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Abstract 

Background: 

Recent studies have shown that the two major forms of multiple sclerosis are different in the 

degree of demyelination and atrophy, degree of inflammation, and extent of axonal loss. 

However, the majority of the previous studies that compared primary progressive and 

secondary progressive multiple sclerosis were carried out at the brain level. 

Material and methods: 

Human post-mortem spinal cords were used to compare the two progressive subtypes. In 

this project, the 5 major pathological changes associated with MS were studied in the spinal 

cords of primary progressive and secondary progressive multiple sclerosis. These changes 

include degree of demyelination, atrophy of the tissue, oligodendrocytes pathology, axonal 

loss, and neuronal pathology. 

Results: 

There was significant atrophy in the spinal cords of MS compared to healthy controls, which 

affects mainly the upper cord levels. There is a greater degree of demyelination and atrophy 

affecting secondary progressive compared to primary progressive especially in the upper 

cord levels. Oligodendrocytes numbers are dramatically reduced in the chronic lesions of 

WM and GM lesions. But there was high numbers of oligodendrocytes in the normally 

appearing GM of secondary progressive multiple sclerosis. There was greater reduction in 

axonal density in the secondary progressive sample especially in the normally appearing 

WM. Neurons were reduced in the demyelinated grey matter regions with no difference 

between the two disease forms in this respect. 

Conclusions: 

SPMS seem to have greater degree of tissue destruction in the form of demyelination, 

atrophy, and axonal loss in the normally appearing WM. However, SPMS showed greater 

numbers of oligodendrocytes in the demyelinated areas of the WM and the GM. Although 

the disability scale in the two examined groups was found to be similar, the tissue damage 

appeared to be variable. 
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Chapter 1: Introduction 

Multiple sclerosis (MS) is an inflammatory autoimmune demyelinating disease of the central 

nervous system (CNS) [1]. The disease results in multiple lesions that are characterised by 

loss of myelin substance as well as oligodendrocytes (OLs), which are vital elements for the 

proper function of the CNS. Therefore, MS can lead to wide range of symptoms. 

1.1 History of Multiple Sclerosis 

In the book entitled "Multiple Sclerosis: The History of a Disease" the author, Dr T J Murray, 

described symptoms of many patients during the 18th century who had features similar to 

MS [2]. The earliest described case is thought to be Saint Lidwina. Saint Lidwina was born in 

Schiedam of Holland on 18th April 1380. She fell on ice at the age of 15 years and broke her 

rib [3]. Following this, she developed weakness in both lower limbs and severe tooth pain, 

which are believed to have been the paraplegia and the trigeminal neuralgia of MS 

respectively. She also suffered from unilateral blindness and became paralysed and 

confined to bed. Severe bed sores complicated her condition and affected her entire body. 

People at that time believed that she was under the influence of an evil spirit [3]. She died in 

April 1433 at the age of 53 years [4]. In 1947 her remains were exhumed for analysis, and 

they demonstrated marks of spastic paraplegia [5]. 

Augustus d'Este (1794-1848) remains the most famous historic case of what is believed to 

have been MS. He kept detailed records of all his symptoms in his diary. Briefly, he suffered 

from blurred vision in 1822, which resolved spontaneously. Then he began to develop visual 

loss and was unable to read. He described in detail all the types of treatment he received. 

His condition progressed to paraplegia until he died in 1848 [5]. 

The German pathologist Friedrich Theodor von Frerichs (1819-95) established the first 

diagnosis of myelitis in 1849, which is believed to be MS. Eduard Rindfleisch (1836-1908), 
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was the first person to describe the perivascular cellular infiltration and neuroglial 

involvement as part of the disease process [4, 6]. 

MS as a distinct new disease was described for the first time in 1868 by the French 

neurologist Jean-Martin Charcot (29 November 1825-16 August 1893). Charcot and his 

colleague Edme Vulpian were studying a specific type of tremor in young patients, and were 

trying to differentiate it from paralysis agitans caused by Parkinson's disease. Charcot and 

his assistant noticed that this type of tremor frequently affected young adults and was 

associated with paralysis. They then noticed patchy greyish plaques in the autopsy of these 

patients, which were scattered throughout the spinal cord and the brain. In 1866 Charcot 

presented three cases and differentiated MS tremor from paralysis agitans. Later, Charcot 

described a number of MS features, and he named it sclerose en plaque disseminee [5, 7]. 

Charcot also contributed largely to developing criteria for the diagnosis of MS [8]. The criteria 

are known as the Charcot's triad, which includes diplopia, ataxia and dysarthria. He 

observed these three symptoms in his housekeeper, who was affected by MS. Furthermore, 

Charcot was the first neurologist to provide a detailed description of MS histopathology, 

including loss of myelin [6, 9]. 

After Charcot's work there was little progress in MS and most of the research was focused 

on finding the disease aetiology. In 1933 the first model of MS was produced in monkeys, 

which was called disseminated encephalomyelitis. Then MS model was produced in mice 

and was called experimental allergic encephalomyelitis (EAE) [2, 4]. Until 1935 there were 

about 150 proposed treatment strategies for MS [4]. 

The world 'sclerosis', meaning hardening, was used to describe the scarring that follows the 

damage of the nervous system by the disease process. The disease causes demyelination 

2 



Chapter 1: Introduction 

of the axons in different areas of the white matter (WM). Therefore the word 'multiple' was 

used to describe the disseminating characteristic of the lesions, which are disseminated in 

time and place. These lesions were called plaques, which are well-defined areas of 

demyelination and neuro-axonal degeneration. The word sclerosis had previously been used 

in the USA to describe another neurological disease (amyotrophic lateral sclerosis). In 

Britain the disease was called disseminated sclerosis. Then the name was changed to MS 

because of the establishment of the MS Society in the USA [10]. 

1.2 Epidemiology 

By reviewing European hospital records and comparing them to the present MS features, 

Dr T J Murray was able to conclude that MS had been prevalent in the European population 

for many centuries, and that its prevalence did not change with time [4]. 

Estimates of incidence and prevalence of a disease such as MS differ between various 

studies. Each study investigates a different sample size and age range, and different 

ethnicity. Various studies may apply different criteria for the diagnosis, and thus results may 

vary. 

Increase in the prevalence of MS is partly due to increased diagnosis, as many cases went 

unrecognized [11], but the latest epidemiologic studies state that the prevalence of the 

disease is, in fact, increasing with time [12-16]. 

The disease predominantly affects individuals between the ages of 20 and 40 years [16]. MS 

is the most common neurological disease that affects young western adults [17], and the 

second most common cause of neurological admissions in young adults after trauma [11]. In 

2002 it was estimated that 2.5 million people are affected with MS worldwide [11]. In the UK 

3 
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approximately 100,000 individuals suffer from MS, according to the MS Society in 2005, 

while the number reaches 350,000 patients in the USA [16]. 

The prevalence of MS is geographically variable according to latitude, where it reaches 60-

200/100,000 in Northern Europe and North America compared to 6-20/100,000 in lower risk 

areas, such as Asia [16]. 

MS disease does not cause significant life shortening, but has a high morbidity rate and a 

strong impact on the social and economic status of the affected individual and the whole 

country. In 1995, the cost of the disease in the UK was estimated to be around £1.2 billion 

[18]. In a cross-sectional study, the average cost of MS was calculated in various countries 

for one patient for a period of three months [19]. The study revealed that the cost was 

variable according to the country and the stage of the disease. In the UK, according to 

Expanded Disability Status Scale (EDSS), a patient in stage III costs $14,622 every three 

months [19]. 

1.3 Risk factors 

The cause of MS is believed to be multifactorial. The role of environmental factors in 

developing MS has been shown in a number of studies [15, 20], but the extent of this role is 

not yet certain. As genetic studies have shown genetic contribution, it is thought that MS 

develops in genetically susceptible individuals after exposure to triggering factors, which 

could be infectious factors. 

1.3.1 Genetic factors 

It is important to mention that geographic variation of MS epidemiology is not only dependent 

on environmental factors, but also depends on ethnic or genetic factors where each ethnicity 

usually inhabits a certain geographic area [15]. 

4 
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First degree relatives of MS patients have 20-50 fold higher risk of developing the disease. 

The most relevant gene was found on the area of the major histocompatability complex, 

which accounts for 10-60% of the genetic risk of MS [21]. The concordance rate in 

monozygotic twins is 20-30% [16, 21, 22]. Moreover, the concordance among monozygotic 

twins has been also affected with latitude and with the time of the diagnosis, ie the 

concordance of MS in northern monozygotic twins was greater than southern monozygotic 

twins by two times [23]. The risk of MS in the co-twin is increased by two times when the 

affected twin had early disease, that is before the median age which is 29.3 years [23]. 

These data suggest additional risk factors, including infection, latitude and amount of sun 

exposure during childhood [22], and there may be hormonal factors [24]. 

1.3.2 Latitude and sun exposure 

The prevalence of MS is more in the northern areas of the northern hemisphere, while the 

prevalence is more in the southern areas of the southern hemisphere [15]. These changes in 

MS prevalence with latitude have been attributed to the amount of sun exposure. In a 

relatively recent study which investigated twins with MS in North America between 1980 to 

1992 [22], the sun exposure during childhood was studied. The study controlled to some 

degree the genetic factors, as part of the sample contained monozygotic twins, thus 

investigators were able to assess the effect of sun exposure independently. The study 

reported that degree of sun exposure in childhood reduces significantly the risk of MS. The 

risk of developing MS was reduced by 25% for each unit increase in the sun exposure index 

[22]. 

The UV light has an effect on the immunoregulatory cells [16] and has also an effect on the 

levels of vitamin 0, because most of our body's vitamin 0 is synthesized in the skin and then 

activated in the kidneys [25), The other proportion of vitamin 0 is obtained from food, 

especially seafood. Therefore, vitamin 0 deficiency can be seen due to less sun exposure, in 
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people with dark skin colour who absorb less UV light, and due to malabsorbtion [25], 

Vitamin D has anti-inflammatory effects and down-regulates inflammatory markers [25]. This 

has been confirmed by treatment of EAE mice with an active form of vitamin D, which 

resulted in complete inhibition of the progression of the disease [26]. Surprisingly, Vitamin D 

levels were found to be higher in the north European countries. This may be partly explained 

by the fair skin colour in northern Europeans, whose skin absorbs more UV light [25]. 

1.3.3 Hormonal factors 

Hormonal factors may play a role in MS pathology, because females are affected more than 

males, and the concordance in monozygotic twins is more when the twins are female (23). 

Additionally, MS has a reduced relapse rate during pregnancy and an increase in relapses 

occurs after delivery [24]. A recent study investigated the effect of environmental factors on 

the sex ratio of MS (ratio of F: M) and was conducted on Canadian immigrants. The study 

reported increase in sex ratio among immigrants which is also affected by the origin of the 

immigrants [27]. The study concluded that environmental factors have greater effects on 

females than males. 

1.3.4 Viral infections 

Another proposed contributory factor in the aetiology of MS is believed to be viral infection. 

Animal studies demonstrated a model of virally-induced eNS demyelination [28]. It is 

proposed that a viral infection acts as a triggering factor in initiating the cascade of 

inflammatory reactions in MS subjects. Triggering the immune response in MS and other 

autoimmune diseases is probably due to molecular mimicry with one of the virus 

components, which is believed to be a peptide [11]. 

The relation between viral infection and MS has been appearing in literature for a long time 

[29]. A number of viruses has been suggested as playing a role in MS aetiology, including 
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poliomyelitis [30], measles [31, 32], herpes simplex virus [33], Epstein-Barr virus (EBV) [34], 

parainfluenza 1 virus [35], HHV6 and multiple-sclerosis-associated retrovirus [36]. 

Among the suggested viruses, EBV may play an important role in causing MS. For recent 

reviews refer to Pohl 2009 [37] and Salvetti et al 2009 [38]. EBV is a DNA virus that affects 

90% of the population worldwide. It causes infectious mononucleosis and may result in 

encephalitis [37]. There is serological evidence that previous EBV infection may increase 

risk of MS in children and adults [38]. Several epidemiological studies have shown a relation 

between EBV infection and development of MS [28]. 

1.3.5 Other environmental factors 

MS geographic distribution generally corresponds to the distribution of developed countries 

and the economic status of the country [16]. For example, the disease is highest in Japan, 

which is located in a relatively low risk area (Asia). Two studies reported increase in 

prevalence in the Middle East; a study reported that the disease prevalence is increasing in 

Kuwait. This increase was mainly among Kuwaiti females [13]. Similar results were obtained 

from Jordan, where the prevalence of the disease has increased in the last three decades 

[14]. Increase in MS prevalence rates in these areas has been related to many factors such 

as pollution, exposure to solvents, dietary factors, smoking, and change in the amount of sun 

exposure [16]. 

1.4 Clinical presentation and disease course 

Relapsing remitting Multiple sclerosis 

MS follows a relapsing remitting course in 80% of cases and is called relapsing remitting MS 

(RRMS). Patients with RRMS experience relapses in the form of neurological symptoms that 

develop over several hours to few days and continue for several days to few weeks. A 
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patient with RRMS is most often a female in her early 30s, who presents with rapidly 

progressing symptoms. The ratio of female to male is approximately 2: 1 [7]. 

In 15% of patients, the first symptom is optic neuritis [7]. Patients usually complain of 

unilateral blurring of vision and gradual onset of pain in the affected eye with no redness. 

Examination of the affected eye may reveal optic disc inflammation. These distinct features 

of optic neuritis in MS help in supporting the diagnosis, especially when there is evidence of 

demyelination in visual evoked potentials (VEPs). 

Lower limb weakness in the form of spasticity and hyperreflexia affects 40-60% of cases [7], 

Fatigue can affect up to 40%, which can be secondary to lower limb weakness and/or 

depression [39]. Vertigo can affect 20% of cases [40). Other problems may involve the brain 

stem, cerebellum, bladder control, sexual function and neuropsychological function. 

In most cases symptoms improve with time, and patients may completely recover within a 

few weeks. It is assumed that these attacks, and the consequent temporary functional 

failure, are mainly due to acute inflammation and oedema. Remission of these attacks by 

use of immunosuppressive agents that inhibit inflammation and remove oedema supports 

this assumption. 

Progressive multiple sclerosis 

Ten years from onset of RRMS, 40% of cases enter a stage of disease progression [41]. 

This percentage increases to 80% after 20 years [42]. In this stage, patients accumulate 

neurological deficits and disability without experiencing remissions. This progressive form of 

the disease is called secondary progressive MS (SPMS) and is associated with significantly 

less acute lesions and reduced response to immunosuppressant. The reduced response to 
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treatment in SPMS may indicate a different mechanism underlying progressive neurological 

deficits [43]. 

The other less common form of progressive MS is primary progressive MS (PPMS). This 

usually affects patients in an older age group. However, patients with RRMS develop 

progression and the disease transforms to SPMS at an older age than that of those who 

present with PPMS [44]. PPMS is progressive from onset, and the affected patients 

accumulate neurological dysfunction over time. Patients with PPMS may have intermittent 

plateaus, but no clear relapses or remissions [45]. In addition, a considerable number of 

patients with PPMS experience an episode of MS many years before the onset of the 

disease [46] or after the disease onset [47]. 

PPMS has similar incidence in males and females and is characterized by 

unresponsiveness to immunosuppressant treatment from the beginning. It is believed that 

the cause of disability in PPMS is mainly irreversible degeneration ofaxons, in particular 

small diameter axons [17, 43]. 

1.5 Diagnosis 

Diagnosis of MS is based on clinical features, which are characterised by dissociation in time 

and space. There is no single test for the diagnosis of MS. Therefore, different diagnostic 

criteria were established. In 1965, Schumacher established the first criteria for MS. The 

recent advances in MRI techniques and electrophysiological studies allow scientists to 

recognise other abnormalities in MS. Therefore, Poser criteria incorporated paraclinical tests 

such as cerebrospinal fluid analysis (CSF) and evoked potentials (EPs) [48-51]. 

The recently established McDonald's criteria have replaced both Schumacher and Poser's 

criteria [52] (Table 1.1). The criteria establish diagnosis of MS earlier than the previous two 
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criteria. The criteria have been revised in 2005 by Polman et al who explained the definition 

of the attacks, dissemination and other finding [53). 

Table 11' McDonald's Criteria .. 
Clinical Presentation Additional Data Needed 
2 or more attacks (relapses) 

None; clinical evidence will suffice (additional evidence desirable but must be consistent 
2 or more objective clinical with MS) 
lesions 

Dissemination in space, demonstrated by: 

2 or more attacks 
MRI 

1 objective clinical lesion 
or a positive CSF and 2 or more MRI lesions consistent with MS 
or further clinical attack involving different site 

1 attack Dissemination in time, demonstrated by 

2 objective clinical 
MRI 

or more or second clinical attack 
lesions 

Dissemination in space demonstrated by: 
MRI 

1 attack or positive CSF and 2 or more MRI lesions consistent with MS 
1 objective clinical lesion and 
(monosymptomatic presentation) Dissemination in time demonstrated by: 

MRI 
or second clinical attack 

Insidious neurological 
One year of disease progression (retrospectively or prospectively determined) and 

progression suggestive of MS Two of the following: a. Positive brain MRI (nine T2 lesions or four or more T2 lesions 
(primary progressive MS) with positive VEP) b. Positive spinal cord MRI (two focal T2 lesions) c. Positive CSF 

The review by Polman recommended that a clinical relapse or a T2 lesion occurring within 

one month, instead of 3 months as in the origincal McDonald's criteria, can be usefull in 

confirming dissemination in time. In addition, spinal cord lesion can be considered to confirm 

dissemination in space instead of infratentorial brain lesion but not periventricular or 

juxtacorticallesion. Pol man revised the criteria again in 2010, published in 2011. The review 

recommendations allow for a more rapid and more sensitive diagnosis. It has been agreed 

that a follow up scan to confirm dissemination in time is not needed if the baseline MRI 

demonstrated both gadolinium-enhancing and nonenhancing lesions. This simplifies the 

diagnosis of MS without affecting accuracy and also reduces the MRI examination 

requirements [54]. 
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1.5.1 Radiological abnormalities (MRI) 

MRI techniques are highly sensitive in detecting MS lesions and considered as the major 

paraclinical test in MS [55-57]. MRI is superior to all other measures in detecting subclinical 

lesions, 'silent lesions' [55, 56]. Acute plaques appear hypertense in T2 weighted images 

and proton density weighted images as they reflect a large amount of water, while chronic 

plaques are hypotense in T1 weighted images, 'black hole'. The black holes are more 

pathologically specific for MS [55]. 

Nevertheless, these changes identified by MRI are not disease-specific. Several diseases 

cause WM lesions that are similar to those of MS, such as ischaemic vascular diseases, 

normal aging process, acute disseminated encephalomyelitis, lacunar infarcts and 

leukodystrophy. Therefore, the initial important step in radiological diagnosis of MS is to rule 

out other similar diseases [49,50,58]. 

Lesions of vascular disease usually do not affect the corpus callosum and tend to be more 

peripheral (unlike MS). Those hyperintensities on T2-weighted images of the ageing process 

are smaller, tend to be symmetrically distributed, and are not usually visible in T1-weighted 

images. Acute disseminated encephalomyelitis lesions are all of similar age, whilst MS 

leSions are of different ages [56]. 

1.5.2 Neurophysiological abnormalities 

The general principle for neurophysiological studies is the use of electrodes to record the 

amplitude and the duration of neuronal impulses. This will detect delay or failure of 

transmission of an impulse in a certain tract. In MS disease, the most important finding is 

change in latency rather than amplitude, since latency prolongation is more consistent with a 

demyelinating process [59, 60]. 
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To record abnormal neurophysiological response, there should be sufficient damage in the 

examined tract. In addition, not all the tracts can be explored by these studies. Therefore, 

the correlation between neurophysiological study results and the degree of impairment is 

quite poor [60]. 

The most commonly used methods in MS are the stimulus-related EPs. The currently used 

stimulus-related EPs in the diagnosis of MS include visual EPs, auditory EPs, brain stem 

auditory EPs, and somatosensory EPs. 

The highest sensitivity is obtained from visual EPs, where a delay in latency is demonstrated 

in most cases with optic neuritis [51, 59). The diagnosis of delay in latency of the optic nerve 

is established by considering the difference between the two eyes and not by measuring the 

absolute values [59, 60]. A difference of more than 10 milliseconds in latency is abnormal 

even if both readings are within the normal range [5]. 

The sensitivity of auditory EPs in evaluating the auditory system, when complemented with 

brain stem auditory EPs, can reach 83%. For motor EPs, the sensitivity to detect central 

corticospinal spinal tract (CST) damage is low. This is due to the wide range of normal 

values [59). 

1.5.3 Cerebro-spinal fluid analysis 

A CSF sample is frequently obtained during the diagnostic process in MS. The aim of 

analysiS is to look for intrathecal markers that are most peculiar to MS. Oligoclonal bands 

are the most speCific CSF changes for MS, followed by intrathecal IgG synthesis [61, 62]. 

Both indicate increase intrathecal synthesis of immunoglobulins. However, these changes 

can be detected in other types of chronic CNS inflammation, such as neurosarcoidosis, 

subacute sclerosing panencephalitis, and primary CNS lymphoma [61]. 
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1.6 Pathophysiology of multiple sclerosis 

The principal lesions of MS are the plaques. The WM plaques tend to be round or ovoid in 

shape. In the brain, they are commonly peri-venular. MS can result in demyelination in the 

cerebral cortex and in the deep grey matter (GM) nuclei of the brain and the spinal cord. 

Initially MS causes swelling of the nervous tissue but, with progression of the disease, older 

lesions possibly shrink, and CNS atrophy is a prominent feature. It has been suggested that 

in acute MS the mechanism of injury is mainly inflammatory, while with chronic MS, 

neurodegeneration is the main mechanism [63]. In summary, stages of the plaque 

development include inflammatory loss of OLs and myelin, partial recovery, post

inflammatory gliosis, and neurodegeneration [11]. 

1.6.1 Inflammatory loss of oligodendrocytes and myelin 

The inflammatory aspect in the pathology of MS disease was first described long ago. In 

fact, peri-vascular inflammatory cells were demonstrated when the disease was described 

for the first time by Charcot [43]. Inflammatory reaction in MS was then suggested to be 

autoimmune in nature in 1933 by demonstration of demyelination in EAE [64]. 

A great advance in the understanding of MS immunology comes from EAE [65-67]. It is the 

most commonly used animal model for MS [65, 66]. 8y examining EAE scientists were able 

to identify important disease markers, such as oligoclonal bands [5], which is used for 

supporting the diagnosis of MS [5, 65]. 

One of the earlier steps in the MS inflammatory process is thought to be migration of T cells 

from the systemic circulation to the CNS through the blood brain barrier (888). These T 

lymphocytes (CD4) are activated, possibly by antigen [17]. 
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In the CNS side, there is up-regulation of a number of molecules, such as inter-cellular 

adhesion molecule 1 (ICAM 1) and vascular adhesion molecule 1 (VCAM 1), and proteases. 

These molecules assist in adhesion and migration of T cells into the CNS [17]. This up

regulation of adhesion molecules, and other molecules, is possibly caused by signal from the 

activated T cells themselves, via secretion of interferon Gamma (IFN-y) and tumour necrosis 

factor Beta (TNF-I3) [17, 63]. 

The abnormally active T lymphocytes (CD4) affect the permeability of the BBB. 

Consequently, these cells can penetrate the BBB to the CNS [5, 43, 65]. This may explain 

the observation that the disease plaques are found mainly around small veins, 'peri-venular'. 

T lymphocytes or CD4 cells are divided into T helper cells 1 (Th1), T helper cells 2 (Th2), T 

regulatory cells and the more recently identified T helper 17 (Th17) [68]. In the CNS, CD4 

Th1 cells secrete IFN-y, interleukin 2 (ll2), TNF-I3, and other cytokines [7, 65, 66], while 

Th17 cells secrete tissue destructive cytokine known as interleukin (ll17) [68]. These 

cytokines initiate a cascade of inflammatory reactions, which involve fluid accumulation, 

'swelling', and direct damage to myelin sheaths, Ols, and axons. 

In this acute phase of the lesion, there is evidence of active myelin destruction as seen by 

the electron microscope (macrophages filled with myelin breakdown products) [5, 65, 67]. 

There is also evidence of axonal loss in the plaque and the normal-appearing areas [69], 

which can be primary axonal loss or secondary to loss of myelin and Ols. However, 

researchers commonly describe axons as relatively preserved in MS compared to loss of 

Ols and myelin. MagnetiC resonance spectroscopiC (MRS) changes in N-acetylaspartate, a 

marker of the neuronal function, have been noted in the plaques of MS, which may indicate 

that there is also loss of function of surviving axons. Furthermore, EPs reveal a delay in 
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latency in the affected tract [59, 60]. Consequently, these acute lesions are believed to be 

responsible for neurological dysfunction (clinical relapses). 

1.6.2 Recovery and remyelination 

In RRMS the immune response will be inhibited, in most cases, after a few weeks. T 

regulatory cells and CD4 Th2 cells are possibly responsible for this inhibition. T regulatory 

cells secrete interleukin 10 (ll10) and transforming growth factor beta (TGF-~), which are 

major cytokines suppressing the immune reaction. CD4 Th2 cells down regulate the immune 

response by secreting different cytokines such as interleukin 4 (IL4), interleukin 5 (IL5), 

interleukin 13 (IL 13), and possibly TGF-~ [65, 66]. 

As time passes, signs and symptoms of the disease start to improve and the patient enters a 

stage of recovery. During this period, examination of some plaques shows reformation of 

thin myelin sheaths, which does not fully explain the degree of recovery [5, 66]. The number 

of Ols in lesions correlates with the degree of remyelination. Presence of remyelination and 

the clearance of the accumulated fluid and neurotoxins may allow the axons to retain part of 

their conduction capacity [43, 66]. This period of recovery refers to the remission of the 

relapse which is observed clinically in RRMS. In comparison, PPMS and SPMS do not show 

complete remission and, therefore, the mechanism of tissue injury and/or the mechanism of 

tissue repair in these forms may be different or defective. Nevertheless, with progression of 

the plaque, this repair is limited by the action of astrocytes by producing gliosis (scarring) 

[11, 43, 66]. 

1.6.3 Post-inflammatory gliosis 

Following demyelination and tissue injury, astrocytes become activated. Astrocytes are 

activated by signals released in the site of the eNS injury [70). The reactivated astrocytes 

migrate to the lesion. These activated astrocytes are responsible for the formation of the glial 
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scar, by mediating inflammatory reaction and remodelling of the lesion. This is characterised 

by hypertrophy of astrocytes, increased expression of glial fibrillary acidic protein (GFAP), 

and cellular proliferation. Many believe that the astroglial scar inhibits axonal growth and 

regeneration. However, a subset of astrocytes may act as progenitor cells, and thus may 

have neuroprotective functions [70, 71]. 

1.6.4 Neurodegeneration and axonal loss 

The long-term effects of scarring may include neurodegeneration. There is a reduction in the 

number of surviving axons in the areas surrounding lesions, which indicates that there is a 

significant number of severed axons [72]. This may result in degeneration ofaxons 

segments in areas far from the primary lesion via the effect of neuronal degeneration, which 

may continue for months or years after injury [11]. Furthermore, neuronal degeneration may 

occur due to environmental changes around the axons or the neurons, such as loss of the 

myelinating Ols. 

1.7 Nervous tissue injury 

This section discusses the normal eNS response to injury and types of consequent neuronal 

degeneration. This will provide a better understanding of the possible mechanisms of axonal 

and neuronal degeneration in MS, especially in the spinal cord. This is because the spinal 

cord contains both ascending and descending tracts, which have connections with the brain. 

1.7.1 Neuronal injury 

Apart from specifiC areas in the brain, such as the hippocampus and the olfactory bulb, 

neuronal precursors do not divide, and thus no new neurons are spontaneously produced 

following injury [73]. Neurons in the eNS are frequently exposedvulnerable to different types 

of traumas including neurotoxin exposure, infection, mechanical and neurodegenerative 

trauma. Such trauma can be tolerated by neurons with the help of microglia. Microglia have 
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an intimate relationship with neurons and have both neuroprotective and, at times, 

neurodegenerative roles. In minor neuronal insult, microglial cells protect injured neurons by 

supplying them with neurotrophic factors, such as neuronal growth factor and TGF-J3 [74, 

75). 

Initially, microglia do not express any phagocytic or cytotoxic activity against injured neurons, 

but rather respond to injury by proliferation and secretion of more neurotrophic factors, in an 

attempt to protect the injured neuron. Microglial cells can also cause de-afferentation of the 

injured neurons, which protects neurons from further damage by the excitatory synapses, 

such as glutamate [76, 77]. De-afferentation facilitates exchange of neurotrophic factors 

between neurons and microglia, by increasing the exposed surface area of the neuron. 

However, prolonged de-afferentation may result in degeneration [75, 76]. 

Neuronal phagocytosis occurs when the neurological insult is beyond the ability of the 

neuronal tissue to protect itself. At this stage, microglia express phagocytic activity against 

neurons. Response of microglial cells depends largely on signals from the injured neurons 

themselves. Microglia will then phagocytose debris of terminally damaged neurons [78]. 

1.7.2 Axonal injury 

At the axonal level damage can be induced by different types of insult, including ischaemia, 

low or high temperature, direct pressure or cutting, neurotoxins, and infection. (For review 

refer to Fitch and Silver 2008 [74]). Some of these insults are noticed in MS such as the 

effect of temperature on the function ofaxons. MS patients commonly experience worsening 

of symptoms after a hot bath such as blurring of vision and fatigue (Uhthoff's sign). There is 

also probable effect of pressure caused by the oedema on the axonal functions [79]. 
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Generally the peripheral nervous system (PNS) axons have better ability to regenerate than 

the eNS axons, due to presence of trophic factors that promote regeneration in the PNS. 

Injured eNS axons grow slowly and do not cross the site of injury forming the so called 

retraction bulbs. In the PNS, Schwann cells promote regeneration and guide axons to their 

targets, while the equivalent myelinating cells of the eNS (Ols) appear to inhibit axonal 

regeneration. Evidence of the critical role of peripheral glial cells in enhancing regeneration 

was shown by David in 1981, who demonstrated that eNS axons can regenerate when a 

peripheral nerve is grafted around them (80). 

In the PNS, myelin substance is rapidly cleared by macrophages allowing better healing, 

while myelin in the eNS is slowly cleared, due to late appearance of macrophages in the site 

of injury [81, 82). This fact indicates that the myelin substance may inhibit axonal growth, 

and that there is a critical role of the BBB in preventing recruitment of macrophages to clear 

the inhibitory myelin from the site of injury (82). One of the earliest applications of this fact is 

the use of anti-eNS myelin monoclonal antibody (IN-1). which stimulated axonal growth in 

experimental animals and improved neurological recovery [81]. later on. the antigen of this 

antibody was found to be Nogo-A. which will be discussed later in this thesis [83]. 

1.8 Neuronal degeneration 

Anterograde (Waller/an) degeneration 

For a normally functioning neuron. continuity between the neural cell body and the axon 

should not be disrupted. The axon depends largely on the cell body for survival. Therefore. 

in the eNS and the PNS. the distal segment of the severed axon degenerates. This 

phenomenon was observed by Augustus Waller in 1850 [84]. and thus named Wallerian 

degeneration. The process of Wallerian degeneration is considered a normal response of 

the body to damaged or unnecessary axons. and it is vital in normal development of the 

eNS and for regeneration of the severed axons in the PNS [85]. 
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Axons do not synthesize their own nutrients, but rather depend on special transport 

mechanism of proteins from the cell body along the nerve fibres [85]. However, starvation of 

the axons, by not being connected to the cell body, cannot be the direct cause of Wallerian 

degeneration since axonal degradation happens within a few days of axonal transection. 

Previous studies showed that Ca+ is the main factor in inducing Wallerian degeneration. 

Wallerian degeneration did not happen in the nervous tissue grown in low Ca+ media. 

Moreover, calcium channel blockers, such as cobalt and manganese, prevented Wallerian 

degradation in tissue culture [85]. Within days, presynaptic terminals of the severed axons 

retract from the postsynaptic neuron and from the presynaptic neuron. Following retraction of 

the presynaptic terminal, the distal segment degenerates by Wallerian degeneration [82, 86]. 

Stages of Wallerian degeneration are divided into four periods; the lag period, period of entry 

of Ca+, period of activation of Ca+-dependent proteases, and period of degradation of the 

axon. The lag period is variable among different species. It lasts for 24-48 hours in rats and 

up to 7 days in humans [85]. 

The first observation in Wallerian degeneration is granular disintegration, which is thought to 

be a Ca+-induced phenomenon via activating tissue proteases. This early stage happens in 

both the CNS and the PNS with the same timing, but later stages are much slower in the 

CNS [82]. Once the axon is damaged, Ca+ enters the axon and activates tissue proteases, 

which are enzymes that accelerate degeneration [85]. 

In the CNS all features of Wallerian degeneration, including axonal degradation, 

macrophage activation and myelin phagocytosis, continue for up to 90 days post injury. In 

the PNS, degeneration maximally takes 30 days to complete (animal study) [82]. A study by 

Rachel George in 1994 investigated Wallerian degeneration in rats, by transecting primary 
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sensory neurons at L4, LS, and L6 levels. The level of cut was just proximal to the dorsal 

root ganglia, which allows for studying Wallerian degeneration of the same axons in both the 

eNS and the PNS. The study revealed that the varaition between the eNS and the PNS in 

degeneration is due to the different environment. It demonstrated that the part of the axon 

that runs in the eNS shows the same characteristics of Wallerian degeneration as the purely 

eNS axons, and the part of the same axon that runs in the PNS degenerates similarly to 

peripheral axons. The author suggested that this may be due to delayed recruitment of 

macrophages as a result of the BBB [82]. This has been also supported by another study, 

which demonstrated enhancement of regeneration in the optic nerve by covering it with 

macrophages [87]. It is important to note that in the eNS and the PNS, the ability to 

regenerate axons declines with age [88]. 

Retrograde degeneration 

The proximal part of the axon, which remains connected to the neuronal cell body, usually 

does not degenerate initially and neurons may survive for years, especially when the site of 

injury is far from the cell body [89]. However, some changes in the cell body have been 

noticed following cutting the axon, therefore, retrograde degeneration affects the neurons 

and the axons. 

In fact, retrograde degeneration involves redistribution of intracellular organelles, rather than 

actual degeneration. Retrograde degeneration includes swelling of the neuronal cell body, 

redistribution of Nissl bodies on the periphery, increase in ribosomes and protein synthesis, 

and the nucleus acquires an eccentric position. These changes reflect increase in metabolic 

activity and indicate that the cell is ready to re-innervate during this period [90]. These 

changes are sometimes called chromatolytic changes and were reported after axotomy by 

24-48 hours [91]. They are not specific for neurons with severed axons, but can also occur 
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after other forms of neuronal injury: for example, they have been reported in alcoholic 

encephalitis [92] and in Werdnig-Hoffmann disease [93]. 

If time passes and the axon fails to regenerate and re-innervate, the cell body will probably 

die. In MS, different studies have suggested the potential role of retrograde degeneration in 

neuronal loss in areas far from the primary lesion [94, 95]. In both directions (anterograde 

and retrograde), degeneration may continue to the nearby synapses and neurons in a 

process called transynaptic degeneration [96). 

Transynaptic degeneration 

In long pathways, where there is more than one order neuron, degeneration may involve the 

entire pathway in a process called transynaptic degeneration. Degeneration of the pathway 

continues in both directions (anterograde vs retrograde). For example, transynaptic 

anterograde degeneration may occur when the retina is damaged, degeneration affects the 

pathway up to the visual cortex including the lateral geniculate nucleus. This has been 

suggested in a study on the lateral geniculate nucleus in patients with MS, when there was 

reduction in the number of neurons in the nucleus. While transynaptic retrograde 

degeneration occurs when the visual cortex is damaged for example, degeneration may 

continue through the lateral geniculate nucleus up to the retinal neurons [95, 97). 

1.9 The spinal cord in progressive multiple sclerosis 

In this project we have examined the spinal cord pathology in progressive MS. The 

progressive forms of MS are frequently associated with irreversible disability. The two major 

forms, PPMS and SPMS, have different clinical, radiological, and pathological features. 

PPMS commonly presents with spinal cord lesions and has been suggested to be a different 

disease entity [98-100]. PPMS is associated with poorer prognosis compared to SPMS; on 

average it takes 6 years for PPMS patients to develop severe disability, compared to 11 
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years in patients with RRMS [101]. Howeve, when RRMS patients enter the phase of 

progression, the rate of clinical deterioration was found to be similar in PPMS and SPMS 

[41]. Therefore, the subtype of the disease at presentation (PPMS vs RRMS) is considered 

the most important factor affecting disease prognosis. Radiologically, there are more brain 

lesions affecting RRMS and SPMS compared to PPMS [102], and pathologically, there is a 

greater amount of inflammation (103). However, most of the previous studies have been 

conducted at the level of the brain and few studies have been carried out on the spinal cord 

GM [104-108). Recognition of the importance of spinal cord pathology in studying MS 

disease has increased recently. Based on the recent McDonald criteria, incorporating spinal 

cord MRI with brain MRI in the diagnosis of MS increases the sensitivity of diagnosis up to 

100% [53, 109, 110). Atrophy of the spinal cord in progressive MS has been confirmed 

previously [105,111,112). This atrophy correlates significantly with disability [113-116). MRI 

measurement of spinal cord atrophy was also used as an indicator to follow the disease 

response to treatment [117-119). 

Furthermore, lesions of the spinal cord commonly involve the WM and the GM which gives 

the examiner the ability to compare pathology in the GM and the WM within the same lesion, 

same subject and same level [105, 120, 121]. Similarly, ascending tracts and descending 

tracts can be found in the same lesion and thus their pathology can be compared [122). 

More interest has arisen during the last decade in studying the mechanism and extent of 

spinal cord pathology [2,4). The new interest is evidenced by the number of publications that 

can be found in Pub Med under these keywords; multiple sclerosis; brain, gray matter or 

grey matter, and spinal cord (Pub Med was accessed through the search feature of endnote 

programme on 12111/2010). The number of articles that has multiple sclerosis in the title was 

26270 papers. If the keyword "brain" is added, the number is 889, while the number reduces 
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significantly when the keyword "spinal cord" is added instead of the keyword "brain" (230 

papers). 

The number of studies that have the keywords "multiple sclerosis" and "brain" and "gray 

matter" is 16 studies. On the other hand, only 3 studies were found, when you replace the 

keyword "brain" with "spinal cord", which were all carried out in our lab [104, 106-108]. 

Figure 1.1 demonstrates the number of published studies over the last 15 years that has the 

word multiple sclerosis and gray matter or grey matter in their title. This certainly does not 

include all the studies that investigated pathology of the GM in MS disease, but it gives a 

rough comparison between the number of studies in the last two decades. 

The data above indicates that there is a significant lack of research in the histopathology of 

the spinal cord in MS. In addition, there are few studies that investigated the differences in 

the pathology between disease subtypes at the level of the spinal cord. 

1.10 Thesis outline 

Using quantitative measures, this thesis examines the histopathology of MS at the level of 

the spinal cord. Quantification includes the five major eNS changes involved in MS, which 

are atrophy of tissue, degree of demyelination, OLs loss, axonal loss and neuronal loss. The 

project investigates the variation in these measures between MS and controls and between 

PPMS and SPMS. The analysis involves multiple spinal cord segments and is not restricted 

to the upper cervical levels. This can address the effects of topographic variation on atrophy, 

demyelination degree, OLs loss, axonal loss, and neuronal loss. 

This research has been carried out by studying human autopsy material of both controls and 

MS patients. For the next chapter, the degree of atrophy and demyelination of the spinal 

cord was investigated in PPMS and SPMS using the MBP antibody. 
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In Chapter 3, optimisation of a reliable quantification process of OLs was established. For 

Chapter 4, the unbiased quantification process of OLs was applied to assess numbers of 

OLs in the ventral hom (VH) and the dorsal hom (DH) of the spinal cord, while for Chapter 5 

we quantified OLs in the spinal cord WM. 

Quantification ofaxons was carried out for Chapter 6 using immunohistochemistry with 

NE14 marker. The quantification process ofaxons was similar to the protocol applied on 

quantification of OLs in the WM, ie quantification ofaxons and OLs was carried out in 

topographically the same fields. Chapter 7 investigates numbers of neurons in the VH. 

Chapter 8 summarises the thesis and includes suggestions for future work. 
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o 

Year 

Figure 1.1: The number of studies that have multiple sclerosis and grey (or gray) matter as the key words. Pub Med was 
accessed on 12110/2010. 
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Chapter 2: Demyelination and atrophy of the spinal cords of 

progressive MS 

2.1 Introduction 

The extent of demyelination and the degree of atrophy of the CNS are essential 

features to examine in PPMS and SPMS. It has been estimated that 75% of MS 

patients have spinal cord lesions at presentation [123]. These lesions are associated 

with loss of myelin, axons and Ols. loss of these elements may lead to CNS 

atrophy. It is also believed that this atrophy is an early process. Axonal loss and 

atrophy have been found to be significant in patients with disease duration less than 

5 years [111]. 

The exact mechanism of spinal cord atrophy in MS is still unknown. The relation 

between amount of demyelination and atrophy is not clear. Different mechanisms 

and theories have been suggested to explain nature of atrophy. An earlier 

histopathology study showed that local effects of lesions on atrophy are probably 

limited [112]. Conversely, in an MRI study, degree of atrophy was found to be 

significantly affected by degree of spinal cord lesions [115]. A histopathology study 

has also reported significant positive correlation between atrophy and demyelination 

[124]. Histopathological studies are well known as being more accurate than MRI 

studies in assessing the cord cross sectional area (CSA) and degree of 

demyelination [125]. 

2.2 Volume of the GM in multiple sclerosis 

Few studies have investigated the degree of atrophy and degree of demyelination in 

the GM of the spinal cord. While GM atrophy of the brain has been confirmed 

previously, GM atrophy of the spinal cord has not yet been confirmed. There is also 
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some evidence that spinal cord pathology is independent of brain pathology because 

neither atrophy nor occurrence of lesions correlates [126]. 

Two previous histopathology studies examined potential atrophy of the spinal cord 

GM and they showed opposite results. The first study was carried out in 2000, and 

reported that spinal cord atrophy was due to WM and GM atrophy to the same 

degree, and that the GM:WM ratio of MS subjects was similar to controls even with 

the presence of significant atrophy [127]. Later, in 2005, Gilmore et al reported in a 

histopathology study that atrophy is purely due to loss of the WM volume and that 

GM volume is well preserved in spinal cords of subjects with MS [105]. The later 

study in 2005 was well controlled and utilised a larger sample size (55 MS and 33 

controls compared to 5 MS and 6 controls). 

Gilmore and his colleagues attributed the preservation of the spinal cord GM in MS to 

the discrepancies in connectivity of the examined GM regions. Regions of the GM 

that have extensive connections with various structures of the eNS, such as the 

thalamus, are more vulnerable to atrophy than other regions. This fact has been also 

stated in other studies [105, 128, 129]. 

The effect of distant lesions via transynaptic retrograde or anterograde degeneration 

is one of the presumed mechanisms in atrophy of the GM areas with extensive 

connections [130, 131]. The reported WM atrophy and preservation of the GM in the 

spinal cord is further supported by the finding that spinal cord atrophy is minimal in 

the lower cord where the WM content is small. Therefore, understanding the 

discrepancy in nature of atrophy between the brain and the spinal cord may be very 

useful in explaining mechanisms of atrophy. 
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While the clinical significance of spinal cord GM pathology has not been confirmed 

yet, a number of studies has demonstrated the clinical significance of GM atrophy in 

the brain [132-134]. For example, GM atrophy of the brain seems to be more related 

to progression of the disease than WM atrophy [134] and GM disease dominates the 

pathological process of MS in the progressive phase of the disease [132]. Correlation 

of brain GM atrophy with disease disability has also been reported previously [132, 

134] and even reported to reflect disability better than WM atrophy or WM lesions 

[134]. In a study executed on PPMS, degree of cerebral GM pathology was found to 

be a significant predictor of disability over 5 years of follow up [135]. In SPMS, a 

cross-sectional study showed that decline in the brain volume has a significant effect 

on patient disability [136]. 

2.3 Variation between primary progressive and secondary progressive 

multiple sclerosis 

Although the two major forms of progressive MS (PPMS and SPMS) share a similar 

degree of neuropsychological disability [137], they are different in other aspects, 

such as disease course, extent of demyelination and inflammation [103, 138], total 

number of lesions, rate of occurrence of new lesions [138, 139], and degree of 

atrophy [102]. 

2.3.1 Variation in degree of demyelination and Inflammation 

A study by Foong in 2000 analysed 12 patients with SPMS and 13 patients with 

PPMS. The study demonstrated more lesions in the brains of SPMS compared to 

PPMS, but the neuropsychological deficits did not show significant difference [137]. 

Comi et al (1995) studied 14 patients with PPMS and 17 patients with SPMS for 

variation in brain MRI and relation to cognitive functions. Lesions were significantly 

more extensive in the brains of SPMS compared to PPMS, especially in the frontal 
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and occipital lobes. In addition, SPMS patients showed more neuropsychological 

abnormalities than PPMS [140]. 

The significantly higher frequency of enhancement with gadolinium in new lesions of 

SPMS compared to PPMS is a good evidence that degree of inflammation may vary 

among the two forms [139]. Revesz et al (1994) conducted a human pathological 

study on 9 cases of MS (4 PPMS and 5 SPMS). The study reported a significant 

difference in the degree of demyelination and inflammation in PPMS and SPMS. 

Degree of demyelination and inflammation was much higher in the brains of SPMS 

than PPMS, but there was no difference at the spinal cord level [103]. 

Longitudinal studies have also reported differences between the two disease 

subtypes. In an MRI study that followed up progressive MS patients over one year, 

imaging of the brain and the cord showed that 85% of new lesions occurred in the 

brains of SPMS patients, with much fewer new lesions affecting the PPMS patients. 

New spinal cord lesions formed only 5% of the total number of new lesions, with no 

difference between PPMS and SPMS [138]. It was also found that PPMS is 

associated with diffuse abnormality, but SPMS causes more focal lesions of the cord 

[102]. 

Another MRI study by Thompson et al (1991) showed that rate of occurrence of new 

lesions is 18.2 lesions per patient per year in SPMS, compared to 3.3 lesions per 

patient per year in PPMS. However, the clinical deterioration over the follow up 

period did not show significant differences between PPMS and SPMS [139]. 

There is little information about the differences between PPMS and SPMS at the 

level of the spinal cord, and the pathology study by Revesz investigated a small 
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sample size (4 PPMS and 5 SPMS). MS lesions of the spinal cord may have better 

correlation with disability than brain lesions, because higher numbers of new lesions 

in the brains of SPMS subjects were not associated with significant difference in the 

clinical deterioration between PPMS and SPMS [139]. This may indicate that the 

clinical deterioration over time correlates with new spinal cord lesions rather than 

brain lesions. Nonetheless, the better correlation of the spinal cord pathology with 

signs and symptoms of MS has been suggested previously [110, 141]. 

2.3.2 Variation in atrophy 

Degree of spinal cord atrophy is apparently not similar in PPMS and RRMS. Nijeholt 

et al (1998) used various MRI parameters of the brain and the spinal cord to 

differentiate between MS subtypes. They found that SPMS had more spinal cord 

atrophy than RRMS and PPMS [102]. 

A recent longitudinal MRI study conducted by Fisher et al (2008) followed 17 healthy 

control subjects, 36 RRMS, and 27 SPMS patients for 4 years. Both GM and WM 

atrophy were measured on a number of occasions. Fisher and colleagues reported 

that brain WM atrophy affects the three groups to the same degree, but GM atrophy 

rate varies among the groups and was most prominent in SPMS. The study also 

revealed significant correlation between tissue damage and GM atrophy in RRMS. In 

SPMS, there were no predictors of GM atrophy, which indicates that atrophy in the 

progressive form of the disease continues regardless of age and gender and, most 

importantly, regardless of lesion load. However, rate of brain GM atrophy correlated 

Significantly with development of disability over the period of follow up [132]. Although 

the study did not include PPMS subjects, it gives an idea about the pattern of atrophy 

in RRMS and SPMS. Therefore, it is important to investigate if there is any difference 

in degrees of atrophy and demyelination of the spinal cord between PPMS and 
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SPMS. In this study. post-mortem analysis of a large sample of spinal cords from 

both PPMS and SPMS was carried out. 

2.4 Aims and hypothesis 

Spinal cord atrophy correlates with disability in MS patients and can be used to follow 

up treatment strategy [116]. In spite of MRI development in estimating spinal-cord 

atrophy. the small size of the lower cord restricts accurate estimation of atrophy and 

demyelination in the lower cord levels due to MRI resolution limitation. In order to 

precisely assess the dynamics of spinal cord lesions and atrophy, accurate 

measurement of these parameters in multiple cord levels is essential. 

In addition, pathological studies have demonstrated greater accuracy in assessing 

degree of spinal cord demyelination. Gilmore et al 2009 reported less accuracy in 

identifying demyelination by in vitro MRI compared to histopathology. This was more 

obvious in the GM [108]. Such findings may direct future MRI techniques toward 

improving GM imaging. Therefore, post-mortem pathological studies are helpful in 

validating MRI results and help in improving accuracy of future MRI techniques. 

Accurate assessment of atrophy in vivo may enable clinicians to predict disability and 

response to treatment accurately. MRI studies showed differences in the nature and 

degree of atrophy between PPMS and RRMS. mainly at the level of the brain. There 

is little information about differences in the degree of atrophy and demyelination 

between PPMS and SPMS at the spinal-cord level. 

In this study, MS and healthy human autopsy material will be analysed by measuring 

the eSA of the spinal cord section. Results will be compared between MS and 

controls and between PPMS and SPMS. Same analysis will be applied on the GM 

31 



Pathology of the spinal cord in progressive multiple sclerosis (primary progressive vs secondary progressive) 

and the WM sectional areas separately, to assess the contribution of GM and WM in 

the atrophy. The effects of independent factors such as age, gender, disease 

duration, disease subtype and cord level on the cord CSA will be assessed. The 

demyelinated regions will be measured. Absolute lesion size (the cross-sectional 

areas of the lesion) and proportion of lesion area to the CSA of the WM and the GM 

will be calculated. 

2.5 Material and methods 

Human spinal cords autopsy material was available from three sources: the MS 

Society Tissue Bank (Imperial College, London) (PPMS = 12, SPMS = 15, Controls = 
5), Netherlands Brain Bank (Netherlands Institute for Neuroscience, Amsterdam) 

(PPMS = 7, SPMS = 23, Controls = 5), and Oxford Radcliffe NHS Trust (Controls = 
6). 

Considering the whole sample of tissue: the age range of PPMS subjects (n = 19; 6 

males and 13 females) is between 45 and 92 years (mean ± SO = 67.8 ± 13.4 years) 

and the disease duration between 5 and 54 years (mean = 25.6 ± 14.5 years); for 

SPMS subjects (n = 38; 11 males and 27 females) the age is between 34 and 85 

years (mean = 58.4 ± 13.6 years) and the disease duration between 4 and 54 years 

(mean = 26.0 ± 14.3 years); for Control (n = 16; 6 males and 10 females), the age 

range is between 33 and 93 years (mean = 67.3 ± 3.2 years). 

The spinal cords were dissected after a post-mortem delay of 8 to 33 hours for 

Controls (mean = 18.1 ± 8.4 hours), 5 to 21 hours for PPMS (mean = 10.4 ± 5.3 

hours) and 4 to 28 hours for SPMS (mean = 10.4 ± 6.0 hours). For several cases, the 

post-mortem delay was not available (Tables 2.1, 2.2, and 2.3). Consent to obtain 

tissue for research purposes and to access medical records was taken from the 
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donor or the next of kin. Detailed clinical information is available for most cases. 

Diagnosis of MS has been pathologically confirmed for all cases. The clinical 

disability preceding death for the two groups (PPMS and SPMS) was found to be 

similar in a previous study, where EDSS was found to be greater than 8 for majority 

of cases [142]. The study was approved by the Local Research Ethics Committee. 

Table 2.1: The controls sample 

Source oftissue 
Subject 10 Gender Age Post-mortem 

Available spinal cord segment 
number (Years) delay (Hours) 
272 female 54 Cervical, lumbar 
414 female 66 Cervical, lumbar 

Oxford controls 
458 female 68 Cervical, Lumbar 
3269 male 77 Cervical, lumbar 
3313 male 50 Cervical. lumbar 
4254 male 33 Cervical (not included in analysis). lumbar 
11 male 77 26 Lumbar 
14 female 64 18 Cervical. lumbar 

Tissue bank 
22 female 69 33 cervical 

controls 32 male 88 22 Lumbar 
080 female 93 9 Thoracic Lumbar 
45 female 41 14 cervical 
142 male 73 25 cervical 

Dutch tissue 250 female 68 cervical 
controls 270 female 72 cervical 

400 female 83 8 Cervical 

2.5.1 Initial preparation of tissue 

MS society tissue bank sample 

MS Society tissue bank sample includes frozen blocks from various levels of the 

cord. From 15 cases of MS subjects and 2 cases of controls we have two blocks, 

while from the other cases we have only one block from each subject. Therefore, 49 

blocks (7 controls and 42 MS) from the MS Society tissue bank were analysed. After 

dissection, all spinal cord blocks were fixed immediately in 4% paraformaldehyde for 

2 weeks, then cryoprotected with 30% sucrose for one week. This was followed by 

immersion in isopentane on a bed of dry ice. From that time, all blocks have been 

stored at -75 degrees. Blocks were then defrosted at our laboratory and formalin-

fixed paraffin-embedded blocks were produced. The formalin-fixed paraffin-

embedded sections were cut at a thickness of 5 J.1m, mounted on Superfast slides, 

and dried overnight at 37°C. 
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Netherlands brain bank 

A collection of 35 sections of tissue from Netherlands brain bank had been fixed in 

10% formalin for 30 days. Tissue material was taken from the cervical cord. Similarly, 

5 J.1m thick sections were cut from the formalin-fixed paraffin-embedded blocks, 

mounted on Superfast slides, and dried overnight at 37°C. 

Oxford Radcliffe Hospital Brain Bank 

Six controls were selected randomly from archival material that had been obtained 

originally from the neuropathology department of Oxford Radcliffe NHS trust. From 

each control subject, two blocks were selected for analysis; one is cervical and the 

other is lumbar. Similarly, the formalin-fixed paraffin-embedded sections were cut at 

5 J.1m, mounted on Superfast slides, and dried overnight at 37°C. However, one 

cervical section was not used because of partial tissue loss during sectioning. 

Therefore, 11 sections from the 6 controls were included in the analysis. 

2.5.2 Immunohistochemistry 

The sections were deparaffinised using xylene and rehydrated in reducing 

concentrations of ethanol (100%, 96%, 70% and water). Endogenous peroxidase 

was blocked using 0.3% H202 in methanol. For antigen retrieval sections were 

heated in Tris/EDTA (pH 9). The immunohistochemistry staining used primary 

antibody against myelin (MBP, dilution 1 :200, DAKO). The sABC method for 

immunohistochemistry was performed as previously described in Geurts et al 2005 

[143]. 

2.5.3 Image analysis 

The MBP-stained slides were numbered so that the primary observer is blinded to 

the disease type. All slides were scanned by the Nanozomer Digital Pathology (NDP, 
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Hamamatsu, Japan). The NDP machine converts the slides into digital slides by 

scanning the slides at specified magnification. All our slides were scanned at 

magnification of 40X. These digital slides can be viewed by the computer by special 

software called NDP.view software. The software enables the examiner to view the 

scanned slides and to magnify them up to 40 times with the same resolution as a real 

microscope. It also enables the investigator to take accurate calculations of 

distances, surface areas and boundaries. The software can be used for drawing 

around various structures, such as the GM and the WM, and export any field of 

interest as a digital image in the JPEG format [144]. 

2.5.4 Demarcation of surface areas 

The WM and GM boundaries were demarcated in all electronic sections. The GM 

boundary that we applied in this study ends at the cap of the DH, which is called the 

posterior marginal nucleus or zona spongiosa. To increase the accuracy of drawing, 

boundaries of the GM, WM area and demyelination areas were drawn using a digital 

pen on a graphic tablet (graphic tablet MD 85637 from Medion). The NDP.view 

software automatically calculates the surface area within the drawn border. Surface 

areas were measured in mm2
• 

The frequency of demyelination of important structures of the spinal cord was 

estimated, such as the posterior column pathway (PCP), the area of the corticospinal 

tract (CST), the DH, and the VH. Initially, the PCP was identified in all sections and 

the area occupied by the lateral CST was identified based on the description 

mentioned previously [122]. For more objective description, it is the area of the lateral 

funiculus that is dorsal to a horizontal line passing through the posterior border of GM 

commissure. Various DH structures were identified based on Rexed description [145, 

146]. The aim is to look for involvement of the nucleus proprius. The DH was 
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considered affected when the nucleus proprius was demyelinated because the 

substantia gelatinosa is normally unmyelinated area. The nucleus proprius is a 

heavily myelinated area that forms the bulk of the DH. In all sections, the area of the 

substantia gelatinosa was initially delineated. The post marginal zone was also 

demarcated, which is the thin myelinated area dorsal to the substantia gelatinosa and 

called the cap. Ventral to the substantia gelatinosa, the nucleus proprius was 

localized. 

Table 2.2: The multiple sclerosis sample (MS society tissue bank) 

Duration 

Subject 10 Gender 
Type of the Age of the Post-mortem Available level disease (years) disease delay (hours) 

(years) 
8 male PPMS 77 28 5 Cervical, lumbar 
40 female PPMS 58 21 6 Cervical, lumbar 
44 female PPMS 45 20 17 Thoracic lumbar 
57 female PPMS 77 31 9 cervical 
70 female PPMS 77 22 21 Cervical lumbar 
81 male SPMS 72 47 23 lumbar 
83 male PPMS 54 16 12 Cervical, lumbar 
102 male PPMS 73 52 20 lumbar 
105 male SPMS 73 46 8 Thoracic, lumbar 
111 male PPMS 92 54 9 Cervical, lumbar 
114 female SPMS 52 15 12 Cervical lumbar 
127 male SPMS 51 10 21 thoracic 
128 female SPMS 78 50 22 cervical 
136 male SPMS 40 9 10 Cervical, lumbar 
143 female SPMS 62 19 Cervical, lumbar 
147 female SPMS 60 21 27 Cervical 
157 female SPMS 39 22 12 cervical 
162 female SPMS 58 22 14 cervical 
187 female SPMS 57 17 13 Cervical lumbar 
191 female SPMS 48 32 28 thoracic 
216 female PPMS 53 5 9 Thoracic, lumbar 
218 female SPMS 56 26 7 thoracic 
231 female PPMS 59 27 Thoracic, lumbar 
263 female PPMS 73 37 Cervical lumbar 
266 female PPMS 75 8 Cervical, lumbar 
298 male SPMS 72 43 11 cervical 
300 female SPMS 56 34 13 thoracic 

Lesions sizes were calculated and classified as pure WM lesions, pure GM lesions 

and mixed lesions. Then demyelinated areas of the WM were calculated separately 

from the demyelinated areas of the GM. 
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2.5.5 Classification of the sections according to the cord level 

The main cord level was already known for all sections (cervical, thoracic, or lumbar). 

The classification process included identifying the cord segment and whether the 

section was taken from the upper or the lower segment of the main cord level. This 

has been identified based on morphology of the spinal cross section, which mainly 

depends on GM morphology [147]. Sections were categorised into five groups; 

upper cervical (C2-C4), lower cervical (C5-C8), thoracic (T1-T12), upper lumbar (L 1-

L3) and lower lumbar (L4-L5). 

2.5.6 Statistical analysis 

All statistics were calculated using SPSS 14. The means of the two disease subtypes 

were compared using student t-test. Interobserver reproducibility was tested by 

calculating the coefficient of variation or Pearson correlation (r). Chi-squared test (X2 

test) was used to find out the relation between the frequency of demyelination of the 

spinal cord structures and progressive MS subtypes. For correlation of atrophy and 

demyelination with disease duration, partial correlation was used controlling for age, 

gender, disease duration, segment level and disease subtype. Linear regression was 

used to study the effects of gender, disease duration, and disease type, and level of 

the cord on the cord CSA and degree of demyelination. 

2.5.7 Reliability and reproducibility 

Interobserver reproducibility for identification of the cord level depending on 

morphology of cross section was tested (r = 0.9, p < 0.0001 ).The coefficient of 

variation was used for testing interobserver reproducibility of surface areas 

measurements. The results of coefficients of variation were 1.7% for the whole CSA, 

2% for the WM area, and 6% for the GM area. The two measurements of the 

demyelinated areas of the WM and the GM had interobserver coefficients of variation 
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of 4.4% and 9.3% respectively. To study the contribution of different shrinkage 

factors between London MS tissue and Netherland MS tissue, the CSA of the exact 

cord level was compared between the two sources (r = 0.877, P = 0.010). Results are 

shown in Table 2.4. 

Table 2.3: Multiple sclerosis sample (Netherlands brain bank) 

Subject 10 Gender Type of the Age Duration of the Post-mortem Available level disease (years) disease (years) delay (hours) 
21 female SPMS 70 27 6 cervical 
24 female SPMS 62 29 7 cervical 
59 female SPMS 34 10 7 cervical 
73 male SPMS 77 41 7 cervical 
115 female PPMS 57 19 6 cervical 
116 female SPMS 36 11 6 cervical 
121 female SPMS 45 14 11 cervical 
125 female SPMS 58 20 8 cervical 
132 female PPMS 79 44 8 cervical 
155 female SPMS 85 54 4 cervical 
161 female SPMS 41 7 4 cervical 
177 female SPMS 71 31 10 cervical 
189 female PPMS 82 15 4 cervical 
192 female SPMS 63 32 7 cervical 
202 male SPMS 50 7 6 cervical 
228 male SPMS 70 21 6 cervical 
232 female SPMS 40 4 7 cervical 
234 female SPMS 81 49 4 cervical 
248 female PPMS 57 7 8 cervical 
264 male SPMS 51 29 8 cervical 
276 male SPMS 56 13 5 cervical 
282 female SPMS 76 53 14 cervical 
307 male SPMS 72 42 5 cervical 
309 female SPMS 60 22 9 cervical 
323 female PPMS 70 36 9 cervical 
338 male PPMS 48 19 cervical 
352 female SPMS 53 19 7 cervical 
385 female SPMS 40 18 7 cervical 
404 female SPMS 54 11 7 cervical 
3070 male PPMS 83 37 7 cervical 

Table 2.4: Surface area of the cervical segments of MS tissues obtained from the MS society tissue bank and from 
Netherlands brain bank. Tissue from Netherlands contains only cervical cord tissue. 

CSA of the cord (Tissue bank CSA of the cord (Netherlands tissue sample) 
Level sample) 

Mean in mm 
2 

Meaninmm 
2 

C2 31.10 28.25 

C3 34.53 39.30 

C4 30.35 28.20 

C5 42.20 41.55 

C6 42.00 49.90 

C7 50.95 56.74 

C8 63.10 54.46 
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2.6 Results 

2.6.1 General observations 

We examined 95 MBP-stained sections taken from 73 subjects (29 sections from 

PPMS, 43 sections from SPMS, and 23 sections from healthy subjects). It was 

possible to clearly identify the GM from the WM at low magnification for most of the 

sections. However, when there was extensive demyelination, high magnification was 

required for delineation of the GM from the WM. Spinal cord areas such as the VH, 

DH, PCP, and the area of the CST were identified in all sections. 

The MBP stain showed the unmyelinated areas clearly. The normally unmyelinated 

areas in the spinal cords of healthy controls include the part of the intermediate GM 

around the central canal, the substantia gelatinosa and the outermost area of the 

lateral horns. These areas were considered when MS slides were examined for 

abnormality. 

In MS, both spinal cord GM and WM were affected by demyelination. Lesions 

commonly involved the GM and the WM without respecting the boundary. However, 

lesions seem to extend from the WM to the GM but not the opposite direction, ie 

lesions frequently acquires the shape of the VH (Figure 2.1). 

In the PCP 14 separate lesions were detected. These were midline, bilateral and 

frequently symmetrical lesions (Figure 2.2). These lesions were seen in both disease 

subtypes and there was no association between size of lesion and disease duration. 

2.6.2 General statistics and distribution of demyelination 

Number of sections that showed abnormality was 48, which constitutes 67% of MS 

sections. About 70% of the cervical sections showed abnormality, compared to 62% 
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and 58% in the thoracic and lumbar sections respectively. Out of the 43 sections with 

SPMS, 35 sections (81%) showed abnormal appearance, while 13 sections (45%) 

from the 29 PPMS blocks showed abnormality. 

The CST and the PCP were commonly seen to be affected by complete 

demyelination. The PCP was affected in 53% of all sections and in 72% of the 

abnormal-appearing sections, while the CST was affected in 57% of all sections and 

in 69% of the abnormal-appearing sections. 

About 63% of all SPMS sections showed PCP involvement, while in PPMS 37% of 

sections showed PCP lesions (Pearson chi square = 5.067, p = 0.024). The SPMS 

also showed more frequency of CST involvement than PPMS: 74% of SPMS 

sections have CST lesions compared to 30% of PPMS sections that have CST 

lesions (Pearson chi square = 14.253, P < 0.001). 

With respect to the DH involvement, 52% of SPMS showed demyelination of DH 

compared to 27% involvement in PPMS (Pearson chi square = 4.846, P = 0.028). 

The VH was affected in 38 sections, which forms 50% of all sections. The VH was 

also involved more in SPMS, in which 63 % of SPMS sections showed VH lesions, 

compared to 30% of PPMS sections ( Pearson chi square = 7.930, P = 0.005). Ten 

sections showed extensive demyelination that occupied more than 50% of the cord 

CSA and all these sections were cervical (9 of them are SPMS and only one PPMS). 

2.6.3 The spinal cord cross sectional area 

The cross sectional areas of liS spinal cords was less than controls 

The mean CSA of spinal cords in MS subjects was lower than normal controls in all 

levels except the thoracic level. In the cervical region, there was significant 31% 
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reduction in the CSA compared to controls. This decline was more prominent in the 

upper cervical (46% atrophy, p = 0.001) compared to lower cervical (26% atrophy, p 

= 0.009). In the thoracic cord, our data showed that the CSA in MS was higher than 

controls. Since we have only one thoracic block as a control, the comparison 

between MS and controls cannot be reliable at this cord level. 

The lumbar regions of MS showed less atrophy than the cervical levels. Compared 

to controls, the sectional areas of the upper lumbar and lower lumbar regions were 

reduced by 20% (p = 0.086) and 29% (p = 0.099) respectively (Table 2.5). 

Atrophy of the spinal cords of MS affects the GM and the WM 

The amount of WM was reduced by 45% in the upper cervical segment (p < 0.001) 

and 28% in the lower cervical segment (p = 0.008). Similar results were obtained 

from the GM measurements, where the cervical GM atrophy was significant in the 

upper cervical (48% atrophy, p = 0.004) and the lower cervical GM (22% atrophy, p = 
0.045). 

Results from the lower levels of the cord showed markedly less decline in the CSA 

of the WM and the GM, which was statistically insignificant except in the GM of the 

upper lumbar segment (p = 0.049) (Table 2.6). 

Table 2.5: The CSA in the 5 examin • segments 0 t e spina co in ed fh' I rd MS and controls 

Segment Controls and MS PPMS and SPMS 

Category CSA (mm2
) so (mm2

) Sig CSA(mm~) SO (mm~) Sig 

Control n=4 58.82 6.03 PPMS 35.76 5.77 
Upper Cervical 

MS n = 15 31.89 6.31 
.001 

SPMS 28.50 4.80 
.022 

Control n = 8 69.69 14,34 PPMS 55.36 14.23 
Lower Cervical 

MS n = 32 51.62 13.90 
.009 

SPMS 50.38 13.86 
.388 

Control n = 1 20.60 .... 
.154 

PPMS 31.43 5.42 
Thoracic 

MS n= 8 28.40 4.86 SPMS 27.30 4.32 
.275 

Control n=5 42.92 11.69 PPMS 35.65 3.59 
Upper Lumbar 

MS n = 11 32.5 7.34 
.086 

SPMS 32.38 10.55 
.491 

Lower Lumbar 
Control n=5 49.92 1.41 PPMS 40.54 13.6 
MS n=6 37.60 17.26 

.099 
SPMS 

.115 
10.60 ..... 
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2.6.4 Spinal cords of SPMS have greater degree of atrophy than PPMS in the 

upper cord levels 

When comparison of the eSA was performed between PPMS and SPMS, the mean 

eSA in SPMS was lower than eSA of PPMS in all segments; however, this 

difference was statistically significant only in the upper cervical segment. The upper 

cervical segment eSA of SPMS subjects was 28.5 mm2
, while the corresponding 

segment in PPMS showed a eSA of 35.8 mm2 (p = 0.022) (Figure 2.3, Table 2.5). 

SPMS has less GM and WM surface area compared to PPMS. Nevertheless, there 

was no statistical significant difference in the GM and WM surface areas between 

PPMS and SPMS. The only exception was the WM surface area of the upper cervical 

segments, which demonstrated Significant difference between PPMS and SPMS (p = 
0.030) (Table 2.6). 

Effects of independent factors on the cross sectional area of the cord 

In controls, the eSA of the cord was Significantly reduced with age controlling for 

gender and cord level. Partial correlation between age and cord eSA showed a 

correlation coefficient of - 0.569 and a p value of 0.007. In MS, controlling for gender, 

cord level and type of the disease, there was no significant effect of disease duration 

(p = 0.446) or type of the disease (p = 0.294) on the cord eSA. 

2.6.5 Lesions numbers and sizes 

Number of lesions that have been identified was 76; average = 2 lesions/section. 

There were 40 WM lesions, 26 mixed lesions and 10 GM lesions. Average lesions 

number per section was = 2 lesions/section in the cervical, = 2 lesions/section in the 

thoracic, and = 1 lesion/section in the lumbar area. The mean lesion size was 7.18 ± 

SO = 8.8 mm2 in the cervical, 1.70 ± 1.5 mm2 in the thoracic and 2.59 ± 3.3 mm2 in 
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the lumbar. According to lesions type, the mean lesion size was 0.8 ± 0.66 mm2 in 

the GM, 2.3 ± 2.5 mm2 in the WM, and 13.4 ± 9.6 mm2 in mixed lesions. 

When the two disease subtypes were compared, the mixed lesions sizes had a mean 

of 14.7 mm2 in SPMS and 11.1 mm2 in PPMS (p = 0.390), the pure WM lesions have 

a mean of 2.7 mm2 in SPMS and 1.1 mm2 in PPMS (p = 0.009), and pure GM lesions 

have a mean of 0.6 mm2 in SPMS and 1.0 mm2 in PPMS (p = 0.450). 

Linear regression, controlling for age, gender, disease duration, disease type, lesion 

type, and cord level showed that the main predictor for lesion size was the lesion 

type, by being larger in mixed lesions (p < 0.001). When lesion type was dropped, the 

main predictor was the cord level by being larger in upper cord levels (p = 0.013). 

Table 2.6: The CSA in the GM and the WM separately 

GM WM GM WM 
Type of Type of the 

level sample 
CSA (mm

2
) 

CSA disease CSA CSA 
p 

(mm
2

) 
p 

(mm2
) 

p 
(mm

2
) 

p 

Control 7.63 51.20 PPMS 4.43 31.32 .030 
Upper .000 .197 
Cervical MS 4.00 

.004 
27.89 SPMS 3.62 24.88 

Control 13.03 56.65 PPMS 11.19 44.17 
Lower .045 .008 .269 .437 
Cervical MS 10.14 41.48 SPMS 9.80 40.58 

Control 2.64 17.96 PPMS 4.39 27.04 

Thoracic 
.336 .186 .060 .433 

MS 3.64 25.21 SPMS 3.18 24.12 

Control 12.91 30.01 PPMS 6.26 29.39 
Upper .049 .389 .693 .108 
Lumbar 

MS 6.73 27.43 SPMS 7.30 25.08 

Control 17.66 32.26 PPMS 16.23 24.31 
Lower .275 .056 .126 .113 
Lumbar MS 14.46 21.09 SPMS 5.65 4.95 

2.6.6 Proportion of demyelination 

Proportion of demyelination Is higher In the upper spinal cord segments 

Demyelination affected mainly the cervical regions of the spinal cord (24%) 

compared to the thoracic (6.5%) and the lumbar regions (4.7%). Proportion of 
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demyelination was highest in the lower cervical region, where 26.8% of the cord was 

demyelinated, while the upper cervical cord showed 18.4% demyelination. In 

contrast, the upper lumbar showed 6.95% demyelination and the lower lumbar region 

showed only 0.58% of demyelination. Demyelination of the GM and the WM were 

observed to be greater in the higher cord levels (Tables 2.7 and 2.8). 

Proportion of demyelination in SPMS and PPMS spinal cords 

Regardless of cord level, overall demyelination was 8% in PPMS and 24% in SPMS 

(p = 0.002). In the upper cervical segment of PPMS degree of demyelination was 

6%, compared to 29% in the corresponding area of SPMS (p = 0.053). In the lower 

cervical region the mean proportion of demyelination was 30.2% in SPMS and 16.6% 

in PPMS (p = 0.247). Similarly, results from the rest of the spinal cord segments also 

did not show significant differences between PPMS and SPMS in the degree of 

demyelination (Table 2.8, Figure 2.3). 

Table 2.7: Proportion of demyelination in the main cord levels and in the main 5 seaments cateQories. 

Corddem % Segment 
Corddem % 

Type of the 
Corddem% 

P Block 
level Mean 

Range Category Mean SO disease Mean Range value 
(median) (median) 

Upper 18.35 23.66 
PPMS 5.93 00-28 (0.00) 

.053 cervical SPMS 29.22 00-78 (28) 
Cervical 24.12 00-91(19) 

Lower PPMS 16.65 00-75 (0.6) 
cervical 26.83 28.34 

SPMS 30.22 00-9f(29) 
.247 

thoracic 00-39 (0.9) Thoracic 6.53 13.40 
PPMS 2.09 00-6(0.00) .511 6.53 SPMS 9.20 00-39 (2) 

Upper 6.95 11.88 
PPMS 7.50 00-26-(00) 

.878 lumbar SPMS 6.29 00-30 (00) 
lumbar 4.70 00-30 (0.00) Lower PPMS 0.70 00-2 (00) 

lumbar 0.58 0.90 
SPMS 0.00 00-00 (00) .542 

Proportion of demyelination of the GM and the WAf 

By further categoriSing results by the area involved, the GM of upper cervical 

segment of PPMS was affected by 20% demyelination compared to 50% in the 

corresponding segment of SPMS (p = 0.142). The lower cervical cord GM was 

affected by 24% GM demyelination in PPMS and 34% GM demyelination in SPMS (p 
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= 0.476). Similarly, results from the rest of the cord segments did not reveal 

difference between the two forms. 

Similar results were obtained from the WM demyelination, in which SPMS did not 

show difference from the PPMS. The only exception was the WM of the upper cord, 

which revealed significant difference between PPMS and SPMS (p = 0.043) (Table 

2.8). 

Proportion of GM demyelination Is higher than proportion of WAf 

Proportion of GM demyelination was significantly higher than WM demyelination in all 

levels except lower lumbar cord (Table 2.8). Although the proportion of demyelination 

in the whole section and in the GM area was higher in SPMS, the ratio of GM 

demyelination to WM demyelination was higher in PPMS. 

2.6.7 Effect of independent factors and correlation with disease duration 

Studying effects of age, gender, disease duration, type of the disease, and cord level 

on proportion of demyelination showed that age of the patient (p = 0.001) and the 

COrd level are significant predictors of proportion of demyelination. However, when 

we dropped age from the controlling factors, type of the diseasee (p = 0.014) and the 

cord level (p = 0.038) were significant predictors of demyelination. Disease duration 

showed a trend toward significance (p = 0.059). This points to the complicated 

relation between age of the patient and the disease duration. 

Similar results were obtained when the previous regression model was applied on 

the WM demyelination. It showed that there is Significant effect of disease type (p = 

0.009) and cord level (p = 0.046). When the same regression model was applied on 

the GM exclusively, only the cord level showed significant effect on GM 
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demyelination (p = 0.049) with no effects of disease subtype on GM demyelination (p 

= 0.155). 

2.6.8 Effect of demyelination on atrophy 

Using Pearson coefficient, the correlation between degree of atrophy and 

demyelination was evaluated in the cervical cord. Bivariate correlation for the whole 

sample was -0.229 and p value was 0.122. However, considering the two subtypes 

of the disease and controlling for age, gender, disease duration, and post-mortem 

delay, there was significant correlation between proportion of demyelination and the 

cervical eSA in SPMS (correlation = -0.605, P = 0.001), but not in PPMS (correlation 

= -0.557, P = 0.152). 

Table 2.8: Proportion of demyelination in the 5 segments in the GM and the WM WIth the variation between PPMS 
and SPMS 

GMdem% WM dem% GMdem% WMdem% 
Disease Sig Sig 

Mean subtype Media Median Mean Median Mean Median Mean 
n 

PPMS 20.00 0.0 3.71 7.01 
cervical 37.29 20.8 15.47 5.2 .142 0.043 

SPMS 52.41 67.2 25.77 24.99 

Lower PPMS 23.57 0.9 15.10 24.61 
cervical 31.25 17.85 25.98 20.1 .476 0.212 

SPMS 33.81 28.7 29.61 28.80 

PPMS 5.64 0.0 1.61 2.79 
Thoracic 9.00 0.00 6.23 1.0 .638 0.496 

SPMS 11.02 0.0 9.00 17.00 

Upper PPMS 22.26 0.0 4.87 7.75 

lumbar 17.36 0.00 4.95 0.0 0.57 0.977 
SPMS 11.48 0.0 5.00 11.28 

Lower PPMS 0.96 0.0 0.51 0.75 

lumbar 0.80 0.00 0.43 0.0 0.57 0.568 
SPMS 0.00 0.0 0.00 ... 

2.6.9 Summary of results 

In conclusion, decline in the eSA in MS cords compared to eSA of controls was 

statistically significant only in the upper and lower cervical segments. SPMS 

appeared to have a greater degree of cord atrophy than PPMS, but the difference 

was statistically significant only in the upper cervical cord. Reduction in the WM and 
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GM surface areas in MS compared to controls was significant in upper cervical and 

lower cervical segments. 

Proportion of demyelination is higher in upper spinal cord levels and this applies to 

WM and GM demyelination. It seems that there is greater degree of demyelination in 

SPMS spinal cords, especially in the higher cord levels. The higher proportion of 

demyelination in SPMS affects mainly the WM of the upper cord levels. In addition, 

the mean size of pure WM lesions was greater in SPMS compared to PPMS. 

GM demyelination was greater than WM demyelination in both disease forms, but the 

ratio of GM demyelination to WM demyelination was higher in PPMS than SPMS. In 

the present sample, neither atrophy nor demyelination correlated with disease 

duration in the whole sample, but the two parameters correlated with each other in 

SPMS subjects. 

2.7 Discussion 

The present study compared the cord atrophy and demyelination between PPMS and 

SPMS in multiple cord levels. It included a relatively large sample size, compared to 

previous MS histopathology studies [103, 105, 122]. Although there was a difference 

in the mean age of subjects between the two examined MS subtypes (PPMS 67 

years and SPMS 58 years), the sample was controlled for the duration of the disease 

(approximately 25 years), scale of clinical disability [124), and for post-mortem delay 

(10 hours). 
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2.7.1 Comments on the possible effect of tissue shrinkage on interpretation 

of results 

Since we have two sources of MS tissue, shrinkage factor may vary and may affect 

interpretation of results. However, tissue shrinkage is expected to affect the absolute 

values of the CSA and not the proportion of demyelination. A possible concern, which 

may lead the shrinkage to affect proportion of demyelination, is that the normally 

appearing areas may have different shrinkage factor from that of the chronically 

scarred tissue. This issue remains a possibility and needs to be investigated further. 

To test the variability in the CSA, the CSA was calculated for the two sources of MS 

tissue and were compared together. Comparison included the exact segment level 

and not the segment category. The Pearson correlation coefficient was 0.877 and the 

p value was 0.010. Having strong and Significant correlation in the surface areas of 

the exact cord level between two different sources of MS tissue supports our 

assumption that the expected atrophy from MS is presumably greater than effect of 

shrinkage (Table 2.4). In addition, the two sources of tissue have been differentiated 

in the graph in Figure 2.4. The graph shows that the two sources of MS tissue are 

located near each other compared to the location of controls form the same sources. 

Therefore, we were convinced that variation in shrinkage factor was significantly less 

than degree of atrophy and thus did not have considerable effects on interpretation of 

results. 

2.7.2 Identifying the cord level 

Classification of spinal cord segments into 5 categories is based on the normal 

enlargements of the spinal cord. A controlled morphologic study of human spinal 

cord was carried out by Kameyama in 2005 [147]. The human spinal cord has 

normally two enlargements, which are the cervical and lumbar enlargements. The 
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cervical enlargement occurs from C5 to C8 which is larger than upper cervical 

segment (C2 to C4) in the CSA and GM surface area. Similarly the lumbar cord has 

been classified into upper and lower segments where the lumbar enlargement mainly 

occurs at L4-L5. Therefore, L 1, L2 and L3 were considered one segment and L4-5 as 

another segment (Figure 2.5). 

Considering changes in morphology of the thoracic cord, there are no reliable 

morphological changes to differentiate between various thoracic segments [147]. In 

addition, there are no significant changes in the eSA between various thoracic 

segments (Figure 2.5). Therefore, the thoracic sections were classified as one 

segment. Other studies categorised the cord segments differently; for example, 

Gilmore et al (2005) and Evangelou et al (2005) performed pathological studies on 

MS atrophy and divided the thoracic cord into upper and lower thoracic segments. 

Due to the long thoracic segments, pathologies of the upper and the lower thoracic 

segments may vary [105, 112]. Although classification of the thoracic cord into upper 

and lower thoracic can be more useful, identification of the thoracic level depending 

on morphology is not as reliable as for the cervical and the lumbar cords. 

2.7.3 Distribution of lesions 

In this study, proportion of abnormal section within the cervical segment was 70%. 

MRI study of the spinal cord in MS showed that possibility of MS lesions in the spinal 

cord is 75% [123], which is more than our histopathology study. Our pathology study 

should presumably show more than 75% because histopathology studies are more 

accurate than MRI in detecting abnormalities [108]. This is probably because our 

sample does not include serial sections like MRI, and there is a chance that 

abnormal areas in higher or lower levels are missed. 
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Spinal cord lesions were commonly seen in the postero-Iateral compartment [120). 

The common postero-Iateral lesions in MS may affect vital spinal cord structures 

such as the CST, PCP, and the DH. Symptoms related to lesions of these tracts are 

common in MS. For example, CST abnormalities in the brain were found to be 

associated with weakness in MS [148, 149). Fatigue, which can affect up to 78% of 

MS patients [150], can be related to CST pathology, in that walking induces 

functional changes in the CST (measured by the motor evoked potentials) leading to 

central fatigue [151]. 

The significantly higher frequency of CST involvement in SPMS than PPMS may 

explain the suggestion that SPMS spinal cord pathology correlates better with 

disability [152]. The calculated higher proportion of demyelination and larger lesion 

sizes in SPMS in this study may be responsible for the higher frequency of lesions in 

the VH, DH, CST, and PCP in SPMS compared to PPMS. 

The observation that some GM lesions are limited by the GMIWM boundary and take 

the shape of the VH may be due to physical limitation caused by two different 

environments at the WM/GM border or may imply that the GM pathology is different 

from the WM. The isolated midline lesion of the PC was frequent in our sample and 

has been reported previously [120]. Such lesions can be due to mechanical pressure 

or secondary to axons' degeneration in the midline within fasciculus gracillis. These 

midline axons come from the lower limbs and have a long course in the CNS, and 

are thus more liable to lesions. 

2.7.4 Predilection for the cervical cord 

Demyelination and atrophy appeared to have predilection for the cervical spinal cord 

in the two disease forms. There is obvious preservation of the lower cord levels. In 
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addition, we found that SPMS has a higher degree of demyelination compared to 

PPMS, which was more obvious in the upper cord. There was a trend toward 

significance between the two disease forms in the upper cervical cord when the 

proportion of demyelination of the whole cord was examined (p = 0.053). Similarly, 

SPMS demonstrated more atrophy than PPMS, which was only significant in the 

upper cervical segment. 

Significant atrophy in the higher cord levels, with less atrophy of the lumbar regions, 

has been mentioned in other studies [105, 127]. Although the calculated higher CSA 

in the thoracic cord of MS subjects may not be reliable in the present study, because 

we have only one thoracic block as a control, upper thoracic segment distension in 

MS has been observed previously with much bigger control sample size [112]. 

Gilmore et al suggested that preservation of the lower cord CSA is due to lesser 

amounts of WM compared to GM. The assumption was based on observation that 

GM is well preserved in the cord. In this study and another two previous studies, GM 

atrophy of the spinal cord was observed [124, 127]. 

Rarity of lesions in the lower cord may play a role in preservation of the lower spinal 

cord from atrophy. In progressive MS spinal cord lesions detected by MRI constitute 

only 5% of newly-detected lesions [138]. We calculated that the average lesion per 

section was 2 lesions/section in the cervical level and 1 lesion/section in the lumbar 

level. The mean lesion size was 7 mm2 in the cervical cord and 2 mm2 in the lumbar 

cord (p = 0.003). However, the relationship between demyelination and atrophy is not 

well understood. From the data above, it seems that there is agreement between 

atrophy and demyelination of the cord in that both of them have predilection to affect 

the cervical cord. Previous studies that have examined for correlation between 
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demyelination and atrophy in the spinal cord reported different results. An MRI study 

showed that atrophy of the cord correlates with degree of demyelination [115]. In the 

present study, there was significant correlation between lesion load and atrophy in 

SPMS only. Evangelou and his colleagues studied local effects of spinal cord lesions 

on the degree of atrophy in 55 MS subjects and 33 controls. There was no correlation 

between demyelination and atrophy. They attributed this finding to atrophy of the 

normal-appearing areas. This does not conflict with the results of this study, because 

there was no correlation between atrophy and demyelination in the whole sample. 

The correlation was found only in SPMS. 

However, it is not clear why the lower cord is a rare site for MS lesions. On 

presentation, site preference has been detected in PPMS and SPMS. Early in the 

disease course spinal cord lesions are more related to PPMS, with a few small 

lesions in the brain [153], while SPMS is more associated with brain lesions. It is 

possible that both forms have predilection to affect higher levels of the CNS in the 

early stages. Early in the disease process there is significant demyelination and 

atrophy of the spinal cord in patients with less than 5 years' disease duration [111]. In 

fact, the spatial progression of CNS atrophy in the rostro-caudal direction over time 

has been reported in the brain. The fact that atrophy of MS is confined to 

supratentorial structures in the early disease course and then progresses to infra

tentorial structure later on may partly explain the relative sparing of the caudal levels 

of eNS (152). 

2.7.5 Variation between PPMS and SPMS 

Several studies have compared degree of demyelination between PPMS and SPMS 

in the brain and the spinal cord, including cross sectional and longitudinal studies. 

Most of those studies showed a higher degree of demyelination in the SPMS spinal 

52 



Chapter 2: Demyelination and atrophy of the spinal cords of progressive MS 

cords, but not all of them reported significant difference. It was found that lesions 

affecting PPMS patients appear to be fewer and smaller [153]. PPMS has been 

found to be associated with an MRI picture of diffuse abnormalities in the brain and 

the spinal cord, rather than focal lesions. There was a higher degree of 

demyelination in the brains of SPMS, with no difference at the spinal cord level [102]. 

Kidd and colleagues demonstrated a greater degree of demyelination in SPMS spinal 

cords, which did not reach statistical significance [138]. A study by Thompson 

showed that the difference in the proportion of demyelination between PPMS and 

SPMS does not include the spinal cord region but is restricted to the brain [139]. 

Alternatively, in 1999, Stevenson conducted MRI study of the brain and the spinal 

cord, and showed that degree of demyelination was higher in the brains and spinal 

cords of SPMS [154]. 

Variation among studies seems to occur between cross sectional studies [102, 103, 

153, 155, 156], while longitudinal studies conSistently show more frequency of new 

lesions in SPMS [138, 139, 157]. This can be due to difference in the baseline 

disease duration among studies. Rate of atrophy and occurrence of lesions are not 

constant throughout the disease course. The preceding relapsing phase of SPMS is 

associated with larger lesions and with profound atrophy of the brain and the spinal 

cord compared to PPMS [102]. Rate of atrophy in the first 10 years (3.5% per year) 

was greater than rate of atrophy during the entire course of MS (0.75% per year) 

[112]. But with progression, frequency of new spinal cord lesions is quite rare in the 

two disease forms and PPMS was associated with an even higher rate of spinal cord 

atrophy compared to SPMS [157]. 

Therefore it is possible that causes of atrophy in early MS are different from causes 

of atrophy in late MS; subsequent slow atrophy in progressive MS may be due to 
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degenerative process rather than direct effect of the disease, especially in PPMS. 

For example, spinal cord atrophy in progressive MS was found to be significant over 

one year of follow up without detecting new lesions [138, 158]. Over 5 years of follow 

up a correlation was found between atrophy and clinical deterioration, but not 

between atrophy and lesions [159]. 

While effects of disease duration on the eSA of the cord has been demonstrated to 

be significant previously [105, 112, 114, 152], there was no significant correlation 

between duration of disease and eSA of the cord in the present study. We further 

examined the relationship between the cervical-segment eSA and the disease 

duration. The graph shows that MS patients who died within the first 10 years of 

having the disease have the highest rate of decline in the cervical eSA. This raises 

the importance of tissue atrophy in morbidity and mortality in MS patients. Although 

this is not a longitudinal study, the graph in Figure 2.6 may indicate that rate of 

atrophy is high in the first 10 years of the disease. Although there is a normal decline 

in the volume of the spinal cord with age, MS subjects showed reduced volume of the 

spinal cord compared to the age matched healthy controls. 

2.8 Conclusion 

The spinal cord is affected by demyelination and atrophy in progressive MS. This is 

more obvious in the cervical cord. There seems to be a greater degree of 

demyelination and atrophy in the cervical cord of SPMS subjects compared to PPMS 

subjects. The size of WM lesions appears to be greater in SPMS, but PPMS shows a 

higher tendency to affect the GM. 

Atrophy of the spinal cord is significant in MS and does not appear to follow a steady 

rate over time. Atrophy seems to be caused by multiple factors. Effects of these 
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factors on atrophy are not steady through the disease course, resulting in a variation 

in the rate of atrophy over time. Initially, in the first 5 years of age, there is high rate 

of atrophy as shown by previous studies. With more progression of the disease 

duration, rate of atrophy becomes slower and may reach a plateau. This can be 

concluded from the graph in Figure 2.6. The slow rate of atrophy after a few years of 

the disease is possibly caused by degeneration of small axons and other elements, 

and not by demyelination. This is because frequency of new spinal cord lesions is 

very low. 

We believe that SPMS causes more spinal cord demyelination and atrophy because 

it causes more frequent lesions and more inflammation, which possibly causes more 

tissue scarring. This may explain the significant correlation between atrophy and 

demyelination in SPMS and not in PPMS. 
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Figure 2.1 : MBP stain of spinal cord section showing lesions affecting the right side of the cord in A (left side of 
observer). Note that the lesion involves the WM and the GM but also respect the boundary of the VHs in both sides 
and did not pass to the adjacent WM. Demyelination extends from the right side to affect the left side through the 
intermediate GM without passing to the nearby WM (in A and B). These two observations were commonly seen. (The 
scale bar = 3 mm). The arrow in B points to a commonly lesion of the PCP. The lesion is frequently symmetrical and 
bilateral (The scale bar = 4 mm). 
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Figure 2.2: Six examples of the common PCP lesion. The lesion is usually midline, symmetrical and bilateral. Size of 
the lesions varies greatly. It is frequently associated with bilateral lesions of the lateral funiculus. 
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Figure 2.3: Bar charts showing the variation in the eSA and proportion of demyelination in various spinal cord levels 
in controls, PPMS, and SPMS. Note the highest proportion of demyelination is found in the GM, which may be due to 
its small size. The data represent the mean eSA ± SEM and the mean proportion of demyelination ± SEM. The 
significant difference between PPMS and SPMS is indicated by an asterisk, while the significant difference between 
MS and controls is indicated by the number sign # . The p values < 0.05 are indicated by one sign, while the p values 
< 0.01 are indicated by two signs. 
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Figure 2.4: The graph demonstrates the eSA of the upper and lower cervical cord in MS and controls in the two 
sources of tissue. Only the cervical cord included because for the rest of the cord, we have one source of MS tissue. 
Note source of tissue and the consequent variation in shrinkage between the two sources of tissue appear to have 
little effect on the eSA compared to atrophy caused by MS. 
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of the spinal cord segments from C2 to 53. Note the cervical thickening and lumbar 
thickening, which provides the basis of categorizing the spinal cord into 5 segments; upper cervical, lower cervical, 
thoracic, upper lumbar, and lower lumbar [147]. 
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decline in the CSA in the cervical cord in MS is seen in the first 10 years of disease duration. 
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Chapter 3: Identification of oligodendrocytes in the GM and 

the WM of the spinal cord 

3.1 Introduction 

OLs are one of the important CNS elements that are greatly affected by MS and 

therefore identifying their fate in SPMS and PPMS is an important issue. OLs are part 

of the neuroglial cells of the CNS. The first description of neuroglia dates back to 

1846, when Virchow published a description of cells that act as glue in the brain 

[160]. Although the name is still in use, the concept has been totally changed. 

Among all the neuroglial cells, OLs were the last to be discovered because of their 

high resistance to staining agents [161] and their small size (8-15 ~m) [162]. The 

term OLs was introduced for the first time in 1921 by Rio-Hortega when he used the 

metallic impregnation method to visualise the neuroglia. He initially discovered the 

astrocytes by using the gold impregnation, then he used the silver carbonate 

impregnation to visualise the OLs and microglia. Metallic impregnation stains both 

the cell body and the processes [160]. 

In addition to staining difficulties, there are other difficulties with quantification of OLs; 

OLs are sensitive and affected widely by changes in environment during culture and 

by the stains during slide preparation; OLs form extensive networks of branches in 

three dimensional space with very complex connections [163]. It has been suggested 

also that the number of OLs is not constant during stages of maturation and their 

number is reduced with age progression [164], health status [165], and by chronic 

use of alcohol or anti-psychotic drugs [166]. 
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3.1.1 Structural features and classification of oligodendrocytes 

Although the name implies that OLs have few processes, these cells form an 

extensive network of fine branches [162]. OLs have variable morphologies depending 

on their location in the eNS and the stage of maturation (Figure 3.1). According to 

distribution in the eNS, Hortega recognised three types of OLs; near axons 

(interfascicular), near cell bodies (perineuronal), and near vessels (perivascular) 

[167]. 

White matter (interfascicular) ollgodendrocytes 

According to the size and interaction with other cells, Hortega classified WM OLs into 

four subtypes. These subtypes are distributed variably within the eNS, and each type 

myelinates certain diameter and number ofaxons. Type I is found in the forebrain 

and cerebellum and myelinates up to 50 small axons (15-20 ~m), while type II is 

located in different sites of the WM and myelinates fewer and thicker axons (20-40 

~m). Type III, which myelinates only 3-4 larger axons, is more distributed in 

cerebellar peduncles, medulla oblongata, and the spinal cord. The rare type IV OLs 

have no branches and are restricted to the exit of the nerve root areas. Each type IV 

OL myelinates only one large diameter axon and greatly resembles Schwann cells 

[167]. 

The cytoplasmic density of OLs is variable under the electron microscope by being 

dark (electron dense) for the mature cells and lighter for the less mature cells (Figure 

3.1). The cytoplasmic density reflects the amount of ribosomes and degree of 

chromatin condensation. There are not many differences among OLs subtypes in 

types of organelles inside the cell apart from their densities [160, 162, 168, 169]. 
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These subtypes were recently found to be expressing different molecules. The S

isoform of myelin associated glycoprotein (MAG) is expressed in types III and IV and 

not in types I and II [170]. There is also evidence that these subtypes have variable 

expression of MBP and proteo-lipid protein (PLP). It was found that small fibre myelin 

has more MBP content, while large diameter fibre myelin has more PLP content 

[171]. Nevertheless, OLs still share common features that differentiate them from 

other cells. 

OLs are small cells with large round or oval nucleus that is almost always 

eccentrically located leaving a large mass of cytoplasm at one pole of the cell. The 

nuclear membrane is rimmed by chromatin that extends into less dense 

nucleoplasm. The endoplasmic reticulum is well developed with large amounts of 

ribosomes. OLs appear moderately electron dense compared to astrocytes. 

According to the type of organelles inside the cells, there are two differences 

between astrocytes and OLs; OLs have neither glycogen granules nor bundles of 

specific intermediate filaments, such as GFAP which is a characteristic of astrocyte 

[160, 167, 169, 172]. 

Grey matter (per/neuronal or satellite) ollgodendrocytes 

The term perineuronal OLs was also used for the first time by Rio-Hortega in 1921 

[162, 167]. This term was used for OLs that are located in close proximity to neurons 

of the GM. The exact function of these perineuronal cells is not well known. It has 

been suggested that these cells have functions related to structural and functional 

support to neurons [160, 162, 167]. 

Ludwin described the ultrastructure of GM satellite OLs in a study in 1984. His 

description has not many differences from WM Ols. Satellite GM Ols were seen to 
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be oval with clumped chromatin. They were seen to be abutting and extending 

processes to numerous myelinated axons with the formation of the inner and outer 

lope of mesaxons [172, 173]. Cragg 1976 also classified perineuronal GM OLs with 

respect to their cytoplasmic density into light, medium, and dark OLs (Figure 3.1) 

[169] 

3.1.2 Identification of oligodendrocytes 

The optimal target for counting is to identify all OLs without extensively staining their 

processes. It is difficult to recognize OLs by light microscope using a classical stain 

such as haematoxylin and eosin. This is due to the difficulty in differentiating different 

types of glia. Although astrocytes are generally larger in size and have lighter 

cytoplasm, some light OLs may resemble astrocytes in size and cytoplasmic density 

[174]. 

During development of OLs, different proteins are either down regulated or up 

regulated according to the stage of differentiation without apparent change in 

morphology [175]. Therefore, the only way to distinguish between differentiating OLs 

is by detecting these markers [160]. It is possible to evaluate the number and density 

of OLs by means of immunohistochemistry. Immunohistochemistry utilises several 

antigens to identify OLs, such as MBP, PLP, MAG, cyclic nucleotide 

phosphodiesterase (CNPase), carbonic anhydrase II (CA II), galactosylceramide 

(GaIC) and others. Immunohistochemistry also provides information about the cell 

identity as well as the functional state of the cell. These markers have variable 

distribution within the OLs in that some of these markers are traced in the cell body 

and the processes, while others are only present in the cell body. 
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Most of these markers can be also traced by in situ hybridization of their mRNA. The 

mRNA localisation can reach as far as the Ranvier node for some proteins such as 

PLP or CNPase. This is because free ribosomes can reach as far as the site of 

myelin synthesis, due to the action of microtubules [176, 177]. In this pilot study two 

markers, which have been used to quantify OLs, will be compared; these are CA II 

[174, 178] and CNPase [165, 179). CA II has been also used to stain and trace GM 

OLs in spinal cords (animal study) [180). 

Carbonic anhydrase 1/ 

CA II mainly stains the cell body [174, 176, 180]. CA II catalyses the hydration of 

carbon dioxide to bicarbonate. In the CNS, CA II can be found in two forms; soluble 

form (55%) and membrane bound form (45%) [181]. CA is found in seven isozymes 

(from CA I to CA VII) [181], which are distributed in different types of mammalian 

tissues with variable amounts [176]. In humans there are two major iso-enzymes; CA 

I and CA II, which differ in both enzymatic activity and in antigenic properties 

(antibody that recognises CA II does not recognise CA I) [176]. 

The enzyme is vital for the function of erythrocytes in removal of carbon dioxide. CA 

II may also playa role in K+ homeostasis [176] and lipid metabolism [181]. Other 

functions of CA may include regulation of pH, water balance, gluconeogenesis, bone 

resorbtion, and formation of CSF. CA inhibitors are already in use as anti-glaucoma 

drugs, diuretics, and anticonvulsive drugs [182). Deficiency in CA II has been 

reported in humans and found to be associated with mental retardation, brain 

calcification, osteopetrosis, and renal tubular acidosis [183]. 

CA II expression in OLs has been identified in humans between 16 and 22 weeks of 

gestation. CA II is expressed in the cell bodies and processes during early 
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differentiation of Ols and it is found in all stages of Ols development [184], but in 

adult myelinating Ols it is restricted only to the cell body. However, expression of CA 

II is reduced with age in both Ols and choroid plexus, which might explain the 

reduction on CSF production in old age [182]. 

CA II is considered as a specific marker for both mature and less mature Ols. This 

has been demonstrated by double labelling of Ols by CA II and MBP [185]. Tracing 

CA II by means of immunohistochemistry has been stated to be a good method for 

counting Ols [174], as it stains only the cell body. It was suggested that CA II is 

found in astrocytes , choroid plexus, some neurons, espeCially GABAergic neurons 

[182, 186]. later it was possible to recognise that these are actually immature Ols, 

which are frequently mistaken for astrocytes or small neurons [185]. 

CA II enzyme has been appearing in literature since 1932 [187]. Around 4865 articles 

that have carbonic anhydrase in their title can be found on the Pub med and around 

787 articles on the subject of CA II (last accessed on 23 Aug 2010). 

Dr Ghandour, who published 19 studies that utilized the CA II in Ols, stated via 

personal communication that immunohistochemistry with CA II stains all types of Ols 

in human CNS, and that both GM and WM show good results with paraffin

embedded tissue sections. A number of studies have described the 

immunohistochemistry protocols for CA II tracing in OLs in animals [188, 189] and in 

humans [182]. 

2'3'-cycllc nucleotide 3'·phosphodlesferase 

2'3' -cyclic nucleotide 3' -phosphodiesterase, or CNPase, is a marker of mature and 

less mature OLs [165]. It accounts for 4% of the myelin protein. It hydrolyses 2'3'-
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cyclic nucleotides [184], but the physiological role of this interaction is not well 

understood. However, patients with Down's syndrome and Alzheimer's disease have 

low levels of CNPase [164]. 

CNPase consists of two polypeptides; CNP1 and CNP2. CNPase appears early 

during Ols differentiation and is synthesized in the cell body, but deposited near the 

plasma membrane and in myelin sheaths [190]. 

CNPase antibody is capable of reacting with mature and immature Ols, and thus can 

stain most Ols. It reacts in both human and rat with high penetration of thin sections 

[165]. This enzyme is specific for Ols and not expressed in astrocytes or other cells 

[164, 165]. 

A number of studies have utilised CNPase immunoreactivity to count Ols in humans 

[165, 177, 179] and in MS specifically [179]. In 1999 Dr. Claudia lucchinetti studied 

quantitatively Ols in MS plaques. The study utilised a number of antibodies such as 

MOGs, CNPase, and MBP antibodies [179]. Claudia lucchinetti has also stated via 

personal communication that CNPase is an excellent marker for labelling Ols. 

In another study human autopsies were used to compare numbers of Ols in the 

cerebral cortex of schizophrenic patients with normal controls. CNPase antibodies 

have been used to trace and count Ols in the cerebral cortex. CNPase antibody was 

considered as a robust marker for mature and nearly mature Ols. CNPase 

monoclonal antibody detects OLs specifically and distinguishes them from astrocytes 

and other elements [165]. 
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It has been suggested that CNPase tracing does not stain all GM OLs [177]. CNPase 

labelling was used to evaluate the effects of ischaemia on human cortical OLs 

following cardio-respiratory arrest. CNPase positive OLs were clustered in layers IV, 

V, VI of the cerebral cortex, with few CNPase positive cells in the outer laminae. 71 % 

of all satellite OLs have been found positive for CNPase [177]. 

3.2 Aims and hypothesis 

OLs are important in MS disease and quantifying them efficiently is essential. Our 

main aim from this study is to develop a reliable and efficient counting method for all 

OLs lineage in both the GM and the WM. In the literature different markers were used 

to quantify OLs. CA II and CNPase have been explicitly said to be ideal for counting 

OLs [162, 165, 185]. CA II labelling can be more helpful for counting OLs, as it stains 

only the cell body [162]. CNPase was reported to be a robust marker and ideal for 

counting and tracing mature and nearly mature OLs [165]. Therefore, we compared 

CA II and CNPase and studied the abilities of both markers to identify OLs and 

showed the anatomical structures of the spinal cord such as the GM, the WM, and 

the DH laminae. 

3.3 Material and methods 

3.3.1 Autopsy sample 

Two blocks were selected randomly from the MS tissue sample. These are human 

spinal cord autopsies from the MS Society tissue bank in London. The process of 

initial fixation of the tissue from the MS Society tissue bank was mentioned in Section 

2.5.1. Briefly, the frozen blocks were defrosted and formalin-fixed paraffin-embedded 

blocks were prepared. Then 15 sections were cut from each block at 5 ~m thickness 

to optimise the immunohistochemistry of the two markers. 
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3.3.2 Immunohistochemistry of oligodendrocytes 

CNPase mouse monoclonal antibody and CA II rabbit polyclonal antibody were 

purchased from abcam [191, 192]. Optimisation was carried out by an expert 

technician, Neil Hand. The slides resulted from each dilution were reviewed by Prof 

Jim Lowe, Consultant Neuropathologist. The best results for CNPase were obtained 

with pre-treatment using 10 mmol sodium citrated at pH 6 with a dilution of 1 :2000. 

This was heated in a microwave oven. The CAli sections were pre-treated with 10 

mmol EDTA at pH 8. For antigen retrieval, sections were heated in microwave oven 

for 25 minutes. The primary dilution was 1 :8000 for 1 hour. This was detected using 

Rabbit/Mouse Envision (Dako K5007) for 30 minutes. All sections in both stains were 

counterstained with haematoxylin. All sections were stained automatically using Tech 

Mate 500+ immunostainer (details in appendix 8). 

3.3.3 Slides scanning 

Slides were numbered and scanned by the NDP view Hamamatsu at magnification of 

40X. The produced digital slides were then viewed by the NDP.view software and 

demarcations were performed using the manual graphic tablet MD 85637 from 

Medion. Features of the machine and the associated software can be found in 

Section 2.5.3 and Hamamatsu web site [144]. 

3.3.4 Comparing CA II and CNPase 

Gener.a/observaUons 

The appearance of the GM and the WM and the ability of the stain to show 

abnormally demyelinated areas were observed in the two stains. The GM boundary 

and DH laminae were identified and demarcated as mentioned previously (Section 
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2.5.4). The ability of the stain to show OLs as distinguishable cells from the 

surrounding neuropil was considered at high magnification. 

Sampling the GM and the WM 

We sampled the VH and the area of the lateral funiculus (lateral CST) to represent 

the GM and the WM respectively. From each section, the VH and the CST were 

sampled using a strict protocol which allows the examiner to select the same region 

from the two sections (Figure 3.2). The sampling protocols of the VH and the CST 

are mentioned in details in subsequent chapters (see Figures 4.1 and 5.1). The 

regions of interest were exported as an image of the computer screen when the 

magnification is 40X. These regions were exported as JPEG format images and were 

given codes that do not refer to the type of the stain. In total, we calculated OLs in 34 

fields from the VH (17 CNPase and 17 CA II) and 40 fields from CST (20 CNPase 

and 20 CA II). 

3.3.5 Counting process of oligodendrocytes 

OLs were counted in each field so that the observer was blinded to the type of stain 

(it is difficult to identify type of stain at high magnification in a small field; 0.047 mm1. 

The exported images were viewed by imageJ software. ImageJ is popular software 

for image processing. ImageJ is freely available image editor software that has 

multiple functions such as editing, processing and performing automatic and manual 

counting of particles. The software can also measure surface areas and pixel values. 

The freeware of ImageJ can be downloaded from the internet [193]. 

OLs were counted manually and categorised into possible OLs and definite OLs. The 

identification criteria of OLs include intensely stained cells, round to oval cell bodies 

of variable size. However, very small rounded dots were excluded from counting in 
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both markers because they represent myelinated axons. Cells with light staining, 

stained rim, or irregular shape were all considered possible Ols. 

Using imageJ, the field was opened and the manual counting was carried out. With 

the computer mouse cursor, all typically stained Ols were selected. The software 

automatically counts the selected points. Then the colour of selection is changed and 

the possible Ols were then selected. The software, again, counts the new particles 

and put them in a different group. Therefore, two numbers were produced from each 

counting process; one representing definite Ols and the other possible Ols. The 

ratio of possible Ols to definite Ols was calculated for both CA II and CNPase. 

Reliability of our identification criteria and reproducibility of our counting process has 

been tested by repeating Ols counting by two observers (interobserver 

reproducibility was 16%). 

3.3.6 Scoring system 

We developed a scoring system for comparing the two stains that depends mainly on 

microscopic observations and quantification measures. Factors which have been 

taken into account at low magnification include the ability of the stain to demarcate 

GM various structures and the ability to obscure demyelinated and partially 

myelinated areas. At higher magnification, the ability of the stain to show Ols clearly 

and the calculated ratio of possible Ols to definite Ols were included in the ranking 

system. 

3.3.7 Statistics 

Results were exported to SPSS 14 software. The data table contained field code, 

number of definite Ols, number of possible Ols, and ratio of possible to definite Ols. 

Student t-test was used to compare the means. 
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3.4 Results 

3.4.1 Observations at low magnification 

Both CA II and CNPase can demarcate the GM from the WM fairly well. Some CA II 

sections had less clear borders of GM making delineation with the WM harder. In 

fact, in CA II the intenSity of the GM stain is more than the WM while in CNPase the 

reverse is true. The border between the GM and the WM in CNPase is clear and 

resembles that seen in MBP stain (Figure 3.3). 

The identification of spinal cord major laminae was possible using both stains to the 

same degree. The unmyelinated substantia gelatinosa (laminae II and III) is well 

demarcated and greatly helps in differentiating the marginal zone (lamina I) dorsally 

and the nucleus proprius (laminae IV and V) ventrally. Both CNPase and CA II are 

able to distinguish the GM and different laminae of the DH to the same degree 

(Figure 3.4). 

An interesting observation is that demyelinated areas are not detectable in CA 11-

stained sections. Ability of the CA II to obscure areas of demyelination and partial 

myelination is useful in increasing the observer blinding to demyelinated areas. This 

is not the case with CNPase stain, which shows abnormally myelinated area and 

thus may reduce the examiner blinding when counting Ols, especially when manual 

counting is to be carried out. Another remarkable observation is that the GM and its 

boundary are frequently identifiable in CA II-stained sections even with the presence 

of severe demyelination (Figure 3.5). 

3.4.2 Observations at high magnification 

In CA II and CNPase, Ols appeared generally heterogeneous in size with round to 

oval shape. The Ols processes and cytoplasm could not be identified in most of the 
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sections (Figure 3.6). There were frequent counterstained cells with traces of 

CNPase or CA II stain around their border, which was more obvious in CNPase

stained sections. 

Because of the staining of the nearby myelin with CNPase, Ols do not appear as 

clear as in CA II-stained sections, especially in the WM as it contains more 

myelinated axons [176, 194, 195]. The CA II shows less intensity in the myelin 

sheath than in Ols. Therefore, staining myelin with CA II did not interfere with Ols 

counting and showed Ols clearly. Non specific staining of counterstained cells was 

minimal in CA II. 

3.4.3 Numbers of oligodendrocytes 

The mean density of definite Ols varied between the two stains. The mean density of 

definite Ols in the GM of CNPase-stained sections was 48.98/mm2 compared to 

167.28/mm2 in the CA II-stained sections (p = 0.006). In the WM, the CA II-stained 

sections showed also significantly more density of definite Ols than CNPase stained 

sections (119/mm2 vs. 31/mm2, p < 0.001). On the other hand, the mean density of 

possible Ols in the GM of CNPase-stained sections was 27.40/mm2 and in CA 11-

stained sections was 5.78/mm2 (p = 0.05). In the WM, the calculated density of 

possible Ols in CNPase-stained sections was 33.17/mm2 and in CA II-stained 

sections was 19.66/mm2 (p value = 0.265). 

The mean ratio of possible Ols to definite Ols was 0.6 in the GM of CNPase-stained 

sections compared to 0.03 in CAli-stained sections. In the WM the ratio was 1.1 in 

the sections stained with CNPase and 0.2 in sections stained with CA II. 
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3.4.4 The scoring system 

The scoring system for this study favours the use of CA II, as it seems to be superior 

to CNPase in the identification of Ols and in obscuring areas of demyelination or 

partial myelination. But both markers identified the GM and the laminae of the DH to 

the same degree (Table 3.1). 

Table 3.1: Comparison between C C NPase and All 
Factors CAli CNPase 
Ratio of query OLs to definite OLs 1 0 
Identifying the GM 1 1 
Identifying the DH various laminae 1 1 
Obscuring the demyelinated and partially myelinated areas 1 0 
Identification of OLs in an isolated form 1 0 

5 2 

3.5 Discussion 

This study is probably a pioneer study in quantification of Ols in the spinal cord 

particularly in the GM, thus our aim is to quantify all Ols regardless of maturation 

status. There are a number of markers that can be traced in Ols during maturation. It 

is important to differentiate between two types of Ols markers; maturing Ols 

markers and Olslmyelin markers. For example, markers such as nestin, platelet 

derived growth factor a receptor (PDGF-a), ganglioside GD3, NG2 proteoglycan and 

the 04 are all markers for maturing Ols and are not myelin markers [160]. 

Nestin is a class of intermediate filaments that are found in neuroepithelial cells and 

some radial glia. Expression of nestin is downregulated in differentiated Ols [196]. 

PDGFR-a is expressed in the early stages of Ols lineage and not in mature Ols. 

Ganglioside GD3 is not very specific for Ols in vivo. Its expression disappears as the 

Ol matures. It is considered ideal for identifying Ols in culture [197]. NG2 marker is 

an integral membrane proteoglycan. These NG2 positive cells may also express 

PDGFR-a in the early stages. However, these cells continue as a distinct population 

in the adult CNS and do not express markers of mature Ols (for review of NG2 

positive cells, see Nishiyama et al (1999» [198]. The 04 monoclonal antibody marks 
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unidentified glycolipid in Ols. It labels a specific stage of Ols maturation called pre

Ols, or sometimes called pro-Ols, and does not cover all maturation stages [199]. 

Markers of Ols and myelin include GaIC, RIB antigen, CA II, NI-3S/2S0 proteins, and 

myelin specific markers (CNPase, PlP, MBP, MOG, MAG, and other minor proteins). 

GalCs are early markers of Ols. It is located on the surface of early Ols and 

continues to be expressed on the surface of mature Ols [200). It is believed that they 

appear to express in the late stages of pro-Ols. However, labelling GalC in the early 

stages of Ols maturation is inconsistent, due to lack of specificity of the used 

antibodies [160). MOG is a glycoprotein that is expressed in latest stages of Ols 

myelination [201]. The rest of the myelin specific proteins such as MBP, PlP and 

MAG are markers of myelinating mature Ols and thus do not cover all maturation 

stages. Therefore, we compared CA II and CNPase because CA II expression covers 

all the stages of Ols maturation and continue to be expressed in mature Ols [202] 

and CNPase is the earliest marker that can be reliably labelled in Ols [203, 204]. 

The method used allows for comparison between the two markers in the GM and the 

WM in the same anatomical regions. To accomplish this, a sampling protocol was 

used to select fields from the GM and the WM. In conclusion, the results obtained 

from this pilot study favour the use of CA II stain over CNPase for counting Ols. 

The CNPase stains Ols and the nearby neuropil. Although it forms 4% of the 

isolated myelin proteins, CNPase is not present in the compact myelin. It is localised 

in the cytoplasm of non compacted myelin sheaths and the cytoplasm of OLs 

processes [20S-207]. CNPase appears early during development of OLs and 

continues to be expressed in Ols and myelin [160). It is synthesised primarily in the 

cell body and then transferred to be deposited in the myelin sheath. This explains the 
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presence of the stains in the surrounding neuropil and myelin. In comparison, CA II 

minimally stains the neuropil. The ability of the CA II to obscure demyelinated and 

partially myelinated areas in most of the cases is an important feature of this marker. 

At low or high power no demyelinated or partially myelinated areas could be 

identified with CA II (Figure 3.5). At high power, however, only the lesion border can 

be identified on CA II stain. 

Another important feature is the ability of the CA II stain to delineate the GM borders 

within the lesion. In the spinal cord MS lesions extend from the WM to the GM 

without respecting GMIWM boundary. The MS lesions usually appear homogenous 

without clearly showing the GM and the WM architecture in a number of stains, such 

as MBP, H&E, and with CNPase. But with CA II it was possible to demarcate the GM 

from the WM in sections, even when there is MS lesion. This was obvious when you 

compare the MBP and CA II stains in Figure 3.5. 

The capability of the two markers to differentiate between different laminae of the DH 

was noticed to be similar. Applying the sampling protocol on the whole DH may 

include some areas from the normally unmyelinated substantia gelatinosa, which is 

found in the middle of the laminae between the marginal zone (lamina I) and the 

nucleus proprius (lamina IV and V). Therefore, choosing the nucleus proprius to 

represent the DH was essential for number of reasons; first, the nucleus proprius is 

directly related to an important function which is the proprioception; second, the 

nucleus proprius is heavily myelinated and contains numerous Ols; and finally the 

nucleus proprius is large enough to be sampled. 

At high magnification, Ols were recognisable using the two markers. Features of 

Ols, such as oval to round cells with variable sizes, were recognisable in the two 
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stains. Although OLs were variable in sizes and they tend to be small cells, the 

misinterpretation of OLs as axons was not possible. Large myelinated axons were 

identified by having central faint, while OLs were homogenously stained. 

Nevertheless, OLs appeared clearer with CA II marker. 

In the scoring system, we included the ratio of possible OLs to definite OLs. 

Comparing the two markers by counting only the definite OLs number across the 

spinal cord can be an unreliable process, since each marker has different sensitivity 

in various areas. It was mentioned previously that both CA II and CNPase do not 

stain all OLs, because CA II is not present in certain types of OLs [175], while 

CNPase stains about 70% of GM OLs [177]. 

Counting the possible OLs that appeared in the fields and comparing them may also 

not be a reliable process, since each marker may have a different degree of non

specific staining of other cells. We believe that possible OLs are OLs that do not 

have the same intensity of staining as other OLs. Therefore, the ratio of possible OLs 

to definite OLs was considered in the ranking system rather than the absolute 

numbers. From this study one can conclude that the ratio is more with CNPase than 

CA II. This means that CA II stains more definite Ols. The sum of possible and 

definite Ols was also greater in CA II-stained sections, which may indicate that CA II 

stains more Ols. In fact the absolute number of definite OLs was greater in CA 11-

stained sections. Most importantly, histopathologic appearance of the two stains has 

been reviewed by Prof Jim Lowe (Consultant Neuropathologist) who found that with 

CA II stain, recognising Ols was better. 

For many reasons, these results could not be generalised. Firstly, this is only a pilot 

study with a limited number of cases. Secondly, 74 fields from only two subjects were 
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analysed and this may not be representative. Thirdly, the sample includes MS cases' 

autopsies which were dissected from the cadaver at variable times after death and 

thus different proteins may denature faster than others. This means that if CNPase 

denature faster than CA II, a comparison at fixed post-mortem delay period will result 

in more Ols with CA II. Finally, apart from the first criterion, other criteria of the 

scoring system are subjective and depend on the research goals. For instance, the 

criterion of obscuring demyelinated areas may not be desirable for other types of 

study that do not require unbiased selections and therefore CNPase marker would be 

favoured over CA II in this case. Furthermore, CA II probably stains more Ols 

because it covers all stages of Ols lineage, while CNPase stains only mature and 

nearly mature Ols [202]. 

All the criteria included in the ranking system are directed toward establishing a 

reliable and reproducible quantification process for Ols, and our decision depends 

on our research objectives. Therefore, a marker such as the CNPase is still 

considered a robust marker for labelling Ols. 
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light medium 
OlIGODENDROCYT'ES 

dark 

Figure 3.1 : Illustration of the three subtypes of OLs as seen under the electron microscope in rats [208]. 
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Figure 3.2: Two differently stained sections that belong to the same subject and same spinal cord level (CA 11-
stained section in A and CNPase-stained section in B). Note the extensive staining of myelin in B. The sections were 
sampled using strict protocol that allows the investigator to compare fields taken from the same anatomical area. 
Details of sampling protocols of the VH and the CST are mentioned in chapters 4 and 5. The area within the white 
border is the area occupied by the CST (scale bar 4 mm). 
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Figure 3.3: CA II and the CNPase at low magnification (scale bar 4mm). Note the sharp demarcation of the GM in 
CNPase compared to CAli at higher magnification (scale bar 1 mm). 
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Figure 3.4: In A, CA II stained spinal cord cross section. We demarcated the GM and the DH major structures such 
as the nucleus proprius within the blue border, the substantia gelatinosa within the yellow border. The rectangle is 
magnified in B. The cap of the DH is a thin layer forming Lamina I. The head of the DH is formed of the substantia 
gelatinosa Laminae (Laminae II and III) and the nucleus proprius (Laminae IV and V). The neck is continuous with 
the base and both of them form Lamina VI. 
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A 

B 

3.5: Two same su and the same level; in and 
in B with CA II. Within the plaque area, the GM is not easily identified . But in B, which is stained with CA II stain , the 
plaque does not appear while the GM boundary is prominent 
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WM 

Figure 3.6: OLs as they appeared at high magnification power in CA II (A&C) and CNPase (8&0). A & B fields 
compare the GM in between the two stains, while B & 0 fields compare the WM. Note in both the GM and the WM; 
myelin is less stained in CA II sections making OLs easily identifiable. It can be noticed also that in CNPase myelin is 
more intensely stained in the WM compared to the GM. 
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progressive MS spinal cords 

4.1 Introduction 

The spinal cord GM has myelinated axons that traverse the GM and WM boundary. 

These axons are myelinated by the widely-dispersed Ols in the WM and the GM 

[174). Ols are possibly vulnerable to injury in the GM following MS. Involvement of 

the GM in MS was reported in the literature as early as 1898 [121], while 

morphological description of the spinal cord GM lesions was described by Fog in 

1965 [209], Oppenheimer in 1987 and recently by Gilmore in 2009 [105, 120]. In the 

WM, injury to Ols usually results in demyelination ofaxons and reduction in the 

speed of the action potential. This has been demonstrated in animals [210] and in 

humans [211]. In comparison, consequences of Ols loss in the GM are uncertain. 

A number of observations support that GM Ols are different from the WM Ols. For 

example, many GM OLs acquire a perineuronal position and may react to MS 

differently. Ols in the GM may have additional functions such as providing trophic 

support to neurons. Moreover, spinal cord GM has different stages of development 

and final architecture from the WM and from the brain GM [212]. In MS specifically, 

there are number of observations that suggest that GM pathology is independent of 

WM pathology; two previous studies demonstrated that spinal cord GM 

demyelination is more extensive than WM demyelination [105, 127], which was also 

shown in the study of proportion of demyelination in chapter 2 of this thesis. Bo et al 

(2007) demonstrated that subpial cortical demyelination is independent of WM 

demyelination [213]. Degree of inflammation and recruitment of inflammatory and 

cytotoxic cells also varies between the GM and the WM of the brain; GM lesions has 

Significantly less apparent inflammation [103, 214]. Variation between GM and WM 
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pathology in MS extends to include degree of remyelination; Albert et al 2007 

conducted post-mortem study on 33 patients with chronic MS and reported that GM 

remyelination is more extensive than WM remyelination [215]. Therefore, it may be 

essential to study the fate of GM Ols in MS separately from WM Ols. 

The majority of previous studies on GM pathology in MS, both in vivo and in vitro 

studies, were carried out on the brain GM (for reviews refer to 80 2006 [121], and 

Geurts et al 2008 [216]). In spite of the increasing Significance of GM pathology, 

there is no previous study that has specifically investigated the fate of Ols in the GM. 

Due to the lack of information about the fate of GM Ols in MS, the rest of the 

introduction will discuss normal development of Ols in the CNS in general and the 

spinal cord in particular. The introduction will also review all stages of development 

until maturation of Ols and production of myelin. This will provide a preface to the 

next chapter, which studies WM Ols. The previously published work. that 

investigated pathology of Ols in WM MS lesions is reviewed in the next chapter. 

Studying normal development of Ols has enabled researchers to suggest and 

develop potential therapeutic strategies for MS. These strategies were developed 

from molecules that share functions with different Ols mitogens and have been 

proven to be effective in EAE [217-220]. For example, a new treatment strategy was 

derived from a sphingolipid, sphingosine-1-phosphate, that affects differentiation and 

migration of Ols [221]. Phase III clinical trials of fingolimod (FTY720) in MS are 

showing promising results [222]. Although fingolimod acts as immunomodulator and 

may not have effects on Ols, it was originally derived from the signalling molecule 

sphingosine-1-phosphate (most recent review by Coelho et al2009 [218]). 
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In addition, understanding Ols' development may explain and consequently resolve 

two important issues; why GM in MS demonstrated more extensive remyelination 

than the WM [215], and why remyelination fails with disease progression in both GM 

andWM. 

4.1.1 Development of spinal cord oligodendrocytes 

The spinal cord and the brain develop from the neural tube [212]. The neural tube is 

formed from ectoderm by a process called neurulation, where a closed tube is 

formed from the neural plate. When the process of neurulation starts, a single layer 

of cells can be found lining the tube. This single layer is formed of a homogenous 

population of precursors called the neuroepithelial stem cells. These non-branching 

cells are multipotent and they can give rise to both neurons and glia. The cellular 

layer of the tube starts to proliferate to a multicellular layer [212]. 

The process of development of the spinal cord GM is different from that of the 

cerebral cortex. Rostrally, the tube starts to dilate forming the brain vesicles, while 

caudally, the tube does not dilate. Therefore, neuronal cells do not migrate a very 

long distance, but stay around the tiny central canal forming the spinal cord GM. In 

the brain neurons and neuroglia migrate longer distances from the ventricular zone to 

the cerebral cortex [223). 

The last cells that are generated from the sub-ventricular zone are the Ols [224]. 

Ols' progenitors (Opes), which are positive for the PDGFR-a, proliferate in the 

ventral part of the spinal cord subventricular zone [223). Therefore, this study will 

also examine if there is variation in Ols' density between the ventral and the dorsal 

regions of the cord. 
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OPCs migrate and distribute widely in the WM and GM. The processes of 

proliferation and then migration are affected by several trophic factors and biological 

molecules [223]. One of the most important stimulating factors for migration is the 

PDGF. PDGF is considered as the major mitogen for Ols [223,225]. PDGF acts on 

the PDGFR-a found on the surface of OPCs, which is expressed on the ventral 

neuroepithelial stem cells [225]. OPCs originate in the ventral region around the 

embryonic day 14 [194, 225] and they express, in addition to PDGF-a, the NG2 

chondroitin sulphate proteoglycan [194, 226], 04, and DM-20 (the gene encoding for 

PlP subunit) [194]. At this level of development OPCs do not express markers of 

mature Ols, such as MBP or CNPase [194]. 

The significance of PDGF in stimulating Ols' proliferation, and subsequently 

remyelination, has been tested on animal studies. Allamargot at al (2001) examined 

acute demyelination of the corpus callosum in Wistar rats by injecting intrathecal 

PDGF. Allamargot and colleagues reported 49% increase in Ols and 60% reduction 

of demyelination within 2 weeks. Remyelination to demyelination ratio has also 

increased by 10 fold. Complete remyelination was noted in some animals within 3 

months with no evidence of significant gliosis [219]. Effects of PDGF also extend to 

include chronic demyelination. In 2007 Vana and colleagues examined chronic 

demyelination of the corpus callosum in mice. They reported significant effects of 

PDGF on proliferation and regeneration of new Ols [220]. 

Another important factor which induces proliferation is a chemokine known as CXCL 1 

[227]. CXCL 1 stimulates proliferation of OPCs and acts in synergism with PDGF in 

inducing migration by acting on specific receptors (CXCR2) on the surface of the 

spinal cord OPCs [227]. In MS, CXCL 1 is probably produced from activated 

astrocytes [217]. IndUCing EAE in mice that were treated to produce high amounts of 
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CXCL 1 resulted in significantly less inflammation and demyelination. There was also 

a high numbers of OLs associated with extensive remyelination [217]. 

An important factor associated with OLs' lineage is insulin-like growth factor, which 

induces migration and accumulation of OPCs post-injury and thus stimulates 

remyelination [228, 229]. Expression of this protein was found to be extensive at the 

lesion border of demyelination in animals [230] and in MS [231]. However, at the 

lesion border in MS, there was also extensive expression of the insulin-like growth 

factor binding proteins. These binding proteins are believed to be potent inhibitors of 

myelination [231]. 

After this, migration of OLs is inhibited and cells start to proliferate again under the 

effect of PDGF and CXCL 1. At this point in development and around birth, immature 

OLs become multi-processed and immobile but maintain expression of PDGF and 

NG2 [194]. Most of these OLs are still immature and thus not myelinating [160, 232, 

233]. This explains the duration of extensive myelination between postnatal day 10 

and postnatal day 60 as revealed by MRI studies [234]. 

As development continues, OLs lose expression of PDGF and NG2 (except for a 

population of cells that continue to express NG2 during adult life, these cells are 

called adult OPCs) and enter a stage of intermediate pro-OLs, which is the 04+ 

stage [194]. These 04+ cells are more mature, less motile and do not migrate [227]. 

On the other hand, NG2 positive cells continue as a distinct population of cells and 

spread in the GM and WM during adult life. The fate of NG2 cells and their role in 

oligodendrogenesis is discussed later in the thesis. 
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Initially, an excess number of pro-OLs is produced from proliferation of PDGFR-a 

positive cells and distributed widely in the GM and WM. Nevertheless, the 

programmed cell-death process (apoptosis) controls the final number of OLs so that 

it matches myelination requirements [194, 223, 227]. The final stages of maturation 

include expression of mature OLs' markers, such as PLP, MBP, MOG, and CNPase. 

As these cells mature, they start myelinating axons. 

In summary, to reach the appropriate number ofaxons and the appropriate amount 

of myelination, the progenitor cells migrate, proliferate, differentiate, and then 

undergo timely programmed cell death [227]. The ultimate cytoarchitecture of OLs in 

the spinal cord involves interfascicular OLs and perineuronal OLs. Interfascicular OLs 

are heterogeneous in morphology [235] and in biochemical composition [175]. The 

process of establishing normal spinal cord cytoarchitecture depends largely on the 

correct localisation of the OLs and axons [223]. 

We have emphasized that OLs are a heterogeneous population of cells and each 

type myelinate a different number ofaxons [167, 174, 175]. However, the process by 

which these myelinating OLs acquire their distinct morphology is not clear. Early in 

development, PDGFR-a positive cells begin migration in response to other factors 

which act as guidance to these OLs [223]. These factors may include electric field 

currents, mechanical factors, or chemotactic substances, but it is not well understood 

whether these cells are programmed to a specific morphology or they acquire this 

morphology after migration and under the effects of the new environment. Studies on 

cultured neuroepithelial stem cells showed that all stem cells cultured under the 

effect of PDGF give rise to OLs [225]. This is an important issue in MS and has been 

raised in a number of MS studies to explain why Ols in chronic lesions fail to mature 

and gain the functional and morphologic characteristics of mature cells [236-239]. 
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4.1.2 Functions of oligodendrocytes 

The only proven function of Ols is myelination of the eNS axons, which is ascribed 

mainly to interfascicular Ols, while perineuronal Ols are assumed to have functions 

other than myelination, such as supporting and protecting neurons [169, 240, 241]. 

Intercellular junctions, including gap junctions and to a lesser extent tight junctions, 

are found in the wall of Ols. Freeze fracture of Ol membrane has revealed the 

presence of gap junctions connecting two Ols or Ol and astrocyte. This coupling, 

via gap junctions, between peri neuronal Ols and other cells is currently under 

investigation [162]. 

In 1979 Ludwin studied the remyelination process in mice. Peri neuronal Ols were 

seen clearly remyelinating. Ludwin assumed that these cells may participate in 

normal myelination [173]. After a few years, he investigated the possible functions of 

peri neuronal satellite Ols in the mouse; he used anti MBP and MAG and analysed 

OLs histochemically during the remyelination process. He concluded that these cells 

are functionally similar to other Ols in many respects. Ludwin stated that satellite 

OLs proliferate and produce myelin in response to injury or any demyelinating event 

[173]. 

It is believed that most of the functions that were attributed to Ols are thought to be 

functions of myelin rather than the cell itself [160, 240]. These include maintenance 

ofaxons, regulation of the axon calibre, and inhibition of axonal growth and 

regeneration [160]. 

4.2 Alms and hypothesis 

Ols' numbers and function have proven to be essential in maintaining myelin and 

remyelination. Previous work revealed that cortical GM has more extensive 
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remyelination than the WM, which has been attributed to less inflammation [215]. 

Another animal study assumed that perineuronal Ols in the GM have an essential 

role in remyelination after injury [172]. Moreover, the significant role of perineuronal 

Ols in protecting neurons from undergoing apoptosis was also illustrated in a study 

by Taniike and colleagues in 2002 [240]. There is no study that investigated 

specifically the fate of Ols in the GM of MS. 

Our aim is to study the pathology of Ols in the GM of spinal cords by comparing MS 

tissue and controls, and further comparing the two progressive subtypes of MS; 

PPMS and SPMS. Results obtained from counting Ols in the GM will be compared 

with results obtained from the WM in the following chapter. Axonal loss in NAWM has 

been confirmed previously [242] and found to correlate with the progressive form of 

the disease and with disability [127, 243], but the possible associated Ols pathology 

in normally appearing areas, especially the GM, has not yet been assessed. 

4.3 Material and methods 

Human spinal cord blocks were obtained for this study from the MS Society tissue 

bank in london (PPMS = 13, SPMS = 14, Controls = 5), Oxford Radcliffe NHS Trust 

(6 controls), and archival material from the Neuropathology Department of 

Nottingham University Hospital NHS Trust (7 controls) (Table 4.1). Details of the 

material from the MS Society were described as part of material in Chapter 2. Two 

controls from the MS Society tissue bank and 2 controls from Oxford were excluded 

because of inadequate staining (subjects 10 numbers 11, 32, 3269, and 458). 

For PPMS (4 males and 9 females) the age was between 45 and 92 years (mean = 

66.23 years ± SO = 14.16 years) and the disease duration between 5 and 54 years 

(mean = 26.69 ± 14.57 years). For SPMS (5 males and 9 females) the age was 
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between 39 and 78 years (mean = 57.23 ± 13.59 years) and disease duration was 

between 9 and 50 years (mean = 29.62 ± 13.49 years). For control (5 males and 9 

females) the age ranged between 33 and 93 years (mean = 64.15 ± 15.64 years). 

d Table 4.1: Neuropatholo~y epartment 0 Nottingham tissue 
Subject 10 Gender Age Number of 

Level of each sections 
number sections 

N8298 male 33 1 Cervical 

NP4 female 60 2 Cervical, thoracic 

NP47 female 72 3 Cervical, thoracic, lumbar 

NP82 I male 77 2 Cervical, thoracic 

NP89 II male 73 1 Thoracic 

NP94 female 75 2 Cervical, lumbar 

NP96 female 64 1 Thoracic 

4.3.1 Initial preparation 

Initial preparation of tissue from London and Oxford has been mentioned in Chapter 

2 (Sections 2.5.1 and 2.5.3). To increase the number of controls, archival material 

from the Neuropathology Department in Nottingham University was added to our 

sample. Tissue from Nottingham was fixed in 10% formalin and embedded in 

paraffin. The formalin-fixed and paraffin-embedded blocks were cut at 5 IJm 

thickness. Sections were processed for immunohistochemistry and stained against 

CA II. Immunohistochemistry protocol for CA II used the protocol mentioned in 

Section 3.7.2 and appendix B. Immunohistochemistry for tissue from Nottingham was 

carried out by another technician using a manual technique as opposed to the 

automatic immunostainer used for the tissue from London and Oxford. 

Since we have two blocks from a number of subjects, the total number of blocks 

outnumbers the subjects. In total, 63 blocks of tissue have been analysed. From 

each block, one section was cut at 8 IJm and the following 10 sections were cut at 5 

IJm thickness. The 8 IJm sections were stained with H&E and the 5 IJm sections were 

used for immunohistochemistry. The H&E stained sections were examined by an 

expert Neuropathologist Prof Jim Lowe and by an expert Consultant neurologist Dr 
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Evangelou Nikos. The H&E-stained slides were also compared with the CA II-stained 

slides. On the majority of slides, there was more than one section that can be 

examined. This gave us the opportunity to increase the number of the examined 

demyelinated lesions and to compare demyelinated and normally appearing spinal 

cord sections from the same subject. 

Similar to the previous scanning process (Sections 2.5.3 and 3.3.3); the CA II-stained 

slides were numbered and converted into digital slides that can be viewed at the 

computer screen. Slides were viewed and edited on the computer by using the 

NDP.view software. 

4.3.2 Sampling of the ventral horn and the dorsal horn 

Using the digital pen, borders of the GM were delineated in all CA II-stained sections. 

The CSA of the cord and the GM were measured. From each VH, 5 fields were 

selected based on the protocol described in Figure 4.1. Fields were exported as an 

image of the computer screen when the magnification is set to 40X and the screen 

resolution is 1024 x 768 pixels. With this magnification and this resolution, the 

surface area of the exported field was 0.047 mm2
• However, when the VH area was 

small, especially at the upper cervical or thoracic levels, smaller fields were selected 

by exporting the image of the screen at magnification of 63X. The surface area of the 

field with 63X magnifications and with the same resolution was 0.0164 mm2
• The 63X 

magnification is set automatically by the software and cannot be manually adjusted. 

The majority of fields were exported at 40X magnification (65% of all fields). 

The DH sampling protocol allowed for the field of interest to sample nucleus proprius 

(Figure 4.2). This means that the DH was represented by the laminae IV and V. This 

is because lamina I is very thin and does not fill the field of interest and it is 

94 



Chapter 4: Pathology of oligoclendrocytes in the GM of progressive MS spinal cords 

separated from the nucleus proprius (Iamiae IV and V) by the naturally unmyelinated 

substantia gelatinosa (laminae II and III). 

4.3.3 Oligodendrocyte counting 

Each exported field of interest was given a number so that the observer is blinded to 

myelin status and the disease type. Fields of interest were numbered based on the 

subject 10 number, section number, side of tract (left or right) and its location among 

the 10 sections. Therefore, each field location can be traced and located on the 

original slide. All fields were viewed by imageJ software. The field was opened using 

the software and manual counting was carried out. Using the computer mouse 

cursor, all Ols were selected. The software automatically counted the selected 

points. Reliability of our identification criteria and reproducibility of our counting 

process was tested (coefficient of variation 16%). 

4.3.4 Identification of the myelin status of fields 

To determine the myelin status of each field, the MBP-stained sections were used. 

However, the MBP and CA II sections are not adjacent. The two non adjacent 

sections were selected randomly from 10 consecutive 5 ~m thick sections. Thus the 

maximum distance between any two sections can reach up to the thickness of 8 

sections (40 ~m). The effect of the possible maximum 40 ~m distance between the 

MBP and the CA II sections on our measurements was tested by measuring the 

surface area of the spinal cord and the GM in 10 subjects and in the three stains (CA 

II, MBP, and H&E). 

The CSA and the GM surface area were calculated in the three stains; CA II, MBP, 

and H&E (Table 4.2). The correlation of GM surface area between CA II and MBP 

was 0.992 (p value < 0.001) and with H&E was 0.995 (p value < 0.001). The WM 
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surface area calculated from the CA II and the MBP correlated with each other 

significantly (Pearson correlation r = 0.990, P value < 0.001). The GM surface areas 

calculated from the CA II sections correlate also with MBP (Pearson correlation r = 

0.996, P value < 0.001). 

4.3.1 Classification process of CA II-stained fields according to myelin status 

Using NDP.view software, the CA II-stained image was opened and then the 

corresponding MBP-stained image was opened on the same screen. By 

synchronising the two images using the NDP software, magnification and position of 

the two opened images were set equal, ie any change in the magnification or position 

of the first image was met by the same degree of change in the magnification and 

position of the second image. 

Table 42· The GM and the WM surface areas in the three stains .. 
The The WM The WM The WM surface The GM The GM The GM 
subject 10 surface area surface area area (MBP) surface area surface surface 

(CAli) (H&E) (CAli) area H&E area MBP 

E49 30.2 29.4 28.0 4.11 4.08 3.74 

E55 51.0 51.0 50.8 2.58 2.31 2.48 

E72 24.9 25.0 25.0 3.38 2.41 3.29 

E104 42.6 42.2 43.1 3.36 3.36 3.50 

E109 35.5 35.3 35.8 4.18 4.29 4.16 

E122 42.6 44.5 44.7 9.21 9.08 9.73 

E135 32.2 32.8 33.1 12.23 12.70 12.29 

E164 30.4 30.1 30.1 3.59 3.40 3.28 

E197 23.4 24.0 20.6 14.09 13.43 12.52 

E49 30.2 29.4 28.0 4.11 4.08 3.74 

The only feature that was not included in synchronisation is the orientation, which 

was adjusted before synchronising the images. This was because each slide had 

been scanned in a different orientation by the NDP.view scanning machine. 

Orientation of each slide was standardised by drawing a reference line. The 

reference line was drawn from the central canal to the dorsal border of the PCP. To 

adjust and standardise the orientation, the line was adjusted to one of the vertical 
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borders of a flat computer screen. Therefore, each time the examiner opens the two 

images, he can retain the image alignment by adjusting the line to the vertical border 

of the computer screen. Once the orientation of the two opened images (CA II and 

the MBP of the same clock) was the same, images were then synchronised. 

Synchronisation of the two images allows the examiner to compare the same region 

in two different stains (Figure 4.3). 

Because the previously exported CA II-stained fields were still outlined on the CA 11-

stained sections, the same regions could be located on the MBP when the two 

images were synchronised. Consequently, the myelination status of the fields was 

then identified (Figure 4.3). Fields were classified into normally appearing GM 

(NAGM), partially myelinated GM (PMGM), and demyelinated GM (DMGM). DMGM 

included all the completely demyelinated areas. Any abnormally appearing areas that 

were not completely demyelinated were considered PMGM. Therefore, PMGM 

included the lesion border, areas of partial remyelination or areas of partial 

demyelination. 

4.3.2 Statistics and Statistical software 

Results were exported to SPSS software that has the subject number, the field 

number, Ols number, CSA of each field, and the myelin status of each field. The 

spreadsheet also has other details about the subject's age, gender, duration of the 

disease, and type of disease. 

Reproducibility and reliability were evaluated by coefficient of variation and 

Spearman correlation. T test and Mann-Whitney U test were used to compare means 

as appropriate. Multiple linear regression was used to analyse effects of independent 

factors on Ols, such as age, gender, type of disease, cord level, duration of disease 
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and post-mortem delay. With the help of Dr Owen, a lecturer at Nottingham 

University, comparison of the means and regression analysis were double checked 

using STAT A statistical software. 

4.4 Results 

About 864 fields were examined (Table 4.3). Some of the general features of CA II 

stained sections were mentioned in the Chapter 3, while MBP stain features were 

mentioned in Chapter 2. GM OLs appeared variable in shape and size. In controls, 

they appeared homogeneously distributed throughout the GM. The electron 

microscopic features of OLs having heterogeneous chromatin were noted frequently 

[169]. The discrimination between light, intermediate and dark OLs was not always 

possible. However, in agreement with the electron microscopic findings, it was 

noticed that darker OLs tend to be smaller. Presence of large light OLs, which 

represent early mature cells, was often observed (Figure 4.4 A). Peri neuronal OLs 

were occasionally seen in proximity with the perikaryon of neuron, and they tended to 

be darker and smaller (Figure 4.4 B). In the lesions' centres the presence of OLs was 

not associated with myelin. 

T bl 4 3 O' t 'b r f th a e • : IsnUlono I edfie f e analySt Ids rom the VH and OH 

Type of the disease Myelin status of the field Number of fields 

Normal control Normal field from normal control 250 

Demyelinated 51 

PPMS Partially myelinated 51 

Normally appearing fields from MS 219 

Demyelinated 58 

SPMS Partially myelinated 29 

Normally appearing fields from MS 191 
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4.4.1 The spinal cord grey matter of MS shows higher density of 

oligodendrocytes than normal controls. 

The mean density of OLs in the GM of MS, regardless of disease type and myelin 

status, was 139 ± 159/mm2 and in controls was 104 ± 96/mm2 (p < 0.001) (Figure 

4.5). We further examined the mean density in each of the main cord segments (the 

three main segments; cervical, thoracic, and lumbar). In both controls and MS 

subjects, there was no significant difference in OLs' density between any of the three 

segments. In addition, regression analysis did not reveal significant effect of cord 

level on GM OLs in either MS or controls. 

4.4.2 The spinal cord grey matter of SPMS has greater density of 

oligodendrocytes compared to PPMS 

By considering the disease type, the mean density of OLs in the GM of PPMS was 

122 ± 136/mm2 and in SPMS was 158 ± 180/mm2 (p = 0.007). When each subtype is 

compared with controls, only SPMS showed significant difference (comparison 

between controls and SPMS, the p was < 0.001 and with PPMS, the p = 0.064) 

(Figure 4.6). 

The increase in OLs in SPMS GM compared to PPMS GM was observed only in the 

VH. The mean OLs density in the VH of SPMS was 164 ± 182 and in PPMS was 

123/mm2 ± 132 (p = 0.006). In the DH, the mean OLs density was 135 ± 1741 mm2 in 

SPMS and 117 ± 151/mm2 in PPMS (p = 0.548). 

4.4.3 Density of oligodendrocytes In the NAGM 

When we further sub-classified our analysis according to myelin status, we found out 

that the increase in OLs was due to increase of numbers in the NAGM. The mean 

density of OLs in the NAGM of MS was 173/mm2 ± 7.99 (compared to controls the p 
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< 0.001). Ols' density in the NAGM was found to be 1491 ± 133/mm2 in PPMS and 

201 ± 186/mm2 in SPMS (p = 0.002). This increase in Ols' density in the NAGM of 

SPMS was found to be due to increase in Ols in NAGM of the VH and not the DH. 

The Ols' density in the NAGM of the VH in SPMS was 207± 187/mm2 and in PPMS 

149 ± 128/mm2 (p = 0.001). In the NAGM of the DH, Ols' density was 178 ± 

185/mm2 in SPMS and 151± 1521mm2 in PPMS (p = 0.463). 

4.4.4 Density of oligodendrocytes in PMGM 

The mean density of Ols in PMGM was 130 ± 165/mm2
, which was significantly less 

than Ols' density in the NAGM (p = 0.037) and not different from healthy GM of 

normal controls (p = 0.183). In the PMGM, PPMS showed a density of 124 ± 

154/mm2 and SPMS showed a density of 142 ± 187/mm2 (P = 0.65). Comparison 

between the DH and the VH in the PMGM was not possible because there were not 

enough PMGM fields exported from the DH. Most of the lesions that affected the 

dorsal aspect of the cord resulted in complete demyelination of the DH. 

4.4.5 Density of oligodendrocytes in DMGM 

Ols' density in the DMGM was found to be tremendously less than normal healthy 

controls (83% reduction) and less than PMGM (86% reduction) -and NAGM (90% 

reduction). The mean density of Ols in the DMGM of MS was 17 ± 39/mm2
• In SPMS 

the density was 28 ± 49/mm2
, which was significantly more than the DMGM in PPMS 

that showed Ols' density of 4.8 ± 15/mm2 (p = 0.001). In the whole MS sample and 

the two forms of the disease, the demyelinated areas showed significantly reduced 

density of Ols compared to healthy GM from normal controls, NAGM and PMGM. 

100 



Chapter 4: Pathology of oligodendrocytes in the GM of progressive MS spinal cords 

4.4.6 Effects of age and disease duration on GM oligodendrocytes numbers 

In normal controls, GM Ols' number decreases significantly with age (p < 0.001, 

correlation coefficient = -0.413 contrOlling for gender and cord level). However, effect 

of age on Ols' density in MS was found to be insignificant controlling for gender, 

myelin status and cord level (Correlation coefficient = -0.013, P = 0.748). 

In MS, correlation of Ols' numbers in the GM correlated better with duration of 

disease than age. Duration of the disease seems to have weak negative correlation 

with number of GM Ols in the global sample. However, effect of duration of the 

disease on Ols was only significant in the demyelinated areas in which the 

correlation coefficient was calculated to be -0.221 and the significance was 0.026 

controlling for age, gender, and cord level (Table 4.4). 

Table 4.4 correlation of OLs density with disease duration in the three differently myelinatedrElgion 
Myelin status of the Control Variables Disease duration in 
field years 

Demyelinated Gender & Level of the cord & 
Correlation -0.221 

Age 
Significance (2-tailed) 0.026 

Partially myelinated Gender & Level of the cord & Correlation -0.121 
Age 

Significance (2-tailed) 0.296 

Normally appearing Gender & Level of the cord & Correlation -0.021 
from MS Age 

Significance (2-talled) 0.680 

4.4.7 Total number of oligodendrocytes in the spinal cord GM 

To validate our results further and to overcome the possible effects of atrophy in MS 

on Ols' density, which may give misleadingly higher density of Ols per 1 unit 

surface area, the total number of Ols was calculated in the GM. This has been 

calculated by multiplying the mean density of GM Ols in each subject by the GM 

surface area of that subject. Only the VHs that do not have demyelination were 

included in assessment of Ols total number. Due to significant variability in the GM 

101 



Pathology of the spinal cord in progressive multiple sclerosis (primary progressive vs secondary progressive) 

volumes among various cord levels, results were categorised into 5 groups according 

to the GM volumes in each segment (Sections 2.5.5 and 2.7.2). 

The total number of Ols in the upper cervical GM of controls was 449 compared to 

746 in MS (Mann-Whitney U test = 4, P 0.643). In the lower cervical GM, which has 

great surface area, the total number was 942 in controls and 453 in MS (Mann

Whitney U test = 5, p value = 0.194). In the thoracic area, the total number was 363 

in controls and 648 in MS (Mann-Whitney U test = 13, P = 0.295). In the upper 

lumbar GM, the total number was 338 in controls and 967 in MS (Mann-Whitney U 

test = 2, p = 0.857). The total number in the lower lumbar level was 1639 and 2260 in 

controls and MS respectively (Mann-Whitney U test = 13, P = 0.295). 

4.4.8 Comparison between the dorsal horn and the ventral horn 

We demonstrated previously that the difference between PPMS and SPMS was only 

significant in the VH. However, comparison was made between Ols' density in the 

ventral GM and the dorsal GM in both controls and MS. In healthy controls, there was 

greater density of Ols in the VH (109/mm2) compared to the DH (54/mm2) with a 

significance of < 0.001. The variation was less prominent in the global sample of MS 

where the VH and the DH demonstrated mean densities of 1421mm2 and 126/mm2 

respectively (p = .319). Table 4.5 shows the variation according to the myelin status. 

4.4.9 Effects of independent factors 

A linear regression model was applied to study the effect of the independent factors 

(disease duration, gender, level of the cord, myelin status, type of the disease, region 

of the GM (VH vs DH) and post-mortem delay) on the dependent factor Ols' density. 

There was significant effect of disease type and myelin status on Ols' density and p 

value were 0.029 and < 0.001 respectively. 
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Table 4.5: Comparison between the VH and the DH in oligodendrocytes density 

Type of sample GM OLs density I mm 
2 P value· 

VH 109/mm2 

controls 
54/mm2 <.001 

DH 

VH 175/mm2 

NAGM .603 
DH 165/mm2 

VH 128/mm2 

MS PMGM .. 
DH 171/mm2 

VH 21/mm2 
DMGM 

5/mm2 .063 
DH 

• pa Ired t test 
•• Only 3 partially myelinated fields from the DH were found in the sample and thus comparison was not possible. As 
we have already mentioned, most of the lesions were posterolateral and affected the whole DH. 

4.4.10 Summary of results 

So far, we have calculated that the mean density of Ols in the GM of MS is more 

than controls in the whole sample and in SPMS. When the analysis is extended to 

consider the myelin status, the NAGM of MS in the whole sample and in both 

subtypes demonstrated greater density of Ols than healthy GM of controls. Increase 

in Ols was found in the NAGM or the lesion border, while in the completely 

demyelinated areas number of Ols is significantly reduced. There are more Ols in 

the NAGM, PMGM and DMGM of SPMS cords compared to PPMS. This difference 

was greatest in the NAGM of the VH. In normal controls, GM Ols' number reduces 

with age, while in MS the number of Ols reduces slowly with disease duration in the 

demyelinated areas. 

4.5 Discussion 

Exporting fields of interest from the spinal cord GM using unbiased sampling protocol 

is, to our knowledge, the first quantification study of Ols in the GM of MS. Ols are 

responsible for an important element of eNS repair, which is the remyelination. The 

eNS remyelination occurs in the WM and the GM. Effective remyelination depends 

on the presence of enough functioning Ols [217, 244,245]. We have calculated Ols' 

density in four areas; healthy controls GM, NAGM, PMGM, and chronic DMGM. All 
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lesions in our sample were chronic demyelinated lesions. Inflammation stages of 

lesions in this sample have been studied previously using CD3 and CD163 and the 

majority of lesions were found to be chronic inactive with very low inflammation score 

[124]. This is an expected result, as new lesions of the spinal cord in progressive MS 

are quite rare [138]. 

Interestingly, we found high numbers of CA II positive cells in the GM of the entire 

MS sample compared to controls. We found that the NAGM is responsible for this 

increase. When the two subtypes of the disease were compared, the density of Ols 

in the GM of SPMS was greater than that of PPMS. The highest number of Ols was 

found in the spared regions of the GM of the two disease forms. 

It is possible that GM lesions are associated with some activity in the form of 

inflammation and substantial release of inflammatory molecules or chemotactic 

signals. This may affect the Ols around the lesion. Ols may undergo proliferation in 

response to a signal from the lesion. Ols' proliferation in response to injury has been 

reported on a number of previous occasions. Animal studies have reported GM Ols' 

proliferation after nervous tissue injury [246]. Experimental spinal cord injuries in rats 

have shown that new Ols are found around the lesion border as early as 7 days post 

injury, The numbers of accumulating Ols around a spinal cord lesion was found to 

be greater than in normal controls [226]. Surprisingly, Ols' proliferation resulted in 

high numbers of Ols in the GM that outnumbers GM Ols in controls. Proliferation 

was also more prominent in the GM than the WM [226]. Our results suggest that this 

finding may also occur in the human nervous system. 

The observation that spared areas around lesions have the highest numbers of Ols 

led us to execute a quick comparison between density of Ols in the spared areas 
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near GM lesions and spared areas far from lesions. We found that NAGM has 

significantly greater density of Ols in the cervical segment (199/mm2
), which is 

nearer to lesions compared to lumbar segment, where lesions are rare (158/mm 2
) (p 

value = 0.04). This may support further that Ols proliferate in response to the local 

effects of demyelinating lesions. 

The role of the presumed Ols' proliferation in the GM is not certain. The increased 

numbers of Ols in the NAGM may act as a reservoir for Ols. Ols' progenitors 

possibly proliferate and migrate to injured areas. These Ols accumulate around the 

border, in an attempt to migrate inside the lesion and repair it or to prevent the lesion 

from spreading further. This may explain the finding that SPMS has more Ols in both 

the NAGM and the DMGM. 

An important issue is that comparison with animal studies may not be ideal. Animal 

studies mostly test acute response to injuries of the spinal cords compared to the 

chronic lesions of MS, which have been examined in our study. Nevertheless, a 

human study in MS showed that proliferation of cells continues in chronic lesions of 

MS [247]. 

Another important concern is the possible effect of atrophy of the spinal cord in MS 

on interpretation of results. Atrophy of tissue in MS, including the GM, may result in 

overestimation of Ols' density. In an attempt to validate our results, the total number 

of Ols within the cord was calculated, which showed that there is no significant 

difference between MS and controls. It should be noted that we included only 

normally appearing sections that do not have demyelination. This resulted in 

exclusion of sections with demyelination, and consequently exclusion of the areas 

around the lesions, which are the areas with the highest number of Ols. On the other 
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hand, including sections with demyelination in the analysis of total numbers of OLs 

may not be reliable. This is because significant areas of these sections are occupied 

with demyelination, which have very few OLs. 

There may be another possible source of error coming from controls. The control 

sample was obtained from three sources and may give variable results. Initially, we 

had two sources of tissue; London and Oxford, which have been processed in the 

same lab and by the same technician. Initial results revealed that there was an 

increase in OLs' density in the GM of MS compared to controls. To increase the 

reliability of our results, we added several controls from Nottingham. For technical 

reasons, these were processed manually by another technician and using manual 

technique rather than automatic technique (immunostainer). The manual technique 

has used the same protocol that had been done by the immunostainer. The obtained 

results did not vary considerably and controls GM continue to demonstrate less 

numbers of OLs compared to MS GM. However, both Oxford tissue and Nottingham 

tissue demonstrated greater density of OLs in the GM compared to the tissue from 

London. 

4.5.1 Variation between PPMS and SPMS 

MS tissue was obtained from one source and processed by the same technician. 

Therefore, comparison between PPMS and SPMS is not affected by source of tissue 

variation. SPMS spinal cords seem to have higher density of OLs in the NAGM in 

contrast to PPMS. If we move inside the lesion, OLs number reduces tremendously. 

But still OLs density in SPMS lesions was greater than PPMS (in SPMS was 27 

OLs/mm2 and in PPMS was 5 OLs/mm2). This may indicate that OLs in the NAGM 

migrate inside the lesion or the process of production of OLs is more efficient in 

SPMS compared to PPMS. Previous studies have reported more Ols' precursors in 
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SPMS compared to PPMS. The density was 34/mm2 in lesions from SPMS and 

9/mm2 in lesions from PPMS [239]. 

Variation in Ols pathology between MS subtypes may be part of the variation in the 

whole disease process. There are differences between the two subtypes in degrees 

of inflammation, atrophy and in demyelination. The progressive phase of SPMS 

patients can be shorter than PPMS, which may explain the findings that SPMS 

maintains more inflammation [103], more inflammatory cell recruitment, more 

demyelination and even more remyelination [179]. In SPMS, there was more 

perivascular cuffing and cellularity in the parenchyma of SPMS [103]. There were 

also more T cells and activated microglia inside and outside spinal cord lesions in 

SPMS [124]. Part of Ols' response to inflammation may include proliferation or 

migration to the site of inflammation and, as an element of this inflammation, Ols' 

recruitment may be higher in SPMS. This may indicate that SPMS by having more 

inflammation attracts more Ols to the site of inflammation. In fact, an experimental 

animal study reported that inflammation is a potent stimulator of Ols proliferation and 

remyelination [248]. Specifically in MS, lucchinetti et al reported that SPMS ability to 

recruit inflammatory cells and OLs to the site of lesion was greater than PPMS [179]. 

This is supported by a previous report that SPMS patients have greater degree of 

remyelination than PPMS [249]. 

In Chapter 2 we demonstrated that SPMS has more demyelination in the spinal cord, 

but PPMS has greater tendency to affect the GM and may therefore produce greater 

damage to Ols, which may result in reduced numbers of Ols in the GM of PPMS. 

Moreover, variation in atrophy between the two disease subtypes may affect 

interpretation of our results. We found that SPMS produces more atrophy of the cord, 

especially in the upper segments, which may give misleadingly higher density of Ols 
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and thus explain the higher density of OLs in the SPMS GM. This possibility is further 

suggested by the fact that there was no significant difference between SPMS and 

PPMS in the total number of OLs in the GM. Again, we have to emphasise that 

sections with demyelination, where OLs accumulate around lesions, have been 

excluded from the study of total number of lesions. Therefore, the main contributory 

element to the increase in OLs number is not included. 

Another explanation is that SPMS subjects, due to genetic, environmental or other 

unknown factors, may have greater resistance to OLs loss. As a result, these cells 

can be mature OLs that survived demyelination. It was observed that in some MS 

lesions OLs were relatively preserved. These OLs were found to be positive for Bcl-2. 

This protein protects against OLs apoptosis. Expression was found in demyelinated 

areas, but highest in remyelinated areas. A subset of patients with RRMS 

demonstrated high numbers of Bcl-2 positive OLs (250). It is possible that RRMS 

subjects maintain expression of this protective protein in the secondary progressive 

phase of the disease. Such assumption was further supported by Bonetti et al in 

1997, reporting that similar expression of Bcl-2 was noticed in chronic active and in 

silent MS lesions (251). Therefore, future studies may compare expression of Bcl-2 

between SPMS and PPMS, and between the GM and the WM. 

4.5.2 Potential sources of oligodendrocytes 

So far, we have suggested two possible sources of OLs; new OLs from proliferation 

of the progenitor cells or mature OLs that survived demyelination. However, it is 

strongly believed that remyelinating OLs in the human eNS are new OLs that are 

produced by differentiation and proliferation of OL progenitors [194, 252-254]. There 

are two pieces of evidence to support this hypothesis; adult OLs that survive the 

demyelinating event are mature and therefore postmitotic (mitotically inactive), and 
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new Ols were found mainly in areas populated with NG2 cells [226]. Animal studies 

have demonstrated that mature Ols that survived demyelination do not playa role in 

remyelination and that new Ols are required for remyelination [255]. In fact, the 

numbers of mature Ols that survive demyelination in MS (sometimes called 

demyelinated Ols) reduces significantly with disease progression [238]. 

Moreover, Solanky et al (2001) studied 3 groups of patients; patients with MS, other 

neurological diseases, and normal controls. The study quantified proliferating cells by 

using proliferation marker (Ki-67) that stains cells in various phases of cell cycle. 

There was more proliferation of cells in MS. Most of the proliferating cells were found 

to be Ols and were traced in acute, chronically active, and chronic lesions. The 

study demonstrated that Ols' proliferation continues even in chronic lesions [247]. 

Sources of new Ols may include, NG2 positive cells, PDGF-a positive cells, nestin 

positive cells, and perineuronal Ols (Table 5.4). 

Adults NG2 positive cells 

Adult NG2+ cells are different from embryonic NG2+ cells, in that embryonic NG2+ 

precursors differentiate early during gliogenesis and are restricted to a certain area 

around the neural tUbe. The exact function of adult NG2+ cells is not clear, but it is 

believed that these cells are part of Ols' lineage and they can differentiate into Ols 

in pathological cases such as MS [194, 226]. 

Adult NG2 positive cells are a distinct population of cells that are distributed evenly in 

the adult human eNS in the GM and the WM. NG2 positive cells can be found in 

developing brain, adult brain, and in chronic lesions of MS [237, 244, 245]. These 

cells express PDGF-a, and 04, but not MBP or CNPase. These NG2+ cells are 

capable of producing Ols in response to injury, which is a rapid and efficient process 
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for remyelination in animals [194]. It was found that these cells proliferate early in 

response to injury (within the first week), and are capable of producing new OLs 

around the lesion border as early as 3 days post injury. Newly formed OLs were 

observed in areas rich with NG2+ cells [226]. Animal studies revealed that NG2 

positive cells are the remyelinating cells and their exogenous transplant in another 

lesion promotes remyelination [245]. 

After injury, NG2+ cells of the spared areas change their morphology from stellate 

shape to a more regular shape. This regular shape is believed to be the active 

proliferating form of the cell [256]. The shape of premyelinating OLs that was found in 

chronic lesions of MS in previous studies and the present study greatly resembles 

the active form of NG2 positive cells [236]. They were oval cells and were not 

associated with myelin. NG2 cell distribution correlates positively with the distribution 

of premyelinating Ols indicating that NG2 cells give rise to premyelinating OLs [236]. 

Another study compared OLs pathology in EAE and MS [252]. It demonstrated that 

NG2 cells proliferate and become active in response to injury and a transition state 

between NG2 and mature Ols was found in MS, where double stained cells with 

NG2 and CNPase were found [252]. 

PDGF-a positive cells 

These cells are earlier than NG2 positive cells in cell lineage of Ols. Although double 

labelling with NG2 is common, these PDGF-a positive cells are different from adult 

NG2 positive cells by being bipolar or sometimes with no processes. An important 

feature of these cells is that they are migratory. During normal development, the 

bipolar PDGF-a positive cells differentiate into embryonic NG2 positive cells and then 

to premyelinating Ols or to adult NG2 positive cells. Adult NG2 cells continue as the 

distinct population of cells mentioned in the previous section, while premyelinating 
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OLs are not present normally in adult brains. Premyelinating OLs are temporary cells. 

During early development, the multiprocessed premyelinating OLs either develop into 

mature myelinating OLs or undergo apoptosis within 3 days, if they do not myelinate 

axons [194, 223, 227]. Multiple processed premyelinating OLs have been observed 

in chronic lesions of MS [236]. 

During development of the spinal cord, OLs' proliferation begins in the ventral part of 

the central canal. Two foci of PDGFR-a positive OLs are generated on both ventral 

sides of the neural tube and then OLs' proliferation is started [257]. The dorsal spinal 

cord was to found to be inhibitory for proliferation of OLs in the early stages of 

development [224]. Animal studies revealed that proliferation of OLs was more 

apparent in the VH [258]. In our sample, the observation of accumulation of OLs at 

the border of GM lesion was only noted in the VH. In addition, the variation between 

SPMS and PPMS was only noticed in the VH. 

PDGFR-a positive cells were identified in 1995 in a cultured human temporal cortex 

[259]. After that, and in 1998, Neil Scolding and his colleagues examined normal 

controls, acute, and chronic MS lesions for the presence of these cells. They 

demonstrated for the first time the presence of small numbers of PDGF-a positive 

cells in the brains of normal controls, in acute and in chronic lesions of MS [245]. This 

may represent another potential source of OLs in MS. From the data in our hand, we 

calculated that in controls there are higher numbers of OLs in the VHs compared to 

the DHs. Comparison between the ventral and the dorsal spinal cord is important, 

because of the observation that most of spinal cord lesions are located 

posterolaterally in the spinal cord. 
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Nestin positive cells 

These cells are the neuronal stem cells and they are earlier than NG2 and PDGF-a 

positive cells. They are rounded-to-oval non-branching cells that can give rise to 

neurons and glia. They are positive for nestin and localised to the sub-ventricular 

zone during development. Neuronal stem cells are not different morphologically from 

PDGFR-a positive cells, as some authors describe PDGFR- a cells as non

processed cells. The difference is that PDGFR-a cells are committed to become Ols. 

Presence of these cells in the adult human eNS has been recently reported and 

they were localised around the central canal of the spinal cord near to ependymal 

cells [260]. These cells may be an important potential source of new Ols, especially 

because they are characterised by being multipotent and migratory [160]. 

Perineuronal oligodendrocytes 

Another possible source of new Ols in the human GM is the perineuronal Ols. It has 

been suggested that perineuronal Ols play a role in remyelination in animals. 

Perineuronal Ols proliferate, differentiate and remyelinate injured axons in animals. 

In the GM perineuronal Ols, which are not associated with myelination in normal 

circumstances, were seen clearly remyelinating axons [172, 173]. This may explain 

the presence of high numbers of Ols in the GM of MS spinal cords. 

4.5.3 Further Comments on material and methods 

There are limitations to the use of the human tissue in examining diseases such as 

MS. For example, duration of the disease varies at time of death and, therefore, age 

of lesions may vary. Although most of our sample subjects had a similar degree of 

disability before death [124], pathology of GM and thus Ols changes may be 

independent of disability. Another limitation may be related to a different post-mortem 

delay of tissue. This may affect the degree of protein and enzyme expression. 
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Myelin status was determined by the MBP-stained sections. Because the CA 11-

stained section and the MBP-stained section are not adjacent, a possible error may 

arise from identification of the myelin status of the field, such as misinterpretation of 

DMGM as NAGM or vice versa. The maximum possible distance between two 

sections is 40 ~m. When we calculated the surface areas, there was strong 

correlation between the two images, which indicates that they are very close to each 

other. In addition, we have considered any abnormally appearing area that is not 

completely demyelinated as PMGM. As a consequence significant surface area 

around the border was included as partially myelinated areas. Having a wide border 

included as PPMS reduces the risk of misinterpretation of demyelinated areas as 

normally appearing areas. We also calculated that the mean size of spinal cord 

lesions in the cross sectional plane was 13 mm2 and therefore the effect of 40 ~m in 

the longitudinal plane of the spinal cord is not expected to be significant, especially 

because most spinal cord lesions run in the longitudinal plane of the spinal cord. In 

fact, for many sections, the lesion border can be identified on CA II stain at high 

power when synchronised with the corresponding MBP-stained section. The border 

is very difficult to identify on CA II-stained images alone without synchronising the 

image with the corresponding MBP-stained image. Consequently, we were confident 

that identification of myelin status using the previous method was accurate and did 

not affect interpretation of results. 

4.6 Conclusion 

There are high numbers of Ols in the GM of MS. The Origin of these Ols is 

uncertain, but animal and human studies have suggested that these cells are new 

Ols. Four sources of new OLs are suggested; from adult NG2 positive cells, PDGF-a 

positive cells, Nestin positive cells, and from perineuronal Ols. These possible 

sources of Ols may proliferate to premyelinating Ols within the lesions or migrate 
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from the nearby areas. In the WM chronic lesions of MS, the present Ols are 

premyelinating immature cells that are positive for 04, NG2, PDGF-a and CA II, and 

negative for MBP, CNPase and PlP. Therefore, identifying level of maturity of CA 11-

positive cells in the future studies is essential. 

There is little information about the degree of spinal cord GM demyelination and its 

effects on disability. We also have little information about the degree and extent of 

remyelination in the spinal cord GM, and whether remyelination of the GM plays a 

role in improving patient's symptoms and how this may affect disease progression. 

Our study showed that in GM lesions, CA II-positive cells in GM reduces slowly but 

significantly with chronological progression of the disease. 

We also demonstrated that SPMS has more Ols in the NAGM and the DMGM. 

However, the number of cells within the lesion reduces with progression of the two 

disease forms. This has been further confirmed in this study where the duration of 

the disease significantly affects the number of Ols in the demyelinated areas. This 

may indicate that MS lesions in PPMS and SPMS lose the receptive environment for 

Ols proliferation, differentiation or migration [244]. Another explanation may be the 

physical limitation caused by the astrocytic scar or loss of signal from the 

degenerated axons due to long standing demyelination. 
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Figure 4.1 : Sampling protocol of the VH. From each side, a horizontal line was drawn from the anterior border of the 
GM commissure (line 1). A second horizontal line was drawn between the tips of the VHs (line 2). A third horizontal 
line was drawn in the middle between line 2 and 1 (line 3). The intersections of the third line with the VHs boundaries 
were marked on both sides. The midpoint between the two intersections was identified. A vertical line was drawn 
through the midpoint on each side, which divided the VH into 4 quadrants (line 4) (A, scale bar 4 mm). Fields were 
selected from 5 regions of each VH at a magnification of 40X or 63X (B, scale bar 1 mm). 
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Figure 4.2: The sampling protocol of the DH. In 1, the DH is demarcated and a transverse line is drawn through the 
neck of the DH in 2. The midpoint of this line is identified in step 3. In 4, a second line is drawn from the midpoint of 
the first line to the tip of the outer border of the substantia gelatinosa. In 5, the midpoint of the second line is 
centralised in the middle of the screen. Finally, the image magnification is changed to 40X and then the whole field 
that appear on the screen is exported. 
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Figure 4.3: Two synchronised images as they appear on the computer screen. If the examiner magnifies the pointed 
field in the upper image, same region in the lower image is automatically magnified. Note the myelin status of the 
area (arrow) seen with MBP and how the same area appears with CAli above. It can be noticed that areas of 
demyelination and partial myelination are not identifiable on CA II sections. The GM boundary is more prominent in 
CA II-stained sections in the presence of severe demyelination compared to MBP-stained section (scale bar 2 mm) 
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Figure 4.4: In A, Ols in the GM of human spinal cords stained with CA II marker. Field is 40X magnification. Black 
arrows point to three possibly dark Ols. White arrows point to light Ols, which mostly represent less mature Ols. 
The condensed chromatin at the rim of the nucleus is obvious and considered as one of the characteristic features of 
Ols. All other small particles are possibly due to myelin staining. The H&E counterstained cells (blue cells) are 
possibly other glial cells or small interneurons. (Scale bar 100 ~m) . In B, the black arrows point to two perineuronal 
Ols in close proximity to the cell body of a neuron in the GM. Peri neuronal Ols staining was more intense than non
perineuronal OLs (100X magnification). 

118 



Chapter 4: Pathology of oligodendrocytes in the GM of progressive MS spinal cords 

Figure 4.5: The image in A is the right VH of upper cervical segment from control subject. OLs are seen scattered in 
the GM and the WM. GM OLs are relatively fewer in the GM of controls compared to the WM (scale bar 1 mm). The 
image in B is right VH from MS subject. There is demyelinating lesion affecting part of the VH. Note clustering of OLs 
in the NAGM. Same lesion extends to the nearby WM with no obvious prOliferation in the WM OLs (scale bar 0.8 
mm). 
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Figure 4.6: A bar chart demonstrating the variability in OLs density in the Normal controls and MS. Results include 
the VH and the DH. The bar heights represent the mean OL density in the GM ± SEM. Significant differences are 
indicated by an asterisk for p values <0.05. 
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Chapter 5: Pathology of oligodendrocytes in the WM of 

progressive MS spinal cords 

5.1 Introduction 

WM Ols or interfascicular Ols seem to have a vital role in the repairing mechanism 

of the eNS. Failure of the human eNS to compensate adequately for axonal and 

myelin loss is possibly the main cause of permanent disability after eNS injury. In 

CNS injury following MS lesions, Ols may produce some remyelination in the brain, 

but there is little information in relation to the extent, timing and clinical 

consequences of Ols' proliferation and the consequent remyelination in the spinal 

cord. This study will quantify Ols in the WM of the spinal cord in healthy controls and 

in the two progressive forms of MS. In this introduction, pathology of Ols and their 

role in remyelination in acute and chronic WM lesions will be reviewed. 

5.1.1 Fate of oligodendrocytes in acute WM lesions 

During the early stages of MS lesions, Ols pathology was found to be variable [261-

267). In some patients fresh lesions show preservation of Ols, while in others there 

is significant loss of Ols [261, 267]. Complete loss of Ols in the centre of the plaque 

has also been demonstrated [267]. This has been argued to be due to heterogeneity 

of MS lesions, raising the possibility that there is variability in Ols' pathology among 

different patients. Similar degrees of inflammation, axonal loss and Ols' loss were 

seen among different lesions from the same person [179, 267]. Lucchinetti et al 

described two main patterns of Ols' loss within the centre of the plaque compared to 

the active edge of the same plaque; in 70% of cases there was variable reduction in 

Ols' numbers in remyelinated or demyelinated lesions, while in 30% there was 

extensive destruction in Ols' numbers with no associated remyelination [179]. 
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Causes of ollgodendrocytes loss In acute lesions 

Ols are amongst the most sensitive cells in the CNS, due to their high metabolic 

activity. In vitro studies show that Ols are very sensitive to immune mediated and 

cellular mediated damage [268). 

Antibodies against Ols have been detected in the sera of MS patients [269, 270]. 

These antibodies have been detected in other neurological diseases and are thus 

non disease specific [270,271). Non specificity of CSF antibodies to MS disease and 

the lack of expression of MHC II expression on Ols suggest that Ols are not directly 

part of the presumed immune destruction [272]. Therefore, the role of these 

antibodies in causing damage to Ols is questionable [273,274]. 

The immune attack of MS can cause early Ols' damage via T lymphocyte activation, 

especially via activation of CD8 cells. Ols were induced to express MHC I and II in 

vitro [275], but in vivo they express only MHC I [272, 276]. Although Ols were not 

observed to express MHC II molecule in vivo, CD4 cells can affect Ols' survival via 

different mechanisms. The cytotoxic CD4 cells can stimulate other cytotoxic cells, 

such as microglia and/or macrophages. Ols also express receptor for TNF-a, which 

can be secreted from CD4 cells (275). TNF-a causes apoptosis of Ols in vivo and in 

vitro, but this effect needs high concentration and prolonged exposure [277]. 

Nevertheless, there is debate whether TNF has undesirable effects on Ols' survival 

and remyelination or not. 

T lymphocytes also colocalised with expression of heat shock protein. Heat shock 

protein is incorporated in an immunologic reaction at the edge of lesions of MS, 

which may playa role in early Ols damage. Expression of heat shock protein-65 was 

found to be significant in Ols at the lesion's border, and colocalised with 
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gamma/delta T lymphocytes. OLs at the nearby normal areas did not show 

expression of heat shock protein [278]. 

Interaction of microglia and OLs was reported at the active border of MS lesions, but 

not in NAWM or inside the lesion. The adhesion molecule VCAM-1 is expressed by 

microglia. These microglia that are positive for VCAM-1 were distributed in the areas 

of active lesions and may target OLs, because considerable numbers of these cells 

were surrounding OLs [279]. In addition, although OLs' number correlates negatively 

with macrophage numbers [179], cytotoxicity of macrophages against OLs was found 

to be limited in MS [280]. Furthermore, there was no significant correlation with T 

cells or with axon density [179]. 

A recent mechanism was also suggested to induce apoptosis of OLs in chronic active 

lesions, which may playa role in acute lesions. OLs' expression of cyclooxygenase 2 

(COX-2) was tested in MS and in experimental model of MS. COX-2 is an enzyme 

expressed by neurons that are susceptible to apoptosis. This enzyme is also 

expressed in OLs of chronic active lesions and in lesions of experimental model. OLs 

that express COX-2 were also found to express activated caspase 3, a marker of 

apoptosis [281]. 

The other proposed mechanism is that OLs may degenerate secondary to myelin 

loss. This is supported by the fact that OLs that fail to myelinate axons during 

development usually undergo apoptosis [194). But it is not certain whether this 

mechanism of OLs' damage is responsible for acute or chronic loss. 
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5.1.2 Response of oligodendrocytes to acute WM lesions 

There is debate about the fate of OLs in acute lesions of MS. Prineas and his 

colleagues argued that OLs are initially destroyed in active lesions, but then lesions 

are repopulated rapidly with new OLs [263, 282]. In comparison, Selmaj and 

colleagues reported preservation of OLs in acute lesions but then loss in chronic 

lesions [283]. Animal studies, however, support the first hypothesis. At day 14 post 

experimental contusion injury in rats, a dramatic increase in the formation of new OLs 

can be detected at the border of the lesion. In the spared regions there was increase 

in proliferation of NG2+ cells [226]. Timing of oligogenesis in animals is in agreement 

with timing of recovery from MS clinically (the recovery in the MS patient is usually 

within a few weeks) [226]. The importance of remyelination in protecting and 

restoring the conduction in axons has been confirmed previously in a viral model of 

MS [284]. In humans, remyelination is strongly believed to contribute, with other 

factors such as removal of oedema and inflammation, to recovery of patients' 

symptoms [43,57,66,285]. 

Examination of the lesion at early stages of plaque evolution shows OLs associated 

with remyelination [263, 286]. Remyelination is characterised by thin myelin sheaths 

and short internodes [287]. About 23% of lesions were found completely 

remyelinated, forming shadow plaques [249]. Shadow plaques were described as 

early as 1906 [288]. Until the employment of the electron microscope in examining 

lesions of MS, shadow plaques were thought to be partially demyelinated plaques 

[289]. In the brains of MS patients 19% of lesions were partially remyelinated [249] 

and about 40% of lesions have some degree of remyelination that occupies more 

than 10% of the lesion area [282]. Nevertheless, in chronic lesions presence of OLs 

and remyelination fall dramatically. This decline in OLs and remyelination may be 

responsible for deterioration of symptoms. 
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5.1.3 Fate of oligodendrocytes in chronic WM lesions 

In patients with disease duration that is more than 20 years, premyelinating Ols' 

numbers decline drastically [179, 236]. Although number of Ols reduces with 

progression of the disease, there are still considerable numbers of Ols in chronic 

lesions of MS [236, 237, 239]. 

Ols precursor cells' (04 positive) density in spinal cord chronic lesions can reach up 

to 35/mm2
• A number of studies have demonstrated the presence of immature Ols in 

chronic MS lesions. These have been traced using 04 antibody [237], PDGF-a [245], 

and NG2 proteoglycan [244]. There was no difference in numbers of precursor cells 

between PPMS and SPMS [239]. A summary of previous publications that quantified 

Ols in chronic lesions of MS can be reviewed in Table 5.3. 

A study carried out on lesions from the periventricular WM illustrated that chronic MS 

lesions contain significant numbers of Ols' precursors. These cells were positive for 

04 but negative for mature Ols' markers. However, these cells were assumed to be 

quiescent (premyelinating), because there were no myelinated axons around them 

[237]. Premyelinating Ols are not normally found in the adult human brain, and are 

defined as cells with multiple processes that do not contact myelin intemodes and 

are positive for 04 [236, 237]. 

5.2 Aims and hypothesis 

The effect of spinal cord GM demyelination on the disease course is not yet 

established. When compared with poliomyelitis, which causes flaccid paralysis by 

destroying the motoneurons of the GM, MS causes predominantly spastic paralysis 

of the limbs, which supports to some degree that WM axonal pathology is the main 

cause of disability. Spinal cord pathology, including axonal loss and atrophy, was 
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found to correlate with disability better than brain pathology. Therefore, attempts to 

enhance remyelination of the WM in the spinal cord may produce better outcome. 

Ols' number and function are important for myelination and remyelination [236, 245]. 

The main aim from studying Ols in MS is to prevent their loss and/or promote their 

prOliferation and differentiation to protect axons. 

Ols in the WM are different from GM Ols by being in close proximity to axons. We 

have previous data about axonal loss in the spinal cord, but little data is available 

about Ols' pathology in the WM of the spinal cord. Both axons and Ols may affect 

each other. In this study, a comparison was made between Ols' numbers in the WM 

and the GM. Similar to the method used in the previous chapter, Ols were counted 

manually in selected fields from the CST and the PCP. Numbers of Ols were 

counted in the NAWM, demyelinated WM (DMWM) and the partially myelinated WM 

(PMWM). Numbers ofaxons were counted in the same areas of the same tracts in 

the next chapter. Ols numbers obtained in the CST and the PCP will be compared 

with number ofaxons in each field. 

5.3 Material and methods 

Except for the controls that were obtained from Nottingham, we used the same 

sample that has been used in Chapter 4. For this study, the same CA II-stained 

slides were used to count Ols in the WM. We have already analysed numbers of 

Ols in the GM. For the purpose of counting Ols in the WM of the spinal cord, we 

sampled two of the major descending and ascending tracts; the CST and the PCP. In 

all the digital slides, and using the NDP view and the digital pen, the boundaries of 

both the CST and the PCP were identified. 
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5.3.1 Sampling of the corticospinal and the posterior column pathways 

Again, an unbiased sampling protocol was used to select fields of interest from the 

CST and the PCP irrespective of myelin status. The area of the CST was selected by 

referring to previous descriptions [122, 124]. For objective description; it is the area 

that is located in the lateral funiculus and dorsal to a horizontal line drawn through 

the dorsal border of the GM commissure. While the dorsal funiculus contains purely 

axons from the PCP, the lateral funiculus contains, in addition to the CST, fibres from 

other tracts such as the spinocerebellar tract. Each side of the CST was represented 

by 5 fields. Therefore, each section was represented by 10 fields. The sampling 

protocol was carried out as described in Figure 5.1. From the PCP, 5 fields were 

selected from each side of the PCP; therefore, 10 fields were exported from each 

section as shown in Figure 5.2. Similar sampling protocols of the CST [124] and the 

PCP [122] have been previously used in literature. 

Similarly to the GM, the selected fields from the WM were exported as an image of 

the computer screen at magnification of 40X and screen resolution of 1024x768 (field 

surface area was 0.047 mm2
). When the WM content was very small, like in lumbar 

cords, fields were exported with smaller surface areas at magnification of 63X 

(surface area was 0.0164 mm2
). The majority of sections were exported at 40X 

magnification (95%). 

5.3.2 Oligodendrocyte counting 

Identification criteria of WM OLs are not different from the previously mentioned 

criteria of GM OLs in Chapters 3 and 4. We count OLs in the WM manually using the 

same method as previously described in Section 4.3.3. 
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Like in the GM, the myelin status of WM fields was identified retrospectively after 

counting Ols. The myelin status of each field was identified using the same method 

mentioned in Section 4.3.5. Fields were classified into DMWM, PMWM, and NAWM. 

5.3.3 Statistics 

Results were exported to SPSS analysis software. Student t-test was used for 

comparison of the mean. Both Bivariate correlation and partial correlation were used 

to study effects of age and disease duration. Multiple linear regression was used to 

study effects of age, disease duration, disease type, and myelin status on WM Ols 

density. 

5.4 Results 

From MS cases, about 58 WM lesions were examined (CST and PCP). From these, 

1206 fields were exported (DMWM n = 267, PMWM n = 222, and NAWM n = 717). 

Numbers of fields and their myelin status is summarised in Table 5.1. 

Appearance of CA II-stained Ols in the WM (interfascicular Ols) does not greatly 

differ from those in the GM. Ols appeared round to oval in shape with variable sizes 

and stain intensity. As in the GM, darker Ols in the WM tended to be smaller. In 

normal controls, distribution of WM Ols was not as homogeneous as in the GM. Ols 

were seen condensed at the entrance of the dorsal root. These Ols are believed to 

be type 4 Ols. It was also noticed that there was a higher number of Ols at the outer 

border of the WM (Figure 5.3). 

Inside the WM lesions, Ols appeared isolated with no evidence of myelin around 

them. At the lesion border, Ols were observed to be intensely stained with CA " and 

were associated with scattered myelinated axons. Intensity of staining of both Ols 
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and myelin at the lesion border appeared to be greater than in the NAWM and 

normal controls (Figure 5.4). 

T bl I ed fi Id f th hit tt a e5.1:Numbero analys Ie s rom ew ema er 

Type of the disease Myelin status of the field (first time) Number of CST Number of PCP 
fields fields 

Normal control Normal controls 120 88 

Demyelinated 49 62 

PPMS 
Partially myelinated 46 44 

Normally appearing areas 213 206 

Demyelinated 72 84 

SPMS Partially myelinated 68 64 

Normally appearing areas 136 162 

5.4.1 Quantification of oligodendrocytes in the WM 

In healthy controls the average density of Ols in the WM of the two tracts was 98 ± 

100/mm2. This does not differ from Ols' density in healthy GM. In MS, regardless of 

myelin status or type of the disease, the average density of Ols in the WM was 72 ± 

114/mm2. This was lower than the calculated density in WM of normal controls (p = 

0.001). In both MS and controls the density of Ols was greater in the CST compared 

to PCP. In the CST of controls the density was 116 ± 110/mm2 and in the PCP the 

density was 73 ± 78/mm2 (p = 0.01). Similarly, in MS Ols' density in the CST (mean 

79 ± 126/mm2) was greater than the PCP (65 ± 102lmm2
) (p = 0.038). 

We also examined whether there was any variation in Ols' density among different 

cord segments. We found that the lower cord showed higher density of Ols 

compared to the upper cords in both controls and MS. One way ANOVA was used to 

examine for differences in Ols' density between the three main spinal cord levels. 

There was Significant difference among groups in controls (F (2-204) = 4.47, P = 

0.03) and in MS (F (2-1203) = 30.00, P < 0.001). In the previous chapter, we did not 

find a difference between GM Ol density between various cord levels. 
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5.4.2 Oligodendrocytes' density in the NAWM 

Analysis was further specified to include myelin status. The mean density of Ols in 

the NAWM of MS, including the two tracts, was found to be 104 ± 133/mm2, which 

does not differ from the density calculated from WM of controls (98/mm2). Within the 

MS group, Ols' density in NAWM was less than Ols' density in the NAGM, which 

was found to be 173 ± 161/mm2 in the previous chapter (p < .001). 

When the two disease types are compared, the mean density of Ols in the NAWM of 

SPMS was 69 ± 84/mm2
, while in the PPMS, the density was 130 ± 155/mm2 (p = 

0.002). Note that in the previous chapter the GM showed opposing results, where the 

NAGM of SPMS showed greater density in contrast to the NAGM of PPMS. 

5.4.3 Oligodendrocytes' density in the PMWM 

Density of Ols in the PMWM of the whole MS sample was 45 ± 60/mm2. This 

number was significantly less than normal healthy controls and less than NAWM of 

MS (P < 0.001 for the two comparisons). Similar to the NAWM, which has less Ols' 

density than NAGM, the density in PMWM, was also less than PMGM areas (p value 

< 0.001). By comparing the PMWM in the two disease types, Ols' density in PPMS 

was 64 ± 69/mm2 compared to 31 ± 48/mm2 in SPMS (p < .001). 

5.4.4 Oligodendrocytes density in the DMWM 

The mean density of Ols in the DMWM was 7 ± 22/mm2
• In comparison. Ols' 

density in the DMGM was 17 ± 39/mm2 (p = 0.016). There was no significant 

difference between PPMS and SPMS in the density of Ols in the DMWM. The 

density was 9.4 ± 27/mm2 in SPMS subjects and 4 ± 13/mm2 in PPMS subjects (p = 

0.602) (Figure 5.5). 
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5.4.5 Effects of age and disease duration on WM oligodendrocytes 

The effect of age on the WM OLs of controls was not significant in our sample 

(correlation = - 0.037, P value = 0.594), controlling for gender and cord level. In the 

MS sample, effect of disease duration was significant on the DMWM and NAWM 

regions, but not on partially myelinated areas. However, the correlation coefficient 

was too low for all the regions (Table 5.2). Similarly, results obtained from the GM 

showed significant effect of disease duration on the completely demyelinated areas. 

Table 5.2: correlation between WM oligodendrocytes and disease duration 
Myelin status of the Control Variables Disease duration in years 
field 

DMWM 
Gender & Level of the cord & Correlation .138 
type of the disease & Age 

SignifICance .027 

Gender & Level of the cord & Correlation .056 
PMWM type ofthe disease & Age 

Significance .418 

NAWM 
Gender & Level of the cord & Correlation .075 
type of the disease & Age 

Significance .047 

5.4.6 Difference between CST and PCP in oligodendrocytes density 

In MS cases, comparison was made between the two tracts based on the myelin 

status of the field. In NAWM, the mean density of OLs in the CST was 114 :t 

149/mm2 and in the PCP was 94 :t 116/mm2 (p value 0.041). In the partially 

myelinated fields, the density was 38 :t 50/mm2 in the CST and 51 :t 681mm2 in the 

PCP (p = 0.116). The demyelinated areas of the CST had a density of 13 :t 31/mm2 

while the demyelinated areas of the PCP had 2 :t 8/mm2 density of Ols (p vale 

<0.001). 
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5.5 Summary of results 

The average Ols' density in the WM of MS sample was less than normal controls. 

This reduction was due to loss of Ols in the DMWM with no difference between the 

NAWM and controls. 

Regional variation in Ols' density was found between CST and the PCP and 

between different cord levels. There was significantly greater density of Ols in the 

lower cord levels in both controls and MS. 

Unlike the GM, which showed greater density of Ols in the NAGM SPMS compared 

to PPMS, the NAWM showed greater density of Ols in PPMS compared to SPMS. 

However, there was greater density in the DMWM of SPMS compared to PPMS. but 

this was not statistically significant. 

5.6 Discussion 

This study is, to our knowledge, the first study that has investigated the difference in 

Ols' pathology in PPMS and SPMS in WM lesions of the spinal cord. The study also 

compared the GM and the WM using human spinal cord cross sections. We 

concluded from the results that Ols in the WM probably behave differently compared 

to GM Ols, where density of Ols in the NAWM and DMWM was less than NAGM 

and DMGM respectively. There is also variation in Ols' density between PPMS and 

SPMS; density of Ols was found to be greater in the NAWM and PMWM of PPMS 

compared to SPMS. The study has also demonstrated the presence of CA II positive 

Ols in chronic demyelinated WM lesions. 
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5.6.1 Variation between the grey matter and the white matter 

In Chapter 4, we discussed the possible explanation of having greater density of OLs 

in the NAGM compared to control GM. In this chapter, there was no significant 

difference between the NAWM and healthy WM. In conclusion, we found that there is 

a greater number of OLs in the GM compared to the WM of MS. In the entire sample, 

the three examined areas; NAGM, PMGM, and DMGM have higher density of OLs 

compared to NAWM, PMWM, and DMWM respectively. 

It is almost certain that the GM environment is different from that of the WM, or there 

are extra sources of OLs in the GM. The GM probably has an environment that it is 

more suitable for OLs' proliferation. It is well known that OLs' precursor cells are 

sensitive cells, and their proliferation is affected greatly by the surrounding 

environment. Proliferation of OLs is vigorously induced by PDGF, basic fibroblast 

growth factor 2 [290]. and insulin-like growth factor 1 [291]. In vitro studies 

demonstrated very sensitive precursor cells; adding fibroblast growth factor and 

PDGF to OLs' precursors caused marked increase in proliferation [292. 293]. 

Studying the degree of expression of these molecules may reveal differences 

between the GM and the WM. 

The WM also has elements that inhibit OLs growth or maturation. Myelin is a potent 

inhibitor for OLs differentiation [294]. An in vitro study reported that myelin taken from 

demyelinated lesions (experimental lesions) significantly impaired remyelination by 

arresting Ols' proliferation. Consequently. limited OLs' proliferation in MS lesions 

has been attributed to depletion of macrophages which are essential in cleaning 

myelin debris [294]. 
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Another factor that has been reported to affect Ols' survival is the presence of 

axons, which are more abundant in the WM. Abnormal axons may inhibit maturation 

of Ols. There is normally vital interaction between axons and Ols. The effect of 

axons on Ols is apparent in normal controls, where number of Ols is affected by 

density and diameters of surrounding axons [162, 167]. One Ol can myelinate up to 

50 small axons, but can myelinate smaller numbers of large axons [162]. In our 

study, Ols' density in the motor CST was found to be greater than the PCP in normal 

controls, which further supports the regional variation in Ols' density in the WM 

depending on axonal diameter (note that the diameter ofaxons in the CST is less 

than the PCP [295]). 

Axonal signals are believed to be the main regulator of Ols' survival, proliferation 

and differentiation [296]. One of the signaling molecules derived from axons is 

neuregulin 1 [297]. Neuregulin is secreted from neurons and some astrocytes. 

Neuregulin expression was found to be reduced dramatically in active and chronic 

lesions of MS [298]. In an animal model of MS, neuregulin was found to be a potent 

stimulator of remyelination [299]. Since previous studies showed that the surviving 

demyelinated axons in MS are usually dystrophic [236], and that the level of 

neuregulin is reduced, differentiation of Ols may be impaired in the WM more than 

GM. 

In addition, Ols in the WM are myelin maintaining cells. In the GM many Ols acquire 

perineuronal position and survive without essentially myelinating axons [160, 162]. 

Because we do not have neuronal tracts in the GM, axonal loss in the NAWM and 

DMWM may affect survival of Ols and further reduce their numbers. This may result 

in damage to Ols that lose their myelin processes. A previous study showed that 

numbers of demyelinated Ols, which are the mature Ols that lose contact with their 
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myelin internodes, reduce with chronological progression of the disease. They were 

found to be abundant in early lesions of MS (can reach up to 700/mm2
) [238]. There 

are no previous data about the correlation between axonal and Ols loss in MS. In 

the next chapter, axonal density and numbers will be quantified in the CST and the 

PCP. It is important to notice that we found greater loss of Ols in the WM of SPMS 

compared to PPMS. This may be secondary to loss ofaxons in these areas which 

has been reported to be greater in SPMS [72]. 

On the other hand, following injury there is an inhibitory effect of non-myelinating Ols 

and myelin on CNS axonal growth. For example, Nogo-A, MAG, and Ols myelin 

glycoprotein have been demonstrated as axonal growth inhibitors of the mammalian 

CNS [300]. In a study on mice, administration of antibodies, monoclonal antibody IN-

1 generated against Nogo-A, has improved significantly regeneration and plasticity of 

the CNS [83]. Thus, Ols may have negative undesirable effects on axons, and as a 

result a vicious cycle of damage occurs to both elements. Therefore, future 

immunological studies should focus further on identifying the immunogenic 

characteristics of the WM and the GM. 

Another explanation is that the GM possesses extra sources of Ols' progenitors 

compared to the WM. The human spinal cord GM is nearer to the central canal, 

which contains significant numbers of precursor cells. These are the nestin positive 

cells that has been discussed in Chapter 4 [260] Nestin is a marker of early 

neuroepithelial cells that may give rise to neurons or glia [301]. An important 

characteristic of these cells is that they are migratory [160]. It is possible that nestin 

positive cells proliferate around the central canal and then migrate to the nearby GM 

following injury. Migration of these cells probably does not reach the WM, as animal 

studies showed that Ols do not usually migrate long distances to myelinate axons 
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[302]. In MS specifically, it was observed that brain lesions proximal to the ventricular 

zone have a greater number of Ols [244]. We have also mentioned in Chapter 4 the 

possible role of peri neuronal Ols in increasing numbers of GM Ols in response to 

injury. These cells are not present in the WM and may be responsible for the 

observed high numbers of Ols in the NAGM. 

5.6.2 Nature of CA II positive oligodendrocytes 

There is no previous study that has quantified Ols in MS using CA II stain. Most of 

the previous studies attempted to stain Ols progenitors using other markers, such as 

PDGF-a, NG2, A285, and 04. These markers do not stain all Ols lineage like CA II. 

In addition, some of these markers are not 100% specific for Ols progenitors. For 

example, A2B5 can be traced in some neurons and astrocytes and NG2 can be 

traced in microglia [277], while PDGF can be traced in some neurons [303, 304]. 

As we mentioned in Chapter 4, almost all the examined lesions were found to be 

chronic [138]. The present study revealed that the mean density of CA II positive Ols 

in chronic spinal cord WM lesions is 7/mm2 (0-147/mm2). Previous studies have 

examined the identity and role of Ols in chronically demyelinated WM lesions, and 

most of them found that these Ols are non-myelinating [236-239]. One study 

previously quantified Ols in chronic demyelinated lesions of the spinal cord and 

found that these cells are premyelinating or non myelinating [239]. Number of 

premyelinating Ols can reach up to 35/mm2 in the spinal cord and 34/mm2 in the 

brain WM lesions using 04 marker (04 positive and GalC negative cells) [237,239], 

and up to 40/mm2 in brain lesions using NG2 marker [236]. The number reduces 

tremendously to 0-2/mm2 for GalC positive cells [238]. GalC is the first marker to be 

expressed in differentiating Ols. Therefore, most researchers believe that these 

cells are quiescent and mainly represent premyelinating Ols that fail to mature to 
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myelinating Ols [237, 239]. Mature Ols that survived demyelination are frequent in 

early MS lesions but rare in chronic lesions, and become more restricted to the lesion 

border [238]. MOG positive Ols were also absent in silent lesions of MS [305). 

Consequently, it is possible that most of the CA II positive cells inside lesions are 

immature Ols. 

The maximum density of Ols in the demyelinated regions was 147/mm2 in the 

present study. A recent study showed that density of Ols in the inactive lesions of 

MS can reach up to 250/mm2 [179]. The mean duration of the disease in that study 

was 3 years, compared to 24 years in our study. A study carried out in 1994 counted 

Ols and degenerating Ols in chronic WM lesions of the brain. Density was O/mm2 

for Ols and 7/mm2 for degenerating Ols [306). The CA II marker used in our study 

possibly stains surviving and degenerating Ols. Other studies are also summarised 

in Table 5.3. 

In conclusion, CA II cells inside lesions are likely to be immature or quiescent cells. 

This is supported by the observation that presence of these cells was not associated 

with WM or GM remyelination. Future studies may double label CA /I stain with MOO 

or 04 to identify these cells. For example, CA II positive and MOG negative are most 

probably newly formed immature Ols, while CA II positive and MOG positive are 

mature Ols that have survived demyelination [238). 

In the lesion border, cellular composition is variable since the border may be active 

even in the chronic lesions. A previous study calculated the density of OLs in the 

lesion border of brain WM and found it to be 19 Olslmm2 and 14 degenerating 

OLslmm2 (sum = 331mm2
). The mean density in the present study was 45/mm2. The 

lesion border may contain immature Ols or Ols that survived demyelination [238]. 
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The observed variability in Ol density between studies can be attributed to the 

following reasons; each study has different criteria of selection, different mean 

disease duration, and different markers used to trace Ols. In addition, acute lesions 

that affect early MS may produce a different pathological picture from acute lesions 

that affect chronic MS [306]. Numbers of Ols after any injury can be affected by the 

number of Ols in the area before injury, age of the patient, and proximity of the 

lesion to the ventricular zone [244]. 

6.6.3 Oligodendrocytes in chronic lesions and their role in remyelination 

A number of studies have shown that remyelination occurs mainly in the acute or 

relapsing remitting phases of MS, while progressive MS is associated with a much 

lesser degree of remyelination [179, 238, 282]. Effect of disease duration on Ols' 

number was found to be variable. It is generally accepted that there is Ols loss in 

MS lesions with disease progression [239]. In another study there was no Significant 

negative correlation [179], while in a subset of patients a positive correlation was 

found between remyelination and Ols density with time [307]. The present study has 

demonstrated very weak positive correlation coefficient between Ols' density in the 

NAWM and DMWM and disease duration, contrOlling for age, gender, cord level, 

post-mortem delay, and subtype of the disease. However, when the three areas are 

included in the analysis, MS showed significant negative correlation with disease 

duration. This may imply that the total number of Ols in MS is, in fact, decreasing. 

New OLs in the lesions of MS were found to be positive to CA II [263]. However, it is 

already established that remyelination in MS is inadequate in most of the patients, 

and chronic lesions frequently demonstrate little remyelination [239]. In this study, 

remyelination within chronic WM lesions of the spinal cord was not observed. CA II 

positive cells were seen isolated without evidence of surrounding myelin. In 
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comparison, EAE frequently shows complete recovery even with chronic disease 

[172, 173, 239, 308, 309]. It is not well known why remyelination fails in human 

nervous system or why the number of premyelinating Ols in chronic lesions of MS 

reduces with disease progression [238, 239]. 

Most studies have demonstrated what is claimed to be considerable numbers of Ols 

in chronic lesions of MS (Table 5.3). However, we do not have information about the 

importance of these numbers and their adequacy to produce effective remyelination. 

In normal circumstances one Ol can myelinate up to 50 axons, but in response to 

demyelination, one Ol may remyelinate a different number. Remyelination is 

characterised by shorter internodes compared to normal myelination; therefore, 

higher numbers of Ols may be needed for remyelination ofaxons. 

Moreover, enhancement of Ols' proliferation or transplanting Ols within chronic 

demyelinated lesions may not produce remyelination [248]. A number of studies 

showed that Ols in chronic lesions of MS were not able to remyelinate axons [236-

239, 245, 306]. Some researchers attributed limited remyelination in MS to failure of 

Ols' differentiation into mature myelinating Ols [236-239], while others suggest that 

axons are damaged and thus non receptive to being remyelinated [236]. Chronic 

lesions were found to be associated mainly with dystrophic axons with multiple 

swellings. Possibly, a combination of the two factors plays a role, in that a signal from 

dystrophic axons prevents maturation of Ols. 

However, another study proposed that axons are not the cause of failure of 

remyelination. The study assumed that failure of remyelination is due to lack of 

inflammation in chronic lesions, since inflammation is believed to be a strong 

stimulator of remyelination [248]. The relation between inflammation, remyelination, 
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and Ols' pathology is probably more complex, and seems to be variable between the 

GM and the WM. A study reported that recurrent inflammation may inhibit 

remyelination, which may explain why the GM undergoes a greater degree of 

remyelination [310]. On the opposite side, another experimental animal study 

reported increase in remyelination of the WM after experimental induction of 

inflammation [248]. Although previous studies demonstrated little inflammation of the 

brain GM compared to the WM [311], the spinal cord GM may behave differently. 

It has been also proposed that there are not enough precursor cells to produce Ols 

[255, 312]. A relatively recent animal study showed that prolonged treatment with 

glucocorticoids may inhibit proliferation and differentiation of Ols [313]. Another 

study reported interaction between astrocytes and Ols in the early stages of plaque 

development. Those Ols that interact with astrocytes were found to be immature and 

premyelinating. Astrocytes were therefore assumed to be partially responsible for 

failure of remyelination by causing apoptosis of Ols [314). 

Variability between studies in evaluation of remyelination degree may be due to 

misinterpretation of other pathologies, such as Wallerian degeneration or acute 

partially demyelinated lesions as remyelinated lesions. Homogenous lesion with 

reduced density ofaxons and thin irregular myelin is the light microscopy picture of 

the remyelinated plaque. Reduced density ofaxons with normal thickness of myelin 

is the picture of Wallerian degeneration, while reduced axons with hypercellular 

lesion is the picture of acute partially demyelinated lesion [287]. 

In conclusion, it seems that both Ols and remyelination decline in progressive MS. 

Consequently, the time window for remyelination enhancement may be limited to the 
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first 15-20 years of the disease, especially in the relapsing remitting phase of SPMS, 

after which remyelination and Ols' numbers fall dramatically [236]. 

Table 5.3: Studies that have quantified oligodendrocytes in chronic lesions of MS 

Materials and Mean 
Target cells and Study duration of Density of OLs Conclusion of the study methods 

disease the used Marker 

Ratio of density in Strong correlation 

lucchinetti Brain autopsies PlP, CNPase, anti DMWM to NAWM between remyelination 
3 years and OLs density 1999 [179] and biopsies MOO range between 

Density of OLs in lesions 8% -79% 
of earlY MS is variable 

60% of chronic In lesions of earty MS, 

Ozawa 1994 PlP mRNA, DNA lesions showed OLs are preserved, but in 

[306] 
Brain autopsy 1-20 fragments density of Ols lesions develop later in 

<10/mm
2 MS, Ols are extensively 

destructed. 
Chronic Brain OLs in chronic lesions fail 

Wilswijk 1998 lesions (around 04, GalC 4-34/mm
2 to differentiate into mature 

[237] ventricles) cells 

less than Premyelinating OLs are 

Chronic Brain 
20 years Ols progenitors present in chronic lesions 

Chang 2002 lesions (post-
duration and premyelinating 

25/mm 
2 of MS. Cause of 

[236] mortem ) 
and more Ols. PlP, MOO, remyelination failure is 
than 20 NG2 unreceptive axons 
years 

Spinal cords Negative correlation 
Wilswijk 2002 lesions from 16 23.9 years 04 and GaIC. 351mm 

2 between age of lesion and 
[239] subjects 04 cells. 

1-3 OLsl100 
Demonstrated the 

A2B5, GalC, and nuclei (ratio of 
presence of OLs 

Scolding 1998 
8 post-mortem 

PDGF-alpha PDGF-a positive 
progenitors in the human 

brains and 12 years adult brain and lesions of 
[245] spinal cords targeting OLs cells to the total 

MS (Both acute lesions progenitors number of nuclei 
and chronic lesions) in the field) 

5.7 Conclusion 

This study provided data about numbers of Ols in the spinal cords of patients with 

chronic progressive MS. A CA II positive cell may be immature OL, OL progenitor, 

mature Ol or degenerating OL. There is a difference between GM and WM lesions in 

Ols'density. Further work should focus on identifying level of expression of certain 

molecules in the GM and the WM, such as PDGFR, insulin-like growth factor, and 

fibroblast growth factor 2. The study has further confirmed the presence of Ols in 

chronic lesions of MS. There was a difference in Ols pathologies among the two 

disease subtypes in the GM and the WM. For further understanding of this difference, 

double labelling of CA II positive Ols is essential, as CA II stains both mature and 

immature Ols. 
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Morphology 

Name 

Marker 

Potential 

Presence in 
normal adult 
brains 

Presence in 
MS lesions 

Notes 

I Pre-progenitors [288], precursors 
[160] or neural stem cells 

I Nestin, PDGF-a 

I Can give rise to neurons and glia 
[260]. 

Has been recently identify around 
the adult human central canal, 
near ependymal cells [260] 

Not identified in lesions of MS 

These stem cells express Nestin 
and sometimes PDGF-a and 
maintain same morphology. But 
researchers believe that once 
they express PDGF-a, they 
become committed to OLs cell 
lineage. These cells are migratory 
and proliferative [160, 288] 

Progenitors [288] 

A2B5, PDGF, NG2 

Can give rise to OLs and 
astrocytes in culture 

Small numbers of PDGF-a positive 
cells have been identified in human 
brains, in normal healthy controls 
and in MS lesions 12451. 

Small numbers has been identified 
in acU1e and chronic lesions [245]. 

These cells are bipolar or non
processed. They are believed to be 
the most efficient remyelinating 
cells in animal models. exogenous 
transplant of these cells resulted in 
remyelination of cultures axons 
[245]. These cells are migratory 
and proliferative [288] 

Embryonic Pre
Oligodendrocytes [288] or pro
Oligodendrocytes. In adults 
CNS, thev are called NG2 

04, NG2, PDGF-a 

the 

NG2 positive cells have been 
identified in MS lesions and 
normally appearing areas. But 
their number is reduced in 
chronic lesions [244] 

These cells are proliferative 
but not migratory. Can 
differentiate in to OLs in 
culture. They are PDGF- a 
positive, but they are stellate in 
shape [244]. 

Immature or 
oligodendrocytes 

04, CNPase, GalC 

premyelinating 

These cells are committed to give 
myelinaling OLs [160] 

No evidence of their presence in 
adult human CNS in normal 
circumstances 

These cells have been identified 
consistently in chronic lesions of 
MS [236-239] 

Short life cells; undergo apoptosis if 
they don't myelinate [194]. They are 
neither migratory nor proliferative 
[315]. They Have been identified in 
chronic lesions of MS in the brain 
and the spinal cord , but they fail to 
mature further and myelinate axons 
and their number reduces with 
disease oroaression 1236 

Mature myelinating 

04, CNPase, GaIC, MBP, MAG,PLP, 
MOG 

Mature myelinating cells 

Heterogeneous in shape and size and 
distributed in the GM and the WM 

Few numbers of mature myelinating OLs 
have been identified in chronic lesions. 
More numbers of mature MOG positive 
OLs have been identified in acute lesions 
of MS [261, 287]). They mostly represent 
mature cells that survived demyelination 
[238] 

Postmitotic. Many believe that they have 
no role in remyelination. 
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Figure 5.1: The sampling protocol of the CST. In A, a horizontal line is drawn through the spinal cord section. The 
line touches the dorsal boundary of the GM commissure (line 1). A second horizontal line is drawn at the midway 
between line 1 and the dorsal boundary of the PCP (line 2). The third horizontal line is drawn in the mid-distance 
between the two previous lines (l ine 3). The most medial intersection of line 1 or 2 with the CST boundary is identified 
and a perpendicular line is demarcated (line 4). The most lateral intersection of line 1 or 2 with the GM boundary is 
identified and a perpendicular line is drawn (line 5). The sixth perpendicular line is drawn in the mid-distance between 
lines 4 and 5. In B, Five fields were then selected. 
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Figure 5.2: The sampling protocol of the PCP. In A, The first line is a horizontal line through the dorsal boundary of 
the GM commissure (line 1). The second line is parallel to the first one and lies in the mid-distance between the first 
line and the dorsal boundary of the PCP (line 2). The intersection of the second line and the DHs is identified (point 
3). The intersections of the second line and the PCP boundary are identified (point 4). The midpoint between the two 
intersections 3 and 4 is identified and a perpendicular line is drawn through that midpoint (line 5). In B. 5 fields were 
exported from each side as shown. 
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Figure 5.3 shows areas WIth aCOJmulabon of OLs (scale bar 3mm). DIStribution of OLs around the entrance of the 
dorsal nerve root in A (scale bar 0.5 mm). at the outer border of the WM 10 B (scale bar 0.5 mm), and in the nucleus 
proprius of the GM in C (scale bar 0 5 mm) 
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• 

Figure 5.4: Three MS images taken from the same subject and the fourth image from normal controls. In the DMWM, 
OLs appeared isolated without evidence of myelin around them (scale bar 90 IJm). Most of the previous studies have 
found that OLs within chronic WM lesions are not associated with myelin. At the lesion border (PMWM), OLs were 
associated with sparse but intensely stained myelin which may represent newly formed myelin as CA II is expressed 
intensely in myelinating OLs (scale bar 100 IJm). In the NAWM and healthy controls , OLs are widely spread in 
between lightly-stained myelinated axons (scale bar 100 IJm). 
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Figure 5.5: A bar chart showing OL density in normal controls and in the three examined areas in MS. The bars 
represent the mean OL density ± SEM. Significant differences of p values < 0.05 are indicated by one asterisk and p 
values of < 0.01 are indicated by two asterisks. 
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Chapter 6: Axonal loss in the spinal cords of PPMS and SPMS 

6.1 Introduction 

Axonal damage in MS has been recognised for many years, and was even reported 

when Charcot recognised the disease for the first time. Axonal loss is believed to be 

the cause of irreversible disability [316, 317], and has been correlated with disability 

better than other pathological or MRI findings [127, 318]. Axonal loss appears to be 

responsible for disability from the early stages of MS [243]. Two longitudinal MRS 

studies on the brain have shown that axonal damage correlates with disability in 

RRMS [319, 320]. Another longitudinal study has also reported that cumUlative 

axonal loss is responsible for worsening of symptoms in progressive MS [321]. 

Axonal loss can be assessed in vitro by post-mortem histopathology studies or in 

vivo by estimating levels of NAA expression using MRS. Reliability of NAA in 

reflecting axonal loss has been validated by a post-mortem study, where a significant 

correlation was found between axonal loss and levels of NAA [127]. 

6.1.1 Early axonal loss 

In EAE, the animal model of MS, axonal loss took place even before myelin loss 

[322]. A histopathology study has also reported significant axonal damage in the 

NAWM of a patient who died from acute MS [69]. Using proton MRS, significant 

decline in NAA detection was reported in the NAWM of the brain of early MS [243]. 

Acute axonal loss, labelled by Amyloid precursor protein (APP), was found to be 

extensive in the first year of disease evolution and reduces with time [323]. 

It is possible that early axonal loss is due to inflammation. Early in the plaque 

formation of MS, axonal loss accompanies demyelination and inflammation [324]. 
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Ferguson and colleagues have confirmed transection ofaxons within acute MS 

lesions. The numbers of severed axons, labelled by APP, which is a sensitive marker 

of axonal damage, correlated significantly with inflammation [324] and with disease 

activity [325]. In acute lesions of MS, there was a significantly greater number of 

acutely damaged axons compared to chronic lesions [326]. These data support the 

role of inflammation in inducing axonal damage inside acute lesions. 

On the other hand, a few other stUdies reported that axonal loss does not correlate 

with disease activity. A longitudinal MRI study followed 43 patients with RRMS for 

two years. The study assessed levels of NAA in the NAWM of the brain stem. The 

basal NAA detection was significantly less than controls. This continues to reduce 

during the follow up period with or without evidence of relapses [327]. In addition, 

NAA detection was significantly reduced in the cerebrum of MS patients in the early 

stages of the disease with low lesion load [328]. Similarly, a histopathologic study 

also revealed insignificant correlation between lesion load and axonal density [329]. 

Acute axonal loss can be induced by molecules released in the plaque [316] or that 

may diffuse outside the plaque to affect normally-appearing regions [242], such as 

Calpain or nitric oxide [316]. Adding CSF from patients with aggressive MS induced 

neuronal and axonal injury in culture, while CSF from patients with benign MS did not 

cause damage to the culture [330). Glutamate toxicity may also cause neuronal and 

axonal damage early in MS [331]. 

6.1.2 Chronic axonal loss 

Axonal loss continues to be a feature of chronic MS lesions and the NAWM. Both in 

vivo and in vitro studies have shown Significant axonal damage in chronic lesions. 

For example, NAA levels were reduced in the normal appearing areas by 30% and 
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42% in demyelinated areas [127]. Bjartmar and colleagues calculated axonal loss in 

the spinal cords of chronic MS patients (via MRS) and reported 68% loss ofaxons 

within the plaque [69]. Another MRS study reported 32% axonal loss in the cervical 

segment of chronic MS [332]. A post-mortem study assessed axonal density in the 

cervical cord and found a 41% fall in axonal density [318]. In chronic MS, a number 

of studies have observed axonal loss in the NAWM of the corpus callosum [242], the 

CST [122,318,329], and the PCP [122]. 

It has been hypothesised that loss ofaxons in chronic and inactive lesions may be 

secondary to loss of the myelinating Ols within the plaque area [179]. However, 

degree and timing of axonal loss secondary to Ols' loss is not clear and some 

believe that Ols are lost secondary to axonal pathology. 

long term effects of neuronal degeneration may also result in loss ofaxons within 

the plaque and in normally appearing areas. This may include Wallerian, retrograde 

or anterograde transynaptic degeneration. In addition, the recently established 

mitochondrial theory suggests that mitochondrial pathology may play a role in axonal 

degeneration [333]. The mitochondrial respiratory chain complex 4 activity was 

reduced in lesions of MS [334] (for review see Su et al 2009). 

6.1.3 Variation between PPMS and SPMS In axonal density 

It was shown in Chapter 2 that SPMS spinal cords have greater atrophy compared to 

PPMS, and both disease subtypes have less atrophy in the caudal parts of the spinal 

cord. The significant contribution of axonal loss in atrophy was revealed previously 

[318], which may explain why atrophy and axonal loss are the only parameters that 

correlate with disability [127, 318]. This leads to the conclusion that atrophy may 

exert its effect on disability primarily via axonal loss or myelin loss. However, axonal 
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loss in various levels of the spinal cord has not been examined separately in PPMS 

and SPMS. 

A study by Ganter in 1999 estimated axonal density and surface area of the spinal 

cord lateral column. The sample examined post-mortem spinal cord segments from 

C3 to T2. The segments were taken from MS subjects who lacked MS plaques at 

these levels. The CST surface area and axon density were significantly reduced in 

that study [318]. Only one study has examined for segmental variation in axonal 

pathology in MS spinal cords. However, the study did not differentiate between 

PPMS and SPMS. The study was carried out in 2004 and compared axonal loss 

between motor and sensory tracts in multiple levels of the spinal cord. There was 

significant decline in the CST area and axon density in all spinal levels. In 

comparison, the PCP showed reduction of the area and axons density only in the 

upper cord segments [122]. 

There are two previous pathological studies that compared axonal loss in PPMS and 

SPMS. The study by Bitsch in 2000 used brain biopsies from patients with MS and 

studied acute axonal loss by APP staining. The study demonstrated greater loss of 

axons in acute lesions of SPMS compared to PPMS [72]. 

The second study was carried out in our lab and analysed axonal loss in the CST of 

the cervical cord. Tallantyre et al (2009) differentiated between PPMS and SPMS 

and studied the axonal density and total number ofaxons in the CST. The total 

number ofaxons in the CST was found to be significantly reduced in the two disease 

subtypes compared to controls. In the demyelinated regions of the CST and 

compared to the NAWM, PPMS demonstrated more reduction of axonal density than 

SPMS [124]. 
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For this chapter, tissue from PPMS and SPMS spinal cords taken from multiple levels 

will be analysed. The possible difference between motor and sensory neuronal tracts 

will be addressed. In this study we also compared axonal loss in three different 

areas; DMWM, PMWM, and NAWM. 

6.1.4 Anatomy of the CST and the PCP 

In this study, two tracts have been sampled, which are the CST and the PCP. These 

are the main tracts of the motor and sensory systems. They are easily demarcated 

as the PCP is localised to the dorsal funiculus and the CST is localised to the lateral 

part of the spinal cord (lateral funiculus). 

The dorsal column-medlallemnlscal pathway 

The PCP or the dorsal column-medial lemniscal pathway is the main ascending tract 

of the spinal cord. It transmits mainly fine touch, conscious proprioception and 

vibration. Recently, the tract was found to have a role in visceral nociception [335]. 

PCP transection in cats causes marked dysmetria regardless of visual guidance of 

the limb [336]. In monkeys, transection of the PCP results in failure of discrimination 

of frequency and repetition of tactile stimuli [337]. In humans, ataxia can affect up to 

80% of MS patients during the disease course, which can be due to lesions of the 

PCP or the proprioceptive mechanisms [338]. 

The first order neuron of the tract is found in the dorsal root ganglion. It receives input 

from receptors in the skin or deep stretch receptors in the muscle spindles and jOint 

capsules. The tract ascends in the posterior funiculus of the spinal cord, where fibres 

from the lower body run medially in the gracile tract and fibres from the upper body 

run laterally in the cuneate tract. At the level of medulla oblongata, the two tracts 

synapse in nucleus gracilis and nucleus cuneatus [339]. However, only 25% of the 

151 



Pathology of the spinal cord in progressive multiple sclerosis (primary progressive vs secondary progressive) 

PCP axons reach the dorsal column nuclei in the medulla. Most of the axons, 

especially proprioceptive axons, leave the tract continuously to synapse in Clark's 

nucleus or nucleus proprius, which in turn continues as the spinocerebellar tract to 

mediate unconscious proprioception. The spinocerebellar tract continues ipsilaterally 

to synapse in the cerebellum. The second order neurons of the PCP run from the 

medulla oblongata and decussate to form the mediallemniscal pathway. The medial 

lemniscal pathway synapses in the thalamus. The third order neurons run from the 

thalamus and terminate in the primary sensory cortex to mediate conscious 

proprioception [339]. 

The corticospinal tract 

The CST fibres originate from lamina V of the cerebral cortex and the brain stem and 

have connections with rostral and frontal parts of the cerebral cortex. Fibres of the 

CST are not completely myelinated until the age of 2 years. Axons of the CST 

synapse in interneurons of the VH or in sensory neurons of the DH. The average 

number ofaxons in the CST is 1 million in each side [340] (Figure 6.1). In adults, 

about 70% of the axons are myelinated and the diameter for the majority ofaxons 

ranges between 1 !-1m and 4 !-1m [339]. 

6.2 Aims and hypothesis 

Maintaining axonal function seems to be crucial in determining disability in MS. The 

mechanism of axonal damage is not well understood. Patients with PPMS and SPMS 

have variable clinical course, but there are not enough data to suggest a different 

pattern of axonal loss that may explain this variation in clinical course. On the other 

hand, it is important to determine if accumulative axonal loss is mainly due to 

inflammation, and thus affected by relapses, or due to other degenerative processes. 

Studying axonal loss in various regions of the eNS in both ascending and 
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descending tracts may help in understanding the mechanism of damage. Especially 

because segmental difference in axonal loss between ascending and descending 

tracts of the spinal cord has been reported previously [122]. Axons are relatively 

spared in MS lesions when compared with loss of other elements such as myelin and 

Ols, but there is no previous study that quantified Ols: axon ratio. 

In this study, axons will be counted in the CST and the PCP in multiple levels of the 

spinal cord. The study will differentiate the extent of axonal loss between PPMS and 

SPMS. The same sampling protocols of the CST and the PCP that have been used 

in Chapter 5 will be used in this chapter. Therefore, results of Ols numbers obtained 

in the previous chapter will be used to calculate Ols: axons ratio. 

6.3 Material and methods 

We used formalin-fixed paraffin-embedded sections from the same sample as in 

Chapter 5. Sources of tissue include the MS Society tissue bank (PPMS n = 13, 

SPMS n = 15, controls n =5) and Oxford Radcliffe NHS Trust (controls n = 6). 

Dissection and initial preparation is mentioned in Sections 2.5.1 and 2.5.3. As we 

have already mentioned, 10 sections were cut at 5 ~m thickness from each block. 

We have already selected one section for MBP staining to study atrophy and 

demyelination in Chapter 2 and another section for CA II staining to study Ols in the 

GM and the WM in Chapters 4 and 5. In this study, another section was selected to 

trace axons in the WM by using anti-neurofilament (NE14). This will be used to count 

axons in the CST and the PCP. (Neurofilament 200 KD, NE14, and dilution 1 :20,000, 

Chemicon). Four controls from the Oxford tissue were excluded due to inadequate 

staining (subjects 8272,8458,83269, and 83313 in Tables 2.1 and 2.2). 
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The NE14-stained slides were numbered so that the observer is blinded to the 

disease subtype. Slides were then converted to digital slides using the NDP.view 

Hamamatsu and viewed on the computer screen as previously described. 

6.3.1 Sampling the CST and the PCP 

The GM and WM boundaries were demarcated on NE14-stained slides. Then areas 

of the PCP and the CST were also identified as in the previous chapter. The surface 

areas of the CST and the PCP were measured. 

We have already established a protocol to sample the CST and the PCP to quantify 

Ols. In this study we have applied the same sampling protocol on NE14 sections to 

quantify axons in the same fields. This enabled us to sample the same anatomical 

areas in two differently stained sections. 10 fields of interest were analysed from 

each side of the section (10 CST and 10 PCP). For sampling protocols of the CST 

and the PCP refer to Figures 5.1 and 5.2. Similarly, the majority of fields were 

exported as an image of the computer screen at magnification of 40X and a 

resolution of 1024x768 (each fields surface area was 0.047). 

6.3.2 Axonal counting 

All fields of interest were examined by the imageJ software. Since numbers ofaxons 

are much higher than Ols numbers, manual counting ofaxons is very time 

consuming. Therefore, an automatic counting protocol was established. With imageJ 

software, some features of the image can be adjusted to optimise and validate 

automatic counting (Figure 6.2). We validated the automatic counting protocol by 

comparing it with manual counting. Twenty fields were selected and manual counting 

was applied. Initially, intraobserver reproducibility of the manual counting in two 
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occasions was calculated and demonstrated a Pearson correlation of 0.951 and a p 

value < 0.001. 

Several attempts were carried out to adjust the image threshold to produce the 

strongest correlation between automatic counting and manual counting. The best 

significant correlation achieved compared to manual counting was; Pearson 

correlation r = 0.882, p value < 0.001. The threshold value that was associated with 

best correlation was recorded in a "plug in". The plug in is a written programme, 

which can automatically perform the previous steps as shown in Figure 6.2. 

6.3.3 Calculating total number ofaxons in the CST and PCP 

The mean density ofaxons in the 10 fields that were exported from the CST of each 

subject was multiplied by the CST areas of that subject. Similarly, the total number of 

axons in the PCP was calculated. 

6.3.4 Identifying myelin status of each field 

After counting axons, the myelin status of each field was identified using the method 

mentioned in Section 4.3.7. Then fields were categorised according to the myelin 

status into NAWM, PMWM, and DMWM and the mean density ofaxons in each 

areas was estimated. 

6.3.5 Ratio of ollgodendrocytes to axons 

We have previously applied the sampling protocol of the CST and the PCP on the CA 

II stained sections. Numbers of OLs obtained from each field were compared with 

numbers ofaxons in the corresponding field. The obtained ratio of OLs to axons was 

calculated in the three differently myelinated areas and a comparison was made 

between PPMS and SPMS. 
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6.3.6 Statistics 

The field number, myelin status and axonal count were exported to SPSS. The 

student t-test was used to compare the means. Pearson correlation was used to test 

correlations. Controlling for the independent factors, partial correlation was used to 

look for correlation between disease duration and axonal density. Linear regression 

was also used to examine the effects of independent factors such as age, gender, 

disease duration, cord level, and disease subtypes, on axons density in the three 

differently myelinated areas. 

6.4 Results 

In total, we exported 713 fields from the CST and 721 fields from the PCP. Similar to 

the CA II stain, the NE14-stained sections do not show areas of altered myelin 

composition. Therefore, areas of abnormal myelination were identified using the MBP 

stain (Figure 6.3). The numbers of analysed fields according to disease type and 

myelin status are summarised in Table 6.1. 

1 S fth Table 6. : ummary 0 e examined fields for axonal analYSis 
Number of Number of 

Type of the disease Myelin status of the field examined examined 
fields PCP fields CST 

Nonnal control Normal 99 105 

PPMS Oemyelinated 54 45 

Partially myelinated 42 41 

Nonnally appearing from MS 208 224 

SPMS Oemyelinated 84 69 

Partially myelinated 64 97 

Normally appearing from MS 170 132 

6.4.1 Quantification ofaxons in the CST and the PCP in healthy controls 

The surface area of the CST and the PCP varied between different cord levels, which 

seem to be affected by the amount ofaxons that enter or leave the tract. The CST 

surface area is largest in the lower cervical segment and smallest in the upper 
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lumbar segment. The PCP area is largest in the lower cervical region and smallest at 

the thoracic segments (Table 6.2). 

The mean density ofaxons in the CST was 3.9x104/mm2 and was higher than that in 

the PCP, which was 2.9x104/ mm2 (p value < .001, irrespective of cord level). Total 

numbers ofaxons in the CST and the PCP were highest in the lower cervical cord, 

and were 0.7 x106 and 0.4x106 respectively. Controlling for age and gender, the main 

cord level has a tendency to affect the total number ofaxons in the CST (p = 0.061) 

but not the PCP (p = 0.843). 

6.4.2 Quantification ofaxons in MS irrespective of myelin status 

The CST surface area in MS was smaller compared to normal controls in various 

levels. This reduction was significant in the upper cervical, lower cervical and lower 

lumbar (Table 6.2 and Figure 6.4). In comparison, the area occupied by the PCP did 

not differ from controls at any cord level. 

In the two examined tracts, there was significant reduction in the density ofaxons, 

compared to the corresponding area in healthy controls. The mean axons' density in 

the CST of MS was 2x104/ mm2 (compared to controls 3.9x104/mm2, p < 0.001) and 

in the PCP was 2.4x104
/ mm2 (compared to controls 2.9x104/mm2

, p = 0.003). From 

the data above, it appears that there is greater reduction ofaxons in the CST (Figure 

6.4). 

When different cord segments were examined, it appeared that axonal pathology in 

the CST affected all levels almost to the same degree. In comparison, axonal loss in 

the PCP demonstrated less reduction in axonal density, especially at the lower cord 

segments (Table 6.2). 
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Since we have reductions in the axonal density and the surface area, the total 

number ofaxons also demonstrated significant reduction. The average total number 

ofaxons in all spinal cord levels in the CST of controls was 0.3x106 and in MS was 

0.1x106 (p <0.001). In the PCP the mean total number was 0.2x106 in controls and 

0.2x106 in MS (p = 0.211). The total number ofaxons is best assessed when the 

segment level is considered. Compared to controls, this reduction was significant in 

the upper cervical, lower cervical, and lower lumbar segments of the CST, while the 

total number ofaxons in the PCP was not different from controls in all segments. 

Detailed results are mentioned in Table 6.2. 

Table 6.2: ompanson en an con ros C betwe MS d t I 

Density of axons Surface area Total number of 

Location Segment Sample type 
<mm2) axons 

ofWM category axons/m Percentage 
2 P Value P value P 

m of reduction 

Upper Control n = 2 29939 15.36 455947 
cervical MS n =11 

43% .000 .005 .021 
17095 8.39 152096 

Lower Control n = 2 36721 17.45 760383 
cervical MSn=6 

57% .000 .008 <.0001 
15654 7.17 117786 

Control n = 1 23816 5.42 129081 
CST thoracic 22% .303 .758 .846 

MS n=9 18521 6.11 115454 

Upper Control n = 2 38205 3.40 134962 
lumbar MS n = 10 

39% .000 .527 .541 
23496 4.25 99093 

Lower Control n = 4 48950 5.47 264256 
lumbar 49% .000 .001 .015 

MS n= 7 25002 2.50 64947 

Upper Control n = 2 22719 14.50 306164 
cervical 27% .038 .256 .195 

MS n =11 16684 8.22 134569 

Lower Control n = 2 23728 16.40 411491 
.074 cervical 42% .000 .254 

MS n=6 13813 12.72 194884 

pCP Control n = 1 26206 5.48 143611 
thoracic 14% .381 .159 .494 

MSn=9 22436 8.77 185415 

Upper Control n = 2 39190 12% .349 
7.74 .339 

277042 .486 
lumbar MS n = 10 34355 9.81 369080 
Lower Control n = 4 29025 

00% .163 
9.01 

.133 
251609 

.706 
lumbar MS n=7 34329 5.85 215588 

6.4.3 Pathology ofaxons in the DMWM 

The mean density ofaxons in the DMWM of the spinal cord of global MS sample was 

1.9X104/mm2. This was significantly less than normal controls (p < 0.001) and NAWM 

(p < 0.001). The two tracts did not show a difference in axonal density of the 

demyelinated areas. The mean axonal densities in the DMWM of the CST and the 
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PCP were 2x104/mm2 and 1.9X4/mm2 respectively (p value 0.642). Density ofaxons 

in the DMWM of the two tracts showed significant reduction compared to the 

corresponding area of controls (p < 0.001 for the two comparisons) 

By categorising results according to the disease subtype, there was no difference 

between PPMS and SPMS in the average axonal density in the DMWM of the two 

tracts (SPMS 1.8x104, PPMS 2.1x104, p = 0.234). In PPMS there was 38% reduction 

in the axonal density compared to normal controls and 22% compared to the nearby 

NAWM. In SPMS there was 47% reduction compared to normal controls and 14% 

compared to NAWM (Figures 6.5 and 5.6) 

6.4.4 Axonal density in the PMWM 

The average density ofaxons in the PMWM of the two tracts was 1.6x104 (compared 

to controls 3.4x104, p < 0.001). The PMWM has axonal density of 1.2x104 in the CST 

and 2.1x104 in the PCP (compared to controls, p value was < 0.001 for the two 

tracts). Details are mentioned in Table 6.3 and Figures 6.5 and 6.6. 

Compared to controls, there was reduction in axonal density in the PMWM of SPMS 

in the CST (p <0.001) and the PCP (p =0.001). Similarly, in PPMS, the PMWM has 

reduced axonal density compared to controls in the CST (p < 0.001) and the PCP (p 

= 0.015). 

6.4.5 Axonal density in the NAWM in MS 

The NAWM of MS showed significant reduction in axonal density compared to 

controls. Regardless of the type of the tract, the average density ofaxons in control 

spinal cords was 3.4x104 and in NAWM of MS was 2.4x104 (p < 0.001). When the 

two tracts were compared to each other, there was significant difference in axons' 
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density in the NAWM of CST (2.2x10") compared to the PCP (2.6x10") (p = 0.002). 

When the densities ofaxons in NAWM of the two tracts were compared with controls 

separately, the CST showed significant reduction compared to controls (CST axonal 

density in controls was 3.9x10", p < 0.001), while there was no difference between 

the NAWM of PCP in MS and the PCP of controls (PCP axonal density in controls 

was 2.9x104, p = 0.141). We calculated previously that axonal density in the PCP of 

MS was reduced compared to controls when the DMWM and the PMWM were 

included in the sample. This implies that reduction ofaxons in the PCP is due to 

demyelinating lesions, whereas axons of the NAWM seem to be preserved. In the 

CST reduction affected the DMWM and the NAWM (Figures 6.5 and 6.6). 

Table ~.3: Comparison between PPMS and SPMS in axonal density in the PMWM and DMWM in the cervical cord. 

Myelin status of the field 
Location Type of the 

Axonal density in the field P value 
ofWM disease 

PPMS 2.Ox10" 
CST 

SPMS 2.0x10" 
0.868 

Demyelinated 
PPMS 2.2x10" 

PCP 
1.7x10" 

0.050 
SPMS 

PPMS 1.9x10" 
CST 

O.8x10" 
0.017 

SPMS 
Partially myelinated 

PPMS 2.2x1 0" 
PCP 

2.0x10" 
0.574 

SPMS 

PPMS 2.6x19" 
CST 

1.6x10" 
<0.001 

SPMS 
Normally appearing from MS 

PPMS 2.7x10" 
PCP 

2.4x10" 
0.156 

SPMS 

Regardless of the cord level and type of the tract, the mean axonal density in the 

NAWM of SPMS was 2.1x104 and in PPMS was 2.7x10" (p < 0.001). In both disease 

subtypes, axonal density was reduced compared to controls (p < 0.001 for the two 

comparisons). When the two tracts are examined separately, the density in the 

NAWM of CST of PPMS was 2.6x104 and in SPMS was 1.6x10" (p < .001). The 

mean axonal density in the NAWM of PCP of PPMS is 2. 7x1 04 and in SPMS is 

2.5x104 (P = 0.16). It is important to note that there was no apparent axonal loss in 

the NAWM of ascending tracts compared to descending tract (Table 6.3). 

160 



Chapter 6: Axonal loss in the spinal cords of PPMS and SPMS 

6.4.6 Ratio of oligodendrocytes to axons in cross sections 

As we have already demonstrated, axonal loss includes the lesion centre, the lesion 

border of the two tracts and the surrounding NAWM of the CST. The OLs: axons ratio 

may give an idea of the degree of loss of each element in the lesion and around the 

lesion. 

In controls, the ratio of OLs to axons was 0.6% (in the CST was 0.72% and in the 

PCP was 0.41%). In MS, the ratio varies according to myelin status of the fields. In 

the NAWM, the ratio was 0.6% (in the CST was 0.6% and in the PCP was 0.56%). 

Results of OLs to axons ratio obtained from the NAWM of the CST and the PCP 

were similar to those from normal controls. This may indicate that in NAWM, axons 

and OLs are affected to the same degree (Table 6.4). 

However, in the PMWM and the DMWM, Ols' loss seems to be more extensive 

relative to axonal damage. In the PMWM, the ratio was 0.39% (0.48% in the CST 

and 0.29% in the PCP). In the DMWM, the ratio was 0.06% (0.1 % in the CST and 

0.02% in the PCP). By comparing the two disease subtypes, there was no significant 

difference between OLs to axons ratio in the NAWM and the PMWM. However, the 

comparison was significant in the DMWM where SPMS has considerably higher OLs: 

axons ratio (Table 6.4). 

Table 6 4' ratio of OLs to axons in SPMS and PPMS .. 
Myelin status of the field Type of the disease OLs:Axons % P value 
Demyelinated PPMS .0252 .012 

SPMS .0740 
Partially myelinated PPMS .4660 

.161 SPMS .3484 
Normally appearing from PPMS .5721 
MS SPMS .6103 

.660 

6.4.7 Effect of independent factors 

Effects of independent factors, such as disease duration, gender, type of disease, 

and myelin status, on axonal density was assessed by linear regression. There was 
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significant effect of gender (males were more affected, p = 0.002), type of the 

disease (p <0.001), and myelin status (p < 0.001) on axons' density. There was no 

significant effect of disease duration on the global sample, controlling for other 

factors (p = 0.166). 

However, when correlation between disease duration and axonal density was 

compared in each differently myelinated area, results varied according to the area 

examined. Partial correlation controlling for age, gender, disease subtype, type of the 

examined tract, and cord level, was used to study effects of disease duration on 

axons. Controlling for the previous factors, the correlation was only significant in the 

NAWM (correlation = -0.217, P = <.001). There was no relation between disease 

duration and axonal loss in the areas of complete demyelination (correlation = 0.002, 

P = 0.969) and areas of partial myelination (correlation = 0.72, P = 0.267). This may 

implicate that axonal injury within the lesion is an early process, while axonal loss in 

normal areas is more progressive. 

Correlation of disease duration with total number ofaxons was calculated in each 

tract controlling for age, gender, disease subtype, and cord level. Results showed 

significant negative correlation with the CST (correlation = -0.0437, P = 0.006) and 

with the PCP (correlation = -0.487, P = 0.002). 

6.5 Discussion 

The present study quantified axons in controls and progressive MS. We have noticed 

variation in the CSA of the CST and the PCP according to the level of the cord. A 

Significant number of descending axons leave the CST at the cervical cord to supply 

the upper limbs. This results in reduction of the CSA of the CST caudally. With 
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regard to the PCP, a significant number of ascending axons from the upper limbs 

enter the cervical spinal cord resulting in increase in CSA of the PCP rostrally. 

There was also significant effect of cord level on the total number ofaxons in the 

CST, but not the PCP. It is important to mention that considerable number ofaxons 

in the CST run long distance in the tract and leave at certain segments. The majority 

ofaxons of the PCP leave the tract after a few segments. Therefore, axons continue 

entering the PCP from peripheral nerves and leaving the PCP to synapse in the 

nucleus proprius or Clark's nucleus. This may explain the insignificant effect of cord 

level on the total number of PCP axons. In normal controls, density ofaxons was 

greater in the CST compared to PCP, which is probably due to smaller axons in the 

CST compared to the PCP [295]. 

In MS, initially we estimated the CSA of the tracts and the average density ofaxons 

irrespective of myelination status. There was significant reduction in the CST area 

compared to controls in more than one level of the CST. In comparison, in spite of 

significant demyelination affecting the PCP, there was no significant reduction in its 

CSA at any of the examined cord levels. A previous study has demonstrated similar 

results; Deluca et al 2004 examined 55 cases of progressive MS and 32 controls and 

found that atrophy of the CST was more extensive than PCP [122]. This may be 

explained by the greater reduction ofaxons in the CST calculated in this study. The 

significant contribution of chronic axonal loss in causing spinal cord atrophy has been 

confirmed previously in EAE [341]. Both tracts have axonal loss compared to the 

corresponding area of controls, but we found that the CST appeared to have greater 

reduction ofaxons compared to the reduction that affected the PCP. In addition, 

axonal loss in the CST was observed in all segments of the cord, which can be the 
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leading cause of atrophy that affected the CST in multiple segments. These findings 

may explain the predominance of motor symptoms over sensory symptoms in MS. 

6.5.1 Axonal loss in the demyelinated lesions 

Axonal density was reduced in the DMWM compared to controls and the NAWM in 

the two tracts. There was no difference between axonal densities in the DMWM 

between the two tracts, suggesting similar local destructive process. There was 43% 

reduction in axonal density in the DMWM compared to normal controls. It is possible 

that the main bulk of this axonal loss in DMWM of chronic lesions occurred early 

during the evolution of the plaque. This is because MRI [243] and histopathology [69, 

324] studies showed significant axonal loss in early MS and acute MS. In addition, 

the correlation between axons' density in the DMWM and disease duration was 

inSignificant in this study, suggesting that local loss ofaxons in MS lesions is 

independent of chronological progression of the disease and may depend mainly on 

acute destructive event. In the early stages of MS, local axonal damage appeared to 

correlate with inflammation. Acute axonal loss was found to be significant in early MS 

lesions by tracing APP [324, 326]. On the other hand, acute loss ofaxons within 

chronic plaques was found to be limited compared to acute plaques [324, 326). 

So far, the longstanding effect of acute axonal loss or dysfunction within MS lesions 

is unknown. A 6-year longitudinal MRI study on a single patient with RRMS showed 

significant correlation between changes in NAA expression and a major relapse that 

was followed by recovery (319). Therefore, changes in NAA reflect axonal function 

rather than axonal loss. This is because there is frequently complete clinical recovery 

after the attack, and there is also histopathological recovery of the lesion by 

remyelination, ie fate of acutely damaged axons is unclear. 
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6.5.2 Axonal density in the PMWM 

When we moved from the lesion centre, data from the lesion border showed variable 

results. A previous study also showed variable axonal densities at the MS lesion 

border [324]. We had also variable results from counting OLs in the partially 

demyelinated areas and the lesion border. It is important to acknowledge that the 

included partially myelinated areas in this study depend mainly on the MBP stained 

section viewed under light microscopy, therefore the nature of this partial 

demyelination is unknown. These areas may represent partially myelinated areas, 

partially remyelinated areas or areas of Wallerian degeneration. Although most 

lesions in our study have been confirmed previously to be chronic [124], the level of 

lesion activity at the border may vary even in chronic lesions. Therefore, variability of 

results at the lesion border and the partially myelinated areas may be due to different 

degrees of inflammation or activity. 

6.5.3 Axonal density in the NAWM 

The present study illustrated further that loss ofaxons is not only restricted to the 

injured area but extends to affect NAWM. Axonal loss continues to be an important 

feature of progressive MS in the NAWM [242]. A post-mortem human histopathology 

study also demonstrated axon loss in the NAWM of the cervical segment [342]. It is 

believed that axonal loss in the NAWM is quite an early process. Bjartmar and 

colleagues has observed axonal loss in the NAWM of a patient who died within 8 

months from disease onset (case study) [69]. They estimated 22% reduction in 

axonal density in the NAWM of the descending tract of the MS spinal cord. In 

comparison, the present study showed 42% reduction in axonal density of the NAWM 

of the descending tract in the cervical level. These data imply that axonal loss in the 

NAWM is an early and progressive process. Interestingly, we calculated significant 

correlation between axonal loss in NAWM and disease duration. This may explain 
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the rise in axonal loss from 22% (in the NAWM of a patient with disease duration of 8 

months) to 42% (in the NAWM of progressive MS with mean disease duration of 24 

years in this study). Bjartmar and his colleagues did not find reduction in axonal 

density in the ascending tract of the cervical spinal cord in that case report of acute 

MS. In this study there was 29% reduction in axonal density of the NAWM of the PCP 

at the cervical segment (there was no difference when all levels are included). 

Axonal loss of the NAWM can be due to effects of Wallerian degeneration. There are 

two pieces of evidence to suggest this hypothesis: firstly, there is greater loss of 

axons in the NAWM of descending tracts compared to ascending tracts. This has 

been reported previously in chronic MS [122] and acute MS [69]. Secondly, an 

interesting finding in Bjartmar case study of acute MS is that there were myelin 

sheaths in the NAWM with no axons inside [69], which is the histopathological picture 

of Wallerian degeneration. Likewise, the NAWM areas in the present study are areas 

with apparently normal myelin sheaths, but we do not have evidence that any axons 

are contained in these myelin sheaths. 

Another assumption is that MS is primarily an axonal disease and that demyelination 

does not have great effect on axonal survival [326]. It has previously been 

demonstrated that axonal loss in the NAWM of MS affects mainly the small diameter 

axons. Three studies suggested selective loss of small axons in MS in the CST [122, 

318, 342] and one in the PCP [122]. Studies on healthy controls reported that density 

ofaxons is normally reduced with age progression. In addition, axonal loss that 

occurs as part of the normal degenerative aging process was found also to be 

selective for small myelinated axons [343]. In the present study, comparison 

between the NAWM of MS and the normal WM from healthy subjects was controlled 

for age, gender, disease duration, and cord level. This means that the presumed 
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loss of small axons is more prominent in MS compared to the age- matched healthy 

controls. However, it is not certain if axonal loss in NAWM of MS is only acceleration 

of normal aging degenerative process or due to a mechanism that is peculiar to MS. 

Conversely, another hypothesis says that there is no selective axonal loss in MS but 

the surviving axons undergo swelling [124]. 

6.5.4 Variation between the two tracts 

The previous data suggests that demyelination results in similar local pathology 

within the lesion itself between the two tracts, but the following effects of neuronal 

degeneration in the NAWM may vary between the ascending sensory and the 

descending motor tracts. 

Loss ofaxons in the NAWM of CST affected all levels from the cervical cord to the 

lumbar cord in spite of less demyelination in the lower cord regions. In contrast, the 

ascending PCP was only affected in the upper cord area. This is in agreement with 

Deluca et al (2004) findings. It was shown that reduction of axonal density in MS 

affects the CST in all levels but affects only the upper levels of the PCP. There are 

three possible reasons that may explain these findings: 

Variation In the tracts' anatomy 

A significant number ofaxons in the CST of the lower segments run through the 

whole length of the spinal cord. Long axons within the CST are vulnerable to 

demyelinating lesions along their course. This can be supported by the fact that lower 

limbs are more affected by paraplegia than upper limbs. 

In comparison, axons of the PCP start peripherally and enter the spinal cord dorsally. 

Most axons of the PCP ascend a few segments then leave the tract to synapse in the 
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Clark's nucleus. If a demyelinating lesion affects the upper cervical segment, this will 

likely affect the upper limb sensation, which is a notable finding in MS and has been 

discussed before [122]. This is because a significant number of PCP axons that 

come from the lower limbs already gave sensory information to the Clark's nucleus. 

Variation in type and timing of neuronal degeneration between sensory and motor 

tracts 

In the introduction, I discussed the normal response of the human CNS to injury, and 

emphasised that Wallerian degeneration can be faster than retrograde degeneration. 

In addition, timing of retrograde degeneration depends on the proximity of the lesion 

to the cell body, being slow in lesions far from the neuronal cell body [344]. 

Consequently, the abundant cervical lesions will cause Wallerian degeneration of 

distal part of the CST axons in the thoracic or lumbar cord. Alternatively, similar 

lesions in the upper cervical segment in the PCP will presumably cause Wallerian 

degeneration proximally in the brain, and much slower retrograde degeneration 

distally in the lower cord. Because of the rarity of lesions in the caudal segments of 

the cord, Wallerian degeneration of the NAWM of ascending tracts will be limited. 

One can expect that, in response to a lesion in the cervical cord, pseudounipolar 

cells in the dorsal root ganglion of the cervical cord will degenerate faster than those 

in the lumbar region. Such degeneration may cause axonal loss in the nearer NAWM 

and may explain our finding that there was 29% loss ofaxons in the NAWM of the 

PCP in the cervical cord only and not in the rest of the cord. 

In order to test this assumption, I conducted a quick comparison in the NAWM 

between the cervical and the lumbar cord in each individual. Individuals with a lower 

density ofaxons in the NAWM of CST in the cervical cord tend to have lower density 
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in the lumbar cord. This was not the case in the PCP, which showed apparent 

disagreement (Figure 6.7). 

Different axonal sizes in the two tracts 

The presumed selective axonal loss in MS, by causing damage to small axons less 

than 3.3 IJm [342]. may result in variation between the two tracts. This is because the 

PCP has mainly large heavily myelinated fibres of 10 IJm and more [345. 346]. Most 

axons of the PCP are large diameter axons of the A alpha A beta fibres [347]. In 

comparison. 90% of CST axons are 1-4 IJm in diameter [295, 348] making the CST 

axons susceptible to the hypothesised selective axonal loss. 

6.5.5 Variation between the two disease subtypes 

In addition to the differences between PPMS and SPMS in degree of atrophy, 

demyelination, and OLs' pathology, there seem to be differences in the amount of 

axonal loss. SPMS demonstrated less axonal density within the NAWM and the 

PMWM, while there was no difference in the DMWM. The difference between the two 

disease forms was more prominent in the CST. A study carried out in 2000 revealed 

significant loss ofaxons in acute MS lesions in SPMS but not in PPMS. Lovas et al 

reported 60% reduction in density ofaxons in SPMS, where small axons are lost 

more than large axons [342]. 

Tallantyre et al compared axonal loss in the DMWM with the NAWM in the cervical 

cord. and found that PPMS shows greater loss ofaxons compared to SPMS. In this 

study, we found that PPMS shows greater loss ofaxons in the DMWM when 

compared with the surrounding NAWM (PPMS 22% loss, SPMS 14% loss). When 

compared with normal controls, however, SPMS shows greater loss ofaxons (PPMS 
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38% loss, SPMS 47% loss). This can be explained by the finding that SPMS has 

significantly greater loss ofaxons in the NAWM. 

It is possible that the difference between the two diseases in axonal density is due to 

difference in inflammation and disease activity. The preceding relapsing remitting 

phase of SPMS, which can extend up to 20 years, may result in greater 

inflammation-induced axonal damage. There is some evidence to support this 

assumption; acute axonal damage correlated significantly with inflammation activity, 

SPMS showed greater degree of acute axonal loss, even in active lesions [72), and 

early axonal loss was observed in the NAWM of acute MS [324]. 

The progressive forms of the disease are also different in the degree of 

demyelination in the brain, which may affect survival ofaxons. Greater demyelination 

of the brains and the spinal cords in SPMS may result in a greater degree of 

degeneration caudally. In support to this hypothesis, we found that the difference 

between the two disease forms in axon density in the NAWM was only significant in 

the descending tract and not the ascending tract, ie axons that traverse MS lesions in 

the brain or cervical segment continue to be part of NAWM in lower cord levels. 

Since we have more areas of demyelination within the brains and spinal cords in 

SPMS, the caudal regions of SPMS can be affected more extensively than same 

areas in the PPMS, in particular the NAWM. 

Patients with MS have variable clinical course according to disease subtype. 

However, the EDSS of all subjects in this sample has been identified and was found 

to be similar [142]. Although axonal loss correlated with disability, it is possible that 

greater difference in axonal density is required between the two subtypes before a 

significant difference in disability can be observed. In EAE, up to 30% ofaxons can 
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be lost before irreversible motor deficits appear [349]. NAA expression in the brains 

of MS patients was found to be significantly reduced early in the disease, and even 

before the appearance of clinical symptoms [243]. A previous study reported 64% 

reduction in axonal density of MS lesions without evidence of clinical disability [305]. 

Degree of axonal loss in any tract is not the only factor that may affect disability. The 

extent of fibres' decussation in eNS tracts is believed to be crucial in lessening the 

clinical manifestations of lesions in the eNS. In rare cases there is complete 

decussation, while in others, there is no anterior eST [339]. Therefore, the same 

lesion may produce a variable degree of disability in different subjects depending on 

the degree of pyramidal decussation (Figure 6.1) [340]. For a randomly selected 

sample (irrespective of degree of decussation as in our sample), greater difference in 

axonal loss may be needed to produce a noticeable difference in disability between 

two groups, ie the calculated difference in axonal loss between PPMS and SPMS in 

our study may not be enough to produce a recordable difference in disability. 

The ratio of Ols to axons was calculated as the percentage of Ol number to axon 

number in each field. It is important to state that this ratio does not represent the 

actual ratio of Ols to axons. One axon can be myelinated by too many Ols along its 

course. Ratio calculated in this study reflects number of Ols and axons in cross 

sections and not in the three dimensional space. However, the calculated ratio may 

reflect the degree of Ols compared to axonal loss. The ratio suggests that axonal 

loss and Ol loss happen equally in the NAWM, while in the demyelinated areas, 

there is significantly less destruction ofaxons compared to Ols. 

In this study selection of fields was governed by unbiased sampling process, 

regardless of the myelin status, as the NE14 stain does not show areas of 
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demyelination clearly. The automatic counting ofaxons added more to the objectivity 

of the study. However, automatic counting may be affected by the obliquity of the 

section 

To validate our results and to exclude effects of shrinkage and atrophy in MS cases, 

we have calculated the total number ofaxons in the CST and the PCP. Total number 

ofaxons may reflect degree of disability better than density of axons. For example, 

the total number ofaxons on one side of the CST in the upper cervical cord of 

controls was 0.7 million and in MS was 0.1 million (85% reduction). In comparison, 

the mean axonal density in the CST in the lower cervical cord of controls was = 0.4 

million and in MS was = 0.2 Million (57% reduction). Total number ofaxons in MS 

was calculated by multiplying the mean density ofaxons with the eSA of the tract. It 

is therefore affected by the calculated eSA. It is possible that degree of atrophy in 

the CST is due to loss of other elements, such as glial cells and neuropil, and not 

only due to axons. 

6.6 Conclusion 

This study has shown variation in the amount of axonal loss between ascending and 

descending tracts in the NAWM of MS spinal cords. There was no difference 

between the two tracts in the DMWM. This may indicate the there is difference in the 

extent and timing of neuronal degeneration between ascending and descending 

tracts. This may imply that axonal survival in the NAWM is dependent mainly on 

degeneration and not due to local effects of the plaque. 

In spite of the significant demyelination of the PCP, there was no significant atrophy 

of the tract compared to the CST. This may represent evidence that atrophy is largely 
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affected by loss ofaxons in the NAWM, especially because loss of axons in the 

NAWM of the PCP was found to be limited. 

We also demonstrated that SPMS has a greater degree of axonal loss in the NAWM. 

This may be related to the observation in the previous chapter, when we found that 

there was also greater loss of OLs in the NAWM. Although there is an agreement 

between axonal loss and OLs in the NAWM (OLs: axons ratio in MS does not differ 

from controls when there was significant loss of both elements), it is not well known 

which one preceded the other. Possibly examination of the NAWM in acute MS for 

OLs' loss may answer this question. 
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Figure 6.1: Normal anatomical variation in degree of the CST decussation [340]. 

Original image 

Adjusting threshold 

convert to 8 bit image 

Separating particles by watershed 
feature then automatic counting 

Figure 6.2: Stages of automatic counting: the original image (1); coloured images are then converted to grey images 
(8 bit images) (2); Threshold of the image is then adjusted (3). Separation of particle is done automatically by the 
software (4). All particles in image 4 are then counted automatically. 

174 



Chapter 6: Axonal loss in the spinal cords of PPMS and SPMS 

NE14 

Figure 6.3: Human spinal cord cross section. Images were taken from the same subject and same level. Note that 
demyelinated regions are not easily identified on NE14 stained sections 
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Figure 6.5: Bar charts showing the differences between PPMS and SPMS in axonal density in NAWM. PMWM, and 
DMWM. The bars represent the mean axonal density in the NAWM, PMWM, and DMWM ± SEM. The significant 
difference between SPMS and PPMS is indicated by asterisks *, the significant difference between controls and 
SPMS are indicated by the number sign #, while the difference between controls and PPMS is indicated by". For 
each of the comparisons the Significant differences of p value < 0.05 are indicated by one sign , while the p values < 
0.01 are indicated by two signs. 
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Figure 6.6: Comparison between PPMS and SPMS in three differently myelinated areas regardless of the cord level. 
The bars represent the mean axonal density in the NAWM, PMWM, and DMWM ± SEM. The significant difference 
between NAWM and PMWM is indicated by asterisks *, between NAWM and DMWM is indicated by the number sign 
#, and between PMWM and DMWM is indicated by". For each of the comparisons, the p values < 0.05 are indicated 
by one sign , while the p values < 0.01 are indicated by two signs 
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Chapter 7: Pathology of neurons in the spinal cords of PPMS 

and SPMS 

7.1 Introduction 

Neurons are the fundamental units of the eNS, and their preservation is essential to 

maintain function in view of their inability to regenerate in most eNS locations. MS 

lesions can affect various GM regions of the eNS, including the cerebral cortex, 

thalamus, basal ganglia, hippocampus, and the spinal cord GM [106, 350, 351]. MS 

lesions in the GM lead to loss of myelin, which may in turn induce neuronal loss, 

neuronal shrinkage [106], and dendritic damage [311]. Neuronal pathology and the 

subsequent loss of function are possibly responsible for some of the disability in MS. 

In the brain, cerebral cortex pathology is believed to be responsible for decline in the 

cognitive functions in MS patients [352, 353). 

Researchers usually assess neuronal loss by directly visualizing neurons using 

histopathologic studies or neuronal culture studies (in vitro), or indirectly by 

measuring degree of NAA expression by means of MRS (in vivo) [131]. Various types 

of study have reported neuronal loss that is related to MS, including MRS studies 

[354-357] and histopathological studies [95, 351, 358). Additionally neuronal culture 

studies [354, 359] and experimental models of MS [360, 361] have shown neuronal 

loss that is related to MS pathology. Neuronal loss can be an early process as shown 

by the concentration of NAA, which was reduced in the NAGM of the cortex in short 

duration RRMS [357]. 

With respect to neuronal pathology, the spinal cord has again received less attention 

compared to neuronal pathology in the brain. Only one study examined quantitatively 

neuronal pathology in the spinal cord. The study was carried out in our lab using a 
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relatively big sample size, but there was no differentiation between PPMS and SPMS 

in neuronal counts [106]. In this study we have the opportunity to examine the two 

subtypes of progressive MS in a very well clinically characterised sample. 

7.1.1 Causes of neuronal loss 

Demyelination 

A number of studies have found correlation between demyelination and loss of 

neurons. The most recent spinal cord study was conducted by Gilmore et al 2009. 

The study quantified numbers and sizes of motoneurons and interneurons in 38 

cases of MS and 22 controls. Neuronal loss was mainly associated with 

demyelination of the GM. Atrophy of interneurons was also found to be significant 

and affected all cord segments in both demyelinated and normal appearing GM 

[106]. 

A recent study was carried out in 2009 by Papadopoulos and colleagues. 

Papadopoulos et al examined quantitatively hippocampus autopsy material from 45 

cases of progressive MS (mean disease duration was 27.8 years) and 7 controls. 

The study reported 30% demyelination and 23% atrophy of the archaeocortex (3 

layers cortex), which is the area responsible for memory. There was 27-29% 

reduction in number of neurons compared to controls. In addition, size of surviving 

neurons was reduced by 17%. Interestingly there was significant correlation between 

loss of neurons and degree of atrophy [362]. 

Similar to Papadopoulos study, Wegner et al studied quantitatively autopsy material 

from the neocortex (6 layers cortex) in 22 cases of MS and 17 controls [358]. There 

was 10% decline in the thickness of MS neocortex compared to controls. This was 

associated with 10% reduction in the neuronal number and 47% reduction in the 
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synaptophysin expression (a marker of synapses). Loss of neurons was associated 

with demyelinated areas while the normal-appearing regions of the neocortex were 

not associated with significant pathology of neurons. 

Another study has also quantified demyelination, neuronal and synaptic losses in MS 

cerebral cortex. There was 33% neuronal loss in the cerebral cortex lesions 

compared to the adjacent normally appearing cortex [351]. 

Degeneration 

Neuronal cell bodies may undergo degenerative changes when their axons are 

severed in the process of retrograde degeneration. This can affect demyelinated 

areas and normally appearing areas. Anterograde degeneration (Wallerian 

degeneration) may result in degeneration of the postsynaptic neuron. It is believed 

that neurons that do not receive action potentials may degenerate due to de

afferentation [76]. Both retrograde and anterograde degeneration may continue to 

affect more than one order neuron. Retrograde degeneration has been directly 

demonstrated in different human CNS regions [97, 363], such as the cochlear 

system [363], the olivocerebellar pathway [364], and the CST [365] 

The effect of retrograde and transynaptic degeneration on neuronal survival in MS 

has been suggested in a number of studies. A correlation between loss ofaxons and 

neuronal changes within the same pathway has been reported by Evangelou et al 

2001 [95]. Evangelou quantified numbers and sizes ofaxons in the anterior optic 

pathway and compared it with degree of neuronal shrinkage and loss within the 

geniculate nucleus in 8 MS patients and 8 controls. There was strong correlation 

between loss of small diameter axons and shrinkage of small neurons. This further 
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confirms the effect of distant axonal loss on the GM and the subsequent neuronal 

loss. 

Cifelli et al demonstrated atrophy and loss of neurons in the thalamus in both MRS 

and histopathologic post-mortem analysis (two different samples). There was 30% 

reduction in the effective neuronal density measured by MRS study compared to 

22% reduction in the neuronal density measured by histopathology study [131]. 

Peterson et al investigated pathology of MS in the cerebral cortex including axonal, 

neuronal and inflammatory changes. Peterson and his colleagues quantified 

transected neurites and apoptotic neurons in the cerebral cortex of MS autopsy 

material. Neuronal apoptosis was found to be significant not only in the acute active 

lesions, but also in the chronic inactive lesions. Such findings suggest that neuronal 

apoptosis continues in chronic lesions in the absence of acute immune attack [311]. 

Moreover, Peterson and colleagues demonstrated changes in microglia morphology. 

Microglia were seen abutting neuronal cell bodies and possibly causing de

afferentation of these neurons. This may provide initial protection to degenerating 

neurons from further injury. This is because excitatory impulses can cause further 

damage to the already injured neuron. A negative effect of glutamate on neuronal 

survival has been reported previously [77]. But with prolonged de-afferentation, these 

neurons may degenerate and even be phagocytosed by the microglia. 

Other causes 

A number of potential causes have been suggested to contribute in neuronal damage 

in MS. These may include glutamate excitotoxicity, nitric oxide neurotoxicity, or 

chemokines/cytokines cytotoxicity. 
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Vericello in 2007 studied effects of excitotoxicity on survival of neurons in the 

cerebral cortex of MS tissue. Vericello and colleagues evaluated excitatory amino 

acid transporter expression in lesions of cerebral cortex of 10 autopsy material. The 

examined protein prevents excitotoxicity by reducing level of extracellular glutamate 

(increases glutamate uptake). Vericello reported a correlation between activated 

microglia and loss of excitatory amino acid transporter expression. Activated 

microglia also correlated with an increase in c-Jun N-terminal kinase expression (a 

marker of neuronal excitotoxicity). The main conclusion from the study was the 

possible significant role of excitotoxicity in causing neuronal and synaptic losses. 

Diffusion of harmful proteins from the plaque to the CSF may induce distant neuronal 

loss. Within MS plaques, macrophages produce proteases which cause tissue 

destruction. These soluble factors may include antibodies against neurons. In fact, a 

number of antibodies against neurons were reported in the sera of MS patients [366-

368]. In addition to antibodies, soluble cytokines and chemokines may induce 

neuronal injury in cultures such as TNF-alpha [369-371]. 

This has been reported in another study in 1998 by Alcazar et al. Neuronal culture 

was treated with CSF from three groups of patients; worsening PPMS, stable PPMS 

and non-inflammatory neurological diseases. Apoptosis was only demonstrated in 

cultures treated with CSF from worsening PPMS [372]. 

A more recent study by Cid et al (2002) investigated the relation between MS 

relapses and the degree of apoptosis of cultured neurons. A sample of 24 patients 

with relapsing disease was studied. The CSF was taken during relapses and added 

to the cultured neurons. Increased apoptosis was induced by the CSF that had been 
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taken during the relapses that were associated with poor recovery from the attack. In 

addition the CSF, which was taken from relapses that were associated with MRI 

findings, induced the greatest degree of neuronal apoptosis [354]. 

Xiao et al (1996) compared CSF effects on inducing nitric oxide release from glial 

cultures between patients with MS and patients with other CNS diseases. 34% of MS 

cases stimulated glial cell culture to produce nitric oxide compared to less than 10% 

from other diseases [373]. In relation to nitric oxide neurotoxicity, three mechanisms 

have been postulated; direct toxicity, peroxynitrate formation from superoxide anion, 

and via elevation of intracellular cGMP and induction of programmed cell death [374]. 

7.2 Aims and Hypothesis 

Neuronal loss has been reported in a number of studies, but most of these studies 

were conducted at the level of the brain GM. Considering differences between the 

two progressive subtypes in demyelination, atrophy. Ols' quantification and axonal 

loss, this study will investigate if there is any difference between PPMS and SPMS in 

neuronal pathology. Neuronal survival may be affected by inflammation, 

demyelination and Ols' loss, which occur in PPMS and SPMS in varying degree. 

This has been achieved by examining human spinal cord sample. Numbers and 

sizes of neurons were estimated in the VH of DMGM and NAGM. Effect of 

demyelination on neuronal number and sizes were studied. Comparison was made 

between PPMS and SPMS in various levels of the cord. 

7.3 Material and methods 

Human autopsy material was analyzed including MS and controls. MS tissue 

includes material from one source which is the MS Society tissue bank (PPMS n =13, 
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SPMS n = 14), while controls were collected from three sources; MS Society tissue 

bank (n = 5), Oxford Radcliffe (n = 6), and Netherlands brain bank (n = 2). Summary 

of the included sample is in Table 7.1. For this study, we used the NE14-stained 

slides to quantify neurons. These slides have been used previously to quantify axons 

within the WM. As we have mentioned, we have examined one slide of 5 IJm 

thickness from each paraffin-embedded block. The NE 14 stain traces the 

neurofilaments in the axons and neuronal cell body. The myelin status of the VHs 

has been assessed using MBP stain in the previous chapter. 

Table 7.1: Summary of the sample used for quantifICation neurons 
Post-

Type of the Gender Age (years Duration of the mortem 
disease disease (years) delay 

Jhou~ 
Minimum 33 22 

male Maximum 88 26 

Normal control 
Mean 60 24 
Minimum 41 9 

female Maximum 93 33 
Mean 67 17 
Minimum 54 16 5 

male Maximum 92 54 20 

PPMS 
Mean 74 35 10 
Minimum 45 5 6 

female Maximum 77 37 87 
Mean 61 20 24 
Minimum 40 9 8 

male Maximum 73 47 23 

SPMS 
Mean 57 25 14 
Minimum 39 15 7 

female Maximum 78 50 27 
Mean 57 23 14 

7.3.1 Quantification of neurons 

The digital slides of the NE14 stain were used to perform quantification 

measurements. On each slide and at low power. the surface area of the VHs was 

estimated. The VH area includes the area anterior to a horizontal line from the 

anterior border of the GM commissure [106]. The dorsal part of the VH between the 

GM commissure and the central canal has been excluded because it contains 

numerous small neurons that can be difficult to differentiate from glia [106]. 
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At magnification of 40X, the area was scanned manually for the presence of neurons. 

The considered neurons were identified by having a large cell body, Nissl bodies, 

and presence of nucleolus. Only neurons with visible nucleolus were considered in 

the analysis. This is because the nucleolus is the smallest visible part of the neuron. 

For each neuron, the boundary was identified manually and the software 

automatically calculates the eSA of the neuron. The axon and the dendrites were not 

included in calculation of the neuron eSA. The maximum and the minimum 

diameters of the neuron were measured. The minimum and the maximum diameters 

of the neurons pass through the nucleolus. 

7.3.2 Classification of neurons 

According to the maximum and the minimum diameters, neurons were classified into 

motoneurons and interneurons. Similar to the previously used criteria [106, 375], 

motoneurons include all neurons with the maximum diameter of 30 ~m and above 

and with a minimum diameter of 13.5 ~m and above, whilst the rest of neurons were 

considered interneurons. 

7.3.3 Determination of myelin status 

Using the MBP stain, the myelin status of the VH was assessed. To increase the 

sample of the examined VHs, partially myelinated VHs were considered either 

demyelinated or normally appearing VHs according to the proportion of 

demyelination. The VH was considered demyelinated if the demyelinated area 

occupied more than 50% of the CSA of the VH; otherwise, it was considered 

normally appearing VHs. Consequently, VHs were classified into three groups; 

healthy VHs from controls, normally appearing VHs, and demyelinated VHs. 
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7.3.4 Correction of neuronal numbers 

The resultant neuronal numbers were obtained from counting neurons in cross 

section areas, ie in two dimensional space. These numbers do not usually reflect the 

actual number of neurons in the real three dimensional space, especially because 

the neuronal cell bodies are relatively large and can be counted in serial sections. 

For accurate estimation of neuronal numbers, stereology that examines serial section 

is the ideal method. 

Since our analysis depends on cross sections and applying stereology is not 

possible, the smallest visible particle of the neuron, which is the nucleolus, was used 

to identify the countable neurons. However, size of nucleoli may vary and can be 

higher than the section thickness. Therefore, the resulted number of countable 

neurons was corrected using Abercrombie method, which considers section 

thickness and the particle height [376], which is the nucleolus. 

Assuming that the nucleolus is rounded in shape, the height has been estimated by 

measuring the diameter of all nucleoli in each VH. The mean diameter of all nucleoli 

in each VH was used to correct the number in that VH. Figure 7.1 shows the 

distribution of the diameter of the nucleoli. The normal distribution of the nucleolus 

diameter in Figure 7.1 suggests that there is no significant difference between the 

diameter of the nucleolus in motoneurons and intemeurons. 

The used Abercrombie formula for correcting neuronal number: 

N=~ 
t+H 

Where: N = actual number; n = number of counted particles; t = section thickness; H 

= particle height. 
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7.3.5 Statistics 

Unpaired t-test was used to compare neuronal counts between MS and controls and 

between PPMS and SPMS. Multiple linear regression was used to study effects of 

age. gender. demyelination. disease duration and disease subtype on neuronal 

numbers and sizes. 

Comparison between MS and controls was carried out on all five segments. while 

comparing PPMS and SPMS was restricted to the upper 4 segments. because there 

were not enough cases to accomplish reliable comparison in the lower lumbar 

segment. 

7.4 Results 

7.4.1 The ventral horn surface area 

The surface area of the VHs was reduced in MS spinal cords compared to MS. The 

reduction in the surface area was significant in the upper cervical (p = < 0.001). lower 

cervical (p = 0.016). and upper lumbar segments (p =0.006). There was no difference 

at the thoracic (p = 0.934) and lower lumbar segments (p = 0.164). 

7.4.2 Quantification of neurons (Control vs. multiple sclerosis) 

In controls and MS. the highest number of neurons was found in the VH of the lower 

lumbar segment. The lowest number of neurons was found in the VH of the thoracic 

cord. MS showed reduced total numbers of neurons compared to healthy controls. 

This reduction was more obvious in the higher cord levels. There was a tendency 

toward significant reduction in the upper cervical (p = 0.059). and Significant 

reduction in the lower cervical (p = 0.024) and upper lumbar (p = 0.05). There was no 

difference in the thoracic (p = 0.785) and the lower lumbar segments (p = 0.685). 
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By considering neuronal types, there was greater loss in interneurons compared to 

motoneurons, especially in the higher cord levels. For example, in the upper cervical 

segment, MS cases demonstrated considerable, although not significant, loss in 

interneurons (p = 0.059) with no significant loss in motoneurons (p = 0.577). In the 

lower cervical segment, there was similarly greater reduction in interneurons (p = 

0.045) compared to motoneurons (p = 0.094). Interneurons and motoneurons were 

both significantly reduced only in the upper lumbar segment (interneurons p = 0.007; 

motoneurons p = 0.01). There was no difference between MS and controls in the 

thoracic (interneurons p = 0.805; motoneurons p = 0.878) and lower lumbar 

segments (interneuron p = 0.371; motoneurons p value 0.945) (Figure 7.2). The 

absolute numbers of neuronal counts are mentioned in Table 7.2. 

7.4.1 Effect of demyelination on neurons 

A reduction was observed in the total number of neurons in the demyelinated VHs 

compared to controls. All levels showed a tendency toward significance, however, 

the difference was only significant in the thoracic cord. Compared to controls the p 

values were as the following; upper cervical (p value 0.073), lower cervical (p = 

0.089), thoracic (p = 0.001), upper lumbar (p = 0.083) and lower lumbar (p = 0.069). 

When the type of neurons was considered, the calculated reduction in number of 

interneurons in the demyelinated VHs had a trend towards significance in the upper 

cervical cord (p = 0.056). There was no difference in the rest of the cord levels; lower 

cervical (p = 0.103), thoracic (p = 0.111), upper lumbar (p = 0.546) and lower lumbar 

(p = 0.169). Motoneurons number was not affected in the demyelinated areas 

compared to normal controls in the upper cervical (p = 0.972), lower cervical (p = 

0.242), thoracic (p = 0.128), upper lumbar (p = 0.066). However, motoneurons were 

notably reduced in the lower lumbar (p = 0.047) (Table 7.3). 
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Table 7.2. Companson between MS and controls In neurona counts of the ventral hom 

Spinal cord 
segment 
category 

Upper 
Cervical 

Lower 
Cervical 

Thoracic 

Upper 
Lumbar 

Lower 
Lumbar 

Sample type and Total neurons Std. 
number number Dev 

P 
value 

Moto
neurons 
number 

P 
value 

Inter
neurons 
number 

P 
value 

3.50 1.22 Control n = 6 5.79 4.56 
I-----+----+-----~~ 0.059 1-----1 0.577 1-----1 0.059 

MS n = 14 3.92 3.14 1.04 2.13 

Control n = 14 8.06 5.09 3.97 4.09 
I-----+----+-----+_~ 0.030 1-----1 0.094 1-----1 0.046 

MS n = 8 4.07 2.57 2.58 1.95 

Control n = 2 2.35 0.62 1.0 1.36 
I-----+----+-----~____l 0.785 1-----10.878 1-----10.805 

MS n = 10 2.53 2.16 0.89 1.10 

Control n = 9 6.50 2.78 3.35 3.15 
I-----+----+-----+_~ 0.005 1------1 0.021 1------1 0.007 

1.42 MS n = 12 2.65 1.06 1.49 

5.07 5.31 4.32 
I----+----+-----t-----I 0.685 1-----1 0.945 1-----1 0.371 

Control n = 10 9.63 

MS n = 12 8.66 5.84 5.42 3.24 

Density of neurons was calculated in the demyelinated VHs of MS and was 

compared with the density from normal appearing VHs and healthy VHs. The mean 

density of neurons in the demyelinated VHs was 2.45/mm2 and in the normally 

appearing VHs was 3.68/mm2 (p = 0.003). Compared to the density of neurons in the 

healthy VHs, which was 3/mm2
, there was no Significant difference from 

demyelinated areas (p = 0.200). 

Similar results were obtained when the type of neuron was considered in the analysis 

of density. Intemeurons' density was significantly reduced in the demyelinated VHs 

compared to normally appearing VHs (p = 0.021) but insignificantly reduced 

compared to normal controls (p = 0.188). Similarly, motoneurons' density was 

Significantly reduced compared to normally appearing VHs (p = 0.024) and 

inSignificantly reduced compared to health VHs (p = 0.663) (Table 7.4). 
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7.4.2 Quantification of neurons in the normal appearing ventral horns 

Total number of neurons was compared between normal appearing areas and 

normal controls. Apart from the upper lumbar segment, results did not show a 

difference between demyelinated and controls VHs at any of the cord levels (upper 

cervical p = 0.126; lower cervical p = 0.095, thoracic p = 0.865; upper lumbar p = 

0.004; lower lumbar p = 0.882). This applies to interneurons (upper cervical p = 
0.144; lower cervical p = 0.189; thoracic p = 0.948; upper lumbar p = 0.06; lower 

lumbar p = 0.618). Motoneurons' number did not show a difference between normal 

appearing and normal controls at any level, except in the upper lumbar segment 

(upper cervical p = 0.454; lower cervical p = 0.171; thoracic p = 0.828; upper lumbar 

p = 0.027; lower lumbar p = 0.540) (Figure 7.3). 

Table 7.3: Total number of neurons in the demyelinated and normall appearing VHs (The Abercrombie correction 
Corrected Corrected 

Spinal cord segment Myelin status number Total intemeur Corrected 
category neurons ons motoneurons 

number number 

Upper Cervical 
Demyelinated VHs n=7 2.74 1.50 1.24 
Normally appearing VHS n =16 3.36 2.41 0.95 

Lower Cervical 
Demyelinated VHs n =9 4.74 1.95 2.79 
Normally appearing VHs n =6 4.21 1.94 2.27 

Thoracic 
Demyelinated VHs n =6 0.78 0.44 0.34 
NormallyappearingVHs n =12 2.60 1.43 1.16 

Upper Lumbar 
Demyelinated VHs n=3 3.05 2.18 0.87 
Normally appearing VHs n =19 2.89 1.30 1.59 

Lower Lumbar 
Demyelinated VHs n=2 2.04 1.01 1.03 
NormalwappearingVHs n =10 9.99 3.69 6.29 

Table 7.4: Density of neurons in demyelinated, normally appearing and healthy VHs 

Myelin status Neurons density Motoneurons clensity Intemeurons density 

Demyelinated 2.451mm 
2 1. 17lmm2 1.28/m,,? 

Normally appearing 3.681mm 
2 

1.691mm
2 

1.99lmm
2 

Normal control 3.OOImm 
2 

1.26Imm
2 

1.741mm2 

7.4.3 Quantification of neurons in PPMS and SPMS 

Comparing the total number of neurons between the two disease subtypes did not 

reveal a significant difference at any of the cord levels. These results were similar 
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with interneurons and with motoneurons. There was no difference in the total number 

of neurons in the demyelinated VHs between PPMS and SPMS (upper cervical p = 
0.479; lower cervical p = 0.225; thoracic p = 0.990; upper lumbar p = 0.262). This 

was also found with interneurons (upper cervical p = 0.570; lower cervical p = 0.115; 

thoracic p = 0.507; upper lumbar 0.074) and with motoneurons (upper cervical p = 

0.509; lower cervical p = 0.462; thoracic p = 0.578; upper lumbar p = 0.498) (Tables 

7.5 and 7.6). 

Table 7.5: Comparison between PPM and In neurona counts regardless of myelin status S SPMS' 
Spinal Type of the Total neurons Motoneurons Intemeurons 
cord 
segment 

disease 

category value P • p •• value P • p •• value 

Upper PPMS n=14 3.92 0.254 
0.102 

1.13 0.810 
0.435 

2.79 
Cervical SPMS n=9 2.00 0.045 0.89 0.452 1.11 
Lower PPMS n=8 4.07 0.024 

0.469 
2.61 0.135 

0.928 
1.45 

Cervical SPMS n=7 5.05 0.086 2.54 0.155 2.51 

Thoracic 
PPMS n=10 2.53 0.912 

0.157 
1.03 0.963 

0.509 
1.51 

SPMS n=8 1.32 0.184 0.72 0.644 0.60 
Upper PPMS n=12 2.65 0.001 

0.232 
1.30 0.014 

0.261 
1.35 

Lumbar SPMS n=10 3.22 0.008 1.72 0.041 1.50 
Lower PPMS n=12 8.66 0.685 - 5.42 0.942 3.24 Lumbar -
p. companson of the means between the subtype and the correspondIng segment from controls 
P" comparison of the mean between the two subtypes. 

P • 

0.261 
0.052 
0.021 
0.223 
0.896 
0.542 
0.034 
0.090 

0.371 

P •• 

0.121 

0.264 

0.163 

0.682 

-

Including all the cord levels, the average density of neurons in the demyelinated VHs 

of PPMS was 2.5/mm2 and in SPMS was 2.4/mm2 (p = 0.882). The density of 

motoneurons was 1.21mm2 in PPMS and 1.2/mm2 in SPMS (p = 0.959), while the 

density of interneurons was 1.3/mm2 in PPMS and 1.21mm2 in SPMS (p = 0.726). 

Table 7.6: Companson be tween an In num r PPMS d SPMS' the be of neurons In e ~yellna . th clem r ted VHa 

Total number of intemeurons 
Spinal cord segment Type of the disease 

neurons motoneuron. 
category 

number P 
number p number p 

Upper Cervical 
PPMS n=4 3.63 

0.479 
1.86 

0.570 
1.39 

0.509 
SPMS n=3 3.50 1.04 1.04 

Lower Cervical 
PPMS n=6 1.81 

0.225 
1.37 

0.115 
2.52 

0.462 
SPMS n=3 2.15 3.10 3.32 

Thoracic 
PPMS n=4 1.60 

0.990 
0.52 

0.507 
0.27 

0.578 
SPMS n=2 1.60 0.28 0.50 

Upper Lumbar 
PPMS n=2 4.85 

0.262 
2.94 

0.074 
1.31 

0.498 
SPMS n"'1 1.04 0.65 0.00 

Lower Lumbar PPMS n=2 1.75 - 1.01 - 1.03 -
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7.4.4 Sizes of neurons (MS vs. controls) 

The eSA of interneurons did not show difference between MS and controls in all 

levels (upper cervical p = 0.630; lower cervical p = 0.732; thoracic p = 0.830; upper 

lumbar p = 0.544; lower lumbar p = 0.995). Similarly, motoneurons eSA was not 

different in MS from healthy controls (upper cervical p = 0.853; lower cervical 0.091, 

thoracic p = 0.569, upper lumbar p = 0.788; lower lumbar p = 0.681). 

7.4.5 Effect of demyelination on neuronal sizes 

Within MS cases, there was no significant difference between demyelinated areas 

and NAGM in interneurons eSA (upper thoracic p value 0.134; lower cervical p value 

0.274; thoracic p value 0.238; upper lumbar p value 0.587, lower lumbar p value 

0.098). There was also no difference between Motoneurons' sizes in demyelinated 

and normal appearing areas (upper cervical p value 0.124, lower cervical 0.323, 

thoracic p value 0.317, upper lumbar p value 0.333; lower lumbar p value 0.298) 

(Figure 7.3) 

7.4.6 Sizes of neurons (PPMS vs. SPMS) 

Regardless of myelin status, the size of intemeurons was compared between the two 

disease subtypes in the 4 cord segments. The obtained data did not demonstrate any 

significant difference between the two forms of the disease (upper cervical p value 

0.601; lower cervical p value 0.099; thoracic p value 0.427, upper lumbar 0.056). The 

only significant difference in motoneurons' sizes was at the lower cervical level 

(upper cervical p value 0.129; lower cervical p value 0.001; thoracic p value 0.909; 

upper lumbar p value 0.732). 

In the demyelinated areas, there was no significant difference between PPMS and 

SPMS in eSA of intemeurons (upper cervical p value 0.240; lower cervical p value 
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0.420; thoracic p value 0.216; upper lumbar p value 0.117) and motoneurons (upper 

cervical p value 0.452; Lower cervical p value 0.026; Thoracic p value 0.376). In 

normally appearing areas, there was no significant difference between the two forms 

in sizes of interneurons (upper cervical p value 0.789; lower cervical p value 0.059; 

thoracic p value 0.962; upper lumbar p value 0.083) and motoneurons (upper cervical 

p value 0.196; lower cervical 0.145; thoracic p value 0.504; upper lumbar p value 

0.955) (Figure 7.3 and Table 7.7). 

Table 7.7: Neuronal sizes in the de r ed mye Inat II , normally appeanng, an ea 1Y sin e lsease orms d h Ith VH . th two d· 
Mean cross sectional 

Mean cross sectional area of Spinal cord area of interneurons 
segment category 

Myelin status 
2 motoneurons in IJm 

2 
inlJm 

Demyelinated 189 633 

Upper Cervical Normally appearing 242 762 

Normal control 249 721 

Demyelinated 283 1156 

Lower Cervical Normally appearing 243 992 

Normal control 290 799 

Demyelinated 202 724 

Thoracic Normally appearing 257 864 
Normal control 245 912 

Demyelinated 290 1040 

Upper Lumbar Normally appearing 241 961 

Normal control 238 969 

Demyelinated 414 956 

Lower Lumbar Normally appearing 269 1456 

Normal control 254 1188 

7.4.7 Effects of age, gender and disease duration on quantification of 

neurons 

In controls, the total number of neurons is significantly affected by age (p = 0.005) 

and the cord segment (p = 0.02) contrOlling for gender, cord segment, and post-

mortem delay. Total neurons were reduced by age and were higher in the lower cord 

segments. When the type of neuron was considered, it was only the motoneurons 

that were reduced by age (Correlation -0.805, p = 0.001) and were also affected by 

cord level (p = 0.014) and not interneurons (Table 7.8). 
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Examining effects of independent factors in MS illustrated that the cord level (p value 

0.005) is the only factor that has a significant effect on total neuronal number 

controlling for age, gender, myelin status, duration of the disease, and post-mortem 

delay. However, controlling for the same factors, spinal cord level has only significant 

effects on motoneurons' numbers (p value < 0.001) and not on interneurons (p value 

0.646). There is also significant effect of gender on number of motoneurons (p = 
0.04) and not on interneurons (p 0.524), where motoneurons numbers was greater in 

males. 

Table 7.8: correlation between age and numbers of neurons in controls 
Correded Correded Correded 

Control Variables intemeurons motoneurons total number 
number number of neurons 

Gender & Spinal cord segment I Correlation -.359 -.805 -.730 
category & Post-mortem delay I Significance (2-tailed) .228 .001 .005 

7.4.8 Summary of results 

In controls, there seem to be a reduction in the motoneurons with age progression. 

There is also an increase in the number of motoneurons in the lumbar cord 

compared to the cervical cord. 

Compared to controls, total neurons count appeared to be reduced in MS and 

showed tendency toward significance for this reduction in most of the cord levels. 

This affected both motoneurons and intemeurons. However, it seems that 

interneurons suffered from greater loss. There was no significant difference between 

PPMS and SPMS in numbers of interneurons and motoneurons. Demyelination 

possibly has negative effects on numbers of neurons. There was a reduction in total 

neurons in the demyelinated areas compared to normal controls, which again 

affected mainly interneurons. Density of neurons was Significantly reduced in the 

demyelinated VHs compared to normal appearing VHs. There was no Significant 

difference between PPMS and SPMS in numbers of interneurons or number of 

motoneurons and this applied to demyelinated and normally appearing areas. Our 

196 



Chapter 7: pathology of neurons in the spinal cords of PPMS and SPMS 

data did not demonstrate considerable effects of demyelination or NAGM on 

neuronal sizes. There was no difference between PPMS and SPMS in this respect. 

Numbers and morphology of neurons probably varies among different spinal cord 

levels especially motoneurons, while interneurons do not show great variation. 

7.5 Discussion 

This study might be the first histopathological study that has quantified neurons in 

PPMS and SPMS in the spinal cord. The results obtained from the study provide 

additional evidence that there is loss of neurons in the spinal cord GM due to MS with 

no variation between the two disease subtypes. There was a trend toward 

significance regarding neuronal loss that mainly affected the upper segments and 

demyelinated areas with no difference between the two disease subtypes. 

7.5.1 Source of errors in neuronal counts 

In contrast to a number of previous studies, our study has examined a relatively big 

sample size [131, 351, 358], but fewer than Gilmore's et al study (MS n = 37; controls 

n = 22). loss of neurons in our sample was less extensive than in Gilmore's et al 

study. This could be due to difference in sample size, section thickness, the stain 

used, and the method used for calculations (video camera vs electronic images). 

More importantly, due to lack of enough completely demyelinated VHs in our sample, 

we considered the VHs that have demyelination of 50% and above as demyelinated. 

In contrast, Gilmore only considered the completely demyelinated VHs in the 

analysis. 

The study by Gilmore et al quantified neurons within the VH of human spinal cords in 

multiple cord levels; upper cervical, upper thoracic, and lumbar. Gilmore used Cresyl 

violet stain on 15 ~m thick sections. In comparison, we have used 
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immunohistochemistry against NE14 to trace neurons on 5 IJm thick sections. It is 

expected that thick sections would include a greater number of nucleoli compared to 

thinner sections (the split cell error) [377]. 

Accurate neuronal count has been under debate for a long time. It is estimated that 

the most precise methods have ± 10% error [377]. In addition, Abercrombie has 

stated that his correction formula may have up to 10% of overestimation. Another 

error that may have arisen from using the Abercrombie method is that shape and 

orientation of cells are not taken into account. In addition, the way that Abercrombie 

has identified the particle height is not always accurate, because the method 

assumes that the level of cut is on right angle through the particle (nucleolus in our 

study) [377]. Furthermore, due to the difference in nature of particles, William et al 

1988 has indicated that some cells may be pushed aside during cut (like cutting a 

mixture of gelatine and hazel nuts with a knife) [377]. 

Another issue is that the Abercrombie correction formula is sensitive to tissue 

thickness. This problem may not only apply on different studies, but may affect the 

same study. For example, it was reported that there is a 50% variation in thicknesses 

of adjacent paraffin sections [378]. This has been attributed to unstable tissue blocks 

or knives, or due to temperature changes [377]. Another potential source of error is 

that the Abercrombie correction formula is biased when the particle height is more 

than one third of the section thickness, as in our study. 

An important concern with neuronal numbers is the presence of significant normal 

individual variation [379]. There is also normal variation in motoneurons' numbers 

between different spinal cord segments which has been reported in this study. Table 

7.9 demonstrates the variation in neuronal numbers among healthy controls. 
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Table 7.9: Nonnal variation in neuronal numbers (numbers were corrected in each ventral hom using the 
Abercrombie correction fonnula) 
Spinal cord Minimum Maximum Mean SO Coefficient of 
segment (corrected total (corrected total variation 
category number) number) (SOlMean)% 
Upper Cervical 1.13 10.32 5.79 3.50 60 
Lower Cervical 2.54 17.57 8.06 5.09 63 
Thoracic 1.91 2.79 2.35 0.62 26 
Upper Lumbar 2.92 11.73 6.50 2.79 43 
Lower Lumbar 2.79 16.96 9.63 5.07 53 

7.5.2 Neuronal counts 

With respect to neuronal pathology in the spinal cord, two important findings have 

been further confirmed in this study; there is a greater degree of neuronal loss in the 

DMGM of the spinal cord compared to controls and normally appearing VHs. This 

loss seems to affect intemeurons more than motoneurons. It is possible that 

intemeurons are more sensitive to demyelination, and thus more prone to injury, 

compared to motoneurons [106]. This can be also due to possible size selective 

neuronal injury which can be due to retrograde degeneration caused by the size 

selective axonal loss [95]. 

Similar to other elements, such as OLs and axons, it seems that there is also 

predilection for upper cord segments with respect to neuronal injury. Greater loss of 

neurons in the upper segments has been reported by Gilmore et ai, and was 

attributed to a high proportion of demyelination in upper segment compared to lower 

segments. The relationship between demyelination and loss of neurons has also 

been reported in other sites of the eNS. There was 30% loss of neurons in the 

demyelinated regions of the hippocampus [362] and 10% loss in the demyelinated 

regions of the cerebral cortex [358]. 

Demyelination may result in loss of neurons by depriving neurons of trophic support. 

Trophic support of neurons may come from neuroglia or from myelin [380-385]. 

Within the GM, neurons have an intimate relationship with peri neuronal Ols. A 
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previous electron microscopic study demonstrated the presence of a sheath of 

myelin-like substance surrounding some neuronal bodies in the human cerebral 

cortex [169]. Therefore, one of the presumed functions of perineuronal cells is 

supporting neurons. There is evidence that perineuronal OLs may protect neurons 

from undergoing apoptosis [386]. In previous chapters, we demonstrated excessive 

loss of OLs in the spinal cord DMGM. Loss of these OLs may promote neuronal 

apoptosis. 

In this study there was no reduction in neurons in the normally appearing VHs. While 

loss of neurons in NAGM has been reported in the thalamus [131] and the lateral 

geniculate nucleus [95], other studies reported normal neuronal counts in the NAGM 

of the cerebral cortex [351, 358] and the spinal cord [351]. It seems that neuronal 

pathology is not similar between different regions of the GM in the eNS. Recent 

studies reported variation in GM pathology according to the region involved [129, 

387, 388]. 

A possible explanation is that inflammation seems to be different between various 

GM regions. There is little inflammation in the cerebral cortex lesions compared to 

the WM lesions [389]. In comparison, deep GM nuclei inflammation score was 

intermediate between degree of inflammation in the WM and that of the cortical GM 

[388]. In comparison, the spinal cord GM did not show a difference in inflammation 

from the nearby WM [124]. 

Another explanation is that the degree and nature of GM demyelination is different 

between GM regions. In the cerebral cortex, it has been suggested that MS starts as 

focal disease in the WM and that cortical demyelination is part of chronic progression 

[390]. On the other hand, deep GM nuclei pathology appears to be different from 
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cortical GM pathologies. Vercellino et al 2009 studied deep GM pathology in 14 

cases of MS. Demyelination affected mainly the thalamus and caudate, which are the 

areas of excessive connections. The spinal cord GM demyelination seems to be 

different from the cerebral cortex and the deep GM nuclei. This is because spinal 

cord lesions are commonly mixed GM and WM lesions [124]. 

Another possible reason is that the cerebral cortex, deep GM nuclei, and the spinal 

cord GM have different connections with various parts of the eNS. It is expected that 

areas with more extensive connections may undergo degenerative neuronal loss in 

the NAGM more than other parts. It is important to differentiate between two types of 

connections in the eNS; distant connections with various parts of the eNS via long 

axons, and local connections via intemeurons. It is possible that areas with multiple 

distant connections are more vulnerable to retrograde degeneration than areas with 

local connections only. For example, the thalamus is connected to many regions of 

the eNS with long axons [212]. Tao et al 2009 conducted a MRI study on the deep 

GM nuclei. The thalamus and caudate showed the highest degree of atrophy. 

Interestingly, deep GM nuclei atrophy correlated significantly with WM lesions. Such 

a finding further supports the assumption that pathology of deep GM nuclei (unlike 

pathology of the cortical and spinal GM which seems to be independent of WM 

lesions) depends considerably on WM lesions [129]. 

A number of studies support the effects of long term Wallerian and transynaptic 

degenerations on GM by pathology study [95] and MRI study [94]. Pathologically, 

Evangelou demonstrated loss of small neurons in the NAGM of the geniculate 

nucleus secondary to loss ofaxons in the optic tract. Radiologically, Sepulcre et al 

2009 studied the contribution of different WM lesions in causing lateral geniculate 

nucleus atrophy in 61 MS patients. Using MRI, lateral geniculate nucleus atrophy 
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was measured and mapping the WM was carried out. Lateral geniculate atrophy 

correlated with lesions of the optic tract and not with any other lesions [391] 

Our study did not reveal changes in neuronal numbers in the NAGM. This may 

indicate that the role of retrograde degeneration is limited in causing neuronal injury 

of the normal GM of the spinal cord. In the VH neurons are involved in a complex 

network of local interneurons that maintains circuits of action potentials, and this may 

prevent or delay degeneration of neurons with severed axons. 

7.5.3 Correlation between loss of neurons and atrophy of the GM 

In normal controls, the relationship between the volume of the GM and the number of 

neurons is already established in the spinal cord. Normally, there is greater amount 

of GM in the thickened spinal cord segments. The VHs of the lower cervical and 

lower lumbar have greater volume because they have high numbers of neurons to 

supply the upper limbs and the lower limbs. 

To our knowledge, one previous study has demonstrated significant correlation 

between neuronal loss and atrophy and this was in the archaecortex [362]. The main 

constituent of cortical GM atrophy is demyelination ofaxons and to a lesser extent 

neuro-axonal loss, especially in the frontal cortex [216]. In this study, we reported 

atrophy of the VHs which affected mainly the higher cord segments. There was also 

significant correlation between number of neurons and surface area of the VH. 

Therefore, it is possible that one of the main constituents of spinal cord GM atrophy 

is neuronal loss. 
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7.5.4 Interpretation of results from neuronal sizes and source of error 

We used size criteria to differentiate between motoneurons and interneurons. Using 

fixed size criteria may produce variable results because of different shrinkage factors 

among different types of tissues. In addition, neurons themselves may interact 

differently to fixation process, ie neurons may shrink more than the nearby neuropil. 

This is suggested from the common profile in Figure 7.4. It has been also suggested 

that shrinkage is not uniform throughout the section, because shrinkage near the 

section centre may be greater than shrinkage at the section edge [392]. 

However, we should acknowledge that classification of neurons, depending on 

maximum and minimum diameters, may affect interpretation of results obtained from 

neuronal sizes. Although measurement of neuronal sizes was independent of the 

minimum and the maximum diameters, classification of neurons into interneurons 

that are less than 13.5 IJm minimum width or less than 30 IJm maximum diameters 

may reflect neuronal sizes. Moreover, assuming there is considerable neuronal 

shrinkage in MS; motoneurons may shrink to be within interneurons determined 

range. Additionally, it is not accurate to apply the same range of diameters 

classification of neurons on MS and controls when there is a possibility of neuronal 

atrophy in MS. 

Nevertheless, the NE14 stain does not differentiate between motoneurons and 

interneurons; therefore, we had to use size criteria to differentiate between the two 

subtypes. Size criteria has been used in previous studies [375, 393-396]. But in those 

studies, discrimination was sometimes associated with morphological observation to 

differentiate between motoneurons and intemeurons. Only the study by Gilmore 

employed size criteria without considering morphological variation [106]. 
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Because of the irregular shape of neurons and the fact that we count them on cross 

sections that can pass any level of the neuronal cell body, morphological 

discrimination between motoneurons and interneurons is highly subjective. 

Therefore, considering maximum and minimum diameter of the neuron may be a 

good indicator of the type of neuron, especially with the minimum diameter, as the 

minimum diameter of an object does not change with the level of cut. This fact is 

based on the assumption that level of cut is through the centre of the cell body, which 

is the nucleolus in our example. In addition, neurons are very irregular in shape and 

effects of maximum and minimum diameters on neuronal size are possibly minimal. 

In the present study, there was no Significant difference between neuronal sizes in 

controls and MS cases and between PPMS and SPMS. Gilmore et al demonstrated 

significant reduction in sizes of interneurons which affected demyelinated and normal 

appearing areas. Neuronal shrinkage has been reported also in the hippocampus 

[362). Gilmore et al reported increase in sizes of motoneurons which has been 

attributed to size selective neuronal loss, miSinterpretation of shrunken small 

motoneurons as interneurons, or pathological swelling of motoneurons. In 

comparison, in our study there was no significant difference between sizes of 

motoneurons in MS and controls. 

7.5.5 Quantification of neurons PPMS vs. SPMS 

The relationship between neuronal loss and clinical course of the disease in PPMS 

and SPMS seems to be a complex issue, owing to complexity of neuronal circuits 

and variation between ascending and descending tracts in nature and speed of 

neuronal degeneration. 
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While correlation between spinal cord GM pathology and disability has not yet been 

established, correlation between brain GM (cortical and deep GM nuclei) and 

disability has been reported. A study has investigated the correlation between deep 

GM nuclei pathology and clinical progression of the disease in 97 patients. It was 

stated that there is strong association between deep GM lesions and worsening of 

symptoms [128]. 

The correlation between axonal loss and disability has been reported several times 

[397-399], but the clinical significance of neuronal loss specifically has not been 

demonstrated yet For example, despite having a greater degree of demyelination and 

neuronal loss in the cervical segment of the spinal cord, upper limbs' paralysis is not 

a recognized feature of MS compared to other motoneurons diseases. Additionally, in 

previous chapters, we demonstrated differences in demyelination, atrophy, Ols and 

axonal loss between PPMS and SPMS. In this study, SPMS showed a tendency 

toward fewer numbers of neurons compared to PPMS, but the difference was not 

statistically significant. 

This is possibly because number of neurons is significantly less than number of Ols 

and axons in a cross section. Therefore, a potential difference between PPMS and 

SPMS in the amount of neuronal loss may be minimal and thus a greater sample size 

is needed to reveal such a difference. It is also possible that surviving neurons are 

not always functioning and this affects results obtained from correlation with 

disability. 

7.6 Conclusion 

In summary, the study has further confirmed the presence of neuronal loss in the 

demyelinated GM of the spinal cord with no remarkable loss in the NAGM [106, 400, 

205 



Pathology of the spinal cord in progressive multiple sclerosis (primary progressive vs secondary progressive) 

401]. Demyelination seems to have significant effect on neuronal loss possibly by 

causing loss of trophic support from neuroglia and/or neurotoxicity from molecules 

released within the plaque. Despite the presence of OLs in GM lesions of PPMS and 

SPMS, numbers and function of these OLs may be insufficient to protect neurons 

[236,238,239]. In addition, neuronal loss was found to be an early processes [357]. 

Neuronal loss was found to be greater in the upper cord segments [106]. This can be 

associated with demyelination that affects mainly the upper segments. Unlike 

neuronal loss in the thalamus or geniculate nucleus, neuronal loss in the spinal cord 

GM is probably due to local lesion factors and independent of distant lesions. This is 

evident from the observation that neurons are spared in the NAGM. More 

importantly, despite differences between PPMS and SPMS in degree of 

demyelination, atrophy, OLs loss and axonal loss, there was no significant difference 

in numbers of neurons. 
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Figure 7.1 : Distribution of the diameter of the nucleoli in the neurons of the ventral horn. The normal distribution may 
indicate that there is no significant difference between the diameter of the nucleoli of the motoneurons and the 
intemeurons. A significant difference would probably produce bipolar distribution 
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Figure 7.2: The Left bars illustrate the total number of neurons, number of interneuron, and number of motoneurons 
in the 5 cord segments of MS and controls. Note that there is a greater reduction of neurons in the upper cord 
segments and this affects intemeurons more extensively. The right bar chart illustrates the total number of neurons, 
interneuron, and motoneurons in the 5 cord segments in PPMS, SPMS and in controls. SPMS and PPMS have no 
Significant difference between each others in neuronal numbers. The Data represent the mean corrected number of 
all neurons, interneurons, and motoneurons ± SEM. The significant difference between MS and controls are indicated 
by asterisks, the significant difference between controls and SPMS are indicated by the number sign # , while the 
significant difference between PPMS and control are indicated by". The p values < 0.05 are indicated by one sign, 
while the p values < 0.01 are indicated by two signs. 
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Figure 7.4: A bar chart shows the mean cross sectional areas of interneurons and motoneurons in the demyelinated, 
normally appearing and healthy GM and in the two disease subtypes. Data represent the mean CSA of neurons and 
motoneurons ± SEM. There was no significant difference between PPMS, SPMS and controls in the CSA of neurons. 

Figure 7.5: A neuron in a human VH (a common profile in our study). Note the space between neuropil and the 
boundary of the neuron. This can be due to variation in post-mortem changes, during fixation and tissue processing 
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Chapter 8: Summary and conclusion 

The two subtypes of progressive MS have different clinical course at the early stages 

of the disease. SPMS begins with relapsing remitting stage that may continue for 

many years, while PPMS is progressive from the beginning. Many believe that with 

better understanding of the disease pathology, more effective treatment can be 

achieved in the future. 

In this study, the two examined groups of tissue (SPMS and PPMS) derived from 

patients that had similar degree of disability prior to their death. The study has 

focussed on quantifying the major five pathological changes associated with PPMS 

and SPMS. These changes include the lesions load, tissue atrophy, Ol, axons and 

neuronal pathology. 

We have chosen the spinal cord for this comparison for a number of reasons. The 

spinal cord anatomy allows for comparing similar anatomical regions in the two 

examined groups. The spinal cord has both ascending and descending tracts that 

may be affected by the same lesion. Demyelination of the spinal cord commonly 

affects the GM and the WM within the same lesions. Furthermore, the spinal cord 

lesions are frequently associated with clinical symptoms and thus may explain the 

clinical variation between the two subtypes [127). 

One of the characteristic features of MS is the presence of demyelination 

preferentially affecting different regions of the eNS. The study has addressed the 

topographic distribution of demyelination throughout the spinal cord in the two 

subtypes. The demyelination was found to be greater in the upper cord levels in both 

forms of the disease. However, it appeared that SPMS spinal cords were affected by 

a higher degree of demyelination compared to PPMS especially in the upper cord 
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levels. Another important feature of progressive MS is tissue atrophy. There is 

obvious atrophy in SPMS and PPMS spinal cords. This has again affected mainly the 

upper levels of the spinal cords. When the volumes of the spinal cords were 

compared between the two groups, SPMS showed more atrophy especially in the 

upper levels. It is possible that due to the presumed higher lesion load and frequency 

of occurrence of new lesions, SPMS may cause atrophy faster than PPMS 

There seems to be correlation between lesion load and atrophy of the spinal cord; 

demyelination and atrophy affected mainly the upper cord levels and both were 

greater in SPMS. We found significant correlation between demyelination and 

atrophy in SPMS but not in PPMS. Therefore, it is possible that lesion load plays a 

more important role in atrophy of tissue in SPMS compared to PPMS. 

Quantification of OLs in the GM and the WM has been carried out in this thesis. 

Number of OLs was found to be low in the demyelinated areas of the WM and the 

GM. Although SPMS demonstrated higher number of OLs in the demyelinated areas 

compared to PPMS, the presence of these OLs was not associated with myelin in the 

two disease forms. This is possibly because their number is very low in the two 

subtypes compared to the normal controls or to the nearby normally appearing areas. 

In addition to low numbers of OLs in chronic lesions, it is possible that these OLs are 

immature and unable to myelinate. 

Outside the lesion, there was a surprising increase in OLs numbers in the NAGM 

compared to normal controls and the NAWM. This was observed particularly in 

SPMS. This could be due to presence of extra sources of OLs in the GM or the 

abundance of inhibitory factors on OLs proliferation in the WM, such as myelin and 
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dystrophic axons. In addition, SPMS may maintain higher inflammation and thus 

induce more proliferation of cells including Ols. 

Axons are also damaged in MS. Axonal loss affected the DMWM with no difference 

between the two subtypes in the density ofaxons. There was also no difference in 

the density ofaxons in the lesions of the CST and the PCP. This may indicate that 

the local effect of demyelination on axons does not depend on the disease subtype 

or the affected tract. The difference in axons' density between the two tracts and the 

two subtypes was apparent in the NAWM. There was considerable loss ofaxons in 

the NAWM of the descending tracts compared to the ascending tracts. There was 

also greater loss ofaxons in the NAWM of SPMS compared to PPMS. It is possible 

that the mechanism of axonal loss in the NAWM is a different from that in the 

DMWM. Loss ofaxons in the NAWM can be due to the effect of Wallerian 

degeneration, while loss ofaxons in the demyelinated areas is possibly due to both 

demyelination and degeneration. Wallerian degeneration of the NAWM of the 

descending tracts is expected to come from higher lesions in the brain where the 

SPMS consistently showed a greater degree of demyelination, while Wallerian 

degeneration of the ascending tract is expected to come from caudal levels in the 

spinal cord where lesions are rare. Consequently, we observed limited loss ofaxons 

in the NAWM of the ascending tracts. Another important observation that suggests 

different mechanism of axonal loss between the DMWM and the NAWM is that there 

was a very low OLs to axons ratio in the DMWM compared to normal controls while 

there was normal ratio in the NAWM. This suggests that the oligodendrocytes may 

playa lesser role in the loss ofaxons in the NAWM. 

The total number of neurons was reduced in MS and showed a tendency toward 

Significance in most of the cord levels. There was greater loss of intemeurons 
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compared to motoneurons. This reduction affected the demyelinated GM but not the 

NAGM. There was no significant difference between PPMS and SPMS in numbers of 

interneurons or number of motoneurons and this applies to demyelinated and 

normally appearing areas. Motoneurons possibly tolerate demyelination better than 

interneurons. Preservation of neurons in the NAGM is possibly due to the limited 

effect of retrograde degeneration on the neuron cell body. Neurons of the NAGM of 

the spinal cord may not be liable to the effects of retrograde degeneration as the 

case of neurons in other parts of the eNS (for example the thalamus) because of 

differences in connectivity. 

8.1 Conclusion 

There are differences between the two disease subtypes in the degree of 

demyelination, atrophy, Ols density, and axonal density. There was no significant 

difference in the degree of neuronal loss or axonal loss within the WM lesion itself. 

Spinal cord axonal pathology is probably responsible for much of the disability in MS, 

while neuronal loss may have a limited role in causing disability. This is suggested by 

three main observations; neuronal loss is restricted only to the demyelinated areas, 

degree of neuronal loss is less than axonal loss, and flaccid paralysis is not a 

common clinical feature of MS. 

The question whether PPMS and SPMS are two different disease entities or not is 

still debated. Developing RRMS or PPMS from the beginning may be affected by the 

nature of the disease itself, age of patient at disease onset (PPMS patients are older 

and thus may have less nervous tissue plasticity), anatomy of the affected tract and 

degree of decussation (less decussation means more severe symptoms), strategic 

location and size of the first lesion (initial lesions of PPMS commonly involve 
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strategic areas such as the brain stem), and probably other genetic or environmental 

factors [110]. 

In SPMS, a possible explanation of progression after a period of RRMS is failure of 

the CNS compensatory mechanisms [402, 403]. This is supported by the fact that 

high disease activity and frequency of relapses shortens the duration after which 

RRMS becomes SPMS. It was reported that patients with MS demonstrate a variable 

duration of time to reach an EDSS of 4. while progression from 4 to 7 takes a similar 

duration in all patients [41]. 

8.2 Future work 

Many scientists believe that with suitable intervention MS lesions can undergo repair. 

Such repair can be in the form of remyelination, neuronal preservation or 

regeneration, and restoring axonal conduction [404]. Inducing repair of spinal cord 

lesions may be more beneficial than that of brain lesions as these lesions were more 

associated with clinical symptoms. Spinal cord lesions are also more accessible than 

brain lesions for introducing molecules or transplanting Ols. 

It is important initially to identify the most potent and most appropriate mitogen that is 

responsible for OLs proliferation. In vivo molecular imaging of the microglia in MS 

has been carried out, which carries promising results to provide imaging of other 

cells, especially OLs [405]. Comparing the degree of expression of OL mitogens 

between PPMS and SPMS and between the GM and the WM may identify the most 

potent factor that can induce remyelination in MS. This may also explain two 

important issues; why SPMS demonstrated greater numbers of Ols in the GM areas 

compared to the corresponding areas in PPMS; and why the NAGM showed greater 

numbers of Ols compared to the NAWM. 
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Oligodendrocytes in the NAGM and the DMGM have not been studied in details yet. 

CA II positivity in Ols is not enough to reveal their level of maturity as CA II is 

expressed in most developmental stages of Ols. Identifying Ols around GM lesions 

using double labelling and staining NG2 positive cells may answer the question about 

origin and function of these cells. Future studies may double stain CA II positive cell 

with other markers, such as MOG for mature Ols, NG2 for Ols progenitors, PDGFR

a for migratory Ols progenitors, or nestin for multipotent neural stem cells. 

It is also important to explore more the relation between lesion load in the brain and 

the degree of axonal loss in the spinal cord, especially the NAWM of descending 

tracts. This may explore the mechanism of axonal loss in the spinal cord. 

Future studies may include RRMS cases to compare with PPMS and SPMS. The 

poSitron imaging tomography for molecular imaging can be used in vivo to compare 

these subtypes. This will overcome the lack of post-mortem RRMS samples and 

differentiate between RRMS, SPMS, and PPMS. Including RRMS may explain why, 

when and how RRMS enters the stage of SPMS. Answering these questions may 

hopefully lead to treatment that delays relapses or reduces their severity. Such 

treatment may include introducing agents (systemic or intrathecal) that induce 

migration and proliferation of Ols to the site of lesions, and transplanting cells in the 

site of lesions that may have similar characteristics to Ols progenitors [244}. 
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Appendix A 

Station reagent time 

1 10% formalin 1 

2 50% alcohol 3 

3 70% alcohol 4 

4 95% alcohol 4 

5 100% alcohol 4 

6 100% alcohol 4 

7 100% alcohol 4 

8 100% alcohol/100% chloroform (50 I 50 mix) 6 

9 100% chloroform 18 

10 100% chloroform 6 

11 wax 2 

12 wax 2 

13 wax 6 
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Appendix B 

Immuno Protocol 

Slides were put in a beaker of 10mM EDTA (3.7g EDTA in lltr distilled 
water, pHed to 8 with NaOH) 
The EDTA was heated in the microwave at power 8 for 25mins 
The slides were transferred to cold running water for 15mins 
They were incubated in Buffer 1 for 2 x 5mins 
They were incubated in 2% normal goat serum for 30mins 
They were incubated in 0.5% aqueous hydrogen peroxide for 10mins 
Primary antibody was added at 1:8000 made up in DAKO diluent, for 1 
hour 
They were washed with Buffer 1 
They were incubated in Buffer 1 for 2 x 5mins 
Secondary antibody was added for 30mins 
They were washed with Buffer 1 
They were incubated with Buffer 1 for 2 x 5mins 
DAB was added for 5 mins 
They were was with distilled water 
They were counterstalned with Haematoxylin 
They were dehydrated and mounted with DPX 

Buffer 1 

11tr PBS 
109 Bovine Serum Albumin 
2ml Tween 20 

primary Antibody - Rbt pAb to Carbonic Anhydrase II (Abeam ab6621-5) 

Secondary Antibody - part of Envision DAKO K5007 DAB kit 

QA6 - Provided by Des Powe 
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