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ABSTRACT 

Numerical simulation techniques play an important role due to their flexibility in 

dealing with a broad range of complex geometries and material responses. This 

flexibility requires substantial computational time and memory. Most numerical 

methods use structured grid for graphical discretization, although this approach is 

straightforward it is not ideal for smoothly curved boundaries.  

In this thesis the two-dimensional Transmission Line Modelling (TLM) method based 

on unstructured meshes is adopted. TLM is an established numerical simulation 

technique that has been employed in a variety of applications area. Using unstructured 

meshes to discretize the problem domain permits smooth boundary presentation which 

provides significant enhancement in the flexibility and accuracy of the TLM 

simulations. An algorithm is developed to implement Unstructured Transmission Line 

Modelling (UTLM) which is carefully designed for simplicity and scalability of model 

size. Several examples are employed to test the accuracy and efficiency of the UTLM 

simulations. 

Delaunay meshes, as a type of unstructured meshes, provide good quality triangles but 

have the disadvantage of providing close to zero transmission line length which has 

impact on the maximum permissible time step for stable operation. In this thesis, a 

simple perturbation method for relaxing the minimum link length and clustering 

triangles in pairs is presented, which permits substantial increase in time step and 

hence computational runtime to be made without compromising the simulation 

stability or accuracy. Also, a new model for relaxing the short link lines that fall on 

the boundaries is presented. 

UTLM method is based on temporal and spatial sampling of electromagnetic fields 

which results in dispersion. In this thesis, dispersion characteristics of the unstructured 

TLM mesh are investigated and compared against structured TLM results for different 

mesh sizes and shapes. Unlike the structured TLM mesh, the unstructured mesh gives 

rise to spatial mode coupling. Intermodal coupling behaviour is investigated in a 

statistical manner upon the change of the mesh local characteristics.  



ii 

PUBLICATIONS 

1. Lamia Khashan, Ana Vukovic, Phillip Sewell, Trevor M.Benson, “Assessment of 

Accuracy and Runtime Trade-offs in Unstructured TLM Meshes for 

Electromagnetic Simulations”,  2013 Loughborough Antennas & Propagation 

Conference, 11-12 November 2013, Loughborough, UK. 

2. Lamia Khashan, Ana Vukovic, Phillip Sewell, Trevor M.Benson, “Dispersion in 

the 2D Unstructured Transmission Line Modelling (UTLM) Method”, 2015 IEEE 

International Conference on Electromagnetic Computability, 2-5 February, Hong 

Kong, Hong Kong SAR. 

3. Lamia Khashan, Ana Vukovic, Phillip Sewell, Trevor M.Benson,  “Assessment of 

Dispersion and intermodal coupling in the Unstructured Transmission Line 

Modelling (UTLM) Method”, in preparation for Microwave and Optical 

Technology Letters.  



iii 

ACKNOWLEDGEMENTS 

First I would like to thank my supervisor, Prof. Phillip Sewell, his invaluable 

suggestions made this work successful. I would like also to thank my supervisor, Dr. 

Ana Vukovic for the constant guidance, support and patience throughout the PhD. She 

was thoughtful, kind and a sincere supervisor and friend.  

My sincere thanks go to Dr. Ashraf Abdelraouf for helping me understand Object-

Oriented Programming and for providing me his valuable insights on system 

implementation. He also provided his time and advice throughout the whole PhD path. 

I would like to thank all my friends and colleagues in my university, Misr International 

University (MIU). I am thankful to the head of administrative affairs, Mr. Hassan 

ElRashidy and special thanks to the head of the department Assoc. Prof. Dr. Alemam 

Ragab. 

I am very grateful to Prof. Hoda Hosni for being my rock, and for providing a role 

model in every aspect of life. I wish someday I can be a beautiful and successful person 

like her.  

Sincere thanks to my brother Eng. Ahmed Khashan and my uncle Eng. Adel Kabiel for 

the support and the prayers. 

I thank my husband Dr. Tarek Nasser for his patience, for encouraging me to pursuit 

my studies and for being of a great support in all the struggles and frustrations in my 

PhD.  

And finally, I am deeply and forever indebted to my mentor and my father Prof. 

Mahmoud Khashan, who believed in me and saw the potential that I didn’t realize that 

I have. He pushed me to pursuit my PhD in the University of Nottingham in a very 

rough time, but life didn’t give him the chance to accompany me along that long road. 

Dad, I owe you everything I learnt and every success I achieved in my life. God rest 

your soul. 



 

iv 

TABLE OF CONTENTS 

Abstract ......................................................................................................................... i 

Publications .................................................................................................................. ii 

Acknowledgements ..................................................................................................... iii 

Table of Contents ........................................................................................................ iv 

List of Symbols .......................................................................................................... vii 

List of Acronym .......................................................................................................... ix 

Chapter 1. Introduction ............................................................................................ 1 

1.1 Background ................................................................................................... 2 

1.2 Organization of the thesis ............................................................................ 10 

Chapter 2. A review of unstructured numerical techniques .................................. 12 

2.1 Introduction ................................................................................................. 12 

2.2 Maxwell’s equations and wave equation ..................................................... 12 

2.3 Transverse modes ........................................................................................ 14 

2.4 General plane wave equation ...................................................................... 15 

2.5 Boundary conditions .................................................................................... 19 

2.6 Numerical techniques for electromagnetic problems .................................. 20 

2.6.1 Finite Element Method (FEM) ............................................................. 21 

2.6.2 Finite Difference Time Domain (FDTD) ............................................. 26 

2.6.3 Transmission Line Modelling (TLM) .................................................. 32 

2.6.4 Errors in numerical methods ................................................................ 45 

2.7 Unstructured meshing techniques................................................................ 46 

2.8 Summary ..................................................................................................... 51 

Chapter 3. Two-Dimensional Unstructured Transmission Line Modelling .......... 52 

3.1 Introduction ................................................................................................. 52 

3.2 Unstructured meshes and Delaunay triangulation ....................................... 53 

3.2.1 Delaunay properties ............................................................................. 53 

3.2.2 Delaunay triangle circumcentre ........................................................... 57 

3.2.3 Voronoi mesh ....................................................................................... 58 

3.3 2D UTLM node ........................................................................................... 60 

3.4 Circuit analysis of shunt TLM node ............................................................ 68 

3.4.1 Stub model of inductor and capacitor .................................................. 68 

3.4.2 Thevenin equivalent circuit .................................................................. 71 

3.4.3 Scatter and connect processes .............................................................. 74 

3.5 Implementation of 2D unstructured TLM ................................................... 77 



 

v 

3.5.1 Mesh geometry ..................................................................................... 77 

3.5.2 Software Design ................................................................................... 80 

3.6 General unstructured TLM algorithm ......................................................... 82 

3.6.1 Pre-processing ...................................................................................... 84 

3.6.2 Main process ........................................................................................ 87 

3.7 Results ......................................................................................................... 89 

3.7.1 Effect of number and type of meshes on an air-filled cylindrical PEC 

Resonator ........................................................................................................... 89 

3.7.2 Effect of number and type of meshes on dielectric-filled cylindrical 

resonator ............................................................................................................. 99 

3.7.3 Effect of number and type of meshes on an air-filled rectangular 

resonator ........................................................................................................... 106 

3.8 Summary ................................................................................................... 114 

Chapter 4. Triangle Pair Model for 2D Unstructured TLM ................................ 116 

4.1 Introduction ............................................................................................... 116 

4.2 Triangle pair model ................................................................................... 119 

4.3 Short link line on the boundary plane........................................................ 124 

4.3.1 Short-circuit boundary ....................................................................... 124 

4.3.2 Open-circuit boundary ....................................................................... 126 

4.3.3 Impedance boundary .......................................................................... 127 

4.4 Pair model implementation ....................................................................... 128 

4.5 Results ....................................................................................................... 130 

4.5.1 Air filled cylindrical PEC resonator ................................................... 130 

4.5.2 Dielectrically loaded cylindrical resonator ........................................ 136 

4.6 Summary ................................................................................................... 140 

Chapter 5. Dispersion and intermodal coupling in 2D UTLM ............................ 141 

5.1 Introduction ............................................................................................... 141 

5.2 Mesh quality .............................................................................................. 142 

5.3 Plane wave propagation ............................................................................. 143 

5.4 Problem description ................................................................................... 148 

5.5 Study of plane wave dispersion ................................................................. 151 

5.6 Study of inter-modal coupling ................................................................... 164 

5.6.1 Mode coupling in structured meshes.................................................. 165 

5.6.2 Mode coupling in unstructured meshes.............................................. 167 

5.7 Summary ................................................................................................... 187 

Chapter 6. Conclusions and Future work ............................................................ 188 

6.1 Conclusions ............................................................................................... 188 

6.2 Future work ............................................................................................... 193 



 

vi 

Appendix: Unstructured TLM simulator ................................................................. 194 

References ................................................................................................................ 200 

 



 

vii 

LIST OF SYMBOLS 

E Electric field intensity [V/m] 

H Magnetic field  intensity [A/m] 

Z Impedance [] 

Y Admittance [S] 

L Inductance [H] 

C Capacitance [F] 

o,r Free space and medium relative permittivity [F/m] 

µo,µr Free space and medium relative permeability [H/m] 

∆l Spatial segment [m] 

∆x, ∆y, ∆z Spatial segment in x, y and z directions [m] 

∆i Link length of segment I [m] 

∆min Minimum link length [m] 

∆t Time step [s] 

k Time index 

 Wavelength [m] 

c Free space velocity [m/s] 

uTL Signal velocity on transmission line [m/s] 

ZLm Impedance of link line m [] 

YLm Admittance of link line m [S] 



 

viii 

YSm Admittance of stub m [S] 

𝑉𝑘 𝐿
𝑖 Incident voltage on link L at time k [V] 

𝑉𝑘 𝐿
𝑟 Reflected voltage on link L at time k [V] 

Si Triangle side length i [m] 

E Edge 

N Neighbour 

 Angular frequency [rad/s] 

fa Analytical resonance frequency [Hz] 

fTLM TLM resonance frequency [Hz] 

∆Thres Threshold length [m] 

ko Free space wave number [rad] 

vp Phase velocity [m/s] 

kx, ky Wave number in x and z directions [rad] 

d Parallel plate waveguide width [m] 

L Parallel plate waveguide length [m] 

Aav Average mesh area [m2] 

Q Mesh quality factor 



 

ix 

LIST OF ACRONYM 

2D Two-Dimensional 

3D Three-Dimensional 

ABC Absorbing Boundary Conditions 

AFT Advancing Front Technique 

BVP Boundary Value Problems 

CC Circumcentre 

CEM Computational Electromagnetic 

EM Electromagnetic 

EMC Electromagnetic compatibility 

FDTD Finite Difference Time Domain 

FEM Finite Element Method 

FFT Fast Fourier Transform 

MoM Method of Moments 

PEC Perfect Electric Conductor 

PML Perfectly Matched Layer 

STLM Structured Transmission Line modelling 

TLM Transmission Line Modelling 

TMmn Transverse Magnetic mode of order mn 

UTLM Unstructured Transmission Line modelling 



1. Introduction 1 

 

Chapter 1.  

Introduction 

Electromagnetic (EM) fields are present everywhere in our environment. Man-made 

sources of electromagnetic fields that form a major part of industrialized life such as 

microwaves, radio frequency and electrical systems are characterized by frequency 

and its corresponding wavelength, where fields with different frequencies interact with 

bodies in different ways. Electromagnetic simulation is a common activity in many 

branches of science and technology where different methods can be applied for 

simulating the interaction of electromagnetic fields with physical objects and/or 

environment.  

A variety of methods are available to solve EM equations but real-world 

electromagnetic problems are in general not analytically soluble which demands the 

use of numerical techniques to approximate the solution of EM equations. Numerical 

solution of electromagnetic problems started mid-sixties due to the increase of 

computer capabilities, and since then it played an important role in solving EM 

problems due to their flexibility in dealing with a broad range of complex geometries 

and material responses. However, this flexibility requires substantial computational 

time and memory. Consequently, both the complexity and scale of the problems have 

to be compromised limiting the accuracy of the simulations produced, which is 

severely hampering systematic progress in many technological areas. It is becoming 

more apparent that relying on rapidly increasing computer power is not a sustainable 

strategy for overcoming the limitations of large scale simulations. Therefore, it is 

important that the computational resources available are used in the most effective 

manner possible and that the new and improved algorithms are constantly under 

development. 

The field of numerically solving the field equations is known as the Computational 

Electromagnetics (CEM). CEM is a fast growing area that is concerned with 
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development of numerical techniques for modelling of general problems [1-4]. This 

makes CEM valuable to design or model waveguides, antennas, satellite, radar and 

varieties of communication systems through computationally efficient 

approximations. 

1.1 Background 

Electromagnetic behaviour is governed by Maxwell’s equation, which best describe 

the relationship between the electric  and magnetic fields that form the electromagnetic 

wave. These fields are time-dependent and can be expressed spatially in different 

coordinate systems. Maxwell’s equations can be expressed in either differential or 

integral forms and are solved through analytical or numerical methods to extract the 

electric and magnetic fields components.  

There are several popular numerical techniques that are used for solving 

electromagnetic problems. Choosing the correct method that suits the intended 

problem is of great importance in order to obtain the correct results and through the 

most effective use of the computational resources. CEM can be generally divided into 

time-domain or frequency-domain methods and depending on the operator domain 

methods can be classified into differential or integral equation methods [5]. 

Time-domain numerical methods are best suiting problems involving transient 

response, nonlinear or time-dependent parameters. Alternatively, problems requiring 

steady-state response or with frequency-dependent parameters are better solved using 

frequency domain methods.  

Differential numerical methods discretize the differential form of Maxwell’s equations 

over the problem space. In differential methods physical laws are applied on number 

of discretization elements N occupying the modelled region. The resultant is large but 

sparse system of linear algebraic equations, which requires a CPU time and memory 

of the order O(N) when solved iteratively [3]. They are best used in modelling 

inhomogeneous or non-linear problems, but then requires special treatment of open 

boundary problems [1]. Such methods are Finite Difference Time Domain (FDTD) 

[6], Transmission Line Modelling (TLM) [7] and Finite Element Method (FEM) [8]. 
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These methods are represented by a sparse matrix solution where each sample couples 

to few others such as the exchange of data between nearest neighbours; this result a 

matrix with sufficient number of zeros. Sparse matrices are solved iteratively in a very 

efficient way and can compress easily for huge matrix since it is mostly zero, also, 

they often parallelise very well. On the other side, in order to get the required accuracy 

more and smaller discretization elements are required. FEM, FDTD and TLM are 

among the most popular and successful numerical methods in solving electromagnetic 

problems. The overview of FE, FDTD and TLM methods will be discussed in detail 

in Chapter 2. 

Integral equation methods use the integral form of Maxwell’s equations, and they 

require discretization of only the source of electromagnetic field such as the surface 

charge density. Integral methods result-in dense linear system. The dense system 

requires a CPU time and memory of the order O(N2) if solved iteratively, which 

consequently would be intensive for large-scale problems [3].  Integral methods work 

best with open-boundary problems but are not suitable for inhomogeneous problems 

[9]. The Method of Moment (MoM) [10] is one example of integral equation method, 

where only the surfaces are discretized so fewer points are present and each entry is 

stored in a dense matrix. Dense matrices are small matrices but they are not as efficient 

as sparse matrices to solve and they are not amenable to parallelization. 

Both differential and integral methods require problem discretization in which general 

rule of thumb is that the discretisation length is equal to or less than one-tenth the 

wavelength [1].  

In general, solving a complex problem using numerical methods incurs high 

computational costs in computer-memory and simulation-time. There are three 

unavoidable sources of errors in numerical solutions; modelling error, truncation error 

and roundoff error [4]. Modelling error is presented due to several assumptions made 

in the mathematical model such as the assumptions of linearity or homogeneity, etc. 

Truncation error is due to the numerical analysis that requires the usage of finite 

number of terms in some expansions. This error can be reduced by using more terms 

in an expansion or reducing the discretization length and the time increment. And 

finally the roundoff error is due to the limited size of the computational memory and 
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this error can be minimized by the use of double-precision arithmetic. In addition to 

these errors, a numerical error or dispersion error occurs due to descretizing the 

problem into finite mesh resolution. Using fine meshes can minimize the numerical 

dispersion but significantly impacts the computational resources. 

Meshes are categorized as structured and unstructured. A structured mesh is a regular 

array of quadrilateral (squares or rectangles) in 2D problems as shown in Figure 1.1(a) 

and hexahedron (cubes or rectangular parallelepiped) in 3D problems to discretize the 

problem space. Unstructured mesh is irregular pattern of triangles in 2D problems as 

shown in Figure 1.1(b) and tetrahedral in 3D problems [11, 12]. 

  

(a) (b) 

 Figure 1.1: Rectangular space discretized using (a) structured and (b) unstructured meshes. 

A structured mesh provides straightforward implementation of the numerical methods; 

this also involves simple indexing of cells and reasonable value of run time since the 

discretization length is manageable. On the other hand, some problems feature curved 

domains such as circular resonators which are more difficult to discretize using 

structured cells. Structured mesh introduces quantization error due to staircase 

approximation of the curved boundaries as shown in Figure 1.2. 

The staircasing error also introduces numerical noise in simulations. These errors can 

be minimized by reducing the mesh size which in return increases the total run time. 
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Figure 1.2: Curved boundary modelled by structured meshes, where staircase approximation 

of the curved boundary causes quantization error. 

To use the simplicity of the structured mesh but also be able to accurately model curved 

geometries and fine features two different types of conformable surface models are 

used; namely, locally distorted grid models in which the basic Cartesian grid is 

preserved except those adjacent to the structure surface [13] as shown in Figure 1.3(a), 

globally distorted grid models (body fitted) in which mesh follows structured non-

Cartesian grids that conform to the surface [14-16] as shown in Figure 1.3(b). 

Multigriding is another meshing technique that uses structured mesh of different 

resolutions to different areas of the same problem [17-20] as shown in Figure 1.3(c). 

Both multigriding and variable mesh techniques are used to increase the spatial 

resolution around small features in the problem. In a variable mesh different sizes of 

structured mesh are employed to model specifications of the problem space as shown 

in Figure 1.4(a). As for the multigriding scheme shown in Figure 1.4(b), regions of 

uniform coarse and uniform fine meshes are employed wherever it is appropriate. 

The computational complexity and the multiscale nature of modern problems demands 

that structured meshes are replaced by unstructured meshes [21-24]. Unstructured 

meshes use triangles and tetrahedral in 2D and 3D problems, respectively. The benefit 

of using unstructured meshes is that it is used to discretise geometries that do not fit 

into rectangular Cartesian coordinates, for example curved waveguides, bends and 

directional coupler. It proved its efficiency in modelling thin wire embedded in large 

homogeneous region [25], and modelling optoelectronics devices [26] and micro-

resonators [27, 28]. Also, unstructured mesh can be used at the interface between 

coarse and fine structured meshes in multigriding schemes [23]. 
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(a) 

 

(b) 

 

(c) 

 

Figure 1.3: Structured modelling of curved surfaces by (a) locally distorted grid, (b) globally 

distorted grid and (c) multigriding 

 
 

(a) (b) 

Figure 1.4: (a) variable mesh and (b) multigriding schemes 

Unstructured mesh models curved lines using piecewise linear elements as shown in 

Figure 1.5 in which the curved boundary is discretized by polygon approximation [23, 

24, 29]. Unstructured meshes can overall reduce the number of mesh cells and they 

provide greater freedom in providing fine resolution to one region and coarse 

resolution to others [30]. However, as each cell has an increased set of attributes to 

define connectivity and position compared to the structured mesh, unstructured meshes 

typically involve more complicated algorithms, larger amount of memory and longer 

pre-processing time to determine the cells relative positions and cells inter-
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connectivity; which all together adds to the overall computational runtime. Also, the  

timestep can be very small in unstructured mesh as well due to the smallest geometry 

in the problem [23, 31] which leads to long run time. 

 

Figure 1.5: curved boundary modelled by unstructured meshes. Triangles offers very low 

quantization error to the curved boundary. 

Different techniques are adopted for unstructured mesh generation; some of the most 

used techniques are Advancing Front mesh (AFT) and Delaunay mesh [12]. In the first 

approach the element creation propagates from the boundaries of the domain so points 

are placed inside the domain while creating the element of the meshed region, whilst 

Delaunay triangulation refers to particular connectivity for a given set of points [30]. 

Advancing front mesh provides high quality 2D meshes but not necessarily good at 

the centre of the domain, and it is suitable for meshing boundary layers but it is not 

efficient for meshing 3D problems [12]. Delaunay triangulations are also robust and 

efficient and have the advantage of maximizing the minimum angle. 

One of the widely used unstructured models is Delaunay triangulations [30, 32]. 

Delaunay meshes are well-known set of triangulation of an arbitrary set of points. It 

has the advantage of maximizing the minimum angle and avoiding skinny triangles 

which consequently provide good quality triangles [32]. They also provide minimum 

error for field approximation over a domain [23]. These characteristics have important 

implications in practice, and stability in numerical computations. In some methods it 

is better to represent the Delaunay mesh by its dual mesh known as Voronoi [33, 34]. 

Voronoi mesh [35] is formed by connecting the circumcentres of the Delaunay 

triangles so each segment in the Voronoi mesh is orthogonal to the original Delaunay 

mesh as shown in Figure 1.6. More detail on Delaunay triangulations is given in 

Section 3.2. 
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Delaunay mesh

Voronoi mesh

 

Figure 1.6: Delaunay mesh and corresponding Voronoi mesh 

As using the unstructured mesh is computationally expensive it is only used when 

necessary, however, one of the very useful usage of triangular nodes is that it can be 

used to stitch together different mesh areas of coarse and fine structured meshes [19] 

as shown in Figure 1.7. 

 

Figure 1.7: Unstructured mesh (red) used at the interface between coarse (blue) and fine 

(green) structured meshes 

The TLM method based upon triangular mesh for two-dimensional (2D) problems [23] 

and tetrahedral mesh for three-dimensional (3D) problems [24] both have been 

reported as a general tool and as a special case of multigriding [19, 23, 24, 36]. Both 

2D and 3D TLM unstructured meshes are based on Delaunay mesh. The analysis and 

implementation of two-dimensional TLM based on Delaunay meshes will be displayed 

in detail in Chapter 3. 

Readily available software for 2D and 3D Delaunay-based triangulations [37, 38] 

discretize the problem domain by the insertion of points that define the problem space. 
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Then the required mesh quality and mesh density are requested from the mesh 

generation software, which in return insert additional vertices within the problem space 

to achieve such demands. Although the criteria of meshing is quite clear in many 

documents, but obtaining a mesh of good quality is far from being simple.  

An important issue that arises in Delaunay triangulation is that the circumcentre of the 

Delaunay triangle can lay outside the triangle which affects the distance between the 

two adjacent circumcentres. This distance can be very small or even equal zero. The 

time step for the TLM is calculated upon the shortest distance between triangle 

circumcentres [7, 23]. Having a very small or zero distance will lead to infinitesimally 

small time step which has big impact on the computational resources. In such scenario 

it is required to investigate approaches that will maximise the minimum distance 

between triangles circumcentres as will be discussed in Chapter 4.  

The dispersion of TLM and FDTD with structured meshes has been investigated and 

documented in [7, 39-44]. Analytical relations and formulas for dispersion for 

condensed TLM nodes are reported in [41]. Two-dimensional TLM and FDTD have 

identical propagation characteristics [39], and both TLM nodes and FDTD mesh are 

isotropic (or dispersionless) at low frequencies [42]. Three dimensional TLM and 

FDTD scheme do not have the same propagation characteristics where the FDTD 

offers better dispersion characteristics [39]. It is proved that numerical dispersion 

depends on the direction of propagation as have been reported in [7] for 2D structured 

TLM, where zero dispersion is experienced for waves propagating at 45o through the 

mesh and the maximum dispersion for waves propagating at 0o angle. Characterization 

of dispersion error is a critical enabler to allow confident selection of parameters by 

user and it is never been studied or reported to date for unstructured TLM. Therefore, 

it is important that the user has reference benchmarks in order to permit them to 

manage dispersion errors and in most cases these are expressed in terms of known 

results for simple geometrical scenarios such as free space. A complete study of 

dispersion error for 2D unstructured TLM is reported in Chapter 5. 
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1.2 Organization of the thesis 

This thesis focuses on the two-dimensional TLM method based on unstructured 

Delaunay mesh. 

Chapter 2 overviews fundamental EM theory including Maxwell’s equations, wave 

equation and boundary conditions. It presents an overview of different types of 

meshes. Also, it provides an overview of the most used numerical techniques working 

on structured and unstructured meshes. And finally, it highlights and considers a 

survey study of common features between TLM and its competitors. 

Chapter 3 presents the mathematical derivation of the 2D UTLM technique together 

with the algorithm of how the author has practically implemented it in the course of 

this work. It also presents the concept of Delaunay triangulations and its associated 

parameters. The first contribution of this research develops a simulator that works with 

both unstructured and structured meshes. The simulator incorporates all the advanced 

TLM concepts and procedures described in [7, 23] using the object-oriented 

programming paradigm. Chapter 3 also analyses the accuracy and efficiency of the 

developed UTLM numerical code on several examples of resonant cavities and 

captured it to the equivalent structured mesh. 

Chapter 4 describes a method for increasing the time step in the 2D UTLM. Since the 

time step in UTLM is determined by the shortest distance between triangles 

circumcentres in the meshed problem, all pairs of triangles that share a circumcentres 

distance shorter than a given threshold are merged together and processed implicitly 

in the algorithm. Furthermore, a new model for isolating triangles with short link lines 

located on boundaries is derived. The impact of isolating triangles with short links or 

merging pair of triangles on the accuracy and run time is investigated for an air-filled 

PEC circular resonator and a dielectrically loaded PEC circular resonator. 

Chapter 5 presents a study of the dispersion and intermodal coupling of the UTLM 

mesh for 2D unstructured problems. Dispersion of a plane wave is analysed on a 

rectangular space with an open boundary condition on top and bottom to simulate open 

space. Dispersion introduced by unstructured meshes is analysed and compared with 

the results obtained using the structured mesh. Furthermore, the impact of the mesh 
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quality and size is investigated by monitoring the mode coupling between the excited 

spatial mode and other spatial modes. 

Chapter 6 summarises the main conclusions of the thesis and gives suggestions for 

future work. 
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Chapter 2.  

A review of unstructured numerical techniques 

2.1 Introduction 

This chapter will outline the fundamental concepts of electromagnetics including 

Maxwell’s equations, wave equation, boundary conditions and plane wave solution. 

Widely used differential numerical methods including Finite Element Method (FEM), 

Finite Difference Time Domain (FDTD) and Transmission Line Modelling (TLM) 

will be overviewed with special attention to conventional TLM. Different types of 

meshing techniques are also discussed. 

2.2 Maxwell’s equations and wave equation 

Maxwell’s equation describe the relationship between the electric  and magnetic fields 

that form the electromagnetic wave. The differential form of time varying Maxwell’s 

equations can be expressed in differential form as [45], 

 ∇𝑥�̅� = −𝜇
𝜕�̅�

𝜕𝑡
, (2.1.a) 

 ∇𝑥�̅� = 𝐽 ̅ + 𝜀
𝜕�̅�

𝜕𝑡
, (2.1.b) 

 ∇. 𝜀�̅� = 𝜌𝑣, (2.1.c) 

 ∇. 𝜇�̅� = 0. (2.1.d) 

where �̅� is the electric field vector [V/m], �̅�  is  the magnetic field vector [A/m], v is 

the electric charge density [coul/m3],  the current density 𝐽 ̅ = 𝜎�̅̅� where  medium 

conductivity, 𝜀 = 𝜀𝑜𝜀𝑟, 𝜇 = 𝜇𝑜𝜇𝑟 are the medium permittivity and permeability, 

respectively. Note than 𝜀𝑜 is the free space permittivity and has the value 8.854x10-12 
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F/m and µo is the free space permeability of value 4πx10-7 H/m, 𝜀𝑟 and µr are the 

medium relative permittivity and permeability, respectively. 

The source of the electromagnetic fields is the electric charge and the electric current, 

which are expressed by local densities known as charge density v and current density 

𝐽.̅ 

Maxwell’s equations can also be given in the integral form as, 

 ∮ �̅�. 𝑑𝑙 ̅

𝐿

= −
𝜕

𝜕𝑡
∫ 𝜇�̅�. 𝑑𝑆̅

𝑆

, (2.2.a) 

 ∮ �̅�. 𝑑𝑙 ̅ = ∫(𝜎�̅� + 𝜀
𝜕�̅�

𝜕𝑡
). 𝑑𝑆̅

𝑆𝐶

, (2.2.b) 

 ∮ 𝜀�̅�. 𝑑𝑆̅

𝑆

= ∫ 𝜌𝑣𝑑𝑣

𝑣𝑜𝑙

, (2.2.c) 

 ∮ 𝜇�̅�. 𝑑𝑆̅

𝑆

= 0. (2.2.d) 

where L, C, S and vol denote line, contour, surface and volume, respectively. 

Taking the curl of Equation (2.1.a) and then substituting with Equation (2.1.b) gives 

 ∇∇ �̅� = −𝜇
𝜕

𝜕𝑡
(∇�̅�) = −𝜇𝜀

𝜕2�̅�

𝜕𝑡2
, (2.3) 

Using the identity ∇∇�̅� = ∇(∇. �̅�) − ∇2�̅�, results in the electric field wave equation 

or Helmholtz equation expressed as 

 ∇2�̅� − 𝜇𝜀
𝜕2�̅�

𝜕𝑡2
= 0. (2.4) 

The magnetic field wave equation is derived similarly and is given by, 
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 ∇2�̅� − 𝜇𝜀
𝜕2�̅�

𝜕𝑡2
= 0. (2.5) 

Equations (2.4) and (2.5) are the equations of motion of the electromagnetic waves in 

the medium under consideration. Solving either of these two equations and using 

Maxwell’s relationship between electric and magnetic field will produce full set of 

field components. 

2.3 Transverse modes 

Unguided waves in free space can be expressed by the superposition of plane waves. 

For waveguides where boundaries are imposed by the presence of metal walls or 

dielectric material propagation is expressed by transverse modes. These modes are 

classified into transverse electric TE and transverse magnetic TM modes. 

Expanding the curl in equations (2.1.a) and (2.1.b) leads to the following set of 

equations, 

 
𝜕𝐸𝑧

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑧
= −𝑗𝜔𝜇𝐻𝑥, (2.6.a) 

 
𝜕𝐸𝑧

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑧
= 𝑗𝜔𝜇𝐻𝑦, (2.6.b) 

 
𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= −𝑗𝜔𝜇𝐻𝑧 , (2.6.c) 

 
𝜕𝐻𝑧

𝜕𝑦
−

𝜕𝐻𝑦

𝜕𝑧
= 𝑗𝜔𝜇𝐸𝑥, (2.6.d) 

 
𝜕𝐻𝑧

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑧
= −𝑗𝜔𝜇𝐸𝑦, (2.6.e) 

 
𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
= 𝑗𝜔𝜇𝐸𝑧 , (2.6.f) 

Transverse electric (TE) waves are characterized by Ez=0 and Hz≠0, and Equations 

(2.6) reduce to, 
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𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= −𝜇

𝜕𝐻𝑧

𝜕𝑡
, (2.7.a) 

 
𝜕𝐻𝑧

𝜕𝑦
= 

𝜕𝐸𝑥

𝜕𝑡
, (2.7.b) 

 
𝜕𝐻𝑧

𝜕𝑥
= −

𝜕𝐸𝑦

𝜕𝑡
. (2.7.c) 

Transverse magnetic (TM) waves are characterized by Hz=0 and Ez≠0, for which 

Equations (2.6) reduce to, 

 𝜕𝐸𝑧

𝜕𝑦
= −𝜇

𝜕𝐻𝑥

𝜕𝑡
, (2.8.a) 

 𝜕𝐸𝑧

𝜕𝑥
= 𝜇

𝜕𝐻𝑦

𝜕𝑡
, (2.8.b) 

 𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
= 𝜀

𝜕𝐸𝑧

𝜕𝑡
. (2.8.c) 

2.4 General plane wave equation 

The wave equation for electric field (Equation (2.4)) expanded in 3D system becomes, 

 
𝜕2�̅�

𝜕𝑥2
+

𝜕2�̅�

𝜕𝑦2
+

𝜕2�̅�

𝜕𝑧2
−

1

𝑢2

𝜕2�̅�

𝜕𝑡2
= 0, (2.9) 

where �̅� is the electric field vector and u is the wave velocity which is expressed as, 

 𝑢 =
1

√𝜇𝜀
. (2.10) 

The wave velocity u is equal to c=
1

√𝜇𝑜𝜀𝑜
 (m/s) if the wave is propagating in free space. 

The vector wave equation (2.9) can be expressed for x, y and z directions by the scalar 

wave equations, 



2. A Review of Unstructured Numerical Techniques 16 

 

 
𝜕2𝐸𝑥

𝜕𝑥2
+

𝜕2𝐸𝑥

𝜕𝑦2
+

𝜕2𝐸𝑥

𝜕𝑧2
−

1

𝑢2

𝜕2𝐸𝑥

𝜕𝑡2
= 0, 

(2.11.a) 

 
𝜕2𝐸𝑦

𝜕𝑥2
+

𝜕2𝐸𝑦

𝜕𝑦2
+

𝜕2𝐸𝑦

𝜕𝑧2
−

1

𝑢2

𝜕2𝐸𝑦

𝜕𝑡2
= 0, 

(2.11.b) 

 
𝜕2𝐸𝑧

𝜕𝑥2
+

𝜕2𝐸𝑧

𝜕𝑦2
+

𝜕2𝐸𝑧

𝜕𝑧2
−

1

𝑢2

𝜕2𝐸𝑧

𝜕𝑡2
= 0. 

(2.11.c) 

The scalar wave equation is used to analyse bodies illuminated by a normally incident 

field such as the propagation of plane waves, TE and TM modes in waveguides and 

weakly guiding optical fibres [46]. On the other hand, vector wave equations are used 

for analysing bodies illuminated by obliquely incident excitation, scattering problems 

or propagation in anisotropic, inhomogeneous or dispersive materials [47]. 

Assuming a time dependent field in source-free, linear, isotropic and homogeneous 

region, the time derivative can be replaced by j. If the field has only x-component, 

Equation (2.9) is then expressed by scalar wave equation, 

 
𝜕2𝐸𝑥

𝜕𝑥2
+

𝜕2𝐸𝑥

𝜕𝑦2
+

𝜕2𝐸𝑥

𝜕𝑧2
+ 𝑘2 𝐸𝑥 = 0. (2.12) 

where 𝑘 = 𝜔√𝜇𝜀  is the medium wave number. Note that by setting k=0 in Equation 

(2.12), a solution of the electrostatic problem can be achieved. 

To find a solution for plane wave propagation, Equation (2.12) is solved by the method 

of separation in which the electric field function is assumed to constitute three 

functions of each coordinate [45], 

 𝐸𝑥(𝑥, 𝑦, 𝑧) = 𝑓(𝑥)𝑔(𝑦)ℎ(𝑧). (2.13) 

Substituting Equation (2.13) into Equation (2.12) and dividing by 𝑓(𝑥)𝑔(𝑦)ℎ(𝑧) gives 

 
𝑓′′(𝑥)

𝑓(𝑥)
+

𝑔′′(𝑦)

𝑔(𝑦)
+

ℎ′′(𝑧)

ℎ(𝑧)
+ 𝑘2 = 0. (2.14) 
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where “ denotes the second derivative. Each term of Equation (2.14) must equal a 

constant since functions f(x), g(x) and h(z) are independent of each other. Constants 

are defined as follows [45] 

 
𝑓′′(𝑥)

𝑓(𝑥)
= −𝑘𝑥

2,
𝑔′′(𝑦)

𝑔(𝑦)
= −𝑘𝑦

2,
ℎ′′(𝑧)

ℎ(𝑧)
= −𝑘𝑧

2, (2.15) 

reducing Equation (2.14) to 

 𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2 = 𝑘2 . (2.16) 

Then Equation (2.12) can be separated into three independent ordinary differential 

equations [45] 

 
𝜕2𝑓(𝑥)

𝜕𝑥2
+ 𝑘𝑥

2𝑓(𝑥) = 0, 

(2.17) 

 
𝜕2𝑔(𝑦)

𝜕𝑦2
+ 𝑘𝑦

2𝑔(𝑦) = 0, 

 
𝜕2ℎ(𝑧)

𝜕𝑧2 + 𝑘𝑧
2ℎ(𝑧) = 0,  

The solution of these three equations are of the form 𝑒∓𝑘𝑥𝑥, 𝑒∓𝑘𝑦𝑦 and 𝑒∓𝑘𝑧𝑧, 

respectively, where (-) and (+) signs refer to forward and backward propagating waves, 

respectively. 

Then, the complete solution for the forward propagating field component of Ex can be 

written as, 

 𝐸𝑥(𝑥, 𝑦, 𝑧) = 𝐴𝑒−𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧𝑧). (2.18) 

where A is the signal amplitude. 

For an arbitrary direction of propagation, the wave number �̅� is a vector defined 

generally as [45], 

 �̅� = 𝑘𝑥�̂� + 𝑘𝑦�̂� + 𝑘𝑧�̂� = 𝑘�̂�. (2.19) 
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where �̂� is the unit vector in the direction of propagation. 

In the case of arbitrary direction of propagation, each field component assumes the 

form of Equation (2.18) as, 

 𝐸𝑥(𝑥, 𝑦, 𝑧) = 𝐴𝑒−𝑗�̅�.�̅� , 

(2.20) 

 𝐸𝑦(𝑥, 𝑦, 𝑧) = 𝐵𝑒−𝑗�̅�.�̅� , 

 𝐸𝑧(𝑥, 𝑦, 𝑧) = 𝐶𝑒−𝑗�̅�.�̅� , 

where �̅� = 𝑥�̂� + 𝑦�̂� + 𝑧�̂� is the vector position.  

The divergence theorem in general is expressed as, 

 ∇. �̅� =
𝜕𝐸𝑥

𝜕𝑥
+

𝜕𝐸𝑦

𝜕𝑦
+

𝜕𝐸𝑧

𝜕𝑥
= 0. (2.21) 

This equation must also be applied to satisfy Maxwell’s equations which implies that 

Ex, Ey and Ez must each have the same variation in x, y and z consequently kx, ky and kz 

are the same [45].  

The general electric field vector is expressed as, 

 �̅�(𝑥, 𝑦, 𝑧) = �̅�𝑜𝑒
−𝑗�̅�.�̅� , (2.22) 

where �̅�𝑜 = 𝐴�̂� + 𝐵�̂� + 𝐶�̂�.  

The solution in Equation (2.22) represents a plane wave of amplitude �̅�𝑜 propagating 

in the direction k.  

The time-domain expression of Equation (2.22) is given as, 

 �̅�(𝑥, 𝑦, 𝑧) = �̅�𝑜cos (�̅�. �̅� − 𝜔𝑡). (2.23) 

The magnetic field can be found from Maxwell’s curl equation as, 
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 �̅� =
𝑗

𝜔𝜇
∇𝑥𝐸,̅ 

(2.24) 
 �̅� =

1


�̂�𝑥𝐸.̅ 

where  =
𝜔𝜇

𝑘
 is the medium intrinsic impedance (=

1

√𝜀𝑜𝜇𝑜
 () for free space). 

For an x-component electric field propagating in the z-direction and uniform in the x 

and y directions (i.e. 𝜕 𝜕𝑥⁄ = 𝜕
𝜕𝑦⁄ = 0), the scalar wave Equation (2.12) reduces to, 

 
𝜕2𝐸𝑥

𝜕𝑧2
+ 𝑘2𝐸𝑥 = 0. (2.25) 

which has the general solution 

 𝐸𝑥(𝑧) = 𝐸𝑜
+𝑒−𝑗𝑘𝑧 + 𝐸𝑜

−𝑒+𝑗𝑘𝑧. (2.26) 

The solution in time-domain for forward propagation is expressed as, 

 𝐸𝑥(𝑧) = 𝐸𝑜
+ cos(𝑘𝑧 − 𝜔𝑡). (2.27) 

and the general form of the plane wave solution is, 

 �̅�(𝑧) = �̂�𝐴 cos(𝑘𝑧 − 𝜔𝑡). (2.28) 

2.5 Boundary conditions 

When electromagnetic fields exist in material media, the field vectors are related to 

each other by the constitutive relations known as boundary conditions. The unknown 

amplitude coefficients A, B and C in the general solution of the wave equation 

(Equation (2.20)) are found by applying appropriate boundary conditions for the 

problem under investigation. 

Many problems involve boundaries with good conductors such as waveguide metal 

walls. The boundary conditions on the perfect metal boundary  are [45], 
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 �̂�. 𝜀�̅� = 𝜌𝑠 , 

(2.29) 

 �̂� × �̅� = 0, 

 �̂�. 𝜇�̅� = 0, 

 �̂� × �̅� = 𝐽�̅�. 

where �̂� is the unit vector normal to the conductor, s and Js are the electric surface 

charge density and surface current density, respectively. 

The boundary conditions at the interface between two media characterized by 

dielectric permittivity r and magnetic permeability µr are expressed by [45], 

 �̂�. 𝜀𝑟1�̅�1 = �̂�. 𝜀𝑟2�̅�2, 

(2.30) 

 �̂� × �̅�1 = �̂� × �̅�2, 

 �̂�. 𝜇𝑟1�̅�1 = �̂�. 𝜇𝑟2�̅�2, 

 �̂� × �̅�1 = �̂� × �̅�2. 

where medium 1 is characterized by (r1, µr1) and medium 2 by (r2, µr2), �̅�1, �̅�1 are 

the electric and magnetic fields in medium 1, respectively, �̅�2, �̅�2 are the electric and 

magnetic fields in medium 2, respectively and �̂� is the unit vector normal to the 

interface between the two media. 

2.6 Numerical techniques for electromagnetic problems 

Not all problems in electromagnetics can be solved exactly analytically; this requires 

finding an approximate solution where analytical methods fail to solve a problem. It is 

required to find an approximate solution for Maxwell’s equations subject to boundary 

conditions.  

In solving EM wave propagation, the target is to approximate relevant equations in a 

numerically stable way. Stability means that errors in the input and intermediate 

calculations do not accumulate and lead to meaningless output. There are many ways 

of doing this, all with its own advantages and disadvantages. The most popular 
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methods used to solve Maxwell’s differential equations are Finite Element method 

(FEM), Finite Difference Time Domain (FDTD) and Transmission Line Modelling 

method (TLM). Several papers intended to provide some case studies for the sake of 

determining the point of strengths of these methods and to prove the exchangeability 

of FE, FDTD and TLM [48-54]. 

2.6.1 Finite Element Method (FEM) 

The Finite Element Method (FEM) [4, 8, 55, 56] is a mature and powerful numerical 

tools for modelling complex geometries and inhomogeneous media that has a history 

dating back to the 1960s. It can also be applied to all Boundary Value Problems (BVP). 

FEM has been introduced in electromagnetic applications since 1968 and it has been 

employed to diverse areas such as waveguides, microstrip, and absorption of EM 

radiation in biological bodies [57-61]. The FEM proved its flexibility and versatility 

due to its ability of using adaptive meshes [1] (where a solution is achieved with coarse 

mesh then meshes are getting refined at the places where the field changes rapidly, the 

simulation is re-run and meshes are refined till the solution converges). FEM does not 

model unbounded radiation problems as effectively as other techniques. Also, for 

different applications FEM approximations are specific to each problem and the 

resulting equations are difficult to solve. Time stepping FE is not computationally 

efficient; one either has to solve a linear equation problem every time step, or 

approximate the relevant sparse matrix to a diagonal one in what is called “mass 

lumping” approach which introduces errors [4]. 

The FEM involves four basic steps  which begins by discretising the problem domain 

into subdomains known as elements, then deriving governing equations for each 

element followed by assembling element equations into the solution region and finally 

solving the system of equation derived [4]. 

The FEM uses unstructured meshes since the beginning of implementation. The 

problem domain is discretized into non-overlapping elements, normally triangles, but 

other shapes can be used such as quadrilateral and rectangles for 2D problems as 

shown in Figure 2.1(a), and tetrahedron and hexahedron for 3D problems as shown in 

Figure 2.1(b) [4, 62, 63]. 
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Triangle Quadrilateral Rectangle
 

(a) 

Tetrahedron
 

Hexahedron
 

(b) 

Figure 2.1: Different types of meshes used to discretise (a) 2D and (b) 3D problems 

Consider the scalar inhomogeneous Helmholtz’s wave equation, 

 ∇2 + 𝑘2 = 𝑔. (2.31) 

where  is the field quantity that equals to Ez for TM mode or Hz for TE mode,  𝑘 =

𝜔√𝜇𝜀 is the medium wavenumber and g is the source function. This scalar wave 

equation can be used in electromagnetics to analyse propagation of plane wave in 

geometries that does not change dramatically. For scattering problems vector wave 

equations are solved by FEM in [47, 65]. 

Variational methods [64] work on finding a functional (X) that satisfies the same 

boundary conditions as X. This functional are obtained by a trial and error approach. 

Variational methods reduce the differential or integral forms of Maxwell’s equations 

to the equivalent variational problem. The principle of the variational approach can be 

explained by defining an eignvalue problem of the form, 

 𝐿𝑋 = 𝑋. (2.32) 

where L is the operator, X is the eigenvector and  is the eigenvalue.  
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The FEM solve Equation (2.31) by minimization of a corresponding functional given 

by [46], 

 

𝐼() =
1

2
∬[|∇|2 − 𝑘2

2 + 2𝑔]𝑑𝑆

𝑆

. (2.33) 

where S is the area of the discretized domain such as the waveguide cross sectional 

area.  

The problem space is discretized into small elements such as triangles. We seek an 

approximation for the field within an element e and then to interrelate the field 

distribution in different elements such that the field is continuous across adjacent 

elements boundaries. The function e at a point of coordinates (x,y) inside the element 

can be approximated as [45], 

 𝑒 = 𝑎 + 𝑏𝑥 + 𝑐𝑦 + 𝑑𝑥2 + 𝑓𝑦2 + 𝑔𝑥𝑦. (2.34) 

where a, b, c, d, f and g are unknown coefficients. 

For simplicity, Equation (2.34) is reduced to the linear term as [45], 

 𝑒 = 𝑎 + 𝑏𝑥 + 𝑐𝑦. (2.35) 

Consider the triangle shown in Figure 2.2, the linear approximation of Equation (2.35) 

is applied at each vertex as following, 

 𝑒1 = 𝑎 + 𝑏𝑥1 + 𝑐𝑦1, 

(2.36) 

 𝑒2 = 𝑎 + 𝑏𝑥2 + 𝑐𝑦2, 

 𝑒3 = 𝑎 + 𝑏𝑥3 + 𝑐𝑦3. 

where (x1, y1), (x2, y2) and (x3, y3) are the coordinates of triangle vertices. 

The potential  and source function g is expressed in terms of the shape function αi 

over a triangular element as [4], 



2. A Review of Unstructured Numerical Techniques 24 

 

 

𝑒(𝑥, 𝑦) = ∑𝛼𝑖𝑒𝑖

3

𝑖=1

, (2.37) 

 

𝑔𝑒(𝑥, 𝑦) = ∑ 𝛼𝑖𝑔𝑒𝑖

3

𝑖=1

 (2.38) 

where e indicates the triangular element, i is the index of nodal point of such element 

and 𝛼𝑖 = 𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑦 is known as the shape function over a triangular element and 

𝑒𝑖 is the value of e at the nodal point i of element [4, 45]. 

(x1, y1)

(x2, y2) (x3, y3)

P(x, y)

je1

je2
je3

Element e

x

y

 

Figure 2.2: A first order triangle element 

Substituting Equations (2.37) and (2.38) into Equation (2.33) leads to [4], 

 
𝐼(𝑒) =

1

2
∑ ∑𝑒𝑖𝑒𝑗 ∬∇𝛼𝑖 . ∇𝛼𝑗

3

𝑖=1

3

𝑖=1

𝑑𝑆 −
𝑘2

2
∑∑𝑒𝑖𝑒𝑗 ∬ 𝛼𝑖𝛼𝑗

3

𝑖=1

3

𝑖=1

𝑑𝑆

+ ∑∑𝑒𝑖𝑒𝑗 ∬ 𝛼𝑖𝛼𝑗𝑑𝑆

3

𝑖=1

3

𝑖=1

. 
(2.39) 

or in a more compact form, 

 
𝐼(𝑒) =

1

2
[𝑒]

𝑡[𝐶(𝑒)][𝑒] −
𝑘2

2
[𝑒]

𝑡[𝑇(𝑒)][𝑒] + [𝑒]
𝑡[𝑇(𝑒)][𝐺𝑒]. (2.40) 

where [𝑒]
𝑡 = [𝑒1 𝑒2 𝑒3]

𝑡,  [𝐺𝑒] = [𝑔𝑒1 𝑔𝑒2 𝑔e3], [𝐶(𝑒)] is the element 

coeffecient matrix. The element 𝐶𝑖𝑗
(𝑒)

 of the matrix represents the coupling between 

nodes i and j such as 𝐶12
(𝑒)

, 𝐶23
(𝑒)

 and 𝐶13
(𝑒)

, for example 𝐶12
(𝑒)

 is expressed as, 
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 𝐶12
(𝑒)

= ∫∇𝛼1. ∇𝛼2𝑑𝑆

=  
1

4𝐴2
[(𝑦2 − 𝑦3)(𝑦3 − 𝑦1) + (𝑥3 − 𝑥2)(𝑥1 − 𝑥3)]∫𝑑𝑆

−
1

4𝐴
[(𝑦2 − 𝑦3)(𝑦3 − 𝑦1) + (𝑥3 − 𝑥2)(𝑥1 − 𝑥3)] ∫𝑑𝑆 (2.41) 

where (x1, y1), (x2, y2) and (x3, y3) are the coordinates of triangle vertices. The self 

coupling in the same element is expressed by 𝐶𝑖𝑖
(𝑒)

(i.e. for a triangle, we have 𝐶11
(𝑒)

, 𝐶22
(𝑒)

 

and 𝐶33
(𝑒)

) For example 𝐶11
(𝑒)

is expressed by,  

 
𝐶11

(𝑒)
=

1

4𝐴
[(𝑦

2
− 𝑦

3
)

2
+ (𝑥3 − 𝑥2)

2]. (2.42) 

And finally the matrix element of [𝑇(𝑒)] is expressed by, 

 
𝑇𝑖𝑗

(𝑒)
= ∫𝛼𝑖𝛼𝑗𝑑𝑆. 

(2.43) 

For triangular element, Equation (2.43) is expressed as  

 
𝑇𝑖𝑗

(𝑒)
= {

𝐴/12, 𝑖 ≠ 𝑗
𝐴/6 𝑖 = 𝑗

. 
(2.44) 

Equation (2.40) can be then applied for all triangles in the meshed domain, then the 

integration in Equation (2.33) can be expressed in the discrete form, 

 
𝐼() = ∑𝐼(𝑒) =

1

2
[]𝑡[𝐶][] −

𝑘2

2
[]𝑡[𝑇][] + []𝑡[𝑇][𝐺]

𝑁

𝑒=1

. 
(2.45) 

where [], [𝐺], [𝐶] and [𝑇] are known as the global matrices that comprises of the 

local matrices [𝑒], [𝐺𝑒], [𝐶
(𝑒)]  and [𝑇(𝑒)]. 

Consider the special case of no source function in the problem space g=0 the last term 

in Equation (2.45) will vanish. And if the free nodes are numbered before the 

prescribed nodes, then Equation (2.45) will be in the form, 

 
𝐼 =

1

2
[𝑓 𝑝] [

C𝑓𝑓 C𝑓𝑝

C𝑝𝑓 C𝑝𝑝
] [
𝑓

𝑝
] −

𝑘2

2
[𝑓 𝑝] [

T𝑓𝑓 T𝑓𝑝

T𝑝𝑓 T𝑝𝑝
] [
𝑓

𝑝
]. 

(2.46) 
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Then, 

 𝜕𝐼

𝜕𝑓

= 0 = [C𝑓𝑓 C𝑓𝑝] [
𝑓

𝑝
] −

𝑘2

2
[T𝑓𝑓 T𝑓𝑝] [

𝑓

𝑝
]. 

(2.47) 

And for TM modes p=0 and Equation (2.47) becomes, 

 [C𝑓𝑓 − 𝑘2T𝑓𝑓]𝑓 = 0. (2.48) 

Multiplying Equation (2.48) by 𝑇𝑓𝑓
−1 gives, 

 [𝑇𝑓𝑓
−1

C𝑓𝑓 − 𝑘2𝐼]𝑓 = 0. (2.49) 

where I is the unit matrix. Equation (2.49) is in the form of (𝐴 − 𝐼)𝑋 = 0; the typical 

eigenproblem equation which can be solved for the eigenvalues  and eigenvectors X 

of Helmoholtz’s equation. 

2.6.2 Finite Difference Time Domain (FDTD) 

The FDTD [2, 4, 6, 66, 67] technique is a time-domain differential numerical method. 

It calculates the electric and magnetic fields everywhere in the computational domain 

as they evolve in time. FDTD is robust, efficient, versatile and adaptable to complex 

gemoetries. It is easy to understand and easy to implement method [4]. FDTD can be 

implemented in general algorithm that can be applied to any problem. It allows 

modelling of complex inhomogeneous configurations and performs better modelling 

of unbounded problems than FE method [1]. FDTD provides direct solution to 

Maxwell’s equations, which means that analyist can examine the radiation, 

propagation, and scattering of electric and magnetic fields as the computations proceed 

and the field distribution within the problem space can be monitored at any time step 

[68-74]. FDTD is used for a variety of applications such as microstrip [75-77], 

waveguides [78-80], antennas [77, 81], optoelectronics devices [82] and biological 

interactions [83, 84]. However, it exhibits problem of slow convergence for resonance 

problems and requires large memory requirements for inhomogeneous waveguide 

structures [4]. Standard FDTD has the inability to handle curved boundaries which led 

to the development of the method over non-orthogonal and unstructured meshes [85-
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95]. The FDTD includes more complicated approach to terminate the problem space 

by introducing artificial termination conditions including PML to absorb incident and 

scattered fields. Care must be taken to minimize the error associated with such 

boundaries which dictate the accuracy of the FDTD [4]. Also, far-field calculations 

force the computational domain to be excessively large and requires extended amount 

of pre-processing [96]. 

The FDTD method is directly derived from discretizing the differential form of the 

Maxwell’s equations. Maxwell’s equations are solved by using the central difference 

technique to express the derivative over a spatial grid known as Yee cell [6, 68, 69]. 

The region being modeled is represented by two interleaved grids of discrete points. 

One grid contains the points at which the magnetic field is evaluated and the second 

grid contains the points at which the electric field is evaluated  as shown in Figure 2.3 

[6]. Note that i, j and k are integers in the x, y and z directions, respectively. The electric 

(Ex, Ey, Ez) and magnetic (Hx, Hy, Hz) field vectors are assigned to each grid cell. Each 

facet of the Yee’s cubic cell is defined by two electric field components tangential to 

the facet and a magnetic field component normal to the facet in the third direction. 

 

Figure 2.3: Yee cube [96] 

The Yee algorithm [6] is based on finite difference approximations of the space 

derivatives and time derivatives. Consider any field component f as a function of space 

and time evaluated at a discrete point in the space lattice (x, y, z) and at a discrete point 

in time t, then u can be written as [69], 
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 𝑓(𝑖∆𝑥, 𝑗∆𝑦, 𝑘∆𝑧, 𝑛∆𝑡) = 𝑓𝑖,𝑗,𝑘
𝑛 . (2.50) 

where the i, j, and k indices represent the spatial positions and the n index represents 

time. ∆x, ∆y and ∆z are the spatial increments in x, y and z directions, respectively and 

∆t is the time increment. 

Then Yee’s expression for the first spatial derivative of f in the x-direction, evaluated 

at a fixed time is [6], 

 𝜕

𝜕𝑥
𝑓(𝑖∆𝑥, 𝑗∆𝑦, 𝑘∆𝑧, 𝑛∆𝑡) =

𝑓𝑖+1 2⁄ ,𝑗,𝑘
𝑛 − 𝑓𝑖−1 2⁄ ,𝑗,𝑘

𝑛

∆𝑥
+ 𝑂[(∆𝑥)2]. (2.51) 

with space finite difference over x/2. O[(x)2] is the truncation error in Taylor series 

expansion, which is proportional to the squared spatial discretization.  

The Yee’s expression for the first time derivative of f, evaluated at the fixed space 

point (i,j,k) follows by analogy [6], 

 𝜕

𝜕𝑡
𝑓(𝑖∆𝑥, 𝑗∆𝑦, 𝑘∆𝑧, 𝑛∆𝑡) =

𝑓𝑖,𝑗,𝑘
𝑛+1 2⁄

− 𝑓𝑖,𝑗,𝑘
𝑛−1 2⁄

∆𝑡
+ 𝑂[(∆𝑥)2]. (2.52) 

For electromagnetic problems, Yee’s algorithm is applied to the space and time 

derivative of Maxwell’s equations. 

TM modes are expressed by Ez, Hx and Hy field components as expressed in Equations 

(2.7).  The field components are distributed in 2D Yee’s Cell as shown in Figure 2.4, 

where Hx and Hy components are directed along the x and y direction, respectively, and 

Ez is normal to the x-y plane. 

The derivative of Equations (2.7) can be expressed as, 

 
lim
∆𝑡→0

∆𝐻𝑦

∆𝑡
=

1

𝜇
lim
∆𝑥→0

∆𝐸𝑧

∆𝑥
 

(2.53.a) 

 
lim
∆𝑡→0

∆𝐻𝑥

∆𝑡
= −

1

𝜇
lim

∆𝑦→0

∆𝐸𝑧

∆𝑦
 

(2.53.b) 
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lim
∆𝑡→0

𝜕𝐸𝑧

∆𝑡
=

1

𝜀
[ lim
∆𝑥→0

𝜕𝐻𝑦

∆𝑥
− lim

∆𝑦→0

𝜕𝐻𝑥

∆𝑦
]. 

(2.53.c) 

 

(i,j) (i+1,j)

(i+1,j+1)(i,j+1)

Hy

Hx

Ez

∆x

∆y

x

y

 

Figure 2.4: 2D Yee’s cell formulation for TM mode 

Discretizing space and time around a point (x,t), then applying central differences to 

Equation (2.53.a) to relate the derivatives of the neighbouring discrete fields we get, 

 
𝐻𝑦 (𝑡𝑛 +

∆𝑡
2 ) − 𝐻𝑦 (𝑡𝑛 −

∆𝑡
2 )

∆𝑡
=

1

𝜇

𝐸𝑧 (𝑥𝑖 +
∆𝑥
2 ) − 𝐸𝑧 (𝑥𝑖 −

∆𝑥
2 )

∆𝑥
. (2.54) 

or in other terms, 

 𝐻𝑦|𝑖,𝑗
𝑛+1/2

− 𝐻𝑦|𝑖,𝑗
𝑛−1/2

∆𝑡
=

1

𝜇

𝐸𝑧|𝑖+1/2,𝑗
𝑛 − 𝐸𝑧|𝑖−1/2,𝑗

𝑛

∆𝑥
. (2.55) 

The value of the H field at point x and at time t+1/2 is approximated by two E-field 

spatial values at x+1/2 and x-1/2 and depends on the previous H-field temporal value 

at t-1/2. 

Similarly, applying the central difference for (2.53.b) leads to,  

 𝐻𝑥|𝑖,𝑗
𝑛+1/2

− 𝐻𝑥|𝑖,𝑗
𝑛−1/2

∆𝑡
=

1

𝜇

𝐸𝑧|𝑖,𝑗+1/2
𝑛 − 𝐸𝑧|𝑖,𝑗−1/2

𝑛

∆𝑦
. (2.56) 
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And finally, the central difference for Equation (2.53.c) leads to 

 𝐸𝑧|𝑖,𝑗
𝑛+1/2

− 𝐸𝑧|𝑖,𝑗
𝑛

∆𝑡

=
1

𝜀
[(

𝐻𝑦|𝑖+1/2,𝑗
𝑛+1/2

− 𝐻𝑦|𝑖−1/2,𝑗
𝑛+1/2

∆𝑥
)

− (
𝐻𝑥|𝑖,𝑗+1/2

𝑛+1/2
− 𝐻𝑥|𝑖,𝑗−1/2

𝑛+1/2

∆𝑦
)]. 

(2.57) 

The resolution of the grid is in practice determined by the dimensions of the smallest 

feature in the problem.  In one time step, any point on the wave must not travel more 

than one cell to its nearest neighbours. The condition for numerical stability in one 

dimension is that [6] 

 
∆𝑡 ≤

∆𝑥

𝑐
. (2.58) 

where c is the free space velocity and ∆x is cell size over one direction. In 2D case and 

if the discretization length is the same in both directions, the condition becomes, 

 
∆𝑡 ≤

∆𝑥

𝑐√2
. (2.59) 

To guarantee numerical stability in the general 3D case, Courant condition [6] must be 

satisfied,  

 
∆𝑡 ≤

1

𝐶√(
1
∆𝑥)

1

+ (
1
∆𝑦)

2

+ (
1
∆𝑧)

2

. 
(2.60) 

where ∆x, ∆y and ∆z are the discretization length in x, y and z directions, respectively. 

For open boundary problems, the problem is placed within an infinite free-space 

volume which is not practical to numerically discretise. The numerical problem must 

be truncated in such a way as to model open space and not introduce artificial 

reflections due to terminations. An artificial boundary conditions is applied to 

terminate the cells by absorbing the incident and scattered fields. 
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The first most widely used Absorbing Boundary Conditions (ABC) was devised by 

Mur in 1981 [97]. This boundary condition is derived from a one-way wave equation, 

which allows only outgoing waves as possible solutions. However, the attenuation of 

incident waves on the ABC boundary degrades as the incidence angle increases until 

at the grazing angle the boundary becomes perfectly reflecting.  

In 1994, Berenger  derived a new boundary condition referred to as a Perfectly 

Matched Layer (PML) which reduces reflections from boundaries [98]. The PML is 

placed around the boundaries of the FDTD domain. The presence of the PML ensures 

that a wave propagating in FDTD domain is fully absorbed once it hits the PML region 

at any incident angle, in other words the plane wave will be fully transmitted in the 

PML region without reflections back into the FDTD domain as shown in Figure 2.5. 

PML RegionFDTD Domain

Incident wave

Completely 
transmitted wave

z

x

 

Figure 2.5: Perfectly matched layer (PML) terminating FDTD domain 

PML uses a modified set of Maxwell’s equations in which fields at the boundary layer 

interface are split into two components and an artificial anisotropic material is 

introduced to attenuate outgoing waves. The result is a PML wave impedance perfectly 

matched to the simulation space and independent of incidence angle. Incident waves 

are attenuated in the direction normal to the layers as they propagate through the 

artificial medium. Reflection coefficients as low as –80 dB have been demonstrated 

[99, 100] for both 2D and 3D FDTD simulations.  
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Although the PML technique provides an excellent boundary condition, its split field 

formulation requires a two-fold increase in computational memory and run-time in the 

regions containing the PML material relative to the conventional FDTD algorithm. To 

avoid this additional burden, a PML boundary condition based on a Maxwell 

formulation has been derived [101] and shown to be equivalent in effectiveness to the 

Berenger PML formulation. This alternate algorithm has the advantages of enhancing 

computational efficiency within the PML regions and eliminating the need for FDTD 

update equations modified for the split field formulation. 

FDTD method that uses structured mesh, although a proven powerful numerical 

technique, has some limitations; one is involved with simulating problems with curved 

structures which need to be modelled using staircase approximations. In order to 

reduce the discretization error with staircasing, the mesh must be highly refined. This 

issue have motivated the development of new techniques based in unstructured meshes 

as discussed in Section 2.7. 

2.6.3 Transmission Line Modelling (TLM) 

The TLM method is well-established time-domain numerical method that is applied to 

different electromagnetic problems [7, 102-104]. It has great flexibility, versatility and 

stability in modelling complex geometries and suitable for nonlinear and 

inhomogeneous problems [105-116]. TLM involves mapping the electric field and 

magnetic field onto voltages and currents of the equivalent transmission line network. 

Unlike the FE and FDTD methods which use mathematical discretization of 

differential equations the TLM is a physical discretization in which a problem is 

replaced by a network of lumped elements. The TLM methodology involves two basic 

steps [4]; replacing the field problem by an electrical network and deriving the analogy 

between the field components and the network components, then solving the 

equivalent network by iterative method.  

The computational space is discretized into cells, which is considered as a network of 

interconnected transmission lines. A TLM cell is formed of four transmission lines in 

the case of 2D TLM and 12 transmission lines in the case of the 3D TLM. A TLM 

node is the intersection of these transmission lines as shown in Figure 2.6. The TLM 
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method is based on Huygens’s model of wave propagation in which electromagnetic 

field is modelled by waves propagating between adjacent cells and scattered within the 

cells. 

If a pulse of value 1V is inserted at the centre of the TLM node Figure 2.7(a), part of 

the pulse will reflect back to the initial node in a process known by scatter as shown 

by the green arrow in Figure 2.7(b) and the rest will transmit to the adjacent nodes as 

known by connect process as shown by the black arrows in the same figure. Assume 

that each transmission line has a characteristic impedance Z, then the incident pulse 

sees three parallel similar transmission lines of equivalent impedance Z/3, then the 

reflection coefficient equals -0.5 and the transmission coefficient consequently equals 

to 0.5. At the following time step the pulse will propagate further away from the initial 

node in which part of the new pulse will move outward and part will be reflected back 

to the new incident nodes as shown in Figure 2.7.c. and the scatter-connect process is 

repeated. 

TLM node
Transmission 

Lines

TLM cell

∆l

 

Figure 2.6: 2D TLM domain represented with a network of transmission lines 
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0.250.25

-0.25

 

(a) (b) (c) 

Figure 2.7: TLM pulse propagation; (a) Impulse excitation, (b) scattering in first time step, 

(c) scattering in second time step. 

For 2D problem with no field change in the z direction, Maxwell’s equations are 

separated in two independent systems of partial differential equations; TE fields 

expressed by Ex, Ey and Hz and TM fields expressed by Hx, Hy and Ez
 . TE fields are 

represented by a circuit structure known as series node (Figure 2.8.a), while the TM 

fields are represented by a shunt node (Figure 2.8.b) [7]. 

1

2

3

4

 

1

4

3

2

 

(a) (b) 

Figure 2.8: TLM (a) series node, (b) shunt node 

2.6.3.1 TE polarization 

For TE fields expressed in Equations (2.7), the wave equation is, 

 𝜕2𝐻𝑧

𝜕𝑥2
+

𝜕2𝐻𝑧

𝜕𝑦2
= 𝜇𝜀

𝜕2𝐻𝑧

𝜕𝑡2
. (2.61) 
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Equation (2.61) is expressed by the series node showed in Figure 2.8.a, which is a 

block of space of dimensions ∆x, ∆y and ∆z and comprises four ports. The transmission 

line equivalence of the series node is shown in Figure 2.9. The mesh current I 

represents Hz and the x-directed and y-directed voltages are related to Ex and Ey. For 

analogy circuit analysis is carried on to find the relationship between field and circuit 

parameters.  

Applying Kirchhoff’s voltage law around the loop in Figure 2.9 leads to [7], 

 
𝑉1𝑥 + 𝑉4𝑦 − 𝑉3𝑥 − 𝑉2𝑦 = 2𝐿∆𝑙

𝜕𝐼

𝜕𝑡
, (2.62) 

rearranging, 

 
−(𝑉3𝑥 − 𝑉1𝑥) + (𝑉4𝑦 − 𝑉2𝑦) = 2𝐿∆𝑙

𝜕𝐼

𝜕𝑡
, (2.63) 

which can be expressed in terms of electric fields as, 

 −[𝐸𝑦(𝑥 + ∆𝑥) − 𝐸𝑦(𝑥)]∆𝑦 + [𝐸𝑥(𝑦 + ∆𝑦) − 𝐸𝑥(𝑦)]∆𝑥

= 2𝐿∆𝑙
𝜕𝐼

𝜕𝑡
. 

(2.64) 
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Figure 2.9: Circuit structure of the TLM series node 
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Dividing both sides by ∆x∆y, 

 
−

𝐸𝑦(𝑥 + ∆𝑥) − 𝐸𝑦(𝑥)

∆𝑥
+

𝐸𝑥(𝑦 + ∆𝑦) − 𝐸𝑥(𝑦)

∆𝑦
= 2𝐿

∆𝑙

∆𝑥∆𝑦

𝜕𝐼

𝜕𝑡
. (2.65) 

For similar discretization length in all directions and substituting I=Hz∆z, Equation 

(2.65) becomes [7], 

 ∆𝐸𝑥

∆𝑦
−

∆𝐸𝑦

∆𝑥
= 2𝐿

𝜕𝐻𝑧

𝜕𝑡
. (2.66) 

For two adjacent TLM nodes, Kirchhoff’s current law can be applied where the two 

adjacent capacitors interconnected as shown in Figure 2.10 [7], 

 
𝐼𝐵 − 𝐼𝐴 = 𝐶∆𝑥

𝜕𝑉𝐶

𝜕𝑡
 (2.67) 

where C is the equivalent capacitance of the neighbouring capacitors and Vc is the 

voltage across the equivalent capacitance. 

1
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3

1
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4IBIA VC
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Figure 2.10: Adjacent TLM series nodes 

Mapping the current and voltage into magnetic and electric fields yields to [7], 

 𝐻𝑧(𝑥 + ∆𝑥) − 𝐻𝑧(𝑥)

∆𝑥
∆𝑧 = 𝐶

∆𝑥∆𝑦

∆𝑥

𝜕𝐸𝑦

𝜕𝑡
 (2.68) 
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or 

 𝜕𝐻𝑧

𝜕𝑥
= −𝐶

𝜕𝐸𝑦

𝜕𝑡
. (2.69) 

The circuit parameters are related to the medium being modelled by [7], 

 
𝐶𝑥 = 𝜀

∆𝑦∆𝑧

∆𝑥
, (2.70.a) 

 
𝐶𝑦 = 𝜀

∆𝑥∆𝑧

∆𝑦
, (2.70.b) 

 
𝐿𝑥 = 𝜇

∆𝑦∆𝑥

∆𝑧
, (2.70.c) 

 
𝐿𝑦 = 𝜇

∆𝑦∆𝑥

∆𝑧
, (2.70.d) 

For ∆x=∆y=∆z=∆l, then, 

 𝐿 = 𝜇∆𝑙, (2.71.a) 

 𝐶 = 𝜀∆𝑙, (2.71.b) 

The equivalence between circuit and field quantities is established from Equations  

(2.7), (2.66) and (2.69) lead to, 

 𝐼

∆𝑧
↔ 𝐻𝑧 , (2.72.a) 

 
−

𝑉𝑦

∆𝑙
↔ 𝐸𝑦, (2.72.b) 

 
−

𝑉𝑥

∆𝑙
↔ 𝐸𝑥. (2.72.c) 

Equations (2.72) mean that the circuit model of series TLM node displays the TE 

modes in a medium of parameters  and 2µ [7]. 
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To calculate the voltages and currents, an equivalent Thevenin circuit is constructed 

as shown in Figure 2.11. Each transmission line is replaced by an equivalent source of 

double the incident voltage (2 𝑉𝑘 𝑚
𝑖 ) due to the round trip, where i is used to indicate 

the incident signal, k indicates the current time, m is the index of the transmission line 

(m=1, 2, 3, 4). The Thevenin source is in series with impedance ZTL. [7] 
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Figure 2.11: Thevenin equivalent circuit of the TLM series node 

The loop current is calculated as, 

 
𝐼𝑘 =

2 𝑉1
𝑖

𝑘 − 2 𝑉2
𝑖

𝑘 − 2 𝑉3
𝑖

𝑘 + 2 𝑉4
𝑖

𝑘

4𝑍𝑇𝐿
. (2.73) 

Then the magnetic field is, 

 
𝐻𝑘 𝑧 =

𝐼

∆𝑙
=

𝑉1
𝑖

𝑘 − 𝑉2
𝑖

𝑘 − 𝑉3
𝑖

𝑘 + 𝑉4
𝑖

𝑘

4∆𝑙𝑍𝑇𝐿
, (2.74) 

And the electric field components are calculated as, 

 
𝐸𝑘 𝑥 =

𝑉1
𝑖

𝑘 + 𝑉3
𝑖

𝑘

∆𝑙
, (2.75) 
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𝐸𝑘 𝑦 =

𝑉2
𝑖

𝑘 + 𝑉4
𝑖

𝑘

∆𝑙
. (2.76) 

The voltages at each port are reflected back to the original node in a process known as 

the scatter process. The reflected voltage is related to the incident voltage by, 

 𝑉𝑟
𝑘 = 𝑉𝑘 − 𝑉𝑖

𝑘 . (2.77) 

Then the reflected voltage at port 1 can be calculated as, 

 𝑉1
𝑟

𝑘 = 𝑉1𝑘 − 𝑉1
𝑖

𝑘 = 2 𝑉1
𝑖 −𝑘 𝐼𝑍𝑇𝐿 − 𝑉1

𝑖
𝑘 , 

(2.78)  𝑉1
𝑟

𝑘 = 0.5( 𝑉1
𝑖

𝑘 + 𝑉2
𝑖

𝑘 + 𝑉3
𝑖

𝑘 − 𝑉4
𝑖

𝑘 ). 

The reflected voltages for the four transmission lines can be expressed by the scattering 

matrix, 

 

[
 
 
 
 𝑉𝑘 1

𝑟

𝑉𝑘 2
𝑟

𝑉𝑘 3
𝑟

𝑉𝑘 4
𝑟]
 
 
 
 

= 0.5 [

1
1
1

−1

1
1

−1
1

1
−1
1
1

−1
1
1
1

]

[
 
 
 
 𝑉𝑘 1

𝑖

𝑉𝑘 2
𝑖

𝑉𝑘 3
𝑖

𝑉𝑘 4
𝑖]
 
 
 
 

. (2.79) 

Consider the TLM cell that is centred at node (x,y) and that is connected to four 

adjacent TLM cells as shown in Figure 2.12. The pulse incident to the TLM node (x,y) 

at time k+1 are those reflected back from the adjacent node at time step k. The connect 

process is expressed by the following set of equations: 

 𝑉𝑘+1 1
𝑟(𝑥, 𝑦) = 𝑉𝑘 3

𝑖(𝑥, 𝑦 − 1), 

(2.80) 

 𝑉𝑘+1 2
𝑟(𝑥, 𝑦) = 𝑉𝑘 4

𝑖(𝑥 − 1, 𝑦), 

 𝑉𝑘+1 3
𝑟(𝑥, 𝑦) = 𝑉𝑘 1

𝑖(𝑥, 𝑦 + 1), 

 𝑉𝑘+1 4
𝑟(𝑥, 𝑦) = 𝑉𝑘 2

𝑖(𝑥 + 1, 𝑦). 

Finally, boundaries should be expressed to take into account the termination of the 

problem space. TLM boundaries are short circuit, open circuit and matching 

impedance. 
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Figure 2.12: Connection of the TLM cells 

If for example port 4 of the TLM node (x,y) in Figure 2.13(a) is short-circuited, the 

scattered voltage is reflected back completely into port 4, and then the  incident voltage 

at time k+1 equals the reflected voltage of time k at the same port,  

 𝑉𝑘+1 4
𝑖(𝑥, 𝑦) = − 𝑉𝑘 4

𝑟(𝑥, 𝑦). (2.81) 

For open-circuit termination at port 4 of the TLM node (x,y) (Figure 2.13(b)), the 

incident voltage at time k+1 is expressed as [7], 

 𝑉𝑘+1 4
𝑖(𝑥, 𝑦) = 𝑉𝑘 4

𝑟(𝑥, 𝑦) = 𝑉𝑘 2
𝑟(𝑥 + 1, 𝑦). (2.82) 

And finally, a matching boundary is used to reduce the problem space to a finite size. 

For example, if port 4 of TLM node in Figure 2.13(c) is connected to a matching 

impedance ZL to free space, ZL value is chosen to be equal to free space impedance 

𝑍𝑜 = √
𝜀𝑜

𝜇𝑜
, and hence the reflection coefficient at port 4 is, 

 
 =

𝑍𝐿 − 𝑍

𝑍𝐿 + 𝑍
, (2.83) 
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where Z is the transmission line impedance. Then the incident voltage at time k+1 is 

expressed as 

 𝑉𝑘+1 4
𝑖(𝑥, 𝑦) =  𝑉𝑘 4

𝑟(𝑥, 𝑦). (2.84) 
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Figure 2.13: TLM series node terminated with (a) short-circuit, (b) open-circuit and (c) 

matching impedance 

Time step ∆t is the time the signal takes to travel from a TLM node to the adjacent 

node, thus it depends on the discretization length ∆l, 

 
∆𝑡 =

∆𝑙

𝑢𝑇𝐿
. (2.85) 

where uTL is velocity of the signal over the transmission line and is calculated by, 

 
𝑢𝑇𝐿 =

1

√𝐿𝐶
. (2.86) 

where L and C are the transmission line equivalent inductance and capacitance, 

respectively. 

2.6.3.2 TM polarization 

For TM fields expressed in Equations (2.8) the wave equation is, 



2. A Review of Unstructured Numerical Techniques 42 

 

 𝜕2𝐸𝑧

𝜕𝑥2
+

𝜕2𝐸𝑧

𝜕𝑦2
= 𝜇𝜀

𝜕2𝐸𝑧

𝜕𝑡2
. (2.87) 

Equation (2.87) is expressed by the shunt node showed in Figure 2.8.b, which is a 

block of space of dimensions ∆x, ∆y and ∆z. The voltage Vz is related to the electric 

field component Ez and the currents in the ports are mapped to the magnetic field 

components Hx and Hy. Consider the circuit structure shown in Figure 2.14. 
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Figure 2.14: Circuit structure of the TLM shunt node 

Applying Kirchhoff’s law for the x-propagation transmission line [7], 

 
𝐿𝑥

𝜕𝐼𝑥
𝜕𝑡

= −
𝜕𝑉𝑧

𝜕𝑥
∆𝑥, (2.88) 

 
𝐶𝑧

𝜕𝑉𝑧

𝜕𝑡
= −

𝜕𝐼𝑥
𝜕𝑥

∆𝑥. (2.89) 

Differentiating Equations (2.88) and (2.89) with respect to x and t, then combining the 

resulted equations leads to, 

 𝜕2𝑉𝑧
𝜕𝑥2

(∆𝑥)2

𝐿𝑥
= 𝐶𝑧

𝜕2𝑉𝑧
𝜕𝑡2

. (2.90) 

Similarly for the y-propagation, 
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 𝜕2𝑉𝑦

𝜕𝑦2

(∆𝑦)2

𝐿𝑦
= 𝐶𝑧

𝜕2𝑉𝑧
𝜕𝑡2

. (2.91) 

Summing Equations (2.90) and (2.91) leads to 

 𝜕2𝑉𝑧
𝜕𝑥2

(∆𝑥)2

𝐿𝑥
+

𝜕2𝑉𝑦

𝜕𝑦2

(∆𝑦)2

𝐿𝑦
= 2𝐶𝑧

𝜕2𝑉𝑧
𝜕𝑡2

. (2.92) 

The circuit parameters Lx, Ly and Cz are calculated from [7], 

 
𝐿𝑥 = 𝜇

∆𝑥∆𝑧

∆𝑦
, 

(2.93)  
𝐿𝑦 = 𝜇

∆𝑦∆𝑧

∆𝑥
, 

 
𝐶𝑧 = 𝜀

∆𝑥∆𝑦

∆𝑧
 

Substitution of circuit parameters into Equation (2.92) leads to, 

 𝜕2

𝜕𝑥2
(
𝑉𝑧
∆𝑧

) +
𝜕2

𝜕𝑦2
(
𝑉𝑧

∆𝑧
) = 2𝜀𝜇

𝜕2

𝜕𝑡2
(
𝑉𝑧

∆𝑧
). (2.94) 

Comparing the 2D wave equation (2.87) with Equation (2.94), the field to circuit 

analogy can be expressed as, 

 
−

𝑉𝑧
∆𝑧

↔ 𝐸𝑧 , 

(2.95) 
 𝐼𝑥

∆𝑦
↔ 𝐻𝑦, 

 
−

𝐼𝑦

∆𝑥
↔ 𝐻𝑥. 

Thus, a shunt node can simulate a medium with parameters 2 and µ. Then the 

Thevenin equivalent circuit is constructed to calculate the currents and voltages as 

shown in Figure 2.15. 
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The voltage Vz across the parallel transmission lines is calculated from, 

 𝑉𝑧 = 0.5( 𝑉𝑘 1
𝑖 + 𝑉𝑘 2

𝑖 + 𝑉𝑘 3
𝑖 + 𝑉𝑘 4

𝑖), (2.96) 

and the currents Ix and Iy are calculated as, 

 
𝐼𝑥 =

𝑉𝑘 2
𝑖 − 𝑉𝑘 4

𝑖

𝑍𝑇𝐿
, (2.97) 

 
𝐼𝑦 =

𝑉𝑘 3
𝑖 − 𝑉𝑘 1

𝑖

𝑍𝑇𝐿
. (2.98) 

 

DC DC DC DC

2kV
i
1

ZTL

2kV
i
2 2kV

i
3 2kV

i
4

ZTL ZTL ZTL

kVz

 

Figure 2.15: Thevenin equivalent circuit of the shunt TLM node 

An incident pulse at certain port is partially transmitted to the other three ports, and 

the rest of the pulse is reflected back to same port. The reflected voltage 𝑉𝑘 𝑚
𝑟 at any 

port m can be obtained from, 

 𝑉𝑘 𝑚
𝑟 = 𝑉𝑧 − 𝑉𝑘 𝑚

𝑖 ,            m=1,2,3,4 (2.99) 

For example, if a pulse is incident at port 1, the reflected pulse is calculated as, 

 𝑉𝑘 1
𝑟 = 𝑉𝑧 − 𝑉𝑘 1

𝑖 = 0.5(− 𝑉𝑘 1
𝑖 + 𝑉𝑘 2

𝑖 + 𝑉𝑘 3
𝑖 + 𝑉𝑘 4

𝑖). (2.100) 

Applying the same approach to other ports, each incident pulse will be scattered and 

the reflected voltages at all ports can be given by the following matrix equation, 
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[
 
 
 
 𝑉𝑘 1

𝑟

𝑉𝑘 2
𝑟

𝑉𝑘 3
𝑟

𝑉𝑘 4
𝑟]
 
 
 
 

= 0.5 [

−1
1
1
1

1
−1
1
1

1
1

−1
1

1
1
1

−1

]

[
 
 
 
 𝑉𝑘 1

𝑖

𝑉𝑘 2
𝑖

𝑉𝑘 3
𝑖

𝑉𝑘 4
𝑖]
 
 
 
 

. (2.101) 

The reflected voltages at time step k are the incident voltages to the nodes at time step 

k+1. The connect process with adjacent TLM cells follows the same approach laid 

with the series TLM node (Equations (2.80)). 

Finally, boundaries should be expressed to take into account the termination of the 

problem space. TLM boundaries are short circuit, open circuit or matching impedance 

as shown in Figure 2.16. Connection of TLM shunt node can be calculated using the 

same equations of the series node (Equations (2.81)-(2.83)). 
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Figure 2.16: TLM shunt node terminated with (a) short-circuit, (b) open-circuit and (c) 

matching impedance 

2.6.4 Errors in numerical methods 

This section overviews three principal sources of error which can be identified [4] as: 

The first error is the truncation error, which is due to the need to truncate the impulse 

response in time, such as setting finite number of iterations N. In frequency domain 

this error appears as a shift in the maxima for simulation of resonating structures, in 

other words, the frequencies are smeared out as with FFT data windowing. The 

maximum truncation error is given by [4] 
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e𝑇 =

3𝑐

𝑆𝑁2𝜋2∆𝑙
. (2.102) 

where c is the free space wavelength between two neighbouring peaks, ∆l is the 

discretisation length,  S is the frequency separation expressed in terms of ∆l/c. The 

error can be minimized by increasing the number of iterations N and increasing S [4]. 

The first step in numerical simulation is the generation of a suitable mesh that 

discretize the problem space using either structured or unstructured meshes. The 

second source of error is the quantization error which is a result of sampling the 

problem into finite number of cells. To reduce such error it is required to choose the 

segment length ∆l to be equal to or less than one-tenth of wavelength of interest [117], 

 ∆𝑙 ≤


10
. (2.103) 

The third error is the dispersion error, for example propagation velocity in the 

structured TLM is assumed to be the same in all directions and equal to 𝑢𝑇𝐿𝑀 = 𝑢/√2, 

where u is the signal velocity in the medium. This condition is on the assumption that 

the TLM mesh wavelength n is large as compared to the discretization length ∆l [4]. 

Otherwise the propagation velocity depends on the propagation direction. The 

minimum error is achieved when the propagation angle is 45o and the maximum 

velocity error achieved with propagation angle 0o in the structured mesh [7]. The 

velocity error for unstructured meshes is investigated in Chapter 5. 

2.7 Unstructured meshing techniques 

Discretizing the problem space into finer meshes minimizes the time step and 

consequently increase the total run time. Therefore, it is an important problem on how 

to achieve high spatial resolution problems where fine details of the problem are 

present while keeping reasonable computer resources. Such problems are thin wire 

embedded in a large region [118-123], antennas [124, 125] and optoelectronics [27, 

28]. 
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Three different types of conformable surface models have been suggested; namely, 

locally distorted grid models [13, 17-19, 126, 127], globally distorted grid models 

(body fitted) [14] and unstructured models [23, 24, 29, 128]. 

Unstructured grid methods initially developed as an alternative to discretize complex 

geometries. The mesh involves elements of different size and shapes with irregular 

connectivity. These methods make use of triangular elements for 2D problems and 

tetrahedral for 3D problems [11, 30, 129].  

In FDTD method, a generalized Yee’s algorithm that is based on unstructured and 

irregular grids  is presented [29, 128]. The unstructured grids are based on triangular 

pyramids, which provide second-order accuracy in condition that the interior angles of 

the triangular faces are less than 60o. The general Yee’s algorithm is based on solving 

the integral form of Maxwell’s equations with a closed 3D volume. For stability, the 

time step is chosen to be, 

 
∆𝑡 ≤

1

𝑐 [∑
1
𝑙𝑖
2

3
𝑖=1 ]

, (2.104) 

where c is the speed of light, li is the three edges in each cell sharing a common vertex. 

There are different techniques for generating unstructured meshes, two of the most 

famous ones are Advancing-Front technique and Delaunay based approaches.  

In unstructured mesh generation techniques, nodes are distributed in the domain prior 

the triangulation is carried on. Advancing front technique (AFT) create nodes 

wherever needed in a local procedure in the same time elements are generated.  The 

elements created are triangles and the creation starts from the domain boundary. AFT 

involves propagating a layer from boundaries into domain. The method starts by 

discretizing the boundaries of the geometry (known as front) into edges. These edges 

form the initial front that will advance into the field. Starting with an edge the first 

triangle is created by joining the two ends of the edge to an existing point or to a point 

on the front. Then the current edge is removed from the front and the remaining two 

edges of the new triangle are assigned to the new front as shown in Figure 2.17. 
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Figure 2.17: Advancing front technique (AFT) [130] 

The procedure is iterative as it is repeated till all edges of the initial front are removed 

as shown in Figure 2.17. New points placed in the domain are chosen to form triangle 

of good shape and size, the position is determined by a prescribed field function. 

Advancing front method result smooth high quality triangulation in most regions of 

the domain but difficulties are encountered at the places where fronts collide, usually 

in the centre of the domain [129, 131].  

Delaunay-based approaches start with random number of points, where triangles of 

Delaunay types are initially created. For arbitrary number of points there are many 

possible triangulations. Figure 2.18 shows two different Delaunay triangulations; the 

first one contains long triangles (bad triangles) and the second is for good quality 

(uniform) Delaunay triangles. The initial triangulation is formed by forming the 

maximum pairs of nodes without crossing any line. The first node is then added and 

connected to each vertex of the enclosing triangle, add the second node and if it falls 

into one of the triangles you already created then subdivide that triangle as shown in 

Figure 2.19. The process is then repeated until the last node is added and the whole 

domain is triangulated [32, 130] as shown in Figure 2.20. All triangles should obey the 

Delaunay condition that the circumcircle containing the triangle vertices should not 

1 2 

3 4 
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contain other points as shown in Figure 2.20. Delaunay triangles are mostly of good 

shape and it has the advantage of maximizing the minimum angle of all triangles, it 

does a better job of connecting nearby nodes rather than far points which avoid the 

formation of long triangles and produce more uniform shapes [130].  

 

  

(a) (b) 

Figure 2.18: (a) Delaunay triangulation with long triangles, (b) Uniform Delaunay 

triangulation [132]. 

 

 

Figure 2.19: Transforming non-Delaunay triangle (left) into Delaunay type triangle (right) 

[12, 130]. 

Delaunay mesh can be expressed by its dual mesh known as the voronoi mesh which 

is formed by connecting the triangles circumcentres as shown in Figure 2.20. More 

details on Delaunay meshes are discussed in Chapter 3. 
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Figure 2.20: Delaunay mesh (light) and its dual mesh Voronoi tessellation (dark) [12, 130]. 

Unstructured mesh in the TLM is a meshing criteria that is adopted in [23, 24] to 

discretize problems with fine features and that of curved boundaries. Unstructured 

mesh is used to discretise the problem space into triangular shapes in 2D problem and 

tetrahedral in 3D problems that fulfil Delaunay condition. TLM node must coincide 

with the circumcentre of the Delaunay triangle. In 2D problems, each node combines 

three transmission lines that connect the TLM node to its neighbouring nodes. Since 

the triangles in the mesh are of different sizes, the maximum useable time step ∆𝑡𝑚𝑎𝑥 is 

proportional to the length of shortest transmission line ∆𝑚𝑖𝑛 in the entire problem [23], 

 ∆𝑡𝑚𝑎𝑥 = ∆𝑚𝑖𝑛√2𝜀𝜇. (2.105) 

where  and µ are the medium permittivity and permeability, respectively. 

Stubs are inserted at the end of each transmission line to compensate for the 

discrepancy in transmission lines lengths, and to allow signal to travel with the same 

velocity between nodes. In Chapter 3, 2D unstructured TLM (2D UTLM) will be 

discussed in detail. 

The most critical point that faces the UTLM is the optimization between the mesh size 

and the time step. In some Delaunay triangles, the circumcentre can lay outside the 

triangle which affects the distance between the two adjacent circumcentres. This 

distance can be very small or even equal zero, which lead to very small time step. A 

small time step has big impact on the computational resources, so a solution must be 

applied to maximise the time step. This point will be addressed and solved in Chapter 
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4. Unstructured mesh has better dispersion characteristics as compared to the 

structured mesh but has the disadvantage of intermodal coupling, in which any excited 

is coupled to other spatial modes. A complete dispersion and modal coupling study is 

discussed in Chapter 5. 

2.8 Summary 

In this chapter, a theoretical and mathematical background for solving Maxwell’s 

equations and wave equations is summarized. First, Maxwell’s equation, derivation of 

wave equation and the general solution of plane wave propagation and boundary 

conditions are discussed. Numerical methods that are used to solve Maxwell’s 

equations and wave equations such as TLM, FDTD and FE are overviewed. Different 

meshing techniques are discussed paying attention to unstructured meshes. 

The next chapter overviews the 2D Unstructured Transmission Line Modelling (2D 

UTLM) theory and implementation, and then the accuracy and efficiency of the 2D 

UTLM algorithm is validated and compared against the structured TLM method. 
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Chapter 3.  

Two-Dimensional Unstructured Transmission Line 

Modelling 

3.1 Introduction  

In this chapter, Unstructured Transmission Line Modelling (UTLM) is presented for 

modelling two-dimensional (2D) problems, together with the algorithm of how it can 

be practically implemented in a computer program. A formulation of the 2D UTLM is 

presented starting with a general TLM node and followed by the mapping of the EM 

field onto the network of equivalent transmission lines. The accuracy of the UTLM 

method is validated on several canonical examples of cylindrical and square metal 

resonant cavities and results are compared with the structured TLM (STLM). 

The main philosophy of the TLM method is that EM field is mapped onto the network 

of transmission lines along which voltages propagate. The transmission lines intersect 

at nodes which are placed at the centres of mesh cells (cells are of square or cuboidal 

shape for STLM and triangular or tetrahedral for UTLM). Transmission lines of 

neighbouring cells are connected at the cell boundaries which are defined as ports. The 

EM simulation begins by inserting an appropriate voltage excitation at an arbitrary 

node which then travels through the network of transmission lines. The voltages 

scatter at the nodes and the new reflected signals become the incident signals on 

neighbouring nodes in the next time step – process known as connect. These processes 

are repeated until a steady state is reached. 

The UTLM requires that problem of interest is meshed using Delaunay triangulation. 

Delaunay triangles have the characteristics of well-shaped triangles in which it 

maximizes the internal angles of triangles and avoids the formation of skinny triangles. 

Delaunay triangle also minimizes the error in approximation of a function over a 

domain. The UTLM node should coincide with the circumcentre of the Delaunay 
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triangle for proper implementation of the Electromagnetic theory as will be discussed 

later. The network orthogonal to Delaunay is Voronoi which connects the triangles 

circumcentres.  The Voronoi diagram corresponds to the network of transmission lines 

where the signal propagates. 

3.2 Unstructured meshes and Delaunay triangulation 

3.2.1 Delaunay properties 

Delaunay triangulations are widely used in scientific computing in diverse 

applications. Delaunay meshes are well-known set of triangulation of an arbitrary set 

of points. It has the advantage of maximizing the minimum angle and avoiding skinny 

triangles which consequently provides good quality triangles [30, 32]. 

Delaunay triangulation provides unique triangulations which obey the empty 

circumcircle property; for which a set of 2D points a Delaunay triangulation of these 

points ensures the triangle circumcircle contains no other point in its interior. Thus, 

two-dimensional triangulation is often called the empty circumcircle criterion [32].  

Figure 3.1 shows an example of Delaunay and Non-Delaunay triangles. In 

Figure 3.1(a) the triangle circumcircle contains only the triangle three vertices, whilst 

in Figure 3.1(b) the circumcircle includes another vertex from the adjacent triangle. 

1

2

3

4

 

(a) 

1

2

3

4

 

(b) 

Figure 3.1: Set of four points forming (a) Delaunay triangles, (b) Non-Delaunay triangles 
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The Delaunay condition implies that for any two adjacent triangles in the triangulated 

area, the sum of the angles facing the same side should be less than or equal to 180o. 

This condition allows the use of the flip technique [133]. If the two triangles shown in 

Figure 3.2(a) do not fulfil the Delaunay condition where 𝛼 + 𝛽 > 180𝑜 then the edge 

BD shared between the two triangles can be flipped to be AC as shown in Figure 3.2(b) 

and the resulting triangles will be of Delaunay type where 𝛾 + 𝛿 < 180𝑜. 

A

B

C

D

a

b

 

A

B

C

D

d

g

 

(a) (b) 

Figure 3.2: Flipping technique: (a) non-Delaunay triangles converted into (b) Delaunay 

triangles 

Although Delaunay property is well defined but the topology of the triangulation is 

not unique if four points forming a square lies on the circumference of a circle, it ends 

to forming two similar non-unique right angled triangles which still obey the Delaunay 

condition as shown in Figure 3.3. The resulting triangles are referred as degenerate 

Delaunay triangles. 

 

Figure 3.3: Degenerate Delaunay triangles 
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Delaunay triangulation is formed by defining the polygon points known as the mesh 

points from which initial triangulation is constructed. The mesh points are inserted 

sequentially into that initial triangulation using Bowyer-Watson algorithm [30]. 

Inserting the first point to the initial triangulation, then the empty circumcircle property 

is adopted in that locating and deleting all triangles whose circumcircle contains the 

inserted point. Then this point is connected to boundary vertices of the cavity created 

of the removal of non-fulfilling triangles. The second point is inserted and the 

Delaunay condition is applied and so on till the last point in list is inserted. Then, the 

resulting mesh contains triangles of Delaunay type. 

Another type of Delaunay triangulation is known as Constrained Delaunay 

Triangulation that enforces specific segments into the triangulation. These segments 

may not satisfy Delaunay conditions, thus, some triangles might not be Delaunay [32]. 

Delaunay triangulation can be refined by inserting new vertices known as Steiner 

points to subdivide the segments into several edges to create smaller triangles whilst 

maintaining the Delaunay property of the mesh. Segments are subdivided in a way to 

prevent the creation of unnecessarily short edges. This is known as Conforming 

Delaunay Triangulation [32]. 

Unstructured mesh generation is an important step in the simulation, where the mesher 

should produce triangles that are of Delaunay type, but one must bear in mind that not 

all Delaunay type triangles are of good type. Quasi-equilateral triangles are considered 

to be the good Delaunay triangle due to the uniform structure, whilst sliver or skinny 

triangles are considered to be bad quality triangle. The mesher is required to avoid the 

production of skinny triangles (whose height h is much greater than its base b) shown 

in Figure 3.4 which decreases the quality and uniformity of the mesh in the simulation. 

Different approaches are adopted for optimal mesh triangulation [134-138]. 

b

h

q 

 

Figure 3.4: Skinny triangle 
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A local measure of triangle quality is mesh quality factor Q which is the ratio between 

the circumcircle radius to the shortest link line in the triangle [32]. So, for equilateral 

triangle the Q value is 1 √3⁄  or 0.57735. Practically, it is expected that a mesh of good 

quality have Q equals to 1 or 2 [131]. The effect of mesh quality on the accuracy of 

the TLM simulation will be further investigated in Chapter 5. 

An intended problem is defined by setting exterior boundaries that separate the meshed 

from the unmeshed areas which is known as polygon. Interior boundaries can be added 

to the polygon as shown in Figure 3.5(a,b) to separate different meshed regions and 

they are used to set some region constraints and attributes, such as the presence of 

holes as shown in Figure 3.5(c) or different media as shown in Figure 3.5(d). For 2D 

unstructured mesh generation a polygon is produced by creating a closed loop of 

straight edges. 

Exterior boundaries

Interior boundaries

 

Exterior boundaries

Interior boundaries

 

(a) (b) 

 

r1

r2

 

(c) (d) 

Figure 3.5: Generation of unstructured meshes: (a,b) creating a polygon (c,d) meshing the 

polygon with respect to the exterior and interior boundaries. 
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Upon mesh generation the first set of formulated triangles coincide with the vertices 

of the polygon, and then the mesh generator introduces additional vertices inside the 

polygon which are called Steiner points [32]. Those points are the vertices of inside 

triangles, and the produced meshes are called a Steiner triangulation of the polygon. 

For a set of points, there exist many possible triangulations of these points. Most 

Delaunay mesh generators create their worst elements near the domain boundary and 

their best elements in the interior. 

Then Delaunay refinement can be applied to improve the produced Delaunay triangles 

by moving the node location. This can be achieved by iteratively moving nodes to 

average of neighbours, which is known as Laplacian smoothing [30]. 

 𝑥𝑖 →
1

𝑛𝑖
∑𝑥𝑗

𝑛𝑖

𝑗=1

. 
(3.1) 

where ni is the number of nodes, xi and xj are the new and old node positions. Generally, 

extra random points can be placed within the problem domain to enforce quality mesh 

or to put size constraints such as an upper limit for the triangle area. 

3.2.2 Delaunay triangle circumcentre 

Triangle circumcentre is the intersection of the triangle normal bisectors. It is located 

inside an acute triangle, outside an obtuse triangle and located on centre of hypotenuse 

of the right-angled triangle as shown in Figure 3.6. 

The location of the circumcentre (CCx,CCy) depends on the triangle vertices. For a 

triangle of vertices A(x1,y1), B(x2,y2) and C(x3,y3) the circumcentre coordinates can be 

calculated as follows [139] 

 
𝐶𝐶𝑥 =

𝑆𝑥

𝑎
, 

𝐶𝐶𝑦 =
𝑆𝑦

𝑎
. 

(3.2) 

where 
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 𝑆𝑥 =
1

2
[𝐴(𝑦2 − 𝑦3) − 𝐵(𝑦1 − 𝑦3) + 𝐶(𝑦1 − 𝑦2)], (3.3) 

 𝑆𝑦 =
1

2
[𝑥1(𝐵 − 𝐶) − 𝑥2(𝐴 − 𝐶) + 𝑥3(𝐴 − 𝐵)], (3.4) 

 𝑎 = 𝑥1(𝑦2 − 𝑦3) − 𝑥2(𝑦1 − 𝑦3) + 𝑥3(𝑦1 − 𝑦2). (3.5) 

and  

 𝐴 = 𝑥1
2 + 𝑦1

2, 

𝐵 = 𝑥2
2 + 𝑦2

2, 

𝐶 = 𝑥3
2 + 𝑦3

2. 

(3.6) 

(a) (b) (c)

Triangle 
Circumcenter

Triangle 
Circumcenter

Triangle 
Circumcenter

Figure 3.6:  Location of circumcentre for (a) acute, (b) obtuse and (c) right-angled Delaunay 

triangle. 

3.2.3 Voronoi mesh 

A Voronoi diagram is a geometric structure that represents proximity information 

about a set of points or objects. It is a way for dividing a region into sub-regions. 

Voronoi diagram of random set of points is formed of segments that connect a point 

to the nearest points. Voronoi mesh is the dual mesh of Delaunay triangulation, in 

which each segment is normal to the original Delaunay mesh. In this thesis Voronoi 

mesh will refer to set of segments or link lines that connect each triangle circumcentre 

to the neighbour’s circumcentres as shown in Figure 3.7.  
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Delaunay mesh

Voronoi Link

 

Figure 3.7: Delaunay (dotted red) and Voronoi (solid green) diagram 

To create Voronoi mesh, link lines are identified. Link lines are either connecting a 

triangle circumcentre CC1 to neighbour circumcentre CC2 (Figure 3.8(a)), or 

connecting a triangle circumcentre to the port (side bisector) for triangles located on 

the outer boundaries as shown in Figure 3.8(b). 

Link length is calculated using the distance formula. For two points P1 (x1, y1) and P2 

(x2, y2), the distance between those points is calculated as 

 𝐿𝑖𝑛𝑘 𝑙𝑖𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2. (3.7) 

A

C

B

D

CC1

CC2

A

C

B

Boundary

CC1

port

(a) (b)
 

Figure 3.8: link line (a) between circumcentres (CC1 – CC2) and (b) from circumcentre to 

port (CC1 – port) 
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Figure 3.9 shows the Delaunay and Voronoi meshes of the example shown previously 

in Figure 3.5. 

 

 

(a) (b) 

Figure 3.9: Delaunay (light) and Voronoi (dark) meshes of a polygon 

Unstructured transmission line modelling (UTLM) is applied on Voronoi mesh where 

each transmission line is aligned on a Voronoi segment. Due to duality, the problem 

domain is first triangulated into Delaunay mesh then Voronoi mesh is created. UTLM 

requires than the TLM node coincides on the Delaunay circumcentre and Voronoi 

mesh comprises segments linking adjacent triangles circumcentres, then UTLM still 

hold true working on Voronoi diagram.. 

3.3 2D UTLM node 

In 2D UTLM, each node combines three transmission lines where each  transmission 

line is connected to the neighbour transmission line via a port. The EM fields are 

sampled on the node boundaries. 

An arbitrary UTLM node is shown in Figure 3.10 and is comprised of three 

transmission lines of lengths 0, 1 and 2 are the lengths of the transmission lines at 

which the voltage propagate. The node centre is defined at the intersection of the 

transmission lines. Three ports are defined which connect node to its neighbours. Each 

port is located at a distance ∆ from the node centre, and an angle j defines the angle 

between transmission lines.  
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Port 1

Port 2

Port 0

j1

j2

j0

1

2

0

 

Figure 3.10: The basic structure of the 2D UTLM node. 

The node presented in Figure 3.10 is the shunt TLM node which is appropriate for 

modelling Transverse Magnetic (TM) field propagation with the electric field Ez 

polarized perpendicular to the plane of the node. 

The full set of Maxwell’s equations in the cylindrical coordinate system is [45] 

 
(
𝜕𝐸𝑧

𝑟𝜕𝜑
−

𝜕𝐸𝜑

𝜕𝑧
) = −𝜇

𝜕𝐻𝑟

𝜕𝑡
, (3.8) 

 
(
𝜕𝐸𝑟

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑟
) = −𝜇

𝜕𝐻𝜑

𝜕𝑡
, (3.9) 

 
(
𝜕𝐸𝜑

𝜕𝑟
−

𝜕𝐸𝑟

𝑟𝜕𝜑
) = −𝜇

𝜕𝐻𝑧

𝜕𝑡
, (3.10) 

 
(
𝜕𝐻𝑧

𝑟𝜕𝜑
−

𝜕𝐻𝜑

𝜕𝑧
) = 𝜀

𝜕𝐸𝑟

𝜕𝑡
, (3.11) 

 
(
𝜕𝐻𝑟

𝜕𝑧
−

𝜕𝐻𝑧

𝜕𝑟
) = 𝜀

𝜕𝐸𝜑

𝜕𝑡
, (3.12) 

 𝜕𝐻𝜑

𝜕𝑟
−

𝜕𝐻𝑟

𝑟𝜕𝜑 
= 𝜀

𝜕𝐸𝑧

𝜕𝑡
. (3.13) 
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For the 2D TM fields the principal field components are Ez, Hx and Hy and there is no 

field change in the z-direction, thus, 𝜕/ 𝜕z=0. Under such assumption Equations (3.8)-

(3.13) reduce to 

 𝜕𝐸𝑧

𝑟𝜕𝜑
= −𝜇

𝜕𝐻𝑟

𝜕𝑡
, (3.14) 

 
−

𝜕𝐸𝑧

𝜕𝑟
= −𝜇

𝜕𝐻𝜑

𝜕𝑡
, (3.15) 

 𝜕𝐻𝜑

𝜕𝑟
−

𝜕𝐻𝑟

𝑟𝜕𝜑 
= 𝜀

𝜕𝐸𝑧

𝜕𝑡
. (3.16) 

which leads to the 2D wave equation in cylindrical coordinates, 

 
𝜕2𝐸𝑧

𝜕𝑟2
+

1

𝑟

𝜕2𝐸𝑧

𝜕𝜑2
= 𝜇𝜖

𝜕2𝐸𝑧

𝜕𝑡2
. 

(3.17) 

This field Ez in the vicinity of the node can be expressed as the superposition of the 

local solutions of the 2D wave equation expressed by Equation (3.17). Due to the fact 

that node dimensions are smaller than the wavelength of interest only first three modes 

can be used for a good field approximation [23] which means that Ez field component 

can be approximated as. 

 
𝐸𝑧(𝑟, 𝜑) = 𝐽𝑜(𝑘𝑟)𝑋𝑐0 + cos(𝜑) 𝐽1(𝑘𝑟)

𝑋𝑐1

𝑘
+ sin(𝜑) 𝐽1(𝑘𝑟)

2𝑋𝑠1

𝑘
. (3.18) 

where Ji are the Bessel functions of the order i, X are modal amplitudes and k is the 

wavenumber k=2/, where  is the wavelength of the interests. 

Using Equation (3.18), the field at port 1 (j=0, r=∆1) is, 

 
𝐸𝑧1 = 𝐽𝑜(𝑘∆1)𝑋𝑐0 + cos(0) 𝐽1(𝑘∆1)

𝑋𝑐1

𝑘
+ sin(0) 𝐽1(𝑘∆1)

2𝑋𝑠1

𝑘
. (3.19) 

Using the assumption that the argument of the Bessel function k1 is small (k∆1<<1), 

the Bessel functions can be approximated as [45] 
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𝐽𝑜(𝑘∆1) ≅ 1 −

(𝑘∆1)
2

4
.  (3.20) 

 
𝐽1(𝑘∆1) ≅

𝑘∆1

2
. (3.21) 

resulting in 

 𝐸𝑧1 ≅ [1 −
(𝑘∆1)

2

4
]𝑋𝑐0 +

𝑘∆1

2

2𝑋𝑐1

𝑘
, 

(3.22) 

Neglecting the small terms (𝑘∆1)
2 gives 

 𝐸𝑧1 ≅ 𝑋𝑐0 + ∆1𝑋𝑐1. (3.23) 

Following the same procedure for port 2, the field is expressed as, 

 
𝐸𝑧2 = 𝐽𝑜(𝑘∆2)𝑋𝑐0 + cos(𝜑0) 𝐽1(𝑘∆2)

2𝑋𝑐1

𝑘

+ sin(𝜑0) 𝐽1(𝑘∆2)
2𝑋𝑠1

𝑘
, 

(3.24) 

and is approximated with 

 𝐸𝑧2 ≅ 𝑋𝑐0 + cos(𝜑0) ∆2𝑋𝑐1 + sin(𝜑0)∆2 𝑋𝑠1. (3.25) 

And finally for the port 0, the field is approximated by, 

 
𝐸𝑧0 = 𝐽𝑜(𝑘∆0)𝑋𝑐0 + cos(𝜑0 + 𝜑1) 𝐽1(𝑘∆0)

2𝑋𝑐1

𝑘

+ sin(𝜑0 + 𝜑1) 𝐽1(𝑘∆0)
2𝑋𝑠1

𝑘
, 

(3.26) 

 𝐸𝑧0 ≅ 𝑋𝑐0 + cos(𝜑0 + 𝜑1) ∆0𝑋𝑐1 + sin(𝜑0 + 𝜑1) ∆0𝑋𝑠1. (3.27) 

Equations (3.23), (3.25) and (3.27) can be expressed in a matrix form 

 [
𝐸𝑧1

𝐸𝑧2

𝐸𝑧0

] = [

1 ∆1 0
1 ∆2cos (𝜑0) ∆2sin (𝜑0)
1 ∆0cos (𝜑0 + 𝜑1) ∆0sin (𝜑0 + 𝜑1)

] [
𝑋𝑐0

𝑋𝑐1

𝑋𝑠1

]. (3.28) 

This matrix can be expressed compactly as, 
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[𝐸𝑧] = [𝑇𝑒][𝑋] (3.29) 

where Te is a matrix relating the electric field to the modal components X, 

The magnetic field Hj component can be expressed using Equation (3.15) which 

results in, 

 −𝑗𝜔𝜇𝑜𝐻𝜑(𝑟, 𝜑) =
𝜕𝐽𝑜(𝑘𝑟)

𝜕𝑟
𝑋𝑐0 +

𝜕𝐽1(𝑘𝑟)

𝜕𝑟
cos(𝜑)

𝑋𝑐1

𝑘
+

𝜕𝐽1(𝑘𝑟)

𝜕𝑟
sin(𝜑)

2𝑋𝑠1

𝑘
. (3.30) 

Under a small argument, the derivatives of Bessel functions can be approximated as 

[45] 

 
𝜕𝐽𝑜(𝑘𝑟)

𝜕𝑟
≅ −

𝑘2𝑟

2
, (3.31) 

 
𝜕𝐽1(𝑘𝑟)

𝜕𝑟
≅

1

2
. (3.32) 

and the magnetic field at ports 1, 2 and 0 can be expressed as  

 −𝑗𝜔𝜇𝑜∆1𝐻𝜑1 = −
𝑘2∆1

2

2
𝑋𝑐0 + ∆1𝑋𝑐1, (3.33) 

 −𝑗𝜔𝜇𝑜∆2𝐻𝜑2 = −
𝑘2∆2

2

2
𝑋𝑐0 + ∆2 cos(𝜑𝑜) 𝑋𝑐1 + ∆2 sin(𝜑𝑜) 𝑋𝑠1, (3.34) 

 −𝑗𝜔𝜇𝑜∆0𝐻𝜑0 = −
𝑘2∆0

2

2
𝑋𝑐0 + ∆0 cos(𝜑𝑜 + 𝜑1)𝑋𝑐1

+ ∆0 sin(𝜑𝑜 + 𝜑1)𝑋𝑠1. (3.35) 

Equations (3.33)-(3.35) can be expressed in matrix form as, 

 [

𝑗𝜔𝜇𝑜∆1𝐻𝜑1

𝑗𝜔𝜇𝑜∆2𝐻𝜑2

𝑗𝜔𝜇𝑜∆0𝐻𝜑0

] =

[
 
 
 
 
 
 −

(𝑘∆1)
2

2
∆1 0

−
(𝑘∆2)

2

2
∆2cos (𝜑0) ∆2sin (𝜑0)

−
(𝑘∆0 )

2

2
∆0cos (𝜑0 + 𝜑1) ∆0sin (𝜑0 + 𝜑1)]

 
 
 
 
 
 

[

𝑋𝑐0

𝑋𝑐1

𝑋𝑠1

]. (3.36) 

This matrix is expressed compactly as, 
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 [𝑗𝜔𝜇𝑜∆
𝐷𝐻𝜃] = [𝑇ℎ][𝑋]. (3.37) 

where Th is a matrix relating the magnetic field to the modal components X. 

From Equation (3.29), the modal components can be obtained in term of the electric 

field 

 𝑋 = 𝑇𝑒
−1𝐸𝑧. (3.38) 

Substituting Equations (3.38) into Equation (3.37), we get 

 𝑗𝜔𝜇𝑜∆
𝐷𝐻𝜑 = 𝑇ℎ𝑇𝑒

−1𝐸𝑧 . (3.39) 

Inverting the matrix [Te] and after mathematical manipulations an expression relating 

the magnetic field in the three transmission lines the electric field is obtained as [23, 

117]. 

 

[

𝐻𝜑1

𝐻𝜑2

𝐻𝜑0

]

=
𝑗𝜔𝜀𝑜

2

[

∆2∆0∆1𝑠1 ∆1∆0∆1𝑠2 ∆2∆1∆1𝑠0

∆2∆0∆2𝑠1 ∆2∆0∆1𝑠2 ∆2∆2∆1𝑠0

∆2∆0∆0𝑠1 ∆0∆0∆1𝑠2 ∆2∆0∆1𝑠0

]

∆2∆0𝑠1 + ∆1∆0𝑠2 + ∆2∆1𝑠0
[
𝐸𝑧1

𝐸𝑧2

𝐸𝑧0

]

+
1

𝑗𝜔𝜇0

[

∆0𝑠2 + ∆2𝑠0 −∆0𝑠1 −∆2𝑠0

−∆0𝑠1 ∆0𝑠1 + ∆1𝑠0 −∆1𝑠0

−∆2𝑠1 −∆1𝑠2 ∆1𝑠2 + ∆2𝑠1

]

∆2∆0𝑠1 + ∆1∆0𝑠2 + ∆2∆1𝑠0
[
𝐸𝑧1

𝐸𝑧2

𝐸𝑧0

]. 
(3.40) 

where 𝑠𝑖 = sin (𝜑𝑖). Equation (3.40) shows that the magnetic field is related to the 

electric field through an admittance matrix, where the first term on the RHS of 

Equation (3.40) is capacitive and the second term is inductive. As electric field is 

proportional to the voltage and magnetic field is proportional to the current, the 

following mapping can be applied [23] 

 [
𝐸𝑧1

𝐸𝑧2

𝐸𝑧0

] → [
𝑉1

𝑉2

𝑉0

] , [

𝛼𝑠1 0 0
0 𝛼𝑠2 0
0 0 𝛼𝑠0

] [

𝐻𝜑1

𝐻𝜑2

𝐻𝜑0

] → [
𝐼1
𝐼2
𝐼0

]  
(3.41) 
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where a is a mapping constant. Mapping Equation (3.40) in Equation (3.41) leads to 

[23] 

 

[

𝐼1
𝐼2
𝐼0

] =
𝑗𝜔𝛼𝜀𝑜

2

[

∆2∆0∆1𝑠1 ∆1∆0∆1𝑠2 ∆2∆1∆1𝑠0

∆2∆0∆2𝑠1 ∆2∆0∆1𝑠2 ∆2∆2∆1𝑠0

∆2∆0∆0𝑠1 ∆0∆0∆1𝑠2 ∆2∆0∆1𝑠0

]

∆2∆0𝑠1 + ∆1∆0𝑠2 + ∆2∆1𝑠0
[

𝑉1

𝑉2

𝑉0

]

+
𝛼

𝑗𝜔𝜇0

[

∆0𝑠2 + ∆2𝑠0 −∆0𝑠1 −∆2𝑠0

−∆0𝑠1 ∆0𝑠1 + ∆1𝑠0 −∆1𝑠0

−∆2𝑠1 −∆1𝑠2 ∆1𝑠2 + ∆2𝑠1

]

∆2∆0𝑠1 + ∆1∆0𝑠2 + ∆2∆1𝑠0
[

𝑉1

𝑉2

𝑉0

]. 
(3.42) 

In order to get a physical circuit representation of the previous expression, both the 

capacitive and inductive matrices should be reciprocal. This inductive matrix is 

reciprocal but the capacitive one is not. The inductive term dominates at low 

frequencies but when all three port voltages are identical, the resulting current is given 

by a capacitive matrix [117] 

 [
𝐼1
𝐼2
𝐼0

] =
𝑗𝜔𝛼𝜀𝑜

2
[
∆1𝑠1 0 0
0 ∆2𝑠2 0
0 0 ∆0𝑠0

] [
𝑉1

𝑉2

𝑉0

]. 
(3.43) 

It is then correct to approximate the capacitive matrix with the one given in Equation 

(3.43) so that Equation (3.42) reduces to 

 

[

𝐼1
𝐼2
𝐼0

] ≅
𝑗𝜔𝛼𝜀𝑜

2
[

∆1𝑠1 0 0
0 ∆2𝑠2 0
0 0 ∆0𝑠0

] [

𝑉1

𝑉2

𝑉0

]

+
𝛼

𝑗𝜔𝜇0

[

∆0𝑠2 + ∆2𝑠0 −∆0𝑠1 −∆2𝑠0

−∆0𝑠1 ∆0𝑠1 + ∆1𝑠0 −∆1𝑠0

−∆2𝑠1 −∆1𝑠2 ∆1𝑠2 + ∆2𝑠1

]

∆2∆0𝑠1 + ∆1∆0𝑠2 + ∆2∆1𝑠0
[

𝑉1

𝑉2

𝑉0

]. 
(3.44) 

This expression will enable representation of the node using LC equivalent network as 

shown in Figure 3.11, where the voltage and the current through each link are used to 

define Ez, Hj. 

The circuit parameters are given as follows [23], 

 𝐿𝑖 =
𝜇0∆𝑖

𝛼𝑠𝑖
. 

(3.45) 
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 𝐶𝑖 =
𝛼𝜀𝑜𝑠𝑖∆𝑖

2
. (3.46) 

where o and µo and are the material permittivity and  permeability respectively. ∆i is 

the link line length, 𝑠𝑖 = sin (𝜑𝑖) and a is a mapping constant. 

C1

C2

   C0
L1

L2

L0To neighbour

To neighbour

To neighbour

V1

V0

V2

j0

j1

j2

1

2

0

 

Figure 3.11: Transmission Line model of TLM node. 

For Li and Ci components to be positive 𝑠𝑖 = sin (𝜑𝑖) must be positive, which can be 

achieved if the angle ji is less than . Using Delaunay triangulations ensures that this 

condition is achieved. Delaunay condition states that for any two adjacent triangles the 

sum of the two angles facing the side shared between those triangles should be equal 

or less than . Therefore, if the Delaunay condition is achieved the stability of the 

UTLM node approximation is ensured. 

Also, the continuity of electric and magnetic fields should be investigated through the 

node boundaries. The continuity of the voltage across the node boundaries ensures the 

continuity of electric field. But since 𝐼𝑖 = 𝛼𝑠𝑖𝐻𝑖, the continuity of magnetic field is not 

achieved unless 𝛼𝑠𝑖 is the same across the adjacent nodes. This can be achieved if the 

circumcentre of the Delaunay triangle [23] is chosen to be the centre of the node as 

shown in Figure 3.12 and and R is the radius of the circle that encloses the triangle. 
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The continuity of magnetic field is enforced on the ports which lie on the straight line 

that is normal to the interface between two triangles, as shown in Figure 3.12. Note 

that triangle circumcentre is the intersection of the three normal bisectors. 

fi

li

Triangle 
circumcentre

Neighbor 
circumcentre

Neighbor 
circumcentre

Neighbor 
circumcentre

PortPort

Port

 

Figure 3.12: Delaunay Triangle where its circumcentre coincides with the TLM node. 

In this case the length of the shared interface between the two triangles is 𝑙𝑖 = 2𝑅𝑆𝑖 

where li is also the length of the triangle side opposite to the angle ji as shown in 

Figure 3.12, so that 𝐼𝑖 = 𝛼𝑠𝑖𝐻𝑖 = 2𝑅𝑠𝑖𝐻𝑖 = 𝑙𝑖𝐻𝑖. This enables the current continuity 

to be enforced across the nodes. 

To summarise, this section mapped the 2D Maxwell equations for the TM modes onto 

the triangular Delaunay node. It is shown that node centre coincides with the 

circumcentre of Delaunay triangle and that transmission lines follow the Voronoi 

mesh. The LC parameters of the equivalent transmission lines are also derived.  

3.4 Circuit analysis of shunt TLM node 

3.4.1 Stub model of inductor and capacitor 

In this section the equivalent transmission line parameters are defined. The TLM node 

should coincide with the triangle circumcentre. Each node is connected to the adjacent 
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nodes through transmission lines. Each transmission line is modelled using a stub 

model, so that inductor is modelled with short circuited stub model and capacitor with 

an open-circuited stub model as shown in Figure 3.13 [7]. 

Signal travel between two adjacent nodes through transmission line with time step ∆t, 

so it takes the signal time ∆t/2 to travel from the node to the port. Time step is 

calculated based on the shortest transmission line in the problem region and it is given 

by [23] 

 ∆𝑡𝑚𝑎𝑥 = ∆𝑚𝑖𝑛√2𝜀𝜇. (3.47) 

where ∆min is the shortest transmission line in the entire region,  is the material 

permittivity and µ is the material permeability. 

Capacitive stubs enable synchronization of the voltage propagation along different 

lengths of transmission line in the unstructured mesh so that they all reach the nodal 

interfaces (ports) at the same time. The stubs are inserted to slow down the pulse in all 

lines that are greater than minimum link line [23]. 

ZL1

ZL2
YS1

YS2

YS3

ZL3

A

 

Figure 3.13: Stub model of the TLM shunt node. 
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The stub model of the inductor has parameters Ll, Cl, a length ∆l and a round trip ∆t 

and it is terminated with a short circuit. The propagation velocity along the line is [7] 

 𝑢𝑙 =
∆𝑙

∆𝑡 2⁄
=

1

√𝐿𝑙𝐶𝑙

. 
(3.48) 

Then the capacitance is calculated as follows 

 𝐶𝑙 =
1

𝑢𝑙
2𝐿𝑙

=
(∆𝑡)2

4(∆𝑙)2𝐿𝑙
. 

(3.49) 

The characteristic impedance of transmission line is 

 𝑍𝐿 = √
𝐿𝑙

𝐶𝑙
= √

4(∆𝑙)2𝐿1
2

(∆𝑡)2
=

2𝐿1∆𝑙

∆𝑡
=

2𝐿

∆𝑡
. 

(3.50) 

From Equation (3.45) and Equation (3.50) the characteristic impedance of the 

transmission line can be calculated as, 

 𝑍𝐿𝑖 =
2𝐿

∆𝑡
=

2𝜇∆𝑖

2𝑅𝑠𝑖𝑛𝜑𝑖∆𝑡
=

2𝜇∆𝑖

𝑙𝑖∆𝑡
. 

(3.51) 

where µ is the material permeability (µ=µoµr), ∆i is the length of the link line (i=0,1,2), 

li is the triangle side and ∆t is time step at which the signal travels between nodes. 

The stub model of a capacitor has parameters Cs, Ls a length ∆l and a round trip ∆t. It 

is terminated with an open-circuit. The velocity of propagation is  

 𝑢𝑠 =
∆𝑙

∆𝑡 2⁄
=

1

√𝐿𝑠𝐶𝑠

. 
(3.52) 

Then 

 𝐿𝑠 =
1

𝑢𝑠
2𝐶𝑠

=
(∆𝑡)2

4𝐶𝑠(∆𝑙)2
. 

(3.53) 

And the characteristic impedance of the stub will be 
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 𝑍𝐶 = √
𝐿𝑠

𝐶𝑠
= √

(∆𝑡)2

4𝐶𝑠
2(∆𝑙)2

=
∆𝑡

2𝐶𝑠∆𝑙
=

∆𝑡

2𝐶
. 

(3.54) 

The stub admittance Ysi can be calculated using the formulas in Equation (3.46) and 

Equation (3.54) [23] 

 𝑌𝑠𝑖 =
2𝐶

∆𝑡
− 𝑌𝐿𝑖 =

2(2𝑅𝑠𝑖𝑛𝜑𝑖𝜀∆𝑖)

2∆𝑡
−

𝑙𝑖∆𝑡

2𝜇∆𝑖
=

𝜀𝑙𝑖∆𝑖

∆𝑡
−

𝑙𝑖∆𝑡

2𝜇∆𝑖
. 

(3.55) 

where  is the material permittivity (=or), ∆i is the length of the link line (i=0,1,2), 

li is the triangle side and ∆t is time step. 

3.4.2 Thevenin equivalent circuit 

In this section equivalent circuits for scatter and connect process on the UTLM node 

will be presented. The two Thevenin circuits are defined for the triangle node (scatter 

process) and for triangle ports (connect process).  

The equivalent representation of the inductor and capacitor using short-circuited (SC) 

and open-circuited (OC) stubs and their Thevenin equivalence is schematically given 

in Figure 3.14.a and b respectively. The stub model of the inductor and capacitor has 

voltages and currents represented at discrete value of the time step k∆t.  The incident 

voltage to the inductive stub is expressed as 𝑉𝐿
𝑖

𝑘  and the Thevenin equivalent source 

is twice the incident voltage 2 𝑉𝐿
𝑖

𝑘  due to the round trip. The Thevenin impedance is 

the transmission line characteristic impedance ZL as shown in Figure 3.14.a [7] 

Similarly the Thevenin equivalent circuit for the capacitive stub is given in 

Figure 3.14.b and has incident voltage to the capacitive stub expressed as 2 𝑉𝑐
𝑖

𝑘 , and 

equivalent Thevenin impedance equals to the capacitive stub impedance Zc. 
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(a) (b) 

Figure 3.14: Thevenin equivalence of (a) stub inductor model, (b) stub capacitor model. 

The Thevenin equivalent circuit for a UTLM shunt node A is comprised of three 

transmission lines as shown in Figure 3.15 where ZLi and VLi are the transmission line 

equivalent impedance and voltage, respectively. 

The Thevenin equivalence of the port circuit can be deducted from Figure 3.16 which 

shows the transmission line network between two connected triangles with nodes A 

and B through port C defining the interface at which two neighbouring transmission 

lines intersects. 

DC

2kV
i
L1

ZL1
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Figure 3.15: Thevenin equivalent circuit of shunt TLM node. 
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Figure 3.16: The transmission line equivalent circuit of the connected links (in red). 

The equivalent admittance at the port C is expressed as 

 𝑌𝑆 = 𝑌𝑆5 + 𝑌𝑆6. (3.56) 

where YS5 and YS6 are the stub admittances of the two interconnected capacitive open-

circuited stubs. 

The Thevenin equivalent circuit for the port C is given in Figure 3.17 where ZL5 and 

ZL6 are the inductive impedances of the triangle A and neighbour triangle B, 

respectively. 𝑉𝐿5
𝑖  and 𝑉𝐿6

𝑖   are the incident voltages on the transmission lines of the 

triangle A and neighbour triangle B, respectively, and 𝑉𝑆
𝑖 and ZS are the stub voltage 

and equivalent impedance of the two parallel stubs, respectively. 

Since the link impedance and stub admittance formulas shown previously are 

associated with single triangle, the time step ∆t represents the time the signal consume 

in travelling from circumcentre to port. 
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Figure 3.17: Thevenin equivalent circuit of the connection process. 

3.4.3 Scatter and connect processes  

The transmission line theory states that the total voltage at any point along the line 

consists of incident and reflected voltages. In the main TLM algorithm, at any given 

time step k, the voltages are incident on the nodes, from which they scatter and then 

connect with the neighbouring nodes at ports to define new incident voltages for the 

next time step, (k+1).  

The scattering of the incident voltages at the nodes can be analysed using the Thevenin 

equivalence of the node circuit in Figure 3.15. Applying Kirchhoff’s current law, the 

node voltage is calculated as 

 𝑉𝐴 = [
2 𝑉𝑘 𝐿1

𝑖

𝑍𝐿1
+

2 𝑉𝑘 𝐿2
𝑖

𝑍𝐿2
+

2 𝑉𝑘 𝐿5
𝑖

𝑍𝐿5
] 𝑍𝑒𝑞 . 

(3.57) 

where Zeq is the equivalent impedance where  
1

𝑍𝑒𝑞
=

1

𝑍𝐿1
+

1

𝑍𝐿2
+

1

𝑍𝐿5
. 

The reflected voltage at each link are calculated from 

 

𝑉𝑘 𝐿1
𝑟 = 𝑉𝐴 − 𝑉𝑘 𝐿1

𝑖 , 

𝑉𝑘 𝐿2
𝑟 = 𝑉𝐴 − 𝑉𝑘 𝐿2

𝑖 , 

𝑉𝑘 𝐿5
𝑟 = 𝑉𝐴 − 𝑉𝑘 𝐿5

𝑖 . 

(3.58) 



3. 2D Unstructured Transmission Line Modelling 75 

 

where  𝑉𝑘 𝐿1
𝑟 , 𝑉𝑘 𝐿2

𝑟  and 𝑉𝑘 𝐿5
𝑟  are the reflected voltages at link1, link 2 and link 3 

respectively at the time step k. 

The reflected voltages now propagate to neighbouring nodes and reach the node 

interface at which capacitive stubs are connected.  

The total voltage at the interface i.e. port C, can be obtained from Kirchhoff’s current 

law, 

 𝑉𝐶 = [
2 𝑉𝑘 𝐿5

𝑖

𝑍𝐿5
+

2 𝑉𝑘 𝑆
𝑖

𝑍𝑆
+

2 𝑉𝑘 𝐿6
𝑖

𝑍𝐿6
] 𝑍𝑒𝑞 . 

(3.59) 

where ZL5 and ZL6 are the link impedances, ZS is the equivalent stub admittance, and 

Zeq is the equivalent impedance where  
1

𝑍𝑒𝑞
=

1

𝑍𝐿5
+

1

𝑍𝐿6
+

1

𝑍𝑆
. 

Then reflected voltages on transmission lines 5 and 6 and the stub are updated as 

follows, 

 

𝑉𝑘 𝐿5
𝑟 = 𝑉𝐶 − 𝑉𝑘 𝐿5

𝑖 , 

𝑉𝑘 𝐿6
𝑟 = 𝑉𝐶 − 𝑉𝑘 𝐿6

𝑖 , 

𝑉𝑘 𝑆
𝑟 = 𝑉𝐶 − 𝑉𝑘 𝑆

𝑖. 

(3.60) 

In the connect phase the voltages reflected from the port C that are expressed in 

Equations (3.60) are the incident voltages for the next time step k+1, i.e. 

 

𝑉𝑘+1 𝐿5
𝑖 = 𝑉𝑘 𝐿5

𝑟 , 

𝑉𝑘+1 𝐿6
𝑖 = 𝑉𝑘 𝐿6

𝑟 , 

𝑉𝑘+1 𝑆
𝑖 = 𝑉𝑘 𝑆

𝑟. 

(3.61) 

Triangles located on boundaries have a special connection procedure. Figure 3.18 

shows Thevenin equivalent circuits for different boundary types, namely short-

circuited, open-circuited and matched boundary condition 
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Figure 3.18: Thevenin equivalent circuit of a triangle located on (a) short circuit, (b) open 

circuit or (c) matching impedance boundary. 

The Thevenin equivalent circuit for short circuit boundary is shown Figure 3.18(a) 

from where the reflected voltage is simply, 

 𝑉𝑘 𝐿5
𝑟 = − 𝑉𝑘 𝐿5

𝑖 . (3.62) 

If the boundary is open-circuit as in Figure 3.18(b), the port C voltage reduces to 

 𝑉𝐶 = [
2 𝑉𝑘 𝐿5

𝑖

𝑍𝐿5
+

2 𝑉𝑘 𝑆
𝑖

𝑍𝑆
] 𝑍𝑒𝑞 . (3.63) 

where Zeq is the equivalent impedance 
1

𝑍𝑒𝑞
=

1

𝑍𝐿5
+

1

𝑍𝐿𝑆
 

For the matched boundary shown in Figure 3.18(c), the port voltage becomes 

 𝑉𝐶 = [
2 𝑉𝑘 𝐿5

𝑖

𝑍𝐿5
+

2 𝑉𝑘 𝑆
𝑖

𝑍𝑆
] 𝑍𝑒𝑞 . 

(3.64) 

where Zeq is the equivalent impedance 
1

𝑍𝑒𝑞
=

1

𝑍𝐿5
+

1

𝑍𝐿3
+

1

𝑍𝐵𝑁𝐷
 

The voltage reflected from the boundaries are calculated from 

 
𝑉𝑘 𝐿5

𝑟 = 𝑉𝐶 − 𝑉𝑘 𝐿5
𝑖 , 

𝑉𝑘 𝑆
𝑟 = 𝑉𝐶 − 𝑉𝑘 𝑆

𝑖 . 
(3.65) 
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The scatter – connect process is repeated for a given number of timesteps or until 

steady state is reached. 

3.5 Implementation of 2D unstructured TLM 

3.5.1 Mesh geometry 

Meshes are categorized according to their dimensionality. Various types of meshes are 

defined according to the number of elements that comprise the mesh; such as triangular 

mesh that comprises three sides, quadrilateral meshes of four sides, tetrahedral meshes 

which is composed of four triangular faces, and hexahedral meshes which is composed 

of six square faces. For two dimensional modelling triangles and quadrilaterals are 

used. 

Structured mesh such as rectangular cells have identical discretisation cells, therefore 

the mesh dimensionality is controlled by the cell area. On the other hand, unstructured 

mesh, unless they are made of equilateral triangles, have greater cell variability. In the 

unstructured mesh, the user has two degrees of freedom when selecting or producing 

a mesh: the average cell size, expressed in terms of triangle area, and a measure of the 

shape of the triangles used. The shape of the triangle is controlled by a measure known 

as the mesh quality factor Q which is the ratio of the triangle circumradius to the 

triangle shortest edge. 

A simple polygon or polyhedron is created and fed to a mesh generator. The function 

of the mesh generator is to triangulate the inner region into number of meshes. A 

polygon is known as PSLG (Planar Straight Line Graph) and it is formed by defining 

the outer boundaries of the intended problem; this can be achieved by setting the 

number of points on the boundaries and the segments connecting these points. So, by 

increasing the number of points, segments get smaller which lead to finer meshes. The 

inner space can be filled with any materials by assigining some attributes. Internal 

boundaries can be applied as well which makes the polygon accommodate different 

materials or changes in dimensions. 
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In this thesis the data of the polygon is fed to a mesh generator named “Triangle” 

created by J. Shewchuk [37]. 

The user controls the mesh dimensionality by applying the certain switches in 

“Triangle” command line to request the required mesh size and quality. The mesh size 

is controlled by the ‘-a’ switch which imposes the maximum area constrains in the 

meshed region. This is achieved by setting the required area value following this 

switch. For example, if the user chose the segment length L in the polygon to be 1mm, 

it is preferable to choose the triangles area not to exceed (0.5L2) which is 0.5mm2 for 

this case, then the mesh area switch is written as ‘-a0.5’ which guarantee that the 

triangles produced have an area equal to or less than 0.5mm2. Another important switch 

is ‘-q’ which controls the mesh shape and consequently the mesh quality. The quality 

is controlled by assigning a value of the minimum angle to the –q switch. Writing –q 

switch in the command line with no value following it will lead to mesh generation 

with no angles smaller than 20 degrees. Generally, a triangle with good quality is of 

equilateral shape. Generally speaking, it requires good amount of trial and error 

working with these switches till the required mesh is achieved. 

The mesh generator triangulates the region and produces four main files that contain 

data of the meshed area, namely: 

.node file: contains the data of nodes that was provided in the original polygon in 

addition to new node inserted in the meshed area. 

.edge file: contains the data of segments that was provided in the original polygon in 

addition to new segments connecting the new nodes, which forms the sides of the 

Delaunay triangles. Also it defines whether the segment is located on border or inside 

the meshed region. 

.ele file: provide data about the vertices of the produced Delaunay triangles in addition 

to the material parameters for each triangle. And finally  

.neigh file: locate the three neighbours of each triangle. 

Further details of how to use “Triangle”, the usage of switches, format of input files 

and output files are included in Appendix A. 



3. 2D Unstructured Transmission Line Modelling 79 

 

Meshing a space into structured meshes is created by inserting fixed equidistant points 

around the boundaries and inside the problem domain. The mesher then discretise the 

domain into structured mesh (square or rectangle) that is formed of two equal right-

angled triangles as shown in Figure 3.19. Right-angled triangle has its circumcentre 

located on the middle of its hypotenuse. This will lead to zero link length between each 

two triangles forming a structured mesh as shown in Figure 3.19 circled in red, in other 

words the problem space will include number of zero link lines equals to the number 

of structured meshes. Figure 3.20 shows a rectangular space meshed into structured 

mesh formed of two right-angled triangles. 

As the resulting meshes are of the form of equal Delaunay triangles, the UTLM 

algorithm laid in [23] can be applied on these structured meshes. The zero link length 

will lead to zero link and stub impedances upon substitution in Equations (3.51) and 

(3.55), then the link connecting nodes A and B is represented by a short-circuited link 

impedance and open-circuited stub admittance as shown in Figure 3.21.a which is 

reduced to the conventional shunt TLM node as shown in Figure 3.21.b. 

 

Figure 3.19: Structured mesh formed of two right-angled triangles 

 

Figure 3.20: Delaunay & Voronoi mesh of PEC rectangular resonator with enlarged inset 

identifying presence of zero link lines in all structured meshes 
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Figure 3.21: (a) short link length represented by short circuit link line and open circuit stub 

admittance which is equivalent to (b) the conventional structured shunt TLM node 

3.5.2 Software Design 

The 2D UTLM implementation is comprised basically of repetitive process of 

scattering and connection as mentioned in Section 3.4. Each process is repeated for all 

the TLM nodes within the domain of the simulated problem. Before implementing the 

US TLM data obtained from Shewchuk mesh generator [37] should be processed to 

form the complete triangulated area and identify the routes allowed for the signal to 

travel. This will be achieved by allocating a reference system to locate the correct 

neighbours and boundaries at the triangle sides. Then for the completion of the big 

picture some aspects should be considered, such as the excitation of the problem, the 

link and stub parameter calculations, the link and stub voltage calculations, followed 

by the calculations of the reflected voltages from the links and stubs. Generally, the 

software code follows the design rules laid out in [7, 23]. 

Figure 3.22 shows the interconnection of the modules for simulating the 

electromagnetic problem. The problem geometry is defined in an input file which is 

fed to the mesh generator, which produces meshed geometry that is defined in four 

main files (.node, .ele, .edge and .neigh). These files are then fed to the UTLM 

simulator that processes these data. According to the results produced, one can return 
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back to the mesh generator and modify how the problem is meshed till good accuracy 

is achieved.  
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Figure 3.22: The mesh generator and UTLM simulator interrelation. 

Extra attributes such as the material distribution, or the excitation and observation 

specifications can be either defined in the UTLM simulator or in the mesh generator 

stages. 

Given a specific geometrical structure, a non object oriented implementation is hard 

to maintain since the basic mesh configuration is unique where each cell has its own 

parameters and attributes. This is why the high level Object Oriented Programming 

language C++ is used to implement the unstructured TLM (2D UTLM) tool.  

The basic categories that will form the complete triangulated area are: node, edge, 

triangle and region. The structure is built starting from the basic element which is the 

nodes or triangle vertices defined by their IDs and coordinates. Each two vertices will 

then from a segment, segments should be marked whether they are located on borders 

or inside the triangulated area. Also, each segment should be allocated to the two 

triangles that share such segment. Triangles are then formed by segments. Triangle (or 

mesh) is the main element of the problem, in which each mesh should have its set of 

data as dimension, material, etc. 
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And finally, the upper category is the problem region which act as the vital part of the 

structure, this allow allocating meshes and their relative positions, connecting meshes 

and exchanging data between neighbours. Also, it contains the global parameters of 

the problem such as the time step, the number of iteration, source points and 

observation points, etc. 

According to these specifications four classes are created; which are TLMnode, 

TLMTriangle, TLMEdge and TLMRegion. For Further detail on these classes, refer to 

Appendix A 

3.6 General unstructured TLM algorithm 

Figure 3.23 shows a general unstructured TLM algorithm. This algorithm is divided 

into three stages: pre-processing, main process and post-processing 
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Figure 3.23: General Unstructured TLM algorithm. 
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3.6.1 Pre-processing 

The first stage of the UTLM algorithm at which the data received from the TLM 

mesher is processed to define mesh connectivity. The source and excitation points are 

defined, the time step is set and the link and stub admittances are calculated. 

Input files - In this stage the PSLG (Planar Straight Line Graph) diagram is created 

to define the problem shape and apply the attributes if exists (.poly file). The .poly file 

is fed to the mesh generator [37], and then by applying the proper switches the files 

.node, .ele, .edge and .neigh discussed in Appendix A are produced. In addition to the 

data contained in these files, an extra file is produced that contain other input 

parameters as the excitation and observation points and input voltage. 

Mesh connectivity - Connecting triangles and defining their relative positions is one 

of the crucial parts in the algorithm. Proper connectivity ensures that each triangle 

deliver signal to the correct neighbours which consequently ensures continuous flow 

of the signal. The ‘Triangle’ [37] mesh generator provided enough data of the meshes 

but the three files .ele, .edge and .neigh should be linked together. 

o Linking .ele and .edge files - The .ele file provides the ID of its three vertices and 

the .edge file contain the ID of the segment two end points. A referencing system 

is created for each edge which will help later on to identify the correct neighbour 

at each side. Note that the ID of the triangle vertices is put in an anti-clockwise 

manner. Starting with the first pair of vertices (V1, V2) of the first triangle in the 

.ele file and comparing them with the list of edges in the .edge file, once a match 

has been found the edge that has the same endpoints as V1 and V2 will be marked 

as E12. Then moving to the second pair of vertices for the first triangle (V2, V3) 

and applying the same criteria on the list of edges till a match is found that will be 

marked as E23, and for the third pair (V1, V3) the matched edge will be marked as 

E13. This will be repeated for all triangles till all edges are referenced as shown in 

Figure 3.24. 

o Linking .edge and .neigh files - The .neigh file provides the ID of the three 

neighbour of each triangle. To complete the mesh connectivity calling the proper 

neighbour should be ensured from any side of the triangle. Since the triangle edges 

are marked by E12, E23 and E13, then the neighbours will take the same notations; 



3. 2D Unstructured Transmission Line Modelling 85 

 

meaning the neighbour at the E12 side will be marked N12, the neighbour at E23 

side will be marked N23, and that at the E13 side is marked N13. 

1

2 3
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2 3
 

Figure 3.24: Referencing triangle edges. 
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Figure 3.25: Referencing triangle neighbours. 

Delaunay check - Although the mesh generator “Triangle” [37] creates Delaunay 

triangles, another check should be carried on to ensure that all triangles obey Delaunay 

condition.  

Delaunay condition states that for each two adjacent triangles the sum of the angles 

that face the same side should be equal to or less than . 
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A triangle of sides a, b and c has three angles A that is facing side a, B facing side b 

and C side c. The angles will be calculated according to the cosine formulae, this will 

ease referencing and extracting the correct angles. According to the reference system 

discussed earlier, angle 1 will be the one facing E12, angle 2 will be the one facing 

E23 and angle 3 is the one opposite to E13 as shown in Figure 3.26.  

The cosine formula is given generally as follows: 

 
cos 𝐴 =

𝑏2 + 𝑐2 − 𝑎2

2𝑏𝑐
, 

cos 𝐵 =
𝑐2 + 𝑎2 − 𝑏2

2𝑐𝑎
, 

cos 𝐶 =
𝑎2 + 𝑏2 − 𝑐2

2𝑎𝑏
. 

(3.66) 
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Figure 3.26: Referencing triangle angles. 

Time step and admittance - Since the software design is based on the mesh as the 

basic element, then the transmission line lengths will be calculated and stored as the 

distance from triangle circumcentre to its ports, this will ensure to accommodate the 

change of materials when moving from a mesh to another. Special care should be taken 

upon substitution of ∆min in Equation (3.47). The link admittances are calculated from 

Equation (3.51)of which the threeline admittances yL12, yL23 and yL13 (shown in 

Figure 3.27) can be calculated, 
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𝑦𝐿12 =

𝑠𝑖𝑑𝑒12∆𝑡

𝐿12𝜇
, 

𝑦𝐿23 =
𝑠𝑖𝑑𝑒23∆𝑡

𝐿23𝜇
, 

𝑦𝐿13 =
𝑠𝑖𝑑𝑒13∆𝑡

𝐿13𝜇
. 

(3.67) 
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Figure 3.27: Referenced link and stub admittances. 

Also, for the stub admittance Equation (3.55)will expand to express the three stub 

admittances ys12, ys23 and ys13 as shown in Figure 3.27, 

 
𝑦𝑠12 =

𝑠𝑖𝑑𝑒12𝐿12𝜀

∆𝑡
− 𝑦𝑙12, 

𝑦𝑠23 =
𝑠𝑖𝑑𝑒23𝐿23𝜀

∆𝑡
− 𝑦𝑙23, 

𝑦𝑠13 =
𝑠𝑖𝑑𝑒13𝐿13𝜀

∆𝑡
− 𝑦𝑙23. 

(3.68) 

3.6.2 Main process 

The main body of the structure involves the definition of the source function, the 

scatter-connect process is applied, then the UTLM simulator output is extracted for 

post-processing. 
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Source - Excitation point(s) is chosen and the coordinates are set in input file. This 

point is selected to be away from the boundaries or the centre of the region. Since the 

source should be applied at the circumcentre of the mesh, the unstructured TLM 

simulator calculates the distance between the provided input point and all 

circumcentres till a minimum distance is achieved. Then the source will be applied at 

the circumcentre of the nearest triangle to the given source point. 

Normally a Dirac signal is inserted at the beginning of simulation at single point to 

provide a wide spectrum range. This is performed by setting a constant value of V at 

the input point at t=0. But a discrete sine, cosine or Gaussian pulse can be fed at the 

source point(s) according to the problem requirements. 

Scatter - Both incident and reflected voltages are calculated according to Equations 

(3.57) and (3.58) 

Connect - At which the presence of neighbours will be taken into account according 

to Equations (3.59) and (3.60). Or a connection with boundaries is performed for a 

triangle containing sides that falls on the outer boundaries. The voltage calculated at 

the scatter part is transmitted to the neighbours. Then the voltage reflected back from 

neighbours is calculated. This voltage will be the incident voltage at the scatter part in 

the next time step. Both the neighbour ID and the edge type are checked to define 

which connection process will be performed.  

Figure 3.28 shows a basic flow chart of the connection process. If a triangle is located 

on a boundary from one or two sides, the side is checked to identify whether it is short-

circuited, open-circuited or impedance matched, in other words the application of 

Equations (3.62) - (3.65). 

Watch - As in the source part, the observation point(s) is set in the input file, for 

which the nearest circumcentre is found and the voltage value is stored in the output 

file at each individual time step. 
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Figure 3.28: Basic flowchart for 'connect' process. 

3.7 Results 

This section analyses the accuracy and efficiency of the Unstructured TLM method. 

For this purpose several canonical problems of different shapes and materials are 

considered, namely air and dielectric filled metallic cylindrical and rectangular 

resonators. Resonators are meshed using a variety of triangular and structured meshes. 

The resonant frequencies are extracted from simulations and compared against the 

known analytical results. Results obtained using unstructured and structured TLM 

methods are also compared in terms of accuracy and efficiency. 

3.7.1 Effect of number and type of meshes on an air-filled cylindrical 

PEC Resonator 

First example considered is an air filled cylindrical PEC resonator of 1cm radius. The 

resonator is approximated by a sequence of polygonal approximations to generate a 

triangular mesh of Delaunay type and using readily available software provided in 

[37]. The outer boundary is subdivided by allocating 40, 60, 70, 80, 120 points on the 

resonator circumference. This produces different meshes from coarse as low as 104 

triangles for the entire region as shown in Figure 3.29(a) to fine mesh containing 1498 
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triangles as shown in Figure 3.29(b). The resonator is excited with a Dirac function, in 

which a voltage of 10V is inserted at single input point at the beginning of simulation. 

  

Figure 3.29: Air-filled cylindrical PEC resonator triangulated to a (a) coarse and (b) fine 

unstructured meshes. 

The triangular meshes are then processed to obtain the Voronoi mesh of transmission 

lines. An example of Delaunay and Voronoi mesh for the case of 70 points along the 

resonator circumference is shown Figure 3.30 that contains 768 triangles, 2304 link 

lines and has a shortest link length of 15.96mm thus requiring time step of 37.63ps. 

The time step is 58.79ps, 44.34ps, 37.63ps, 25.27ps and 22.98ps for 104, 504, 768, 

1026 and 1498 triangles, respectively. This leads to execution time of 6s, 17s, 24s, 37s, 

and 42s, respectively. 

The resonance frequencies are extracted from the time domain signal using Fast 

Fourier Transform (FFT) and their accuracy is compared with analytical results. 

The analytical results of resonant frequencies 𝑓𝑐
𝑚𝑛 for a circular resonator are 

calculated from [140] 

 
𝑓𝑐

𝑚𝑛 =


𝑚𝑛

2𝜋𝑎√𝜇𝜀
. (3.69) 

where mn are the zeros of Bessel functions for n=1,2,3,… and are given in Table 3.1 
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(a) (b) 

Figure 3.30: (a) Delaunay and (b) Voronoi diagram of an air-filled cylindrical PEC. 

Table 3.1: Zeros mn of Bessel functions 𝐽𝑚(𝑚𝑛)=0 for n=1, 2, 3 

 m=0 m=1 m=2 m=3 

n=1 2.4049 3.8318 5.135 6.3802 

n=2 5.5201 7.0156 8.4173 9.7610 

n=3 8.6537 10.1735 11.6199 13.0152 

 

Figure 3.31 shows the percentage relative error in the first five resonance modes for 

varieties of meshes. The relative error is calculated as |(𝑓𝑇𝐿𝑀 − 𝑓𝑐
𝑚𝑛)/𝑓𝑐

𝑚𝑛|. The 

coarse mesh shows the highest error which was slightly above 7% for the fundamental 

mode TM01 and decreased to lower than 0.05% for the fine mesh. For higher order 

modes, the error ranged from 5.64% to 0.06% for TM11, 2.28% to 0.21% for TM21, 

1.95% to 0.21% for TM02 and finally from 2.85% to 0.24% for TM31. 

Table 3.2 shows the percentage relative error for the first five resonance modes as a 

function of number of triangles in the mesh. Generally, for a resonator triangulated 

into 768 meshes and above the error for all modes is lower than 0.5%. 

Figure 3.32 shows resonance curves for a coarse and fine unstructured mesh, namely, 

for 104 triangles and 1498 triangles. Notice that the coarse triangulation of 104 meshes 
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shows unwanted resonance frequencies in some of the resonance modes. Also, 

Figure 3.32.a shows that resonance mode TM21 splits which make it difficult to extract 

the correct resonance frequency.  As the triangulated area becomes finer the resonance 

frequencies become shaper and shift to the correct places. 

  

Figure 3.31: Relative error for different resonant modes of an air-filled PEC cylindrical 

resonator as a function of number of triangles in the UTLM mesh. 
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Table 3.2: Analytical and numerical resonant frequencies and relative error for a number of 

structured meshes of an air-filled PEC cylindrical resonator. 

Number 

of meshes 

 TM01 TM11 TM21 TM02 TM31 

104 fa (GHz)  11.46769 18.27182 24.48942 26.32242 30.42378 

fTLM (GHz) 10.63798 19.30189 24.01770 26.54010 29.55602 

Relative error % 7.23523 5.63752 1.92624 0.82699 2.85223 

504 fa (GHz)  11.46769 18.27182 24.48942 26.32242 30.42378 

fTLM (GHz) 11.32924 18.11467 23.93075 25.80886 29.86800 

Relative error % 1.20727 0.86004 2.28127 1.95103 1.82679 

768 fa (GHz)  11.46769 18.27182 24.48942 26.32242 30.42378 

fTLM (GHz) 11.46189 18.28892 24.42699 26.24335 30.31452 

Relative error % 0.05053 0.09363 0.25494 0.30038 0.35914 

1026 fa (GHz)  11.46769 18.27182 24.48942 26.32242 30.42378 

fTLM (GHz) 11.47325 18.30145 24.43290 26.25157 30.33210 

Relative error % 0.04845 0.16219 0.23079 0.26916 0.30134 

1498 fa (GHz)  11.46769 18.27182 24.48942 26.32242 30.42378 

fTLM (GHz) 11.46271 18.28358 24.43905 26.26741 30.35074 

Relative error % 0.04343 0.06436 0.20568 0.20898 0.24008 

(a) 

 

(b) 

 

Figure 3.32: Resonant frequencies for an air-filled cylindrical PEC resonator triangulated 

into (a) 104 and (b) 1498 unstructured meshes, with red arrows pointing TM01, TM11, 

TM21, TM02 and TM31 mode positions. 
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In the next step the air-filled PEC cylindrical resonator is meshed using a range of 

structured meshes. This can be achieved by creating an input file that contains the 

coordinates of equidistant fixed points inside the cavity space. These points are then 

connected to form squares or rectangles. The mesh generator then divides each square 

or rectangle into two equal right-angled triangles. Although the mesh contains right-

angled triangles it numerically reduces to a structured TLM mesh. 

The cylindrical resonator is discretized into equivalent structured meshes of 52, 554, 

392, 530 and 742. The time step for each mesh is 117.85ps, 78.57ps, 62.85ps, 47.14ps 

and 39.28ps, respectively, with an execution time of 4s, 9s, 13s, 19s and 24s.  

Figure 3.33 shows structured meshes for the case of resonator meshed into 104 and 

1484 regular meshes. Coarse mesh introduces crude staircase approximation for the 

resonator approximation for the resonator circumference. In the case of fine mesh the 

staircase approximation of the resonator shape becomes better. 

 
 

(a) (b) 

Figure 3.33: Delaunay (light) and Voronoi (dark) diagram of an air-filled cylindrical PEC 

resonator triangulated from a (a) coarse to (b) fine structured meshes. 

Figure 3.34 shows the percentage relative error for the first five resonant frequencies 

as a function in different meshes. The coarse mesh with 104 meshes shows the worst 

error which was above 17% for the fundamental mode and decreased to 1.75% in the 
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case of fine structured mesh. For higher modes, the error ranged from 18.4% to 1.67% 

for TM11, 13.48% to 1.77% for TM21, and it fluctuates between 7.85% and 0.25% 

for TM02 and between 6.93% and 1.35% for TM31. Generally, there is a tendency of 

decrease in relative error of resonance frequencies as the number of meshes increases. 

  

Figure 3.34: Relative error for different resonant modes of an air-filled PEC cylindrical 

resonator as a function of number of squares in the structured TLM mesh. 

Table 3.3 shows the percentage relative error for the first five resonance modes for 

structured meshes with 104, 554, 784, 1060 and 1484 structured meshes. 

Figure 3.35 shows resonance curves for a coarse and fine unstructured mesh, namely, 

for 104 triangles and 1484 triangles. Notice that the coarse triangulation of 104 meshes 

shows unwanted resonance frequencies and large deviation from the analytical 

resonant frequencies. As the triangulated area becomes finer the resonance frequencies 

become shaper and shift to the correct places. 
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Table 3.3: Analytical and numerical resonant frequencies and relative error for a number of 

structured meshes of an air-filled PEC cylindrical resonator. 

Number 

of meshes 

 TM01 TM11 TM21 TM02 TM31 

104 fa (GHz)  11.46769 18.27182 24.48942 26.32242 30.42378 

fTLM (GHz) 13.42479 21.63358 27.79017 28.38873 30.01338 

Relative error % 17.06621 18.39861 13.47827 7.85000 1.34894 

554 fa (GHz)  11.46769 18.27182 24.48942 26.32242 30.42378 

fTLM (GHz) 12.45813 16.21057 22.58973 25.51664 31.14531 

Relative error % 8.63675 11.28103 7.75719 3.06119 2.37160 

784 fa (GHz)  11.46769 18.27182 24.48942 26.32242 30.42378 

fTLM (GHz) 12.30277 19.73398 26.09178 26.25692 32.53216 

Relative error % 7.28202 8.00227 6.54307 0.24884 6.93004 

1060 fa (GHz)  11.46769 18.27182 24.48942 26.32242 30.42378 

fTLM (GHz) 11.04926 17.59907 23.52238 25.11712 29.04701 

Relative error % 3.64882 3.68190 3.94879 4.57899 4.52530 

1484 fa (GHz)  11.46769 18.27182 24.48942 26.32242 30.42378 

fTLM (GHz) 11.26693 17.96619 24.05642 25.70078 29.84214 

Relative error % 1.75066 1.67269 1.76811 2.36164 1.91179 

(a) 

 

(b) 

 

Figure 3.35: Resonant frequencies for an air-filled cylindrical PEC resonator triangulated 

into (a)104 and (b) 1484 structured meshes, with red arrows pointing TM01, TM11, TM21, 

TM02 and TM31 mode positions. 



3. 2D Unstructured Transmission Line Modelling 97 

 

The discretization length is extracted for unstructured and structured meshes for the 

sake of better comparison of the relative error in resonant frequencies. As the 

unstructured mesh is not uniform the discretization length is chosen to be equal to the 

square root of the average area √𝐴𝑎𝑣 all over the meshed domain. The structured mesh 

is uniform with equal squares or rectangles filling the meshed domain but the 

discretization length is calculated in the same manner above. The normalized 

discretization length is calculated with respect to the wavelength of interest. The 

maximum intended frequency is chosen to be 100GHz which corresponds to a 

minimum wavelength of 0.003m. Figure 3.36 shows the relative error in modes TM01 

for both structured and unstructured meshes. For Air-filled PEC resonator the 

unstructured meshes have introduced significantly lower relative error as compared to 

those with structured meshes. For example a resonator discretized into 59135 

unstructured cells of √𝐴𝑎𝑣/0=0.05 achieved percentage relative error of 0.00081%, 

whilst when discretized into 96520 structured cells of √𝐴𝑎𝑣/0=0.009, the percentage 

relative error is 0.00806%. This is expected since the unstructured mesh offers better 

boundary approximation for the curved boundaries of the circular resonator as shown 

in Figure 3.37.  

 

Figure 3.36: Relative error in TM01 for an air-filled PEC cylindrical resonator as a function 

of the normalized discretization length √𝐴𝑎𝑣/𝑜 for both unstructured and structured 

meshes. 
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(a) (b) 

Figure 3.37: Approximation of the PEC resonator circumference (green) using (a) structured, 

(b) unstructured meshes. 

Figure 3.38 shows the runtime as a function of the normalized discretization length for 

both for unstructured and structured.  

 

Figure 3.38: Total run time for an air-filled PEC cylindrical resonator as a function of the 

normalized discretization length √𝐴𝑎𝑣/𝑜 for both unstructured and structured meshes. 
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Although unstructured mesh showed significantly better relative errors this came on 

the expense of longer total run time. This is attributed to the presence of short link 

lines that minimize the timestep and long pre-processing time which both lead to 

longer execution time. On the other hand, the structured mesh is uniform with fixed 

discretization length and bigger timestep as compared to the unstructured mesh. 

3.7.2 Effect of number and type of meshes on dielectric-filled 

cylindrical resonator 

In the previous subsection testing has been carried out for air-filled cavities. In this 

part the presence of dielectric materials will be investigated. Consider a PEC 

cylindrical resonator of radius 1cm concentrically loaded with a dielectric cylinder of 

relative permittivity r=2.1 and 0.5cm radius as shown in Figure 3.39. Upon creating 

the polygon for such resonator an internal boundary is enforced within the problem 

space to distinguish different regions. A closed loop of finite segments is created which 

has a radius of 0.5cm. Two regions (0-0.5cm and 0.5-1cm) will be defined for which 

all meshes inside the inner circle will be assigned a dielectric permittivity of 2.1 and 

the rest of meshes will be air-filled. 

1 cm

0.5 cm

r=2.1

r=1

 

Figure 3.39: PEC cylindrical resonator of radius 1cm concentrically loaded with a dielectric 

cylinder of r=2.1 and 0.5cm radius. 

The cylindrical resonator is triangulated by introducing 40, 60, 70, 80, 120 points on 

the resonator circumference. This produces different meshes of 104, 504, 768, 1026 

and 1498 respectively. The time step is 85.20ps, 64.25ps, 54.53ps, 36.61ps and 
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33.29ps and the execution time was 18s, 25s, 30s, 45s, and 49s for 104, 504, 768, 1026 

and 1498 meshes, respectively. 

Figure 3.40 shows the percentage relative error in the first five resonance modes for 

varieties of meshes. The coarse mesh shows the highest error in fundamental mode 

which was slightly above 3% for the fundamental mode and decreased to 0.07% for 

the fine mesh. For higher order modes, the error ranged from 7.91% to 0.35% for 

TM11, 7.34% to 0.44% for TM21, 3.42% to 0.99% for TM02 and finally from 4.8% 

to 2.28% for TM31. 

Table 3.4 shows the percentage relative error for the first five resonance modes as a 

function of number of triangles in the mesh. 

Figure 3.41 shows resonance curves for a coarse and fine unstructured mesh, namely, 

for 104 triangles and 1498 triangles. Coarse meshes show unwanted resonance 

frequencies for which it make it difficult to extract the correct resonance modes. It also 

shows large deviation from the correct place. This is overcome by using fine meshes. 

As the triangulated area becomes finer the resonance frequencies become shaper and 

shift to the correct places. 

 

Figure 3.40: Percentage Relative error in different propagation modes of an air-filled PEC 

cylindrical resonator concentrically loaded with a dielectric cylinder of r=2.1 as a function 

of number of triangles.  
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Table 3.4: Analytical and numerical resonant frequencies and relative error for a number of 

unstructured meshes of an air-filled PEC cylindrical resonator concentrically loaded with a 

dielectric cylinder of r=2.1. 

Number 

of meshes 

 TM01 TM11 TM21 TM02 TM31 

104 fa (GHz) 8.70157 15.02629 21.43714 22.14911 27.91078 

fTLM (GHz) 8.42384 13.83698 19.86316 20.94762 26.57091 

Relative error % 3.19168 7.91488 7.34232 5.42454 4.80054 

504 fa (GHz) 8.70157 15.02629 21.43714 22.14911 27.91078 

fTLM (GHz) 8.62022 14.84560 20.99117 21.52721 26.58185 

Relative error % 0.93486 1.20248 2.08034 2.80778 4.76136 

768 fa (GHz) 8.70157 15.02629 21.43714 22.14911 27.91078 

fTLM (GHz) 8.66622 14.97428 21.34130 21.93084 27.11878 

Relative error % 0.40621 0.34613 0.44707 0.98546 2.83761 

1026 fa (GHz) 8.70157 15.02629 21.43714 22.14911 27.91078 

fTLM (GHz) 8.68939 14.91827 21.25103 21.78810 27.19649 

Relative error % 0.14002 0.718852 0.508166 1.62992 2.5592 

1498 fa (GHz) 8.70157 15.02629 21.43714 22.14911 27.91078 

fTLM (GHz) 8.69514 14.92684 21.39155 21.87827 27.27437 

Relative error % 0.07384 0.66186 0.21265 1.02280 2.28016 

(a) 

 

(b) 

 

Figure 3.41: Resonant frequencies for an air-filled PEC cylindrical resonator concentrically 

loaded with a dielectric cylinder of r=2.1 triangulated into (a)104 and (b) 1498 unstructured 

meshes, with red arrows pointing TM01, TM11, TM21, TM02 and TM31 mode positions.. 
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Next step is to triangulate a PEC cylindrical resonator of radius 1cm concentrically 

loaded with a dielectric cylinder of r=2.1 and 0.5cm radius into a range of structured 

meshes. 

The cylindrical resonator is triangulated into equivalent structured meshes of 104, 554, 

784, 1060 and 1484. The time step for each mesh is 170.78ps, 113.86ps, 91.08ps, 

68.32ps and 56.93ps and execution time of 6s, 14s, 18s, 24s, and 27s, respectively. 

Figure 3.42 shows the percentage relative error in the first five resonance modes for 

varieties of meshes. The coarse mesh shows the highest error in fundamental mode 

which was slightly above 13% for the fundamental mode and decreased to 2.66% for 

the fine mesh. For higher order modes, the error ranged from 19.81% to 2.74% for 

TM11, 2.68% to 0.72% for TM21, 7.12% to 2.85% for TM02 and finally from 5.97% 

to 3.07% for TM31 

 

Figure 3.42: Percentage Relative error in different propagation modes of PEC cylindrical 

resonator concentrically loaded with a dielectric cylinder of r=2.1 as a function of number 

of structured meshes. 

Table 3.5 shows the percentage relative error for the first five resonance modes of 104, 

554, 784, 1060 and 1484 meshes. Figure 3.43 shows resonance curves for a coarse and 

fine unstructured mesh, namely, for 104 triangles and 1484 triangles. Notice that the 

coarse triangulation of 104 meshes shows unwanted resonance frequencies and large 
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deviation from the analytical resonant frequencies. This is overcome by using fine 

meshes. 

  



3. 2D Unstructured Transmission Line Modelling 104 

 

Table 3.5: Analytical and numerical resonant frequencies and relative error for a number of 

structured meshes of an air-filled PEC cylindrical resonator concentrically loaded with a 

dielectric cylinder of r=2.1. 

Number 

of meshes 

 TM01 TM11 TM21 TM02 TM31 

104 fa (GHz)  8.70157 15.02629 21.43714 22.14911 27.91078 

fTLM (GHz) 7.55118 12.04888 22.01081 23.72640 26.24346 

Relative error % 13.22049 19.81467 2.67606 7.12123 5.97375 

554 fa (GHz)  8.70157 15.02629 21.43714 22.14911 27.91078 

fTLM (GHz) 7.99343 12.87532 20.98751 21.00078 26.32710 

Relative error % 8.13811 14.31471 2.09743 5.18454 5.67408 

784 fa (GHz)  8.70157 15.02629 21.43714 22.14911 27.91078 

fTLM (GHz) 8.25325 14.72146 21.04353 22.46653 26.64483 

Relative error % 5.15217 2.02864 1.83611 1.43310 4.53570 

1060 fa (GHz)  8.70157 15.02629 21.43714 22.14911 27.91078 

fTLM (GHz) 8.33117 15.62465 21.18981 21.44389 26.70936 

Relative error % 4.25670 3.98211 1.15375 3.18397 4.30450 

1484 fa (GHz)  8.70157 15.02629 21.43714 22.14911 27.91078 

fTLM (GHz) 8.47025 14.61434 21.28372 21.51697 27.05423 

Relative error % 2.65837 2.74153 0.71567 2.85402 3.06889 

(a) 

 

(b) 

 

Figure 3.43: Resonant frequencies for an air-filled PEC cylindrical resonator concentrically 

loaded with a dielectric cylinder of r=2.1 triangulated into (a)104 and (b) 1484 structured 

meshes, with red arrows pointing TM01, TM11, TM21, TM02 and TM31 mode positions. 
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Figure 3.44 shows the relative error in modes for both structured and unstructured 

meshes as a function of the normalized discretization length.  

As in the case of the air-filled cylindrical resonator, the PEC resonator filled with 

mixed materials introduced significantly lower relative error using unstructured 

meshes as oppose to structured meshes. This is due to better boundary approximation 

using unstructured meshes.  

On the other hand, unstructured meshes are executed in longer run time compared to 

the structured meshes due to the presence of very short link lines, which affect the time 

step and consequently increases the total run time. Figure 3.45 shows the runtime for 

different unstructured meshes and the equivalent structured meshes. 

 

 

Figure 3.44: Relative error in TM01 for an air-filled PEC cylindrical resonator concentrically 

loaded with a dielectric cylinder of r=2.1 as a function of the normalized discretization 

length √𝐴𝑎𝑣/𝑜 for both unstructured and structured. 
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Figure 3.45: Total run time for an air-filled PEC cylindrical resonator concentrically loaded 

with a dielectric cylinder of r=2.1 as a function of the normalized discretization length 

√𝐴𝑎𝑣/𝑜 for both unstructured and structured meshes. 

3.7.3 Effect of number and type of meshes on an air-filled rectangular 

resonator 

In this section, the last case to be studied is for an air-filled rectangular resonator. The 

effect of number and shape of the meshes will be investigated. The resonator 

dimensions are 10mm width by 7mm height and the rectangle boundaries are short-

circuited. Figure 3.46 shows example of rectangular resonator meshed by introducing 

68 points around the boundaries so that it is divided into segments of 1mm length each. 

The region is then triangulated into 440 triangles, with 1320 link lines. The shortest 

link length is 36.61mm and time step of 86.27ps.  

The analytical resonant mode TMmn of the rectangular resonator are calculated from 

the formula [45] 
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where a and b are the resonator width and height,  is the material permittivity and µ 

is the material permeability. Note also that 𝑚 ≠ 0 and 𝑛 ≠ 0 for TM modes. 

 

Figure 3.46: Delaunay (light) and Voronoi (dark) unstructured diagram of an air-filled 

rectangular waveguide of dimensions 10mm by 7mm 

The rectangular resonator is triangulated into 158, 220, 440, 858 and 1806 meshes. 

This was achieved by introducing 40, 48, 68, 96 and 136 segments around the 

boundaries, respectively. The time step is 170.55ps, 88.79ps, 86.27ps, 20.06ps and 

14.20ps and the execution time is 29s, 56s, 61s, 260s, and 371s for 158, 220, 440, 858 

and 1806 meshes respectively. 

Figure 3.47 shows the percentage relative error in the first five resonance modes for 

varieties of meshes. The relative error in the fundamental mode is 1.67% for the coarse 

mesh which reduces to 0.06% for the finest mesh. For the higher modes the relative 

error ranged from 2.33% to 0.75% for TM21, 6.85% to 1.42% for TM12, 6.03% to 

1.49% for TM31, and finally 5.92% to 0.63% for TM22. 

Table 3.6 shows the percentage relative error for the first five resonance modes of 158, 

220, 440, 858 and 1806 meshes.  

Figure 3.48 shows resonance curves for a coarse and fine unstructured mesh, namely, 

for 158 triangles and 1806 triangles. It is apparent that the coarse mesh shows large 

deviation of the resonance mode positions, which is improved with the finer mesh. 
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Figure 3.47: Percentage Relative error in different propagation modes of an air-filled 

rectangular resonator as a function of number of triangles in the UTLM mesh. 
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Table 3.6: Analytical and numerical resonant frequencies and relative error for a number of 

unstructured meshes of an air-filled rectangular resonator. 

Number 

of meshes 

 TM11 TM21 TM12 TM31 TM22 

158 fa (GHz)  26.13356 36.83421 45.36581 49.79711 52.26712 

fTLM (GHz) 25.69647 35.97505 42.25641 46.79294 49.17225 

Relative error % 1.67252 2.33251 6.85406 6.03282 5.92126 

220 fa (GHz)  26.13356 36.83421 45.36581 49.79711 52.26712 

fTLM (GHz) 25.78214 36.42477 43.91958 48.71626 49.91543 

Relative error % 1.34469 1.11158 3.18793 2.17051 4.49937 

440 fa (GHz)  26.13356 36.83421 45.36581 49.79711 52.26712 

fTLM (GHz) 26.03917 36.54614 45.89744 49.10888 52.90722 

Relative error % 0.36118 0.78207 1.17187 1.38207 1.22467 

858 fa (GHz)  26.13356 36.83421 45.36581 49.79711 52.26712 

fTLM (GHz) 26.16559 37.20686 44.41647 48.94235 51.73662 

Relative error % 0.12254 1.0117 2.09263 1.71649 1.01497 

1806 fa (GHz)  26.13356 36.83421 45.36581 49.79711 52.26712 

fTLM (GHz) 26.14893 37.11251 44.72137 49.05431 51.93764 

Relative error % 0.05882 0.75555 1.42054 1.49165 0.63038 

(a) 

 

 

(b) 

 

Figure 3.48: Resonant frequencies for an air-filled cylindrical PEC resonator triangulated 

into (a) 158 and (b) 1806 unstructured meshes, with red arrows pointing TM11, TM21, 

TM12, TM31 and TM22 mode positions. 
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In the circular resonator, the fundamental mode showed relative error of 7% for the 

coarse mesh, while rectangular resonator showed much better relative error, namely 

1.7%. This is due to the fact that the meshes are always aligned with the rectangle 

borders, while there is always a resonator approximation error with respect to the circle 

circumference, which can be enhanced by increasing the number of segments along 

the circumference. On the other hand, meshing the rectangular cavities although seems 

simple, but special care should be considered in order not to get skinny triangles on 

borders, which might occur if the ratio between the segments on the length and width 

is much bigger or smaller than 1. Also, upon choosing the segment length, be sure that 

the length and width be an integer multiple of the segment length, otherwise, small or 

non-Delaunay triangles might be produced on corners. 

Finally, the air-filled rectangular resonator is meshed using a range of structured 

meshes. This can be achieved by adopting the same criteria used in unstructured 

meshes, which is by introducing 40, 48, 68, 96 and 136 segments around the 

boundaries, then enforcing equidistant points within the resonator to be connected into 

squares (or rectangles). Then the mesher is responsible for dividing each square (or 

rectangle) into two equal right-handed triangles as shown in Figure 3.49. The number 

of the produced meshes are 200, 280, 560, 1120, and 2240 meshes, respectively. The 

time step is 824.95ps, 589.26ps, 589.26ps, 294.63ps and 294.63ps, and the execution 

time was 6s, 10s, 10s, 19s and 19s, for the 200, 280, 560, 1120, and 2240 meshes, 

respectively. 

 

Figure 3.49: Delaunay (light) and Voronoi (dark) structured diagram of an air-filled 

rectangular waveguide of dimensions 10mm by 7mm 
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Figure 3.50 shows the percentage relative error in the first five resonance modes for 

varieties of meshes. The fundamental mode shows 1.5% relative error for the coarse 

mesh that decreases to 0.04% for the finest mesh. Higher modes introduce relative 

error between 3.96% and 0.33% for TM21, 3.67% and 0.81% for TM12, 1.71% and 

1.27% for TM31 and 2.40% and 1.14% for TM22.  

Table 3.7 shows the percentage relative error in the first five resonance modes for 200, 

280, 560, 1120, and 2240 structured meshes.  

Figure 3.51 shows the resonance curves for 200 and 2240 structured meshes, 

respectively.  

 

Figure 3.50: Percentage Relative error in different propagation modes of an air-filled 

rectangular resonator as a function of number of triangles in the structured mesh 
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Table 3.7: Analytical and numerical resonant frequencies and relative error for a number of 

structured meshes of an air-filled rectangular resonator. 

Number 

of meshes 

 TM11 TM21 TM12 TM31 TM22 

200 fa (GHz)  26.13356 36.83421 45.36581 49.79711 52.26712 

fTLM (GHz) 25.71651 35.37652 43.70036 50.64977 53.52167 

Relative error % 1.59584 3.95744 3.67116 1.71227 2.40027 

280 fa (GHz)  26.13356 36.83421 45.36581 49.79711 52.26712 

fTLM (GHz) 26.0114 36.61275 44.89393 49.09802 51.02281 

Relative error % 0.46743 0.60124 1.04017 1.40389 2.38068 

560 fa (GHz)  26.13356 36.83421 45.36581 49.79711 52.26712 

fTLM (GHz) 26.06197 36.61467 44.92892 49.08604 51.48438 

Relative error % 0.27394 0.59602 0.96304 1.42793 1.49758 

1120 fa (GHz)  26.13356 36.83421 45.36581 49.79711 52.26712 

fTLM (GHz) 26.11527 36.5969 44.94668 49.03274 51.51991 

Relative error % 0.07001 0.64426 0.92389 1.53496 1.4296 

2240 fa (GHz)  26.13356 36.83421 45.36581 49.79711 52.26712 

fTLM (GHz) 26.12391 36.71231 45.00012 49.16665 51.67123 

Relative error % 0.03692 0.33093 0.80609 1.26606 1.14008 

(a) 

 

 

(b) 

 

Figure 3.51: Resonant frequencies for an air-filled rectangular resonator triangulated into (a) 

200 and (b) 2240 structured meshes, , with red arrows pointing TM11, TM21, TM12, TM31 

and TM22 mode positions. 
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Figure 3.52 shows the percentage relative error in mode TM11 for both structured and 

unstructured meshes. Structured meshes shows slightly better relative error compared 

to the equivalent unstructured meshes. But generally there is no significant change in 

the relative error using either structured or unstructured meshes. On the other hand, 

the execution time for the structured meshes is much better as compared to the 

unstructured meshes as shown in Figure 3.53. This is due to the long processing time 

and the presence of much shorter link lines in the unstructured meshes which decrease 

the time step and consequently increases the total execution time. 

Figure 3.53 shows that the execution time for the structured meshes is much better as 

compared to the unstructured meshes. For example, the case of √𝐴𝑎𝑣/𝑜 =0.65, the 

unstructured meshes is executed in 12 times the execution time consumed in 

simulating equivalent structured meshes which on the other hand has half the relative 

error. 

The rectangular cavities showed bigger time steps when compared with the earlier 

circular cavities, in both unstructured and structured meshes. Higher time steps in 

rectangular cavities (compared to those of the circular resonator) are supposed to lead 

to shorter run time (till error saturates and resonance peaks become sharp), but all 

meshes showed longer run time than those in circular cavities. This is assumed to be 

due to rectangular resonator nature that has sharp edges and corners, which lead longer 

time for the wave to stabilize within the resonator space. 

It is better to use unstructured mesh for curved boundaries, and to use structured mesh 

with straight ones. So for a problem with mix of straight or curved features a hybrid 

usage of structured and unstructured meshes can be adopted, in that curved surfaces 

will be meshed with triangular cells and straight ones to be meshed with rectangular 

cells. This will enhance the relative error and reduce the run time.  Another solution is 

to get benefit of low relative error achieved by the usage of unstructured meshes, but 

to maximize the link lengths by replacing all short link lines that fall under certain 

value with the model that will be presented in Chapter 4, which will increase the time 

step and consequently decrease the total run time. 
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Figure 3.52: Relative error in TM11 for an air-filled PEC rectangular resonator as a function 

of the normalized discretization length √𝐴𝑎𝑣/𝑜 for both unstructured and structured 

 

Figure 3.53: Total run time for an air-filled PEC rectangular resonator as a function of the 

normalized discretization length √𝐴𝑎𝑣/𝑜 for both unstructured and structured meshes 

3.8 Summary 

In this chapter an equivalent transmission line network for 2D UTLM is derived, the 

implementation of the scatter-connect algorithm is presented and validation of the 
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algorithm has been applied on several canonical examples of cylindrical and 

rectangular waveguides. 

Unstructured Transmission line modelling UTLM has proved that it is a versatile tool 

for modelling electromagnetic problems. The TLM node should coincide with the 

triangle circumcentres for proper implementation of Maxwell’s equation. Delaunay 

triangles are used to produce a Voronoi diagram formed of the link lines connecting 

triangle circumcentres. Each triangle has three link lines which are modelled using a 

stub inductor model each terminated with a stub capacitor model. Time step is 

calculated upon the shortest link length in the simulated problem. Since the region is 

divided into irregular shapes proper connections and cell relative position should be 

taken care of. The main part of the algorithm comprises of two processes at each time 

step known as the ‘scatter’ and ‘connect’. Temporal evolution of the field is done by 

alternative implementation of scatter and connect operations until the steady state is 

reached. 

A computer code has been produced to simulate a region divided into Delaunay 

triangles. The UTLM simulator shows good results for simulating problems with 

different shapes and materials. It also worked well with a variety of mesh numbers. In 

cylindrical resonators, the percentage relative error achieved with moderate number of 

meshes was less than 1% for the first three resonance modes. Decreasing the 

discretization length leads to further reduction in relative error for both unstructured 

and structured meshes. UTLM showed better relative error as compared to those in 

STLM especially in curved boundary problems due to better boundary approximation. 

For rectangular resonator, both UTLM and STLM show good relative error in 

resonance frequencies. The total execution time for UTLM problems is longer than 

STLM time.   

Some problems experienced a very short link lines between circumcentres that in some 

cases equal zero. This has severe consequences on the time step value that becomes 

too small and consequently it took the program huge amount of time to perform a 

simulation. This problem is addressed in Chapter 4 and a new model is used to replace 

those short link lines. 
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Chapter 4.  

Triangle Pair Model for 2D Unstructured TLM 

4.1 Introduction 

In this chapter a method for relaxing the minimum link line length in the 2D 

unstructured TLM method is presented. As described in Chapter 3 the TLM algorithm 

requires that the maximum time step to be determined by the minimum link line length 

in the problem. Unfortunately, even Delaunay triangularization can produce very 

small, even approaching zero link lengths which can have severe consequences to the 

timestep and overall computational runtime. One such situation is shown in 

Figure 4.1(a) where circumcentre A lies outside the triangle boundaries and where the 

link length connecting centres A and B is short. Another case occurs with right-angled 

triangles shown in Figure 4.1(b) where the circumcentres lie on the side shared 

between the two triangles so point A and B coincide resulting a zero link length. The 

same problem is seen in the enlarged inset in Figure 4.2 of where very close to zero or 

very short link lines are identified. 

A B

 

A
B

 

(a) (b) 

Figure 4.1: Two adjacent Delaunay triangles sharing (a) short link line, (b) zero link line 
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Figure 4.2: Delaunay & Voronoi mesh of PEC circular resonator with enlarged inset 

identifying few short link lines. 

As the maximum timestep in the TLM method is determined by the minimum link 

length, the presence of even one short link line can have huge impact on the efficiency 

of TLM simulations. It is therefore important to perturb the mesh so that the very short 

link lengths are relaxed. Three different mesh optimisation techniques namely, 

centroidal Voronoi Tessellation (CVT) method, the optimal Delaunay triangulation 

(ODT) method and spring relaxation method have been reported and compared in 

[141]. Both the CVT and ODT methods are mesh smoothing techniques that seeks 

minimizing the interpolation error by producing similar meshes of reasonable link line 

lengths. On the other hand, the spring relaxation works on maximizing the minimum 

link length. 

The CVT method involves an even spread of the triangles over the whole domain, 

which results similar triangles of same area and internal angles. This can be achieved 

by moving each triangle vertex to the centroid of its Voronoi region then calculating 

the new Voronoi mesh from the new vertex positions. The ODT method requires 

finding a node region in which a cumulative area is determined where a particular node 

is shared among several triangles. Calculations are then carried out to move the node 

region to new coordinates that will produce a smoother mesh. And in the spring 

relaxation, Voronoi nodes are attributed as “masses” and the link lines (connecting 
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masses) are treated as springs in an equivalent mechanical system. This method targets 

maximizing the minimum link length by bringing the systems of masses into dynamic 

equilibrium.  

Whilst spring relaxation method performed better when boundaries are curved and 

stands out in terms of speed at which the relaxation occurs, CVT and ODT methods 

had better performance when sharp corners are introduced in the mesh [141].  

The previously mentioned relaxation methods are very intensive on large meshes, and 

often fail with geometrically complicated problems [141]. So the bottom line is to try 

to get Delaunay meshes to be uniform with no presence of short link lines which is 

impossible to achieve, or to desensitising the algorithm to meshing articrafts by finding 

a solution that allows the TLM model to deal with these short link lines in a 

numerically robust and accurate way, a solution that does not try to fix these short 

links. Investigation should be carried on to find a limiting case of maximising the short 

link lines without compromising the accuracy of the TLM model. 

In this chapter a simpler perturbation approach in which all triangle pairs that share 

link lines that fall below a certain threshold length are merged into an equivalent four 

port node. Each short link line is replaced by a capacitive and an inductive stub and 

the scattering at the node is done implicitly rather than explicitly thus imposing no 

extra burden on the runtime. Thus the problem of the short link line is solved through 

the TLM model rather than improving the mesh itself before applying the model. 

Although the method is only briefly mentioned in [23], in this chapter we further 

describe its implementation and the effect it has on the efficiency and accuracy of TLM 

simulations. In addition to isolating short link lines that falls between adjacent 

triangles, a new model is presented in this chapter for short link lines that fall on 

problem boundaries. A mathematical approach is derived for different types of 

boundaries to ensure that if a short link line is located on any boundary should be 

isolated where a special scatter-connect process is applied. 

This chapter presents the methodology and implementation for the triangle pair model. 

Assessment of the impact of the threshold on the accuracy and runtime of the TLM 
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simulations is investigated on two canonical examples, namely, air filled and partially 

filled cylindrical cavity for a variety of meshes. 

4.2 Triangle pair model 

Since the time step is calculated based on the shortest link length in the problem, the 

very small link length will lead to very small time step which will consequently require 

prohibitively long runtime. 
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(a) (b) 

Figure 4.3: (a) Delaunay triangles with normal link lengths, (b) Delaunay triangles with a 

short link connecting circumcentres A and B of two adjacent nodes. 

To overcome this problem, a threshold distance thres can be set, at which all link 

lengths that fall below this value are isolated in separate model. Figure 4.3(a) shows 

an example of two adjacent triangles sharing a normal link line and will be solved 

using the conventional scatter and connect process, while in Figure 4.3(b) a short link 

line occurs between the two triangles which will be merged into quadrilateral shape 

for which scatter process is done separately in a pair model.  

Naturally, the choice of threshold can be such that two or all three link lines per triangle 

fall below threshold thus requiring a triangle to be merged with all three neighbouring 
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triangles. As this can result an increase in the complexity of algorithm and processing 

time, the threshold length is restricted so that only single pairs of triangles are formed.  

Figure 4.4 shows an equivalent electrical network for the two triangles shown in 

Figure 4.3(b), where the red part represents the short link line shared between the two 

triangles. 

Equivalent capacitances and inductances are given as  

 𝐿𝑖 = 𝜇
∆𝑖

𝑙𝑖
, 

(4.1) 

 𝐶𝑖 =
𝜀∆𝑖𝑙𝑖

2
. (4.2) 

where i is the link length and li is the length of triangle side which link line intersects 

[23]. 
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Figure 4.4: Equivalent transmission line network of two triangles in UTLM. 

In the TLM method the 5-port circuit on Figure 4.4 is replaced by a transmission line 

network shown in Figure 4.5 whereby inductances are replaced by a transmission line 

of characteristic impedance, 
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 𝑍𝐿𝑖 =
2𝜇𝑜∆𝑖

∆𝑡𝑙𝑖
. 

(4.3) 

and capacitances are replaced by open-circuited stubs of admittance 

 𝑌𝐿𝑖 =
𝜀𝑜𝑙𝑖∆𝑖

∆𝑡
−

𝑙𝑖∆𝑡

2𝜇𝑜∆𝑖
. 

(4.4) 

where Δt/2 is the time the signal travels along the transmission lines. 

In the case of short link lines that fall below certain threshold thres, the electrical 

network that represents the short link line is replaced by a inductive (short-circuited) 

and capacitive (open-circuited) stub as shown in Figure 4.5. The presence of the stubs 

eliminates physical distance between nodes A and B resulting in two triangles merging 

in one four port node as shown in Figure 4.5 for which scattering is done separately.  
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Figure 4.5: 4-port transmission line network of the triangle pair with the short link line 

replaced by an equivalent stub model. 

The characteristic impedances of stubs are defined for the threshold length thres and 

are given as [23] 
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 𝑍𝐿𝑠 =
2𝜇𝑜∆𝑡ℎ𝑟𝑒𝑠

∆𝑡𝑙𝑖
, 

(4.5) 

 𝑌𝐶𝑠 =
𝜀𝑜𝑙𝑖∆𝑡ℎ𝑟𝑒𝑠

∆𝑡
. 

(4.6) 

The Thevenin equivalent circuit of Figure 4.5 is shown in  Figure 4.6 where 
i
LsV  

and ZLs are the incident voltage and the characteristic impedance of the short-circuited 

stub, 
i

CsV  and ZCs are the incident voltage and characteristic impedance of the open-

circuited stub and VLj and ZLj (j=1,2,3,4) represent incident voltages and characteristic 

impedances of transmission lines that connect to four neighbours.  
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 Figure 4.6: Thevenin equivalent circuit for the triangle pair.  

In the scattering part of the algorithm reflected voltages are obtained from the known 

incident voltages. For the network in  Figure 4.6 scattering is done by solving for node 

voltages VA and VB. 

Applying node-voltage method at node A gives 

 
𝑉𝐴 − 2𝑉𝐿1

𝑖

𝑍𝐿1
+

𝑉𝐴 − 2𝑉𝐿2
𝑖

𝑍𝐿2
+

𝑉𝐴 − 𝑉𝐵 − (−2𝑉𝐿𝑠
𝑖 )

𝑍𝐿𝑠
= 0. 

(4.7) 

Rearranging Equation (4.7) gives the voltage VA, 
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 𝑉𝐴 =
1

𝑀
[2𝑉𝐿1

𝑖 𝑌𝐿1 + 2𝑉𝐿2
𝑖 𝑌𝐿2 + 𝑉𝐵𝑌𝐿𝑠 − 2𝑉𝐿𝑠

𝑖 𝑌𝐿𝑠], (4.8) 

where YL1,L2 and YLs denote characteristic admittances of link lines and short link 𝑌𝐿1 =

1

𝑍𝐿1
, 𝑌𝐿2 =

1

𝑍𝐿2
,  𝑌𝐿𝑠 =

1

𝑍𝐿𝑠
  and 𝑀 = 𝑌𝐿1 + 𝑌𝐿2 + 𝑌𝐿𝑠 

Applying node-voltage method at node B 

 
𝑉𝐵 − 𝑉𝐴 − 2𝑉𝐿𝑠

𝑖

𝑍𝐿𝑠
+

𝑉𝐵 − 2𝑉𝐶𝑠
𝑖

𝑍𝐶𝑠
+

𝑉𝐵 − 2𝑉𝐿3
𝑖

𝑍𝐿3
+

𝑉𝐵 − 2𝑉𝐿4
𝑖

𝑍𝐿4
= 0, 

(4.9) 

results in, 

 𝑉𝐵 =
1

𝑁
[𝑉𝐴𝑌𝐿𝑠 + 2𝑉𝐿𝑠𝑌𝐿𝑠 + 2𝑉𝐶𝑠𝑌𝐶𝑠 − 2𝑉𝐿3𝑌𝐿3 − 2𝑉𝐿4𝑌𝐿4], (4.10) 

where YL3,L4 and YLs,Cs denote characteristic admittances of link lines and short link 

𝑌𝐿3 =
1

𝑍𝐿3
, 𝑌𝐿4 =

1

𝑍𝐿4
 , 𝑌𝐿𝑠 =

1

𝑍𝐿𝑠
 , 𝑌𝐶𝑠 =

1

𝑍𝐶𝑠
 and 𝑁 = 𝑌𝐿3 + 𝑌𝐿4 + 𝑌𝐿𝑠 + 𝑌𝐶𝑠. 

Solving Equations (4.8) and (4.10) for VA and VB gives  

 
𝑉𝐴 = 𝐷[2𝐴𝑉L1

𝑖 𝑌L1 + 2𝐴𝑉L2
𝑖 𝑌L2 + 2𝐶𝑉L3

𝑖 𝑌L3𝑌𝐿𝑠 + 2𝐶𝑉L4
𝑖 𝑌L4𝑌𝐿𝑠

+ 2𝐶𝑉𝐶𝑠
𝑖 𝑌𝐶𝑠𝑌𝐿𝑠 + 2(𝐶𝑌𝐿𝑠

2 − 𝐴𝑌𝐿𝑠)𝑉𝐿𝑠
𝑖 ]. (4.11) 

and  

 
𝑉𝐵 = 𝐷[2𝐶𝑌𝐿1𝑌𝐿𝑠𝑉𝐿1

𝑖 + 2𝐶𝑌𝐿2𝑌𝐿𝑠𝑉𝐿2
𝑖 + 2𝐵𝑌𝐿3𝑉𝐿3

𝑖 + 2𝐵𝑌𝐿4𝑉𝐿4
𝑖

+ +2𝐵𝑌𝐶𝑠𝑉𝐶𝑠
𝑖 + (2𝐵𝑌𝐿𝑠 − 2𝐶𝑌𝐿𝑠

2 )𝑉𝐿𝑠
𝑖 ]. (4.12) 

where 𝐴 =
1

𝑀
, 𝐵 =

1

𝑁
, 𝐶 =

1

𝑀𝑁
, 𝐷 =  

1

1−𝐶𝑌𝐿𝑠
2 , 𝑀 = 𝑌𝐿1 + 𝑌𝐿2 + 𝑌𝐿𝑠, 𝑁 = 𝑌𝐿3 + 𝑌𝐿4 +

𝑌𝐿𝑠 + 𝑌𝐶𝑠 

Once the total voltages at ports A and B are known, the reflected voltages at all link 

lines are found as 

 𝑉𝑚
𝑟 = 𝑉𝐴 − 𝑉𝑚

𝑖 ,…..m=1,2 (4.13) 
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 𝑉𝑛
𝑟 = 𝑉𝐵 − 𝑉𝑛

𝑖,…..n=3,4 (4.14) 

The reflected voltages at the inductive and capacitive stubs are founds as, 

 𝑉𝐿𝑠
𝑟 = (𝑉𝐵 − 𝑉𝐴) − 𝑉𝐿𝑠

𝑖 , (4.15) 

 𝑉𝐶𝑠
𝑟 = 𝑉𝐵 − 𝑉𝐶𝑠

𝑖 . (4.16) 

4.3 Short link line on the boundary plane 

In some cases short link lengths can occur next the outer boundary plane as shown in 

Figure 4.7. Such cases need to be treated differently with equivalent Thevenin circuits 

which is described below for short-circuit (SC), open-boundary (OC), and boundary 

matched with proper impedance. 

a

1

c

2 b

BoundaryA

 

Figure 4.7: Short link located on the outer boundary plane. 

4.3.1 Short-circuit boundary 

If a short link line is connected on a short-circuit boundary then VB=0, and the 

equivalent Thevenin circuit is shown in Figure 4.8 
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Figure 4.8: Thevenin equivalent circuit of short link line located on SC boundary. 

Applying node-voltage method at node A gives 

 
𝑉𝐴 − 2𝑉𝐿1

𝑖

𝑍𝐿1
+

𝑉𝐴 − 2𝑉𝐿2
𝑖

𝑍𝐿2
+

𝑉𝐴 − (−2𝑉𝐿𝑠
𝑖 )

𝑍𝐿𝑠
= 0. 

(4.17) 

 

The voltage VA can be expressed as 

 𝑉𝐴 =
1

𝑀
[2𝑉𝐿1

𝑖 (𝑌𝐿1) + 2𝑉𝐿2
𝑖 (𝑌𝐿2) − 2𝑉𝐿𝑠

𝑖 (𝑌𝐿𝑠)], (4.18) 

where 𝑀 = 𝑌𝐿1 + 𝑌𝐿2 + 𝑌𝐿𝑠, YL1,L2 and YLs denote characteristic admittances of link 

lines and short link, respectively, and VLs is the short link voltage.  

The reflected voltages at links lines are 

 𝑉𝐿1
𝑟 = 𝑉𝐴 − 𝑉𝐿1

𝑖 , (4.19) 

 𝑉𝐿2
𝑟 = 𝑉𝐴 − 𝑉𝐿2

𝑖 , (4.20) 

 𝑉𝐿𝑠
𝑟 = (−𝑉𝐴) − 𝑉𝐿𝑠.

𝑖  (4.21) 
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4.3.2 Open-circuit boundary 

In the case of the open-circuit boundary, Thevenin equivalent circuit is shown in 

Figure 4.9 
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Figure 4.9: Thevenin equivalent circuit of short link line located on OC boundary. 

Applying node-voltage method at nodes A & B, voltages VA and VB are obtained as 

 
𝑉𝐴 = 𝐷 [2𝐴𝑉𝐿1

𝑖 𝑌𝐿1 + 2𝐴𝑉𝐿2
𝑖 𝑌𝐿2 + 2𝐶𝑉𝐶𝑠

𝑖 𝑌𝐶𝑠𝑌𝐿𝑠

+ 2𝐴𝑉𝐿𝑠[2𝐴𝑉𝐿𝑠(𝐵𝑌𝐿𝑠
2 − 𝑌𝐿𝑠)]]. (4.22) 

 

 
𝑉𝐵 = 𝐷[2𝐶𝑌𝐿1𝑌𝐿𝑠𝑉𝐿1

𝑖 + 2𝐶𝑌𝐿2𝑌𝐿𝑠𝑉𝐿2
𝑖 + 2𝐵𝑌𝐶𝑠𝑉𝐶𝑠

𝑖

+ (2𝐵𝑌𝐿𝑠 − 2𝐶𝑌𝐿𝑠
2 )𝑉𝐿𝑠]. (4.23) 

where 𝑀 = 𝑌𝐿1 + 𝑌𝐿2 + 𝑌𝐿𝑠, 𝑁 = 𝑌𝐿𝑠 + 𝑌𝐶𝑠, 𝐴 =
1

𝑀
, 𝐵 =

1

𝑁
, 𝐶 =

1

𝑀𝑁
, 𝐷 =  

1

1−𝐶𝑌𝐿𝑠
2  

And the reflected voltages at links and stub are 

 𝑉𝐿1
𝑟 = 𝑉𝐴 − 𝑉𝐿1

𝑖 , (4.24) 

 𝑉𝐿2
𝑟 = 𝑉𝐴 − 𝑉𝐿2

𝑖 , (4.25) 

 𝑉𝐿𝑠
𝑟 = (𝑉𝐵 − 𝑉𝐴) − 𝑉𝐿𝑠

𝑖 , 4.26) 
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 𝑉𝐶𝑠
𝑟 = 𝑉𝐵 − 𝑉𝐶𝑠

𝑖 . (4.27) 

4.3.3 Impedance boundary 

In some problems it is required to match the problem to certain impedance, i.e. 

matching the boundaries to free space or ZBND=√𝜇𝑜 𝜀𝑜⁄ . Also, in some cases, a 

source node at the boundary is used to excite the problem (i.e. injects signals into the 

problem space). In the case of impedance boundary the Thevenin equivalent circuit is 

given generally in Figure 4.10 
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Figure 4.10: Thevenin equivalent circuit of short link line located on impedance boundary. 

From Figure 4.10 and following the same approach as in Equations (4.7) and (4.9), 

voltages VA and VB are obtained as, 

 
𝑉𝐴 = 𝐷 [2𝐴𝑉L1

𝑖 𝑌L1 + 2𝐴𝑉L2
𝑖 𝑌L2 + 2𝐶𝑉𝐵𝑁𝐷

𝑖 𝑌𝐵𝑁𝐷𝑌𝐿𝑠 + 2𝐶𝑉𝐶𝑠
𝑖 𝑌𝐶𝑠𝑌𝐿𝑠

+ 2𝐴𝑉𝐿𝑠[2𝐴𝑉𝐿𝑠(𝐵𝑌𝐿𝑠
2 − 𝑌𝐿𝑠)]], (4.28) 

 

 
𝑉𝐵 = 𝐷[2𝐶𝑌𝐿1𝑌𝐿𝑠𝑉𝐿1

𝑖 + 2𝐶𝑌𝐿2𝑌𝐿𝑠𝑉𝐿2
𝑖 + 2𝐵𝑌𝐵𝑁𝐷𝑉𝐵𝑁𝐷

𝑖 + 2𝐵𝑌𝐶𝑠𝑉𝐶𝑠
𝑖

+ (2𝐵𝑌𝐿𝑠 − 2𝐶𝑌𝐿𝑠
2 )𝑉𝐿𝑠], (4.29) 

where 𝑀 = 𝑌𝐿1 + 𝑌𝐿2 + 𝑌𝐿𝑠, 𝑁 = 𝑌𝐵𝑁𝐷 + 𝑌𝐿𝑠 + 𝑌𝐶𝑠, 𝐴 =
1

𝑀
, 𝐵 =

1

𝑁
, 𝐶 =

1

𝑀𝑁
, 𝐷 =

 
1

1−𝐶𝑌𝐿𝑠
2  
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The reflected voltages are updated as follows 

 𝑉𝑚
𝑟 = 𝑉𝐴 − 𝑉𝑚

𝑖 ,          m=1,2. (4.30) 

The reflected link, stub and boundary voltages are calculated from  

 𝑉𝐿𝑠
𝑟 = (𝑉𝐵 − 𝑉𝐴) − 𝑉𝐿𝑠,

𝑖  (4.31) 

 𝑉𝐶𝑠
𝑟 = 𝑉𝐵 − 𝑉𝐶𝑠

𝑖 , 4.32) 

 𝑉𝐵𝑁𝐷
𝑟 = 𝑉𝐵 − 𝑉𝐵𝑁𝐷

𝑖 . (4.33) 

4.4 Pair model implementation 

The TLM algorithm involving pair model is shown in Figure 4.11. After the initiation 

of incident voltages all link lengths are compared against the set threshold. If they are 

shorter than the given threshold length, a triangle pair is formed and the scattering is 

done as described in sections 4.2 and 4.3. Otherwise, the TLM algorithm follows the 

conventional scatter route [141] discussed in Chapter 3. This procedure is repeated for 

a given number of timesteps, N until a steady state is achieved. 

The criteria of setting the maximum threshold length ensures that only one pair is 

formed for any triangle with one of its neighbours, i.e. two or more pairs are not 

allowed. This ensures keeping the complexity of the system to minimum. A Voronoi 

diagram is obtained from the Delaunay triangles that form specific shape. Voronoi 

diagram is formed of link lines, from which the shortest one is found and the first 

triangle pair is formed with the neighbour located at the short link side.  

The process continues until the next formed pair would be for a triangle that is already 

paired, i.e. until two pairs per triangle start happening. The maximum threshold length 

is then set to be equal to the last value for which the criteria of ‘one link per triangle’ 

is not violated. In practice, the threshold length is set to be equal or smaller than the 

maximum threshold length. The impact of the threshold length on the accuracy of the 

simulations is analysed in the next section. 
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Figure 4.11: TLM algorithm containing merged triangle pairs. 

For a triangle pair the scatter process is performed implicitly by applying Equations 

(4.11)(4.16). Within such process connection is also performed between the triangles 

at the side which the short link intersects. For the rest of the pair sides the ‘connect’ 

process follows the same procedure applied in the main model with special care that 
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the connection is not performed at the side at which the triangle forms a pair. On the 

other hand, the model for a short link line on a border involves the scatter process for 

that triangle in addition to connection with the boundary, then the conventional 

‘connect’ is applied to the other two sides. 

Further detail of how to use and set the pair model in the unstructured TLM simulator 

is discussed in Appendix A 

4.5 Results 

This section investigates impact of the choice of threshold on the accuracy and runtime 

of TLM simulations. For this purpose two canonical problems are considered for 

which analytical results are known, namely, air-filled cylindrical PEC resonator of 

radius r=1cm and PEC cylindrical resonator of radius 1cm concentrically loaded with 

a dielectric cylinder of radius 0.5cm and relative permittivity r=2.1.  

4.5.1 Air filled cylindrical PEC resonator 

The air filled cylindrical PEC resonator is approximated by a sequence of polygonal 

approximations to generate a triangular mesh of Delaunay type and using readily 

available software provided in [37] which also allows for implementation of 

boundaries and material properties. The triangular mesh is then processed to obtain the 

Voronoi mesh of transmission lines [23] shown in Figure 4.12. The resulting mesh 

contains 1261 triangles and has the shortest link line of 0.04274mm thus requiring time 

step of 0.1008 ps. 

The mesh generated is perturbed so that all triangles that form link lengths below 

certain threshold are merged into four-port nodes, for which scattering is described 

previously. The maximum threshold length that results in only single pairs of merged 

triangles is found to be 0.645mm when a total of 18 pairs are formed and which results 

in a timestep of 4.269ps, which is more than a 40 times that of the original mesh. 
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Figure 4.12: Delaunay (dotted lines) and Voronoi (thick lines) diagrams of air filled circular 

resonator of radius 1cm. 

The fundamental mode of an air-filled circular resonator is equal to 11.46769GHz. 

Table 4.1 shows the relative error in the fundamental mode TM01 for the main model 

and then by applying different threshold lengths in which 5, 7, 14 and 18 pairs are 

produced. 

The relative error displayed in Table 4.1 shows that the error increases with the 

increase of number of pairs. The relative error will be discussed in detail shortly.  

Table 4.1: Relative error in fundamental mode TM01 for different number of pairs  

Number of triangle pairs 0 5 7 14 18 

Threshold length (mm) 0.04274 0.20000 0.30000 0.50000 0.64500 

Relative error (%) 0.32116 0.90227 1.47999 2.94130 4.36548 

 

Figure 4.13 shows the resonance frequency curves for different threshold values. The 

first curve represents the resonance modes for the main model only, meaning no 

triangles are isolated in pair model, the second and third curves represent the resonance 

modes for the circular resonator with the application of around 30% and 50% of the 

maximum threshold length, which are 0.2mm and 0.3mm that corresponds to 5 and 7 

triangle pairs respectively, and the fourth curve is the resonance frequencies with the 
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usage of the maximum allowable threshold length which equals to 0.645mm and 

corresponds to 18 triangle pairs. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.13: Resonance frequencies for an air-filled circular resonator of radius 1cm. (a) no 

pairs, (b) 30% of maximum threshold length, (c) 50% of maximum threshold length, (d) 

maximum allowable threshold length, with red arrows pointing modes TM01, TM11, TM21 

and TM02 positions. 
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Note that as the threshold length increases or the more pairs are formed peaks of higher 

modes start to split and unwanted resonance frequencies appear on the resonance 

curves as shown in Figure 4.13(d). 

Figure 4.14 shows the runtime and the relative error for different resonant modes 

namely TM01, TM11, TM21 and TM02 for different threshold lengths. For all 

thresholds the resonator is excited using a Dirac function and simulation is run for a 

total simulation time of 33min. The relative error in resonant frequency is found as 

  aaTLM fff / , where fTLM and fa are resonant frequencies obtained using the TLM 

simulator and exact analytical formula [140], respectively. The runtime is normalised  

with respect to the runtime achieved with no threshold applied. 

 

Figure 4.14: Relative error aaTLM fff /)(  and the computational runtime ratio compared to 

the case of no threshold applied for the air-filled PEC of radius 1cm. 

Table 4.2 lists the percentage relative error in the first four resonant modes for different 

number of pairs. For the case of no threshold the total normalised runtime is 1 and the 

error in resonant frequency extraction is below 1%. As the threshold is increased from 

0.004mm (minimum link length) to 0.645mm the error is increasing but the total 

runtime is quickly reducing. The increase in error can be explained by the fact that for 

bigger thresholds the pair model is less accurate as the discrepancy between the actual 

link length and the threshold becomes greater. 
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However, Figure 4.14 shows that even for thresholds that are 70% below the maximum 

threshold of 0.645mm (threshold length=0.2mm, 5 triangle pairs), the error is kept 

below 1% and the runtime is reduced by 80%. 

Table 4.2: Percentage relative error in the first four modes of an air-filled PEC cylindrical 

resonator for different number of triangle pairs 

Number of 

triangle 

pairs 

Threshold 

length 

(mm) 

Relative error [%] in Normalized 

run time 
TM01 

11.46769 

(GHz) 

TM11 

18.27182 

(GHz) 

TM21 

24.48942 

(GHz) 

TM02 

26.32242 

(GHz) 

0 0.04274 0.32113 0.18033 0.31606 0.32867 1 

2 0.10000 0.05223 0.28651 0.30764 0.07651 0.38014 

5 0.20000 0.91904 0.83061 0.44312 0.45426 0.19992 

7 0.30000 1.47999 1.64613 1.25689 1.35593 0.12860 

14 0.50000 2.94130 3.00638 2.87814 2.97143 0.07899 

18 0.64500 4.36543 3.86337 3.22338 2.90080 0.02182 

 

Figure 4.15 shows the effect of threshold length on both the time step and total run 

time. Normally, within the main model the time step is calculated upon the shortest 

link length. In the pair model the minimum link length will be swapped with the 

threshold length, so as the threshold length increases the time step increases and 

consequently the total run time decreases. Timestep is normalised as tthre/tmin where 

tthre and tmin correspond to the timestep with and without applying threshold, 

respectively. Notice that at a threshold length equals to 0.3mm the time step increases 

to approximately 7 times the original time step which is calculated based on the 

minimum link length (0.0045mm), whilst the run time has reduced to 0.13 of the 

original run time. Continuing with the increase of the threshold length till the 

maximum allowable limit, the time step has increased to 42 times the original time 

step and the run time decreased to 0.02 of the run time of the main model. 
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Figure 4.15: Impact of different threshold lengths on the normalized timestep and the 

runtime 

For the same problem of air filled PEC resonator the threshold is applied to a variety 

of triangular meshes ranging from coarse to fine. Figure 4.16 shows the relative error 

in the fundamental resonant frequency TM01 for the case of no threshold and the 

thresholds set at 30%, 50% and maximum allowable threshold so that only pairs of 

triangles are merged. In all cases, the relative error decreases as the number of meshes 

increases. Furthermore, as the value of threshold is increased the relative error also 

increases compared to the relative error of the mesh with no thresholds applied. 

Figure 4.16 shows that in the case of coarser meshes (below 5000 triangles) certain 

case is noticed: these meshes tend to produce very short link lengths but also quite 

large maximum thresholds, so that 30% and 50% of the maximum threshold criteria 

results in relatively large thresholds and large numbers of paired triangles which 

consequently increases the error. For example, for the mesh with 3268 triangles, the 

minimum link length is 2.389x10-15m and the maximum threshold is found to be 0.88 

mm. This example shows the importance of applying the pair model, as zero link 

length will lead to infinitesimally small time step, and prohibitively long run time, 

especially in cases of fine meshes. 
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Figure 4.16: Relative error aaTLM fff /)(  for the fundamental resonance TM01 of air-filled 

PEC of radius 1cm as a function of different mesh sizes. Different curves correspond to the 

cases with no threshold applied, 30% and 50% of maximum threshold and maximum 

threshold applied. 

4.5.2 Dielectrically loaded cylindrical resonator 

The second example is for the PEC cylindrical resonator of radius 1cm concentrically 

loaded with a dielectric cylinder of relative permittivity r=2.1 and 0.5cm radius. A 

closed loop of finite segments is created which has a radius of 0.5cm. Two regions (0-

0.5cm and 0.5-1cm) will be defined for which all meshes inside the inner circle will 

be assigned a dielectric permittivity of 2.1 and the rest of meshes will be air-filled. 

Figure 4.17(a) shows the Delaunay mesh for the case of meshing the resonator into 

1160 triangles, and Figure 4.17(d) illustrates the Voronoi diagram which is the mesh 

of link lines connecting the triangles circumcentres. The minimum link length of this 

example is 0.105mm which corresponds to the timestep of 0.36ps. The maximum 

threshold length is found to be 0.905mm which produces 38 paired triangles. This lead 

to the increase in time step value to 3.093ps.  
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r=2.1

r=1

1cm

0.5cm

 

(a) (b) 

Figure 4.17: (a) Delaunay and (b) Voronoi diagrams of PEC circular resonator of radius 1cm 

concentrically loaded with a dielectric cylinder of relative permittivity r=2.1 and 0.5cm 

radius. 

Figure 4.18 shows the relative error and the normalized runtime ratio compared to the 

case when no threshold is applied, for the first two resonant modes, TM01 and TM11, 

and for different threshold lengths. In all cases the problem is excited by a Dirac 

function and the total simulation time is kept constant at 30min. Figure 4.18 shows 

that as the threshold is increased the relative error increases. It is noted that for the 

threshold length of 0.2mm the error is kept below 0.5% whilst the runtime is reduced 

by more than 50% of the original run time.  

Table 4.3 lists the percentage relative error in the first two resonant modes for different 

number of pairs. For the case of no threshold the total normalised runtime is 1 and the 

error in resonant frequency extraction is below 1%. Increasing the threshold length to 

0.2mm the run time decreased by more than 30% and the relative error is still kept 

under 1%. As the threshold is increased toward the maximum allowed threshold the 

error is increasing but the total runtime is quickly reducing. Again, the increase in error 

can be explained by the fact that for bigger thresholds the pair model is less accurate 

as the discrepancy between the actual link length and the threshold is greater. 
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Figure 4.18: Relative error aaTLM fff /)(  and the computational runtime ratio compared to 

no threshold applied for the PEC circular resonator of radius 1cm concentrically loaded with 

a dielectric cylinder of relative permittivity r=2.1 and 0.5cm radius. 

Table 4.3: Percentage relative error in the first two modes of PEC circular resonator 

concentrically loaded with a dielectric cylinder for different number of triangle pairs 

Number of 

triangle 

pairs 

Threshold length 

(mm) 

Relative error [%] in Normalized run 

time 
TM01 

11.50451 

(GHz) 

TM11 

18.23887 

(GHz) 

0 0.105 0.01595 0.07097 1.00000 

2 0.2 0.42521 0.20657 0.68717 

5 0.3 1.70221 2.17384 0.45426 

7 0.5 1.25217 1.59182 0.24339 

14 0.7 2.65335 2.68502 0.13901 

19 0.905 3.16952 3.06336 0.10963 

 

Figure 4.19 shows the effect the threshold length has on the timestep. Timestep is 

normalised as tthre/tmin where tthre and tmin correspond to the timestep with and 

without applying threshold, respectively. It can be seen that threshold of 0.2mm results 

in doubling of the original timestep and reducing the runtime by 30%, whilst still 

maintaining accuracy below 0.5%, as seen in Figure 4.18. 
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Figure 4.19: Impact of different threshold lengths on the timestep and the runtime ration 

compared to the case with no threshold 

 

Figure 4.20: Relative error aaTLM fff /)(  for the fundamental resonance TM01 of PEC 

cylindrical resonator of radius 1cm concentrically loaded with a dielectric cylinder of 

relative permittivity r=2.1 and 0.5cm radius as a function of different mesh sizes.  

For the same problem of  PEC cylindrical resonator of radius 1cm concentrically 

loaded with a dielectric cylinder of relative permittivity r=2.1 and 0.5cm radius, the 

threshold is applied to a variety of triangular meshes ranging from coarse to fine. 



4. Pair Model for Unstructured TLM  140 

 

Figure 4.20 shows the relative error in the fundamental resonant frequency TM01 for 

the case of no threshold and the thresholds set at 30%, 50% and maximum allowable 

threshold. In all cases, the relative error decreases as the number of meshes increases. 

Furthermore, as the value of threshold is increased the relative error also increases 

compared to the relative error of the mesh with no thresholds applied. 

4.6 Summary 

This chapter shows that the automatic generation of Delaunay meshes can generate 

very short link lines that can negatively impact the computational runtime of TLM 

simulations. To alleviate this problem, a mesh perturbation method is presented 

whereby all short link lines that fall below a certain threshold are replaced by an 

inductive and capacitive stub and the triangles that contain the relevant link line are 

merged into a four port node (triangle pair) for which scattering is done implicitly. 

Short link lines that fall on any type of boundaries should be treated as special cases 

of pair model and solved separately. In this work the length of the threshold is limited 

by the criteria that only pairs of triangles are formed. 

The impact of the threshold on the accuracy and computational runtime of the TLM 

simulations is assessed on two canonical problems of resonant mode extraction of air-

filled and dielectrically loaded PEC resonators for which analytical results are known. 

In both cases it is shown that the threshold works effectively in reducing the overall 

runtime. The increase in the threshold results in the increase in the relative error as the 

discrepancy between the actual link length being replaced and the threshold is 

increased. Working with 30% of the maximum allowable threshold length will 

increase the time step and reduce the run time sufficiently with the advantage of 

keeping the error below 1%. This error can be further reduced and controlled by 

increasing the number of triangles in the mesh.  

Introducing such model allows the simulation of different types of applications without 

the fear of the presence of zero link lengths, which tends to appear as the mesh sizes 

decrease. 
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Chapter 5.  

Dispersion and intermodal coupling in 2D UTLM 

5.1 Introduction 

Simulations performed using unstructured triangular meshes have many advantages 

over their structured counterparts. TLM employing unstructured triangular and 

tetrahedral meshes offers the advantage of piecewise linear approximations to curved 

material boundaries as well as notably graded meshes in the proximity of physically 

significant fine features such as wires and apertures [19, 125]. Both of these properties 

can yield valuable improvements in both run time and memory consumption, albeit at 

the expense of algorithmic complexity. In practice, the selection of the sampling 

density for either a structured or an unstructured mesh is driven by both the geometry 

of the problem and also by the accuracy of the solutions being demanded. Therefore, 

it is important that the user has reference benchmarks in order to permit them to 

manage dispersion errors and in most cases these are expressed in terms of known 

results for simple geometrical scenarios such as free space. 

Quantitatively, mesh induced errors can be described in terms of the phase errors of 

simple propagating field solutions, which are typically also anisotropic in nature or in 

terms of non-physical coupling between physically meaningful local fields solutions, 

such as waveguide modes and resonant fields. 

The dispersion of the structured 2D TLM method is well documented [7] with zero 

and maximum dispersion observed for plane waves propagating at an angle of 45o and 

along the coordinate lines of a square grid, respectively [7]. Naturally, dispersion in 

practical problems is a complex superposition of these two extreme cases, but 

nevertheless, the often quoted rule of thumb for a suitable grid size in order to keep 

dispersion errors small, is that the distance between samples should be no larger than 

a tenth of the wavelength in the material concerned [7, 117]. It is noted here that whilst 
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the use of a finer spatial (and hence temporal) Cartesian discretisation reduces the 

absolute values of the dispersion, it has no impact upon its relative anisotropy. 

With structured grids, the anisotropic dispersion errors are available from an analytic 

study of the properties of a unit grid cell, most commonly providing a quantification 

of the effect of mesh density upon the behaviour of plane waves propagating in 

unbounded free space. However, for unstructured meshes this is not possible and so 

benchmark data is best obtained from numerical characterisation of simple canonical 

cases. This chapter reports such data for the case of the 2D TLM algorithm operating 

upon an unstructured triangular mesh. 

In this chapter the dispersion of the unstructured 2D TLM method is examined. This 

is done for two cases: a) by quantifying the phase error of plane wave propagation 

through the mesh and b) investigating the impact of unstructured mesh discretisation 

on the inter-modal coupling between different order spatial modes in a unifrom space. 

The impact of the mesh on inter-modal coupling between different spatial modes is 

done in a statistical manner for a number of meshes. In both cases, the computational 

model adopted is that of a two-dimensional rectangular space with open boundary 

conditions on the top and bottom plate to simulate the open space. The input and output 

of the waveguide are matched to the free space impedance. 

5.2 Mesh quality 

In the unstructured case, the user has two degrees of freedom when selecting or 

producing a mesh: the average cell size, expressed in terms of for example triangle 

area, and secondly a measure of the shape of the triangles used. For example, in a 

triangular mesh the intuition is that use of just equilateral triangles would lead to 

minimal errors. However, one can neither actually tessellate a space with only 

equilateral triangles and in any case, the principal advantage of an unstructured mesh 

is being able to exploit the variety in triangular shapes to capture complex geometries 

with the fewest possible computational cells.  

Unlike the structured mesh which has identical discretisation cells, triangular 2D 

meshes, unless they are made of equilateral triangles, have greater cell variability. It 
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must be noted that mesh generation is not a trivial exercise, especially in 3D, and that 

at best the user will have the ability to request that some measure of triangle quality is 

met, usually in an external sense. There are a number of measures of triangle quality 

used in mesh generation, for example, for better description of the Delaunay meshes, 

a widely used parameter known as mesh quality Q factor is defined as [32] 

 𝑄 =
𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑐𝑖𝑟𝑐𝑢𝑚𝑟𝑎𝑑𝑖𝑢𝑠

𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑒𝑑𝑔𝑒
. (5.1) 

In the process of triangular mesh generation the specification for the required Q factor 

prevents appearance of bad triangles in the mesh, such as skinny triangles [32]. The 

mesh of equilateral triangles has Q factor of 3/1  or 0.57735 [131]. A practical mesh 

of good quality of arbitrary shape would typically have Q around 0.57735 which is 

acceptable for EM simulations due to uniform mesh distribution. 

5.3 Plane wave propagation 

A plane wave is the simplest form of a propagating wave. For a wave travelling in the 

z direction, the plane wave has the form [45], 

 𝑓(𝑧, 𝑡) = 𝐴𝑜cos (𝜔𝑡 − 𝑘𝑧). (5.2) 

where Ao is the amplitude,  is the angular frequency in rad/s and k is the phase 

constant (or wave number) in rad/m that defines the change in the phase after the wave 

has travelled a distance z and is given by  

 𝑘 =
𝜔

𝑣𝑝
= 𝜔√𝜇𝜀. (5.3) 

The wavelength of the plane wave is defined as =2/k. 

The phase velocity vp is the speed at which the observer must travel to obtain the 

constant phase of the wave. The phase velocity of the plane wave is defined as [45], 
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 𝑣𝑝 =
𝜔

𝑘
=

1

√𝜇𝜀
. (5.4) 

The computational model adopted for the dispersion study is that of a two-dimensional 

rectangular space which resembles a parallel plate waveguide but with open boundary 

conditions on the top and bottom plate to simulate the open space, whilst the input and 

output of the waveguide are matched to the free space impedance. 

Parallel plate waveguide is the simplest form of waveguide that can support Transverse 

Magnetic (TM), Transverse Electric (TE) and Transverse Electromagnetic (TEM) 

waves. Parallel plate waveguide is described by L which is the length of the waveguide 

and d the plate separation or width of the waveguide. In parallel plates waveguide the 

length is much greater than the width so the fringing effect can be neglected. The space 

between the plates can be filled with any material of relative permittivity r and relative 

permeability r. Plane wave propagation can be modelled by using a parallel plate 

waveguide but setting the upper and lower plates to be open-circuited as shown in 

Figure 5.1. 

z

x

L

d

x=d

x=0

r, µr

Open-circuit boundary

Open-circuit boundary

 

Figure 5.1: Schematic diagram of parallel plate waveguide representing plane wave 

propagation 

Due to the fact that the unstructured TLM method is based on the shunt nodes, TM 

modes will be investigated. Transverse magnetic (TM) mode does not support the 

longitudinal component of the magnetic field (Hz=0) and has both transversal magnetic 

field components. And it has also all three electric field components. For a parallel 

plate waveguide of cross section in the x-y plane and wave propagation along the z-

axis, the field components are Ex, Hy and Ez.  
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The wave equation for the electric field is expressed as [45] 

 ∇2�̅� + 𝜔2𝜇𝜀�̅� = 0. (5.5) 

which can be expanded to  

 (
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
+ 𝑘𝑜

2) �̅� = 0. (5.6) 

Since the plane wave changes only in the x-direction, then 
𝜕

𝜕𝑦
= 0,

𝜕

𝜕𝑥
≠ 0. A plane 

wave propagating along the z-direction is expressed as, 

 �̅� = �̂�𝐸0𝑒
−𝑗b𝑧. (5.7) 

Then 
𝜕2

𝜕𝑧2 𝐸𝑧 = −𝛽2𝐸𝑧 and Equation (5.7) reduces to  

 (
𝜕2

𝜕𝑥2
− 𝛽2 + 𝑘𝑜

2)𝑬𝒛 = 0,  

 (
𝜕2

𝜕𝑥2
+ 𝑘𝑥

2)𝑬𝒛 = 0. (5.8) 

where 𝑘𝑥
2 = 𝑘𝑜

2 − 𝛽2 is the wave number in the x-direction 

Equation (5.8) has a general solution of, 

 𝐸𝑧(𝑥, 𝑧) = 𝑒−𝑗𝛽𝑧[𝐴𝑠𝑖𝑛(𝑘𝑥𝑥) + 𝐵𝑐𝑜𝑠(𝑘𝑥𝑥)]. (5.9) 

where A and B are arbitrary coefficients that can be determined by boundary 

conditions.  

Note that for open-circuit boundary, the boundary conditions are, 

 𝐻𝑦|
𝑥=0

= 𝐻𝑦|
𝑥=𝑑

= 0. (5.10) 

At x=0 will lead to, 
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 𝐻𝑦(𝑥, 𝑧) = (
−𝑗𝜔𝜀

𝑘𝑐
2 ) 𝑒−𝑗𝛽𝑧[𝐴𝑘𝑥𝑐𝑜𝑠(𝑘𝑥𝑥) − 𝐵𝑘𝑥𝑠𝑖𝑛(𝑘𝑥𝑥)],  

 0 = (
−𝑗𝜔𝜀

𝑘𝑐
2

) 𝑒−𝑗𝛽𝑧[𝐴𝑘𝑥 cos(0) − 𝐵𝑘𝑥sin (0)], 
(5.11) 

or 

 𝐴 = 0. (5.12) 

At x=d, and using Equation (5.12) will lead to 

 𝐻𝑦(𝑥, 𝑧) = (
−𝑗𝜔𝜀

𝑘𝑐
2

) 𝑒−𝑗𝛽𝑧[−𝐵𝑘𝑥𝑠𝑖𝑛𝑘𝑥𝑑] = 0, (5.13) 

Equation (5.13) is zero when sin(𝑘𝑥𝑑) = 0, which is satisfied when, 

 𝑘𝑥 =
𝑛𝜋

𝑑
. (5.14) 

where kx is known as the transversal wavenumber. 

Consequently, the Hy component of the parallel plate waveguide is defined as,  

 𝐻𝑦(𝑥, 𝑧) = 𝐻𝑦𝑜𝑒
−𝑗β𝑧 sin(𝑘𝑥𝑥). (5.15) 

Then from Equation (5.9), the Ez component is expressed as 

 𝐸𝑧(𝑥, 𝑧) = 𝐸𝑧𝑜𝑒
−𝑗β𝑧 cos(𝑘𝑥𝑥). (5.16) 

And the remaining field component Ex is obtained from Maxwell’s equation, 

 𝐸𝑥(𝑥, 𝑧) = (
−𝑗𝛽

𝑘𝑐
2

)
𝜕𝐸𝑧

𝜕𝑥
= 𝐸𝑥𝑜𝑒

−𝑗β𝑧 sin(𝑘𝑥𝑥), (5.17) 

Note that where Hyo, Ezo and Exo are the fields amplitudes. From Equation (5.8) the 

dispersion relation is expressed as 

 𝑘𝑥
2 + 𝛽2 = 𝜔2𝜇𝜖. (5.18) 
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from which the propagation constant in the z-direction is calculated as 

 β = √𝜔2𝜇𝜖 − (
𝑛𝜋

𝑑
)
2

. (5.19) 

For n=0, 

 𝛽|𝑛=0 = 𝑘𝑜 = 𝜔√𝜇𝜖. (5.20) 

In order to have propagation along z-direction the condition b>0 needs to be satisfied. 

This condition means that minimum frequency above which the propagation is 

possible [45], 

 𝑓𝑐 =
𝑛

2𝑑√𝜇𝜀
. (5.21) 

where fc is the cutoff frequency. Thus the propagation in the parallel plate metal 

waveguide is analogous to a high-pass filter response.  

The guide wavelength is the distance between planes of constant phase along the z-

direction, and it is larger than the wavelength of a plane wave in the material and is 

given by [45] 

 𝑔 =
2𝜋

b
=

2𝜋

√𝜔2𝜇𝜖 − (
𝑛𝜋
𝑑

)
2
. (5.22) 

The waveguide characteristic impedance is given by [45], 

 𝑍𝑇𝑀 =
𝐸𝑥

𝐻𝑦
=

𝛽

𝜔𝜀
. (5.23) 

The guide impedance is purely real for f > fc. 

The derivation for TE polarisation is similar to the TM polarisation but the wave 

equation is for the Ez component of the electric field. 
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5.4 Problem description 

In this section the canonical geometry used to assess the dispersion characteristics is 

presented. Field propagation is simulated within a notionally homogenous free space 

rectangular region of length L=100m and width d=10m with open-circuited 

boundaries being placed on the top and bottom as shown in Figure 5.2. The electric 

field is polarised out of the plane. This configuration is chosen as it theoretically 

supports propagation of a dispersionless transversally uniform field along its axis 

which acts as a convenient reference. Both the input and output planes are terminated 

with the wave impedance of free space, 𝑍𝑜 = √𝜇𝑜
𝜀𝑜

⁄  where µo is magnetic 

permeability and o is dielectric permittivity of the free space which theoretically 

impedance-match the fundamental propagating field. The structure also supports 

infinity of higher order waveguide modes (Equation (5.14)) each of which has a 

transverse (i.e. with respect to x) field distribution that is orthogonal to that of all the 

others. Note that each of these higher order modes can be represented as interfering 

waves propagating a particular angle to axis. Theoretically, there should be no inter-

mode coupling between these modes along the length of the uniform cross-section 

structure. However, the irregular nature of an unstructured mesh will actually cause 

non-physical coupling to occur, analogous to propagation through a medium with 

small-scale variations in its material parameters. A quantification of this mesh induced 

coupling provides a physically meaningful measure of the consequences of local mesh 

irregularities. 

The bulk of the problem will be meshed by many different meshes and statistically 

processed results presented. In order to ensure consistent reference ports for the 

measurements, the input and output planes are always meshed with the same number 

of, N, equilateral triangles as shown in Figure 5.2.  

The remainder of the problem space is meshed with a Delaunay mesh, the density of 

which is controlled by the number of fixed vertices at the input and output planes and 

by demanding a required triangle quality of the mesh generation software which leads 

to the insertion of additional vertices. Meshes are studied based on size and quality, 

and this can be obtained by sitting varieties of constraints on the command line to the 
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‘Triangle’ software in order to get a wide span of triangle size and quality. As 

mentioned in Section 3.5.1, two main switches are used in the ‘Triangle’ command 

line; ‘-a’ switch which is concerned with mesh size limitation, and ‘-q’ switch which 

relates to the mesh quality. For a mesh of certain average area (fixed ‘-a’ switch) 

different mesh quality can be obtained by setting different angle constrains following 

‘-q’ switch. Then for a mesh of certain quality (fixed ‘-q’ switch) varieties of mesh 

sizes from coarse to fine can be obtained by setting upper limit for triangles area 

following the ‘-a’ switch. Each produced mesh has a unique distribution of triangle 

size or shape, so for the sake of comparison and classification each mesh is expressed 

by a average area Aav and average quality factor Q, in addition to the standard deviation 

from the mean value. 

 To obtain a sequence of different meshes of the same statistical density and quality, 

the region is pre-seeded with a number of randomly placed vertices before meshing. 

Bear in mind that changing the number or the location of any of these vertices will 

produce different distribution of triangles, so it is almost impossible to reproduce the 

same mesh even by setting the same area and quality constraints.  
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Figure 5.2: Schematic diagram of parallel plate waveguide with the enforced 

triangularization of the input and output planes 

In this study, 2D Delaunay meshes were generated using the ‘Triangle’ mesh generator 

provided by Shewchuk [6]. The triangulated mesh is then processed to obtain the 
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Voronoi mesh of transmission lines. Figure 5.3 shows an example of the Delaunay and 

Voronoi meshes of a rectangular space whilst keeping the input and output planes 

fixed. 

Excitation side Observation side

d

L
z

x

Open-circuit boundary

Open-circuit boundary

 

Figure 5.3: Delaunay (light) and Voronoi (dark) diagrams of a meshed rectangular space 

with fixed points along input and output planes. 

In the simulations, the excitation to the model consists of voltage impulses on the N 

transmission line ports present in the input plane with a spatial distribution of  

 𝑉𝑖
𝑖𝑛(𝑥) = 𝑉𝑜 cos (𝑘𝑥 (𝑖 −

1

2
)∆𝑥). (5.24) 

where i is the index of the input port, i=1,2, …N, Vo is the input signal amplitude, kx is 

the transverse wavenumber given by kx=n/d, and x is the distance between adjacent 

samples. Theoretically, after propagating along the structure length L and assuming 

the appropriate (frequency dependent for n0) source and termination impedances, the 

field at the output nodes has the form 

 𝑉𝑖
𝑜𝑢𝑡(𝑥) = 𝑉𝑜 cos (𝑘𝑥 (𝑖 −

1

2
)∆𝑥) 𝑒−𝑗𝛽𝐿 . (5.25) 

where b is the phase constant. In the TLM model the discretisation will introduce 

numerical dispersion, this is first assessed by extracting the phase delay b which can 

be obtained using the 2D discrete Fourier transform over time and x of the voltages at 

all UTLM nodes in the input and output planes, which for the simplest case of n=0, 

reduces to evaluating 
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 𝑒−𝑗𝛽𝐿 = lim
∆𝑥→0

∑ 𝑉𝑖
𝑜𝑢𝑡(𝑘𝑥𝑖∆𝑥, 𝑓)𝑁

𝑖=0

∑ 𝑉𝑖
𝑖𝑛(𝑘𝑥𝑖∆𝑥, 𝑓)𝑁

𝑖=0

. (5.26) 

where ),( fikV xxi   denotes Fourier transformed voltage at the input or output plane, i.e., 

 𝑉𝑖(𝑘𝑥𝑖∆𝑥, 𝑓) =
1

𝑇
∑ 𝑉(𝑘𝑥𝑖∆𝑥,𝑚∆𝑡)𝑒

−𝑗2𝜋
𝑓.𝑚∆𝑡

𝑇 .

𝑇

𝑚=0

 (5.27) 

where t is the TLM time step and T=mt denotes the total simulation time. 

More generally, the same approach is used to evaluate the non-physical inter-modal 

coupling between different spatial modes. A particular mode of transverse order n is 

launched into the waveguide and the coupling to each mode of order m will be assessed 

by a 2D Fourier transform, 

 𝑉𝑜𝑢𝑡(𝑘𝑥, 𝑓) =
1

𝑇.𝑁
∑ ∑ 𝑉𝑜𝑢𝑡(𝑖∆𝑥,𝑚∆𝑡)𝑒

−𝑗2𝜋(
𝑘𝑥.𝑖∆𝑥

𝑁
+

𝑓.𝑚∆𝑡
𝑇

).

𝑁

𝑥=0

𝑇

𝑚=0

 (5.28) 

The 2D FFT will exhibit peaks at values of all modes that are present I the simulation. 

5.5 Study of plane wave dispersion 

In this section, dispersion introduced by a triangular mesh is analysed and compared 

with the case where the same problem is meshed using the structured mesh.  

It is well known that the ideal transmission line theory ensures the pulse shape 

preservation and only introduces a phase delay during propagation. In the TLM model 

the discretisation will introduce numerical dispersion. The estimation of dispersion is 

done for a case of plane wave excitation (n=0) for which case the phase delay is 

recovered at the output of the waveguide. This can be evaluated by extracting the phase 

delay b which can be done by first Fourier transforming voltages at all TLM nodes at 

the input and output planes, and then summing them and obtaining a ratio as in 

Equation (5.26). The analysis is done for unstructured meshes of different densities 

and compared against results obtained using structured meshes. 
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As triangular meshes have different triangle sizes, a mesh parameter is defined as 

√𝐴𝑎𝑣 (m) to quantify the mesh, where Aav (m
2) denotes the average triangle area in the 

mesh. The mesh is also quantified by the mesh quality factor Q expressed in Equation 

(5.1) where the mean mesh quality factor is calculated for the entire mesh domain. 

In the case of the structured mesh all mesh cells are of the same size and have constant 

area of A=x × z where z is the sampling width along the waveguide length. 

A polygon is fed to the “Triangle” software that comprises the definition of the 

rectangular space in addition to random points inserted within the rectangle. The 

meshes produced are controlled by the ‘-a’ and ‘-q’ switches for mesh size and mesh 

quality, respectively. The rectangular space is meshed into 200 meshes of mesh 

parameter that ranges between 0.01 to 0.99m and with mesh quality that ranges from 

0.8 to 2.3. The same space is also meshed into 10 different structured meshes that vary 

in size with mesh parameter that ranges from 0.1 to 1m. Keep in mind that structured 

meshes is formed of equilateral right-angled triangles so the mesh quality is the same 

for all meshes.  

Table 5.1 illustrates a sample of meshes and the corresponding values following the  

switches ‘-a’ and ‘-q’. Note that the number assigned to the mesh parameter, mesh size 

and the values assigned to the ‘-q’ switch are all mean values, meaning that it rarely 

happened that two meshes have the exact same values, thus, meshes that falls in the 

same range are but into same category. The number assigned to the ‘-a switch sets an 

upper limit for the triangle area. 

Mode n=0 is excited where a plane wave is discretized among N input aligned and 

equidistant circumcentres (left side of Figure 5.2). A constant value of 10V is inserted 

at each input point for duration of 1ns. At the other end of the waveguide N aligned 

and equidistant circumcentres forms the observation plane.  

For the purpose of presenting results a ratio between the extracted phase delay b to 

free space wavenumber 𝑘𝑜 =
𝜔

𝑐
 is calculated. In this study the phase delay β is 

extracted at ko=2, which corresponds to the upper limit of the first 10% of the 

frequency spectrum obtained with FFT. Each mesh is presented by a single value of β, 
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then the ratio 𝛽 𝑘𝑜⁄  is calculated for each mesh. The free space wavenumber ko 

corresponds to minimum wavelength o=3.14159m. 

Table 5.1: Sample of meshes used in the dispersion study with different mesh parameter 

√𝑨𝒂𝒗 and mesh quality Q and the corresponding switches used to produce these meshes 

Mesh parameter 

√Aav  

switch 

a = 

Mesh quality 

Q  

switch 

q  

0.01026 0.0005 2.28 18 

0.02268 0.001 2.17 20 

0.05479 0.005 1.97 25 

0.07277 0.007 1.83 27 

0.09743 0.01 1.65 38 

0.12615 0.03 1.47 44 

0.15452 0.05 1.3 46 

0.24859 0.1 1.16 51 

0.58006 0.5 0.97 54 

0.73231 0.8 0.81 60 

 

Figure 5.4 shows the phase ratio 𝛽 𝑘𝑜⁄  as function of mesh parameter √𝐴𝑎𝑣 for 

selected mesh quality factor Q. For the lowest mesh quality factor Q of 0.8121 and the 

smallest mesh parameter √𝐴𝑎𝑣 ≅0.01m, the mean value and standard deviation of the 

ratio 𝛽 𝑘𝑜⁄  are 1.000789 and 0.000651, respectively which increase to 1.009846 and 

0.002921 for the highest Q value of 2.28049 and the same mesh parameter. On the 

other hand increasing the mesh parameter √𝐴𝑎𝑣 from 0.01m to 0.99m increased the 

phase ratio from 1.000789 to 1.008975 for Q0.81219 and from 1.009846 to 1.034653 

for Q2.28049.  

Table 5.2 shows the mean ratio 𝛽 𝑘𝑜⁄  as a function of selected mesh  parameters √𝐴𝑎𝑣 

for different mesh quality factor Q, as well as the standard deviation of the phase ratio. 
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Figure 5.4: Ratio of the model phase to the free space wavenumber as a function of discretization 

length √A𝑎𝑣 (m) for different quality UTLM meshes (Q0.8, 1.3, 1.7, 2.0 and 2.3). 

Table 5.2: Ratio of the model phase to the free space wavenumber 𝛽 𝑘𝑜⁄  as a function of 

mesh parameter √𝑨𝒂𝒗(m) for different mesh quality Q 

Aav 0.01026 0.02268 0.05479 0.07277 0.09743 0.12615 0.24859 0.58006 0.99930 

Q b/ko 

0.81219 
mean 1.00079 1.00088 1.00176 1.00225 1.00268 1.00160 1.00402 1.00566 1.00897 

StdDev 0.00065 0.00070 0.00059 0.00057 0.00063 0.00127 0.00122 0.00132 0.00019 

0.97434 
mean 1.00125 1.00152 1.00218 1.00229 1.00319 1.00360 1.00654 1.00885 1.01384 

StdDev 0.00063 0.00060 0.00063 0.00063 0.00064 0.00064 0.00064 0.00067 0.00260 

1.156130 
mean 1.00189 1.00151 1.00213 1.00220 1.00400 1.00388 1.00750 1.01038 1.01397 

StdDev 0.00054 0.00111 0.00136 0.00118 0.00129 0.00056 0.00058 0.00052 0.00095 

1.29501 
mean 1.00207 1.00354 1.00443 1.00414 1.00431 1.00265 1.00559 1.01309 1.02243 

StdDev 0.00094 0.00088 0.00120 0.00093 0.00083 0.00099 0.00098 0.00094 0.00172 

1.46592 
mean 1.00209 1.00501 1.00460 1.00466 1.00435 1.00568 1.00920 1.01600 1.02028 

StdDev 0.00133 0.00127 0.00168 0.00292 0.00293 0.00279 0.00246 0.00212 0.00218 

1.65307 
mean 1.00302 1.00442 1.00477 1.00659 1.00721 1.00773 1.00929 1.01750 1.02365 

StdDev 0.00193 0.00162 0.00368 0.00235 0.00426 0.00273 0.00462 0.00476 0.00173 

1.84590 
mean 1.00459 1.00450 1.00675 1.00704 1.00751 1.00762 1.01072 1.02109 1.02592 

StdDev 0.00237 0.00271 0.00206 0.00227 0.00231 0.00261 0.00335 0.00309 0.00381 

1.97452 
mean 1.00474 1.00758 1.00857 1.00768 1.00509 1.00948 1.01302 1.02108 1.02524 

StdDev 0.00294 0.00376 0.00285 0.00376 0.00221 0.00466 0.00637 0.00460 0.00156 

2.17112 
mean 1.00665 1.00901 1.01113 1.01272 1.01039 1.01491 1.01568 1.02478 1.02840 

StdDev 0.00253 0.00340 0.00691 0.00450 0.00446 0.00648 0.00479 0.00426 0.00343 

2.28049 
mean 1.00985 1.01080 1.01329 1.01480 1.01578 1.01626 1.02036 1.02960 1.03465 

StdDev 0.00292 0.00315 0.00464 0.00256 0.00548 0.00518 0.00430 0.00589 0.00477 
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Enforcing random points inside the problems domain produces different mesh 

distribution of the same mesh quality range. The variance in phase ratio due to different 

mesh distribution is illustrated by the vertical bars in Figure 5.5 to Figure 5.14. These 

figures show the ratio 𝛽 𝑘𝑜⁄  as a function of the mesh parameter √𝐴𝑎𝑣 for mesh quality 

factor Q ranging between 0.81219 and 2.28049. Generally, as the mesh parameter 

√𝐴𝑎𝑣 decreases the ratio 𝛽 𝑘𝑜⁄  approaches the value 1, which means that the model 

phase approaches the free space wavenumber. This is applicable for all values of mesh 

quality Q. As the value of mesh quality Q increases, the ratio 𝛽 𝑘𝑜⁄  goes further away 

from the value 1. As mentioned previously, triangles with good quality are equilateral 

ones which have a Q value of 0.57735, so increasing the Q value means having 

triangles of bad quality which consequently increases the dispersion error. Also, for 

lower Q values the mesh is more uniform and shows small variance for different mesh 

distribution as shown by the vertical bars in Figure 5.5 through Figure 5.8. For higher 

values of Q the variance in the phase ratio is large as in Figure 5.9 through Figure 5.14.  

 

Figure 5.5: Ratio of the model phase to the free space wavenumber as a function of mesh 

parameter √𝑨𝒂𝒗 (m) for mesh quality Q0.81219, with vertical bars depicting the variance in 

the phase ratio for different mesh distributions. 
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Figure 5.6: Ratio of the model phase to the free space wavenumber as a function of mesh 

parameter √𝑨𝒂𝒗 (m) for mesh quality Q0.97434., with vertical bars depicting the variance 

in the phase ratio for different mesh distributions. 

 

 

Figure 5.7: Ratio of the model phase to the free space wavenumber as a function of mesh 

parameter √𝑨𝒂𝒗 (m) for mesh quality Q1.15613., with vertical bars depicting the variance 

in the phase ratio for different mesh distributions. 
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Figure 5.8: Ratio of the model phase to the free space wavenumber as a function of mesh 

parameter √𝑨𝒂𝒗 (m) for mesh quality Q1.29501, with vertical bars depicting the variance in 

the phase ratio for different mesh distributions. 

 

 

Figure 5.9: Ratio of the model phase to the free space wavenumber as a function of mesh 

parameter √𝑨𝒂𝒗 (m) for mesh quality Q1.46952, with vertical bars depicting the variance 

in the phase ratio for different mesh distributions. 
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Figure 5.10: Ratio of the model phase to the free space wavenumber as a function of mesh 

parameter √𝑨𝒂𝒗 (m) for mesh quality Q1.65307, with vertical bars depicting the variance in 

the phase ratio for different mesh distributions. 

 

Figure 5.11: Ratio of the model phase to the free space wavenumber as a function of mesh 

parameter √𝑨𝒂𝒗 (m) for mesh quality Q1.82591, with vertical bars depicting the variance in 

the phase ratio for different mesh distributions. 
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Figure 5.12: Ratio of the model phase to the free space wavenumber as a function of mesh 

parameter √𝑨𝒂𝒗 (m) for mesh quality Q1.97452, with vertical bars depicting the variance in 

the phase ratio for different mesh distributions. 

 

 

Figure 5.13: Ratio of the model phase to the free space wavenumber as a function of mesh 

parameter √𝑨𝒂𝒗 (m) for mesh quality Q2.17112, with vertical bars depicting the variance in 

the phase ratio for different mesh distributions. 
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Figure 5.14: Ratio of the model phase to the free space wavenumber as a function of mesh 

parameter √𝑨𝒂𝒗 (m) for mesh quality Q2.28049, with vertical bars depicting the variance in 

the phase ratio for different mesh distributions. 

In order to better compare the dispersion errors of the unstructured TLM and the 

structured TLM meshes, Figure 5.15 shows the relative error in b for unstructured and 

structured meshes defined as, 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 =
|𝛽 − 𝑘𝑜|

𝑘𝑜

[%]. (5.29) 

In Figure 5.15 percentage relative phase error is calculated for UTLM as a function of 

mesh parameter √𝐴𝑎𝑣 for different mesh quality factor Q. In the same figure the 

relative phase error is calculated for structured TLM for different discretization 

lengths. Again, as the quality of the mesh increases or the discretization length 

decreases the phase relative error drops significantly. It is also noted that the mean 

dispersion error introduced by the unstructured TLM of different quality values is less 

than the error introduced by the structured TLM.  

 



5. Dispersion and intermodal coupling in 2D UTLM  161 

 

 

Figure 5.15: Percentage relative phase error as a function of discretization length √A𝑎𝑣 (m) 

for different quality UTLM meshes (Q0.8, 1.3, 1.7, 2.0 and 2.3) and an equivalent 

structured TLM mesh. The dashed line shows the mean dispersion error obtained from 

different quality unstructured meshes. 

Table 5.3 lists the percentage phase relative error for unstructured meshes as function 

of selected mesh parameter √𝐴𝑎𝑣 for selected mesh quality values Q. In the same table 

the percentage phase relative error for the corresponding structured mesh is displayed. 

For all discretization lengths, the unstructured mesh shows significant low relative 

phase error as compared to the equivalent structured mesh.  

Figure 5.16 shows the phase ratio 𝛽 𝑘𝑜⁄  as a function of mesh quality factor Q for 

selected mesh parameter √𝐴𝑎𝑣 , namely, 0.01, 0.1, 0.25 and 0.99m. It is shown that 

for fixed mesh parameter the phase ratio increases as the mesh quality Q increases. 

Also, as the mesh parameter √𝐴𝑎𝑣 increases the phase ratio increases which confirms 

that the mesh quality affects the mesh dispersion. 

Figure 5.17 shows the ratio of the TLM wave velocity, v=b to the free space 

velocity, c= 1/√𝜀𝑜𝜇𝑜 . In the ideal case the ratio is one, as shown in Figure 5.17 by 

the grey line. In all cases the dispersion error reduces as the average unit cell area 

reduces. Furthermore, the unstructured mesh generally has a lower dispersion error 

than the equivalent structured mesh. 
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Table 5.3: Percentage phase relative error |𝛽 − 𝑘𝑜|/𝑘𝑜 as a function in selected √𝐴𝑎𝑣 (m) for 

selected values of mesh quality factor Q 

Unstructured TLM 

Aav 0.01026 0.02268 0.05479 0.07277 0.09743 0.12615 0.24859 0.58006 0.99930 

Q 

0.81 0.07892 0.08802 0.17627 0.22465 0.26816 0.15989 0.40227 0.56644 0.89747 

1.30 0.20726 0.35413 0.44330 0.41380 0.43084 0.26462 0.55922 1.3089 2.24285 

1.65 0.30162 0.44251 0.47656 0.65873 0.72073 0.77262 0.92913 1.75030 2.36464 

1.97 0.47388 0.75772 0.85748 0.76759 0.50880 0.94840 1.30196 2.10778 2.52448 

2.28 0.98461 1.07996 1.32864 1.47964 1.57822 1.62612 2.03556 2.95967 3.46532 

mean 0.25532 0.33927 0.46844 0.56242 0.48397 0.73840 1.67531 2.30375 0.25532 

Structred TLM 

A 0.01000 0.02000 0.05000 0.07500 0.10000 0.20000 0.25000 0.50000 1.00000 

|b- ko |/ko 

% 0.67747 0.77183 0.98539 1.20833 1.93817 2.47827 2.90762 3.59762 5.56112 

 

 

Figure 5.16: Ratio of the model phase to the free space wavenumber as a function of mesh 

quality Q for different mesh parameter (√𝐴𝑎𝑣=0.01, 0.1, 0.25 and 0.99m) with vertical bars 

depicting the variance in the phase ratio for different mesh distributions. 
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Figure 5.17: Ratio of the model wave velocity to the free space velocity (v/c) as a function of 

discretization length √A𝑎𝑣 (m) for different quality UTLM meshes (Q0.8, 1.3, 1.7, 2.0 and 

2.3) and an equivalent structured TLM mesh. The dashed line shows the mean dispersion 

error obtained from different quality unstructured meshes. 

Comparing different quality meshes, it can be seen that as the Q-factor reduces, i.e. the 

quality of the mesh increases, the dispersion is further reduced. This improvement is 

largest for coarser meshes. In fact, a coarse unstructured mesh with √𝐴𝑎𝑣 = 0.99𝑚 

but of good quality Q0.8 has dispersion similar to the finest TLM mesh √𝐴𝑎𝑣 =

0.01𝑚 with Q2.29. It is true to say that such a good quality mesh was possible due 

to the simple geometry of the problem. However, all meshes with Q<=2 have also 

shown lower dispersion error than the equivalent structured TLM mesh. The dashed 

line in Figure 5.17 shows the mean dispersion error obtained from a number of 

different quality unstructured meshes further confirming that unstructured mesh has 

better dispersion properties. 

An unstructured mesh is computationally more difficult to handle than a structured one 

and so comes with a computational runtime overhead. Figure 5.18 shows comparison 

of the computational run time of UTLM and STLM method having the same numerical 

mesh density.  
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Figure 5.18: Run time for UTLM meshes of Q0.8 and 2.3 and equivalent STLM mesh as a 

function of discretization length√𝐴𝑎𝑣. 

The runtime of the UTLM mesh with Q0.8 and Q2.3 is compared against the STLM 

mesh for different discretization lengths √𝐴𝑎𝑣. It is shown that both UTLM meshes 

have longer runtime compared to the equivalent STLM mesh. The better quality mesh 

(Q0.8) has shorter run time compared with the mesh with Q2.3. This can be 

explained by the fact good quality are more uniform which reduces the possibility of 

the presence of very short link lines, and consequently very small timestep. 

5.6 Study of inter-modal coupling 

In this section the effect of the mesh discretisation on the modal coupling between 

different order spatial modes is investigated on the same model outlined in Section5.5. 

The intermodal coupling is investigated for different mesh discretization, mesh quality 

and for different mesh distributions. The different spatial mode excitations are defined 

by an index n in Equation (5.14). Theoretically an infinite number of spatial harmonics 

is supported in this waveguide but in this study excited spatial mode with n=0, 1 and 

2 are considered, as shown schematically in Figure 5.19. In the case of the structured 

mesh due to its symmetry no coupling will occur between different spatial modes and 

at the output only excited mode will exist. However, this is not the case for the 
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unstructured meshes which is not symmetrical in its nature. The coupling is measured 

by taking a 2D FFT transform (Equation (5.28)) of the signal at the output nodes which 

will have peaks at all spatial modes that are in the signal. 
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Figure 5.19: Illustrative diagram for different mode excitation in parallel plate waveguide 

Figure 5.20 shows an example of a 2D FFT surface plot produced by exciting mode 

n=0 in a parallel plate waveguide of dimensions 10m by 100m. Normalized kx is better 

used to illustrate the mode number (i.e. n=0, 1, 2, 3, ….). This plot shows maxima at 

the spatial modes 0, 2 and 4.   
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Figure 5.20: Surface plot of 2D FFT analysis of wave propagation in parallel plate 

waveguide 

5.6.1 Mode coupling in structured meshes 

In the first instance, the mode coupling is investigated using structured TLM meshes. 

For the parallel plate waveguide three different cases are examined of which the 

discretization length  𝑙  is 0.05, 0.1 and 1. 

To extract the data of modal coupling 2D data plots as shown in Figure 5.20 is 

extracted to illustrate the peaks at the spatial modes.  
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Figure 5.21 and Figure 5.22 show the normalized amplitude of the excited mode n=0 

and n=1, respectively, versus the spatial mode location for the three different meshes. 

It is shown that maxima occur only at the excited mode, or in other words, there is no 

coupling with other spatial modes. This is shown for meshes of different discretization 

length l where the mode becomes more precise as the accuracy of mesh increases. 

 

Figure 5.21: Mode coupling of the excited mode n=0 to other spatial modes for different 

discretization length l. 

 

Figure 5.22: Mode coupling of the excited mode n=1 to other spatial modes for different 

discretization length l. 
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For better illustration of the effect of the unstructured mesh size and the mesh quality, 

the same procedure applied on structured meshes is followed and applied on 1200 

different unstructured meshes. 

5.6.2 Mode coupling in unstructured meshes 

5.6.2.1 Excitation of mode n=0 

In Figure 5.23 through Figure 5.27, mode n=0 is excited and the coupling ratio with 

higher spatial modes (n=1-4) is extracted. The curves show how the coupling ratio 

changes with different mesh parameters and for five different mesh quality factor Q, 

namely, 0.812, 1.295, 1.653, 1.974 and 2.280. Exciting mode n=0 lead to higher 

coupling ratio with the symmetrical spatial modes n=2 and 4. Also, it can be seen that 

as the mesh density is increased - expressed by the mesh parameter √𝐴𝑎𝑣 decrease - 

the intermodal coupling is decreased. For example, in Figure 5.23 the mean coupling 

ratio with mode n=2 has decreased from 0.148 to 4x10-5 for √𝐴𝑎𝑣 equal to 0.99 and 

0.01, respectively, and a mesh quality factor equals to 0.812. 

 

Figure 5.23: Coupling of excited mode n=0 to modes n=1-4 as a function of the mesh 

parameter √𝑨𝒂𝒗 (m) for a mean mesh quality Q0.81219. Arrow points to mesh with 

√𝐴𝑎𝑣/ 𝑜 < 0.1 . 
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Figure 5.24: Coupling of excited mode n=0 to modes n=1-4 as a function of the mesh 

parameter √𝑨𝒂𝒗 (m) for a mean mesh quality Q1.29501. Arrow points to mesh with 

√𝐴𝑎𝑣/ 𝑜 < 0.1 . 

 

Figure 5.25: Coupling of excited mode n=0 to modes n=1-4 as a function of the mesh 

parameter √𝑨𝒂𝒗 (m) for a mean mesh quality Q1.65307. Arrow points to mesh with 

√𝐴𝑎𝑣/ 𝑜 < 0.1 . 
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Figure 5.26: Coupling of excited mode n=0 to modes n=1-4 as a function of the mesh 

parameter √𝐴𝑎𝑣 (m) for a mean mesh quality Q1.97452. Arrow points to mesh with 

√𝐴𝑎𝑣/ 𝑜 < 0.1 . 

 

 

Figure 5.27: Coupling of excited mode n=0 to modes n=1-4 as a function of the mesh 

parameter √𝐴𝑎𝑣 (m) for a mean mesh quality Q2.28049. Arrow points to mesh with 

√𝐴𝑎𝑣/ 𝑜 < 0.1 . 
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Note that in Figure 5.23 through Figure 5.27 the coupling ratio starts to decline rapidly 

at mesh parameter √𝐴𝑎𝑣<0.36 (where the black arrow points) for all values of mesh 

quality. This discretization length (mesh parameter) as compared to the reference 

wavelength 𝑙/𝑜 = √𝐴𝑎𝑣/𝑜 is less than 0.12. This means that setting the 

discretization length to a value less than one tenth the wavelength reduces significantly 

the coupling ratio of the excited mode to other modes, which agrees with the famous 

discretization rule of thumb [1]. 

Figure 5.28 and Figure 5.29 shows the coupling ratio of the excited mode n=0 to the 

spatial mode 1 and 2, respectively. As the value of the quality Q factor increases the 

coupling ratio increases where the worst coupling ratio is achieved with Q equals to 

2.280 as shown in both figures. For example, for fixed √𝐴𝑎𝑣 of 0.99 the mean coupling 

ratio with mode n=2 has increased from 0.148 to 0.21 for Q equals to 0.812 and 2.280, 

respectively. Also, for √𝐴𝑎𝑣 of 0.01 the coupling ratio increased from 4x10-5 to 0.001 

and Q equals to 0.812 and 2.280, respectively. 

 

 

Figure 5.28: Coupling ratio of the excited mode n=0 with mode n=1 as function mesh 

parameter √𝐴𝑎𝑣 (m) and for different mesh quality factor Q. Arrow points to mesh with 

√𝐴𝑎𝑣/ 𝑜 < 0.1. 
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Figure 5.29: Coupling ratio of the excited mode n=0 with mode n=2 as function mesh 

parameter √𝐴𝑎𝑣 (m) and for different mesh quality factor Q. Arrow points to mesh with 

√𝐴𝑎𝑣/ 𝑜 < 0.1. 

Table 5.4 lists the coupling ratio of the excited mode n=0 to other spatial modes n=1-

4 for selected mesh parameter and for mesh quality Q equal to 0.812, 1.295, 1.653, 

1.975 and 2.280. 
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Table 5.4: Coupling ratio of the excited mode n=0 to spatial modes n=1-4 as a function of 

selected mesh parameter √𝑨𝒂𝒗  (m) and for different mesh quality Q 

  Aav 

Q mode 0.01026 0.02268 0.05479 0.07277 0.09743 0.12615 0.24859 0.58006 0.99930 

0.81219 

1 0.00000 0.00003 0.00035 0.00073 0.00235 0.00423 0.02456 0.03519 0.07883 

2 0.00004 0.00032 0.00189 0.00376 0.01577 0.02378 0.06578 0.08609 0.14752 

3 0.00000 0.00003 0.00029 0.00048 0.00166 0.00349 0.00810 0.02387 0.11236 

4 0.00001 0.00008 0.00188 0.00307 0.01094 0.01687 0.04909 0.05892 0.08922 

1.29501 

1 0.00000 0.00001 0.00063 0.00170 0.00751 0.01226 0.03549 0.06844 0.15785 

2 0.00011 0.00035 0.00284 0.00385 0.01900 0.03057 0.06452 0.09454 0.16509 

3 0.00000 0.00002 0.00017 0.00057 0.00265 0.00497 0.01908 0.03736 0.12698 

4 0.00003 0.00014 0.00055 0.00160 0.00433 0.00765 0.03361 0.04890 0.13414 

1.65307 

1 0.00002 0.00007 0.00089 0.00184 0.00216 0.00390 0.04903 0.09454 0.21807 

2 0.00028 0.00079 0.00172 0.00284 0.00356 0.00736 0.02508 0.06825 0.29494 

3 0.00000 0.00004 0.00032 0.00111 0.00191 0.00362 0.02164 0.04478 0.19928 

4 0.00004 0.00024 0.00094 0.00273 0.00275 0.00493 0.03485 0.05309 0.18648 

1.97452 

1 0.00008 0.00040 0.00490 0.01018 0.00327 0.00619 0.04056 0.08569 0.21690 

2 0.00037 0.00115 0.00570 0.00946 0.00325 0.00682 0.04579 0.13586 0.30825 

3 0.00001 0.00017 0.00151 0.00528 0.00248 0.00473 0.01496 0.03149 0.19112 

4 0.00019 0.00101 0.00390 0.01135 0.00313 0.00566 0.02102 0.03321 0.15408 

2.28049 

1 0.00025 0.00185 0.01403 0.02279 0.07035 0.07961 0.10678 0.13688 0.18070 

2 0.00104 0.00671 0.04775 0.04596 0.10318 0.12754 0.21059 0.17643 0.25017 

3 0.00008 0.00054 0.00808 0.00851 0.01789 0.02781 0.05167 0.17486 0.20763 

4 0.00090 0.00438 0.01660 0.03478 0.09646 0.10090 0.17783 0.15907 0.19240 

Pre-seeding the waveguide with a number of randomly placed vertices gives a 

sequence of different meshes of the same statistical density and quality. The range of 

coupling ratio for different mesh distribution is illustrated by the vertical bars in 

Figure 5.30 to Figure 5.34. 

Figure 5.30 through Figure 5.34 shows the variance in coupling ratio of the excited 

mode n=0 to modes 1 and 2 as function in mesh parameter √𝐴𝑎𝑣 and for mesh quality 

factor Q of 0.812, 1.295, 1.653, 1.975 and 2.280, respectively. It is observed that as 

the mesh quality factor increases the variance in coupling ratio increases, this can be 

attributed to the increase of the non-uniformity of the mesh. For example, for 

√𝐴𝑎𝑣=0.01 the standard deviation in coupling ratio with n=1 increases from 3.47x10-

7 for Q=0.812 to 1.18x10-4 for Q=2.280, and for √𝐴𝑎𝑣=0.99 the standard deviation in 

coupling ratio with n=1 increases from 0.006 for Q=0.812 to 0.026 for Q=2.280. 
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Figure 5.30: Coupling of excited mode n=0 to modes n=1-4 as a function of the mesh 

parameter √𝑨𝒂𝒗  (m) for a mean mesh quality Q0.81219 with vertical bars depicting the 

coupling range for different mesh distribution. 

 

 

Figure 5.31: Coupling of excited mode n=0 to modes n=1-4 as a function of the mesh 

parameter √𝑨𝒂𝒗  (m) for a mean mesh quality Q1.29501 with vertical bars depicting the 

coupling range for different mesh distribution. 
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Figure 5.32: Coupling of excited mode n=0 to modes n=1-4 as a function of the mesh 

parameter √𝐴𝑎𝑣  (m) for a mean mesh quality Q1.65307 with vertical bars depicting the 

coupling range for different mesh distribution. 

 

 

Figure 5.33: Coupling of excited mode n=0 to modes n=1 and 2 as a function of the mesh 

parameter √𝑨𝒂𝒗  (m) for a mean mesh quality Q1.97452 with vertical bars depicting the 

coupling range for different mesh distribution. 
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Figure 5.34: Coupling of excited mode n=0 to modes n=1 and 2 as a function of the mesh 

parameter √𝑨𝒂𝒗  (m) for a mean mesh quality Q2.28049 with vertical bars depicting the 

coupling range for different mesh distribution. 

5.6.2.2 Excitation of mode n=1 

Figure 5.35 to Figure 5.39 show the coupling ratio of the excited mode n=1 to other 

spatial modes (n=0, 2-4) as a function of the mesh parameter and for different quality 

factors, namely, 0.812, 1.295, 1.653, 1.974 and 2.280. It is shown that the coupling 

ratio is larger with the symmetrical mode n=3 followed by the fundamental mode n=0.  

As discussed previously, the coupling ratio increases with the increase of mesh 

parameter √𝐴𝑎𝑣 or for less denser mesh. Also, the coupling ratio increase as the mesh 

quality factor Q increases as shown in Figure 5.40 and Figure 5.41. The coupling ratio 

of the excited mode n=1 with n=3 increased from 4x10-6 to 0.132 for √𝐴𝑎𝑣=0.01 and 

0.99, respectively, for Q= 0.812. On the other hand changing the Q value from 0.812 

to 2.280 increased the coupling ratio from 4x10-6 to 0.003 for fixed mesh parameter 

√𝐴𝑎𝑣=0.01. Table 5.5 illustrates the mean coupling ratio of the excited mode n=1 with 

other spatial modes as the mesh parameter √𝐴𝑎𝑣 changes and for different mesh 

quality factors Q. 
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Figure 5.35: Coupling of excited mode n=1 to modes n=0, 2-4 as a function of the mesh 

parameter √𝑨𝒂𝒗 (m) for a mean mesh quality Q0.81219. 

 

 

Figure 5.36: Coupling of excited mode n=1 to modes n=0, 2-4 as a function of the mesh 

parameter √𝑨𝒂𝒗 (m) for a mean mesh quality Q1.29501. 
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Figure 5.37: Coupling of excited mode n=1 to modes n=0, 2-4 as a function of the mesh 

parameter √𝑨𝒂𝒗 (m) for a mean mesh quality Q1.65307. 

 

 

Figure 5.38: Coupling of excited mode n=1 to modes n=0, 2-4 as a function of the mesh 

parameter √𝑨𝒂𝒗 (m) for a mean mesh quality Q1.97452. 
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Figure 5.39: Coupling of excited mode n=1 to modes n=0, 2-4 as a function of the mesh 

parameter √𝑨𝒂𝒗 (m) for a mean mesh quality Q2.28049. 

 

 

Figure 5.40: Coupling ratio of the excited mode n=1 with mode n=0 as function mesh 

parameter √𝐴𝑎𝑣 (m) and for different mesh quality factor Q. 
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Figure 5.41: Coupling ratio of the excited mode n=1 with mode n=2 as function mesh 

parameter √𝐴𝑎𝑣 (m) and for different mesh quality factor Q. 

Table 5.5: Coupling ratio of the excited mode n=1 to spatial modes n=0, 2-4 as a function of 

selected mesh parameter √𝑨𝒂𝒗 (m) and for different mesh quality Q 

  Aav 

Q mode 0.01026 0.02268 0.05479 0.07277 0.09743 0.12615 0.24859 0.58006 0.99930 

0.81219 

0 0.00000 0.00000 0.00007 0.00019 0.00240 0.00570 0.03615 0.05207 0.08804 

2 0.00000 0.00000 0.00001 0.00006 0.00119 0.00301 0.04405 0.06932 0.09819 

3 0.00000 0.00020 0.00070 0.00179 0.00490 0.01122 0.06485 0.11240 0.13174 

4 0.00000 0.00000 0.00000 0.00000 0.00014 0.00030 0.00706 0.02064 0.09789 

1.29501 

0 0.00002 0.00024 0.00161 0.00296 0.00722 0.02056 0.03290 0.06626 0.11939 

2 0.00000 0.00002 0.00058 0.00148 0.00407 0.00625 0.00905 0.01941 0.09735 

3 0.00010 0.00243 0.00609 0.01676 0.03335 0.03639 0.06490 0.10663 0.15727 

4 0.00000 0.00000 0.00005 0.00011 0.00031 0.00177 0.01226 0.04897 0.09333 

1.65307 

0 0.00004 0.00121 0.00447 0.00686 0.01931 0.02129 0.04177 0.06428 0.11359 

2 0.00000 0.00005 0.00121 0.00222 0.00361 0.00935 0.03123 0.05587 0.10223 

3 0.00012 0.00130 0.00560 0.00867 0.01589 0.01869 0.05777 0.10727 0.16358 

4 0.00000 0.00000 0.00008 0.00014 0.00344 0.00356 0.01190 0.05321 0.09737 

1.97452 

0 0.00002 0.00032 0.00485 0.00554 0.01107 0.01413 0.04712 0.07567 0.13556 

2 0.00001 0.00017 0.00147 0.00511 0.00240 0.00455 0.01392 0.03055 0.18540 

3 0.00044 0.00215 0.01044 0.01086 0.03179 0.07158 0.12623 0.09123 0.23094 

4 0.00000 0.00000 0.00012 0.00033 0.00004 0.00017 0.00871 0.07981 0.15150 

2.28049 

0 0.00098 0.00090 0.00872 0.01593 0.05707 0.06218 0.09342 0.12851 0.16406 

2 0.00006 0.00063 0.00446 0.01199 0.05202 0.06223 0.15639 0.13430 0.15665 

3 0.00293 0.00270 0.02617 0.04780 0.17121 0.18655 0.28026 0.21981 0.32813 

4 0.00001 0.00016 0.00194 0.00715 0.01271 0.01633 0.03509 0.07497 0.13887 



5. Dispersion and intermodal coupling in 2D UTLM  180 

 

 

Figure 5.42: Coupling of excited mode n=0 to modes n=1 and 2 as a function of the mesh 

parameter √𝑨𝒂𝒗 (m) for a mean mesh quality Q0.81219 with vertical bars depicting the 

coupling range for different mesh distribution  

 

 

Figure 5.43: Coupling of excited mode n=0 to modes n=1 and 2 as a function of the mesh 

parameter √𝑨𝒂𝒗 (m) for a mean mesh quality Q2.28049 with vertical bars depicting the 

coupling range for different mesh distribution. 
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5.6.2.3 Excitation of mode n=2 

Finally exciting mode n=2 shows higher coupling ratio with the symmetrical modes 

n=0 and 4 as illustrated in Figure 5.44 through Figure 5.48. Coupling ratio increases 

with the increase of mesh parameter√𝐴𝑎𝑣. Coupling ratio also increases with the 

increase of the mesh quality factor Q as shown in Figure 5.49 and Figure 5.50. The 

coupling ratio of n=2 with n=0 increased from 1.8x10-5 to 0.160 for √𝐴𝑎𝑣=0.01 and 

0.99, respectively, for Q= 0.812. On the other hand changing the Q value from 0.812 

to 2.280 increased the coupling ratio from 1.8x10-5 to 0.001 for fixed mesh parameter 

√𝐴𝑎𝑣=0.01. Table 5.6 illustrates the mean coupling ratio of the excited mode n=2 with 

other spatial modes as the mesh parameter √𝐴𝑎𝑣 changes and for different quality 

factors Q. 

 

Figure 5.44: Coupling of excited mode n=2 to modes n=0, 1, 3 and 4 as a function of the 

mesh parameter √𝑨𝒂𝒗 (m) for a mean mesh quality Q0.81219. 
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Figure 5.45: Coupling of excited mode n=2 to modes n=0, 1, 3 and 4 as a function of the 

mesh parameter √𝑨𝒂𝒗 (m) for a mean mesh quality Q1.29501. 

 

 

Figure 5.46: Coupling of excited mode n=2 to modes n=0, 1, 3 and 4 as a function of the 

mesh parameter √𝑨𝒂𝒗 (m) for a mean mesh quality Q1.65307. 
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Figure 5.47: Coupling of excited mode n=2 to modes n=0, 1, 3 and 4 as a function of the 

mesh parameter √𝑨𝒂𝒗 (m) for a mean mesh quality Q1.97452. 

 

 

Figure 5.48: Coupling of excited mode n=2 to modes n=0, 1, 3 and 4 as a function of the 

mesh parameter √𝑨𝒂𝒗 (m) for a mean mesh quality Q2.28049. 
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Figure 5.49: Coupling ratio of the excited mode n=2 with mode n=0 as function mesh 

parameter √𝐴𝑎𝑣 (m) and for different mesh quality factor Q. 

 

 

Figure 5.50: Coupling ratio of the excited mode n=2 with mode n=1 as function mesh 

parameter √𝐴𝑎𝑣 (m) and for different mesh quality factor Q. 
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Table 5.6: Coupling ratio of the excited mode n=2 to spatial modes n=0, 1, 3 and 4 as a 

function of selected mesh parameter √𝑨𝒂𝒗 (m) and for different mesh quality Q 

  Aav 

Q mode 0.01026 0.02268 0.05479 0.07277 0.09743 0.12615 0.24859 0.58006 0.99930 

0.81219 

0 0.00002 0.00086 0.00384 0.00504 0.00351 0.00427 0.05200 0.11284 0.16035 

1 0.00000 0.00001 0.00017 0.00023 0.00070 0.00108 0.04035 0.05186 0.09021 

3 0.00000 0.00000 0.00002 0.00017 0.00043 0.00070 0.00622 0.04741 0.06833 

4 0.00001 0.00015 0.00150 0.00158 0.00312 0.00498 0.01628 0.06430 0.13984 

1.29501 

0 0.00005 0.00160 0.00341 0.00447 0.00897 0.02222 0.04205 0.12635 0.17356 

1 0.00000 0.00001 0.00012 0.00036 0.00141 0.00149 0.01971 0.05663 0.14462 

3 0.00000 0.00000 0.00000 0.00000 0.00003 0.00002 0.00196 0.04067 0.11627 

4 0.00001 0.00002 0.00029 0.00038 0.00058 0.00046 0.00474 0.06393 0.14374 

1.65307 

0 0.00006 0.00060 0.00802 0.00565 0.00879 0.01814 0.05235 0.06197 0.16145 

1 0.00000 0.00001 0.00027 0.00016 0.00044 0.00078 0.01229 0.05652 0.14218 

3 0.00000 0.00003 0.00005 0.00008 0.00025 0.00038 0.00451 0.03598 0.13066 

4 0.00001 0.00011 0.00093 0.00112 0.00445 0.00530 0.05599 0.08569 0.18606 

1.97452 

0 0.00024 0.00030 0.00565 0.02035 0.03165 0.05037 0.05069 0.11661 0.22598 

1 0.00001 0.00002 0.00011 0.00063 0.00134 0.00158 0.01976 0.06326 0.17655 

3 0.00000 0.00001 0.00053 0.00177 0.00047 0.00031 0.00198 0.06326 0.21186 

4 0.00002 0.00021 0.00094 0.00315 0.00188 0.01524 0.02194 0.08890 0.24056 

2.28049 

0 0.00034 0.00319 0.02388 0.02903 0.06398 0.06888 0.08463 0.14204 0.17007 

1 0.00004 0.00011 0.00262 0.00342 0.00137 0.00222 0.02471 0.10816 0.13614 

3 0.00000 0.00000 0.00105 0.00095 0.00161 0.00408 0.02154 0.10381 0.25596 

4 0.00011 0.00030 0.00420 0.01894 0.01797 0.02964 0.06842 0.17075 0.14285 

 

The range of coupling ratios of the excited mode n=2 to spatial modes n=0 and 1 for 

different mesh distributions are illustrated by the vertical bars for Q=0.812 and 

Q=2.280 in Figure 5.51 and Figure 5.52, respectively. It is observed that for low mesh 

quality factors the variance in coupling ratio is small as compared to that produced for 

high quality factor. For example, for √𝐴𝑎𝑣=0.01 the standard deviation in coupling 

ratio with n=0 increases from 3.2x10-9 for Q=0.812 to 1x10-6 for Q=2.280, and for 

√𝐴𝑎𝑣=0.99 the standard deviation in coupling ratio with n=1 increases from 0.002 for 

Q=0.812 to 0.058 for Q=2.280. 
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Figure 5.51: Coupling of excited mode n=2 to modes n=0 and 1 as a function of the mesh 

parameter √𝑨𝒂𝒗 (m) for a mean mesh quality Q0.81219 with vertical bars depicting the 

coupling range for different mesh distribution. 

 

 

Figure 5.52: Coupling of excited mode n=2 to modes n=0 and 1 as a function of the mesh 

parameter √𝑨𝒂𝒗 (m) for a mean mesh quality Q2.28049 with vertical bars depicting the 

coupling range for different mesh distribution. 
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To summarize, the coupling ratio of the excited mode to other spatial modes is 

investigated statistically for modes n=0, 1 and 2. It is shown that the excited mode 

couples more to its symmetrical modes. Increasing the quality of the mesh (which is 

indicated by the decrease of the quality factor Q) leads to the decrease in the coupling 

ratio. Also, as the mesh becomes more dense (indicated by the decrease of the mesh 

parameter √𝐴𝑎𝑣), the coupling ratio decreases. And finally different distributions of 

meshes of the same density and quality shows that the variance in coupling ratio 

increases as the mesh quality factor increases due to the non-uniformity of the mesh. 

5.7 Summary 

In this chapter the numerical dispersion of the unstructured 2D TLM method based on 

a Delaunay meshing is investigated. The dispersion is analysed by quantifying the 

phase error of plane wave propagation through the mesh and by investigating the 

impact of unstructured mesh discretisation on the coupling between different order 

spatial modes. The plane wave propagation is modelled using a homogeneous free 

space rectangular region with suitable boundary conditions.  

The dispersion study showed that unstructured meshes have lower phase errors of the 

plane wave propagation as compared to the equivalent structured mesh. The presence 

of the unstructured mesh, on the other hand, causes unwanted intermodal coupling 

between different spatial modes due to the intrinsic mesh anisotropy. The highest 

coupling is recorded between symmetrical spatial modes. The intermodal coupling is 

analysed in a statistical manner for a range of different mesh density, mesh quality and 

mesh distribution. It has been shown that the quality of the mesh is an important 

indicator of intermodal coupling and also that intermodal coupling decreases as the 

mesh density and mesh quality is increased. Also, it has been shown that discretizing 

the problem with a discretization length less than one-tenth the reference wavelength 

decreases the coupling ratio significantly. 
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Chapter 6.  

Conclusions and Future work 

The main goal of the thesis was the development of a complete tool to solve 2D 

electromagnetic problems and solve one of the dominant problems associated with the 

Delaunay triangle which is the presence of short link lines. The tool was tested on both 

circular and rectangular configurations and it is working efficiently using unstructured 

and structured meshes. Also, benchmark data for dispersion error and intermodal 

coupling in unstructured meshes was acquired.  

This chapter summarizes the main conclusions in this thesis and outlines the future 

work and possibilities of the research are explained.  

6.1 Conclusions 

Unstructured Transmission line modelling (UTLM) is a versatile tool for modelling 

electromagnetic problems. A simulator has been produced to simulate a region meshed 

into Delaunay triangles using object-oriented paradigm. As long as the TLM node 

coincides with the triangle circumcentres a proper implementation of Maxwell’s 

equation is achieved.  

A software package “Triangle” [37] is used to triangulate the mesh domain into 

number of Delaunay triangles. The problem to be simulated is defined by creating a 

polygon which is formed by setting number of points around the boundaries and setting 

the segments connecting theses points. Internal boundaries can be set as well which 

makes the polygon accommodate different materials or changes in dimensions. In 

order to decrease the numerical dispersion, the sampling length is chosen to be equal 

to or less than one-tenth the targeted wavelength. Also, to target good triangles the 

area of the produced triangles should be limited to maximum of half the side squared. 

Care should be considered in triangulating rectangular shapes in order not to get skinny 

triangles on border or corners. A test on Delaunay condition should be carried out on 
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the produced triangles as in some case the “Triangle” has produced non-Delaunay 

triangles which cause instability in the UTLM simulation.  

Also, a problem can be discretized into number of structured meshes by setting 

equidistant fixed points inside the cavity space, where these points are connected to 

form squares or rectangles. The mesh generator then divides each square or rectangle 

into two equal right-angled triangles and the algorithm reduces to the conventional 

TLM model. As a result the UTLM simulator is used to model both unstructured and 

structured meshed problem 

The data of Delaunay triangles are used to produce a Voronoi diagram formed of the 

link lines connecting triangle circumcentres. Time step is calculated upon the shortest 

link length in the simulated domain. Each triangle has three link lines which are 

modelled using a stub inductor model each terminated with a stub capacitor model. 

Thevenin equivalent circuit for each link or stub is represented by a source of double 

the incident voltage in addition to series equivalent impedance. Since the region is 

divided into irregular shapes proper connections and cell relative position should be 

taken care of.  

The main part of the algorithm comprises of two processes at each time step known as 

the ‘scatter’ and ‘connect’. Temporal evolution of the field is done by alternative 

implementation of scatter and connect operations until the steady state is reached 

In Chapter 3, the UTLM simulator showed good results for simulating problems with 

different shapes and materials. It also worked well with a variety of mesh numbers. 

Three different examples have been created and tested, namely, an air-filled PEC 

cylindrical resonator, an air-filled PEC cylindrical resonator concentrically loaded 

with r=2.1 and an air-filled rectangular resonator. Each example have been simulated 

using different number of triangles, and also meshed into unstructured and structured 

meshes. The resonant frequencies are extracted by applying the FFT to the results 

produced from the UTLM simulator and compared against the analytical results. 

Meshing the problem into coarse meshes introduced unwanted resonant frequencies 

and shift in resonant frequencies locations, this lead to large relative error. As the 
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density of the mesh increased the resonance frequencies become shaper and more 

accurate.  

For air-filled and dielectric-filled PEC cylindrical resonators, the unstructured meshes 

have introduced significantly lower relative error as compared to those with structured 

meshes; this is explained by better boundary approximations. On the other hand, 

unstructured meshes are executed in longer run time compared with the structured 

meshes due to the presence of very short link lines, which affect the time step and 

consequently increases the total run time. Structured meshes provided better run time 

due to regular formulation of the meshes which provides moderate link line length and 

reasonable time step and run time. For example, for air-filled cylindrical resonator, the 

relative error in the first five resonant modes was less than 1% using moderate number 

of unstructured meshes. This error increased to more than 7% using the equivalent 

number of structured meshes. In the case of the finest mesh the relative error in the 

fundamental mode with the UTLM is 40 times lower than that produced by the 

equivalent TLM structured mesh but former was executed in double the run time of 

the later. 

The air-filled rectangular resonator showed better relative error range as compared to 

the circular resonator. This is due to the fact that the meshes are always aligned with 

the rectangle borders. Structured meshes showed slightly better relative error 

compared to the equivalent unstructured meshes and the execution time for the 

structured meshes is much better as compared to the unstructured meshes. 

The rectangular cavities showed bigger time run times when compared with the 

circular cavities, in both unstructured and structured meshes. This is assumed to be 

due to rectangular resonator nature that has sharp edges and corners, which lead to 

longer time for the wave to stabilize within the resonator space. 

Working on the UTLM simulator showed that the automatic generation of Delaunay 

meshes can generate very short link lines that can negatively impact the computational 

runtime of TLM simulations. To alleviate this problem, a mesh perturbation method 

was presented in Chapter 4 whereby all short link lines that fall below a certain 

threshold value are replaced by an inductive and capacitive stub and the triangles that 

contain the relevant link line are merged into a four port node (triangle pair) for which 



6. Conclusions and future work  191 

 

scattering is done implicitly. Short link lines that fall on any type of boundaries should 

be treated as special cases of pair model and solved separately. 

The choice of the threshold value, in this work, was limited by the criteria that only 

pairs of triangles are formed. The impact of the threshold on the accuracy and 

computational runtime of the TLM simulations was assessed on two canonical 

problems of resonant mode extraction of air-filled and dielectrically loaded PEC 

cylindrical resonators for which analytical results are known. In both cases it was 

shown that the threshold works effectively in reducing the overall runtime. However, 

the increase in the threshold length results in the increase in the relative error as the 

discrepancy between the actual link length being replaced and the threshold is 

increased. Working with 30% of the maximum allowable threshold length will 

increase the time step and reduce the run time sufficiently with the advantage of 

keeping the error below 1%. This error can be further reduced and controlled by 

increasing the number of triangles in the mesh. 

The pair model is merged into the 2D UTLM simulator, which allowed the simulation 

of problems meshed into structured meshes using the 2D unstructured algorithm. 

Structured meshes are produced as square or rectangular meshes divided into two equal 

right-angled triangles. The circumcentre is located on the centre of hypotenuse of the 

right-angled triangle, thus leading to zero link line length between adjacent triangles 

forming the structured cell. The number of zero link lines is equal to the number of 

structured meshes filling the problem domain. Since all zero link lines are replaced by 

the same threshold value, the whole domain is solved in pair model which virtually 

appears as “pairs” free domain, and consequently the simulation will work without the 

error introduced by the pair model in condition to choose the threshold length smaller 

than one-tenth the sampling length. 

In numerical simulation, free space is discretized using varieties of meshes which leads 

to numerical dispersion. In Chapter 5, the numerical dispersion of the unstructured 2D 

TLM method based on a Delaunay meshing was investigated. The dispersion is 

analysed by quantifying the phase error of plane wave propagation through the mesh. 

The plane wave propagation is modelled in rectangular homogeneous free space that 
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is analysed as a parallel plate waveguide with open-circuited boundary placed on the 

parallel plates and impedance matched input and output plane. 

The dispersion due to unstructured meshes is averaged along all angles and the real 

dispersion falls somewhere in between the two extreme examples documented in [7] 

with zero dispersion for waves propagating at 45o on the mesh and the maximum 

dispersion for waves propagating at 0o angle in structured meshes. The dispersion 

study showed that unstructured meshes have lower phase errors of the plane wave 

propagation as compared to the equivalent structured mesh. It is also observed that the 

phase velocity of the signal traveling through unstructured meshes is less deviated 

from the free space velocity as compared to its equivalent structured meshes.  

Using the same approach performed in the dispersion study, the impact of unstructured 

mesh discretisation on the coupling between different order spatial modes was 

investigated. The parallel plate waveguide was meshed into variety of meshes. The 

coupling was measured by taking a 2D FFT transform of the signal at the output nodes. 

The presence of the unstructured mesh causes unwanted intermodal coupling between 

different spatial modes. The highest coupling was recorded between symmetrical 

spatial modes, and exciting higher modes showed also large coupling with the 

fundamental mode. As the number of unstructured meshes increased the transfer of 

amplitude from the excited mode to other modes has decreased. In the case of the 

structured mesh, no coupling occurred between different spatial modes and at the 

output only excited mode existed. This is attributed to the symmetrical nature of the 

structured meshes. 

The dispersion and intermodal coupling are analysed in a statistical manner for a range 

of different mesh density, quality and distribution and shows that the quality of the 

mesh is an important indicator of intermodal coupling. A good mesh has a mesh quality 

factor equals to 0.57737 which is for equilateral triangle, as meshes deviates from this 

value the intermodal coupling increases. Obtaining different mesh distributions for the 

same mesh number caused variability in the coupling ratio. This variability increases 

as the value of the mesh quality factor increases. The intermodal coupling decreases 

as the mesh density is increased. Also, a mesh with discretization length less than one-

tenth the reference wavelength decreases the coupling ratio significantly. 
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6.2 Future work 

UTLM simulator development - The simulator allowed working on both 

unstructured and structured meshes using the same mathematical approach of UTLM. 

This allows the continuity of the wave travelling along link lines which alleviate the 

problem that occurs at the interface between different types of meshes. A hybrid mesh 

of both unstructured and structured meshes will be further investigated. The UTLM 

simulator will be applied on practical applications of complex geometries such as 

microwave filters, tapers and bends. 

Also, the UTLM mathematical approach will be extended to include the effect of loss 

and gain for modelling of different types of materials. Investigation of applying the 

concept of digital filters on the modelling of dispersive material will be also an 

extension of the UTLM work. 

Pair model - The problem of short link lengths was alleviated using the pair model in 

which only pairs of triangles were isolated and solved separately; this model solved 

the problem of the presence of zero link lines, increased the time step and consequently 

decreased the total run time while keeping the relative error in reasonable level. The 

next step is to investigate clustering more than two adjacent triangles for further 

improvement in the total run time and study the consequences on relative error.  

Transmission line modelling techniques has been applied successfully on 3D 

problems, but still the issue of short link lines present in tetrahedral shapes. Different 

approaches were investigated to solve such problem. Applying the technique of pair 

model in tetrahedral meshes might be an interesting point of study, where two or more 

tetrahedrals can be clustered and solved implicitly. 

. 
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APPENDIX: UNSTRUCTURED TLM SIMULATOR 

A.1.  “Triangle” mesh generator  

Commonly used 2D qualities mesh generator and Delaunay triangulator is known as 

‘Triangle’. It is created by J. Shewchuk and is available to download from [37]. 

Triangle generates Delaunay Triangulations, constrained Delaunay Triangulation, 

conforming Delaunay Triangulation, and Voronoi diagrams. 

The problem wished to be triangulated is defined using A Planar Straight Line Graph 

(PSLG). A PSLG is a set of points and segments that define the shape that we wish to 

triangulate. A polygon can be created by creating a closed loop of straight edges to 

introduce the problem outer boundaries. Inner boundaries also can be created by 

defining the proper segments to accommodate different regions or materials. Then the 

PSLG is fed to the mesh generator ‘Triangle’ in a file of extension .poly, which 

introduces additional vertices inside the polygon that are the vertices of the inner 

triangles. The .poly file is created according to the following layout [32]: 

First section lists all vertices and defines points coordinates 

First line: <# of vertices> <dimension (2 for 2D)> <# of attributes> <# of boundary 

markers> 

Following lines: <vertex #> <x> <y> 

Second section defines segments connecting points. Each segment is defined by the 

indices of the endpoints. Boundary markers can be associated with each segment. For 

open-circuit boundaries the boundary marker is set to 0, 1 for short-circuit boundaries 

and 2 for matching boundaries. 

First line: <# of segments> <# of boundary markers (0 or 1)> 

Following lines: <segment #> <endpoint> <endpoint> [boundary marker] 
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Third section defines holes and regions. Holes are defined by a point inside the hole, 

starting from this point triangles are eaten up till boundaries of the hole are reached. 

Be careful of the place the point is inserted as it might ends up eating all triangles 

within the problem space. If the area doesn’t contain any holes, number of holes is set 

to zero.  

One line: <# of holes> 

Following lines: <hole #> <x> <y> 

The last optional part defines the regional attributes such as material parameters and 

regional constraints such as limits on triangle area. 

Optional line: <# of regional attributes and/or area constraints> 

Optional following lines: <region #> <x> <y> <attribute> <maximum area> 

A.2. “Triangle” switch commands 

To run ‘Triangle’, the command line syntax is 

triangle –pqenILOYAa_ filename.poly 

where the a switch is followed by a number in place of the underscore 

The switches following the command triangle is explained as follows [32] 

-p Triangulates a Planar Straight Line Graph defined in the .poly file 

-q Quality mesh generation with a minimum angle constrained 20o. 

-e Outputs a list of edges in a .edge file. 

-n Outputs a list of neighbours of each triangle in a .neigh file. 

-I Suppresses mesh iteration numbers. Supresses the output of .node and .poly files in 

order that the input files not to be overwritten 

-O ignores the holes in the .poly file 

http://www.cs.cmu.edu/~quake/triangle.iteration.html
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-A assigns regional attributes to triangles. Attributes are defined in the last section of 

the .poly files 

-a Imposes a maximum triangle area constraint. The value of the maximum allowed 

area is placed after the switch. If the space after the –a switch a maximum area is set 

to one- 

-h Help: Displays complete instructions/ 

A.3. “Triangle” output files 

Triangle output four main files that are fed to the unstructured TLM simulator. These 

files have the extensions .node, .ele, .edge and .neigh, which contain all data required 

to define the triangulated area. 

.node file: 

First line: <# of vertices> <dimension (2 for 2D)> <# of attributes (0)> <# of 

boundary markers (0 or 1)> 

Remaining lines: <vertex #> <x> <y> [boundary marker] 

Boundary markers is set to 1 if the node is located in the outer boundary and set to 0 

for internal nodes. 

.ele file: 

First line: <# of triangles> <nodes per triangle (always 3)> <# of attributes> 

Remaining lines: <triangle #> <node> <node> <node> [attributes] 

The attributes following the triangle contains material parameters, i.e. the relative 

permittivity in each triangle. 

.neigh file: 

First line: <# of triangles> <# of neighbors per triangle (always 3)> 

Following lines: <triangle #> <neighbor> <neighbor> <neighbor> 
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If a triangle is located on a border the neighbor index is set to -1 

.edge file: 

First line: <# of edges> <# of boundary markers (0 or 1)> 

Following lines: <edge #> <endpoint> <endpoint> [boundary marker] 

The boundary marker indicates type of boundaries; 0 for open circuit boundary, 1 for 

short circuit boundary and 2 refers to matching boundary. 

A.4. UTLM simulator input file 

Another file will be created to complete the required input files that will be fed to the 

UTLM simulator. This fifth file has the extension .inpt which contains information 

about iterations, source and watch points, also it involve the Threshold value that is 

discussed in Chapter 4. The .inpt file has the following format 

First Section: 

First Line: <threshold flag (0 or 1)><threshold value (if threshold flag=1)> 

Second Line: <Run flag (0 to insert total run time, 1 to insert total number of 

iterations><run time or no iteration value> 

Third Line: <# of input points><# of output points> 

Second section: 

<x-coordinate of input point><y-coordinate of input point><voltage at input point> 

Repeat for other input points 

<x-coordinate of output point ><y-coordinate of output point > 

Repeat for other output points 

Third section: 
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This part of the file is written upon running the code. It is used to display the ID of the 

nearest triangle, and the x and y coordinates of its circumcentres for both the source 

points and observation points. 

<input ID><x-coordinates of circumcentre>< y-coordinates of circumcentre 

><input voltage> 

<output ID>< x-coordinates of circumcentre >< y-coordinates of circumcentre > 

A.5. 2D ULTM classes 

TLMNode: contains data associated with single node, which are the node ID and node 

coordinates. It also contains extra parameters to specify whether the node is located on 

the problem boundaries or not. 

TLMEdge: defines parameters of segments, which are the segment ID, the segment 

endpoints, and the ID of the two triangles sharing this edge. Also an edge marker 

varying from 0 to 2 is specified to determine open-circuit, short-circuit or matching 

impedance boundaries. 

TLMTriangle: holds all parameters describing the unstructured mesh such as triangle 

vertices, area, angles, sides, neighbours, circumcentre, link lines, admittances, voltages 

and material parameters, etc. 

TLMRegion: contain three arrays of the previously mentioned classes. This class has 

a great importance of allocating meshes and their relative positions, connecting meshes 

and exchanging data between neighbours. Also, it contains the global parameters of 

the problem such as the time step, the number of iteration, source points and 

observation points, etc. 

A.6. Identifying triangles involving short links 

Starting from the minimum link length the first pair is formed and the two triangles 

that form this pair are flagged (flag is set to true). Note that since any of the triangle 

links L12, L23 or L13 might be short, the pair flag take either one of three notations 
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pair12, pair23 or pair13 to identify from which side of the triangle the pair is formed. 

Moving to the next link length in the list the pair flag is checked; if it is set to false the 

second pair is formed and the triangles in the new pair are flagged and so on. If a 

triangle is reached where the pair flag was set to true no further pairs can be formed 

and the maximum allowed threshold length is set to be equal to the link length used in 

the last formed pair. Setting the threshold length to be equal to or less than the 

maximum allowed value ensures that only single pairs per triangle are formed. 

The US TLM simulator allows working with or without pairs. Also, it allows working 

with the maximum threshold value or to set any required threshold length. Returning 

back to section 3.6.1, the first line in the .inpt file was  

First Line: <threshold flag (0 or 1)><threshold value (if threshold flag=1)> 

Setting the threshold flag to zero permits the simulator to calculate and use the 

maximum threshold value, if it is set to 1 a threshold value should be input next to this 

flag. If the threshold value is set to be equal to the minimum link length then no pairs 

will be formed and the algorithm works as discussed in Chapter 3. 

Another flag (Pair Value) is defined for a triangle to ensure that calculations follow 

the correct route. The pair value is set to zero if no pair is formed, it is set to 1 if a short 

link line is located on a boundary and is set to 2 if a single pair is formed. 

The edge marker indicates which kind of borders is used; 0 for open-circuit boundary, 

1 for short-circuit boundary and 2 for matching impedance boundary. 
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