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Abstract

In this thesis we formalise and study computational aspects of group deci-
sion making for rational, self-interested agents. Specifically, we are inter-
ested in systems where agents reach consensus according to endogenous
thresholds. Natural groups have been shown to make collective decisions
according to threshold-mediated behaviours. An individual will commit
to some collective endeavour only if the number of others having already
committed exceeds their threshold. Consensus is reached only where all
individuals express commitment.

We present a family of models that describe fundamental aspects of co-
operative behaviour in multi-agent systems. These include: coalition for-
mation, participation in joint actions and the achievement of individuals’
goals over time. We associate novel solution concepts with our models and
present results concerning the computational complexity of several natural
decision problems arising from these.

We demonstrate potential applications of our work by modelling a group
decision problem common to many cohesive groups: establishing the lo-
cation of the group. Using model checking tools we compute the effects
of agents’ thresholds upon outcomes. We consider our results within an
appropriate research context.
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Chapter 1

Introduction

1.1 Introduction

In distributed artificial intelligence a multi-agent system is comprised of a number of
discrete yet interacting computational processes known as agents [Weiss, 2000]. Al-
though the agent community lacks a unified view of precisely what qualifies as an
agent [Siebers and Aickelin, 2008] common views of agency include notions of au-
tonomy of action, social-ability [Wooldridge and Jennings, 1995] and goal orientation
[Franklin and Graesser, 1996]. If the potential of multi-agent systems is to be realised
it is essential that agents are able to cooperate and coordinate their behaviours [Kraus,
1997].

For certain classes of multi-agent system, where agents are inherently cooperative,
coordination may not necessarily present significant challenges. Indeed, it is often
the coordination of activity, typically about some common goal, which distinguishes a
team of agents from a collection of individual agents. In this thesis we largely concern
ourselves with systems of the latter type.

The need for coordinated collective behaviour is present even where agents are
not naturally inclined towards cooperation. There are many reasons why agents may
wish to, or indeed have to cooperate, for example, where resource is constrained or
otherwise in contention [Youssefmir and Huberman, 1995], where agents have differ-
ing abilities [Grosz and Sidner, 1990], or where they possess differing information
[Pigozzi, 2006]. Competitive, self interested, agents may benefit from cooperative
behaviour where this is consistent with individual rationality, for example, where co-
operation increases their individual utility. However, inducing cooperative behaviour
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1.1. INTRODUCTION

amongst agents with heterogeneous and possibly conflicting goals is not straightfor-
ward.

Typically coordinated behaviour requires that the agents can reach agreements re-
garding, for example, which agents should cooperate, and what actions those agents
should perform. The predominant models of coordination within multi-agent systems
have followed from theories founded in economic or political settings. We draw inspi-
ration from elsewhere. In this thesis our interest is in a coordination mechanism which
is prevalent in the natural world.

Many phenomena displayed by biological/social groups can be explained in terms
of individual responses conditioned upon thresholds. Typically, each individual’s thresh-
old represents a minimum number of others which must first commit to some joint
endeavour prior to that individual following suit. Such threshold models describe col-
lective activities in a variety of species from the simplest organisms [Jacob et al., 2004]
to the higher primates, including ourselves [Schelling, 1969].

Empirical research has shown that many biological systems employ threshold mech-
anisms as a means of making agreements, or more generally, reaching consensus. For
example, social insects including ants and bees are known to use a threshold mecha-
nism termed quorum sensing/response when deciding between alternative nesting sites.
The ubiquity of quorum decision making in nature suggests that this is an efficient, ef-
fective and stable mechanism through which a group’s activities can be coordinated.
Theoretical models support this view, predicting that where thresholds are adaptive,
decisions can not only be optimal [List, 2004] but also offer a trade-off between speed
and accuracy [Pratt and Sumpter, 2006].

The practice of constructing artificial systems which are in some way inspired or
otherwise motivated by natural systems is well established in the field of computer
science. Such work has yielded results in areas as diverse as robotic control [Beer
et al., 1997], security [Greensmith and Aickelin, 2008], and optimisation [Kennedy
et al., 1995]. Indeed, the potential of quorum-based decision making has not escaped
the computer science community.

Applications for threshold mediated behaviours have already been proposed in di-
verse areas such as mobile networking Peysakhov et al. [2006] and computer security
Vogt et al. [2007]. However, despite this interest, relatively little attention has been
given to formal models and computational properties of threshold behaviours in multi-
agent systems. We shall consider such matters here.
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1.2. BACKGROUND AND MOTIVATION

1.2 Background and Motivation

This work was inspired by an agent-based model of group decision making in baboons
[Sellers et al., 2007] in which a simulation of group decision making in a troop of
chacma baboons (Papio hamadryas ursinus) is created and investigated. The simu-
lation composes two models; the first representing the environment, and the second
representing an agent. These models are briefly outlined below.

The environment model is based on field data collected from the baboons’ natural
habitat, the De Hoop Nature Reserve in South Africa. The environment is modelled as
a grid of 660 cells representing an area of 5.4km× 8.4km. Each cell represents an area
of 200m × 200m map and contains a mixture of habitat types and food sources. Cells
may also include one or more ‘special features’ including water sources, sleeping sites,
and refuges.

Each baboon is modelled as an agent with physical parameters based on well-
known baboon physiology. Each agent maintains an individual ‘desire score’ for ac-
tivities key to the individual’s survival; these include scores for drinking, eating and
time spent socialising. These scores serve to bias the agent’s choice of preferred ac-
tivity. The ability to engage in a preferred activity is constrained by location since, for
example, the drinking activity requires that water is present.

At each time-step of the simulation the agents must make a group decision con-
cerning the location of the group. Each agent’s preference for the group’s location is
informed by their choice of preferred activity. For example, ‘thirsty’ agents may wish
to move towards a cell containing water, whereas, ‘tired’ agents may wish to move to
a cell suitable for sleeping.

The problem of choosing a location for the group is challenging since the group
operates under the constraint that they must not separate; the survival chances of a lone
baboon are not great. Since the agents may prefer different locations (based upon their
desire scores) conflicts concerning the group’s location can arise. Such conflicts are
resolved using a democratic voting process governed by a variable threshold. At each
time-step of the simulation the group vote over possible outcomes including whether
or not the group should move, and if so, in what direction. Outcomes receiving a
number of votes in excess of the threshold are “winning”; ties are resolved using non-
determinism.

A significant result of Sellers et al. [2007] is that the choice of voting threshold is
the most important determinant of both the fitness of each agent and the behaviour of
the group as a whole. Thresholds of between 50% and 65% provided agents with the
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greatest chances of survival; outside of this narrow band the chances of an agent failing
to meet its survival targets, measured in terms of food/water intake and time spent in
social engagement, increased drastically.

The simulation of Sellers et al. [2007] describes a group, or coalition of agents that
must make a collective decision. The outcome of this decision is a collective act: to
remain at the present cell or to move, as a group, to an alternative cell. Participation in
this collective act has implications for the individual goals that each agent can achieve.
For example, those agents which are thirsty may achieve the goal ‘to drink’ (by moving
to a cell containing a water source) whereas those agents which are tired do not achieve
the goal ‘to rest’ since they move together with the group.

Although there are anecdotal accounts suggesting that natural primate groups may
engage in voting-like activities there is little evidence to suggest that primates, such as
baboons, possess the cognitive and social processes necessary for effective group de-
cisions to be consistently made in this way [Sellers et al., 2007]. Moreover, modelling
collective decisions through the use of an exogenous and prescriptive mechanism (the
voting procedure) seems to disregard the individual emphasis associated with agency.
This observation was pivotal in motivating interest in creating models of group deci-
sion making and collective action for agents where decision outcomes are emergent as
a function of endogenous thresholds, associated with each individual.

1.3 Objectives and Contributions

In this thesis we develop formal apparatus to describe threshold mediated decision
making. In particular our interest is in consensus decisions, those to which all par-
ticipants agree, as they pertain to multi-agent systems. Therefore, we aim to develop
models describing group decisions for autonomous entities capable of acting, individ-
ually or jointly in pursuit of possibly heterogeneous goals and over time.

Aspects of our models have previously been studied, often in isolation and in dis-
parate research strands spanning the disciplines of computer science, sociology and
biology. Research in these fields has yielded models suitable for describing only spe-
cific problems in certain domains, or only a subset of the qualities typically associated
with rational, self interested individuals. Consequently neither the extant models them-
selves or the techniques by which they have been studied are easily transferable to more
general problems within the domain of interest, or similar problems in non-related do-
mains. In this work our objectives include the creation of models that are:
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• domain neutral,

• framed in terms consistent with common notions of agency,

• open to study using established methods.

The potential of artificial systems comprised of components utilising threshold me-
diated behaviours is already being explored. Given this, it is extremely interesting that
the challenges of computation in systems of this kind are not well understood. We
include in the objectives of this work:

• identification of fundamental questions concerning computation of consensus
outcomes in threshold mediated systems,

• definition of decision problems corresponding to such questions,

• examination of the computational complexity of these problems.

It is our fervent belief that the models presented in this thesis can find application
in a variety of research fields including computer science, sociology and biology. To
this end the objectives of this research include:

• demonstration of potential research applications for our models through the cre-
ation of a concrete model instance,

• utilisation of our models to study known research questions apparent in literature
concerning consensus decision making in natural groups,

• comparison of results obtained from our models to those found in the relevant
literature,

• demonstration of the models’ potential to enable novel research.

In satisfying our research objectives this thesis makes contributions to a variety of
fields. It has been argued that in any distributed system which requires processes to
coordinate that system must provide a mechanism through which those processes can
achieve consensus [Turek and Shasha, 1992]. Prior to this work consensus via thresh-
old mediated mechanisms has been overlooked by those interested in general mod-
elling of distributed computation. Our results regarding the tractability of problems
concerned with reaching consensus in this way are therefore valuable to researchers
interested in coordination within any distributed computational environment.
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Our particular interest is in models for multi-agent systems. Research in this field
is most commonly concerned with the behaviour of agents that are in some-way ratio-
nal. In the course of this thesis we make several contributions to the understanding of
rationality within the context of threshold mediated consensus. We study notions of
consensus that are both individually and collectively rational and associate a number of
novel solution concepts with these. Furthermore we propose a series of postulates that
constrain the selection of possible threshold values to those which are rational under a
representation of the agents’ goals.

At the time of writing the majority of research concerning consensus in thresh-
old mediated decision making has taken place in the fields of biology and sociology.
In contrast, we study this phenomenon from a computational perspective using tools
and techniques particular to this domain. Our work demonstrates new methodologies
for investigating threshold mediated consensus in biological and sociological systems.
Ours is the first work to study consensus decision making in natural groups using for-
mal verification techniques.

1.4 Thesis Structure

In this thesis we develop and characterise a series of models. The structure of this
thesis and the development of our models are consonant with our objective to create
models that intuitively capture common notions of agency. Our first model consid-
ers only the problem of coalition formation for agents whose behaviours are mediated
by threshold responses. This model captures the social nature of agents but is other-
wise quite abstract. We proceed to extend this model such that it encompasses more
‘real-world’ situations where agents may jointly perform individual actions and then,
through these, achieve their individual goals. The development of these models occurs
within chapters three to five.

Our final model is presented in chapter six where we develop a temporal model
capable of describing agents’ behaviours over time. We embed the previous model
within a finite state transition system where each state represents an instance of that
model and each transition represents one or more possible joint actions the agents
may perform. In chapter seven we turn our attention to the utility of our work by
demonstrating a potential application for the final model. Returning this work to its
origins, the model presented in chapter six is grounded in an idealised group decision
making scenario inspired by the work of Sellers et al. [2007].
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For each model we analyse the computational complexity of decision problems
concerning the verification, existence and non-existence of consensus outcomes for
the agents. By developing our models incrementally we are able to study the con-
tribution that each aspect of agency makes to the computational complexity of these
fundamental problems. This approach reveals some surprising results. In particular,
is not necessarily the case that a more expressive model leads to an increase in com-
plexity for comparable decision problems. We find that by exploiting new structures,
as they are introduced, certain problems which appear computationally intractable in
early models are subsequently found to be tractable.

Specifically, the remainder of this thesis is organised as follows:

• Chapter 2 - Related Work: We survey the extant approaches to coordination,
cooperation and agreement for multi-agent systems. In particular we focus on
models drawing from the fields of game-theory and social choice. We also intro-
duce relevant concepts from the biological and sociological literature concerning
threshold models and quorum-based consensus.

• Chapter 3 - Consensus Games (CGs): We present a model of coalition for-
mation for multi-agent systems via threshold-mediated behaviours together with
notions of stability for this model. We examine a number of natural decision
problems arising from these solution concepts. We then consider the implica-
tions of this model for distributed settings where agents may have incomplete
information.

• Chapter 4 - Consensus Action Games (CAGs): The model is extended to en-
compass coalitions that form in order to perform some joint action. We consider
the implication of this extension for the previously defined notions of stability.
We consider the complexity of decision problems analogous to those previously
considered and draw comparisons between these results and those for CGs.

• Chapter 5 - Consensus Action Games with Goals (CAG-Gs): The model is
extended to encompass coalitions that form in order to perform a joint action
that achieves one or more individual goals. We consider the rational selection
of threshold values where agents have heterogeneous goals and heterogeneous
orderings over these goals. We continue our analysis of the computational com-
plexity of decision problems for this model and draw comparisons between these
results and those for CAGs
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• Chapter 6 - Temporal Consensus Action Games with Goals (T-CAG-Gs):
The model is extended to encompass coalition formation, joint action and goal
achievement, repeatedly, over time. We formalise temporal solution concepts for
this model. We formulate and consider the computational complexity of decision
problems for this model.

• Chapter 7 - Demonstration: We apply the T-CAG-G model of the previous
chapter to a concrete scenario concerning consensus decision making in natural
groups. We use model checking techniques to formally verify properties of the
model, including the existence of stable solutions. We measure the effects of
agents’ thresholds upon the likelihood of consensus and positive outcomes. We
compare our results with those found in the associated literature.

• Chapter 8 - Conclusion: We summarise the main contributions of this thesis
and suggest possible avenues for future research. Lastly, we give details of the
dissemination of this work.
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Chapter 2

Related Work

2.1 Cooperation and Coordination in Multi-agent Sys-
tems

The need for cooperation and coordination amongst agents is generally accepted to
be amongst the central challenges for designers of multi-agent systems. The study of
such problems is therefore prevalent in multi-agent systems literature; many modes of
cooperation and coordination have been considered. Examples include the problem of
task allocation, or “Which agents will complete which tasks?” [Bonabeau et al., 1997;
Sandholm, 1998; Shehory and Kraus, 1998]; the problem of resource allocation, or
“Which agents will receive which resource(s)?” [Bredin et al., 2000; Chevaleyre et al.,
2006] and the problem of forming cooperative alliances, or “Which agents should work
together?” [Klusch and Gerber, 2002; Wooldridge and Dunne, 2004].

One of the earliest approaches to coordination in multi-agent systems is the contract
net protocol [Smith, 1980]. The protocol enables agents to work together to achieve
tasks in situations where, for example, agents’ abilities are heterogeneous and no in-
dividual agent has the necessary abilities to single-handedly complete a task. During
enactment of the protocol an agent, or manager, recognises a task to which it is not
suited, the existence of this task is then announced to the other agents. Such announce-
ments may be general (broadcast) or more targeted dependent on the knowledge the
manager possesses regarding the capabilities of other agents. When an agent becomes
aware of a task to which it is suited that agent may make a bid for the task. Bids
are evaluated by the manager agent which will award the task to one (or more) of the
bidding agents. These agents become contractors for the task. The contractor then
expedites the task; this may include sub-contracting and so managing other agents.
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Managers may request updates on the progress/status of tasks and contractors report to
managers once a task is complete.

The contract net has been widely implemented and is one of the most studied ap-
proaches to distributed problem solving [Wooldridge, 2005, p. 197]. However, there
are some significant limitations associated with this approach. Most notably the con-
tract net assumes that agents are benevolent in nature and therefore the agents’ goals
will never be in conflict. As Nwana et al. [1996] observe, the presence of conflict is
‘one key reason why coordination is needed in the first place’.

The contract net protocol was inspired by the tendering processes used by many
commercial organisations. Other approaches to cooperation and coordination for multi-
agent systems are also metaphors for real-world solutions to these problems. Much of
our everyday behaviour is governed by social norms or laws; for example, in the United
Kingdom, vehicles drive on the left hand side of the road. This rule brings about co-
operation and coordination amongst road users and (to a large extent) ensures that the
road system as a whole operates smoothly. As with human societies, such constructs
can serve to establish expected and acceptable behaviours in agent societies.

There has been considerable interest in the specification and development of nor-

mative multi-agent systems. Elakehal and Padget [2012] identify three ways in which
this approach may be applied. The first is through design-time constraints where de-
sirable behaviours are hard-coded into the agents. In the second method protocol-level
constraints are used to enforce conventions; this has become known as regimented

norms. Thirdly, regulated norms can be used to encourage agents to act in a specified
manner.

The principal difference between regimentation and regulation is that in regulated
systems it is not obligatory that agents comply with the system’s norms. Hence, where
norms are regulatory, agents may act in violation of the norms. Consequently the de-
signers of regulated normative systems are often interested in designing systems that
incentivise agents towards norm compliance. Typically this involves invoking some
form of sanction against agents whose behaviour is non-compliant. Possible sanc-
tions include financial penalties, restriction or denial of access to the system for some
time period, or a reduction of the trust/reputation associated with the agent [Vázquez-
Salceda et al., 2004].

Whereas the contract net protocol assumes that conflicts between agents do not
exist, normative systems attempt to reduce or eliminate potential conflicts. Other ap-
proaches to cooperation and coordination have focused on the resolution of conflicts
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where they occur. One such technique is multi-agent negotiation.
In multi-agent negotiation [Rosenschein and Zlotkin, 1994], as in human negotia-

tion, agents aim to find a compromise position - one to which all agents involved in
the negotiation can subscribe. Typically multi-agent negotiations proceed in a series
of rounds. During each round each agent makes a proposal regarding their preferred
outcome to the negotiation. If there is no proposal that meets general agreement the
agents modify their proposals for the next round. Negotiation continues until a suitable
compromise agreement is found, or some other termination criteria is met.

In Beer et al. [1999], Jennings identifies three main elements of research into multi-
agent negotiation. Negotiation protocols describe the process by which negotiations
are undertaken. This includes rules concerning the permissible participants and actions
during the negotiation, the possible states of the negotiation and significant events
of the negotiation procedure. The negotiation objects, sometimes referred to as the
negotiation set, are the range of possible outcomes for the negotiation. Lastly, the
reasoning models of the agents describe the strategies employed by the agents when
selecting their proposals.

Normative and negotiation based approaches to cooperation and coordination in
multi-agent systems consider actions by rational, self-interested agents. Both ap-
proaches require that agents evaluate the costs and benefits associated with their be-
haviours. For example, in regulated normative systems agents must evaluate the cost
(sanction) associated with violating a norm, against possible benefits that this may
bring about. Recently there has been considerable interest in viewing such strategic
interactions from a game theoretic perspective. We shall consider this approach in the
following section.

2.2 Coalition Formation in Multi-agent Systems

A crucial issue for agents when faced with choosing between alternative coopera-
tive options is determining which coalitions of agents should form [Wooldridge et al.,
2007]. The problem of coalition formation, or “Which agents should form cooperative
alliances?” is fundamental to cooperation between agents.

The study of coalition formation has its origins in the game theoretic models founded
in the field of economics. In non-cooperative games [Nash, 1951] each player may play
one of a number of strategies. The reward, or pay-off a player receives is dependent
on the strategies played by the others. Such models are the predominant paradigm for
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studying strategic interactions between multiple individuals.
Central to the analysis of these games are the properties of stability and rationality.

An outcome is said to be in Nash equilibrium if no individual can benefit from individ-
ually deviating from their current strategy; in this situation each individual is playing
their best response to the strategies selected by the others. Such equilibria are stable
in the sense that they are individually rational; however, Nash Equilibria may not be
collectively rational. That is, there may be an alternative outcome where all players
receive a better reward.

This is highlighted by the prisoner’s dilemma; a game where two criminals are
suspected of a crime. The suspects are interviewed separately; each is offered freedom
in return for their testimony (defection) against the other. The terms (pay-offs) are:
both remain silent and each receives a short custodial sentence, both turn informant and
receive a medium sentence, where only one defects the other receives a long sentence.
The Nash equilibrium for this game corresponds to both suspects defecting. The best
collective strategy is that both remain silent, however each fears that the other will
defect. The suspects’ difficulty is that they have no way to agree this plan.

The model of cooperative games [Von Neumann et al., 1947] describes players
that seek to form coalitions of ‘like-minded’ individuals. Players within a coalition
commit to a binding agreement regarding their behaviours on the understanding that
their collective action will yield a collective reward or pay-off which is then, according
to some fair process, shared amongst members of the coalition.

A desirable quality for any coalition to form is that the coalition can be said to
be stable. That is, once formed, the coalition will not fall apart. A coalition might
collapse where, for example, certain members of that coalition could increase their re-
ward by breaking away; these members have an incentive to deviate from the coalition.
Coalitions that are immune from such defections are said to be in the core of the game.

The traditional treatment of cooperative games embodies the assumptions that the
reward, or utility, due to the coalition is in some way commonly accepted by, divisible
amongst and transferable between players within that coalition. These are reasonable
assumptions where the setting for the game is economic and so utility is a monetary
quantity. However, they do not necessarily translate well into more general settings
where a quantitative worth cannot be ascribed to a coalition, or where there is no
globally accepted form of utility. Such issues have led to an interest in alternative
models for coalition formation, such as the model of non-transferable utility games, or
games without side-payments [Aumann, 1961].
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One example of cooperative games with non-transferable utility, framed specif-
ically in terms of multi-agent systems is cooperative Boolean games [Dunne et al.,
2008]. In these games agents have a single goal, expressed as a formula in proposi-
tional logic over a set of Boolean variables. Each agent may influence the truth values
of disjoint subsets of these variables through their choice of action. Agents are moti-
vated towards cooperative action since the achievement of their goal expression may
require that values of variables over which they have no control are altered. A cost is
associated with each action; whilst agents are interested in achieving their goal they
are also interested in minimising costs. Costs incurred by agents are dependent upon
which coalition the agent participates in, hence agents form preferences over coali-
tions (this resembles hedonic games, e.g., [Elkind and Wooldridge, 2009]). Dunne
et al. [2008] define a number of solution concepts for Boolean games and present re-
sults concerning the computational complexity of ascertaining whether some outcome
is stable.

Dispensing entirely with the notion of utility, Wooldridge et al. [2007] propose a
class of games where agents are not motivated to either minimise costs or maximise
rewards. Rather, they are interested in achieving one or more goals. They term these
games Qualitative Coalitional Games (QCG).

In QCGs each agent, in a finite set of agents (Ag), seeks to achieve one or more
goals drawn from a common, finite set (G); agents are considered to be ‘satisfied’
where at least one of their goals is achieved. More formally, a QCG Γ may be repre-
sented as the (n+3) tuple Γ = 〈G,Ag,G1 . . . Gn, V 〉 where Gi ⊆ G represents each
agent’s i ∈ Ag set of goals and V : 2Ag → 22G is the characteristic function of the
game mapping each possible coalition of agents to the set(s) of goals that coalition can
achieve. QCGs describe a wide variety of coalitional scenarios including, for example,
participation in voting procedures [Wooldridge et al., 2007].

Stability in QCGs is characterised by a notion similar to that of the core in more
traditional coalitional games. Specifically, a goal set is in the core (and hence stable)
for a coalition where every member of the coalition can achieve at least one of their
goals (every member will be satisfied), the characteristic function returns the goal set
for the coalition (the goal set is feasible for the coalition) and the removal of any
member of the coalition renders the goal set infeasible for the other members of the
coalition (the coalition is minimal). Wooldridge et al. [2007] analyse the computational
complexity of many decision problems occurring within QCGs.

Since their introduction QCGs have been extended in a number of ways. For exam-
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ple, QCGs assume that conflicts of interest do not arise between agents, Dowell et al.
[2007] investigate the implications of removing this assumption. In their formulation,
Dowell et al. [2007] find that under these circumstances QCGs no longer exhibit the
property of envy-freeness so, should utility be transferable, agents may make bribes.

Ågotnes et al. [2006a] present a formal logic for expressing the properties of a
QCG and also extend QCGs into a temporal form where games are iterated over time,
the former providing the basis for the latter. In their characterisation of temporal qual-
itative coalitional games (TQCGs) Ågotnes et al. consider that both the goal sets of
the agents, and the feasible choices available to agents may vary over time. Although
a handful of possibilities for temporally-stable solution concepts are outlined these
are not treated in detail; the authors suggest that further study is required in this area
[Ågotnes et al., 2009].

Dunne and Wooldridge [2004] consider that agents may have preferences over the
goals contained within their individual goal set. Solution concepts for QCGs with
preferences are concerned with strong and weak notions of coalitional preference. A
coalition is said to strongly prefer some set of goals where that set contains at least
one goal, common to all members of the coalition, that is more preferable for each
member than any other feasible goal. In the weaker form the requirement for the most
preferable goal to be common to all member-agents is relaxed [Dunne and Wooldridge,
2004]. QCGs with preferences are also considered in a temporal form in [Cheng et al.,
2010].

2.3 Preference Aggregation in Multi-agent Systems

The question of how to ‘fairly’ aggregate heterogeneous individual preferences into an
overall social preference is central to the problem considered by social choice theory
[Arrow, 1950]. Research in this field considers preference aggregation through the
study of social choice functions. Such functions expect as their input a set of preference
relations, representing the preferences of each individual with respect to some finite
set of choices, or candidates. The return is a single (social) preference relation derived
from those supplied and in accordance with certain desirable qualities.

Arrow [1950] gives five criteria which any fair social choice function should meet.
The first of these, known as unrestricted domain states that any social choice func-
tion should be defined for any combination of individual preferences; the second, posi-

tive association, requires the monotonic response that, where an individual strengthens
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their preference for some alternative, that alternative should not be any less preferred in
the consequent social preference. The condition of independence of irrelevant alterna-

tives requires that if some choice, a, is preferred to some choice, b, the introduction of
an alternative choice, c, should not affect this pre-existing preference. A social choice
function meets the requirement of non-imposition provided that there is no social pref-
erence which cannot be reached given an appropriate set of individual preferences,
whilst the requirement of non-dictatorship stipulates that aggregate social preferences
should not solely reflect the preferences of any single individual. Arrow [1950] pro-
ceeds to show the impossibility of simultaneously satisfying all of these criteria for
all combinations of individual preferences where the number of available choices is
greater than two.

Developed independently, the Gibbard-Satterthwaite Theorem [Gibbard, 1973; Sat-
terthwaite, 1975] shows that where the number of choices exceeds two no social choice
function exists that can be guaranteed to simultaneously satisfy the constraints of being
non-dictatorial and non-impositional without being susceptible to strategic manipula-
tion. That is, by untruthfully reporting their preference an individual can affect the
social preference in their favour.

The practical implications of the Gibbard-Satterthwaite result are very much de-
pendent on the circumstances in which the decision is to be made. For an individual to
conduct a successful manipulation it is necessary that, in addition to their own prefer-
ences, the individual has complete and accurate knowledge of both the algorithm of the
social choice function and the preferences of all other participants [Dowding and van
Hees, 1977]. In many practical voting situations it may be infeasible for any individual
to attain the level of information required in order to effect successful manipulation
[Nurmi, 2002]. However, were this information to be available then Conitzer and
Sandholm [2006] show that under reasonable assumptions it is impossible to design a
social choice function that is usually (frequently often) hard to manipulate.

2.4 Collective Action in Multi-agent Systems

If agents are to be able to act collectively in pursuit of some common goal it is neces-
sary that agents are able to reason not only about their own actions, but also about the
actions of other agents [Grosz and Kraus, 1999]. For example agents must coordinate
their individual activities such that they do not place resources into contention (the re-
source allocation problem), repeat the work of others, or omit some crucial objective
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(the task allocation problem).
These problems are considered in a formalisation known as SharedPlans [Grosz

and Kraus, 1996, 1999; Grosz and Sidner, 1990]. In SharedPlans the focus is on cre-
ating logical specifications for the mental state of agents when required to align their
individual plans with those of other agents attempting to realise a shared goal, typi-
cally under constraints of time. In SharedPlans there is an assumption that agents are
able to reach an agreement, however in their original formulation no such mechanism
is explicitly defined, this is addressed in [Hunsberger and Zancanaro, 2000].

Contemporaneous to the work of Grosz and Sidner, and adopting a similar ap-
proach to the problem of collective action Cohen and Levesque [1991]; Levesque et al.
[1990] propose the notion of joint intentions, which, like SharedPlans considers that
agents acting together do so in the context of a shared, mutual mental state. How-
ever, the stance that collective intention can be reduced to a collection of individual
intentions has been challenged. Most notably, Searle [1990] argues that no degree of
individual intention or commitment can capture the cooperative nature of collective ac-
tion. Searle compares a number of individuals simultaneously converging at a shelter
in order to stay out of the rain, with the same action performed by a group of chore-
ographed dancers. In the first instance, Searle claims that even where each individual
holds beliefs about its own actions and the actions of others there is no sense of collec-
tive action, whereas, in the latter case the intentions of each individual are in some-way
derivable from a collective, or “we intention” a term appropriated from philosophical
literature [Tuomela and Miller, 1988].

Tambe [1997] borrows from both the SharedPlans of Grosz and Sidner and the
joint intentions of Levesque et al. to create STEAM, a general, and implementable
model of agent teamwork. In Tambe’s approach agents commence cooperative be-
haviour by enacting a protocol to establish commitments. The protocol requires that
there is consensus, all agents agree, to adopt a proposed joint persistent goal. Tambe
acknowledges that in stipulating absolute agreement prior to establishing a common
objective a single agent may prevent the group from embarking upon collective action,
and whilst suggesting that negotiation may be useful in resolving differences of opin-
ion the central issue, of whether it is possible to achieve absolute agreement amongst
agents, is left open for future consideration.

The principal contribution of the works detailed in this section has been to examine
how autonomous agents may function as a team to collectively achieve some common
goal. However, it is not generally the case that agents are required to have common
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goals in order that they embark upon a collective act. Little attention has been given
to the selection of individual actions or goals to be adopted or performed by the group
as a whole [Sellers et al., 2007] or the definition of mechanisms by which this may be
achieved [Zappala, 2008].

2.5 Threshold Models for Sociological and Biological
Systems

Threshold models have been found to describe a variety of social phenomena including
segregation in urban housing [Schelling, 1969], and the adoption of consumer trends
[Granovetter and Soong, 1986]. Granovetter [1978] describes a model in which in-
dividuals are faced with the binary decision of whether or not to participate in a riot.
In this model each individual’s threshold represents the minimum proportion of oth-
ers which must participate in a riot in order that the given individual will also partici-
pate. A population of n individuals is considered with uniformly distributed thresholds
{ 0
n
, 1
n
, . . . , n−1

n
}; the scenario begins with a single instigator performing some riotous

display; this behaviour then incites the next, and so forth until mass rioting ensues.
Granovetter [1978] finds that the eventual number of rioters is very sensitive to the
presence of individuals with low thresholds.

Chwe [1999] recognised that this sensitivity is dependent on certain assumptions
regarding how agents may communicate. Chwe considers threshold behaviours for
agents where they may interact locally via a communication graph, and may have
knowledge of their neighbours’ thresholds. Under these assumptions Chwe [1999]
shows that the sensitivity identified by Granovetter [1978] may not hold. This change
in behaviour is attributed to the additional knowledge agents may gain about each
others’ threshold through communication.

Many natural systems, for example animal groups, have been shown to employ
threshold behaviours when making group decisions. Such consensus decision making
has been explained in terms of quorum sensing and the quorum response [Conradt and
List, 2009; Sumpter and Pratt, 2008]. Quorum sensing represents the ability of an
individual to sense the proportion of their group that is in some particular state; where
this proportion grows to reach some threshold level the quorum response is exhibited.
In the quorum response the probability of other individuals also entering this state
increases sharply; a positive feedback loop is established, permitting a collective state
change to cascade throughout the group [Sumpter and Pratt, 2008].
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Empirical evidence from biological studies suggests that quorum sensing is found
in many natural systems. Perhaps the most primitive example is found in the bacteria
Vibrio fischeri which are able to sense the presence of certain molecules, released by
conspecifics and diffused within their environment. Once the environmental concen-
tration of the molecule, taken to be proportional to the size of the local population,
passes a given threshold the bacterial colony as a whole begin to bio-luminesce [Fuqua
et al., 1996].

More complex organisms, such as eusocial insects, have developed more intricate
quorum-based mechanisms which utilise this underlying principle. The honey bee,
Apis mellifera, begins migration to a new nesting location by swarming to a conve-
nient branch and then despatching scout bees to find suitable alternative nest sites.
Scouts return to the swarm reporting the quality and distance of each potential new site
through a series of gestures and movements referred to as the “waggle dance”; their
aim is to recruit other bees to replicate this dance, showing support for a particular site.
The greater the number of bees dancing for a particular site the greater the probability
that other scouts will also investigate this site [Seeley and Buhrman, 1999]. Quorum
sensing takes place at the potential nesting site. Where the number of scouts concur-
rently present at the site passes a quorum threshold, thought to be in region of ten to
fifteen bees, the scouts will return to the swarm and initiate a migration to that site
[Seeley and Visscher, 2003].

It is thought that bees employ quorum based decision making as it permits the
swarm to arrive at a decision outcome iteratively and so more easily than requiring
simultaneous, unanimous consensus. Were the latter to be adopted it would require, at
least, that each of the (several hundred) scout bees becomes aware of the qualities of
each potential nest site and, in some-way, the scouts collectively reach a unanimous
agreement as to which site is most appropriate. Not only would such a process require
a considerable degree of effort and coordination amongst the scouts, it would also
require significantly more time, something which may negatively affect the well-being
of the entire, presently homeless, swarm. [Seeley and Visscher, 2003]

Arguably, however, the more individuals involved in the decision making process
the more accurate the decision outcome. Condorcet’s jury theorem, which considers a
group making the binary choice “guilty or not guilty”, predicts that where each individ-
ual is more likely to choose correctly than incorrectly, the probability that the group as
a whole will choose correctly approaches one as the number of individuals approaches
infinity. Given this, it may be interesting to understand if quorum-based mechanisms
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provide speedy outcomes at the expense of accuracy; a question considered by Franks
et al. [2003] who examined quorum decision making in ant colonies.

The ant Temnothorax albipennis is known to employ a quorum decision making
mechanism similar to that of the honey bee when faced with selecting a new nest-
ing site. Rather than the waggle dance, scout ants recruit support for a new site by
leading other ants to that site - a procedure known as ‘forward tandem running’. As
with bees, quorum sensing occurs at the new site; unlike bees, a quorum is estab-
lished once the rate at which nest mates are encountered reaches some threshold [Pratt,
2005]. In Franks et al. [2003] experimental colonies are encouraged to seek out a new
nesting location under either benign or stressful conditions; stressful conditions in-
clude (careful) disruption of the current nest site or the simulation of predators. Franks
et al. report that in stressful conditions the ants employ a lower quorum threshold
and so choose between alternatives more quickly than found in their benign experi-
ments; where the quality of available alternatives differ, decisions made more swiftly
were found to be less accurate. Also studying ants of the genus Temnothorax Pratt and
Sumpter [2006]; Sumpter and Pratt [2008] develop a model of the quorum response
in which the probability of accepting an alternative increases sharply once the quo-
rum threshold is reached. In simulations this model predicts that variation in either the
threshold itself, or the probability of acceptance permits tuning of the quorum response
to favour either the speed of decision making or the accuracy of the decision outcome.

Quorum-based decision making has also been described in terms of the indepen-
dence of, and interdependence between decision makers. Intuitively, a highly inde-
pendent individual acts primarily in accordance with its own information, disregarding
the preferences or state of others, whereas a highly interdependent individual acts pri-
marily in accordance with its peers. These conditions are respectively analogous to
individuals having a very high, or very low quorum threshold.

List et al. [2009] develop an agent-based simulation modelled on decision making
in the honey bee to investigate the relationship between independence and interde-
pendence. Systematic variation, at the population level, of the degree to which the
agents are independent, or otherwise, reveals that populations of non-interdependent
individuals are incapable of reaching a single decision outcome, whereas populations
of highly interdependent individuals reach poor (in terms of accuracy) decision out-
comes. Accurate decisions, in this case, selection of the highest quality nesting site
from five alternatives, only present in populations where individuals are bestowed with
a balance of independent/interdependent behaviour. The model of List et al. predicts
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that accuracy is maintained across a broad range of non-extremal settings for indepen-
dence/interdependence, even where individuals possess unreliable information. This
demonstrates the beneficial effects of information pooling, aggregating information
from all decision makers, present in quorum-based decision making.

Agent-based modelling has also been used to investigate threshold decision making
in more complex species; Sellers et al. [2007] introduce a simulation of group decision
making in chacma baboons (Papio hamadryas ursinus). Individuals are modelled with
a bio-realistic physiology and a representation of drives and desires for key activities
including eating, drinking, socialising and resting. Agents are situated in a complex
and dynamic environment which, amongst many features, exhibits realistic monthly
variation in food availability. A voting mechanism, with variable threshold, is em-
ployed by the group to decide the direction of group travel. Sellers et al. show that this
threshold is the single most significant determinate of ‘successful’ simulations (those
in which all agents achieve realistic budgets for the key activities). Subsequent de-
velopment of this model has considered the effects of environmental conditions upon
threshold-based decision making. Hill et al. [2011] show that in rich environments,
where food resource is plentiful, a broad range of values for the quorum threshold, in-
cluding the sub-majority range where less than fifty percent of individuals must agree,
lead to successful outcomes for the group. Conversely, where resource is less easily
obtained sub-majority decision making proves less effective. Intuitively, where the
probability of selecting a poor outcome is low the decision strategy employed by the
group is less critical than where the probability of making the ‘wrong’ decision is high.
The latter requires a greater degree of commitment from the group, and hence a higher
quorum threshold.

2.6 Threshold Models in Game Theory

In threshold models an individual makes a particular choice only where at least a
threshold number of others have first made that same choice. Fundamentally, threshold
behaviours can be thought of as imitative behaviours; doing something because some
other is doing it. Such behaviours have been studied from a game theoretic perspective.
In imitation games [McLennan and Tourky, 2010] two players take the roles of leader
and follower; the follower is motivated to act in consensus with the leader.

Threshold behaviours are also the subject of the El Farol problem in which players
must decide whether to stay at home or visit a local night-spot. Players will enjoy
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being at the El Farol bar only if the number of other players also visiting the bar is less
than some threshold (typically two-thirds). Where the threshold is exceeded, the bar
becomes too crowded, it would have been better for the players to stay at home.

The El Farol problem was the inspiration for minority games. In minority games
(MGs) [Challet and Zhang, 1997] players are faced with a binary choice; a payoff is
awarded to those players choosing the minority favoured option. Since the objective
of this research is to understand how the historic performance of strategies of a sin-
gle agent might influence that agent’s strategy choice in the current game MGs are
typically studied in their repeated form.

The conditioning of behaviour given the behaviour of others has been studied in,
e.g., congestion games [Rosenthal, 1973], a type of potential game [Monderer and
Shapley, 1996]. In these games players do not seek to reach a consensus, instead they
wish to minimise costs whilst utilising resources. The cost to each player for the use
of each resource is a function of the number of other players also choosing a strategy
requiring that resource. It has been shown [Rosenthal, 1973] that every congestion
game possesses at least one Nash equilibrium in pure strategies.

Threshold behaviours are also found in anonymous games [Daskalakis and Pa-
padimitriou, 2007] in which the individual utility of participation in some coalition is
independent of the identities of the agents concerned. In such situations other factors,
including the size of the coalition become determinants of an agent’s choice.

2.7 Threshold Models in Computer Science

The potential for threshold mediated behaviours has not been overlooked by the field
of computer science. Krasnogor et al. [2005] show how the bacterial quorum sensing
model can function as a NAND gate. Bernardini et al. [2007] present a computational
model of quorum sensing (again, bacterially inspired) which proves to be equivalent to
a Turing machine.

Applications for threshold mediated behaviours are also apparent. Peysakhov and
Regli [2005] show that ant-like quorum sensing behaviour can be used to manage ser-
vices and resources within mobile ad-hoc networks (MANETs). This includes collec-
tive decisions such as exclusion of a (potentially) compromised host from the network.
Due to their inherently dynamic and unstable nature complete traversal of MANETs
is rarely advisable; instead Peysakhov et al. [2006] use a quorum-based approach to
determine when enough hosts have been sampled in order to predict the decision out-
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come with some degree of confidence. The threshold of ‘enough’ hosts is established
by using the binomial probability distribution to determine the probability that k suc-
cesses (‘yes’ votes) would be found in n unbiased trials. Where this probability lies
outside some confidence interval this would indicate that the population is biased to-
wards one, or other outcome. They show that such an approach reduces both time and
bandwidth requirements in comparison to full network traversal with negligible effects
on decision accuracy.

In computer security, worms are often malicious, self propagating computer pro-
grams; to avoid detection it is desirable that a worm ceases propagation once some
critical number of hosts are infected. Vogt et al. [2007] show that quorum sensing is
a viable mechanism to create a self-stopping worm which will cease propagation once
some quorum threshold is reached. Beckmann et al. [2009] propose a suitable defence
strategy against such a worm is to introduce mutants into the population in order to
disrupt the process of quorum sensing, an approach known as ‘quorum quenching’.
Surprisingly, Beckmann et al. find that this approach can be effective where concen-
tration levels of mutants is as low as ten percent; a result which suggests quorum-based
decision making procedures may be susceptible to manipulative behaviour.

Perhaps the closest research strand to the subject of this thesis has been inspired
by the rapid growth of social networking and viral marketing, especially in the online
space. Much of this research has considered the effects of network topology upon in-
dividuals which make binary decisions based upon thresholds. Kempe et al. [2003]
consider the diffusion of ideas through a network of agents. In their model agents will
adopt an idea only if a threshold number of neighbouring agents are also adopters.
Their interest is in identifying agents which, based on network location, are most in-
fluential. Although this problem is NP -hard they provide algorithms for approxi-
mate solutions. Also interested in threshold mediated propagation via networks, Watts
[2002] models random networks of agents with random thresholds. Interest in this is
motivated by a desire to understand the effects of heterogeneity upon adoption rates.
Watts finds that the likelihood of widespread adoption increases with more heteroge-
neous thresholds, but decreases with a more heterogeneous network structure.

2.8 Model Analysis Tools

An objective for this research is to create models that are open to study using estab-
lished methods. One, well established, method for analysing models is the use of
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model checking tools [Clarke et al., 1994]. Such tools are used to construct a repre-
sentation of the model as a finite state transition system; the tool can then be used to
verify properties of interest exhibited by the model.

The utility of model checking tools to verify properties of complex distributed sys-
tems is aptly demonstrated by the work of Havelund et al. [2001] who investigated
properties of the Executive Support Language (ESL). ESL is a multi-threaded pro-
gramming language created by NASA and used in the construction of autonomous
machines such as robots and space craft. Using the SPIN model checker [Holzmann,
1997], Havelund et al. identified several errors in ESL including one significant design
flaw.

The model checking problem is challenging since models of even a modest prac-
tical system may require an enormous amount of states. This is known as the state

explosion problem. A naive approach to model checking would utilise an explicit

representation of the state space. Verification of a property, for example: “will the
model encounter a deadlock”, requires a (potentially exhaustive) search of the transi-
tion graph. Consequently, naive approaches to model checking are rarely found.

In contrast to the explicit representation many model checking tools employ a sym-

bolic representation of the state space. Burch et al. [1992] propose a method for suc-
cinct (in many but not all cases) representation of finite state transition systems utilising
binary decision diagrams [Bryant, 1986]. Burch et al. report that, when using symbolic
representations, properties of models with in excess of 1020 states can be verified.

In a typical use case for model checking tools the model is first encoded using a
model specification language; the choice of language is tool-dependent. Supported
languages include general programming languages such as Java [Corbett et al., 2000;
Havelund and Pressburger, 2000] as well as languages specific to the model checking
domain; these include: Interpreted Systems Programming Language (ISPL) [Lomus-
cio et al., 2009], Reactive Modules [Alur and Henzinger, 1999] and the Process Meta
Language (PROMELA) [Holzmann, 1997].

Having constructed the model, properties of interest are then encoded using a prop-
erty specification language; again the choice of language is tool-dependent. Typically,
however, properties are specified as formulas using a modal temporal logic such as lin-
ear temporal logic (LTL) [Pnueli, 1977] or computation tree logic (CTL) [Clarke et al.,
1986]. Such logics are used to enquire about properties of the model such as liveness
(eventually, will some property hold?) or path invariance (does some property always
hold?).
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For many model checking applications the dichotomous nature of logic is sufficient
to specify properties of interest. However, given the generally non-deterministic be-
haviour of transition systems this qualitative approach can be limiting. In the applied
portion of this work (Chapter 7) we use a model checking tool to verify properties
of an instance of our temporal model. Whilst we are interested in qualitative proper-
ties, such as: “can the agents maintain consensus?” we are also interested quantitative

properties, such as: “how likely is it that the agents will maintain consensus?”.
Probabilistic real-time computation tree logic (PCTL) Hansson and Jonsson [1994]

extends CTL to include probabilistic operators. The logic is particularly suited to
analysing processes that can be modelled as a Markov decision process (MDP). For-
mula in PCTL permit property specifications of the form: “what is the probability that
some property will hold?”. PCTL is supported by only a subset of model checking
tools, these include the Approximate Probabilistic Model Checker (APMC) [Herault
et al., 2006], the Markov Reward Model Checker (MRMC) [Katoen et al., 2011] and
PRISM [Kwiatkowska et al., 2011].

For our applied work we chose to use the PRISM model checking tool. This choice
was largely determined by our technical need to verify properties specified in both
probabilistic and non-probabilistic logics. We found PRISM to be well suited to this
requirement as it supports property specification in a variety of logics including CTL,
LTL and PCTL. Several pragmatic concerns also aided our choice; these include the
existence of an active development/support community and that we found the tool to
be intuitive and hence present a shallow learning curve.
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Chapter 3

Consensus Games

3.1 Introduction

In this chapter we present a novel model of consensus decision making for multi-
agent systems. Formulated as a game, our model, that of Consensus Games (CGs), is
inspired by both the quorum mechanisms found in biological systems and the threshold
models developed in sociological literature. A CG describes a group of agents seeking
consensus regarding the formation of coalitions.

Consensus games extend the threshold model proposed by Granovetter [1978] be-
yond binary choice decisions to the more general problem of coalition formation. For
each coalition of which an agent may be a member, each agent holds a threshold repre-
senting the proportion of agents from that coalition which must support the formation
of the coalition in order that the agent will also support the coalition. There is consen-
sus about the formation of a particular coalition only where all member-agents support
the formation of that coalition.

3.2 Consensus Games

We begin by formally defining a consensus game.

Definition 3.1. A consensus game (CG) is a tuple Γ = 〈A, q〉 where:

A is a finite set of agents, {1, . . . , n}, n ≥ 2.

q is a quorum function. It is a partial function q : A × 2A → [0, 1] which takes an

agent i ∈ A and a coalition of agents C such that i ∈ C and returns a number

in the interval [0, 1].
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The value of the quorum function for a coalition indicates the agent’s ‘degree of
support’ for the formation of that coalition. For an agent i ∈ C ⊆ A the quorum
function q(i, C) gives the minimum proportion of agents in C which must support the
formation of the coalition C in order that i will support the formation of this coalition.
Where q(i, C) = 0 agent i unconditionally supports the formation of the coalition C,
where 0 < q(i, C) ≤ |C|−1

|C| the agent conditionally supports formation of the coalition
C; where |C|−1|C| < q(i, C) ≤ 1 the agent objects to the formation of the coalition C.

We use the abbreviation q#(i, C) to denote the number of other agents from C

which have to support C in order for i to support C. Formally, q#(i, C) is the minimal
natural number k such that q(i, C) ≤ k/|C|. Lastly, nk(C) denotes the number of
agents i ∈ C with q#(i, C) = k.

3.3 Strong Consensus

Now we define the main solution concept of consensus games, a strong consensus
coalition. A strong consensus coalition C ⊆ A is a coalition where for each agent
i ∈ C the quorum threshold q(i, C) is satisfied in the sense that C contains at least
q#(i, C) other agents with strictly lower q# values.

Definition 3.2. A coalition C ⊆ A is a strong consensus coalition if the following

conditions hold:

• n0(C) 6= 0

• if nk(C) 6= 0, then
∑
j<k

nj(C) ≥ k

In a strong consensus coalition there exists at least one i ∈ C such that q(i, C) = 0

and all agents’ thresholds are satisfied. Note, the definition implies that if C is a strong
consensus coalition, then n|C|(C) = 0. In a strong consensus coalition no agent objects
to formation of the coalition.

Consider the following example.

Example 3.1. Alice (Al) and Bob (Bo) are considering whether to get married. Bob

no longer wishes to be a bachelor and is keen to be married. Alice is not opposed to

the idea of marrying Bob provided that she knows that Bob also wants to marry her,

otherwise Alice will happily continue her single lifestyle. Alice’s and Bob’s positions

can be formalised as the consensus game Γ1 = 〈A, q〉 where:

A = {Al,Bo}
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q(i, C) =



0 if i = Bo and C = {Al,Bo}

0.5 if i = Al and C = {Al,Bo}

1 if i = Bo and C = {Bo}

0 if i = Al and C = {Al}

In Example 3.1, Bob unconditionally supports the formation of the grand coalition
(of all agents); Alice conditionally supports formation of this coalition provided that
one other agent (Bob) also supports forming this coalition. Alice also unconditionally
supports formation of the singleton coalition {Al}, whereas Bob objects to the forma-
tion of the singleton coalition {Bo}. The grand coalition in this example is a strong
consensus coalition.

Next, we show that there is an alternative definition of a strong consensus coali-
tion as a fixed point of a function. This definition intuitively corresponds to agents
indicating their support for a coalition.

Consider the following function fC : 2A → 2A defined relative to C ⊆ A:

i ∈ fC(Q) iff i ∈ C and |Q ∩ C \ {i}| ≥ q(i, C)× |C|

This function takes as its input a set Q ⊆ A and returns the set of agents in C whose
quorum thresholds are satisfied in the sense that for each agent i ∈ fC(Q), q#(i, C) ≤
|Q ∩ C|. If Q = ∅, fC will contain only the agents i with q(i, C) = 0, if Q is the set
of agents which have unconditional support for C, then fC(Q) will contain the agents
i with q#(i, C) ≤ |Q|, and so forth.

To show that a coalition C is a strong consensus coalition if and only if it is the
least fixed point of fC the following auxiliary result is required:

Proposition 3.1. The function fC is guaranteed to possess at least one fixed point.

Proof. Existence of at least one fixed point is guaranteed for monotonic functions;
Knaster-Tarski theorem [Tarski, 1955].

For monotonicity it must be shown that ∀Q,Q′ ⊆ A where Q ⊆ Q′ it is always the
case that fC(Q) ⊆ fC(Q′).

Let Q ⊆ Q′. It must be shown that for every i, if i ∈ fC(Q), then i ∈ fC(Q′).
Assume i ∈ fC(Q). By the definition of fC , i ∈ C and |Q ∩C \ {i}| ≥ q(i, C)× |C|.
Since Q ⊆ Q′, |Q′ ∩ C \ {i}| ≥ |Q ∩ C \ {i}| hence |Q′ ∩ C \ {i}| ≥ q(i, C) × |C|
and i ∈ fC(Q′).
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The least fixed point of a function can be established by recursive calls to the func-
tion starting with the empty set (of agents) as an argument; each invocation of fC will
be referred to as a round. If C can achieve strong consensus, then it will be achieved
in at most |C| rounds.

We can now prove:

Theorem 3.1. C is a strong consensus coalition if and only if it is the least fixed point

of fC .

Proof. Assume C is a strong consensus coalition. Then n0(C) 6= 0 and in the first
round |fC(∅)| = |{i ∈ C : q#(i, C) = 0}| = n0(C), so fC(∅) 6= ∅.

Denote the kth application of fC as fk
C ; at each round k > 1, fk

C(∅) = fk−1
C (∅) ∪

{i ∈ C : q#(i, C) ≤ |fk−1
C (∅)|}

By the definition of a strong consensus coalition, additional agents support at each
round until all agents support. The set {i ∈ C : q#(i, C) ≤ |fk−1

C (∅)|} is always
non-empty until fk−1

C (∅) = |C|, so C is the least fixed point of fC .
Assume C is the least fixed point of fC . Then the first condition in the definition

of a strong consensus coalition is satisfied because fC(∅) 6= ∅ hence there are agents
i with q(i, C) = 0. To show that for every k, if nk(C) 6= 0, then there are at least
k agents in C with strictly lower q# values, consider an agent i with q#(i, C) = k.
Since C is the least fixed point of fC , at some round, m, i ∈ fm

C (∅). This means
that |fm

C (∅)| ≥ k, and since |fm
C (∅)| is the number of agents with lower q# values,∑

j<k

nj(C) ≥ k.

3.4 The q-Minimal Core

The core is a popular solution concept in game theory, aggregating equilibria that are
both individually and collectively rational. In traditional, quantitative game theoretic
models, rational behaviour is typified by agents maximising some notion of utility.
Agents are said to act with individual rationality where each agent will achieve their
maximum reward given the behaviour of the other agents; this situation corresponds to
the Nash equilibrium of the game. Collectively rational outcomes are those where no
subset of agents can achieve a higher reward through defection.

By contrast, CGs are qualitative; they do not describe a pay-off or reward structure.
Instead, individually rational behaviour is associated with the quorum thresholds of the
agents for the coalitions of which they may be a member. It is individually rational for
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an agent to support the formation of some coalition only if the number of agents already
known to be supporting that coalition is a least as great as the proportion specified by
the agent’s quorum threshold for that coalition.

Notions of equilibria constituting collectively rational outcomes for CGs are harder
to define. One natural way of distinguishing between coalitions is in terms of the effort
required to reach consensus. For some coalitions, strong consensus may be established
in a single round, while for others it may require as many as |C| rounds. The number of
rounds required to reach consensus for a given coalition can be taken as a measure of
the ease with which the agents reach consensus and hence the stability of the resulting
coalition. Let rounds(C) be the number of rounds necessary for strong consensus to
be established for some coalition C ⊆ A.

Definition 3.3. The coalition C ⊆ A is a q-minimal consensus coalition only if:

• C is a strong consensus coalition,

• there exists no C ′ ⊂ C such that C ′ is also a strong consensus coalition and

rounds(C ′) < rounds(C)

The q-minimal core aggregates q-minimal consensus coalitions.

3.5 Complexity of CGs

Our characterisation of the computational complexity of CGs considers three natural
decision problems. These decision problems address fundamental questions for CGs
regarding the presence or otherwise of equilibria within a game. The first considers
the problem of verification, the second, that of existence whilst the third considers the
matter of non-existence:

Consensus Coalition (CC): Can a given coalition reach consensus?

Consensus Coalition Exists (CE): Does there exist some coalition which can reach
consensus?

No Consensus Coalition (NC): Is there no coalition which can reach consensus?

These decision problems are considered, first for strong consensus coalitions and
subsequently for q-minimal consensus coalitions. We begin by establishing the repre-
sentational scheme and abstract computational machine for these analyses.
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3.5.1 Representation

When considering the representation of CGs the structure of most interest is the quo-
rum function, q. The quorum threshold has to be specified for each coalition C ∈
P(A) \ ∅ and for each agent i ∈ C. To do this, each coalition C ⊆ A is represented
as a set of pairs (i, q(i, C)). The overall representation is the set R = {rep(C) | C ∈
P(A) \ ∅}, where rep(C) = {(i, q(i, C)) | i ∈ C, q(i, C) ∈ [0, 1]}. Note that the size
of R is exponential in the number of agents, n.

We assume that R is implemented as a random access data structure, hence, the
following results are given for the non-deterministic random access machine (NRAM)
model of computation [van Emde Boas, 1990].

3.5.2 Complexity of strong consensus decision problems

STRONG CONSENSUS COALITION (SCC)

Given a CG Γ = 〈A, q〉 and a coalition C ⊆ A, can C reach strong consensus?
A deterministic algorithm must verify that C is the least fixed point of fC . Algo-

rithm 3.1 runs in time which is polynomial (linear) in n and therefore lies within P (n).
Note that we can also obtain anO(n×log(n)) algorithm, which runs in constant space,
by sorting C on q(i, C).
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Algorithm 3.1 Can C reach strong consensus.
function SCC(R,C)

array support[|C|+ 1]← {0, . . . , 0}
for all (i, q) ∈ C do

k ← dq × |C|e
support[k]← support[k] + 1

end for
s← support[0]

for k from 1 to |C| do
if k ≤ s then

s← s+ support[k]

else
return false

end if
end for
return true

end function

STRONG CONSENSUS COALITION EXISTS (SCE)

Given a CG Γ = 〈A, q〉 is there some C ⊆ A which can reach strong consensus?
A deterministic algorithm would iterate over R, checking for each C ⊆ A whether

C is a strong consensus coalition. Hence the problem is in O(n2n).
A non-deterministic algorithm first guesses an index of a coalition C ∈ R and

then checks that C can reach strong consensus. This can be done in time linear in n
using Algorithm 3.1. This gives a non-deterministic linear time algorithm for a random
access machine. Hence, the problem is in NP (n) for NRAM.

NO STRONG CONSENSUS COALITION (SNC)

Given a CG Γ = 〈A, q〉 is there no C ⊆ A which can reach strong consensus?
A deterministic algorithm must verify that ¬∃C ⊆ A such that C is the least fixed

point of fC . Hence the problem is in O(n2n).
The problem of verifying that there exists some coalition which can reach strong

consensus is in NP (n). Therefore the complement of that problem, verifying that
there exists no coalition which can reach strong consensus is in co-NP (n) for NRAM.
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q-MINIMAL STRONG CONSENSUS COALITION (QM-SCC)

A deterministic algorithm must verify that C is the least fixed point of fC and that
¬∃C ′ ⊂ C such that C ′ is the least fixed point of fC′ and C ′ reach consensus in
strictly fewer rounds than C. Algorithm 3.2 computes the number of rounds required
to encounter the least fixed point of fC . The algorithm has time complexity O(n) and
so is in P (n).

Algorithm 3.2 Number of rounds for C.

function rounds(rep(C))
array support[|C|+ 1]← {0, . . . , 0}
for all (i, q) ∈ C do

k ← dq × |C|e
support[k]← support[k] + 1

end for
r ← 0
i1← 1
i2← s← support[0]
while i1 ≤ i2 do

r ← r + 1
for k from i1 to i2 do

s← s+ support[k]
end for
i1← i2 + 1
i2← s

end while
return r

end function

Algorithm 3.3 then verifies that a given coalition, C is a q-minimal strong consen-
sus coalition, by iterating over all subsets of C. Hence the problem is in O(n2n).

A non-deterministic algorithm to solve the complement of this problem (decide
whether a coalition is not a q-minimal consensus coalition) first checks whether C is
a strong consensus coalition (and returns true if it is not); if C is a strong consensus
coalition, it will guess an index of an coalition C ′ ⊂ C and check that C ′ is a strong
consensus coalition which converges in fewer rounds than for C (and returns false if
it does). So the problem of deciding whether a coalition is not a q-minimal strong
consensus coalition is in NP(n) on NRAM. Hence deciding whether a coalition is a
q-minimal strong consensus coalition is in co-NP (n) for NRAM.
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Algorithm 3.3 Is C a q-minimal strong consensus coalition.
function QM-SCC(C,R)

if ¬SCC(R,C) then
return false

end if
for all C ′ ⊂ C ∈ R do

if SCC(R,C) ∧ rounds(C ′) < rounds(C) then
return false

end if
end for
return true

end function

q-MINIMAL STRONG CONSENSUS COALITION EXISTS (QM-SCE)

A deterministic algorithm must verify that ∃C ⊆ A such that C is the least fixed point
of fC and that ¬∃C ′ ⊂ C such that C ′ is the least fixed point of fC′ and C ′ reach
consensus in strictly fewer rounds than C. Hence the problem is in O(n2n).

If there exists some coalition which is a strong consensus coalition then either that
coalition itself, or some subset of that coalition, will be a q-minimal strong consensus
coalition. Therefore, this decision problem can be solved in a manner similar to SCE

and so is in NP (n) for NRAM.

NO q-MINIMAL STRONG CONSENSUS COALITION (QM-SNC)

A deterministic algorithm must verify that ¬∃C ⊆ A such that C is the least fixed
point of fC and that ¬∃C ′ ⊂ C such that C ′ is the least fixed point of fC′ and C ′ reach
consensus in strictly fewer rounds than C. Hence the problem is in O(n2n).

If there exists some coalition which is a strong consensus coalition then either that
coalition itself, or some subset of that coalition will be a q-minimal strong consensus
coalition. Therefore, this decision problem can be solved in a manner similar to SNC

and so is in co-NP (n) for NRAM.

3.6 Weak Consensus

The results from the previous section suggest that strong consensus is reasonably easy
(takes time linear in the number of agents) to reach. However, it may seem that there
is a notion of consensus that is even easier to reach, and which has the same intuitive
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appeal as strong consensus. Weak consensus is a notion of consensus corresponding
to no agent objecting to the formation of a coalition.

Definition 3.4. C is a weak consensus coalition if no agent i ∈ C has q(i, C) > |C|−1
|C| .

Interestingly, this notion of consensus also has a fixed point characterisation:

Theorem 3.2. C is a weak consensus coalition iff C is the greatest fixed point of fC .

Proof. The only if direction: if there exists i ∈ C such that q(i, C) > |C|−1
|C| , then by

the definition of fC , i 6∈ fC(C) so fC(C) 6= C.
For the if direction, assume that for all i ∈ C, q(i, C) < |C|−1

|C| . Observe that
fC(C) = C; by the definition of fC , any i ∈ fC(C) iff i ∈ C and q(i, C) ≤ |C|−1

|C| .
Since the latter holds for all i ∈ C: i ∈ fC(C) iff i ∈ C hence C is a fixed point.

It is also the greatest fixed point, since the definition implies that fC(C ′) ⊆ C for
any C ′, so fC(C ′) ⊂ C ′ for any C ′ ⊃ C.

An example is called for:

Example 3.2. Consider again Example 3.1. However, now assume that both Alice

and Bob conditionally support getting married. Alice’s and Bob’s positions can be

formalised as the consensus game Γ2 = 〈A, q〉 where:

A = {Al,Bo}

q(i, G′) =


0.5 if i = Al and G′ = {Al,Bo}

0.5 if i = Bo and G′ = {Al,Bo}

1 otherwise

In Example 3.2, both Alice and Bob will support formation of the grand coalition,
and so get married, if the other also supports this. As neither Alice nor Bob object to
the formation of the grand coalition, it is a weak consensus coalition.

Finally, it is easy to show that while every strong consensus coalition is also a
weak consensus coalition (since no strong consensus coalition can contain an agent that
objects), the converse is not the case: there exists weak consensus coalitions which are
not strong consensus coalitions. Since fC(C ′) = C for any C ′ ⊇ C, it follows that if C
is the least fixed point of fC , then it is also the greatest fixed point of fC . In Example
3.2 the grand coalition is a weak consensus coalition but is not a strong consensus
coalition.
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3.6.1 The C-minimal core

The agents in a weak consensus coalition reach consensus in a single round. The
analogue of a q-minimal consensus coalition is therefore not informative for weak
consensus. Instead we adopt an approach similar to the qualitative model of the core
introduced in Wooldridge and Dunne [2004] for qualitative coalitional games (QCG).
A coalition is in the qualitative core of a QCG if and only if that coalition is stable
and no subset of that coalition is also stable. Consider two stable coalitions, C ⊆ A

and C ′ ⊂ C. Qualitatively speaking, agents in the coalition C ′ can do no better by
forming C ′ than they would by participating in the larger coalition C; however, by
the same rationale agents in C ′ will do no worse by forming this smaller coalition. In
Wooldridge and Dunne [2004] it is argued that the existence of the stable coalition C ′

undermines the stability of C; there is nothing impelling C to remain together.
Building on this qualitative definition of the core where collective rationality is

associated with minimality we have:

Definition 3.5. The coalition C ⊆ A is a C-minimal consensus coalition only if:

• C is a weak consensus coalition,

• there exists no C ′ ⊂ C, such that C ′ is also a weak consensus coalition.

The C-minimal core of a CG contains only C-minimal consensus coalitions. The
C-minimal core aggregates consensus coalitions which are collectively rational in the
sense that they are immune to defection by some agents C ′ ⊂ C.

3.6.2 Complexity of weak consensus decision problems

In the remainder of this section decision problems for weak consensus and C-minimal
consensus coalitions are considered.

WEAK CONSENSUS COALITION (WCC)

This first decision problem considers the complexity of determining if a given coalition
is a weak consensus coalition. Given a CG Γ = 〈A, q〉 and a coalition C ⊆ A, will C
reach weak consensus?

A deterministic algorithm must verify that ¬∃i ∈ C such that q(i, C) > |C|−1
|C|

(from Theorem 3.2). It simply iterates through rep(C) checking that no agent i has
q(i, C) > |C|−1

|C| . Hence the problem is in O(n).
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WEAK CONSENSUS COALITION EXISTS (WCE)

Given a CG Γ = 〈A, q〉 will any C ⊆ A reach weak consensus?
A deterministic algorithm must verify that ∃C ⊆ A such that ¬∃i ∈ C such that

q(i, C) > |C|−1
|C| . Hence the problem is in O(n2n).

A non-deterministic algorithm first guesses an index of a coalition C ∈ R and then
checks that C can reach weak consensus. This can be done in time linear in n. This
gives a non-deterministic linear time algorithm for a random access machine. Hence,
the problem is in NP (n) for NRAM.

NO WEAK CONSENSUS COALITION (WNC)

Given a CG Γ = 〈A, q〉 can no C ⊆ A reach weak consensus?
A deterministic algorithm must verify that ¬∃C ⊆ A such that ¬∃i ∈ C such that

q(i, C) > |C|−1
|C| . Hence the problem is in O(n2n).

The problem of verifying that there exists some coalition which can reach weak
consensus is in NP (n) (from WCE). Therefore the complement of that problem, ver-
ifying that there exists no coalition which can reach weak consensus is in co-NP (n)

for NRAM.

C-MINIMAL WEAK CONSENSUS COALITION (CM-WCC)

Given a CG Γ = 〈A, q〉 and a coalition C ⊆ A, is C a C-minimal weak consensus
coalition?

A deterministic algorithm must verify that C is a weak consensus coalition and that
¬∃C ′ ⊂ C such that C ′ is also a weak consensus coalition. Hence the problem is in
O(n2n).

A non-deterministic algorithm to solve the complement of this problem (decide
whether a coalition is not a C-minimal weak consensus coalition) first checks whether
C is a weak consensus coalition (and returns true if it is not); if C is a weak consensus
coalition, it will guess an index of an coalition C ′ ∈ R \ C and checks that C ′ is a
weak consensus coalition. So the problem of deciding whether a coalition is not a C-
minimal weak consensus coalition is in NP(n) on NRAM. Hence deciding whether a
coalition is a C-minimal weak consensus coalition is in co-NP (n) for NRAM.

C-MINIMAL WEAK CONSENSUS COALITION EXISTS (CM-WCE)

Given a CG Γ = 〈A, q〉 is some C ⊆ A a C-minimal weak consensus coalition?
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A deterministic algorithm must verify that ∃C ⊆ A such thatC is a weak consensus
coalition and that ¬∃C ′ ⊂ C such that C ′ is also a weak consensus coalition. Hence
the problem is in O(n2n).

If there exists some coalition which is a weak consensus coalition then either that
coalition itself, or some subset of that coalition will be a C-minimal weak consensus
coalition. Therefore, this decision problem can be solved in a manner similar to WCE

and so is in NP (n) for NRAM.

NO C-MINIMAL WEAK CONSENSUS COALITION (CM-WNC)

Given a CG Γ = 〈A, q〉 is there no C ⊆ A a C-minimal weak consensus coalition?
A deterministic algorithm must verify that ¬∃C ⊆ A such that C a C-minimal

weak consensus coalition. Hence the problem is in O(n2n).
If there exists some coalition which is a weak consensus coalition then either that

coalition itself, or some subset of that coalition will be a C-minimal weak consensus
coalition. Therefore, this decision problem can be solved in a manner similar to WNC

and so is in co-NP (n) for NRAM.

3.7 Incomplete Information in CGs

The quorum function, q, encodes the entire information of a CG and is analogous to
functions found in characteristic form representations for game theoretic models. In
those models it is usual to distinguish between situations where the characteristic func-
tion is common knowledge, and those where it is not. Games where the characteristic
function is common knowledge (all agents know the characteristic function, and all
agents know that all agents know the characteristic function, and . . . ad infinitum) are
referred to as games of complete information, whereas games lacking in such common
knowledge are games of incomplete information. This section considers CGs under in-
complete information. Our opening assumptions are that agents know only their own
quorum threshold(s) and can only communicate their own support, or lack thereof, for
the formation of a given coalition.

Consider A = {1 . . . n} and some C ⊆ A. For each agent i ∈ C let siC be a
Boolean variable with the intended meaning that i supports the formation of coalition
C. Consensus about C is achieved if the agents in C achieve common knowledge that∧
i∈C

siC holds. We are going to propose knowledge-based protocols for achieving strong

and weak consensus under incomplete information.
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Note that as shown by Fagin et al. [1995], no fact can become common knowl-
edge and hence no agreement is possible in practical distributed systems, which have
temporal imprecision etc. We make the usual idealising assumptions that: all agents’
announcements are delivered reliably (broadcast) and arrive at a tick of a common
clock or at a numbered ‘round’ which is common knowledge among the agents.

3.7.1 Strong consensus

In order to reach strong consensus under incomplete information, it is sufficient that
each agent has knowledge of its own quorum threshold. This can be expressed, for each
agent, as a formula, sq#(i,C), which holds where q#(i, C) other agents from C support
C. The formula sq#(i,C) is a disjunction of statements of the form si1C ∧ . . .∧ s

ik
C where

q#(i, C) = k, for all possible groups of agents of size k from C which do not include
i. If an agent objects, e.g., q#(i, C) = |C|, this disjunction is empty so sq#(i,C) = ⊥.
If q#(i, C) = 0 (unconditional support), then sq#(i,C) corresponds to a disjunction of
empty conjunctions which is >.

For example, if C = {1, 2, 3} and q#(1, C) = 2, then

sq#(1,C) = s2C ∧ s3C

If q#(2, C) = 1, then
sq#(2,C) = s1C ∨ s3C

Finally, if q#(3, C) = 0, then sq#(3,C) = >.
We refer to the protocol for reaching strong consensus as LFP (C). We use the

epistemic operator KiΦ to denote that agent i knows that Φ. The LFP (C) protocol
is very simple: at each round, if Kis

i
C holds in this round, agent i announces siC . We

assume that the agent ‘remembers’ if it made the announcement at the previous round,
and does not repeat it; this minimises the number of messages. When consensus is
reached or it is common knowledge that the round is |C| + 1, the protocol terminates.
The LFP (C) protocol requires that agents can correctly derive siC ; therefore the pro-
tocol assumes that each agent has the following original knowledge:

• Ki(sq#(i,C) ↔ siC)

Theorem 3.3. LFP (C) for C always achieves strong consensus if C is a strong con-

sensus consensus coalition, and requires at most |C| messages.
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Proof. Let the rounds be numbered 1, . . . , |C|, and denote the number of agents i
announcing siC in round m by #m. In round 1, the agents i which announce siC are
exactly those who have q#(i, C) = 0, in other words those in fC(∅). Consider round
m. Clearly, after siC is announced, siC is common knowledge. If there are agents j
which require #m or fewer other agents to support C in order to support it themselves,
then in the next round they can derive from Kjs

i
C (for all i which announced siC) and

from their original knowledgeKj(sq#(j,C) ↔ sjC) thatKjs
j
C , those agents j will derive

sjC . Those agents j are in fm
C (∅). If C is a strong consensus coalition, each agent

i ∈ C will announce siC at some round, and after the last agent does this it is common
knowledge that

∧
i∈C s

i
C . In general, each agent makes at most one announcement,

hence the protocol requires at most |C| messages.

Note that if strong consensus on C is reached, the number of the round when this
happens is also common knowledge among C. This gives the agents a measure of the
quality of consensus or stability of the coalition as the number of rounds.

The communication complexity (in terms of the number of messages required)
of decision problems concerning verification, existence and non-existence of strong
consensus coalitions using LFP (C) can now be characterised.

DISTRIBUTED STRONG CONSENSUS COALITION (D-SCC)

Given a CG Γ = 〈A, q〉 and some C ⊆ A, can C reach strong consensus?
This decision problem is solved by executing the protocol LFP (C). Each agent in

C sends at most one message, so the total number of messages required is O(n).

DISTRIBUTED STRONG CONSENSUS COALITION EXISTS (D-SCE)

Given a CG Γ = 〈A, q〉 , can any C ⊆ A, reach strong consensus?
This problem is solved by executing the protocol LFP (C) in parallel for all C.

The total number of messages is O(n2n) in the worst case.
Note however, that given the plausible assumption that the number of coalitions

each agent supports is ‘small’, for example, O(n), then the worst case number of
messages would be O(n2).

NO DISTRIBUTED STRONG CONSENSUS COALITION (D-SNC)

Given a CG Γ = 〈A, q〉 , can no C ⊆ A reach strong consensus?
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The problem can be solved by executing the protocol LFP (C) for each of the
2n− 1 coalitions C ∈ P(A) \ ∅. The number of messages in the worst case is O(n2n).

3.7.2 Weak consensus

To reach weak consensus, under incomplete information the agents start with a differ-
ent representation of their knowledge of their quorum threshold, and follow a different
protocol. The GFP (C) protocol for weak consensus is very simple. It consists of a
single round, where agents i with q#(i, C) = |C| announce the proposition oiC indi-
cating that they object to the formation of C.

The GFP (C) protocol requires that agents can correctly derive oiC and so assumes
that the original knowledge of each agent is:

• agents i with q#(i, C) = |C| know that they object to the formation of C:

Kio
i
C

• it is common knowledge that agents in C support the formation of C if and only
if none of them objects, we denote by CC that it is common knowledge for all
agents i ∈ C :

CC

∧
i∈C

(
∧
j∈C

¬ojC ↔ siC)

• it is common knowledge that if i knows that it objects to the formation of C,
then i will announce this in the first (and only) round of the protocol.

Theorem 3.4. The GFP protocol for C achieves weak consensus iff C is a weak con-

sensus coalition, and requires only one round of announcements (consisting of |C|
messages in the worst case).

Proof. If at least one agent i announces oiC , it immediately becomes common knowl-
edge that oiC and hence that ¬

∧
i∈C ¬oiC , which using

CC

∧
i∈C

(
∧
j∈C

¬ojC ↔ siC)

implies that it is common knowledge thatC is not a consensus coalition (CC¬
∧

i∈C s
i
C).

If no agent i announces oiC , after the round is over the common knowledge is that∧
i∈C ¬Kio

i
C and hence

∧
i∈C ¬oiC . From this, the agents derive common knowledge

that for every i, siC , hence common knowledge that C is a weak consensus coalition.
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We now consider the complexity of decision problems associated with theGFP (C)

protocol.

DISTRIBUTED WEAK CONSENSUS COALITION (D-WCC)

Given a CG Γ = 〈A, q〉 and some C ⊆ A, can C reach weak consensus?
This decision problem is solved by executing the protocol GFP (C). Each agent

will make at most one announcement, hence this requires O(n) messages.

DISTRIBUTED WEAK CONSENSUS COALITION EXISTS (D-WCE)

Given a CG Γ = 〈A, q〉 can any C ⊆ A reach weak consensus?
The problem can be solved by executing the protocol GFP (C) for each of the

2n − 1 coalitions C ∈ P(A) \ ∅. The total number of messages is O(n2n) in the worst
case. Note that in the case when each agent supports only few coalitions, this is an
unavoidably wasteful way of finding a weak consensus coalition.

NO DISTRIBUTED WEAK CONSENSUS COALITION (D-WNC)

Given a CG Γ = 〈A, q〉 can no C ⊆ A reach weak consensus?
The problem can be solved by executing the protocol GFP (C) for each of the

2n − 1 coalitions C ∈ P(A) \ ∅. The total number of messages is O(n2n).

3.8 Revelation of Information in CGs

We have shown that, in CGs, agents can reach either strong or weak consensus without
explicit knowledge of each others’ thresholds. Consensus can be achieved through
public announcements regarding an agent’s support or objection (strong consensus and
weak consensus, respectively). However, in making such announcements agents may
still reveal information regarding their actual threshold value(s). This section considers
what an agent may reveal about its threshold value q(i, C), and hence what agents may
come to know, about the thresholds of other agents.

3.8.1 Strong consensus

Consider the protocol LFP (C). Let m denote the current round, 1 ≤ m ≤ |C|. As
before, let |fm

C (∅)| denote the total number of agents supporting C at the end of round
m. Note that |fm≤0

C (∅)| = 0.
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Now, if in some round m agents i ∈ C announce siC it must be that |fm−2
C (∅)| <

q#(i, C) (otherwise iwould have announced siC in the previous round) and |fm−1
C (∅)| ≥

q#(i, C) (otherwise i would not announce siC in the current round).

Proposition 3.2. In round m agents can construct a bounded inequality about the

thresholds of those agents h ∈ C announcing shC in that round. The LFP (C) protocol

creates common knowledge that ∀h ∈ fm
C (∅) \ fm−1

C (∅), |fm−2
C (∅)| < q#(h,C) ≤

|fm−1
C (∅)|.

Proof. We must show that for agents h, i ∈ C, h 6= i where in some round m − 1,
¬Ki(s

h
C) and subsequently, in round m, Ki(s

h
C), in all states of the world considered

possible by agents i at round m, the inequality |fm−2
C (∅)| < q#(h,C) ≤ |fm−1

C (∅)|
holds.

Where necessary we will use the notation Km
i Φ to mean that in all states of the

world considered possible by i after all announcements have been made in round m, Φ

holds. Where the round is omitted the intended meaning of KiΦ is that Φ holds in all
possible worlds in all rounds.

First we define a set of possible worlds, W . Each possible world w ∈ W ; repre-
sents one possible state of the world at the end of a round of the LFP (C) protocol.
Each state is described by truth assignments to a set of propositions.

These propositions are as follows:
S = {s1C , . . . , s

|C|
C } - As before, a set of propositions, one for each agent indicating

their support for C.
V = {v0, . . . , v|C|} - A set of propositions representing possible values of q#(h,C);

these are q#(h,C) ∈ {0, . . . |C|}. The intended meaning is that if vk then q#(h,C) =

k.
We now make some assumptions regarding the original knowledge of agent i, these

are intuitive facts regarding LFP (C).
As q#(h,C) ∈ {0, . . . |C|} we assume that q#(h,C) may take exactly one value:

• Ki(v
x ↔

∧
y 6=x ¬vy)

If q#(h,C) = |C| then agent h does not support (objects to) C:

• Ki(v
|C| ↔ ¬shC)

Agent i knows the number of agents that support C.
To represent this we define a series of formulae representing an agent’s knowledge

of how many agents, including itself, support C. Let sk be a formula defined for each k
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in {0, . . . , |C|}. Each formula is a disjunction of conjunctions of the form si1C ∧· · ·∧s
ik
C

and so each resembles the formula sq#(i,C). Hence, the formula sk holds in all possible
worlds where at least k agents from C support C.

Worlds in which exactly k agents support C can be distinguished as those in which
sk holds but sk+1 does not.

Agent i knows that if agents h supports C then q#(h,C) is at most the number
of other agents which also support C (from Definition 3.2). In possible worlds where
agents h support C and exactly l other agents also support C then sk holds where
k = l + 1, it must be that q#(h,C) ≤ l, or equivalently q#(h,C) < k. Therefore in
these possible worlds it cannot be that vy holds for y ≥ k.

• Ki(s
h
C ∧ (sk ∧ ¬sk+1)↔

∧
y≥k ¬vy)

Agents i know that if at the end of round m agent h has not announced shC then
q#(h,C) is strictly greater than the number of agents that had announced at the end of
round m− 1.

• ¬Km
i (shC) ∧Km−1

i (sk ∧ ¬sk+1)↔
∧

y≤k ¬vy

Agent i knows that if shC is announced in round m then q#(h,C) is at most the
number of agents that had announced at the end of round m− 1.

• ¬Km−1
i (shC) ∧Km

i (shC) ∧Km−1
i (sk ∧ ¬sk+1)↔

∧
y>k ¬vy

To complete the proof, suppose that in rounds m− 2,m− 1 there are, respectively,
a, b agents supporting C and that shC is announced in round m.

At the end of round m− 1, ¬Km−1
i (shC) hence i derives ¬vy for all y ≤ a thus all

worlds where q#(h,C) ≤ a are no longer considered possible.
At the end of round m, Km

i (shC) hence i derives ¬vy for all y > b thus all worlds
where q#(h,C) > b are no longer considered possible.

Thus in all worlds considered possible by i the inequality a < q#(h,C) ≤ b holds.
Since we assume that all original knowledge is common knowledge and all an-

nouncements are public it remains to observe that a = |fm−2
C (∅)| and b = |fm−1

C (∅)|
and since shC is announced in round m, h ∈ fm

C (∅) \ fm−1
C (∅).

In general then, agents may only know some inequality about the quorum values of
other agents. However, special cases do exist where agents may acquire more precise
information regarding the thresholds of other agents. Such revelations occur where
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agents make their announcement in the first round (in which case, clearly their thresh-
old is zero) or where in the previous round only a single agent has announced siC .
Consider some round m where |fm−2

C (∅)| − |fm−1
C (∅)| = 1, in this case it will become

common knowledge that ∀i ∈ fm
C (∅) \ fm−1

C (∅), q#(i, C) = |fm−1
C (∅)|. The limiting

case is found where in each round exactly one agent announces siC in this event the
exact value of q#(i, C) for each agent will become common knowledge.

3.8.2 Weak consensus

The GFP (C) protocol requires only a single round and hence reveals less information
regarding the threshold values of the agents. An agent announces oiC only if q(i, C) >
|C|−1
|C| therefore any agent making an announcement in the GFP (C) protocol reveals

that q#(i, C) > |C| − 1. Similarly, any agent that has not announced oiC reveals that
0 ≤ q#(i, C) < |C|.

3.9 Discussion and Related Work

Consensus games (CGs) are a novel approach to the problem of coalition formation in
multi-agent systems. We have presented two solution concepts for CGs corresponding
to the least and greatest fixed points of the function fC . Our two solution concepts
of strong and weak consensus represent different approaches to reaching consensus.
Strong consensus requires that all agents support the formation of a coalition, whereas,
weak consensus requires only that no agent objects to the formation of a coalition.

Since all strong consensus coalitions are weak consensus coalitions (but not vice
versa) weak consensus coalitions may form where strong consensus coalitions may
not. In both solution concepts objection, by even a single agent, is a barrier to coalition
formation. For strong consensus it is necessary (but not sufficient) that at least one
agent unconditionally supports the formation of a coalition; this requirement is relaxed
in weak consensus. Where agent i unconditionally supports the formation of coalition
C, q(i, C) = 0. Intuitively, we can say that agent i is ‘particularly keen’ that coalition
C forms. Although weak consensus can be achieved in a broader range of situations
this permissive quality may come at a cost. In particular, a weak consensus coalition
may contain no agents that are particularity keen for that coalition to form.

Strong consensus resembles the threshold model of Granovetter [1978] since in that
model at least one agent must ‘initiate’, by unconditionally supporting. Weak consen-
sus resembles the threshold model presented in Chwe [1999]; since in that model an
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initiating agent is not necessary. CGs focus on the special case of consensus, an impor-
tant aspect of decision making that has not been considered in previous work concern-
ing threshold models. The problem of reaching consensus is particularly salient in a
computation setting such as ours. Without a mechanism for consensus the coordination
of distributed processes is all but impossible [Turek and Shasha, 1992].

CGs extend the threshold models of Granovetter [1978] and Chwe [1999] beyond
binary choice decisions to the more general problem of coalition formation. In doing
this we have developed notions of collective rationality and coalitional stability for
threshold models. Such properties of threshold models have not been addressed in
previous work.

The central proposition of CGs is that agents’ choices are conditioned by the num-
ber of other agents also making some choice. This premise is found in the anonymous
games of Daskalakis and Papadimitriou [2007]. In those games the individual utility
of participation in some coalition is independent of the identities of the agents con-
cerned; hence, factors including the size of the coalition become determinants of an
agent’s choice. In general, however, CGs are non-anonymous therefore, for example,
an agent could object (q(i, C) = 1) to participation in any coalition in which some
other, specific, agent participates.

The notion that an agent’s behaviour may influence that of others is also found in
imitation games [McLennan and Tourky, 2010]; in these, two player games, players
assume the roles of leader and follower. Through the payoff structure the follower is
motivated to act in consensus with the leader. Such a situation can be modelled as a
CG where the leader has a threshold of zero, and the follower has a threshold of at
most one half.

CGs have some similarities to Qualitative Coalitional Games (QCGs) [Wooldridge
and Dunne, 2004]. It is therefore interesting to compare CGs and QCGs, especially
with respect to the size of representation and the complexity of similar decision prob-
lems. A QCG Γ may be represented as an (n+3) tuple Γ = 〈G,Ag,G1 . . .Gn,V〉where
Gi ⊆ G represents each agent’s i ∈ Ag set of goals and V : 2Ag → 22

G is the character-
istic function of the game mapping each possible coalition of agents to the sets of goals
that coalition can achieve. In QCGs:

• A set of goals G′ ⊆ G is feasible for a coalition C ⊆ Ag if G′ ∈ V(C).

• A set of goals G′ ⊆ G satisfies an agent i ∈ C ⊆ Ag if G′ ∩ Gi 6= ∅.

• A coalition C ⊆ Ag is successful if there exists some set of goals G′ ⊆ G such
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that G′ is feasible for C and G′satisfies at least all agents i ∈ C.

There is no immediate direct correspondence between goals in QCGs and quorum
thresholds in CGs, apart from an intuition that the agent may have a lower quorum
threshold for a coalition if it is more likely to achieve the agent’s goals. However, the
parallels between successful coalitions in QCGs and consensus coalitions in CGs are
clearer: both capture the notion of it being rational for an agent to join a coalition.
The worst case size of the game representation for QCGs is the characteristic function
where each coalition can enforce any subset of goals. There are 2n coalitions and 2m

subsets of goals, so the worst case size of V is O(2n+m). For CGs, the representation
is exponential in n. Complexity results for QCGs in [Wooldridge and Dunne, 2004]
are given as a function of the size of representation, where the characteristic function
is represented by a propositional formula Ψ (which as noted may be exponential in the
number of agents and goals, but generally will be more concise than a naive represen-
tation of V). The successful coalition problem is NP in the size of the representation.
It corresponds to our SCC problem which is linear in the number of agents (hence also
in the size of representation).

The problem of verifying equilibria in CGs can be solved in time which is poly-
nomial in the number of agents, whereas, the problem of verifying Nash equilibria in
normal form game theoretic models requires time which is polynomial in the prod-
uct of the number of players and of alternative strategies [Tadjouddine, 2007]. The
complexity of computing the existence of Nash equilibria in normal form games is
PPAD-complete [Chen and Deng, 2006]. PPAD is a subclass of TFNP , the func-
tional analogue of NP ∩ co-NP [Megiddo and Papadimitriou, 1991]. We show that
the problem of computing existence of equilibria such as strong or weak consensus
coalitions in CGs is in NP (n). Our results suggest that the problem of computing
the existence of equilibria in CGs is no more complex than it is in the typical game
theoretic case.

Following the practices of game theoretic research [Harsanyi, 2004] we examined
CGs under incomplete information; we defined and analysed protocols for both strong
and weak consensus. Generally, the LFP (C) protocol for strong consensus reveals
more information than the GFP (C) for weak consensus. This is not only true regard-
ing the threshold values of the agents but is also true when considering the stability of
the coalitions. Under strong consensus, it is possible for the agents to achieve common
knowledge of the quality (number of rounds required for reaching consensus) of the
coalition as they are running the LFP (C) protocol. No such information is available
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in the case of the weak consensus protocol.
We have proven that both strong consensus and weak consensus can be established

with a number of messages that is polynomial (linear) in the number of agents. That
we find tractable results for reaching consensus under incomplete information is par-
ticularly promising; as Harsanyi [2004] observes, in many real-world situations partic-
ipants often lack full information. Our results suggest that practical systems using our
protocols are achievable.
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Chapter 4

Consensus Action Games

4.1 Consensus Action Games

Consensus action games extend consensus games by the inclusion of a representation
of the joint action space. Our motivation for this extension follows from the generally
accepted view that agents are capable of performing actions. One common model of
possible outcomes for joint activity is to define a joint action space as the Cartesian
product of individual action sets (of each agent). This is reminiscent of the strategy
space found in the normal form games of non-cooperative game theoretic models.
Although such an approach is appropriate for describing abstract strategy spaces it
presents certain difficulties when considering concrete action. Notably, for situated
agents in domains where their actions require external resources which are in some
way bounded. Bounded resource may constrain the ways in which agents act together.
For example, prior to use, a resource may require that an exclusive lock is obtained.
Whilst it may be that any agent could perform an action requiring the resource it is
necessary that the agents’ actions are coordinated. The agents must act in consensus,
such that no two agents simultaneously attempt to utilise the resource. Such constraints
are not easily captured by models where the joint action space is unrestricted.

Instead, to provide for the modelling of such real-world situations we will introduce
the set Ac representing the space of all possible individual actions and the structure J
which holds an explicit representation of only those joint actions permitted according
to the domain of interest. Formally:

Definition 4.1. A consensus action game is a tuple Γ = 〈A,Ac, J, q〉 where:

A is a finite set of agents, {1, . . . , n}, n ≥ 2.
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Ac is a finite, non empty set of possible actions {1, . . . ,m}.

J is a set of joint actions; each joint action is a set of pairs (i, a), where i ∈ A

and a ∈ Ac, specifying the action performed by each agent participating in

the joint action. Each participating agent performs exactly one action. The set

Ji = {j ∈ J | (i, a) ∈ j} indicates the set of joint actions in which agent i may

participate; JC = {j ∈ J | {i | (i, a) ∈ j} = C} indicates the set of all joint

actions that can be performed by the set of agents C ⊆ A.

q is a quorum function. The partial function q : {(i, j) | i ∈ A, j ∈ Ji} → [0, 1] takes

an agent i ∈ A and a joint action j in Ji and returns a number in the interval

[0,1].

In a similar manner to CGs, the value of the quorum function in CAGs indicates
the agent’s degree of support, however, in CAGs agents do not explicitly express their
support for the formation of coalitions. Instead, agents’ support is for a joint action
performed by a coalition. Thus: for an agent i ∈ C ⊆ A and joint action j ∈ JC ,
the quorum function q(i, j) gives the minimum proportion of agents in C which must
support j in order that i will support j.

Individually rational behaviour in CAGs is exhibited as follows: where q(i, j) = 0

agent i shows unconditional support for j, where 0 < q(i, j) ≤ |C|−1
|C| the agent shows

conditional support for j; where |C|−1|C| < q(i, j) ≤ 1 the agent objects to j.

4.2 Consensus in CAGs

In this section we extend the notions of strong and weak consensus developed for CGs
to accommodate the inclusion of joint actions introduced by CAGs. Following the
notational conventions introduced in Chapter 3: for some agent i ∈ C ⊆ A and some
joint action j ∈ JC let q#(i, j) denote the number of other agents from C required to
support j in order that i supports j; and let nk(j) denote the number of agents i ∈ C
with q#(i, j) = k.

In CGs agents form coalitions by consensus. The analogue of these consensus
coalitions in CAGs are consensus actions. Similarly, notions of strong and weak con-
sensus coalitions found in CGs are represented by strong consensus actions and weak

consensus actions, respectively:

Definition 4.2. A joint action j ∈ J is a strong consensus action for agents C ⊆ A if:
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• j ∈ JC

• n0(j) 6= 0

• if nk(j) 6= 0, then
∑
p<k

np(j) ≥ k

Definition 4.3. A joint action j ∈ J is a weak consensus action for agents C ⊆ A if:

• j ∈ JC

• ¬∃i ∈ C such that q(i, j) > |C|−1
|C|

As for CGs, in CAGs these notions of consensus may also be formalised as great-
est/least fixed point constructions. Consider the function fj : 2A → 2A defined relative
to j ∈ J , for some joint action j ∈ JC performed by agents C ⊆ A:

i ∈ fj(Q) iff i ∈ C and |Q ∩ C \ {i}| ≥ q(i, j)× |C|

A joint action j ∈ JC is a strong consensus action if C is the least fixed point of fj .
A joint action j ∈ JC is a weak consensus action if C is the greatest fixed point of fj .

Consider the following example in which we will denote that agent i ∈ A performs
action a ∈ A as ia.

Example 4.1. Newly engaged, Alice and Bob decide to cohabitate. Bob invites Alice

and their new house-mates, Charles and Daphne, out for dinner. Charles is keen that

they all go out to dine (d). Alice is willing to join Bob and Charles, but only if Daphne

also accompanies them. It is possible that all four will go out to dinner. However,

if Daphne stays at home (s) Alice will stay with her. Still, Bob may dine together

with Charles if Charles remains interested; Charles feels likewise. Happily, Daphne is

delighted to be invited. We can formalise this example as the consensus action game

Γ3 = 〈A,Ac, J, q〉 where:

A = {Al,Bo, Ch,Da}
Ac = {d, s}
J = {j1, j2, j3} where:

j1 = {Ald, Bod, Chd, Dad},
j2 = {Bod, Chd},
j3 = {Als, Das},
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q(i, j) =



0 if i ∈ {Bo,Ch,Da} and j = j1

0.75 if i = Al and j = j1

0.5 if i ∈ {Bo,Ch} and j = j2

0.5 if i = Al and j = j3

1 if i = Da and j = j3

In Example 4.1 j1 is unconditionally supported by Bob, Charles and Daphne whilst
Alice conditionally supports j1 requiring at least three quarters of those involved to
support before she will also support. The joint action j1 in which all four go out to
dine is a strong (and hence also weak) consensus action. Bob and Charles’ position
regarding dining without Alice and Daphne resembles that found in Example 3.2, thus
j2 is a weak consensus action. Finally, j3 is not a consensus action as Daphne objects
to staying at home when she could go out to dinner with the others.

4.3 Collective Rationality in CAGs

In Chapter 3 notions of collective rationality for CGs were introduced. These are dif-
ferent for strong and weak consensus coalitions. We will now revisit these definitions
and consider their appropriateness for the CAG model.

For strong consensus the number of rounds required to establish consensus is asso-
ciated with the effort required by the agents to reach consensus. This natural measure
of the stability of a coalition is captured in the notion of the q-minimal core of a CG.
The strong consensus coalition C ⊆ A is in the q-minimal core of a CG only if there
does not exist some other strong consensus coalition C ′ ⊂ C that can reach consensus
in strictly fewer rounds than required for C.

In CAGs each coalition may have multiple strong consensus actions, a situation
which does not arise in CGs as, for CGs, each coalition may have at most one con-
sensual outcome: the coalition is a strong consensus coalition. The q-minimal core
as defined for CGs, where only proper subsets of a coalition may undermine a coali-
tion’s stability is therefore inappropriate for the CAG model as, although some j ∈ JC
may be a strong consensus action there may also exist some other joint action j′ ∈ JC
where rounds(j′) < rounds(j). The existence of j′ undermines the stability of j. A
definition of collective rationality for strong consensus actions in CAGs must therefore
respect this distinction.

In CAGs the analogue for the q-minimal core in CGs is the qC-minimal core defined
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as containing only those joint actions for which the number of agents and the number
of rounds required for strong consensus are minimal.

Definition 4.4. For agents inC ⊆ A the joint action j ∈ JC is a qC-minimal consensus

action only if:

• j is a strong consensus action,

• there exists no other strong consensus action j′ ∈ JC′ , j′ 6= j for C ′ ⊆ C where

the number of rounds required to reach consensus for j′ is strictly less than the

number of rounds required to reach consensus regarding j.

Formulation of the stable set for weak consensus in CAGs is more straightforward.
Recall that in CGs a coalition is in the C-minimal core only if it is a weak consensus
coalition and there does not exist some proper subset of that coalition which is also a
weak consensus coalition. We formulate the notion of collective rationality for weak
consensus in CAGs in a corresponding manner.

Definition 4.5. For agents in C ⊆ A the joint action j ∈ JC is a C-minimal consensus

action only if:

• j is a weak consensus action,

• there exists no other weak consensus action j′ ∈ JC′ such that C ′ ⊂ C.

The C-minimal core of a CAG aggregates weak consensus actions. Note, that, as
in CGs we require that C ′ is a proper subset of C ; this implies that for a given coalition
there may be several joint actions in the C-minimal core of a CAG.

4.4 Computational Complexity of CAGs

The characterisation of the computational complexity of consensus action games ex-
tends the characterisation for consensus games introduced in section 3.5. For purposes
of comparison, decision problems regarding verification, existence and non-existence
of consensus actions are again considered. In CGs each coalition has exactly one
choice; in CAGs the coalition C ⊆ A may have at most m|C| choices. It is interest-
ing therefore to enquire regarding possible outcomes for some subset of the agents. A
further type of decision problem, denoted GA, is introduced for this purpose. Below,
decision problems of the following types are considered:

52



4.4. COMPUTATIONAL COMPLEXITY OF CAGS

Consensus Action (CA): is a joint action a consensus action?

Consensus Action Exists (AE): does some group of agents have a consensus action?

No Consensus Action (NA): is it the case that no group of agents has a consensus
action?

Group Consensus Action (GA): does a particular group of agents have a consensus
action?

4.4.1 Representation

Here we consider the size and representational scheme for CAGs to be used as the input
to these decision problems. Given a set of agents of size n and a set of actions of size
m, in the worst case (when every set of agents can jointly execute any possible combi-
nation of actions) the set of joint actions J has cardinality O(mn), i.e., exponential in
the number of agents.

The input to the decision problems, R, is an encoding of the quorum function q
which must describe a threshold value for each agent of each joint action j ∈ J . This
can be represented as a set of triples. Let Ag : J → P(A) be a function that for a given
joint action j ∈ JC returns C ⊆ A, the set of agents that may participate in joint action
j. Then, for an agent i ∈ C ⊆ A and a joint action j ∈ JC the triple (i, j, q(i, j)) gives
the threshold of agent i for joint action j. The joint action j can be fully described
by the set of triples rep(j) = {(i, j, q(i, j)) | i ∈ Ag(j), q(i, j) ∈ [0, 1]}; the overall
representation of the game is then the set R = {rep(j) | j ∈ J}.

In the following analyses it is assumed that the function Ag runs in at most O(n).
In addition we assume that R is implemented as a random access data structure and
that the size (number of elements) in R can be determined in O(log|J |). Hence, the
following results are given for the non-deterministic random access machine (NRAM)
model of computation.

4.4.2 Complexity of strong consensus decision problems

STRONG CONSENSUS ACTION(SCA)

Given a CAG Γ = 〈A,Ac, J, q〉 and a joint action j ∈ J , is j a strong consensus
action?
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A deterministic algorithm must verify that Ag(j) is the least fixed point of fj .
Algorithm 4.1 runs in time linear in n; the problem therefore has time complexity
O(n) and therefore lies within P (n). The algorithm is similar to Algorithm 3.1 with
only slight modification to accommodate the representation of joint actions in CAGs
as opposed to coalitions in CGs.

Algorithm 4.1 Is j a strong consensus action.
function SCC(R, j)

C ← Ag(j)

array support[|C|+ 1]← {0, . . . , 0}
for all (i, j, q) ∈ j do

k ← dq × |C|e
support[k]← support[k] + 1

end for
s← support[0]

for k from 1 to |C| do
if k ≤ s then

s← s+ support[k]

else
return false

end if
end for
return true

end function

STRONG CONSENSUS ACTION EXISTS (SAE)

Given a CAG Γ = 〈A,Ac, J, q〉 is there some j ∈ J that is a strong consensus action?
A deterministic algorithm would iterate through each j ∈ J checking if j is a

strong consensus action, returning yes if a strong consensus action is found and no,
otherwise. The problem therefore has time complexity of O(n× |J |).

A non-deterministic algorithm first guesses an index of an action j in J (this can
be done in O(log(|J |)) ≤ O(n) by the assumption that the size of J is obtainable in
O(log(|J |)), and then checks j is a strong consensus action. This verification can be
done in time linear in n using Algorithm 4.1. This gives a non-deterministic linear time
algorithm for a random access machine. Hence, the problem is in NP (n) for NRAM.
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NO STRONG CONSENSUS ACTION (SNA)

Given a CAG Γ = 〈A,Ac, J, q〉, is it the case that no j ∈ J is a strong consensus
action?

A deterministic algorithm would iterate through each j ∈ J checking if j is a
strong consensus action, returning no if a strong consensus action is found and yes,
otherwise. The problem therefore also has time complexity of O(n× |J |).

Since the problem of the existence of a quorum consensus action is inNP (n) (from
SAE, above) its compliment, SNA, is in co-NP (n) for NRAM.

STRONG CONSENSUS GROUP ACTION (SGA)

Given a CAG Γ = 〈A,Ac, J, q〉 and a subset of agents C ⊆ A, is there a quorum
consensus action for C?

A deterministic algorithm must verify that ∃j ∈ JC such that C is the least fixed
point of fj . The problem therefore has time complexity of O(n× |J |)

A non-deterministic algorithm first guesses an index of an action j ∈ J and then
checks that Ag(j) = C and that j is a strong consensus action. This gives a non-
deterministic linear time algorithm, hence the problem is in NP (n) for NRAM.

qC -MINIMAL STRONG CONSENSUS ACTION (QM-SCA)

Given a CAG Γ = 〈A,Ac, J, q〉, and a joint action j ∈ J , is j a qC-minimal consensus
action?

Let JC′⊆C = {j ∈ J | {i | (i, a) ∈ j} ⊆ C} denote the set of all joint actions
for all groups of agents C ′ ⊆ C. A deterministic algorithm must verify that j is a
strong consensus action and that ¬∃j′ ∈ JC′⊆C , j 6= j′ such that j′ is also a strong
consensus action and rounds(j′) < rounds(j). For a strong consensus action j ∈ J
the function rounds : J → N gives the number of rounds necessary for there to be
strong consensus about j; this function can be implemented in a manner similar to
algorithm 3.2 and therefore has time complexity O(n). A deterministic algorithm for
this problem therefore has time complexity O(n× |J |).

A non-deterministic algorithm for deciding that j is not a qC-minimal consensus
action first checks whether it is a strong consensus action (and returns yes if it is not)
and if it is, compute rounds(j) and guess a joint action j′ ∈ J and verify that j′ 6= j,
Ag(j′) ⊆ Ag(j) and rounds(j′) < rounds(j). The problem of deciding that j is
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not a qC-minimal consensus action is therefore in NP (n) on NRAM. Hence deciding
whether j is a qC-minimal consensus action is in co-NP (n) on NRAM.

qC -MINIMAL STRONG CONSENSUS ACTION EXISTS (QM-SAE)

Given a CAG Γ = 〈A,Ac, J, q〉 is there some j ∈ J that is a qC-minimal consensus
action?

If there exists some joint action j ∈ JC which is a strong consensus action then
either that action, or an alternative joint action j′ ∈ JC′⊆C , j

′ 6= j will be a qC-minimal
consensus action. Therefore this decision problem can be solved in a manner similar
to SAE. Hence, the problem is in NP (n) for NRAM.

NO qC -MINIMAL STRONG CONSENSUS ACTION (QM-SNA)

Given a CAG Γ = 〈A,Ac, J, q〉 is there no j ∈ J that is a q-minimal consensus action?
If there exists some joint action j ∈ JC which is a strong consensus action then

either that action, or an alternative joint action j′ ∈ JC′⊆C , j
′ 6= j will be a qC-minimal

consensus action. Therefore this decision problem can be solved in a manner similar
to SNA. Hence, the problem is is in co-NP (n) for NRAM.

qC -MINIMAL STRONG CONSENSUS GROUP ACTION (QM-SGA)

Given a CAG Γ = 〈A,Ac, J, q〉, and a subset of agents C ⊆ A is there a qC-minimal
consensus action for C?

A deterministic algorithm must verify that ∃j ∈ JC such that j is a strong consen-
sus action and that ¬∃j′ ∈ JC′⊆C , j 6= j′ such that j′ is also a strong consensus action
where consensus is reached in strictly fewer rounds for j′ than for j. Therefore the
problem has time complexity O(n× |J |).

A non-deterministic algorithm first calls an NP (n) oracle to check that C has a
strong consensus action; if there is a strong consensus action for C it then calls an
NP (n) oracle to check whether any C ′ ⊆ C has a strong consensus action converging
in strictly fewer rounds. Hence the problem is in Dp(n) for NRAM. The Difference
class Dp is the class of problems which are in the difference of two NP classes of
problems [Papadimitriou, 1994].
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4.4.3 Complexity of weak consensus decision problems

In this section decision problems for weak consensus actions andC-minimal consensus
actions are considered.

WEAK CONSENSUS ACTION (WCA)

Given a CAG Γ = 〈A,Ac, J, q〉, and a joint action j ∈ J is j a weak consensus action?
A deterministic algorithm must verify that¬∃i ∈ Ag(j) such that q(i, j) > |Ag(j)|−1

|Ag(j)| .
This can be achieved by iteration over rep(j) checking that q(i, j) ≤ |Ag(j)|−1

|Ag(j)| . Hence,
the problem can be decided in time that is linear in the number of agents and is in
O(n).

WEAK CONSENSUS ACTION EXISTS (WAE)

Given a CAG Γ = 〈A,Ac, J, q〉, is there some j ∈ J that is a weak consensus action?
A deterministic algorithm must verify that ∃j ∈ J such that ¬∃i ∈ Ag(j) such that

q(i, j) > |Ag(j)|−1
|Ag(j)| . Hence the problem has time complexity O(n× |J |).

A non-deterministic algorithm first guesses an index of a joint action j ∈ J and
then checks that j is a weak consensus action. O(log(|J |)) ≤ O(n) operations are
required to guess an index, whilst verification that j is a weak consensus action can be
performed in O(n) (from WCA, above). This gives a non-deterministic random access
algorithm, hence the problem is in NP (n) for NRAM.

NO WEAK CONSENSUS ACTION (WNA)

Given a CAG Γ = 〈A,Ac, J, q〉, is it the case that no j ∈ J is a weak consensus action?
A deterministic algorithm must verify that ¬∃j ∈ J such that j is a weak consensus

action. Hence the problem has time complexity O(n× |J |)
The problem of determining if there exists some weak consensus action, WAE is in

NP (n); the complement of that problem is WNA. Hence, this problem is in co-NP for
NRAM.

WEAK CONSENSUS GROUP ACTION (WGA)

Given a CAG Γ = 〈A,Ac, J, q〉, and a subset of agents C ⊂ A is there a weak consen-
sus action for C?
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A deterministic algorithm must verify that ∃j ∈ J such that Ag(j) = C and j is a
weak consensus action. Hence the problem has time complexity O(n× |J |).

A non deterministic algorithm first guesses an index of a joint action j ∈ J and
then checks that Ag(j) = C and that j is a weak consensus action. This gives a non-
deterministic linear time algorithm for a random access machine. Hence the problem
is in NP (n) for NRAM.

C-MINIMAL WEAK CONSENSUS ACTION (CM-WCA)

Given a CAG Γ = 〈A,Ac, J, q〉, and a joint action j ∈ J is j a C-minimal consensus
action?

Let JC′⊂C = {j ∈ J | {i | (i, a) ∈ j} ⊂ C} denote the set of all joint actions for
all groups of agents C ′ ⊂ C. A deterministic algorithm must verify that j is a weak
consensus action and that ¬∃j′ ∈ JC′⊂C such that j′ is also a weak consensus action.
This gives a deterministic algorithm with time complexity O(n× |J |).

A non-deterministic algorithm to solve the complement of this problem (decide
whether a joint action is not a C-minimal consensus action) first checks whether j is a
weak consensus action (and returns true if it is not); if j is a weak consensus action, it
will guess an index of an action j′ ∈ J and check that Ag(j′) ⊆ A and that j′ is a weak
consensus action. So the problem of deciding whether an action is not a C-minimal
weak consensus action is in NP (n) on NRAM. Hence deciding whether an action is a
C-minimal consensus action is in co-NP (n) for NRAM.

C-MINIMAL WEAK CONSENSUS ACTION EXISTS (CM-WAE)

Given a CAG Γ = 〈A,Ac, J, q〉, is there some j ∈ J that is a C-minimal consensus
action?

If there exists some joint action j which is a weak consensus action then either j
itself or some other joint action for a proper subset of Ag(j) will be a C-minimal weak
consensus action. Therefore this problem can be solved in a manner similar to WAE;
the problem therefore has time complexity O(n× |J |) and is in NP (n) for NRAM.

NO C-MINIMAL WEAK CONSENSUS ACTION (CM-WNA)

Given a CAG Γ = 〈A,Ac, J, q〉, is it the case that no j ∈ J is a C-minimal consensus
action?
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If j ∈ JC is a weak consensus action then either j or some j′ ∈ JC′⊂C is a C-
minimal consensus action. Therefore this problem can be solved in a similar manner
to WNA and has time complexity O(n× |J |).

From CM-WAE (above) the solution to the complement of this problem is inNP (n);
hence, this problem is in co-NP (n) for NRAM.

C-MINIMAL WEAK CONSENSUS GROUP ACTION (CM-WGA)

Given a CAG Γ = 〈A,Ac, J, q〉, and a subset of agents C ⊆ A is there a C-minimal
consensus action for C?

A deterministic algorithm must verify that ∃j ∈ JC such that j is a weak consensus
action and that ¬∃j′ ∈ JC′⊂C such that j′ is also a weak consensus action. Therefore
the problem has time complexity O(n× |J |).

A non-deterministic algorithm first calls an NP (n) oracle to check that C has
a weak consensus action; if there is a weak consensus action for C it then calls an
NP (n) oracle to check whether any C ′ ⊂ C has a weak consensus action. Hence the
problem is in Dp(n) for NRAM.

4.5 Comparison of CGs and CAGs

The model for CGs contains only two elements, a finite set of agents, A, and the
quorum function q. CAGs extend CGs by introducing a further two elements, a set
of actions, Ac and a set of joint actions, J . Each joint action j ∈ J for the subset of
agents C ⊆ A,C = Ag(j) ascribes a single action a ∈ Ac to each agent i ∈ C.

The solution concepts of strong and weak consensus coalitions in CGs can be trans-
lated into CAGs as strong and weak consensus actions; these are joint actions in which
it is individually rational (under the prevailing solution concept) for agents to partici-
pate. The solution concept for collective rationality of weak consensus coalitions, the
C-minimal core was also unaffected by the introduction of joint actions to the model.
Interestingly, however, the solution concept of q-minimal consensus in CGs has been
found to be inappropriate for CAGs.

The q-minimal core of a CG aggregates strong consensus coalitions where no sub-
set of agents in a coalition can reach consensus in fewer rounds by defection to a
smaller coalition; hence, such coalitions are collectively rational. However, the addi-
tion of joint actions in CAGs significantly alters the structure of outcomes in the games,
from a single consensus outcome per coalition in CGs to potentially multiple consen-
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sus outcomes in CAGs. Consequently the question of whether or not a joint action
(rather than a coalition) is collectively rational for its associated coalition of agents is
important for CAGs.

It does not appear collectively rational for some subset of agents C ⊆ A to perform
the strong consensus action j ∈ JC if there exists some alternative strong consensus
action j′ ∈ JC , j 6= j′ such that j′ requires fewer consensus rounds than j. Although
the formation of the coalition C is a stable outcome, the joint action j is not. The
qC-minimal core for CAGs thus extends the q-minimal core for CGs. The q-minimal
core considers only proper subsets of coalitions, whereas the qC-minimal core also
considers the stability of joint action within the coalition itself.

The impact of the introduction of joint actions to the model is evident in the com-
plexity results for decision problems. Table 4.1 summarises the complexity results for
CGs and CAGs. Encouragingly, computing whether a joint action is a consensus ac-
tion (strong or weak) can be accomplished in time that is linear in n, the number of
agents. Hence, both SCA and WCA are in P (n), as are their counterparts SCC and WCC

for CGs. This suggests that knowledge based protocols for strong and weak consensus
in CAGs should be no more complex than those given for CGs in section 3.7.

Table 4.1: Comparison of complexity results for CGs and CAGs.

Consensus Games Consensus Action Games
Decision Time Complexity Decision Time Complexity
Problem Complexity Class Problem Complexity Class

SCC O(n) P (n) SCA O(n) P (n)

SCE O(n2n) NP (n) SAE O(n× |J |) NP (n)

SNC O(n2n) co-NP (n) SNA O(n× |J |) co-NP (n)

– SGA O(n× |J |) NP (n)

QM-SCC O(n2n) co-NP (n) QM-SCA O(n× |J |) co-NP (n)

QM-SCE O(n2n) NP (n) QM-SAE O(n× |J |) NP (n)

QM-SNC O(n2n) co-NP (n) QM-SNA O(n× |J |) co-NP (n)

– QM-SGA O(n× |J |) Dp(n)

WCC O(n) P (n) WCA O(n) P (n)

WCE O(n2n) NP (n) WAE O(n× |J |) NP (n)

WNC O(n2n) co-NP (n) WNA O(n× |J |) co-NP (n)

– WGA O(n× |J |) NP (n)

CM-WCC O(n2n) co-NP (n) CM-WCA O(n× |J |) co-NP (n)

CM-WCE O(n2n) NP (n) CM-WAE O(n× |J |) NP (n)

CM-WNC O(n2n) co-NP (n) CM-WNA O(n× |J |) co-NP (n)

– CM-WGA O(n× |J |) Dp(n)
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For problems concerned with existence, verification or collective rationality it is,
in the worst case, necessary that a deterministic algorithm process the entirety of the
input representation, R. Hence, many decision problems for CGs have deterministic
solutions with time complexity that is exponential in the number of agents: O(n2n).
The time complexity of comparable problems for CAGs has been found to be O(n ×
|J |). This change is merely a consequence of the structural difference between CGs
and CAGs in the way that the outcome space is represented. In CGs, where agents
form coalitions, the number of possible coalitions, and hence possible outcomes is
exponential in the number of agents; there must be precisely 2n−1 (the empty coalition
is disregarded) outcomes. For CAGs the size of the outcome space is not a function of
n, it is a function of the cardinality of the joint action set, J . This is quite arbitrary;
therefore, whilst the worst case upper bound on |J | is O(mn) (hence, still exponential
in the number of agents), for any particular CAG |J | may be significantly smaller than
this (as is the case for Example 4.1). Therefore decision problems for CAGs are no
more or less tractable than they are for CGs; indeed those which are in (co-)NP for
CGs have remained in (co-)NP , respectively.

In addition to considering decision problems previously identified for CGs a new
type of decision problem (GA) has been introduced. Problems of this type are con-
cerned with the existence of stable outcomes for a given subset of agents. The prob-
lems SGA and WGA were found to have similar complexity to their more general coun-
terparts SAE and WAE. In CAGs, for these problems at least, problems concerning a
specific coalition are no easier than those considering any coalition. Note that this is
not the case for the CGs model; the problems SCC and WCC, is C ⊆ A a strong/weak
(resp.) consensus coalition, were found to be in P (n). Whereas the corresponding
problems for any coalition, SCE and WCE, are in NP (n).

The problems QM-SGA and CM-WGA enquire regarding the existence of collec-
tively rational outcomes for a known subgroup of agents. These problems were found
to be in Dp. The difference class Dp contains problems which are solvable using two
NP oracles where the first oracle answers “yes” and the second, “no”. For example
the problem SAT-UNSAT (given two formulae is it the case that the first is satisfiable
and the second is not) is Dp-complete [Papadimitriou and Wolfe, 1985]. Wooldridge
and Dunne [2004] show that for QCG’s decision problems similar to QM-SGA and
CM-WGA (such as minimal successful coalition) are also Dp-complete.
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4.6 Discussion and Related Work

In this chapter we have described consensus action games (CAGs); these extended
consensus games by the inclusion of joint actions. Given the coalition of agents, C ⊆
A, and set of individual actions, Ac, the most straightforward representation of the
joint action space is the Cartesian product of these sets. Such a joint action space
would contain all possible combinations of agents i ∈ C and actions a ∈ Ac. We
chose to eschew this naive, implicit representation of the joint action space. Rather, in
the CAG model we have an explicit set of joint actions, J .

The coalition of agents, C ⊆ A may only perform those joint actions found in the
set JC ⊆ J . Each joint action, j ∈ JC ascribes exactly one individual action a ∈ Ac
to each participating agent i ∈ C. This approach to modelling joint actions does not
preclude the straightforward case but also permits CAGs to capture subtle facets of
joint action in the real-world.

In particular, it is not necessarily the case that all agents have the capability to per-
form the exact same range of individual actions. Certain agents may possess abilities
which are specific to only themselves or a subset of agents. For example not all agents
may posses the facility to transport a large or heavy item. Our representation of the
joint action space is well suited to modelling situations where agents are heterogeneous
with respect to their individual actions. Such distinction is not possible under the naive
representation.

Even where agents’ abilities are homogeneous it is not necessarily the case that all
agents could perform an identical action simultaneously. The space of joint action is
frequently constrained by the physical laws governing action in the real world. Con-
sider, for example, a domain in which chairs are suitable only for one occupant and
there exists but a single chair. Even though each agent may be capable of sitting in
the chair it is not possible that they all do so concurrently; this cannot be captured by
the naive representation. Our explicit model of joint action in CAGs accommodates
situations where agents’ actions utilise resources and respects that, in reality, resources
are bounded.

The majority of prior work concerning joint action in multi-agent systems has
tended to cast the problem of collaborative joint action as a team planning problem.
The SharedPlans of Grosz and Kraus [1996, 1999]; Grosz and Sidner [1990], joint in-
tentions of Cohen and Levesque [1991]; Levesque et al. [1990] and STEAM model of
teamwork [Tambe, 1997] all view the joint action problem in this way. In these ap-
proaches the focus has been on the specification of a plan of joint actions in pursuit of
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a shared goal. Typically the agents are assumed to be benevolent, therefore, the matter
of whether or not the agents will agree to act jointly has not been of great importance.

In contrast to those team-centric views Shehory and Kraus [1998] describe a method
for task allocation in multi-agent systems in which agreement is central. In their model
agents may gain utility by the completion of tasks; to be completed successfully each
task requires a set of capabilities. Typically each agent is endowed with only certain
capabilities, hence agents are motivated to form coalitions in order to achieve tasks.

The notion of agents’ capabilities found in Shehory and Kraus [1998] can be asso-
ciated with our notion of individual actions in CAGs. The set of capabilities required
to complete a task resembles our notion of joint action in that both convey the idea
of a set of agents performing a collective act. However, although Shehory and Kraus
specify the actions that should be performed (such that a task is completed) their model
does not capture which agent will perform which action. Moreover, Shehory and Kraus
consider coalition formation and joint action from a purely economic (game theoretic)
perspective. Ours is the first work to consider consensual joint action in multi-agent
systems where coalitions of agents are formed and joint actions are selected according
to endogenous thresholds.
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Chapter 5

Consensus Action Games with Goals

5.1 Consensus Action Games with Goals

Typically agents are characterised as performing actions in pursuit of goals. Consensus
action games with goals (CAG-Gs) extend consensus action games by including rep-
resentations of the agents’ motivational state. The motivations of an agent in CAG-Gs
are represented by the goals of the agent and an ordering over these goals. Each agent
would like to achieve one or more of their goals, these can be achieved only through
participation in consensus joint actions. The inclusion of information concerning the
motivations of the agents permits us to investigate rational specification of the quorum
function for CAG-Gs.

CAG-Gs model a very general notion of agents’ goals; we make no assumptions
regarding the nature of the goals that agents may have. We do not, for example, assume
that agent’s goals are necessarily compatible with one another. Therefore CAG-Gs
are suitable for modelling circumstances in which the agents have heterogeneous and
possibly conflicting goals. CAG-Gs also model a very general notion of ordering over
goals. In CAG-Gs agents have orderings over subsets of their goals. This allows for
agents to achieve multiple goals where some combinations of goals are more (or less)
desirable than others. For example given the goals ‘to marry Mary’ and ‘to marry Sue’
it is better to marry Mary or Sue than it is to marry Mary and Sue. Therefore we do not
assume that monotonically increasing (by membership) sets of goals are increasingly
desirable.

In CAG-Gs each agent has a preorder (transitive and reflexive) over subsets of
their goals. This contrasts with the approach of social choice theory where, typically,
agents’ orderings are partial (transitive, reflexive and asymmetric). We do not require
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asymmetry as, for two sets of goals, it may be that these are ranked equally in the or-
dering; however this does not imply that these are the same set of goals. The orderings
over the agents’ goals are not required to be total (defined for every possible pair).
Thus in CAG-Gs, agents may possess goals which are incomparable. This differenti-
ates CAG-Gs from other common models including preference orderings. We see this
difference as beneficial for many real-world settings where goals may not necessarily
be comparable and not all equally preferred things are the same.

Whilst the introduction of goals and orderings over subsets of goals has implica-
tions for how quorum values may be specified, the mechanisms by which agents may
reach consensus are not affected by the inclusion of these elements in the model. Con-
sequently, definitions for strong and weak consensus, together with their associated
core concepts for CAG-Gs are the same as for CAGs. The definitions given in Chapter
4 are not repeated here.

Definition 5.1. A consensus action game with goals (CAG-G) is a tuple

Γ = 〈A,Ac, J,G, goals, achieve, {�i| i ∈ A}, q〉 where:

A is a finite set of agents, {1, . . . , n}, n ≥ 2.

Ac is a finite, non empty set of possible actions {1, . . . ,m}.

J is a set of joint actions; each joint action is a set of pairs (i, a), where i ∈ A

and a ∈ Ac, specifying the action performed by each agent participating in

the joint action. Each participating agent performs exactly one action. The set

Ji = {j ∈ J | (i, a) ∈ j} indicates the set of joint actions in which agent i may

participate; JC = {j ∈ J | {i | (i, a) ∈ j} = C} indicates the set of all joint

actions that can be performed by the set of agents C ⊆ A.

G is a finite, non empty set of possible goals.

goals is a function goals : A −→ 2G. For each agent i ∈ A, goals(i) ⊆ G gives the

set of goals agent i would like to achieve.

achieve is a function achieve : J −→ 2G. For each joint action j ∈ J , achieve(j) ⊆
G gives the set of goals achieved through the performance of j. We write:

achievei(j) = achieve(j) ∩ goals(i) to denote the set of goals achieved by

agent i ∈ A through participation in joint action j ∈ Ji.
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�i is a preorder (transitive and reflexive) �i⊆ 2goals(i) × 2goals(i). For each agent

i ∈ A, �i, is an ordering over subsets of goals. For the sets of goals g, g′ ∈
P(goals(i)) we write:

g �i g
′ to denote that for agent i the set of goals g is ranked at least as high as

the set of goals g′,

g ∼=i g
′ for g �i g

′ and g′ �i g to denote that agent i is indifferent between the

sets of goals g, g′,

g �i g
′ for g �i g

′ and not g′ ∼=i g to denote that for agent i the set of goals g

is ranked strictly higher than the set of goals g′

We require that for g, g′ ∈ P(goals(i)), g 6= g′ where g′ = ∅, g �i g
′. Thus,

achieving something is strictly better than achieving nothing.

q is a quorum function. The partial function q : {(i, j) | i ∈ A, j ∈ Ji} → [0, 1] takes

an agent i ∈ A and a joint action j in Ji and returns a number in the interval

[0,1].

5.2 Rational Specification of q for CAG-Gs

In previous chapters we have relied upon an intuitive notion that quorum values repre-
sent the degree of support of an agent to participate in a coalition or joint action. The
basis of this intuition is that: for a given agent i ∈ A the fewer the number of other
agents required to support a collective act before i also supports the more keen i is
to participate in that act. Thus, in general, it is the case that agents are more keen to
participate in collective acts where their threshold is lower.

In this section we are going to formalise our intuitive understanding of quorum
values into a series of rationality postulates. These postulates, to which all CAG-Gs
must adhere, constrain the specification of the quorum function in consensus action
games with goals to only those functions which may be considered rational given the
motivational state of the agents.

We begin by considering those joint actions the agents are most motivated to par-
ticipate in. The motivation of agent i ∈ A for participation in joint action j ∈ Ji

is that, through participation in j, the agent achieves the set of goals achievei(j) =

goals(i) ∩ achieve(j). Clearly, agent i ∈ A is most motivated to achieve those sets
of goals ranked highest by the ordering �i. However the sets of goals an agent may
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actually achieve are constrained by both the joint actions in which the agent may par-
ticipate, Ji, and the function achieve. Thus an agent can do no better than to achieve
one of the best non-empty set of goals according to �i given Ji and achieve, such sets
may be termed non-dominated.

Definition 5.2. For agent i ∈ A the set of goals g ∈ P(goals(i)) is non-dominated

under �i if there exists some joint action j ∈ Ji such that achievei(j) = g and

there is no j′ ∈ Ji such that achievei(j′) �i g. We denote by maxi, where maxi ⊆
P(goals(i)) \ ∅, the set of goal sets that are non-dominated under �i given Ji and

achieve.

Agents may have many non-dominated goal sets. Note that our definition of non-
domination considers only those goal sets which can actually be achieved through
participation in a joint action. Hence for g, g′ ∈ P(goals(i)) where g ∈ maxi this does
not preclude that g′ �i g. However, since g is non-dominated there exists no j ∈ Ji
such that achievei(j) = g′. Thus an agent can do no better than to achieve one of
its non-dominated goal sets. It follows from our intuitive understanding that for joint
actions achieving a non-dominated goal set the agents should exhibit unconditional
support. We have:

Definition 5.3. Postulate of unconditional support - for agent i ∈ A and joint action

j ∈ Ji, if the set of goals achievei(j) ∈ maxi then q(i, j) = 0. Agents unconditionally

support joint actions achieving their non-dominated goal-set(s).

Whilst the postulate of unconditional support stipulates that rational agents must
unconditionally support a joint action achieving one of their non-dominated goal-sets
the postulate does not limit unconditional support to only those joint actions achieving
such a goal-set. Even where some set of goals is strictly preferred to some other it
may still be rational for an agent to unconditionally support the latter set of goals, for
example; where those goals are still ‘good enough’. We accommodate such cases as
follows:

Definition 5.4. Postulate of consistent unconditional support - for agent i ∈ A

and joint actions j, j′ ∈ Ji where achievei(j) �i achievei(j
′) if q(i, j′) = 0 then

q(i, j) = 0. If agent i unconditionally supports joint action j′ then i also uncondition-

ally supports any joint action that is ‘equal to or better than’ j′.

We now consider the other extreme, those joint actions for which the agent has no
motivation to participate in. There is no motivation for an agent to participate in a
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joint action where that joint action achieves none of the agent’s goals. It follows that
a rational agent will object to participation in a joint action through which it achieves
nothing:

Definition 5.5. Postulate of objection - for agent i ∈ C ⊆ A and joint action j ∈ Ji,
where j is such that achievei(j) = ∅ then |C|−1|C| < q(i, j) ≤ 1. Agents object to joint

actions which achieve none of their goals.

The postulate of objection has an important consequence. Agents must object to
participation in any joint action which does not result in them achieving any of their
goals. Therefore, where the quorum function, q is rationally specified, it is the case
that every consensus action (strong or weak) achieves at least one goal for each partic-
ipating agent.

As for the postulate of unconditional support, the postulate of objection does not
specify where an agent should not object to participation in a joint action. For example,
an uncompromising, yet still rational agent may object to any joint action not achieving
one of its non-dominated goal sets. We accommodate such cases, thus:

Definition 5.6. Postulate of consistent objection - for agent i ∈ A and joint actions

j, j′ ∈ Ji by coalitions C,C ′ ⊆ A respectively, where achievei(j) �i achievei(j
′) if

|C|−1
|C| < q(i, j) ≤ 1 then |C

′|−1
|C′| < q(i, j′) ≤ 1. If agent i objects to j then i also objects

to any joint action that is ‘no better than’ j.

Our final postulate, that of proportional support, addresses directly the intuition
that, a higher quorum value suggests that an agent is less keen to participate in some
joint action. Consider the joint actions j, j′ ∈ Ji performed, respectively, by coalitions
C,C ′ ⊆ A and where q(i, j) = 0.6, q(i, j′) = 0.7. From our intuition we may conclude
that agent i is more keen to participate in j than in j′; however, this is not necessarily
the case. Were it that |C| = 2 and |C ′| = 4, then clearly i is less keen to participate in
j that in j′ i.e., i objects to j yet conditionally supports j′. Therefore our intuition is
only partial. We can now state:

Definition 5.7. Postulate of proportional support - for agent i ∈ A and joint actions

j, j′ ∈ Ji, by coalitions C and C ′ respectively, where |C| ≥ |C ′| and achievei(j) �i

achievei(j
′) then q(i, j) ≤ q(i, j′). Agents’ quorum values increase with weak mono-

tonicity as their keenness to participate in joint actions decreases, but only for coali-

tions of similar or greater cardinality.
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5.3 Computational Complexity of CAG-Gs

Continuing our characterisation of the computational complexity of our models, this
section considers the representation and computational complexity of decision prob-
lems associated with CAG-Gs. We begin by observing that the addition of goals and
agents’ orderings over subsets of goals to the CAG model and the subsequent con-
straints for rational specification of the quorum function has no impact on the com-
plexity of decision problems previously considered in section 4.4. Therefore these
results also hold for CAG-Gs.

We therefore focus our attention upon decision problems specifically related to
the achievement of goals in CAG-Gs. For CAG-Gs, where agents have an ordering
over sets of goals it is natural that we are interested in the ability of agents to achieve
one of their non-dominated goal sets. Therefore we will consider the computational
complexity of decision problems associated with the verification, existence and non-
existence of consensus joint actions in which every participating agent achieves one of
their non-dominated goal sets.

We begin, as before setting out the representational scheme to be used as the input
for our new decision problems.

5.3.1 Representation

The representational scheme, R, for CAG-Gs extends our representation for CAGs.
We must include a representation of the goals achieved by each joint action and the
orderings of the agents over subsets of goals. Previous assumptions are carried for-
ward, in particular, our results assume the non-deterministic random access machine
(NRAM) model of computation. See section 4.4.1 for further details.

A naive encoding of the agents’ ordering over sets of goals would represent each
ordering as a set of pairs. Such a representation would include the pair (x, y) ∈ 2G×2G

for each (x, y) ∈�i and for each i ∈ A; this encoding, although straightforward, has
size exponential in the number of goals (space complexity of O(n × 2G × 2G)). We
wish to, wherever possible, express complexity results as a function of the number of
agents given in the input. The space complexity of this naive representation would
obfuscate such results.

Instead, we encode only the relevant part of the agents’ ordering over sets of goals
in a manner that is more suitable to the decision problems we are going to consider
and also leverages the random access model. In particular, for each possible subset
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of goals we represent the subset of agents for whom those goals are non-dominated.
Formally, for the subset of goals g ∈ P(G) let Cg ⊆ A be a set of agents such that
agent i ∈ Cg only if g is non-dominated under �i; then the set of agents for whom g

is non-dominated is represented as rep(g) = {i ∈ Cg ⊆ A | (g ∩ goals(i)) ∈ maxi}.
Let rep(G) = {rep(g) | g ∈ P(G)} be an ordered sequence of sets of agents, indexed
by the set of goals g ∈ P(G). We assume that the structure rep(G) is indexed such that
given a set of goals g ∈ P(G) the set of agents Cg ⊆ A, for which g is a set of non-
dominated goals can be located in constant time. This representation has been chosen
so that we may present meaningful complexity results for the decision problems we
are going to consider.

We extend our encoding of joint actions to include both the quorum values of the
agents for each joint action and the goals achieved through each joint action. As before,
let Ag : J −→ P(A) be a function that for a given joint action j returns C ⊆ A, the
set of agents that may participate in joint action j. The joint action j is fully described
by the set of quadruples rep(j) = {(i, j, q(i, j), achieve(j)) | i ∈ Ag(j), q(i, j) ∈
[0, 1], achieve(j) ∈ P(G)}. The overall representation of the game is then the ordered
sequence given by the sets R = {{rep(j) | j ∈ J)}, {rep(G)}}.

5.3.2 Complexity of strong consensus decision problems

STRONG CONSENSUS NON-DOMINATED (SCN)

Given a CAG-G Γ = 〈A,Ac, J,G, goals, achieve, {�i| i ∈ A}, q〉 and joint action
j ∈ J , is j a strong consensus action such that each agent i ∈ Ag(j) achieves one of
their non-dominated goal-sets?

The algorithm must verify that j achieves a non-dominated goal-set for each agent
i ∈ Ag(j). This can be achieved by looking up the set of agents Cx indexed by
x = achieve(j) in the indexed structure rep(G) and verifying that Ag(j) ⊆ Cx.
This is an O(n) operation. If j achieves a non-dominated goal set for each agent
then, under the postulate of unconditional support j is a strong consensus action (since
∀i ∈ Ag(j), q(i, j) = 0). This gives a deterministic algorithm with time complexity
O(n). Hence the problem is in P (n) for NRAM.

STRONG CONSENSUS NON-DOMINATED EXISTS (SNE)

Given a CAG-G Γ = 〈A,Ac, J,G, goals, achieve, {�i| i ∈ A}, q〉 does there exist
some j ∈ J such that j is a strong consensus action and each agent i ∈ Ag(j) achieves
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one of their non-dominated goal-sets?
A deterministic algorithm would, worst case, evaluate SCN for each j ∈ J . The

algorithm therefore has time complexity O(n× |J |)
A non-deterministic algorithm first guesses an index of an action j in J , this is

an O(log(|J |) operation. The algorithm then checks that through j each participating
agent achieves one of their non-dominated goal-sets, this is an O(n) operation. This
gives a non-deterministic linear time algorithm for a random access machine. Hence
the problem is in NP (n) for NRAM.

NO STRONG CONSENSUS NON-DOMINATED (SNN)

Given a CAG-G Γ = 〈A,Ac, J,G, goals, achieve, {�i| i ∈ A}, q〉 is there no j ∈ J
such that j is a strong consensus action and each agent i ∈ Ag(j) achieves one of their
non-dominated goal-sets?

A deterministic algorithm would, worst case, evaluate the complement of SCN for
each j ∈ J . The algorithm therefore has time complexity O(n× |J |)

Since the complement of this problem (SNE) is in NP (n), the non-deterministic
algorithm for this problem is in co-NP (n)

STRONG CONSENSUS GROUP NON-DOMINATED (SGN)

Given a CAG-G G = 〈A,Ac, J,G, goals, achieve, {�i| i ∈ A}, q〉, and a coalition
C ⊆ A, does there exist some j ∈ JC such that j is a strong consensus action and each
agent i ∈ C achieves one of their non-dominated goal-sets?

Since it is possible that ∀j ∈ J,Ag(j) = C this problem has identical complexity
to SNE. The deterministic algorithm therefore has time complexity O(n× |J |)

Since this problem is similar to SNE a non-deterministic algorithm for this problem
is also in NP (n) for NRAM.

qC -MINIMAL STRONG CONSENSUS NON-DOMINATED (QM-SCN)

Given a CAG-G Γ = 〈A,Ac, J,G, goals, achieve, {�i| i ∈ A}, q〉, and a joint action
j ∈ J , is j a qC-minimal strong consensus action such that each agent i ∈ Ag(j)

achieves one of their non-dominated goal-sets?
Recall that:

• the qC-minimal core is defined as containing only those joint actions for which
the number of agents and the number of rounds required for strong consensus
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are minimal. Specifically, a strong consensus action j by the agents C ⊆ A is a
qC-minimal consensus action if there is no other strong consensus action j′ 6= j

for C ′ ⊆ C where the number of rounds required to reach consensus for j′ is
less than the number of rounds required to reach consensus regarding j.

• rounds : J → N is a function giving the number of rounds required for the
agents to reach strong consensus regarding joint action j ∈ J and has time
complexity O(n).

• JC′⊆C = {j ∈ J | {i | (i, a) ∈ j} ⊆ C} denotes the set of all joint actions for
all groups of agents C ′ ⊆ C.

A deterministic algorithm must verify that for all agents i ∈ Ag(j), achieve(j) is a
non-dominated goal set (this is anO(n) operation). If j achieves a non-dominated goal
set for each participating agent then, under the postulate of unconditional support, j is
a strong consensus action and consensus is reached in one round. Since the minimum
number of rounds to reach consensus is one round then j is also in the qC-minimal core
(there can be no j′ 6= j for which strong consensus can be reached in strictly fewer
rounds). A deterministic algorithm therefore has time complexity O(n). Hence the
problem is in P (n).

qC -MINIMAL STRONG CONSENSUS NON-DOMINATED EXISTS (QM-SNE)

Given a CAG-G Γ = 〈A,Ac, J,G, goals, achieve, {�i| i ∈ A}, q〉 is there some j ∈ J
such that j is a qC-minimal strong consensus action such that each agent i ∈ Ag(j)

achieves one of their non-dominated goal-sets?
A deterministic algorithm would, in the worst case evaluate QM-SCN for each j ∈

J . The algorithm therefore has time complexity O(n× |J |).
A non-deterministic algorithm first guesses an index of some j in J , the procedure

then follows as for QM-SCN. Therefore this problem is also in NP (n) for NRAM.

NO qC -MINIMAL STRONG CONSENSUS NON-DOMINATED (QM-SNN)

Given a CAG-G Γ = 〈A,Ac, J,G, goals, achieve, {�i| i ∈ A}, q〉 is there no j ∈ J
such that j is a qC-minimal strong consensus action and that each agent i ∈ Ag(j)

achieves one of their non-dominated goal-sets?
A deterministic algorithm would, in the worst case evaluate the complement of

QM-SCN for each j ∈ J . The algorithm therefore has time complexity O(n× |J |).
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Since the complement of this problem (QM-SNE) is in NP (n), this problem is in
co-NP (n) for NRAM.

qC -MINIMAL STRONG CONSENSUS GROUP NON-DOMINATED (QM-SGN)

Given a CAG-G Γ = 〈A,Ac, J,G, goals, achieve, {�i| i ∈ A}, q〉 and a subset of
agents C ⊆ A is there some j ∈ JC such that j is a qC-minimal strong consensus
action and each agent i ∈ C achieves one of their non-dominated goal-sets?

A deterministic algorithm must verify that ∃j ∈ JC such that j is a strong consen-
sus action through which each participating agent achieves one of their non-dominated
goal-sets and that ¬∃j′ ∈ JC′⊆C , j 6= j′ such that j′ is also a strong consensus ac-
tion where consensus is reached in strictly less rounds for j′ than for j. Therefore the
problem has time complexity O(n× |J |).

A non-deterministic algorithm first calls an NP (n) oracle to check that C has a
strong consensus action, j and that ∀i ∈ C, achieve(j) is non-dominated; if there is
such an action for C it then calls an NP (n) oracle to check whether any C ′ ⊆ C has
a strong consensus action converging in strictly fewer rounds. Hence the problem is in
Dp(n) for NRAM.

5.3.3 Complexity of weak consensus decision problems

WEAK CONSENSUS NON-DOMINATED (WCN)

Given a CAG-G Γ = 〈A,Ac, J,G, goals, achieve, {�i| i ∈ A}, q〉, and a joint action
j ∈ J , is j a weak consensus action such that each agent i ∈ Ag(j) achieves one of
their non-dominated goal-sets?

A deterministic algorithm must verify that j achieves a non-dominated goal-set for
each agent i ∈ Ag(j); this can be achieved by looking up x = achieve(j) in the
indexed structure rep(G) and verifying that Ag(j) ⊆ Cx. This is an O(n) operation.
From the postulate of unconditional support, if j achieves a non-dominated set of goals
for each participating agents then ∀i ∈ Ag(j), q(i, j) = 0, hence j is a weak consensus
action. This gives a deterministic algorithm with time complexity O(n). Hence the
problem is in P (n) for NRAM.

WEAK CONSENSUS NON-DOMINATED EXISTS (WNE)

Given a CAG-G Γ = 〈A,Ac, J,G, goals, achieve, {�i| i ∈ A}, q〉 is there some j ∈ J
that is a weak consensus action such that each agent i ∈ Ag(j) achieves one of their
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non-dominated goal-sets?
A deterministic algorithm would, worst case, evaluate WCN for each j ∈ J . The

algorithm therefore has time complexity O(n× |J |).
A non-deterministic algorithm first guesses an index of an action j in J , this is

an O(log(|J |) operation. The algorithm then checks that through j each participat-
ing agent achieves one of their non-dominated goal-sets, this is an O(n) operation,
if so then j is a weak consensus action. This gives an non-deterministic linear time
algorithm for a random access machine. Hence the problem is in NP (n) for NRAM.

NO WEAK CONSENSUS NON-DOMINATED (WNN)

Given a CAG-G Γ = 〈A,Ac, J,G, goals, achieve, {�i| i ∈ A}, q〉 is it the case that
there is no j ∈ J such that j is a weak consensus action and that each agent i ∈ Ag(j)

achieves one of their non-dominated goal-sets?
A deterministic algorithm would, worst case, evaluate the complement of WCN for

each j ∈ J . The algorithm therefore has time complexity O(n× |J |).
Since the complement of this problem (WNE) is in NP (n), the non-deterministic

algorithm for this problem is in co-NP (n).

WEAK CONSENSUS GROUP NON-DOMINATED (WGN)

Given a CAG-G Γ = 〈A,Ac, J,G, goals, achieve, {�i| i ∈ A}, q〉 and a subset of
agents C ⊂ A is there a weak consensus action for C such that each agent i ∈ C

achieves one of their non-dominated goal-sets?
Since it is possible that ∀j ∈ J,Ag(j) = C this problem has identical complexity

to WNE. The deterministic algorithm therefore has time complexity O(n× |J |).
Since this problem is similar to WNE a non-deterministic algorithm for this problem

is also in NP (n) for NRAM.

C-MINIMAL WEAK CONSENSUS NON-DOMINATED (CM-WCN)

Given a CAG-G Γ = 〈A,Ac, J,G, goals, achieve, {�i| i ∈ A}, q〉 and a joint action
j ∈ J is j a C-minimal consensus action such that each agent i ∈ Ag(j) achieves one
of their non-dominated goal-sets?

Recall that: a weak consensus action j ∈ JC is a C-minimal consensus action and
hence in the C-minimal core of a CAG only if there does not exist some other weak
consensus action j′ ∈ JC′ such that C ′ ⊂ C.
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A deterministic algorithm must verify that achieve(j) gives a non-dominated goal
set for each i ∈ Ag(j) (this is an O(n) operation). If so the algorithm must then verify
that ¬∃j′ ∈ JC′⊂C , j 6= j′ such that j′ is also a weak consensus action (this is an
O(n× |J |) operation). Hence the problem has time complexity O(n× |J |).

A non-deterministic algorithm for deciding the complement of this problem will
first check whether through j each agent achieves one of their non-dominated goal sets
(and return yes if they do not) and if it is, guess a joint action j′ ∈ J , verify that j′ 6= j,
Ag(j′) ⊂ Ag(j) and j′ is a weak consensus action. The problem of deciding that j is
not aC-minimal consensus action through which each participating agent achieves one
of their non-dominated goal-sets is therefore in NP (n) on NRAM. Hence deciding
whether j is a C-minimal consensus action through which each participating agent
achieves one of their non-dominated goal-sets is in co-NP (n) for NRAM.

C-MINIMAL WEAK CONSENSUS NON-DOMINATED EXISTS (CM-WNE)

Given a CAG-G Γ = 〈A,Ac, J,G, goals, achieve, {�i| i ∈ A}, q〉 is there some j ∈ J
that is a C-minimal consensus action such that each agent i ∈ Ag(j) achieves one of
their non-dominated goal-sets?

A deterministic algorithm would, in the worst case evaluate CM-WCN for each
j ∈ J . The algorithm therefore has time complexity O(n× |J |2).

A non-deterministic algorithm first guesses an index of some j in J , after-which the
procedure is as for CM-WCN. Therefore this problem is also in co-NP (n) for NRAM.

NO C-MINIMAL WEAK CONSENSUS NON-DOMINATED (CM-WNN)

Given a CAG-G Γ = 〈A,Ac, J,G, goals, achieve, {�i| i ∈ A}, q〉 is it the case that
no j ∈ J is a C-minimal consensus action through which each participating agent
achieves one of their non-dominated goal-sets?

A deterministic algorithm would, in the worst case evaluate the complement of
CM-WCN for each j ∈ J . The algorithm therefore has time complexity O(n× |J |2).

Since the complement of this problem (CM-WNE) is in co-NP (n), this problem is
in NP (n) for NRAM.

C-MINIMAL WEAK CONSENSUS GROUP NON-DOMINATED (CM-WGN)

Given a CAG-G Γ = 〈A,Ac, J,G, goals, achieve, {�i| i ∈ A}, q〉 and a subset of
agents C ⊆ A, is there a C-minimal consensus action for C such that each agent i ∈ C
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achieves one of their non-dominated goal-sets?
Since it is possible that ∀j ∈ J,Ag(j) = C this problem has identical complexity

to GM-WNE. The deterministic algorithm therefore has time complexity O(n× |J |2).
A non-deterministic algorithm first calls an NP (n) oracle to check that C has a

weak consensus action through which each participating agent achieves one of their
non-dominated goal-sets. If so, it then calls an NP (n) oracle to check whether any
C ′ ⊂ C has a weak consensus action. Hence the problem is in Dp(n) for NRAM.

5.4 Comparison of CAGs and CAG-Gs

The CAG-G model extends that of CAGs by the introduction of a set of goals, G, a
function mapping agents i ∈ A to subsets of goals, goals(i) ⊆ G, a function mapping
joint actions j ∈ J to the goals they achieve, achieve(j) ⊆ G and, for each agent i ∈ A
the pre-order�i⊆ 2goals(i)×2goals(i). The introduction of these structures has no effect
on the solution concepts previously defined for CAGs. Hence, the solution concepts
of strong/weak consensus actions and the associated concepts of the qC-minimal core
and the C-minimal core defined for CAGs apply to CAG-Gs without alteration.

Although agents in CAG-Gs possess an ordering over subsets of their goals in
CAG-Gs we do not attempt to aggregate these orderings into an overarching, total so-
cial order as in social choice theory. Instead, these orderings place rational constraints
upon the specification of the quorum function, q. Like CAGs, consensus and core
membership in CAG-Gs are evaluated using only the thresholds given by q.

Our complexity results, summarised in table 5.1 show that the impact of extending
the CAG model to CAG-Gs is small, yet noticeable. Of the sixteen decision problems,
twelve of these exhibited similar time complexity and membership of similar complex-
ity classes to those found for related problems in CAGs. The comparability of these
results is due largely to our choice of representation and indexing for rep(G). Since
establishing that a subset of goals are non-dominated for some subset of agents is an
O(n) operation we might expect there to be little impact on the complexity of decision
problems.

However, for at least one decision problem there is a reduction in complexity. In
CAGs the decision problem QM-SCA asks whether a given joint action j ∈ J is in the
qC-minimal core, this problem was found to be in NP (n). The comparable decision
problem in CAG-Gs is QM-SCN, determining whether j achieves a non-dominated
goal set for each participating agent and is also qC-minimal was found to be in P (n).
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The apparent simplification of this problem is due to the introduction of rationality
postulates in CAG-Gs. Specifically the postulate of unconditional support guarantees
that if j achieves a non-dominated set of goals for each participating agent then ∀i ∈
Ag(j), q(i, j) = 0 and rounds(j) = 1. Therefore, there cannot exist some other
j′ ∈ J such that rounds(j′) < rounds(j). Hence j must be in the qC-minimal core
for CAG-Gs.

The complexity of decision problems CM-WEA, CM-WNA and CM-WGA is also
different in CAG-Gs to the comparable problems in CAGs. These problems are con-
cerned with the existence and non-existence of joint actions in the C-minimal core,
their time complexity has increased from O(n × |J |) to O(n × |J |2). These differ-
ences can be directly associated with the introduction of goals in the CAG-G model.
In CAGs the problems of existence/emptiness of the C-minimal core can be reduced
to the problems of (non)-existence of any weak consensus action. Such a reduction is
not possible for CAG-Gs since the existence of a weak consensus action, j ∈ J does
not guarantee that j achieves a non-dominated goal set for each participating agent.

Table 5.1: Comparison of complexity results for CAGs and CAG-Gs.

Consensus Action Games Consensus Action Games with Goals
Decision Time Complexity Decision Time Complexity
Problem Complexity Class Problem Complexity Class

SCA O(n) P (n) SCN O(n) P (n)

SAE O(n× |J |) NP (n) SNE O(n× |J |) NP (n)

SNA O(n× |J |) co-NP (n) SNN O(n× |J |) co-NP (n)

SGA O(n× |J |) NP (n) SGN O(n× |J |) NP (n)

QM-SCA O(n× |J |) co-NP (n) QM-SCN O(n) P (n)

QM-SAE O(n× |J |) NP (n) QM-SNE O(n× |J |) NP (n)

QM-SNA O(n× |J |) co-NP (n) QM-SNN O(n× |J |) co-NP (n)

QM-SGA O(n× |J |) Dp(n) QM-SGN O(n× |J |) Dp(n)

WCA O(n) P (n) WCN O(n) P (n)

WAE O(n× |J |) NP (n) WNE O(n× |J |) NP (n)

WNA O(n× |J |) co-NP (n) WNN O(n× |J |) co-NP (n)

WGA O(n× |J |) NP (n) WGN O(n× |J |) NP (n)

CM-WCA O(n× |J |) co-NP (n) CM-WCN O(n× |J |) co-NP (n)

CM-WAE O(n× |J |) NP (n) CM-WNE O(n× |J |2) co-NP (n)

CM-WNA O(n× |J |) co-NP (n) CM-WNN O(n× |J |2) NP (n)

CM-WGA O(n× |J |) Dp(n) CM-WGN O(n× |J |2) Dp(n)
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5.5 Discussion and Related Work

In this chapter we have described consensus action games with goals (CAG-Gs). CAG-
Gs are coalitional games in which self-interested agents achieve individual goals through
the formation of coalitions and performance of joint actions. The CAG-G model de-
scribes, for each agent i ∈ A , an ordering,�i , over subsets of the agent’s goals. Thus,
for each agent, the achievement of certain combinations of goals may be more desir-
able than others. Given such an arrangement the traditional game-theoretic treatment
would be to derive expressions of coalitional stability directly from the agents’ pref-
erence orderings. This is the approach taken by Dunne and Wooldridge when formu-
lating qualitative coalition games with preferences (QCGPs) [Dunne and Wooldridge,
2004].

Recall (from section 3.9) that in a qualitative coalition game (QCG) agents form
coalitions in order to achieve their individual goals; it is assumed that agents are in-
different between which of their goals are achieved. In QCGPs this assumption of
indifference is dropped. Each agent holds a preference ordering over their goals, from
these orderings Dunne and Wooldridge define notions of strong and weak coalitional
preference. A coalition strongly prefers some set of goals where that set contains at
least one goal, common to all members; for weak coalitional preference the require-
ment that the most preferable goal to be common to all member-agents is relaxed.

CAG-Gs differ from QCGPs in several respects. Firstly, in CAG-Gs we include a
representation of actions and joint actions for the agents; since the focus of QCGPs
is solely on goal achievement, QCGPs have nothing to say about what the agents will
actually do. In QCGPs agents’ preferences are over their set of goals, thus there is an
implicit assumption in QCGPs that goal preference is weakly monotonic in the number
of goals each agent achieves (that is: achieving an additional goal never leads to a
less preferred outcome). Since in CAG-Gs agents’ orderings are over subsets of their
goals we do not make this assumption. The cost of this increased expressivity is that,
potentially, the structure required to represent agents’ ordering over goals in CAG-Gs
is exponential in the size of an agent’s goal set, whereas, for QCGPs the comparable
structure is quadratic in the size of the same set. However, since we do not require that
�i is total it is not necessarily the case that for similar goal-sets the space complexity
of preference representation in CAG-Gs will always be greater than for QCGPs.

Most strikingly however, in CAG-Gs we do not follow the expected game theoretic
route of deriving coalition stability directly from preference. Instead the agents’ goal-
set orderings place a series of linear constraints on the specification of the quorum
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function, q. These constraints are formulated in accordance with the five rationality
postulates given in section 5.2, these postulates concern themselves with the rational
selection of threshold values for the agents.

Since rationality is central to the study of games, our treatment of agents’ prefer-
ence in CAG-Gs is not as divergent from the typical approach as it may first appear.
In Harsanyi [1961] a series of six postulates concerning rationality in two person co-
operative games with transferable utility are proposed. Although Harsanyi’s principal
concern is with decision making in the bargaining or negotiation problem it turns out
that our approach to rationality is largely consonant with rationality in this economic
setting. Harsanyi’s postulates may be summarised as follows:

• individual utility maximisation - each player tries to get the best possible out-
come for themselves,

• acceptance of higher pay-offs - if a player makes an offer in which they receive a
pay-off of some amount, that player will settle for any counter-offer where they
receive at least that amount,

• efficiency - given a set of decision rules players will choose those rules that are
most efficient in the sense that they lead to higher pay-offs for both players,

• symmetry - the same decision rules apply to all players,

• restriction of variables - decision rules need not be concerned with anything other
than the coalitional reward and its subsequent division,

• mutually expected rationality - players expect that other players will follow de-
cision rules consistent with these postulates.

The postulate of individual utility maximisation characterises players as principally
self-interested. In CAG-Gs self interest is served by unconditionally supporting those
joint actions which achieve the most preferable goal-sets. Hence, Harsanyi’s postulate
of individual utility maximisation is directly analogous to our postulate of uncondi-
tional support (definition 5.3).

The postulate of acceptance of higher pay-offs characterises players as having con-
sistent behaviour and is analogous to our postulates of proportional support (defini-
tion 5.7) and consistent unconditional support (definition 5.4). The implicit converse
postulate (non-acceptance of lower pay-offs) is therefore analogous to our postulate of
consistent objection (definition 5.6). It is also the case that CAG-G’s satisfy Harsanyi’s
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postulates of symmetry and mutually expected rationality; in CAG-Gs the same rules
and definitions of rationality apply to all players.

Since CAG-G’s do not attempt to represent situations where utility is transferable
(i.e., goals are personal thus one agent cannot achieve the goals of another) it is less
straightforward to find parallels between rationality in CAG-G’s and Harsanyi’s postu-
lates of efficiency and restriction of variables - both are concerned in some-way with
coalitional rewards. Nonetheless, CAGs are efficient in the sense that where agents
achieve their non-dominated goal sets (“highest pay-off”) the agents will uncondition-
ally support this outcome. It is also the case that our rationality postulates for CAG-Gs
are concerned only with the goals that may be achieved, thus, in this sense we observe
Harsanyi’s postulate of restriction of variables.
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Chapter 6

Temporal Consensus Action Games
with Goals

6.1 Temporal Consensus Action Games with Goals

In this chapter we present our final model, temporal consensus action games with goals
(T-CAG-Gs). The T-CAG-G model extends previous models by adding a temporal
element to the games. T-CAG-Gs describe agents playing, possibly different CAG-Gs
repeatedly, over time.

A T-CAG-G is a transition system over a set of states, T . Each state t ∈ T is
labelled with:

• a CAG-G game, γ(t) , over common sets of agents, A, actions, Ac, joint actions,
J , and goals, G,

• for each goal in G a goal proposition, with valuation function πG(t),

• a set of atomic propositions, P , with valuation function πP (t).

A goal proposition is true in a given state only if that goal is achieved in that state. The
set of propositions, P , is arbitrary and may be used to model the domain of interest.

Our intention is that T-CAG-Gs be suitable for modelling real-world problems. As
such we expect that in many applications for T-CAG-Gs the domain of interest will
obey certain domain specific constraints. In T-CAG-Gs these constraints are captured
using the structure C, a set of propositional formulae. Constraints may be placed on
which goal and other propositions may be concurrently true. This may be useful, for
example, when modelling the location of a physical object; propositions representing
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the object’s location are mutually exclusive since an object may not occupy two places
concurrently.

In T-CAG-Gs, as with previous models, a game may possess multiple consensus ac-
tions. The transition relation, o, for T-CAG-Gs respects this, permitting multiple joint
actions to be performed simultaneously, thus affecting the choice of subsequent state.
The T-CAG-G model therefore describes circumstances where two or more coalitions
of agents act with ‘internal’ consensus — there is consensus amongst the agents of
each coalition, but without ‘external’ consensus – there is no consensus between those
coalitions. For these cases we require that: the participating coalitions are disjoint with
respect to agents (an agent cannot be a member of two coalitions in T-CAG-Gs) and
that their combined actions do not violate those domain constraints given in C. State
transitions in T-CAG-Gs therefore represent one or more joint actions performed by
disjoint coalitions. We refer to the concurrent performance of multiple joint actions as
composite actions. More formally:

Definition 6.1. A T-CAG-G over a given set of agents A, goals G, and joint actions J

is a structure 〈A,Ac, J,G, achieve, P, C, T, γπG, πP , α, o〉 where:

A is a finite set of agents, {1, . . . , n}, n ≥ 2.

Ac is a finite non-empty set of possible actions {1, . . . ,m}.

J is a set of joint actions; each joint action is a set of pairs (i, a), where i ∈ A and

a ∈ Ac, specifying the action performed by each agent participating in the joint

action. Each participating agent performs exactly one action.

G is a finite non-empty set of goal propositions.

achieve is a function achieve : J −→ 2G. For each joint action j ∈ J , achieve(j) ⊆
G gives the set of goals achieved through the performance of j.

P is a finite, possibly empty, set of atomic propositions.

C is a set of constraints, each defined as a propositional formula over the set of propo-

sitions G ∪ P .

T is a finite non-empty set of states. Each state is labelled with a CAG-G and the set

of propositions G ∪ P .
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Let S be a set of all possible CAG-Gs of the form 〈A,Ac, Jt, G, goalst, achieve, {�i,t|
i ∈ A}, qt〉 where t ∈ T and Jt ⊆ J . Components which are indexed by t ∈ T
are allowed to vary while non-indexed components are common for all elements

of S.

γ is a function γ : T −→ S assigning to each state t ∈ T a CAG-G γ(t) ∈ S.

πG is a function πG : T −→ 2G assigning to each state t ∈ T a set of goal propositions

which are true (achieved) in t.

πP is a function πP : T −→ 2P assigning to each state t ∈ T a set of propositions

from P which are true in t.

α(t) is a function α : T −→ 2J assigning to the CAG-G γ(t) a set of joint actions,

α(t) = Jt, the joint actions possible in t.

Let Et be a set of sets of joint actions applicable in state t ∈ T . Each c ∈ Et is

a composite action c = {j1, . . . , jk}, k ≤ n, j1, ..., jk ∈ α(t). We say c is

applicable only if:

Ag(ja) ∩ Ag(jb) = ∅ for all a, b ∈ 1...k, a 6= b, (Ag : J −→ 2A) and

for any g, g′ ∈ achieve(j1)∪ ...∪ achieve(jk), g 6= g′ the expression ¬(g ∧ g′)
cannot be derived from the constraints given in C.

We require that ∀c ∈ Et, c is applicable. We denote the set of all composite

actions as E =
⋃
t∈T

Et.

o is a serial transition relation. For state t ∈ T and applicable composite action

c ∈ Et, o(t, c) ∈ T is the successor state reached by performing the composite

action c in state t. Since o is serial we require that ∀t ∈ T, o(t, ∅) = t. The

relation o, is also constrained such that for c = {j1, . . . , jk}, πG(o(t, c)) ⊇
achieve(j1) ∪ ... ∪ achieve(jk). At least those goals achieved by each joint

action j ∈ c are achieved (true) in the successor state.

6.2 Temporal Solution Concepts for T-CAG-Gs

In this section we define temporal solution concepts for T-CAG-Gs. Recall that T-
CAG-Gs are a transition system in which each transition corresponds to a composite
action. For T-CAG-Gs a solution is a full (infinite or terminated) path through this
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transition system. A solution concept for T-CAG-Gs is a solution where each transi-
tion is a composite action composed only of consensus joint actions. We refer to a
composite action c as a composite consensus action only if ∀j ∈ c, j is stable under a
given temporal solution concept.

Our temporal solution concepts are derived from individual rationality in consensus
games (Chapter 3) and collective rationality in consensus action games (Chapter 4).
We refer to our temporal solution concepts for T-CAG-Gs as consensus paths and
define these below.

Definition 6.2. (Strong consensus path) — A path is a strong consensus path if and

only if it is a full path and each transition of the path corresponds to a composite action

composed entirely of strong consensus actions. That is, each transition, (t, t′) ∈ T×T ,

of the path corresponds to a c ∈ Et such that ∀j ∈ c, j is a strong consensus action.

Definition 6.3. (Weak consensus path) — A path is a weak consensus path if and only

if it is a full path and each transition, (t, t′) ∈ T × T , of the path corresponds to a

c ∈ Et such that ∀j ∈ c, j is a weak consensus action.

Definition 6.4. (qC-Strong consensus path) — A path is a qC-strong consensus path if

and only if it is a full path and each transition, (t, t′) ∈ T ×T , of the path corresponds

to a c ∈ Et such that ∀j ∈ c, j is a qC-minimal strong consensus action.

Definition 6.5. (C-Weak consensus path) — A path is a C-weak consensus path if and

only if it is a full path and each transition, (t, t′) ∈ T × T , of the path corresponds to

a c ∈ Et such that ∀j ∈ c, j is a C-minimal weak consensus action.

6.3 Example T-CAG-G

Example 6.1. Alice (Al) and Bob (Bo) marry and decide to move into a home of their

own. We find them in the hallway of their new home as they are deciding where to put

a box of books. The box is quite heavy, and although either of them could lift the box

it would be easier if they lift the box together. Neither wants the box to remain in the

hallway; Bob would like to move the the box into the study (s), whilst Alice would like

the box to be in the library (l). We formalise this example as the temporal consensus

action game Γ4 = 〈A,Ac, J,G, achieve, P, C, T, γ, πG, πP , α, o〉 where:

A = {Al,Bo}
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Ac = {s, l}

J = {j1, . . . , j6} where:

j1 = {Als}— Alice moves the box to the study,

j2 = {All}— Alice moves the box to the library,

j3 = {Bos}— Bob moves the box to the study,

j4 = {Bol}— Bob moves the box to the library,

j5 = {Als, Bos}— they both move the box to the study,

j6 = {All, Bol}— they both move the box to the library.

G = {gh, gs, gl} where:

gh is the goal that the box is in the hallway,

gs is the goal that the box is in the study,

gl is the goal that the box is in the library.

achieve : J −→ 2G where:

achieve(j1), achieve(j3), achieve(j5) = {gs},

achieve(j2), achieve(j4), achieve(j6) = {gl}.

P = ∅

C = {φ1, . . . , φ3}

φ1 is gh ⇐⇒ ¬(gs ∨ gl),

φ2 is gs ⇐⇒ ¬(gh ∨ gl),

φ3 is gl ⇐⇒ ¬(gh ∨ gs).

T = {t0, t1, t2} There are three states, in each exactly one g ∈ G is true. Associated

with state t0 is the CAG-G γ(t0), where:

goalst0(Al) = {gl} and goalst0(Bo) = {gs}

�Al ranks {gl} > {gs} > {gh} > ∅ and �Bo ranks {gs} > {gl} > {gh} > ∅
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qt0(i, j) =



1 if i = Al and j = j1

0 if i = Al and j = j2

0 if i = Bo and j = j3

1 if i = Bo and j = j4

1 if i = Al and j = j5

0 if i = Bo and j = j5

0 if i = Al and j = j6

1 if i = Bo and j = j6

πG : T −→ 2G are the goals true (achieved) in t

πG(t0) = {gh},

πG(t1) = {gs},

πG(t2) = {gl}.

πP : T −→ 2P , πP (t) = ∅ for all t ∈ T

α(t0) = J , for all other states α(t) = ∅

Et0 = {{j1}, {j2}, {j3}, {j4}, {j5}, {j6}, {j1, j3}, {j2, j4}}

o(t, c) =


t1 if t = t0 and c = {j1}, {j3}, {j1, j3}, {j5}

t2 if t = t0 and c = {j2}, {j4}, {j2, j4}, {j6}

t if c = ∅

We begin in state t0 (the box is in the hallway); in γ(t0) the strong consensus joint
actions are: j2 (Alice moves the box to the library) and j3 (Bob moves the box to the
study). Although these actions are performed by disjoint coalitions ({Al}∩{Bo} = ∅)
it would not be possible for both of these equilibria to occur. This is captured through
the constraint structure C that encodes domain specific rules; for example: if the box
is in the study then the box is not in the hallway or in the library (gs ⇐⇒ ¬(gh ∨ gl)).
The paths t0, t1 and t0, t2 are strong consensus paths, in the former the box is moved
to the library by Alice, in the latter the box is moved to the study by Bob.
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6.4 Computational Complexity of T-CAG-Gs

Our characterisation of the computational complexity of T-CAG-Gs considers the ex-
istence of consensus paths from some initial state. This immediately suggests the
following decision problems:

STRONG CONSENSUS PATH EXISTS (SPE)

Given a T-CAG-G Γ = 〈A,Ac, J,G, achieve, P, C, T, γ, πG, πP , α, o〉 and a state, t ∈
T , does there exist a strong consensus path from t?

QC-STRONG CONSENSUS PATH EXISTS (QM-SPE)

Given a T-CAG-G Γ = 〈A,Ac, J,G, achieve, P, C, T, γ, πG, πP , α, o〉 and a state, t ∈
T , does there exist a qC-strong consensus path from t?

WEAK CONSENSUS PATH EXISTS (WPE)

Given a T-CAG-G Γ = 〈A,Ac, J,G, achieve, P, C, T, γ, πG, πP , α, o〉 and a state, t ∈
T , does there exist a weak consensus path from t?

C-WEAK CONSENSUS PATH EXISTS (CM-WPE)

Given a T-CAG-G Γ = 〈A,Ac, J,G, achieve, P, C, T, γ, πG, πP , α, o〉 and a state, t ∈
T , does there exist a C-weak consensus path from t?

6.4.1 Preliminaries

For there to be a consensus path from state t it is necessary (but not sufficient) that t
has at least one consensus successor state. A state t ∈ T has a consensus successor
only if there exists some joint action j ∈ α(t) ⊆ J such that, for a given solution
concept, j is a consensus action. At this point it will be useful to recall some results
from previous chapters. Table 6.1 shows, for each non-temporal solution concept, the
complexity of deciding whether j ∈ J is a consensus action.
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Table 6.1: Time complexity of verification problems for non-temporal solution con-
cepts.

Problem Description Complexity
SCA Is j a strong consensus action? O(n)

QM-SCA Is j a qC-minimal strong consensus action? O(n× |J |)
WCA Is j a weak consensus action? O(n)

CM-WCA is j a C-minimal weak consensus action? O(n× |J |)

In T-CAG-Gs agents may perform composite joint actions. Table 6.2 shows the
time complexity of deciding whether the composite action c is a composite consensus
action. The input to these decision problems is a T-CAG-G Γ, a state t ∈ T and a
composite action c ∈ Et. Note that, since composite actions are performed by disjoint
sets of agents each composite action is performed by at most n agents. Therefore, these
results do not differ from those given for joint actions in table 6.1.

Table 6.2: Time complexity of deciding whether c is a composite consensus action.

Problem Description Complexity
SCA-C Is c a strong composite consensus action? O(n)

QM-SCA-C Is c a qC-minimal strong composite consensus action? O(n× |J |)
WCA-C Is c a weak composite consensus action? O(n)

CM-WCA-C is c a C-minimal weak composite consensus action? O(n× |J |)

A consensus path consists only of transitions corresponding to composite consen-
sus actions. The problem of determining the existence of a full path along which some
invariant property holds has been studied by those interested in the model checking
problem. Algorithm 6.1, adapts the algorithm for computing paths with an invariant
property [Baier and Katoen, 2008, p. 348] when model checking computation tree
logic (CTL) [Emerson and Clarke, 1982]. When the algorithm initialises, the set CP
contains all states in T . Upon termination, CP contains only those states on a consen-
sus path.

Algorithm 6.1 terminates in at most |T | iterations, in this case CP = ∅ and no
consensus path exists. In each iteration we check the expression: ∃t ∈ CP such
that t has no consensus successors in CP . To check this expression we must, in the
worst case examine every composite action (transition). Recall that E =

⋃
t∈T

Et, hence
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Algorithm 6.1 Existence of paths with an invariant property.
CP ← T
while ∃t ∈ CP such that t has no consensus successors in CP do

CP ← CP \ {t}
end while

the number of transitions in Γ is given by |E| and this check requires time O(|E|).
Therefore the overall time required for algorithm 6.1 isO(|T |×|E|). The algorithm has
time complexity that is polynomial in the number of states and number of transitions.

We can now give our complexity results for the four temporal solution concepts.

6.4.2 Complexity of strong decision problems for T-CAG-Gs

STRONG CONSENSUS PATH EXISTS (SPE)

Given a T-CAG-G Γ = 〈A,Ac, J,G, achieve, P, C, T, γ, πG, πP , α, o〉 and a state, t ∈
T , does there exist a strong consensus path from t?

A deterministic algorithm would iterate through each composite action c ∈ E

labelling those transitions which correspond to strong composite consensus actions.
This is an O(n × |E|) operation. After this pre-computation we apply algorithm 6.1
(O(|T | × |E|)) to compute the set of states that are on consensus paths. Finally we
verify that the given state t is found in CP (O(|T |)).

The overall time complexity of the deterministic algorithm is O((n×|E|)+(|T |×
|E|)). The algorithm is polynomial in the number of agents, states, and transitions.

qC -STRONG CONSENSUS PATH EXISTS (QM-SPE)

Given a T-CAG-G Γ = 〈A,Ac, J,G, achieve, P, C, T, γ, πG, πP , α, o〉 and a state, t ∈
T , does there exist a qC-strong consensus path from t?

A deterministic algorithm would iterate through each composite action c ∈ E la-
belling those transitions which correspond to qC-minimal strong composite consensus
actions. This is an O((n × |J |) × |E|) operation (from QM-SCA-C). After this pre-
computation we apply algorithm 6.1 (O(|T |×|E|)) to compute the set of states that are
on consensus paths. Finally we verify that the given state t is found in CP (an O(|T |)
operation).

The overall time complexity of the deterministic algorithm isO(((n×|J |)×|E|)+

(|T |× |E|)). The algorithm is polynomial in the number of agents, states, joint actions
and transitions.
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6.4.3 Complexity of weak decision problems for T-CAG-Gs

WEAK CONSENSUS PATH EXISTS (WPE)

Given a T-CAG-G Γ = 〈A,Ac, J,G, achieve, P, C, T, γ, πG, πP , α, o〉 and a state, t ∈
T , does there exist a weak consensus path from t?

A deterministic algorithm would iterate through each composite action c ∈ E la-
belling those transitions which correspond to weak composite consensus actions. This
is an O(n × |E|) operation (from WCA-C). After this pre-computation we apply al-
gorithm 6.1 (O(|T | × |E|)) to compute the set of states that are on consensus paths.
Finally we verify that the given state t is found in CP (O(|T |)).

The overall time complexity of the deterministic algorithm is O((n×|E|)+(|T |×
|E|)). The algorithm is polynomial in the number of agents, states, and transitions.

C-WEAK CONSENSUS PATH EXISTS (CM-WPE)

Given a T-CAG-G Γ = 〈A,Ac, J,G, achieve, P, C, T, γ, πG, πP , α, o〉 and a state, t ∈
T , does there exist a C-minimal weak consensus path from t?

A deterministic algorithm would iterate through each composite action c ∈ E la-
belling those transitions which correspond to C-minimal weak composite consensus
actions. This is an O((n × |J |) × |E|) operation (from CM-WCA-C). After this pre-
computation we apply algorithm 6.1 (O(|T |×|E|)) to compute the set of states that are
on consensus paths. Finally we verify that the given state t is found in CP (O(|T |)).

The overall time complexity of the deterministic algorithm isO(((n×|J |)×|E|)+

(|T |× |E|)). The algorithm is polynomial in the number of agents, states, joint actions
and transitions.

6.5 Discussion and Related Work

In this chapter we have presented temporal consensus action games with goals (T-
CAG-G); these extend the CAG-G model by the inclusion of a temporal element,
hence, T-CAG-Gs describe games that are played repeatedly, over time. Our ap-
proach to extending CAG-Gs to T-CAG-Gs differs significantly from that taken in
previous chapters where, typically, we have introduced new structures to an extant
model. Rather, we add a temporal element to CAG-Gs by embedding the CAG-G
model within a transition system.
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Specifically, a T-CAG-G is a Kripke structure in which each state t ∈ T of the tran-
sition system is labelled with a CAG-G (γ(t)) and series of propositions representing
both goals (G) and arbitrary atoms (P ) with valuations πG(t) and πP (t), respectively.
Hence, each state in a T-CAG-G fully describes not only the CAG-G to be played
but also the goals presently achieved and an arbitrary world-state. Each transition in
a T-CAG-G represents a composite action - one or more joint actions performed by
disjoint coalitions of agents. By performing composite consensus actions the agents
move from one state, t to another, t′ and so from one CAG-G, γ(t), to another, γ(t′).

We have defined temporal variants of solution concepts developed in earlier chap-
ters. These consensus paths describe sequences of composite consensus actions. Since
T-CAG-Gs are represented as Kripke structures the existence of our temporal solution
concepts can be verified using established techniques from the field of model checking.

We have shown that the complexity of verifying the existence of consensus paths
is polynomial in the number of agents, states and transitions for individually rational
solution concepts, and in the number of agents, states, transitions and joint actions for
collectively rational solution concepts. Whilst polynomial-time results are desirable
we note that the size of these structures may be large and, in the worst case may
themselves be exponential in the number of agents.

Multi-agent systems are rarely characterised as static, one-shot, affairs. More com-
monly a multi-agent system is viewed as a number of dynamic processes which persist
over time. It is typical that such processes are situated within an environment that,
itself, progresses and evolves. Given the centrality of coalitional problems within
multi-agent research it is surprising that relatively little attention has been given to
such problems in their repeated form.

There has been some interest in the specification of temporal logics for reasoning
about coalitional behaviours in multi-agent systems. Such work includes coalition
logic [Pauly, 2002] and alternating time temporal logic [Alur et al., 2002]. However,
the principle focus of research in this area has been to formalise properties concerning,
for example, the states of a system that a particular coalition may enforce. Typically
these logics abstract away from the actual procedures of game-play, hence they have
little to say about how, or which coalitions will form. A notable exception to this trend
is coalitional game logic (CGL) [Ågotnes et al., 2006b]. CGL includes operators which
permit representation of agents’ preferences over outcomes. Ågotnes et al. show that
CGL can provide logical characterisations for various game theoretic solution concepts
including the core of non-transferable utility games.
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T-CAG-Gs have some resemblance to the temporal qualitative coalitional games
(TQCGs) of Ågotnes et al. [2006a]. TQCGs extend the QCG model of Wooldridge and
Dunne [2004] by adding a temporal element to these games; in certain respects TQCGs
are to QCGs as T-CAG-Gs are to CAG-Gs. As in T-CAG-Gs the TQCG model defines
a set of states; similarly so, to each state is associated a game (QCG). However, our
approach temporalisation differs from that of Ågotnes et al. in an important respect.
We have chosen a branching temporal model for T-CAG-Gs, whereas Ågotnes et al.
adopt a linear approach, associating to each time-point a state.

Whilst the linear model of time in TQCGs captures, perfectly, the notion of re-
peated game-play, i.e., that one game may be followed by another (potentially differ-
ent) game, the ordering of games in TQCGs is deterministic: for a given time point the
current state has exactly one successor. Hence, the temporal model found in TQCGs
does not lend itself to modelling circumstances where games have multiple stable out-
comes each suggestive of a different successor state. Our example (6.1) demonstrates
one such circumstance, we argue that many naturally occurring problems fall into this
category.
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Chapter 7

Demonstration

7.1 Introduction

In this chapter we apply the T-CAG-G model introduced in Chapter 6 to a biologically
inspired problem routinely faced by many social groups - that of maintaining spatial
cohesion. In doing so we demonstrate the application of the model to a real-world
problem and compare the predictions of our model with those found in the biological
literature.

7.2 Background and Motivation

Group living is common place across a wide range of species. The success of this
strategy has been attributed to such factors as decreased risk of predation [Hill and
Lee, 1998] and increased efficacy through the pooling of information [Reebs, 2000].
For individuals to enjoy the benefits associated with a social existence it is necessary
that the group remains spatially cohesive.

Biomechanical and physiological differences between individuals, brought about
by e.g., variations in age, gender, and reproductive status can lead to divergent motiva-
tions and conflicting needs amongst group members [Leca et al., 2003]. Since activities
relating to essential needs are typically carried out at disparate locations, conflicts of
need invariably lead to conflicts regarding the group’s location. For example, thirsty
individuals prefer the group to be at a watering hole, those that are hungry prefer the
group to site at feeding grounds, whilst for those that are tired a location suitable for
resting is preferable.

For the group to remain cohesive, some individuals must engage in activities that
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are individually sub-optimal. The benefits of group living therefore frequently come at
a cost — maintaining spatial cohesion requires that individuals synchronise the timing
and location of their activities. Grouping costs increase as the preferences of individu-
als become more heterogeneous; the group becomes less synchronised with regard to
the activity they would presently most prefer [Conradt and Roper, 2003].

Excessive costs cause the well being of individuals to suffer and can lead to the
group fissioning, thus reducing grouping benefits for all group members. Decision
making strategies employed by biological groups must therefore maximise the wel-
fare of the group overall without excessively compromising the requirements of each
individual [Conradt and Roper, 2007].

Theoretical and empirical research into group decision making strategies employed
in biological groups suggests that both shared [Conradt and Roper, 2005] and unshared
[King et al., 2008] decision making occur. In unshared decision making, decisions are
made by a single individual within the group; such strategies are effectively dictator-
ships. In shared decision making each individual contributes to the decision making
process.

7.3 Methodology

The use of theoretical models to study cohesion in natural groups under heterogeneity
of preference is well established. Since the maintenance of spatial cohesion requires
that certain group members compromise their optimal activity much of the prior work
in this area has placed considerable emphasis on the modelling of individual costs
and benefits. Such an approach inevitably leads to analysis through game-theoretic
techniques [Conradt and Roper, 2007, 2009; DeDeo et al., 2010; Frank, 2009; Rands
et al., 2008].

Our methodology is somewhat different. We define a problem in which a group of
heterogeneous agents make repeated consensus decisions concerning their collective
location; the problem is formally specified using the T-CAG-G model. We investigate
the predictions of this model using model checking techniques typically employed in
the verification of computational systems. Here, our interest is in the existence of and
properties surrounding consensus paths.

To this end we created a bespoke software tool, implementing solutions for sev-
eral decision problems considered earlier in this thesis. Specifically, we implemented
algorithms for: strong consensus action (SCA, section 4.4.2), qC-minimal strong con-
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sensus action (QM-SCA, also in section 4.4.2) and weak consensus action (WCA,
section 4.4.3). For a given solution concept and T-CAG-G the tool labels those joint
actions which are consensus actions. As described in sections 6.4.2 and 6.4.3 of this
work such labelling is a prerequisite for computing the existence of a consensus path.
The tool emits a representation of the labelled transition system in a form suitable for
analysis using the PRISM model checker [Kwiatkowska et al., 2011]. Since PRISM
is a probabilistic model checker we are not limited to merely establishing the exis-
tence of consensus paths; we also compute measures of likelihood concerning agents’
behaviour with respect to these paths.

Model checking tools in general, and PRISM in particular have been used to inves-
tigate properties of a diverse range of computational systems. Amongst the previous
uses of PRISM we find analysis of randomised distributed algorithms [Kwiatkowska
et al., 2001, 2012; Ndukwu and McIver, 2010], network communication protocols [Du-
flot et al., 2006; Fehnker and Gao, 2006] and computer systems’ security [Alexiou
et al., 2010; Steel, 2006]. Interestingly, PRISM has also been used to study various bi-
ological processes including bone pathologies [Liò et al., 2011], cell signalling [Heath
et al., 2008] and membrane fusion in viruses [Dobay et al., 2011].

A methodology such as ours has never before been used to investigate spatial co-
hesion in heterogeneous groups. Foremost, ours is the first treatment of this problem
to consider the effects of endogenous thresholds upon group strategies for cohesion.
Furthermore, ours is the first work to apply formal verification techniques to this field
of research.

7.4 The Group Location Problem

In this section we define a biologically inspired problem in which a group of individ-
uals make decisions regarding the location of the group. We assume that agents are
situated in a simple environment which is divided into unique, discrete, interconnected
locations. Agents may move about the environment without constraint and may remain
at a location for as long as they wish. An example environment is illustrated in figure
7.1, transitions indicate the movement options available to agents in each location.

Each location is suitable only for a specific activity necessary for the agents’ sur-
vival. Whilst away from a location an agent’s need to be at that location increases;
moving to the appropriate location satiates this need. Should an agent’s need become
too great then the agent expires.
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At each location the group takes a decision regarding their next location. The
group’s movements form a route, or path through the environment. A solution to the
group location problem is a path from location to location. We will say a solution is
successful if consensus, and so cohesion, is maintained and all agents survive.

Eating

Drinking

Sleeping

Figure 7.1: A simple environment in which agents may either eat, drink, or rest.

7.4.1 Formalisation of the group location problem

We now formalise the group location problem as a temporal consensus action game
with goals (T-CAG-G). We refer to this formalisation as T-CAG-G(GLP).

We describe a problem instance for n agents {1, . . . , n}, and m, {l1, . . . , lm}
locations. Each agent has m goals, {g1, . . . , gm}. Each location is suitable for the
achievement of exactly one of the agents’ goals and each location achieves a different
goal.

In each location the grand coalition of agents may perform one of m joint actions,
j1, . . . , jm. Performing joint action jk moves the grand coalition to location lk where
agents achieve the goal gk.

For each goal, each agent i ∈ A has a drive {di,1, . . . , di,m}. Each drive assumes
an integer value in the range [0, . . . , dmax]. The value of a drive represents the need
of an agent to achieve the associated goal. The drive di,k is (re)set to zero when agent i
arrives at location k (and so achieves goal gk). The value of drive di,k is incremented at
each move whilst the agent is not at location k. If, for any agent i di,k = dmax then that
agent expires. Since drives are essentially counters and no two goals may be achieved
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simultaneously, the natural arrangement is that for any given agent no two drives may
assume the same value. We will therefore limit our interest to those states where the
drives of the agents are strictly ordered.

Formally, T-CAG-G(GLP) is the T-CAG-G
ΓGLP = 〈A,Ac, J,G, achieve, P, C, T, γ, πG, πP , α, o〉 where:

A = {1, . . . , n}, n ≥ 2 a finite group of agents.

Ac = {a1, . . . , am} is the set of individual actions.

J = {j1, . . . , jm} is a set of joint actions. Each jk ∈ J corresponds to every agent in
the grand coalition performing the same action ak ∈ Ac.

G = {g1, . . . , gm}, the set of goals.

achieve(jk) = gk for all jk ∈ J .

P a set of propositions of the form pi,k,x for all i ∈ A, 1 ≤ k ≤ m and 0 ≤ x ≤ dmax

representing the values of the agents’ drives. For agent i the proposition pi,k,x is
true only if for agent i ∈ A drive di,k = x.

C a set of constraints of the form:

pi,k,x ⇐⇒ ¬(
∨

x′ 6=x

pi,k,x′) — Agents’ drives may take only a single value at any

one time.

pi,k,x ⇐⇒ ¬(
∨

k′ 6=k

pi,k′,x) — Agents’ drives are strictly ordered.

gk ⇐⇒ ¬(
∨

k′ 6=k

gk′) — Only one goal may be achieved (true) at any one time.

T a set of states. The state t ∈ T is determined by the propositions given in G ∪ P
under the constraints of C.

γ(t) labels each t ∈ T with a CAG-G of the form 〈A,Ac, Jt, G, goalst, achieve, {�i,t|
i ∈ A}, qt〉

πG(t) = {gk} where gk is the goal that is true in state t ∈ T

πP (t) is such that pi,k,0 ∈ πP (t) only if πG(t) = gk. Achieving goal gk sets drive
di,k = 0 for all agents i ∈ A.

α(t) = J for all t ∈ T — All joint actions may be performed in every state.
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Et = J for all t ∈ T — All composite actions contain only a single joint action.

o(t, c) ∈ T is such that for c ∈ Et, where c = jk, πG(o(t, c)) ⊃ achieve(jk) and
additionally for drives di,l, l 6= k, in state o(t, c) these drives assume the value of
di,l in state t incremented by 1.

7.4.2 Specification of q for the group location problem

The selection of rational quorum values is constrained by the rationality postulates
introduced in section 5.2 and the agents’ orderings �i,t over goal sets. For the group
location problem we infer this ordering from the drive values of the agent. For the
locations k, l ∈ {1, . . . ,m} if di,k ≥ di,l we assume agent i weakly prefers location k
to location l. Thus, for the corresponding joint actions jk, jl ∈ J , the goal achieved by
jk is weakly preferred to the goal achieved by jl.

As quorum values are continuous the set of rational quorum functions is infinite.
Many rational quorum functions will be equivalent in the sense that the agents will
reach consensus (or otherwise) isomorphically; equivalent agents supporting at identi-
cal rounds. If j is a joint action for n agents then the canonical set of unique quorum

functions is found where qt(i, j) ∈ {0,
1

n
, . . . ,

n

n
}.

Since the canonical set of unique quorum functions is discrete and bounded, for
joint action j ∈ Jt there are only a finite number of (combinations of) values for
qt(i, j). A subset of these conform to rational behaviour. Without loss of generality
we are going to consider only quorum functions for the group location problem that
are rational, as specified by our rationality postulates, and that are canonical in form.

We identify states in which one or more agent has expired as those where ∃i ∈ A
such that for some 1 ≤ k ≤ m, di,k = dmax. In these states further consensus action is
not possible. Therefore, we require that for all states t ∈ T where one or more agent
has expired qt(i, j) = 1 for all i ∈ A and all j ∈ J .

7.4.3 Consensus paths and solutions in T-CAG-G(GLP)

We identify three distinct classes of solutions for the group location problem. The first
corresponds to a successful solution where, to an infinite horizon, the agents maintain
consensus, so remain cohesive, and no agent expires. Such a solution would be where,
for example, the agents cyclically visit each location in turn, ad infinitum.

The second and third classes of solution correspond to non-successful solutions
where the agents perform only consensus actions but they reach a state where further

98



7.5. INVESTIGATING T-CAG-G(GLP)

consensus action is not possible. Such deadlock states occur because either:

• one or more agent has expired, or,

• no agent has expired, but the agents cannot reach consensus regarding their next
action (the group fissions).

Recall that a consensus path is a full path consisting only of consensus actions.
Hence, for an instance of T-CAG-G(GLP) the agents can (potentially) be successful if
and only if a consensus path exists from a given initial state. However, the existence
of a consensus path does not guarantee that the agents will be successful. A state,
belonging to a consensus path, may also present consensus actions which lead to states
that do not belong to a consensus path. Thus, agents may deviate from the consensus
path. Such deviations will ultimately lead to deadlock states.

7.5 Investigating T-CAG-G(GLP)

We are going to use formal model checking tools to investigate properties of the group
location problem as described by the T-CAG-G(GLP) model. We are interested in
identifying specifications of the quorum function that lead to the existence of consensus
paths and hence successful solutions under the temporal solution concepts introduced
in Chapter 6. We begin by observing that since, in T-CAG-G(GLP) all joint actions
are for the grand coalition; the C-weak consensus path is not an informative solution
concept for this model (since subsets of agents cannot act independently). Therefore
we shall focus our attention on the existence of:

• strong consensus paths,

• weak consensus paths,

• qC-strong consensus paths.

As we have noted, the existence of a consensus path is necessary for the agents to
be successful, but is not sufficient to guarantee success for the agents. Hence, we are
particularly interested in specifications for the quorum function that lead to certain suc-
cess. Such cases are identified as those where, in every state belonging to a consensus
path, all consensus actions (equivalently, all out-going transitions) lead to states that
also belong to a consensus path. We shall refer to the set of all consensus actions in the
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model as the consensus action space. Where the consensus action space contains only
consensus actions found on a consensus path we shall say that the consensus action
space is tight.

We are also interested in comparing the behaviour of agents in the T-CAG-G(GLP)
model with that of individuals in naturally occurring groups. Biological evidence sug-
gests that the degree to which the agents are synchronised will have an effect upon
how easily the agents can reach consensus. Establishing the degree to which natural
individuals are synchronised is non-trivial since it requires that the internal state of
each individual is known. However, since in T-CAG-G(GLP), we model the drives
of the agents establishing a measure of synchronisation between agents is relatively
straightforward. The constraints structure of T-CAG-G(GLP) is such that once the
agents have visited each location once their drives will be synchronised. Thus, we are
going to look at the effects of synchronisation in the initial state upon the existence of
consensus paths and the tightness of the consensus action space.

Biological research also suggests that both shared and unshared decision making
occur within natural groups. An interesting case of shared decision making under our
solution concepts is found where all agents are homogeneous with respect to their im-
plementation of the rationality postulates. We are interested in understanding whether
agents that are homogeneous in this sense can be successful. In general the solution
concepts we have considered are representative of a shared decision making strategy;
each agent contributes to the eventual decision outcome. However, we are going to
establish a set of specifications for quorum functions which correspond to the pres-
ence of a dictator within the group of agents. Using the model we will examine the
performance of the agents where their collective actions are determined dictatorially.

Lastly, we take the opportunity to test an intuitive hypothesis regarding the mean
quorum value of the agents for each joint action. Our motivation for investigating the
mean quorum value begins with the intuition that a lower mean quorum value for a
joint action should suggest that the joint action is more likely to be a consensus joint
action.

Taking strong consensus as an example: where consensus is achieved in a single
round we know that the mean quorum value will be zero (lower bound). Similarly,
the mean has an upper bound beyond which consensus cannot be reached; the mean
reaches its upper bound,

(
n−1
2

)−1, where consensus is reached in n rounds. The cu-
riosity is that simple counter-examples show that this intuition is only partial, e.g., the
mean of {0.1, 0.1, 0.1, 0.1} is less than the mean of {0, 0.25, 0.5, 0.75} yet the second
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is a strong consensus action whilst the first is not. We are interested in identifying, for
each solution concept, whether there exists a relationship between the mean quorum
value and the likelihood of success.

In the remainder of this section we formalise our investigation of the T-CAG-
G(GLP) and describe our experimental design.

7.5.1 Model parameters

The T-CAG-G(GLP) is parameterised by the following variables:

• n — the number of agents,

• m — the number of locations,

• dmax — the maximum value for the agents’ drives.

Since we are using model checking tools to verify properties of the model and
such techniques can be computationally expensive we consider instances of a relatively
small size. Therefore we shall consider instances of T-CAG-G(GLP) for n = 3 agents
and m = 3 locations.

We are now going to consider the value for the model parameter dmax. This pa-
rameter determines how needful agents may become before they expire. Since dmax

places an upper bound on the value of each drive, the size of the state space for T-CAG-
G(GLP) is exponential in dmax. For obvious reasons we want to avoid state-bloat so
we would like to keep dmax as small as possible. To minimise dmax we will assume
that each drive assumes the minimum value necessary to meet the model constraints.
Thus, in the initial state, each agent will have one drive, the drive that is most in need
of satiation, with a value of two. We will refer to this drive as the most urgent drive.

If dmax is too small then it may not be possible for the agents to be successful at
all. For example, if dmax = 4 then, from initial states where agents differ in their most
urgent drive it is not possible for the agents to visit each location even once. The most
urgent drive of some agent will be sated on the first move, but in the subsequent state
the most urgent drives of the remaining two agents will now be at dmax. Whichever of
the remaining agents is sated in the following state, the other agent will expire. This
does not seem ‘fair’.

We choose the minimum fair value for dmax to be dmax = 5. This value is fair in
the sense that even where the agents’ most urgent drives are initially in opposition it is
possible for every agent to satiate every goal once before it expires.
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7.5.2 Strategies and specification of quorum functions

In this section we describe our approach to the specification of rational quorum func-
tions for T-CAG-G(GLP). Recall that for this model the ordering relation of agent
i ∈ A, �i, is determined as a function of the drives of agent i given the state t ∈ T .
Recall also that the values of these drives, for each agent and in all states, are strictly
ordered. Thus where m = 3, in each state, each agent will have exactly one drive that
is most urgent (corresponding to the agent’s non-dominated goal), one drive that is less
urgent and one drive (corresponding to the most recently achieved goal) that is least
urgent.

In state t ∈ T , for agent i ∈ A and joint action jk ∈ J where achievei(jk) ∈ maxi
(i.e. gk is non-dominated under�i) the postulate of unconditional support requires that
qt(i, j) = 0. Therefore agents unconditionally support the joint action that achieves
the goal corresponding to their most urgent drive. Quorum values for the remaining
joint actions, corresponding to the lesser and least urgent drives must then be selected
according to the postulate of proportional support.

Formally, we shall refer to the joint action achieving the agent’s non-dominated
goal as jd, the joint action achieving the goal ranked second-most as js and the joint
action achieving the goal ranked third-most (least) as jt. Then, for each agent i ∈ A
let σi = 〈qt(i, jd), qt(i, js), qt(i, jt)〉 be a tuple of quorum values. We refer to σi as the
strategy of i and write σi = k to indicate that agent i ∈ A is following the strategy
numbered k (see table 7.1 for the range of values for k) . We refer to the collective
strategies of all agents as the group strategy and write σA = 〈σ1, σ2, σ3〉 to indicate the
individual strategies of each agent .

For each model instance, each agent i ∈ A is assigned a strategy, σi. The strategy
defines the set of quorum values the agent will use for this instance. The group strategy
profile σA fully prescribes the quorum function qt for each state in the game. In each
strategy q#(i, jd) = 0 for the joint action, jd which achieves the agent’s non-dominated
goal-set. For the remaining m − 1 = 2 joint actions we have js achieving the goal
ranked second and jt achieving the goal ranked third, q#(i, js), q#(i, jt) ∈ {0, 1, 2, 3}.

Where n = m = 3 each agent may follow one of exactly 10 rational strategies.
Table 7.1 shows the rational strategy profiles for a single agent i ∈ A; for simplicity
the table shows q# values; i.e., exact numbers of agents.
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Table 7.1: Rational strategy profiles for n = m = 3

σi q#(i, jd) q#(i, js) q#(i, jt)

0 0 0 0

1 0 0 1

2 0 0 2

3 0 0 3

4 0 1 1

5 0 1 2

6 0 1 3

7 0 2 2

8 0 2 3

9 0 3 3

The problem is sufficiently small that we can consider all 103 combinations of
group strategies. We will therefore exhaustively enumerate the entire space of rational,
canonical quorum functions.

There are two classes of group strategy which are of interest. These are homoge-
neous group strategies in which all agents follow the same strategy, and dictatorship
strategies. We say a group strategy is homogeneous where ∀i ∈ A, σi = s, where
0 ≤ s ≤ 9.

We say a group strategy is a dictatorship where exactly one agent i ∈ A has the
strategy σi = 9. The behaviour of agents following this strategy is to unconditionally
support the joint action that achieves their non-dominated goal and to object to all other
joint actions. Such agents function as dictators since they will not engage in activities
which, for them, are sub-optimal.

7.5.3 Synchronisation and initial states

In T-CAG-G(GLP) the state representation describes the location of the group (the goal
that is currently achieved) and the drives of each agent. Since the environment is fully
connected, in the sense that every location is reachable from every other location the
choice of initial location is arbitrary. Our interest is in the effects of heterogeneity
of preference upon outcomes for the group; therefore we are going to focus on the
ordering of the drives of the agents in the initial state. This ordering determines the
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ordering of agents with respect to their goals and so determines the degree of conflict
initially present in the group.

We want to establish a small set of suitable initial states. These states will be
used as the basis for considering the effects of heterogeneous preferences upon the
group’s ability to repeatedly reach consensus and be successful. Where two agents
have the same ordering over locations we will say that the agents are synchronised; for
agents i, i′ ∈ A, and with slight abuse of notation, we write �i=�′i. Increasing the
number of synchronised agents is one way to systematically control the heterogeneity
of preferences within the group. We can now characterise three kinds of initial state.

• We will say the agents are fully synchronised in the initial state if ∀i, i′ ∈ A �i=�i′;
all agents have the same ordering over drives.

• We will say the agents are partially synchronised in the initial state if ∃i, i′ ∈
A, i 6= i′ such that �i=�i′ and ∃i′′ ∈ A \ {i, i′} such that �i′′ 6=�i; two agents
have the same ordering over drives whilst the remaining agent’s ordering differs.

• We will say the agents are not synchronised in the initial state if ∀i, i′ ∈ A, i 6=
i′,�i 6=�i′ , no two agents have the same ordering over drives.

Given the symmetries about agents, drives and locations which are present in the
group location problem we need only consider a single ordering for the case where the
agents are fully synchronised. Cases where synchronisation is partial or non-existent
possess several possible orderings. To consider these we shall fix the drives of a single
agent to constant values whilst exploring all possible combinations of drive values
for the remaining agents. Given the symmetries and constraints that exist within the
problem this approach is exhaustive.

In total we shall consider 36 configurations of the agents’ drives in the initial state.
In addition to the single initial state where the agents’ drives are fully synchronised we
consider 15 configurations where the drives are partly synchronised and 20 where the
drives are not synchronised. Complete details of the drives values for agents in each
initial state can be found in table 1 of Appendix A.

7.5.4 Experimental variables

We can now state our experimental variables. For our investigation of T-CAG-G(GLP)
the independent variables describe the modality of consensus, the specification of the
quorum function and the degree to which the agents are synchronised: These are:
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• the temporal solution concept,

• the group strategy of the agents,

• the initial state and its kind.

Our dependent variables measure the existence of a consensus path and how chal-
lenging it is for the agents to repeatedly perform consensus actions, and so follow a
consensus path and be successful. Given a solution concept, a group strategy and initial
state, the dependant variables are:

• whether a consensus path exists,

• the minimum probability of consensus action in a successor state,

• the average probability of consensus action in a successor state.

We give precise details of how the dependent variables are computed in the follow-
ing section.

7.6 Experimental Method

The group strategy of the agents and their initial state combine to uniquely describe one
instance of T-CAG-G(GLP). We exhaustively enumerate all 1,000 group strategies and
36 initial states giving a total of 36,000 instances of T-CAG-G(GLP). For each solution
concept (strong, weak and qC-minimal) we used a bespoke software tool to encode the
consensus action space as a discrete time Markov chain (DTMC) model.

Each state in the DTMC model corresponds to one state, t ∈ T , in T-CAG-G(GLP).
Each transition in the DTMC model corresponds to a consensus action under the given
solution concept. A state in the DTMC is a deadlock state if an agent has expired, or
the agents cannot reach consensus regarding any joint action. Since we are interested
in three solution concepts (strong consensus, weak consensus and qC-minimal strong
consensus) in total we encoded 108,000 DTMC models.

Each model was encoded using the Reactive Modules state-based language of the
probabilistic model checking tool PRISM [Kwiatkowska et al., 2011]. To compute the
independent variables we then verified the following properties:
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1. Does a consensus path exist from the initial state?

Property: E[G!“deadlock”]

Meaning: Does there exist a full path from the initial state where globally, no
states are deadlock states. This property is true only if a consensus path exists
and false otherwise.

2. How challenging, in the worst case, is it for the agents to keep performing con-

sensus actions?

Property: filter(min, P =?[X!“deadlock”], !“deadlock”)

Meaning: Considering all non-deadlock states reachable from the initial state
what is the minimum probability that the next state on a path from a non-deadlock
state is also a non-deadlock state. The property reports, over all reachable non-
deadlock states, the minimum probability that a non-deterministically selected
consensus action will lead to a state with at least one outgoing transition corre-
sponding to a consensus action. We denote this property as p(minXca)

3. How challenging on average is it for the agents to keep performing consensus

actions?

Property: filter(avg, P =?[X!“deadlock”], !“deadlock”)

Meaning: Considering all non-deadlock states reachable from the initial state
what is the average probability that the next state on a path from a non-deadlock
state is also a non-deadlock state. The property reports the average (mean over
all reachable non-deadlock states) probability that a non-deterministically se-
lected consensus action will lead to a state with at least one outgoing transition
corresponding to a consensus action. We denote this property as p(avgXca).

Where p(minXca) = 1 the consensus action space contains only consensus ac-
tions which lie on a consensus path, the consensus action space is tight. Where
p(minXca) < 1 then the consensus action space contains at least one consensus
action that does not exist on a consensus path. A value of e.g., 0.333 indicates that
there exists at least one reachable non-deadlock state where the probability of non-
deterministically selecting a consensus action leading to a state where further consen-
sus action is possible is as low as one third. The property p(avgXca) can be interpreted
in an similar manner, p(avgXca) = 1 if and only if p(minXca) = 1; the consensus
action space is tight.
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Whilst the p(minXca) property considers the worst case (found in as few as a sin-
gle state) the p(avgXca) property is representative of the consensus action space as a
whole. Together these properties characterise how challenging it is for the agents to
repeatedly perform consensus actions, and so follow a consensus path and be success-
ful. As these probabilities increase the agents are more likely to follow a consensus
path if they (non-deterministically) perform only consensus actions. Therefore these
measures are indicative of the tightness of the consensus action space.

7.7 Results

In this section we give our experimental results. We begin with general results con-
cerning the existence of consensus paths and tightness of the consensus action space;
we then turn to the effects of the initial state upon these. Following this we present
results regarding the performance of group strategies and in particular those strategies
that are homogeneous and those where the group contains a dictator. Finally we ex-
amine the relationship between the mean quorum value and the existence of consensus
paths and tightness of the consensus action space. In each case we present results for
each of the three relevant solution concepts.

7.7.1 Consensus paths

Consensus Path Existence

We looked at consensus path existence for each solution concept over all initial states
and strategies. For the 36,000 instances of T-CAG-G(GLP) table 7.2 shows, for each
solution concept, the proportion of these instances where a consensus path exists.

Table 7.2: Proportion of instances where a consensus path exists.

Solution concept Proportion
Strong consensus path 0.8915

Weak consensus path 0.9190

qC-Strong consensus path 0.8915
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We found that consensus paths exist in a high proportion (approximately 90%) of
instances for all solution concepts. The results for strong consensus paths, and their
collectively rational counterpart qC-strong consensus paths are identical since, by defi-
nition, wherever a strong consensus path exists a qC-strong consensus path also exists.
The proportion of instances where a consensus path exists is highest for weak consen-
sus. This reflects that all strong consensus actions are also weak consensus actions
therefore all strong consensus paths are also weak consensus paths. We found that
for a small (2.75%) proportion of instances weak consensus paths exist where strong
consensus paths do not. Since the weak consensus action space is a super set of the
strong consensus action space, which itself is a superset of the qC-minimal consensus
action space the results tell us that in just over 8% of instances no consensus path (of
any kind) exists.

Following Consensus Paths

Here we give results concerning how challenging it is for the agents to follow con-
sensus paths under our solution concepts. For each solution concept we computed
the means of properties p(minXca) and p(avgXca), p(minXca) and p(avgXca),
respectively. These are measures of how challenging it is for the agents to follow a
consensus path. Table 7.3 shows the mean values of these properties. The first pair
of columns show means over all 36,0000 instances, the second pair show means only
where a consensus path exists.

Table 7.3: Means of p(minXca) and p(avgXca) for each solution concept.

All instances Consensus path exists
Solution concept p(minXca) p(avgXca) p(minXca) p(avgXca)

Strong consensus path 0.5852 0.7773 0.6564 0.8720

Weak consensus path 0.4515 0.7449 0.4913 0.8105

qC-Strong consensus path 0.8567 0.8796 0.9610 0.9866

Although weak consensus paths exist in the greatest proportion of instances we
find that weak consensus paths are the hardest to follow. These results are consistent
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and tell us that whilst weak consensus is reached in a wider array of circumstances
than strong consensus there are many consensus actions in the weak consensus action
space which do not lie on a weak consensus path. Interestingly, qC-strong consensus
paths are the easiest for the agents to follow. Where a qC-strong consensus path exists,
the average probability that the agents will choose a consensus action leading to a
non-deadlocked state is almost 99%.

We now look at instances where the consensus action space is tight; these are iden-
tified by p(minXca) = p(avgXca) = 1. Table 7.4 shows the proportion of instances
where the consensus action space is tight; proportions are given as before, for all in-
stances and for only those where a consensus path exists.

Table 7.4: Proportion of instances where the consensus action space is tight.

Solution concept All instances Consensus path exists
Strong consensus path 0.3417 0.3833

Weak consensus path 0.1960 0.2133

qC-Strong consensus path 0.8252 0.9257

The results show that in T-CAG-G(GLP) the weak consensus solution concept
yields a tight consensus action space on far fewer occasions than strong or qC-minimal
consensus. Moving from weak consensus to strong consensus and from strong consen-
sus to qC-strong consensus the consensus action space not only becomes smaller but
also is more likely to be tight. In particular we found the qC-minimal consensus action
space was tight in over 80% of all instances; this rises to over 90% if we consider only
instances where a qC-strong consensus path exists. For T-CAG-G(GLP) this means
that the agents are most likely to follow a consensus path and so be successful if the
qC-strong consensus solution concept is applied.

Where a weak consensus path exists the consensus action space is tight in only a
little over 20% of instances. Since weak consensus can be reached in situations where
strong consensus cannot, this raises the question of whether the weak consensus action
space can be tight where strong consensus paths are not found. We looked at those
instances where a weak consensus path exists but a strong consensus (equivalently qC-
strong consensus path) path does not exist. Of these we found that in just over one
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third (0.3508) of instances where a weak consensus path exists the weak consensus
action space is tight.

7.7.2 Initial states

Here we give results concerning the effects of the initial state kind upon the existence
of consensus paths and tightness of the consensus action space. The 36,000 instances
are broken down by initial state kind as follows:

• 1,000 where the agents are fully synchronised in the initial state (Full)

• 15,000 where the agents are partly synchronised in the initial state (Part)

• 20,000 where the agents are not synchronised in the initial state (None)

Effects of initial state kind upon existence of consensus paths

For each initial state kind we computed the proportion of that state kind for which a
consensus path exists. Table 7.5 gives these results broken down by solution concept.

Table 7.5: Existence of consensus paths given the synchronisation in the initial state.

Solution Concept Synchronisation Proportion
Strong consensus path Full 1.0000

Weak consensus path Full 1.0000

qC-Strong consensus path Full 1.0000

Strong consensus path Part 0.9206

Weak consensus path Part 0.9402

qC-Strong consensus path Part 0.9206

Strong consensus path None 0.8642

Weak consensus path None 0.8991

qC-Strong consensus path None 0.8642

These results show that the initial state kind has a clear effect upon the existence of
consensus paths across all solution concepts. Where the agents are fully synchronised a

110



7.7. RESULTS

consensus path always exists, this is to be expected since there is no conflict of interest
between the agents. As the agents become less synchronised in the initial state the
proportion of instances where a consensus path exists decreases.

We found that the proportion of instances where a consensus path exists was at its
lowest, for all solution concepts, where the agents are not synchronised in the initial
state. This proportion reached a minimum, of only 80%, in initial states numbered #8
and #13 (see table 1 of Appendix A for further details of these states). In particular
these two initial states can be distinguished as the only initial states in which the agents’
ordering over their goals are rotations of each other.

Effects of initial state kind upon following consensus paths

We now give results concerning the effects of the initial state kind upon the tightness
of the consensus action space. For each solution concept and initial state kind, table
7.6 shows the means for p(minXca) and p(avgXca) over all instances and for only
those where a consensus path exists. Note that the results for fully synchronised initial
states states reflect that a consensus path always exists from such states.

Table 7.6: Means of p(minXca) and p(avgXca) for each solution concept and initial
state kind.

All instances Consensus path exists
Solution concept Sync. p(minXca) p(avgXca) p(minXca) p(avgXca)

Strong consensus path Full 0.7113 0.8960 0.7113 0.8960

Weak consensus path Full 0.5995 0.8402 0.5995 0.8402

qC-Strong consensus path Full 0.9678 0.9892 0.9678 0.9892

Strong consensus path Part 0.6106 0.8078 0.6633 0.8774

Weak consensus path Part 0.4677 0.7680 0.4974 0.8169

qC-Strong consensus path Part 0.8861 0.9089 0.9625 0.9873

Strong consensus path None 0.5598 0.7486 0.6478 0.8662

Weak consensus path None 0.4320 0.7227 0.4805 0.8038

qC-Strong consensus path None 0.8291 0.8520 0.9594 0.9859

Table 7.7 shows the proportion of instances from each initial state kind where the
consensus action space was tight. As before, proportions are given out of the total
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number of instances with each initial state kind and the also for those only where a
consensus path exists.

Table 7.7: For each initial state kind, the proportion of instances where the consensus
action space is tight.

Solution concept Sync. All instances Consensus path exists
Strong consensus path Full 0.4440 0.4440

Weak consensus path Full 0.2710 0.2710

qC-Strong consensus path Full 0.9360 0.9360

Strong consensus path Part 0.3646 0.3960

Weak consensus path Part 0.2112 0.2246

qC-Strong consensus path Part 0.8546 0.9283

Strong consensus path None 0.3194 0.3696

Weak consensus path None 0.1809 0.2012

qC-Strong consensus path None 0.7976 0.9229

The results show that the initial state has a clear effect upon how easy it is for the
agents to follow consensus paths. We found that, for all initial states kinds, the qC-
minimal consensus action space is most likely to be tight, hence qC-strong consensus
paths are the easiest to follow; then strong consensus paths and lastly weak consensus
paths. However, all solution concepts exhibited a similar response to the degree of
synchronisation amongst the agents. For all solution concepts it is easiest to follow
consensus paths from a fully synchronised state, and hardest from a non synchronised
state. Similarly, it is more likely that the consensus action space is tight where the
agents are fully synchronised in the initial state, and least likely where the agents are
not synchronised.

7.7.3 Strategies

Here we give results concerning the effects of group strategies upon outcomes for the
agents. We exhaustively explored the space of rational quorum functions for T-CAG-
G(GLP), in total we considered 1,000 group strategies. We begin by considering those
group strategies for which a consensus path exists and the consensus action space is
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tight irrespective of initial state. We then present results concerning the effects of group
strategies that are homogeneous and those where a dictator is present.

Resilience to the effects of initial state

For all solution concepts we found that a large number of group strategies were resilient
to the effects of the initial state. For these group strategies a consensus path exists and
the consensus action space can be tight across all of the initial states of the agents.

Table 7.8 shows the number of group strategies where consensus paths exist and
also where the consensus action space is tight, irrespective of initial state. These results
are given for each solution concept.

Table 7.8: For each solution concept the number of strategies which are resilient to the
initial state.

Solution concept Consensus path exists Tight consensus action space
Strong consensus path 668 158

Weak consensus path 810 108

qC-Strong consensus path 668 602

Of the 1,000 group strategies a large proportion, between approximately 70% to
80% (dependant on solution concept), showed consensus path existence for all 36 ini-
tial states. In particular we found for that for the qC-strong consensus path solution
concept just over 60% of group strategies gave rise to a tight consensus action space;
this is considerably higher than for either weak or strong consensus.

Homogeneous Strategies

We looked at the effects of homogeneous strategies upon the existence of consensus
paths and tightness of the consensus action space.

For each of the solution concepts and each homogeneous strategy we computed:

• the proportion of initial states where a consensus path exists (blue)

• the proportion of initial states where the consensus action space is tight (red)
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Figure 7.2 shows these results for strong consensus and qC-strong consensus (data
are identical) whilst results for weak consensus are shown in Figure 7.3.
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Figure 7.2: Effects of homogeneous strategies for strong and qC-strong consensus
paths.
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Figure 7.3: Effects of homogeneous strategies for weak consensus paths.

We found that consensus paths exist for all solution concepts for all homogeneous
strategies. Figure 7.2 shows that for strong and qC-strong consensus paths, where
the group strategy, σA, is low numbered, between 〈0, 0, 0〉 and 〈3, 3, 3〉, although
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consensus paths exist the consensus action space is not tight. This reflects that in
these strategies (see table 7.1) the agents unconditionally support the joint action that
achieves their non-dominated goal (jd) and also the joint action achieving the goal
ranked second-most (js). Such agents can be described as too willing to agree, or
too ‘selfless’. Hence, for these strategies, although consensus paths exist for a large
proportion (in many cases, all) of initial states, the consensus action space is never
tight.

However, for all other homogeneous strategies figure 7.2 shows that whenever a
consensus path exists the consensus action space is tight. Group strategies where σA =

〈4, 4, 4〉 or σA = 〈5, 5, 5〉 are particularly interesting. Consensus paths exist from all
initial states for both of these homogeneous strategies; moreover, the consensus action
space is tight irrespective of initial state. In these group strategies agents require at least
one other agent to support the joint action achieving either their second or third-most
ranked goals, but will never object to a joint action.

The strong/qC-minimal consensus action space is also guaranteed to be tight for
group strategies where σA lies between 〈6, 6, 6〉 and 〈9, 9, 9〉. However, in these strate-
gies the agents become increasingly less inclined to perform anything other than the
joint action jd, achieving their non-dominated goal. For these group strategies the
existence of a consensus path is not assured.

Figure 7.3 shows that for weak consensus the agents reach agreement in a wider
range of circumstances than for strong consensus. Consequently the agents reach con-
sensus over a larger set of joint actions. Therefore only in the ‘most selfish’ group
strategy, σA = 〈9, 9, 9〉, where all agents object to joint actions other than jd, is the
consensus action space tight.

Dictatorships

Of the 1,000 group strategies there are 243 strategies that qualify as dictatorships hav-
ing exactly one agent i ∈ A where σi = 9. We looked at the effects of each of these
dictatorial strategies in each of the 36 initial states (8,748 instances in total). For each
of the solution concepts and each dictatorial strategy we computed:

• the proportion of initial states where a consensus path exists,

• the proportion of initial states where the consensus action space is tight.
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For strong consensus paths and qC-minimal consensus paths the proportion of ini-
tial states where a consensus path exists was 0.7503, of these, the consensus action
space was tight in every case. For weak consensus paths the proportion of initial states
where a consensus path exists was 0.7901, again the consensus action space was tight
in every case.

We found that presence of a dictator is not sufficient to ensure the existence of a
consensus path. However, where a consensus path does exist all dictatorial strategies
give rise to a consensus action space that is tight; this is irrespective of solution concept.
Consensus paths exist in slightly more (about 4%) cases for weak consensus than for
strong consensus.

7.7.4 Mean quorum value

We asked if there is any correlation between the mean quorum value of a group strategy
and:

• whether a consensus path exists,

• whether the consensus action space is tight.

For simplicity we are going to report q# values throughout this section — recall
that these represent actual numbers of agents. We begin by looking at the frequency
distribution of the mean quorum value over all instances. Figure 7.4 shows that for
T-CAG-G(GLP) the mean quorum value assumes one of 19 distinct values and is nor-
mally distributed:
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Figure 7.4: Frequency distribution of mean quorum values.
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For each solution concept and each distinct value of the mean quorum value we
computed the proportion of instances where a consensus path exists and where the
consensus action space was tight. For example (for all solution concepts) there were
36 instances (one for each initial state) where the mean q# value was 0, of these all 36
(proportion is 1) exhibited a consensus path, but on no occasion (proportion is 0) was
the consensus action space tight. These data are shown in figures 7.5 to 7.10.
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Figure 7.5: Mean quorum value vs. proportion of strong consensus path existence.
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Figure 7.6: Mean quorum value vs. proportion of tight strong consensus action space.
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Weak consensus path
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Figure 7.7: Mean quorum value vs. proportion of weak consensus path existence.
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Figure 7.8: Mean quorum value vs. proportion of tight weak consensus action space.
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qc-Strong consensus path
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Figure 7.9: Mean quorum value vs. proportion of qC-strong consensus path existence.
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Figure 7.10: Mean quorum value vs. proportion of tight qC-minimal strong consensus
action space.

The plots suggest that the mean quorum value and the existence of consensus paths/tightness
of consensus action space are related for all three solution concepts. However these
relationships are clearly non-linear. For all solution concepts increasing the mean q#
value beyond one agent decreases the probability that a consensus path will exist. This
is consistent with the intuition that a higher mean corresponds to a lower probability of
consensus. An interesting question, therefore, is whether the mean q# is a significant
predictor of the existence of consensus paths/tightness of consensus action space.
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Is the mean q# value a significant predictor?

To understand whether the mean quorum value is a significant predictor of the exis-
tence of a consensus path/tight consensus action space we performed a binary logistic
regression (generalised linear model with logit link function). A post-hoc power anal-
ysis was undertaken to confirm that our sample size of 36,000 is sufficient for analysis
at the 0.99 confidence interval.

We performed six logistic regression analyses. In each we used the mean q#

value as the independent variable. The six covariates were dichotomous variables
representing the existence of a consensus path and whether consensus action space
was tight, for each of the three solution concepts. The existence of a tight con-
sensus action space was coded as a dummy variable assuming the value 1 (true) iff
p(minXca) = p(avgXca) = 1.

In each case we found the mean q# value to be a significant (p < 0.0001) predictor
of the covariate. To understand the predictive power of the mean q# value we looked
at the Nagelkerke R Square value. This can be interpreted as the proportion of the
variance in the covariate that can be explained by the independent. These data are
shown in the table 7.9.

Table 7.9: Nagelkerke R Square for mean quorum value as a predictor of consensus
path existence and tight consensus action space.

Solution concept Consensus path exists Tight consensus action space
Strong consensus path 0.470 0.245

Weak consensus path 0.432 0.186

qC-Strong consensus path 0.470 0.240

These results show that although there is a significant relationship between the
mean quorum value and the existence of consensus paths, the mean quorum value is
not a robust predictor of the existence of a consensus path, accounting for less than
50% of the variance in the output of the model. This result reflects the high variance
in our data due to factors such as the choice of initial state. Similarly our results
also suggest that the mean quorum value is also not a robust predictor of whether the
consensus action space is tight. Overall these results are consistent with our intuition
that although a lower mean quorum value increases the probability of consensus, in
general consensus can be reached across a broad range of the mean quorum value.
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7.8 Discussion and Related Work

We have introduced and studied the group location problem in which a group of agents
repeatedly achieve individual goals whilst remaining spatially cohesive. Cohesion is
achieved by maintaining consensus over repeated decisions regarding the location of
the group. The problem is challenging since the agents may be in conflict regarding
their goals and hence the next location of the group. Our work is the first to consider
collective selection of group location where agents’ choices are mediated by individu-
ally rational thresholds. Ours is also the first work to examine such biological problems
using formal verification and model checking techniques.

However, ours is not the first application of agent-based techniques to the study
of movements in natural groups. Sellers et al. [2007] uses agent-based simulation
to model group movement in a complex, dynamic and realistic environment where
agents’ energetic requirements are governed by bio-realistic functions and group de-
cisions regarding whether or not the group should move are made by voting with a
variable, majority threshold. They found that the majority threshold is a strong pre-
dictor of whether or not the agents will achieve their goals. However their work does
not consider agents with individual thresholds, or the effects of the initial state of the
agents. Moreover, in their model spatial cohesion, hence consensus, is enforced, even
where agents would otherwise have expired; the agents are not permitted to disagree
hence the model has no representation of fission events.

Agent-based modelling has also been used to simulate collective nest site selection
in eusocial insects such as bees [List et al., 2009] and ants [Pratt et al., 2005]. A
significant differentiator between our work and previous applications of agent-based
models to the study of decision making in natural groups is that we have not used
simulation. Rather, our methodology has been to use formal verification.

Whilst, arguably, simulation is far less computationally expensive than model check-
ing the latter has one distinct advantage: completeness. It is rarely practical to explore
the entirety of the model parameter space using simulation. Even where exhaustive
enumeration can be achieved this in no way guarantees completeness since, for non-
deterministic systems (such as ours), each parameter set may correspond to a vast
number of potential model runs [Girard and Pappas, 2006].

Since model checking is a resource intensive activity we, necessarily, have con-
sidered a model with a comparatively small parameter space. However, we have been
able to use this to our advantage: since the parameter space is manageable we have
been able to exhaustively enumerate all possible instances of our model. Furthermore,
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by employing formal verification techniques our results are comprehensive. We have
explored our model in its entirety.

We have formalised the group location as a temporal consensus action game with
goals, T-CAG-G(GLP). In doing so we have shown that the T-CAG-G model can be
used to describe real-world problems where agents have diverse preferences over the
order in which their goals are achieved, yet the agents achieve these goals whilst re-
maining in consensus and staying together. Such a setting includes many group de-
cision making scenarios, from choosing activities for a social outing, to addressing
international problems such as climate change, or financial instability [Conradt, 2008].

In our formalisation, the quorum function qt for each state t ∈ T is specified ac-
cording to the rationality postulates introduced in section 5.2, and the agents’ ordering
over their goals. These, in turn, are determined by the drive values, representing the
strength of an agent’s need to achieve a particular goal. The model parameter dmax sets
an upper bound for an agent’s drives beyond which the agent expires. It is therefore
crucial that agents achieve their goals before their needs become too great. In this re-
spect the drives of the agents, combine with the model parameter dmax such that each
agent has a deadline by which each goal must be achieved.

Strictly speaking, however, in T-CAG-G(GLP) the agents’ goals are not ‘achieved’
in the sense that the goals are never removed from an agent’s goal set. Instead, the
most recently realised goal becomes the least urgent in the agents’ ordering over goals.
Therefore in T-CAG-G(GLP) we model maintenance goals rather than achievement
goals. This is consistent with the biological pedigree of the group location problem.
For example, when we eat we do not permanently lose the goal to eat, we merely
de-prioritise the urgency with which this goal must next be achieved.

Our investigation of T-CAG-G(GLP) has examined the behaviour of the agents
under the solution concepts for CAG-Gs (introduced in Chapter 5) and their tempo-
ral counter-parts (introduced in Chapter 6). In particular we have focused on strong,
weak and qC-strong consensus paths; although we did not explicitly consider C-weak
consensus paths it is the case that, for T-CAG-G(GLP), these are wholly equivalent to
weak consensus paths.

We found that consensus paths exist for all of our solution concepts across a broad
range of conditions. Of the solution concepts we have examined we found that the
agents are most likely to be successful where the consensus action space contains only
qC-minimal strong consensus actions. In particular we found that this refinement of the
strong consensus action space not only produces a set of joint actions about which the
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agents agree more easily (i.e., in fewer rounds), but also leads to more robust decision
outcomes and notably increases the chances of the agents’ success. This holds across
a high proportion of specifications for the quorum functions irrespective of the initial
state of the agents.

For each instance of T-CAG-G(GLP) and each solution concept we computed the
properties p(minXca) and p(avgXca). Respectively, these are the minimum and av-
erage probabilities that from a reachable non-deadlocked state, the subsequent state
will also be a non-deadlocked state. Recall that these measures are indicative of the
tightness of the consensus action space, hence, how challenging it is for the agents to
follow consensus paths.

We found that weak consensus paths, having the lowest means for both p(minXca)

and p(avgXca), are the hardest for the agents to follow (see table 7.3). Over all in-
stances, for weak consensus the mean p(avgXca) = 0.7449 suggesting that on average
approximately one in four ((1−0.7449)−1 ≈ 4) weak consensus actions lead to a state
where further consensus action is not possible. The result is similar for strong con-
sensus where, over all instances, p(avgXca) = 0.7773. Considering all instances for
qC-strong consensus paths we have p(avgXca) = 0.8769. This corresponds to only
one in eight qC-minimal strong consensus actions leading to a state where further con-
sensus action is not possible. Thus, in comparison to strong/weak consensus paths, on
average over all instances of T-CAG-G(GLP) qC-strong consensus paths are approxi-
mately twice as easy to follow.

A different, yet consistent view arises from considering only those cases where for
a given solution concept a consensus path exists. Where a weak consensus path exists
the mean p(avgXca) = 0.8105, where a strong consensus exists p(avgXca) = 0.8720

and where a qC-strong consensus path exists p(avgXca) = 0.9866. These results
correspond, respectively and approximately, to one in five, one in eight and one in 75
consensus actions leading to a state where further consensus action is not possible.
For T-CAG-G(GLP), where consensus paths exist it is on average approximately nine
times easier for the agents to follow a qC-strong consensus path that it is to follow a
strong consensus path. Similarly, it is approximately 15 times easier for the agents to
follow a qC-strong consensus path than it is to follow a weak consensus path.

Considering the property p(minXca) we can also view the tightness of the con-
sensus action space from the worst case perspective. From table 7.3 we can see that
over all instances the mean values for p(minXca) correspond to approximately one in
two consensus actions leading to deadlock in the successor state for both strong and
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weak consensus; whereas approximately one in seven qC-minimal consensus actions
will lead to a deadlocked state.

Considering values for p(minXca) only in cases where consensus paths exist em-
phasises the ease with which the agents can follow qC-strong consensus paths. We
find that in the worst case one in two weak consensus actions lead to deadlock states.
Strong consensus is slightly more robust; at worst, one in three strong consensus ac-
tions lead to a deadlocked state. However, for the qC-minimal strong consensus action
space only one in 25 consensus actions lead to deadlock in the successor state.

Our results show that since weak consensus can be reached in wider array of cir-
cumstances than, for example, strong consensus, weak consensus paths exist where
strong consensus paths do not. Although, typically, the permissive nature of weak con-
sensus leads to consensus paths that are challenging to follow (since many possible
deviations exist) we did find that, on occasions, there are advantages to this modality
of consensus. In 348 instances, or just under 1% of all instances the weak consensus
action space was tight and no strong (or qC-strong) consensus path exists.

We considered the effects of the initial state upon the success of the agents. Our re-
sults support views regarding the effects of synchrony on group decisions as expressed
in the biological literature [Conradt and Roper, 2003]. In particular we found that as
the synchrony of the agents increases not only are consensus paths more likely to exist
(see table 7.5) but they also become easier for the agents to follow (see table 7.6). This
is true irrespective of solution concept.

We investigated a representative selection of 36 initial states and categorised these
into three initial state kinds corresponding to the agents’ drives being fully, partly or
not synchronised. For each initial state kind and solution concept we computed the
mean properties p(minXca) and p(avgXca). Table 7.6 shows these data when taken
over all instances and only those where a relevant consensus path exists. These results
show that in every initial state kind both p(minXca) and p(avgXca) are lowest for
weak consensus and greatest for qC-strong consensus; values for strong consensus lie
between the two. Thus for all initial state kinds it is easiest for the agents to follow
qC-strong consensus paths and hardest for the agents to follow weak consensus paths.

For each solution concept we found that both p(minXca) and p(avgXca) are at
their lowest where the agents are not synchronised in the initial state. The means
of both properties increase as the agents’ drives become more synchronised in the
initial state, reaching their greatest values where the agents’ drives are initially fully
synchronised. The results show that for all solution concepts, in both the average and
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worst case terms, it is easiest for agents to follow consensus paths where their drives are
fully synchronised in the initial state. Decreasing the degree of synchrony consistently
leads to consensus paths that are harder for the agents to follow.

An interesting question is: on average, how much easier is it for the agents to fol-
low consensus paths from initial states where they are synchronised in comparison to
where they are not? Taking our results for p(avgXca) where a consensus path exists
we find that: for weak consensus, where the agents are not initially synchronised ap-
proximately one in five consensus actions lead to a deadlocked state. This decreases
to approximately one in six where the agents are fully synchronised in the initial state.
For strong consensus, where the agents are not synchronised approximately one in
seven consensus actions result in a deadlock state; this decreases to approximately one
in ten where the agents are initially synchronised. For qC-strong consensus paths we
find that where the agents are not initially synchronised approximately one in 71 con-
sensus actions will lead to deadlocked states; where the agents are fully synchronised
in the initial state this decreases to approximately one in 93. To place these results in
context it is useful to recall that even from a state where the agents are initially not
synchronised it is necessary that the agents perform only three consensus actions (at
minimum) in order that their drives become fully synchronised.

Interestingly, our results suggest that consensus paths are least likely to exist from
initial states where the agents’ drive values give rise to orderings that are rotations of
each other. In the two initial states, #8 and #13, where consensus paths (in any solution
concept) are least likely to exist, the agents’ orderings over their goals form Condorcet
cycles [Condorcet, 1785]. Table 7.10, below, shows the relevant portions of the agents’
orderings over goals for these initial states, note that these states are symmetrical about
agents 2 and 3.

Table 7.10: Initial states where the agents’ orderings form Condorcet cycles.

Initial state # �i, i = 1 �i, i = 2 �i, i = 3

8 g3 > g2 > g1 g1 > g3 > g2 g2 > g1 > g3

13 g3 > g2 > g1 g2 > g1 > g3 g1 > g3 > g2

The cyclical nature of the agents’ orderings present what has become known in the
social choice community as a voting paradox. Consider initial state #8: agents 1 & 2
both agree that g3 > g2 but agent 3 does not. Agents 2 & 3 agree that g1 > g3 but agent
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1 does not; similarly, agents 1 & 3 agree that g2 > g1 whilst agent 2 does not. For
orderings of this kind the, commonly employed, simple majority voting rule cannot
determine a social ordering or an overall winner; in other words the rule is indecisive

[Dasgupta and Maskin, 2008].
An analogue for decisiveness in our model is found where the consensus action

space is tight. Although such a condition is not wholly decisive in that for a given state
more than one consensus action may exist, where the consensus action space is tight
all consensus actions share the property that they exist on a consensus path. Thus the
agents are guaranteed to be successful. Interesting, even for these troublesome initial
states the consensus action space can be tight; and this is true for all solution concepts.
In particular a qC-strong consensus path exists from these initial states for 80% of
group strategies. Surprisingly, we find that in over 90% of these cases the qC-minimal
strong consensus action space is tight.

We looked at 1,000 group strategies, and so exhaustively explored the space of
rational quorum functions for T-CAG-G(GLP). We found that a large proportion of
group strategies lead to the existence of consensus paths irrespective of initial state.
We found that the qC-strong consensus path solution concept is particularly resilient to
both the specification of the quorum function and the choice of initial state, see table
7.8. For this solution concept the consensus action space was tight, irrespective of
initial state, for approximately four (in the case of strong consensus) to six (in the case
of weak consensus) times as many strategies.

Individually, each agent, i ∈ A follows one of ten strategies (denoted σi) describing
the specification of their quorum values (see table 7.1). Where σi = 0 the agent
unconditionally supports all joint actions, such agents behave in a selfless manner,
ceding to the will of the other agents. In contrast where σi = 9 we can say that
agent i is selfish, unconditionally supporting only the joint action that achieves its non-
dominated goal and objecting to all others. Broadly speaking, as σi increases the agent
becomes increasingly independent.

Independence and interdependence in collective decision making is examined in
List et al. [2009]. They also use an agent-based model, however, their interest is in
nest-site selection in honeybees. Their model includes a weighting parameter (λ) con-
trolling the extent to which each agent respects the opinions of other agents (regarding
the quality of potential nest sites). They found that only in populations where both
independent and interdependent behaviours are present do the agents make reliable,
accurate decisions.
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We too found, for strong and qC-strong consensus paths, strategies that are neither
too interdependent (σi is low) or too independent (σi is high) produce the best outcomes
for the agents (see figure 7.2). In particular we found, for these solution concepts, that
given the homogeneous strategies σA = 〈4, 4, 4〉 or σA = 〈5, 5, 5〉 not only is a con-
sensus path guaranteed to exist (irrespective of initial state) the consensus action space
is also guaranteed to be tight. That is: under no circumstances will these group strate-
gies lead to the agents being unsuccessful. Interestingly, the homogeneous strategy
σA = 〈5, 5, 5〉 corresponds to a strengthening of the postulate of unconditional support
such that quorum values decrease with strong (as opposed to weak) monotonicity given
strictly (as opposed to non-strictly) increasing rank-order.

The game theoretic model of Conradt and Roper [2007] suggests that, due to evolu-
tionary pressures, consensus (shared) decision making should be far more widespread
than dictatorial (unshared) decision making in natural groups. In particular their model
predicts that dictatorships only evolve where: the costs of performing an activity too
early are similar or lower than the costs of performing an activity too late, the group is
relatively homogeneous with respect to activity budgets and the group is not above its
optimal size.

These conditions resemble those found in T-CAG-G(GLP). Although we do not
explicitly quantify costs and benefits in our model it is clear that the cost of performing
an activity too early, e.g., moving to location one where presently location three is most
preferred, is significantly less than performing it too late e.g., where an agent’s drive
equals dmax and it expires. In T-CAG-G(GLP) the drives of the agents operate in an
identical manner hence the group is homogeneous with respect to activity budgets.
Since in T-CAG-G(GLP) there are no costs associated with group size, the group is
not above its optimal size. Our results suggest that groups containing a dictator can
indeed be successful under these circumstances. Not only do consensus paths exist for
all solution concepts for over 75% of dictatorial group strategies we found in every
case that the consensus action space was tight.

Lastly, we investigated relationships between the mean quorum value and the like-
lihood of consensus path existence and tightness of the consensus action space. We
confirmed our intuitive hypothesis that a lower mean quorum value increases the like-
lihood of consensus path existence. We found the mean quorum value to be a sig-
nificant predictor of a tight consensus action space although we found little evidence
suggesting that a lower mean quorum value necessarily leads to this. We believe that
these results demonstrate the potential of our models to enable original research into
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the behaviour of groups where individual behaviours are conditioned upon threshold
responses.
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Chapter 8

Conclusions

In this thesis we have presented a family of models for describing the behaviour of
multi-agent systems in which self-interested, rational agents make group decisions us-
ing a biologically inspired consensus mechanism. Each model has addressed a partic-
ular aspect of collective behaviour in agents. Our games describe coalition formation
(CGs), joint action (CAGs) and goal achievement (CAG-Gs), over time (T-CAG-Gs).

We have reviewed, in Chapter 2, related work from the domains of economics,
political science, computer science, sociology and empirical/theoretical biology. We
found that whilst collective decision making through threshold mediated behaviours is
commonplace in the natural world, and is gaining traction in the technological world,
existing models of collective decisions for multi-agent systems are not well suited to
describing this modality of consensus decision making. This has been the gap we have
tried to address in this thesis.

In Chapter 3 we introduced consensus games (CGs) and studied a problem at the
heart of cooperative behaviour in multi-agent systems; that of coalition formation. Fol-
lowing from game-theoretic research we presented two, complementary individually
rational solution concepts, strong and weak consensus, and formulated their collec-
tively rational counterparts. Through a series of decision problems we considered the
verification, existence and non-existence of outcomes satisfying each solution concept.
This characterisation identified aspects of threshold-based decision making which can
be computed efficiently, in time that is polynomial in the number of agents. In par-
ticular the individually rational solution concepts of strong and weak consensus fall
into this category. We also used knowledge-based protocols to show that, for dis-
tributed settings, both strong and weak consensus can be established using broadcast
messaging. For either solution concept each agent is required to make at most one
announcement.
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The CAG model presented in Chapter 4 extends the CG model to incorporate con-
sensual joint action by groups of agents. We found that the introduction of joint actions
has implications for notions of collective rationality and that certain solution concepts
applicable for CGs were not desirable for CAGs. Hence new solution concepts for
this, and subsequent models, were introduced. Whilst the inclusion of joint actions
in the model had inevitable effects on the computational complexity of various de-
cision problems the problem of verification for strong and weak consensus remained
tractable.

We have considered several aspects of rationality in these games. In addition to the
individually and collectively rational solution concepts for our games, in Chapter 5 we
also considered how rational threshold values can be selected for agents where agents
have an ordering over the sets of goals they may achieve. The introduction of ratio-
nality postulates placed constraints upon the specification of threshold values for the
agents and also affected the computational complexity of certain decision problems. In
particular we found that the verification problem for the collectively rational solution
concept of the qC-minimal core in CAG-Gs can be solved in time polynomial in the
number of agents.

In Chapter 6 we introduced T-CAG-Gs. These transition systems describe repeated
games, played over time. In this model we considered the implications of composite
actions - where groups of agents act in consensus with themselves, but not with each
other. The model was extended to accommodate such behaviours where the actions
agents may perform are constrained and their outcomes, in terms of the goals that
they achieve, may be contradictory. We introduced consensus paths, temporal forms
for our solution concepts and considered the computational complexity of verification
problems for these. We found that T-CAG-G models are well suited to existing model
checking techniques and showed that decision problems concerning the existence of
consensus paths can be efficiently solved.

Throughout this work the emphasis has been on creating models that are practi-
cal and can be applied to real-world situations. In Chapter 7 we demonstrated this
by applying the T-CAG-G model to a biologically inspired problem, that of maintain-
ing cohesion in heterogeneous groups. Our results were compared with those from
both theoretical and empirical research into collective behaviours in animal groups.
We found that the predictions of our model concur with current thinking from those
domains. This suggests that our models may be of significant interest and benefit to
researchers active in these areas.
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8.1. SUMMARY OF CONTRIBUTIONS

8.1 Summary of Contributions

The main contributions of this work have been to:

• define a series of formal models for describing multi-agent systems where agents’
interactions are mediated by thresholds,

• propose novel solution concepts for these models capturing notions of both indi-
vidual and collective rationality,

• provide a characterisation of the computational complexity of decision problems
for these solution concepts,

• demonstrate the application of the models to the investigation of consensus, co-
ordination and cooperation in natural groups.

8.2 Future Work

Ours is a first attempt to formalise models and solution concepts for collective action
mediated by individual thresholds in multi-agent systems. As such there are many
possibilities which either for reasons of time or scope were not addressed here. We
briefly consider some of these below.

In Chapter 3 we defined knowledge based protocols for reaching consensus in a
distributed setting. These protocols assume that communication between agents is
broadcast (global). Other research has considered threshold behaviours where agents’
communication is restricted by a network topology, e.g., [Chwe, 1999; Kempe et al.,
2003; Watts and Strogatz, 1998]. Such circumstances have been considered only for
binary decisions and have not considered aspects such as coalition formation, joint
action or goal achievement. It would therefore be interesting to consider variants of
our models in which agent interactions are strictly local.

One aspect of collective decision making that is of great interest to those con-
cerned with computational social choice is strategic manipulation through misreport-
ing of preference. In threshold models the obvious analogous practice is the misre-
porting of threshold values. For our models, strategic manipulations attempt to ad-
vantageously increase/reduce the likelihood that some consensus outcome occurs. For
temporal games such behaviour could influence consensus paths and hence the set of
states which may be reachable.
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On the one hand agents in our models have a great deal of power, a single agent
can veto a coalition/joint action (changing these from consensus to non-consensus out-
comes) simply by objection. On the other hand, in general it is very difficult for an
agent to effect a manipulation such that a non-consensus outcome becomes a con-
sensus outcome. This suggests that coalitional manipulations, as in Beckmann et al.
[2009], may be of particular interest for our models. The potential for strategic ma-
nipulation in CAG-Gs is largely dependent upon the specifications of joint actions and
the goals these achieve. It may be interesting therefore to investigate specifications for
these structures that are immune to strategic manipulations.

Whilst we have examined how threshold values may be rationally selected for the
agents, our notions of rationality are rather weak. As we have shown in Chapter 7
a wide range of threshold strategies from extreme inter-dependence (unconditionally
support everything) to extreme independence (only support the non-dominated out-
come) coincide with our rationality postulates. An interesting result from Chapter 7 is
that, for the problem we studied, one of our rationality postulates can be strengthened.

The postulate of proportional support requires that agents’ quorum values increase
with weak monotonicity as their keenness to participate in joint actions decreases.
For both strong and qC-strong consensus paths we found that where this response is
strongly monotonic the agents are guaranteed to be successful, regardless of their ini-
tial state. This result raises several natural questions regarding the use of this stronger
postulate in wider circumstances. Most obviously, we might investigate whether this
result holds across a broad selection of the parameter space for the T-CAG-G(GLP)
problem. More generally it would also be interesting to investigate the characteris-
tics of problems where a strongly-proportional strategy does/does not lead to the best
possible outcomes for the agents.

Our focus has been on models where agents’ thresholds are specified by a deter-
ministic quorum function. However for many natural systems the quorum response
is described as a stochastic process. In these systems the probability of an individual
supporting some collective act is proportional to the number others also showing sup-
port. One possible extension of our work would to consider such probabilistic quorum
responses. It would also be interesting to consider situations where agents’ thresholds
may be adaptive and so be selected, for example, based on previous experiences. Such
an approach has already been applied to minority games [Challet and Zhang, 1997].

We have demonstrated that our models are useful for applied research. Our work
has considered the group location problem in a particularly abstract and simplified
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form. In future developments of this strand of applied work it would be interesting to
increase the realism of both the model of the environment and the agents’ drives, as for
example in the work of Sellers et al. [2007].

In particular, our model of the environment treats all locations equally. In real-
ity natural groups inhabit diverse environments where locations are, for example, not
equidistant from each other, therefore certain locations may require significant and re-
peated commitment from the group in order that they are reached. Our current model
does not capture this. Similarly, our model for the agents’ drives is also a extremely
simple. We have assumed that needs grow linearly and at the same rate for all agents
and for all goals. It is unlikely that for naturally occurring groups this would be the
case.

Increasing the realism of the model also suggests that future work should consider
groups of a more realistic group size. This may prove problematic for our current ex-
perimental methodology since the size of the state space for the problem is exponential
in (amongst other parameters) the number of agents modelled. For groups containing
a large number of individuals it is unlikely that the resultant model checking prob-
lem would be tractable. To overcome issues of scalability an alternative to our current
approach would be to use simulation techniques.

We have explored only one of a number of potential avenues where our work may
be applied. However, threshold models have been shown to describe a number of col-
lective behaviours, e.g., [Granovetter, 1978; Granovetter and Soong, 1986; Schelling,
1969]. In future work we look forward to applying our models to domains such as
social networking, viral marketing, consumer trend adoption and collaborative recom-
mendation.

8.3 Dissemination

Chapter 3 of this thesis appeared in a modified form as:

Zappala, Julian, Natasha Alechina, and Brian Logan. Consensus Games In Proceed-

ings of the Third Workshop on Cooperative Games in Multiagent Systems (CoopMAS-

2012), Edited by Stephane Airiau, Yoram Bachrach, Edith Elkind and Lirong Xia.
Valencia, Spain, 2012.

and as an extended abstract in:
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Zappala, Julian, Natasha Alechina, and Brian Logan. Consensus Games (Extended Ab-

stract) In Proceedings of the 11th International Conference on Autonomous Agents and

Multiagent Systems (AAMAS 2012), Edited by Vincent Conitzer, Michael Winikoff,
Lin Padgham and Wiebe van der Hoek. Vol. 3. Valencia, Spain: IFAAMAS, 2012.

Chapter 4 of this thesis appeared in a modified form as:

Zappala, Julian, Natasha Alechina, and Brian Logan (2011). Consensus Action Games.
In Proceedings of the IJCAI-2011 Workshop on Social Choice and Artificial Intelli-

gence: IJCAI 2011.
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Appendix A

This appendix contains additional information pertaining to the applied work of Chap-
ter 7.

Initial states

Table 1 gives the specification of the agents’ drives in each of the initial states. For
each agent i ∈ A, where A = {1, 2, 3}, the table shows the value of agent i’s drive,
di,k, where k ∈ {1, 2, 3} in the initial state.

In total we considered 36 configurations of the agents’ drives in the initial state. Of
these, there is one initial state in which the agents’ drives fully synchronised (Full), 15
where the drives are partly synchronised (Part) and 20 where the drives are not syn-
chronised (None). For ease of reference we assign each initial state a number (shown
in the column #)

Table 1: List of initial states.

i = 1 i = 2 i = 3

# di,1 di,2 di,3 di,1 di,2 di,3 di,1 di,2 di,3 Sync

0 0 1 2 2 1 0 2 1 0 Part

1 0 1 2 1 2 0 2 1 0 None

2 0 1 2 2 0 1 2 1 0 None

3 0 1 2 0 2 1 2 1 0 None

4 0 1 2 1 0 2 2 1 0 None

5 0 1 2 0 1 2 2 1 0 Part

6 0 1 2 2 1 0 1 2 0 None

continued on next page. . .
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Table 1 – continued from previous page

7 0 1 2 1 2 0 1 2 0 Part

8 0 1 2 2 0 1 1 2 0 None

9 0 1 2 0 2 1 1 2 0 None

10 0 1 2 1 0 2 1 2 0 None

11 0 1 2 0 1 2 1 2 0 Part

12 0 1 2 2 1 0 2 0 1 None

13 0 1 2 1 2 0 2 0 1 None

14 0 1 2 2 0 1 2 0 1 Part

15 0 1 2 0 2 1 2 0 1 None

16 0 1 2 1 0 2 2 0 1 None

17 0 1 2 0 1 2 2 0 1 Part

18 0 1 2 2 1 0 0 2 1 None

19 0 1 2 1 2 0 0 2 1 None

20 0 1 2 2 0 1 0 2 1 None

21 0 1 2 0 2 1 0 2 1 Part

22 0 1 2 1 0 2 0 2 1 None

23 0 1 2 0 1 2 0 2 1 Part

24 0 1 2 2 1 0 1 0 2 None

25 0 1 2 1 2 0 1 0 2 None

26 0 1 2 2 0 1 1 0 2 None

27 0 1 2 0 2 1 1 0 2 None

28 0 1 2 1 0 2 1 0 2 Part

29 0 1 2 0 1 2 1 0 2 Part

30 0 1 2 2 1 0 0 1 2 Part

31 0 1 2 1 2 0 0 1 2 Part

32 0 1 2 2 0 1 0 1 2 Part

33 0 1 2 0 2 1 0 1 2 Part

34 0 1 2 1 0 2 0 1 2 Part

35 0 1 2 0 1 2 0 1 2 Full
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Thomas Ågotnes, Wiebe Van Der Hoek, and Michael Wooldridge. Logics for qual-
itative coalitional games. Logic Journal of the IGPL, 17:299–321(23), 2009.
doi: doi:10.1093/jigpal/jzp009. URL http://www.ingentaconnect.com/

content/oup/igpl/2009/00000017/00000003/art00004. 14

N. Alexiou, S. Basagiannis, P. Katsaros, T. Dashpande, and S. Smolka. Formal analysis
of the kaminsky dns cache-poisoning attack using probabilistic model checking. In
Proc. IEEE 12th International Symposium on High-Assurance Systems Engineering

(HASE’10), pages 94–103, 2010. 95

Rajeev Alur and Thomas A Henzinger. Reactive modules. Formal Methods in System

Design, 15(1):7–48, 1999. 23

Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal
logic. J. ACM, 49(5):672–713, 2002. ISSN 0004-5411. doi: http://doi.acm.org/10.
1145/585265.585270. 91

K.J. Arrow. A difficulty in the concept of social welfare. The Journal of Political

Economy, 58(4):328–346, 1950. 14, 15

137

http://www.ingentaconnect.com/content/oup/igpl/2009/00000017/00000003/art00004
http://www.ingentaconnect.com/content/oup/igpl/2009/00000017/00000003/art00004


BIBLIOGRAPHY

Robert J Aumann. The core of a cooperative game without side payments. Transac-

tions of the American Mathematical Society, pages 539–552, 1961. 12

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008. ISBN 978-0-262-02649-9. 88

B.E. Beckmann, P.K. McKinley, and D.B. Knoester. Effects of communication im-
pairments on quorum sensing. In Proceedings of 3rd International Conference on

Self-Adaptive and Self-Organizing Systems, 2009. 22, 132

Martin Beer, Mark D’inverno, Michael Luck, Nick Jennings, Chris Preist, and Michael
Schroeder. Negotiation in multi-agent systems. The Knowledge Engineering Re-

view, 14(03):285–289, 1999. 11

R.D. Beer, R.D. Quinn, H.J. Chiel, and R.E. Ritzmann. Biologically inspired ap-
proaches to robotics: What can we learn from insects? 1997. 2

F. Bernardini, M. Gheorghe, and N. Krasnogor. Quorum sensing P systems. Theoreti-

cal Computer Science, 371(1-2):20–33, 2007. 21

E. Bonabeau, A. Sobkowski, G. Theraulaz, and J.L. Deneubourg. Adaptive task allo-
cation inspired by a model of division of labor in social insects. Bio Computation

and Emergent Computing, pages 36–45, 1997. 9

J. Bredin, R.T. Maheswaran, C. Imer, T. Başar, D. Kotz, and D. Rus. A game-theoretic
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