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Abstract 

Abstract 

This thesis presents an investigation into impedance based fault location 

methods which directly use the fault transient as an excitation source to 

provide fast and accurate fault locations in small distribution systems such as 

the modem marine and aircraft power systems which have Integrated Power 

System (IPS) configuration. Fast and accurate fault location on un-exposed 

power distribution lines is of vital importance to expedite service restoration 

and improving the reliability of the power system. 

Two fault location algorithms are developed: the single-ended method and the 

double-ended method. The singled-ended algorithm which captures current and 

voltage wavefonns from one end of the distribution cable estimates the hlUlt 

locations using an iteration calculation. The double-ended method has a simple 

algorithm and is robust to different fault situations but requires additional data 

measured from the remote end of the cable. Both simulation and experimental 

tests have been done and the results are good enough to validate that the 

developed methods ean locate fault positions using a 12ms window and otTer 

an accuracy of within 1m in the proposed distribution system. 

The advantages and disadvantages of the proposed fault location methods are 

investigated under different fault situations. The possihility of employing the 

two methods in protection of faults in a marine power system is demonstrated. 

Due to the special characteristics of the marine power system, an active 

method which simply involves adding an IGBT switch is proposed for the 

earth fault protection. 
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Chapter I Introduction 

Chapter 1 

Introduction 

1.1 More electric vehicles and integrated power system 

The concept of More Electric Vehicles (MEV) system, as one type of power 

distribution systems, emphasizes the utilization of electrical power system 

instead of non-electrical power transfer systems [1]. Morden MEV systems are 

commonly utilized in aircrafts, land and sea vehicles for the advantages as high 

efficiency and survivability. Compared with traditional vehicle systems, the 

concept of MEV emphasizes the utilization of electrical systems instead of 

mechanical, hydraulic, and pneumatic system to optimize the vehicle economy, 

emissions, performance and reliability [1]. Therefore electric power 

distribution systems with larger capacities and more complex configurations 

are required to facilitate increasing electrical demands in an MEV power 

system [2]. 

Power converters are involved in MEV for power generation, distribution and 

utilization of the power supply sources, power distribution lines and loads as 

shown in Figure 1.1 

1 
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Generators AC Loads 

Electrical 
Loads 

9 '--__ ~---16)f-----1 I AC Loads 

1----11 ACIAC I f--c:=~ 
Batteries 

+ 

Fuel Cell 

DC Loads 

1---11 
ACIDC IL - -{==JI 

I I I I Converters If---- -I 

M echanical 
Loads 

Converters II--~ __ ~I Power Eleclronlc II - - -{==JI 
I Drives I 

Power S upply 
Bus 

Figure 1.1 Typical power distribution system configurat ion of a M EY 

A typi ca l power marine distribution system configurati on of MEV is shown in 

Figure 1.1. The electri ca l power generated by generators, energy storage unit s 

(batteries) and fuel cell s provides the electric power through the power 

di stribution buses to both electri cal loads and mechanical loads. Thanks to the 

development of the power electronic converters and drives, different loads and 

power supplies can be connected together simply by di stribution cables. For 

example, in the marine system, based on the concept of MEV, the traditional 

mechanical propul sion system is repl aced by the electric propos ition [11] [1 2] 

as shown in Figure 1.2. This gives the concept of More Electri cal Marine 

(MEMs). 

Distribution 
Bus 

Figure 1.2 Propulsion systems in conventional marine and MEM 
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Chapter I Introduction 

Replacing the mechanical prime movers by the electrical dlives not only 

reduces the noise and vibrations but also improves the system power supply 

efficiency and reduces the C02 emissions. A more detail investigation about 

MEV in a ship power system will be introduced in Chapter 6. 

The More Electric Marine (MEM) approach with combined mechanical and 

electrical loads brings new system structure concepts: the Integrated Power 

System (IPS) or the Combined Power system (CPS) [13] [14]. In the IPS 

structure, without the huge and heavy mechanical components, the system is 

more compact which leads to dramatic improvements in reliability and 

maintainability. Once thc structure of an IPS is employed, the load expansion 

can be realized simply by adding or removing the load accompanied with its 

drive unit to the IPS. With the "plug in and plug out" function, the system 

flexibility is enhanced according to load development and tcchnology 

requirement. However, for a vehicular system which relies mainly on the 

electric power supply, the system survivability in case of electrical faults is 

more imp0l1ant than ever. A fast and accurate fault location method which is 

designed to realize a quick system recovery is required in the protection 

scheme of a vehicular IPS. 

1.2 Traditional distance protection schemes 

t .2.1 Impedance based protection 

Impedance based methods are concerned with measuring the power frequency 

phase voltages and currents to calculate the impedance. Since the value of 

input impedance (VII) increases with the distance from the voltage and current 

measurement point to the fault position under a short circuit fault situation 

[15][ 16], the fault location can be estimated by expressing the distance from 

substation to fault as a function of impedance. As the proportion factor 

between the calculated input impedance and the fault distance is influenced by 

the fault impedance, line impedance and load impedance, it is impossible to 

determine if the fault is inside or outside the line section by using single zone 

protection (at least two zones are required)[ 115]. 
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ABC 

--~C*B-l----------~-----BC~B-2---------------li~C~B-3 --~-----

Zone(l) 

Zvne(2) 

. .. ~I _----, 

.. -,----1 _ I 
Distance 

Zone(3) 
l , , 

Operating Time 

Figure 1.3 Three zones impedance based distcll1cc protection strategy 

A Typical three zones impedance based scheme shown in Figure 1.3, for 

circuit breaker 1 (CB 1), Zone(l) covers 90% of the line impedance of line 

section (A-B) within time setting 1/ , ZOlle(2) approximately covers 50(Yo into 

the nex t adjacent line section and Zone(3) covers 25% into the adjacent linc 

section beyond at operating time I } and /.i respectivel y. Each circuit breaker 

(CB) has three zone impedance settings, and these settings co-operate. Zonc(2) 

for CB 1 act as backup for Zone(l) of CB2. Zone(3) of CB 1 and Z0l1c(2) of 

CB2 act as backup offal' ZOl1e(l) ofCB3. 

1.2.2 Travelling wave based protection 

The travelling wave based protection scheme is well known for its fast and 

accurate fault location on transmission lines [17-20] . Short circuit faults on the 

transmission line create a sudden collapse in voltage at the fault location. The 

abrupt changes in the voltage causes high frequency travelling waves at the 

fault point, superimposed on the power frequency signals, to propagate away 

along the transmission line in both directions from the fault at a speed close to 

the speed of light as shown in Figure 1.4. 
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Faull 

Substation A Substation B 

x L-x. 

l2 

14 

Figure 1.4 A Bewley Lattice diagram depicting" fault 

The Bewley Lattice diagram [36] given in Figure 1.4 shows that a fault occurs 

at a distance x to the substation A on the transmi ssion line which connects 

substation A and B over a distance L. Travelling waves generated by the fault 

propagate in both directions towards substation A and B and reflect once they 

reach the substations. 

For a single-ended method which measures the fault transients at one location 

only and relies on identifying the second or third incident pulse reflected from 

the fault location, fault distance can be decided by: 

X=(l3- t ))U 

2 

where u is the wave propagation speed on transmi ssion lines 

(1.1 ) 

For a double-ended method which requires synchronised measurements from 

both ends of the line, the fault location is calculated using the absolute an'ival 

times of the initial wave fronts at each end of the line. 

( 1.2) 

The accuracy of travelling wave scheme relies highly on the performance of 

the data acquisition units and this limits its utili zation in small distribution 

system such as the vehicular IPS. 
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1.2.3 Knowledge based protection 

The knowledge based distance protection schemes such as expert systems [21] 

and Artificial Neural Networks [22]-[24] use a heuristic way to solve the 

problem which cannot be solved by algorithmic formulating. Instead of 

covering a single line section, the knowledge based scheme is normally 

utilized in a distribution system with a complex structure and covers the 

whole or a large portion of the system. 

Expert systems are intelligent interactive computer systems which act as 

human experts (sometimes a human is involved) and make decisions based on 

a pre-set database of the system configuration, geographical inttmnation, 

experiential cases and rules. In [21], parts of the rules of the expert system 

are the combination of the conventional protection schemes such as: distance 

protection, differential protection, over current protection and over load 

protection. It requires the communication and interaction of all the relays 

within the covered area to decide the protection action in case of fault. 

The Artificial Neural Network (ANN) [22] is a computational network which 

has a lot of nodes, connections and layers based on the brain neural network. 

The ANN model has to be pre-trained according to difTerent fault situations 

and modified to achieve the predicted results. Similar to the expert system, an 

ANN model contains details of the system information, but the ANN is able 

to self learn after training without fixed rules. For example, a system contains 

N layer of nodes and connections with input from first layer and output from 

the last layer. The training procedure chooses nodes and connections to form 

different paths from first layer to last layer according to different fault 

situations then the self learning process can fonn its own paths. It does not 

have to be told a specific set of rules like expert systems but instead 

establishes its own set of rules based on the data it is trained with. Once 

sufficient training has been performed, the neural networks can make accurate 

(but not with 100% accuracy) fault predictions of fault locations under a 

variety of fault conditions and fault resistances [23][24]. 
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The knowledge based protection scheme requires very accurate input 

information and once the conclusion is made, it is very difficult to re-evaluate 

the accuracy of the results (such as the results derived by self learning of 

ANN). The protected system has to be studied in detail to obtain the system 

information required for learning. 

1.3 Research objectives 

1.3.1 Project challenges 

Faults on power system transmission lines and distribution lines can he 

classified into two classes: open circuit fault and short l:ircuit fault. The open 

circuit fault causes load power supply interruption while the short circuit fault 

is considered to he more dangerous due to the fact that the larger short circuit 

current may cause overheating or damage system equipment. Therefore short 

circuit faults should be discovered and located as fast and accurately as 

possible for fault removal and system recovery. 

Conventional protection schemes have more focus on the system fault 

detection and isolation than accurate location. As in an integrated power 

system (IPS) in a More Electric Marine (MEM), faults can easily he detected 

by monitoring the system current variations (the over current scheme and 

current differential scheme). Once the faults are detected and the fault sections 

are isolated, it is more helpful to know the precise position of the faults for a 

fast system repair. Unlike overhead transmission lines which are exposed to 

faults [4], for the protection of an IPS within modem trains, more electric ships 

[5]-[ lO]which have no exposed power transmission cables, it is difficult to 

remove or restore the faulted line sections without accurately knowing the fault 

position. Also a fast system recovery in these power systems not only brings 

benefits in economy but also to the safety of the passengers. 

The discussed travelling wave method in Section 1.3.3 IS fast and accurate 

when applied into transmission line fault protection. Compared with the 

travelling wave method, the impedance method is cheaper and more suitable 
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for small distribution system such as IPS. The Traditional distance protection 

is based on impedance measurement at the power frequency (50 or 60 Hz), but 

for typical cable parameters this only has an accuracy of a few km and so is not 

suitable for distribution systems [3]. A new protection scheme which provides 

a short fault location time and at the same time achieving high accuracy is 

required. 

1.3.2 Project objectives 

The research described in the thesis investigates general fault impedance based 

fault location techniques and develops a new fault algorithm which can be used 

in small power distribution systems such as an IPS. Compared with the 

traditional passive impedance estimation (PIE) based methods [78] [79] which 

analyse the pre-fault and post fault system impedance at supply power 

frequencies the proposed method directly uses the fault transients and the fault 

location time is greatly reduced and the accuracy is greatly increased as well. 

Unlike the Active impedance estimation (AlE) method [91] which involves an 

extra controlled power electronic device for current or voltage distortion 

injection, the proposed passive methods (single-ended method and double­

ended method) only requires voltage and current acquisition units from single 

(or both) ends of the protection cables. 

Considering online impedance estimation, the AI E methods normally generate 

bigger and controllable disturbances which have higher signal to noise ratio 

and produce more accurate results than the PIE methods. However, from the 

point of fault location, the fault transients are big enough for an accurate fault 

locating calculation and this is especially true for systems with a high voltage 

level and low fault impedances. Also the passive methods do not have to deal 

with the noise generated by the injection unit for AlE. 

The main objectives of the Thesis are therefore summarised as: 

1. Develop a fast and accurate single-ended fault location method based on 

system impedance estimation using t~lUlt transients. 
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2. Develop a fast and accurate double-end fault location method based on 

system impedance estimation using fault transients as an alternative option for 

applications according to different fault conditions. 

3. Evaluate the proposed single-ended and double-ended algorithms according 

to different system conditions and fault conditions. 

4. Apply the proposed fault location schemes into the protection of a zonal 

marine power system and also solve the earth fault location problem when the 

generator is high impedance carth connected. 

1.4 Thesis structure 

Chapter 2 investigate the prevIOus work relating to online impedance 

measurement and the fault location algorithms based on impedance estimation. 

Both passive and active impedance estimation methods are discussed and, 

compared with the passive method, active methods otTer controllable 

excitation and high signal to noise ratio. Three commonly adopted analysing 

techniques: Fast Fourier Transform (FFT), Continuous Wavelet Transform 

(CWT) and Power Spectral Density (PSD) are demonstrated and the CWT is 

shown to produce smooth results in noisy situation but the curves are not 

suitable for curve fitting. The strong and weak points of the previous 

impedance based fault location method (both active and passive) are discussed. 

Chapter 3 proposes a single-ended fault location method which directly uses 

the voltage and current fault transients measured from the power supply point. 

The idea is demonstrated by simulation and then proved by experimental 

results from a 20m length cable system which has similar parameters as the 

cable used in aircrafts. Systems with both linear and non-linear loads, both AC 

and DC supply situation are investigated and the advantages of the proposed 

algorithm are then demonstrated by comparing with other single-ended fault 

location methods which use the power frequency system voltage and current 

information. 
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Chapter 4 proposes a double-ended fault location method which directly uses 

the voltage and current fault transients measured from both the power supply 

side and the load side. Both a hard fault (step fault) and a restriking fault 

(bouncing fault) with different fault impedances are investigated. The 

advantages of the proposed algorithm are then demonstrated by comparing 

with other double-ended fault location methods which use the power frequency 

system voltage and current information. 

Chapter 5 further examinl!s the experimental results by USl11g a Matlab 

simulation model which has the same parameters as the experimental system. 

Then, with the contidence that the simulation can produce similar results under 

the same fault situations, conditions that the proposed method cannot be 

demonstrated by the experimental cquipments are investigated. The 

possibilities of "dead zones· in which the proposed methods may not work are 

discussed and demonstrated. 

Chapter 6 applies the proposed fault location method in the protection of a 

50Hz AC 440Vrms line voltage zonal marine system which is considered as a 

future IPS vessel. The single-end method works alone in each zone without 

requiring any communication equipment. The double-ended method can cover 

two zones and provide more accurate results and is more robust to ditTerent 

fault situations. The potential danger caused by earth faults in a high 

impedance grounded marine power system is discussed and a method using a 

simple switch unit is proposed to eliminate the potential harm. 

Chapter 7 concludes the thesis by summarising the research work investigated 

and developed, knowledge gained and the contributions made to this research 

field. The employment of the fault location method into bigger and more detail 

distribution systems and transmission systems, and also the possibility of arc 

faults are considered and future work are discussed. 
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Chapter 2 

Impedance estimation and fault 

location 

2.1 Introduction 

System impedance estimation techniques have been investigated and 

developed in the past 80 years [27]-[57]. The commonly adopted methods can 

be classified into different groups with respect to: 

• Measurement frequency 

Sub-synchronous frequency [27] 

Synchronous frequency [45][46] 

Super-synchronous frequency [47]-[ 56] 

• Excitation sources 

Active methods [39]-[56] 

Passive methods [50] 

• System power supply states 

Online measurement [27]-[30] 
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Offline measurement 

• Data processing techniques 

Fourier Transform [30]-[32] 

Wavelet Transform [56][57] 

Power Spectral Density [51 ][52] 

Effective and accurate estimation of the source, line and load impedance at a 

certain frequency range from a particular point of inception is an important and 

challenging task. The basic principle of the impedance measurement is to 

apply Ohm"s law to the measured current and the measured voltage data from 

the point of common coupling (peC) at each required frequency as in equation 

(2.1) 

(2.1) 

Compared with the impedance measurement at sub-synchronous and 

synchronous frequencies, the super-synchronous frequency estimations require 

a shorter data segment but need to deal with the noise and distortions which 

already exist in the system or are caused by the extra injection and 

measurement equipment. Also, due to the attenuation of the excitation sources 

in the high frequency range, it is more challenging to maintain a good signal to 

noise ratio (SNR). Online impedance measurement (impedance measured 

during normal system operation when system is energized) draws more 

attention than the otT line measurement (the impedance is measured when 

system is de-energized) because it does not interrupt the healthy power system 

operation and the results can easily by used by other system online monitoring 

devices. It also, brings more challenges as energized systems are more noisy 

and un-predictable than de-energized systems. Considering the excitation 

sources (or the system disturbances), the impedance measurement can be 

classified into invasive (active) methods [39]-[57] which involve using the 

switching or injection from extra equipment to deliberately inject distortions 

into the system as an excitation source and the non-invasive (passive) methods 

[28]-[3S] which use the existing system distortions (most commonly from a 
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non-linear load or capacitor banks) as the excitation sources. A general review 

of both methods is present in [63]. 

Power system fault location algorithms based on on-line impedance estimation 

can be categorized as active methods [91 ]-[97] and passive methods [78]-[90]. 

Active methods use additional injection unit to predict the fault positions by 

comparing the system impedance changes after fault occurs. Passive methods 

calculate the line impedances between the observation point and fault location 

by using the power frequency system voltage and current information in pre­

fault, post-fault or during fault situation. This chapter introduces the previous 

work on the impedance estimation methods and discusses the three commonly 

adopted data processing algorithms, and then demonstrates the developed fault 

location methods based on impedance estimations. 

2.2 Online impedance measurement 

The techniques of online impedance measurement have been developed 

because they create only a small disturbance to the healthy operation of the 

system and bring benefit to the electrical system study, passive and active filter 

design and system protection schemes will benefit from the accurate 

knowledge of system impedance. Online impedance measurement techniques 

usually involve the measurement of the voltage and current disturbances (or 

transients) from which the impedance can be evaluated by using signal 

processing techniques based on time to frequency domain transfonnation 

algorithms such as FFT, CWT and PSD. 

Typical online impedance measurement including: the excitation source 

(transient source) creates voltage and current disturbance to the system (which 

can include the supply impedance, the line impedance and the load impedance 

or a combination of these impedances) through the coupling impedance as 

shown in Figure 2.1. 
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Figure 2.1 Circuit for online impedance measurement 

From the view of the excitation source, the online impedance measuremcnt can 

bc cl:lssified into passive and active methods. 

2.2.1 Passive online impedance measurement 

Passive online impedance measurement is realized by monitoring the transients 

generated by system components such as electronic converters, load switching, 

capacitor bank switching, tap changing of the transfonners and sometimes 

even the faults. 

Passive system impedance measurement using fault transients is not common 

and difficult to realize in the field test due to the fact that a large fault current 

may damage the system components. In 1984, Hughes presented a system 

impedance measurement technique by temporarily imposing a phase to phase 

fault into a SOOkY hydro power system [27]. The field test results were 

compared with the simulation results derived by using the Electromagnetic 

Transients Program (EMPT) [27]. The impedance was derived by analysing 

the fault current and the phase-to-phase voltage obtained from a staged phase­

to-phase fault applied to the transmission network and no external source of 

excitation is required. This work involved measuring the sub-synchronous 

positive sequence impedance so that the fault duration had to be kept smaIl and 

equal to an odd number of half-cycles to get more infonnation in the sub­

synchronous frequency range. The main advantages of this method are that it 

does not require any extra device to create the excitation and the transient 

generated by a short circuit fault is big enough to produce a good signal to 
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noise ratio (SNR) in the frequency range of interest. The disadvantage is that 

the fault may create un-expected large disturbance and possible damage to 

equipment. 

The switching of capacitor banks which are commonly used on transmission 

lines for reactive power compensation (power factor correction) has been used 

as an excitation source for system impedance estimation [28]-[36]. In 1978, 

Crevier and Mercier processed an impedance estimation test on a 12k V 

substation by means of the switching of a 10MVA capacitor bank [28]. The 

current and voltage was recorded digitally and the phase and amplitude of the 

hamlonic impedance were estimated at hannonic frequencies up to the 19th 

order. Because of the relatively low SNR which is especially true in the high 

frequency range, this method has to deal with the issue of precision. 

The method of using the transients generated by capacitor switching has be 

developed and widely used due to the fact that the auto-capacitor bank 

switching is commonly adopted for power factor control in distribution power 

systems. O. T. Rizy presented a paper which studied the system voltage 

harmonics due to the switching of different capacitor configurations on the 

Athens Utilities Board (AU B) in Athens in 1987[29]. Both harmonics and 

transients were analyzed by using total harmonic distortion (THO) and a 

transient network analyzer to detect the contribution of the switch component 

to both the harmonic overvoltage and the transient overvoltage. In the same 

year, A. S. Morched and P. Kundur performed an experimental test on a 

distribution system using the capacitor bank switching to calculate the load 

feeder impedance (12.S8MVA and 14.9MVA) in a frequency range up to 5kHz 

[30]. The transients generated by the 27.6kV capacitor banks were captured by 

a potential transformer and a feeder current transformer and the data was 

recorded with a 200kHz sampling rate to ensure good frequency resolution 

with a short time domain data segment (0.04s). This load impedance 

measurement configuration, as shown in Figure 2.2, has been commonly used 

[32). 
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figure 2.2 Configuration o f load impedance estimation 

Unit 

Girgis and McManis used the same measurement configuration in their paper 

[31], and the power spectral density was applied in the frequency domain 

transfomlation. By using the index of the con·elation of the input and the 

output (current and voltage), the results with high noise level (low index value) 

can be rejected. Compared with the FFT, the power spectral density method 

involves correlation filtering and offers more smooth results in a low SNR 

situation. However this method suffers from spurious cross correlations 

between the voltage and current. Papers [33] and [34] showed the advantages 

of the Clark transfonn (a , ~, 0) during transient calculations compared with the 

synchronous component method during the three-phase system impedance 

estimation. 

Transients generated by transfonner tap changing were used in Palmer's paper 

[36] and this method acts as an alternative excitation source for three phase 

impedance measurement. Test results of both capacitor bank switching and 

transfonner tap changing were presented and although the capacitor switching 

offers higher spectral energy, the author suggested that the viability of the 

using the tap changing operation should be investigated further because it 

makes the hannonic measurement easier given the wider availability of on-
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load tap changing transfonners compared with the availability of capacitor 

banks. 

In Oliveira's paper [37], the author presented three approaches based on using 

a known switchable shunt impedance and/or nonlinear load. This method can 

be explained by using a simplified system model as shown in Figure 2.3. 

z ", 

f\..." V 
s 

POM 

·)' 1 

I----.~-- ~ -----I Non-l inear load 

Figure 2.3 Oliveira 's circuit for impedance measurement 

The system in Figure 2.3 contains the system supply voltage (Vs), the measured 

impedance (lm), the known impedance (lknown) and the non-linear load. The 

first approach assumes that the load is not connected to the system (S I is open) 

and the supply voltage contains harmonic distortion and it can be measured 

when both SI and S2 are open. So that after S2 closed, the measured current 

(1m) at POM can be used to calculated the lm: 

Vs - 1m . lknown 
Z =-------:.....:.. 

m I 
m 

(2.2) 

The second approach assumes that Vs is purely sinusoidal and after closing S I 

the distortion of the non-linear load can be used for the estimation of 2m and 

at hannonic frequencies Vs is short circuited. The third approach considers 

hannonics that exist in l's and the switch transient of S I can be seen as another 

hannonic source and, beside the current measurement, adds another voltage 

measurement unit at the POM, then the Zm can be calculated. 
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(2.3) 

This paper simply discussed the possibility of using the load distortion for 

impedance estimation and this was developed in Xiao's paper [38] which 

investigated the error caused by asynchronous measurement with a 1 OOkY A 6-

pulse AD/DC rectifier bridge load. 

2.2.2 Active online impedance measurement 

The active online impedance measurement techniques involve the use of 

controlled electronic devices to introduce a current or voltage transient 

distortion to the system through coupling impedances at variable locations of 

the system and measuring the corresponding voltage and current response. 

Although extra equipment is normally needed, this method has been developed 

because of its controllable operation and high flexibility. 

Between 1994 and 1996 Harris and Rhode developed an online active 

impedance measurement technique by injecting a small current with known 

frequency into the system [39]-[41]. The device, called a Digital Implemented 

Network Analyzer, can be used to measure any part of the system impedance 

without disturbing the healthy operation of the power system. 
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Figure 2.4 Circuit of active impedance measurement unit 

As in Figure2.4, the line impedance circuit was modelled as impedance, line 

hannonic voltage and line fundamental voltage. A sinusoidal cun'ent was 

injected into the l20V line model circuit through the coupling impedance and 

by choosing the frequency of injected signal the influence of voltage hannonic 

inside the line model can be reduced. 

A similar injection method was used by Czannecki and Staroszczyk [42] [43] , 

and the injected current was not a sinusoidal signal but a current transient. The 

authors designed a hannonic generating device connect to the load side as a 

current injecting source. It was found that the transients injected by additional 

device have larger SN R than the disturbance created by capacitor bank 

switching. A four parameter method was employed: using the system supply 

hannonic, load hannonic, supply impedance and load impedance, two 

equations can be formed and by repeat measurement the four parameters can 

be derived. Moreover the noise influence coming from both system and the 

injection unit was investigated on the measurement and calculation errors 

during the impedance estimation process. The author found out that the 

estimation accuracy can be improved by increasing the disturbance level , but 
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the disturbance level has to be a compromise value which enables accurate 

impedance estimation and at the same time does not interrupt the system 

operation. 

In 2000, Tsukamoto proposed an advanced measurement technology to clarify 

interaction between a hannonic current source and the utility power system 

[44]. The author's impedance measurement was based on inter-hannonic 

current injection. A device which generated inter-hannonic current was used 

and due to the fact that little inter-hannonics exist in the power system, by 

measuring the inter-hannonic voltage and current, the hannonic impedance can 

be achieved by interpolation of the adjacent inter-hannonic impedance. This 

process was investigated to measure the supply side and the load side 

impedance individually and to classify the hannonic current now into and out 

of the load. Field tests were processed and the results showed this tcchniquc 

can greatly increase the measurement accuracy and eliminate the influence of 

system hannonics. 

Active online impedance measurement without usmg additional device has 

been investigated with the development and wide utilization of power 

electronic converters in power systems. By modifying the existing converters, 

a hannonic current can be generated and used to estimate the system 

impedance. Asiminoaei et al. develop an active on line grid impedance 

estimation method by using the current transient generated by Photovoltaic 

(PY) inverter [45]-[48]. The author injected a non-characteristic hannonic 

current at POM by using the control logic and the frequency of the injected 

signal was chosen to be close to the fundamental frequency to eliminate the 

influence of a parallel capacitor. A 75 Hz, I.5A current was injected in to the 

system and in order to calculate the system fundamental frequency impedance, 

a correction factor based on grid characteristic is implemented for error 

correction. The proposed method is suitable for systems with high inductance, 

because in the low frequency range the calculated system reactance is much 

smaller than the resistance in a nonnal grid. 

Corzine et al [49] suggested an AC impedance measurement technique based 

on d-q reference frame instead of the nonnal a-b-c reference frame. The author 
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investigated three different situations of current injection for the AC 

impedance measurement: by using power converters, chopper circuits and 

induction machines. Comparing with the advantages and disadvantages of each 

current injection unit and its switching frequency characteristic, the author 

suggested that power converters should be used in low voltage and low power 

systems, chopper circuits are suitable for medium voltage systems and the 

induction machine can be used in different voltage levels but the wound rotor 

needs a custom design for current injection. 

Authors from the University of Nottingham carried out development of a fully 

controlled injection technique for online impedance measurement between 

2000 and 2006[50]-[57]. [50] proposed an online active harmonic impedance 

measurement technique by using the injected current from a controlled 

converter. This convel1er could be a stand alone device, or embedded into the 

existing power quality components in the system such as active shunt filter 

(ASF) or in the power-electronic interfaces for embedded generation. 

The test system is shown in Figure 2.5 in which both the value of supply 

impedance and value of system impedance (the supply impedance in parallel 

with the load impedance) were estimated. 

Supply 
Impedance 

ASF 

L CO lfPlillg 

Load 

Data 
Acquisition 

Unit 

Figure 2.5 Impedance measurement involving ASF 
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As the technique employs controlled power electronic devices it may either be 

used as a stand alone piece of measurement equipment, or it has the possibility 

of be embedded into the functions of an Active Shunt Filter for improved 

hannonic control (Although the ASF is not included in Zanchetta's paper) . 

Using a similar injection method, [51] and [52] investigated an impedance 

estimation test by injecting a step voltage di sturbance into different load 

models as in Figure 2.6. 
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Figure 2.6 Load models for impedance est imation [52] 
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Both simulation and experimental tests were perfonned and the acquired 

measurement data was analyzed using both Discrete Fourier Transfonn (OFT) 

and the Power Spectral Density (PSD) transfonnntion packages embedded in 

the Transfer Function Estimation (TFE) function of MATLAB. The TFE 

function estimates the transfer function of a system with measured input and 
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output quantities using Welch's Averaged Periodogram Method [58]. The TFE 

method divides the measured voltage and current into overlapping sections. 

For example 8192 recorded samples are split into 8 sections (1024 points each). 

Each section of data is treated individually for initial processing. PSD of each 

section is calculated and overall PSD of the entire data is found by averaging 

the individual sections. Then a Hanning window was used to smooth the edges 

of the data sections and then the data was zero-padded to the required length to 

improve the output frequency resolution. The transfer function of the system 

can be derived by dividing the PSO of Pxx and Pxy (which are the OFT of the 

input auto-correlation and the cross correlation between the input and the 

output). The correlation process before the OFT improves the SNR by tiltering 

out the uncorrelated noise and in particular case reduces the large absolute 

errors in the impedance estimate at the frequencies where the voltage and 

current signal strengths are low. Very good accuracy of the impedance 

estimation results was achieved. 

Besides injecting the voltage disturbance to the system, several approaches 

(supply voltage modification, voltage feed forward control and current feed 

back control) were tried to limit the current to lOA so that the current will not 

damage the system components and the accuracy of the impedance estimation 

is significantly affected at the same time [51]. 

In 2001 Sumner and Thomas continued the work of voltage disturbance 

injection by using three-phase fully controlled power electronic converters [53]. 

The voltage transients were extended to 160ms to give a good frequency 

resolution (6.25Hz). The experiment tests were carried out in the system model 

as in Figure 2.7. 

23 



Chapter 2 Impedance estimation and fault location 

v, POM 

1------./ 
--

R, L, 

R, 
.~ 

v, '\.., !'OM 
C , 

./ 
--

R, I., R, I. , 

R, ~r-·~ 
v 1 " O M 

C C , 

~L_./ 

Figure 2.7 Experiment setup for impedance estimation [53] 

The three experimental setups, as shown in Figure 2.7, involving different 

complexity were tested. The first model demonstrated the system supply 

impedance (transformer), the second model added a parallel capacitance with 

series resistance based on the first model to include the resonances and the 

third model consists of transformer, parallel capacitor, line inductor and further 

parallel capacitor. 

This method involved a steady state compensation which cancels the hannonic 

contribution from the power supply. The voltage and current were recorded for 

eight cycles just before the injection of the transients (160ms) and then 

subtracting this from the recorded transient data. This procedure will only 

eliminate the influence of the existing harmonic in the system before injection 

and also remove the edges of the steady state waveforms so that no further 

edges smoothing window (Hanning window or Harming window) is needed. 

Both the OFT and TFE were used to estimate the system impedance and the 

results showed that the TFE is more suitable to work in a noisy situation than 
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OFT for all the three tested models. Although the system impedance and the 

resonant peaks can be identified accurately, this technique has the limitation 

that the supply voltage discontinuities due to the switching power electronic 

equipment will result in inaccuracy in the results and also the l60ms voltage 

disturbance injection may cause significant influence in the healthy operation 

of the tested network. 

Therefore, an alternative current injection method was investigated in [54] and 

[55]. Due to the fact that the system is assumed to be stationary during the 

injection and the transient should decay completely bct(m~ impedance 

estimation, it is more practical to derive an accurate impedance estimation 

results by using transients with short duration. The shol1 term current injection 

was utilized in [54]. Compared with the voltage disturhance injection which 

lasts for 160ms in [53], the shol1 tenn injection was operated hy modifying the 

voltage applied to the coupling inductors in the existing ASF to generate a 

550l1s triangular current pulse into the system. A time-domain extended Prony 

method [59][60] was used to analyze the transient data with very few data 

points and this method works in both linear and non-linear load system. This 

short tenn injection method can be widely utilized in power systems because it 

is able to fully control the amplitude and the duration of the injected current 

spikes. The injection unit can also be embedded into existing power system 

components (ASF or controlled induction motor) to regularly update the 

system impedance infonnation. 

Further improvements were made in [56] and [57] which involve Continuous 

Wavelet Transfonn (CWT) simulation work. Compared with OFT and TFE 

which required 160ms (60Hz steady state) data to give a frequency resolution 

of 6.25Hz. High frequency resolution is required for curve fitting and future 

data processing. However, the CWT required much less data (5ms). Rather 

than having a fixed time sinusoidal window in OFT and TFE, the window type 

of the CWT could be chosen by varying its mother wavelet and the length of 

the window could be adjusted according to the frequency range of interest 

(900Hz to 1200Hz). 
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2.3 Impedance analyzing techniques 

2.3.1 Fast Fourier Transform 

The Fourier Transfonn is one of the most frequently adopted signal processing 

tools for frequency response calculation and on-line impedance estimation. 

For a series of digital recorded sampling signals, with N samples (x(n)), the 

OFT can be realized by equation (2.4) 

~ ZITi 
X(K) = L x(n)e-NKn K = 0,1. ...... , N - 1 (2.4) 

11=0 

If the N sample series OFT is perfom1cd by a computer programme, it requires 

N2 complex multiplications and additions [61]. Due to the symmetrical 
2111 

characteristic of e -NKTI
, using the "butterfly representation' of the numerical 

process [99], the OFT procedure can be simplified and the number of 

multiplications can be reduce to Nlog/, . This modified calculation is called 

the Fast Fourier Transfonn (FFT) which produces the same results as a OFT 

but is able to greatly speed up the calculations and this is especially true for a 

data series with a large amount samples. 

The FFT is one of the common options because of its fast calculating speed 

and easy operating logic. In MatIab, the FFT can be realized by a simple code 

or a function model. The impedance frequency response of a sinusoidal input 

at its frequency can be estimated accurately with an integer number of cycles 

of the measured data. However, for a transient input, in order to perfonn 

accurate impedance calculation, the FFT needs to include a time domain 

window to prevent frequency leakage and most importantly to eliminate the 

influence of the edges of the measured finite signals. This can be demonstrated 

by measuring the impedance of an RLC circuit with a step current excitation. 
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Figure 2.8 Test ci rcui t for impedance measurement techniques: R 1=0.40, L 1= 1.15mH, 

R2=0.40, C I= IOOIJF and Ys= IOY (peak). 

As shown in Figure 2.8 , a step CUlTent is injected into a IOV(peak), 50Hz AC 

system. The step current and the system voltage transient response at the Point 

of Measurement (POM) are recorded as shown in Figure 2.9. 
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Figure 2.9 Measured step current and voltage transients from POM 

a)Measured system volt age response b) Inj ected step current 

As shown in Figure 2.9, two cycles (0.04s) of voltage and CUtTent transient 

data including steady state wavefOlms were recorded and the CUtTent has a step 

change at 0.02s. The captured data was then transformed into the frequency 

domain for the system impedance frequency response estimation. However, 

unlike impedance est imation at the fixed system frequency (50Hz in this 

system), for a transient impedance est imation which nonnally involves 

calculating the impedance at a range of frequencies, more possibilities of 

influences which may bring errors to the results have to be considered. For the 
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steady state impedance estimation at a certain frequency, the spectral leakage 

can be cancelled with integer cycles of data measurement, the transients or 

noise within the captured data are considered influences only existing in the 

high frequency results. So that the accurate results can be provided by directly 

applying a FFT to measured time data after a low pass filter. However, for the 

transient impedance estimation, the influence introduced by the edges of the 

steady state wavefonn is far more serious. 

Figure 2.10 shows the FFT results of amplitudes and phase of the impedance 

versus tJ-equency by directly using the measured data as shown in Figure 2.9. 
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Figure 2.10 Impedance results calculated using FFT without Blackman window 

a) Amplitude of the system impedance b) Phase of the system impedance 

Compared with the actual value (dashed lines), the estimated results (solid 

lines) are extremely inaccurate. For this situation, there is no noise added in the 

system so that all the errors (except the value at 50Hz) are contributed by the 

edges of the measured signal. As proposed in [53][54], the influence caused by 

the edges of the measured wavefonns can be eliminated by a procedure called 

steady state compensation which removes the edges and other hannonic 

distortion already existing in the system signal wavefOJms before current 

injection by subtracting an integer number of cycles of the data measured just 

atter the current injection with the same amount of data recorded before the 
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injection. This procedure could completely remove the information at the 

system frequency, the edges and most of the system harmonic distortions, but 

it also adds complexity to the algorithms. The alternative option is to add a 

window to the measured data. A Blackman window [98J has been added to the 

data of Figure 2.9 and is shown in figure 2.11. 
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Figure 2.11 The captured data after processed with a Blackman window 

a) Blackman window b) Windowed voltage c) windowed current 

After the application of a Blackman window, as seen in Figure 2.11, the edges 

of the measured data are smoothed to zero and according to the time domain 

characteristic of the edge filtering windows, normally the useful transient 

wavefonns are located in the centre of the window where the values of the 

window are close to I to keep the useful transients less influenced by the 

window. Once the edges of the transient data is removed, the impedance 

estimating results improve as shown in Figure 2.12,. 

29 



a 

b 

Chapter 2 Impedance estimation and fault location 

Estimated system impedance amplitude 
30 ---, , 

I 20 ~ 

110 1
\ A 
\ / ' -o -..:.:.~ ... / 1 "-.- - .~- -_.::::=:r-- -- ._- -,- --. --,- -- -

G estmated -.alu;] 
- . _. actual -.alue 

- . 

o 500 1000 1 500 2000 2500 3000 
frequency(Hz) 

100 r- - --,- Estimated s stem imQ-,,-ed=a~n~Ce~'7=r":=as=e====!:=: __ ~ 

I 50 i; \. '\ "- - - :::~a~t:~u:lue J I~ 
~ 0 
<V 
<Il 

.§. .50-" _ _ _ _ _ ... J 

·100 -
o 500 

L- ____ -4 ___ L 

1000 1500 2000 
frequency(Hz) 

.--L 

2500 3000 

Figurc 2.12 The FFT results after processed with a Blackman window 

a) Amplitude of the system impedance b) Phase of the system impedance 

The largest estimation errors exist at 50Hz due to the steady state influence of 

the supply. The inaccurate result of the peak value of the amplitude at low 

frequency (at 480Hz), in Figure 2.12, is caused by the Sh011 data segment (two 

cycles) in which the voltage transient is not fully captured and the low 

frequency transient osci lIations close to the edges of the data segment are 

removed by the Blackman windowing. The accuracy at this point can be 

improved by using a longer data segment However, it is not necessary because 

the results in the high frequency range show good accuracy. 

In order to test the behaviour of the windowed FFT method under a random 

noise situation, wide band white noise was added to the measured data (both 

voltage and current information) with 3% (according to rms value of the each 

recorded data) amplitude. The estimated impedance results are shown in Figure 

2.13 
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a) Amplitude of the system impedance b) Phase of the system impedance 

The noise causes inaccurate estimated results in the high frequency range due 

to the low SNR of the voltage and current components in this frequency range , 

The wavef011l1 oscillations produced random noise which in practice is due to 

the data recording AID quantization errors, transducer errors and the system 

noise. A curve fitting processes can be applied if the order of the system 

transfer function is known. This will be demonstrated in Chapter 3 and 

Chapter 4 with the experimental test results. 

2.3.2 Power Spectral Density 

The system transfer function can be estimated uSlllg several different 

techniques. The basic method involves dividing the output voltage by the input 

current in the frequency domain after the raw data has been processed with a 

FFT. The Power Spectral Density (PSD) is an alternative impedance 

estimation technique which uses the power spectral analysis of the voltage and 

current transient to derive the system transfer function [31]. Due to the fact that 

a correlation which eliminates the un-correlated infonnation is involved during 

31 



Chapter 2 Impedance estimation and fault location 

the PSD calculation, this method is considered to be more effective in dealing 

with noise than the FFT. 

The power spectrum of a signal is the Fourier transform of the auto-correlation 

and similarly the power spectrum of two signals is the Fourier transform of the 

cross-correlation of the two signals. The auto-correlation function of a random 

signal is the expectation value of the product of two samples at time t and time 

lag T as in equation (2.5) 

RxxCt) = E(x(t)xCt + r)) (2.5) 

where x(t) is the random signal and RxxCt) is the auto-correlation result. The 

cross-correlation function of two signal x(t) and yCt) is: 

Rxy (t) = E(x(t)y(t + r)) (2.6) 

According to Jenkins and Watts [62], the discrete biased auto-correlation and 

cross-eon-elation are presented in equation (2_ 7)-(2.8) 

N-m-l 

RxxCm) = ~ L x(n)x(n + m) (2.7) 
n=O 

N-m-l 

Rxy(m) = ~ I x(n)y(n + m) (2.8) 
n=O 

The auto-PSD and cross-PSD can then be calculated by directly applying a 

Fourier transform to the auto-correlation and the cross-correlation. 

The system transfer function calculation using the PSD can be demonstrated 

using a single input and single output (SISO) system with input x(t) and 

output y( t): 

xU) ~ g(t) 
y(t) .. 

LI ___________ ______ ~ 

Figure 2.14 SISO system 

32 



Chapter 2 Impedance estimation and fault location 

The direct relation between input, output and the impulse response in the time 

domain is: 

yCt) = g(t)x(t) (2.9) 

The system impulse response g(t) relates to the auto-correlation of the input 

and the cross-correlation of the output and is shown in (2.10). This equation 

represents the convolution of the system impulse response and the auto­

correlation of the input: 

00 

Rxy(r) = f gCt)Rxx(t - r) dt 
o 

and after Fourier transfonn 

so that 

and the frequency response of the system can be derived: 

G (f) = Pxy (f) 
Pxx(f) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

Considering the system impedance estimation, the input is the system current 

and the output is the system voltage. The system impedance frequency 

response can be written as: 

Z(f) = Piv(f) 
Pii(f) 

(2.14) 

For the same noisy situation as discussed in Section 2.3.1, compared with the 

results in Figure 2.12, the PSD results shown in Figure 2.15 provides a slightly 

better result than the FFT and the correlation process can provide better 

frequency resolution for the same data length. For this test, the PSD dose not 

provide much better results than a FFT and it also requires windowing to filter 

out the edges of the measured waveforms. 
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Figure 2. 15 Results deri ved by PSD in noisy situation with Blackman window 

a) Amplitude of the system impedance b) Phasc of the system impedance 

The PSD method which uses the peri odohrram technique [1 4 1][ 142] involves 

the squared magnitude of the Fourier transform and should have the same 

results as FFT. The TFE (transfer function estimation) in Matlab whi ch 

calcul ated the PSD uses Welch 's averaged periodogram can provide much 

better results than a direct FFT. It has a default Hanning window to filter out 

the edges of the measured wavefomls. By using the average periodogram, it 

divides the measured data into several equal length sections and computes the 

PSD for each section and then derives the average value. This process involves 

less noise in each calculation by using small lengths of data segments. 

2.3.3 Continuous Wavelet Transform 

The Continuous Wavelet Transform (CWT) is known as a more effec tive data 

processing tool when dealing with non-periodic signals than the PSD and FFT 

due to the fact that it uses special seri es of non-sinusoidal wavelets. 
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The PSD is considered as an improved noise filtering data analysis method 

based on the Fourier Transform which consists of sinusoidal wavefonns. (2.4) 

can be written as 

N-l 
, Zrri Zrri 

X(K) = L x(n)(cosNKn - sinNKn) K = 0.1 .... .... N-l (2.16) 

n=O 

The Continuous Wavelet Transform [64][65] is based on a set of 'mother 

wavelets' which is not necessarily in the sinusoidal t{mn. By scaling and 

shifting the mother wavelet function, the coefficient of the frequency of 

interest at a certain time can be estimated. Compared with the DFT which 

gives the signal a frequency domain transf{mll, the CWT produces a 

coefficient with reference to both time and frequency. The CWT calculation of 

f(t) can be defined by equation (2.17). 

+00 

C(scale, position) = f f( t)<p(scale. pOSition, t)dt (2.17) 

-00 

As shown in (2.17), the CWT is defined as the sum over time of the signal 

multiplied by scaled, shifted versions of the mother wavelet function <p which 

is similar to the sinusoidal element in the FFT but able to be adjusted into 

different wavelets by changing its scale and position characteristics. The 

mother wavelet is centred with centre frequency Wo and band limited with 

bandwidth frequency l1w in the frequency domain and also in the time domain 

it can be defined at position t and with a duration of l1t[66]. For a mother 

wavelet at a fixed time, the different scales refer to different frequencies which 

are the stretched or the compressed version of the centre frequency and the 

position refers to the width of the bandwidth frequency. The relationship of the 

centre frequencies and the bandwidth frequencies can be explained by Figure 

2.16. 
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Figure 2.16 Time and frequency analysis of mother wavelet at different sca les 

As shown in Figure 2.16, the bandwidth is compressed at a lower centre 

frequency and stretched at the higher centre ti·equency for a fix ed time [64][67] . 

The direct relationship between scale, centre frequency and the signal sampling 

frequency is [64]: 

r =fc 'fs 
Jps a (2.17) 

where fc is the centre frequency in Hz, is is the sampling frequency in Hz and 

a is the scale. The fp s is called the pscudo-frequency which is the CWT 

calculation frequency for the coefficient and also can be used for the time­

frequency plot. This idea is to associate with a given wavelet a purely 

sinusoidal signal of frequency fc. 

When looking at the time domain and considering the absolute value of the 

mother wavelet, the CWT calculation can be explained using Figure 2.17 
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Figure 2.17 The time domain nnalysis of the CWT 

As for a fixed scale of the mother wavelet , the CWT calculates the coefficient 

(c) which presents the relation between mother wavelet and the signal within 

the length of the scale. A higher value of c indicates higher similarity. The 

scaled mother wavelet is then shi ned to cover the whole signal in the time 

domain. Then the scale is changed and the process repeated. So normally when 

the CWT is completed, for a certain frequency (certain scale), the results with 

highest absolute value through the time domain are the most accurate. 

The complex Morlet wavelet [68] is chose here as mother wavelet for the 

impedance measurement test in order to calculate the both amplitude and phase 

information accurately in the frequency range below 5kHz. (Some wavelets, 

such as Haar wavelet, can not provide amplitude and phase infonnation of thc 

signal accurately) 

(2.17) 

where the centre frequency fe is 2Hz and the bandwidth fb is 10Hz to 

emphasize the accuracy of estimated results in high frequency range. 

As the CWT is able to produce a time-frequency coefficient result, it is helpful 

to check the influence of the edges of the measured signal waveforms to the 

impedance estimation. Figure 2.18 shows the abs value of the step current 

coefficient after a CWT without any window. 
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Figure 2.18 3D plot of the stcp current CWT result s 

As can be seen in Figure 2.18, except the low frequ ency inaccuracy, it is clear 

that the coefficient shows high SNR at both 0.02s and 0.04s in the time domain . 

The value at 0.02s is generated by the step transi ent and the value at 0.04s is 

due to the edges of the waveform. 

Three particular frequencies of the CWT results of the voltage and the current 

without windowing are shown in Figure 2.19. The voltage results are more 

affected due to the bigger edges shown in Figure 2.9. 

Curre nt V o ltage i:r o ; ,):~oo, 1 i :~~-o" -' :==--:-;2 -oo~, )1 
! ::[ -/\ -} (~- -~= ) 

o ----/--- ~Ij 1\ - .. ~ o 0 . 01 0 . 0 2 003 0 .04 0 001 002 003 0 .04 

04 1--~---~---~ 4 r-~-_ -- - J 
i ':1 ·/>/1 i :L___ \_~ J 

o 001 0 .02 003 0 .04 (l O.Ot 0 .02 0 .03 004 
tllne (s ) time(s) 

Figure 2.19 20 plot of the CWT results of current and voltage at 3 pseudo 

frequencies 
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For the FFT and the PSD calculations, the information generated by both 

transients and the edges is assembled into the same frequency and this wi ll 

cause great inaccuracy in the estimated results. The current inj ection time is 

known (0.02s), for each freq uency, it not necessary to select the coefficient 

with the largest absolute value for all the time domain and the area can be fixed 

to the time domain around the cUlTent injection (for example from 0.0 I s to 

0.03s). However this is for very high frequency impedance estimation results 

(above I kHz), the low frequency results which are produced by the mother 

wavelet with a nalTow bandwidth which reflect a large scale in the time 

domain as described in Figure 2.16 are still not accurate as shown in Figure 

2.20 where the actual va lue is the pre-set simulation impedance va lue. 
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Figure 2.20 CWT impedance estimation results without the Blackman wi ndow 

a) Amplitude of the system impedance b) Phase of the system impedance 

The accuracy of the results can be greatly improved by adding a Blackman 

window as shown in the Figures 2.2 1 and 2.22: 
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Blackman windowed impedance results 
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Figure 2.2 1 CWT impedance est imation results with a Blackman window 

a) Amplitude of the system impedance b) Phase of the system impedance 

a 

b 

Blackman windowed impedance results in noisy situation 
15 -- -r-- 1 - ---,-- I -

E 
-g 10 
Q) 
'0 

.~ 
Ci 5 
E 
rn 

~ 
i!! 
0> 
III 
:s-
III 
<n 
rn 

"" Cl-

100 

50 

0 

-50 

-100 o 

frequency(Hz) 

l --" 
\ 

\ 
-" ___ .L. ___ --'--_-'-' __ 

SOD 1000 1500 2000 
frequenc y( Hz) 

I- -

l 
-- eS lmaled va lue I: 

__ actua~va lue I 

2500 

2500 

1::::-

3000 

-'---

3500 

3000 3500 

Figure 2.22 CWT impedance est imation results with Blackman window and noise 

a) Amplitude of the system impedance b) Phase of the system impedance 

Figure 2.21 and Figure 2.22 show the CWT impedance estimation results with 

a Blackman window when noise is not, and is added to the data. Similar to the 

FFT and PSD, CWT offers good accuracy with windowed data and in the non­

noise situation, and the CWT provides better results than the FFT and the PSD 

when noise is added. The mother wavelets act as a band pass filter during the 
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CWT calculation. For each centre frequency, the pass-band equals the 

bandwidth frequency of the mother wavelet. As explained in Figure 2.16, in 

the higher frequency range the bandwidth of the mother wavelet is wider 

which means if it acts as a band-pass filter relatively less noise can be filtered 

out and this can explain why the high frequency results (2000Hz to 3500Hz) in 

Figure 2.22 are a little less accurate than the low frequency values (500Hz to 

1000Hz). Directly comparing the three figures (Figure 2.21, 2.14 and 2.12), the 

CWT results are the best (provide smooth results in noisy situation). The CWT 

which has a band-pass filtering function f()f impedance estimation at each 

fi'cquency gives a smoother result in the wavefonn even when it is not accurate. 

When noise is presented, the CWT results are impossible to be furthcr 

modified by curve fittings. Due to the fact that the passing-hand (bandwidth 

frequency) of the band-passing filtering function increases with frequency as 

presented in Figure 2.16, the high frequency results will be more intluenced by 

the noise 

2.4 Fault location based on impedance estimation 

A rapid and precise fault location scheme plays an important role 111 the 

reliability of fault protection of modem power distribution systems. Ever since 

the first fault location by mean's of line inspection [77], methods to predict 

fault positions have been modified and improved to meet the fast development 

of electrical power networks. The two most common adopted fault location 

methods are based on impedance measurement and travelling waves [69]. The 

travelling wave method has been used in transmission line protection for many 

years because of its speed and accuracy but it is more suitable for long distance 

(several km) faults and not reliable enough for protection [70]-[73]. Travelling 

wave fault location has also been tried on distribution power systems but it 

requires high performance data acquisition equipment [74]-[76]. The fault 

location methods based on impedance measurement consists of passive 

methods [78]-[89] and active methods [90]-[96] 
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2.4.1 Passive method 

The passive impedance based fault location schemes which do not reqUire 

extra injection can be classified into single-ended and double-ended with 

respect to the voltage and current acquisition unit. 

The single-ended impedance fault location method was firstly developed for 

the protection of transmission lines due to the fact that it does not require a 

communication channel for phasors from the remote end. However, the fault 

location results are influenced by assumptions (supply and load side 

impedance has to be pure reactive; fault current and supply clIrrent should be 

in the same phase and current distribution factor has to be known) as described 

below and also in [78]-[80]. 

In 198 I, Takagi presented a classic fault location algorithm based on Fourier 

analysis of a faulted network [78]. The pre-fault and post-fault voltage and 

current data from one ten11inal of the transmission line was recorded and the 

pure-fault data was derived by the difference between pre-t~1Ult and post-fault 

data. The superposition model is shown in Figure 2.23 

Zs S R 

vs _~ _v. 
Is 

(a) faulted network 

Zs S 

vs_ 
I , 

(b) Pre-fault network 

I . 

(c) Pure-fault network 

z. 

Figure 2.23 Superposition model of pure-fault network [78] 
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As shown in Figure 2.21, the phasors at the sending end of the superposition 

network (pure-fault network) are derived by using the measured faulted 

phasors minus the pre-fault phasors. 

Vs" = Vs - v: .. ' (2.18) 

(2.19) 

The author then developed (2.20) by using the pre-fault and pure-fault 

infonnation at the supply point. 

A(x)V, - 8(x)/, 
R [1 + K(x)] - V - - . . 

F - / - C(x)~t - D(x)I.~' 
(2.20) 

where x is the distance between supply point to the fault point, K (x) = I;: / I~', 
A = D = coshyx, B = Zcsinhyx, C = sinhyx /Zc arc the line propagation 

constant and Zc is the characteristic line impedance. 

Assuming the line impedance and the two source impedances are purely 

inductive, so that the imaginary part of equation (2.20) is zero. The fault 

distance x can be derived by solving the non-linear equation. However, the 

assumption will bring errors to the fault location and also this method is only 

suitable for the networks which have system parameters close to the 

assumption. One year later, Takagi proposed a modified single-ended method 

[79] which uses (2.21) to calculate the fault distance to the sending point: 

Im(Vs . I;') 
x=----~ 

Im(z . I . I") s s 
(2.21) 

where z is the transmission line impedance per-unit length. 

However, equation (2.21) is theoretically correct when I. .. and I~' are in the 

same phase and this is only true in the situation that receiving end is open 

circuit or the fault resistance is zero. In 1985, Eriksson modified the method in 

[80] by involving a current distribution factor so that the fault current can be 

calculated using the measured sending end current without any assumption. 

This method has undergone field tests and evaluation. The accurate results 

derived from field tests confinned the validity of the proposed idea, but in 
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order to calculate the current distribution factor, the supply impedances from 

both sending and receiving ends have to be known and this information can not 

be provided in some networks. 

Double-ended fault locators nonnally provide more accuracy for the fault 

position results and require less system impedance information and 

assumptions than single-ended algorithms but need the current and voltage 

infonnation from the remote end from a signal communication channel which 

was not easily implemented in the earl y years. 

In 1990, A. T. Johns discussed a double-ended transmiss ion line fault location 

method using the measured phasors from both ends of the transmission line 

[81]. The author used the post-fault vo ltage and current from both end of 

400kV, 100km and 250km transmi ss ion line to form two eq uations to calcul ate 

the vo ltage along the transmi ssion line hom the view of both ends, as shown in 

Figure 2.24. 

x ----I 
L --~ 

Figure 2.24 A typ ica l transmission line faulted system[81] 

VF = cosh(yx) Vs - Zo sinh(yx) Is 

VF = cosh(y(L - x)) VR - Zo sinh(y(L - x)) IR 

(2.20) 

(2.20) 

where Zo is the surge (or characteristic) impedance and y is the propagation 

constant. 

The fault position where the vo ltages of the two equations are equal was given 

accurately and this procedure was shown in simulation results to have very 

small errors. The whole procedure requires no pre-fault phasors and due to the 

fact that the calculated line reactance of the system is a very small value, only 
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the line resistance was used. The good accuracy achieved by simulation is 

under the condition that the phasors measured from both ends are synchronized. 

Actually the synchronizing measurement is almost impossible without any 

time trigger reference and the synchronization is one of the main problems that 

the double-ended scheme suffers when employed into a real power system 

network by later researchers. Satellite Global Positioning System (GPS) 

equipment was use to provide a synchronized reference to the measured data. 

In [82], Kezunovic realized synchronous sampling with a GPS fault recorder. 

The fault detection and classification were achieved trom the differential 

current from both ends the voltage differential was involved during fault 

location. However the synchronous measurement will only work when the 

satellite GPS is available. The other alternative methods calculated the phase 

difference between the measun:d phasors from both ends [83][84]. In [83] 

Damir used a similar post-fault equation as presented in [81] but involved the 

angle difference () so that the equation contains two unknowns: the fault 

distance x and the (). The equation was than separated into imaginary and real 

parts to cancel the x. Then the angle & was calculated by an iterative Newton 

Raphson method while [84] chose not to use iteration but solve the 

trigonometric equations and the solution that is close to zero was used. 

A. L. Dalcastagne [85]-[87] studied John's method [81] and proposed a new 

fault location method which calculates only the amplitUde of the transmission 

line voltage using two voltage propagation equations mentioned in [81]. If 

solving the amplitude equations directly, the phasors difference from both ends 

will still cause errors. The John Horak and Basler decoupled the three phase 

model by symmetrical components [88] and only the positive sequence data 

was used and then a numerical technique was applied based on the assumption 

that the voltage magnitude calculated along the transmission line increases or 

decreases linearly with distance. Then instead of solving the real amplitude 

equations, the assumed linear equation was used and employed with an 

iteration process to reduce the error between assumed linear equations and the 

real amplitude equations at the point of the fault (cross point of the two 

assumed linear equations). However, assumptions of the proposed algorithm 
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will limit its utilization to certain transmission lines with an amplitude to 

distance characteristic close to linear. 

The problem caused by asynchronous measurement can also be avoided by 

directly using the amplitude of the measured phasors from two ends [89]-[90]. 

In this case, no direct equations can be used, but a relationship exists between 

the amplitude of measured voltages and the system impedance for different 

fault distances. Zamora discussed the possibility of just using the amplitude of 

the measured voltages from both ends f()r fault location in the case when the 

high fault current may cause current transf(mner saturation [89]. This method 

involves superposition modelling and only t()CUSCS on the pure fault circuit. 

The author brought the idea of 'Distribution Factor' which was defined as the 

quotient of the two voltages of positive sequence resulting from the pure fault 

on both ends of the line. In fact. the Distribution Factor (OF) equals the 

amplitude ratio of the measured voltages of the pure fault circuit and is a value 

based on the system impedance calculation according to different fault 

positions. In order to locate the fault accurately, the DF has to be pre-known as 

a reference. When faults occur, by comparing the DF pre-known value with the 

measured value the fault position can be decided. However, the DF calculation 

may require a lot of otT-line tests which may only be made for certain networks 

and also when considering the influence of the fault resistances the selection 

procedure could be more complicated. 

2.4.2 Active method 

Fault location based on active impedance measurement has been adopted in 

power distribution systems with the deVelopment of control and power 

electronic devices. The active method provides more flexible measurement, a 

shorter detection time (by using transient injection) and a better signal to noise 

ratio. 

The most commonly used active fault location methods predict the fault 

position by comparing the system impedance difference in a fault situation 

with the healthy system impedance measured from the point of injection [91]-
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[95]. An Active Shunt Filter (ASF) controlled current injection unit was 

designed and developed by M. Sumner et al [56][57] applied the active 

impedance estimation method on the fault location of the zonal marine power 

system. The current spike was injected after short circuit fault occurs and the 

post-fault system impedance was measured. By comparing the different system 

impedances, faults at different distance with varying fault impedances could be 

classified. A very short data segment was required for accurate impedance 

estimation in the high frequency as using the injected current transients and 

this will reduce the fault location time compared with methods which 

measured the steady state impedance at system supply frequency. This method 

was demonstrated in both AC and DC marine systems. The disadvantages of 

this idea is that off-line tests of system impedance for ditTerent fault situations 

are required as a reference for the fault location and also an active approach 

requires active equipment to be available and the current injection has to wait 

until the fault transient in the system has died out and the current created by a 

PWM converter adds noise to the system that atTects the accuracy of fault 

location. 

A similar active method can also be used as an islanding (loss of mains) 

detection for distributed generation systems [96] [97]. For a distribution 

network with embedded small generators, once islanding occurs, the system 

impedance measured from the point of injection increases and the sudden 

change of system impedance can be used for islanding detection. However the 

system impedance monitoring requires continuous injection which may cause 

current distortion. 

2.5 Summary 

This chapter has introduced prevIOus work concerning on-line impedance 

estimation which includes passive (non-invasive) methods and active (invasive) 

methods. The non-invasive methods use disturbances generated by the existing 

system components whereas the invasive methods involve extra control and 

electronic devices but easily offer excitation with high signal to noise ratio 

(SNR). 
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Three commonly used data processing techniques: FFT, PSD and CWT have 

been demonstrated by calculating the impedance of a simple RLC circuit with 

a step current injection. In order to provide accurate impedance estimation, all 

of the three techniques require windowing to eliminate the edges of the 

captured data. CWT behaves better than the FFT and PSD for noisy si!,rnals 

due to the fact that the mother wavelets act as a band-pass filter. However, the 

bandwidths for different centre frequencies are different and this leads to 

different accuracy levels in the frequency range and also the smoothed curve 

does not respond to curve fitting. 

Fault location methods based on impedance mcasuremcnt have been discussed. 

The single-cnded passive methods sufTer from the assumptions which may not 

bc true during application and double-ended methods require data 

communication and synchronization. Passive schemes measure the pre-fault or 

the post fault steady state impedance which slows down the fault location time. 

Active methods needs extra injecting unit and may cause distortion to the 

system but require shorter data sCh'111ent and produce high SNR. It is clear that 

at present there is no single method which can be used to process accurate fault 

location for all situations and a new technique is required. 
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Chapter 3 

Single-ended fault location 

3.1 Introduction 

This Chapter introduces a new single-ended fault location method based on 

high frequency components. It does not require the injection of pulses but uses 

the fault transient itself. The proposed algorithm can be employed in the more 

electric vehicle systems which have an integrated power system (IPS), such as 

the modem more electrical Marine vessels and aircrafts, to improve the system 

survivability and reliability. The high frequency information within fault 

transients is used to calculate the system supply impedance and the line 

impedance. The fault location is predicted accurately by comparing the 

calculated line reactance, from the measurement point to the fault point with 

the known line reactance value. Due to the fact that no injection unit is 

involved, the only required equipment is a voltage and current acquisition 

system located at the power supply end of the IPS. By exploiting the high 

frequency fault transient, the fault location time is also reduced to about 6ms 

after the fault occurs. It is found that fault location accuracy range within 1 m 
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for a 21 m cable distribution system can be achieved. 

This chapter describes a novel single-ended fault location scheme and is 

divided into seven sections. After the introduction the basic theory is outlined 

in Section 2, system setup and cable impedance calibration are presented 111 

Section 3 and Section 4 separately. The ex perimental results are given 111 

Section 5, for comparison the perfonnance of a traditional distance scheme is 

given in Section 6 and the overa ll summary is in Section 7. 

3.2 Basic theory 

3.2.1 Basic theory of single-ended scheme 

The basis of this single-ended fault location method can be int rod uced by 

considering a single phase circuit as shown in Figure 3.1, where Zs is the 

supply impedance and Zlillt! is the impedance of the line segment to be 

protected. 

Figure 3. 1 Single phase circuit with a phase to ground fault 

The transient created by the sudden voltage collapse caused by faults can be 

considered to be due to a hannonic source (actually the information generated 

by fault transients contains a wide range frequencies, not just hannonic 

frequencies) at the fault location. The Thevenin equivalent circuit, at a non­

fundamental frequency (frequencies which either higher or lower than the 

system supply frequencies), is a circuit with the supply voltage sh0l1-circuited. 
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The fault transients act as an excitation source in this circuit as shown In 

Figure 3.2 

Measurement point X f Z Ime _ p 

I f 

Figure 3.2 System at non-fundamental frequency during fault situation 

The fault can be considered to create an equal and opposite voltage to the 

instantaneous pre-fault voltage V"re-j at the fault location causing thc systcm 

voltage to collapse. From Figure 3.2, the impedancc bctwcen the measurement 

point and the fault point can be calculated from (3.1 )-(3.3). The source 

impedance can be found from the measured voltage and cUlTent transicnt s (Vr 

and If ) at the measurement point 

Z s 

V, 

I, 
(3.1 ) 

The total source and line impedance can then be found in tenns of the pre-fault 

voltage at the fault location Vpre-jand the measured transient cUlTenl. 

(3.2) 

where, Zlillef is the per-unit length impedance of the line and Xl is the fault 

distance from the measurement point. Thus the line impedance between the 

measurement point and the fault location can be obtained from: 

(3.3) 
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The pre-fault voltage can be considered to be a step wavefonn with the step 

value equal and opposite to V{au/t-poinl which is the healthy state voltage at the 

fault point at the time of the fault. In this fault location scheme, Vlc/l//t-point is 

initially estimated to be the healthy state voltage at the measurement point at 

the time of initiation of the fault. In other word, V prc-I is voltage transient step 

and V1i.JII/t-point is the pre-fault sinusoidal wavefonn right before the transient 

occurs. This is based upon the assumption that the voltage drop between the 

measurement point and the point at which the fault occurs is negligible. This 

will lead to an initial error in the fault distance estimation. 

The error in the fault location measurement is due to the ditlcrence between 

the pre-fault voltage estimated at the measuring point ( V (",tll-!'O;II/) and the 

actual pre-fault voltage at the fault location (Vlelll/II'()/lI/) as described in equation 

(3.4). 

Vj - I - = Vj'- I - - liZ/- X I-1II11-POIll! _ mll-pOIll! pre-_ 111(' _ I' (3.4) 

Initially the fault location and fault resistance will be unknown. However, an 

initial estimate can be fonned from the imaginary part of equation (3.3) as it is 

independent of the fault resistance. The fault location is then estimated from: 

. Vprc- r VI 
lmag(-- --'--) 

I, I, 
x I = -------'--

imag(Z,,,/t. 1') 
(3.5) 

This estimate of the fault distance can be used 111 (3.4) to compensate the 

estimated pre-fault voltage. The fault location can then be re-estimated using 

(3.5) and an updated estimate of the pre-fault voltage. If necessary this 

iteration is repeated and the pre-fault voltage at the fault location can be re­

compensated. This iteration procedure can be repeated until the solution 

converges to within a reasonable tolerance (For example Xk+l - Xk < O.2m). 

Table 3.1 shows an example of this iteration procedure for a fault that occurred 

at the end of a 20m long distribution line. 
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iteration 
steps estimated fault distance (m) 

0 26 

1 17 

2 23 

3 18.7 

4 20 .1 
Table 3.1 Iteration procedure 

As shown in table 3.1 , when a 0.0 I Q fault occurs at 20m of the line, the results 

of initi al fault di stance estimation is longer than 20m which is because the 

initial estimate of ~!I(, '/ is larger than the actua l va lue. Then the new vo ltage 

estimated by equation (3.4) can be used in (3.5) as first step iteration. This 

procedure is repeated and is shown to converge qui ckly. The iteration 

procedure which reduces the line vo ltage di ffe rcnce between measurement 

point and the fault position is ca lled line vo ltage iteration. The short circuit 

fault impedance is small and 110t considered here (not included in the 

diagrams). The situation which has a larger fault impedance (I Q) will be 

discussed in Section 3.5. 

3.2.2 Simulation studies 

The single-ended fault location method proposed in Section 3.2 .1 has been 

demonstrated using a Matlab/Simulink simulation of a three phase AC system, 

as shown in Figure 3.3 

Voltage and current measurement point 

Zs 
j 

- xZline -

Vs rv Zioad 

Figure 3.3 A three-phase system for demonstrating 
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The three phase system has a 440V (phase to phase rms) AC voltage source, a 

supply impedance Zs= (0.00 II +jO.0096)O, a 20m transmission line with line 

impedance per-meter resistance Rper=30llO and inductance Lrcr=0.24~lH (the 

line capacitance is neglected because its value is very small in nOlmal IPS and 

has little influence on the line impedance.). The load is a 438kW linear load 

with a power factor of 0.9. A phase to phase short circuit fault with 0.010 fault 

impedance was imposed on the transmission line at three separate positions: 

the start (Om), middle (10m) and end (20m). The voltage and current which 

contains fault transients are measured at the start point (right after the system 

supply impedance) of the transmission line. The per-unit length line impedance 

information is assumed to be known and used to estimate the distance between 

measurement point and the fault position. No other system information has to 

be fixed or pre-known before the procedure of the fault locating calculation. 

The measured transients (at the measurement point) in the voltage and CUtTent 

in both time domain and frequency domain are shown in Figure 3.4 for the 

situation of a short circuit fault at the end of the power distribution line. 

1000 Time d~main voltage transient 

500 . .. ..... ;~ ... ~~u.lt. ~cc.~rs .... . 

i 0 .. .. . __ ,i, .\ .. 1 .. 1- .:-- --\. 
~ • t'---/ . ' '\ 
~ -500 - -- -- .~--.\J -- : 

-1000 '--~--
a) 0.02 0.03 0.04 0.05 0.06 

4 

2 x~e .domain -Furrent tcansien 

~ 0 --- j \ • 
i -1 . . / l 
u -t ,,,It "'"" . 

-3 - c. - • 

b) 0.02 0.03 0.04 
_, __ I 
0.05 0.06 

time(s) time(s) 

4 Fre uency domain volta e transient 

3 . -- --. : . -- .: . 

> 
~ 2 -- -- j. -- ... +. -- ~ 
'5 : > . 

1 -- -.--. :-- . -,------'-r 

1000 2000 3000 4000 5000 d) 
frequency(Hz) 

1000 2000 3000 4000 5000 
frequency(Hz) 

Figure 3.4 Measured voltage and current (include both transients and steady state) 

a) Voltage transient in time domain b) Current transient in time domain 
c) Voltage in frequency domain d) Current in frequency domain 
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In order to give a clear view of both the fault transients and the steady state 

system information, the data shown in time domain is about 2 cycles in length 

and has fault transients in the middle (fault occurs at 0.04s). Actually, only a 

4ms length window (fault transients are captured within middle of the window) 

is needed to provide accurate calculation results within the high frequency 

range of interest. As discussed in chapter 2, a Blackman window is used on the 

4ms data in time domain to eliminate the influence caused by the edges of the 

finite data segments. The frequency domain data in Figure 3.4 c) and d) is the 

results of the FFT of 4ms transient data. In Figure 3.4 a) and 3.4 b), the biggcr 

transient in the current wavcfonn has a larger signal to noise ratio than the 

voltage and this leads to fact that aftcr FFT, in frcquency domain, the current 

contains more energy than thc voltage transient at thc same frequency. 

In the protection scheme, the voltage and current is continuously monitored by 

a 4ms length window. When a fault occurs. the measured current suddenly 

increases to a value which is larger than the pre-set threshold so that the fault 

phases can be detected and at this time a trigger signal is sent to capture the 

fault transient over the 4ms window after a 2ms delay (to keep the transients in 

the middle of the window). The trigger is located in the middle in the time 

domain of the captured measurement window so that thc pre-fault information 

can easily be found. Not considering the data processing time (FFT and 

calculation time), the fault location can be detectcd 2ms after the fault occurs 

which makes the fault location time at least 10 times shorter than the nonnal 

impedance measurement fault location methods that involve using pre-fault or 

post-fault steady state system information. 

The results of estimated line impedance are presented in Figure 3.5. In a), the 

line reactance (solid line) results which are calculated with (3.3)-(3.5) and by 

using the transient data from the simulation is shown in the frequency domain. 

The dashed is the actual value used in simulation. Due to the short processed 

data segment (4ms in total), the estimated reactance is more accurate in the 

high frequency range (3kHz-5kHz) than the value in the low frequency range 

(100Hz-1500Hz). Only high frequency results between 3kHz and 5kHz are 

used to determine the fault location. By using the high frequency estimated 

results, the errors are kept within 1 m for the fault at 20m shown in Figure 3.5 b. 
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Estimated line reactance 

real 
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Figure 3,5 Calculated line reactance when fault occur at the end of line 

a) Line reactance b) Line reactance di vided by per meter value 

Results shown in Figure 3.5 are the final estimation value after the voltage 

iteration process which involves using equation (3 .3)-(3.5). The iteration 

procedure over the full frequency range is depicted in Figure 3.6 

0 . 3 1r===E=s::;ti=m=~r~d:ll ~~J~~~ance ~or diffe,rent ite,ration ste _s _ ~ 
- 4th iteration ' , , , 

0.25 

0.2 
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.-- -- no iteration 
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Figure 3.6 Iteration procedures for line reactance estimation 

56 



Chapter 3 Single-ended fault location 

For the example in Table 3.1 , the calculated line reactance converges to the 

actual value as shown in Figure 3.6. Even for a fault at the end of the line, 

which produces the largest error, on ly four steps of iteration are needed to 

reduce the errors to the req uired low va lues. For faults which are imposed at 

the other two positions of the transmission line, good accuracy is also achi eved . 

The calcu lated line reactance between the measurement point and the fault 

point for different fault positions are shown by the so lid line in Figure 3. 7. 
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Figure 3.7 Estimated va lues compared with actua l ones for different fau lt locations 

Compared with the values used in the s imulation model (dash line), the 

estimated values (solid line) only have a small en·or which is within the 

requirement of accuracy. 

3.3 Experiment setup 

3.3.1 Experimental structural 

The experimental circuit consists of a transmission cab le which was 

represented by 6mm2 5 core SY cable (a type of the contro l flex cab les which 

includes SY (galvanised steel wire braid screen), CY (Tinned copper wi re 
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braid screen) and YY (no screen» a resistive load and a programmable AC 

voltage supply (Chroma) as depicted in Figure 3.8. 

5m 1m 

---------=BI--- -.~ 
'---~ 

load 

Cables 

~========================~C, 

~------------~ff Voltage 
Source 
supplier 

Figure 3.8 The configuration of experimental system 

The three phase system model was built as shown in Figure 3.8 with a 50Hz 

AC voltage source of amplitude SOY (peak to peak line voltage value) which 

keeps the fault current within the limit (25A peak, AC) of the Chroma supply 

when the fault is imposed with a 10 fault resistance. The DC 60/50 H model 

voltage source is for the separate DC test. The distribution cables connected by 

connectors (C I , C2, C3, C4) are two 10m and one 1m SY type cable which have 

impedance similar to the impedance range of power transmission cables used 

in aircraft. The system also has a star connected resistance load (6.80 per 

phase) located at the end of the distribution line. Phase to phase and phase to 

neutral short circuit faults are imposed separately at the position of the four 

connectors to create different distance fault situations. The voltage and cUlTents 

are measured at C I which is at the start of the SY cables. The experiment setup 

is shown in Figure 3.9 
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Figure 3.9 Thc components of cx periment al systcm 

1) Chroma vo ltage source. 2) II seri es DC volt Clge source. 3) FPGJ\. 4) NO Il-lillear 
load. 5) Res istor load. 6) Fau lt ulli!. 7) Cable trays 

The Chroma voltage source is used as a steady statc AC vo ltage suppl y. A DC 

vo ltage source with high output current li mit (40A) is used for testing fa ults in 

a DC system. The FPGA unit is a central contro ll er which is used to send the 

enable signal for the fa ult and also data acq uisition. The Three-phase recti fi er 

with a resistor and cooling fa n is used to produce a non-linear load when 

required. A three - phase res istor with a heat sink acts as the system load. The 

fa ult unit creates fa ults with the fa ult resistance. The Cables are locatl:d on the 

cable tray, as shown in Figure 3.1 0 and act as lengths of system distri bution 

lines. 

3.3.2 The SY cable 

The SY cable [1 00] is cut into two 10m and one I m sections. The three 

diffe rent lengths of sections have connectors. Faults are imposed on the cable 

at the positions of connectors to demonstrate faults at di fferent distances. The 

1 m cable acts as a reference to examine whether the estimated fa ul t location 

can meet the minimum requirement. 
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figure 3.10 Experimental cabl es 0 11 the cable tray 

1 
This S core (A , B, C, neutral and earth), omm- armoured SY cable has a 

voltage rating of 300Y phase to neutral , SOOY phase to phase and a current 

rating of 40A. The cross section of the cable is depicted in Figure 3.11 . The 

phases A, B, C, neutral and earth are classified by brown, black, gra y. blue and 

earth (yellow and blue). 

Armour Inner 
insulation 

Figure 3.11 The cut section or the SY cable 

- Core of cable 

Outer 
insulalion 

This type of cable (12kW per-phase) can be used as interconnecting cable for 

measurement and control. It is suitable for both outdoor and indoor utili zation. 

The steel wire braided screen (armour) offers protection of against mechanical 

damage and also acts as an electromagnetic shield [100] . The impedance of the 

cable is presented in the Section 3.4 
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3.3.3 The fault unit 

The fault unit, including gate drive and switch, can be used to impose a short 

circuit fault on the transmission cable with different values of fault resistance 

(00-50 in increment of 10). The unit is able to work in both AC and DC 

conditions and is able to provide both a hard fault and a bouncing fault. For a 

system with a DC supply the hard short circuit faults are imposed in the system 

with a fault resistance using an IGBT as shown in Figure 3.12. The controlled 

signal (3.3V pulse) is sent by the FPGA board and then amplified by a NPN 

transistor to reach the input current requirement of the optocoupler. An 

HCNW3120 optoeoupler is used in order protect the FPGA board. The 

optoeoupler also acts as a gate drive to provide a suitable voltage to switch 011 

and off the IGBT to impose and remove a fault from the system when required. 

Vee +5 

3.3V Pulse signal 
From FPGA 

Vee +~ 

1 N/C 

4 N/C 

Vee -15 

Figure 3.12 Circuit of controlled fault unit 

600V 
IGBT 

The current flow into the optocoupler is recommended to be with in the range 

of 8mA to 16mA. Two resistors are connected to the collector and base of the 

transistor and are chosen to be 0.5kO and I kO separately according to 

equation (3.6) [143]. 

(3.6) 

where Rl = O.Skil, R2 = lkil 
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The supply voltage connected to the collector of the transistor is SV as in 

Figure 3.12 and V CE is less than 0.6V. So according to equation (3.6), the input 

current of the optocoupler is roughly llAmA. As recommended by the 

datasheet of the optocoupler [to I] , a 0.1 f-IF capacitor is used between the 

collector and emitter to keep a steady output voltage. A 15V positive voltage is 

imposed on the gate of the IGBT to switch it on. In order to firmly switch it off 

(Vg<O.SV), the voltage across gate the emitter set to -5V. As shown in Figure 

3.12, the low level output CUtTent of the optocoupler has to be small er than 

2.SA. Rg can be calculated by equation (3.7) and (3 .8) 

R > (V ee-VoJJ 
9 - I pca k 

(3. 7) 

Assuming VOL =2V, so that 

(3.8) 

Rg was chosen to be 100 according to (3.8) . The gate drive circuit tt:st output 

signal when the IGBT is swi tched on is shown in Figure 3.1 3 where the IGBT 

is connected to a 10V DC voltage supply with a 20 res istance. The waveforms 

of the three output signals are depicted in Figure 3.13. the switch on operation 

of the IGBT lasts about 150ns (red line in the Figure 3.13) and the time delay 

of the optocoupler output signal (green line) from -SV to + 15V, compared with 

its input signal (FPGA output), is about 300ns. 

20 

15 

10 

> 
Q) 
0> 

~ 
(5 5 
> 
:J 
0. 

:J 
0 

0 

-5 

I 
-10 L 

-L-______ L-_ __ .J ----'--
-1 -0.5 o 0.5 1 1.5 

time(s) x 10.6 

Figure 3.13 The Olltput signal measured from the IGBT gate drive 
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Both of the time delays are with in the range of normal operation as suggested 

by the datasheets. These delays have little affect on the fault location as proved 

by later experiments. After receiving the impulse signal from the FPGA (blue 

line in the Figure), it takes about 500ns to impose or remove a fault from the 

system. 

For an AC system, the switch must include two lGBT and reverse diode as 

shown in Figure 3.14. to work in a bidirectional mode. 

~- -

AC 

Figure 3.14 The IGI3T sw itch used in AC system 

Once the switch on gate signal is sent to the reverse blocked IGBT, current 

will only flow through one IGBT and one diode during each half cycle of the 

AC voltage waVefOl1l1. In other words, the 'on' state IGBT works as a diode 

when the bypass voltage is negative as shown in Figure 3.15 

Current Current 

+ 

Figure 3.15 Current flow in sw itch on situation 

Figure 3.15 shows the fault cun'ent flow through the switching components 

during each half cycle of the voltage. The fault current should be much higher 

than the steady state working current and less than 25A peak (the limitation of 

the voltage source). Therefore, the diode and IGBT have been carefully chosen 

to withstand a current of 30A. 
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3.3.4 The FPGA board 

The Field Programmable Gate Array (FPGA) board which is used to 

controlling the fault and data acquisition was designed by the University of 

Nottingham. The layout and testing of the main FPGA board was done by Dr. 

Hoang Nyguen [102] and Dr. Yiquan Zhu [103] was responsible for the layout 

of the ADC and USB board. Dr. David Coggins was responsible for the design 

and implementation of the software running on the Microblaze processor and 

the software on the PC for controlling and data acquisition [104]. 

The mother board shown in Figure 3.16 consists of an FPGA device [104], two 

Quad Data Rate (QDR) memories [104] , a Programmable Read Only Memory 

(PROM), 6 Analog to Digital Converters (ADC), a Joint Test Action Group 

(JTAG) interface, a Digital to Analog (DAC) output trigger, a RS232 

communication port and a USB communication device. The real board is 

shown in Figure 3.17 

JTAG I 

I ::~O~Y I 
.-- .-- r-- r--

}> }> }> }> 
o 0 0 0 
(") (") (") (") 

"" W J>. 

'-- - '-- '--

DAC 

QDR 
Memory 

QDR 
Memory 

}> 
o 
(") 
en 

- LI _ R_S_23_2_ --, 

Figure 3.16 Structure of FPGA board 

64 



Chapter 3 Single-ended fault location 

Figure 3. 17 FPGJ\ unit 

The FPGA provides high speed logic 1/0. The contiguration data tor the FPGA 

is located in PROM (Programmable Read Only Memory). When the board is 

powered up, the FPGA reads the data from the PROM for configuration 

automatically. This data can be reprogrammed using a .IT AG interface. 

QDR (Quad Data Rate) memori es read and write data by using the falling edge 

and rising edge of the clock signal controlled by the FPGA. A 3.3V and-3.3V 

control signal which lasts for about lOOms is sent out from the DAC and this 

signal is used by the gate drive of the fault unit. 

3.3.5 The non-linear load 

Integrate Power System (IPS) within modern More Electric Marine (MEV) use 

electrical power devices on board in place of the mechanical , hydraulic and 

pneumatic power to drive the system [105]. Increasing use of electric power in 

a MEV optimizes the system perfonnance, reduces the weight of system 

equipment and at the same time blings power electronic loads. The non-linear 

behaviours of power electronic equipment (drives of the loads) cause distortion 

to the system current and voltage. 
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In order to simulate this situation, the experimental test involves checking the 

single-ended scheme in a system with both a resistance load and a nonlinear 

load which is a resistor supplied by a diode rectifier. The non-linear load unit 

is number 4 in Figure 3.9 and is depicted in Figure 3.18 

Diode 
Inductor 

Resistor 

'---- -!-- - -/- --

Figure 3.18 The layoLit of non-lincar load 

Figure 3.18 shows the resistancc load which is made of four 480 resistors in a 

parallel connection (in order to reduce the current flow to cach resistor) 

connected to the diode rectifier. A cooling fan, which is powered by the AC 

voltage, was added in order to keep the rcsistor working at required 

temperature. According to the high power quality requirement in the real IPS, 

the 120 resistor load is tiltered by a three phase 1.3mH inductor filter to 

smooth the system current and make it continuous. 

3.4 Cable impedance calibration 

The calibrated impcdance value of the transmission line impedance plays an 

important part as a reference in this method of system fault location . As 

described, the fault distance is detected by comparing the calculated line 

reactance between measurement point and the point at which faults occur with 

the calibrated per-unit length line impedance. The line impedance data has to 

be known and this could be achieved through calibration or from the data 

sheets. The cable impedance has been calculated both by current injection and 

impedance estimating equipment the Impedance Analysis Interface (IAI). 
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3.4.1 Calibration with injected current 

The cable impedance is first calibrated by injecting current. The same cable as 

used as in the experiment system (in Figure 3.10) is cut into different lengths 

of 1.2m, 2m, Sm and 10m. The cables are short circuited at one of the ends 

between two phases and current is injected at the other end. The calibration 

procedure is described in Figure 3.19 

~,---__ I~. _______ J 

Short circuit 
Connector 

Insulation layer 

Voltage and 
current 

measurement 
point 

Core of cable 

Current 
injection point 

Figure 3.19 Cable impedance calibration by injecting current 

As depicted the cutTen! injection point is set to be different from the voltage 

and current measurement point in order to reduce the errors caused by contact 

resistance. The short circuit connector's impedance is pre-calculated and 

removed from the final calculation results. A 6A and 8A Currents are injected 

to the cable separately in order to test the impedance behaviour under different 

current value. The current is injected into the cable at both I kHz ancl 1.5kHz to 

investigate the impedance behaviour at high frequency. The calibrator consists 

of a Oatron 4705 multiflmction calibrator header [146] (for frequency control 

ancl voltage output) ancl a Ballantine transconductance amplifier [147] (for 

current output). The calibrated currents (6A ancl 8A) at I kHz and 1.5kHz are 

injected into the cable separately for cable impeclance measurement. 

The impedance infonnation is calculated from the measured current and 

voltage using equation (3 .9) 

FFT(V) 
Z = FFT(J) 
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As in (3.9), the lengths used for the data segment of the voltage and current 

processed by the FFT were 20 cycles and 50 cycles for each injected frequency. 

The results show little difference under the different calibration situations 

(different current, frequency, and measurement window) described above. For 

example, the impedance of 1.2 m cable, between phase blue to phase brown, as 

shown in Figure 3.11 under different current injection situation is presented in 

Table 3.2 

1.2m Brown-Blue 

1000 Hz 1500Hz 20 cycles 50cyclcs 

Rcsistancc( mn) 8.73 8.69 8.71 8.71 
4A 

Inductancc(J.tH) 0.77 0.77 0.77 0.76 

Resistance(mn) 8.66 H.71 8.71 8.68 
8A 

Inductancc( ~tH) 0.76 0.76 0.77 0.76 

Table 3.2 Impedance of the same cable derived by different current injection 

The measured impedance in different test situations has very similar results. 

The small error (within 101<)) is due to the voltage and current measurements 

and the initial contact resistance of the cable. 

In the IPS cable system, the length of the cable with in each section is normally 

less than 1 OOm, and the distance between phase to phase and phase to earth is 

very short. Compared with the inductance, the capacitance between phases 

contributes a small part of the measured reactance within the frequency of 

interest (OHz to 3kHz as in the results of fault location). 

During this experiment the influence of capacitance within the cable is ignored. 

The final results from the injecting current to different lengths of cables are 

presented in Table 3.3 
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Injection 

Urn 
Black-Gray Black-Brown Brown-Gray Gray - Blue Black -Blue Brown - Blue 

Resistance(mO) 8.65 8.62 8.63 8.67 8.61 8.69 

Reactance(~H) 0.79 0.76 1.021 1.031 0.75 1.027 
2m 

Black-Gray Black-Brown Brown-Gray Gray-Blue Black-Blue Brown-Blue 

Resistance(mO) 14.15 14.13 14.31 14.31 14.18 14.24 

Reactance(~H) 1.23 1.25 1.74 1.68 1.22 1.68 

5m 

Black-Gray Black-Brown Brown - Gray Gray-Blue Black-Blue Brown-Blue 

Resistance(mO) 34.93 34.97 34.95 35.92 34.91 34.93 

Reactance(~H) 3.21 3.21 4.37 4.31 3.32 4.24 
10m 

Black-Gray Black-Brown Brown - Gray Gray-Blue Black-Blue Brown-Blue 

Resistance(mO) 69.81 69.76 70.12 70.15 69.91 69.92 

Reactance(~H) 6.23 6.35 8.37 8.41 6.18 8.44 

Table 3.3 Cable impedance results derived using different calibration tests 

As shown in Table 3.3, the inductance between two different phases changes 

with the distance. The bigger the distance consistently the higher the 

inductance is. In the view of the cut section of cable described in Figure 3.11, 

the distance between two phases which are widely separated (brown and gray 

or black and blue etc) is larger than two phases which are close together 

(brown and blue or black and gray etc). Even for the same length of cable, the 

inductance between two close phases and two separate phases is different. For 

example, for a 1.2m length of cable, the inductance between the Black and 

Brown phases is 0.76~H while the inductance between the Brown and Gray 

phases is 1.02 IlH as given in Table 3.3. The tested cable offers good linear 

behaviour between measured impedance and length. Dividing results in Table 

3.3 by each length, the per-meter values of cables (1.2m, 2m, Sm and 10m) are 

very similar. 

Impedance per meter 

1.2m 2m 5m 10m 

Resistance(mO) 7.20 7.19 7.12 7.09 

Inductance(~H) (close) 0.64 0.62 0.65 0.63 

Inductance(~H) (separate) 0.86 0.85 0.86 0.84 
Table 3.4 The results of calibration in per meter value 

In order to avoid contact resistance errors several special procedures as 

described before are considered, but the contact resistance is not totally 
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reduced. Thus for the per-meter value of resistance of the di ffe rent length cabl e 

in Table 3.4, the shortest cabl e is affected the most. For the cable of 10m, after 

dividing by 10, the contact resistance va lue per-meter is small and the ovcrall 

result is accurate. Even influenced by contact impedance, the errors in the data 

in Table 3.4 is within 2% which shows very good linearity agai nst length. 

During fa ult location estimation, as long as the impedance to t~lUlt point i 

calculated accurately, the fault position can be predi cted precise ly. 

3.4.2 Calibration with IAI 

The cable impedance was also ca li brated by uS1l1g IA I impedance 

measurement equipment as a reference and compared with the result s by using 

current inj ection. Thi s method used a N4L impedance analyse r with an LC R 

measurement capability [1 06]. The equipment is shown in Figure 3.20 

it • •••• . , 
...... !P . , 

Figure 3.20 IAI unit for impedance ca libration 

Depicted in Fi gure 3.20, the lAI provides all of the functi onality whi ch 

includes a wider frequency and impedance measurement range plus higher 

nominal frequency. This is achieved by a more sophi sti cated design that 

includes an additional internal shunt range, a current amplifi er to increase low 

impedance signal levels and calibration with PSM 1735 [106]. The IAI 

impedance measurement is accurate and with short and open circuit ca libration 
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function it is less affected by the contact resistance. The only drawback of this 

equipment is that the injected current is not controllable and reduces with 

frequency. For example, for small impedance measured at high frequency, the 

result is less accurate than that measured at lower frequency because of low 

SNR in the high frequency range. By testing using a known inductance of 

several IlH, it was found that inductances with a value in this range are best 

measured at 1000Hz. The results for the same cable configuration is shown in 

Table 3.5 

IAI 

1.2m 

Black-Gray Black-Brown Brown-Gray Gray - Blue Black -Blue Brown - Blue 

Resistance(mO) 8.73 8.66 8.62 8.71 8.75 8.6 

I nductance( ~H) 0.77 0.76 1.03 1.025 0.75 1.02 

2m 

Black-Gray Black-Brown Brown-Gray Gray-Blue Black-Blue Brown-Blue 

Resistance(mO) 14.13 14.25 14.21 14.3 14.15 14.21 

Inductance(~H) 1.21 1.25 1.71 1.69 1.19 1.68 

5m 

Black-Gray Black-Brown Brown - Gray Gray-Blue Black-Blue Brown-Blue 

Resistance( mOl 35.94 35.91 35.79 35.29 35.91 35.93 

Inductance(~H) 3.11 3.23 4.34 4.31 3.14 4.29 

10m 

Black-Gray Black-Brown Brown - Gray Gray-Blue Black-Blue Brown-Blue 

Resistance( mOl 70.61 70.89 70.84 71.31 70.75 70.94 
I nductance(~H) 6.23 6.35 8.37 8.41 6.18 8.44 

Table 3.5 Measured impedance results by using IAI 

Compared with results in table 3.3, for the same sections of cable, the results 

from IAI and injecting current measuremcnt otfcr high similarity (the 

difference is within 6%) which shows that the calibration results can be used 

for fault location. 

3.5 Single-ended fault location using the experimental 

system 

The experimental test was carried out in the system described in Section 3.3. 

Compared with the system in the simulation described in Section 3.22, the test 

system has a minimum fault resistance requirement of 1 n to limit the current 

in the equipment to acceptable levels. A common short circuit fault normally 
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has a much smaller fault resistance than the load resistance. In this situation, 

the proposed voltage iteration using (3.4) and (3.5) is not enough to balance 

the error which in this case is mainly caused by the large fault res istance. The 

influence of a large fault resistance can be shown by Figure 3.20. 

Measurement point 

Z 
I 

Z ZI, 
l , I. ,. 1.1 , " oml 
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Figure 3.21 a) System model at power frequency 

3.2 1 b) Thevien eq ui va lent circuit for fault tra nsient acts as voltage source 

Figure 3.21 a) shows the pre-fault steady state of the test system where the 

cable is represented by a lumped impedance component (Z, and Z , . .\"). Figure 

3.21 b) gives the situation of a fault at non-system frequencies where the 

Thevenin equivalent of the original voltage supply is a short circuit. 

Compared with Figure 3.2, when considering fault resistance, the system 

circuit is different. The equivalent circuit of the sytem shown in Figure 3.21 b) 

has a fault resistance that can not be ignored. Because the cable impedance is 

small compared with the fault resistance, the main rcason for the error in the 

fault location is not the voltage drop from voltage measurement point to the 

point at which the fault occurs, but the big fault res istance (10) compared 

with load impedance (6.80). The results of this is that a signicant amount of 

current flows into the load can not be ignored. For this general system where 

the fault impedance is signiticant, equation (3.3) is modified: 

Z - vpre R Vs Iload R 
x--- f----- f 

Is Is Is 
(3.10) 

In (3 .10), Vs and Is are measured and the step waveform t~,, (' is estimated 

using the pre-fault values of V.I as before. RJ and f'oad/Is in (3.10) can be 

calculated using: 
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R + Rx = real (Vpre _ Vs) 
f Is Is 

(3.11 ) 

Considering that Rx « Rf , (3.11) can be simplified to 

I (
Vpre Vs) Rf ::::: rea ---

Is Is 
(3.12) 

As in (3.11), Rx is the real part of I ine impedance between the measurement 

point and the fault point and it is much smaller than the fault impedance Rf . 

During the estimation, (3.12) is used instead of (3.11). The other unknown 

part Iload/Is can be calculated by using (3.13) 

(3.13 ) 

In (3.13), Zlinc is the total line impedance and for an unknown load impedance 

Zload the Zs+Zload can be calculated by using stcady state voltage and current at 

the measurement point before the fault occurs. As Zx is initially set to be zero, 

as it is not known at the beginning, an iteration process is uscd with (3.10) 

and (3.13) (similar to the voltage iteration process by using (3.4) and (3.5». 

The final fault location after being modified such that, when the measured 

fault resistance Rr>0.40, an impedance iteration is used, otherwise the 

voltage iteration will be used. In the experimental testing, in order to protect 

the equipment, Rr isiO and results with smaller value of Rr will be 

demonstated by simulation in chapter 5. 

In this analysis, the fault inductance is ignored. It is expected that the fault 

inductance will be comparable to the stray inductance of the physical faults in 

the experiment or proportional to the fault arc length which will be small 

compared to the line length if an arc fault is considered. Any errors due to 

fault inductance will therefore be of the order of the fault arc length. 
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3.5.1 Fault location on a three phase AC system 

The first test is performed using a three phase AC voltage supply with a 

resistive load. Short circuit faults were imposed on the cable at four different 

locations: Om, 10m, 20m and 21 m to the measurement point located next to the 

voltage supply as depicted within Figure 3.22. A Chroma 61500 power supply 

unit was used [144], to supply a voltage of25V (peak phase to phase) at 50Hz 

Measurement 
point1 

r-· F-
I 

I "I 
Voltage 0 'F1 
supply 

10m cable 10m cable 

/ 

F2 

1m cable 

! I I 

I I 
I , ! , , 

F3 F4 

Figure 3.22 Simplified circlIit for testing system 

1 I: 
Load 

As shown in Figure 3.22, four different distance shol1 circuit faults with fault 

resistance of I n are added into the system using the fault unit described in 

Section 3.3.3. The I m distance between fault 3 (F3) and fault 4 (F4) is set to 

distinguish the I m fault and for each fault location the accuracy will be 

provided. Fault I (F I), which is close to the measurement point, is set to 

demonstrate faults close to generator and also to see if the proposed fault 

estimation method is able to calculate a negligible line impedance between the 

measuring point and the fault position. 

The longest recording window at the measurement point is about 50ms so that 

a clear view of the fault transients and the steady state situation before and 

after the fault can be presented. As an example, the measured voltage and 

cun'ent wavefonn with the fault transient when F2 occurs is shown in Figure 

3.23 
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Figure 3.23 Measured vo lt ngc nnd current with fault transient 

The data was recorded with a sampling frequency of I MH z. The phase current 

and phase to phase vo ltage presented in Figure 3.23 has noise in the wave form . 

The noise consists of system noise and the measurement noise. The system 

noise is mainly from the vo ltage source and electromagnetic interference 

caused by other electrical equ ipments. The CUITent and voltage are measured 

by oscilloscope and probes with 8bit (up to 12bit in high resolution mode) 

Analog to Digital Convel1er (ADC) [149]. The measurement noise due to the 

8bit (ADC) results in an elTor of 0.78% which has little influence on the tinal 

results aft er curve fitting (proved in the experimental results in this chapter and 

the simulation results in Chapter 5). High fi'equency noise can be filt ered using 

a analog low pass filter (tran 'fer function _b_) with cut-off frequency higher 
as+l 

than the frequency range of interest as shown in Figure 3.24. 
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Figure 3.24 Voltage <mel current after being liltered by an analogue low-pnss liller 

The waveforms depicted in Figure 3.24 have less high frequency noi se nner 

being filtered by a low-pass filter with a cut-off frequency of 4kHz. In a 

balanced three phase AC system with a resistive load, the phase to phase 

voltage has 30° phase di fference with the phase current in steady state as 

shown in Figure 3.23 before zero-time point of the x axis when the fault occurs. 

Sholi circuit faults between phases or between a phases and earih create a 

transient between the two phases (or phase to earth). The transient will not 

appear in the other healthy phases and this simplifies the calculation of the 

impedance information in this three phase system. Unlike other fault location 

schemes involving calculating the three phase system impedance, once the 

fault phases are detected by an over-current device, only the singe phase 

problem needs to be solved. 

The voltage and current data required for accurately predicted fault location is 

captured for 6ms after the fault, a much shol1er period than that presented in 

Figure 3.24. The cable does not have an ideal frequency response as in the 

simulation, and considering there is more noise existing in the test system than 

the simulation, the infonnation above 3kHz is too noisy to be used so that in 

order to achieve more accuracy at low frequency (below 3kHz) a larger data 

segment is used compared with the 2ms after fault used in the si mulation 

section. The created step voltage and fault voltage which are subsequently 

processed by an FFT are shown in Figure 3.25 
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Figure 3.25 Measured fault voltage and the crested step voltage 

In frequency domain, the rms value of measured vo ltage and current and the 

step vo ltage arc shown in Figure 3.26. The captured data is tiltered with a low­

pass filter with a cut off ti-equency of 4kHz then a Blackman window is added 

to smooth the influence of the edges (discussed in Chapter 2). Zero-padding is 

utilized with the windowed data to increase the frequency resolution_ This data 

processing technique is Blackman wi ndowed FFT which is the same as the one 

discussed in the Chapter 2 to improve the estimation aecuracy_ 
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Figure 3_26 Measured voltage, current and step voltage data transformed inlo 

frequency domain. 
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Figure 3.26 shows that the measured voltage has lower SNR than the measured 

current and the created step voltage in frequency domain. The step voltage is 

created to simulate the fault voltage at fault point. As shown in Figure 3.25 and 

3.24, the transient in the current and step voltage is larger than in the measured 

voltage. This transient in the measured voltage which is influenced by the 

supply impedance has almost 10 times less energy than the other measured 

signals in the frequency domain as shown by the rms scale values in Figure 

3.26. 'Noise' in the measured voltage in the lower freqUl.:ncy range (helow 

1 kHz) is stronger than in the high frequency range (I kHz-3kHz). The low 

frequency oscillation is not only caused by the system noise and measurcmcnt 

equipment (such as ADC errors) but also due to the small discontinuity 

wavefonn at the . zero-crossing' caused hy the nonlinear hehaviour of the 

IGBT. 

Large transients in the measured voltage are common in a real I PS or other 

distribution power systems with a short circuit fault. Firstly hecause the shol1 

circuit resistance of a fault is normally much smaller than the load impedance. 

Secondly, and most importantly, the system voltage level in a real system is 

much higher than the system tested here so that even with a relative high fault 

resistance, the transients in the measured voltage would still be enough to 

create a good SNR in the frequency domain. 

By using (3.10)-(3.13), the line reactance between the measurement points and 

the fault (F2) can be estimated. Compared with the calibrated value, the 

estimated result offers good accuracy, as shown in Figure 3.27. 
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Figure 3.27 Estimated line reactance and the ca librat cd va lue for il faull al 1-"2 . 

The original estimated values of line reactance are the so lid line shown with 

oscillations. The solid straight line is the curve titted with linear least squares 

curve fitting. The dashed line is the calibrated va lue. The estimated va lue 

(6.58~H) after being curve fitted matches with the calibrated value (6 .25 ~t1-1) 

accurately. (3.10) and (3.13) provide accurate line impedance calculation using 

fault resistance iteration. The low frequency data (below 400Hz) is removed 

before curve fitting because higher frequency data offers better accuracy with 

the short data segment. The original calculated results have a large error 

compared with the calibrated value due to the influence of the fault resist ance. 

The iteration process reduces this en-or in each calculation steps and when the 

iteration variation is smaller than 0.5m in di stance the it eration stops. Result s 

for each of the iterations are shown in Figure 3.28. 
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Figure 3.28 Iteration procedures of impedance cstimat ion for a l ~llIlt at 172 

The estimated results (solid line) in Figure 3.28 are clcriveuli'om a least 

squares curve fit Compared with the dashed calibration results, the errors 

within original calculation can be reduced to within the requirement with only 

four steps of iteration. 

Figure 3.29 shows estimated line reactance results in comparison with their 

calibrated values when a I n fault occurs at di ffcrenl fault positions as 

described in Figure 3.22. Although with error, it is still poss ible to distingui sh 

the 1 m distance between F4 and F3. 
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Figure 3.29 Estimated result s achieved lor dillcrcll l rault positiolls 

As shown in Figure 3.29 the error is small for each fault locat ion and is not 

increasing with distance. The gap between the calibrated line reactance (dashed 

lines), when fault occurs at F3 and F4, represents I metre in di stance and the 

estimated value (solid lines) of F3 and F4 can be distinguished . Errors for 

impedance estimation are shown in Table 3.6. 

F1 F2 F3 F4 

Estimated results (IlH) -0 .17 8.71 17 .25 17.02 

Calibrated results (Il H) 0 8.43 16.92 17.16 

error% 0 .99 1.63 1.92 0 .81 
Table 3.6 Estimated Ime mductance value and errors for AC slI1gle-ended test 

The largest estimation error is within 2% for all the four fault locati on 

calculation. The small negative impedance result for a zero distance fault is 

caused by a curve fitting which fit s the original estimated results (for example, 

the green line in Figure 3.27) to a value close to the calibrated results and 

reduces the absolute error. This titting procedure can not promise the results 

always larger than the calibrated value. 
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3.5.2 Fault location in DC system 

Experimenta l tests on a DC system were carried out by using the same cab le 

system but with a 40V DC voltage supply [145] for larger transient s and better 

SNR After a short circuit fault at location 4 (F4) was imposed on the cab le 

with a 1 n fault impedance, the time domain measured current and voltage with 

the fault transient before and after low-pass filtering (with a cut-off frequency 

of 4kHz) were recorded , as presented in Figure 3.30 
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Figure 3.30 Measured DC voltage and current before and aft er filt er 

a) Measured voltage b) Measured current c) Filtered vo lt age d) Fi ltered current 

The DC voltage source has a current limit of 40 A [ 145] and in this case high 

supply voltage (40Y DC) can be used in this test. Figure 3.29 c) and d) show 

clear step transients in the measured waveform after processed with filtering. 

Similar to the calculation in the AC system, the filtered data wh ich IS 

transformed by the FFT is 12ms in length in the time domain with the fault 

transient located in the middle of the data. Using on ly 6ms after the fau lt 

transient, the positions of the faults can be estimated. The estimated line 

reactance results before and after curve fitting is compared with the calibrated 

value in Figure 3.31 when a 1 n short circuit fault is imposed at the end of the 

cable (F4). 
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Figure 3.31 The es timated line reactance with l ~l ult at F4 in DC system 

Compared with the original estimated line reactance (line with oscillations in 

Figure 3.26) which is produced in a AC system with a lower system voltagc 

level (about 25V phase to phase peak), the oscillations in the estimated line 

reactance in the 40 V DC system are greatly attenuated. A higher system 

voltage levellcads to larger fault transients in which case offer bettcr SNR and 

a more accurate impedance calculation. 

For the DC system, the single-ended algorithm gives more accurate line 

reactance estimations for different fault positions, as shown in Figure 3.32 and 

Table 3.7, than the AC system results (in Figure 3.29) due to the fact that ; 

firstly a larger transient is generated by fault in a system with higher supply 

voltage and secondly faults within a DC system are more likely to have a 

larger transient than in an AC system even with the same supply voltage levels 

due to the different fault inception angles, the fault transients are different in 

the an AC system (this factor will be explain in detail in chapter 5). 
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Figure 3.32 Line impedance calculation of ditTerent fault positions ill the DC sys t\':111 

F1 F2 F3 F4 

Estimated results (~lH) 0.08 8.57 16.75 17.13 

Calibrated results (pH) 0 8.43 16.92 17.16 

error% 0.46 0.81 0.99 0.17 
Table 3.7 EstImated lll1e Inductance value and errors for DC sll1gle-ended test 

Clearly, the fault location accuracy is improved by comparing Figure 3.32 with 

Figure 3.29. The author knows in a distribution system with larger voltage or 

smaller fault impedance, the accuracy can be further demonstrated in chapter 5. 

3.5.3 Fault location in a system with a non-linear load 

The application of power electronic devices has increased greatly in modcrn 

power systems. During the switching operation, the power electronic 

equipment can cause system disturbances which are mostly reflected in the 

harmonic system current. Switching frequency harmonics generated by 

convel1ers with high frequency [GBT switches can be eliminated by adding a 

low pass filter. The distol1ion created diodes bridge rectifier, may cause a 
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problem for this single-ended fault location method which involves using the 

fault transient as a harmonic source. 

In this experimental test, a non-linear load is added using a diode rectitier with 

a 1212 resistive load in parallel with the original 6.812 resistive load at the end 

of transmission line. The distorted voltage and current waveforms, measured 

and tiltered, are shown in Figure 3.33. 
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Figure 3.33 Voltage and current before and after low-pass filt er, with nonlinear load 

a) Measured voltage b) Measured current c) Filtered voltage d) Filtered current 

The hamlonics in the current caused by diode recti tier still cxists in the 

transient after it is processed with a low-pass filter (with a 4kHz cut off 

frequency). However, the fau lt current increases to a value much greater than 

the steady state pre-fault current and brings a high SNR to the fault transient 

compared with system harmonics. Also because of a Sh0l1 measurement 

window (12ms) is used (less distortion is captured compared methods requires 

longer data segments), the distortion caused in steady state does not have very 

much influence on the accuracy of the estimated resu lts, as shown in Figure 

3.34 and Table 3.8 
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Figure 3.34 Line reactance or different rault positiolls with a Iloll -linear load 

F1 F2 F3 F4 

Estimated results (J..lH) -0.35 8 .71 16.99 17.38 

Calibrated results (/lH) 0 8.43 16.92 17.16 

error% 2.03 1.63 0.40 1.28 
Table 3.8 EstimatecI IlI1e II1ductance value and the errors for DC single-ended tl:st 

Compared with the estimated reactance results for the linear load system 

shown in Figure 3.29, the calculation errors increase for a non-linear load 

system as shown by the results in Figure 3.34 and Table 3.8, especially when 

the fault position is close to the measurement point and the fault transients in 

the measured voltage is smaller. The small negative impedance result for a 

zero distance fault is caused by a curve fitting which fits the original estimated 

results (for example, the green line in Figure 3.27) to a value close to the 

calibrated results and reduces the absolute error. This fitting procedure can not 

promise the results always larger than the calibrated value. Although the errors 

of estimation are enlarged by the existence of system di stortion (beside the 

fault transients), it is possible to maintain a high accuracy (2%) and distinguish 

the faults with I m as shown in the values of Table 3.8. 
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The single-ended method discussed works under the assumption that the fault 

transient is a step reflected in the system voltage at the fault point. For an arc 

fault or faults with osci llations (bouncing fa ult), the single-ended algorithm 

produces much larger errors than the I m limitation of the accuracy req uirement. 

This situation will be shown in the next chapter "double-ended fault location" 

in which the bouncing fault is studied. 

3.6 Comparison with other single-ended methods 

Single-ended fault location algorithms based on impedance measuremcnt 

suffers from the unknown va lue of fault impedance and sourcc impedance. 

Also the fault detection time is normally over 20l11s becausc of til e usc of' the 

power ft'equency vo ltage and current information. 

The commonly used distribution network model represented by an impedancc 

and vo ltage source is presented in Figure 3.35 
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Figure 3.35 Circuit diagram of a distribution system with a short circuit fault 

The distribution power system has a supply side and a receiver side. The 

supply side impedance (Zs) and the receiver side impedance (ZR) are the 
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connected by transmission line impedance. A short circuit fault with fault 

resistance (RF) occurs on the transmission line. 

3.6.1 Takagi's method 

Paper [78] and [79] present a single-ended impedance fault location method by 

using the pre-fault and post-fault data to calculate the superposition fault 

current. 

(3.14) 

The superposition current Isup can be derived by using the post-tault current I 

minus the pre-fault current Ipre. 

Isup = I - Ipre (3.15) 

The fault location (m) can be achieved by multiplying both side of the equation 

(3.14) by conjugate of Isup (l~re) . 

(3.15) 

Using the imaginary part of the equation (3.15), gives: 

(3.16) 

This method requires that the phase of the fault current iF is the same as the 

measured supply side current Is· This normally happens when fault resistance 

RF is zero. As the phase difference between iFand isincreases, the calculation 

error of fault distance m is enlarged. 

3.6.2 Modified Takagi's method 

As a modificaiton of Takagi's method the discussed method In Eriksson' s 

paper [80] involves using current distribution factor (D) and zero-sequence 

current from supply side los to calculate the fault distance of a phase to earth 

fault. 
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Equation (3.14) is modified as: 

I - I 3 V - . l . 1 + R . sup Os s-m L S F D 2 

D = _(l_-_m_)l_L_+_Z_R 
ls + lL + lR 

(3.17) 

(3.18) 

The unknowns m and RF can be derived by solving thc equation's real and 

imaginary parts of (3.17) 

Another modified method described in paper [J J 0] solves the phase di ITerence 

between IF and Is by using zero-sequcncc current and without Llsing tll c 

superposition cunent. 

The equation (3.16) is changed to: 

Im(Vs' (3/0s)* . e- i1') 

m = ImelL . Is . (3JoJ ' . e- j 1') 
(3.19) 

The angle T can be calculated by using the zero-sequcnce circuit in Figure 3.3 () 

.------------'-------.- ---

l os 

(1 -m)loR 

IF 

Figure 3.36 Zero-sequence circLlit 

T is the phase angle between cun-ent los and IF: 

T = angle ( los + lot., + lOR ) 
(1 - m) . lOL + lOR 
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The modified methods described above limit the fault type hecause of the 

required zero-sequence current and both of the methods need to know the 

source impedance of both sides of the protected transmission line. The source 

impedance may be the generator supply impedance alone or a comhination of 

supply impedance, cable impedance and load impedance. Without special 

measurement, it is difficult to know the source impedance. 

3.6.3 Simple reactance measurement method 

Most single-ended impedance fault location methods and the three methods 

discussed in Section 3.62 can be seen as being based on the readance 

measurement which uses the equation (3.21) to estimated t~1lI1t distal1l;e: 

Im(~sS) 
m = ----"---­

ImCZper-meten 
(3.21 ) 

where Zper-meteris the per-meter length line impedance and the Vs and Is arc 

the measured voltage and current at the stmi of the distrihution line at the 

system frequency (50Hz). 

This requires Is=IF or the fault resistance to be zero or the fault resistance has 

too be much smaller than the load impedance: RF <<.. ZR. 

By using this method in the test system, the simulation results in Figure 3.37 

show the estimated line resistance and reactance when a short circuit fault 

occurs at F3 (in Figure 3.22) at 0.06s with a fault impedance variation from on 
to In. 
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Figure3. 37 Measured impeclclncc when fault occurs at F3 

a) Resistance result s b) Reactance result s 

At a time delay of 20ms after the fau lt is imposed (a t 0 .06s) , the new steady 

state impedance is obtained . The resistance is measured to be from 0.6 10 to 

1.350 and the variation of the reactance is from 0.00610 to 0.0 I ~20. Figure 

3.38 shows that the results when fault at F2 is imposed 
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Figure 3.38 Measured impedance when fa ult occurs at F2 

a) Resistance results b) Reactance results 
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The estimated resistance in Figure 3.38 is from 0.54(1 to 1.23(1 and the 

estimated reactance is fromO.00440 to 0.00840. By comparing the results of 

Figures 3.37 with Figure 3.38, it can be concluded that it is impossible to 

classify the fault location for a variable fault resistance by using estimated 

resistance or reactance at the system frequency in such a system. Besides 

even using the Takagi's or Eriksson's method the value of reactancc is too 

small, at the system frequency, to classify the fault position. 

The traditional methods arc used in Extreme High Voltage (EHV) 

transmission lines where the distance is ovcr 20Km. Utilized in a small 

distribution system, the calculated reactance at systcm ti"cqucncy is too smull 

to be used for fault location. The resistance value is normally influenced hy 

the fault resistance can not be uscd for fault locution either. Therct'lm:, the 

traditional methods do not work in a small distribution system. 

As a comparison to the discussed sing-ended fault lm:ation methods the 

algorithm proposed by the author has the t()llowing advantagcs: 

a) Very short fault location time (only 6ms atter fault) is necded. 

b) Source impedance is not required. 

c) Less influenced by the fault resistance. 

d) High XlR ratio can be derived by using high frequency data which provides 

more accuracy during fault location. 

3.7 Summary 

A new single-ended impedance measurement based fault location method that 

uses the fault transients is discussed in this chapter. The proposed method is 

demonstrated by simulation in a simple system and tested by experiment in a 

cable system. The advantages of the proposed algorithm are then demonstrated 

by comparing with other single-ended fault location methods which usc the 

power frequency system voltage and current information. 
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The algorithm which was demonstrated both using a laboratory experimental 

system and through simulation work on a small cable Integrated Power System 

(IPS). However, the method should be extendable to any type of distribution 

system and for over-head lines. 
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Chapter 4 

Double-ended fault location 

4.1 Introduction 

This chapter introduces a new double-ended fault location scheme for IPS 

which uses the transients generated by faults. Although a data communication 

channel is required, this method has a simple and straight t()rward algorithm 

which is easy to realize in a practical distribution system and docs not require 

GPS synchronization [82] as other methods introduced in Chapter 2. By using 

the high frequency (as high as 3kHz) intonnation derived from the transients, 

the fault location time is reduced to as little as 4ms after the fault occurs and 

also it can provide an accuracy of 1 m. 

The single-ended fault location algorithm discussed in the previous chapter 

was used to locate the hard short circuit fault with a In fault resistance. Based 

on the same cable power system a double-ended fault location method is 

shown to conquer the disadvantages of the single-ended method as it can locate 

both hard faults and bouncing faults with the same or even higher fault 

resistance. 
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After the introduction and basic theory in Section I and Section 2, the 

experimental estimation results are presented in Section 3 for both hard faults 

and bouncing faults and a non-linear load is considered as well. The proposed 

double-ended method is then compared with an established double-ended 

scheme to demonstrate its benefits. 

4.2 Basic theory 

4.2.1 Basic theory of double-ended scheme 

A doubl e-ended fault location algorithm based on impedance measurement 

will be di scussed and demonstrated in a power distribution power system. The 

bas is o f this method can be introduced by considering a single phast: cin:uit 

with a short circuit fault on the di stribution line as shown in Figure 4. 1. Zs can 

be the supply impedance alone or a combination of suppl y impt:t1uIH':c, cahl t: 

impedance and load impedance. Z load the is equi valent load impedance. 

Assuming that the total transmission line impedance between thc suppl y and 

load is Z I, where Zx is the part of line impedance between suppl y and the 

position of fault and ZI -x is the remaining part of the line impedance. 

Z /o(/d 

Figure 4.1 Single phase circuit with a phase to ground fault 
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The fault is considered to be a voltage source which creates voltage and current 

fault transients and contains infonnation over a wide frequency range. The 

Thevenin equivalent circuit at a non-fundamental frequency has the supply 

voltage short-circuited and the fault as the transi ent source as shown in Figure 

4 .2 . 

z, 

Figure 4.2 System at non-fundamental frequency during fault situation 

As shown in Figure 4.2, the fault transient VI' act as voltage source that 

provides voltage transients at non-fundamental fi'cqucncies and Rr is the liwlt 

resistance. There are two measurement points located at the supply end and the 

load end of the power distribution line. The voltage and current arc measured 

at both measurement points during the fault. Equation (4.1) is derived by usi ng 

Kirchhoffs voltage law according to the circuit shown in Figure 4.2 . 

(4.1 ) 

where the Vl' 11 and V2, 12 are the measured current and voltage information 

from both ends of the line. The total line impedance Z1 = Zx + Zl - X, thus : 

(4.2) 

Equation (4.2) is then used to estimate the line impedance between the supply 

and the fault point. By dividing the estimated line impedance by the known 

per-unit length impedance of the line, the fault location can be found . It 

follows that this double-ended scheme does not require information concerning 

fault resistance and the wavefonn of the fault trans ients or knowledge of the 
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load and supply impedances and the calculation is also simple to implement. 

Similar to the single-ended method, the calculation is done in the fi"equellcy 

domain and a Blackman window is applied to the finite measured data segment 

to smooth the edges. 

In an integrated power system (IPS), the synchronization of intonnation hom 

the two ends of the cable is reali zed by a trigger signal sent in a 

communication channel (after receive this signal , the FPGA start s tn record the 

measured infollllation from both ends at the same time). In other di stributioll 

power systems, a Newton-Raphson iteration method is used to solve the non­

linear equations and cancel the unsynchroni zed errors and thi s is discuss<.:d 111 

Chapter 5. 

4.2.2 Evaluation through simulation 

In order to evaluate the proposed double-ended schem e, a simple three phase 

system was built and simulated using Mat lab/Simulillk. The testing system IS 

shown in Figure 4.3 

Supply 
impedance 

Zas 

Zbs 

[ . ~e,,",emeol 
pOint 

Line impedance 

f ------ -

I Zax Za(1 -x) 

.--HC=:::J-------c:c==~]--

Zbx Zb(1 -x) 

Load 
impedance 

I Za load .--r---c-=-
, lbload 

. -+-C.. _ 

I 

Zes le( 1-x) : lCload 
C=:=J-+-e-+c==:J-------C~:j~.~C--l_ :--

lex 

I , 

,- 1 ______ ---- _____ _ 

Figure 4.3 System configuration of simulation demonstration system 

As shown in Figure 4.3 , the three phase system has a 440V, 50Hz (phase to 

phase rms) AC voltage source. The supply impedance per phase is 
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Zs=(O.OO 1 +jO.00942).o. The three phase star connected load is 90kW with a 

power factor of 0.9. The line impedance is represented by lumped RLC 

components with per phase value Zx=Z(I.x )=(0.0003+jO.00075).o. For a fau lt 

between phase B and phase C (fault impedance=O. I.o), the three phase 

measured voltage and current in time domain at both supply and load ends arc 

presented in Figure 4.4. 

Figure 4.4 shows the measured Vsupply, lsupp ly and VI",1t1 and II""" at the two 

terminals of the transmission line. V A-8 is the red line, VIl-c is the blue line and 

V C-A is the green line. lA is the reel line, 18 is the blue line and Ie is the green 

line. 

1000 I Supply side vOltagl .. ~~ I 1000
1 

Load side volt age 

50011 i\' 1\ :T i 500 1 

2: 
, 

: I \ I {, I I ~ 
0 1 ( is: OJ II' f ' I'i .., 

g. . ' I I I .9 I , 
>" \ " J , > I i \ -500 -, ; I I -" , , : 

\ I 
, 

-500 , I Ii " ~ '......' ( 

-1000 . -1000 
0 0.02 0,04 0.06 0,08 0 0.02 0,04 0,06 0,08 

a time(s) b time(s ) 
4 

1 x 1Dsupply Sidecurrentl ABI 200 Load side current ld - Be 1'\ 1\ I. (. -- ~ - C·A , , 

-~fv1 
\ I 

\ 
, 

0.5 100 i 1 1 I \ : 
~ I 

\ J 

I 
~ I. I 

J I 0 .., o · I I I, 
i .1 \ 
,} I ! I I 

-0.5 -100 I '. \ I I I l 

j ,\ / ~ v, V I \ ' 
\J ., \. ' ,/ 

-1 -200 
0 0.02 0,04 0.06 0.08 

d ° 0,02 0.04 0,06 0,08 
C time(s) time(s) 

Figure 4.4 The measured voltage and current cinla 

a) Supply voltage b) Supply current c) Load voltage d) Load current 

The short circuit fault is imposed between the phase B and phase C at 0.04s. 

For a phase to phase fault in this three phase system, if the fault is considered 

as a voltage source, then there is no transient in the current of the healthy 

phases for a balanced system. 
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The cable impedance calculation for a fault occurring In the middle of the 

distribution cable is shown in Figure 4.5. 
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Figure 4.5 shows the estimated line resistance and reactance between the Inuit 

position and the supply measurement points against frequency using the 8ms 

length of data presented in Figure 4.4 with the fnult transient located in the 

middle of the window. The time domain data is windowed by a Blackman 

window (removing the edge influence) ancl transformcd into frequency domain 

by FFT. The solid lines show estimated linc impedance results bctween the 

supply point and fault position and the dashed lines indicate thc actual values 

used in the simulation. Compared with the actual valuc, the calculated line 

reactance shows good accuracy against frequency (the dash line of reactance 

matches the solid line very well). The estimated line resistance results are not 

as accurate as the reactance, especially in the high frequency range (1500Hz to 

3000Hz). The impedance is calculated using (4.2) and then it is separated into 

real part and imaginary parts. In Figure 4.5, the line resistance is much smaller 

than the line reactance in the high frequency range. I f there are small errors 

with the total impedance calculation or the phase calculation, the errors are 
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magnified from the view of the calculated resistance. As frequency increases, 

the value of the imaginary pat1 becomes much bigger than the real part and that 

leads to errors which increase in the estimated values of resistance. These 

impedance values are typical of cable parameters so that in the experiment and 

future simulation only the line reactance is used to locate the fault position. 

The double-ended algorithm offers good accuracy (the largest error is within 

0.3% of its actual value in simulation results) for the calculatecl line reactance 

when a fault occurs at either the supply encl or the loud encl. 

Figure 4.0 ancl Table 4.1 show the estimated line reactance results li'OIn supply 

measurement points to the fault for three eli fferent fault locations : F I at the 

source, F:! in the middle of di stribution cable ancl F 3 at the load side compare 

with the real value. 

Estimated line reactance for three differen t faults 
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Figure 4.6 The estimated line reactance for different fault locations (simulation) 

Fl F2 F3 
Estimated results (/lH) 0.002 2.402 4.802 

Calibrated results (IlH) 0 2.4 4.8 

error% 0.04 0.04 0.04 
Table 4.1 Estllnated Ime IIlductance value and errors for double-ended simulation 
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For the three different fault positions, the solid line (calculated line reactance) 

matches the dashed line (simulation value) with little error (within 0.3% of its 

actual value) in Figure 4.6. This gives the confidence that this double-ended 

fault location algorithm could be used in a protection scheme to detect the fault 

position. 

In this fault location scheme, the voltage and current from both supply and 

load ends are continuously monitored by an 8ms length window. When a short 

circuit fault occurs and causes system current to suddenly rise, the difference 

between the measured currents from both ends suddenly increases to a value 

which is larger than the pre-set threshold so that the fault phases can be 

detected and at this time a higger signal is sent to capture the fault transient 

over the 8ms window. A 4ms delay is used, to keeps the transients within the 

middle of the window. The trigger is located in the middle of the in time 

domain captured measurement window so that when the Blackman window 

edge filter is applied in the time domain, the energy of transient, whidl is 

located in the middle of the data segment, is less attenuated by the windowing 

function. The fault location can be detected 4ms after the fault occurs, which 

makes the fault location time much shorter than other double-ended impedance 

measurement fault location methods which use post fault system frequency 

voltage and current information. 

4.3 Experimental system 

The exerimental system for the examination of double-cnded fault location 

algorithm is same as for the single-ended method. The only two different 

factors are that another current and voltage measurement unit is added at the 

load point (C4 of Figure 3.8) and the fault unit is modified to be able to 

provide not only a step fault but also a bouncing switch (mechanical switch) 

fault. 

In order to create a fault with an oscillating fault voltage the fault unit 

described in Figure 3.12 was modified as shown in Figure 4.7 
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Figure 4.7 Fault unit for the oscillation fault transient 

Compared with the fault unit of Figure 3.12, the fault is imposed 111 the 

system by a standard contactor (a mechanical switch) [III] which is driven 

by a 230v AC voltage. A relay [112] is used to separate the low voltage part 

from the high voltage part. The high output of the gate drive voltage (15v) is 

used to switch on the relay and the low voltage (-5) is used to switch off the 

relay. This contactor acts as a mechanical switch which is able to work in 

both AC and DC systems. Unlike the IGBT switch which creates a f~lult step 

in the voltage waVef0n11, the mechnical contactor once supplied with 230AC 

voltage normally does not close itself instantaneously (the copper contactor 

vibrates when switched on and off). Its closing action, in the time domain, has 

several close, open and reclose actions as the contactor bounces. 

The output voltage of the fault unit, the voltage across the relay and the 

trigger votlage are shown in Figure 4.8 for a test on an AC system which is 

imposed a short circuit fault with 20. fault resistance (in order keep the fault 

current low) to the system which has a supply voltage of 20V nns using the 

bouncing fault unit. 
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Test volta~gnal of the fault unit 
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[-- - - -_. Vrelay 
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Figure 4.8 The volt age output of different component of the fault unit 

As shown in Figure 4.8, the green line is the trigger signal (output vo ltage of 

the drive) which triggers at Os in the time domain. The blue line is the voltage 

across the relay (230Y AC rillS) devided by 10 ( in order to keep it in the 

same scale range with the other measured voltage data). The red trace is the 

output voltage of the fault unit (votage across the fault resistance Rr). 

Compared with waveforms in Figure 3.13 of chapter 3, it is clear that the 

mechinical switch has a much longer reaction time than the IGBT. About 9ms 

after 15Y is supply to the relay circuit, the relay turns on and creates high 

frequency transients at about 0.0 I s in the votlage (shown in blue). The relay 

itsel f is an mechanical switch and switch action reflect ed in the voltage 

wavefonn is not a step. 8ms later, the contactor closed in a oscill ating way 

as shown by the red line. As expected, the system fault transient in the 

measured voltage wavefOlm (red line) is an oscillating waveform rather than 

a step. The contact copper bar of the mechanical switch can not be closed 

without boncing and leads to a bouncing waveform in the voltage. 
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4.4 Fault location results 

4.4.1 Results for a bouncing fault 

Short circuit faults within the power system are commonly hard faults which 

create a step change in the system line voltage at the fault point. However 

other different fault transients may exist. The exact nature of the fault can not 

be predicted. In this chapter, a type of arc fault (or bouncing fault) is imposed 

on the cable by the operation of a mechanical switch is considered because 

idea ll y the proposed double-ended algorithm does not require allY detailed 

knowledge of the fault transient as long as a suitable transient exists. 

The tirst test is carried out with a 25V (phase to phase peak) AC voltage 

supply and a 6.80 resistive load as described in chapter 3. Faults with 

different fault resistances were imposed on the cable at four different 

locations: F I (fault I, at the start of the cable), F2 (fault 2, at 10m from the 

start oflhe cable), F3 (fault 3, at 1m from the end of the cable) and F4 (fault 4, 

at the end of the cable) as in shown Figure 4.9. Voltage and current arc 

measured at both the supply and the load side of the system. 

Measurement 
pointl 

10m cable 10m cable 

.~==C=~=T-- --
Voltage r-v F 1 

supply 

I L.-____ - ---

F2 

1m cable 

Measurement 
point2 

==-_1--1 ; , 
F3 

1-- -1 

f 11 
F4 I I Load 

1! 
J 

Figure 4.9 Four different locations in the experiment system 

For a fault situation, with a 10 fault resistance (in order to limit the fault 

current within the safe operation range of the supply), the measured voltages 

and currents from both measurement points are presented in Figure 4.10 
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Figure 4.10 Measured waveforms for a boullcing fault trallsiellt fault trallsient created 
by a mechanical sw itch 

a) Vo lt age and CUITent at supply side b) Voltage ancl currellt (It load side 

In Figure 4.10, the relay is closed at Os which creates a high tj·cqucncy 

bouncing wavefonTI . After about 12ms the mechanical sw itch is closed and 

the bouncing transient waveform appears. For the single-ended method 

discussed in chapter 3, the line reactance between the fault and the suppl y 

measurement point can be estimated by using the data in Figure 4.10 a). 

However, the single-ended method works under the assumption that thc 

voltage fault transient is a step wavefonn. As in equation (3 .10), the crcatcu 

step voltage V pre divided by the measured bouncing cUlTent Is wi II create a 

very large elTor which can not be reduced by iteration and the large error 

compared with the actual line impedance value leads to an non-converging 

iteration. One example is that when the bouncing fault occurs at 20m the 

iteration results in Table 4.2 

iteration 
steps estimated fault distance (m) 

0 47 

1 52 

2 64 

3 79 

4 92 
Table 4.2 The failure iteratIon usmg smgle-ended method to locate bouncing fault 
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When the program detects that the first iteration error IS larger than the 

second one, it will report a failure which means the single-ended algorithm 

may not work under this situation. 

The proposed double-ended algorithm works under thi s bouncing fault 

situation because it has no detailed requirement for the fault transient signal 

as long as the SNR is high enough to produce accurate result s. The measured 

data length is two cycles (40ms) of the supply fi·equency. However. aner 

being pre-processed by a low-pass filter (cut-off frequency of 4000Hz), a 

Blackman window and zero padding, the data length needed to produce an 

accurate result is very shO\1 and is only 6ms atter the fault occurs. The FFT 

processed cutTent and vo ltage magnitudes in the frequency domain are shown 

in Figure 4.1 I. 
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Figure 4.11 Voltage and current magnitudes in frequency domain 

a)Supply voltage b)Supply current c)Load vo ltage d) Load current 

Compared with the time domain information shown in Figure 4.1 0, the 

transients in frequency domain for the voltage measured at supply point (V I) 

is more affected by noise than the other measured quantities. Due to the very 

low supply impedance, the voltage drop during the fault produces less energy 
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than the current, which has a bigger transient in the time domain. In Figure 

4.11, the fault transient in current II has a good frequency domain content. 

Using equation (4.2) with the measured voltage and current data, the line 

impedance between measurement point I and the fault position can be 

calculated. As discussed in Section 2, in the high frequency range the 

measured resistance has less accurate than the reactance. Thi s double-ended 

scheme therefore uses reactance to locate fault positions on the cablcs. 

For example, when a In shOl1 circuit between two phases (phase brown and 

phase blue) occurs at F4, the estimated line reactance compan.:d with 

calibrated reactance from chapter 3 is shown in Figure 4. 12. 
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Figure 4.12 Estimated line reactance compared with calibrated value 

In Figure 4.12, the solid line (green), which has oscillation and increases with 

frequency is the estimated result using the double-ended method. The dashed 

line (red) is the value derived from calibration (described in chapter 3). The 

solid stranght line (blue) is the estimated value after being processed by a first 

order least squares curve fitting. The curved fit line matches very well with 

the calibrated results. 

The linear least squares (first order) is one of the most commonly used linear 

regression method uised to find the best tit curve to a given set of points by 
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minimizing the sum of the squares of the offset. The tirst order least squares 

fit provides a fitted straight line to a given set of points. The functional 

relationship between the two fit quantities is known as muliply [113][114]. 

As shown in Figure 4.12, the y axis reactance value increases proportionally 

with frequency (X = 2 . pi . f), which means it is suitable t()r the linear least 

squares curve fitting. In order t 0 achieve accurate linear curve tit results in a 

x-y domain, the original behaviour of the y axis values against the x axis 

values must be linear. The calibrated cable impedance in the experimental test 

has a linear behaviour. However, for the cakulation of the system impedances 

which may consist of parallel connected inductors, both the reactance and the 

resistance do not change linearly in the frequency domain, so the tirst order 

curve fit does not work accurately. 

Unilizing a linear least squares curve fitting to a n point data, the vertical 

offset R 2 of the data is defined as: 

n 

R2 = I[Yi - (a + bXi)]2 (4.3) 
i=l 

In order to minimize the deviations: 

( 4.4) 

( 4.5) 

(4.6) and (4.7) are derived from equation (4.4) and (4.5) 

n n 

na+b LXi = LYi (4.6) 
i=l i=l 

(4.7) 

and written into matrix fonn 
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(4.8) 

Thus: 

[ 

n ,n X'j-l[ ,n y,] 
[a] = L i: 1 I L i=1 I 

b n n n 
2 

X' X' xy I i:1 I I i=1 1 Ii=! I 1 

(4.9) 

The unknown variables 'a" and 'b" can be calculated by using (4.9), as the 

relationship between frequency and readmH':C is not jllst linear hut also starts 

from zero. The variable a is set to zero which simplities the titting cah.:ulation 

procedure. 

The ocillation in the original estimated results (green line in Figure 4.13) are 

due to the low signal to noise ratio (SNR) of the measured data (especially the 

voltage data measured at the supply end). The supply voltage of the syskm is 

25V phase to phase peak as presented in Figure 4.10. In a real IPS, with a 

much higher supply votlage level, larger transients are generated by faults and 

the SNR will be higher as well, the oscillation in the reactance results will be 

greatly reduced so that more accurate results can be achieved as proved by the 

later DC tests in Section 4.4.1. 

The estimated results for different fault locations and fault resistances 

between two phase are presented in FibTUre 4.13 : 
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Figure 4.13 Estimated results for a I n l ~lU lt res istance bet ween phase alld neut ra I 
using double-ended method 

a) Supply side transients b) Load side transients e) h\ ult IOl:a tion resu lt s 

F1 F2 F3 F4 

Estimated results (pH) -0.01 6.32 12.61 13.34 

Ca librated results (~lH) 0 6.29 12.72 13.36 

error% 0.07 0.22 0.82 0.15 

Table 4.2 Estimation errors lor I n faults 

Figure 4.13 a and b show the typical fault transients (measured voltages and 

currents at the two ends (VI . It, V2, h)) for hlult 2 and the est imated line 

reactance (solid line) for the different fault locations when a I n phase to 

neutral fault occurs. The actual values used are shown as dashed lines. As 

expected the estimated line reactance value increases with fault distance to the 

supply measurement point (Figure 4.13c). Compared with the calibrated va lue, 

the estimated value shows good accuracy (in Table 4.2) which can easily be 

used to locate faults within distances of I m (the distance between Fault 3 and 

Fault 4). The fault transients are attenuated as the fault resistance increases, 

this situation brings more errors to the estimated results compared with faults 
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of low fault resistance. The estimated results for a higher impedance fault are 

shown in Figure 4.14. 
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Figure 4.14 Estimated results for a 3n fault res istance between phase and neut ra l 
using double-ended method 

a) Supply side transients b) Load side transients c) Fault location results 

Fl F2 F3 F4 

Estimated results (~) 0.02 6.12 12.61 13.22 

CalIbrated results (wi) 0 6.29 12.72 13.36 

error% 0.15 1.27 0.82 1.05 

Table 4.3 Estimation errors for 3 n faults 

In Figure 4.14, the results show that with a 30 fault resistance the typical fault 

transients in the measured voltages and currents are smaller than same situation 

with a 10 fault (in Figure 4.13). This gives a smaller SNR and the results after 

curve fitting are less accurate (as shown in Table 4.3). However, the errors in 

fault location are still within 1m. 

As discussed in chapter 3, cores in the cable with different distances from each 

other have a different phase to phase reactance. This difference within line 
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reactance has no influence on the accuracy of fault location once the per-unit 

length of line reactance between different phases is known. In Figure 4.15, the 

results show that phase to phase (Brown and Gray) faults with di fferent fault 

resistances (10 and 30) still provide signals allowing good accuracy (the 

largest error is 2.9% in Table 4.5) in the location information. 
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Figure 4.15 Estimated line reactance compared with calibrated one 

a ) Phase to phase fault with 10 Rr b) Phase to phase fault with 30 Rr 

Similar to the results in Figure 4.13 and Figure 4.14, compared with the 

calibrated line reactance, the errors of calculated results increase with fault 

resistance as shown in Figure 4.15. In order to maintain 1 meter accuracy as 

required, the short circuit fault resistance limitation for this experimental test 

is 50, which is a very high resistance fault compared with 6.80 load 

resistance. This high impedance fault situation is not common in an IPS cable 

system. Figure 4.16 shows that the main difference, compared with the 

previous fault location results for short circuit fault between close phases 

(Brown-Blue as phase to neutral), is that the estimated line reactance values 

are bigger for a fault between phases for the same fault resistance at the same 

fault distance and that is due to larger mutual inductance caused by bigger 
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distance between phases. For all the line reactance estimations, the en'ors are 

shown in Table 4.4 and 4.5 

Fl F2 F3 F4 

Estimated results (J.tH) -0.03 8.57 16.95 17.35 

Cahbrated results (~) 0 8.43 16.92 17.16 

error% 0.17 0.82 0.17 1.11 

Table 4.4 Estimation errors for I n faults 

Fl F2 F3 F4 

Estimated results (J.tH) 0.02 8.28 16.99 17.66 

CalIbrated results (~) 0 8.43 16.92 17.16 

error% 0.12 0.87 0.41 2.91 

Table 4.5 Estimation errors for 3 n faults 

This new double--ended fault location method can provide accurate fault 

position by using fault transients in either AC or DC supplies. During the 

fault situation, the fault transients can be considered as a voltage source 

which has infonnation in a large frequency range (ideally OHz to several kHz), 

at non-system frequency state (DC or AC 50Hz or other system power supply 

frequency), the supply source is short circuited as in Figure 4.2 and has no 

influence for the fault location estimation. 

The fault transients from measured voltages and cun'ents and fault location 

results for a DC system with lOV voltage source are presented as in Figure 

4.16. 
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a) Supply side transient s b) Load side transients c) rault loca tion results 

A I n fault resistance is imposed phase to phase (Brown and Black) and IOV 

DC voltage is supplied by Chroma (to limit the fault current within lOA DC 

when the 10 fault is added), the estimated results (solid line) matches the 

calibrated value (dashed line) within the I m di stance error (between F and 

F4). The errors for each fault location are shown in Table 4.6. 

F1 F2 F3 F4 

Estimated results (~) 0.01 6.25 12.69 13.39 

Calibrated results (pH) 0 6.29 12.72 13.36 

error% 0.07 0.30 0.22 0.22 

Table 4.6 Estimation errors for I n f~lllltS 

Results in DC system have fixed errors for each fault and better accuracy than 

in the same situation in an AC system. This is because in DC system the 

voltage is constant while in an AC system the fault may occur when voltage 

is close to the zero crossing point and creates a smaller high frequency fault 

transient. The faults are imposed in the system randomly so that the errors in 

the results ofthe AC system are not so stable for each fault (but the results are 

able to meet the accuracy requirement), the details of this influence will be 

discussed in chapter 5. 
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Figure 4. 17 Fault location result s for fa ult s with 3.0 fault rcs istilllCC 

As shown in Figure 4.17, in DC, errors in the estimated result s increase when 

a 3Q short circuit fault is added into the system. Although there arc larger 

errors compared with the results in Figure 4.16 due to a larger fault res istance, 

it is still poss ible to di stinguish the I m distance in faults and the errors are 

small for all fault locations (in table 4.7) . 

Fl F2 F3 F4 

Estimated results (~) 0.03 6.45 12.63 13.32 

Ca librated results (J..lH) 0 6.29 12.72 13.36 

error% 0.22 1.20 0.67 0.30 

Table 4.7 Estimation errors for 3 .0 fault s 

4.3.2 Step fault results 

The proposed double-ended algorithm has been shown to be more robust than 

the single-ended method with regard to bouncing fault s and higher fault 

resistances. The proposed modified method will work in a step fault situation 

as well. 
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By applying the same fault unit with the IGBT switch used in chapter 3, for a 

short circuit fault with 10 fa ult resistance, the measured fault vo ltages and 

currents fro m both ends are as shown in Figure 4.18. 
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Figure 4. 18 Measured vo lt age and current step tra nsient at both ends 

a) Supp ly side voltage and current b) Load side vo ltagc and currcnt 

Compared with results derived from the bouncing fa ult transient, the fu ull 

transients created by an IGBT switch is just a step waveform as shown in 

Figure 4. 18. Thi s hard fa ult transient can also create useful in fo rmation up to 

3kH z. The estimated fault location of 4 di fferent fa ult positions with 10 and 

30 fault resistances are presented in Figure 4.1 9. 
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As expected, the fault location results in Figure 4.1 9 are accurate ancl the 

estimation errors increase with fault resistance as well (in Tab le 4.8 and 4.9). 

F1 F2 F3 F4 

Estimated results (~) -0.21 8.59 16.82 17.02 

Ca librated results (~) 0 8.43 16.92 17.16 

error% 1.22 0.93 0.58 0.82 

Table 4.8 Estimation errors for I n faults 

F1 F2 F3 F4 

Estimated results (pH) 0.04 8.28 17.12 17.66 

Ca librated results ( ~IH ) 0 8.43 16.92 17.16 

error% 0.23 0.87 1.17 2.91 

Table 4.9 Estimation errors for 3 n fau lts 

The di scussed doubl e-ended algorithm also works with a step fa ult in the DC' 

state. Thi s time the supply vo ltage is replace by stand alone DC vo ltage (the 

60/50 H seri es DC voltage suppl y introduced in Section 3.3 1) whi ch has a 

higher current limitation to create a larger fa ult transient. The suppl y vo lt age 

is increased to 39V DC ancl the data being processed by FFT is also of a 4ms 

length in time domain. When Fault 4 (as in Figure 4.10) occurs, the result s uf 

the calculated line reactance compared with the calibrated value arc shown in 

Figure 4.20 
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f igure 4 .20 Fault location results with high DC voltage supply 
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Compared with results in Figure 4.13, it is clear that the original calculated 

results (green line) have much less oscillation than results produced by low 

voltage level transient. This is the same tend as seen for the single-end 

algorithm, the double-end method is expected to provide a better fault 

location results when utilized in a real distribution system with high system 

voltage level. 

The results of measured current and voltage and line reactance of four 

different fault locations with high DC voltage supply are shown in Figure 

4.21 and Table 4.10. 
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Figure 4.21 Line reactance calculation results for different faull posilion in 40V DC 

a) Supply side transients b) Load side transients c) Faull location results 

F1 F2 F3 F4 

Estimated resuhs (~) 0.01 8.39 17.01 17.21 

Calibrated resuhs (IlH) 0 8.43 16.92 17.16 

error% 0.06 0.23 0.52 0.29 

Table 4.10 Estimation errors for DC faults 
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Higher voltage offers higher SNR to provide the better results shown in 

Figure 4.21, and compared with results achieved by using lower level voltage 

supply shown in Figure 4.14. 

4.3.3 Results with non-linear load 

Considering the application of a real IPS which may have loads with power 

electronic converters, tests are carried out with a non-liner load added to the 

system. The distorted fault current waveforms, including transients, measured 

at both measurement points are shown in Figure 4.22 
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Figure 4.22 Fault current measured at bot h ends 

As shown in Figure 4.22, the current distortion is much smaller than the fault 

transient for the data measured. The errors within the estimated results (in table 

4.11) are larger than errors derived from linear load test. Fault within 1 m 

distance can still be distinguished. The data can be pre-processed by a low-pass 

filter and with a short data segment (4m after fault whieh contain less di storted 

current wavefonns), the results are shown in Figure 4.23 and Table 4. 11 . 
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a) Supply side transients b) Load side transient s c) Fault location res ult s 

F1 F2 F3 F4 

Estimated results (~) 0.09 8.34 17.01 17.20 

Ca librated res ults (pH ) 0 8.43 16.92 17.16 

error% 0.52 0.52 0.52 0.23 

Table 4.11 Estimation errors for step fault s 

Compared with Figure 4.14 and the demonstrated difference with the singlc­

ended estimated results between linear and non-linear load , the results in 

Figure 4. 23 achieved by the double-ended method are less innucnccd by the 

CUITent di stortion created by the non-linear load. Thi s will be further proved 

in the simulation part in chapter 5. 

4.4 Comparison with tradition double-ended scheme 

The traditional double-ended fault location scheme as describcd in [84] whi ch 

uses synchronised post fault voltage and current information is simulated 

using Matlab/Simulink. The test system has the same paramcters as the 

calibrated experimental system. 

120 



Chapter 4 Double-ended fault locati on 

This algorithm uses post fault synchronized double-ended voltages and 

currents as VI , II , V2, [2 in Figure 4.24 measured at system frequency (50Hz). 
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I" 
----

Zx • 
J f J •• 

Voltage C9 V1 Rr I Vr V2 Load 

supply I 
y: 

-- -- I 

Figure 4.24 The circuit for post-fault system c\cl11onstrntion 

The fault location can be estimated by calcu lating the line impl!dance between 

measuring point and fault point (Zx) divide by va lue of impedance per 111 . 

(4.10) 

(4.11) 

The value of Zx can be derived by substituting (4.13) and (4 .1 ) 

( 4.12) 

The calculated resistance (Rx) and reactance (Xx) for foul' di ffcrent fau lt 

positions as shown in Figure 4.10 are shown in Figure 4.25 
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Figure 4 .25 Results of trnditi ona l double-ended fault loca tion 

a) T he res istance results b) T ile rcnctn nce result s 

In Figure 4.25, the fault occurs at 0.05s and the pre-fault data was sct to zero 

because during healthy state both the numerator and denominator are zero in 

equation (4.12). The value of the reactance can not be used to distingui sh 

fault location, because it is too small at 50Hz, fo r a very short di stribution line 

(20m). This method is nonnall y used in transmiss ion system where the line 

inductance is significant compared with distribution system. Onl y the 

resistance results are able to provide the fa ult loca tions after I cyc le (20ms) of 

fa ult transient using the FFT. The time data used is 5 times more than the 

proposed double-ended method presented in thi s chapter. The simulated 

double-end fault location scheme requi res synchroni zation of the info rmation 

measured at both ends. This is commonly reali zed by GPS in a distribut ion 

network whi ch results in more investment. For an IPS system whi ch may 

have a small synchronization error caused by delay of signal transmiss ion or 

the errors of the current and voltage transducer, the synchronization angle can 

be calculated and involved in the final line reactance estimation. This data 

will be introduced in the simulations in chapter 5. 

122 



Chapter 4 Double-ended fault location 

4.5 Summary 

A new double-ended fault algOlithm for fault location in IPS is presented in 

this chapter. This method can be easily applied to fault location using an on­

line analysis because of its short computational time, straight forward 

algorithm and robustness to different fault situations. This chapter focused on 

validating of the method using an experimental system. The experimental tests 

involve both AC and DC state situations and the faults imposed on the 

distribution cable are classitied by step faults (hard faults) and oscillation 

faults (bouncing faults). During the test, in order to simulate a situation more 

similar to a real IPS system a non-linear load is added and a common 

synchronized double-ended fault location method is introduced as a contrast to 

the presented scheme. 

The approach has been demonstrated on a small cahle based IPS system. 

However, it is totally general and could be applied to overhead lines and 

transmission systems. The accuracy and range of thc validity on a 

transmission system will fonn part of future work. 
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Chapter 5 

Simulation verification 

5.1 Introduction 

In Chapter 3 and Chapter 4 the single-ended and the double-ended fault 

location method were demonstrated by using a simple cable based laboratory 

model. This chapter investigates the presented algorithms using computer 

simulations with the same system parameters as the calibrated experimental 

system. 

The simulations for both algorithms explore the fault situations that can not be 

experimentally implemented due to the limitation of the laboratory equipment, 

such as very high current faults (low fault impedance), faults with a high 

supply voltage and faults with a small high frequency transient (faults which 

occur at or close to the voltage zero-crossing point). The possibilities of un­

synchronized measurement for the double-ended method and fault location 

using circuit breaker reclosing transients are also investigated. 
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5.2 Simulation of the experimental system 

5.2.1 Simulation of the single-ended method 

The cable system has been simulated with lumped resistors and inductors, as 

shown in Figure 5.1, using the Matlab/simulink. Each segment of the cable 

(including the neutral cable section which is used as the return path) is 

represented with the same parameters calibrated from the experimental systcm, 

shown in Chapter 3. Phase to phase and phase to earth fuult s are imposed 011 

the cable at four separate locations (Om, 10m, 20m and 21 m to thc voltage 

source). 
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Figure 5.1 Simulation demonstration system for single-end fault location 

The measured voltage and current data during experimental testing should be 

the same as for the results simulated when the two systems have the samc 

parameters. Even the phase and amplitude of fault transients in simulation 

should match the experimental results once the phase angle of the supply 

voltage is matched. Figure 5.2 shows the measured voltage and current for 

both the experimental and simulated systems when a phase to phase 1 n rault is 

imposed at the end of line section 1. The data is sampled (for processing) with 

the same sampling frequency (I MHz) and the 8bit analogue to digital 

convet1er (ADC) of the experimental system was represented using a 

quantization block. 
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Figure 5_2 Voltage and current measured from simulation and experiment 

a) Data without filtering b) Data with a low-pass tilter 

In Figure 5_2 a) and b) the data is shown before and after being processed with 

a low-pass filter with a cut-off frequency of 4kHz, The simulated voltage and 

current match the experimental test results for both the steady state and the 

hlUlt transient situation, The time axis is derived from the experimental 

measurement in which faults were set at Os as shown in the previous chapters, 

The chosen IOBT block from Matlab/Simulink acts as ideal switch with 

snubber resistance and capacitance_ The tumoff characteristic of the IGBT 
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model is approximated by two segments. When the gate s ignal fa ll s to 0, the 

coll ector current decreases from Imax to 0. 1 (max during the fa ll time (Tr), and 

then from 0.1 (max to 0 during the tail time (Tt)[ 151]. Tr and T, are used 

accordi ng to the data sheet [152] (OST adopted in the experiment, the 

simulation voltage and current wavefomls have the same di scontinuity at the 

zero-crossing area as the results from the experimental system. 

For the single-ended fault location method , the line reactance between the 

measurement point and the fault position is calculated using (3.10)-(3 . 12) with 

the same length of measured data segment employed in thc ex perim cntal 

system. Figure 5.3 shows the measured voltage and current transients. the 

created step voltage and the estimated line reactance for a I n fault imposl.:d at 

the end of secti on I as shown in Figure 5. 1. 
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Figure 5.3 Processed data and the estimated result s 

a) Processed voltage b) Processed current c) Step voltage d) Estimated line I'l!nctance 

As shown in a), b) and c) of Figure 5.3, the total length of data being processed, 

from the simulation is 12ms which is 6ms of post fault data. In d) of Figure 5.3, 

after a linear least squares curve fitting (so lid blue line), the osci ll ation in the 
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original estimated result (solid green line) is reduced (solid blue line) and 

matches with the actual simulation value (dashed red line) with only 4% error. 

In the simulated system with ideal system components the only distortion 

which has influence on the fault transients is due to the post-fault voltage and 

current discontinuity at the zero-crossing point caused by the lGBT switch (as 

shown at 0.027s in the a) and b) of the Figure 5.3). The influence of the 

discontinuity caused by the IGBT can be demonstrated by setting the segment 

of the measured current in simulation such that if does not contain u post fault 

zero-crossing time for the same fault location as in Figure 5.3. This is realized 

by changing the phase angle of the supply vo ltage to a pn.:-detcnnined value 

when the fault is imposed at the fixed time as shown in Figure 5.4. (or 

changing the fault inception angle which is same as changing the time of 1;llIlt) . 
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Figure 5.4 Results for no post-fault zero-crossing in the current 

a) Processed voltage b) Processed current c) Step voltage d) Estimated linc reactance 

In Figure 5.4, for the same fault location and fault resistance as shown in 

Figure 5.3, when there is no distortion in the estimated data because there is no 

current zero-crossing wavefonTIs in the measured infonnation as presented in a) 
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and b). The original estimated reactance in d) has a smaller oscillating error 

compared with the results from Figure 5.3 for the same fault location. The 

result after being processed with curve fitting has little di fference to the 

original estimated value which means that the original value without any curve 

fitting provides a good fault position . Curve fitting is needed due to the fact 

that distortion within the system is unavoidable and the fault inception angle is 

random for the real-time application. The fault transients generated in the 

situation of common short circuit fault with low fault res istance and high 

supply voltage in a real system offers higher SNR which also leads to a 

smoother original estimated wavefo rm (less elTor atter curve titting). These 

situations will be discussed later in thi s chapter. 

Figure 5.5 shows the si mulated estimated line reactance results uf phase to 

phase and phase to ground faults which are imposed at 4 different posi tions on 

the distribution line (shown in Figure 5.1) with a I n fault resistance 
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Figure 5.5 Line reactance result s of different fault locati ons 

a) Ground fault results b) Phase to phase fault results 
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Fl F2 F3 F4 

Estimated resuhs (~) 0.03 6.25 12.63 13.32 

Cahbrated resuhs (J.!,I-I) 0 6.29 12.72 13.36 
error% 0.22 0.30 0.67 0.30 

Table 5.1 Estimation errors for step switching ground faults 

F1 F2 F3 F4 

Estimated resuhs (~) 0.03 6.25 12.63 13.32 

Calibrated resuhs (uH) 0 6.29 12.72 13.36 

error% 0.22 0.30 0.67 0.30 

Table 5.2 Estimation errors for step switching phase iilults 

Because of the reduced influence of noise ii'om voltage source, datil acquisition 

units and environmental electromagnetic interference (EM I), t()r the same fault 

situations, the simulation results offer more accuracy than the experimental test 

results which were presented in chapter 3. In simulation results thc largest error 

for all the fault locations is 0.3 m (0.67% as shown ill Table 5.1 and 'fable 5.2) 

in distance. In simulation, the two set of test has exact the same line impedance 

between fault and the measurement point and the fuult impedance. The only 

difference is that the fault inception angle slightly varies. This small variation 

does not influence the estimated results when the fault inception angle is not 

close to zero. 

5.2.2 Simulation of the double-ended method 

The double-ended fault location simulation system reqUires another set of 

measurements at the load side as shown in Figure 5.6. 
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Figure 5.6 Double-ended fau lt loca ti on simulati on syslI.:l11 

Faults are applied with the same fa ult inception angl e as in the experimental 

system. The measured simul ation data at both ends mi.lt ches with the 

experimental data (filtered with a low-pass tiller) as shown in r igure 5.7 . 
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Figure 5.7 Measured simulation data compared with the experimental data 

a) Supply voltage b) Supply current c) Load voltnge d) Load current 

Figure 5.8 shows the estimated line reactance compared with the actual value 

used for different fault positions, using a 1 n fault resistance. The double-end 
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scheme offers good accuracy (as shown in Table 5.3) for the fault location 

results using the 12ms data set (6ms after fa ult) shown in Figure 5.7. 
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Figure 5.8 Double-ended simulatioll I:wlt loca tion result s 

Fl F2 F3 F4 

Estimated results (pH) 0.02 6.27 12.70 13.34 

Ca libra ted results (pH) 0 6.29 12.72 13.36 

error% 0.15 0.15 0.15 0. 15 

Table 5.3 Estimation errors 1'01' the double-ended fau lt location scheme 

Figure 5.9 shows the simulation results with different fa ult res istance. Sim ilar 

to the test with the experimental system, the accuracy of the simul ation resul ts 

is influenced by the fault resistance and becomes worse when the fa ult 

resistance increases (as shown in Tabl e 5.4 and 5.5) . Also, because there is 

little noise in the simulation, the simulation results offer simil ar results as the 

experimental test but better accuracy. 
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a) Result s when R1=30 b) Rcsult s when R1=SO 

F1 F2 F3 F4 

Estimated results (~) 0.02 6.25 12.63 13.32 

Calibrated results (I1H) 0 6.29 12.72 13.36 

error% 0.15 0.30 0.67 0.30 

Table SA Estimation CITors for double-ended scheme 3.0 fault 

F1 F2 F3 F4 

Estimated results (~) 0.03 6.21 12.63 13.30 

Ca ~brated results (f1I-1) 0 6.29 12.72 13.36 

error% 0.22 0.60 0.67 0.45 

Table 5.5 Estimation errors l'or double-ended scheme SO fault 

5.3 Extension of simulation work 

The simulation work involves usmg the experimental parameters not only 

confirms the results of the experimental test but more importantly 

demonstrates that the difference between real time test results and the 

simulation results in the frequency range of interest (below 3kHz) is small. The 
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simulation has a slightly better accuracy because the noise caused by voltage 

source, data measurements and EMI is not included in the simulation. With the 

confidence that only a predictable small difference exists between the two 

situations, further simulations can expand the rage of scenarios to evaluate the 

situations that are not possible to test on the experimental system. 

5.3.1 Low fault resistance 

Normally during a short circuit fault situation, the system voltage collapses and 

the system current increases abruptly to a value that is far more than system 

components can tolerate. The fault current produces considerable thermal and 

mechanical stresses in electrical distribution equipment. Faults are seldom 

solid and involve varying amounts of resistance. In the studies of faults and 

protection relaying, the connection between phases or ground involves a very 

low and in general negligible impedance [115]. 

The smallest fault resistance used in the experimental test, limited by the 

equipment current level, was 1 n. Compared with the 6.80 load resistance, the 

fault situation created is more like a load being added than a typical short 

circuit fault. The following simulation results presents faults with resistance 

varying from on to I n for both proposed fault location methods. 

5.3.1.1 Single-ended fault locations 

As mentioned before for equation (3.3)-(3.5) of Chapter 3, the single-ended 

fault location scheme uses a voltage iteration algorithm to eliminate the en'or 

caused by the voltage drop between the pre-fault voltage at the measurement 

point and the pre-fault voltage at the fault position. In the later experimental 

test part of chapter 3, the estimated results are influenced by the large fault 

resistance, so that, as presented in equation (3.10)-(3.12), a resistance iteration 

is adopted to eradicate the calculation error. Overall, the single-ended scheme 

uses six equations. Equation (3.11) is used to estimated the value of fault 
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resistance and determine whether a resistance iteration or a voltage iteration is 

going to be used for the fault location process. If the fault resistance is 

comparable to the load impedance value the resistance iteration is employed 

otherwise the voltage iteration is used. 

For example, when phase to phase short circuited faults which havc f~lLIlt 

resistance varying from 00 to I 0 are imposed at the end of the cable, the 

largest errors appear when R1=OAO which is the critical value at which voltage 

iteration is replaced by resistance iteration as shuwn in Figure 5.10 
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Figure 5.10 Single-ended results for different fault resistances 
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a) Values for reactance of various fault resistance b) Errors ror each fault resistance 

Figure 5.10 a) shows the calculated reactance values against frequency as it 

changes with the fault resistance. Figure 5.1 0 b) shows the error in percentage 

according to the actual value used. The resistance iteration starts when 

R,=OAO where the estimation results have the largest error. According to the 

load level, fault resistance level and the accuracy requirement, the resistance 

iteration stat1s at different Rr values for different systems and this has to be 

studied. NOn1H1l1y the fault impedance is much smaller than the load 

impedance in an IPS, so that only the voltage iteration is required. (such as the 

single-end method for the protection of a marine power system which will be 

discussed in chapter 6). The resistance iteration is investigated mainly due to 

the limitation of the experimental components. The estimated fault distance 

result for each fault resistance is shown in Table 5.6. 
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Fa ult re sis tance(O) 0 0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Es t ima ted(m) 21.18 21. 464 21.596 21.641 21.645 21.617 21.573 21.452 21.328 21.254 21.088 

Errors % 0.85 2.21 2.84 3.05 3. 07 2.94 2.73 2.15 1.56 1.21 0.42 

Table 5.6 The detail estimation result s for each fault resistance 

5.3.1.2 Double-ended fault location 

The double-ended scheme has a simple algorithm which involves onl y 

equation (4.2) if not considering the equations which arc used 1'01' ca lcul ati ng 

the synchroni zation angle between the measured datu from two ends (in case oj' 

un-synchronized measurements) . Va lues of fa ult resistance do not need to he 

considered in the double-ended method, as long as there arc fa ult transient s. 

The resul ts when fa ults are added at the end of line section I with the same 

range of fa ult res istance as in single-ended situation are presented in f igun.: 
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Figure 5.11 Double-ended results wi th different fault resistance 

a) Result of reactance b) Per-unit va lue of each estimation 

Figure 5.1 I a) shows almost the same reactance result s against frequency fo r 

di fferent fault resistances. In Figure 5. 11 b) , the values are Ilomalized by 

dividing each estimati ng result with the actual value used. The precision of the 

estimated resul ts decreases a little bit when Rrrises due to the smaller SN R for 

the high fault impedance transients. However, the errors are very small and 

fi xed compared with the results from the single-ended method. 
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5.3.2 Simulations with a high voltage level 

The proposed methods both involve using fault transients for fa ult loca tion. 

For a certain fa ult resistance and cel1ain fault di stance, a system with hi gher 

vo ltage level is more likely to produce larger fault transients during short­

circuit fault situations. As mentioned in Figure 5.3, with a phase to phase 20V 

(peak) vo ltage supply, the current discontinuity at a zero-cross ing time l:aused 

by the characteri sti cs of the IGST results in oscillations in the estimated line 
" 

reactance va lue. Although, after processing with linear least squares curve 

fi tting, thi s intluence is minimised, it still leads to an error in the f ~lult di stance 

calculated. However, in a system with a higher vo ltage suppl y levl:1 (550V 

phase to phase peak) the results without curve titting are good enough to 

predi ct the fa ult pos itions as shown in Figure 5. 12 

Measured vo ltage t ra nsient M easured current t ransient 
600 400 

"'-

400 1 }\ I 
200 I 

I > 200 , :'5. Q) c 0 
I 

01 I 
~ 

Or 
~ / 

(5 :::l 

\ / 
> u 

-200 1 
-200 

-400l -400 .1 
0.02 0.025 0.03 0.02 0,025 0.03 

a) time(s) b) time(s) 

Step voltage transient Est imat ion fault loca t ion in reactance 
600 , 0.2 

I " -I I E -- Curve fitt ed 
> I .c 0.15 

i 400

1 

/ 
I 0 -- Onglnal 

Q) - - -- Aculal -' J U 
c 0.1 ~ 

<Il -" 
U > I <Il ~ ".,~/ / 

Cl. 200 / @ 
~ Q) 0.05 en Q) -" c ---~,/ 

0 o ,-
0.02 0.025 0.03 0 1000 2000 3000 

c) 
time(s) 

d) 
frequency(Hz) 

Figure 5. 12 Results with high supply voltage 

a) Processed voltage b) Processed current c) Step voltage d) Estimated line reactance 

The voltage level for a nonna1 terrestrial di stribution system ranges from 

several kV to around 100kV. For More Electric Marines (M EMs) with an 

Integrated Power System (IPS), for example, in a common aircraft system the 

137 



Chapter 5 Simulation verification 

voltage level is about 115V AC at 400 Hz [2] and in marine system it is 

between several hundred volts to several kV[ I ][2]. Short circuit faults within 

these systems normally create large transients which contain enough 

information in the frequency domain to offer an accurate fault location. As 

shown in a) and b) of Figure 5.12, in the measured voltage and current 

waveforms for the single-ended method, the discontinuity at zero-crossing area 

is negligible compared with the bigger fault transients. In d), the differencc 

between the original and the fitted results is small and that means the original 

results have a good accuracy and can be directly used to predict the fault 

locations. 

The estimation accuracy is also improved for fault location using the douhle­

ended scheme in the system with a high supply voltage because the douhle­

ended algorithm otTers better results than the single-ended method for the same 

fault situation. 

5.3.3 The "non-Location zone" 

Fault location methods for distance protection schemes have been modified 

and improved to meet the requirements of the rapidly developing electrical 

industry. Such methods as based on impedance calculation, travelling wave or 

intelligent systems have been utilized in power systems for many years. Their 

reliability and practicability has been proved for real time application. 

The proposed algorithms use fault transients to estimate the fault positions and 

the therefore have advantages of speed and accuracy compared with 

conventional impedance based algorithms. However, for a fault without a fault 

transient, the presented methods do not work. This situation is not common 

and only exists in an AC power system when a fault occurs at the system 

voltage zero-crossing time (fault inception angle equal to or very close to zero). 

The condition in which the fault location estimation is not accurate due to the 

fault transient occurring with a very low SNR is called the non-location zone 

here. In the experimental system, faults are imposed on the cable randomly, so 

that it is almost impossible to find a fault with no transient. In other words, 
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although the non-location zone transient exists, its probability is very small . 

This non-location zone is therefore demonstrated by simulation result s. 

For the single-ended fault location scheme, the non-locat ion zone can be 

examined by imposed a short circuit fault at fix ed position of the cable, lor 

example at the end of line section 2 in Figure 5.1 , at a fi xed time, and varying 

the phase angle (8) of the supply voltage from 0° to 180° (this is the same as 

changing the fault inception angle). Estimated result s of line reactance aga inst 

frequency for each e are given in Figure 5.13. 
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Figure 5.13 Results of short circuit fault at di fferenl t ~IUIt incept iOIl angle 

The tests were caITied out using the simulation model with the same 

parameters derived from the experimental test system. The two lines : line l and 

line2 in figure 5.13 depict the estimated line reactance results when hlLllts arc 

imposed on the cable at a fault inception angle of 0.15° and 1.85° to the zero­

crossing angle (0°) of the system voltage waveform separately (fault inception 

angle equal to 0.15° and 1,85°). These results are derived from tests that 

increase the fault inception angle by 0.05° each time. When the hlllit inception 

angle is smaller than this two value, the high frequency fault transients is too 

weak to provide accurate impedance estimation. Compared with the actual 

reactance value between fault point and the measurement point (dashed line), 

the error of value presented in linel and line 2 are over the 1111 accuracy 

requirement (the errors in distance are 1.13m for line2 and 2.75111 for line I). A 

fault occurring at a fault inception angle very close to 0° wilI provide worse 
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accuracy as the results given in line I have larger errors than line2. For the 

single-ended method, the non-location zone, referring to the fau lt inception 

angle, is ±2° (faults within this fault inception angle range produce errors 

larger than 1m due to very small SNR) to the voltage zero-cross ing point as 

shown by the area between two dash lines in Figure 5.14. 
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Figure 5.14 Non-Iocat ion zone of single-ended mct hod refcr to systl:1ll vo ltage 

A fault in the non-location zone shown in Figure 5.14 occurs very rarely. 

However, it is more likely that the high voltages have a greater probability of 

inducing insulation failure and causing a fault which would lead to an even 

lower probability of the non-location zone occurs. The single-end algorithm 

has a bigger non-detection zone than the doub le-ended scheme. Because when 

a poor SNR occurs (i.e. a very small fau lt transient, and noi se from the Sbit 

ADC), a method that involves iteration is more likely to produce errors in the 

results. For the same fault situation, the double-ended method olTers a smaller 

non-location zone according to different fault inception angles as shown 111 

Figure 5.15. The detail results within a inception angle of ±5° is shown 111 

Table 5.6. 
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Reactance with changing fault inception angle 
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Figure 5.15 Double-ended result s for a lintlt at <Ii rICrcnt l~llIlt illcepti oll allgie 

inception angle (') -0.5 -0.4 -0.3 -0.2 -01 0 01 0.2 0.3 0.4 

errors % 0.021 0.023 0.027 0.04 01 1 0.1 0.04 0.027 0.023 

Table 5.7 Est imation errors for doublc-ended schemc 50 I ~lllit 

0.5 

0.021 

In Figure 5. 15 the results for each inception angle match and this is true even 

for the ones that have a small fault inception angles. The non-location zone for 

the double-ended algorithm in a system with a linear load is too small to he 

considered as shown in Table 5.7. 

5.3.4 Influence of non-Linear load 

As shown in chapter 3 and chapter 4, the non-linear load has little influence on 

the fault location accuracy because only a small segment of measured data and 

curve fitting are used in the calculation procedure. However, the existence of a 

non-linear load in the proposed system will influence the non-location zone for 

both proposed methods. The non-linear load which distorts the system voltage 

and current wavefonns makes the transient for the same fault inception angle 

have a lower SNR, and this is especially true when the transients themselves 

are weak. When noise is present, the non-location zone for both proposed 

methods will be enlarged. 
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By using the same diode rectifier load as explored in the experimental system 

in chapter 3 and chapter 4, the non-location zone for the double-ended method 

in a noisy system with a non-linear load is discussed as follows: 
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Figure 5.16 Results or doubl e-ended scheme wit h non-I incar load 

For the double-ended fault location scheme, in a system with a non-linear land , 

the non-detection zone can not be neglected. Compared with Figure 5.15, the 

errors within the estimated results for a fault with fault inception angle close to 

zero in Figure 5.16 are more obvious. Referring to the voltage zero-crossing 

point, faults occurring at an inception angle of 0.95° have the largest error (5.1 (Yt) 

and 1.075m in distance) as shown in Table 5.8. 

Inception angle!') 

errors% 

Table 5.8 Estimation errors for double-ended scheme used in non-linear load system 

Table 5.8 shows the detail pal1 of the non-location zone according to the fault 

inception angle. The non-location zone (±0.95° of fault inception angle) for the 

double-ended algorithm in the presences of non-linear loads is smaller than the 

single-ended scheme can provide in a system with only resistance load (±2° for 

the fault inception angle in Figure 5.14 and within this fault inception angle 
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range the estimated results have errors larger than 1 m) in the proposed system. 

The single-ended method has an even larger non-location zone (±4.5° for thc 

fault inception angle) when the system is added with the same non-linear load 

and faults as shown in Figure 5. 17 . 

20[\ 
-,----,-- ,:\ 

I \ 
15 - \ \ 

\ non-detection z o 

10 ' 
\ 

/ \ , 
\ I \ 

51 
\ \ I >" , 

\ ~ , 
~ \ \ 
'ii 

O[ \ I \ \ , 
> , 

-5 , 
" 

, ! 
\ I , 

, \ I , 
-1 0 · \ I 

, 
\ 

\, / 
-15 r / 

I 

'/ \ 
-20 ' 1- __ • I , 

0 0 .005 0 .01 0 .01 5 002 0 .0 25 0 .03 0 .035 0 .04 004 5 0 .0 5 
time (s ) 

Figure 5. 17 N on-detection zone of single-ended method for a no n-linear load 

The single-ended method offers a larger non-location zone than the doublc­

ended method for both linear and non-linear load situation. This is the 

reliability factor that needs to be considered when utili zing the method In all 

AC system. 

5.4 Influence of non-synchronized measurement 

For the double-ended fault location scheme that was examined in the Chapter 

4, the synchronization of the the measured data signal from both 

measurement points was realized using a trigger signal from the FPGA unit. 

This approach is suitable for small power distribution system such as an IPS. 

For utilization of this double-ended fault location scheme on a larger 

terrestrial distribution sytem, the problem of non-synchronization may cause 

inaccurate fault location estimation. In a larger distribution system, the nOIl­

synchronized measurements may be caused by the voltage and current 

transducer and also the synchronization trigger signal sent in the 
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communication channel may have a delay or for some situations it is not 

possible to provide such a synchronization signal. 

The synchronization angle can be calculated as a compensation for the 

double-ended fault location method which uses non-synchronized 

measurements [84][83]. In Izykowski's method [84], the synchronization 

angle was calculated by solving the trigonometic equations ( such as (5.2) and 

(5.3» and the solution that was close to zero was chosen. Since the angle 

difference for the measurements in distribution systems is normaly small, the 

unsynchronized errors can also be cancelled by using a Newton Raphson 

iteration method modified from PD]. 

The synchronization angle between the two sets of measured information 

(VI,II and V'l. , h) is defined as 6, so that equation (4.1) in Chapter 4 can be 

rewriten as equation (5.1 ) 

(5.1) 

Putting lx = XlT (x is distance of fault and line impedance value has a 

linearity against distance) in equation (5.1), then the new equation can be 

separated into real and imaginary parts as in (5.2) and (5.3). 

-Re(V1 ) sin 0 - Im(V1 ) cos 0 + Im(V2 ) + C4 

= x(C1 sin 0 + C2 cos 0 + C4 ) 

-Re(V1 ) cos 8 + Im(V1) sin 8 + Re(V2) + C3 

= x(Cl coso - C2 sin 8 + C3 ) 

C I, C2, C3 and C4 within (5.2) and (5.3) are defined as: 

C4 = Re(Zr) . Im(J2) + Im(Zr) . Re(J2) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

Eliminating x in (5.2) and (5.3) by dividing, the new equation (5.8) has only 

one unknown factor, b. 
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F(8) = a' sin 8 + b· cos 8 + c = 0 

The following equations defines the a, band c in the equation (5.9) 

a = C3 Re(V1 ) + C4 1m(V1 ) + C1 Re(Vz) + Czlm(Vz) + C1 • C3 + C2 

. C4 

b = -C4 Re(V1 ) + C31m(V1 ) + C2 Re(V2 ) - C1 lm(V2 ) + C2 • C3 

- C1 C4 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

Equation (5.8) which involves only one unknown 0 can he solved hy using a 

Newton-Raphson iteration: 

k = 1,2,3,4 ....... (5.12) 

(5.13) 

(5.14) 

The value of & is small and close to zero In most situations with non­

synchronized measurements and in the first guess for the iteration the 8k = O. 

The iteration process stops when & meets the requirement to produce accurate 

result in the fault location estimation. For example the minimum requirement 

for this simulation is 1).8 = 8k +1 - 8k < 10-3
. In the frequency range used, 

for each frequency there is a calculated &. When the measured phase has 

synchronizing errors, the calculate 1).8 will increase with frcqucncy as in 

equation (5.15). 

/j = I).t . 2 . pi . f (5.15) 

I).t is the time delay caused by phase difference. 

In the simulation system as used previously, when a fault occurs at the end of 

line section 2, a 1
0 

phase angle difference between measured V" I, and V 2, h 

was set deliberately during processing. The calculated results of the line 

reactance compared with calibrated ones are presented in Figure 5.18. 
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Estimation line reactance value with non-synchronized data 
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figure 5. 18 Result s with non-synchroni zed mcasuremetlt s 

In Figure 5.18, the estimated value ( solid line) has a Illrgl: error l:Ol11 pH I"lxl 

wi th the calibrated value because of a phase difference causl:d by 11 011-

sychronized measurements. With the same non-synchronized phases and by 

using the Newton Raphson iteration method described above in (5. 12)-(5. 14) 

15 can be est imated . Figure 5.19 shows the line reactance calculatio l1 results 

by using (5.1) which involves 8 calculated from each step of the Newton 

Raphson iteration discribed above. 

Estimation line reactance for each iteration 
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Figure 5 .19 Proceeding results for each iterat ion 
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As shown in Figure 5.19, for a 1
0 

phase difference only four steps of iteration 

are required to produce accurate results. The calculated synchroniza ti on angle 

against frequency is given in Figure 5.20. 
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Figure 5.20 The calcu lated phase difference angle in frequcnc y r;mgc 

In figure 5.20, the dashed line is the 8 result calcu lated by equat ion (5, 15) 

with a set time difference for both measurement. The so lid line is th e 8 

calcu lated for each frequency in the final step or the Newton Raph son 

iterations. 

5.5 Fault location using reclosing transients 

Automatic line reclosing relays are commonl y employed in High vo lt age 

power transmission system in which close to 77% [150] of 1 ~llI lt S arc transient 

(temporary faults) that result primarily from flashover of the insulators induced 

by lighting transients and the miss-contact flashover hom trees [115 J. The 

service can be restored by de-energizing the line for a certain length of time lor 

the fault arc to deionise and then redosing the circuit breaker. In case of 

transient faults, the system outage time can then he s ignifi cant ly reduced to 

provide a better power supply quality. According to Rosen' s paper [148] , 111 
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1989, 30% of the faults in an 11 kY distribution system are due to lighting in 

UK. 

The rec10sing procedure can be one single attempt (one-shot) or multiple-shot 

with various time intervals. The first attempt, not considering the circuit 

breaker operation time, should have a time delay of !1t which is ab lc to allow 

the fault arc to deionise. The equation mentioned by Blackman [115] defining 

!1t is: 

kV 
!1t = 34.5 + 10.5 cycles (5.21) 

Considering the typical operation of the circuit breaker, the typical closing 

operation time is about 20-30 cycles [115] (which is larger than the !1t ill 

equation (5.21 », the trip signal and reclosing signa l arc sent together. If a 

distribution line protection unit is equipped with all automatic n.:closing 

function, the transients in both voltage and current caused by circuit breaker 

rec10sing can also be used to predict the fault location . If Ileeessary, this 

reclosing fault position estimation procedure can be applied as a compensation 

for the previously discussed fault location methods. 

• -Ztotal .. 
Circuit breaker 11 Line section 1 Line section 2 Line section 3 12 

-I 

j! V, 

[ I .. -I 
4 b -

t r 

Voltage V, Rr V2 Load 
supply I 

I 
I 

Figure 5.21 System for fault location lIsing reclosing transient 

In a similar way to the double-ended fault location algorithm, fault location 

which uses transients caused by auto reclosing relay requires two sets of 

voltage and current transducers equipped at the start and the end of the 

protected distribution line in Figure 5.21. If during the first time of rec10sing 

attempt, the fault it still in the system (a permanent fault) , the transient data is 
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captured. The recorded data has to be synchronized or if not the previously 

introduced Newton Raphson iteration method has to be employed . 
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Figure 5 .22 System model cons idering trans icnt as voltnl.!c sourcc 

As described in Figure 5.22, considering the transients generated hy eil'l:uit 

reclosing as a voltage source, the original voltage source is short circuited and 

the line impedance Zxcan be calculated by (5.22): 

(5.22) 

In which Ztotat is the line impedance of the total length of the protected line 

and the impedance between measurement point I (where V I and II was 

measured) and the fault position Zxcan be calculated by (5.23): 

(5.23) 
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Figure 5.23 Recios ing transient (I nc! the t:st illlilt cd result s 
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Figure 5.23 shows the fault location results using thl: transients caused by the 

single phase reclosing process. The measured phase vo ltage and current from 

both measurement points as shown in a) and b) contain reclos ing transients and 

then transferred into frequency domain by Fr:T. For locating a fault with 

reciosing transients, the single-ended algorithm whi ch requires the knowledge 

of the pre-fault voltage infonnation can not be applied. The estimated 

reactance values are used to predict the fault position. Compared with the 

actual line reactance value to the fault point, the estimated results show good 

accuracy and the same procedure can he employed to a three phase red osing 

relay as well. 

5.6 Summary 

This chapter described computer simulation results which enhanced the 

investigation of the previous two chapters. To validate by simulation, model s 

were built with the same parameters as the experimental system and gave 

similar results to the experimental rig (only less noisy). Thi gives confidence 

that the previous test results are corrt:ct and also by simulation, the proposed 
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fault location methods can be re-examined in the conditions that are not 

possible in the experimental rig. 

Both proposed methods works bctter in the system with a high voltage whcre a 

larger fault transient can be generated. The small non-location zone in both 

methods, according to the fault inception angle, is explored in both the linear 

and nonlinear load situations. The single-ended algorithm has a slightly larger 

non-location zone than the double-ended method for both load conditions. A 

synchronization method which calculates the different phase angle between the 

two sets of data acquisition units at both ends is demonstrated by using 

Newton Raphson iteration algorithm to improve the accuracy of double-ended 

scheme in case of un-synchronized measurement. In the systl!11l equipped with 

automatic reclosing relays, the posibility of fault location llsing transictns 

created by system reclosing is demonstrated. 
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Chapter 6 

Application to a marine system 

6.1 Introduction 

Modem large ships have moved towards using electric propulsion systems and 

many other subsystems are looking to employ electrical power instead of 

hydraulic or pneumatic systems. The electrical distribution systems can now be 

rated as high as 40MW and the ship is totally reliant on its correct behaviour 

[116]. New architectures, such as zonal distribution [120], have been proposed 

and DC system is considered an attractive proposition compared to AC system 

which feeds the main distribution bus directly with the generator output and a 

step transformer [94]. 

This chapter discusses the application of the two proposed fault location 

methods in a zonal marine distribution system with an Integrated Power 

System (IPS) contiguration. Faults in each zone can be detected and located 

by monitoring the voltage and current within the protected zone. Faults 

outside the protected zone are detected and classified according to the line 

impedance estimation results. The basic structure of modern ships will be 
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introduced in Section 6.2. Sections 6. 3 and 6.4 will focus on the fa ult location 

on a ship system fo r a phase to phase fault and phase to earth fault. Onl y short 

circuit faults are considered in this chapter because the open circuit faults 

interrupt the load power suppl y but do not harm the system eq uipment. The 

conclusion and summary will be made in Section 6.5. The open circuit fa ult 

on buses can be easil y detected by monitoring the bus current. I f it occurs at 

the load side, the fault can be detected using acti ve impedance estimation 

methods. 

6.2 Zonal marine power system structure 

6.2.1 I PS within ship power system 

The IPS utili zed in ships is a revolution [2] . The traditi onal cgregated Power 

System (SPS) supplies the mechanical propulsion power und electri cal power 

fro m separate prime mover systems as shown in Figure 6. 1. However, the IP S 

uses electri cal and electroni c equipments to meet the diffe rent loads such as 

propul sion, shi p service loads and combat systems (for nava l ships) as shown 

in Figure 6.2. 
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Figure 6. 1 Segregated ship power system [2] 

I 

i 

In a traditional segregate ship power system mechanical loads and electrical 

loads are supplied by different prime movers. This simplifies the electri cal 

system design but the separate prime mover supply system increases the 
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system layout complexity and at the same brings more difficulty to system 

maintenance and expansion. 
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Figure 6.2 Integrated DC ship power system [2] 

Utilizing IPS in a ship power system, as shown in Figure 6.2, improves the 

power supply efficiency by usmg integrated power generation and 

accompanied power electronic devices to supply di fferent loads. Without large 

mechanical components such as gear boxes, the weigh of the system is reduced 

leaving more space for the other loads and passengers. The system layout and 

expansion are also more flexible in an IPS. Loads accompanied with a drive 

unit can be added in or removed out from the system as easy as a "plug in and 

plug out" process. The environment is less noisy and using controlled 

electronic drives, the system load response can be faster than in a traditional 

ship system with SPS. Fuel consumption is also reduced, as the prime mover 

can be operated in its most economical mode for a given ship speed. 
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6.2.2 Zonal ship power system 

In a ship with an IPS all the loads (such as propulsion, navigation, 

communication and other ship service loads) rely on the electric power. The 

power di stribution is vitally important to maintain reliab le operation of the 

More Electlic Ship (MES). Due to the high demand for electric power the 

efficiency and configuration of the distribution system is one of the main 

considerations when designing and building aMES. 

In order to maintain power to all the loads (especially the vital loads such as 

propul sion, control centre and communication systems) and enhancc th~ 

continuity of electric service for the vessel, the traditional conligunltion of the 

shipboard power di stribution system is a 'ring' structurc in which the loads ca ll 

be suppli ed by any generator. 
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Figure 6.3 Ring contiguration of marine power distribution system 

This ring feature is of great importance in order to ensure power supply to vital 

loads in case of failure of a generator. For a naval ship system, for instance, 

interruptions of 70-100ms of electric power can cause the entire combat system 

to shut down, with a long recovery time [117]. The generator switchboard and 

the load switchboard contain circuit breakers, controls and protection devices 

to supply the power to the loads. The bus ties connecting the generator 
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switchboards allow power transfer from one board to another. Nonnally, the 

vital individual loads are connected via the bus transfer system [I 18] which 

can be an Automatic Bus Transfer (ABT) or a Manual Bus Transfer (MBT) to 

realize a multiple power supply in case the failure of the power supply from 

one of the generators . 

Zonal marine power distribution systems are more efficient and economical 

compared with conventional ring configurations due to the cost of cables and 

switchboard feeders [119]. A zonal ship system is the solutio)) being 

considered for future marine system design [ 120]-[ 123] 
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The zonal architecture of the shipboard system, as shown In Figure 6.4, is a 

proper design can considerably enhance the re-eonfigurability of the ship 

system under faults and battle damage [120]. The power supply unit transfers 

power through two buses to the ship service converter module which could be 

a Buck converter or inverters in a DC zonal system. The two buses are port 

side bus and starboard bus. Normally the port side bus acts as the main power 

supply bus and the starboard bus is the altemative bus. The starboard bus is 

operated by bus interface unit (bus transfer unit) during the situation that faults 

are detected in the main power supply system. Note that the two buse~ may not 

physically be located on the port and starboard side, for security, one may be 
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located in the keel. Vital loads can be supplied by both buses so that even in a 

fault situation in which the main supply is switched off the vital loads can still 

work from the altemative bus. Buses are usually powered by two or more 

power supply units (including generators, converters or transformer ·) to 

prevent power discontinuity caused by a single generator fault. 

Figure 6.S [123] clearly shows the advance of the zonal configuration 

compared with conventional design. 
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Figure 6.S Comparison between zonal and conventional configuration [123] 

The electric power supply system layout is more compact in a zonal system 

and it improves the system survivability considering the casualty of indi vidual 

equipment or widespread damage due to battle damage. With respect to the 

power transfer efficiency and economy factors, the zonal configuration will be 

the main considerate for future marine power system designs. 

6.2.3 The proposed zonal distribution system 

The proposed low voltage AC zonal di stribution system is depicted in Figure 

6.6. The 6-zone, two generators' configuration is used to demonstrate an 
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actual ship power system which would have five and eight zo nes and three to 

fi ve generator sets [121 ]. 
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Figure 6.6 Proposed 6-zone marine power sys tem 

The configuration in Figure 6.6 is based on a circuit investigated [116] . Each 

zone works independently and the loads within it arc viewed as a black -box 

with only a known power consumption rating. The detail of the load is not 

considered for this work. The two power supply units which cont ain generators 

and transfonners will not work at the same time. One acts as a backup power 

supply for the maintenance or break down of the other. Both generators arc 

eaI1h connected with a high resistance to provide low phase to ground fault 

current and limit the potential transient over-voltages. Loads within each zo ne 

can be connected to the two main buses within each zo ne and the buses o f 

adjacent zones. 
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Figure 6.7 The Bus intcrr"ce ullit 

A Bus Interface Unit (BI U) is used to sw itch the vit al loads and ti ll: e 'scnti al 

loads from the fa ulty bus to the healthy buses withi n the I.one or ad.iacent zones 

whil e providing power from its energy storage during thc sw itching operation. 

Both of the two main low voltage buses can feed the Main Distribution Board 

(M OB) which supplies the load in each zone [124], with conllection and bus 

changeover fac ilitated by the BIU which is incorporated with power electronic 

converters and energy storage[ 124][ 11 6]. A Backup Distribution Board (BOB) 

is also provided in each zone to suppl y these vital and essential lands Ii'om thc 

MOB of the adjacent zone. 

6.2.4 System impedance representation 

The proposed system was modelled in Matl ab/Sim-Power System with IUlllped 

impedance components and a three-phase voltage source as shown in Figure 

6.S [11 6] with the assumption that onl y the generator in zone A is collnected to 

the system. 
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Figure 6.8 AC zonal distribution system model 
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The generator is represented by 60Hz 440V three phase voltage sources 

located in zone A and zone E (disconnected) as shown in Figure 6.6. The 

source impedance (Rs=3.12mn, Ls=7.65pH) is derived tt'om thl: transfo rmer 

parameters: 5% leakage and 98% etticiem:y. The lumped lincar loads within 

each zone are simulated with star connected and non-earthed resistors and 

inductors (phase to phase load). The impedance value is decided by the active 

power rating of each star connected load (un-earthed) and the req uired 0.9 

power factor as given in Table 6.1. The load active power is given but not 

necessarily fixed which means the given information of loads can not be used 

as pre-known during fault location estimation. The system generator is earth 

connected through a large earth resistance which is about 2600 so that the 

fault current caused by an earth fault is very slllall compared with the normal 

operating CUtTen\. 

system loads regulation 

Zone A Zone B Zone C Zone 0 Zone E Zone F 

P(kw) 126 438 906 372 1085 94 

Q(kvar) 61 212 438 108 525 45.5 

R(O) 1,44 0.36 0.17 0.42 0.14 1.67 

X(O) 0.603 0.17 0.08 0.204 0.07 0.81 

L(mH) 1.92 0.55 0.27 0.65 0.22 2.57 
Table 6.1 Load power ratmg and Impedance 

The low voltage bus which represents the length of the 6-zone ship, IS one 

hundred meters in length. Divided into five sections equally, twenty metres of 

cable is used within each section. The twenty meters of cable is then divided 
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equally into 10 small sections for the simulation of faults locations. Since the 

bus is essentially limited by the length of the ship, transmission line dynamics 

do not playa significant role [119]. Therefore the bus is considered to be a 

three cable system with lumped parameters and since the distance is short, the 

cable capacitance is ignored here. 

Zcable 
Rcable O.03mO/m 

Xcable O.24j..lH/m 
Table 6.2 Parameter of cable impedance 

The current rating of the impedance described in Table 6.2 is I kA. Howcwr, 

considering the different load rating in each scction in Table 6.1, thc bus 

current of some sections may exceed the bus rating current and the highest can 

be up to 4kA. Therefore, for some sections with large loads, additionul cabks 

are connected in parallel to meet safe current rating and this is calculated by 

equation (6.1) 

-J2 x P 
I -------
peak - 0.9 x 440 X {3 (6.1) 

where P is the load power rating and Ipeak is the peak current that may appear 

in each bus section. According to equation (6.1), the maximum current within 

each bus section with respect to its load rating is calculated and shown in Table 

6.3 

--

Imax (A) Cable No. Zcahlc (mO) of 20m 
-

Zone A-B 258 I 0.6+j 1.8 
--

Zone B-C 1096 2 0.3+jO.9 

Zone C-D 3262 4 0.15+jO.45 

Zone D-E 2496 3 0.2+jO.6 

Zone E-F 193 I 0.6+j 1.8 
Table 6.3 Current ratmg and cable impedance 

As shown in Table 6.3, for the zone with largest load, 4 cables are required in 

parallel. For zones with different maximum current levels the bus cable 

impedance is different. So that during the fault locating process, the variation 
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of per-meter value of cable impedance in different zones has to be considered 

for accurate fault position estimation. 

6.3 Single-ended bus fault location in marine system 

6.3.1 Fault location strategy 

The si ngl e-ended bus fault detection and location method which docs Ilot 

require communication channels is utili zed in each zone. The current and 

voltage transducers within the circuit breaker at location 2, 4, 6, g and 10, 

shown in Figure 6.8, monitor the system voltage and current informatioll . The 

detection of fault s within each zone is achieved by measuring the fault current 

transient. The tripping signal of the circuit breaker is sent with the logic 

cooperation of fault detection and fault location estimation. For exalllpk, 

consider the cable section ZeD as shown in Figure 6.9. 

ZeD 
)<E--

~ i i ~ ~ 7 i i ~ 
5 6 7 8 

Fb 

7 ~ Fi 1'2 F.l L F·I 

1'7 F; 

Z 'oad .1 Z'o(ld4 

Figure 6.9 Demonstration of single-ended bus fault location 

Only phase to phase short circuit faults are considered in this section because a 

phase to ground fault will not do harm to the system immediately. A phase to 

ground fault will not cause a large fault CUtTent in a system as the generator is 

connected to earth by a large (260Q) earth resistance (in fact , for thi s singl e­

ended fault location calculation, the eat1h is considered to be floating at the 

generator side). However if a second fault appears, without the clearance of the 

first one, a large fault current may be created in the fault circuit loop. A 

method for eliminating the potential danger of a second eal1h fault is discussed 

in section 6.5. 
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All the faults (FI-F7) in Figure 6.9 can be detected by measuring the over­

current caused by the faults. The distance of the fault can be calculated by 

using the proposed fault location method. The distance of faults F I, F2, F., and 

Fs can be estimated. If the accuracy is within 1m, then this technique will he 

able to distinguish the difference between F4 and F3. The 1 m accuracy is 

decided by the position of circuit breaker instalment which here is I metre to 

the start or the end of the cables within each section. However, faults at F, and 

Fs will be treated as the same location using this method. For faults occurring 

behind the protected section, F6 and F7, the calculated results will hc I1cgativc. 

When the fault location is decided, it will be clear if thc fault is within the 

protected zone or not and the circuit breaker can be operated if required. If 1111: 

estimated faults are shown to be behind the protected section or 1111 atter it, the 

circuit breaker will not be operated. A similar protection stralcgy can he uscd 

in the other zones. 

6.3.2 Fault location results 

The fault location results are demonstrated within two zones (Zone A and zonc 

D) which have different bus cable impedances, in the rest of the zones the 

same algorithm works due to the fact that all the zones have the similar 

electrical configuration and different loads (the load variation docs not 

influence the accuracy as mentioned in Chapter 3 and Chapter 4.) Figure 6.10 

shows the typical fault transient within the measured voltage and cutTent 

waveforms when a 0.01.0 phase to phase short-circuit fault in imposed at the 

end of the zoneA. 
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Figure 6.10 Measured fault vo ltage and current in zone A 

a) Voltage transient b) Current transient 

The voltage and current which contains both transient and steady state 

information measured at circuit breaker 2 in Figure 6.8 is shown in Figure 6.10. 

The Fault occurs at 0.04s of the 40ms data length which starts at 0.02s. Figure 

6.10 gives the system voltage and current at the pre- fault , fault and post fault 

stages, but the actual fault location process does not require all the data. The 

data being processed with the FFT is only 12ms in length, with the fault 

transients in the middle. In other words, the fault location calculation process 

can be completed 6ms after the fault occurs, without considering the 

calculation time, once the fault is detected by an over current strategy. The 

captured data is Blackman windowed and zero-padded before being processed 

with a FFT to realize smooth results with high hequency results. In the marine 

system, most Sh0l1 circuit faults on cables are caused by insul ation failure or 

external force damage and have small fault impedances so that when ulili zing 

the single-ended fault location algorithm, the line voltage iteration processes is 

enough to make an accurate estimation. The results of the fault loca tion 

estimation for all the fault scenarios are shown in Figure 6.11. 
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Fault location results using step transients in every 2 m 
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Figure 6.11 Fault location results of different raull dislancc in 1.1\ 1\ 

a) The measured line reactance b) Fault distance 

Actual di stance (m) 

Estimated distance(m) 

errors% 

Table 6.4 Errors within each fault location in ZoneA 
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In Figure 6.11 a) the reactance between circuit breaker 2 and the fault point 

calculated for different fault positions is presented . The estimated rcactalH.:e 

value (the slope of the curves) increases with the fault distance (by 2m each 

time). Figure 6.11 b) shows the distance values after dividing the rcactance 

values by the known per-meter lel)gth line reactance parameter in the high 

frequency range (2550Hz to 3000Hz). Due to the fact that a short data scgmcnt 

(12ms) is used for data processing, the results show better accuracy at hi gh 

frequencies. For all of the estimated fault positions, the largest error in the high 

frequency range is about O.3m (1.4%) in distance as shown in Table 6.4. 

The low frequency distortion in Figure 6.11 a) (below 500Hz) is caused by the 

time domain steady state information, the Blackman windowing atfect and the 

Sh0l1 data segment. This low frequency distortion is more obvious when an 

even shorter data window is used. In order to maintain a good accuracy, only 
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the average value of the high frequency results presented 111 Figure 6.1 I are 

used to predict the fault locations. 

When faults occur beyond the protection zone, for example, in the middle or 

the bus cable lBC or inside the generator, the over-current strategy will detect 

the fault but the fault location algorithm will decide that the fault is outside the 

protected zone. Figure 6.12 shows the estimated reactance results when Illult 

occurs at the end of the protection zone and in the middle of the Ilext zone. 
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Figure 6.12 Fault occurs outside the protection zonc 

a) The measured line reactance b) Fault di stance 

As shown in Figure 6.12, the dash line is the estimated result when a fault 

occurs in the middle of bus lBC while the solid line which shows the results of 

a fault at the end of bus ZAB (20m) acts as a comparison. The calculated line 

reactance is larger than the total line reactance of the protected zone in a) 

which indicates a fault beyond the section. In b), the distance results show that 

the fault is at 25m (actually it should be at 30m which is the middle of the next 

section) because the line reactance results are divided by the per-meter value of 

line ZAB which is twice of the per-meter value of the cable in lBC (ll3e has a 

double line due to the current rating). This problem can be solved by adding a 
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simple logic to the algorithm. Once the line reactance XAB is estimated, the 

distance D can be calculated as: 

Yes 

D = 20 + (X .. IH - 20 x X .I/, II, 'r )/ X 1</ ' 1" ' / l 
• 

• 

Figurc 6.13 Logic distance ca\cu\ntion It))' out side protectioll zO lle tiHlIt 

The actual fault distance can be estimated using the logic described in Figure 

6.13. However errors in the estimated fault distance results may be over 1m 

when the fault is beyond the protection zone duc 10 Ihe f~lcl Ihal Ihe fault 

transient flows into the load before reaching the voltage and current transd ucer 

located in CB2 (e.g. faults on cable ZeD). The elTor for a fault in the middle of 

ZBC is 0.8m and for a fault at the end of Zoc is 1.2m and if faults arc in ZCD, the 

fault location error, by using voltage and current mcasured at CB2, is even 

larger. This outside protection zone error varies with the load variation and can 

not be predicted when load infonnation is not known . One single-ended fault 

location scheme is only able to cover one zone in the zonal marine system . 

A fault ahead of the protected zone can be di stingui shed, as can a fault behind 

. it (generator fault). Faults behind CB 2 can be detected by monitoring the fault 

current but the location estimation results will be negative. The scheme does 

not have to wait for the final reactance iteration results. Once the result of the 

measured voltage divided by the measured CUITent is negative, the fault is 

behind the CB and the iteration process stops. 

For the protection scheme in CB2, both short circuit faults in the generator in 

load Zloadl and beyond cable ZAB are considered as outside protection zone and 
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no circuit breaking operation signal will be sent to CB2 in the present of these 

faults. 

The same fault protection scheme can be employed to cover the bus sect ion 

ZOE while the only difference is that in section ZOE. the line reactance is 

smaller because four cables are connected in parallel in this zone. 
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Figure 6.14 Fault location result s of di fTerent filUlt distance in ZIlt: 

a) The measured line reactance b) fa ult distance 

I AClua l distance (m) I 0 I 2 I 4 I 6 I 8 1 10 12 I 14 I 16 I 18 

4.21 I 6.45 1 I 13.95 I 16.01 -I IEstimated distance !m)1 -0.13 I 2.15 I 8.12 10.33 12.14 I 18.07 

I errors% I 0.65 I 0.75 I LOS I 225 I 0.6 I 1.65 0.7 I 0.25 l 0.05 I 0.35 

Table 6.5 Errors within each fault location in ZoneD 

20 

19.83 

0.85 

Short circuit faults with 0.0 I n fault resistance are added at every 2m along 

cable section ZOE and the fault location results (both line reactance and fault 

di stance values) are shown in Figure 6.14. The low frequency inaccuracy is 

caused by the same reasons as described in the protection of ZAB. For a section 

with smaller cable impedance, the fault location errors increase to a maximum 

value of 2.25% (as shown in Table 6.5) for all the different fault location 

results. The faults outside the protected section ZDE can be distinguished using 

the same method as demonstrated in section Z AI3. 
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Within each protection zone, the estimated fault distance results are influenced 

by the fault resistance. This is demonstrated by increasing the fault res istance 

from 0.10 to 0.50 when a fault occurs in the middle of thi s section (ZDE). The 

results are shown in Figure 6.15 
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For the required I m accuracy in this marine electrical system demonstrator, the 

fault resistance can be as high as 0.450 which is comparable to the load 

impedance presented in the Table 6.1. This f~1U1t impedance (0.450) can be 

seen as a high impedance fault. Faults with higher impcdance, over 0.450, are 

not considered here. 

6.3.3 Influence of the generator location 

The proposed marine distribution system has two generators: one is the main 

generator and the other is the backup generator for maintenance or in case the 

failure of one generator, as shown in Figure 6.6. The results in Section 6.3 .2 

shows the situation when the generator at the beginning of the ZoneA is 

considered as the main power supply. When the generator located in ZoneD 

acts as main power supply, using this single-end protection scheme, the 

voltage and current transducer locations have to be changed as well to reali ze 
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accurate fault position calculations. This is due to the fact that the supply 

impedance (at approximately the same value level as the line impedance) in 

this marine electric system is much small er compared with the load impedance. 

For a short circuit fault, most of the fault transient information fl ows in the 

supply side. The proposed singl e-ended method uses transients to locate the 

fault. The transducer is preferred to be in the side that most transient flowing to 

for a higher signal to noi se ration and better accuracy. For each section, the 

transducers have to be located close to the generator side to receive bett er 

transient information 

ZII< l ile le i' 
'--_--'I- -xx 

i i 
3 4 5 6 9 10 11 

l I.u,d l 
Z .... 'ulltl c" 

Figure 6.16 Configuration of system with the generator at a different location 

In the configuration as shown in Figure 6.16, the main generator is located at 

the end of section Zeo. the transducers for each secti on are equipped in the 

circuit breakers: 3, 5, 7, 8 and 10. The fault location algorithm is the same as 

di scussed before. 

6.4 Double-ended protection in marine system 

Unlike the single-ended algorithm which works alone and does not require any 

communication channel, the double-ended fault location method needs 

transducer infonnation from the remote end to achieve accurate fault position 

estimation. However thi s two-end measurement method provides robust und 
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precise fault location results for different fault types (bouncing fault ancl step 

fault) and is able to operate at higher fault resistances. 

Short circuit faults can be detected by comparing the difference in the current 

measured from both ends and accompanied with the double-ended algorithm 

the fault position can be located. In the discussed marine electrical system, the 

double-ended method can cover bus cables from two zones (40m) with the 

estimation results meeting the I m accuracy requirement regardl ess of the 

influences caused by the load impedance in the middle. 

For example, in order to protect the cable ZAI3 and ZI3C in Figure 6.8, there has 

to be current and voltage transducers installed in CB2, CBS and a load side 

current transducer in the load circuit brcuker of ZIoad2 (CBL2) shown in rigure 

6.17. 

/ i i 1. 7 CB5 CB6 7 

CBL 1 CBL2 CBL3 

Figure 6.17 Example ofproleclion of two zones 

A short circuit fault can be detected by comparing the current II, hand i load 

measured from CB2, CBS and load CB of Zlond2. When the result of 11.1=/ 1-/2-

Iload is larger than the pre-set threshold value (fault detection), the measured 

voltage and current data (VI, II and V2, h) from both ends is used to predict the 

fault position. Faults outside the protected zone will give the negative results, 

fault positions can be calculated when the results are positive and inside the 

protection area. Faults within the load ZIoad2 and faults at CB3 are considered 

to be in the same position for this protection scheme. The measured transients 

and the fault location results are shown in Figure 6.18 and Figure 6.19. 

171 



Chapter 6 Application in a marine system 

Measured supply and load side voltages 
I I ~ I + 

.100 , 1\ ~I 
2: ~ \ 

- v, 
·200 

" ~ -> '-, \ 

"!? 
·300 ~ '- ,/ 

~ -400 ~ ,,'- ../ ;; . "" '--':...:.J ~,-""""" ·500 

a -roo I I I I I , I 

0036 0037 0038 0039 004 0041 0042 0043 00-14 
11010(5) 

'0000 [ 

Me,asured s,upply and load ~ide curr~nts 

g .---_ ..... 
---

~ sooo l -- I, 

.::-
"C 

~ 0 ' 
.. ..--" .. -

-=' ,;..--" 

·sooo ' , , , 
0036 0037 o 0.l8 0 039 004 0041 0042 0 043 00,1,1 

b IlIn0(8 ) 

figure 6.18 Measured waveforms including both steady and transient information 

a) Measured voltages b) Measured current s 

Short circuit faults with 0.1 n fault resistance were imposed 111 the system at 

Sm intervals at 0.045. An 8ms data length with the fault tran s ients located in 

the middle needs to be processed with a FFT. Similar to the single-ended 

method, the data is windowed and zero-padded before being processed. 
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Figure 6.19 Double-end fault location results in marine system 

a) The measured line reactance b) Fault distance results 
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In Figure 6.19 a), faults within the protection zone (40m) are located atter 

being detected. Although a small amount of the transient current flows into the 

load in the middle of the protection zone, this does not have much influence on 

the accuracy of the estimated results. The cable impedance in different zones 

varies, but as long as the per-meter value of the cable impedance and the cable 

numbers that each zone has is known, by using a similar logic as that used in 

the single-ended protection method, the fault distance to CB2 can be derived as 

shown in Figure 6.19 b). 

For other zones, the location scheme is used in the same manner as dis\,;ussed 

in this Section. Unlike the single-ended method, the fault transients are 

measured from both ends so that the position and number of the generators do 

not affect the required location of transducers when applying the double-ended 

algorithm. 

The fault resistance is not considered during the line impedance calculation. A 

fault with an extremely high fault resistance (1on) will not be detected as a 

fault because its fault resistance value is almost 4 times the largest load 

impedance for all the zones. However, this double-ended algorithm can still 

locate the fault position accurately. 

Compared with the single-ended method, the double-ended method oilers 

better accuracy in the low SNR situation (transients generated by faults have 

fault inception angles close to zeros). However, it requires the infollnation 

from the remote end of the cable and this means more transducers and a 

communication channel is needed. 

6.5 Earth fault protection 

6.5.1 Basic theory 

For a system with unearthed loads and a generator connected to earth through 

large impedance, the first earth fault should not cause any large short circuit 

current to damage the system equipment. However, if the tirst ground fault is 
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not removed immediately, second earth fault may create a short circuit loop 

with the first fault and may produce a high current. 

Earth fault protection in a high impedance earthed system is not l.:ommonly 

considered. Because system operation is not interrupted, it is difticult to detcct 

an earth fault in such a system by monitoring the line voltage and currcnt 

information. Since there are no obvious fault transients, the two proposed 

passive fault location methods do not work here. In order to eliminate the 

potential over current danger, an active way of t~\Ult location mcthod which 

creates little change or disturbance to the existing system will be discussed. 

In an example system, as shown in Figure 6.20, the three-phase AC voltagc 

source is connected to em1h through the earth impedance Z£artl!' The earth 

impedance is much larger than the other system impedances including thc three 

phase supply impedances right after the voltage source, the two sections of lilll: 

impedances for each phase and the load impedances. 

Supply Impedance Line Impedance 

z : 
A - I ,III'2 : 

F; 
z/I/",.-1 : 

~~-
, Z Z : t. 2 
~ ( ' - 1.1111'1 ( ' 11111,2 i --:-
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l Z I Of III [ 12.'1/"",/ 
,----,---J 

Load Impedance 

Figure 6.20 The model of three power system with large earth impeclance 

When the first ground fault (Fi ) occurs, the fault current is small because of the 

earth impedance. If there is a second ground fault (F2 ) imposed on the 

transmission line in the same phase with the first fault, the fault current within 

the new fault loop which contain both ground faults is small because the 

voltage drop along the distribution line is small and this newly generated fault 
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current does not harm the rest of the system. If the second fault exists in any 0 f 

the other two phases, for example the fault on the phase B (F3 ), the fault 

current will be large and could do harm to the system. The key point of thc 

protection scheme is to detect and locate the first ground fault when it occurs 

so that it can be removed quickly to stop the high ground fault l:un'ent 

damaging the system when another ground fault occurs. The detection of the 

first fault does not trip the circuit breaker and this keeps the load suppl y 

continuous without requiring the load changing operation . 

The first ground fault (F1 ) can be detected by continuously monitori ng th l: 

earth current at the generator side. During the hea lthy state, thi s curn:nt is ZCI"() 

in a balance three phase system. When a ground fault occurs on the distribution 

line. a small current value can be detected and the fa ulted phase can he sdected 

by monitoring the phase voltage (voltage sag detection) . 

Once the current flowing into the earth of the generator side is detected, aner 

2ms (to let the small transient of' the first ground fault di e out) another 

resistance R switch which is in parallel with the ZEa1·tll is sw itched on to the 

ground line of the generator to create a larger current transient in the short 

circuited loop in which the first ground fault is included as in hgurc 6.2 1. 

ZEanh 

GBT 

Figure 6.21 Switch on RSWi.t Ch a fter earth fault occurs 

The current transient ( 'Switch) which contains high frequency information in 

the trequency domain is generated by the switching of R switch and it then acts 

as a current source in the faulted loop which can be used for fault location 
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calculation. In order to switch on Rswitch and also at the same time create as 

small disturbance as possible to the system, RswitCh is selected carefully to 

make sure that the peak value of [switCh is smaller than the healthy state 

system current and lasts less than 8ms. Considering the non-system power 

frequency range, in the power system model described in Figure I, during the 

operation of the switching, the system generator is short circuited and ISwitC{1 

is a cun'ent source for the circuit as depicted in Figure 6.22. 

Z ./ S 

Z l:uriJl 

Z ,./ , ,,,, ,/ 
.--------~c==J--

V Sit Ih l! 
r I 1< , 

Figure 6.22 Consider the ISwitch as CUtTent source at non-system frequ ellcy 

For the circuit in Figure 6.22, the lnon - talLlt is described by equation (6.2) 

lnon-tault = lr + lA-Load + lA-Line2 (6.2) 

where 2T is the paralleled impedances from the un-faulted phases Juring the 

first fault (F,) as in equation (6.3) 

Zr = (lB-S + lB-LineI + lB-Line2 + lB-Load)/ j(lc-s + lC - Lin cl + 

lC-Line2 + ZC-Load) (6.3) 

Considering lnon-fault is much larger than (lA - UneI + lA - S) , the current 

flowing into it is neglected. The distance between the phase voltage 

measurement point (VSwitch) and the fault position can be calculated as 

[mag (VSwitch) 

x = [Switch 

Xp er - meter 
(6.4) 
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where Xper-meter is the per-meter value of the line reactance. 

6.5.2 Demonstration in a single zone marine system 

The proposed earth fault Location method is proved by the demonstration in 

one zone (zoneA) of the marine system with the generator located at the start 

of the zone distribution bus. The generator is modelled by a three phase 

voltage source which is connected to earth by a 260n resistor. The R.\'Wltdl is 

switched on by an IGBT. The system supply impedances, cable impedances 

and the load impedances are the same as described in previous sections. 

The system healthy working state current is about 400A (peak). During an 

earth fault situation, the monitored earth current at the generator side is ahout 

I.SA peak and this value has a small variation f(JI' different fault resistances 

(from on to 10.0) at different positions because of the larger earth resistor 

(260.0). The fault detection current threshold is set to be 1.2A positive. A ncr 

2ms, the IGBT switch receives the positive gate signal tt)r switching on, the 

voltage across it is positive. By doing this, it is able to avoid the situation that 

the IGBT is switched on at the zero-crossing of the fault current (in this case 

the transient is small or zero, the SNR may not high enough to provide 

accurate results). 

When the phase to ground fault occurs at 10m on the distribution line with a 

O.SO fault resistance, a 30.0 Rswitch is switched (using IGBT) in parallel with 

the 260.0 earth resistor. The IGBT switching takes place 2ms atter the 

detection ofthe ground fault. The measured current 'Switch and voltage VSwitc:h 

in time domain are presented in Figure 6.23. 
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Figure 6.23 The measurcd VSw it c/t and [Sw it ch 

a) Voltage transient in time domain b) Currcnt lrnnsiclil ill lime domain 

As shown in Figure 6.23, a short circuit ground fuult is imposed on tht: 

transmission line at 0.04s and 2ms later the IGBT is switched on and the 

positive gate signal lasts 6ms. The data acquisition units start working 1 ms 

after the detection of the fault (at 0.041 s) and last 9ms. The 9ms data of the 

current transient and voltage transient caused by the IGBT switch arc 

Blackman windowed and zero-padded and transformed into the frequency 

domain using an FFT giving the results shown in Figure 6.24. 
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Figure 6.24 The rms va luc or transicnt s pn::scnt cd in rn.:quCIll:y domain 

a) Voltage transient in frequency domain h) Current transient in frcqucncy domain 

As expected, in Figure 6.24, the voltage and current transients in the frequency 

domain which are created by the switching of the IGBT (0.042s in time 

domain) are influenced by the smaller transient caused by switching off the 

108T (0.046s in time domain in Figure 6.23). This oscill ation within the 

wavefonns has little influence on the estimated reactance results allcr being 

processed with a linear least square curve titting as shown in Figure 6.25. 
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Figure 6.25 Estimated results and the pre-set va lue 
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The dashed line in Figure 6.25 is the pre-set value of line reactance between 

voltage measurement point and the fault position in the simulation. The solid 

line with oscillation is the one calculated by using equation (6.3) and the 

straight solid line is the results after linear least squares curve fitting. 

Compared with the pre-set value, the calculated line reactance has a small error 

which is caused by the system impedance Znon - /ault as described in equation 

(6.2). The estimated distance from the voltage measurement point is 9.65m, 

and compared the real fault di stance (10m) the error is small and within the 

accuracy requirement of 1m. As for the ground faults at other pos itions or the 

transmi ssion line (Om and 20m), the estimated value compared with the actual 

value is shown in Figure 6.26. 
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Figure 6.26 The estimated result s of different fault position 

3000 

a) Results of estimated line reactance b) Results of estimated fault distance 

Actual distance (m) 0 10 20 

Estimated distance(m) 0.12 9.65 19.43 

errors% 0.6 1.75 2.85 
Table 6.6 Errors wlthm smgle-ended earth fault IDea tIon 

Figure 6.26 a) shows the change of estimated line reactance for different 

ground fault positions at Om, 10m and 20m. The accuracy is good and after 

transfer it into the distance of each fault locating estimation by dividing the 
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values it with per-meter length cable reactance, the results are shown in Figure 

6.26 b). The small error for each fault location is shown in Table 6.6. 

The proposed fault location method is not influenced much by the variation or 

the fault resistance. Figure 8 shows the results when ground fault is imposed at 

10m of the cable with fault resistance varying from on to Ion by 0.2n each 

step. 
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Figure 6.27 The estimated fau lt location results for different fault resistnlll:c 

a) Results of estimated line reactance b) Results of estimated fault distance 

As shown in Figure 6.27 b, the error of the estimated fault distance increascs 

with the fault resistance because of the lower SNR and even with a I on t~lult 

resistor, the accuracy of the estimated results still meets the requircment. 

Rswitch is in the resistance range of DAn to 75n in thi s system to maintain the 

peak value of switched current transient lower than the system current and at 

the same time to offer a 1m accuracy when added with O. I n fault res istancc. 

Smaller Rswitch will lead to higher SNR, but the resistor that has higher power 

rate increases cost of fault location. The Rswitcll has to be chosen by 

considering both the cost and the cun·ent distortion in the typical system . 
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The proposed method not only locates the fault position but also calculates the 

value of fault resistance which may be useful for the fault classification and 

system restoration. Once the fault distance (x) is known, using the real part of 

the equation (6.4), the fault resistance Rf can be estimated by equation (6.5). 

(
VSWitCh) 

Rf = Real I - x . Rper-meter 
switch 

(6.5) 

where Rper-meter is the cable resistance value in per-meter length. 

6.5.3 Demonstration in the six-zone marine system 

For a single zone of the marine system, the estimated results are accurate 

enough to locate the fault position. However, the proposed marine system has 

six zones, as shown in Figure 6.8. The line reactance estimation will he 

influenced by the neglected impedance Znon- fault· 

The impedance Znon-tault given in equation (6.2) is much smaller in the six­

zone system than in the single zone situation when six loads are connected in 

parallel. This leads to a larger error in the fault distam:e estimation. The total 

length of the distribution line within the 6 zone system is 100m. When the 

ground fault is imposed at each 10m of the transmission line, the error caused 

by the six paralleled loads can be as high as 29% in Table 6.7. 

--"-
Fault distance (m) 0 10 20 30 40 50 60 70 80 90 100 

Estimated(m) 0 7.81 16.54 26.41 28.45 35.74 45.56 54.26 62.14 70.12 78.21 

Errors% 0 21.9 17.3 11.967 28.875 28.52 24.067 22.486 22.325 22.089 21. 79 

Table 6.7 Fault location results for situation that all the six loads are working 

The modification for this large error situation could be that when the ground 

fault is detected, within the next I Oms, the large loads arc switched otT (loads 

with small load impedance) to calculate the fault position and then switch on 

again. IOms disconnection will not cause damage to the load and not all loads 

need to be switched off at the same time. 
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Actual distance (m) 0 10 20 30 40 50 60 70 80 90 100 
Estimated distance(m) 0 9.86 19.76 29.69 39.65 49.6 59.6 69.57 79.52 89.49 9949 

errors% 0 0.14 0.24 0.31 0.35 0.4 0.4 0.43 0.48 0.51 0.51 

Table 6.8 Fault location results for situation that load in zone I is working 

Actual distance 1m) 0 10 20 30 40 50 60 70 80 90 100 

Estimated distancelm) 0 9.78 19.52 29.48 39.17 49.1 59.01 68.85 78.76 88.38 98.13 

errors% 0 0.22 0.48 0.52 0.83 0.9 0.99 US 1.24 1.62 1.87 

Table 6.9 Fault location results for situation that loads in zone 1 and z()ne6 arc working 

Table 6.8 and Table 6.9 show the estimated fault distallces compared with the 

actual ones when different loads are connected. Only loads with small load 

impedances have to be disconnected for the IOms fault IOl.:ution estimation 

time to meet the required one metre accuracy. Nonnally the loads with small 

impedances (large power rating) are the essential loads whidl should he switch 

to the other healthy bus or the energy storage unit hy BIU once the em1h tllUlt 

is detected. 

In order to utilize the proposed ground fault protection method in the discllssed 

marine system or any other distribution system and also to al.:hieve 1m 

accuracy for the whole protected cable, the ratio of the load impedance over 

cable impedance at the system frequency has to be larger than 83.24 (this value 

is derived by repeating the test of different ratios of load impedance over cable 

impedance under the condition of 1m fault location accuracy) so that the 

influence of the impedance Znon-fault can be ignored. 

For the described zonal marine system with generator ground connected 

through a large resistor, the proposed ground fault protection method 

eliminates the potential hann to the system (damage caused by the second 

ground fault) by using the simple IOBT switch equipment which causes small 

disturbance to the system. This ground fault protection scheme offers 

advantages such as small time consumption (within toms), no non-detection 

zone, Rf estimation (helps during the later fault removing) and only one set of 

voltage transfonner and current transtonner is needed. The advantages 
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described above makes the fault protection method easy to be utilized in a real 

distribution system. 

6.6 Summary 

This chapter introduced the zonal marine power systcm with IPS and 

compared it with the conventional ship system. The possihility of utilizing the 

proposed single-ended and douhle-ended fault location methods Ill!" the 

protection of a zonal marine power system is discussed. The single-end method 

works independently in each zone without requiring any comnlllllication 

equipment. The double-ended method can cover two zoncs and provide mon: 

accurate results and is more robust to different fault situatiolls. Both Illl·thods 

can be used to locate the fault and protect the system. They call he chosen 

according to different system protection requircments. 

The active earth fault detection and location method is disclissed as well to 

eliminate the potential danger that a double earth fault can cause to a high 

impedance ground system. When it came to the situation that the single ground 

fault has very small transients, the two proposed passive methods do Ilot work. 

A simple IOBT switch is added to the supply earth impedance to generate 

transients as an excitation source for the impedance estimation. The method is 

demonstrated in a singe-zone system and the limitations of employing this 

method for a six-zone marine system are presented. 
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Chapter 7 

Conclusions and future work 

7.1 Research objectives 

The research project mainly focused on developing fast and accurate 

impedance based fault location schemes which can be utilized in small 

distribution systems (vehicular IPS) for quick system repair and recovery in 

the event of short circuit faults. The main objectives of the thesis which are 

introduced in Chapter I are summarised as: 

I. Develop a fast and accurate single-ended fault location method based 011 

system impedance estimation using fault transients. 

2. Develop a fast and accurate double-ended fault location method based 011 

system impedance estimation using fault transients as an alternative option tiJr 

applications according to different fault conditions. 

3. Evaluate the proposed single-ended and double-ended algorithms according 

to different system conditions and fault conditions. 
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4. Apply the proposed fault location schemes into the protection of a zonal 

marine power system and also solve the earth fault location problem when the 

system generator is connected to earth through large impedance. 

7.2 Conclusions 

Passive impedance based fault location methods are commonly considered to 

have a smaller signal to noise ratio (SNR) than active methods. For a eablc 

distribution system, the short circuit faults caused by insulation failure or 

damage from an outside force nonnally have small fault impedances and can 

create very large transients in both voltage and current wuvcft)J'Jns. If the fault 

transients can be directly used as an excitation source for impedance 

measurement to predict the fault locations, then the low SNR prohlem f()J' the 

passive methods could be solved. 

7.2.1 Objective 1 

An impedance based fault location method which directly uses the measured 

fault transients in the current and voltage waveforms from one end of the 

distribution cable was developed in chapter 3. The singled-ended algorithm 

assumes that the voltage fault transient is a step wavefonn during the tault 

situation and uses an iteration method to reduce the error between the assumed 

step voltage using measured pre-fault voltage and the actual fault step voltage 

at the fault point. The method was validated by experimental test and the 

results show very good accuracy (error within I m for the 21 m cable system) in 

both an AC and a DC system with both linear and non-linear loads. The fault 

location process can be completed within 6ms after faults occur and compared 

with the traditional schemes which use steady state measurements and 

normally require data of few cycles, it is much faster. 
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7.2.2 Objective 2 

The assumption used for the single-ended method may not be true for a 

bouncing fault which may have oscillations in the fault transients and this will 

cause errors in the fault estimations results. An alternative passive method 

which uses the voltage and current transients from both ends of the distribution 

cable was developed in chapter 4. The double-ended algorithm which requires 

the remote end measurement information offers better fault location results t(lr 

the same fault situations as investigated by the single-ended method but more 

importantly it gives good results in the situation of a bouncing fault and high 

impedance fault within the same fault location time (6ms utter thl' fault occurs). 

7.2.3 Objective 3 

Influenced by the limitation of the experimental equipment the proposed two 

fault location methods were tested with a low voltage supply level and high 

impedance fault conditions in the experimental cable system. Software 

simulation in chapter 5 investigated the fault situations which arc close to a 

real distribution system to get confidence that the simulation can provide more 

results than the experimental rig with the same parameters. Both methods work 

better in the high voltage and low fault impedance system where larger fault 

transients are generated. The two proposed fault location algorithms have a 

small 'non-location zone' (double-end method offers a smaller non-location 

zone for the same fault conditions) due to the very small or zero fault transients 

when the fault inception angle is close or equal to zero and the small 

possibility of a non-detection zone can be reduced by using the transients 

generated by circuit breaker reclosing. Without any assumptions (as used fiJI' 

the single-ended method), the un-synchronized measurement from both ends 

may introduce errors to the double-ended method and this problem can be 

solved by using a Newton Raphson iteration method as discussed in the 

chapter 5. 

187 



Chapter 7 Conclusions and future work 

7.2.4 Objective 4 

The two proposed fault location methods were used in the protection of a zonal 

marine power system in the case of phase to phase faults in chapter 6. The 

single-ended algorithm accompanied with an over-current strategy works well 

in each zone while the double-ended method equipped with a current­

differential scheme can detect and locate faults fast and accurately within two 

zones. The phase to ground fault in the proposed marine system which has thc 

generator connected to earth through a high value of earth impedance cannot 

be accurately located. An active algorithm which involves adding a switch to 

the earth impedance was suggest to eliminate the potential danger of larger 

current being induced by the second earth fault. The active method suggested 

can cover 6 zones with predictable small errors in the estimated fault location 

results. 

7.3 Future work 

The proposed double-end and single-ended fault location algorithms were 

validated by computer simulation and experimental test on a simplified 

distribution system. They now need to be investigated in more detail for 

specific applications. In particular, the effect of power system elements such as 

capacitors, filters, PWM power converters and other power electronic devices, 

as well as noise (data acquisition) need to be considered. 

7.3.1 Future investigation in marine system 

Further investigation will focus on employing the proposed fault location 

schemes in a marine power system with more PWM converters which not only 

causes voltage and current discontinuity but also introduces high frequency 

noise from their switching components. The electric ship system will be 

simulated in more detail to assess the evaluation of the fault location method 

from a more realistic point of view. 
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An experimental validation on a more realistic ship demonstrator which 

includes distribution parameters rather than lumped parameters is a good 

option. For example, the power supplied by a generator and DC inverter based 

source, transmitted by the type of cable used in a real marine system and 

distributed to loads with constant power controls should be investigated. A 

study on how to control and combine the proposed fault location algorithm 

with the already existing over-current [128] or current difTerential [1291 

algorithm and a Bus Interface Unit (BIU) into one integrated protection 

scheme needs to be carried out. The operation time of BIU, the average speed 

of fault detection and the accuracy of fault location of the new integrated 

protection need to be fully evaluated. The active method tor earth fault location 

will be investigated in a new maline system demonstrator as well. The 

influence of distributed energy storage around the system should also he 

considered. 

7.3.2 Application for arc fault 

Arc faults appear in distribution systems. There are two possible kinds of arc 

faults. Parallel arc faults occur between two phases, or phase and ground, and 

are often a result of degrading insulation or contamination. Series arc faults 

may be a result ofloosening screw rivet connections in a bus bar [130]. A high 

current level arc fault can be detected by an over-current relay and once the 

power supply is stopped by circuit breaker, the arc is extinguished. In 

distribution systems, especially in the cable IPS of MEVs, the arc fault has a 

low fault current which can be demonstrated using laboratory equipment 

[131][ 132]. Although it may not have a high fault current, the arc current can 

seriously damage cables, switchgear and components. Heat generated from the 

arc can completely destroy the metallic terminals of connectors as presented in 

[131]. Low arc fault current are distinguished and re-ignited at the current-zero 

point which gives a unique discontinuous gap in the current waveform and the 

fault normally can be detected by comparing the frequency characteristics of 

the fault current with the normal operating current[ 130] [133]. 
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The proposed single-ended method was based on the assumption that the fault 

voltage wavefonn is a step. In the case of an arc fault, the wavefonn of the 

fault voltage transient is discontinuous or oscillating. The possibility of using 

the single-ended method for locating the arc fault, which may act as a high 

impedance fault, needs to be investigated in the future. 

Parallel arc faults (arc between phases), once detected, can be located by using 

the double-ended method which uses the transient of the arc current and 

voltage wavefonns similar to the bouncing short circuit fault with a high fault 

impedance. Due to the fact that the transients generated by arc f~lUlts arc 

smaller, a longer data measurement window may be required to produce u 

good SNR. Although there are no official analyses available, it is widely 

assumed that the series arc faults (arc fault on a particular phase) occur more 

often than parallel arc faults [\30]. However, the proposed douhlc-ended 

algorithm can not work for locating the series arc faults hy directly using the 

fault transients. The douhle-ended method has to be modified and future 

research work is required to locate the series arc fault. 

7.3.3 Application in EHV transmission lines 

Extra High Voltage (EHV) transmission lines are designed to transfer a large 

amount of electrical power from power generation sources to regional load 

areas or adjacent power systems over a long distance with high voltage levels 

(in order to reduce the energy losses due to the long distance 

transmission)[ 125]. The long exposed transmission lines are prone to short 

circuit faults. 

The main challenge to apply the proposed fault location algorithm into EHV 

transmission line in future work is the line capacitance. Beside the line 

capacitance caused by the distance between line and the earth, series and shunt 

capacitor banks are frequency installed in the long power transmission lines to 

reduce the total line impedance and reactive power compensation, thereby 

reducing the system loss and increase the system stability[ 126][ 127 J. The 

existence of large amount of capacitance in the system will result in a longer 
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time fault transient. Within the proposed fault location time, the fault transients 

may not be fully captured which may lead to inaccuracy in certain frequency 

ranges and also the changing of line impedance characteristic (in proposed 

vehicular IPS system line capacitance is neglected) may cause error in the line 

impedance calculation results. 

The second challenge is that the EHV transmission line is connected to the 

power supplies and the loads through step-up and step-down transformers. The 

larger reactance may attenuate the transient information received from the 

measurement point. Also both the single-ended and double-ended scheme has 

a non-location zone which may be enlarged in an AC system with its voltage 

and current waveform distorted by non-linear loads. The non-location zones 

have to be considered according to the requirement of the protection reliability. 

7.3.4 Application in off-shore wind farm distribution system 

In UK, the government aims to increase the renewable energy sources up to 20'Yl, 

(40% in Scotland) of total energy production by 2020. It is projected that the 

increase in renewable energy share from the present 3% will be largely based 

on increase in wind energy generation, which is likely to become one of the 

main source of renewable energy in UK and in many other countries 

[134][ 135]. Because of the economy of scale and increasing energy demand, 

wind fanns will have larger capacity in the future. As of November 20 10, the 

Thanet Offshore Wind Project in United Kingdom is the largest offshore wind 

farm in the world at 300 MW, followed by Horns Rev II (209 MW) in 

Denmark[137]. At the start of2011, the installed capacity of wind power in the 

United Kingdom was over 5.2 GW [138] and the UK is ranked as the world's 

eighth largest producer of wind power. Wind power is expected to continue 

growing in the UK for the foreseeable future and 'Renewable UK' estimates 

that more than 2 GW of capacity will be deployed per year for the next five 

years [139]. 

Due to the environmental and social aspects, the off shore wind fann rated at 

100-500MW has a distance of 100-150km from the shore [136] and the 
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connection of the wind fann to the on shore grid is carried out by HYDe links 

(because of the capacitance of submarine cables, and the corresponding high 

reactive currents, the HV AC is avoided) [140]. The cost of removing and 

repairing faults on these submarine transmission lines could be very high 

without knowing the exact fault locations. A fast and accurate fault location 

algorithm is needed for the protection of submarine HYDe transmission lines. 

The proposed methods have the advantage on an HYDe system that there will 

not be a non-location zone when the voltage is close to zero. However, for 

employing the proposed fault location method in the HYDe transmission line 

as future work, the challenges have to considered are: firstly, the large 

capacitance exists on transmission line. Nonnally capacitor filtering banks arc 

installed at the two ends or in the middle of the transmission lines. Secondly, 

the behaviour of the power supply. Wind farms commonly usc double fed 

induction generators with filter banks and the reaction of the capacitive supply 

according to faults has to be considered. Thirdly, the HYDe links have 

controlled converters such as the voltage source converters and the ST A TCOM 

for line voltage and frequency regulation. Yoltage drops on the transmission 

line will be compensated. For the proposed methods which use fault transients 

a fast fault location which could be completed before the proceeding of the 

voltage correction is required. 
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