown in 

Figure 4.17. The activation energy is determined from the slopes of these curves; its 

values range from 0.28±0.01 eV at low forward voltages to 0.2±0.0003 eV at high 

forward voltages. These values compare favourably with the calculated value 0.27 V 

from C-F measurement as will be seen later. 
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Figure 4.17 The activation energy determination at different fonvard biases 

Simple p n junction theory predicts that the reverse bias current is given by the 

junction saturation current and is independent on bias until the junction begins to 

breakdown. However, the structure of GaN LEOs is complex. In the active layer, there 

are multiple InGaN recombination layers and probably an AIGaN barrier layers which 

aid the capture of carriers into the InGaN recombination layer [113]. These layers may 

also play an important role in the reverse characteristics of the diode. Barriers in both 

the conduction and valance band associated with the InGaN layer and the AlGaN could 

be the limiting factors to the reverse bias current. This is very similar to the Schottky 

diode. 
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Figure 4.18 (a) The capacitance versus voltage in both forward and reverse biases at different temperatures 
and (b) IIC2 versus VR measured for GaN-LED 
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The capacitance versus the voltage in both forward and reverse bias is shown in 

Figure 4.18 (a) which does not show linearity. While lIC2 varies linearly with V R as 

shown in Figure 4.18 (b). 
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Figure 4.19 The plot of I/e2 versus VR at room temperature 

The plot of lIC2 versus VR at room temperature is shown in Figure 4.19. There 

is a linear behaviour between l /C2 and YR. By using equation (2.43) one can obtain the 

doping concentration ND. The area of this device is not known. Therefore, it is difficult 

to estimate the doping concentration for the device under study. The intercept on the x

axis at a voltage VO=Vd- kT/q gives diffusion potential at around 2 eV. The diffusion 

potential ranges from 2.3 eV at 100 K to 1.8 eV at 420 K. This is low compared to the 

bandgap ofGaN, which appears to indicate that the edge of the depletion region is in the 

InGaN layer. 

The admittance spectroscopy measurements were made at frequencies ranging 

from 20 Hz to 3 MHz and these were used to characterize the traps present in the 

sample GaN diode. Figure 4.20 shows the capacitance spectra of the device at zero 

voltage bias and temperatures between 100 and 480 K. Similar spectra of the blue GaN

LED was observed by Zohta et al. [118]. We can estimate the activation energy using 

admittance spectroscopy as shown in Figure 4.21. In Figure 4.20 at any frequency the 

capacitance increases with temperature increase, and at any temperature, the capacitance 

decreases with frequency increase. At lower temperature range, the capacitance at low 
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frequency range seems to be constant, and at high frequency range, the capacitance 

decreases with increasing frequency. Conversely at higher temperature range, the 

capacitance at lower frequencies decreases with frequency increase while it approaches 

a constant value at higher frequencies. 

9.00E-11 
8.S0E-11 
8 .00E-11 
7.S0E-11 

7.DDE-11 

6 .S0E-11 
6 .00E-11 

G:" S.SOE-11 
0-

f.] S.00E-11 

4.S0E-11 

4.00E-11 

3 .S0E-11 
3.QOE-11 

2.50E-11 

'" 

2 .00E-11 +---r-..-.-. ....... r--.,.....,...,....,.,...,.~.--.-......... '"'---.-................ ....----.-........ .".,..--........ 
10 100 1000 10000 100000 1000000 

Log F(Hz) 

Figure 4.20 Capacitance -frequency curves temperatures between 100 and 480 K for GaN-LED 

The inflection frequency 000 of Figure 4.20 can be determined by using the 

logistic equation at temperature 100-480 K. The inflection frequency is related to the 

emission rate of carriers from the traps (en) by equation (2.59) . Activation energy can be 

determined from the slope of In wo/T2 as a function of liT; it has a calculated value of 

0.27±0.01 eV. The depth of the Mg in GaN is between 120 and 300 meV [119] . 
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Figure 4.21 Arrhenius plot to get activation energy by admittance spectroscopy of the GaN (LED) device 
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Zohta et al. [118] have given a value of 70 meV which they consider to be low. 

According to them the value should be around 150 meV for the activation energy of 

ho les from Mg acceptors. 

The numerical simulations of AIGaN/lnGaN performed on double

heterostructure light-emitting diodes by Shah et al. [113] for the band diagram are given 

in Figure 4.22. Barriers in both conduction band and valence band associated with the 

InGaN and AIGaN layers could be the limiting factors to the reverse bias current. 

According to the band diagram the conduction bands' edges display spikes through 

which charge carriers tunnel, these spikes also act like Schottky barrier. The capacitance 

behaviour comes from these spikes. A total number of 4 junctions shown in Figure 4.22 

contribute to the ideality factors [113]. The value of high ideality factors due to 

recombination is the most probable reason. The threading dislocations also playa role 

acting as the recombination centres. According to Shah et al. [113] , recombination in 

the active region (lnGaN) will be the most probable causes for the current at low 

voltages, while at high voltages the current mechanism is due to both the recombination 

in the active region as well as thermionic emission out side the active region. 
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4.3.4 Conclusion for Si diode and LED-GaN diode 

The I-V-T studies on Si diode (lN4001) give an activation energy ofO.65±0.02 

eV. C-V-T measurements give a built-in potential 0.52 eV. This compares favourably 

with 0.52 e V reported by Lucia et a1. [111] for similar diodes. Also the lIC3 
- V R plots 

give straight line indicating a linearly graded junction also in argument with Lucia's 

result. Admittance spectroscopy measurements indicate the presence of a trap level at 

0.11±0.03 eV. 

From the I-V characteristic of the blue LED the ideality factors and series 

resistances have been detennined over a wide temperature range. Both exhibit a 

decrease over the temperature range of 100 K to 380 K. Their values vary from 10.98 to 

3 for the ideality factor, and 1000 n to 200 n for series resistance, respectively. The 

conduction mechanism varies from thermionic field emission to thermionic emission. I

V characteristic have been used to detennine the activation energy which varies from 

0.28±0.01 eV at 1.6 V to 0.2±0.0003 eV at 3.5 V. The activation energy determined 

from admittance spectroscopy is 0.27±0.01 eV. This compares favourably with the 

activation energy obtained from the I-V characteristic. 
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CHAPTER 5 Measurement Results of GaMnAs 

5.1 Introduction 

This chapter presents the results of a study into the electrical properties of GaAs 

p n diodes that were fabricated using Mn as the p-type dopant. These epitaxial thin 

films were grown in the Physics Department of the University of Nottingham. To 

achieve the necessary Mn doping the p-type layers were grown by MBE at low 

temperature. More details of the growth are discussed in reference [60] and they have 

also been presented in the literature review chapter. 

GaAs and related alloys are well known to suffer from defects which cause 

persistent conductivity especially at low temperatures [120]. These defects are usually 

referred to as DX centres. One result of these defects is the variability of 

characterization results. To overcome this problem, the DX traps need to be thermally 

emptied before the experiment begins by elevating the temperature of the sample so that 

any trapped charge is thermally released. Consequently, the I-V-T, C-V-T and F-C-T 

measurement were performed from 400 K down to 15 K in predetermined steps, the 

samples were then heated back to 400 K while the I-V, C-V and F-C measurements 

were repeated. 

One additional complication, which needs to be considered, is the ionization 

energy of the Mn acceptors. The reports in literature suggest an activation energy of 112 

meV [121]. This is a large activation energy compared to other acceptors in GaAs. For 

example the activation energy of Be, a common p-type dopant, has an activation energy 

of 20 meV [122]. The Mn acceptors will begin to freeze out at significantly higher 

temperatures than the Si n-type dopant and so the nature of the junction may change as 

the temperature is reduced. 
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In this chapter, the electrical characteristics of GaMnAs are reported. The I-V, 

C-V and C-F data are then analysed using different "models" in order to obtain 

information about the different effects occurring in the sample, which may have caused 

the observed non-ideal behaviour of these devices. 

5.2 Device Fabrication 

Figure 5.1 shows a schematic diagram of the device geometry. The growth 

sequence consisted of n + - GaAs substrate onto which was deposited a 100 nm thick 

GaAs buffer layer doped with 2xlO l8 cm-3 Si and grown at 580°C. This was followed 

by a 700 nm thick n- layer, doped with 2xlOl 7 cm-3 Si, grown at 580°C. Finally, a 500 

nm GaAs Mn doped layer was grown at 3 different temperatures and concentrations 

which resulted in p-type conductivity. The doping levels of the GaMnAs film are shown 

at 300 K in Table 5.1 , along with the growth temperature as well as the hole 

concentration estimated from the theoretical calculations, (see section (5.3)). The 

doping levels shown in the Table 5.1 are the atomic doping levels estimated from the 

atom beam flux. 

chouL:: t t ~ con ac 
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1///1 

500 nm p·'YPe GaAs-Mn 

700 nm n-type GaAs-SI 

1 00 nm GaAs-Si (buffer layer) 

n' -GaAs (Substrate) 

V L/J 

Oh mic contact I 

Figure 5.1 Schematic drawing of the device geometry of the GAMnAs film 

The doping levels of the GaMnAs film are shown at 300 K in Table 5.1 , along 

with the growth temperature as well as the hole concentration estimated from the 
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theoretical calculations,(see section 5.3). The doping levels shown in the Table 5.1 are 

the atomic doping levels estimated from the atom beam flux. 

Table 5.1 Doping levels of samples 

Sample Physical doping Growth Hole concentration at R. T. (cm'3) (the theoretical 
number (cm'3) temperature (0C) calculations in secti on (5 .3» 

374 1021 230 2.4x 10 19 

375 1020 380 7.4x10 18 

376 10 19 550 2 xl0 18 

-JJ -

Mn Composition x in GaMnAs 

Figure 5.2 Schematic diagram of properties of GaMnAs films in terms of substrate temperature and Mn 
concentration provide a rough guide 143) 

Figure 5.2 shows the phase diagram of GaMnAs films grown by LT-MBE 

method in terms of substrate temperature and Mn concentration. At very low 

temperatures the mobility of the As and Ga atoms on the surface of the GaAs is very 

poor and the GaAs is polycrystalline. At high temperatures, the size of the crystallites 

increase and the fmallayer becomes rough. 

Three different Mn concentrations were used to dope GaAs films, 1019
, 1020 and 

10
21 

cm,3 which corresponded to an atomic percentage (x) in the range 0.02 to < 0.08 

[58]. Zhao at al. [123] , study the structural properties of their GaMnAs films using 

high-resolution x-ray diffraction. According to them, results show a high crystalline 
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quality of the structure with x value range between 0.02 and 0.08. Although the samples 

under study have a similar range of atomic percentage, there is no experimental 

evidence ofthe structure quality of these films. 

The top circular metallisation was 1 mm in diameter and was deposited in a 

thermal evaporator and the pattern was defined using a shadow mask. To achieve 

isolation between the samples, the top metallization was used as an etch mask. The etch 

depth was approximately 111m. The N-type metallisation was placed on the backside of 

the heavily doped substrate. This made a device nominally in the form of a p n junction 

between the n-type Si doped layer and a p-type Mn doped layer. 

Once the devices were fabricated, the sample was stuck onto a T05 header with 

conducting silver loaded epoxy. Therefore, to forward bias the device the pin was 

connected to the positive terminal of the voltage source and the case to the negative 

terminal. 

The packaged GaAs-Mn /GaAs-Si diodes were mounted in the cryostat and the 

appropriate measurements were made. The measurements were repeated at least three 

times in order to ensure the results were repeatable. The samples were biased with 

Keithley 238 source measure unit. The maximum applied voltage was 3V in case of 

forward direction whereas it was -5V for reverse direction. The characteristics were 

observed over a temperature range (l5-400K). 

Assuming full activation of the dopants, the p-type is more heavily doped than 

the n-type (NA> ND). Therefore, the charge concentration in the depletion region is 

higher in the p-side of the junction than in the n-side. Consequently, the depletion 

region extends mainly into the low doped n-type side. 

5.3 Estimation of hole concentration 

Theoretical analysis of the position of the Fermi level and the hole 

concentrations used in this study is presented in this section and is based on the basic 
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semiconductor equations given in [6]. The following charge neutrality relationship can 

be detennined by considering a uniformly doped semiconductor 

(5.1) 

nand p are the electron and hole densities In the conduction and valence band 

respectively given by: 

( 
E -E ) n = N c exp c kT F (5.2) 

(5.3) 

The concentration of ionized donors (No +) and the ionized acceptor (N A) are 

given by: 

(5.4) 

(5.5) 

In these equations Ec, Ev, EA and ED are the energies of the bottom of the conduction 

band, the top of the valence band and the energy of the acceptors and donors levels 

respectively. State "g" is the degeneracy factor which is 4 for the acceptor atom and 2 

for donors [6]. 
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Rewriting the neutrality condition of equation (5 .1) we can get the exact position 

of the Fermi level on the energy band diagram by numerical iteration. Equation (5.1) 

can be solved for the Fermi level EF by substituting the following parameters [6]; the 

effective density of state in conduction band Nc = 4.7x JOI7 cm,3 and the effective 

density of state in valence band Nv =7x JOI 8 cm,3 and the activation energy Ea = 0.1 eV. 

It should be noted that these equations ignore any impurity band formation that 

may occur in heavily doped semiconductors. Therefore, the results should be viewed 

with some caution. In addition, in this analysis we are assuming that all the atoms are 

involved in doping i.e. all atoms are substitutional. 

5.3.1 Determination of the hole concentration and Fermi level for Mn (374) Device 

Figure 5.3 and Figure 5.4 show the variation of the hole concentrations p and the 

Fermi level EF with the temperature respectively for sample Mn374. As expected, the 

hole concentration p increases with increasing temperature. It can be seen from Figure 

5.4 that the Fermi level is located above the valence band until 200 K. For temperatures 

greater than 200 K, the Fermi level moves inside valence band making the material 

degenerate. Assuming all atoms are substitutional i.e. all the atoms are involved in 

doping. 
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Figure 5.3 The calculated hole concentration as a function of temperature 
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Figure 5.4 The Fermi level position as a function of temperature, presenting the degeneracy region after 200 
K. Zero energy is considered to be the top of the valence band 

At room temperature, the hole concentration p is equal to 2.4 x 10 19 cm·3 which 

corresponds to about 2% of ionized impurities of Mn atoms of a total doping 

concentration oflxl021cm-3 (see Table 5.1). 
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Figure 5.S The hole concentration as function of the inverse temperature 

The Arrhenius plot of the hole concentrations p as function of inverse 

temperature is shown in Figure 5.5. The hole concentrations p is strongly temperature 

dependent. The activation energy estimated from the slope of this plot is found to be ~ 

50 meV (plotting equation (2.19)). Similar value of the activation energy has been 

obtained for the other samples. 
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Figure 5.6 The energy band diagram at room temperature for GaMnAs Mn (374) diode 

The energy band diagram for Mn (374) device is drawn by using the Matlab 

program as shown in Figure 5.6, which shows the material degeneracy. The full details 

of the program and the equations related to the Matlab program is given in appendix A. 

This program displays data graphically and is used to draw the energy band diagram 

produced in this study. 

5.3.2 Determination of the hole concentration and Fermi level for Mn (375) Devices 

The hole concentrations p and the position of the Fermi level EF are determined 

with the same method used in the previous section 5.3.1) and are shown in Figure 5.7 

and Figure 5.8 respectively. The hole concentrations (p) for the Mn (375-1) device 

shows the same trend as the Mn (374) device, where hole concentrations p increases 

with increasing temperature as shown in Figure 5.7. The Mn (375) device also presents 

degeneracy condition as Mn (374) device but the Fermi level EF location is above the 

valence band Ev until 300 K as shown in Figure (5.8). Above this temperature, the 

Fermi level will be lower than Ev. However, this will be evidence of the degeneracy 

state. 

The hole concentrations p at room temperature is shown in Figure 5.7 which is 

equal to 7.4 x 1018 cm-3 and corresponds to about 7% of ionized impurities ofMn atoms 

ofa total doping concentration of 102ocm-3
• 
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Figure 5.7 Hole concentration versus T of Mn (375-1) device 
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Figure 5.8 The Fermi level position as a function of temperature, presenting the degeneracy region after 300 
K. Zero energy is considered to be the top of the valence band 

The energy band diagram for Mn (375) device is drawn at room temperature by 

usmg the Matlab program as shown in Figure 5.9, which shows the material 

degeneracy. 
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Figure 5.9 The energy band diagram at room temperature for GaMnAs Mn (375) diode 

5.3.3 Determination of the hole concentration and Fermi level for Mn (376) Devices 

The position of the Fermi level EF and the hole concentrations p are determined 

using the same method as in the previous section (5.3 .1) and are shown in Figure 5.10 

and Figure 5.11 respectively. The hole concentrations (p) for the Mn (376-1) device 

shows the same trend as the Mn (374) and Mn (375) devices where hole concentrations 

increase with increasing temperature as shown in Figure 5.10. Unlike Mn (374) and Mn 

(375), Mn (376) does not present degeneracy condition, as the position of the Fermi 

level EF is above the valence band Ev for all temperatures studied as shown in Figure 

5.11. 
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Figure 5.10 The calculated hole concentration as a function of temperature for Mn (376-1) device 
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The hole concentrations p at room temperature is shown in Figure 5.10 which is 

equal to 2 x lOI S cm-3 and corresponds to about 20% of ionized impurities of Mn atoms 

of a total doping concentration of 10 19 cm-3
• 

0.050 
MnQlc~ .= I x 1 019 em J 
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Figure 5.11 The Fermi level position as a function of temperature, which is above the valence band 

The energy band diagram for Mn (375) device is drawn by using the Matlab 

program as shown in Figure 5.12. It was found that the position of the Fermi energy was 

just in contact with the top of the valence band which demonstrated that the material 

was not degenerate. 

Ec-----------, 

Ei ---------------------------

_________________ ~================= Ec 
Ev 

EF 
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Figure 5.12 The energy band diagram at room temperature for GaMnAs Mn (376) diode 
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5.3.4 Determination of the electron concentration and Fermi level for Si-GaAs 

The position of the Fermi level EF as a function of the temperature is determined 

using the same method as in the previous section 5.3.1) and is shown in Figure 5.13. 
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Figure 5.13 The Fermi level position as a function of temperature, which is inside the conduction band for the 
Si-GaAs. Zero energy is considered to be the bottom of the conduction band 

According to the theoretical calculation, the electron concentration n equal 2 x 

1017 cm-3 at all the temperatures. The calculated value is equal to the doping 

concentration of Si in GaAs (2 x 1017 cm-\ This indicates that the Si atoms begin to 

ionize around 70 K due to their small activation energy - 5.8 meV [6]. 

5.4 Using the Simulation program to determine the band diagram 

Online simulation program from the network for computational nanotechnology 

(NCN) team [124] is used to draw the band diagram which is given in Figure 5.14. It 

utilizes the equations which have been developed in section (5.3) to estimate the 

position of the Fermi level of this material depending on the concentrations of the 

donors and acceptors. The band diagram shows clearly the degeneracy of the material. 

This result compares favourably with the Matlab program presented earlier in section 

(5.3 .1). In addition, the band diagram at 77 K can be determined. This is shown in 

Figure 5.15. 
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Figure 5.14 The band diagram given by the simulation program for Mn (374) device at RT 
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Figure S.IS The band diagram given by the simulation program for Mn (374) device at 77 K 

In addition, the simulation program gives the depletion layer width. As expected 

the depletion layer on the p-side is only 0.02 run compared to 106 nm on the n-side. The 

hole concentration and depletion width sizes at RT (300 K) are given in Table 5.2. 

Table 5.3 shows how these parameters vary with temperature for Mn (374). 

Xa= 106 nm 

I' 1 I I( .' 1 . " .' III 1 . 

Xp= 0.02 nm 

Figure S.16 The depletion layer n1dth between p and n side Mn (374) device using the simulation program 
11251 
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Table 5.2 The depletion width sizes and the barrier height at RT (300 K) as calculated from the simulation 
program for all devices 11251 

Sample number Mn con . (em·3) Xp (nm) Xn (nm) <i>b (eV) at R.T.(s imul aiion) 

374 1021 0.02 106 1.54 

375 1020 0.21 103.4 1.48 

376 10 19 2 100.4 1.42 

Table 5.3 The ionized impurities atoms concentration, depletion layer on the nand p-side and the barrier 
height as calculated from the simulation program for sample Mn (374) 

T ionized impurities (em·3) Xp(nm) Xn(nm) <I>b (eV) at R.T. (simulation) 

100 5xl0 17 33 83 1.34 

150 3.5x I 0 18 5.6 97.7 1.4 

200 9x l0 lR 2 100 1.4 

250 1.6x l0 19 1.4 101 1.43 

300 2.4x1019 0.9 101.8 1.44 

350 3xl0 19 0.7 102 1.45 

400 3.8x10 19 0.5 102.4 1.45 

5.5 Possible models to analyse the results 

Before analysing the results, possible material models are discussed. This allows 

different models to be applied to the measurements and conclusions drawn. 

The I-V characteristic would be determined by the nature of the contact on either 

side of the GaAs: Mn active layer. The activation energy ofSi in GaAs is extremely low 

- 0.0058 eV [6]. It is expected that all Si-donors would be ionized from around - 70 K 

and above and the Si doped GaAs will behave like a metal. The base layer of GaAs is 

doped with silicon having concentration of 2x 10 17 cm,3. At this concentration, the 

calculations show that GaAs is an n-type degenerate material with the Fermi level 0.02 

eV deep inside the conduction band presented in section (5.3.4). 

The GaMnAs layer have been grown at low temperature (LT) which results in a 

high concentration of defects [95, 101 , 104] and exhibits a donor type character [63 , 

126]. Mn form deep acceptors in GaAs with an activation energy (112 meV [121]) and, 

the electrical character of the GaAs:Mn layer will be determined by the relative 

population of ionized unintentionally doped (u.i.d.) donors ND and intentionally doped 

Mn (NA). 
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Three possible scenarios can be identified; 

1. For No> NA then the material will be n-type. 

2. For No;:::: NA then the material will be an insulator. 

3. For No < NA then the material will be p-type. 

An energy band model based on each of these conditions has been constructed 

and attempts have been made to analyse the results on this basis. 

Model one: Schottky model. 

If No > NA, the structure will then look like n-GaAs: Si / (u.i.d.) n-GaAs / 

Schottky contact as shown in Figure 5.17. 

n-type (u .i.d .) 

n·type GaAs:Si 

Figure 5.17 Schottky diode model 

The suggested energy band diagram is given in Figure 5.18 (a), which shows the 

formation of the Schottky contact between the metal and the GaAs: Mn layer on one 

side and an (n- n+) junction with GaAs: Si on the other. The I-V characteristic obtained 

would be like the one in Figure 5.18 (b). 
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Figure 5.18 The band diagram for n-type Schottky diode 

The C-V characteristics will be very similar to the CV of a p n diode and 

Schottky diode. Starting from the reverse bias condition, the capacitance should 

increase as the voltage across the diode approaches zero. As the bias becomes forward 

bias, the capacitance should continue to rise. 

Model Two: Insulator model. 

As the concentration of donor ND approaches NA, the material approaches a near 

complete compensation making the GaAs: Mn layer semi-insulting (SI) with the Fermi 

level in the middle of band gap. The structure of the device will look more like that 

shown in Figure 5.19. 

51- GaAs:Mn 

n·type GaAs:Si 

Figure 5.19 Insulator model 

The electrical characteristic may be analysed in terms of Poole- Frenkel (P.F.) 

and space charge limited current (SCLC) mechanisms. The possible energy band 

diagram is given in Figure 5.20. The Fermi level (EF) is located in the middle of the 

energy gap. 
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1. 42 eV 61ffev------- E~ 

Ec 

5 1- GaAs 1. 42 eV 
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n- type 

Figure 5.20 The band diagram for the insulator model which shows the EF in the middle 

In such a situation SI-GaAs: Mn layer makes a Schottky contact with the top 

metal electrode and a n + intrinsic GaAs contact on the back side. When a voltage is 

applied across the diode most of the voltage will be dropped across the insulating Mn 

doped GaAs. The capacitance will be approximately constant. 

Model Three: The Standard pn junction 

Should the concentration of acceptors NA exceed ND, the GaAs:Mn layer will 

become p-type making the device structure as shown in Figure 5.21. In this case, p-type 

and n-type layer would form p n junction. 

P-type GaAs:Mn 

n-type GaAs:51 

Figure 5.21 Simple p n j unction model 

This leads to two possibilities: 

1. If the top contact behaves as an Ohmic contact, the device is s imply a p n + 

junction. 
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2. However if the contact is a Schottky contact the device structure would be 

more like a back to back contact which is presented as model (4) . 

The possible energy band diagram is gIven m Figure 5.22 (a) for the p + n 

junction. The I-V characteristic obtained would be like the one in Figure 5.22 (b) . 

p n junction~ 
diode ~ 

Ev-----.---------
J(A) 

1. 42eV EF _________________ _ 
-------

Ec ----~--------__ 0.02 eV 

P-type 
1. 42eV 

----::t''----+V(V) 

(a) 
(b) 

n-type 

Figure 5.22 The band diagram for simple p n junction model 

The CV characteristic will be the standard one associated with p n diodes. A 

general increase in capacitance as the applied potential is increased. 

Model Four: The back-to-back model 

There also exists a possibility of achieving a device with a p n junction on one 

side and a Schottky contact on other side. The structure of the device is shown in Figure 

5.23. 

p..type GaAs:Mn 

Mype GaAs: S 

Figure 5.23 The back-to-back model 
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The only way the observed I-V characteristic can be obtained is if cD m < cDs in 

which case the band diagram will be as shown in Figure 5.24. The metallic contact to p

type GaAs:Mn would be a Schottky contact for holes. 

Schot1ky p n junction 

dlOde-t<J------Ct--diode 

Ev 

n-Iype 

Figure 5.24 The band diagram for back-to-backjunction (degenerate GaAs: Si) 

Such a contact would exhibit rectifying properties. The metallic electrode is 

Schottky, while GaAs:Mn and GaAs:Si is the bottom electrode. Defining the forward 

bias condition to be when the top electrode is positive. In this model, in the forward bias 

the current is limited by reverse Schottky while in reverse bias the current is limited by 

reverse p n junction. In the highly unlikely case of GaAs:Si layer behaving as a non

degenerate material the two corresponding band diagram changes, and is shown in 

Figure 5.25. 

SchoUky p n Junction 

diode-t<J------Ct--diode 

Ec 
-------- E .. 

1.42 eV 

--"'----- E" 

n-type 

Figure 5.25 The band diagram for back-to-back junction (non-degenerate GaAs: Si) 
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The devices studied have three different concentrations of Mn doping. They vary 

from 10
19 

to 1021 cm-3 and the growth temperature varies from 230 °c to 580 °c as 

shown in Table 5.1. 

The I-V responses of the three devices have been analysed using these models. 

Theoretical analysis is used to calculate the Fermi level in the various samples. 

In the back-to-back diode model, the measured capacitance will be the series 

combination of the capacitance associated with the Schottky diode and the p n junction. 

The resulting capacitance will decrease as the magnitude of the bias is increased. When 

the diode is "forward bias", the depletion region of the Schottky diode will increase and 

so the measured capacitance will reduce. Similarly, when "reverse bias" the depletion 

region associated with the p n junction will increase and the overall measured 

capacitance should again decrease. 

When analysing the results from devices made from the different wafers, the 

difference in growth temperature may playa pivotal role in determining the I-V-T and 

CV characteristics of these devices. As the concentration of Mn decreases, the growth 

temperature increases. The growth temperature plays a significant role in the type and 

concentration of the grown in crystal defects. This will make a simple comparison 

difficult. 
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5.6 Comparison of the samples with different Mn concentrations 

-.- sample 374 at 300 K 

- .- sample 375 at 300 K 
- .&.- sample 376 at 300 K 
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Figure 5.26 Comparison of the samples with different Mn concentration at 300 K 

Figure 5.26 compares the room temperature I-V characteristic of the GaMnAs 

samples to different doping levels. Current through these devices does not follow a 

pattern. For example, Mn (374) device which has the highest doping level of the 

GaMnAs film exhibits the highest current in reverse bias, while sample Mn (376) 

displays the lowest current with the lowest doping level. The forward current is 

dependent upon the doping concentration through the saturation current 1 s which in tum 

depends upon the barrier height <Db and the Fermi level EF, which is a function of the 

doping concentration. 

The saturation current Is is related to the acceptors and donors concentration 

respectively, through the equation (2.2). Such a correlation is not observed from 

experimental data. 
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5.7 I-V-T behaviour of Mn (374) device 

For Mn (374) device which has the highest doping level of all the diodes studied 

with 10
2 1 

cm-3 Mn's concentration, the current-voltage-temperature measurements were 

made for both the forward and the reverse directions and are shown in Figure 5.27 

ranging from 400 K down to 15 K. 
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-0.02 -T=400 K --T=400 K 
- T=300 K ---T=300 K 

-0 .03 --1"=240 K -,"-T=24O K 
__ T=200 K _ T=200 K 

-0.04 -.-T=100 K - T=100 K 
~T=50 K - T=50 K 

-0.05 T=15 K T=15 K 

I i i 
-6 -4 -2 0 2 4-6 -4 -2 0 2 4 

(6) V(V) (b) V( ) 

Figure 5.27 Current-voltage curve for GaMnAs (Mn374) device 

Figure 5.27 presents the typical I-V behaviour of the GaMnAs p n junction with 

soft forward and reverse bias characteristic. The general shape of the I-V characteristic 

for sample Mn (374) is not symmetric. Interestingly the higher values of current occur 

for negative voltages. In reverse direction, the current increases considerably with the 

applied bias, while in the forward direction the current variation with the applied bias is 

remarkably less. Specifically, at 3 volts the current was near 5 rnA meanwhile, it 

reaches 15 rnA at -3 volts. This indicates that the mechanism determining the current for 

both polarities is not the same. 

The I-V -T characteristics were processed further by plotting the log I against V 

as shown in Figure 5.27 (b) to extract different parameters for the device under study in 

the temperatures range 15-400 K. The ideality factor (n), the saturation current (I s) and 

the series resistance (Rs) were found by fitting the equation as developed in chapter 2 as 

equation (2.15). 
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Nonlinear least squares fitting (NLSF) method usmg the Origin program was 

performed to extract these different parameters. This program is a software application 

that provides data analysis as well as graphing capability [127]. The plot has been 

checked manually by plotting equation (2 .13) and was found to give identical results. 

The values of n, Is and Rs are consistent with temperature variation and similar to 

values reported by other workers. The fitting at room temperature (a) and 200 K (b) is 

shown in Figure 5.2S. The same method is used to determine these parameters for all 

devices under study. 
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Figure 5.28 The applied forward bias against current (a) at room temperature and (b) at 200 K. The graph 
shows the fitting applied to equation (5.6) (red lines) for Mn (374) device. 

Table 5.4 Some parameters calculated for Mn (374) device when in forward bias 

T KT/q n Eo=nkT/q Is (A) R (Q) 

300 0.026 2S.7±0.02 0.66 0.OOO9± IE-S 39± 14 

2S0 0.024 24.2±0.01 0.59 0.OOOI ±SE-5 70.9±11.5 

260 0.022 23 .8±0.01 0.53 0.OOOO8±3E-S 97±9.7 

240 0.021 23.7±0.00S 0.49 0.OOOO6±2E-5 126.5±S.7 

220 0.019 24.3±0.007 0.46 0.00005± I E-5 154.7±S.S 

200 0.017 24.6±0.006 0.42 0.OOO03± I E-S 197.8± 10 

150 0.013 26±0.009 0.34 0.00001±SE-6 329.3±20 

100 0.009 3 1.5±0.0 I 0.27 4.6 x 10-6±SE-6 4S9±32.S 

SO 0.004 65 .S±0.01 0.28 5 .2x I 0-6±6E-6 478.9±39 

IS 0.001 2IS±0.0l 0.28 49 x I 0-6± 7E-6 500 ±44 
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The ideality factor, the tunnelling parameter [15], saturation current and the 

series resistance at different temperatures as determined from I-V -T measurements are 

summarised in Table 5.4. 

The serIes resistance of the device has been determined from the I-V -T 

measurements using equation (2.15) for both polarities as shown in Figure 5.29. In 

general, it was found that the series resistance was much higher in forward compared to 

the reverse direction, but there was a deviation in this rule at temperature around 250 K. 

After 250 K the series resistance in the reverse bias began to be higher than forward 

bias. For example, at room temperature it was 101 ± 4 Q in reverse bias and 39 ± 14 Q in 

forward bias; this was higher by almost a factor of2.5 compared to the forward bias . 
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Figure 5.29 The series resistance versus temperatures for GaMnAs sample Mn (374) device in both polarities 
with small errors in case of reverse bias compared to the forward bias in low temperatures 

a) Analysis of I-V using pn junction model 

The device is fabricated to be a p n junction, so the result may be analysed on 

the basis of p n junction. Using equation (2.3) a plot In (l slT3) versus 103/T should give 

the energy gap (Eg) of the GaAs. The corresponding plot is shown in Figure 5.30 (a) 

and the resulting plot is non-linear. This seems to suggest that the standard p n junction 

model does not apply. Similar behaviour has been observed for all diodes under test. 
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Figure 5.30 (a) The plot In (lslT3) versus 103fT and (b) The plot In (lslT3) versus IOJfnT with correlation 
coefficient R=O.98756 for Mn (374) device in the forward bias 

Taking into account the temperature dependence of the ideality factor into 

equation (2.14) by simply multiplying the temperature by the ideality factor (n) 

[equation (2.35)] results in a straight line as shown in Figure 5.30 (b). 

The activation energy of 1.1 ± 0.07 eV is determined from the slope of Figure 

5.30 (b) which is slightly less than the band gap energy of GaAs. Moreover the 

correlation coefficient, R which gives the indication of the quality of the fit (for a 

perfect fit R will be one and in this case R=0.98756). The experimental data are seen to 

begin to fit to a straight line from 200 K up to 380 K. This plot shows significant 

deviation from linearity below 200 K although at first sight this seems to indicate the p 

n junction model fits the data. The temperature dependent values of n and their 

magnitude indicate that mechanisms like generation/recombination in the depletion 

region may also be operative. 

b) Analysis of I-V using Schottky model 

The saturation current for the Schottky contact represented by the equation 

(2.14) can be used to estimate the barrier height. A plot, in the from ofln OslT2) versus 

10
3
fT is shown in Figure 5.31 for higher temperature range from 200-380 K in case of 

forward bias for (Mn374) device. This plot does not fit to a straight line. Another 

attempt is made to estimate the barrier height theoretically and experimentally, using the 
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modified Richardson plot which uses a plot of In (l s/T2) versus I03/nT has been made 

using equation (2.35) . 
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Figure 5.31 Natural log of In (Isrr) versus 103/T for Mn (374) device in the forward bias 

The barrier height (<Db) estimated theoretically from forward bias I-V data, for 

different temperatures using equation (2.17) is shown plotted in Figure 5.32 (a). 
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Figure 5.32 (a) The temperature dependence of the barrier height for GaMnAs as estimated from equation 
(2.14) and (b) The modified Richardson plot (R= 0.99631) for sample Mn (374) 

Substitution of the saturation current Is as estimated from equation (2.15) and 

the effective Richardson constant A·· with a value of 120 Ncm2 
K 2 for p-type GaAs in 

equation (2.14) is required in order to calculate the barrier height at different 
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temperatures. This is shown in Figure 5.32 (a). The calculated values of <D b were found 

to be strongly temperature dependent. 

Figure 5.32 (b) represents modified Richardson plot which is the plot of In 

(l s/T2) versus 103 InT with the slope which gives the barrier height (<Db) of 1.4± 0.05 eV. 

This value is close to 1.42 eV of GaAs band gap energy. The barrier height of 1.4eV is 

realistic since this device has highest doping concentration, nearly degenerate and it has 

p-type behaviour. The experimental data yield a Richardson constant of 2x I 0-6 A/cm2 

K2 which is much lower than the 120 Ncm2 K2 for p-type GaAs. There is uncertainty in 

the reported value of A··. Similar result is obtained by several authors for n-type GaAs 

[27, 28, 92]. They refer the deviation in the Richardson plots to the inhomogeneous 

barrier heights. 

In case of the reverse bias, the barrier height from the modified Richardson plot 

between Os/T2) and 103/nT is shown in Figure 5.33 which gives 0.56± 0.02 eV. 
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Figure 5.33 The modified Richardson plot in case of reverse bias (R= 0.996624) 

The ideality factor was calculated from the fitting of equation (2.15) . This is 

shown in Figure 5.34 as a function oftemperature for forward bias. 

It was found that the ideality factor (n) increases with decreasing temperature. 

Also, for temperature below 100 K ideality factor increases rapidly indicating that a 
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mechanism other than thermionic emission has become dominant. The possibility of 

tunnelling cannot be ruled out. Carrier generation and recombination in the depletion 

region and! or thermionic field emission can cause the ideality factor to increase rapidly 

with temperature [8]. 
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Figure 5.34 Ideality factor versus temperatures for GaMnAs sample Mn (374) device in forward bias 

The presence of To effect is an indication of the existence of a current flow 

which is a combination of many processes like, generation-recombination (G-R), 

thermionic field emission (TFE), tunnelling, and all operating in parallel [13] . The 

physics underlying the To effect has been presented in chapter 2 section (2.2.8). 
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Figure 5.35 The Arrhenius plots of GaMnAs film (Mn374-1) sample in reverse bias 
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Figure 5.35 shows the ideality factor plotted against 103 rr. A linear relationship 

can be clearly seen. The values of no and To determined from the intercept and the slope 

are 2± 0.08 and 4.7 xl03± 0.4 K respectively. Following the argument forwarded by 

Kribes et al. [16] the possible mechanism is thermionic field emission (TFE). 

c) GaAs: Mn-Insulator 

The space charge limited conduction (SCLC) and Schottky emission are 

electrode related properties for the material. Both are discussed in this section. To 

understand more clearly the electrical properties of the Mn (374) device, their I-V data 

were plotted on In-In scale. The In (I) versus In (V) plot in reverse bias at different 

measurement temperatures are shown in Figure 5.36. It was found for sample Mn (374) 

that the reverse current showed a power-law exponent of the form I _Vm where m was 

equal 2.33 ± 0.05 at 300 K and it ranged from 1.92±0.03 at 380 K to 3.05±0.1 at 15 K. 

The plot In (I) versus In (V) is linear, indicating that the device Mn (374) I-V 

characteristics seem to follow the space charge limited conduction (SCLC) mechanism 

[128]. The slopes of In (I) - In (V) plots are similar for both polarities except at 280 K as 

shown in Table 5.5 . 
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Figure 5.36 Reverse characteristic in the form of In (I) - In (V) for Mn (374) device at different temperatures 
(a) before Rs corrections and (b) after Rs corrections 

The analysis above ignores any serIes resistance effect and needs to be 

investigated further. Both bias polarities are discussed in order to present the effect of 

the series resistance correction when plotting these curves using this equation 

(Vjunction= V applied-IRs). To demonstrate the procedure, the forward I-V characteristic at 
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room temperature is plotted in Figure 5.37. A fit of the data is shown as the solid line 

going through the data points. The red line is the derived I-V characteristics with the 

affect Rs removed. 

A plot of In (1) versus In (V) at 320 K is presented in Figure 5.38 and it 

compares the effect of series resistance removal. It appears that this curve shows linear 

behaviour over several order of current magnitude. This indicates that the result may be 

explained in terms of the space charge limited conduction (SCLC) for Mn (374) device. 
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Figure 5.37 Semi-logarithmic plot of the I-V characteristic versus the applied forward bias at room 
temperature of the sample (374) and showing the data before the Rs correction (black line) and after the Rs 

correction (red line) 
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Figure 5.38 The estimation of the slope of the In (I)-In (V) plot before and after the Rs correction at 320 K of 
the sample (374) 

Table 5.5 shows the slope between In (I) - In (V) plot taking the series resistance 

into account. In general, the slope m of the In (I)-In (V) plot is larger when Rs effect is 

removed from the I-V data for forward bias as shown in Figure 5.38 . Similar behaviour 

is observed for reverse bias. 

Table 5.5 The slope between In I versus In V after Rs corrections in both polarities 

T slope (Forward bias) slope (Reverse bias) 

380 1.1 8±0.009 1.92±O.O3 

360 2.4±0.02 2.0S±0.04 

340 2. 87±0.03 2. IS±0.04 

320 3.33±0.02 2. 24±0.OS 

300 4.2S±0.07 2.33±0.OS 

280 7.02±0.4 2.43±0.06 

240 4±O. 1 2.S6±0.07 

200 1.92±0.1 2.69±0.07 

100 2±0.2 2.89±0.09 

15 2.2±0.2 3.0S±0.1 
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Figure 5.39 Reverse I-V characteristic in the form of In (I) - V 112 for Mn (374) device at different temperatures 
(a) before Rs corrections and (b) after Rs corrections 

There is also the possibility that the exponential behaviour of the 1-Y 

characteristic of GaMnAs is due to the Schottky emission. This can be explored by 

plotting In (I) versus yl /2. A straight line is indicative that Schottky emission is 

operational. This data from this sample do show a straight line in forward and reverse 

bias at voltages Y > 0.5 Y up to 2 volts. Table 5.6 shows the slope between In (I) - y l l2 

plots for both polarities. 

Table 5.6 The slope between In I versus VII2 plot after Rs corrections in both polarities 

T 
P s ( 10.5 eV. m"2

. V· 1/2
) (Forward bias) P s ( 10.5 eV.mI/2. V·"2) (reverse bias) 

voltage range =0.7-1.5V voltage range =0 .7-1 .5V 

380 3.8±0.08 4 .8±0.02 

360 3±0.01 5. 1±0.03 

340 3.4±0.01 5.4±0.04 

320 3.8±0.01 5.6±0.05 

300 4±O.01 5.8±0.06 

280 4 .3±0.01 6±0.08 

240 4 .7±0.02 6.3±0.09 

200 5.2±0.04 6.2±0.05 

100 6.8±O.O8 6.6±O.O6 

15 6.7±0.O8 7±0.08 

We may conclude this section; by either suggesting that the space charge limited 

(SCL) or Schottky emission is the possible conduction mechanism in the Mn (374) 

device. 
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d) Back -to -back diode model 

GaAs: Mn and GaAs:Si (bottom electrode) formed p n junction while the top 

metallic electrode is Schottky contact, (see Figure 5.40). The forward condition app lies 

when the top electrode is positive while, when the top electrode is negative the sample 

is reverse-biased. Considering the case when the top contact is negative, then the top 

Schottky contact is forward-biased, whereas, the bottom junction n-Si: GaAs/p-Mn: 

GaAs is reverse biased. 

Top Bottom 
electrode Schottky po type n- type electrode 

contact GaAsMn GaAsSI 

~ I ~ 

Figure 5.40 The proposed model for back-to-back diode in case of forward bias 

The estimated Eoo using equation (2.22) was found to be 236 meV with 

ND=lxl0
21 

cm-3 which was much higher than kT. This indicates that the tunnelling 

mechanise plays an important role. Table 5.7 shows the doping concentrations for 

different devices used in this study and the value of Eoo calculated using equation 

(2 .22). 

Table 5.7 The doping concentration and the corresponding Eoo value estimated from equation (2.22). 

Sample number Physical doping (cm-J) Eoo (meV) (equation (2.22» 

374 1011 236 

375 IO.lU 74.64 

376 1019 23.6 

The ideality factor is further analysed by plotting Eo (Eo=nkT/q) versus kT/q in 

the case of forward bias as shown in Figure 5.41. The experimentally observed Eoo 

value of 300 meV for forward bias is slightly higher than the theoretically calculated 

value of236 meV. Hasegawa and Oyama [129] attributed this to the effect of defects. 
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Figure 5.41 Experimental values of Eo as a function oftemperaturc for Mn (374) device 

5.7.1 C-V-T behaviour ofMn (374) device 

Capacitance-voltage (C-V) characteristics were measured using the Boonton 

(model 7200) meter at a frequency of 1 MHz. The instrument was controlled by written 

program using LabView. Capacitance was measured from 0 to -4 V in reverse bias and 

0.1 to 3 V in forward bias. Each voltage sweep was delayed in time in order to make 

allowances for the capacitance to stabilize to equilibrium. The sample was mounted 

inside the cryostat where the temperatures were varied so C-V characteristic could be 

measured at different temperatures from 400 K to 15 K. 
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Figure 5.42 The capacitance versus bias voltage for GaMnAs sample Mn (374) device 

The C-V characteristic for Mn (374) device over the temperature range 400 K to 

15 K was investigated. The C-V characteristics in Figure 5.42 show that the capacitance 

is voltage dependent. It has been observed that the capacitance as a function of applied 

bias increases until it reaches a high value and stays constant over a small range of bias, 

and then drops with increasing bias. The validity of the measured capacitance is denoted 

by the two red lines shown in Figure 5.42. Outside these lines, the capacitance value is 

unreliable because of the high conductance of the sample. They are unreliable because 

the conductance increases at these voltages ranges but the general behaviour is what is 

expected of the back-to-back diode. 

Figure 5.42 shows that there are three distinct regions. For instance, at zero bias 

the capacitance at room temperature is around 425.4 pF which is the highest value, and 

then is observed to decrease with the increasing bias in both polarities. The flat region 

with very small changes of capacitance extends in both forward and reverse directions. 

It ranges from -0.2 V to +0.3 V with a peak value of capacitance at zero bias. There is a 

progressive gradual decrease of capacitance in both directions. This flat region becomes 

sharper when the temperature increases to 400 K and it takes a wider shape at low 

temperature (15 K). In reverse bias condition, the flat region shows that the junction is 

fully depleted while the flat region in forward bias indicates that there is a charge 

accumulation near the p+-njunction in Mn (374) device. 
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Figure 5.43 Plot of the l/e2 versus reverse voltage for GaMnAs sample Mn (374) device 

The l/C2 versus voltage plot at different temperatures is shown in Figure 5.43. 

The doping concentration can be obtained from the plot I/C2 versus applied reverse 

voltage. The room temperature plotting is shown in Figure 5.44 which shows linearity 

behaviour in range 0.4 V up to 1 V. After this range the capacitance can not be 

measured due to high current. The intercept to the x-axis of this plot is extremely small 

at all temperatures and it is difficult to give an explanation for this behaviour. 

As mentioned previously, the samples are grown at low temperature which may 

compensate the Mn doping. In this case, the junction may be of p + -n junction and the 

depletion region will then extend into the lightly doped Mn epi-Iayer. If the depletion 

region is sufficiently large it may touch the Ohmic contact when a reverse bias is 

applied and an affect called "punch through" [6] occurs. This may explain the high 

reverse current in this device. This will be exacerbated by the uneven thickness of the 

layer. 
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Figure 5.44 Plot 1/e2 versus reverse bias voltage for GaMnAs film Mn (374) device, showing the experimental 
data as well as the extrapolated line meeting the x-axis 

The calculated carrier concentration at 300 K has been determined to be 5.6 x 

10
16 

cm-3 in Mn (374) device and this value remains constant until 200 K then it begins 

to reach 1 x 1017 cm-3 in the range 150 K to 15 K. 

5.7.2 C-F-T behaviour ofMn (374) 

The admittance measurements were made at frequencies ranging from 20 Hz to 

3 MHz. Admittance spectroscopy was used to characterize the traps present in the M n 

(374) device. Figure 5.45 shows the capacitance spectra of the device at zero voltage 

bias and temperatures between 400 and 15 K and the corresponding Arrhenius plot is 

shown in Figure 5.46. 
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Figure 5.45 The capacitance versus the frequency voltage for GaMnAs sample Mn (374) 

We can estimate the activation energy to be 0.117 ±0.005 eV which compares 

favourably with the activation energy ofMn in GaAs. 
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Figure 5.46 The Arrhenius plot for Mn (374) 

5.8 (Mn375) Devices 

The (Mn375) device has a Mn doping level of 1020 cm-3. Two different samples, 

with the same doping concentration, were investigated and are labelled Mn (375-\) and 

Mn (375-2). 
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5.8.1 (Mn375-1) Device 
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Figure 5.47 Current-voltage curve for GaMnAs (Mn375-1) device 

i 
4 

The current-voltage-temperature measurements for device Mn (375-1), were 

carried out for both forward and the reverse directions as shown in Figure 5.47 (a) and 

(b). At all temperatures, the diodes exhibit soft characteristics. The reverse currents 

flowing in this device are comparable to the currents in the forward direction. It can also 

be observed that the current in the forward bias shows stronger temperature dependence 

compared to the current in the reverse bias. 

a) Analysis of 1-V using p n junction model 

The relationship In (I slT3) - 103/T does not plot as a straight line and the 

activation energy can not be calculated on the basis of a standard p n junction model. 

This has been earlier mentioned in section (5.7) (a) . The modified Richardson plot (In 

(l s/T3) versus 103/nT (Figure 5.48) gives an activation energy 0.982 ±O.I eV. 
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Figure 5.48 The modified Richardson plot (In (Is/r) versus Itr/nT with Ea= 0.982 ±O.l eV (R=O.96627) 

b) Analysis of I-V using Schottky model 

The values of ideality factor n at different temperatures are shown in Figure 5.49 

which is a support TE and TFE theory. Value of n approaches unity as the temperature 

increases while at lower temperatures n increases due to TFE. 
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Figure 5.49 Ideality factor (n) versus temperatures in forward bias for (Mn375-1) device 

Using the values of n at different temperatures modified Richardson plot 

between Os/T2) versus 103/nT for forward bias is drawn and shown in Figure 5.50 (b) 

which gives the activation energy of 1.4 ±O.2 eV. This is in good agreement with the 

bandgap of GaAs. 
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Figure 5.50 (a) Natural log of In (Islr) versus 103fT for Mn (375-1) device in the forward bias and (b) The 
modified Richardson plot (In (Is1T2) versus ItrfnT (R=O.94188) 

For the reverse bias case the barrier height from the modified Richardson plot 

between (lslT2) versus 103/nT shown in Figure 5.51 (b) gives 0.85 ±0.05 eV which is 

slightly higher than half the bandgap ofGaAs whi le Figure 5.51 (a) shows a curve. 
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Figure 5.51 (a) Natural log of In (Islr) versus 103fT and (b) The modified Richardson plot (In (Islr) versus 
103fnT with Ea= 0.85 ±0.05 eV (R=0.99056) for Mn (375-1) device in the reverse bias 

A calculation of the barrier height <Db for Mn (375-1) device using equation 

(2.17) is shown in Figure 5.52. It was found that the barrier height in the forward bias 

was higher than the reverse bias. In addition, the barrier height <Db was strongly 

dependent on temperature. 
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Figure 5.52 The temperature dependence of the barrier height for GaMnAs (sample Mn (375-1) in the 
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Figure 5.53 The plot of the ideality factor versus 103fT (a) in forward bias (b) reverse bias for (Mn37S-I) 
device 

Figure 5.53 shows the ideality factor plotted against 103fT for sample Mn (375-

1) for both polarities in the temperature range 400 K down to 50 K. Interpreting the 

behaviour of"n" on the basis of To effect, as presented in section 5,7 (b) , the estimated 

To is 600 K± 0.0.007 and 1900 K ± 0.0.01 for forward and reverse bias respectively. 

While the value ofO.24± 0.05 and 0.65± 0.07 was found for the no intercept for forward 

and reverse bias respectively; this is very close value to the origin. Following the 

argument put forward by Kribes et al. [16] the possible mechanism is thermionic field 

emission (TFE). 
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c) GaAs: Mn-Insulator 

It should be noted that under reverse bias condition the Schottky barrier actually 

broadens. This would discourage or suppress the TFE current at least at lower biases. 

However, since the barrier is high (0.85 eV), TFE would still be expected to play a role. 

The thickness of the Mn doped layer is 500 nm even at 1 Y applied bias, the fi e ld across 

the layer is 1 MV/cm or greater. The possibility of image force lowering can not be 

ruled out for either of the polarities. Figure 5.54 (a) and (b) shows the plots for forward 

and reverse bias respectively for the in (I) versus y1 /2, they appear to follow a linear 

relationship suggesting a barrier lowering mechanism. 
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Figure 5.54 Reverse I-V characteristic in the form ofln (I) - VI12 for Mn (375-1) device at different 
temperatures (a) before Rs corrections and (b) after Rs corrections 

The conduction mechanism is determined on the basis of Schottky barrier 

lowering mechanism if the plot of In (I) versus V 1/2 yields a straight line. The linearity 

of these plots indicates that the Schottky emission is operative in the voltage range 1.2 < 

Y < 2.1 V for forward bias and 1.3 < V < 2 V for reverse bias as shown in Figure 5.54 

(a) and (b) respectively. The slopes of the in (I) versus V I /2 characteristic in both 

polarities are shown in Table 5.8. However, it appears more probable that it is the 

lowering of the Schottky barriers through which TFE is also taking place. 
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Table 5.8 The slope between In I versus yl l2 plot after Rs corrections in both polarities 

Ps ( 10.5 eY.m l12 y . 1/2) Ps (10.5 eV.m l12 . y . ll2) 

T (Forward bias) (Reverse bias) 

voltage range = 1.2-2.1 Y voltage range = 1.3-2 V 

380 1.2±0.01 9.44±0.02 

360 I. I 3±0.0 I 9.22±0.04 

340 1.06±0.02 9.46±0.06 

320 1.03±0.02 9.69±0.06 

300 1.06±0.04 9.72±0.06 

280 0.99±0.02 9.8 1±0.07 

240 0.95±0.02 9.96±0.1 

200 0.91 ±0.02 9.93±0.1 

100 0.86±0.02 10.07±0.1 

15 0.83±0.02 IO.47±O.1 

d) Back- to- back diode model 

The J-V -T characteristics, for both forward and reverse biase might be analy ed 

on the basis of a back-to-back modeL 

The complete energy band structure is gIven m Figure 5.24. Thi gIve 

essentially two contacts. One is the top Schottky contact with the p-type GaAs:Mn and 

the other between GaAs:Mn and GaAs:Si is p n junction. According to calculation of 

the energy band diagram using Matlab program (Figure 5.9), the p n junction above 300 

K is between two degenerate semiconductors, while below 300 K, p-region become 

non-degenerate. 

117 



CHAPTER 5 Measurement Results ofGaMnAs 

5.8.2 C-V measurement of Mn (375) 
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Figure 5.55 The capacitance versus bias voltage for GaMnAs sample Mn (375-1) 

Figure 5.55 shows the C-V response at IMHz for Mn (375-1) device. This 

device shows a similar behaviour as MOS/MIS structure. The capacitance decreases 

with increasing temperature beyond + 1 V bias. In the reverse bias, on the other hand the 

sample exhibits an increase in capacitance with increasing temperature. The plot in 

Figure 5.56 shows 1/C2 versus V at different temperatures. 
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Figure 5.56 1/C2 versus reverse voltage for GaMnAs sample Mn (375-1) device 
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The calculated carrier concentration at 300 K for Mn (375-1) is shown in Figure 

5.57. It has been determined to be 5.6 x 10 14 cm-3 in Mn (375-1) device and this va lue 

remains constant until 200 K then it begins to reach I x 10 13 cm-3 in the range 150 K to 

15 K. These values are smaller than the 2 x 10 17 cm-3 (the doping concentration of the 

Si-GaAs). From this plot, the estimated built-in potential is 0 .96 eY. 
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Figure 5.57 Plot lIC2 versus reverse bias voltage at room temperature for GaMnAs film Mn (375-1) device 

5.S.3 C-F-T behaviour ofMn (375-1) 

The admittance measurements were made at frequencies ranging from 20 Hz to 

3 MHz. Admittance spectroscopy was used to characterize the traps present in the Mn 

(374) device. Figure 5.58 shows the capacitance spectra of the device at zero voltage 

bias and temperatures between 400 and 15 K. We can estimate the activation energy to 

be 0.06 ±0.004 eY. 
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Figure 5.58 The capacitance versus the frequency voltage for GaMnAs sample Mn (375-1) 

Figure 5.59 shows the plot of In (coo I T2) versus l iT. 
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Figure 5.59 The Arrhenius plot for Mn (375-1) 
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5.9 (Mn375-2) Device 
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Figure 5.60 Current-voltage curve for GaMnAs (Mn375-2) deviee 

The I-V-T plots ofMn (375-2) device in the temperature range 400-15 K on 

linear and semilogrithmic scale are shown in Figure 5.60 (a) and (b). As can be seen in 

Figure 5.60 (b) the plot in the forward bias exhibits linear behaviour up to 1 volt, then it 

deviates from linearity as in Figure 5.60 (b). Meanwhile, the reverse currents show a 

curve for all voltages ranges. It is observed that the currents for both polarities are more 

temperature sensitive than for the Mn (375-1) device. 

Mn (375-2) device was made from the same wafer as Mn (375-1) dev ice. There 

are noticeable differences between the two samples. The "soft" characteristic of the 

diode is not so apparent. Breakdown appears to occur around -3 volts. 

a) Analysis ofl-V using p n junction model 

In order to explain the result in terms of p n junction model the plot in the form 

of In (l s/T3
) versus 103 IT has been plotted in both polarities. The experimental data are 

seen to fit a straight line in the plot for (Mn375-2) device for both polarities as shown in 

Figure 5.61 (a) in the case of forward bias and Figure 5.61 (b) in reverse bias. The 

estimated activation energy in the case of forward and reverse bias condition is 

O.85±O.05 eV and O.8±O.03 eV respectively. 

121 



-35 

-36 

-37 

~ 
:.? -38 --.E 

-39 

-40 

1 .4 1 .5 1 .6 1 .7 1 .8 1 .9 

(a) tOl/nT 

CHAPTER 5 Measurement Results ofGaMnAs 

-33 .8 

-34.0 

-34 .2 

-34.4 

.-.. -346 

'5 -34 :8 
'-" 
.E 

-35 .0 

-35 .2 

-35 .4 

0~0~0~OMOMO~0~0~0~ 5~ 0~ 

(b) tO lnT 

Figure S.61 (a) The activation energy which gives O.8S±O.OS eV (R=O.999SI) in the forward bias and (b) The 
activation energy gives O.8±O.03 eV (R=O.99548) in the reverse bias 

b) Analysis of I-V using Schottky model 

In order to explain the result in terms of Schottky model the plot in the form 0 f 

In (l s/T2) versus 103 IT has been plotted. To detennine the activation energy In (I IT 2) 

was plotted against l03rr as shown in Figure 5.62 (a) for Mn (375-2) device by u ing 

equation (2.14), while the modified Richardson plot is shown in Figure 5.62 (b) . The 

experimental data are seen to fit a straight line in the plot for Mn (375-2) device for both 

polarities as shown in Figure 5.62 (b) and Figure 5.63 (b). The estimated activation 

energy in case of forward and reverse bias condition is O.93±O.O\ eV and \±O.02 eV 

respectively. 
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Figure S.62 (a) The plot In (I slr) versus 101fT and (b) The plot In (l slT2) versus IOJfnT with Ea= O.93±O.OI eV 
(R=O.99943) for Mn (37S-2) device in the forward bias 
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(R=0.99888) for Mn (375-2) device in the reverse bias 
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Figure 5.64 The temperature dependence ofthe barrier height in forward bias for GaMnAs sample Mn (375-2) 
in the temperature range 400-15 K 

The theoretical estimation of the barrier height <Db is shown in Figure 5.64. It 

shows that the barrier height increases with temperature. Similar behaviour is observed 

for other devices. 
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Figure 5.65 Ideality factor versus temperatures for GaMnAs sample (Mn375-2) device 
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Figure 5.66 The plot of the ideality factor versus 103fT in (a) forward and (b) reverse bias from temperature 
range 400-100 K for (Mn375-2) device 

Figure (5.65) shows the ideality factor versus the temperature Mn (375-2) 

device. The ideality factor varies almost linearly with the inverse temperature for both 

polarities as in Figure 5.66 from 400 K up to 100 K. The estimated To is 450 ± 0.008 K 

and 1630 ± 0.03 K for forward and reverse bias respectively, while the value of the no 

intercept for forward and reverse bias is 0.4± 0.06 and I ± 0.2 respectively. Furthermore, 

To and no values are lower for Mn (375-2) device than for Mn (375-1) device. Karates 

and Altinda [28] reported a value To of 473 ± 2 K for Au/n-type GaAs structures. 

c) GaAs: Mn-Insulator 

The Schottky emission possibility is discussed by plotting In (1) versus y1 /2. This 

is shown in Figure 5.67. At voltage range -0.5 < V < -1.5 V, the conduction mechanism 
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is dominated by Schottky emission in reverse bias range for Mn (375-2) device, while in 

forward bias the voltage range -0.5 < V < -I V. 
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Figure 5.67 Reverse I-V characteristic in the form of In (I) - Vl /2 for Mn (375-2) device at different 
temperatures (a) before Rs corrections and (b) after Rs corrections. 

The slopes of the In (I) versus V 112 characteristic in both polarities are shown in 

Table 5.9. 

Table 5.9 The slope between In I versus VII2 plot after Rs corrections in both polarities 

P s ( 10.5 ey.mI /2. y -1/2) P s ( 10-5 eY,mI/2, y -1/2) 

T (Forward bias) (reverse bias) 
volt~e ra,!&e =0.5-1 .5 Y voltage range =O,S-I Y 

380 22 ±0.8 9. 1±0,08 

360 27.28±O.9 9.6±0.O8 

340 28±0.6 9.9S±O. 1 

320 29±0.9 10±0,O9 

300 30±0. 7 10,S±O, I 

280 32,8±0.6 10.7±0.1 

240 3S.8 ±O.4 10.8±0,08 

200 36.2±0.3 10.9±0.09 

100 34.3±0.S II ±O. I 

IS 34,8±0.4 II.6±O. 1 

d) Back- to-back diode model 

GaAs:Mn and GaAs:Si (bottom electrode) fonned p n junction while the top 

metallic electrode is Schottky contact. 
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The ideality factor is further analysed by plotting nkT/q against kT/q. The plot 

ofEo= nkT/q versus kT/q in the case of forward bias is shown in Figure 5.68. The va lue 

ofEoo is determined by extrapolating the plot to Eo axis which gives a value of 0.15 eV. 
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Figure 5.68 The experimental values of Eo as a function of temperature for Mn (375-2) device 

Using the method of iteration, it is found that a value of 60 meV for Eoo gives a 

good fit above 240 K as shown in Figure 5.69. The theoretical value of Eoo is 

determined using equation (2 .21). The estimated Eoo was found to be 74.6 meV. Thi 

value is close to the value obtained from the iteration method but there is a considerable 

difference between this value and the experimental value obtained from Figure 5.68. 
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Figure 5.69 Theoretical temperature dependence of ideality factor obtained by the TFE model for tunnelling 
characteristic energy Eoo=0.06 eV (red line), and the experimental determined ideality factor (black line) as a 

function of temperature in the reverse bias. It is found that a value of 60 meV for Eoo gives a good fit above 240 
K 
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5.9.1 C-V measurement of Mn (375-2) 
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Figure 5.70 The capacitance versus bias voltage for GaMnAs sample Mn (375-2) 

Figure 5.70 shows the C-V response measured at I MHz for Mn (375-2) device. 

Device Mn (375-2) shows a trend where capacitance decreases with increasing 

temperature. The measured capacitance is denoted by the two red lines as shown 111 

Figure 5.71 due to the high measured conductance in the remaining part. 

i 
-1 .0 

i 
-0.8 -0'.6 -0'.4 -0'.2 

5:: 
E u 14 

G: 
~ 

::::. 12 ,. 
"0 
- 10 

~ 
8 

0.0 

V(V) 

--T=380K 
- ' - T=340 K 

T=300 K 
- T=240K 
- T=200K 
~-T&150K 

T=100 K 

0.2 

Figure 5.71 The 1/~ versus reverse voltage for GaMnAs sample Mn (375-2) de\ice 
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The conductance of the device is so large that the measured capac itance is 

constricted between the two red lines for Mn (375-2). The plotting of \ /C2 versus V at 

various temperatures is shown in Figure 5.72. 

10 

~ 8 ,.., 
E 
:,) 

Li:: 6 :::: -.....-.,. 
0 

'-' 4 " 

~ , ..•.. 
' . 

2 0.6 V 

0 

". ~ " ' . .... 
-1 .0 -0 .8 -0 .6 -0 .4 -0 .2 0.0 0.2 0.4 0 .6 0 .8 1 .0 

V(V) 

Figure 5.72 Plot of the lIe2 versus reverse bias voltage for GaMnAs film Mn (375-2) device 

The doping concentration is calculated at 300 K for Mn (375-2) device as shown 

in Figure 5.72. It has been determined as 5.5xl0 13 cm-3 and it remains constant until 340 

K after which it approaches 5.8xl 012 cm-3 in the range 300 K to 200 K. These values are 

smaller than lxlOI 7 cm-3 (the doping concentration ofGaAs:Si). 
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5.9.2 C-F-T behaviour of Mn (375-2) 
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Figure 5.73 The capacitance versus the frequency voltage for GaMnAs sample Mn (375-2) 

Figure 5.73 shows the capacitance spectra of the device at zero voltage bias with 

the temperatures range between 400 K and 150 K. The activation energy with a value of 

O.065±0.0007 eV is estimated from Figure 5.74. 
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Figure 5.74 The Arrhenius plot for Mn (375-2) 
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5.10 (Mn376-1) Device 

In this section, we investigate the temperature dependent I-V measurement of 

the Mn (376) device in the temperature range 400-15 K with I x I 0 19 cm·3 Mn doping 

concentration. Two different samples with the same doping concentration labelled Mn 

(376-1) and Mn (376-2) are investigated. 
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Figure 5.75 Current-voltage curve for GaMnAs (Mn376-1) device 

For device Mn (376-1), I-V data is shown in Figure 5.75 . The current-voltage 

characteristic is asymmetric. Current in forward bias takes an exponential form up to I 

volt; above this value the current begins to be restricted by the bulk series resistance. 

Furthermore, the reverse current does not saturate but instead it increases with the 

applied bias. The temperature affects currents for both polarities although it is much 

pronounced in the case of forward bias. The reverse excessive current is in the order of 

0.265 /lA at a bias of -3 volts in the Mn (376-1) device. 

The position of Fermi level (EF) in the Mn (376) devices with doping 

concentration of 10 19 cm·3 is presented in section (5 .3.3) using numerical iteration. 

Figure 5.11 shows that Mn (376) devices are not degenerate. Figure 5.11 shows that the 

position of the EF lies between 0.045 eV and 0.027 eV above the valence band 

respectively in the temperature range between 50 K and 400 K. 
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a) Analysis of I-V using pn junction model 

The activation energy from the plot In (l s/T3) versus 103/nT for (Mn376-1) 

device at higher temperature range is shown in Figure 5.76. The activation energy in the 

forward bias is equal to 1.25±0.03 eY. 
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Figure 5.76 The activation in the forward bias gives 1.25±O.03 cV (with R=O.99764) 

b) Analysis ofl-V using Schottky model 

The result is investigated further by plotting In (l s/T2) versus 103 IT for the 

forwarded bias. Under this condition, the p n junction is forward biased and the top 

Schottky contact is reversed biased. Since the n-type side is degenerate, the behaviour 

can be similar to a Schottky contact. The plot does not fit a straight line for (Mn3 76-1) 

device as shown in Figure 5.77 (a) . The plot however, becomes linear if In (l slT2) is 

plotted against 103/nT as shown in Figure 5.77 (b). This again, is a familiar behaviour 

exhibited by all devices studied. The estimated activation energy in the case of forward 

bias is 1.36 ±0.03 eV which is slightly smaller than the energy gap of the GaAs. 
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Figure 5.77 (a) The plot In (lslT2) versus 103fT and (b) The plot In (l slT2) versus 103/nT (with R=O.99883) for 
Mn (376-1) device in the forward bias 

The calculated values for the barrier height <Db at various temperatures for Mn 

(376-1) device are shown in Figure 5.78 . The temperature dependence is clearly seen 

for Mn (376-1) device. 
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Figure 5.78 The temperature dependence of the barrier height in forward bias for GaMnAs (sample Mn (376-
1) in the temperature range 400-15 K 

The ideality factor is determined from equation (2.15) for the full temperatures 

range. The ideality factor exhibits a tendency to increase with the decreasing 

temperature as shown in Figure 5.79. The ideality factor approaches 2±0.005 at 400 K. 
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Figure 5.79 Ideality factor versus temperatures for sample Mn (376-1) device 

The ideality factor is inversely proportional to temperature in forward bias as 

shown in Figure 5.80. This is similar to the behaviour of the ideality factors for other 

devices studied in this thesis Mn (374), Mn (375-1) and Mn (375-2). The temperature 

dependence of the ideality factor follows the To effect, which has also been observed in 

all devices studied. The value of To for Mn (376-1) device is equal to 645 .7 ±0.003 K 

while the intercept gives a value of no equal to 0.8 ±0.05. 
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Figure 5.80 The plot of the ideality factor versus 103fT in forward bias from temperature range 400-15 K in 
Mn (376-1) device 

c) GaAs:Mn-lnsulator 

The Schottky emission possibility is discussed by plotting In (1) versus V 112 . This 

is shown in Figure 5.81 (a) and (b) for Mn (376-1) device. 
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Figure 5.81 Reverse characteristic in the form of In (I) - yll2 for Mn (376-1) device at different temperatures 
(a) before Rs corrections and (b) after Rs corrections 

Table 5.10 shows the slope and the voltage range between In (I) - yl /2 plot for 

both polarities for Mn (376-1) device. 

Table 5.10 The slope between In I versus yll2 plot after Rs corrections in both polarities 

~ s ( 10-5 ey.mI/2.V'1/2) ~ s ( 10.5 eV. m l12
. V·1/2) 

T (Forward bias) (reverse bias) 
voltage range =0.9-1. 7 V voltage range =0.7-1.3 V 

380 11.4±0.2 5.26±O.08 

360 I I. 86±0.2 6.7±0.1 

340 12.3±0.3 8.2±0.2 

320 12.7±0.3 8.62 198±0.2 

300 12.6±0.4 9.9±0.09 

280 13 .3±0.5 9.9±0.3 

240 15±0.8 11 .3±0.3 

200 16.5± 1.2 12.3±O.3 

100 17.8± 1.2 13.5±0.4 

15 21.9±1.4 14±0.5 

d) Back- to -back diode model 

The I-V characteristics of the Mn (376) devices can be explained on the basis of 

a back-to-back model. Similar to Mn (375) where the top contact is Schottky and the 

bottom is a p n junction with GaAs:Mn as p-type and GaAs:Si as n-type. The energy 

band diagram of the structure is shown in Figure 5.24. As will be shown later, C-Y 

measurement indicates that the depletion region is in the n-type side, which is GaAs:S i 

with doping concentration of 2x 10 17 cm -3. 
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5.10.1 C-V measurement of Mn (376-1) 
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Figure 5.82 The capacitance versus bias voltage for GaMnAs sample Mn (376-1) 

The temperature dependent C-V characteristic of Mn (376-1) device is shown in 

Figure 5.82. Over the measurement range of temperature and voltages, the capacitance 

exhibits a peak value. The peak shifts to higher voltages with decreasing temperature. 

The capacitance decreases in both bias directions. For sample Mn (376-1 ) however, the 

plot just begins to cross over at -3 V where the capacitance decreases with increasing 

temperature. 

The measured capacitance is only valid at certain range (the red lines labelled). 

After certain range of the applied voltages, the current begins to be large for the 

capacitance to be measured due to the large conductance. 
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Figure 5.83 The I/C2 versus reverse voltage for GaMnAs sample Mn (376-1) device 

It should be observed that the plot of I /C2 versus reverse bias is a straight line as 

shown in Figure 5.83. 

In the region limited by the two red lines in Figure 5.82 for Mn (376-1) device, 

the doping concentration has been measured. Table 5.11 shows the doping 

concentration NA as obtained from IIC2 versus applied voltage ranges from -I volt (in 

the reverse bias side) to the 0.3 volt (in the forward bias side). The doping concentration 

ranges from 2.SxI01 7±0.004 cm-3 to the 2.2xlOI 7±0.00S cm-3 in the temperature ranges 

400 K to 150 K respectively. This is equal to the doping concentration of the Si-GaAs. 

The simulation program (shown in Table 5.2) indicates that the majority of the 

depletion region extended to the n-type region and therefore, we get - 2x 1017 em-3 which 

is the right order of magnitude of the doping concentration of the Si-GaAs. 
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Table 5. 11 The doping concentration as obtained from IIC2 versus V and the intercept of the x-axis of this plot 

T N A (cm·l ) 

400 2. x 1017±0.004 

380 2.72xI01 7±0.OO4 

360 2.65x 1017±0.003 

340 2.6 x I OI 7±0.003 

320 2.6 x 1017±0.OO3 

300 2.6 x 1017±0.003 

280 2.4 x 1017±0.002 

260 2.3 x 1017±0.OOI 

240 2.2 x 1O '7±0.OO3 

220 2 x 1017±0.001 

200 2.2 x 1017±0.007 

150 2.2 x 1017±0.008 

The lIC2 versus voltage plot at 360 K is shown in Figure 5.84. The intercept 

with x-axis gives the barrier height of a value 3.3 V which is unacceptably high. Similar 

result is obtained for Mn (376-2) device. 
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Figure 5.84 Plot IIC2 versus reverse bias voltage for GaMnAs film Mn (376-1) device at 360 K. 

137 



CHAPTER 5 Measurement Results ofGaMnAs 

5.10.2 C-F-T for Mn (376-1) 
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Figure 5.85 The capacitance versus the frequency voltage for GaMnAs sample Mn (376-1) 

Figure 5.85 shows the capacitance spectra of the device at zero voltage bias with 

the temperatures range between 400 K and 300 K. The activation energy with a va lue of 

0.05±0.003 eV is estimated from Figure 5.86. 
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Figure 5.86 The Arrhenius plot for Mn (376-1) 
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5.11 (Mn376-2) Device 
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Figure 5.87 Current-voltage curve for GaMnAs (Mn376-2) device 

The I-V characteristic of sample Mn (376-2) for GaMnAs diode at different 

selected temperatures, ranging from 400 to 15 K, is given in Figure 5.87 (a) and (b). 

The general shapes of the I-V curves in forward and reverse biases are similar. They do 

not show linear behaviour in either directions. 

a) Analysis of I-V using p n junction model 

The value of activation energies is determined from the plot (I IT3
) versus 10 IT 

in (Figure 5.88 (a)) and Os/T3
) versus 103/nT in (Figure 5.88 (b)) . Both plots show a 

linear behaviour with an activation energy of 0.52±0.03 eV (with R=O.988) and 

1.73±0.03 eV (with R=O.99055) respectively. 
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Figure 5.88 (a)The activation energy estimation using In (I sir) versus IOlr and (b) The modified aelll'ation 
energy plot In (l sIT) versus JO/TJ method for Mn (376-2) both in the forward bias 

b) Analysis of I-V using Schottky model 

The activation energy in forward bias can be obtained from the plot In (I slT2
) 

versus 103fT which fits to a straight line as shown in Figure 5.89 (a), with a value of 

O.55±O.03 eV (with R=0.98875). While the plot (Is/T2) versus 103 InT shown in Figure 

5.89 (b), also shows a straight line. The activation energy estimated from thi plot i 

equal to 1.7±0.1 eV (with R=0.99059). 
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Figure 5.89 (a) The activation energy estimation using In (Is/r) versus IOIT and (b) The modified activation 
energy plot method for Mn (376-2) in forward bias 
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Figure 5.90 shows the calculated values obtained for the barrier height <Db for 

Mn (376-2) device. The temperature dependence is clearly seen and this aga in is a 

familiar behaviour exhibited by all devices studied. 
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Figure 5.90 The temperature dependence of the barrier height in forward bias for CaMnAs (sample Mn (376-
2) in the temperature range 400-15 K 

The ideality factor (n) calculated at various temperatures for forward bias i 

shown in Figure 5.91. The ideality factor n decreases with temperature. This device 

again has the same behaviour as the devices Mn (374) and Mn (375). The va lue of the 

ideality factor for Mn (376-2) approaches 5±0.03 at 400 K. 
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Figure 5.91 Ideality factor versus temperatures for Mn (376-2) dc\icc 
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Considering the To effect on the ideality factor, the ideality factor varies linearly 

with the inverse temperature for forward bias only as shown in Figure 5.92 from 400 K 

up to 15 K for Mn (376-2) device. The estimated To value is 1661 ±0.007 and the va lue 

of the intercept (no) is equal to 2±0.1. Furthermore, To and no values in reverse bias have 

similar values as Mn (375-2) device. 
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Figure 5.92 The plot of the ideality factor versus 103fT in forward bias from temperature range 400- 15 K for 
Mn (376-2) device 

d) GaAs: Mn-Insulator 

Processing the 1-Y -T data further to determine the poss ible conduction 

mechanism In (I) versus yI /2 is drawn in Figure 5.93 (a) and (b) for both polarities. This 

exhibits linear behaviour inducting the possibilities of Schottky conduction type 

mechanism. This is shown in Figure 5.93. The values of the slopes are given in Table 

5.12. 
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Figure 5.93 Reverse characteristic in the form of In (I) - VI I2 for Mn (376-2) device at different temperatures 
(a) before Rs corrections and (b) after Rs corrections 

Table 5.12 The slope between In I versus VII2 plot after Rs corrections in both polarities 

Ps (I 0.5 eV.mI/2.V·1/2) Ps (I 0.5 eV.mI /2.V·I/_) 

T (Forward bias) (reverse bias) 
voltage range =0.7-1.4 V voltage range =0.5-1 .5 V 

380 3.6±0.05 9.2±0.04 

360 4.7±0.1 9.46879±0.08 

340 6.2±0.1 9.68922±0.1 

320 7.9±0.3 9.3±0.O8 

300 9.5±0.3 9.6±0.O6 

280 11±0.2 9.3±0.09 

240 12.8±0.1 9.7±0.04 

200 14.3±0.1 1O.4±0.07 

100 16±O.09 11.7±0.1 

15 I 7±0. I 12±O.1 

d) Back to back diode model 

Mn (376-2) with IxlO l9 cm-3 Mn doping concentration is also explained in terms 

of the back to back model which has already been discussed in details in section (5.7) 

(d). 
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5.11.1 C-V measurement of Mn (376-2) 

Measured C 
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Figure 5.94 The capacitance versus bias voltage for GaMnAs sample Mn (376-2) 

The behaviour is similar to that one observed in the Mn (376-1). The 

temperature dependence C-V characteristic of the Mn (376-2) is shown in Figure 5.94. 

For sample Mn (376-2), there appears to be a cross point at around -3 V reverse bia 

where the capacitance decreases with increasing temperature. 

Table 5.13 The doping concentration as obtained from I/e 2 versus V 

T NA 

400 2.44x 1017±0.006 

380 2.43 xlI01 7±0.006 

360 2.39 xI017±0.005 

340 2.41 xlI01 7±0.004 

320 2.45 x I 01 7±0.005 

300 2.4 x lI01 7±0.005 

280 2.46 x 10 I 7±0.004 

260 2.4 x 10 17±0. 005 

240 2.33 x I 017±0.006 

220 2.4 x 1O '7±0.006 

200 2.45 x 1O '7±0.006 

150 2.5 x 1017±0.005 

100 2.46 xl o 17±0. 007 

50 2.23 x 1017±0.01 
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Figure 5.95 Plot lid versus reverse bias voltage for GaMnAs film Mn (376-2) device 

The room temperature measurement is shown in Figure 5.95 . The mea ured 

value is 2.4xI017±0.006 em·3 and 2.23xI01 7±0.01 cm·3 in the range 400 K to 50 K. This 

again gives the doping concentration of the Si-GaAs. 

5.11.2 C-F-T behaviour ofMn (376-2) 

Figure 5.96 shows the capacitance spectra of the device at zero voltage bias over 

the temperatures range 400 K and 150 K. Activation energy of 0.06±0.004 eV i 

estimated from Figure 5.97. 
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Figure 5.96 The capacitance versus the frequency voltage for GaMnAs sample Mn (376-2) 
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Figure 5.97 The Arrhenius plot for Mn (376-2) 

5.12 Discussion of Results 

Metal I GaAs: Mn IGaAs:Si structures have been studied by the I-V-T and C-V

T techniques. In all, five devices were used. All devices have the Si doped GaA layer 

with the same concentrations (-2x10 17 cm,3) and a thickness of700 nm. The Mn doped 

GaAs layer had three different concentrations varying from 1021 down to 10 19 cm,3. 

S.12.11-V-T measurements on GaAs: Mn IGaAs:Si Devices 

The device structure, different doping concentrations and the growth 

temperatures are given in Figure 5.1 and Table 5.1 respectively. Earlier in this chapter, 

various models have been proposed based on structure of the device and the materials to 

account for the observed I-V -T and C-V -T characteristics. Attempt has been made to 

propose a comprehensive model of the devices, which will account for, at least 

qualitatively, the observed experimental results. The proposed model is shown in Figure 

5.98. Figure 5.98 (a) shows the band diagram of the device where no external bias is 

applied. It should be noted that the Si-doped layer is degenerate as has been determined 

using "Mat lab program". The Mn doped layers are degenerate for Mn concentrations 

10
21 

and 1020 cm,3, whereas the layer with 10 19 cm,3 concentrations mayor not may be 

degenerate. 
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The degeneracy of the material must however be treated with caution and some 

degree of reserve. Theoretical analysis in section (5.3) "determined" the materia l as 

degenerate only on the basis of ionized Mn-atoms. It does not take into account the 

presence of unintentional n-type conductivity known to be present in GaAs layers 

grown at low temperature (L T). In reality the character of the GaAs: M n layer wou Id be 

determined by the existence of unintentionally doped (u.i.d.) donor concentration . For 

higher u.i .d. concentration GaAs:Mn would more likely be non-degenerate p-type due 

to compensation. On the other hand when the density of ionized Mn-atoms (and only 

about 1% of them are ionized at R.T.) approaches the u.i.d . density, the material would 

be an insulator. However even if 1 % Mn-atoms are ionized it would give an acceptor 

concentration of2.4xlO 19,7.410 18 and 2xl0 18 cm·3 respectively. And in such case the 

material may well behave like a degenerate material. 

The proposed model has been drawn for the degenerate case. The structure i 

completed by a top Schottky contact. 

Table 5.14 The measured experimental values of the barrier height using In (ls/r)-IOJ/nT plot for pn junction 
analysis and In (Is/T2)-103/nT plot for Schottky analysis (except the last device analysed by additional method 

which is In (l s/r)-loJ/T) for p n junction and In (l s/r)-loJ/T) for chottky) 

p njunction model Schottky model 

Device The activation The activation The acti vation The acti va tion 
number (Forward bias) (Reverse bias) (Forward bia ) (Reverse bias) 

374 1.I±O.07 
Not fit 

1.4±O.O5 O.52±O.O5 
(R=O.98756) (R=O.9963I) (R=O.996624) 

375-1 O.98±O.1 
Not fit 

1.4±O.2 O.85±O.O5 
(R=O.96627) (R=O.94 I 88) (R=O.99056) 

375-2 O.85±O.O5 O.8±O.O3 O.93±O.OI I±O.02 
(R=O.9995I ) (R=O.99548) (R=O.99943) (R=O.99888) 

376-1 1.25±O.O3 
Not fit 

1.36±O.O3 Not fit 
(R=O.99764) (R=O.99883) 

376-2 1.73±O.1 
Not fit 

1.7±O.1 
Not fit (R=O.99055) (R=O.99059) 

376-2 O.52±O.O3 
Not fit O.55±O.O3 Not fit 

(R=O.988) (R=O. 98875) 

Table 5.14 gives the summary of the calculated barrier heights for forward and 

reverse directions for all devices studied. It can be seen that the experimentally 

determined values agree in general with the proposed model. 

147 



Zero bias 

metal 

Barrier 
lowering 

CHAPTER 5 Measurement Results ofGaMnAs 

e.. 
Ee 

------I E 

Barrier 
lowering 

o 

Figure 5.98 The proposed model for GaMnAs devices 

The proposed energy band diagram the GaAs:Si IGaAs:Mn junction, and can be 

looked upon as a "backward" diode. According to calculations, the position of the Fermi 

level is only 30 meV below the valence band (Ev) edge for 1021 cm·3 Mn doping at 

room temperature. It becomes non-degenerate just below 190 K. Whereas GaAs: M n 

layer with 1020 cm·3 concentration is just non-degenerate at room temperature with the 

Fermi level moving marginally below the top of the valence band at higher temperature. 

Mn doped GaAs layer with 10 19 cm-3 concentration of Mn is non-degenerate at all 

temperatures with the Fermi level very close to the top of the valence band (- 30 meV at 

300 K). The small potential difference (s 30 meV) would easily be overcome by the 

forward bias to drive the junction into "backward" diode mode. 

The forward current for the case of the "backward" diode as shown in Figure 

5.98 (b), would be the thermionic injection of carriers from the degenerate n-type into 

the conduction band of the p-type Mn doped layer, not unlike the thermionic emission 
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in a Schottky diode where GaAs:Si behaves like a metal contact. It should be noted that 

the barrier to electron emission is the full width of the band gap which is 1.42 eV for 

GaAs. The observed "forward characteristics" (top electrode positive) appear to support 

this hypothesis. The Richardson's plot exhibits straight line for In (ls/T2)-103rr and is 

an indication for the Schottky contact type phenomenon. The linear dependence of In (I) 

_V1/2 for higher voltages is an indication of a barrier lowering at the backward diode 

barrier. This barrier is thinned at higher forward biases encouraging TFE which results 

in an increased value of"n" and a decreasing value of<l>b with decreasing temperature. 

The case of reverse bias is shown in Figure 5.98 (c) (top electrode biased 

negative). The "backward" diode is reversed biased and a large current can flow through 

the device by tunnelling and is not expected to limit the current. The current in the 

device will be determined by the forward biased Schottky contact. The barrier height at 

the metaVGaAs:Mn interface as determined from the I-V measurements is 0.5 eV. In 

this case too the In (lslT2)-103/T plots exhibit straight line In (I) and V I/2 also plot as a 

straight line indicating a barrier lowering mechanism. It is Schottky barrier, which is 

being lowered. The behaviour of"n" and ct>b follows the expected pattern. 

The model suggesting the existence of a Schottky contacts has been proposed on 

the basis of experimental evidence, which is: 

1. Si doped GaAs is degenerate and the Fermi level is located in the conduction 

band giving it metallic character. 

2. The Richardson plots, In OslT2)-1 03/T are straight lines which is indicative 

of a Schottky contacts. 

3. The reverse and forward characteristics are straight lines for In (I) _ VI12 

plots-indicative of a barrier lowering phenomenon. 

4. The reverse current shows the existence ofTFE which results in lower 

values of"n" with increasing temperature. This phenomenon is more likely 

to occur in Schottky contacts. 
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However, the value of the Schottky barrier height of 1.42 e V appears too high 

for the Schottky contacts. A more plausible explanation would be on the basis of a p n 

junction-which it is! This junction behaves like a backward diode and when the bottom 

electrode is biased negative, the "backward diode" is forward biased. The saturation 

current Is in this case should be given by equation (2.3). 

The Richardson plots In {ls/T3)-103rr should yield the bandgap for GaAs which is 1.42 

eV. This would be an elegant conclusion had it not been for the experimental evidence 

mentioned above. It is possible that through some mathematical "reasoning" based on 

the complicated physical process of conduction (lsff2)-1 03 rr plots are linear and the 

bottom contact is indeed behaving like a p n + junction. 

This general pattern is observed for all devices measured with some variation in 

the values of barrier height, which is not surprising considering the fact that all devices 

were made separately and at different temperatures so there must be a considerable 

variation not only in doping concentration but also on the character of the deposited 

films. The surfaces too are expected to be different. Only one device Mn (376-2) gives a 

high value of the barrier height (1.7 eV) which is unacceptably high. 

5.12.2 Capacitance measurements on GaAs: 1\1n IGaAs: Si De\'ices 

The analysis of the C-V-T measurements is more complicated. The behaviour of 

374 device (1021 cm-3
) and the two 376 devices (1019 cm-3

) appear to be qualitatively 

similar in as much as the capacitance goes through a peak value with changing bias. 

This is characteristic of two back-to-back devices. Since the measured capacitance is the 

resultant of two capacitances in series, it is the lower capacitance which will ultimately 

dominate. 

Measurements on the two 375 devices (1020 cm-3
) on the other hand, show a 

steady increase in capacitance from "far" reverse bias to increasing forward bias. The 

response is not that oftwo back-to-back junctions. It is the response of a single junction. 

This is a feature which both devices exhibit and which does not match with the response 

of the other three devices. This behaviour cannot be examined by the proposed model. 
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However, the model does satisfactorily account for the qualitative features of the I-V -T 

measurements for all devices and C-V -T measurements for three devices. 
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CHAPTER 6 Measurement Results of GaMnN 

6.1 Introduction 

This chapter presents the results of a study of Schottky diodes made on Mn 

doped GaN. The Mn doped GaN was grown at Nottingham University by radio 

frequency plasma assisted MBE method. 

Schottky contact Ohmic contact 

VIII ILLLl 
}.6~m GaMnN 

GaAs (buffer layer) 

Semi-insulating GaAs (substrate) 

Figure 6.1 Schematic drawing of the device geometry of the GAMnN film 

Mn is an acceptor and so the resulting material will have p-type conductivity 

[65]. Figure 6.1 shows a schematic diagram of the device geometry. The 0.6~m thick 

Mn doped GaN was grown epitaxially on top of a nominally undoped GaAs buffer 

layer. The substrate was semi-insulating GaAs. Since the substrate is semi-in ulating 

both the Ohmic and Schottky contacts were on the top of the semiconductor and the 

patterns were defined using standard photolithographical techniques. The samples used 

in the current study were fabricated by V. Sundaramoorthy [130] and full details of the 

device fabrication can be found in his thesis [130]. The sample consists of a number of 

circular Schottky contacts which were made from 100 nm thick Au layer. The outer 

Ohmic contact was made from Palladium/Gold layer (30nm/100nm). Devices of 

different areas have been tested. These had a diameter of 800 ~m, 400 ~m and 200 ~m. 

The doping concentration for this sample was between 7- 8 x 1017 cm-3 (p-type 

152 



CHAPTER 6 Measurement Results ofGaMnN 

material). For a Schottky diode made on a p-type material, the diode is forward biased 

when a positive voltage is applied to the Ohmic contact relative to the Schottky contac t. 

SOnm 

Figure 6.2 Bright field cross section TEM image of PdlAu 25/160 nm annealed at 600 0 t ourtesy of Or. 
Michael Fay, School of Physics and Astronomy, University of Nottinghnm 11301 

Cross sectional transmission electron microscopy (TEM) on r lated ample ha 

been perfonned after this sample was measured. A typical micrograph i 

Figure 6.2. The diagram shows the high quality GaAs buffer layer but the surface 

appears slightly pitted. On top of this is the very rough Mn doped GaN, although th 

nominal thickness of the GaN epilayerwas 600nm the actual thickness varie 

considerably. Although TEM provides no evidence, the rough surface is like ly to affect 

the J-V perfonnance in several ways: 

1. The variation of thickness of the contact could effectively g ive ri e to 

tunnelling "areas" across the plane of the contact. 

2. The Mn rich layer observed on top of the GaMnN layer would cause a 

change in barrier height. For example, it could be "Gaussian in nature". 

3. The layer could be over compensated to give an n-type region which will 

change the nature of the contact to metaVn-type semiconductor. 
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Current-VoItage-Temperature (1-V -T) characteristics, Capacitance-Vo Itage

Temperature (C-V -T) characteristics and Capacitance-frequency-Temperature (C-F-T) 

characteristics are the three methods that have been used to characterize Schottky 

contacts on GaMnN. Diode parameters like the ideality factor n, saturation current 1 

and the diode series resistance Rs have been determined. 

6.2 Possible models to analyse the results 

Different possibilities for the behaviour of the carrier type and conductivity of 

GaMnN are investigated before going further in analysing the results in detail. For this 

device we have several models and refinements. 

Model one 

The GaMnN layer is P-type and the diode exhibits the standard diode 

characteristics. The structure will look like p-type GaN: Mn / Schottky contact a hown 

in Figure 6.3 . 

Schottky contact Ohmic con'act 

V I 21 V I /1 
P-lype GaN:Mn 

Figure 6.3 Schott!..")' diode model for p-typc GaMnN 

Cubic GaN has a bandgap Eg of3.2 eV [131] and an electron affinity X of4.1 

eV [132]. The Schottky contact was made from Au with work function of4.82 ±O.02 eV 

[133]. In p-type material the Fermi level is located near the valence band, and the work 

function of p- type GaN will nearly be the sum of the electron affinity and the band gap 

which yields a value of - 7.3 eV. Similar result was found by [134] for p-type GaN. In 

this case, the metal work function (<1>m) is smaller than that of the GaN (<1> ) and when 

the contact is made electrons from the metal will move into GaN. Consequently, a 
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rectitying contact will be formed . The possible energy band diagram is given in Figure 

6.4. This however, is an ideal scenario. The behaviour of real contacts will be modified 

by the presence of inhomogeneities in the barrier height across the plane of the Schottky 

contact. Several workers have attempted to explain their "non-ideal" results on the basis 

of a Gaussian distribution of barrier heights not in GaN [19, 135] but also in other 

material like PdlZno [20] and n-lnP [136]. 

.------------- ------------------- ------------------ Vacuum level 

X=4.1 eV 
<l>m=4.82 cY 

----~~---------~ 

Eg=3.2 eV 

~ -----------------
metal 

p- type GaN Mn 

Figure 6.4 The band diagram for Schottky diode with p-type CaN: Mn 

Another factor most likely to cause deviation from "ideal conduction" 

mechanism, thermionic emission over the Schottky barrier, is the thermionic field 

emission (TFE) and field emission (FE) through the barriers. These factors must be 

considered in any attempt to explain the I-V behaviour of these devices. 

Model Two 

There is a great possibility of unintentional n-type doping of GaMnN due to the 

existence of nitrogen vacancies [137] which create an n-type conductivity. The 

possibility of compensation of p-type dopants by n-type vacancies cannot be ruled out. 

This appears even more likely since Mn-atoms tend to migrate to the surface leaving a 

lower p-type conductivity region just below the surface which might be easier to 

compensate. 
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If the sample is n-type, the diode characteristics will be reversed (with respect to 

the first model). In this case the standard Schottky analysis will apply to the reverse 

bias. 

Schottky contact Ohmic contact 

VIIl VIIl 
n-typo GaN.Mn 

Figure 6.5 Schott!..), diode model for n-type CaMnN 

For n-type material, electrons are the majority carriers. In this case the rectifying 

contact will form when the metal work function (<l>m) is larger than that of the GaN 

(<I>s). The electrons will flow from the GaN surface to the metal. 

._-------- ------------------------ ----------------- Vacuum level 

cfl lll-4.82 cV X=4. 1eV 

~ .------ ------ ------------ -------------
Eg=3.2 eV 

metal 

n-type GaN:Mn 

Figure 6.6 The band diagram for Schottky diode with n-type CaN: Mn 

The suggested energy band diagram is given in Figure 6.6. 

Model Three 

The material can become effectively insulating if the concentration of p-type 

dopants is approximately equal to the n-type vacancies or there is an insulating layer 
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between the contact and the semiconductor. In this case, the Poole-Frenkel mechan i m 

limits the current flow through the diode. At low bias the current flow is dominated by 

the Schottky contact but as the bias increases, the current flow through the " insul at ing" 

GaMnN is via Poole-Frenkel mechanism. The electrical structure oflhe dev ice w ill look 

more like an insulator with SI-GaN: Mn layer as shown in Figure 6.7. 

Sc:tIottky contact Ohmic contact 

V I /1 V I /1 
SI- GaN:Mn 

Figure 6.7 Insulator model for GaN: Mn 

Since semi-insulating (Sl) GaMnN is being considered it can be afe ly a umcd 

that the Fermi level lies in the middle of the band gap. The work function of the 

GaMnN will be (X+Eg/2=4. 1+ 1.6=5.7 eV). This is higher than the work functi n fthe 

Schottky contact (gold) which is 4.82 eV. 

The possible energy band diagram is given in Figure 6.8 . The Fermi leve l ( ) i 

located in the middle of the energy gap . 

. ------ ----------------.----------- --------------- Vacuum level 

X=4.1 eV 
¢lr:l-4.82 eV 

~ .----- -------
metal 

SI-GaN 

Figure 6.8 The band diagram for the insulator model, which shows the EF in the middle 
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6.3 Comparison of the samples with different Mn concentrations 

-6 
(8) 

-4 -2 0 2 4 
V(V) 

6 -6 
(b) 

Figure 6.9 I-V comparison of different areas ofGaMnN sample at 300 K 

The I-V characteristics of devices of different sIzes measured at room 

temperature are shown in Figure 6.9. The measured I-V characteristic are not what one 

would expect from a high quality diode. For example, the two 400 ~m device exhibit 

completely different behaviour. One sample 400 Jlm (no.3) is almost Ohmic whil t the 

other (no. 4) exhibits Schottky behaviour but with significant series re i tance. The 20 

~m (no.6) and 800 ~m (no.2) devices appear to exhibit Schottky behaviour with s ft 

breakdown. However, the currents do not seem to scale appropriately with device area. 

These results indicate that the electrical behaviour of the Mn-doped GaN depend 

strongly on lateral position of the sample. Similar effects have been ob erved by 

Sundarmoorthy [130] . 
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6.4 800 diameter device (no.2) 

6.4.1 I-V Behaviour 

-6 -4 -2 
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0.01 

o 
V(V) 

--T=100K 
_f_ T=200 K 

--- T=300 K 
----- T=400 K 
- T=480K 

2 4 6 

Figure 6.\0 I-V characteristic ofGaMnN device (2) 

For the 800)lm diameter device, which has the largest diameter of all the di de 

studied, the current-voltage-temperature measurements were made for both the Ii rward 

and the reverse directions and are shown in Figure 6.10. An artifact o f plotting the 

logarithm of the current in figure 6. 10 is that the reverse current is hown po itive. Th 

1-V curves show that at lower voltages the current exhibits stronger temperatur 

dependence. The current is lower when the sample is the coldest. Between 100 K and 

400 K the current at low diode biasing increases by approximately two order f 

magnitude. However, at higher voltages the sensitivity of the current to the ample 

temperature becomes less and for all temperature ranges the current appear to approach 

the same value except for the lowest temperature (lOOK). 

The ideality factor (n), the saturation current (Is) and the series re istance (R ) 

were found by fitting equation (2.15) using least squares technique (see section 5.7) . 

These quantities are listed in Table 6.1 and the fitting curves at 200 and 300 K are 

shown in Figure 6.11 (a) and (b) respectively. 
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Table 6.1 Some parameters obtained experimentally from the forward I-V characteristic of the CaM nN (800 
device) Schottky diode at some selected temperatures 

2.0 

1.5 

:> 1 .0 
:> 

0.5 

0.0 

T n 

100 21 ±0.009 

150 14±0.009 

200 11 ±0.008 

300 8.3±O.OO6 

340 8.3±O.005 

400 11.4±0.008 

440 17.2±0.06 

460 25 .3±0.2 

( 

Is (A) 

0.0000OO05±IE-7 

0.00000OO7± I E-7 

0.OOOOOOI ±2E-7 

O. 0OO0003±3 E-7 

O. 0OOOO2±9 E-7 

0.OOOOO9±4E-6 

0.OOO04±4E-5 

O.OOOO8± IE-4 

2 .0 

1.5 

:> 1.0 
:> 

0 .5 

0 .0 

R (n ) 

1041 8.5±611.6 

6645.3±375 

5145 ±267 

3421±133 

2230±50 

1310±46 

694±17 

246±4 

0 .00000 0.00005 0 .00010 0 .00015 0.000000 0.00005 0.00010 0.00015 0.00020 

(a) 1(1\) (b) 1(1\) 

Figure 6.11 The applied forward bias against current at (a) 200 K and (b) at room temperature. The graph 
shows the fitting applied to equation (2.15) (red lines) for 800 device 

The series resistance of the device has been determined from the I-V -T 

measurements using equation (2.15) for both polarities as shown in Figure 6. 12. In 

general, it was found that the series resistance was much higher in forward compared to 

the reverse direction. 
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Figure 6.12 The series resistance versus temperatures for GaMnN sample (800J1m devicc) in both polarities 

In the forward bias, between 100 K to 480 K the ideality factor n varie fro m 

20.000± 0.009 to 63± 0.5 with a minimum value of ~ 8 at 300 K. On the other hand, in 

the reverse bias as temperature is increased from 100 K to 480 K, the idea lity fac tor n 

varies from 9.7 to 1.8. At highest temperature used in this study (480 K), nil. ± 

0.001. This behaviour is more consistent with a forward biased Schottky contact rather 

than a reverse biased one. 

70 

60 10 

50 8 

10 
2 

O~~~~'-~--.-~~r-.-~~ 
50 100 150 200 250 300 350 400 450 500 50 100 1 0 200 250 300 350 400 450 5 0 
(a) T(K ) (b) T(K) 

Figurc 6.13 (a) Ideality factor as a function of temperaturc in case of forward and (b) In rc\'crsc biases for 
GaMnN material (800 device) 
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6.4.2 C-V Behaviour 

The C-V response of 800 device is shown in Figure 6.14. The shape of the 

characteristics is not what is expected from the C-V of a Schottky diode. Namely, for 

the reverse bias the capacitance appears to increase with temperature. The shape of the 

c-V curve is similar to the C-V behaviour of MIS structures. In Figure 6. 14 different 

regions of the C-V profile are labelled with the physical process causing the genera l 

shape of the C-V curve assuming the MIS model. 

Accumulation I Depletion I Inversion 
~ ~1~.~--4~~1~.~--------.~ 

I 
I 
I 
I 
I 
I 

-~~~ I 

-4 -3 -2 

--u.. 
0-

U 

2 3 

--T=100 k 
---T=200k 
--T=3001< 
- - T=4001< 

T.,440 I< 
-·-T=480 I< 

4 5 

Figure 6.14 The capacitance versus voltage for device 800. The labels assume a MI kind of structure 

6.5 Interpretation o/the I-V-T results/or 800 diameter device 

6.5.1 Forward Bias 

The estimation of the barrier height <Db from Is data using the equation (2.14) i 

plotted in Figure 6.15 (a). The barrier height shows temperature dependence with the 

highest value being 0.43 eV at a temperature of 400 K in the forward bia . A the 

temperature increases the barrier height starts to fluctuate in the 420-480 K temperature 

range due to observed value of fluctuation of the saturation current. 
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The plot of the natural logarithm of (Is/T2) against 103 IT for forward bias is 

shown in Figure 6.15 (b). The slope of the plots gives the barrier height according to 

equation (2.14). The calculated value for the barrier height in the forward bias is 

0.37±0.03 eV. The intercept of this plot on current axis gives the va lue of the 

Richardson ' s constant. From Figure 6.15 (b), its estimated value is 0.009±0.9 A.cm·2.K· 

2 which is very small compared with other reports of 103.8 A.cm·2.K·2 for p-GaN [13 8]. 

Tan et al. [138] attributed the error in the estimated value of A· to the limitation of the 

data taken in y-axis, for example for this device the range is limited from 300 K to 480 

K. However, there is a considerable degree of uncertainty in the reported va lues of the 

Richardson ' s constant for Mg doped p-GaN samples grown on sapphire which ha been 

reported to vary from 0.00000003 to 13.7 for a Pt and Zr-Schottky contacts to p-GaN 

respectively. 

However, these measurements are made on wurzite GaN rather than cubic GaN, 

which is studied here. The barrier height of Pt contact was estimated to be 0.5 eV [1 38] 

which was smaller in value compared to Cr with 0.9 eV given in the same re ference 

[138]. The range of fit is limited to the small temperature range 300 K to 480 K. The 

temperature dependence of the ideality factor is taken into account in equation (2.35) by 

mUltiplying the ideality factor by temperature [31]. 
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Figure 6.15 (a) The temperature dependence of the barrier height and (b) The plot ofln (Isrr) versus IOJrr in 
case of forward bias which gives barrier height <l>b =0.37 ±O.03 eV. The data for both is taken in the 

temperature range 300 K to 480 K 

The conventional plot then becomes OslT2) versus 103 InT whose slope g ives the 

barrier height (<Db) of 1.14±0.06 eV as shown in Figure 6.16. 
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Figure 6.16 the plot In (lsrr) versus I03/nT 

6.5.1.1 Thermionic-field emission (TFE) Model 

Using equation (2.22) where m·=0.2 mo [129] and Es=9.5 EO for p-type aN , the 

values of Eoo turn out to be 11.23 me V and 12 me V corresponding to accept r 

concentrations of 7x IO 17 em-3 and Sx 1017 cm-3 respectively. The TFE b c me 

important when Eoo-kT since Eoo is comparable to kT at 130 K and 140 K (kT= 11.2 

meVand 12 meV respectively. There is good reason to believe that TFE i ignifi ant. 

To analyse the conduction mechanism in the forward bias the technique 

developed by Padovani and Stratton [15] and used by several workers [1 4, 16, 33] ha 

been considered. In this method, Eoo is determined by plotting the relation between 0 

(which is the product of the ideality factor and kT/q) and kT/q as shown in Figure .17. 

The value ofEoo is determined by extrapolating the plot to Eo axis. This give a va tu f 

O.IS eV for Eoo. 
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Figure 6.17 Experimental values of Eo as a function of temperature for 800 Jim diameter device 

Barrier heights have been calculated based on TFE theory, by plotting equation 

(2.23). Results obtained from the I-V-T measurements of the forward bias for the 00 

11m device by plotting the logarithm of J s cosh(Eoo / kT) / T versus I I Eo are shown in 

Figure 6. I 8. The slope of this plot gives the value of barrier height as 0.36±0.033 eV. 

This is in good agreement with the value of 0.37 eV of the barrier height obtained IT m 

the plot of the natural logarithm of(I s/T2) against 103/T in the forward bias a shown in 

Figure 6.15 (b). 
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Figure 6.18 The saturation current versus IIEo as given by equation (2.23) 

The experimentally observed Eoo value of 180 meV for forward bias is much 

higher than the theoretically calculated value of 11.23 meVand 12 meV. The high value 

of Eoo can be related to two factors. One factor is the electric field on the surface which 
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determines the barrier shape and tunnelling probability, and the other is the den it y 0 f 

states which playa role through the effective masses [139]. Similar result is obtained by 

Hasegawa and Oyama [129] and Morkoc (140). They found a considerable difference 

between the experimental and theoretical values of Eoo. They attributed this to the eITe t 

of surface and bulk defects. They obtained a better fit when the doping concentration 

near the surface is higher as compared to the bulk. 

6.5.1.2 Barrier Height Inhomogeneities Model 

The two main diode parameters such as ideality factor (n) and the barrier he ight 

(<Db) were found to be strongly temperature dependent. The model Werner and uttler 

[18] explains the dependence of these two parameters on temperature by con idering f 

a Gaussian distribution characterized for the barrier height variations that con i t f 

low and high barrier areas. Using equation (2.28), the barrier height <D b ha been pI tt ed 

against q/ (2kT) as shown in Figure 6.19 (a) in the case of "forward bia ". A m an 

barrier height of 0.6±0.01 eV is obtained as the intercept of this plot. The tandard 

deviation (crso) relates to the slope of this plot by J(slope) with a va lue of 0. 1 

e Y. This indicates that the standard deviation is 16% of the mean barrier he ight. The 

standard deviation is a measure of the barrier homogeneity [136]. The larg r the 

standard deviation, the stronger the temperature dependence is [18). 
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Figure 6.19 (a) The forward barrier height and (b) Ideality factor versus q / (2kT) plot of the GaMn N chonky 
diode according to the Gaussian distribution model of the barrier heights. The modified Richardson plot a 

given by this model can be obtained by combining equation (2.14) and (2.28). 
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The conventional Richardson plot is modified according to the barrier 

inhomogeneities model given by equation (2.34). A plot of the modified [In (I 2)_ 

(q2crso2/2k2T2)] versusl03/T yields a straight line with the slope giving the mean barrier 

height and the intercept giving the modified Richardson constant as shown in Figure 

6.20. Table 6.2 shows the parameters used to apply the modified Richardson plot in a e 

of the forward bias. The modified Richardson plot for forward bias yie lds a va lue 0 f 

0.38±0.02 eV of the barrier height which is comparable to the value obta ined (0.37 e 

from the conventional Richardson plot. 

Table 6.2 The parameters used to apply the modified Richardson plot in case of the forward bias 

T 103fT Is In IsfT2 q/kT In ( lsfT2)_(q26",1I2k1Tl) 

300 3.3 3.4E-07 -26.3 38.7 -26.4 

320 3 8.5E-07 -25.5 36 -25.6 

340 2.9 1.5E-06 -25 34 -25.2 

360 2. 8 2.4E-06 -24.7 32 -24.8 

380 2.6 5.6E-06 -24 30.5 -24. 

400 2.5 8.9E-06 -23.6 29 -23.7 

420 2.4 0.00003 -22.5 27.6 -22 .5 

440 2. 3 0.00004 -22 26.4 -22 .3 

460 2.2 0.00008 -21.7 25 -2 1.7 

480 2.1 0.0003 -20.5 24 -20.5 
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Figure 6.20 Modified Richardson plot as given by equation (2.34) for the GaMnN Schottky diode which gh'c 
barrier height (J)b =0.38±0.03 eV in forward bias 
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The current-voltage characteristics of GaMnN based Schottky diode has been 

interpreted based on assumption of a Gaussian distribution of barrier heights. It is seen 

that the value of 0.1 eV for the standard deviation (aso) is not small compared to the 

mean barrier height 0.6 eV and it indicates greater inhomogeneities of the barrier height. 

The voltage coefficients are obtained as P2=-1.2± 0.03 V and P3=-0.02 ± 0.002 V 

from the intercept and the slope of the Figure 6.19 (b), respectively. The parameter To is 

related to P3 by [To = P3 /(2k / q)] which gives a value of 133.6 K for To. On the other 

hand, the value of To could not be determined from the n versus lIT plot as is usually 

done because in this case, the relationship between n versus liT was not linear. 

6.5.2 Reverse Bias 

According to this model, the semiconductor just below the Schottky contact has 

an n-type characteristic as explained in model two earlier in this chapter. In such cases, 

the applied bias, which makes the Schottky contact positive with respect to the 

semiconductor, will be the "forward bias". Consequently; what was considl!red as 

reverse bias for a p-type GaMnN, would be "forward bias" for over n-type GaMnN 

layer. This implies that the standard Schottky analysis can be considl!red for "reverse 

bias" observations/data. 

6.5.2.1 Thermionic-field emission (TFE) Model 

The cotangent hyperbolic function in equation (2.21) is replaced by the Taylor 

expansion in order to estimate the values of the (ntun.) that are compatible with the 

experimental values of the ideality factor (nexp.). 
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Figure 6.21 Theoretical temperature dependence of ideality factor obtained by the TFE model for tunnelling 
characteristic energy Eoo=O.07 eV (red line), and the experimental determined ideality factor (black line) as a 

function of temperature in the reverse bias 

Using the method of iteration, it is found that a value of 70 meV for Eoo g ive a 

good fit above 200 K as shown in Figure 6.21. With increasing temperature the va lue o f 

kT/q increases and becomes comparable to Eoo. As the difference between Eoo and kT/q 

narrows the thermionic component of current increases and the idea lit y factor 

approaches unity as is experimentally observed. Equation (2 .21 ), which the 

temperature dependence of the ideality factor for tunnelling (ntun) , predicts a va lue o f 

about 1.87 at 480 K for this sample. This value is compatible with the measured va lue 

of n at the same temperature (1.79). 

The estimated tunnelling characteristic energy of 70 meV for Eoo is used in 

equation (2 .21). Both ntun.and nexp.parameters plots are shown as a function o f the 

temperature in Figure 6.21. 

6.5.2.2 Barrier Height Inhomogeneities Model: 

The plot of the natural logarithm of (l si AT2) against 103 IT for "reverse bias" is 

shown in Figure 6.22 (a). The slope of the plots gives the barrier height for the reverse 

bias as 0.2±0.02eV. 

169 



CHAPTER 6 Measurement Results ofGaMnN 

Applying the same technique as used earlier in section (6.5.1.2), for determining 

the inhomogeneities in the barrier height, data for "forward bias" is plotted as the barrier 

height versus q/(2kT) as shown in Figure 6.22 (b) in the case of "reverse bias", and the 

linearity of the barrier height <Db versus q/(2kT) plot given in Figure 6.22 (b). This 

yields a mean barrier height 0.7±0.03 eV and a standard deviation (crso) ofO.I ±0.02 eV. 

The standard deviation is 14% of the mean barrier height. 
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Figure 6.22 (a) The plot of In (I s1T2) versus 103fT in case of reverse bias and (b) Zero-bias reverse apparent 
barrier height versus q f(2kT) plot of the GaMnN Schottky diode according to the Gaussian distribution model 

of the barrier heights 
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Figure 6.23 The plot of In(lslT2)(-q (J.o212~r(versus JoJfT in case of reverse bias which gives barrier height 
(J>b =O.2±O.03 eY. The data is taken in the temperature range 300 K to 480 K 

A plot of the modified [In[(lslT2)]_q crs/ /2k2T2] versus103/T yields a straight line 

with the slope giving the mean barrier height and the intercept giving the modified 
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Richardson constant as shown in Figure 6.23 in the case of reverse bias. The modified 

Richardson plot yields a value of 0.0l±0.0002 eY of the barrier height which is smaller 

than the value obtained from the conventional Richardson plot (0.2 eY). 

6.5.3 The Insulator GaMnN layer in both polarities: 

In case of the Schottky effect, In (I) versus yl /2 plot should give a straight line. 

While for the Poole-Frenkel effect, the plot In (I1Y) versus y
I /2 plot should give a 

straight line as has been outlined in chapter (2). 

Both the Schottky and the Poole-Frenkel emIssIon mechanisms could be 

effective in the present case due to the linearity of the plots In (1)-y l12 and In (IN) 

versus yI /2 that are shown in Figure 6.24 (a) and (b) for forward bias. In Table 6.3 , the 

slopes are obtained from these two plots which represent the experimental values of 

both Schottky and the Poole-Frenkel coefficients. The analysis takes into account the 

effects of the series resistance Rs correction when plotting these curves in both 

polarities. 

-8.5 

-9 .0 
-9 .5 

-10.0 

~ -10.5 
~ -11 .0 

.E -11 .5 
-12.0 
-12 .5 

-13.0 L.-.--r~--r~-.-_~~,..=;;::::;T....o---,I( 
0.80 0.85 0.90 0 .95 1 .00 1 .05 1 .10 

V 1:1 

-8 .5 

-9 .0 
-9 .5 

-10.0 

-. -10.5 
::'-11 .0 
c: 
- -11 .5 

-12 .0 
T."O K 

-12.5 - TeOJU 

13 0 T. IIO K 
- . ~.-.~~-r~'-~r-~~~~ 

0 .80 0.85 0 .90 0.95 1 .00 1.05 1 .10 
V iii 

Figure 6.24 (a) Variation of In (IN) versus VI I2 and (b) In (I) versus V
I12 in high forward voltage range at 

various temperatures with good correlation coefficient. In both cases, these two plots after the Rs correction. 

The slope from In (l/Y) versus yI /2 plot in forward bias ranges from 7.2±0.1 at 

100 K to 1.2±0.09 at 480 K. This plot is shown in Figure 6.24 (a) and the values of the 

slope are listed in Table 6.3 after Rs correction. The slope from In (I) versus Y 1/2 plot in 

forward bias ranges from 9.4±0.1 at 100 K to 3±0.03 at 480 K. This plot is shown in 

Figure 6.24 (b) and the values of the slope are listed in Table 6.3 for both polarities. The 
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slope of these curves decreases with increases of temperature in the case of forward 

bias. 

Table 6.3 Coefficient of barrier lowering for 800 device 

~PF {I00s eY.m l12.y o Il2) ~PF (Io's eY.m ll2. y ·1/2) Ps (1005 eY.mI/2.y .I/") ~s (10.5 eY.m1/i. y .I/_) 

T 
(Forward bias) (Reverse bias) (Forward bias) (Reverse bias) 

voltage range voltage range voltage range voltage range 

0.7-1.4 V 0.4-1.2 V 0.7-1.4 Y 0.4-1.2 Y 

100 7.2±0.1 12.5±0.2 9.4±0.1 15. 1±0.2 

150 7.6±0.08 1O.85±0.2 9.6±0.1 13.6±0. 1 

200 7.3±0.1 10±0.1 9.4 1±0. 1 12.8±0.1 

300 6.6±0.07 9±0.1 8.7±0.2 12.2±0. 1 

340 5.5±0.07 13±0.2 7.6±0.07 14.6±0.07 

400 3.24±0. 1 9.9±0.03 5.4±0.1 14.2±0.09 

440 1.9±0.09 1O.8±0.09 4±0.05 14.6±0.06 

460 1.2±0.09 11 ±0.2 3±0.03 15±O.2 

Since Es=9.5 (for GaN) and Eo=8.85x I 0-12 F/m, the estimated theoretical va lues 

of these two coefficients are Ps= 1.23 xIO-5 eY m l /2 y I/2 and PPF = 2.46 X 10
05 

eY m l /2 

yl l2 . 

The dielectric constant Es has been determined from equation 

f3s =(q3 14lZGsGO)1 /2 andf3pF =(q3 /lZGs GO) 1/2 at various temperatures are listed in 

Table 6.4. It is observed from Table 6.4 that there is a reasonable agreement between 

the values of the dielectric constant Es obtained from In (I /Y) versus Y 1/2 plot bias rather 

than In (I) versus y I/2 plot. 
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Table 6.4 The estimated dielectric constant t, from both plots. 

From the plot In I vs. V"" From the plot In IN vs. V"" 
T Forward Reverse Forward Reverse 
100 0.16 0.17 1 1.6 
150 0.3 0.13 3.26 1.17 
200 1 0. 16 22.5 1. 84 
300 0.4 0.15 4 1.65 
340 0.4 0.11 3 I 
400 0.3 0.16 4.4 1. 71 
440 0.4 0.07 5.3 1.4 
480 0.16 0.17 I 1.6 

6.6400 diameter device (no.3) 
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Figure 6.25 I-V characteristic ofGaMnN device (3) 

This device exhibits characteristic of an extremely soft diode, as shown in 

Figure 6.25. The current actually decreases with increasing temperature, and the erie 

resistance exhibits a metallic behaviour. This may be due to a Mn layer that tend to 

migrate to the surface and may provide a conducting metallic path between the two 

contacts as shown in Figure 6.26. Such a resistance would imply that the parallel 

resistance of the semiconductor is extremely high (the two resistances would add in 

parallel and if the metallic character is dominant, it must be lower). There is indeed a 

possibility for this as Mn migrates to the surface it leaves behind a near intrinsic GaN 

and with this high bandgap, it acts as an insulator. Unintentionally doped (u. i,d.) 

behaviour is not withstanding. 
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Schottky contact Ohmic contact 

Figure 6.26 The Mn layer short circuits the two contacts 

However, the device is almost Ohmic and there are clearly strong conduction 

paths between the Ohmic and the Schottky contact 

6.7400 diameter device (no.4) 

6.7.1 I-V Behaviour 
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Figure 6.27 I-V characteristic of GaMnN for 400 device (no.4) 

The I-V characteristic of the measured Schottky diode at different temperature is 

shown in Figure 6.27. The general shapes of the characteristics of this device in the 

forward and reverse directions are nearly similar but the current in the forward direction 

is generally larger than the current in the reverse direction. 
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The measured values of the ideality factor as a function of temperature is shown 

In Figure 6.28. In addition, the barrier height is also shown in Figure 6.28 and it 

increases with temperature. 
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Figure 6.28 The temperature dependence of the barrier height and ideality factor of 400 device 

6.7.2 C-V Behaviour 

The response of the C-V is shown in Figure 6.29. The qualitative behaviour of 

the response is similar to that observed for the 800 11m device where the capacitance 

increases with reverse bias and increasing temperature. For the forward direction, the 

capacitance increases rapidly from zero bias initially followed by a slower increase. The 

temperature dependence of capacitance again does not appear to follow a fixed 

behaviour but the net change in capacitance as a function of temperature is less than the 

800 11m device. An interpretation of the results for all the C-V measurements is 

presented in section (6.11) later. 

175 



CHAPTER 6 Measurement Results ofGaMnN 

Accumulation 
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Figure 6.29 The capacitance verses voltage for device 400 (no.4) 

4 

6.8 Interpretation of the 1- V-T results for 400 diameter device (no. 4) 

6.8.1 Forward Bias 

The variation of the barrier height over the temperature range 300-480 K for the 

400 11m device is shown in Figure 6.30 (a). It is observed that the barrier height 

increases with increasing temperature. The plot of (I s/T2) against 103 IT for forward bia 

is shown in Figure 6.30 (b) which is expected to be a straight line from which the 

barrier height can be estimated. 
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Figure 6-30 (a) The temperature dependence of the barrier height and (b) The plot of In (I s1T2) verslls 103/T in 
case of forward bias for 400 (no.4) 

There appears to be a considerable scatter of points on this plot, which is 

attributed to the lateral variation of barrier heights on the surface of the Schottky 

contact. The area under each patch of different barrier height is not known and their 

collective behaviour would be difficult to speculate. This however, can be taken into 

account by considering the barrier inhomogeneities model, which is done in the 

following section. 
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Figure 6.31 The plot of In (Islr) versus 103/T the barrier height yields a value of 1.61±0.098 eV in case of 
forward bias for (400d no.4) 

Better linearity is found when a modified Richardson plot ((I slT2) vs. 103 InT) is 

used since this takes into account n. This plot is shown in Figure 6.31. The barrier 
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height obtained from this plot is 1.61±0.098 eV which is close to the half of the band 

gap (-1.6 eV). 

6.8.1.1 Barrier Height Inhomogeneities Model 

The plot of 05/T2) versus 103/T is analysed further by considering the 

inhomogeneities of the barrier height. Considering a Gaussian distribution of barrier 

heights as proposed by Werner and Guttier model [18] a relationship between <Db and 

the mean barrier height is obtained as given in equation (2.28). A plot of the barrier 

height versus ql (2kT) is shown plotted in Figure 6.32 (a). The intercept gives value of 

1±0.03 eV for the mean barrier height and a standard deviation of 0.17±0.0 I eV in 

forward bias. This represents a 12% of the mean barrier height. 

A modified Richardson plot which relates the term [in [(Is/T2)]-q O"so2/2k2T2] to 

103/T [equation (2.34)] is shown plotted in Figure 6.32 (b). The estimated barrier height 

which is the slope of this plot is 0.96±0.05 eV. This compares favourably with the value 

of I±O.03 eV obtained from Figure 6.32 (a). 
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Figure 6.32 (a) Zero-bias forward apparent barrier height versus q / (2kT) plot "lth a value of 1±O.03 eV and 
standard deviation ofO.17±0.01 eV and (b) Plot oflnl(lslT2)I-q (J.//2~T21 versuslOJ/T which gives barrier 

height <1>b =0.96±O.05 eV in case of forward bias for 400 (no.4) deviee 
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6.8.2 Reverse Bias 

6.8.2.1 Barrier Height Inhomogeneities Model 

The barrier height inhomogeneities is also investigated in the reverse bias using 

the same technique as for the forward bias by plotting the barrier height versus q/ (2kT) 

as shown Figure 6.33 (a). The obtained value for the mean barrier height yields a va lue 

of 0.93±0.035 eY and the standard deviation which is .J(slope) of this plot, with a 

value ofO.173±0.013 eV. This means that the standard deviation is 18% of the mean 

barrier height is the same as for the forward bias. 
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Figure 6.33 (a) Zero-bias reverse apparent barrier height versus q 1(2kT) plot with a val ue of 0.93±O.03S eV 
and standard deviation (aso) of 0.173±0.013 eV and (b) Plot of In(ls/r)(-q a./12r;T2

( versus I OJ/T in case of 
reverse bias which gives barrier height cJ)b =0.98±0.048 eV for 400 device (no.4) 

The modified Richardson plot (equation (2.34) is shown plotted for the reverse 

bias in Figure 6.33 (b) . The slopes gives the barrier height as 0.98±0.048 eV. This 

compares favourably with the barrier height of 0.93 eV obtained from Figure 6.33 (a). 

6.8.3 The Insulator GaMnN layer 

Both the Schottky and the Poole-Frenkel emIssIon mechanisms could be 

effective in the present case as indicated by the linearity of the plots In (1)-V 1/2 and In 

(IN) versus yI /2 ,which are shown in Figure 6.34 (a-b), after Rs corrections. 
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Figure 6.34 Shows (a) plot of In (ltv) versus V I I2 in high reverse voltage range and (b) In (I) versus V II2 at 
various temperatures. A straight line is an indication of Poole-Frenkel emission in (a) and the Schottky effect 

in (b) 

Table 6.5 Coefficient of barrier lowering for 400 device (no.4) 

~PF (10.5 eV.m I 2.V'"2) ~PF (10.5 eY.m tn. V' "2) P s (1 0.5 eY. ml12.y.112) P s (10.5 eY.m I12.y .ll2) 

T (Forward bias) (reverse bias) (Fol'\vard bi as) (reverse bias) 
voltage range voltage range voltage range voltage range 

0.4-1.3 y 0.4-1.5 Y 0.4-1 .3 Y 0.4- 1.5 Y 

100 6.2±0.06 5.6±0.2 9±0.2 7.9±0. 1 

ISO 4.6±0.07 6.4±0.2 7±0.3 S.6±0.1 

200 6±0.06 4.S±0.07 9.3±0.S 7.1±0 .OS 

300 0.S±0.009 1±0.06 2.9±0.1 3.3±O.OS 

340 3.S±0 .06 2±0.06 8 ±O.3 4. 2±0.05 

400 1.6±0.02 2.3±0.07 4±0.OS 4 .S±0.08 

440 1.2±0.0 1 1.9±0.06 3.7±0.07 4.4±0.06 

460 1.3±0.0 1 O.4±O.OS 3.9±0.O6 2.6±0 .OS 

It is difficult to distinguish Schottky and the Poole-Frenkel emiss ion 

mechanisms. Table 6.5 shows the coefficient of barrier lowering at different 

temperatures. 

The dielectric constant £5 have been determined and listed in Table 6.6 
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Table 6.6 The estimated dielectric constant E,. from both plots. 

From the plot In I vs. Vii. From the plot In VV vs. V III 
T Forward Reverse Forward Reverse 
100 0.28 0.09 1.50 1.8 
150 0.25 0.12 2.7 1.4 
200 0.27 0.14 1.6 2.8 
300 0.33 0.18 2.3 57.5 
340 0.48 0.09 4 14.4 
400 1.4 0.15 21.9 10.9 
440 4 0.12 40 15.9 
460 10 0. 12 34 0.004 

6.9 200 diameter device (no. 6) 

6.9.1 I-V Behaviour 
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Figure 6.3SI-V characteristic ofGaMnN device 200 

For this device, the temperature does not have much effect on the current as 

shown in Figure 6.35. 

181 



CHAPTER 6 Measurement Results ofGaMnN 

10 

9 

.... 8 
::) 

ti 7 
~ 

.f' 6 

~ 5 
:'S! 
~ 4 
~ 

t- 3 

2 
~~~.-~~.-~~-r--~-.~.-~~ 

280 300 320 340 360 380 400 420 440 460 480 500 
T(K) 

Figure 6.36 Variation of the ideality factor as a function of the temperature 

The ideality factor (n) which is the measure of the deviation from pure TE 

theory is shown in Figure 6.36. There appears to be a trend for the forward bias of n 

decreasing with increasing temperature but the experimental scatter of the data means 

the observed trend is just random. Whilst in reverse direction, it remains almost the 

same. If the forward observation is true, then in the forward direction the dominant 

current mechanism is the TE over the barrier where n reduces with increasing 

temperature. Whereas, in the reverse direction, where n stays around the same value 

(-2-4) which can be explained on the basis of the band diagram that is shown in Figure 

6.38. In general, this device does not show considerable temperature dependence, which 

is possibly one reason for the high value ofn. 

The proposed model of the GaMnN (200 device) is shown schematically in 

Figure 6.37 along with the corresponding energy band diagram of a metal p-type 

semiconductor junction where the <l>m < <l>s. This gives an accumulation layer in the 

semiconductor and a positively charged metallic surface as is shown in Figure 6.37 (a). 

In forward direction Figure 6.37 (b), the holes will go either over the barrier or tunnel 

through the junction; at higher temperature at least, a significant TE will be observed 

from the semiconductor into the metal which will give a temperature dependent ideality 

factor. On the other hand, in reverse bias Figure 6.37 (c), the TFE mechanism will be 

dominant. The electrons tunnelling from semiconductor to the metal would correspond 

to a hole tunnelling from metal to semiconductor. This is largely a non-TE process and 

the value of the ideality factor would remain high. 
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Figure 6.37 Energy band profile of the proposed model for the p-GaMnN; (a) schematic diagram for the 
depletion region (b) under applying "forward bias" on the semiconductor and (c) under applying " reverse 

bias" on the semiconductor 

6.9.2 C-V Behaviour 

The C-V pattern is shown in Figure 6.38. Although the qualitative features of the 

device are similar to those observed for the 800 ~m and 400 ~m device the temperature 

variation is considerably less than the other devices. This is one important general 

pattern which can be discerned from the three devices. The other is that the sharpness of 

the transition from the depletion to the accumulation region increases with reducing area 

of the devices. It will be later shown in the discussion that this is an important 

observation and may support the idea of the model of inhomogeneous Schottky 

contacts. 
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Figure 6.38 The capacitance verses voltage for 200 device 

6.10 Interpretation o/the I-V-T results/or 200 diameter device 

6.10.1 Forward Bias 

The data in the plot of In (I slT2) against 103rr in Figure 6.39 (a), was found to be 

non-linear. Like the other devices, the plot In (I s/T 2) against 103 InT does result in a 

straight line as shown in Figure 6.39 (b) . 
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Figure 6.39 The activation energy plot: (a) Richardson plot In (lS/T2) and (b) Modified Richardson plot In 
(l slnT2) in forward bias for 200 devices 
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The barrier height obtained from the modified activat ion energy plot is 1.46±O.1 

eV. The value of the barrier height is higher than the theoretical barrier height value of I 

eV. The estimated Richardson's constant is 20.4±0.4 A cm-2 K-2 from Figure 6.39 (b). 

This value is close to known va lue for n-GaN grown on sapphire which is 26.4 A cm-2 

K-
2

• However, it is far from the theoretical value for p-GaN which is 103.8 A cm-2 K-2 . 

Corresponding values for cubic GaN are extremely difficult to find in literature. 

6.10.1.1 Barrier Height Inhomogeneities Model 

The plot of the natural logarithm of (l s/T2) against I03/T do not show linearity. 

This behaviour is now examined on the basis of the assumption of inhomogeneities of 

the barrier height by using equation (2 .28) to obtain the mean barrier height <D bO (mean) 

and the standard deviation of the barrier distribution O so. 
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Figure 6.40 (a) Zero-bias forward apparent barrier height versus q 1(2kT) ~Iot with a value of O. 75±0.O 16 lind 
standard deviation (aso) of 0.16±0.0064 eV and (b) Plot oflnl(lsfT2)I-q as. 12~T2 1 versus I OJ/T which gh'cs 

barrier height of the value 1.06±O.067 e V in case of t he forward bias 

The mean barrier height and the standard deviation OsO can be plotted as barrier 

height versus ql (2kT) according to equation (2 .28). Such a plot is shown in Figure 6.40 

(a) that gives the mean barrier height <DbO (mean) and the standard deviation from the 

intercept and slope respectively. The mean barrier height <DbO (mean) and the standard 

deviation obtained are O.75±O.OI6 eV and O.16±O.0064 eV respectively. This represents 

a 16% of the mean barrier height. 

)85 



CHAPTER 6 Measurement Results of GaMnN 

The modified Richardson plot relates the term [In [(ls/T2)]-q Gso
2/2k2T2] to 103 rr 

[equation (2.34)]. The estimated barrier height which is the slope of Figure 6.40 (b) is 

1.06±0.067 eV. 

6.10.2 Reverse Bias: 

The barrier height inhomogeneities model is also investigated in the reverse bia s 

by plotting the barrier height versus ql (2kT) as shown in Figure 6.41 (a) which gives an 

indication of Gaussian distribution barrier height. The value of barrier height 

O.66±0.026 eV by using equation (2.28) and the standard deviation with a value of 

0.15±0.012 eV are shown plotted below. 
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Figure 6.41 (a) Zero-bias reverse apparent barrier height versus q I (2kT) plot gives a value of 0.66±O.026 eV 
and standard deviation (G,o) of O.IS±O.OI2 eV and (b) The barrier height cJ)b =0.79±0.067 eVas obtained from 

equation (2.34) in case of reverse bias or 200 device 

The modified plot of [In [(ls/T2)]-q Gs/ 12k2T2] versusl03/T (Figure 6.41 (b» 

according to equation (2.34) should give a straight line and the slope yields the mean 

barrier height 0.79±0.067 eV with 17% of the mean barrier height. 

6.10.3 The Insulator GaMnN layer 

1 ~ Vl ~ 
In the 200 Ilm device, In (I) versus V (Schottky effect) and In (I1V) versus 

(Poole-Frenkel) plots are found to be straight line with good correlation coefficient after 
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the Rs correction. These are shown in Figure 6.42 and the values of the slopes are listed 

in Table 6.7 for both polarities in the case of Poole-Frenkel emission mechanism and 

Schottky effect. 
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Figure 6.42 (a) Variation of In (l/V) versus yll2 and (b) In (I) versus yl l2 in high forward voltage range after Rs 
correction at various temperatures 

Table 6.7 Coefficient of barrier lowering for 200 devices 

PPF (10.5 eY.m I/2.y.1/2) PPF (10.5 eY.m I/2. y .1I2) Ps (10.5 eY.m I/2.y ·1/2) Ps (10.5 eY.m I/2. V·1/2) 

T 
(Forward bias) (reverse bias) (Forward bias) (rever e bi as) 

voltage range voltage range voltage range voltage range 

0.5-1.5 V 0.3-1 Y 0.5-1.5 V 0.3-1 V 

300 7.5±0.OS 6±0.2 9.6±0.05 9.2±0.3 

340 4.2±0.1 7±0.09 6.6±0.06 10.5±0.11491 

380 1.6±0.06 5.6±0.1 3.S±0.03 9.6±0.07 

400 3.S±0.04 5.9±0.07 5.9±0.04 9. 8±0.04 

440 4.3±0.OS 7.6±0.09 6.7±0.07 11.4±0.08 

460 3.6±0.09 5.8±0.09 5.8±0.06 9.5±0.1 

480 3.3±0.1 6.3±0.1 5.5±0.09 14±0.2 

The dielectric constant Es have been determined and listed in Table 6.8 at various 

temperatures. It is observed from Table 6.8 that there is a reasonable agreement between 

the values of the dielectric constant Es obtained from In (l/Y) versus Y 1/2 plot rather than 

In (I) versus yl /2plot. 
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Table 6.8: The estimated dielectric constant t , from both plots. 

From the plot In I vs. V 'I" From the plot In I1V vs . V'I" 
T Forward Reverse Forward Reverse 
100 0. 16 0. 17 1.02 1.6 
150 0.33 0. 13 3.2 1.1 7 
200 I 0. 16 22.5 1.8 
300 0.4 0.15 4 1.6 
340 0.4 0. 11 3 I 
400 0.3 0. 16 4.4 1.7 
440 0.4 0.07 5.3 1.45 
480 0.16 0. 17 I 1. 6 

6.11 C-V data analysis 

The observed C-V behaviour of GaMnN for 800 devices (no .2) (Figure 6 .14) 

400 device (no.4) (Figure 6.29) and 200 device (no.6) (Figure 6.38) could be expla ined 

on the basis of the metal-insulator-semiconductor or a metal-ox ide-semiconductor 

(MIS/ MOS) structure (Figure 6.43). As the gate of the MIS/ MOS structure i varied 

from negative through zero to a positive voltage, the charge in the semiconductor layer 

below oxide is strongly affected. Not only does the density of charge change but there i 

also a reversal in sign. Assuming there is an insulating layer between the con idering p

type semiconductor and the metal Schottky contact, the Schottky contact will then be 

similar to the Gate of a MIS structure. When the Schottky contact (Gate) i forward 

biased, the voltage on the contact is negative with respect to the semiconductor and thi 

will attract hole towards the insulator/semiconductor interface and accumulation will 

occur as shown in Figure 6.43 (a). The holes are separated from the metal contact by a 

fixed distance and so the capacitance should be approximately constant. 

As the gate voltage is reduced, and there is no accumulation of holes the 

depletion region will extend and the capacitance will decrease. On the other hand a the 

gate potential is made positive a negatively charged layer is formed beneath the oxide

this is the inversion layer- and the capacitance increases as the gate is made more 

positive (under reverse bias condition as shown in Figure 6.43 (b». 
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(b) Electron inversion 
layer 

Figure 6.43 The explanation of the behaviour of GaMnN samples on the basis of MOS capacitor under (a) 
forward bias and (b) reverse bias. 

A similar C-V behaviour can also be explained by the existence of the 

interfacial surface states as shown in Figure 6.44. According to Monch [141] the surface 

states playa dominant role. These states are characterized by a charge neutrality leve l 

(CNL). Interfacial states are considered acceptor type above Fermi leve l Er and donor 

type below EF. As EF, moves upward towards the conduction band, the e state trap 

electrons which make the surface negative Figure 6.44 (a), whereas a downward 

movement of the Er causes the donor type states to lose electrons and acquire a positive 

charge Figure 6.44 (b). Consequently, the charge density on the surface will increase 

either way as the EF moves towards the band edges causing the capacitance to increa e . 

The density of trapped charge and the resultant capacitance will depend upon the 

distribution of these interfacial states in the bandgap. 

Neutral 
acceptors 

Positive 
donors , 

Neutral 
donors 

Metal + P-type 

" semiconductor 

Accumulation layer 

(a) 

Ec 

Metal 

~------------- Ec 

P-type 
semiconductor 

(b) 

Figure 6.44 The energy band diagram of the metal- semiconductor in case of existing interfaces state under (a) 
in accumulation, and (b) at mid- gap (71 
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6.12 Conclusion 

Four specially prepared samples of epitaxally grown cubic GaMnN on SI-GaAs 

substrates have been studied by I-V-T and C-V-T techniques. Cubic GaN layers were 

doped with 7- 8 x 1017 cm-3 of Mn atoms and the devices had a diameter of 800 11m, 

(400 flm)x 2 and 200 flm. The geometry and details of the samples are given in section 

(6.1). In these devices GaN: Mn was the active layer with Schottky and Ohmic contacts 

on the top. 

The I-V performance of the device is determined by the GaN: Mn layer and such 

layers are expected to be p-type. However, it has been suggested that only a fraction of 

the Mn atoms may be electrically active and may compensate the u.i.d. n-type behaviour 

of GaN [142]. The nature of the Schottky contact is determined by the "conductivity 

type" of GaN layer near the surface and there is a considerable degree of uncertainty 

here since Mn atoms tend to migrate to the surface. Under such uncertain conditions, 

any interpretation of electrical behaviour would be based on "informed speculations" 

obtained from experimental evidence. 

6.12.1 Model to explain I-V behaviour of GaN: Mo 

One common feature of the I-V-T characteristic is that the "forward bias" 

exhibits a higher current. Forward bias in this case is defined as the top Schottky contact 

biased positive with respect to the GaN: Mn layer. One obvious conclusion to be drawn 

is that the metal is making a Schottky contact with an n-type material. This implies that 

Mn atoms are not fully ionized and even after compensation of the u.i.d. n-type GaN the 

material retains its n-type conductivity, although it is expected that its resistivity would 

increase. It should be noted that "nominally undoped" GaN layers are strongly n-type 

[142]. Either of the models 2 or 3 proposed in section (6.2) can possibly account for the 

I-V behaviour of these devices. 

All I-V-T characteristics exhibit a straight line for In (IN) _V1/2 plots for voltage 

range above 2-3 V for both directions of biases. On the basis of models 2 or 3 the 
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observed behaviour can be explained on the basis of the barrier "lowering mechanism" 

or on a P.F. mechanism. 

6.12.1.1 Fonvard bias 

In forward bias, the current is the thermionic, and carriers are injected over the 

barrier from the semiconductor into the metal. The transport of carriers in the 

semiconductor is determined by the Poole-Frenkel type centres in the compensated 

region (the near insulating region). The logarithm of current will be proportional to 

temperature and to V1I2 that is observed in all samples except (400 device no.3) which 

shows an Ohmic character. Using the forward characteristic the ideality factor and the 

barrier height has been determined at various temperatures. It has been found that the 

ideality factor decreases with temperature and the barrier height increases with 

temperature. 

Plotting the Richardson's relation In {ls/T2
)- 103 IT the barrier height can be 

determined. However, such plots do not give a straight line indicating that the barrier 

height is changing with temperature. There is another way of looking at the barrier 

height which is reduced due to TFE modified Richardson's relation In Og/T2)-103/nT 

when plotted gives straight line and from the slope the barrier height is obtained. The 

barrier height determined from the forward I-V-T characteristics for 800 JllU, (400 J.lm) 

and 200 J.lm samples are 1.14±0.065 eV, 1.6±0.098 eV and 1.46±0.1 eV respectively, 

and are shown in Table 6.9. The homogeneity of the barrier heights across the surface of 

the contact has been calculated using equation (2.34). This relationship has already been 

explained in detail in chapter (3). The mean values of the barrier heights are determined 

and the standard deviations are given in Table 6.9. All samples give a standard 

deviation of nearly 0.1 eV over the mean value. This has been calculated as around 16% 

the mean value. It should be noted that a lower value of standard deviation gives a more 

homogenous contact. A large variation is an indication of a poor material surface and/or 

material's quality. It is not only due to the fact that Mn migration to the surface [143] 

modifying its character but also to the non uniformity (thickness) of the GaN:Mn layer 

which may contribute to this lateral inhomogenity as can be seen from the TEM image 

in Figure (6.2). 
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Table 6.9 The size, barrier height and the standard deviation of the devices under study 

The mean barri er 

The barrier The barrier 
The barrier height height 

Size height [(Is1T2
) 

height 
[In[(lsIT

2)]-q <1so 
2 [<J>bo(lllcan)] The sla ndard 

vs. IOJ/T] [(lsi AT2) 
12k2T2] vs .1 OJ/T] l devia ti on (<1,0) 

vs. IO%T] <I> - $ _ qa,o 
b - bOC"""n) 2k T 

800 
0.37 ±0.03 eV (Forward) 1.14±0.06 eV 0.38±0.02 eV 0.6±0.01 eV 0. 1 0.0005 cV 

400(no.3) Ohmic 

400(no.4) 
Not linear 1.6 1±0.09 eV 0.96±0.05 eV 1±0.03 eV 0. 17±0.0 1 cV (forward) 

200 
Not linear (Forward) 1.46±0. 1 eV 1.06±O.06 eV 0.75±O.016 eV O.16±O.006 eV 

6.12.1.2 Reverse bias 

All the devices studied exhibit a soft reverse characteristic over the full 

temperature range. The In(J)-V 1/2 plots for these devices are linear giving a trong 

indication of a barrier lowering type mechanism. This can be either the chottky 

lowering of the barrier at the metal-semiconductor interface or a Poole-Frenk el type 

mechanism in the bulk as shown in Figure 6.45. The process can be under tood with 

reference to the proposed model. 

At low applied biases and at higher temperatures electrons are injected from the 

reversed biased Schottky contact by thermionic emission over the barrier into the 

semiconductor. Their transport is limited by a Poole-Frenkel type proces . It should be 

noted that the thermionic-field emission probability from the Poole-Frenke l centre 

increases with applied field (Figure 6.46). 
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Figure 6.45 The P-F centres in the compensated layer below the Schottky contact 

The possibility of direct tunnelling from either the Schottky contact or the 

Poole-Frenkel centres to the conduction band of the semiconductor appears unlikely 

when it is noted that the maximum field at the highest of voltages (5 V) is (5/0.6x 10' 

6-0.8xI06 Vcm' l) which is given below the threshold of the direct tunnelling . 
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Figure 6.46 The lowering ofthe barrier height due to high field for a P-F centre 

6.12.2 Model to explain C-V response ofGaN: Mn 

The C-V measurements on all GaN: Mn doped samples exhibit a behaviour 

which is qualitatively similar. The important points have been discussed in section 

(6.11). It is imperative that the same model be used to explain the I- V-T and C- V-T 
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behaviour. Since the same device was used for both measurements. A number of 

explanations have been given in section (6.11) which could account at least qualitatively 

for the observed behaviour. However, the "chosen" model to explain the I-V-T 

measurements which employs a near fully compensated (almost insulating) layer below 

the Schottky contact can also successfully account for the observed C-V -T 

characteristics. The device corresponds to a MIS/MOS structure and this is shown in 

Figure 6.6 and Figure 6.8 (the band diagram of model (2) and model (3). It can be seen 

in section (6.11) that this model is successful in explaining the salient features of C-V -T 

performance. Generally, an increase in capacitance is observed with temperature and 

voltage. Such an increase has been attributed to an increased charge. It is postulated that 

the Poole-Frenkel centres in the near insulating region become progressively more 

ionized with temperature and increasing field (voltage) due to an increased thermal 

emission probability and a reduced potential barrier. 

The inhomogeneous barrier height model may also be able to account for the 

"apparent random variation" in capacitance as a function of temperature as observed in 

these samples. Since the net capacitance will be a sum of all parallel capacitances under 

Schottky contacts of various heights, their temperature dependence would depend upon 

the relative areas of each ''patch''. Additionally, the density and nature of the surface 

states under each patch would govern the overall temperature dependence which 

remains unpredictable. 
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CHAPTER 7 General Conclusions 

7.1 Introduction 

Electrical properties of devices fabricated using cubic GaAs and cubic GaN have 

been studied by the I-V-T, C-V-T and C-F-T methods over a wide temperature range. 

7.2 GaMnAs devices 

For the case of p n junction devices fabricated on cubic GaAs substrate and 

employing a Mn doped epi-layer a detailed interpretation of current transport is given in 

chapter 5. This is based on the existence of two junctions one at the back between Si 

doped n-type and the Mn doped p-type cubic GaAs and the other on top between Mn 

doped GaAs and the metal contact. 

The I-V -T behaviour has been interpreted on the basis of a band diagram which 

has been calculated from a simulation program. This however, has been done on the 

assumption that GaAs: Mn doped epi-layer is crystalline. This is an over simplification 

since the epi-layers were grown at low temperature. Additionally, the Mn doped layers 

with three different concentrations were all grown at different temperatures making the 

comparison between layers difficult. It is necessary to grow these films at low 

temperature to avoid the formation of "additional" phases such as MnAs which are 

thermodynamically more stable. These phases create defects which tend to compensate 

Mn acceptors and reduce p-type conductivity. 

The growth at low temperature however, has other advantages: the solubility 

limit of Mn in GaAs increases making it possible to dope higher concentration of Mn 

and there is a reduction in the segregation ofMn to the surface [49]. 
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On the other hand, films grown at low temperatures contain a large number of 

defects e.g. As antisites and Mn interstitials; both of which act as deep donors and can 

compensate p-type conductivity ofGaAs: Mn films. It is desirable to have a low density 

of defects and high crystalline quality [123]. 

Since Mn is a deep acceptors in GaAs (112 meV [121]), the carner 

concentrations in the Mn doped GaAs epi-layers are a function of temperature. This will 

affect the nature of the GaAs: Mn interfaces with both the Si doped layer and metal 

contact. Keeping in view the "poor" structural quality of the films, the I-V -T behaviour 

is difficult to explain on the basis of any single mechanism in one specimen and even 

more uncertain between the samples grown at different temperatures. It appears, 

however, that the p n junction between Si doped GaAs and Mn doped GaAs behaves 

like a backward diode whereas the top contact behaves like a Schottky contact. 

The Schottky contact was analysed using the modified Richardson plots. It was 

found that the plots became straight lines when In (ls/T2) was plotted against 103/nT. 

indicating an increase in the TFE component as the temperature is reduced. It should be 

noted that n increases and <l>b decreases with decreasing temperature. On the other hand, 

the p n junction is between a degenerate n-type GaAs and a ncar degenerate p-type 

GaAs. It is postulated that this junction behaves like a backward diode and gives a high 

value of <l>b which is nearly equal to the band gap of GaAs (1.42 eV). However, the 

behaviour of this junction can be explained on the basis of either a Schottky contact or a 

p n + junction. All experimental evidence indicates the presences of a Schottky contact. 

However, the same value of 1.4 eV can also be obtained from the forward diode I-V 

characteristics of this contact. No defmite conclusion can be made. At least the major 

parameters obtained from the I-V -T of the characteristics can be adequately accounted 

for on this basis. 

Following the same model, the C-V-T behaviour would be that of two back-to

back contacts. The net measured capacitance would be the series addition of the 

capacitances of the two contacts. This is the qualitatively observed response of all 

samples. 
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The admittance spectroscopy measurements gave the activation energy of 0.117 

±0.005 eV for the sample with the highest dopant concentration (l0211cm3) which was 

similar to the activation energy of Mn in GaAs. The samples with lower concentration 

gave a value nearly half this value. The reason for the difference can not be explained. 

7.3 GaMnN devices 

Low temperature (LT) epitaxially grown cubic GaN layers doped with Mn were 

studied by making Schottky contacts. The layer had a Mn concentration of 7- 8 x 1017 

/cm3. Both, the Ohmic and the Schottky contacts were deposited on the surface. The 

layers were grown on a cubic GaAs substrate. 

In this case, the material's quality was also highly suspect. LT grown GaN 

layers had been studied for the structural quality by a number of workers [64, 144-146]. 

The general observation is that LT grown films have a "large number of structural 

faults, a rough surface morphology, voids in the buffer layer and pyramidal inclusions 

having dimension of - 100 nm extending into the buffer layer" [64]. 

Since Mn has a limited solubility in GaN, Mn diffuses towards GaAs substrate 

forming a MnAs phase. Mn also diffuses/segregates toward the surface and builds up as 

a layer ofMn on top [64]. It is this layer that has an important bearing on the contacts to 

the surface. 

At least one device studied for I-V-T characteristics exhibits the Ohmic 

behaviour which is possibly due to a conducting sheet on the surface. The other three 

devices exhibit Schottky type behaviour. On the basis of the proposed model the other 

parameters calculated from the I-V-T measurements indicate that a TFE mechanism 

dominates. This is borne out by the modified Richardson plots. 

The current is limited by In (1)-V1
/
2 law. This can be due either to Schotky or 

Poole-Frenkel (P.F.) type mechanism. It has always been difficult to distinguish 

between these mechanisms. However, in the present case it is postulated that P.F. 
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centres dominate the current transport since it is expected to occur in insulating 

materials. A region of high resistance is likely to exist just beneath the surface due to 

the out migration of Mn atoms leaving a "compensated" region of high resistively 

behind. 

F or the case of capacitance measurements, the C-V -T behaviour is similar to that 

of the MIS structure. The insulating layer results from the compensation/or out 

migration of Mn atoms. Such a model appears to be compatible with the P.F. type 

conduction observed in the I-V -T response. 

The increase in capacitance is attributed to an increase in charge. The existence 

of P.F. centres in the insulting region and their subsequent ionization with temperature 

and increasing voltage (field) would create additional charge responsible for the 

increase in capacitance. 

However, a similar C-V-T behaviour will also be observed if the existence of 

interfacial states is taken into account. A high density of surface states is expected to be 

present in a highly defective material. The situation will be compounded by the fact that 

Mn atoms migrate to the surface as well [143]. 

The density of interfacial states will not be uniform on the surface due to the 

presence of localized defects. This will lead to a non uniform Schottky contact. The 

situation is described by the "inhomogeneous barrier height model". It has been 

observed in some devices that the capacitance varies randomly with temperature. This 

may be due to different "patches" of the Schottky contact contributing their 

capacitances separately-which will eventually add up in parallel. Their temperature 

dependence however, remains unpredictable. 

The C-F-T measurements for GaMnN samples show that there is no change of 

capacitance with frequency. Consequently, no information can be obtained from these 

measurements. 
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7.4 General conclusion 

It is therefore, concluded that I-V-T and C-V-T measurements on LT grown Mn 

doped epi-layers give some general trends. Any precise conclusion is difficult to make. 

This is due to the poor quality of the epi-Iayers which had a large number of defects, 

dislocation and voids. In case of GaAs films, it is difficult to make any direct 

comparison between films as they were all grown at different temperatures. Only one 

GaN layer was used for making Schottky contacts of different diameters. Here again the 

lateral homogeneity of the film was questionable. 

Better quality of films and more controlled growth techniques are required if L T 

grown films of GaAs and GaN are to yield more reproducible results. 
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APPENDIX A 

APPENDIX A: Equations used in Matlab Program 

The equations used in the Matlab program are presented in this appendix (the full 
details are given in [147]). The built-in potential was calculated using this equation 

Vb; = kT 1n(NANv) (A-I) 
q n 2

; 

The potential at the edge of the depletion region at xp on the p-side is given by 

Vex) = qN A (x p + X)2 -xiSx::SO (A-2) 
2csco 

The potential at the edge ofthe depletion region at Xn on the n-side is given by 

Vex) = Vb; - qN v (xn - X)2 O::Sx::sxn 
2csco 

The depletion widths xp and Xn are given by 

[

28S 8 0 NA V. ]1/2 
Xn = -q-ND(N

A 
+Nv ) h; 

x = [2CsCo N D Vb.]1/2 
P q NANA +ND) I 

The total width of the depletion region is 

W=x +x =[2CS8 0(NA+Nv Jv..]1/2 
n P q (NANv ) bl 

The Fermi level is given by 

EF = kT 1n(NA J 
q n; 

The written program [147]: 

%Equilibrium Energy band diagram 
%(GaAs,300K,nondegenerately doped step junction 
%Contacts 
T=300; % Temperature in Kelvin 
K=8.617e-5 % Boltzmann constant (eV/K) 

Eo=8.85e-14 % permittivity of free space (F/cm) 
q= 1.6e-19 % charge on electron (coul) 
Es=12.8 % dielectric constant of GaAs 
ni=1.8e6 % intrinsic carrier concentration in GaAs at 300 K (cm"-3) 
Eg= 1.42 %GaAs band gap (e V) 
%Control constant 
xleft=-3.5e-4 % Leftmost x position 
xright=-xleft; % Righttmost x position 
NA=input(p-side doping (cm"-3) ,NA= le21'); 
ND=input(n-side doping (cm"-3) ,Nn= 2el7'); 

(A-3) 

(A-4) 

(A-5) 

(A-6) 

(A-7) 
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%Computations 
Vbi=k*T*log(NA *N D)/niI\2); 
xN=sqrt(2* Es*eO/q*NA *Vbil(ND*(NA+ND))); 
xN=sqrt(2* Es*eO/q*ND*Vhil(NA *(NA+ND))); 
x=linspace (xleft,xright,200); 

% Depletion width n-side 
% Depletion width p-side 

Vxl=(Vbi-q*ND. *(xN-x).1\2/(2* Es*eO). *(x<=xN)). *(x>=O); 
Vx2=(0.5*q*N A.*(xP+x).1\2/(2* Es*eO).*(x>=xP))& x<O); 
Vx=Vxl +Vx2; % Vas a function ofx 
VMAX=3; % Maximum Plot Voltage 
Er= Vx(I)+ VMAX/2-k*T*log(NA/ni); % Fermi level 
%Plot diagram 
Close 
Plot (x,-Vx+Eg/2+ VMAX/2); 
axis ([ xleft xright 0 V MAX]); 
Axis (,off);hold on 
Plot (x,-Vx-Eg/2+ VMAX/2); 
Plot (x,-Vx+ VMAX/2), 'WI); 
Plot ([xleft xright],[EF EF ], 'WI); 
Plot ([0 0 ], 0.15 V MAx-0.5], 'w--'); 
Text(xleft* 1.08,( -Vx(1)+Eg/2+ VMAX12-.05), 'Ec'); 
Text(xright* 1.02,( -Vx(200)+Egl2+ V MAX12-.05), 'Ec'); 
Text(xleft* 1.08,(-Vx(l )-Eg/2+ VMAx/2-.05),Ev); 
Text(xright* 1.02,( -Vx(200)-Eg/2+ V MAX/2-.05), 'Ev'); 
Text(xleft*1.08,(-Vx(I)+ VMAX/2-.05), 'Ei'); 
Text(xright* 1.02EF-.05), 'EF'); 
Set(gca, 'Default Text Units','normalized') 
Text(.1.8,0, 'p-side'); 
Text(.47,O, 'x=O'); 
Text(.75,0, In-side'); 
Set(gca, 'Default Text Units','data') 
Hold off 
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APPENDIX B: LabView flow chart for I-V measurement 
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Figure B.I: The flow chart of the I-V measurement using Keithley. 
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Appendix C: LabView flow chart for C-V measurement 
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Figure C.2: The flow chart of the C-V measurement using Boonton. 
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APPENDIX D: LabView flow chart for C-F measurement 

Start 
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Figure D.3: The flow chart of the C-F measurement using Wayne Kerr. 
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APPENDIX E: Published Paper 
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Re: 2007 International Semiconductor Device Research Symposium (ISDRS) 
Acceptance of Abstract Log 10 46AlAhmadi 

Dear Noorah, 

The ISDRS Committee has performed a review of the over 320 abstracts submitted 
from throughout the world. We are pleased to advise you that your proposed paper 
entitled "The electrical Characteristic of commercial GaN blue light emitting diode", has 
been accepted as Poster presentation at the 2007 International Semiconductor Device 
Research Symposium. Please note that your abstract may have been accepted for a 
presentation type (Oral or Poster) different from the presentation type noted when you 
submitted your abstract. 
Paper Title: The electrical Characteristic of commercial GaN blue light emitting diode 
LoglD: 46AlAhmadi 
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Session Date: 12/12/2007 
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Lisa Press IMMEDIATELY via email to isdrs_submissions@umd.edu. 
The Committee was gratified by the quality of abstracts submitted this year and we 
anticipate an excellent conference in December. Thank you for sharing your expertise 
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301.314.6693, or via email at isdrs submissions@umd.edu. 
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Lisa Press 
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University of Maryland 
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