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ABSTRACT 

Gibberellins (GAs) represent an important class of hormonal signal that regulate 
growth and developmental processes during the plant life cycle. GA promotes growth 
through the targeted degradation of the nuclear localized DELLA repressor proteins 
via the ubiquitin proteasome pathway. Whilst DELLAs do not appear to bind directly 
to DNA, recent evidence suggests that they interact with several different classes of 
transcription factors to control the expression of downstream genes in a GA
dependent manner. 

In order to pinpoint the genes targeted by GA to promote root growth, several genetic 
approaches have been pursued in this thesis. These approaches took advantage of the 
previous observation that targeting expression of a steroid regulated non-degradable 
form of DELLA in endodermal cells (using the SCR:gai-GR trans gene) blocked root 
elongation (Ubeda-Tomas et aI., 2008, 2009). The SCR:gai-GR line was initially 
mutagenized to select mutants that no longer exhibit steroid-inducible root growth 
inhibition. Several mutant lines have been selected, characterised and subjected to 
next-generation sequencing to reveal whether they disrupt novel downstream 
components of the GA signalling pathway. 

The SCR:gai-GR line has also been used in transcriptomic studies and a number of 
novel downstream targets identified for functional characterisation. Finally, several 
GA-regulated genes encoding cell wall modifying enzymes belonging to the 
xyloglucan endotransglucosylaselhydrolase (XTH) family have been functionally 
characterised. Multiple XTH mutant combinations exhibit root elongation defects and 
altered cell expansion dynamics, hence providing new insight into how GAs may 
regulate cell wall remodelling enzymes to promote root cell expansion. 
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CHAPTER 1: GENERAL INTRODUCTION 

1.1 Arabidopsis thaliana 

The flowering plant Arabidopsis thaliana represents the most important model organism 

for plant biology and genetic studies. Arabidopsis, commonly known as mouse-ear cress, is 

a member of the mustard family (Brassicaceae) that includes cultivated plants such as 

cabbage and broccoli. Even though Arabidopsis has not any direct agronomic value per se, 

it provides numerous advantages for basic research and molecular biology as a model 

plant. 

Arabidopsis was first described during the sixteenth century by the physician Johannes 

ThaI, in Gennany. Research on Arabidopsis, dates back to early 1900s, when the correct 

chromosome number was predicted; and the first collection of mutants was published in 

1947 by E. Reinholz (Meyerowitz, 2001). Since then, a great deal of knowledge in, 

physiological, biochemical and developmental processes of Arabidopsis has been obtained. 

Arabidopsis possesses a relatively small genome size of 125 Mbp organised in 5 

chromosomes, allowing for easy genetic analysis and manipulation. On top of that, it has a 

rapid life cycle of - 6 weeks from gennination to mature seed (Figure 1.1; Boyes et al., 

2001); producing thousands of seeds through self-pollination and can also be easily cross

pollinated for genetic studies. Due to its small size (40-45 cm high) Arabidopsis has very 

limited space and nutrient requirements, and thousands of plants can be easily grown in a 

greenhouse or indoor growth chamber either on soil or in tissue culture media. Arabidopsis 

transfonnation to obtain genetically engineered plants is also straightforward using 
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Agrobacterium tumefaciens (Clough and Bent, 1998). In addition, Arabidopsis seedlings 

and their roots are relatively translucent, facilitating light and confocal microscopy for 

phenotypic and genetic studies. The sequencing of the Arabidopsis nuclear genome was 

published in the year 2000 (The Arabidopsis Genome Initiative, 2000), facilitating genetic 

analysis and gene identification. The last version of TAIR (The Arabidopsis Infonnation 

Resource, TAlR10, 2010) estimates that the Arabidopsis genome contains 27416 protein 

coding genes, 4827 pseudo genes or transposable element genes and 1359 ncRNAs. In 

addition, a large number of mutant collections and genomic resources have been made 

available (http://arabidopsis.infol). All the infonnation and resources gained from 

Arabidopsis are helping to contribute to build up an infonnation platfonn to our 

understanding of plant biology and also plants of economic and cultural relevance. 

Figure 1.1 Arabidopsis t"aliana Growth Stages. (A
C) Stage 0; Seed germination (3 to 5.5 dag). A) Seed 
imbibition B) Radicle emergence C) Hypocotyl and 
cotyledon emergence (D-G) Stage I ; Leaf 
development (6 to 25 .5 dag). D) Cotyledons opened 
fully. E) Two rosette leaves F) four rosette leaves G) 
ten rosette leaves. (H) Stage 5; Inflorescence 
emergence (26 dag). First flower buds visible 
(indicated by arrow in inset). (I-K) Stage 6; Flower 
production (31.8 to 49.4 dag ). I) first flower open. J) 
Midflowering. K) Flowering complete. (L) Stage 9; 
Senescence and seed harvesting (not determined). 
(dag) Days after germination. (Boyes et al. , 200 I) 
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1.2 Plant hormones 

Plant honnones playa key role controlling the growth and development of plants. They are 

responsible of the integration of environmental signals together with endogenous 

developmental programs to ensure plant survival. The main classes of plant honnones to 

date are auxins, cytokinins, gibberellins, ethylene, abscisic acid and brassinosteroids 

(Figure 1.2). These regulatory molecules represent relatively simple small organic 

compounds that exert distinct, often synergistic, sometimes antagonistic functions in the 

plant. 

The major fonn of auxin, indole-3-acetic acid (IAA), was the first plant honnone identified 

(Went, 1928). lAA has been shown to participate in the regulation of basic growth 

processes such as cell division, elongation and differentiation (Buchanan et al., 2000). 

Cytokinins are found at sites of active cell division in plants (Salisbury and Ross, 1992) 

and play an active role in promoting cell division. For example, together with auxin, they 

play an important role in the detennination of cell-fate in the roots of Arabidopsis (Muraro 

et al., 2012). Gibberellins represent a large class of compounds. The Gibberellic acid 

(GA3) is the most widespread and the first to be structurally characterised (Graebe, 1987). 

GAs are involved in many physiological processes such as in the stimulation of seed 

gennination (Hilhorst, 1993), flower development (Wilson et al., 1992» and also in the 

promotion of root and shoot growth (Gallego-Bartolome et al., 2011, Ubeda-Tomas et al., 

2008). Ethylene is a gaseous honnone and is involved in the regulation of flowering and 

root hair fonnation (Abeles, 1992; Tanimoto et al., 1995). It also stimulates the ripening of 

fruit and initiates abscission of fruits and leaves (Barry and Giovannoni, 2007; Yang et al., 

2008). Abscisic acid plays an important role in seed donnancy and in inhibition of cell 
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growth (Koornneef et ai. , 2002, Finkelstein et aI. , 2002). It is also plays an important role 

in the plant tolerance to drought and salt stress (Leung and Giraudat, 1998). 

Brassinosteroids are plant steroids playing essential roles in plants; they promote vascular 

differentiation (Yamamoto et ai., 1997), shoot elongation (Choe et aI. , 2002, Oh et al. , 

2012) and inhibit root elongation through the synthesis of ethylene (Arteca and Bachman, 

1987). 

Figure 1.2. Phytohormone structures and functional interactions. Schematic representation of the main 
plant hormones and their interactions. Upregulation of hormone biosynthetic genes or downregulation of 
genes involved in hormone inactivation, are indicated by lines with arrowheads; downregulation of genes 
involved in hormone biosynthesis or upregulation of genes involved in inactivation of a hormone, are 
indicated by blocked arrows; changes in gene expression with uncertain outcome are indicated by diamond 
arrowheads (Jaillais and Chory, 2010). 

To date, there is a great deal of understanding of the molecular mechanisms of hormone 

biosynthesis, transport and response. The biosynthetic pathways for most of the hormones 

have been well characterized (for example GA, ABA, and BR) or are currently being 

characterised (such as auxin and JA). Also, a diversity of hormone receptors have recently 

been largely described. Hormone receptors include receptor kinases in the plasma 

membrane (brassinosteroids; Li and Chory, 1997), histidine kinases receptors localized in 

the endoplasmic reticulum (ethylene; Chang et ai., 1993) or plasma membrane (cytokinins; 

Inoue et ai., 2001), and receptors of different classes found in the cytosol and nucleus 
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(abscisic acid, gibberellins and auxins) (Chow and McCourt, 2006). Protein degradation by 

the ubiquitin-dependent pathway plays a central role in hormone signalling. Although they 

may elicit non-genomic responses, hormone signalling generally leads to major changes in 

gene expression, to control cell division and expansion (Santner et aI., 2009). 

Different signalling pathways interact in order to be able to rapidly respond to the different 

plant requirements according to the developmental stage or environmental conditions 

(Nernhauser et ai., 2006). These interactions can lead to changes in hormone levels or 

responses (Jaillais and Chory, 2010). They have been shown to interact at the level of gene 

expression, at the level of hormone distribution and also to exert control over key 

components from the signalling pathway of a different hormone. 

Although many downstream components of different hormone signalling pathways have 

been identified, more work is needed to fully understand how these signalling pathways are 

integrated to control plant growth. Increased knowledge in hormone regulation of 

processes such as cell elongation, will contribute to gain global understanding of plant 

growth and development. 

1.3 Gibberellins 

1.3.1 General description 

Gibberellins (GAs) are a large family of tetracyclic, diterpenoid growth regulators that act 

as essential endogenous signals regulating growth and developmental processes during the 

reproductive and vegetative plant life cycles (Richards et aI., 2001). Gibberellins were 
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originally identified on studies of the rice fungal phytopathogen Gibberella fujikuroi 

(foolish seedling) which causes stem over-growth in infected rice plants (Stowe and 

Yamaki, 1957). While 136 GAs have been identified in higher plants and fungi 

(MacMillan, 2002), only a few of them exhibit biological activity e.g. , GAl , GA3, G~ and 

GA7 (Figure 1.3) (Hedden and Phillips, 2000). In Arabidopsis, G~ is the main form of 

bioactive gibberellin (Hu et ai., 2008). 

Non 13-hydroxylated Bloactlve GAs 

13-hydoxylated Bloactlv. GAs 

GAl 

~
,o OH 

oc
HO 

co,H 

Figure 1.3. Major Bioactive GAs from Plants and Fungi. 
GA4 is the major active GA in Arabidopsis. GA3 is the most 
abundant GA made in fungi. The 3p-hydroxyl groups are 
highlighted in red and the 13-hydroxyl groups are highlighted in 
orange (reproduced from Sun, 2008). 

A variety of GA-related physiological roles have been determined by studies with external 

application of GA, inhibition of the GA biosynthetic pathway and a range of GA 

biosynthetic and signalling mutants (Sasaki et ai., 2003; Griffiths et ai., 2006; Peng et ai., 

1997). In Arabidopsis, GA-deficient mutants have been described to exhibit several 

phenotypes during their life cycle such as non-germinating seeds, dark green compact 

rosettes, late flowering (under long-day conditions), male sterility, shorter roots and severe 

dwarfism (Figure 1.4) (Koornneef and Van der Veen, 1980, Wilson et ai., 1992 and 

Griffiths et ai., 2006, Ubeda-Tomas et aI., 2008). Hence GA is essential for seed 
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germination, root growth, leaf expansIOn, inflorescence stem elongation, flowering 

initiation, anther and petal development, as well as fruit and seed development (Tyler et 

al.,2004). 

Figure 1.4. GA-deficient mutant phenotypes. Defects on GA 
signalling such as in the single mutant gal (gal-3) results in abnormal 
growth phenotypes. A) The single mutant ga 1 shows a severe dwarf 
phenotype when compared to the size of the wild type. Bar = 10cm. B) 
5-day-old primary seedling roots. gal mutant exhibits a root length 
significantly shorter than wild type. Bar = 5 tnm. (Figure adapted from 
Fu and Harberd, 2003; Sun, 2008) 

1.3.2 Gibberellins biosynthesis and deactivation 

Gibberellins (GAs) are initially synthesized from geranyl geranyl diphosphate (GGDP) in a 

multi-enzyme pathway of intricate regulation. There are three major stages within the 

biosynthetic pathway of GAs involving three different classes of enzyme: terpene 

synthases (TPSs), cytochrome P450 monooxygenases (P450s), and 2-oxoglutarate-

dependent dioxygenases (20DDs) (Hedden and Phillips, 2000; Yamaguchi, 2008). 

The first stage takes place in plastids, and result in the conversion of CGDP in ent-kaurene 

by the action of CPS and KS. Next, within the endoplasmic reticulum the conversion of 

ent-kaurene to GA12 occurs through the action of two P450s. In the final stage of the 

pathway, GA12 is converted to the bioactive form GAt through oxidations carried out by 

the action of two soluble ODD enzymes, GA 20-oxidase (GA200x) and GA 3-oxidase 

(GA30x), in the cytosol (Hedden et aI., 1997). 
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Deactivation of bioactive GA in the plant is a key regulated process to reduce the amount 

of active GA. In Arabidopsis, deactivation ofbioactive GA is carried out by GA 2-oxidases 

(GA2oxs) that catalyse the ~-hydroxylation of GAt (Figure 1.5). 

Proplastld 

# OPP 

I -
CPS 

geranylgeranyl 
diphosphate (GGOP) 

~~ 
~"' ~~ 

GA12 (R-H) --- GAt (R-H) 

GAu (R-OH) --- GAm (R-oH) 

GA200x 

ent-copaJyI 
diphosphate (COP) 

~ 
tK)~~ 

--... G~(R-H) 

GA, (R-oH) 

QA30x 

ent-kaurene 

KO? lKO? 

~~ ~~ 

ent-kaurenoic acid 

tK)~ 
~~~ 

--.. GAs.. (A.H) 

GAe(R..QH) 

GA20x 

Figure 1.5. Major GA Biosyntbetic and Catabolic Patbways in Higher Plants. The enzyme names are 
shown in boldface below or to the right of each arrow. GA4 and GAl are the bioactive GAs, and GA34 and 
GAg are their inactive catabolites. Abbreviation: CPS- ent-copyl diphosphate; KS-Kaurene synthase; KO
Kaurene oxidase; KAD Kaurenoic acid; GA2ox- GA 2-oxidase; GA30x- GA 3-oxidase; GA 130x- GA 13-
oxidase; GA200x- GA 20-oxidase (Olszewski et at .• 2002). 

Many steps in the GA biosynthesis pathway are controlled by enzymes that are the 

products of small multi gene families (Yamaguchi, 2008). Different gene family members 

have a specific pattern of expression (Phillips et ai., 1995). GAs auto-regulate their levels 

by repressing the expression of several genes whose products are involved in its 

biosynthesis and by promoting expression of genes involved in their inactivation (Zentella 

et ai., 2007). The levels of GA are additionally influenced by other hormones such as 

ethylene and auxin (Yamaguchi, 2008), as well as by environmental signals such as light. 
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GA also regulates its own biosynthesis via negative feedback regulation on transcripts 

encoding the GA200x and GA30x (Thomas et al., 1999). GAs also regulate the level of 

transcripts encoding the deactivating GA20x to decrease the levels of bioactive GA. Both 

these regulatory mechanisms interact to achieve GA homeostasis (Olszewski et ai., 2002; 

Middleton et al., 2012). 

1.3.3 GA signalling 

1.3.3.1 GA binding to the GIDI receptor 

GA signalling involves the binding of bioactive GA to the soluble receptor protein GID 1 

(GIBBERELLIN-INSENSITIVE DWARF 1 ), which can then interact with DELLA 

repressor proteins, to induce their degradation via the E3 ubiquitin ligase SCF GID2/SL YI 

(reviewed by Schwechheimer, 2008). The identification of the GA receptor was a key step 

in the understanding of how the interaction between GA and DELLAS takes place. The 

GA receptor GIDI was first cloned in rice (Ueguchi-Tanaka et al., 2007). gidJ mutants 

show a strong GA-insensitive dwarf phenotype as a result of the inability to degrade the 

rice DELLA protein SLRI. Arabidopsis contains three GIDI orthologues, AtGIDla, 

AtGIDIb and AtGIDIc (Nakajima et al., 2006). GIDI is a soluble nuclear-enriched 

receptor and its distribution is not affected by GA. GID 1 s show sequence similarity to 

hormone-sensitive lipases (HSL), and contains the conserved HSL motifs (HGG and 

GXSXG). However, non enzymatic activity has been detected on GIDI (Ueguchi-Tanaka 

et al., 2007). 
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Murase et al. (2008) showed that the GlD 1 receptor has a globular structure containing a 

pocket like structure, where the GA molecule it is attached by its carboxylic acid group. 

Uniquely, GlD 1 has a loose strand at its amino-tenninal end that interacts with the surface 

of the bound GA, so covering the pocket like a lid. DELLA protein is thought to interact 

with the surface of the lid to induce a confonnational change that allows its recognition 

with the SCF complex (Figure 1.6). 

GA DELLA proteins 

N-terminal • 
extension switch • N 

Water DELLA 
N 

q q 

Figure 1.6. A Model for the GA-GIDI-DELLA Complex. GIDt appears to contain the substrate binding 
pocket and lid, similar to those present in the bacterial HSLs. Active GAs bind to the substrate binding 
pocket with the aid of the lid. GA binding induces a GID 1 conformational change in the N-terminal helical 
switch for DELLA binding, which promotes a conformational transition in the DELLA protein. (Reproduced 
from Murase et aI. , 2008). 

1.3.3.2 DELLA proteins are growth repressors 

GA-induced growth response is associated with changes to the abundance of DELLA 

proteins. The presence of DELLA proteins leads to repression of the GA-induced growth. 

This restraint in GA-induced growth is relieved upon DELLA degradation. Other 

mechanisms such as honnone cross talk and environmental stimulus are thought to be 

involved in the regulation of this signalling pathway (Weiss and Ori, 2007). 

The DELLA proteins are nuclear growth repressors belonging to the GRAS superfamily of 

putative transcription factors (Pysh et al., 1999). DELLA proteins are characterised by two 
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highly conserved domains. The N-terminal DELLA domain is a regulatory domain 

conferring GA responses, whereas the C-terminal GRAS domain is thought to function to 

regulate transcription (Sun and Gubler, 2004). More specifically, in the N-terminal domain 

there is the "DELLA" motif and the TVHYNP motif that interact with the HSL-like "lid" 

of GID 1. The C-terminal half of the protein is strongly related to the SCARECROW 

family of regulatory proteins (Schwechheimer, 2008) and includes domains like SG2-like 

and SAW which bind to transcription factors to suppress GA-regulated induced growth 

(Figure 1.7). 

DELLA Regulatory Domain GRAS Functional Do_in 

• • • • SH2·like Domain •••• 

Figure 1.7 Domain structure of a typical DELLA protein. DELLA protein organization illustrating the 
conserved domains and sub domains involved in GIDl binding (purple),target binding (blue), nuclear 
localization (grey), and SLYlIGID2 binding (green) DELLA, TVHYNP, poly serine/threonine/valine 
(pSffN), Leucine repeat (LR), and VHIID repeats were named for the consensus amino acids. The DELLA 
and TVHYNP domains are specific for the DELLA repressor proteins, and all proteins containing these 
domains have been implicated in GA signalling (reproduced from Hauvermale et a/., 2012). 

In Arabidopsis, DELLAs are encoded by the GAl, RGA, RGLJ , RGL2 and RGL3 genes 

(peng et al., 1997; Silverstone et al., 1998; King and Ben-Tal 2001). Genetic analyses have 

shown that each DELLA displays both distinct and overlapping functions in the regulation 

of plant development (Achard et al. , 2006). DELLA's gain-of-function mutations result in 

reduced GA response, whereas loss of function results in GA-constitutive phenotype, even 

when GA-biosynthesis inhibitors are present. Thus, indicating their key role as negative 

regulators in GA signalling (Richards et al., 2001). 
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Yeast-two hybrid analyses have shown that interaction between GIDI and DELLAs occur 

in a GA-dependent manner. Interaction between the three AtGIDls and the five DELLAs 

proteins take place in all 15 possible combinations but with different affinities for each. 

Since the five DELLAs are differentially involved in GA-dependent process, it is likely 

that particular interactions between a specific AtGIDl and DELLA occur for the different 

GA-dependent processes (Ueguchi-Tanaka et al., 2007). 

1.3.3.3 DELLA degradation through the 26S proteasome 

Binding of GA-GIDla to DELLA proteins initiates their F-box-mediated proteolysis 

(Ariizumi et al., 2008, Ueguchi-Tanaka et al., 2005). The Arabidopsis SLEEPY1 (SLY1) 

and its orthologue in rice (GID2) encode proteins containing a F-box motif. The recessive 

sly1 and gid2 mutants result in GA-unresponsive dwarfs (Steber et al., 1998; Sasaki et al., 

2003). 

These proteins act as part of the SCF (SKPl, CULLINl, F-Box)-type E3 ubiquitin ligase 

complexes, conferring specificity for the DELL As repressors. SLYI and GID2 appear to 

activate GA signalling by targeting DELLA proteins, for ubiquitination and degradation 

through the 26S proteasome (Smalle and Vierstra, 2004). Therefore, by inducing the 

proteolysis of DELLA proteins, GA promotes the activation of DELLA-repressed/GA 

responsive genes and subsequently the release of growth repression (Figure 1.8) 

(Silverstone et al., 2001). 
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Figure 1.8. GA signalling pathway. GA binding to the GIDI receptor precedes the interaction with DELLA 
protein. This interaction may trigger a conformational change on DELLA that results in its recognition by 
SLY] (a subunit of the SCFSLYI complex). Once the interaction between the SCFSL YI complex takes 
place, DELLA is polyubiquitinated and then degraded via the ubiquitin-proteasome pathway. Once DELLA 
is degraded, GA-induced growth response can take place (figure reproduced from Sun, 20 10). 

1.3.3.4 GA homeostasis 

Positive and negative feedback control of transcription are mechanisms used to maintain 

GA signalling homeostasis (Middleton et al., 2012; Willige et at., 2007). First, GAs 

control their own synthesis by repressing the transcription of the rate limiting enzymes in 

their synthesis (such as the oxidases GA30x and GA2Oox), and by activating the 

transcription of the GA-inactivating catabolic enzyme GA2ox. Second, parallel to the GA-

mediated DELLA degradation, GAs also promote DELLA protein transcription. Third, GA 

suppresses the transcription of the GIDl and SL Yl F-box protein genes. Thus, GA-

induced DELLA protein degradation is readjusted by decreased GA biosynthesis, 

increased DELLA protein synthesis, and reduced GA sensitivity (reviewed by 

Schwechheimer, 2008). Another level of control is in the homeostasis of the levels of 

DELLA proteins. The stabilization of one of the DELL As proteins is balanced by the 

reduction of another DELLA protein. Equally, the reduction in the levels of one of the 
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DELLA proteins results in the accumulation of another DELLA protein. The vanous 

feedback loops in the gibberellin signalling network are likely to provide a mechanism for 

gibberellin homeostasis (Figure 1.9). This autoregulation may also provide the plant with 

mechanisms to adapt to the dynamic changes in GA4 which may be a result of changes in 

the environment or transport of GA4 (Middleton et al. , 2012). 

GA Perception 

Tranmtion 

Figure 1.9. Feedback look in the gibberellin signalling network. The gibberellin signalling network is 
composed of three main modules. Perception: gibberellin (GA4) binds to the Grol receptor, and this 
complex binds to DELLA proteins. The GA4-GIDI complex then mediates the ubiquitination (indicated by 
Ub) of the DELLA proteins. Response: DELLA proteins mediate transcriptional activation of the GIDI , 
GA20ox, and GA30x genes and the repression of DELLA transcription. Biosynthesis: the enzyme GA200x 
converts GAI2 to GAlS, then toGA24, and finally, to GA9, which is subsequently converted to GA4 by the 
enzyme GA30x. The various feedback loops within this modules help to provide a mechanism for GA 
homeostasis in order to maintain growth rates (reproduced from Middleton et al., 2012). 
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At the biochemical level, it has been suggested that GA signalling is controlled by 

mechanisms different than GA-dependent protein degradation and transcription. 0-

GlcNAcylation modification of Ser and Thr residues by the enzyme OOT (O-linked N

acetylglucosamine transferase) often interferes with phosphorylation of nearby protein 

kinase sites (Slawson and Hart, 2003). SPY, a plant OGT, functions as a repressor of GA 

signalling (Filardo and Swain, 2003). Mutation of this protein results in partial suppression 

of the GA-biosynthesis or signalling mutants in which DELLA proteins accumulate. 

1.3.3.5 DELLA downstream targets 

Despite the wealth of information about GA perception and response pathways (fig 1.9) 

only a few of the genes functioning downstream have been characterised to date. DELLAs 

have been suggested to modulate gene expression by interacting with other transcription 

factors (Sun, 2011). For example, DELLAs interact physically with the PHYTOCHROME 

INTERACTING FACTORs (PIFs); PIF3 and PIF4, which belong to the family of bHLH 

transcription factors in Arabidopsis (de Lucas et ai., 2008; Feng et ai., 2008). DELLAs act 

by negatively regulating the ability ofPIFs to bind to DNA preventing the binding of these 

transcription factors to their target promoters. This DELLA-PIF interaction results in the 

inhibition of PIF-induced hypocotyl elongation by blocking the transcription of PIF target 

genes. Light induced photomorphogenesis after germination is activated by transcription 

factors such as ELONGATED HYPOCOTYL5 (HY5), and the inactivation of other 

transcription factors that stimulate etiolated growth, like the PHYTOCHROME

INTERACTING FACTORs (Li et ai., 2010). GA appears to balance the effect of light by 

simultaneously negatively regulating HY5 protein levels and reducing the inhibitory effect 

that DELLAs have over PIFs (Alabadi and Blazquez, 2009). 
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In addition to PIFs, DELLA proteins have been found to interact with other members of 

the bHLH family. Arnaud et al., (2010) showed that DELLAs can interact with 

ALCATRAZ (ALC) and prevent its function to control fruit development (Arnaud et al., 

2010). While Josse et al., (2011) showed that DELLAs can interact with SPATULA (SPT) 

to control cotyledon expansion (Josse et al., 2011). DELLAs have also been found to 

interact with another class of transcription regulators, the jasmonate ZIM-domain proteins 

(JAZs). In the absence ofGA, DELLA binds JAZI and blocks its ability to bind and inhibit 

the transcriptional activator MYC2 (Chini et al., 2007). The inactivation of MYC2 leads to 

shorter roots and the expression of JA and wound-induced genes. Therefore, DELLA acts 

as a positive regulator of JA response by blocking JAZI repressor action through protein

protein interaction (Hou et al., 2010). 

As well as this, chromatin immunoprecipitation (ChiP) experiments have shown that 

DELLAs interact directly with several promoters of its target genes (Zentella et al., 2007; 

Zhang et al., 2011). As shown in figure 1.9, several DELLA target genes are GA 

biosynthesis enzymes or GA receptors, supporting a role for DELLAs in maintaining GA 

homeostasis by feedback regulation of positive components in the upstream GA signalling 

pathway (Sun 2011) . 

Other DELLA-induced target genes encode putative transcription factors/regulators, or 

RING-type ubiquitin E3 ligases (Zentella et al., 2007). One of these DELLA targets is the 

E3 enzyme XERICO. In silico gene-expression analysis indicated that XERICO is induced 

by salt and osmotic stress and that promotes accumulation of abscisic acid that antagonizes 

GA effects (Ko et al., 2006). Also, Zhang et al., (2011) showed that expression of the 

SCARECROW-LIKE 3 (SCL3) protein is regulated by GA via DELLA protein 
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stabilisation. SCL3 is also a GRAS family member, but it does not contain the GA

responsive DELLA domain. SCL3, acts as a positive regulator of GA signalling and an 

attenuator of DELLA proteins (Heo et ai., 2011). Co-immunoprecipitation and transient 

expression assays showed that SCL3 antagonizes DELLA function in controlling target 

gene expression by direct protein-protein interaction (Zhang et ai., 2011). It appears that 

SCL3-DELLA interaction also is involved in maintaining GA homeostasis by regulating 

expression of upstream GA biosynthetic genes. 

1.4 Root development in A.thaliana 

1.4.1 Study of root development in Arabidopsis thaliana 

Roots perform many essential functions including supplying water and nutrients, 

anchorage to the soil and establishment of biotic interactions in the rhizosphere. Roots are 

of special significance to agriculture; of particular interest is the present focus on 

improving roots with greater capacity to locate and use nutrients found in natural soils 

(Schiefebein and Benfey, 1991). Modifications of root features such as radial patterning, 

distal patterning and root hair size and location could potentially modify root function, 

increasing its water/nutrient uptake. All these modifications together with an improved 

knowledge of processes such as cell expansion and lateral root development could lead to 

the creation of plants with improved roots able to perform better in particular soils. 

The simplicity of the organization of the Arabidopsis root makes this model plant an 

excellent system to study different aspects of plant organogenesis, such as regulation of 

pattern formation, cell division, intercellular signalling and cell differentiation. The 
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Arabidopsis genome sequence has been completed and there are large numbers of root

mutant collections. On top of the genetic and molecular analyses advantages of using 

Arabidopsis, another major advantage is the small size and translucence of its roots, which 

allows growth of seedlings on agar plates where the roots can be easily visualised. This has 

made possible easy genetic screens for plants that exhibit abnormal root development. 

1.4.2 Arabidopsis root structure 

The Arabidopsis root has a simple structure with a characteristic radial pattern. There are 

highly organized cylindrical structures consisting of single layers of cells containing a 

fairly constant number of cells. Primary root tissues are organized in concentric cylinders 

of epidermis, ground tissue (cortex and endodermis), and stele (pericyc1e and vasculature) 

from outside to in (Dolan et al., 1993). In the centre of the root, the vascular tissue has 

bilateral symmetry with water conducting xylem on the axis of symmetry and sugar 

transporting phloem on both sides of it. The pericyc1e is composed of an average of 12 

cells surrounding the vascular tissues. Pericyc1e cells have the ability of initiate the 

formation of new lateral roots. The endodermis and cortex layers are both composed of a 

constant number of eight cells per ring. The outer layer, the epidermis, it is composed of 

two cell types, ones that form root hairs (trichoblasts) and others that do not form them 

(atrichoblasts). Near the root tip, there is also a layer of lateral root cap cells outside the 

epidermis and columella cells protecting the quiescent centre (QC) (Figure 1.10). 
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Figure 1.10. Structure of the Arabidopsis root at tissue and cellular level. a)Schematic representation of 
the proximal-distal organization of the root. Indicated on the left of the are the root apical meristem (AM), 
elongation zone (EZ), differentiation zone (DZ), and the basal meristem (BM). b) Cross section of root in the 
elongation zone showing the position of trichoblast and atrichoblast cell files. Also the location of the 
protoxylem and protophloem cells are indicated. c) Cross section of an immature root showing the radial 
organization of cell files (reproduced from Overvoorde et al., 20 I 0) 

A developmental gradient is observed at the growing tip of roots. This gradient can be 

subdivided into 3 developmental zones. The apical tip belongs to the meristematic zone 

(apical and basal meristem) or zone of cell division. In this zone, cells continuously arise 

from the quiescent centre (QC) and undergo several rounds of divisions. (apical meristem). 

In the basal meristem the rate of cell division slows and gives way to the next zone, the 

elongation zone. The elongation zone is where cell division ceases and there is rapid 

growth by cell elongation. Then, there is the zone of differentiation or specialization, in 

which elongated cells from the different tissues mature into fully differentiated cells to 

assume their final fate. An increased length of epidennal cells demarcates the transition 

between the meristematic and elongation zones and the differentiation zone is made 

obvious by the manifestation of root hairs in the epidermis. The remaining part of the root 

belongs to the mature zone which is able to produce lateral roots. 
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1.5 GA regulation of cell expansion 

1.5.1 Root cell expansion 

Cell expansion is a key parameter of development in multicellular organisms. Regulation 

of cell expansion is required for the establishment of cell shape and polarity. The final 

shape of an organ affects its overall function. Therefore, the control of cell expansion in 

roots is a key factor to ensure the formation of a versatile root able to supply the required 

nutrients and adapt to the environment for the survival of the plant. 

Due to the lack of cell movement during plant development, the final size and shape of the 

root is determined in major part by cell expansion. The sum of individual cell expansions 

taking place along a file of cells results in the anisotropic growth of the root. 

Regulation of cell expansion in the root occurs in a way that the primary axis is usually 

parallel to the direction of growth, thus creating long cylindrical cells. Cell expansion in 

roots follows the cease in cell division. At the end of the root cap, the frequency of cell 

division decreases and cells increase in length (Green, 1976). Growth rates are consistently 

low across the meristematic region. Towards the elongation zone, growth is faster and 

more uniform and gradually decreases to zero at the end of this zone giving rise to the 

differentiation zone (Benfey and Scheres, 2000). 

The direction and how far a cell expands are the two main determinants of a cell's final 

shape. Different types of cell expansion take place in different regions of the root. In order 

to produce cell files, initial cells and their progeny go through a continuous process of cell 
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expansion and division. At the beginning the expansion of the dividing root cells is quite 

slow and non-polar, so that their size remains rather constant. At the same time, fonnation 

of new cells from continuous cell divisions in the meristem move these cells upward in the 

cell file. Then a transition takes place to anisotropic cell expansion, which combined with 

cell division results in cells with radial dimensions longer than longitudinal dimensions. 

During this phase the final root radius is established. A second transition towards a highly 

polarized longitudinal expansion occurs in the beginning of the elongation zone. This 

expansion is fast and highly oriented in the longitudinal axis (Benfey and Scheres, 2000). 

The regulation of this root growth is carried out by different honnones which regulates 

specific growth processes (cell proliferation, differentiation or expansion) in distinct 

tissues (Figure 1.11) (Ubeda-Tomas et aI., 2012). 

Key: 

Figure 1.11. Cell expansion in the root. In the meristematic 
zone cells are generally isodiametric. As they traverse the 
elongation zone, radial expansion ends and rapid longitudinal 
expansion occurs (Ubeda-Tomas et al., 2012). 
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1.5.2 Hormonal control of root cell expansion 

The ability to rapidly increase root growth is particularly important for newly germinated 

seedlings in order to secure vital resources such as anchorage, water, and nutrients after 

emerging from their seed coat. Root growth is promoted by cell proliferation and cell 

elongation and the final root length is determined by the number of dividing cells and their 

final cell size (Beemster and Baskin, 1998). Phytohormones such as auxin, abscisic acid 

(ABA), brassinosteroids (BRs), cytokinin (CK), ethylene and gibberellins (GA) have 

shown to be involved in the regulation of the root growth and development (Perrot

Rechenmann, 2010). The signals of the different plant hormones are perceived by a range 

of different receptors that indirectly interact with transcription factors resulting in changes 

on gene expression and modifications to plant growth and development. 

It has been described that both auxin and GA promote cell elongation in stems and roots. 

Recent studies have suggested that auxin derived from the shoot-apex promotes stem and 

root growth by interaction with GA metabolism and or signalling to some extent. In 

experiments in Arabidopsis seedlings, external application of auxin results in the increased 

expression of GA200xl and GA20ox2, as well as GA30x genes (Frigerio et al., 2006). 

Studies by Fu and Harberd (2003) suggested that auxin appears to promote Arabidopsis 

root growth by regulating GA-induced degradation of RGA and GAL Removing shoot

derived auxin by decapitating the seedlings decreases the ability of GA to promote GFP

RGA disappearance in the roots. While GA promotes root elongation, it seems that 

ethylene inhibits it. Ethylene is thought to inhibit GA-induced root elongation by blocking 

DELLA degradation since the ctr 1 (constitutive ethylene response) mutant shows delayed 

GFP-RGA disappearance in GA-treated roots (Achard et al., 2006). 
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Recent studies have conftrmed that different hormones control root growth by regulating 

specific growth processes in different tissues (Ubeda-Tomas et ai. , 2012). GA promotes 

root elongation by regulating cell elongation and division in the endodermis (Ubeda-

Tomas et al. , 2008; 2009). Auxin targets elongating epidermal cells during the gravitropic 

response and also regulates cell division in the meristem and stem cell niche (Swarup et 

ai., 2004; Blilou et al. , 2005). Cytokinin (CK) plays a role in the regulation of meristem 

size by antagonising the effect of auxin in cell division in the transition zone (Ruzicka et 

ai., 2009). 
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Figure 1.12. Schematic represent.ation of hormone primary response tissues/regions in the Arabidopsis 
primary root. Red denotes tissues that are direct targets of designated hormone, whereas pink denotes 
indirect target tissues From left to right each root represents the site of action of GA, Auxin, CK, BR, ABA 
and Ethylene respectively. On the right site of the root are indicated the different developmental zones of the 
root (reproduced from Ubeda-Tomas et al., 2012). 

CK is also involved in the differentiation of vascular tissue in the transition zone (DelIo 

loio, et al., 2007). Brassinosteroids target the epidermis in the meristem in the transition 

zone for the control of shoot and root growth (Savaldi-Goldstein et ai. , 2007; Hacham et 
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al., 2011). In the case of ABA, it exerts its role in the root meristem acting in the QC and 

stem cells (Zhang et al., 2010). Last, ethylene regulates cell division in QC and also auxin 

biosynthesis in columella cells (Swarup et al., 2007). The novo-synthesised auxin is then 

transported to the epidermal cells of the elongation zone where it inhibits cell elongation 

and to increase ethylene sensitivity (Figure 1.12). 

1.5.3 GA control of tissue-specific root cell expansion and division 

At the level of cell proliferation, work by Archard et al., (2008) and Ubeda-Tomas et al., 

(2009) showed that GA regulates root growth by promoting cell proliferation through the 

modulation of cell cycle inhibitors Kip-related protein 2 (KRP2) and SIAMESE (SIM). 

Production of root meristematic cells is promoted by the GA driven degradation of GAl 

and RGA DELLA proteins in dividing endodermal cells in the proximal meristem. The 

increase in the number of root cells leads to an acceleration of root growth. GA 

biosynthetic mutants fail to increase their cell production rate and meristem size after 

germination (Ubeda-Tomas et al., 2009). 

They also observed that by targeting the expression of gai (a non-GA degradable mutant of 

gai) in the root meristem the cell proliferation was disrupted. Zhang et al., (2011) showed 

that expression of the GRAS protein SCL3 is subject to regulation by GA via DELLA 

protein stabilisation. Mutant studies indicate that SCL3 plays a role in determining the 

timing of the root ground tissue divisions, acting downstream ofSCR and SHORT-ROOT 

(SHR), both of which are key regulators for endodermis specification and stem-cell 

maintenance (Cui et aI., 2007). 
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Work by Heo et al. , (2011) suggests that SCL3 has a central role in coordinating GA-

dependant cell elongation and is likely to form a conjugate with SCR, which modulates 

ground tissue cellular divisions. SCL3-DELLA interaction integrates GA signalling 

activities with the developmental program controlled by SCR and SHR. Expression of gai 

in dividing endodermal cells was sufficient to block root meristem enlargement (Figure 

1.13). 

However, expression of gai in the other tissues (either epidermis, cortical or stele) did not 

affect the root growth, thus indicating that the endodermis is the primary site of action of 

GA-regulated root growth (Ubeda-Tomas et aI., 2008). 

Figure 1.13. Expression of gal ID the Arabidopsis root. 
Phenotype of 7 days-old seedlings. Expression of gai in the 
epidermis (J0951»gai) does not result in a defect in root growth 
when compared to the control. On the other hand when gai is 
expressed in the endoderm is there is a disruption in the root 
growth with a much shorter length than the control root. Bar= 
5mm (figure adapted from Ubeda-Tomas el al., 2008). 

Based on the effect of the expression of gai in the endodermis, the authors concluded that 

endodermal cell expansion is a rate-limiting factor determining the elongation of other 

roots tissues, and hence of the entire root. Disruption of the endodermal anisotropic growth 

appears to cause a severe effect on the expansion of adjacent cortical and epidermal cells. 

The inability of the cortex cells to expand longitudinally results in a distinct radial 

expansion of these cells which cause the outer epidermal cells to buckle and bulge 

outwards (Figure 1.14). 
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Figure 1.14. Blocking of the GA response in the endoderm is causes the adjacent tissues to bulge. 
Seedlings growing in media without gai expression inducing-media (-DEX) or with inducing media (+DEX). 
Schematic diagram image of control (left) and Q2500» gai (right) root cells, with a colour-coded key. GA 
induced degradation of DELLA repressor proteins in the endodermis promotes anisotropic growth of root 
cells in this tissue and surrounding root tissues. Anisotropic cell expansion (left, black arrows) usuaJly 
predominates over radial cell expansion (green arrows). (Right) Disrupting the endodermal GA response by 
expressing the stabilised DELLA protein gai slows anisotropic cell expansion, causing cortical ceJls to 
expand radially and epidermal cells to bulge outwards (figure adapted from Ubeda-Tomas et aI. , 2008). 

Since it has been shown that cell expansion is directly associated with modifications of the 

cell wall properties, it is logical to assume that the regulation of endodermal cell elongation 

may rely in part on the control of GA over the cell wall extensibility and therefore over the 

cell wall associated proteins. 

1.5.4 The plant cell wall 

The plant cell wall is a complex biochemical network which has an important role in many 

aspects of the physiology of the plant. Amongst its functions, the plant cell wall provides 

mechanical strength, definition of cell shape, mediation in cell-cell communication 

processes, protection against pathogen attack and interaction with symbionts (Plomion et 

aZ., 2001). The plant cell wall is is attached to the middle lamella which acts as the 

interface between adjacent plant cells, ensuring the adhesion of a cell with its neighbours. 
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The plant cell wall consists of many layers of cellulose microfibrils associated by hydrogen 

bonds that hold the microfibrils together to provide high tensile strength. Interacting with 

these cellulose microfibrils can be found hemicelluloses, pectins and lignins as well as a 

discrete number of structural proteins (hydroxyproline-rich extensins), phenolic esters 

(ferulic and coumaric acids), ionically and covalently bound minerals (e.g. calcium and 

boron), and enzymes (Fig. 1.15) organized into a network with the cellulose microfibrils, 

the cross-linking glycans increase the tensile strength of the cellulose, whereas the 

coextensive network of pectins provides the cell wall with the ability to resist compression. 

~~~~~~~I~~~~~~~) , Figure 1.15. Structure of the primary cell wall. 
For clarity the proportion of cellulose in the ce\1 
wall has been reduced in the image. The amount 
of the various polymers is shown based 
approximately on their ratio to the amount of 
cellulose. The amount of ce\1ulose shown was 
reduced, relative to a living ce\1 (Fig. 1), for 
clarity. The main hemicellulose in plants is 
xyloglucan (shown in orange). Since the distance 
between microfibrils has been amplified, the 
hemicellulose cross-links [shown in dark orange 
(xyloglucan, XG) or light orange 
(glucoronoarabinoxylan, GAX)] are abnormally 
extended (Somerville et al., 2004). 

.. -

1.5.5 Root cell wall modifying enzymes 

Cell expansion is primarily regulated by changes in the cell wall properties (Taiz, 1984). 

There is evidence that the plant cell wall regulates both the orientation and extent of cell 

expansion (Tsukaya and Beemster, 2006). It is believed that the polarity of the cell 

elongation is determined by the polarity of the arrangement and length of cellulose 

microfibrils (Wasteneys, 2004). Simultaneously, the orientation of cellulose microfibrils is 
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thought to be regulated by the arrangement of the cell cortical microtubules (MTs) (Baskin, 

2005). 

Plant cell enlargement is stimulated by the uptake of water into the vacuole, which rapidly 

expands to press against the cell wall. Cell-wall growth follows after the relaxation of the 

stress produced by the cell turgor, most likely by the modification of the mechanical 

properties regulating the cell wall extensibility. The control of this process relies in the 

regulated process of loosening and shifting of selected load-bearing linkages between 

cellulose microfibrils. The process of expansion has to be coupled with the process of cell 

wall component synthesis to avoid thinning of the wall during its expansion (Cosgrove, 

2005). Changes on the cell wall during periods of slow cell growth are mainly due to 

alteration of the wall composition and cross-linking. On the other hand, changes on the cell 

wall due to rapid growth responses are associated to changes on cell wall extensibility. 

This modification on the cell wall extensibility does not result from modifications in the 

composition or structure of the cell wall (Cosgrove, 1993). 

Relaxation of the wall stress (wall loosening) can be a consequence of the scission of a 

stress-bearing crosslink or from the sliding of such a crosslink along a scaffold. In both 

situations, the result is a reduction in the wall stress without a significant change in wall 

dimensions. As a consequence of wall relaxation, there is also a relaxation on the turgor 

pressure which leads in increased water uptake and further enlargement of the cell wall. 

Currently, expansins, xyloglucan endotransglycolaselhydrolase, endo-( 1,4 )-P-d-glucanase 

and hydroxyl radicals have been proposed as wall loosening agents. Expansins are a group 

of non-enzymatic wall proteins that induce wall stress relaxation and extension in a pH-
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dependent manner by disturbing the bonds that hold the rnicrofibrils in place within the 

wall. The pH of the cell wall of growing cells is usually between 4.5 and 6, which is the 

range in which acidification activates expansin activity. Additionally, expansins appear to 

increase polymer mobility in the cell wall, allowing the structure to slide apart during 

extension (Whitney et a/., 2000). 

Xyloglucans endotransglycolases/hydrolases (XTHs) are thought to act in this cell-wall 

loosening process by cleaving xyloglucan polymers and joining the newly generated end to 

another xyloglucan chain (xyloglucan endotransglucosylase, abbreviated XET, activity, 

(Figure 1.16) or to water (xyloglucan endohydrolase activity). Together with this wall 

loosening function, XTHs are also involved in trimming of xyloglucans at the surface of 

cellulose, wall strengthening, integration of new xyloglucans into the cell, xyloglucan 

hydrolysis (especially during xylem formation) and fruit softening have been reported for 

XTHs (Cosgrove 2005 , Miedes and Lorences, 2009). Expression analyses have shown that 

XTH gene expression is high in regions of active wall formation such as in elongation 

zones, and in regions where wall deposition continues after cell enlargement has ceased or 

where other forms of wall remodelling take place (Yokoyama et ai. , 2004; VanSandt, et 

a/., 2007)) . 

. ~ 
( 

Figure 1.16. The activity of xyloglucan endotransglucosylasel 
hydrolase (XTU) as an endotransglucosylase. The enzyme performs 
two reactions, first a scission of a glycosidic bond in the xyloglucan 
backbone, followed by the re-formation of the bond with a second 
xyloglucan chain. a)Two xyloglucan chains are shown (blue and green). 
XTH binds to one of the chains. b) Upon cutting the xyloglucan 
backbone, one of the strands remains covalently attached to the catalytic 
site of the enzyme. The free end ofa second xyloglucan moves into place 
for the second reaction. c) After ligation, a hybrid xyloglucan is formed, 
which is indicated as a xyloglucan of two colours and a xyloglucan 
fragment is released (Cosgrove, 2005). 
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Endo-(1,4)-P-D-glucanases also seem to have a role in the augment in wall extensibility by 

releasing trapped xyloglucans from the microfibrils. Some evidence of their role in the wall 

loosening process come from studies of over-expression of PopCell (enzyme from Poplar) 

in A. thaliana, which resulted in an increase of plant growth and cell wall extensibility. 

These results indicate that xyloglucan-cellulose interactions may play a key role in the 

mechanical and growth properties of the cell wall. It has also been proposed that hydroxyl 

radicals (-OK) may, as non-enzymatic agents, increase wall extensibility by cutting wall 

polysaccharides (Cosgrove et al., 2005). 

In summary, in order for a cell to be able to expand its volume, a few key steps need to 

occur. First, a vacuole enlargement by the intake of water leads to an increase of turgor 

pressure, this is followed by the loosening of the cell wall. Finally, these two processes 

need to be complemented by the novo synthesis and reorganization of cell wall 

components. Cell wall remodelling enzymes are considered to be major players of these 

last two processes. 

1.5.6 GA regulation of cell wall remodelling enzymes 

As previously described, GAs play a key role in the regulation of cell elongation. Cell 

elongation is a process in which several factors are involved in and has to be accompanied 

by the remodelling/elongation of the cell wall. Several cell wall proteins (cell wall 

remodelling enzymes) have been identified to date and their roles on cell wall extensibility 

have been described for few of them. Therefore, because of this connection between the 

two components it is easy to think about a direct role of GAs over this cell wall 

30 



remodelling enzymes (CWRE). Some evidences that GAs regulate these certain cell wall 

proteins which control cell wall extensibility are described below: 

At the level of regulating XTHs, Liu et al., (2007) observed that the expression of 

AtXTH21 (At2g18800), an Arabidopsis XTH gene that mainly expresses in roots and 

flowers, was induced by treatment with GA3 but not other hormones. AtXTH21 is involved 

in the maintenance of the thickness, integrity and strength of the cell wall during cell 

elongation. Study of loss-of-function mutants using T-DNA insertion lines for AtXTH21 

resulted in dwarf plants with short roots and thinner cell walls. On the other hand, study of 

with overexpression lines (35S::XTH21) showed plants with thicker cell walls. Thus, 

AtXTH21 gene seems to playa key role in the growth of the primary roots by changing the 

deposition of cellulose and the elongation of cell wall. In rice, Jan et al., (2004) 

demonstrated that OsXTH8 (Oryza sativa XTH-related gene) expression in the leafwas up

regulated by GAs and there was very little effect of other hormones over its expression. 

Transgenic rice expressing an RNAi construct of OsXTH8 exhibited reduced growth. 

These results indicate that OsXTH8 is differentially expressed in rice leaf sheath in relation 

to gibberellin and potentially involved in cell elongation processes. 

At the level of regulating XET, Cui et al., (2005) showed that in the process of 

gravitropism in rice leaf sheath there is an asymmetric distribution of auxin and also of 

GAs. That could explain the differential cell growth detected in this process. At the level of 

regulating expression of expansins (EXP), Volger et al. (2003), showed that in the case of 

young stems in tomato plants, only specific EXP appear to be GA regulated. Regarding the 

regulation of pectin esterification, Derbyshire et al., (2007) studying the hypocotyl of two 

GA mutants, gal-3 and gai, and particularly the conditional rescue of cell elongation by 
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GA in the gal-3 mutant, showed that active cell elongation is associated with a higher 

average level of pectin esterification. Therefore there has been a number of instances were 

GA has been shown to have a direct effect on cell wall remodelling enzymes. 

1.6 OBJECTIVES OF THIS THESIS 

Root elongation is a complex developmental process that is highly regulated at multiple 

levels. At the cellular level, cell expansion is a key developmental process for the 

establishment of an effective primary root that will lead to the formation of a successful 

plant root system. Root cell elongation is regulated by a complex network of signalling 

pathways where GA plays a key role. GA specifically contributes to the coordination of 

root growth by regulating cell elongation in the endodermis (Ubeda-Tomas et a!., 2008). 

However, the downstream targets and mechanisms for how this regulation is accomplished 

is unclear. 

The aim of this present PhD project is to study how GA controls cell expansion in the root 

endodermis of Arabidopsis thaliana. In order to analyse the gene regulatory network 

targeted by GA in this tissue to promote root growth, forward and reverse genetic 

approaches have been pursued. 

1) A forward genetic screen of a fast neutron mutagenized population using an 

inducible system that blocks the GA response in the endodermis (termed SCR:gai-GR) has 

been carried out. Screening of this mutated population was expected to uncover novel 

downstream components of the GA signalling pathway to help construct the regulatory 

network targeted by GA. 
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2) In parallel, a transcriptomics data set using the inducible SCR:gai-GR line has been 

produced in order to select candidate genes which may be key components of the GA

regulated root cell expansion. The main focus on the analysis of the transcriptomics data is 

to identify transcription factors and cell wall remodelling enzymes with the aim to 

reconstruct the gene regulatory network targeted by GA controlling endodermal cell 

expansion. 

3) Finally, this project also intends to study how GA signalling controls cell wall 

propertied to achieve cell expansion. Studies of mutated cell wall remodelling enzymes 

that appear to be regulated by GA have been carried out in order to identify components 

involved in this regulatory process. 
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CHAPTER 2: GENERAL MATERIALS AND METHODS 

2.1 Plant material and physiological assays 

2.1.1 Seed stock 

Arabidopsis thaliana accessions Columbia (Col-O) and Landsberg erecta (Ler) were used 

as control lines in most of the experiments, unless otherwise specified. T -DNA insertion 

mutants were largely selected from the Salk collection (Alonso et af., 2003) and obtained 

from the Nottingham Arabidopsis Stock Centre (NASC) except for some personal 

donations specified in the correspondent chapter. SCR::gai-GR-YFP seeds (Ubeda-Tomas 

et af., 2009) and RGR::GFP-RGR seeds used for transcriptomics experiments were 

obtained from Dr. Susana Ubeda-Tomas. 

2.1.2 Seed sterilisation and plating 

Seed sterilisation was carried out in a laminar flow hood. Seeds were aliquoted into 1,5mL 

Microcentrifuge tubes and treated with a 5% (v/v) sodium hypochlorite solution for 5 

minutes. After that time, the seeds were washed three times with sterile ddH20. Seeds were 

plated onto growth media in 12.1 cm square plates containing 6SmL of growth media, 

using a P20 Gilson pipette and an Mltipipette tip (Barky Instruments International, 

Folkestone, UK). 
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2.1.3 Growth media 

The growth media consisted of half- strength MS salts (Murashige and Skoog, 1962) 

[0.43% (w/v) MS salts (Sigma Aldrich Co., Dorset, UK), 1% (w/v) agarose (POP, Park 

Scientific Ltd. Northampton, UK) and with the pH adjusted to 6.2 with KOH prior to 

autoclaving. Plates were sealed using micropore tape (3M, Bracknell, UK). For specific 

experiments, growth media was supplemented as required with Dexamethasone (1IlM), 

hygromycin (50 llg/mL), kanamycin (50 llg/mL) or BASTA (10 llm/mL) once it had 

cooled. 

For transcriptomics studies, seeds were plated over a sterile 100 11m nylon mesh 

(Lockertex, Warrington, UK) placed over the growth media to facilitate the dissection and 

collection of roots for RNA extraction. 

2.1.4 Stratification 

To optimise synchronised seed germination, seeds plated on the appropriate media, were 

incubated at 4°C in the dark for 2 days. The seeds were then transferred into constant light 

conditions (50 Ilmol·m2sec-l) at 22°C and grown vertically for length of time required. 

2.1.5 Seed colledion and cross pollination 

When seed collection or cross pollination was required, seeds growing on plates (as 

described on 2.1.3) were transferred to soil after approximately 10 dag (days after 

germination). Individual seedlings were transferred to 9cm pots containing 3: 1 mix of 
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compost (Levington M3) venniperil (Silvaperl) and grown at 20
0 e under a 12-h light, 12-h 

dark regime in the greenhouse. Plants were covered with plastic disposable sleeves to 

prevent cross pollination. 

Plants were ready for cross pollination once they had bolted and produced mature flowers. 

The receptive inflorescence had all the opened flowers removed. The remaining floral buds 

were emasculated using forceps under microscope (Leica, Microsystems GmbH Wetzlar, 

Gennany). Then, a mature stamen from a flower from the donator plant was selected. This 

stamen was brushed onto the recipient stigma until pollen was visible on the stigma 

surface. The fonned siliques were left to turn yellow on the plant before collecting and 

were left to dry for subsequent studies. 

2.2 Physiological assays 

2.2.1 Root growth assays and Image analysis 

To assess basal root growth, root length of seedlings grown vertically was measured from 

hypocotyl to root tip for a period of days (from 3 dag to 5-8 dag). Analysis of the root 

length was done using NeuronJ plugin of the ImageJ 1.4.1j (http://rsb.info.nih.gov/ij/) 

software. Growth rates (GR) were measured as means of length of the root (mm)/time 

(hours). Unless differently stated, at least three biological replicates were perfonned for 

each root growth assays with at least fifteen seedlings per line. Data are presented as the 

mean +/- the standard error and two-tail Student I-tests were perfonned using Microsoft 

Excel software to check for significance (p-Value <0,05) were perfonned. 
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2.2.2 Confo~al mi~ros~opy for root analysis 

Confocal microscopy to image Arabidopsis roots was performed usmg a Leica SP5 

confocal laser scanning microscope (Leica, Milton-Keynes, UK). For cell quantification 

and cell length measurements, seedlings were treated with propidium iodide (1 0 ~g/ml; 

Sigma) to stain the cell walls. 

Quantification and measuring of cells was performed with the Cell-o-Tape image analysis 

tool (French et al., 2012). Cell Production Rate (CPR) was measured as the GRiaverage 

cell length (ceillhour). Unless differently stated, at least three biological replicates were 

perfonned for each root growth assays with at least ten seedlings per line. Data are 

presented as the mean +/- the standard error and two-tail Student t-tests to check for 

significance (p-Value <0,05) were performed using Microsoft Excel software. 

2.3 Nu~lei~ Acid isolation 

2.3.1 Genomic DNA extraction 

DNA was extracted from single leaves that were harvested and snap frozen in liquid 

nitrogen, these were then homogenised to a fine powder. When thawed, 600fll of DNA 

extraction buffer (0.2M Tris-HCI pH7.4, 0.025M EDTA, 0.25M NaCI and SDS 0.5% w/v) 

was added. Samples were vortexed vigorously for 30 seconds and were then centrifuged at 

14000 x g for 5 minutes to remove cell debris. Supernatant was collected and the DNA was 

precipitated for 5 minutes on ice with 500J.l.l of isopropanol (Fisher). Samples were 

centrifuge at 14000 x g for 5 minutes, and the DNA pellet was air dried for 30 minutes or 
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for 10 minutes under vacuum. The DNA was then re-suspended in 30111 of sterile water 

and stored at -20ce. 

2.3.2 RNA extraction 

mRNA was extracted using the QIAGEN RNeasy Mini kit (QIAGEN, West Sussex, UK). 

Roots from selected seedlings were snap frozen in liquid nitrogen and then ground to a fine 

powder. 350J11 of Buffer RL T (containing 0.1 % (v/v) ~-mercaptoethanol (Fisher Scientific 

UK Ltd, Loughborough, UK) was added to the homogenised tissue and mixed thoroughly. 

The lysate was transferred to a QIAshredder spin column and centrifuged for 5 minutes at 

full speed (13000 x g). The supernatant was transferred to a new microcentrifuge tube and 

1: 1 volume of 70% ethanol was added and mixed by pipetting. 

The sample was then transferred to an RNeasy MinElute spin column placed in a 2 ml 

collection tube and centrifuged for 15 seconds at 10000 x g, discarding the flow-through. 

350 J11 Buffer RW1 was added to the RNeasy MinElute spin column and it was again 

centrifuged for 15 seconds to 10000 x g and the flow-through was discarded. This step was 

repeated and the flow-through and collection tube were discarded. 

The RNeasy MinElute spin column was placed in a new 2 ml collection tube and 500 J11 

Buffer RPE was added to the spin column and centrifuged for 15 seconds to 10,000 x g to 

wash the spin column membrane, discarding the flow through. 500 J11 of 80% ethanol was 

added to the RNeasy MinElute spin column. After centrifugation at 10000 x g for 2 

minutes the flow-through and the collection tube were discarded. Then the RNeasy 

MinElute spin column was placed in a new 2 ml collection tube and with the lid opened 
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centrifuged at full speed for 5 min to dry the column, the flow-through was discarded. 

Then the column was transferred to a 1.5 ml microcentrifuge tube and 14~1 of RNase-free 

water was added directly to the column membrane. The sample was centrifuged at 13000 x 

g for 1 min to elute the RNA. Samples were kept at -80°C. 

2.3.3 cDNA synthesis 

mRNA was reverse transcribed into cDNA using the Transcriptor First Strand cDNA 

Synthesis kit (Roche Diagnostics Ltd., Lewes, UK) following the manufacturer's protocol. 

500ng of mRNA was made up to a volume of 1 O~L using RNase-free water and 50pmol 

Anchored-oligo (dT)18 primer «Roche Diagnostics Ltd., Lewes, UK) was added. The 

sample was incubated at 65°C for ten minutes and then transferred to ice. 1 X Transcriptor 

RT reaction buffer (Roche Diagnostics Ltd., Lewes, UK), 20 U Protector RNase Inhibitor 

(Roche Diagnostics Ltd., Lewes, UK), ImM dNTPs and IOU Transcriptor reverse 

transcriptase were added and mixed by pipetting. The sample was then incubated at 55°C 

for 30 min. The cDNA was stored at -20°C. 

2.3.4 Polymerase chain reaction (peR) 

PCR (and RT-PCR) was carried out in 20~1 reactions containing 20-200ng DNA, O.5nM 

primers, 0.2 nM dNTPs, 2mM MgCh and IOU Mango-Taq DNA Polymerase (Bioline 

USA Inc., USA) in Ix PCR buffer. The PCR machine used in all experiments was AB 

GeneAmp PCR System 9700 (Applied Biosystems, USA). A standard PCR programme 

was used for all the different reactions with the only variation of annealing temperature 

which was adjusted for each reaction to temperatures between 53°C and 5TC (Table 2.1). 
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Primers used for product amplification were designed with the Primer 3 design tool 

(http://frodo.wi.mit.edu). 

Initial denaturation 94°C for 2 min 

{

Denaturation 

35 Cycles: Annealing 

Extension 

Final extension 

for 30 sec 

for 30 sec 

for 1 min 

72°C for 10 min 

Table 2.1. Standard peR programme 

2.3.5 Agarose gel electrophoresis 

Visualisation and separation of DNA was done by agarose gel electrophoresis. 1% (w/v) 

agarose (GIBCO BRL.) was added to 0.5 X TBE buffer (lOX TBE buffer: 1M Tris-HCL 

pH8, 0.9 Boric acid, O.OIM EDTA) and melted in a microwave. To the mix, 0.4 mg of 

ethidium bromide (Sigma Chemicals, Sigma-Aldridge Co., Dorset, UK) was added to 

100mL. The mix was then poured into a gel tray (BIO-RAD) and left to solidify. For each 

DNA sample 10JlI was loaded into each gel well. Gels were run at 90V in gel tank 

reservoirs filled with 0.5X TBE buffer. DNA bands were visualised using a UV trans-

illuminator computer system (Syngene, Cambridge, UK). 
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2.3.6 DNA purification from gel 

Gel bands were purified usmg the Qiagen MinElute Kit following manufacturer's 

instructions. The band of interest was cut from the gel and the weight recorded. Three 

volumes of Buffer QG were added to 1 volume of gel. The sample was then incubated at 

SO°C until the gel slice was completely dissolved. One gel volume of isopropanol was 

added to the sample and mixed gently by inverting the tube. Next the sample was 

transferred to a MinElute column placed in a 2 ml collection tube and centrifuged for I 

minute at 13000 x g. The flow-through was discarded. SOD Jll of QG buffer were added to 

the sample and then it was centrifuged for another minute at 13000 x g. The flow-through 

was again discarded. Subsequently, after adding 7S0Jll of buffer PE the sample was 

centrifuged for 1 minute at 13000 x g. The flow-through was discarded and the sample 

centrifuged for an additional minute to dry the column. After that, the MinElute column 

was placed in a clean l.5mL microcentrifuge tubes. The DNA was eluted by adding 10f.ll 

of H20d to the centre of the membrane letting it stand for I minute before centrifuging for 

1 minute at 13000 x g. 

2.4 Cloning 

2.4.1 Restriction enzyme digestion 

Restriction digestion of PCR products was carried out in 10111 volumes containing 1 x 

buffer (New England Biolabs, Hitchen, UK), 2.S U restriction enzyme (New England 

Biolabs, Hitchen, UK) and 5Jll PCR product. Bovine serum albumin (BSA) was added to a 
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final concentration of 0.1 mg mrl according to manufacturer's recommendations. 

Reactions were incubated at the recommended temperature for 2 hours. 

2.4.2 Ligation reaction 

For the ligation reaction a ratio of 3:1 [insert]:[vector] (mol/mL) was used. A total of lOJ!L 

of Ligation Mix consisting of 1.0 J!L lOX T4 ligase buffer (50 mM Tris-HCI, 

10 mM MgCb, 1 mM ATP, 10 mM Oithiothreitol, pH 7.5 at 25°C), 7 J!L of purified insert, 

1 J!L of purified vector and 1 J!L T4 Ligase was used for each reaction. The Ligation Mix 

was incubated at room temperature overnight. 

2.4.3 Preparation of E.coli DH5a chemically competent cells 

A single colony of E. coli was inoculated in 2.5 ml of LB media without antibiotics and 

grown overnight in a shaker at 120 x g at 3TC. Next day 250 ml of pre-warmed LB media 

without antibiotics were inoculated with the starter bacterial culture and incubated until the 

optical density (00550) reached 0.5 - 0.6; at that stage, the cell culture was placed on ice 

for 10 minutes and then centrifuged at 6000 x g for 5 minutes at 4°C. 

The supernatants were discarded and cells were gently re-suspended in 100 ml ice-cold TB 

I buffer (30 mM potassium acetate, 100mM rubidium chloride, 10 mM calcium chloride, 

50mM manganese chloride, 15 % glycerol, pH adjusted at 5.8 with acetic acid). After 

incubating the cells on ice for 5 minutes, cells were centrifuged at 6000 x g for 5 minutes 

at 4°C. The supernatant was carefully removed and the pellet was finally resuspended in 10 

ml ice-cold TB II buffer (10 mM PIPES, 10 mM rubidium chloride, 75 mM calcium 
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chloride, 15% glycerol, pH adjusted at 6.5 with KOH). Aliquots of 50 ~l were dispensed 

and snap frozen in liquid nitrogen. Competent cells were kept at -80°C for further use. 

2.4.4 Transformation of E.coli DH5a competent cells 

A total of 10 ~L of DNA (ligation product) were added to aliquots of 100 ~L of E.coli 

DH5a competent cells for each reaction. Then the mix was incubated on ice for 20 

minutes. After that time, the cells were heat shocked at 42°C for 40 seconds and put back 

to ice for 20 more minutes. After this time, 900 ~L of LB media were added to the cells 

and then they were incubated at 37°C with continuous shacking. Finally, 150 ~L of cells 

were plated with LB-agar plates containing the appropriate antibiotic. 

2.4.5 Transformation of Agrobacterium competent cells 

Electro-competent Agrobacterium G V31 0 1 strain containing the pSO UP vector necessary 

for replication was used in this project (kindly provided by Dr. U. Voss). 

For electroporation of Agrobacterium cells, 1.5 III (100ng/lll) of the vector of interest was 

added to 50 III of prepared electro-competent cells and kept on ice. The cells and the DNA 

were gently mixed before being transferred to a pre-chilled cuvette. Electroporation was 

carried out using Bio-Rad GenePulser with the following settings: 2.5 Kv, 25~FD, 400 

Ohms. The cells were recovered by adding 1 mL of LB media and then transferred to a 

new micro centrifuge tube to incubate in a shaker at 28°C for 1 hour. After this inoculation 

time, aliquots of 50 Ill, 100 III and 200 III were plated on plates containing solid LB media 

and the correspondent selection antibiotic. Plates were incubated at 28°C up to 48 hours. 

43 



2.4.6 Colony PCR 

To perform colony PCR, bacterial colonies from E. coli and Agrobacterium to be analysed 

were first individually subcultured in 1 ml of liquid LB medium supplemented with the 

appropriate antibiotics and incubated for 2 hours in a rotary shaker at 37°C or 28 T 

respectively. 2 Jll of the liquid culture were then used as template to perform a routine PCR 

reaction as described in section 2.3.5. For the thermal cycle an initial denaturation of 5 

minutes was used every time. 

2.4.7 Plasmid DNA extraction 

Minipreps were done using the Qiaprep Miniprep Kit (Qiagen). Minipreps were done on 

cell cultures which had been grown overnight in 5mL of LB with appropriate antibiotic 

from the positive colonies confirmed by Colony PCRs. 

First, cells from the culture were precipitated by centrifuging them at 5000 x g for 3 

minutes. The pellet was re-suspended with 250 JlI of Buffer PI and transferred to a 1.5 ml 

microcentrifuge tube. Then, 250 JlI of buffer P2 was added and mixed by inverting the 

tube. To that mix, 350 JlI L of buffer N3 was added and mixed again by inverting the tube. 

The whole mix was then centrifuged at 13000 x g for 10 minutes and the supernatant 

transferred to a QIAprep spin column. The column was centrifuged at 13000 x g for 1 

minute and then added 500JlI of buffer PB to centrifuge the column again for 1 minute. 

Next, the flow-through was discarded and the column washed with 750 JlI of buffer PE by 

centrifuging the sample at 13000 x g for 1 minute, the flow-through was discarded and the 

sample was centrifuged for a further minute at 13000 x g to dry the column. The QIAprep 
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spin column was transferred to a clean 1.5 ml microcentrifuge tube and the DNA was 

eluted in a total volume of 50 ~l deionised water. 

2.4.8 Arabidopsis floral dip transformation 

A single Agrobacterium colony containing the construct of interest was propagated in a 

5mL LB culture with the selective antibiotics (30 ~g/ml Gentamicin and 50 ~g/ml 

Kanamycin, Sigma Aldrich, Gilingham, UK), at 28°C with shaking at 200 x g overnight. 

Then, this first culture was inoculated into 95 ml of same medium and grown at 28°C until 

the 00600 was between 0.7-1. This culture was centrifuged at 3500 x g for 10 minutes to 

pellet the cells, which were resuspended in 100ml of a 5 % (w/v) sucrose solution. Before 

dipping into plant, Silwet L-77 (0.05% w/v) surfactant was added to the sucrose solution 

containing the re-suspended cell pellet. Arabidopsis plants grown in 8-9 plants per 9 cm 

pots were first allowed to flower before the first floral bolts were removed. Approximately 

4-5 days later the plants had re-grown new floral bolts and were ready for transformation 

by floral dip method described by Clough and Bent (1998). After dipping the plants in the 

sucrose solution containing the re-suspended cells pellet, plants were covered in a sealed 

plastic sleeve for 48 hours before opening and left to grow and set seed. 
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CHAPTER 3: FORWARD GENETIC SCREEN TO IDENTIFY NOVEL GA 

MUTANTS TO STUDY ROOT CELL EXPANSION (STUDY OF THE FAST 

NEUTRON SCR::ga;-GR-YFP POPULATION) 

3.1 INTRODUCTION 

With the completion of the Arabidopsis genome sequencing (The Arabidopsis Genome 

Initiative, 2000), the sequence of every gene is now available. However, DNA and protein 

sequence has not been enough to identify the function of the majority of the Arabidopsis 

genes. Several steps and experimental approaches have been developed to date to be able 

to make the conversion from gene sequence to gene function. Forward genetics has proved 

very successful in the process of associating a phenotype to the gene. Similarly reverse 

genetics can be useful in associating a gene sequence to a function. In both reverse and 

forward genetic approaches, the function of the gene can usually be deduced from 

phenotypic changes observed as a consequence of modification of the gene activity 

(Alonso and Ecker 2006). 

Numerous chemical, physical and biological agents can be employed to induce genome 

wide mutations in Arabidopsis. Normally the efficiencies and the outcome of the nature of 

the genomic lesion depend on the dose and the type of the mutagen used. In forward 

genetics, chemicals such as ethyl methane sulfonate (EMS) or radiation with y-rays are 

commonly used to create mutations throughout the whole genome (Alonso and Ecker, 

2006). More recently, fast neutron bombardment has also been used for large scale 

mutagenesis (Belfield et a/., 2012). 

EMS and y-rays mutagenesis methods usually give rise to point mutations, such as single 

nucleotide insertion, deletion or substitution (Fieldman et a/., 1994). EMS studies have 
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lead to the identification of key components of the GA signalling pathway. The 

Arabidopsis sleepyl (slyl-2) was recovered from the screen of an EMS mutagenised 

population of abil-l (abscisic acid-insensitive) on the basis of lack of ability of the seeds 

to germinate in presence of 3 J.lM abscisic acid (Steber et al., 1998). Map-based cloning 

and further DNA sequence analysis revealed that slyl-2 has a 2-bp deletion (Cys-337 and 

Thr-338) causing a frameshift that eliminates the last 40 amino acids of the protein 

(McGinnis et a1., 2003). However, EMS mutagenesis induced mutations generally have 

little or no effect on the activity of the mutagenised protein and causes a silent mis-sense 

mutation. In contrast, fast neutron bombardment generally gives rise to deletions and 

therefore chances of getting a null allele are very high. Molecular characterization of 

Arabidopsis gal-3 (Sun et al., 1992) and tomato prf3 (Salmeron et aI., 1996) further 

confirmed that fast neutron bombardment induces deletion mutations. Therefore, fast 

neutron mutagenesis offers a more efficient method to give rise to null mutants. 

Fast neutron (FN) is a form of ionizing radiation commonly produced by exposure to 

uranium-aluminium alloy fuel source. Exposure to fast neutrons has been shown to be a 

very effective mutagen in plants (Li et a1., 2001). Many phenotype-associated genes have 

been successfully identified and cloned through such screens (Meinke et aI., 2003). With 

the Arabidopsis genome containing about 25000 genes (Arabidopsis Genome Initiative, 

2000), irradiating 2500 seeds with fast neutron at a dose of 60 Grey (Gy) to inactivate a 

gene once on average, it is estimated that about 10 genes will be randomly mutated in each 

line (Koornneef et al., 1982). These genomic alterations can be characterized by molecular 

techniques. For example, gibberellin biosynthetic gene GAl was first cloned using a fast 

neutron allele gal-3 (Sun et al., 1992). 
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For a long time it has been commonly accepted that FN mainly induced deletions larger 

than a Kb in Arabidopsis (Bruggemann et ai., 1996). However, recent studies carried out 

by Belfield et ai., (2012) found a higher frequency of single base substitution than deletion 

mutations. Based on their results, it is suggested that fast neutron mutagenesis promotes 

the formation of mutational covalent linkages between adjacent pyrimidine residues. In 

addition, they showed that FNs induced more single base changes than large deletions, and 

that these single base deletions were probably caused by replication slippage. Therefore, 

when cloning mutants isolated from a FN mutagenesis population an appropriate 

sequencing method able to identify these potential single base changes are needed in order 

to increase the chances of identifying the gene of interest. 

As described in the general introduction of this thesis, the GA signalling pathway has been 

well characterised upstream of DELLA proteins. Also, a large range of GA associated 

functions have been identified mainly through GA biosynthetic mutants or GA signalling 

mutants at the level of DELLAs. However, little is known about components acting 

downstream of DELL As and how they relate to each other. 

Therefore, in order to further investigate the molecular mechanisms of GA signalling that 

control cell elongation and therefore root growth, a forward genetic approach using fast 

neutron mutagenesis was followed to identify novel mutants of the GA signalling pathway. 

A smart screen was designed where a fast neutron SCR::gai-GR-YFP population was 

employed to screen for novel GA signalling mutants. Fusion of the DELLA gai negative 

mutant to the glucocorticoid receptor (GR) results in arrest of the protein to the cytoplasm. 

But in presence of the steroid dexamethasone, nuclear translocation of gai takes place and 

the GA response is blocked in the endodermis preventing the root to grow. Mutation of any 
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component of GA signalling pathway acting downstream of GAl is likely to result in 

resistance to DEX treatment and in the restoration of the root growth. 

3.2 MATERIALS AND METHODS 

3.2.1 Plant Material 

Fast-neutron-treated Arabidopsis thaliana seeds (Landsberg erecta, Ler) of the SCR: :gai

GR-YFP line (Ubeda-Tomas et al., 2008) were used for this screen. A non-mutagenised 

version of SCR::gai-GR-YFP seeds was used as positive control. As negative control it 

was used the RGA::GFP-RGA (RGR3; Silverstone et al., 2001) line, which is the parental 

line of the SCR::gai-GR-YFP lacking the ability to block the GA response in a DEX 

inducible manner. 

3.2.2 Fast neutron mutagenesis 

A mutant population of the inducible line SCR: :gai-GR-YFP was created by fast neutron 

irradiation. A total of 5000 transgenic A. thaliana seeds were mutagenised using 55 Grey 

(Gy) of fast neutrons (KFKI Atomic Energy Research Institute, Budapest, Hungary) to 

cover all the Arabidopsis genome. The resulting mutagenised seeds were sown in 242 

pools of20 M1 seeds. 
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3.2.3 Root growth assay for selection of putative mutants 

3.2.3.1 Screening of the mutagenised SCR: :gai-GR-YFP M2 population 

The fast neutron mutagenised SCR::gai-GR-YFP segregating M2 population was screened 

for the identification of putative mutants. For each of the 242 pools, a total of 500 seeds 

were sterilised, stratified and germinated on MS media in single square Petri dishes as 

described in section 2.1 of general materials and methods. With the purpose of inducing 

the transgene expression, the media was supplemented with 10 JlM of Dexamethasone 

(Sigma Aldrich Co., Dorset, UK). After 7 days of continuous growth, seedlings were 

observed for restoration of root growth. 

3.2.4 Confirmation of the SCR::gai-GR-YFPtransgene integrity 

3.2.4.1 Confirmation of the transgene presence by PCR 

PCRs were carried out to detect the presence of the gai transgene for SCR::gai-GR-YFP 

putative mutants to discount a malfunction of the trans gene due to the FN bombardment 

itself. A combination of primers that amplified part of both gai and GR sequences were 

used in order to discriminate between the endogenous gai sequence and the non-degradable 

version from the transgene (Table 3.1). 
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Gene Primer Sequence (5'-3') 
Product 
size (bp) 

GAI-S2-F CGGCGGTGAGGGTTATCGGG 
gai-GR 686 

GR7-R GACCTTCCTTAGGAACTGAG 

YSI-F CCGGTACCAGCAAGGGCGAGGAGCTGTTCACC 
YFP 706 

YS2-R CCGGTACCCTTGTACAGCTCGTCCATGCCGAG 

ACTlC-F GATGGAGACCTCGAAAACCA 
actin 382 

ACT2C-R CTGGAAAGTGCTGAGGGAAG 

Table 3.1. Summary of primers used for amplification of the gDNA and cDNA of the putative mutants. 
Information about the primers sequence and expected size of the amplified products are given. 

PCR were performed as described in section 2.3.4 of general materials and methods. 

Amplification was conducted in 20llL reaction using gene specific primers and Taq DNA 

polymerase (Promega) for one cycle of 2 min at 94°C, followed by 35 cycles of 94°C, 30 

sec; 58°C, 30 sec; 72°C, 1 min and a final elongation cycle at 72°C for 10 min. Primers for 

gai-GR and YFP detection were kindly provided by Dr. Ranjan Swarup (University of 

Nottingham). 

3.2.4.2 Confirmation of the transgene expression by RT -peR 

The primers to amplify gai-GR and YFP used for RT-PCR were the same as for the PCR. 

Also, a further RT-PCR with ACTIN8 primers for was performed as control to check the 

quality of the cDNA. Information about primer sequences and product length is described 

in Table 3.1. mRNA extraction and cDNA synthesis were carried out following protocols 

described on sections 2.3.2 and 2.3.3 of general materials and methods. RT-PCR was 

performed as described in 2.3.4. 
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3.2.4.3 Sequencing of the ga; negative mutation 

A combination of three pair of primers was used in order to amplify the gai fragment from 

the SCR::gai-GR-YFP transgene (table 3.2). Three overlapping fragments were obtained 

and sent for sequencing. Genomic DNA was extracted from whole roots as described in 

section 2.3.1 of general materials and methods 

Primer Sequence (5'-3') Product size 
(bp) 

Sq-FI TTCGAAAGGTGGAAGACGAC 
609 

Sq-RI TTTTCTCATCGCTCCGATTT 

Sq-F2 GACTGTAGCGGAAGCTCTGG 
650 

Sq-R2 CCTGCTCAACCACAGTGAAA 

Sq-F3 TTCGATGCTTGAGCTTAGACC 
606 

Sq-R3 GCTTGCTGAATCCCTTTGAT 

Table 3.2 LISt of primers to sequence the gal-GR-YFP fragment from the SCR: :gai-GR- YFP transgene. 

Sequence of the SCR::gai-GR-YFP transgene with the deletion site causing the gai 

mutation as well as the primer hybridization sites used for genotyping and sequencing is 

shown in Appendix I. 

3.2.5 Phenotypic characterization of putative FN mutants 

3.2.5.1 Root length and growth rate assay 

Restoration of root length was assessed by measuring the length of the primary root of the 

putative mutants and comparing them with the background line RGA::GFP-RGA (RGR3). 

Percentage of root growth was measured by assuming the length of RGR3 as 100 % of root 
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growth and comparing the lengths of the different putative mutants against it. The analysis 

of the growth rate (OR) was carried out as described in chapter 2.2.1 

3.2.5.2 Root meristem and root cell analyses of putative mutants 

High resolution images used for the analysis at the cellular level were obtained using 

confocal microscopy as described in section 2.2.2. Cell Production Rate (CPR) was 

measured as the OR/average cell length (ceillhour). Procedures and statistical analysis are 

described in section 2.2.2 of general materials and methods. 

3.2.6 Next generation sequencing of putative mutants 

Outcrosses between the FN putative mutants with Col-O plants were carried out as 

specified in the section 2.1.6 of general materials and methods. Double homozygous 

mutants for the transgene (SCR::gai-GR-YFP) and the FN mutation were selected through 

bulk segregation analysis. Seedlings were first grown in presence of 50J..lg/mL of 

Hygromycin and resistant plants were then transferred to media containing DEX (10 J..lM). 

Sterilisation, media preparation and plating of the seeds were carried out as described in 

section 2.1 of general materials and methods. From each confirmed double homozygous 

FN putative line, 50 seedlings were pooled together and DNA extracted as described in 

section 2.3.1 of general materials and methods. 
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3.3 RESULTS 

3.3.1 Root growth assay for selection of putative mutants 

3.3.1.1 Screening of the mutagenised SCR::gai-GR-YFP M2 population 

There are two functional germ line cells in Arabidopsis therefore, in the segregating M2 

population a recessive mutation is expected to segregate in a 7:1 ratio (4:0 for one cell and 

3: 1 for the other cell). Since the M2 population is the result of pools of 20 M 1 seeds, a 

single recessive mutation in a given pool is expected to segregate at 159: 1. Hence, it was 

estimated that 480 seeds/pool (3 X Standard deviation) had to be screened to have a high 

statistical probability to identify a mutation in a given pool. 

Out of the 242 pools of SCR: :gai-GR-YFP mutagenised M2-seeds screened, a total of 30 

pools showed seedlings that appeared to have restored root growth. The number of DEX 

resistant seedlings varied between the different pools (Table 3.3). These putative mutants 

were taken to the next generation to confirm their phenotype before further analysis. 

Number of resistant seedlings 

Pool number observed/pool 

16,25,27,32,36,45,47,64,73,80,94, 
1 

119,153,157,163,177,195,211,214,215 

4,40,49, 135,187, 199 2 

84,159, 191,211 3 

Table 3.3. PrehmlDary screen: A summary of putative mutants identified from SCR::gai-GR-YFP FN 
population screen. On this table are described those pool numbers from the 242 pools screened where 
seedlings with root growth restored were identified. The different pools are grouped according to the number 
of putative mutants identified (1, 2 or 3). 
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3.3.1.2 Validation of the mutant phenotype 

All the putative mutants were taken to the M3 generation and their phenotype rescreened 

for restoration of root growth. As expected most of the putative mutants failed to show 

restoration of root growth upon rescreen and were perhaps false positives and hence were 

not investigated further. 14 putative mutants from 9 pools were confirmed to show 

restoration of root growth in presence of DE X and were investigated further (table 3.4). 

Pool number Putative FN mutants 

FN25 FN25 

FN27 FN27 

FN40 FN40-1, FN40-2 

FN49 FN49-1, FN49-2 

FN80 FN80 

FN84 FN84-1 FN84-2 FN84-3 

FN191 FN191-3 

FN199 FNM199-2 

Table 3.4. Mutants wltb validated pbenotype on tbe M3. 

The extent of root growth recovery was quantified for each of the 14 putative mutants and 

was compared with the control RGA::GFP-RGA (RGR3; figure 3.1). As shown in figure 

3.1, a big variation in the level of root growth restoration in the different putative mutants 

is observed. 
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Figure 3.1. Putative FN mutants show different levels of root growth recovery phenotype. In the picture 
are shown two seedlings of each of the 14 FN putative mutant lines recovered from the screening of the M3 
population grown in ] /2MS media containing dexamethasone. On the top left there is the control background 
line RGA : :GFP-RGA (RGR3) and next to it the parental line of the mutagenised population SCR: :gai-GR

YFP (RGR3I.4). The graph represents the graphical quantification of relative root growth of each of the 
putative mutants when compared to the control line RGR3. The mean of the root lengths (mm) are shown 
with standard errors with vertical lines (Scale bar= 130mm). 

On the basis of restoration of root growth phenotype of the different putative mutants, they 

were classified in three main categories; complete, partial or weak. A total of 5 putative 

mutants (FN27, FN40-1, FN40-2, FN49-2 and FN80) were classed as complete restoration 

of the root growth (with FN80 presenting roots larger than the control RGR3, figure 3.1). 

This would imply that the lesion caused by the radiation is affecting a component or series 
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of components which are able to totally revert the phenotype caused by the lack of GA 

signalling response. However this is quite unlikely and expression analysis of the gai-GR-

YFP trans gene should show if the trans gene is correctly expressed in these lines. Five 

putative mutants (FN49-1, FN84-1 , FN84-2, FN84-3 and FN215) were classed as partial 

and three (FNI63, 191-3, FNI99-2) were classed as weak as they show partial to weak 

restoration of the root growth respectively. The FN25 could not be determined due to 

irregular germination. 

3.3.2 Confirmation of the SCR: :gai-GR-YFP transgene integrity 

3.3.2.1 Confirmation for the presence of the transgene 

PCRs were carried out to detect the presence of the gai trans gene for SCR::gai-GR-YFP 

putative mutants to discount a malfunction of the trans gene due to the FN bombardment 

itself (figure 3.2). A combination of primers that amplified part of both gai and GR 

sequences were used in order to discriminate between the endogenous GAl sequence and 

the non-degradable version from the transgene, gai. 
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Figure 3.2. peR reaction for detection of the gai-GR transgene. Electrophoresis photograph showing the 
results for the amplification of the gai-GR transgene. Amplification for the gDNA of all the putative mutants 
as well as the RGR3 and RGR31.4 control was performed. The first line on the left belongs to a lOObp DNA 
ladder. On the right, size of the expected band is mentioned. 
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PCR results clearly show that in most of the putative mutants (FN25, FN49-1 , FN84-1 , 

FN84-2, FN84-3, FN163, FN191-3 , FN199-2 and FN215) the trans gene can be detected. 

However, in four (FN27 , FN40-1 , FN40-2 and FN80) out of five mutants that showed 

complete restoration of root growth, no trans gene band was detected. Interestingly, FN49-

2, which also showed a complete recovery phenotype, did show positive results for 

amplification of gai-GR and hence expression analysis were done to ensure that the 

trans gene is correctly expressed. 

3.3.2.2 Confirmation of the SCR:: gai-GR-YFP transgene expression 

To investigate the expression of the transgene, RT-PCRs were performed in RNA isolated 

from roots. It is possible that the FN bombardment has caused a single base deletion or 

substitution, which is not identified on the PCR but which is enough to disrupt the 

expression of the gene (figure 3.3). 
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Figure 3.3. RT-PCR reactions for detection of the gai-GR transgene expression. Gel electrophoresis of 
RT-PCR reactions to detect the expression of gai-GR and YFP from the cDNA of the putative mutants. Two 
individual reactions to detect gai-GR and YFP respectively were performed to corroborate the integrity and 
expression of the whole transgene. A third reaction to amplify actin was carried out as control. First line on 
the top, shows the results of the amplification for gai-GR. The line on the middle shows the results of the 
YFP amplification. Bottom line corresponds to the control amplification with actin primers. The left of each 
line is the lOObp DNA ladder (M). On the right of each line the size of each expected band for the different 
amplifications is shown. 
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For completeness, RT-PCRs were also done in the cases where no transgene was detected. 

As expected no transgene expression was detected and these were used as negative 

controls. For FN80 there is a weak: YFP band but this was ignored as false positive as PCR 

results show that the entire trans gene cassette is missing in them. 

Table 3.5 below summarises the genotyping of the 14 putative mutants. The different lines 

are first categorised based on their root growth recovery phenotype. Then, in the next 

column it is indicated whether these putative mutants still preserve the SCR::gai-GR-YFP 

trans gene and finally if the trans gene is expressed. 

Line Restoration of Result of PCR Result of RT-PCR 
root growth (SCR::gai-GR- (SCR::gai-GR-YFP 

YFP presence) expression) 

RGR3 (Negative control) Negative (-) -
RGR31.4 (Positive control) Positive (+) + 

FN27 Complete - -
FN40-1 Complete - -
FN40-2 Complete - -
FN49-2 Complete + -
FN80 Complete - -
FN25 (Irregular) + + 

FN49-1 Partially resistant + + 

FN84-1 Partially resistant + + 

FN84-2 Partially resistant + + 

FN84-3 Partially resistant + + 

FN215 Partially resistant + + 

FN163 weak + + 

FN191-3 Weak + + 

FN199-2 Weak + + 

Table 3.5. Characterisation of the 14putative mutants pulled out from the FN mutagenised SCR::gai
GR-YFP population. The different putative FN mutants are grouped in three color-code based on their root 
phenotype. In beige are those lines which a complete root growth recovery, in blue those ones with a partial 
phenotype and in green those one with weak root growth restoration The first column refers to the name 
given to each mutant and the controls. The second one describes the root phenotype observed . Genotype of 
each mutant to confirm the transgene present was done by PCR (3rd column). Resu lts for RT-PCRs to verify 
that the transgene was expressing are shown in the last column. 
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In summary, genotyping and the trans gene expression analysis clearly show that in cases 

where there were partial or weak restoration of root growth the trans gene appears to be 

intact and gai can be expressed in a normal fashion in these mutants to block GA response 

in the endodermis when induced with DEX. If this is indeed true, the phenotypes recovered 

are likely to be due to genes acting downstream of gai that have been affected by the 

mutagenesis. 

3.3.2.3 Sequencing of the gai negative mutation 

Even though RT-PCR results were positive in most cases, it is possible that the integrity of 

the trans gene has been affected by the mutagenesis in a way that the gai gene was 

expressed but the protein was non functional. Therefore, all the putative mutants which 

have shown to express gai-GR-YFP were sequenced to corroborate the integrity of the 

transgene. The results suggested that none of the putative mutants showed any 

abnormalities. Therefore, it appears that a functional gai protein should form in each of the 

FN putative mutants thus blocking the GA response in the endodermis. 

3.3.3 All the putative FN mutants are recessive mutations 

In order to determine whether the different putative FN mutants isolated from the M3 

population were recessive or dominant mutations they were backcrossed with the non 

mutated parental line SCR::gai-GR-YFP. 
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Figure 3.4. Analysis of the root growth recovery phenotype for the backcrossedFN putative mutants 
with the non-mutagenised parental line. The graph shows the overall length of the primary root for the FN 
putative mutants (F=FN, blue) together with the overalJ length of the FI of crossing these mutants with 
RGR31.4 (red). The length of the parental line RGR31.4 is shown as control. Measures were taken at 9 dag. 
The mean of the root lengths (mm) are shown with standard errors with vertical lines. 

As shown in figure 3.4, none of the 9 putative FN mutants are able to recover the root 

growth phenotype when backcrossed with the parental line. Therefore, it appears that the 

recovery phenotypes of all the FN putative mutants are caused by recessive mutations. 

3.3.4 Phenotypic analysis 

3.3.4.1 Growth rate analysis 

Once the mutant phenotype was validated and shown that it was not due to some artefact in 

trans gene rearrangement, detailed phenotypic characterization of these mutants was done. 

First, the growth rate of the different FN mutants in presence or absence of DEX was 

compared. If the mutation responsible for the recovery of the root growth is involved in the 

GA signalling acting downstream of DELLA, the growth of the roots in absence of the 

expression of gai should be similar to the non mutated parental line (RGR31.4). 
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Figure 3.5. Analysis of the growth rate (GR) of the FN putative mutants. The GR (mm/h) for the roots of 

each putative lines was measured in both inducible (+DEX) and non inducible (-DEX) conditions. Landsberg 

erecta (Ler) , RGR3 and the DOD-mutated parental line SCR::gai-GR-YFP (RGR3I.4) were used as controls. 
Vertical lines in top of each bar indicate +/- SD. 

From the results (figure 3.5) it can be observed that FN putative mutants can be classed in 

two major groups based on their growth rate phenotype in absence ofDEX. FN25, FNI9I, 

FNI99 and FN215 show a wild-type like growth rate in absence of gai expression and a 

reduced growth rate when the GA response is blocked in the endodermis. On the other 

hand, FN49, FN84-1, FN84-2, FN84-3 and FN163 appear to be insensitive to DEX thus 

showing a reduced growth rate in both presence and absence of the trans gene expression. 

3.3.4.2 Cell production rate analysis 

To understand the cellular basis of the root phenotype associated with these mutants the 

cell production rate (CPR) was measured in inducible (+DEX) and not inducible conditions 

(-DEX). 
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Figure 3.6. Cell Production Rate (CPR) measures for the FN putative mutants. The CPR (GRlmature 
cell length represented as cell/h) of each putative mutant was measured in both inducible (+DEX) and non 
inducible (-DEX) conditions. Ler (Landsberg erecta), RGR3 and the non-mutated parental line SCR::gai
GR-YFP (RGR3I.4) were used as controls. Vertical lines in top of each bar indicate +/- SD. 

As seen in figure 3.6, FN163 is the only line with reduced CPR, both in the presence and 

absence of DEX. This could be an indication that the mutation, which has been previously 

shown to act independent of the GA induced blocked response, could be affecting some 

component involved in the cell cycle. 

For the rest of the FN putative mutants, the CPR is similar to those of the controls both 

under inducible and non inducible conditions suggesting that root growth is affected at the 

level of cell expansion for these mutants. 

3.3.5 Next generation sequencing of putative mutants 

In order to clone the genes responsible for the phenotype, a Next Generation Sequence 

(NGS) approach was used. FN mutagenesis can create DNA deletions in a wide range of 
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sizes (from few base pairs to several megabases (Li et ai., 2001) as well as single point 

mutations. Genome wide sequence will reveal the mutations. 

In order to be able to identify the mutated locus/loci causing the phenotype, the putative 

FN mutants were outcrossed with a reference line (in this case Col - as the FN population 

was in Ler background) to be able to select the "desert SNP" areas. These 'SNP deserts' 

areas, correspond to expected non-recombinant blocks created by linkage to the recessive 

mutation (regions of low heterozygosis). 

The progeny of the outcross of each line was then taken to the F2 generation and double 

homozygous lines carrying both the trans gene (SCR::gai-GR-YFP) as well as the fast 

neutron induced mutation were selected. A bulk segregation approach was used to this end. 

Identification ofFN putative mutants carrying the trans gene (SCR::gai-GR-YFP) were first 

selected on the basis of hygromycin resistance. A total of 30 hygromycin resistant 

seedlings were taken to the next generation (F3) to identify homozygous lines. Since all the 

FN putative mutants have been shown to carry recessive mutations, screening of the 

hygromycin resistant seedlings for the mutation in presence of DEX was carried out to 

identify those double homozygous lines for the FN mutation. 

Once the double homozygous lines were confirmed, about 50 seedlings from the F3 

population for each of the FN lines were pooled and DNA extracted for sequencing. This 

was done to dilute the background mutation from the population and preferentially select 

the mutations causing the phenotype. 
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NGS will identify 2 non-recombinant, mutation-harboring regions (one for the trans gene 

that will be common for all the selected mutants and the other for every mutation). NGS 

uses a chastity statistics to quantify the relative contribution of the parental mutant and 

mapping lines to each SNP in the pooled F3 population. It then uses this information to 

objectively localize the candidate mutation based on its exclusive segregation with the 

mutant parental line (Robinson et aI., 2011). 

3.4 DISCUSSION 

In order to analyse the gene regulatory network targeted by GA to control the cell 

expansion in the endodermis of Arabidopsis thaliana roots, a forward genetic approach has 

been pursued. The screening of the fast neutron mutagenised population of the GA 

signalling mutant (SCR::gai-GR-YFP) was expected to uncover novel downstream 

components of the GA signalling pathway to help to construct the regulatory network 

targeted by GA. 

Several components/factors are expected to be acting downstream of GAl on the GA 

signalling pathway. Therefore, any mutation affecting some of these downstream 

components of the GA signalling pathway is expected to partially overcome the root 

growth restrain produced by the gai negative dominant mutant. 

As described previously this approach has resulted in identification of fourteen putative 

mutants. Indeed as in any screen, several false positives were also identified as revealed by 

genotyping and expression analysis. But for several putative mutants this study clearly 

showed that the molecular basis of the restoration of root growth phenotype is due to the 
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smart screen approach used. Sequencing analysis demonstrated that the sequence of the 

transgene had not been affected by the mutation and therefore the formation of a functional 

GAl protein takes place in all the rest of FN putative mutants. In summary, for all the 9 

putative mutants with partial or weak restoration phenotype, the presence and expression 

of the SCR::gai-GR-YFP trans gene were confirmed. 

However, the possibility that in some cases recovery of the root growth phenotype is due to 

any random background mutation with no link to GA had to be ruled out. Hence, all the 

putative mutants were screened in absence of DE X on the media. The results of the growth 

rate in both inducible and non inducible conditions showed that some of the identified FN 

putative mutants (FN49, FN84-1, FN84-2, FN84-3 and FN163) appear to be insensitive to 

DEX. Therefore, it is possible that they may represent mutations independent from GA 

signalling. 

The final size of Arabidopsis root is determined by cell division and cell expansion. GA 

has been shown to promote root elongation by regulating cell elongation in the endodermis 

(Ubeda-Tomas et al., 2008). In order to disclose whether the root growth restoration 

phenotype of each mutant is related to cell expansion, their cell production rate (CPR) was 

analysed. For eight of the mutants (FN25 , FN49, FN84-1, FN84-2, FN84-3, FN191, 

FN199 and FN215) it appears that root growth is affected at the level of expansion since 

the CPR levels are comparable to the ones of the controls. On the other hand, for one of the 

mutants FN163, it appears that the mutation responsible of the root phenotype is involved 

in cell division. However, this is not an unexpected result since GA has also been shown to 

regulate root meristem size by promoting cell proliferation (Ubeda-Tomas et al., 2009). 
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Still, FN163 appeared to be insensitive to DEX, therefore it is unknown if this cell-cycle 

associated phenotype is GA regulated or related to another regulatory pathway. 

Fast neutron mutagenesis has been widely reported to induce chromosomal deletions and 

rearrangements thus facilitating the rapid identification of the genomic location of the 

mutation using methods such comparative genomic hybridization (CGH; Carter, 2007) or 

microarrays based cloning. These two methods are able to detect changes, deletions and 

duplications. However, it has been recently shown that, in contrast to what was previously 

considered, FN radiation causes more base substitution than deletions mutations (Belfield 

et al., 2012). 

Several strategies have been developed to identify the genomic location of the mutation 

depending upon the nature of the lesion created. For example, in case of deletion mutants, 

high density microarray-based methods have proved successful as highlighted by the 

identification of a sodium overaccumulation mutant caused by a 523-bp deletion within 

the AtHKTI (Gong et al., 2009). Subtractive hybridization methods have also been 

successfully used for mapping deletion mutants as exemplified by the cloning of 

gibberellin biosynthetic gal-3 (Sun et al., 1992). For transposon based mutants, TAIL PCR 

(Marchant et al., 1999) or inverse PCR approaches have been widely reported. 

In contrast, point mutations and small deletions are normally identified by map based 

cloning. However map based cloning is slow, tedious and labour intensive. With the 

advances in genome sequencing, next-generation sequencing (NGS) methods are proving 

effective in mapping these mutations. 
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High-throughput next-generation sequencing platforms are powerful tools for the mapping 

of substitutions, deletions, insertions, polymorphisms, inversions, and trans locations 

(Medvedev et al., 2009). Therefore, a next generation sequencing approach will be used to 

identify the mutated gene causing the restoration of the root growth for each of the FN 

putative mutants. 

Currently samples are being prepared for the sequencing and subsequent identification of 

the harbouring mutations. Future analysis of the data from the Next generation sequence 

hopes to unveil novel mutants involved in the GA regulation of root cell expansion to help 

to build up the GA regulatory network from which many components are still undisclosed. 

Based on the phenotypic analysis of the different FN putative mutants, it is likely that 

cloning of some of the mutations may result in the identification of genes that are not 

directly regulated by GA despite playing a role in root growth. These mutants may be 

interacting with the GA signalling pathways through many of the hormone cross-talk 

phenomena reported (Ubeda-Tomas et al., 2012) to regulate root growth. 
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CHAPTER 4: REVERSE GENETIC SCREEN TO STUDY GA REGULATED 

ROOT CELL EXPANSION 

4.1 INTRODUCTION 

4.1.1 Transcriptomics 

The transcriptome is the complete set of all RNA transcripts in an organism or in a cell, for 

a specific developmental stage or physiological condition. It contains all the mRNAs that 

are being expressed in a given time. Analysis of the transcriptome is of major importance 

to expose the functional elements of the genome in order to understand the molecular basis 

of the developmental processes of cells and tissues. Even though mRNA is not the final 

product of a gene, transcription is the first step in gene regulation and information about 

the transcript levels is extremely useful in order to understand gene regulatory networks. 

(Brazma and Vilo, 2000). 

Several technologies have been developed to infer and quantify the transcriptome, 

including sequence-based or hybridization approaches. Hybridization-based approaches 

usually involve incubating fluorescently labelled cDNA with custom-made microarrays or 

commercial high-density oligo microarrays (Wang et ai., 2009). Microarray experiments 

allow for comparison of gene expression profiles between two mRNA samples (e.g. 

treatment vs control, or treatment 1 vs treatment 2). Microarray-based technology provides 

the possibility to compare gene expression profiles from large data sets from different 

experiments giving another level of complexity to understand how certain genes relate to 

others such as at different time, location and environmental conditions. 
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When performing a transcript profiling experiment, it has to be taken into account the 

large sources of variability that may take place during the process. Variation may occur at 

biological (eg. genetic or environmental factors, growth factors and sampling time) and 

technical (systematic) level (eg. experimental variables introduced during the extraction, 

labelling and hybridisation of samples). It is important to check things like the quality of 

the RNA and dyes, to remove as much variation as possible before the hybridisation 

process. Normalization procedures are employed to minimise the amount of systematic 

variation in the data (Quackenbush, 2002). By minimising the amount of systematic 

variation, it is possible to focus on real biological changes during data analysis. After 

normalisation of the fluorescence intensities between experiments, it is possible to 

compare the data from one array experiment with another. Transcriptomics experiments 

produce very large data sets which need to be analysed by making use of statistical and 

bioinformatics tools. 

4.1.2 The Affymetrix gene chip system 

Affymetrix GeneChip® is one of the major transcriptomics technologies available for gene 

expression analyses (Affymetrix, Santa Clara, USA). Affymetrix is based on the use of 

oligonucleotides of around 20 nucleotides as probes of gene expression. Oligonucleotides 

are synthesized directly on the chip (in situ or in silico) through a process of 

photolithography, onto a glass support. There are pre-made oligonucleotide arrays 

available for a range of organisms, making it a simple system to use. Custom-made arrays 

can also be employed when Affymetrix arrays are not available for a particular organism of 

interest. 
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One difficulty of using oligo arrays is the possibility of cross-hybridization events of the 

oligo probes with several genes, To deal with cross-hybridisation and background signals, 

Affymetrix incorporates two forms of probe in its high-density oligonucleotide arrays, thus 

helping to improve the signal-to-noise ratios and the specificity of gene transcript 

identification. 

The oligo arrays are designed with probes that form a perfect match (PM) and a mismatch 

(MM) with the target polynucleotide of interest. The PM oligo probe contains a segment of 

a wild-type allele (creating a perfect complementary match with a segment of the target 

gene of interest), while the mismatch oligo probe will be a copy of the PM oligo that has 

been altered by one base at a central position (Chudin et aI., 2001). MMs result in weaker 

hybridisation with signal intensities different to the PM signal intensities. Consequently, 

the MM probes serve as controls, helping to discriminate between a true hybridization 

signal and a signal produced by nonspecific hybridization. For each probe set, the 

representative value of the expression level of a specific gene would correspond to the 

average difference between the set of perfect match probes minus the set of mismatch 

probes. 

The Affymetric GeneChip® Arabidopsis ATHI Genome Array is used for the analysis of 

gene expression in Arabidopsis thaliana. The Arabidopsis ATHI Genome Array contains 

more than 22,500 probe sets representing approximately 24,000 gene sequences on a single 

array (Affymetrix, 2012). Each of these probe sets consists of 11 PM probes and 11 

mismatch MM probes. The length of each oligonucleotide probes is of 25 bp. 
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4.1.3 Transcriptomic experiments for root studies 

Several transcriptomic experiments to study gene expreSSIon in Arabidopsis root at 

different levels and conditions have been reported. Birnbaum et aI., (2003) used a 

transcriptomic approach to elaborate a global map of gene expression within the 

Arabidopsis root. Gene expression was mapped to 15 different zones of the root 

corresponding to cell types and tissues at progressive developmental stages. The 

experiment offered the possibility to identify genes with coordinated expression In 

localized domains, thus relating gene activity to cell fate and tissue specialization. 

In order to have a better understanding of the molecular mechanisms determining the 

properties of stem cells, Nawya et al., (2005) followed a transcriptomic profile on 

quiescent centre (QC) cells from the Arabidopsis thaliana root meristem. While Brady et 

al., (2007) carried out a detailed cell-type specific transcriptomic profile of the Arabidopsis 

root within a high-resolution set of developmental time points. Microarray expression 

profiles have also been carried out to study the development of lateral roots in Arabidopsis 

thaliana (Vanneste et aI., 2005; Centre for Plant Integrative Biology (CPIB), Nottingham, 

unpublished data). 

Studies of the different roles of plant hormones in the Arabidopsis root have also been 

attempted by using transcriptomic approaches. Stepanova et ai., (2007) used a combination 

of physiological, genetic, cellular, and whole-genome expression profiling approaches to 

investigate the mechanisms of interaction between ethylene and auxin. Also, microarray 

studies of the role of GA within the different developmental zones of the Arabidopsis root 

have been performed (CPIB; Rothamsted Research; unpublished data). 
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Apart from the root, detailed transcriptomic analyses have been performed on other plant 

organs and tissues, such us on Arabidopsis stems (Minie et al., 2009); in Arabidopsis 

sperm cells (Borges et aI., 2008) and for different stages of Arabidopsis development such 

as seed development (Penfield et al., 2006; Carrera et al., 2008). 

Available root-specific transcriptomic data sets can provide us with information regarding 

different aspects of root development. For example, several of the available data sets can 

be used to compare the expression patterns of the different CWREs associated to cell 

elongation between different tissues, organs and stages of development, thus providing 

valuable biological information of the process of cell expansion. 

4.1.4 Transcriptomic approach to dissect GA regulated root cell expansion 

In this project a transcriptomics approach has been followed in order to study how GAs 

regulate root cell expansion. As mentioned above, various root transcriptomics data sets 

have been published to date, providing the opportunity to increase understanding of 

different aspects of root-related developmental processes. As the ultimate aim of this PhD 

project is to be able to elucidate those genes which are key components of the GA 

regulated root cell expansion in the endodermis, a more specific transcriptomic data set 

was designed to look at gene expression levels in a GA-related manner in these specific 

root tissues. 

To achieve this, a new transcriptomic data set using an inducible system that blocks the 

GA response in the endodermis, the SCR: :gai-GR system, has been generated as a time 

course experiment. This dataset will allow us to study the changes on the gene expression 
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when the GA response is blocked in the endodennis, in a time dependent manner. The 

comparison of this dataset with previous microarray data sets will allow the identification 

of genes involved in the GA regulatory network targeting endodennal root cell expansion. 

These candidate genes can be later functionally characterised to further understand their 

specific role in that process. 

4.2 MATERIALS AND METHODS 

4.2.1 Plant material and sample preparation 

Seeds used for transcriptomics analysis were surface sterilised and grown over a square 

nylon mesh positioned on the top of the media. The use of this mesh was to act as 

mechanical support to facilitate the dissection of the root tip. 

Experimental set up 

SCR::gal-GR line • 
RGA::GFP-RGA (control) 

DEX treatment: 
Omin 

15 min 
30 min 
60 min 

120 min 
240 min 

ATHlchip 

I Ni l 
mRNA extraction 

t 
Collection of 
root tip 
(Meristem + 
Elongation zone) 

Figure 4.1 Summary of the experimental set up of the gai-GR microarray experiment. 
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As summarised in figure 4.1, plants were grown on the growth room shelves for 6 days in 

constant light. Then the lid of the plates was removed and plates transferred to a tank 

containing liquid liz strength MS. Seedlings with their roots submerged on the liquid media 

were left there to acclimate for 24 hours. For the time point Omin, roots were dissecting 

after the 24 hours in the liz strength MS tank. For the rest of time points, plates were 

transferred to a new tank containing liz strength MS liquid media supplemented with lOIlM 

of DEX. Plates were kept there for the allocated period of time (30min, 60min, 90min, 

120min and 240min) before dissecting the root tip. Dissection of the root tip was done 

using a scalpel under microscope (Milton-Keynes, UK). mRNA was extracted using the 

RNeasy micro kit (Crawley - West Sussex, UK) following protocol described on section 

2.3.2 and sent for Affymetrix hybridisation. Three biological replicates were produce for 

each sample to allow for analysis of statistical significance. 

4.2.2 Affymetrix hybridisation 

A total of 36 rnRNA samples (50 nglJ.d) were sent for Affymetrix hybridisation. Quality 

assessment, reverse transcription, amplification and hybridisation of the samples to 

Affymetrix ATHI gene chips, (Affymetrix UK Ltd., High Wycombe, United Kingdom) 

were performed at the NASC array service facility (University of Nottingham). 
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4.2.3 DEX-SCR::gai-GR-YFP Transcriptomics Data Analysis 

4.2.3.1 Procedures for analysis of transcriptomics data 

Bioconductor software (http://www.bioconductor.org) and R programming environment 

(www.r-project.org) were used to perform quality assessment of the Affymetrix Gene Chip 

DEX-SCR::gai-GR-YFP transcriptomics data and conduct analysis to determine 

differential gene expression of the arrays. 

From the Affymetrix hybridization of the DEX-SCR::gai-GR-YFP transcriptomics (gai

DEX) samples a total of thirty-six .CEL files (one per array) were obtained. The 

Bioconductor software uses the R statistical programming language to analyse high 

throughput genomic data. It contains several packages that are designed to read the .CEL 

files containing data on the intensity at each probe on the GeneChip, along with other 

values. Quality control (QC) analysis, pre-processing, processing as well as statistical 

analysis of the samples were carried out by using available packages from the R software. 

Further analyses to create a list of differentially expressed gene, were conducted using 

Microsoft Excel. Figure 4.2 illustrates the sequence of steps that have been followed to 

analyse the gai-DEX transcriptomics data set. 
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TXM analysis flow chart 
r ~ r " Filter 2 Exploratory analysis & 

load data -Remove absent genes (non visualisation of result of 
Bloconductor significant difference) genes (overall array) 

(Read 36 .CEl files) -Remove genes with average .. -Volcano plot 

expression <6,5 - HCA and heat map 

"- -Remove genes with FC< 1.751 " -Clustering 

" ~ r "I 

t "-QC plots on raw data 
-Image plots (chip plots) 
- Boxplots & Density plots "I Statistical analysis 
- MA plots 

QC plots on pre-

-RNA degradation plots processed data (time points) 

• Boxplots & Density plots Limma package 

"-
• MAplot (OEGs, FCs, t -test, FOR) 

" 
Filter 1 t 1 -Remove aberrant .. Pre-process row data 
arrays 

- Background correction I SELECTION OF GENES I 
-Normalization (RMA) OF INTEREST 

-Summarisation 

Figure 4.2. Flow chart for the gai-DEX transcriptomics analysis. Quality controls of the 36 .CEL files 
obtained from NASC were carried out prior further statistical analysis of the samples. Once aberrant arrays 
were removed, the data was normalised and new quality control assessments were performed on it. At this 
point, genes which were not present or had no significant expression on the array were removed to continue 
with the exploratory and statistical analysis ofthe data set for later selection of candidate genes of interest. 

4.2.3.2 Quality assessment 

Previous to the pre-processing of the Affymetrix array data, it was necessary to do a 

quality assessment of the array data to spot any abnormalities on the arrays. There are 

almost certain differences between the array signals caused not by genuine biological 

differences but by treatment or preparation artefacts. 

4.2.3.2.1 Analysis of the integrity of arrays 

A first step was to look at the image plots of the (PM and MM) probe-level data to 

determine if any anomalies existed. In general, we look for spatial artefacts such as 

scratches, drops or cover-slip effects or other non-homogeneous patterns in the image 
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plots. Viewing the image plots across all arrays may help in determining whether one or 

more arrays might appear abnormal. For example, a potentially defective array may appear 

lighter or darker than the others, or display spatial artefacts (rings, shadows, etc.) not 

evident in the other arrays. The image plots for the present array appeared similar to each 

other and displayed no obvious anomalies. 

4.2.3.2.2 Analysis of the variability of the samples 

The next quality assessment of the arrays was to plot boxplots and density plots of the 

probe-level data. Boxplots show differences between samples without making any 

assumptions of the underlying statistical distribution. The spacing between the different 

parts of the box are indicative of the degree of dispersion and asymmetry in the data. To 

determine the existence of potentially defective arrays, we looked for boxplots that stood 

out from the rest, by presenting for example different ranges or displaced boxes 

(interquartile ranges, IQR). The overall gene expression between arrays should not differ 

since only a small proportion of the total number of genes per array (sample) should be 

affected by the treatment (experimental conditions). Therefore, an overall evenness of all 

the boxplots for the 36 arrays was expected. 

For the hybridised arrays of the gai-DEX experiment, the IQR, represented by the boxes in 

the box plots, overlap each other to a large extent, thus indicating a homogenous 

distribution of the samples (figure 4.3). Still, for array MO-R2, CIS-R2 and CO-R3 the 

overall signal from the probe-level data is lower when comparing to the rest of arrays. On 

the other hand, probe-level signal seem to be higher for arrays MO-RI and MO-R3. It is 

78 



likely that the asymmetry observed is artefactual related to differences in production of the 

chips, preparation of the samples and differences in hybridization. 
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Figure 4.3. Boxplot of 36 arrays of probe-level data of the gai-DEX experiment data. The probe-level 
data displayed in the boxplots of these arrays are distributed from about 2- 15 on the log (base2) scale. The 
IQR, represented by the boxes in the boxplots, overlap each other to a large extent with some exception for 
few arrays that appear to have some level of dispersion when compared with the overall distribution. The 
bottom and top of the box represent the lower and upper quartiles respectively. The middle bar in the boxes is 
the median and the whiskers represent the lowest and highest values. 

Density plots are drawn to identify distributions of signal intensity that show differing 

behaviour. On raw data, arrays that show a bimodal distribution can indicate the presence 

of a spatial artefact. Also, an array that is shifted to the right can be a sign of abnormal 

higher background intensities. The histogram for the gai-DEX arrays (figure 4.4) does not 

display any bimodalities or any other particular anomalies. While there is a great deal of 

overlapping on the overall distribution of the arrays density, certain variation on the levels 

of density is observed between the 36 arrays. 
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Figure 4.4. Density plot of 36 arrays of the raw log2-scale intensities of the gai-DEX experiment data. 
This histogram shows the distribution and level of density of the probe-level data for the 36 individual arrays. 
The log intensity pick for the 36 arrays fall between values of 5 and 7. However, density values for the 36 
arrays are proportionally wider expanding from around 0.5 and 1.5 . 

4.2.3.2.3 Analysis of the variability of probe intensities between arrays 

MA plots are exploratory plots for quality assessment of the arrays probe-level data. MA 

plots are used for pairwise comparisons of all arrays in the experiment. When two 

micro arrays are being compared, the differences of their log intensities for each probe on 

each gene (usually referred to 'M') are plotted against their average (usually referred to 

'A'). When comparison of more than two arrays is required, a synthetic array is created by 

taking the probe-wise medians across all arrays (Bolstad et al. , 2005). In a desired 

situation, the log-ratios M in a MA-plot should be evenly distributed around zero across all 

intensity values A. A loess regression line (smooth best fit curve) is added to the plot for 

better assessment of the log values. Quality problems are most obvious where the loess 

smoother oscillates a great deal or if the variability of the M values appears to be greater in 

one or more arrays relative to the others. For replicates and situations where most genes are 
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not differentially expressed, we want the cloud of points is expected to be around 0 and the 

IQR to be small. 

Appendix II shows the MA plots for all the gai-DEX arrays versus the synthetic array, with 

the median synthetic array centred at zero. From the individual MA plots it is observed that 

there exists certain level of variability between arrays. Although M values for overall the 

arrays is centred to 0, samples MO-RI, MO-R2, CI5-R2, C60-R3, M240-R2 present either 

positive or negative M values. Also for arrays, MO-R3, M60-Rl, M120-Rl and M240-Rl 

the number of points detached from the cloud of points is bigger than expected from an 

experiment where differentially expressed genes are supposed to be a minority. Therefore, 

normalization of the intensities for all the arrays is needed before pre-processing the array 

data. 

4.2.3.2.4 RNA degradation 

Affymetrix's reverse-transcription step amplifies RNA from the 3' end of the gene. For 

every array, the individual probes are numbered sequentially from the 5' end of the 

targeted transcript. When RNA degradation is substantially advanced, PM probe intensities 

should be systematically increased at the 3' end of a probe set, when compared to the 5' 

end. The RNA degradation plot represents the average degradation effects calculated from 

all probe sets for a given array type. The higher the slope, the stronger is the effect of 

degradation. In addition, for a given experiment, arrays with slopes that clearly deviate 

from that of the bulk of arrays are likely to contain problematic data. 
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Figure 4.5. RNA degradation plot for the gai-DEX experiment. This figure illustrates the RNA 
degradation plot for the 36 individual arrays from the experiment. The y-axis represents the mean 
intensity of the PM probes. Probes are sequentially represented from their 5' to the 3' on the x-axis. 

From the plot above (figure 4.5) we can observe that there are 4 arrays which their RNA 

degradation intensity profile is deviated from the rest. Additionally, 7 other arrays present 

steep slopes. Thus, from the observation of this plot we can infer that at least 11 of the 36 

arrays from the gai-DEX experiment present some RNA-degradation related problem. 

The QC plot we get with the Simpleaffy package from Biconductor shows the results of 

the statistical analysis of the RNA degradation (figure 4.6). The measures assessed in the 

analysis are the % present calls, average background, scale factors, and 3' :5' ratios 

GAPDH and b-actin (control genes). 
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Figure 4.6. QC stats for the RNA degradation of the 36 gai-DEX arrays. The numbers next to the array 
name represent the % present cal1 and average background values. Numbers in red indicate that there is 
considerable variation in these numbers between arrays. The blue surface represents the range in which the 
scale factor is within 3-fold of the mean of al1 arrays. For arrays of a same experiment, it is recommended 
that a1l arrays faU within this range. GAPDH 3':5' values are plotted as circles. Values below one 
(recommended) are given in blue, those above one in red. For b-actin 3 ' :5' values are plotted as triangles. 
Values below three (recommended) are given in blue, those above three in red. For 12 of the arrays in the 
gai-DEX experiment (C30-Rl , M30-Rl , C60-Rl , M60-Rl , CI20-Rl , M120-Rl , C240-Rl , M240-Rl , CO
M2, MO-R2, C 15-R3, M 15-R3) ratios are above the expected range for all the arrays. 

Arrays C30-Rl, M30-Rl, C60-Rl, M60-Rl , C120-Rl, M120-Rl, C240-Rl , M240-Rl , 

CO-R2, MO-R2, C15-R3, M15-R3 presented high levels of RNA degradation and therefore 

could not be considered for further analysis of the gai-DEX array experiment. The samples 

that failed the QC fell in pairs (Control vs Mutant for same time point and replica) and 
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therefore with the 24 arrays left, two whole experiment-replicas were completed to proceed 

with the transcriptomics analysis (Table 4.1). 

Replica Replica 

population time point 2 3 population time point t 2 

RGA::GFP- RGA::GFP-
0 CO-RI CO-R2 CO·R3 0 CO-RI CO·R3 

RGA RGA 

IS CIS-RI IS CIS-R2 CIS-RI 

30 30 C30-R2 C30-R3 

60 60 C60-R2 C60-R3 

120 CI20-R2 CI20-R3 

240 C240-R2 C240-R3 

SCR::GAJ-
o 0 MO-RI MO-R3 

GR-YFP GR-YFP 

IS IS MIS-R2 MIS-RI 

30 30 M30-R2 M30-R3 

60 60 M60-R2 M60-R3 

120 MI20-R2 MI20-R3 

240 240 M240-R2 M240-R3 

Table 4.1. Tables summarising arrays on the gai-DEX experiment. The table on the left show the samples 
for the three replicates that form the 36 arrays of the experiment. In red are highlighted those samples that 
failed the QC and that were left out of the analysis of the transcriptomics experiment. The table on the right 
summarises the new two replicas compiled from the samples that fulfilled the QC requirements for further 
downstream analysis of the data. Arrays for the RGA: :GFP-RGA line are referred as arrays from the control 
(C), and arrays for the SCR::GAI-GR-YFP line as arrays from the mutant (M). 

The rest of the differences for the gai-DEX arrays observed on boxplots, density plots and 

MA plots for will be normalised on the pre-processing of the data to make the arrays 

comparable in order to be able to carry out any downstream analysis. 

4.2.3.3 Pre-processing of the microarray data 

Before high level analysis such as differentially expressed genes and clustering can occur, 

the systematic error/artefacts components need to be removed from the arrays. It is 
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assumed that the overall signal should be similar over arrays since most of the genes will 

be unaffected by the experiment. Therefore, overall signal need to be the same for each 

array in order to expose true differentially expressed genes. The pre-processing of the 

Affymetrix data aims to adjust systematic effects that arise from variation in the 

experimental technology rather than from biological differences between RNA samples. 

There are three main steps involved in the data pre-processing. Background correction 

removes background signal caused by non-specific hybridization. Normalization eliminate 

non-biological differences between arrays which can be caused by different efficiencies of 

reverse transcription, labelling, or hybridization reactions, physical problems with the 

arrays, reagent batch effects and laboratory conditions. It normalises expression intensities 

so that the intensities or log-ratios have similar distributions across a set of arrays, making 

them comparable. The last step involves the summarisation of the different probes values 

intensities into a single value for each gene/probe set. 

Pre-processing of the gai-DEX microarray data was carried out by the Robust Multiarray 

Average method. This integrated function performs a convolution background correction, 

quantile normalisation and summarisation based on a multi-array model fit robustly using 

the median polish algorithm (Bolstad et al., 2005). RMA only uses PM probes to produce 

expression level data. As a result of the RMA pre-processing, values of expression levels 

in log(base 2) scale are obtained for each gene. 
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4.2.3.4 Quality Control plots on pre-processed data 

A new boxplot of expression values was carried out on the 24 arrays of the gai-DEX 

microarray in order to confirm the success of the normalization and summarisation. In 

figure 4.7, it can be observed that the arrays are accurately aligned. This is as a result of the 

aggressive quantile normalisation step in the RMA method. 
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Figure 4.7. Boxplot of expression level data of the 24 gai-DEX arrays from the RMA process. The 
probe-level data displayed in the boxplots of these arrays are distributed from about 2- 15 on the log (base2) 
scale. The boxplots of expression level values are nicely aligned following RMA transformation. The IQR of 
arrays is represented by the boxes in the boxplots. The bottom and top of the box represent the lower and 
upper quartiles respectively. The middle bar in the boxes is the median and the whiskers represent the lowest 
and highest values. 

Also, an MA plot of the expression level data was performed to plot the differences of the 

average log (base 2) expression values between the two populations (transgenic vs control 

for all the time points). Figure 4.8 shows the MA plot between the two populations with 

the median centred at zero. The straight loess regression line indicates that the 

normalization and summarization procedures were satisfactory. Out of the 22810 genes of 

the ATHI array, 16 appear to have a fold change greater than 2 for overall the time points. 

These could be candidate genes that are upregulated in the transgenic line. 
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Figure 4.8. MA plot of expression level data between the two gai-DEX array populations from the 
RMA process. This figure shows the MA-plot for the expression level data of the differences of the average 
log(base2) values between the two populations (transgenic vs control) with the median centred at zero. The 
straight loess regression line indicates that the normalization and summarization procedures were 
satisfactory. For log (base 2) data, a value of positive 2 indicates a fold change of 4 to I. Out of the 22810 
genes of the ATHI array, 16 appear to have a fold change greater than 2 overall the time points. These could 
be candidate genes that are upregulated on the transgenic line. 

4.2.3.5 Statistical analysis of gai-DEX microarray data 

Once all the probe expression levels have been normalised, statistical analyses need to be 

done in order to identify those genes which are significantly differentially expressed 

between the control and the transgenic lines. To generate a list of genes, two biological 

replicates from each sample were grouped into one experiment. Replicates were combined 

to produce one data set for each time point. 

The limrna package, which performs linear modelling of microarray expression values, 

was used to produce a list of differentially expressed genes. The limrna package uses an 
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empirical Bayes method for assessing differential expression on each gene and produces 

estimates of the differences in expression between two samples. It also executes tests that 

are intended to determine if the difference is significant and represents a real biological 

effect rather than statistical chance. It does a moderated t-test that borrows information 

about variability across all genes to obtain a more stable estimate of gene specific variance. 

The result is a p-value for each gene. Benjamini-Hochberg multiple testing correction 

method was carried out on the gai-DEX array data to obtain adjusted p-Values thus 

reducing the probability of selected false positive genes. 

From the top Table function on limma, a table for the difference in gene expression 

between the two populations can be compared. The table contains information about the 

average expression for each gene, the log fold change (FCs), t-statistics and associated p

value for the statistical test for differential expression and the adjusted p-value. 

Before proceeding to the analysis of differentially expressed genes between the two 

populations for the each individual time point, exploratory analysis and visualisation of the 

genes was done for the two populations overall the time points. All the data for the 

different time points for each population was combined and statistically analysed to obtain 

the differentially expressed genes between the two populations without taking in account 

the different time points. 
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4.2.4 Selection of genes of interest 

A selection of genes of interest to study the endodermal GA regulated root cell expansion 

was done from the DEX-SCR::gai-GR-YFP transcriptomics data set together with the 

analysis of two other available data sets. One of the available data sets used was a 

transcriptomics experiment carried out in CPIB (De Rybel et ai., 2012) where changes in 

gene expression were measured for 5 different developmental sections of the root; 

meristem, accelerating elongation, decelerating elongation, mature and rest of the root! 

lateral root emergence zone (figure 4.9). 

Figure 4.9 Image of root showing the five different developmental sections used for transcriptomics 
experiments. The first section belongs to the meristem (- 350 /lm), the second to the accelerating 
elongation (- 900 /lm), third to the decelerating elongation (- 1.2 mrn), fourth to the mature (- 500 !lm) and 
the fifth to the rest of root / lateral root emergence zone (- 2.5 cm) (Figure provided by T. Holman, CPlB). 

The other available transcriptomics data set used for the selection of candidate genes was 

from an experiment measuring tissue-specific gene expression (Mustroph et ai., 2009). 

Transcriptomics data was obtained from measuring the rnRNAs in polysomes (translation 

complexes) from wild type seedlings. 
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To compare two samples (transgenic vs control) at a certain time point, two replicas were 

combined in a single experiment. After the statistical analysis performed with limma 

package (an application of Bioconductor), genes with an average expression values 

(RAM) higher than 100, a FC>[0,75] and adjusted p-Value<0.05 were selected. 

All the genes that were successfully selected from the analysis of the 6 different time 

points were combined in a single list of genes. These selected genes were further filtered 

by comparing their expression with the data available from the datasets mentioned above. 

Genes which were significantly expressed on the elongation zone and also in the 

endodermis were selected as candidate genes to study potential members of the GA 

regulatory network within the elongation zone. 

4.2.5 Gene Ontology analysis 

Gene Ontology (GO) categories for individual genes were assigned from the annotation 

and ontology files from TAIR (http://www.arabidopsis.orgltools/bulk/go/index.jsp). 

Analysis of overrepresented gene functional categories was performed using the open

source software platform Cytoscape (http://www.cytoscape.org, Shannon et aI., 2003). 

The Biological Networks Gene Ontology tool (BiNGO) plugin was used to statistically 

assess the enrichment of a GO category of a set of genes. An Hypergeometric test with a 

Benjamini and Hochberg False Discovery Rate correction and an adjusted p-Values 

<0.05 are performed in the set test cluster with respect to the overall Arabidopsis genome, 

and retrieves the relevant GO annotations in a context of GO hierarchy (Maere et aI., 

2005). 
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4.2.6 Functional analysis of selected GA regulated genes 

4.2.6.1 Identification of T -DNA insertion lines 

Screening of T -DNA lines were carried out for those candidate genes selected from the 

transcriptomics analyses. The identification of T -DNA insertion lines for all the selected 

candidate genes was performed using Arabidopsis Ensembl genome browser from NASC, 

the European A rab idopsis stock centre home page, 

(http://atensembl.arabidopsis.info/index.html). Also, the Arabidopsis Information Resource 

(TAIR) database was used on the search (http://arabidopsis.org). 

Salk homozygous T -DNA lines were selected for those genes which had available lines in 

which the insertion was located preferentially in an exon of the gene or in the promoter 

region as well as being homozygous lines. 

4.2.6.2 Root growth assay 

Seedlings for the different T -DNA lines were surface sterilised and growth on plates as 

described in sections 2.1 of general materials and methods. Basal root growth was 

assessed for the selected T-DNA lines to look for defects on the primary root length. 

Root measures were carried out as described in section 2.2.2 of general materials and 

methods. 
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4.2.6.3 Promoter analysis of gai-DEX regulated genes 

Bioinformatics analysis of the promoter sequences of the selected candidate genes was 

carried out using the Plant Promoter and Regulatory Element Resources AthaMap 

(http://athamap.del) 

4.3 RESULTS 

4.3.1 Experimental design of the SCR::gai-GR transcriptomics experiment 

To complement the information already available from published microarray data sets and 

unpublished microarray experiments carried at CIPB, a new transcriptomics experiment 

was carried out. The line used to generate the new transcriptomics data set contained the 

SCR::gai-GR-YFP trans gene; which enabled the steroid inducible disruption of the GA 

response in root endodermal cells (Ubeda-Tomas et al., 2008). 

The experiment was designed as a time course where plants were treated for a variable 

amount of time with the steroid dexamethasone (DEX), which triggers nuclear 

relocalisation of the expression of the gai-GR-YFP fusion protein. Transcripts were 

collected after Omin, 30min, 60min, 90min, 120min and 240m in after treating the 

seedlings with DEX. The last time point of 240min was determined according to the fact 

that after this period of time the root growth phenotype associated with the expression of 

gai is already visible (Ubeda-Tomas et al., 2008). As a control the parental line of 

SCR::gai-GR-YFP, a line only expressing RGA-GFP (RGA::RGA-GFP) was used. Gene 

expression for the control line was monitored for the same time points and conditions as 
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the SCR::gai-GR-YFP line in order to compare both data sets, and thus enabling the 

identification of differential expressed genes (DEG) due to the expression of gai and the 

subsequent inhibition of the GA response at the given time points. Although we were 

interested in observing the changes happening in the elongation zone, tissue was 

collected from the root tip of Arabidopsis roots, which includes both the meristem and 

elongation zone. The whole root tip was taken due to the technical difficulty involved in 

dissecting the elongation zone from the rest of the root, as well as to facilitate the 

collection of sufficient mRNA material for hybridisation. 

4.3.2 Exploratory analysis & visualisation of result of genes 

4.3.2.1 Identification of SCR::ga;-GR regulated genes 

To identify the genes which were differentially expressed in root tips excised from 

SCR::gai-GR versus WT DEX treated lines, a volcano plot was employed (figure 4.10). It 

plots the negative 10glO(P-value) versus the difference in log expression values between the 

two samples. From a biological point of view, the genes of interest are the ones that have 

both a low probability value (moderated t-test) and high absolute log-fold change. This plot 

is a way to visualise the genes that fulfil both parameters. 
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Figure 4.10 Graphical representation of the top genes which are more significantly differenentially 
expressed. The volcano plot above shows the 100 genes with the lowest p-values (highly significant) as open 
circles (red) and the 100 genes with the highest absolute log-fold changes as diamonds (blue). A total of 41 
intersecting genes that fulfil both parameters are observed in the plot. On the right of the graph are located 
those genes which are upregulated on the transgenic line when compared with the control and in the left those 
which are downregulated. 

From this plot a total of 41 genes that possess simultaneously high (log) fold changes and 

low probability values were identified (Appendix III). Of the 41 intersecting genes, only 4 

appear to be significantly downregulated while 37 are significantly upregulated in the 

transgenic line. So, we can conclude from this analysis that the predominant effect in tenns 

of gene expression of blocking the GA response in the endodermal cells of the roots, is the 

stimulation of gene expression of several genes that otherwise are not expressed. 

Table 4.2 show a list of reported GA related genes identified from the 41 intersecting genes 

obtained from the analysis. 
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AGI logFC AveExpr P.Value adj.P.Val 

AT5G51810 4.3 7.1 6.9E-09 8.81196E{)6ATGA200X2(GIBBERELLIN 20 OXIDASE2) 
YAP169 (GIBBERELLIN 20 OXIDASE3); gibberellin 20-

AT5G07200 2.6 5.3 1.5E-07 8.28293E{)50xidase 

AT4G25420 2.3 5.4 6.102E-070.000214143 GAS (GA REQUIRING S);gibberellin 20-oxidase 

ATlG1SSS0 2.223 9.1 1.408E-07 7 .77636E{)SGA4 (GA REQUIRING 4); gibberellin 3-beta-diOKygenase 

ATlGS0420 1.4 8.1 2.282E-09 3.9498SE{)6SC13 (SCARECROW-UKE 3); transcription factor 

AT2G04240 1.1 8.3 1.396E-06 0.000338811 XERICO; protein binding/zinc ion binding 

AT3G63010 1.1 7.0 4.699E-11 2.18736E{)7 ATGID1B/GID1B (GA INSENSITIVE DWARF1B); hydrolase 

Table 4.2. List of GA-related intersecting genes from tIre gai-DEX transcriptomics experiment. This 
table show a number of genes that have been previously characterised and that are known to be regulated by 
GA. These genes are significantly differentially expressed on the transgenic line when compared to the 
control line overall the time points. The AGI code, the log FC (Fold Change) value, the average expression 
and the P-Value and adjusted P-Value are shown for each of the genes. 

On top of the list there are three genes encoding for a gibberellin 20 oxidase (Atg5181O, 

At5g07200, and At4g25420) and a fourth gene that encodes for a gibberellin 3 oxidase 

(Atlg15550). As mentioned in the introduction, these are enzymes that catalyse the last 

steps of the synthesis of bioactive GAs. The lack of a GA response in the DEX induced gai 

expression could be interpreted by the plant as a lack of bioactive GA. The upregulation of 

these genes may be an indication of the plant responding to this apparent lack of available 

GA in the system. Atlg50420 encodes a SCARECROW-LIKE 3 protein (SCL3) that is 

also highly upregulated in the transgenic line. Previous microarrays studies (Zentella et al. , 

2007) found this gene to be a GA-repressed and DELLA-induced gene. SCL3 is a GRAS 

protein like DELLA, but it does not contain the GA-responsive DELLA domain. In the 

primary root, SCL3 mRNA is mainly expressed in the endodermis and it has been shown 

that seL3 antagonizes DELLA function in modulating downstream GA responses (Zhang 

et al. , 2011). Therefore, given that in the SCR::gai-GR-YFP line DELLA protein is 

accumulated in the endodermis, the upregulation of SCL3 in our data is expected. Also, 

XERICO (At2g04240), a small protein with an N-terminal trans-membrane domain which 
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is induced at a transcriptional level by DELLA proteins and repressed by gibberellins, 

appears to be significantly upregulated in the gai-DEX data set. The fact that the GA 

receptor GIDIB (At3g6301O) also has been identified amongst the intersecting genes, is 

another indication of the lack of GA sensing in the gai-DEX system. 

4.3.2.2 Hierarchical Clustering revealed associations between functional classes of 

genes in the GA dataset 

A heatmap is a two dimensional graphical representation of data where individual values 

are represented as colours in the form of a rectangular matrix. They are used to display the 

level of gene expression of many genes across a number of comparable samples. The value 

of the corresponding entry in the matrix determines the colour scale of each rectangle. The 

rows and columns of a heatmap can be ordered such that rows with similar values are 

placed next to each other and similar columns placed next to each other (Alvord et al., 

2007). 

The hierarchical clustering approach aims to assemble a set of genes into a tree in a way 

that similar genes/arrays will be joined by very short branches and with longer branches as 

their similarity decreases. The clusters that are obtained (for the intersecting genes and for 

the arrays) can be combined with a heatmap to add extra information on the relation of the 

genes of interest versus arrays. 

Figure 4.11 shows a heatmap of the forty-one intersecting genes that have simultaneously 

high (log) fold changes and low probabilities values that were displayed in the volcano plot 

(figure 4.10). The dendrograms at the top and the sides were created with and 
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agglomerative complete linkage algorithm, using a Euclidean distance measure (kaufman 

et al., 1990). The dendrograms connect the arrays and genes with similar expression levels. 

The arrays from the same population (RGA::GFP-RGA or SCR::GAI-GR-YFP) for the 

different time points cluster tightly together indicating that the expression level values for 

these arrays on the intersecting genes are similar. Only one of the control samples at time 

240 minutes replica 1 (C240-Rl) seems to cluster more closely to the mutant (M) 

counterparts. 

The dark blue shades indicate relatively higher gene expression levels, whereas dark red 

shades indicate relatively lower gene expression levels. The higher expression levels 

observed for the transgenic arrays correlates with the information shown on the volcano 

plot where most of the genes of interest presented a positive log-fold. Also for SCR::GAI

GR-YFP line (M) note the red section matching to those intersected genes that appeared to 

be downregulated (negative log-fold change, when compared to the level of expressions of 

the control line. 
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Figure 4.11. Hierarchical clustering of the 41 intersecting genes of the gai-DEX experiment. Graphical 
representation of the clustering ofthe gene expression levels for the intersecting genes between the different 
arrays. The bar on top is the colour code for the control RGA::GFP-RGA arrays (C-blue) and the SCR::gai
GR-YFP arrays (M-orange). Note that all the arrays for the control line, except for C240-RI , are grouped 
together on the left and the SCR::gai-GR-YFP arrays clusters together on the right. A strong blue color-grade 
is observed on the right representing the majority of the intersected genes for the different arrays that are 
overexpressed on the SCR::gai-GR-YFP arrays line when compared to the control. A group of genes 
highlighted in red are observed clustered together in the right of the heatmap corresponding to the 
intersecting genes which are downregulated in the the SCR::gai-GR-YFP at the different time points. 
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4.3.3 Selection of candidate genes downstream of GA signal transduction pathway 

4.3.3.1 Pipeline to select candidate DELLA responsive genes 

The SCR::gai-GR-YFP transcriptomics experiment was carried out with the aim to identify 

those genes which are involved in the GA regulatory network regulating endodermal root 

cell expansion. After all the quality control assessment, pre-processing and exploratory 

analyses that were carried out for the gai-DEX dataset, the analysis to select candidate 

genes for the purpose of this study was carried out. 

Out of the 22811 genes included on the normalised gai-DEXtranscriptomics dataset, 9940 

genes had an average expression value> 100. After statistically comparing the levels of 

expression of these 9940 genes between the transgenic and the control populations for the 

different experimental time points, only 131 genes had a FC>[0,7S] and adjusted 

p V alue<O,OS for at least one of the time points analysed. From these 131 genes, 110 were 

genes upregulated and 21 genes downregulated in the gai-DEXline. 

Since the biological process of interest in this project takes place in the endodermis of the 

elongation zone of the root, in order to restrain the candidate genes to a further level of site 

specificity, the list of 131 differentially expressed genes was cross-referenced with a list of 

differentially expressed genes specific for the elongation zone EZ and a list of endodermal 

specific differentially expressed genes. Out of the selected 131 differentially expressed 

genes 63 were also significantly expressed in the EZ and 101 in the endodermis. A total of 

60 genes fulfilling the three characteristic were selected as candidate genes (figure 4.12). 
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From these 60 candidate genes, 48 are genes induced on the gai-DEX line and 12 genes 

which are repressed (table 4.3). 

101 
endodermis 63 EZ 

Figure 4.12. Venn diagram for the pipeline selection of candidate genes from the gai-DEX dataset. A 
total of 131 genes were found to be significantly differentially expressed in the SCR: :gai-GR-YFP line when 
compared to RGA ::GFP-RGA line for at least one of the six different time points carried out on the gai-DEX 
experiment. These 13 I differentially expressed genes (DEG) were cross-referenced with a published tissue 
specific data set (Mustroph et al. , 2009) to select those genes which are significantly expressed in the 
endodermis (101 candidate genes). At the same time, to narrow the list of candidate genes to a set of genes 
which are likely to be related to the biological process of interest in this thesis, the 131 DEG were also cross
referenced with a transcriptomics data set for the different developmental zones of the Arabidopsis root (De 
Rybel et al., 2012), to identigy those genes which are significantly expressed in the elongation zone of the 
root. A total of 60 candidate genes that fulfilled the three parameters were selected for further analysis. 

Table 4.3 List of selected SCR::gai-GR regulated genes significantly expressed in the root elongation 
zone and endoderm is. Colour code list of candidate genes with associated expression levels. Genes which 
were further analysed are highlighted in grey. The blue column gives the values of the average expression of 
each gene in the dataset. Fold changes (FC) are highlighted in green for upregulated genes and in red for 
those genes which are downregulated. Column EZ2 show the levels of expression of each gene in the 
elongation zone of the root (yellow). The SCR2 column show the expression levels of the 60 genes in the 
endodermis. 

100 



~--=-:::';_+:":"::=!:..:..j..;....;:;....=;;...r.;...;:;.~+,-~:..::;.;;,..,:c-=",+.....;;;.;;;.;;;...-t-.;;....;;,.;..;..;;;..;TAIR descri ption 
AAA-type ATPase family protein 

~~~~~....!..:.~~~~+~~~~=:-4---+--:::=+~=--t TCYSD2 (Arabidopsis thaliana cysteine synthase D2) 

CO; protein binding / zinc ion binding 
RP14 (multidrug resistance -associated protein 14) 

unknown protein 

~~~~ttj~~~~tt#~t:~===t~~tfQ~fructose-bisPhosPhate aldolase, putative 

ft}Q~~t~!L!~~lj~t!==t===t~~t~~ATGSTU24 (GLUTATHIONE S-TRANSFERASE (CLASS TAU) 
~ m~I-_-+ __ -t-=....:.::;.-t-'='-'-t°xidoreductase 

~~~~tt~~=l~~=t:~~ll~~~~1'=-=-=-=-=+-=~2~jt~~~~~ATGSTU25 (A . thaliana Glutathione S-transferase (class tau) 25) 
~ AOXlA (alternative oxidase lA); alternative oxidase 

(ZINC INDUCED FACILITATOR-LIKE 1) 

i notransfe rase-re lated 
(GA REQUIRING 4); gibberellin 3-beta-dioxygenase 

L7,~~~B-~7,~-.!~~7~-r~;-i,~ti-;:~-t~;;-lband 7 family protei n 
~r,:..!..::::::::::;:..:::::.:::...r.......::::=-+ __ t-===,....=:..:=-t--==~....:..:.;=-t-===--jATGUS2 (ARABIDOPSIS THALIANA GLUCURONIDASE 2) 

~~~~ttj~~~~~~~t~~~~ttj~~~~Unknown protein ~ BT4 (BTB AND TAZ DOMAIN PROTEIN 4) 

~~~~~.-.!..~~~~~~~+-==~f-_--t....!:!;~+....!.;;~amino acid permease family protein 

~~~~t~tt=jii~w~tf~b~di~j:ATAMT2 (AMMONIUM TRANSPORTER 2) 
~ TAPRL6 (APR-LIKE 6) 

(Glutathione S-transferase (class tau) 22) 

RP10 (multidrug resistance -associated protein 10) 

~~~~~~2~~_-+ __ +-,==~-.!~~....!..:.~+...!..;;,~protease inhibitor/seed storage/lipid transfer protein (LTP) 

~~~!Q2.~21!...+'-:~4 ___ t-_-+ __ +-!~~.!£~MDR4/PGP4 (P-GLYCOPROTEIN4) 

~===+-=;..;....+----+-==-t-""-=-t---+-':":'="::'-+-==-t UGT74D1 (UDP-GLUCOSYL TRAN SFERASE 74D1) 

~~~~~-;~~.....Q~f1'i~-r.=i'ii~---t~~+~~1:unknown protein 

~~~~+-~;...+-_-+-:-:=-~~+~~~~-+~~ERD6 (EARLY RESPONSE TO DEHYDRATION 6) 

~~~~~~~~f-_-+~~+-~~~_--t....!:!;~+~~unknownprotein 
~~~~~.....!!~~f---+..£:~+-!:.!~f--~....!..:.~-+..!..:.~ protei n kinase, putative 
~~=~4---=-==~f-_-t~=-+-~-:-lf-_--t-=~-+~::-:--lcalcium -dependent protein kinase, putative / CDPK, putative 
~~~~~~:.!.!--1f-_-+"':::::~~~!::...1f-_--t-=.:~+~~XF1 (SQUALENE EPOXIDASE 1); oxidoreductase 

~;;;~~~~~~t1~;t-=;;;';;"I;:;;';:;II_-t~~"'t~~lPhOSPhOgIYCerate/bisPhOSPhoglycerate mutase family protein 
I!:I.::.:..:=:::..:..==-+-..;.;.:;..;-.-t-...;;;.;;.;.-+---t---t---+-='-'-t--'=~u nknown prote i n 

1 (OXIDATIVE SIGNAL-INDUCIBLE1); kinase 

~~~~~-1..~~f-_-+ __ +-~~ __ ~~~-+~~beta-fructofuranosidase, putative / invertase, putative 

~~~~:+--=:-=:~r-_-+ __ +-:-:-:-l~::":"::'-7~+7:7-tuniversal stress protein (USP) family protein 
ATEXPAll (ARABIDOPSIS THALIANA EXPANSIN All) 

~~~~ttj~~~==t==t~~~==t~~t~~GDSL-motif lipase/hydrolase family protein 
~~~~4-..2:.~-+ ___ +-_-+~~+-_-1~~+~~XTH9 (XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE 9) 

~~=;::;;':+""':":~:--1r-=c='-t---t-:-:--.:-It---t--:-::-'-:'::-t--::7"::".:-1 s hort-chai n de hyd roge nase/ re d uctase (SDR) fa m i Iy prote i n 
~~===:+""'::~"-'t---t---t-:'-:-.:-It---t-.:::":,,:::...r,,,=,,':7' TP ME3 (A ra bido ps i s tha Ii ana pecti n methyl este rase 3) 

known protein 

~~~~~EE~}~~£=3~i~!!f~rrf~r!frr~haloacid dehalogenase- like hydrolase family protein -",~-+....;:;.;.=..=..~unknown protein 
SCR (SCARECROW); transcription factor 

~~~~~..!l!:!!~~~4 __ +-_--l __ -+~~+~~invertase/pectin methylesterase inhibitorfamily protein 
~=:':':'==-+--"'~--1r--=:':":"":"+_~+-_--1 __ -t-.:;,; ___ -+-=,,~UTP--glucoSe-1-phosphate uridylyltransferase, putative 

~~~!!Q..~~~~--:-:-+=~~_-l~_+~~~~BXL1 (BETA-XYLOSIDASE 1) 
~~~~~~~~~==4-__ +-_--1i-:-:-:-+~~+~~macrophage migration inhibitory factorfamlly protein 
~~~~4----!.:..!..!--1f-_-+ __ +-_-1r::::.::,--::~+-==-~ECT7 (evolutionarily conserved C-terminal region 7) 
~@S~~Q4...2~~~_--1-__ -I-_--l~~~..2~+..!..:.~~PhOsPlhoinositide -specific phospholipase C family protein 

~~~~t~tt=j~Et=t~~p~tt~~MIZ1 (MIZU-KUSSEI 1) ~ TBZIP9/BZ02H2 (BASIC LEUCINE ZIPPER 02 HOMOLOG 2) 

~~~~~2~~~_-+~~+-_~ __ -+--!!:.::!!.+~~STO {SALT TOLERANCE); transcription factor/ zinc ion binding 

101 



4.3.3.2 Gene ontology analysis of candidate genes 

Gene Ontology (GO) descriptions are employed to associate attributes to a gene using 

standardised language. To see which main cellular components, biological processes and 

molecular functions are affected when the GA response is blocked in the endodermis, 

selected differentially expressed genes from the gai-DEX experiment were categorised 

according to GO descriptions. 

The first analysis was to associate each single gene of the 60 candidate genes to a GO 

functional category to see how they distribute between different categories. First, GOs 

were assigned for the cellular component category (figure 4.13). The whole Arabidopsis 

genome is distributed in a total of 16 GO cellular component categories. The 60 candidate 

genes are dispersed in a total of 15 functional categories, thus indicating that genes 

affected by the disruption of the GA response in the endodermis is not affecting genes 

localised to an unique or few cell components but there are widely distributed within the 

cell and extracellular sites. However, note that an 8.64% of the candidate genes are 

annotated as cell wall components which may correspond to genes associated with cell 

wall expansion. 

Second, GO annotations in terms of biological function were assigned to the 60 candidate 

genes. 13 out of the 14 GO Biological categories associated to the whole Arabidopsis 

genome are represented for the candidate genes. Developmental processes and signal 

transduction categories account for the 4.75% and 3.72% respectively of the total 

biological processes annotated for the regulated genes. These two groups may include 
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genes which may be directly involved in the regulation of endodermal cell expansion 

acting downstream of GAL 

Last, the distribution of GO for Molecular function categories amongst the candidate 

genes, was analysed. In this occasion, the number of Molecular function categories 

represented by the genes was 11 of 15 annotated for the whole Arabidopsis genome. 

However, there are still represented a wide range of GO categories likely to include 

candidate genes with a role in the GA regulation of cell expansion. 

Genes included in the DNA or RNA binding, transcription factor activity and protein 

binding categories, represented by a 2.45%, 1.84% and 8.58% respectively of all the genes, 

may playa direct role in the GA signalling pathway regulating cell expansion. On the other 

hand, genes included in the hydrolase activity (17.17%), other enzymatic activity (12.88%) 

and transporter activity (11.65%) categories could include genes that playa role in the 

process of cell expansion by modifying and delivering material to the cell wall as well as in 

hormone transport. 
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GO Cellular Component 

A 

GO Biological Process 

B 

GO Molecular Function 

c 

• other cytoplasmic components: 17.24% 

• other membranes: 17.24% 

• other intracellular components: 12.93% 

• other cellular components: 10.34% 

• cell wall : 8.62% 

• plasma membrane: 6.89% 

• unknown cellular components: 6.03% 

• cytosol: 4.31% 

• extracellular: 3.44% 

• mitochondria: 3.44% 

• nucleus : 3.44% 

• Golgi apparatus: 2.58% 

• plastid: 1.72% 

ER: 0.86% 

chloroplast: 0.86% 

• other cellular processes: 23.57% 

• other metabolic processes: 17.86% 

• response to abiotic or biotic stimulus: 11.41% 

• other biological processes: 10.67% 

• response to stress: 10.42% 

• transport: 8.43% 

• developmental processes: 4.75"-

• signal transduction: 3.72% 

• cell organization and biogenesis: 3.47% 

• unknown biological processes: 2.23% 

• protein metabolism: 1.73% 

• electron transport or energy pathways: 1.24"

transcriptlon,DNA-dependent: 0.49% 

• hydrolase activity: 17.17% 

• transferase activity: 13.49% 

• other enzyme activity: 12.88% 

• transporter activity: 11.65% 

• other binding: 8.58% 

• protein binding: 8,58% 

• nucleotide binding: 7.97"-

• unknown molecular functions: 7.36% 

• kinase activity: 5.52% 

• DNA or RNA binding: 2.45% 

• other molecular functions: 2,45% 

• transcription factor activity: 1,84% 

Figure 4.13. Gene Ontologies fo r cell component, biological process and molecula r fun ction categories. 
Gene Ontolgies (GO) descriptions were assigned to all the selected candidate genes (upregulated and 
downregulated genes) from the SCR::gai-GR-YFP line. The percentages of the different GO categories 
present within the candidate genes for each GO description are shown in this chart. A) GO-cellular 
component B) GO-Biological Process C) GO-Molecular function 
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Additionally, a more complex GO analysis was performed to assess the statistical 

overrepresented GO functional categories in the candidate genes compared to the whole 

annotated Arabidopsis genome. A hierarchical clustering of the GO categories that were 

overrepresented after multiple testing corrections and their preceding GO categories were 

graphical visualised. First, GO ontology and its hierarchical relation were assessed at the 

cellular component level (figure 4.14). A total of 4 GO categories appear to be 

overrepresented for the candidate genes included in the test set. Cell, cell part, external 

encapsulating structure and cell wall are all included in one branch of the GO hierarchy, 

with the cell wall category node being the farthest down in the hierarchy and including a 

smaller number of genes with respect the parental nodes. 

Figure 4.14. Interactions of overrepresented GO categories in terms of cellular components. Yellow 
nodes represent GO categories that are overrepresented at the significant level, with darker colour 
representing a higher degree of significance. White nodes are not overrepresented, but they are the parents of 
overrepresented categories, included to show the yellow nodes in the context of GO hierarchy. The area of 
the node is proportional at the number of genes included the corresponding GO category. All genes included 
in one category are explicitly included in all parental categories. A total of 4 linked nodes are highlighted in 
the network. Based on the nodes size, the two higher overrepresented nodes, cell and cell part include the 
larger number of candidate genes. Also, it appears that all the genes from the cell wall node are included in 
the external encapsulating node, representing a small portion of the candidate genes included in the cell part. 
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Also, GO ontology overrepresentation and its hierarchical relation were assessed based on 

the biological function of the genes (figure 4.15). A total of 7 GO categories appear to be 

overrepresented on the 60 candidate genes included in the test set. Two different sets of 

related GO functional categories were observed. In one hand, we have the response to 

stimulus, response to abiotic stimulus, response to osmotic stress and response to salt stress 

categories. On the other hand the overrepresented nodes are for secondary metabolic 

process, toxin metabolic process and toxin catabolic process. Based on their nodes areas 

the response to stimulus node is the one including a larger number of genes in comparison 

to the rest of overrepresented nodes. 
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Figure 4.15. Interactions of overrepresented GO categories in terms of biological function components. 
Yellow nodes represent GO categories that are overrepresented at the significant level. White nodes are not 
overrepresented, but they are the parents of overrepresented categories, included to show the yellow nodes in 
the context of GO hierarchy. The area of the node is proportional at the number of genes included the 
corresponding GO category. All genes included in one category are explicitly included in all parental 
categories. Two separate branches with a total of 7 overrepresented nodes are observed in the network. The 
significantly overrepresented node for the response to stimulus seem to include a larger number of candidate 
genes in comparison to the rest of significant nodes. 

4.3.4 Functional analysis of selected GA regulated genes 

4.3.4.1 Analysis of differentially regulated genes that may be directly involved in the 

GA regulation of root cell expansion 

As a first step to identify potential components of the GA regulatory network regulating 

GA to promote cell expansion, and therefore root elongation, root length analyses were 

carried out. T-DNA lines from selected candidate genes were screened with the aim to 

identify putative mutants with a reduced root length. 

107 



As observed from the GO analyses, a wide range of biological processes are represented 

within the differentially expressed genes selected from the gai-DEX experiment are 

represented in a large variety of biological processes. The 60 candidate genes that were 

selected based on their differential expression on the transgenic line, elongation zone and 

endodermis, include several genes whose function has been already described. Some genes 

are involved in the GA biosynthetic process and others are already characterised 

components of the GA regulatory network. Also genes related to stress response have been 

included in the list of candidate gene. All these genes are less likely to be involved in the 

GA regulatory network acting downstream DELLA and promoting endodermal cell 

expansIon. 

Therefore, in order to optimise the identification of potential components of the GA 

regulatory network regulating GA to promote cell expansion, and therefore root 

elongation, only certain classes of genes were selected for functional analysis. 

Annotated transcription factors for which a function has not been established, and 

differentially expressed genes of unknown function at 15 min, 30 min and 60 min (as 

potential transcription factors) were selected with the aim to identify key signalling genes 

acting downstream of DELLA. Also, since cell expansion is an important process 

necessary for the elongation of the cells, all genes that coded for a cell wall associated 

genes were selected for functional studies. 

A total of 22 candidate genes were fmally selected for functional characterisation (table 

4.4). T -DNA lines were available for the three transcription factors selected (table 4.5). 

From the 9 unknown genes selected, 8 had available T-DNA lines for screening of root 
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phenotype. Finally, a total of 10 CWREs were taken forward for functional 

characterisation and seven of them had T-DNA available. 

AGI AveExJlr FC·15m FC·3Om FC-6Qm FC-12Om EZ2 endodermls TAiR desalptlon 

Transcriptor Al5G67480 717 090 095 094 847 689 BT4 (BTB ANDTAZ DOMAIN PROTEIN 4) 

factor Al5G24IOO 738 -114 790 751 ATBZIP9/BZ02H2(BASIC LEUCINE ZIPPER 02 HOMOLOG 2) 

AnGO&04O 9B -0,85 8,67 8,67 STO (SALT TOLERANCE) 

Unknown AnG54120 B55 096 099 098 BBl B36 unknown protein 

Al5G6Z330 695 -161 -186 954 BSS unknown protein 

AnG12M5 791 1,23 1,42 161 651 694 unknown protein 
Al5G6l1ZO 6,71 136 1017 12.74 unknown protein 

A12G23700 776 lOS OB5 684 B63 unknown protein 

ATSGllAZO BB2 152 1,51 B91 B03 unknown protein 

AT3G55720 727 157 684 810 unknown protein 

ATSGOl6ZO B 095 B25 B12 unknown protein 

AnG1l38O 7,27 -1,06 7,56 B,09 unknown protein 

CeUwaU A12G36460 93 225 238 749 1019 fructose-bisphosphate aldolase, putative 

remodellins ATSGCJ7830 B42 129 1,52 133 719 922 ATGUS2 (ARABIDOPSIS THAUANA GLUCURONIDASE 2) 

enzymes A12G31750 904 100 1,19 902 975 UGT7401 (UDP-GLUCOSYL TRANSFERASE 7401) 

ATSG62340 11039 -085 903 B89 invertase/pectin methylesterase inhibitor flmily protein 

ATSG173lO 868 -071 9n 918 UDP-Ilucose pyrophosphorylase, putative 

ATSG4!J360 731 -1,32 980 773 BXl1 (BETA-XYlOSIDASE 1) 

AT4G095lO 739 1,05 663 689 beta-fructofuranosidase, putative 

AnG20190 873 099 856 916 ATEXPAll (ARABIDOPSIS THAUANA EXPANSIN All) 

AT4G032lO B36 1,04 714 858 XTH9 (XYLOGLUCAN ENDOTRANSGLUCOSVLASE/HYDROLASE 9) 

AT3GlA3lO 10,09 097 10,41 11,19 ATPME3 (Arabidopsls thaliano pectin methyl esterase 3) 

Table 4.4. List of candidate genes for functional analyses. On this table are shown the genes that were 
selected from the analysis of the gai-DEX transcriptomics experiments split in three categories. First. there 
are three transcritptor factors, then a list of 9 unknown selected genes and at the bottom a list of 10 CWREs. 
The first column next to the gene name corresponds to the average expression value of the gene in the array. 
Next to them are shown the fold changes which are statistically significant at the different time points. 
Folowing FC columns are the EZ2 column, showing the expression values of the gene in the elongation zone 
of the root and the endodennis column with the correspondent values of the genes in this specific tissue. 
Finally. the T AIR description column shows the given description for each individual gnes. 
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Insertion 

AGI T-DNA line site TAIR description 

Transcriptor AT5G67480 SALK_015577C exon BT4 (BTB AND TAZ DOMAIN PROTEIN 4) 

factors SALK 079615C exon 

ATSG24800 SALK_093416C exon ATBZIP9/BZ02H2 (BASIC LEUCINE ZIPPER 02 HOMOLOG 2) 

SALK 111899C exon 

ATlG06040 SALK 067473C intron STO (SALT TOLERANCE) 

Unknown ATlG54120 SALK 080235C promoter unknown protein 

ATSG62330 SALK 092085 exon unknown protein 

ATlG12845 none available unknown protein 

ATSG61820 SALK_034861C exon unknown protein 

SALK 058742C exon 

AT2G23700 SALK_119196 prom unknown protein 

SALK 119150 prom 

ATSG11420 SALK_038436C exon unknown protein 

SALK 094931C prom 

AT3G55720 SALK_037792 exon unknown protein 

SALK 038678 prom 

ATSG01620 SALK 007072 intron unknown protein 

ATlGll380 SALK_022353 prom unknown protein 

SALK 027015 prom 

Cell wall AT2G36460 SALK_118067 prom fructose-bisphosphate aldolase, putative 

remodellinl SALK 118076 prom 

enzymes ATSG07830 SALK_094246C exon ATGUS2 (ARABIDOPSIS THALiANA GLUCURONIDASE 2) 

SALK 095797 prom 

AT2G317SO salk_004870 exon UGTI4D1 (UDP-GLUCOSYL TRANSFERASE 7401) 

SALK 109631 exon 

ATSG62340 none available invertase/pectin methylesterase inhibitor family protein 

ATSG17310 SALK_015923 exon UOP-glucose pyrophosphorylase, putative 

SALK_007967C prom 

ATSG49360 SALK_054483C exon BXL1 (BETA-XYLOSIDASE 1) 

SALK 012090C exon 

AT4G09510 SALK 088756 prom beta-fructofuranosidase, putative 

ATlG20190 none available ATEXPA11 (ARABlDOPSIS THALiANA EXPANSIN All) 

AT4G03210 SALK_023274 prom XTH9 (XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE 9) 

SALK 101024 exon 

AT3G14310 none available ATPME3 (Arabidopsis thaliana pectin methylesterase 3) 

Table 4.5. List of selected T -DNA lines for functional characterisation of candidate genes. As in table 
4.14, the list of candidate genes are split in three categories (Transcription factors, Unknown and CWREs). 
Next to each gene are shown the T -DNA selected (two of them when possible) and the insertion site in the 
gene of the T-DNA. Note that for the Unknown category, ATlG12845 does not have any T-DNA available 
as well as for AT5G62340, ATlG20190 and AtTGl43 10 from the CWREs category. 

4.3.4.2 Genes up regulated in the gai-DEX transcriptomics assay show defects in root 

length 

All T-DNA lines from selected candidate genes were screened with the aim to identify 

putative mutants with a reduced root length in order to identify potential components of the 

GA regulated root endodermal cell expansion. 
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Figure 4.16 shows the pnmary root length analysis done for selected T-DNA lines 

available at the time of the experiment for the selected candidate genes. 
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Figure 4.16. Root length analysis of selected transcription factors, unknown and CWREs mutants. 
Primary root length was measured for the different T-DNA lines obtained for the selected candidate at 7 days 
after germination (dag). A) transcription factor, B)unknown genes and C) CWREs. The mean of the root 
lengths (mm) are shown with standard errors as vertical lines. Asterisks indicates that the difference of the 
root lengths between Col-O and the correspondent T-DNA line is statistically significant (Student's t-test, 
pValue<O.05) 
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As shown in figure 4.17 A, from all the T -DNA selected to screen the mutants of the three 

known selected transcription factors, two T-DNAs showed a significant decrease in their 

root length. For the two T-DNA lines available for AT5G67480 (SALK_093416C and 

SALK_111899C) none showed a statistically significant difference on the root length 

phenotype compared to the wild type. For AT5G24800, the two T-DNA selected differed 

on the phenotype. While SALK_093416C did not present a significant difference on the 

root length compared to Colombia, SALK _11189C showed a significant 16.4% reduction 

on the root length. These two T-DNA lines are inserted in the same exon of the gene so 

different results on the phenotype caused are difficult to explain. The only T -DNA 

available for ATIG06040 (SALK 067473C) showed a reduced root length of 15.8% 

compared with Col-O. 

Regarding the selected unknown candidate genes, only 5 T -DNA lines out of the possible 

13 were available to screen. From the analysis of these 5 T -DNA lines corresponding to 

three of the candidate genes, only one showed a significant decrease on the root length. 

Out of the two T-DNA lines for AT5G61820 (SALK_ 034861C and SALK_ 058742C), 

only SALK_ 058742C showed a statistically significant root length reduction of 6.5% 

respect Col-D. In this occasion, the two T-DNA lines screened are inserted in different 

exons and that could explain the difference on the phenotype. 

Finally, for the selected cell wall remodelling enzymes 5 T -DNA lines were also screened 

and only one showed a significant root length reduction. SALK _ 094246C shows an 11.3% 

reduction on the root length compared to the wild type and is one of the two t-DNA 

available for AT5G07830. The second T -DNA line remains to be screened to see if we 

observed a constant phenotype. 
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However, further genotypic analysis needs to be perfonned on these T-DNA lines to 

confinn homozygous lines and to analyse mRNA expression before final conclusions 

based on their phenotypes can be reached. 

4.3.4.3 Promoter studies of genes where T -DNA mutation caused a root growth defect 

Promoter analyses were carried out for the candidate genes to get insights into their 

possible role as transcription factors for the unknown genes and to look for associated GA 

responsive motifs for both unknown and annotated transcription factors from the list of 

candidate genes. 

First, the enrichment of cis-acting elements that are shared between the three candidate 

transcription factors (AT5G67480, AT5G24800, ATIG06040) in the 1000 bp upstream 

region that precedes the transcription start site was analysed (table 4.6). 

Factor Number of Family Sum of TFBBs in Theoretical Ratio 
genes total number of TFBSs (occurrence/ 

theoretical) 
----

ALFIN1 3 HD-PHD 10 14.43 0.69 

ATHB1 3 HD-ZIP 4 1.76 2.28 

AtSPL8 3 SBP 6 3.88 1.55 

DOF2 3 C2C2(Zn) Oaf 67 48.63 1.38 

GTl 3 Trihellx 46 38.04 1.21 

HAHB4 3 HD-ZIP 5 2.4 2.08 
--

HOX2a_HOX2a 3 - other 4 4.67 0.86 
--

HVH21 3 HD-KNOTTED 11 13.92 0.79 
-~ 

101 3 C2H2(Zn) 6 4.14 1.45 

P 3 MYB 7 5.55 1.26 

RAV1(1) 3 AP2/EREBP 13 8.21 1.58 

TElL 3 AP2/EREBP 15 15.91 0.94 

TSS 3 - other 4 0.65 6.11 

ZmHOX2a(1) 3 HD-HOX 17 19.96 0.85 

ZmHOX2a(2) 3 HD-HOX 9 13.09 0.69 
--

Table 4.6 Selected transcription fadors contain 15 shared transcription factors binding sites (TFBSs). 
The table summarises the identified TFBSs that are common within the IOOObp upstream of the transcription 
starting site. Individual factors and the family they belong to are described as well as the number of times 
these TFBSs occur in total for all three genes. The theoretical number ofTFBSs, as well as the ratio between 
the ocucurence/theoretical numbers are also shown. 
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Secondly, the enrichment of cis-acting elements that are shared between all the candidate 

unknown genes was analysed (ATIG54120, AT5G62330, ATIG12845, AT5G61820, 

AT2G23700, AT5G11420, AT3G55720, AT5G01620, ATIGI1380) in the 1000 bp 

upstream region that precedes the transcription start site (table 4.7). 

Factor Number of Family Sum of TFBBs in Theoretical Ratio 
genes total number of TFBSs (occurrence/the 

oretical) 

ALFINl 9 HD-PHD 34 43.28 0.79 

OOF2 9 C2C2(Zn) Dot 179 145.88 1.23 

GTl 9 Trihelix 154 114.12 1.35 

HVH21 9 HO-KNOTIED 37 41.75 0.89 

RAV1(1) 9 AP2/EREBP 22 24.63 0.89 

TElL 9 AP2/EREBP 49 47.74 1.03 

ZmHOX2a(1) 9 HD-HOX 43 59.87 0.72 

ZmHOX2a(2) 9 HD-HOX 29 39.28 0.74 
--

Table 4.7 Selected candidate unknown loci contain 8 shared transcription factors binding sites (TFBSs). 
The table summarises the identified TFBSs that are common within the IOObp upstream of the transcription 
starting site. Individual factors and the family they belong to are described as well as the number of times 
these TFBSs occur in total for all three genes. The theoretical number of TFBSs, as well as the ratio between 
the ocucurence/theoretical numbers are also shown. 

Promoter analyses of both transcription factor and unknown genes have shown a number 

of shared transcription factors binding sites (TFBSs). Amongst the most represented in the 

two categories are the DOF 2, GTl and TElL domains. 

According to the literature (Sakai et ai., 2000), the promoters of genes induced by GAl are 

enriched in the ARRI (NGATT) and in the Dof (AAAG) binding sites (Yanagisawa, 

2004). ARRI has been shown to mediate the control of root meristem size in response to 

GAs through the up-regulation of ARRI expression by DELLA proteins (Moubayidin et 

ai., 2010). However, ARRI TFBSs were not identified amongst the promoter of our 

selected candidate genes. On the other hand, DOFs domains occur in multiple sites of the 
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analysed promoters. Dof proteins have been implicated in the regulation of GA signalling 

and biosynthesis in Arabidopsis and barley, most likely in the DELLA-mediated feedback 

regulation of the GA pathway (Gabriele et al., 2010). For the rest of identified TFBSs no 

link between them and GAs has been established yet. 

From the selected unknown genes, screening of the T -DNA insertion for A T5G61820 

resulted in plants with reduced root length. In order to get an insight in whether this 

unknown gene could be potentially regulated by GAl, we analysed the promoter region to 

try to identify associated GAl responsive motifs (table 4.8). 

Factor Number of Family Sum of TFBBs in Theoretical Ratio 
genes total number of (occurrence/the 

TFBSs oretical) 

ATHB1 1 HD-ZIP 2 0.59 3.42 

DOF2 1 C2C2(Zn) Dof 10 16.21 0.62 

GAMYB 1 MYB 3 2.78 1.08 

GTl 1 Trihelix 15 12.68 1.18 

HOX2a_HOX2a 1 - other 5 1.56 3.21 
------

HVH21 1 HD-KNOTIED 9 4.64 1.94 

TGAla 1 bZIP 8 1.25 6.39 

ZmHOX2a(1) 1 HD-HOX 7 6.65 1.05 
--

ZmHOX2a(2) 1 HD-HOX 4 4.36 0.92 

Table 4.8 The unknown selected locus ATSG61820 contains at least one GAl response element The 
table summarises the identified TFBSs that occur in the 1000bp upstream of the transcription starting site. 
Individual factors and the family they belong to are described as well as the number of times these TFBSs 
occur in total for all three genes. The theoretical number of TFBSs as well as the ratio between the 
ocucurence/theoretical numbers are also shown. 

Detailed analysis of the promoter region of AT5G61820 resulted in the identification of the 

Dofbinding site domains with multiple occurrence v (10). Also OT1, which was common 

for the selected transcriptionfactors and all the selected unknowns is represented in the 

promoter region of AT5G61820. 

115 



4.4 DISCUSSION 

To date, there is a great deal of understanding about the GA biosynthesis, GA perception 

and DELLA degradation. At the level of GA signalling, recent studies have shown that 

DELLA proteins interact with other DNA-binding transcription factors to modify their 

activity (Zentella et aI., 2007). DELLAs appear to controls gene transcription through 

protein interaction with specific transcription factor targets such as PIFs (de Lucas et aI., 

2008; Feng et al., 2008). However, a lot remains to be done before full understanding of 

GA signalling can be accomplished. Identification of those unknown components that 

interact with or are regulated by DELLAs is crucial to understand how GA control 

regulates the diverse developmental processes. 

Several transcriptomics studies have been carried out with the aim to identify those 

components using different physiological and developmental conditions including roots 

(Nawya et al., 2005; Brady et aI., 2007; Vanneste et al., 2005), seed germination and 

seedling and floral development (Ogawa et al., 2003; Cao et aI., 2006; Nemhauser et aI., 

2006; Zentella et al., 2007, Hou et al., 2008). The analysis and comparison of all the 

available data sets has resulted in the identification of various DELLA early response 

genes. But further characterization of these components is needed to establish their precise 

role within the GA regulatory network. 

In this chapter, a transcriptomics experiment was pursued to identify GAl targets that are 

directly involved in GA regulation of endodermal root expansion to try to build the gene 

regulatory network involved in the process. Several genes which respond to expression of a 

non-degradable form of DELLA gai have been identified and their role functionally 

characterised during root cell expansion. 
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4.4.1 DEX-SCR::gai-GR-YFP TXM Data Analysis 

Analysis of the DEX-SCR::gai-GR-YFP microarray data has generated a large amount of 

information from which can be inferred multiple types of analysis to obtain biological 

information of interest. 

From the list of intersecting genes (Appendix III), three of them encoded an ATGA200X 

(GIBBERELLIN 20 OXIDASE; ATGA200Xl; ATGA200X2 and ATGA200X3) and one a 

GA4 (GA REQUIRING 4)/ ATGA30XI (GIBBERELLIN 3-BETA-HYDROXILASE 1). 

These are enzymes that catalyze the last step in the formation of bioactive GA. To find 

these genes amongst the most upregulated ones on the arrays provides an indication that 

the inducible gai system has successfully disturbed GA homeostasis, a key aim if we are to 

identify new components of the GA response pathway. 

The volcano plot illustrates the genes that interact for both higher differential expression 

values and lowest p-Values. This list of genes could be pointing out those genes in which 

the expression of gai in the endodermis has had a big impact, and therefore could be 

related to the GA-regulated cell expansion. On the list of intersecting genes (table 4.2), 

there are found genes such as ATGA200X (mentioned above), XERICO and SCARECROW 

3 which have already been described to have a GA related role (Zentella et al., 2007). Of 

great interest in this search for key components on the GA-regulated endodermal cell 

expansion, are the cell wall remodelling enzymes. In the list of top differential expressed 

genes there are included 4 cell wall related proteins. This supports the fact that cell wall 

modification is a key process during regulation of cell expansion (Vissenberg et al., 2000). 
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The second set of statistical analysis of the data was done comparing the gene expression 

between the control and the transgenic line at each individual time point. From the 

statistical analysis with limma, summary tables (topTables) including infonnation 

regarding the expression levels of the different genes for each time point were obtained. 

This information was used to select the most significantly differentially expressed genes 

for each time point and to filter genes with higher Fe or smaller adjusted p-Value to obtain 

a list of most representative genes at each time point. From them, gene classifications such 

as between early and late response genes can be done. They also give infonnation about 

the trend of each individual gene over time (expression pattern) and so can help on gene 

clustering analysis to help to build up the gene network regulating cell expansion. From 

this approach a list of genes of interest for functional analysis was obtained. 

4.4.2 Selection of candidate genes 

After all the statistical analysis to normalise the data and obtain expression values for each 

gene, a list of 9940 significantly expressed genes from the 22811 included in the array was 

obtained. Once these genes were filtered for their fold change and adjusted p Value, the list 

was shortened to only 131 differentially expressed genes. This number can be quite low, 

however, the expression of the SCR::gai-GR-YFP transgene was targeted only in the 

endodermis but the mRNA was collected for all tissues of the root tip which were not 

directly affected. 

The list of candidate genes was further reduced to 60 after filtering the 131 genes for their 

significant expression on the elongation zone and the endodermis with the aim to narrow 
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down the potential putative DELLA downstream signals involved in the endodermal cell 

expansion. 

GO analysis of the selected candidate genes revealed that the blocking of the GA response 

in the endodermal cells caused a change in genes expression to overall the cell 

components. Further GO analysis to identify those overrepresented GO functional 

categories, show that cell wall was specifically overrepresented amongst other cell wall 

compartments/categories. This could be interpreted as the high regulation towards the cell 

wall modification needed to regulate cell expansion. On the overrepresented categories 

regarding the biological processes it can be observed that response to stimulus is the 

category including a higher number of genes. As observed on Ubeda-Tomas et al., (2008) 

the lack of GA response in the endodermis prevents the cells in this tissue to expand and to 

the adjacent cell tissues to bulge. This is for sure to cause pressure on the cell walls that 

targeting also genes involved in stress responses as observed from the GO analysis. 

4.4.3 Functional characterisation of candidate genes. 

The key aim of this transcriptomics experiment was to identify components of the GA 

regulatory network targeting endodermal root cell expansion. Therefore, from the analysed 

data set there were selected several genes based on their expression profile and function 

which were thought to be potential components of the GA response network. 

Several genes have been identified which are either up-regulated or down-regulated in 

response to the expression of gai. Those genes which are up-regulated in the absence of 

GA response in the endodermis are genes which are likely to act as growth repressors. On 
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the other hand, ga; downregulated genes may be growth activators which are normally 

repressed by DELLAs. 

Out of the three transcription factors selected, the expression of BT4 (AT5G67480) is 

enhanced in the absence of a GA signalling response. Screening of the two T-DNA lines 

for this locus did not result in a defect on the root length, which can support a role for these 

genes as growth repressor. According to its potential function as growth repressor, 

overexpression of this gene should result in a growth defect in the roots even though the 

DELLAs were normally degraded. BT4 has been reported as target of the DELLA protein 

RGA (Zentella et al., 2007). Expression of a non degradable form of rga, resulted in down

regulation of BT4 similar to our results and up-regulation in gal-3 mutants treated with 

GA. The Arabidopsis genome encodes a small subfamily of five BTB AND T AZ 

DOMAIN (BT) protein. These proteins are characterised by an N-terminal BTB domain, a 

transcriptional adapter zinc finger (T AZ) domain and a C-terminal calmodulin binding 

(CaMB) domain. BT proteins have been found to interact with the potato calmodulin 6 in a 

calcium-dependent manner, and BTl, 2 and 4 were found to bind to bromodomain 

transcriptional regulators (Du and Poovaiah, 2004). Functional analyses of some BTB 

proteins carried out in yeast and C. elegans showed that these proteins probably act as 

scaffold proteins and are part of CULLIN3 (CUL3)-containing E3 Ubiquitin ligases 

(Furukawa et al., 2003; Geyer et al., 2003; Moon et aI., 2004; Pintard et al., 2004). 

Analysis of single null or loss of function mutants result in plants with wildtype 

appearance suggesting the functional redundancy between BT members. Study of double 

and multiple mutants revealed a role for these proteins in reduced seed set and shortened 

siliques (Robert et al., 2009). It appears that BTl, BT2 and BT3 act redundantly during 
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gametophyte development. The role of BT4 has not been established in this process and its 

function is still not known. 

The other two selected transcription factors A TBZIP9 (A T5G24800) and STO 

(AT1G06040) are downregulated by the expression of SCR::gai-GR-YFP. Analysis of the 

T-DNA lines of these two genes resulted indeed in a reduction on the root length, thus 

revealing a potential role of these two genes GA regulated root cell expansion. 

ATBZIP9, also named BZ02H2 (BASIC LEUCINE ZIPPER 02 HOMOLOG 2) is a 

member of the basic region/leucine zipper motif (bZIP) transcription factors. They have 

been involved in the regulation of processes such as pathogen defence, light and stress 

signalling, ABA response, seed maturation and flower development (Lee et al., 2006; 

Tajima et al., 2008; Yang et al., 2009; Alonso et al., 2009). In Arabidopsis there are 

annotated 75 distinct members of the bZIP family which are divided into 10 groups of 

homologues (Jakoby et al., 2002). A TBZIP9 is included in group C which has three other 

genes (AtBZIPI0IBz02hl;AtbZIP63IBz02h3 and AtbZIP25IBz02h4). These four members 

are homologous to the maize Opaque-2 (02) locus (Vincentz et al., 2003). 02 expression 

is restricted to the developing endosperm where it controls storage protein gene expression 

and the carbon to nitrogen balance (Cireri et aI., 1999). The 02-related function does not 

appear to be much conserved in Arabidopsis. In the case of AtbZIP63, it is poorly 

expressed in seeds and not much is known about its function. AtbZIP 1 0 and AtbZIP25 are 

thought to interact with the regulatory factor ABI3 to control the activity of the At2S 1 

albumin gene promoter (Lara et al., 2003). With respect to AtbZIP9, Silveira et al., (2007) 

reported that AtbZIP9 rnRNA accumulation was repressed by glucose and induced by 

abscisic acid and cytokinin. The expression of a fusion between the VP 16 transcriptional 
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activator domain and AtbZIP9 resulted in significant changes in leaf development and in 

the structure of the vascular bundle. However, AThZIP9 target genes are still unknown. 

At this stage, we cannot be sure whether the reduction observed in the single T -DNA 

mutant for A ThZIP9 is related to a defect in the structure of the vascular bundle or it is an 

independent phenotype associated with the GA regulated endodermal cell expansion. 

Detailed analysis of the mutant roots at the cellular level would provide this information. 

Regarding the identification of potential CWREs involved in the GA regulated endodermal 

root cell expansion, a list of 10 genes representing a diversity of CWREs families. Out of 

the 10 candidate genes, only three of them have currently been characterised. So far, only a 

loss-of-function mutant in A TGUS2, a glucoronidase gene, expressed in roots, exhibited a 

significant decreased length. 

ATGUS2 encodes a protein with several post-translational modification sites including 0-

p-GlcNAc attachment sites and serine-, threonine- and tyrosine-phosphorylation sites, 

suggesting that this protein is extensively modified post-translationally. Previous studies 

suggested that GUS activity influences the sugar composition of chains of arabinogalactan 

proteins (AGPs). Also, work by Eudes et al., (2008) assessing the phenotype of atgus2 

loss-of-function showed a reduction in both hypocotyls and root lengths. On the other 

hand, overexpression of ATGUS2 results in plants with increased hypocotyls and root 

lengths. This data is consistent with the phenotype observed from our screening and 

suggests an important role of A TGUS2 in the cell growth. More work needs to be done to 

try to identify the components downstream of GAl, that regulate the action of this enzyme 

on its role on the endodermal cell expansion. 

122 



Since the regulation of cell expansion is a complex process in which different kinds of 

enzymes are needed to modify the different molecules forming the cell wall, it is expected 

that future analysis of the rest of the identified CWREs pinpoint further enzymes 

complementing the work of A TGUS2. 

In summary, several putative DELLA regulated genes have been identified in an inducible 

transcriptomic time course dataset. Functional studies provide preliminary evidence that 

their gene products play a role regulating root growth. Further studies are required to 

integrate them into the GA response pathway. 
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Chapter 5: ANAL YSIS OF MEMBERS OF THE XYLOGLUCAN 

ENDOTRANSGLYCOSILASE FAMILY IN THEIR ROLE IN GA REGULATED 

CELL EXPANSION 

5.1 INTRODUCTION 

5.1.1 Cell wall expansion in cell elongation 

The regulation of cell expansion plays a key role controlling root growth (Ubeda-Tomas 

et al., 2012). Cell expansion is primarily controlled through modification of the 

properties of the plant cell wall (Somerville, 2006). The plant cell wall consists of a 

complex network of polysaccharides of cellulose microfibrils associated by hydrogen 

bonds that hold the microfibrils together to provide high tensile strength. These 

cellulose microfibrils are embedded within a pectin matrix and cross-linked through a 

network of hemicelluloses polymers (Cosgrove et al., 2005). Organized into a network 

with the cellulose microfibrils, the cross-linking glycans increase the tensile strength of 

the cellulose, whereas the coextensive network of pectins provides the cell wall with the 

ability to resist compression. This organisation provides the wall with nonlinear 

anisotropic mechanical properties and allows enzymatic regulation of cell growth 

expansion (Dyson et al., 2012). Growth of the cell wall is accompanied by a continuous 

supply of new material to the inner wall to ensure wall integrity (Cosgrove, 2005) 

Cellulose microfibrils are the primary load-bearing components of the cell wall. The 

way the microfibrils orientate and crosslink between them are key factors to determine 

to what extent and direction a cell expands (Darley et al., 2001). In cells expanding 
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longitudinally, the cellulose microfibrils are mainly deposited in an orientation 

perpendicular to the axis of expansion, thus restricting radial expansion (Baskin, 2005). 

The mechanical driven expansion of the wall is accompanied by the action of different 

cell wall remodelling enzymes (CWREs) acting on different components of the cell 

wall. Pectin methyl esterase (PME) can affect the consistency of the cell wall removing 

methyl groups by breaking ester bonds that can then interact with calcium ions fonning 

a pectate gel, thus stiffening the cell wall and reducing cell expansion (Micheli, 2001; 

Siedlecka et al., 2008). Expansins induce wall stress relaxation and extension in a pH

dependent manner by disturbing the hydrogen bonds that hold the microfibrils in place 

within the wall (McQueen-Mason and Cosgrove, 1995). Xyloglucans 

endotransglycolases/hydrolases (XTHs) are thought to act in the loosening of the cell

wall by their XEH activity (xyloglucan endohydrolase) by breaking the bond between 

two hemicellulose crosslinks (Fry et al., 1992; Nishitani and Vissenberg, 2007). Other 

members with XET activity (xyloglucan endotransglycosylase) catalyze the endo

cleavage ofxyloglucan polymers (donors) and transfer of the newly generated reducing 

ends to other polymeric or oligomeric xyloglucan acceptor molecules (Smith and Fry, 

1991; Nishitani and Tominaga, 1992). The XET action of XTH is thought as a 

mechanism for cell expansion as transglycosylation between two potentially load

bearing xyloglucan molecules could increase slippage of adjacent microfibrils, resulting 

in reversible cell wall loosening (Figure 5.1.1). Additionally, XTHs catalyze molecular 

grafting reactions that are required to integrate newly synthesized xyloglucan into the 

existing cell wall (Figure 5.1,2; Thompson et al., 1997). Expression analyses have 

shown that XTH gene expression correlates with growth, such as in the elongation zone 

of the Arabidopsis roots or root hair initiation zone (Vissenberg et al., 2001, 2003). 
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Also, XTH enzymatic action in situ has been correlated to growth (Fry et al., 1992; 

Catahi et aZ., 1997; Vissenberg et az' , 2000; 2005; Van Sandt et al., 2007). On the other 

hand, XET activity has been detected in non-expanding tissues where its cell wall-

tightening role may contrast the wall-loosening effect of active XTHs (Palmer and 

Davies, 1996) and in some cases specific XTH genes appear to be down regulated 

during rapid growth (Catala et aZ. 2001) . 
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Figure 5.1 Graphical representation of the two main roles proposed for XTHs (XET action) in 
growing cells. 1) Cell wall restructuring. (Step I ; panels A to B) XTH cleaves a xyloglucan chain (red 
line), which acts as a tether between two cellulose microfibrils. This xyloglucan chain is broken and a 
xyloglucan- XTH complex is fonned . When the cell is turgid, the microfibrils can slip apart, as shown by 
the unbroken arrows. (Step 2; panels B to C) The xyloglucan- XTH complex is now out of reach of the 
new non-reducing terminus but within reach of the nOD-reducing terminus of an adjacent xyloglucan 
chain (blue line). This adjacent chain can act as an acceptor substrate and to re-form a new tether between 
the two microfibrils. 2) Cell wall integrational restructuring. The figure shows the five possible forms 
of integrational endotransglucosylation between a newly secreted xyloglucan (blue line) and a previously 
wall-bound xyloglucan chain (red line). The reducing terminus is the right-hand end of each chain. In the 
injtial state (green shaded left center pane\), four different segments of the wall-bound chain are 
differentiated: (a) a non-reducing loose end, (b, b') regions anchored to cellulose microfibrils by hydrogen 
bonds, (c) a tether between the rnicrofibrils, (d) a reducing loose end. e) Arrows (A to D) indicate what 
happens when XTH cleaves the wall-bound chain at sites a to d, respectively, and the newly secreted 
chain acts as acceptor. Arrow E shows what happens if the XTH targets the newly secreted chain at site e 
and the previously wall-bound chain acts as acceptor (reproduced from Rose et aJ. , 2002). 

In summary, many different families of CWREs affect the properties of the cell-wall 

and, as a consequence, impact the cell ' s growth rate. Hormonal regulation of these 
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CWREs is thought to play an important part in the regulation of cell expansion (Wu et 

al., 1994; Catahi et al., 1997). Therefore, understanding the relationship between 

specific honnone signalling pathways and specific CWREs is necessary in order to gain 

knowledge about the process of cell expansion in roots. 

Different CWREs have been directly linked to specific plant honnones. In the case of 

auxins, xyloglucan endotransglucosylases (XTHs), pectinmethylesterases (PMEs), 

expansins, extensins, Proline-rich proteins (PRPs) and arabinogalactan proteins (AGPs) 

in addition to peroxidase, which may play a role in cell wall crosslinking, are repressed 

in the auxin response mutant axr3-1 (Overvoorde et a/., 2005). Brassinosteroids have 

been observed to regulate the transcription of a range of xyloglucan 

endotransglycosylase/hydrolase (XTH), Pectin Lyase-like genes (PLL) as well as 

expansins (EXP; Guo et al., 2009). Cytokinins have been related to the regulation of the 

expression of expansin genes (Lee et al., 2007). Ethylene and jasmonic acid regulate 

several cell wall remodelling enzymes in tobacco (Nicotiana tabacum) leaves 

(Onkokesung et al., 2010). Finally, GA has been associated to the induction of the 

expression of specific members of the XTH family. Liu et al., (2007) observed that the 

expression of AtXTH21 (At2g18800), which it is mainly expressed in root and flower, 

was induced by treatment with GA3 but not other honnones. AtXTH21 is involved in the 

maintenance of the thickness, integrity and strength of the cell wall during cell 

elongation. Study of loss-of-function mutants using T -DNA insertion lines for AtXTH21 

resulted in dwarf plants with short roots and thinner cell walls. On the other hand, 

studies with over expression lines (358: :XTH21) resulted in plants with thicker cell 

walls. Thus, AtXTH21 gene seems to playa key role in the growth of the primary roots 

by changing the deposition of cellulose and the elongation of cell wall. In rice, Jan et 
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al., (2004) explained that OsXTH8 COryza sativa XTH-related gene) expression in the 

leaf was up-regulated by GAs and there was very little effect of other hormones on its 

expression. Transgenic rice expressing an RNAi construct of OsXTH8 exhibited 

reduced growth. These results indicate that OsXTH8 is differentially expressed in rice 

leaf sheath in relation to gibberellins and potentially involved in cell elongation 

processes. These connections between XTHs and GA suggested that this hormone may 

directly regulate members of the XTH family as means to promote endodermal root cell 

expansion. Therefore an analysis of members of the XTH family regulated by GA has 

been carried out in this project to test this hypothesis. 

5.1.2 GA-regulated root-expressed XTH genes 

Expression analyses have shown that XTH gene expression is high in regions of active 

wall formation such as in elongation zones, and in regions where wall deposition 

continues after cell enlargement has ceased or where other forms of wall remodelling 

take place (Yokoyama et al., 2004). 

XTHs are encoded by large gene families, with Arabidopsis thaliana possessing 33 

XTH genes. The 33 XTH genes are distributed across all five chromosomes of 

Arabidopsis, with one third of the genes occurring as clusters consisting of two to four 

members (Figure 5.2; Yokoyama and Nishitani 2001), most likely consequential from 

genome duplication and gene reshuftling (Blanc et al. 2000). It has been suggested that 

individual XTH genes have evolved to be expressed with distinct developmental, organ

, tissue- or cell-specific expression or may be upregulated to respond to distinct 

developmental, hormonal or environmental stimuli (Vissenberg, et al., 2005; Becnel et 
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al., 2006). In vitro studies have shown that divergent XTHs exhibit one or both of the 

two distinct biochemical activities (xyloglucan endotransglucosylation (XET) and 

xyloglucan hydrolysis (XEH). Thus, it is thought that the different members of the XTH 

family are unlikely to be functional redundant and that they may have unique 

expression, regulation and physiological properties. In fact, loss of a single XTH can 

result in significant developmental defects, such as a reduction of root length as reported 

by Osato et al. , (2006). 
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With the aim to identify those XTHs that could potentially be components of the GA 

regulatory network regulating root endodermal cell expansion, I analysed available 

transcriptomics data to select XTH genes which were GA regulated, significantly 

expressed in the elongation zone of the root and in the endodermis. 

From the XTH selected genes, mutant studies with available T -DNA lines and RNAi 

lines were carried out to identify mutants with a potential defect on root/cell expansion. 

Screening of GA-related genes for defects on root growth will be the first step to try to 

identify genes which may be part/components of the GA signalling network that 

regulate endodermal root cell expansion. 

Those potential candidates which exhibit a defect in their root growth will be further 

characterised to establish their position within the GA signalling network to regulate 

endodermal root cell expansion. 

S.2 MATERIALS AND METHODS 

S.2.1 Plant material 

Atxth17-1(SALK_015077), Atxth20-1(SAIL_575_H09) and XTH18-RNAi were kindly 

provided by Prof. K. Nishitani (Tohoku University, Japan). Atxth17-2 (SALK _008429), 

Atxth19-1 (SAIL_62_AlO) and Atxth20-2(SALK_066689) were obtained from NASC. 

All lines are in Colmbia-O background. Table 5.3 shows the site of the T-DNA 

insertions for the different lines. 
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Figure 5.3. Insertion sites of the T -DNA lines within the genes of the selected xiII mutants. Graphical 
representation of the selected Atxths where the relative location of the T-DNA insertion between the gene 
is shown. Each individual figure is accompanied of the name given to each mutant on this thesis together 
with the gene size .Green arrows correspond to the T -DNA insertions with the given name to the insertion 
line annotated by the side of it. The orange boxes correspond to exons and yellow lines to introns. Blue 
perpendicular lines designate sites of restriction enzymes. 

5.2.2 Gene redundancy 

Functional redundancy often occurs between genes which are closely related at the 

sequence level. Phylogenetic trees are useful tools to determine how closely related 

one gene is from another and therefore to think about alternative screenings different 

than single mutants to see a phenotype. A dendrogram has been drawn for XTH 

CWREs subfamily, using bioinformatics tools such as Clustal (http://www.ebi.ac.uk) 

and Dendroscope (available from: http:// www-ab.informatik.uni-tuebingen.de/ 

software/ dendroscope/ welcome. html) software. For each of the genes, I also 

integrated expression levels in (A) the different zones of the roots obtained from the 5-

sectional root transcriptomics dataset produced on CPIB (introduced on chapter 4) (B) 

Also, the expression levels for each gene in the elongation zone of Arabidopsis roots 

treated with GA at different time points (30, 60 and 180 minutes ) (data produced in 
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CPIB, unpublished data), plus (C)the levels of expression of the different XTHs in the 

root endoderrnis (Birrnbaum et al., 2003) 

5.2.3 Functional analysis of root development for xth mutants 

Root growth analyses for single and double xth mutants were carried out to look for 

defects on the primary root growth as described in section 2.2.1. Seedlings were surface 

sterilised and growth as described in section 2.1 

For those lines which presented a decrease on the root growth when compared to the 

wild type Colombia, confocal analysis were carried out to study the associated 

phenotype further. Meristem size, as well as meristem and elongation zone cell number 

and cell size were measured as described in section 2.2.3. 

5.2.4 amiRNA approach to study an xth quadruple mutant 

Phylogenetic studies revealed that XTH17, XTH18, XTH19 and XTH20 have a strong 

functional relationship and therefore they may be involved in similar developmental 

processes and site of actions. If this is the case, the effect of a single knock out may be 

covered for the action of any of the other three family members and therefore single 

knock outs would not be sufficient to see a phenotype. Hence, an amiRNA construct to 

knock down all four genes simultaneously was designed using the WMD3 - Web micro 

RNA designer (http://wmd3.weigelworld.org). The artificial microRNA designer WMD 

delivers 4 oligonucleotide sequences (Table 5.1), which are used to engineer the 

artificial microRNA into the Arabidopsis endogenous miR319a precursor by site

directed mutagenesis (Figure 5.4). A plasmid pRS300 which contains the miR319a 

precursor in pBSK was used as a template for the PCRs (Appendix IV). 
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Oligos for amiRNA "TATAAGTGTGAAAGTTAGCGA" 

I-a miR-s gaTATAAGTGTGAAAGTTAGCGAtctctcttttgtattcc 

II-a miR-a gaTCGCTAACTTTCACACTTATAtcaaagagaatcaatga 

III-a miR*s gaTCACTAACTTTCAGACTTATTtcacaggtcgtgatatg 

IV -a mi R * a gaAA T AAGTCTGAAAGTT AGTGAtctacatatatattcct 

Table 5.1 Oligos designed to create amiRNA vector to downregulateXTHJ7, XTH18, XTH19 and 
XTH20 simultaneously 

forward reverse template 

oligo oligo 

(a) A TV pRS300 

(b) III II pRS300 

--~ 
miR' (c) I B pRS300 

(d) A B (a)+(b)+(c) 

I: microRNA forward II : microRNA reverse 
III : microRNA* forward IV: microRNA* reverse 

Figure 5.4. Cloning strategy. The amiRNA containing precursor is generated by overlapping peR. A 
first round amplifies fragments (a) to (c), which are listed in the table above. These are subsequently 
fused in peR (d). Oligonucleotides A and B are based on the template plasmid sequence. They are 
located outside of the multiple cloning site of pBSK to generate bigger peR products. 
(http: //wmd3 . weigelworld.org) 

The fmal peR product was then sequenced and after sequence confinnation was placed 

behind a promoter of interest and fmally cloned into a binary plasmid. 
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For tissue specific expression of amiRNA, a GAL4 based transactivation approach was 

used. The final PCR product was placed downstream of GAL4 recognition motif (UAS) 

to regulate UAS:amiRNA trans gene expression in a GAL4-dependent manner. This 

construct was then cloned into a binary vector (modified pGreen, pGIIbUAS, 

http://www.pgreen.ac.uklpGreenIUpGreenIl.htm). 

Plasmid pRS300 and pGIIbUAS were kindly provided by Dr. Detlef Weigel. Protocol 

for the cloning of the amiRNA was followed as specified in Schwab et aI., (2006) and 

in section 2.4 of general materials and methods. 

The pGIIbUAS vector containing the amiRNA sequence to downregulate the 4 XTHs 

(pGIIbUAS::amiRNA-xth) was transformed in Agrobacterium tumefaciens GV3101 

strain containing the pSOUP vector and then transferred by flower dip transformation 

(explained in section 2.4.8) to Arabidopsis C24 ecotype. C24 plants transformed with 

the UAS::amiRNA vector were then crossed with driver lines expressing GAL4 in 

particular root tissues (10631; driving expression in all tissues of the elongation zone). 

pGIIbUAS::amiRNA-xth was also directly transferred to the selected driver lines J0631 

for rapid assessment of its function. At least 10 independent F 1 plants were selected for 

each line and at least 3 independent plants segregating % for BASTA R in the T2 

generation were taken to the T3 generation to get homozygous. For the driver lines, 3 

independent plants segregating for both BAST A R and Kan R (for selection of the 

GAL4 vector) were taken to the T3 to get homozygous lines. 
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5.2.5 Tissue-specific expression profiles of XTHs 

Representation of the root tissue-specific expression pattern of the four XTHs on greater 

detail were obtained from the Bio-Array Resource web-based tools 

(http://bar.utoronto.calwelcome.htm) based on the Schmid et al. (2005) Map of 

Arabidopsis Development, the AtGenExpress Consortium data. 

5.3 RESULTS 

5.3.1 Selection of GA regulated XTHs members 

A phylogenetic tree of the 33 annotated XTH genes in Arabidopsis thaliana was 

performed to get information of the hierarchical relationship of the different members as 

a way to assess the possible redundancy between them for further screenings (Figure 

5.5) 

From the 33 XTHs members a total of 15 (AtXTH4 AtXTH5, AtXTH8, AtXTH12, 

AtXTHJ3, AtXTH15, AtXTH16, AtXTH17, AtXTH18, AtXTH19, AtXTH21, AtXTH23, 

AtXTH27, AtXTH30, AtXTH33) appear to be significantly expressed (>100) in the 

accelerating elongation zone of the root (zone 2). Of these 15 genes, only AtXTH8 and 

AtXTH19 are not significantly expressed in the decelerating elongation zone (zone 3). 

Additionally, there are 4 members that are expressed in zone 3 but not zone 2 

(AtXTH14, AtXTH24, AtXTH28, AtXTH31). 

135 



Figure 5.5 XTH family tree with associated expression values on different root developmental 
areas, endoderm is and for whole roots treated with GA at different time points. The different 
branches represent the hierarchical relationship between the 33 different members of the XTH family. 
Next to each gene, there are their normalised expression values for the 5 different developmental zones of 
the root as established on the 5-sectional root transcriptomics data set (I :meristem; 2:accelerating 
elongation zone; 3: decelerating elongation zone; 4: mature zone; 5: rest of the root/lateral root 
emergence). Red-grade colour indicates significant expression of a gene for a given developmental zone, 
going from low to high expression for stronger colours. Next to it, there are indicated the significant fold 
change expression values for tbis genes on the whole roots when treated with external GA. Green indicate 
genes which are upregulated whilst red denote downregulation of a gene. Also, in the last column (SCRS) 
are shown the expression values of all the XTH genes on the endoderm is. Genes are considered to be 
significantly expressed when normalised expression values are >100. 
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Of the XTH significantly expressed in the elongation zone of the root (zones 2 and 3), 

AtXTH5, AtXTH8, AtXTH13, AtXTH14, AtXTH17, AtXTH18, AtXTH19, AtXTH30, 

AtXTH33 are upregulated by GA at some of the three time points (60 minutes, 180 

minutes of 360 minutes) after treatment. On the other hand AtXTH4 and AtXTH16 

expression is downregulated by GA. 

All XTH members that are both significantly expressed in the elongation zone and 

regulated by GA are also significantly expressed in the endodermis, with the highest 

values of expression for AtXTH4, AtXTH30, AtXTH18 and AtXTH 19. 

The aim of this analysis was to obtain a list of candidate AtXTHs for their role in 

primary root growth. Therefore, initially the members which were upregulated by GA 

and significantly expressed both in the elongation zone and endodermis were selected 

for further screening. A total of 9 AtXTH family members fulfilled these parameters 

(AtXTH5, AtXTH8, AtXTHJ3, AtXTH14, AtXTH17, AtXTH18, AtXTH19, AtXTH30, and 

AtXTH33). 

Of all the members, AtXTH19 it is the only one that is specifically and exclusively 

expressed in the accelerating elongation zone with a high fold change expression under 

GA treatment at two of the time points (60 minutes and 180 minutes) and with strong 

endodermal expression. Besides, AtXTH17, AtXTH18, which are closely related to 

AtXTH19 and also fulfilled the initial selection parameters were selected. Additionally, 

based on the phylogenetic analysis, AtXTH20 is strongly related to the other three 

members it was also selected for further analysis. A genetic and molecular approach 
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was used to identify components of the GA regulatory network regulating root 

endodermal cell expansion. 

5.3.2 Tissue specific expression profiles of XTHs 

To gain insight into the roles of these four phylogenetically closely related genes, the 

tissue-specific expression profiles for the four Arabidopsis XTH genes, AtXTH1 7, 

AtXTH18, AtXTH19 and AtXTH20 were examined based on the information on array 

gene expression profiles on BAR (Toronto Bio-Array Resource web; Figure 5.6) 

XTH17 XTH18 XTH19 XTH20 

Figure 5.6. Tissue specific expression profiles of AtXTH17, AtXTH18, AtXTH19 and AtXTH20 in the 
Arabidopsis root 

AtXTH17 and AtXTH18 were expressed in all cell types in the elongating and 

differentiating region of the root (Figure 5.6 a,b). AtXTH19 is expressed in the 

meristem, elongating regions and maturation zone (endoderrnis mainly, Figure 5.6 c). 

AtXTH20 is expressed specifically in vascular tissues in the mature region of the root. 
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5.3.3 Selected AtXTH mutants present a decrease in the primary root length 

Assessment of the growth of the primary root was carried out for mutants of the four 

related XTHs members selected. Two independent T-DNA lines knock outs for 

AtXTH1 7 and AtXTH20 were investigated whereas for AtXTH18 a RNAi line was 

used. For AtXTH19, only one homozygous T-DNA line was investigated (details of 

insertion sites in section 5.2.1). 

Figure 5.7 illustrates the root lengths of the different AtXTH mutants versus a wild type 

control (Colombia-O) at 7 days after germination (dag). The results revealed a 

significant reduction in root length for all XTH knock outldownregulated. For XTH17 

and XTH20 consistent results were obtained with two independent alleles showing 11 % 

(xthl7) to 7% (xth20) reduction in root length. 
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Figure 5.7 Growth of the primary root is reduced in the xIII mutants. Measures of the primary root 
length of wild-type Col-O, AtXTH17-1, AtXTH17-2, AtXTH18-RNAi, AtXTH19-1, AtXTH20-1 and 
AtXTH20-2. Error bars represent standard error. Asterisks indicate statistical significance between Col-O 
and the mutants (Student's t test P<O,05). On top of each column bar the value indicates percent root 
growth to Col-O control. 
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5.3.4 Double xth mutants present an additive effect 

Considering the close genetic relationship between these four members there exists the 

possibility that the lack of activity of one of the mutants would be compensated in part 

by one of the other three AtXTHs. Also, it is possible that they act cooperatively and so 

there may be an additive effect on the phenotype. To investigate this possibility further, 

their double mutants were created. As shown in Figure 5.8 AtXTH18, AtXTH19 are 

located fairly close to each other on chromosome IV so it was not possible to create 

double mutants for this combination. 

For the rest of the possible combinations crosses were done between the single mutants 

and the successful double homozygous mutants were isolated and confirmed in the F2 

generation to analyse the primary root length (Figure 5.9). 

II III IV V 

33 
XTHII-

8 27 X zlllI? XIIII9 Xlh20 
9 5 RNAI 28 4 

1e xtIIl? 10 
30 21 XTHII-

31 RNAI 
32 11 

xtIIJJ 

Jdh20 
6 

Figure 5.8. Chromosomal location of the four XTHs and the combination of possible crosses to 
obtain double xtlr mutants. AtXTHJ 7, A tXTHJ 8, AtXTHJ9 and AtXTH20 location within the 5 
Arabidopsis chromosomes are highlighted in yellow. Note that AtXTHJ8, AtXTH19 are located in the 
lower arm of chromosome 4 and therefore crosses between these two are not viable. On the right there is 
a table summarising the combination of crosses carried out to obtain double xth mutants . 
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A total of 8 different double mutant combination were created from the crosses of the 

different alleles available (table 5.3) 

xth17 xthlB 

xthl7 xth19 

xth17 xth20 

xthlBxth20 

xth19xth20 

xth17-1 xth18RNAi 

xth17-2 xth18RNAi 

xth17-1 xthl9-1 

xth17-2 xthl9-1 

xth17-1 xth20-1 

xth17-2 xth20-2 

xth18RNAi xth20-1 

xthl9-1 xth20-2 

Table 5.3 XTH double mutants 
available for genetic studies. For each 
of the possible double xth mutants are 
shown the different alleles combinations 
obtained for genetic studies. 
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Figure 5.9 Reduced root length of single xiII mutants is enhanced in some double XI" mutant 
combinations. Lines obtained from crosses between AtXTH17, A tXTHl 8, AtXTH19 and AtXTH20 
(xth17xth18; xth17xth19; xlh17 xth20; xthl8 xth20; xthl9 xth20) . Error bars represent standard error. 
Asterisks indicate statistical significance between Col-O and the mutants (Student' s t test P<O,05). 

As shown in the graph above (Figure 5.9), there is some additive effect between some 

of the double xth mutants. The double mutant combination with a stronger effect on the 

observed single phenotype is in the case of xth1 7 crossed with xth18. There is a 
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different response between the two different alleles used. In the case of the xth 17-1 , 

when crossed with xthl8RNAi the percentage of root growth respect to the control is 

84.54%.But in the case of xth 17 -2, the reduction on the root length is much accentuated 

with a total growth of 72.87 % compared to the control. For xthl 7 xthl 9 double mutant, 

with an 88.75% of growth, the total length of the root is smaller by just I % when 

compared with single xthl7-2 mutant and it is actually 3% larger when compared with 

the single xthl9-1 mutant. For the two different lines for xth17 xth20, the overall 

percentage of root growth is similar with a 92.80% and 93.57% respectively. These two 

values are similar to the values observed for the single xth20 alleles. In the last 

combination of double xths, xth19-1 x xth20-2, there is an small increase respect to the 

single xth19-1 (87.50% versus 85.10%) but on the other hand there is a significant 

decrease on the root length when comparing the single xth20-2 with the xth20-2 crossed 

withxth19-1 (93.02 % versus 87.50%). 

5.3.5 Growth rate is decreased in the double xth mutant xthI7 x xthIB 

Genetic studies suggested that in xth17-2 xthl8RNAi double mutant, the average root 

length was decreased by 27.13% when compared to wild type. The reduction in root 

length is clearly additive as both single mutants only show about 12% reduction in root 

length (Figure 5.10). 
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To get a greater insight as how AtXTHs affect the primary root length, the growth rates 

of the double mutant xth17-2 xth18-1 and the parental lines were measured over a 

period of time. As shown in figure 5.11 the growth rate (OR; mm/h) trend for all the 

lines in general is a rapid increase in growth rate from 3 days after germination (dag) to 

4 dag and then the growth rate increases from 4 dag to 6 dag. 

The growth rate is significantly reduced for the single and double mutants compared to 

the wild type at 3 (dag). The same trend follows at 4 dag, except for xth1 7-2. At 5 dag 

however, the xth1 7-2 and the double mutant are the ones which have a significant lower 

OR. At 6 dag, only xth1 7-2 x xth18-1 appears to have a lower significant OR when 

compared to the wild type. At 6 dag the growth rate stabilises and there is not a big 

increase in growth rate at 7 dag compared to 6 dag. For the double xth mutant, the trend 

is similar except that at 6 dag there is not an increase but rather a small decrease in the 

growth rate compared to 5 dag, and the growth rate is considerably smaller compared to 

the single mutants. Lastly, at 7 dag the double mutant together with the single xth 18-

RNAi mutant have a significant reduced growth rate compared to the single mutant. 
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Figure 5.11. Growth rate of the of the xlII mutants is reduced compared to the Col over a period of 
days. Time course analysis of the GR (mm/h) of the primary root of wild-type Col-O xth1 7-2, xth18-
RNAi and xthI 7-2 xthI8-RNAi. Error bars represent standard error. Asterisks indicate statistical 
significance between Col-O and the mutants (Student's t test P<O,05). 

5.3.6 Mature cell length is significantly decreased in the double mutant xth17 x 

xth18 

To further investigate the role ofXTHs in regulatory root growth the root phenotype of 

both xth1 7 and xth18 single and double IIlutants was analysed at the cellular level. 

In order to understand at what level the down-regulated or not-expressed AtXTHs are 

affecting the primary root length, the root phenotype of the single and double mutants 

were analysed at the cellular level. 

Shown in figure 5.12, the mature cortical cell length of xth 1 7-2 and XTH18-RNAi and 

ofxth1 7-2 XTH18-RNAi double mutant was reduced significantly compared to the wild 

type control, the double xth presenting the smaller average mature cell length. 
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Figure 5.12. The celllengtb of mature cortical cells is reduced in the xiII mutants. The average cell 
length for mature cortical cells of the primary root was measured for wild-type Col-O, xthI 7-2, xthl 8-1 
and xth1 7-2 xth18-RNAi. Error bars represent standard error. Asterisk indicates that the difference on 
mature cell length between Col-O and the AtXTHs is statistically significant (Student's t test P<O.05). 

5.3.6 Meristem size is significantly decreased in the xth17 xth18 double mutant 

The difference on the mature cell length between the wild type and mutants indicates 

that a reduction on the overall primary root length is in part consequence of shorter 

mature cortical cell lengths of the xth mutants. 

The primary root length in the double mutant xth1 7-2 xth18-1 is reduced a 27.20% 

respect the wild type (Col-O) length and the difference on the mature cell length 

between the two is only of 10%. Therefore, it is likely that there are other factors 

contributing to the bigger difference on the primary root length rather than the mature 

cell length alone. Thus, the meristem length of the single and double mutants was next 

measured to see if a reduction in meristem length is also contributing to the reduction in 

the primary root length. 
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Figure 5.13. Meristem size is compromised in the xiII mutants. This graph displays the average 
meristem length of wild-type Columbia, xthI 7-2, xthIS-I and xthl7-2 xthIS-I. Error bars represent 
standard error Asterisks indicate statistical difference on meristem size between Co\-O and the AtXTHs 
(Student' s t test P<O.OS). 

The analysis showed that the meristem length was significantly reduced both in the 

single mutants (xth1 7-2 and xthI8-I) and xthI 7-2 xth18-1 when compared to the wild 

type control (Figure 5.13). Therefore, the shorter meristem phenotype of the AtXTH 

mutants plays a role in their shorter primary roots. 

5.3.7 Number of cells in the meristem is not affected in the double mutant xl" 1 7 

xthI8 

Meristem analysis above suggests that the loss of xthJ7-2 and/or xthI8-I functions 

alters the meristem size. To test if the reduction in meristem size is due to fewer cells in 

xth mutants the number of cells in the meristem of the wild type and mutants were 

counted (Figure 5.14). 

As shown in figure 5.14, no significant difference in the number ofmeristematic cells 

was found between the Atxth mutants and Col-O. 
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Figure 5.14. The number of cells on the meristem does not differ between Colombia and xt"17xt"18. 
Analysis of the average cell number for the meristems of wild-type Col-O the single xth mutants xth 17-2 
and xthl8-1 and xthl 7-2 xthI8-1 . Error bars represent standard error. Asterisks indicate statistical 
significance between Col-0 and the mutants (Student' s t test P<0,05). 

5.3.8 The transition from meristem to elongation zone happens in a more abrupt 

fashion in the double mutant xth17 xth18 

The previous analyses have shown that XTH affect the pnmary root length by 

modifying the mature cell length and the meristem size. The smaller meristem size of 

the Atxth mutants is not related to the number of cells produced as shown in figure 5.15. 

Therefore, it is conceivable that in Atxth mutants meristematic cells are smaller resulting 

in a smaller meristem size. 

To corroborate this assumption, the morphology of the root tip was looked in greater 

detail. The cell number and cell size of all the cells from the root tip through the 

transition zone to the mature zone of the root were examined to spot any difference at 

any level between the wild type and the Atxth mutants (Figure 5.15). 

As observed in figure 5.16 there is a similar cell growth trend between the control and 

the mutant. Initially, it is observed that the cell length for the first 37 to 55 cells from 

the root tip (cell number one) is similar with lengths below 50 11m. Then at certain stage, 
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the cells rapidly expand (transition zone) to reach their final cell length (mature zone of 

the root). As observed on the previous graphs (figure 5.15) the overall final cell length 

is similar between the wild type and the mutant although there is variability on the cell 

size between the 5 roots in each line. 
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Figure 5.15. Root tip development follows similar trends in Col-O and xtll17 xtlrI8. Cell size for cells 
from root tip to mature zone of the root were measured for Col-O and xthl7 xthl8 . Graphs for the wild 
type (top) and for xthI7 xthl8 (bottom) show the cell number and its correspondent size from the cell 
from the root tip (cell number 1) to reach the mature zone of 5 individual roots for each line. 

Graphic representation of the values observed for one representative root of each line 

(control vs double mutant) from the ones represented in the figure 5.15 is shown in 

Figure 5.16. In this analysis, attention is specially given to the transition zone area of 

the root and the mature zone of the root was excluded from this analysis. The plots on 
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the left are automatically obtained from the Cell-o-Tape software which is based on the 

sequential changes in cell sizes that determine the transition zone in each root. The cells 

included before the transition zone (meristematic cells) are separated from the cells 

above the transition zone (elongating cells) by a red line. The plots on the right 

represent the same but are drawn to scale. 
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Figure 5.16 Graphical representation of the transition from meristem to elongation zone of the root 
on terms of cell number and cell size. Top panel graphs correspond to Colombia, bottom panel to xthl 7 
xthl8. The plots on the left were directly obtained from the Cell-o-Tape software and represent the cell 
number and cell size of the plotted root. The red line indicates the transition zone to separate cells 
included on the meristem from cells belonging to the elongation zone of the root. The images on the right 
correspond to the graphlcal representation of the values from the left plots to scale, indicating the number 
of cells before and after the transition zone (with the vertical red line) and their correspondent sizes. The 
image on top corresponds for one representative root of the wild type (Colombia-O). The image on the 
bottom corresponds to a representative root of the double xth mutant. 

From this analysis it is clear that the cell expansion pattern differs between Col-O and 

xthl 7-2 xthl8-1 roots with cells from Col-O gradually expanding from the meristem to 
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the elongation zone, whereas in the double xth mutant, the expansion of the cells seems 

to take place past the transition zone and happens in a more abrupt manner. 

In figure 5.17 are shown the images of the plotted roots from figure 5.16 with their 

correspondent plot. On red dots are marked the end of each single cell and with a green 

line the transition zone for this specific root. 
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Figure 5.17 Confocal image of the analysis of cell length and transition zone of the wild type and 
double mutant xllt17-2 x xll,S-1. On the left there are the confocal images of the analysed roots. On red 
dots are marked the end of each single cell and with a green line the transition zone for this specific root. 
On the right of the image are the plots for the cel1lengths and transition zone obtained for these specific 
roots. The top root corresponds to Colombia and the bottom to xthl 7-2 xth8-1. 

In order to determine if there was a statistical difference in the fashion of cell expansion 

between the wild type and the mutant, the data of cell expansion for each individual root 

was analysed to add a fitted line (Appendix V). A density plot of the angles between 
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Col-O and xth mutants was created revealing that there is a statistically significant 

difference on the fashion of cell expansion between the wild type and the mutant, 

concluding that the cells are growing quicker in the transition of zone of the root in the 

mutant than in wild type (Figure 5.18). 
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Figure 5. t 8. The transition from the meristem to the elongation zone happens in a more abrupt 
fashion in the xth mutants than in Col-O. Analysis of the different angles of the fitted lines from the 
analysis of the cell growth dynamics obtained from Cell-o-Tape revealed a statistical significant 
difference between the speed at which cells grow through the transition zone between Col-O and xth 
mutants (Courtesy of Dr. Kim Kenobi) . 

5.3.9 Simultaneous downregulation of AtXTH17, AtXTH18, AtXTH19 and 

AtXTH20 leads to root with shorter lengths in a similar fashion as the double 

mutants 

The presence of multiple genes encoding similar enzymatic activities brings up the 

question whether individual members, mainly those in each subfamily, are redundant in 

terms of its physiological role. In many gene families, mutation in an individual 
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member does not result in a mutant phenotype because of redundancy. In the case of 

single mutants xth1 7, xth18, xth19 and xth20 they all have a shorter root phenotype 

when compared to the wild type, thus indicating that each of the four genes play an 

important role in root growth. Moreover, combination of double xth mutants has a 

stronger root phenotype, indicating a potential cooperative role between these genes. 

In order to study the relationship between these four genes further, a RNAi approach 

was used by using a sequence that potentially can simultaneously downregluate all the 

four genes. A GAL4 transactivation strategy was used and the pGIIbUAS:amiRNAxth 

construct was transferred in either C24 (control) or J0631 (Ga14 driver line) 

backgrounds. Study of the root length of 2 independent T3 homozygous lines was 

carried out (Figure 5.19) 
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Figure 5.19. The simultaneous downregulation of XTH17, XTHJ8, XTH19 and XTH20 appears to 
cause a strong reduction in the primary root length. Measures of the primary root length of T3 
homozygous lines for two independent transformed control lines (amiRNA-XTHs-C24-2 and amiRNA
XTHs-C24-3) and for two independent transformed J0631 lines (amiRNA-XTHs-J063 1-5 and amiRNA
XTHs-J063 1-14). Root length measured at 7 days after germination in media containing BASTA. Error 
bars represent standard error. Asterisk indicates statistical significance between amirRNA-XTHs-C24 and 
the amiRNA-XTHs-J063J Student' s t test P<0,05). 
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The results suggest that there is a significant difference between the control lines (where 

the expression of the amiRNA sequence cannot be induced by lack of GAL4) and the 

transformed driver lines. 

These results suggest that although all four XTH genes seem to play a role in the GA 

regulated cell wall expansion, they are may not essential for the modification of cell 

wall properties leading to cell expansion in the root. However, we cannot be certain 

about this until the expression of xth17, xth18, xth19 and xth20 for the different 

amiRNA lines have been assessed. 

It is possible that by inducing the downregulation of xth17, xth18, xth19 and xth20 in 

specific tissues such as in the endodermis by transforming different driver lines, we 

could see some changes on the phenotypic response leading to clues as how they may 

act an interact between them in a tissue specific manner. 

5.4 DISCUSSION 

Regulation of cell elongation is a complex process that needs to be co-ordinated with 

the regulation of cell wall expansion. Xyloglucans are the main hemicellulose in dicot 

plants. They are responsible for linking cellulose microfibrils together and therefore 

modulating the cell wall extensibility. Cell wall biosynthesis and remodelling is 

regulated in a spatiotemporal and developmental manner by different hormones 

(reviewed by Sanchez-Rodriguez et al., 2010). Hormones loosen up the cell wall 

architecture, preferentially through changes in the expression of EXP, PME and XTH 

genes (Cosgrove, 2005). XTHs act as cell wall loosening agents by catalysing cleavage 
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of xyloglucan chains, and subsequent re-ligation to different xyloglucan acceptor chains 

(Fry et aI., 1992). Expression analyses have shown that XTH gene expression correlates 

with growth, such as in the elongation zone of the Arabidopsis roots or root hair 

initiation zone (Vissenberg et al., 2000,2003). Also, XTHs have been found to play an 

important role in the root hair formation (Vissenberg et al., 2001) 

As described in previous chapters, GA regulates root cell expansion in the endodermis 

to promote root growth (Ubeda-Tomas et al., 2008). GA has been directly associated 

with the regulation of AtXTH21 which is thought to play an important role in root 

growth by altering cellulose deposition and extensibility of the cell wall (Liu et aI., 

2007). 

Therefore. in this chapter the interaction between GA and XTHs was analysed with the 

aim to establish a relationship between both components as part of the regulatory 

network regulating root endodermal cell expansion. 

The primary aim of this chapter was to identify candidate XTHs which could be 

regulated by GA to promote root cell expansion through the analysis of available 

transcriptornics data sets. From this first analysis it was observed that a total of nine 

XTH family members (representing the quarter of the XTH family) are regulated by GA 

and significantly expressed in the elongation zone and endodermis. The high percentage 
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of identified XTH genes could be an indication of the strong involvement of GA in the 

regulation of cell expansion through the manipulation of CWREs expression. Also, 

bearing in mind that in the elongation zone of the root the cells go through rapid cell 

expansion to allow organ growth, it is not surprising to find so many XTH genes 

significantly expressed in this zone in order to cope with the fast pace turnover of new 

cell wall material and cell wall re-organization taking place. 

All the 9 selected XTHs represent potential components of the GA regulatory network 

targeting endodermal cell expansion. To see how they act in regulating the primary root 

growth a genetic approach was used to study root phenotype in various xth mutant 

backgrounds. Bioinforrnatic studies suggest that AtXTH19, is a good candidate as it is 

strongly responsive to GA and shows high expression in the elongation zone. More 

importantly it shows very high expression in the endodermis. 

Phylogenetic analysis, suggest that AtXTH19 is closely related to AtXTH17, AtXTH18 

AtXTH20. AtXTH17 and AtXTH18 are also responsive to GA and are expressed in the 

elongation zone and endodermis and were part of the 0 shortlisted genes. Also, these 

four genes have been reported to be specifically expressed in roots (Yokoyama and 

Nishitani 2002, Vissenberg et al., 2005). Therefore all these four genes were selected 

for further investigations. 
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From the 6 other identified AtXTH family members; AtXTH8 had the strongest 

expression in the acceleration elongation zone. However, its regulation by GA is subtle 

«2 fold) and may not play a key role in the GA regulated cell expansion in the 

endodermal cells of the elongation zone. 

AtXTH30 stands out of the list for being highly expressed in the whole elongation zone 

(section 2 and 3) as well as the mature zone of the root (sections 4 and 5) and is also 

upregulated by GA for the 3 given time points. However, the fact that this XTH is 

expressed all along the root makes it more unlikely to be involved specifically in the 

GA promoted cell expansion in the endodermis. It is likely that AtXTH30 may playa 

role in cell wall integrity processes. AtXTHJ3 and AtXTH14 appear to be highly 

expressed only in the deceleration elongation zone. Further investigation will clarify 

whether any of these genes have a role in GA regulated cell expansion. 

Additionally two XTH members (AtXTH4 and AtXTHl6) were identified that are 

significantly expressed in the elongation zone and endodermis but are downregulated by 

GA. It would be interesting to create overexpression lines for these two genes to try to 

establish their role if any in the root cell expansion in relation to GA. 
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Surprisingly, AtXTH21 which expression had been shown to be specifically enhanced 

by GA and is strongly expressed in flowers and roots tissues (Liu et ai., 2007), was not 

identified in our data. This disagreement may be due to the GA transcriptomics data 

used in the present analysis was obtained from mRNA isolated specially from roots and 

the expression analysis by Liu et ai., (2007) was from mRNA isolated from whole 

seedlings. 

The tissue specific expression analysis correlates with the expression patterns observed 

from the transcriptomics five sectional data (figure 5.5). The overlap amongst the 

analysed XTHs may be an indication of their combinatorial actions to determine cell 

wall properties/expansion in specific tissues developmental sites of the root. 

Analysis of primary root length of single T-DNA insertion lines and RNAi line for 

AtXTHI7, AtXTH18,AtXTH19 and AtXTH20 resulted in roots with shorter length when 

compared to the wild type. Both I-DNA insertion lines for xth20 showed a decrease on 

the root length which was quite unpredicted since they are not significantly expressed in 

the elongation zone of the root. 

These results suggest that the four genes are necessary for a normal root growth and that 

they are not redundant in terms of their physiological roles. However, there exists the 
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possibility that they act cooperatively towards loosening of the cell wall and therefore 

the cell and root growth. Therefore, study of the multiple combinations between these 

four XTH mutants was needed to investigate this further. First, different combinations 

of double mutants were analysed before analysis of the quadruple knock out amiRNA 

lines. The analysis of double mutant resulted in some of the combinations of mutants 

showing and additive effect (eg. xth17 x xth18) and other combinations not showing any 

difference with the single mutant phenotype (eg. xth17 x xth20). Thus suggesting, that 

AtXTH17, AtXTH18, AtXTH19 and AtXTH20 may interact one with each other in a 

different fashion. 

Further analysis of the double mutant xth17 x xth18 revealed that there was a significant 

difference in the cell size of mature cells, which could explain the overall shorter root 

phenotype of the mutant. However, the reduction observed on the average mature cells 

was smaller than 10 % and the overall primary root length of the double mutant was 

27% shorter than the wild type. Therefore, it is unlikely that the final cell length of the 

cell is the sole responsible of the root phenotype observed and that XTH may be 

affecting the development of the root at different level. Hence, it was then measured the 

meristem size of both the control and mutant lines to observed that xth mutants also 

have significant smaller meristems. Work by Ubeda-Tomas et aI., showed that GA 

regulates root growth by promoting cell proliferation. In absence of GA signalling 

158 



response (by targeting expression of gai) in the root meristem, the cell proliferation was 

disrupted and the root growth reduced. So, one possibility could be that based on the 

phenotype observed, that XTHs indirectly controls the rates of division regulated by GA 

through the promotion of the cell expansion that is needed to double the cell size in 

order for the cells to divide. 

Meristem cell number and sizes were analysed in an attempt to establish the role of 

AtXTHs within the GA regulated root cell expansion. Contrary to what was expected, 

the number of meristematic cells in the control and the xth mutants was similar 

implicating that shorter meristems were caused by shorter meristematic cells. When 

this phenotype was looked in more detail it was observed that there was a different trend 

on cell size distribution through the meristem to the elongation zone between wild type 

and mutant. In the case of the mutant (xth17-2 x xth18-1) meristematic cell size remains 

fairly constant through the meristem and then after the transition zone cells start rapidly 

to expand. On the other hand, wild type meristematic cells have variable cells sizes that 

once they get through the transition zone start to gradually expand on the elongation 

zone. 

These results on the analysis on cell expansion dynamics suggest that the transition 

from meristem to elongation zone of the root happens in a more abrupt fashion on the 
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XTHs mutants. One possible explanation for this behaviour in the XTH mutants, may 

be that given the associated properties as cell wall loosening agents, lack of the key 

XTHs regulated by GA to promote root cell expansion results in cells with more rigid 

cell walls on the meristem and elongation zone that prevent them from regular hormonal 

regulated expansion until they reach a point (towards the elongation zone of the root) 

where mechanical forces take over and prompt this quick expansion that is more 

difficult to associate to hormonal regulated cell expansion. It would be interesting to 

actually look at the extensibility of the mutants as well as the diameter of the roots to 

see if they present any difference in the properties and thickness of the cell wall that can 

be directly associated to the XTH function. 

Most importantly, it still needs to be established whether the functionally characterised 

XTH mutants are actually directly regulated by GA and play a key role in the GA 

regulated root cell expansion. For, this it should be looked at how XTH expression is 

affected when endodermal cell elongation is disrupted by expression of gai. For this, 

XTH::GUS reporter lines could be crossed with SCR::gai-GR-YFP. Also, the 

expression of these genes should be compared with the SCR::gai-GR-YFP 

transcriptomics data produced during this PhD project to gain further understanding of 

their behaviour in relation to the GA signalling network. 
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6: SUMMARY AND CONCLUSION 

6.1 SUMMARY 

The Arabidopsis root has been extensively studied, generating a great deal of infonnation 

about individual cell types, cell patterning, growth and differentiation, lateral root 

fonnation and responses to the environment (Benfey et at., 2010). Root cell elongation is 

regulated by a complex network of honnone signals and their signalling pathways (Ubeda

Tomas et at., 2012). GA has been shown to primarily target the root endodennis to 

promote root growth by regulating cell elongation (Ubeda-Tomas et aI., 2008). However, 

the downstream genes and mechanisms target by GA are still unclear. In this thesis, reverse 

and forward genetics approaches have been employed in order to identify novel 

components of the gene regulatory network target by GA in this tissue. 

1) Identification of putative mutants harbouring novel downstream components of the GA 

signalling pathway by forward genetics: 

• Screening of a fast neutron mutagenized population of SCR:gai-GR lines to screen 

for mutants that suppress gai inducible root growth defect has been carried out 

• Genetic and expression analysis resulted in the identification of 9 non-allelic 

mutations presenting a weak or partial root growth recovery 

• Kinematics analysis of the growth of each mutant and characterisation of the 

putative mutants at the cellular level have revealed that 8 of the recovered mutants 

are affected at the level of cell expansion and 1 appears to be involved in cell 

division 

161 



• From the cloning of each of the mutants by next-generation sequencmg it is 

expected to result in the identification of 9 novel mutants involved the GA 

regulation of root cell expansion to try to help to build up the GA regulatory 

network 

2) Identification of putative GA downstream signalling components by reverse genetics: 

• An endodermal-specific transgenic line (SCR:gai-GR) that targets a non-degradable 

form of the GA signalling DELLA protein (gai) has been employed to perform a 

comprehensive transcriptomic time course dataset in order to pinpoint genes 

controlled by DELLA in this root cell type 

• Bioinformatics analysis on the subsequent dataset, has resulted in the identification 

of a number of known GA signalling genes (including GA biosynthetic genes, 

XERICO and SCL3) as well as 60 putative downstream signalling components 

• A list of 14 putative GA downstream targets including transcription factors, 

unknown genes and CWREs, have been selected for further functional 

characterisation to establish their potential role within the GA regulatory network 

targeting endodermal root cell expansion. 

• Genetic studies employing knock outs has resulted in the identification of mutants 

with altered root lengths. Promoter studies have identified potential DELLA 

binding sites in these mutants and further reporter fusions studies will help to 

establish their spatial expression 
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• Comparison of the expression patterns of the candidate genes obtained on the 

present analysis with other GA-root available transcriptomics datasets, will be key 

to understand their role and behaviour as putative GA downstream targets and to 

establish their position within the GA regulatory network 

3) Identification of GA regulated cell wall remodelling enzymes: 

• Bioinformatics analyses has produced a list of 9 candidate XTHs cell wall 

remodelling enzymes, that appears to be regulated by GA and be significantly 

expressed in the endodermis of the elongation zone of the root. 

• Functionally characterization of several members of the XTH family through the 

analysis of knock outs, have revealed elongation defects in multiple mutant 

combinations. 

• Both a reduction in mature cell size and meristem length are responsible for the 

reduction in root length on the double mutant xth17 xth18 

• Kinematic analysis of the root growth together with analysis at the cellular level 

suggest the transition from meristem to elongation zone of the root happens in a 

more abrupt fashion on the XTHs mutants 

• Expression analysis of XTHs in GA mutant backgrounds will help to establish the 

basis of how GAs regulate XTHs to promote root cell expansion 
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6.2 CONCLUSIONS 

This research project has focused on the study of GA regulated endodermal cell expansion 

as a way to improve overall understanding of the molecular mechanisms regulating root 

development. Although a few DELLA targets have been identified, many of the 

downstream targets of the GA signalling pathway still remain unclear. The forward and 

genetic approaches followed to try to identify GA downstream targets have resulted in a 

large amount of data and a list of potential GA downstream targets that will contribute to 

shed light on this process. The transcriptomics data set produced can provide valuable 

information for the wider scientific community to build root gene regulatory networks 

controlling root development. In addition the candidate genes identified from the reverse 

genetic screen can unveil novel components specifically involved in the GA regulation of 

endodermal cell expansion and their functional characterisation will also help to 

understand how this highly regulated process takes place. The analysis of the fast neutron 

mutagenized SCR: :gai-GR population has resulted in the identification of some exciting 

candidates that, once cloned, will be of major interest to try to build up a model of how the 

GA regulation of DELLA proteins leads to the stimulation of endodermal cell expansion. 

Also, the study of GA-regulated cell wall remodelling enzymes suggests a mechanism in 

which GA induced cell expansion take place at the level of cell wall expansion to 

contribute to the overall root growth. Although further studies are needed to establish the 

function and relationship between the DELLA proteins and all the identified genes, this 

project has been successful in producing a solid base from to which build up towards a 

complete understanding of the GA regulated endodermal cell expansion. 
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APPENDIX I. SCR:GAI-(gai)-GR-YFP trans gene sequence 

SCS1» 
GTCGACcctggaagtccgattgagaggagaggattgaccggagagagaccggagaaagatgggagtgaaggagaagagattgggagacgaa 
gagtaaccggacggcgagaagacgaggaaggtaatcggagtgatgcggtggagggaagagctgatttgagagaagacatactccagactctgctca 
cggaatctgtaggagtcgccattgccatggacattggaatcgccattagattgtgatcctctgcaacaaagcggattttgctggtgttgaatggataagggat 
agaggaagaggactttgtttatcagaaaccttttgatgggccttaatgggcctataaactgtaactctgtagcgctttgccaacaagagactttttaaggtttttgt 
tgccaaacagatatttgcatttgggctatgtaatgttagaattattttataatgtatgctattgctagatattgtttaagtgcatttgtgatttacaaacatttcatttttattt 
tggttttaatgagcatttctattatagagactttgatgttaataaatggtgttctaagatatattaaaatattttatatactttcttaaaattggataaattttgggaaaat 
ccttaatatcagttaaattgaagataaagagtattaaaaaaaactatgtagtaaaatacatttcacattttttgtgtataatagtacatggtattcgttaagatcact 
caaaaattaacaaattaagtctaaaagggcagaaaagactattcaaatatggacttggagaaagacattcagctttttacgctgagaaactttcatattgag 
ccgtgtgtttgtgttgtgaagagaagtaataaaaaataatttgaagtgaaaaaggagaagaaaaaataagatcgtagaaagcgtggatggtttcttcttggg 
ttcactgccatgcgattattaaattggccatggggctagtgtttgacgtacaaaagtctaaaaattgtcagtcaaacaggtccaaaactttgtaagaaaaata 
atataataatagcaaattttctaaaaattgttaaaaaaagaacaaaagggaaaagatgaggatgcagatgaaagcaaaatgtcaaacactagtttcagat 
tttatcgggaactggggtttgacagttggtgtatgtatgtaatggcctctcatcaaaacatgtgcatctttttccttttttgttatttactgttttagctctacgtcttgtcca 
attcctctcaagtaaaatgcctttaatatgatactaatatacaaggggactaatgctttttcccttttcttatccttgttttgtctaaatctttacttggattcctttatttttct 
cctctctttagattagtacggtttaaggaataccatctttctaattttagcacaaaattgcaagttggtgccccatcttagtaagcacatcgtaccacactttg 

SCS3» 
Attgtgtgagagacttcttcatcccatctctcataccaaacctaaatcaaatgactagtggtgcaacctgctgactccatatgaccataactaataaatcggttt 
atgaatccaactcatgtagctctatagaatagaaacccattcatttcacataatgaactgaatctgacattttatttacatcatttactactcaattttgtaattagca 
agatcatctttttcattattcaacaattttgatattccataatttattaactttgtcatacatcataatattctgaaattttgttatatattgtaccggttccacgaaataga 
gctctattattatagaccaaacaaacaaaatattatcttcttgtggttagttcgagagagaggtcaagaagaaacgaaatggatcggcaaacggaagacgt 
caaacacacaacgacgaacattttccgatcacccacctaatctcttcccatttttattatttttcaaaactcaaattaattaagaagaaaaaaacagaaacag 
aGAGAGAAAGAGTTAAGATGAATAGAGATAGAGAGAAAGAGTTAAGATGAATAGAGATAGAAAGAGTCAT 

PF1>>> 
TAAATGTACGAAGCGACATTCACAAT AGATACGGGGATCCIllAAG 
AGAGATCATCATCATCATCATCATCAAGATAAGAAGACTATGATGATGAATGAAGAAGACGACGGTAACG 
GCATGGATGAGCTTCTAGCTGTTCTTGGTTACAAGGTTAGGTCATCCGAAATGGCTGATGTTGCTCAGAA 
ACTCGAGCAGCTTGAAGTTATGATGTCTAATGTTCAAGAAGACGATCTTTCTCAACTCGCTACTGAGACTG 
TTCACTATAATCCGGCGGAGCTTTACACGTGGCTTGATTCTATGCTCACCGACCTTAATCCTCCGTCGTCT 
AACGCCGAGTACGATCTTAAAGCTATTCCCGGTGACGCGATTCTCAATCAGTTCGCTATCGATTCGGCTT 
CTTCGTCTAACCAAGGCGGCGGAGGAGATACGTATACTACAAACAAGCGGTTGAAATGCTCAAACGGCG 
TCGTGGAAACCACTACAGCGACGGCTGAGTCAACTCGGCATGTTGTCCTGGTTGACTCGCAGGAGAACG 

PF2 >>> 
GTGTGCGTCTCGTTCACGCGCTTTTGGCTTGCGCTGTTCAGAAAGAGAA 

«< PR1 
~GAAGCAAATCGGATTCTTAGCC TCGCTACTTACTTCGCC 
GAAGCTCTCGCGCGGCGGATTTACCGTCTCT CGACCACTCTCTCTCCGAT 
ACTCTTCAGATGCACTTCTACGAGACTTGTCCTTATCTCAAGTTCGCTCACTTCACGGCGAATCAAGCGAT 
TCTCGAAGCTTTTCAAGGGAAGAAAAGAGTTCATGTCATTGATTTCTCTATGAGTCAAGGTCTTCAATGGC 
CGGCGCTTATGCAGGCTCTTGCGCTTCGACCTGGTGGTCCTCCTGTTTTCCGGTTAACCGGAATTGGTC 
CACCGGCACCGGATAATTTCGATTATCTTCATGAAGTTGGGTGTAAGCTGGCTCATTTAGCTGAGGCGAT 

PF3>>> 
TCACGTTGAGTTTGAGTACAGAGGATTTGTGGCTAACACTTTAGCTGATCTTGA 
IllllllAAGTGAGATTGAATCTGTTGCGGTTAACTCTGTTTTCGAGCTTCACAAGCTCTTGGGACGACC 

«< PR2 
TGGTGCGATCGATAAGGTTCTTGGTGTGGTGAATCAGATTAAACCGGAGA 
~TCGAACCATAATAGTCCGATTTTCTTAGATCGGTTTACTGAGTCGTTGCATTATTACTCGACGTTGTTT 
GACTCGTTGGAAGGTGTACCGAGTGGTCAAGACAAGGTCATGTCGGAGGTTTACTTGGGTAAACAGATC 
TGCAACGTTGTGGCTTGTGATGGACCTGACCGAGTTGAGCGTCATGAAACGTTGAGTCAGTGGAGGAAC 
CGGTTCGGGTCTGCTGGGTTTGCGGCTGCACATATTGGTTCGAATGCGTTTAAGCAAGCGAGTATGCTTT 

GAIS2>>> 
TGGCTCTGTTCAACGGCGGTGAGGGTTATCGGGTGGAGGAGAGTGACGGCTGTCTCATGTTGGGTTGG 
CACACACGACCGCTCATAGCCACCTCGGCTTGGAAACTCTCCACCAATGAATTGGGTGGTGAAGCTCGA 

<<< PR3 
AAAACAAAG ACACTTCGGAAAATC 
CTAACAAAACAA CATTAC ACCTTGGTGTCACTGCTGGAGGTGAT 
TGAACCCGAGGTGTTGTATGCAGGATATGATAGCTCTGTTCCAGATTCAGCATGGAGAATTATGACCACA 
CTCAACATGTTAGGTGGGCGTCAAGTGATTGCAGCAGTGAAATGGGCAAAGGCGATACCAGGCTTCAGA 
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AACTTACACCTGGATGACCAAATGACCCTGCTACAGTACTCATGGATGTTTCTCATGGCATTTGCCCTGG 
GTTGGAGATCATACAGACAATCAAGTGGAAACCTGCTCTGCTTTGCTCCTGATCTGATTATTAATGAGCAG 
AGAATGTCTCTACCCTGCATGTATGACCAATGTAAACACATGCTGTTTGTCTCCTCTGAATTACAAAGATT 
GCAGGTATCCTATGAAGAGTATCTCTGTATGAAAACCTTACTG 
TGAAGAGCCAAGAGTTATTTGATGAGATTCGAATGACTTATATCAAAGAGCTAGGAAAAGCCA 
AGGGAAGGGAACTCCAGTCAGAACTGGCAACGGTTTTACCAACTGACAAAGCTTCTGGACTCCATGCAT 
GAGGTGGTTGAGAATCTCCTTACCTACTGCTTCCAGACATTTTTGGATAAGACCATGAGTATTGAATTCCC 
AGAGATGTTAGCTGAAATCATCACTAATCAGATACCAAAATATTCAAATGGAAATATCAAAAAGCTTCTGTT 

YS1-F»> 
Ii .: .:.:::,:':" 1 TCATCAAAAACAA TT ~gggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaag 

gcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccac 
cctcgtgaccacc cggc acggcctgc;agtgcttcgcccgctaccccgaccacatgaagcagcacg..1cttcttcaagtccgccatgcccgaaggctac 
gtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccQcatcgagc 
tgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggccgacaagca 
gaagaacggcatcaaggtgaacttcaagatccgccacaacatcQaQQacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcg 
gcgacggccccgtgctgctgcccgacaaccact~ :gccctgagcaaagaccccaacgagaagcgcgatcacatggtcctgc· 

<<<YS1-R 
ggagttcgtgaccgccgccgggatcac 

Legend: 

DELLA gai negative dominant mutant: Deleted in gai resulting in loss of 17 aa. 

SCR promoter 

gai 

GR 
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APPENDIX II. MA plots for SCR::gai-GR arrays probe intensities 

Variability between the overall expression it is observed for the differnt arrays prior 
normalization. 
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APPENDIX III. List of 41 intersecting genes. 

Genes identified from the comparison between the wild type and transgenic 
population for overall the SCRgai-GR array. 

10 AGI logFC AveExpr adj.P.Val 

AT2353/ATGA200X2/GA200X2 (GIBBERElLIN 
248371 at AT5G51810 4,344597 7,084623 8,81E-06 20 OXIDASE 2); gibberellin 2O-oxidase 
250515 at AT5G09570 3,772364 8,981939 7,78E-05 unknown protein 

NDB4 (NAD(P)H DEHYDROGENASE B4); NADH 
265422 at AT2G208oo 2,802767 6,920439 0,00018 dehydrogenase 

YAP169 (GIBBERElLIN 20 OXIDASE 3); 
25061l_at AT5G072oo 2,654772 5,267831 8,28E-05 gibberellin 20-oxidase 

250062 at AT5Gl7760 2,462105 6,787545 2,19E-07 AAA-type ATPase family protein 

GAS (GA REQUIRING 5); gibberellin 20-oxldase/ 

254065 at AT4G25420 2,29827 5,368465 0,000214 gibberellin 3-beta-dioxygenase 

264832 at ATlG03660 2,241445 6,6261 0,000307 unknown protein 

GA4 (GA REQUIRING 4); gibberellin 3-beta-

261768 at ATlG15550 2,163623 9,083021 7,78E-05 dioxygenase 

245136 at AT2G45210 2,093362 6,691751 2,19E-07 auxin-responsive protein-related 

266276 at AT2G29330 1,689482 7,69079 2,86E-ll TRI (TROPINONE REDUCTASE); oxidoreductase 

259353 at AT3G0519O 1,63979 6,40829 1,67E-05 aminotransferase class IV family protein 

ethylene-responsive element-binding protein, 
246932 at AT5G2519O 1,621542 5,557994 0,000248 putative 

basiC helix-loop-helix (bHLH) DNA-binding 
263179 at ATlG05710 1,580535 7,671545 3,17E-06 superfamily protein 

247476 at AT5G62330 -1,53866 6,950336 0,000168 unknown protein 

AST91 (SULFATE TRANSPORTER 91); sulfate 

264901 at ATlG23090 1,538209 6,244268 1,BE-06 transmembrane transporter 

261866 at ATlG50420 1,453708 8,140056 3,95E-06 SCL3 (SCARECROW-LIKE 3); transcription factor 

257774 at AT3G2925O 1,439182 9,371096 4,84E-05 oxidoreductase 

250823_at AT5G05180 1,434906 6,005575 3,17E-06 unknown protein 
proton-dependent oligopeptide transport 

262281 at ATlG68570 1,423765 6,296369 0,000274 (POT) family protein 
LBD40 (LOB DOMAIN-CONTAINING PROTEIN 

264469 at ATlG67100 1,374941 6,335663 0,000205 40) 

249894 at AT5G22580 1,320937 8,439813 6,26E-05 unknown protein 

253828 at AT4G27970 1,301075 5,843342 1,07E-05 SLAH2 (SLAC1 HOMOLOGUE 2); transporter 

CWLP (CELL WALL-PLASMA MEMBRANE 
256825 at AT3G22120 1,278725 6,938683 0,00018 LINKER PROTEIN); lipid binding 

256459_at ATlG36180 1,249033 7,079398 0,000148 ATP binding / biotin binding I catalytic/ ligase 
249364 at AT5G4059O 1,182 9,056233 0,000223 DC1 domain-containing protein 

256650 at AT3G13620 1,154361 7,282673 0,000172 amino acid permease family protein 

249688_at AT5G3616O 1,137394 7,843777 8,25E-06 aminotransferase-related 

SUC1 (SUCROSE-PROTON SYMPORTER 1); 
carbohydrate transmembrane transporter / 

260143 at ATlG71880 1,106167 7,326553 2,61E-05 sucrose:hydrogen symporter 

252193 at AT3GSOO6O 1,101069 7,518448 2,28E-05 MYB77; DNA binding / transcription factor 

251751 at AT3G55720 1,100532 7,272433 0,000287 unknown protein 

263325 at AT2G0424O 1,092988 8,337271 0,000339 XERICO; protein binding I zinc ion binding 

BXLl (BETA-XYLOSIDASE 1); hydrolase, 
248622 at AT5G4936O -1,08871 7,319474 0,00038 hydrolyzing O-glycosyl compounds 

glucosamine/galactosamine-6-phosphate 
252282 at AT3G4936O 1,078329 6,25249 1,69E-05 Isomerase family protein 

ATGID1B/GID1B (GA INSENSITIVE DWARF1B); 
251200 at AT3G63010 1,074942 7,051374 2,19E-07 hydrolase 

disease resistance protein (TIR-NBS class), 
262383 at ATlG72940 1,055507 6,112147 2,61E-05 putative 
266150 s at AT2G12290 1,048428 7,314127 3,96E-05 unknown protein 
261203 at ATlG12845 1,045656 7,91999 0,000259 unknown protein 

ATGUS2 (ARABIDOPSIS THALIANA 
250604 at AT5G07830 1,041561 8,420423 0,000229 GLUCURONIDASE 2); beta-glucuronidase 
245865 at Atlg58025 1,038518 4,707965 2,12E-06 DNA binding 

254193 at AT4G23870 -1,00247 5,046089 0,000341 unknown protein 

245488_at AT4G16270 -0,99658 4,375549 6,04E-06 peroxidase 40 (PER4O) (P4O) 
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APPENDIX IV. Map ofthe pRS300 vector 
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APPENDIX V. Root growth plots with fitted line for cell expansion dynamics studies 
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