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Abstract 

Deep somatic pain originating from synovial joints is a major clinical problem 

as it is the primary reason for loss of joint mobility and function in 

musculoskeletal disorders. Musculoskeletal disorders, including osteoarthritis 

(OA), are the most prevalent cause of disability worldwide with an estimated 1 

in 3 adults affected. Current therapies for the treatment of joint pain have 

limited effectiveness and certain drugs produce unwanted side effects, 

preventing their long-term use. Targeting pain at the level of the joint may have 

the potential to maximise treatment efficacy, whilst reducing possible non-

specific side effects associated with systemic drug treatment. Identification of 

novel analgesic targets that inhibit peripheral mechanical sensitization during 

joint pain states will be critical to the development of improved analgesics for 

these conditions. Based on recent preclinical findings, the orphan G protein-

coupled receptor GPR55 has controversially been suggested to be the novel 

third cannabinoid receptor and has been identified as a potential novel target 

for the treatment of pain. Very few studies have investigated the effects of 

GPR55 receptor activation on nociceptive processing in vivo and only one at 

the level of the joint during acute inflammatory arthritis. The aim of this thesis 

was to investigate the role of GPR55 in the modulation of joint afferent 

mechanosensitivity in vivo, and whether this role is altered in an experimental 

model of OA during established pain.   

 

Electrophysiological recordings of joint afferent nociceptors, taken from the 

saphenous nerve, which innervates the knee joint via the medial articular nerve, 
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were carried out in anaesthetised rats under non-pathological conditions (naïve 

rats) and in a model of OA following the development of pain behaviour, 14 

days following knee joint injection of monosodium iodoacetate (MIA) and 

compared to saline control rats. Effects of peripheral administration of the 

putative endogenous GPR55 agonist L-α-lysophosphatidylinositol (LPI) on the 

mechanically-evoked responses of joint nociceptors were studied in naïve rats 

and in MIA and saline rats. An involvement of GPR55 in the effects of LPI 

was investigated using pre-administration of the GPR55 receptor antagonist 

cannabidiol. Further, the role of GPR55 in endogenously modulating joint 

afferent mechanosensitivity was investigated following the peripheral 

administration of cannabidiol alone. GPR55 receptor expression in knee 

innervating L3-L5 rat DRGs was studied by immunohistochemistry. 

 

Joint nociceptors in MIA rats were mechanically sensitized compared to the 

saline rats at 14 days post-injection confirming the development of peripheral 

sensitization during established pain behaviour. LPI (150, 250µM) inhibited 

joint nociceptor mechanically-evoked responses in naïve and saline rats and 

inhibited peripheral sensitization in MIA rats. Cannabidiol blocked the LPI-

induced inhibition of joint nociceptor mechanosensitivity in all groups of rats 

confirming an involvement of GPR55 in these effects. Cannabidiol alone had 

no effect on mechanically-evoked responses of joint nociceptors in naïve, 

saline and MIA rats indicating that any endogenous GPR55 tone does not 

modulate joint afferent mechanosensitivity. GPR55 receptor expression was 

detected in small, medium and large neurones (and possibly satellite glial cells) 

of L3-L5 DRG. 
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The findings of this thesis provide compelling evidence that activation of the 

GPR55 receptor in vivo modulates the mechanosensitivity of joint afferent 

nociceptors and this inhibitory effect is maintained during established 

peripheral sensitization and pain behaviour following OA development. 

GPR55 receptor-mediated control of joint afferent mechanosensitivity during 

established OA pain and expression of GPR55 in sensory neurones at the level 

innervating the joint highlights GPR55 as a potential new peripheral target for 

the modulation of joint pain including during OA. The findings of this thesis 

support further studies aimed at investigating the clinical utility of GPR55 

agonists for the treatment of OA pain.  
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1.1. Introduction 

Deep somatic pain originating in synovial joints is a major therapeutic 

challenge, with joint pain being the most prominent and disabling symptom of 

musculoskeletal disorders, such as osteoarthritis (OA) (Felson, 2005). 

Musculoskeletal disorders are the most frequent cause of disability in the 

modern world with the World Health Organisation estimating that 1 in 3 adults 

are affected (Brundtland, 2003, McDougall, 2006). The analgesics that are 

currently used to treat joint pain (non-steroidal anti-inflammatory drugs 

(NSAIDs), weak opioids) are only partially effective and are associated with 

serious side effects that limit their long term use (Schaible et al., 2006). In 

order to develop improved analgesics for joint pain, a greater understanding of 

the mechanisms driving and modulating joint pain is required.  

 

 

The identification of mechanisms that inhibit peripheral sensitization during 

joint disease has the potential to lead to the development of treatments that may 

reduce pain (McDougall, 2006). Furthermore, targeting pain at the peripheral 

source i.e. at the level of the joint with, for example, intra-articular (i.a.) 

therapies, may have the potential to maximise treatment efficacy, whilst 

reducing possible non-specific side effects associated with systemic drug 

treatment (McDougall, 2011). The orphan G protein-coupled receptor (GPCR) 

GPR55 has been controversially proposed as a novel third cannabinoid receptor 

(Ryberg et al., 2007). It is well established that cannabinoids are analgesic 

acting at supraspinal, spinal and peripheral sites within the pain pathway 

(Pertwee, 2001) with studies identifying a potential role in the modulation of 
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joint pain in OA (Richardson et al., 2008, Schuelert and McDougall, 2008, 

Schuelert et al., 2010, Schuelert et al., 2011). Evidence from transgenic mouse 

(Staton et al., 2008) and pharmacological (Schuelert and McDougall, 2011, 

Breen et al., 2012, Gangadharan et al., 2013) studies indicate that GPR55 has a 

role in the modulation of nociception. These findings together with the 

demonstrated expression of GPR55 in sensory neurones of the dorsal root 

ganglia (DRG) (Lauckner et al., 2008) suggests that the receptor could be a 

potential novel peripheral analgesic target. However, studies investigating the 

role of the GPR55 receptor in nociception are few in number and almost 

nothing is known about the role of GPR55 in joint pain mechanisms. 

Activation of cannabinoid receptors is known to modulate nociception in 

animal models of knee OA (Sagar et al., 2010, Schuelert et al., 2010, La Porta 

et al., 2013) and peripheral administration of the putative GPR55 agonist O-

1602 inhibits nociception in a model of acute inflammatory arthritis (Schuelert 

and McDougall, 2011), suggesting that further studies examining the role of 

GPR55 in the modulation of joint pain are worthwhile. The overall aim of this 

thesis was to examine whether GPR55 has a role in modulating the peripheral 

mechanisms driving joint pain and to investigate the clinical relevance of this 

role in an experimental model of knee OA. These studies will increase 

understanding of whether targeting GPR55 may have therapeutic potential for 

the alleviation of joint pain in man.  
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1.2. Pain  

In 1994, the International Association for the Study of Pain (IASP) defined 

pain as ‘an unpleasant sensory and emotional experience associated with actual 

or potential tissue damage or described in terms of such damage’. Pain occurs 

in response to tissue injury due to a noxious stimulus that may be mechanical, 

thermal or chemical in nature (Julius and Basbaum, 2001, Loeser and Treede, 

2008, McDougall, 2011). The resultant pain can be acute (short-lasting) or 

chronic (more prolonged) (McDougall, 2011). Acute pain is usually beneficial 

by warning the organism of actual or impending tissue damage allowing rapid, 

evasive, reflex action to be carried out while chronic pain tends to be a 

maladaptive response due to underlying pathology (McDougall, 2011). Pain is 

defined as chronic if present unabated beyond approximately 3 months and if 

occurring after tissue healing or in the absence of tissue damage (McDougall, 

2011). Symptoms of chronic pain can be defined as: hyperalgesia, allodynia 

and spontaneous pain (Kidd and Urban, 2001, Loeser and Treede, 2008). 

Hyperalgesia is defined as elevated pain response elicited by a noxious 

stimulus while allodynia is defined as pain produced by a previously innocuous 

stimulus (Kidd and Urban, 2001, Loeser and Treede, 2008). In addition, 

spontaneous pain is pain that occurs in the absence of any obvious precipitating 

external stimulus (Kidd and Urban, 2001).  

 

 

1.3. Primary afferent neurones 

Nociception is defined as ‘the neural processes encoding and processing 

noxious stimuli’ (Loeser and Treede, 2008). As such, pain is a subjective 
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experience, while nociception describes sensory physiology. Nociceptive 

transmission can be broadly separated into two phases: (1) noxious stimuli 

activating peripheral nociceptive primary afferent neurones and (2) afferent 

input generating pain sensation via the central nervous system (CNS) (Kidd 

and Urban, 2001, McDougall, 2011). Primary afferent neurones, which have 

cell bodies (soma) in the DRG, project to and innervate peripheral tissues, 

including skin, viscera, muscle and joints (Lawson, 2005). A single process, 

called the initial segment, leaves the soma of pseudo-unipolar primary afferent 

neurones. Following T junction branching, the initial segment projects 

peripherally and centrally (Lawson, 2005). Primary afferent neurones function 

to detect nociceptive or non-nociceptive stimuli that are mechanical, thermal or 

chemical in nature (Julius and Basbaum, 2001, Hucho and Levine, 2007, 

McGlone and Reilly, 2010, McDougall, 2011).  

 

Primary afferent neurones are heterogeneous in that they have a range of 

conduction velocities (CVs), soma sizes, degrees of myelination, activation 

thresholds, adaptation rates and sensory receptive properties (see Table 1.1) 

(Lawson, 2005). Primary afferent neurones can be sub-classified according to 

their fibre CVs into Aαβ, Aδ and C fibres (Light, 1993, Djouhri and Lawson, 

2004, Lawson, 2005). In studies using adult cats, the upper limit for Aδ and C 

fibre CVs are 30 m/s and 2.5m/s, respectively (Light, 1993). However, in adult 

rats, Aδ and C fibre CVs are 1-8m/s and <1m/s, respectively (Djouhri and 

Lawson, 2004). Aαβ fibres are classified as any fibre with a CV greater than 

the upper limit for Aδ fibres (i.e. 30m/s). Compound action potential 

recordings enable fibre CV boundaries to be defined (Light, 1993). It is 
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important to note that CV boundaries are influenced by age, species, 

temperature of the recording preparation, sensory nerve studied and the 

proximodistal position of the recording site as some fibres may conduct faster 

in the dorsal root compared to in the peripheral nerve (Light, 1993).  

 

Primary afferent neurone CVs are related to cell size as well as degree of fibre 

myelination: large, fast conducting Aαβ fibres with cell soma sizes of 

1142±366μm
2
 are myelinated, Aδ fibres with medium sized cell somas of 

702±488μm
2 

are thinly myelinated and slowly conducting C fibres with small 

soma sizes of 449±148μm
2
 are unmyelinated (Harper, 1985). 

 

Several classes of primary afferent neurones have been defined: 

 

(1) Low threshold mechanoreceptors (LTMs) 

LTMs are the largest group of non-nociceptive afferents which innervate skin 

and skeletal muscle (Lawson, 2005).  

 

(a) Cutaneous Aαβ fibre LTMs   

Cutaneous Aαβ LTMs fibres can have slow or rapid adaptation rates and can 

have firing patterns that are either regular or irregular. The fibres detect stimuli 

of changing intensity and movement of mechanical stimuli (e.g. tap to the skin 

or rapid vibration) (Lawson, 2005).  



          Chapter 1                                                                                                                                                             
            

7 
 

(b) Cutaneous Aδ fibre LTMs 

The majority of cutaneous Aδ LTMs project to hairy skin and are called ‘D 

hair’ units (Lawson, 2005). They are extremely sensitive to slow hair 

movement and additionally detect stretch and skin cooling (Light, 1993). 

 

(c) Cutaneous C fibre LTMs 

Cutaneous C fibre LTMs can be activated by extremely slow movements 

across the skin (Light, 1993), that are associated with pleasant sensations 

(Vallbo et al., 1993).  

 

(2) Cutaneous thermoreceptors 

In primates, cutaneous cooling and warming receptors have CVs in the C or Aδ 

fibre range (Light, 1993). A decrease in temperature below 30°C results in 

increased firing of cooling receptors (Davis and Pope, 2002) while warm 

receptors fire in the range 30 - 46°C (Light, 1993). The thermal threshold of C-

fibre polymodal nociceptors is approximately 43°C and A-fibre mechanoheat 

unit threshold is greater than 53°C (Lawson, 2005). 
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(3) Nociceptors 

(a) Cutaneous A-fibre nociceptors 

Cutaneous A-fibre nociceptors are either activated by noxious mechanical 

stimuli or noxious mechanical and thermal stimuli (Lawson, 2005). This latter 

group of fibres are called mechanoheat sensitive units (Lawson, 2005). In 

primates, cutaneous A fibres respond differentially to noxious heat and are 

characterised as either type I or type II units (Treede et al., 1998). The type I 

units consist of two thirds Aδ fibres and one third Aβ fibres with a CV up to 

60m/s while type II units consists of Aδ fibres only and have CVs less than 

30m/s (Treede et al., 1998). Type I units have a higher heat threshold (53 vs 

47°C) and a lower mechanical threshold compared to type II units (Treede et 

al., 1998). Further, type I units have a longer latency of response (5 vs 0.2 

seconds) and later peak discharge (16 vs 0.2 seconds) compared to type II units 

(Treede et al., 1998).  

 

Identification of A-fibre nociceptors with CVs greater than 30m/s has indicated 

some nociceptive fibres conduct in the Aβ range (Djouhri and Lawson, 2004). 

Studies have identified Aβ fibres detect noxious stimuli in a normal state and in 

a model of OA (Wu and Henry, 2010).  

 

(b) Cutaneous C-fibre nociceptors 

Cutaneous C fibre nociceptors are the most common sub-type of nociceptive 

primary afferent neurone (Lawson, 2005). Most of these fibres are activated by 
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noxious mechanical and thermal stimuli, and are named C-mechanoheat fibres 

(Light, 1993). C-fibres activated by noxious mechanical, thermal and chemical 

stimuli are named C-polymodal fibres (Light, 1993). However, a smaller 

proportion of fibres are selectively sensitive to noxious mechanical stimuli and 

are named C-fibre high-threshold mechanoreceptors (Lawson, 2005).  

 

Polymodal C fibres nociceptors can be sub-classified as peptidergic or non-

peptidergic based on peptide content and spinal cord dorsal horn termination 

patterns (Averill et al., 1995, Michaelis et al., 1996). Peptidergic nociceptors 

express calcitonin gene-related peptide (CGRP), substance P (SP) and tyrosine 

kinase receptor type-1 (trkA) while non-peptidergic nociceptors express 

isolectin B4 (IB4), the purinergic receptor P2X3 and glial derived neurotrophic 

factor (GDNF) (Section 1.5.3).  

 

(c) ‘Silent’ nociceptors 

Inexcitable units, projecting to skin, joints (Schmidt, 1996) and visceral organs 

(Janig, 1996), have been identified and named silent nociceptors (Michaelis et 

al., 1996). These fibres only respond following repeated stimulation or by sub-

threshold stimuli after acute tissue inflammation (Meyer et al., 1991, Michaelis 

et al., 1996). ‘Silent’ nociceptors could include very-high-threshold nociceptive 

fibres or units which inflammatory mediators released during tissue damage 

have excited or sensitised (Michaelis et al., 1996, Lawson, 2005).  



                         Chapter 1                               

10 
 

Table 1.1. Properties of primary afferent fibres. 

Fibre Type Degree of 

Myelination 

Cell size (µm) CV (m/s) Modalities 

Aα Myelinated 20 70-120 LTMs – proprioception, movement of mechanical 

stimuli (stroking, pressure) 

Aβ Myelinated 10 >15 LTMs - proprioception, movement of mechanical 

stimuli (stroking, pressure) 

Nociceptors 

Aδ Thinly myelinated 2.5 1-15 LTMs – slow hair movement and stretch 

Thermoreceptors – cooling (<30°C) and heat 

(>53°C) 

Nociceptors – polymodal, mechanoheat 

C fibre Unmyelinated 1 <1.0 LTMs – slow movement across skin, pleasant 

sensations 

Thermoreceptors - cooling (<30°C) and heat 

(>43°C) 

Nociceptors -  polymodal, ‘silent’ 
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1.4. Joint Innervation 

1.4.1. Innervation of joint structures and the relationship to pain 

Detailed pain sensations in joints have been well characterised clinically for 

several decades, although understanding of articular innervation and the 

mechanisms of joint nociception are limited (Schaible and Grubb, 1993) as 

initial research focussed on cutaneous afferents (Schaible et al., 2009). Current 

understanding of the joint nociceptor system will be discussed separately 

below.  

 

 

The main sensation that is evoked from the joint and other deep tissues is pain 

(Schaible and Grubb, 1993). The description of pain in the joint is in contrast to 

cutaneous pain in that it is often dull, aching and poorly localised (Lewis, 

1938). Articular afferents are also important in the sense of movement and 

position (proprioception) (Skoglund, 1956, Proske et al., 1988, Schaible and 

Grubb, 1993). 

 

 

Studies conducted in conscious human subjects that had not been injected with 

i.a. anaesthetic have defined the knee joint fibrous structures (ligaments, 

fibrous capsule) that evoke the sensation of pain when stimulated by noxious 

mechanical, thermal and chemical stimuli (see Figure 1.1) (Kellgren and 

Samuel, 1950, Schaible and Grubb, 1993, Dye et al., 1998). Mechanical 

stimulation of articular cartilage does not evoke the sensation of pain (Kellgren 

and Samuel, 1950, Dye et al., 1998). Therefore, the detection of knee joint pain 
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in response to noxious stimuli indicates that articular structures are innervated 

by nociceptors.  
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Figure 1.1. Conscious neurosensory findings of i.a. structures represented coronal (A) and sagittal (B). A: accurate spatial localisation, B: poorly 

localised sensation. Taken from (Dye et al., 1998). 
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1.4.2. Joint afferent anatomy 

Joints are innervated by articular branches that descend from main nerve trunks 

or their muscular, cutaneous and periosteal branches (Schaible and Grubb, 

1993). The primary articular nerves that innervate knee joint structures are the 

medial, lateral and posterior articular nerves (MAN, LAN, PAN). Knee joints 

in several species receive innervation from these articular nerves including, 

mice (Ebinger et al., 2001), rats (Hildebrand et al., 1991), dogs (O'Connor and 

Woodbury, 1982), cats (Freeman and Wyke, 1967), monkeys (Gardner and 

Lenn, 1977) and humans (Horner and Dellon, 1994). Only the MAN and PAN 

are identifiable in mouse (Ebinger et al., 2001) and rat (Hildebrand et al., 

1991). 

 

The PAN contains the highest number of nerve fibres (400 axons in the rat) and 

is the largest of the articular nerves (Hildebrand et al., 1991). In the rat 

(Hildebrand et al., 1991), mouse (Ebinger et al., 2001) and monkey (Gardner 

and Lenn, 1977) the PAN is predominantly composed of unmyelinated fibres 

(rat: ~80%, mouse: ~66%, monkey: ~80-85%). In the cat, there are thought to 

be a predominance of myelinated fibres (224 vs 162) however, this may be due 

to variations in technique between studies as electron microscopy enables 

easier detection of unmyelinated fibres (Gardner and Lenn, 1977). The PAN 

arises from the posterior tibial nerve and is embedded in the fascia that covers 

the deep surface of the gastrocnemius muscle (Freeman and Wyke, 1967). It 

innervates the lateral and medial aspects of the posterior capsule of the knee 

joint, posterior fat pads and posterior ligaments (Freeman and Wyke, 1967).  
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The MAN (articular nerve studied in this thesis) is a finer nerve than the PAN 

(Freeman and Wyke, 1967, Hildebrand et al., 1991) consisting predominantly 

of unmyelinated fibres and is present in both the mouse (Ebinger et al., 2001) 

and rat (Hildebrand et al., 1991). It arises in the antero-medial region of the 

thigh and branches from the saphenous nerve terminating in the upper border 

of the medial condyle of the femur (Freeman and Wyke, 1967, Hildebrand et 

al., 1991). The nerve divides into proximal and distal branches that give off 

fine filaments that form a plexus on the medial surface of the capsule of the 

knee joint (Freeman and Wyke, 1967, Hildebrand et al., 1991). Medial, antero-

medial and posterior aspects of the knee joint fibrous capsule are supplied by 

the MAN (Freeman and Wyke, 1967, Hildebrand et al., 1991). 

Electrophysiological studies in the cat and rat have demonstrated that the knee 

joint is innervated by Aβ, Aδ and C fibre mechanoreceptors corroborating 

anatomical findings indicating the MAN and PAN consist of small, 

unmyelinated C fibres, small,  thinly myelinated Aδ fibres and Aβ fibres 

(Schaible and Schmidt, 1983b, Schaible and Schmidt, 1983a, Craig et al., 1988, 

Schaible and Grubb, 1993, Kelly et al., 2012). 

 

 

1.4.3. Classification of knee joint nociceptors: types and localisation of 

receptive endings 

Characterisation of the cell body sizes of knee joint afferents identified by 

retrograde labelling of the joint has demonstrated that articular afferents consist 

of small, medium and large cell bodies with more small-medium soma sizes 

(Salo and Theriault, 1997). Data on cell size distribution alongside the 
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anatomical and electrophysiological findings described above (section 1.4.2) 

provide further evidence that articular structures are innervated by Aβ, Aδ and 

C fibres.  

 

 

Articular afferents can also be classified based on their receptive endings. Aβ 

fibres terminate as Ruffini-, Golgi-, and Pacini-type corpuscular endings in 

joint structures including the fibrous capsule, articular ligaments, menisci and 

adjacent periosteum (Johannson, 1991, Schaible and Grubb, 1993, Schaible et 

al., 2009). Aδ and C fibre articular afferents innervate the fibrous capsule, 

adipose tissue, ligaments, menisci and periosteum where they terminate as non-

corpuscular or free nerve endings (Johannson, 1991, Schaible and Grubb, 1993, 

Schaible et al., 2009). Cartilage is not innervated and as such is described as 

being aneural (Schaible and Schmidt, 1983b). Sympathetic efferents 

additionally innervate joint structures including synovium (Schaible and 

Grubb, 1993). Postganglionic sympathetic nerve fibres regulate blood flow as 

they terminate close to articular blood vessels and modulate vasomotor tone 

(McDougall, 2006).   

 

 

1.4.4. Classification of knee joint nociceptors: mechanical sensitivity 

Electrophysiological recordings from the MAN and PAN in rat and cat have 

enabled knee joint afferents to be characterised based on their response to 

innocuous and noxious mechanical stimuli (Schaible and Schmidt, 1983b, 

Schaible and Grubb, 1993). In this context, innocuous stimuli can be defined 
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by light to moderate pressure applied to the joint, which does not elicit pain, 

and non-painful movements within the working range. Noxious stimuli can be 

defined as strong pressure applied to the joint, which elicits pain, and 

movements outside the normal working range of the joint.  

 

 

Articular afferents of the cat knee joint have been defined into five distinct 

fibre types (Schaible and Schmidt, 1983b): (1) low threshold Aδ fibres 

activated by knee joint inward rotation with strongest responses occurring after 

noxious movements (2) Aδ fibres responding weakly to innocuous joint 

movements and displaying an elevated response to noxious movements (3) Aδ 

fibres that selectively respond to noxious pressure while no response is elicited 

by innocuous and noxious movements (4) C fibres that are only activated by 

noxious movements (5) ‘silent nociceptors’ which become mechanosensitive 

during inflammation. In addition, the knee joint is also innervated by Aβ fibres 

which encode and transmit proprioceptive signals that informs the brain about 

joint position (McDougall, 2006). These signals are interpreted as either 

dynamic (movement sense) or static (position sense). In the cat, the majority of 

Aβ fibres are either strongly or weakly activated by innocuous movements 

while approximately 50% of Aδ fibres and 70% of C fibres are high threshold 

nociceptive units (Schaible and Schmidt, 1983b). Nociceptors have been 

identified in different joint regions including the capsule, ligaments, menisci, 

periosteum and subchondral bone (Marinozzi et al., 1991). In addition, studies 

have found that 80% of knee joint afferent nerve fibres in the rat (Hildebrand et 
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al., 1991) and cat (Langford and Schmidt, 1983) function to detect noxious 

stimuli.  

 

 

1.5. Primary afferent neurone neurochemistry 

1.5.1. Transduction of noxious stimuli 

The expression of a distinct array of receptors and ion channels by sub-types of 

nociceptive peripheral endings enables detection of a range of noxious stimuli. 

 

 

Psychophysical studies in humans have identified an ability to discriminate 

between the perception of innocuous warmth and noxious heat (Basbaum et al., 

2009). The pain threshold for noxious heat detection in clinical studies rests at 

approximately 43°C, paralleled by C and Aδ fibre thresholds (Cesare and 

McNaughton, 1996b, Kirschstein et al., 1997, Basbaum et al., 2009, Julius, 

2013). The transient receptor potential (TRP) vanilloid 1 (TRPV1) cation 

channel has been attributed with the  detection of noxious heat (Cesare and 

McNaughton, 1996b, Caterina et al., 1997, Kirschstein et al., 1997, Caterina et 

al., 2000, Davis et al., 2000, Julius, 2013). TRPV1 mRNA (Caterina et al., 

1997) and protein (Tominaga et al., 1998) is predominantly expressed on 

caspsaicin-sensitive peptidergic and non-peptidergic small diameter C fibres 

that are activated in response to noxious heat. Genetic deletion of TRPV1 in 

the mouse reduces the number of heat-responsive C fibres which is in 

agreement with deficits in thermally-evoked pain behaviour including 

cutaneous inflammatory thermal hyperalgesia induced by  complete Freund’s 
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adjuvant (CFA) (Caterina et al., 2000) and carrageenan (Davis et al., 2000). 

Further members of the TRP family enable primary afferent nociceptors to 

detect changes in thermosensation over a wide physiological range as TRPV2 , 

TRPV3 and TRPV4  have thermal activation thresholds of >55°C, >33°C and 

27-42°C respectively (Guler et al., 2002, Smith et al., 2002, Xu et al., 2002, 

Leffler et al., 2007)  .  

 

 

Distinct molecular mechanisms for the detection of noxious cold have been 

identified with the temperature threshold approximately 4°C (Reid and Flonta, 

2001, McKemy et al., 2002). Several lines of evidence indicate the TRP 

melastatin 8 (M8) cation channel functions as a noxious cold sensor with an 

activation threshold of 25-28°C (McKemy et al., 2002, Bautista et al., 2007, 

Colburn et al., 2007). TRPM8 is expressed predominantly on C fibres although 

lower levels of expression have been observed on Aδ fibres while the channel 

is activated by noxious cold (McKemy et al., 2002, Kobayashi et al., 2005). 

Pain behaviour in response to innocuous and noxious cold stimuli was reduced 

in TRPM8 knockout mice corroborating electrophysiological data that 

identified a reduction in the number of C fibres responsive to noxious cold 

compared to wild types (Bautista et al., 2007, Dhaka et al., 2007, Knowlton et 

al., 2010, Yudin and Rohacs, 2012). A number of vinylcycloalkyl-substituted 

benzimidazole TRPM8 antagonists alleviated cold allodynia in the chronic 

constriction injury (CCI) model of neuropathic pain indicating a role in the 

hypersensitivity to cold induced by nerve injury (Calvo et al., 2012). It is 

thought that distinct subpopulations of nociceptors detect heat and cold 
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sensitivities evident by an absence of co-expression with TRPV1 on DRG 

neurones (Kobayashi et al., 2005). Further cold sensing targets include TRP 

cation channel subfamily A member 1 (A1) (Bandell et al., 2004b) and the 

two-pore domain K
+
 channel TWIK-related arachidonic-acid stimulated 

potassium channel (TRAAK) and TWIK related potassium channel -1 (TREK-

1) (Noel et al., 2009). 

 

 

Knowledge of the molecular mechanisms that detect mechanical stimuli is 

limited although recent studies have indicated potential novel 

mechanotransducers (Kwan et al., 2006, Dunham et al., 2008, Alessandri-

Haber et al., 2009, Kim et al., 2012, Quick et al., 2012, Wood and Eijkelkamp, 

2012, Eijkelkamp et al., 2013). As well as detecting noxious thermal and cold 

stimuli, members of the TRP family are also candidate mechanotransducers. A 

recent study indicated that TRPA1 is expressed by mechanosensitive Aδ and C 

fibre nociceptors (Dunham et al., 2008). Further, genetic deletion of TRPA1 

(Kwan et al., 2006, Wood and Eijkelkamp, 2012) and TRPV4 (Tabuchi et al., 

2005) abolishes mechanical hypersensitivity while a mutation in the TRPA1 

gene results in familial episodic pain syndrome characterised by an increase in 

secondary mechanical hyperalgesia (Kremeyer et al., 2010). The stretch 

activated ion channels TRP canonical 1 (C1), TRPC3 and TRPC6 have been 

identified as possible detectors of noxious mechanical stimuli, including 

following inflammation (Alessandri-Haber et al., 2009, Quick et al., 2012). In 

addition, recent evidence has demonstrated a role for Piezo proteins in 

mechanosensory nociception (Kim et al., 2012, Eijkelkamp et al., 2013). 
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Genetic deletion of Dmpiezo (gene for the Piezo family of transmembrane 

proteins) in Drosphilia melanogaster reduces behavioural responses to noxious 

mechanical stimuli without impact on responses to innocuous mechanical 

stimuli (Kim et al., 2012). Down regulation of DRG expression of piezo2 in 

mice using antisense oligonucleotides reduces mechanical allodynia induced by 

the cyclic adenosine monophosphate (cAMP) analogue 8-pCPT (Eijkelkamp et 

al., 2013). Further, piezo2 down regulation abolishes mechanical allodynia in 

CCI and L5 nerve transection models of neuropathic pain (Eijkelkamp et al., 

2013).   

  

 

As well as transducing thermal and mechanical stimuli the TRP family can also 

function to detect chemical stimuli including capsaicin (TRPV1) (Caterina et 

al., 1997), menthol (TRPM1) (McKemy et al., 2002), mustard oil and formalin 

(TRPA1) (Bandell et al., 2004b). TRPA1 in particular detects a wide range of 

plant compounds, environmental irritants, volatile irritants and 

chemotherapeutic by-products (Bandell et al., 2004a). Chemoreceptive targets 

expressed on nociceptors also include adenosine triphosphate (ATP) receptors, 

P2X receptors, acid sensing ion channels (ASICs) and 5-hydroxytryptamine (5-

HT) receptors (Lawson, 2005).  

 

 

1.5.2. Nociceptive transmission 

The activation of transduction molecules as previously described (see Section 

1.5.1) results in generator potentials that activate voltage-gated ion channels 
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expressed on nociceptors and generates action potentials in the cell body. The 

resultant action potentials are transmitted along the primary afferent axon 

centrally to the spinal cord dorsal horn culminating in neurotransmitter release 

at the central terminals of primary afferent neurones. Voltage-gated Na
+
, Ca

2+
 

and K
+
 channels are important for the generation and propagation of action 

potentials (Wall, 2006).     

 

 

Voltage-gated Na
+ 

(Nav) channels can be classified as tetrodotoxin (TTX)-

sensitive (Nav1.3, Nav1.8 and Nav1.9) or TTX-resistant (Nav1.7) on the basis of  

their sensitivity to block by the neurotoxin TTX (Liu and Wood, 2011). The 

different biophysical properties of Navs are important for setting peripheral 

pain thresholds and thresholds of excitability in nociceptors (Liu and Wood, 

2011). The Nav1.3 channel has a slow closed-state inactivation that results in a 

substantial ramp current in response to slow, small depolarisations (Cummins 

et al., 2001). Antisense oligonucleotides targeting Nav1.3 in rats reduced the 

hyperexcitability of dorsal horn neurones while also preventing mechanical 

allodynia and thermal hyperalgesia after spinal cord injury (Hains et al., 2003). 

Nav1.7 is characterised by a slow closed-state inactivation that produces a 

substantial inward current due to transient channel activation in response to 

small, depolarisations of cell membranes (Dib-Hajj et al., 2013). As a result, 

the probability of nociceptors reaching activation thresholds are increased 

which contributes to the triggering and upstroke of action potentials (Dib-Hajj 

et al., 2013). Humans that lack Nav1.7 display congenital pain insensitivity 

(Cox et al., 2006) while gain of function mutations in genes encoding Nav1.7 
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results in the increased pain during erythermalgia (Han et al., 2006) and 

paroxysmal extreme pain disorder (Fertleman et al., 2006). Pre-clinical 

evidence identified pharmacological Nav1.7 channel blockade reduced pain 

behaviour in a CCI model of neuropathic pain and following oxaliplatin 

treatment (Ghelardini et al., 2010). Nav1.8 channels have a depolarised voltage 

dependence of activation and are the major contributor to the inflow of Na
+
 

during the upstroke of the action potential (Patrick Harty and Waxman, 2007). 

Nav1.8 channels are slow to inactivate during a maintained depolarising 

stimulus and would be expected to contribute to the longer duration action 

potential characteristic of nociceptors (Djouhri et al., 2003). The importance of 

the Nav1.8-mediated increase in action potential duration to nociception is 

evident in a study that used Nav1.8 channel knockout mice and found that 

inflammatory hyperalgesia developed more slowly compared to wild-type mice 

(Akopian et al., 1999). Antisense oligonucleotides for Nav1.8 reversed pain 

behaviour after spinal nerve injury in rats indicating a role in neuropathic pain 

(Lai et al., 2002). Nav1.9 channels are open at negative (-80mV) membrane 

potentials and remain active at more depolarised potentials (Cummins et al., 

1999, Dib-Hajj et al., 2010). As such, Nav1.9 channels generate a small, 

persistent current when the neurone is at rest (Cummins et al., 1999, Dib-Hajj 

et al., 2010). Genetic deletion of Nav1.9 reduced the development of thermal 

hypersensitivity in a CFA model of cutaneous inflammation (Amaya et al., 

2006b).   
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The opening of voltage-gated Ca
2+ 

channels that are expressed on nociceptors 

in response to depolarization of the cell membrane results in neurotransmitter 

release. N- and P-type channels are expressed on C fibres where they 

contribute to excitatory neurotransmission (Meir et al., 1999).  

 

 

The excitability of nociceptors is regulated by opening of voltage-gated K
+
 

channels that result in a reduction in resting membrane potential and firing 

frequency (Hodgkin and Huxley, 1952). Voltage-gated K
+
 channels also 

mediate action potential after-hyperpolarization (Hodgkin and Huxley, 1952). 

Small nociceptive neurones express several K
+
 channel family members 

including delayed rectifier channels, inwardly rectifier channels (e.g. Kir2.1), 

background channels (e.g, TASK and TREK-1) and fast transient current 

channels (e.g. Kv1.4) (Lawson, 2005).  

 

 

1.5.3. Neurotransmitters and receptors expressed by primary afferent 

neurones 

Neurotransmitters and neuropeptides are released from primary afferent 

neurones at their peripheral and central terminals (Lawson, 2005). The release 

of neurotransmitters and neuropeptides at peripheral terminals can result in 

peripheral sensitization of nociceptors and neurogenic inflammation 

(McDougall, 2006). Central release leads to the activation of post-synaptic 

receptors expressed on spinal cord dorsal horn neurones and enables 

nociceptive transmission to the CNS (Lawson, 2005). Several 
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neurotransmitters, neuropeptides, receptors and ion channels have been 

identified in nociceptors (see Tables 1.2 and 1.3).  

 

 

Glutamate is released from the central terminals of Aδ and C fibres and 

activates ionotropic N-methyl-D-aspartate (NMDA), alpha-3-hydroxy-5-

methyl-isoxazolepropionic (AMPA) and metabotropic glutamate receptors, 

present on post-synpatic spinal cord neurones which results in hyperexcitability 

(Schaible et al., 2009). Glutamate immunoreactivity has been observed in 

approximately 70% of Aδ and C fibres (De Biasi and Rustioni, 1988). Further, 

glutamate co-localisation with SP has been identified in the central terminals of 

primary afferent C fibres in the dorsal horn (De Biasi and Rustioni, 1988). 

Glutamate receptors are expressed on DRG neurones:  Aαβ, Aδ and C fibre 

primary afferents express NMDA receptor subunit 1 and AMPA receptors, 

while GluR1, GluR2/3 and GluR5 are present on C fibres (Sato et al., 1993). 

Aα/β fibres express GluR2/3 (Sato et al., 1993). 

 

 

Peptidergic C fibres express SP, CGRP and trkA while non-peptigeric fibres 

express the plant lectin IB4, P2X3 and GDNF (Lawson, 2005). Expression of 

SP and CGRP has been observed predominantly in C fibre nociceptors, 

however both peptides are present in Aδ fibres and CGRP in Aα/β fibres 

(Lawson, 2005). Noxious stimuli induces release of SP and CGRP from  

peripheral and central terminals of primary afferents (Richardson and Vasko, 

2002). Centrally SP and CGRP depolarise dorsal horn neurones via activation 
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of neurokinin-1 (NK-1) receptors and CGRP receptors, respectively (Snijdelaar 

et al., 2000). Injection of SP into rat skin produces mechanical hyperalgesia 

and allodynia (Carlton, 2001), while inflammation up regulates NK-1 receptor 

(Carlton and Coggeshall, 2002) and CGRP receptor component expression (Ma 

et al., 2003). The peripheral release of the neuropeptides SP and CGRP leads to 

neurogenic inflammation, characterised by vasodilation and wound healing 

(Holzer, 1998) while SP additionally produces plasma extravasation from 

blood vessels (Holzer, 1998).   

 

 

The hormone somatostatin is antinociceptive and anti-inflammatory 

(Malcangio et al., 2002). It is released both peripherally and centrally from C 

fibre nociceptors and attenuates neuronal firing at the level of the dorsal horn 

and DRG (Malcangio et al., 2002). The GPCR somatostatin receptor 2a is 

present on both C and Aδ fibres and in post-synaptic dorsal horn neurones (Bar 

et al., 2004). The neuropeptide galanin is typically not present in high levels in 

nociceptors (Liu, 2002) although peptide and mRNA is upregulated following 

inflammation and nerve injury (Liu, 2002). Peripheral administration of 

galanin modulated the mechanically-evoked responses of hind paw afferents in 

an in vivo electrophysiology study using a partial saphenous nerve ligation 

injury (PSNI) model; low concentrations facilitated and high concentrations 

inhibited activity (Hulse et al., 2011). Overexpression of galanin reversed the 

mechanical allodynia observed in the PSNI model (Hulse et al., 2011). Galanin 

receptors (GAL) are GPCRs expressed on primary afferents; GAL1 is present 

on Aα/β fibres and GAL2 on peptidergic C fibres (Liu, 2002). Inflammation 
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reduces GAL1 mRNA levels and transiently elevates GAL2 mRNA (Liu, 

2002). A study investigated the expression of the neuropeptide vasoactive 

intestinal peptide (VIP) in fibres innervating ankle joints and in L2-L6 DRG 

with expression identified mainly on small diameter C knee joint fibres 

(Ahmed et al., 1995) although presence on Aδ has also been observed 

(Dickinson and Fleetwood-Walker, 1999). VIP sensitized knee joint nociceptor 

Aδ- and C-fibres to innocuous and noxious mechanical stimuli under non-

pathological conditions while inducing a desensitizing effect in a model of 

knee OA (McDougall et al., 2006).  

 

 

Investigation of joint nociceptor neurochemistry and receptor/ion channel 

expression has demonstrated the expression of many of the neurotransmitters, 

neuropeptides and receptors expressed in cutaneous afferents detailed above 

(see Table 1.2) including substance P (Donaldson et al., 1995), CGRP 

(Donaldson et al., 1995), glutamate (Sluka and Westlund, 1993), TRPV1 

(Fernihough et al., 2005), Navs (Strickland et al., 2008), cannabinoid receptors 

(Schuelert et al., 2010) and protease activated receptors (Russell et al., 2012). 

Characterisation of joint neurochemistry has demonstrated that nociceptors 

innervating articular structures are exclusively peptidergic (Salo et al., 1997, 

Ivanavicius et al., 2004, Fernihough et al., 2005, Ferreira-Gomes et al., 2010, 

Orita et al., 2011).  A study using retrograde tracing found a complete absence 

of IB4 expressing knee joint afferents (Ivanavicius et al., 2004).  
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Table 1.2. Neurotransmitters and peptides expressed by nociceptors. 

Neurotransmitter/peptide Fibre type Inhibitory Excitatory Joint nociceptor expression Citation 

Nociceptin C x √ √ (Pettersson et al., 2002, 

Haversath et al., 2013) 

VIP C, Aδ x √ √ (Mulderry and Lindsay, 

1990, Donaldson et al., 

1995) 

Substance P C, Aδ x √ √ (Barakat-Walter et al., 

1991, Donaldson et al., 

1995) 

Glutamate C, Aδ, Aβ x √ √ (Sluka and Westlund, 

1993, Stoyanova et al., 

1998) 

Bradykinin C, Aδ, x √ √ (Seabrook et al., 1997, 

Russell et al., 2012) 

ATP C x √ √ (Kobayashi et al., 2013) 

Neuropeptide Y C √ x Not studied (Bleakman et al., 1991) 

Somatastatin C √ x √ (Donaldson et al., 1995, 

Heppelmann and Pawlak, 

1997a)  
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Galanin C, Aδ √ x √ (Kashiba et al., 1992, 

Heppelmann et al., 2000) 

Dynorphin C √ x Not studied (Romero et al., 2012) 

CGRP C, Aδ, Aβ x √ √ (Noguchi et al., 1990, 

Donaldson et al., 1995) 
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Table 1.3. Receptors and ion channels expressed by nociceptors. 

 

Receptor/ion channel 

 

Cell type 

 

Cellular effect 

 

Target 

Expressed by joint 

nociceptors 

Citation 

TRPV1 C, Aδ Excitation Ligand-gated ion 

channel 

√ (Greffrath et al., 

2003, Kelly et al., 

2013a) 
ATP (P2X) C Excitation Ligand-gated ion 

channel 

√ (Kobayashi et al., 

2013) 

 

NMDA, AMPA C Excitation Ligand-gated ion 

channel 

√ (Lee et al., 2004) 

Glycine C, Aδ Inhibition Ligand-gated ion 

channel 

Not studied (Furuyama et al., 

1992) 

Bradykinin B2 C Excitation GPCRs √ (Segond von 

Banchet et al., 

1996) 

PGE2 receptor (EP2) C, Aδ Excitation GPCRs √ (Southall and 

Vasko, 2001, Kras 

et al., 2013) 
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NK1 C, Aδ Excitation GPCRs √ (Andoh et al., 1996, 

McDougall et al., 

2001) 
Galanin receptors 

(GAL1-3) 

C, Aδ Inhibition GPCRs √ (Liu, 2002) 

Somatostatin C, Aδ Inhibition GPCRs √ (Bar et al., 2004) 

CB1/2 C, Aδ Inhibition GPCRs √ (Anand et al., 2008) 

Ca
2+ 

 L and N type C, Aδ Excitation Ion channels √ (McCallum et al., 

2011) 
Nav1.9 C Excitation Ion channels √ (Fang et al., 2002) 

Nav1.7, Nav1.8 C, Aδ Excitation Ion channels √ (Djouhri et al., 

2003, Tamura et al., 

2014) 
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1.6. Nociceptive transmission to the dorsal horn 

Since this thesis is focused on the peripheral mechanisms of joint pain and its 

modulation only an overview of central mechanisms will be provided. 

 

The spinal cord dorsal horn in the pain pathway functions to transmit 

nociceptive information from primary afferent nociceptors to brain regions that 

are involved in the conscious perception of pain (Todd, 2010). Neuronal sub-

types present in the dorsal horn include: (1) primary afferent neurones which 

synapse at distinct dorsal horn laminae (described below) (2) intrinsic neurones 

that terminate within the spinal cord (3) neurones that project rostrally to reach 

supraspinal brain regions involved in nociceptive processing (4) descending 

neurones which project caudally from brain regions and modulate nociceptive 

transmission at the level of the dorsal horn (Schaible et al., 2009, Todd, 2010). 

The dorsal horn can be divided into ten distinct laminae, laminae I–X, 

depending on neuronal size and packing density (Rexed, 1952). Nociceptive 

primary afferent neurones terminate predominantly in laminae I and II, the 

superficial dorsal horn (Wall, 2006). However, nociceptive primary afferent 

neurones additionally synapse in deeper laminae, laminate III-VI (Wall, 2006).  

 

Primary afferent neurone sub-types terminate in distinct dorsal horn laminae. 

The substantia gelatinosa (lamina II) receives input from Aδ- and C-fibre 

nociceptors, including joint nociceptors (Wall, 2006). Myelinated LTMs 

terminate between inner lamina II and lamina V, including Aδ fibres that 

innervate hair follicles and synapse extensively into inner lamina II (Light et 

al., 1979). Nociceptive myelinated Aδ fibres synapse with laminae I, outer II, 
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IV and V neurones (Light and Perl, 1979). Non-peptidergic unmyelinated C-

fibres terminate in lamina II (Averill et al., 1995). Anatomical studies 

investigating articular afferent dorsal horn termination have produced 

conflicting findings. Joint afferents have been demonstrated to terminate within 

laminae I, IV, V and VI (Schaible et al., 1987) as well as terminating 

exclusively in laminae II and III.  

 

 

Glutamate is a key excitatory neurotransmitter released from presynaptic 

terminals at the spinal endings of primary afferent neurones (Schaible et al., 

2002). Glutamate is released from Aβ LTMs in response to innocuous 

mechanical stimuli to the joint, activating AMPA receptors (Schaible et al., 

2002). However, noxious mechanical stimulation of the joint evokes an 

increased release of glutamate from Aβ, Aδ and C fibres, activating AMPA and 

NMDA receptors resulting in a strong depolarization (Schaible et al., 2002). 

Systemic administration of NMDA and AMPA receptor antagonists abolished 

the change in responsiveness of spinal cord dorsal horn neurones observed 

using an acute model of knee joint inflammation in the rat (Neugebauer et al., 

1993b). The same effect was observed in a chronic model of knee joint 

arthritis, antagonism of NMDA and AMPA receptors abolished the responses 

of nociceptive wide dynamic range neurones to innocuous and noxious 

mechanical stimuli applied to the knee joint (Neugebauer et al., 1994).   
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SP and its  receptor NK-1 have been shown to have an important role in spinal 

nociception (Hunt and Mantyh, 2001). Spinal SP release only occurs following 

exposure to noxious thermal and chemical stimuli (Lawson et al., 1997). SP 

containing primary afferent neurones innervate NK-1-expressing projection 

neurones in lamina I (Yu et al., 1999) and laminae III-IV (Todd, 2002). The 

NK-1 receptor is predominantly expressed in lamina I (Todd, 2002). Selective 

ablation of dorsal horn NK-1 expressing neurones following intrathecal 

administration of SP conjugated to the cytotoxin saporin attenuates 

inflammatory and neuropathic hyperalgesia in rats (Mantyh et al., 1997). 

However, no reduction in inflammatory hyperalgesia was observed in mice 

genetically deleted for the NK-1 receptor (De Felipe, 1988) and the 

preprotachykinin gene (Cao et al., 1998), which transcribes the receptor. 

Further, NK-1 antagonists were observed to have limited efficacy as analgesics 

in human clinical trials (Hill, 2000). Therefore, although NK-1 expressing 

neurones are vital for the development of hyperalgesia, spinal nociception is 

not mediated by SP activation of NK-1 receptors (Hill, 2000). It has been 

proposed that SP-containing C fibre nociceptors release glutamate at their 

synapses with NK-1 expressing projection neurones and that this induces 

hyperalgesia (Hill, 2000).  

 

 

1.7. Ascending pain pathways 

The spinothalamic tract (STT) projects directly to the thalamus (Dostrovsky, 

2006). STT neurones originate in laminae I, IV-V and VII-VIII of the spinal 

cord dorsal horn (Dostrovsky, 2006) and terminate in the thalamus and brain 
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stem regions, including the periaqueductal grey (PAG) (Dostrovsky, 2006). 

Sensations of itch, pain and temperature are linked with STT activation 

(Dostrovsky, 2006). The spinobulbar and medullary tracts project directly to 

medulla and brainstem homeostatic control regions (Craig, 2003). Neurones in 

this ascending pathway originate in laminae I, V and VII (Wiberg et al., 1987) 

and the integration of nociceptive homeostasis and behaviour has been 

associated with this pathway (Sato and Schmidt, 1973). The spinohypothalamic 

tract (SHT) projects directly to the hypothalamus and ventral forebrain (Wall, 

2006). Neurones of the SHT originate in laminae I, V, VII and X of the dorsal 

horn (Wall, 2006). Activation of the SHT is vital for the autonomic, 

neuroendocrine and emotional aspects of pain (Dado et al., 1994).  

 

 

1.8. Supraspinal sites of nociception 

Nociceptive signals are transmitted to the brain by the neurones of ascending 

tract pathways described above (see Section 1.7). The pain experience consists 

of different aspects, including discriminative and affective components, said to 

be mediated by different brain regions (Bushnell, 2006). The discriminative 

aspect (e.g. location, duration and intensity) of pain is mediated by 

somatosensory cortices SI and SII of the cortex, which receive projections from 

the lateral thalamocortical system (Schaible et al., 2006). The medial 

thalamocortical system sends projections to the anterior cingulated cortex, 

insula and prefrontal cortex (Schaible et al., 2006). These brain sites are vital 

for the affective (unpleasantness and aversive reactions) component of pain 

(Schaible et al., 2006). During chronic pain conditions, increased activity in the 
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prefrontal cortex occurs in response to noxious stimuli (Lassen et al., 1978) 

while thalamic-related activity in response to a stimulus attenuates pain (Di 

Piero et al., 1991). These alterations in cortical nociceptive processing could 

contribute to hyperalgesia and sensory deficits, respectively.  Brain regions 

which may be involved in pain processing include the basal ganglia, 

cerebellum, amygdala, hippocampus and the parietal and temporal cortices 

(Tracey and Mantyh, 2007). 

 

 

1.9. Descending modulatory pathways 

Spinal dorsal horn nociceptive neurones are inhibited by brainstem regions, 

including the PAG and rostral ventromedial medulla (RVM) (Wall, 1967). 

Serotonergic and noradrenergic PAG neurones project to and activate cells in 

the RVM, including the nucleus raphe magnus, which project inhibitory 

neurones to the spinal cord dorsal horn via the dorsolateral funiculus (Millan, 

2002). RVM neurones project directly to and synapse with dorsal horn 

projection neurones and interneurones (Millan, 2002).  In addition, descending 

RVM neurons modulate nociceptive primary afferent neurones (Millan, 2002). 

RVM neurones, consisting of approximately 20% 5-HT-containing neurones, 

release 5-HT, which excites inhibitory interneurones (Millan, 2002). These 

interneurones synapse with projection neurones and central terminals of 

primary afferent neurones, releasing neurotransmitters (e.g. glycine, 

enkephalin) which inhibit nociceptive transmission (Millan, 2002). 

Cannabinoid and opioid-based drugs induce analgesia by targeting neurones in 

the PAG and RVM (Fields, 2006). 
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Figure 1.2. Neuroanatomy of joint pain pathway and analgesic targets. 

Transmission of nociceptive information from knee joint afferents (a) to the 

spinal cord (b) then to brain regions important in the conscious perception of 

pain (c). Taken from (Malfait and Schnitzer, 2013).  

 

 

1.10. Peripheral sensitization 

The clinical symptoms of joint pain (e.g. during OA) include spontaneous pain, 

hyperalgesia and allodynia which are driven by changes in the excitability of 

the peripheral and CNS (Schaible et al., 2002). The importance of changes in 

the sensitivity of articular sensory nerves during chronic pain in OA is evident 

by the abolishment of pain following joint replacement surgery and i.a. local 

anaesthetic in man (Creamer et al., 1996, Kosek and Ordeberg, 2000a) and 

following a desensitization or ablation of nociceptors within the OA joint in 
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rats (Kalff et al., 2010, Kosuwon et al., 2010). These findings indicate that joint 

nociceptors inputs are required for the development and maintenance of 

chronic joint pain (Schaible et al., 2002, Schaible et al., 2009).  

 

 

Sensitization of knee joint nociceptors results in excessive central 

neurotransmitter and neuropeptide release which increases dorsal horn spinal 

neuronal activity (Neugebauer et al., 1993a, Neugebauer et al., 1996, Schaible 

et al., 2009). This process results in central sensitization and pain chronicity 

(Schaible et al., 2009). Therefore, identification of mechanisms that sensitize 

joint nociceptors and those that could potentially modulate (i.e. inhibit) 

sensitization during conditions such as OA is likely to be fundamental to the 

development of more effective analgesics.  

 

 

Nociceptor plasticity manifested as an increase in sensitivity to peripheral 

stimuli, occurs during inflammation or injury, and is referred to as ‘peripheral 

sensitization’ (Coggeshall et al., 1983, Schaible and Schmidt, 1985, Grigg et 

al., 1986, Schaible and Schmidt, 1988b, McDougall, 2006, Schaible et al., 

2009). Peripheral sensitization is characterised by a reduction in mechanical 

activation thresholds, elevated response to suprathreshold mechanical stimuli 

and increased nociceptor spontaneous activity (Coggeshall et al., 1983, 

Schaible and Schmidt, 1985, Grigg et al., 1986, Schaible and Schmidt, 1988b, 

McDougall, 2006, Schaible et al., 2009). Peripheral sensitization has been 



          Chapter 1                                                                                                                                                          
                         

39 
 

demonstrated to make a significant contribution to the severity of pain during 

OA (Arendt-Nielsen et al., 2010).  

 

 

Nociceptors are sensitized during inflammation by the release of inflammatory 

mediators from damaged tissue or cells, tumour cells or inflammatory cells 

(such as mast cells, neutrophils and monocytes) as well as from sensory and 

sympathetic nerve fibres, that bind to receptors expressed on their peripheral 

endings (Schaible et al., 2006, Cheng and Ji, 2008, Schaible et al., 2009, 

Gangadharan and Kuner, 2013a). These inflammatory mediators include 

prostaglandin E2 (PGE2), bradykinin (BK), ATP, protons, nerve growth factor 

(NGF), histamine, 5-HT, tumour necrosis factor-alpha (TNF-α), interleukin 1-

beta (IL-1β), and CGRP (Julius and Basbaum, 2001, Gangadharan and Kuner, 

2013b). Nociceptors can be directly activated (e.g. protons, ATP) and/or 

sensitized (e.g. BK, CGRP, NGF, PGE2) to mechanical, chemical or thermal 

stimuli (Julius and Basbaum, 2001, Gangadharan and Kuner, 2013b). 

Inflammatory mediators that do not directly activate nociceptors increase 

excitability and sensitivity by activating receptors that are coupled to 

intracellular signalling pathways involving adenylate cyclase, cAMP, protein 

kinase A (PKA), C (PKC) and Ca
2+ 

(Julius and Basbaum, 2001, Gangadharan 

and Kuner, 2013b). Activation of protein kinases via these signalling pathways 

sensitizes nociceptors through phosphorylation of ion channels such as TRPV1 

and Nav1.8 (Taiwo et al., 1989, Taiwo and Levine, 1991, Kress et al., 1996, 

Gold et al., 1998, Linhart et al., 2003). Phosphorylation of TRPV1 and Nav1.8 

results in a reduction in the threshold for nociceptor activation and further 
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release of pro-inflammatory substances from C fibre nociceptors via increasing 

currents, lowering the voltage threshold for activation and producing a 

depolarizing shift in inactivation (Kessler et al., 1999, Oshita et al., 2005, Wu 

et al., 2012, Li et al., 2014).    

 

 

The identification of mechanisms that have the potential to inhibit sensitization 

of joint afferents during joint disease could provide novel analgesic targets. 

This thesis has focused on the role of the putative third cannabinoid receptor 

GPR55 in the modulation of joint afferent mechanosensitivity under normal 

and pathological (OA) conditions. As such, it is relevant firstly to review 

current knowledge of the peripheral cannabinoid receptor system in the 

modulation of pain before moving on to what is currently known with regard to 

GPR55. 

 

 

1.11. Cannabinoids 

The plant Cannabis sativa has been used for recreational and medicinal 

purposes for thousands of years due to its psychoactive properties. The 

discovery of Δ
9
-tetrahydrocannabinol (Δ

9
-THC) as the principal psychoactive 

component of Cannabis sativa initiated serious interest in the therapeutic 

potential of the cannabinoid system (Mechoulam et al., 1967). Cannabinoids 

are sub-classified as phytocannabinoids (e.g. constituents of the Cannabis 

Sativa), endocannabinoids (e.g. anandamide) or synthetic cannabinoids (e.g. 

WIN 55,212-2) (Howlett et al., 2002).  
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Cannabinoids mediate their effects via two characterised CB1 and CB2 

receptors (Howlett et al., 2002, Howlett et al., 2004). Cannabinoid receptors 

are distinguished by variations in amino acid sequences, intracellular signalling 

and tissue distribution (Howlett et al., 2002, Howlett et al., 2004). The CB1  

receptor was cloned from rat in 1990, its mRNA was identified in brain regions 

known to contain cannabinoid receptors including: dentate gyrus, hippocampal 

formation and cerebral cortex (Matsuda et al., 1990). Following this in 1993, 

the CB2 receptor mRNA was found in spleen marginal zone macrophages but 

was absent from the brain (Munro et al., 1993). At the protein level, CB1 and 

CB2 receptors share 44% identity which increases to 68% in the 

transmembrane region (Munro et al., 1993). Cannabinoid receptors are GPCRs 

which couple to Gi/o proteins and subsequently attenuate adenylate cyclase 

activity (Howlett et al., 2004). Activation of CB1 receptors inhibits Ca
2+

 and 

elevates K
+
 channel conductance, which is thought to suppress neuronal 

excitability and neurotransmitter release (Howlett et al., 2004). In addition, 

CB1-mediated inhibition of 5-HT3 ion channels (Barann et al., 2002), nitric 

oxide production (Pertwee, 2001) and Na
+
 channel conductance (Nicholson et 

al., 2003) has been demonstrated.  The Na
+
/H

+
 exchanger is activated by CB1 

receptors (Bouaboula et al., 1999). CB1 and CB2 receptors activate mitogen 

activated protein kinase (MAPK) and increase Krox-24 expression (Bouaboula 

et al., 1995).  

  

 

Beneficial effects of cannabinoids mediated in the CNS have been identified 

which include analgesia (Howlett et al., 2002). However, effects mediated by 
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CNS expressed cannabinoid receptors, including sedation, dysphoria/euphoria 

and alterations in cognition and memory, have restricted their clinical use 

(Howlett et al., 2002). In order to overcome these unwanted effects, amongst 

other strategies the therapeutic potential of cannabinoid receptors expressed in 

peripheral tissues has been investigated (Guindon and Hohmann, 2009, Engeli, 

2012, Basu et al., 2014).   

 

 

1.11.1. Phytocannabinoids and synthetic cannabinoids 

Phytocannabinoids include Δ
9
-THC and cannabidiol. Δ

9
-THC has similar 

affinities for CB1 and CB2 receptors (Howlett et al., 2002). At CB1 receptors, 

Δ
9
-THC functions as a partial agonist with studies demonstrating Δ

9
-THC as 

having lower efficacy than some synthetic cannabinoids (Howlett et al., 2002). 

Δ
9
-THC has lower efficacy at the CB2 receptor compared to the CB1 receptor 

(Howlett et al., 2002). In a N18TG-2 neuroblastoma cell line expressing CB1 

receptors, the CB1 and CB2 receptor agonist CP 55,940 produced an increased 

attenuation of cAMP levels compared to Δ
9
-THC (Matsuda et al., 1990). The 

development of synthetic cannabinoid ligands has enabled further research into 

the functional role of the cannabinoid system include ligands derived from Δ
9
-

THC (HU210 and CP55940) and aminoalkylindoles (R-(+)-WIN55212 and 

JWH-015) (Pertwee, 2001).  
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1.11.2. Endocannabinoids 

Endocannabinoids are cannabimimetic substances which are synthesised, 

released and degraded naturally in the body (Guindon and Hohmann, 2009). 

The initial endocannabinoids to be discovered were arachidonylethanolamine 

(anandamide) (Devane et al., 1992) and 2-arachidonylglycerol (2-AG) (Sigiura 

et al., 1995). Subsequently, further less well characterised endocannabinoids 

have been proposed, including: noladin ether (Hanus et al., 2001), virodhamine 

(Porter et al., 2002) and N-archidonyldopamine (Ross et al., 2009). 

Endocannabinoids are synthesised ‘on demand’ from phospholipid precursors 

present in the cell membrane (Guindon and Hohmann, 2009). The cleavage of 

membrane phospholipids and resultant endocannabinoid synthesis is initiated 

by membrane depolarisation, elevated intracellular Ca
2+

 levels and receptor 

stimulation (Guindon and Hohmann, 2009). 

 

 

Preceding anandamide synthesis, the phospholipid precursor N-arachidonoyl-

phosphatidylethanolamine (NAPE) is formed following enzymatic transfer of 

arachidonic acid, present in the sn-1 position of a phosphatidylcholine, to a 

phosphatidylethanolamine amide group (Jin et al., 2009). This process requires 

the Ca
2+

-independent enzyme N-acyl-transferase. Following this, NAPE is 

hydrolysed to anandamide by a specific phospholipase D (NAPE-PLD). 

However, studies using mice with a deleted NAPE-PLD gene have implicated 

several enzymatic pathways involved in anandamide synthesis (Leung et al., 

2006). 2-AG is also synthesised via a two-step process. The enzyme 

phospholipase C (PLC) cleaves membrane phospholipid precursors to form 
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diacylglycerol (DAG), which in turn is hydrolysed to 2-AG by DAG lipase (Di 

Marzo et al., 1999, Jin et al., 2009). Once released, the endocannabinoids exert 

their effects via cannabinoid receptor activation. Anandamide preferentially 

binds to CB1 receptors (Piomelli, 2001) and has low affinity to TRPV1 

channels (Smart et al., 2000), while 2-AG is efficacious at CB1 and CB2 

receptors (Sigiura et al., 1995). Endocannabinoids can function to modulate 

synaptic transmission (Guindon and Hohmann, 2009). Following release from 

depolarised postsynaptic neurones endocannabinoids act via a retrograde 

signalling mechanism and activate CB1 receptors on presynaptic terminals 

(Guindon and Hohmann, 2009). Consequently, the release of neurotransmitters 

(e.g. GABA and glutamate) is attenuated. Therefore, endocannabinoids can 

control excitatory and inhibitory synaptic transmission, suggesting a regulatory 

role in neuronal excitability and homeostasis.  

 

 

The mechanisms of endocannabinoid re-uptake have not been clarified, 

although several have been proposed (Hillard and Jarrahian, 2003). This 

includes a yet to be cloned transporter and facilitated diffusion via a saturable, 

temperature-dependent, ATP-independent process driven by a transmembrane 

concentration gradient (Hillard and Jarrahian, 2003). Endocannabinoids are 

hydrolysed by specific intracellular enzymes. Fatty-acid amide hydrolase 

(FAAH) hydrolyses anandamide to form arachidonic acid and ethanolamine 

(Giang, 1997). FAAH is found in regions of the pain pathway, including: the 

termination zone of the spinothalamic tract in the ventral posterior lateral 

nucleus of the thalamus, the superficial dorsal horn and DRG neurones. The 
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serine hydrolase monoacylglycerol lipase (MGL) hydrolyses 2-AG into 

arachidonic acid and glycerol (Dinh et al., 2002). However, endocannabinoids 

have been shown to be degraded via alternative processes to hydrolysis. 

Anandamide and 2-AG have been shown to be metabolised by cyclooxygenase 

(COX), lipoxygenase and cytochrome P450 enzymes (Alexander and Kendall, 

2007). 

 

 

1.11.3. Cannabinoid receptor expression 

CB1 receptor expression was initially thought to be localised to CNS neurones 

with CB2 receptor expression restricted to immune tissues (Herkenham, 1995). 

Brain regions expressing the CB1 receptor include: the cerebral cortex, 

amygdala, basal ganglia, substantia nigra pars reticulata, internal and external 

segment of the globus pallidus, cerebellum and hippocampus (Pertwee, 1997). 

CB2 receptor expression is present in tissues responsible for immune cell 

production and regulation including the spleen, tonsils and thymus (Howlett et 

al., 2004). CB2 expressing immune cells are mast cells, macrophages, natural 

killer cells, B cells, T4 and T8 cells, microglial cells, monocytes and 

polymorphonuclear neutrophils (Howlett et al., 2004). CB1 receptor is 

expressed in peripheral tissues (Galiegue et al., 1995, Kaplan, 2013) and the 

CB2 receptor in non-immune tissue (Herkenham, 1995). Peripheral tissues 

expressing the CB1 receptor include the adrenal gland, adipose tissue, heart, 

liver, lung, prostrate, uterus, ovary, testis, bone marrow, thymus, tonsils and 

presynaptic nerve terminals (Galiegue et al., 1995). Studies have also identified 
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the receptor in the brain, lumbar spinal cord, microglia and DRG (Jhaveri et al., 

2007).   

 

 

1.11.4. Cannabinoid receptor expression on primary afferent neurones 

Several studies have confirmed CB1 receptor expression in primary afferent 

neurones using in situ hybridisation and immunolabelling (Hohmann and 

Herkenham, 1999, Ahluwalia et al., 2000, Ahluwalia et al., 2002b, Bridges et 

al., 2003, Binzen et al., 2006). CB1 receptor protein was expressed in 

approximately 36% (Binzen et al., 2006), 47% (Ahluwalia et al., 2002a) and 

57% (Ahluwalia et al., 2002a) of rat DRG neurones. Pharmacological and 

immunohistochemical characterisation identified co-expression of CB1 on 

neurofilament 200 (NF200) (Bridges et al., 2003), IB4, CGRP (Ahluwalia et 

al., 2002b), (Ahluwalia et al., 2000, Binzen et al., 2006) and Kv1.4 channel 

(Binzen et al., 2006) expressing afferents. Further evidence identified CB1 

expression on small-, medium- and large-sized DRG neurones (Bridges et al., 

2003). This indicates the CB1 receptor is present on all major subpopulations of 

DRG neurones with predominant localisation on peptidergic and non-

peptidergic small diameter C fibre nociceptors. CB2 receptor expression is 

present on small/medium and large sized DRG neurones with expression up-

regulated following nerve injury in small- and medium-sized DRG (Ross et al., 

2001, Anand et al., 2008).  
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1.11.5. Role of the peripheral cannabinoid receptor system in the 

modulation of nociception 

Evidence from behavioural and in vivo electrophysiological studies in animal 

models have identified an anti-nociceptive effect in response of peripheral 

cannabinoid receptor activation (Calignano et al., 1998, Richardson et al., 

1998, Nackley et al., 2003, Quartilho et al., 2003, Johanek and Simone, 2004, 

Elmes et al., 2005, Sagar et al., 2005, Amaya et al., 2006a, Agarwal et al., 

2007, Gutierrez et al., 2007, Kelly and Donaldson, 2008, Potenzieri et al., 

2008, Schuelert et al., 2010, Schuelert and McDougall, 2011). Activation of 

peripheral CB1 receptors reduced pain behaviour in response to a mild heat 

injury (Johanek and Simone, 2004), formalin (Calignano et al., 1998, Agarwal 

et al., 2007) and capsaicin (Agarwal et al., 2007). Recordings from dorsal horn 

neurones (Kelly et al., 2003) and the saphenous nerve (Kelly and Donaldson, 

2008, Schuelert and McDougall, 2008) observed an inhibition in mechanically-

evoked responses after administration of CB1 and CB2 receptor agonists in 

naïve rats.  

 

 

Peripheral cannabinoid receptors also modulate nociception in models of 

inflammatory pain.  The CB1 receptor agonist arachidonyl-2-chloroethylamide 

(ACEA) reduced thermal hyperalgesia in the CFA model following peripheral 

administration (Amaya et al., 2006). An anti-nociceptive role for peripheral 

cannabinoid receptors is further highlighted in the carrageenan model with 

peripheral administration of anandamide (Richardson et al., 1998), ACEA 

(Gutierrez et al., 2007) and the CB2 receptor agonist AM1241 (Quartilho et al., 
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2003) all having an analgesic effect. Peripheral administration of AM1241 

reduced carrageenan-induced thermal and mechanical hyperalgesia and 

allodynia while inhibiting the expression of spinal c-Fos expression, a marker 

for neuronal activation suggesting that activation of peripheral CB2 receptors 

inhibits nociceptive transmission to the spinal cord (Nackley et al., 2003). 

ACEA and methACEA reduced mechanical allodynia and hyperalgesia in CFA 

injected rats via peripheral CB1 receptor activation and inhibited mechanically-

evoked responses of cutaneous Aδ nociceptors, in an AM251-sensitive manner 

(Potenzieri et al., 2008). These findings suggest that activation of CB1 

receptors on A-fibre nociceptors contributes to the anti-nociceptive effects of 

ACEA and methACEA observed behaviourally. The importance of CB1 

receptors expressed by nociceptors in mediating inhibition of inflammatory 

hyperalgesia is highlighted by the exacerbation of CFA-induced mechanical 

hyperalgesia and allodynia in transgenic mice in which CB1 receptors have 

been selectively deleted from Nav1.8 expressing nociceptors (Agarwal et al., 

2007) indicating a tonic inhibition of inflammatory nociception by peripheral 

CB1 receptors. Collectively these studies suggest that targeting of the 

peripheral cannabinoid receptor system could be a useful strategy in the 

treatment of chronic inflammatory pain. 

 

 

1.11.6. Novel cannabinoid receptors 

Until relatively recently, the physiological effects of cannabinoids were 

thought to be exclusively mediated via CB1 and CB2 receptors. However, in 

studies using CB1 and CB2 receptor knockout mice, cannabinoids have been 
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shown to act independently of the classical cannabinoid receptors (Brown, 

2007). These additional sites have been termed non-CB1/CB2 receptors and are 

thought to be present in the vasculature, CNS and immune cells (Brown, 2007). 

In resistance arteries of the mesenteric vasculature, anandamide-mediated 

vasodilation is blocked by cannabidiol and O-1918, antagonists with no 

efficacy or affinity at CB1 or CB2  receptors (Offertaler et al., 2003). The 

presence of non-CB1/CB2 receptor sites in the CNS was detected using brain 

slices and membrane preparations from CB1 receptor knockout mice 

(Breivogel et al., 2001). WIN55212 was found to stimulate [
35

S]-GTPγS 

binding, identifying GPCR activation. The immune expression of non-CB1/CB2 

receptor sites has been found in resting and activated T cells from mice 

genetically deleted for the classical cannabinoid receptors (Rao and Kaminski, 

2006). In resting T cells from wild type and CB1/CB2 receptor knockout mice, 

Δ
9
-THC, cannabidiol and HU210-induced increases in intracellular Ca

2+
 (Rao 

and Kaminski, 2006). Despite these pieces of evidence for the existence of 

non-CB1/CB2 receptors, studies aimed at identifying these receptors have not 

conclusively identified a novel cannabinoid receptor. However, several 

candidates have been proposed including the GPR55 receptor (described 

below). 

 

 

1.12. GPR55 receptor 

The GPR55 receptor is an orphan GPCR initially identified in silico from the 

expressed sequence tags database (Sawzdargo et al., 1999). It consists of 319 

amino acids containing glycosylation consensus sequences and protein kinase 
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A/C phosphorylation sites (see Figure 1.3) (Sawzdargo et al., 1999). Despite 

being implicated as a novel cannabinoid receptor, the GPR55 receptor displays 

low sequence identity (10-15%) to CB1 and CB2 receptors (Sawzdargo et al., 

1999). The receptors with highest amino acid similarity are the P2Y5 

purinoceptor, CCR4 chemokine receptor and the orphan GPR23 and GPR35 

(Sawzdargo et al., 1999).  

 

 

The GPR55 receptor has been identified in the genome of rat, mouse, dog, 

cow, chimpanzee and human (Sawzdargo et al., 1999). In humans, GPR55 

mRNA expression is present in the spleen and brain, specifically the caudate 

nucleus and putamen (Sawzdargo et al., 1999). In the rat and mouse, GPR55 

mRNA is found in spleen, intestine, adrenals, and CNS (Ryberg et al., 2007). 

In the mouse brain, GPR55 receptor mRNA is broadly distributed although its 

levels are significantly lower compared to CB1 receptor expression. GPR55 

mRNA has also been found in primary mouse microglia and the BV-2 mouse 

microglia cell line (Pietr et al., 2009) and in both human and mouse osteoclasts 

and osteoblasts (Whyte et al., 2009).  
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Figure 1.3. Structure of GPR55. Figure from (Sharir and Abood, 2010).  

 

1.12.1. GPR55 receptor pharmacology 

The GPR55 receptor was initially proposed as a novel third cannabinoid 

receptor on the basis of AstraZeneca and GlaxoSmithKline (GSK) patents 

identifying cannabinoid ligands (CP55940, SR141716A and AM251) as 

GPR55 agonists. Subsequent studies revealed a complex pharmacological 

profile for cannabinoid ligands at GPR55 with agonist or antagonist activity 

observed for an individual ligand that seemed to be dependent on the cell- and 

assay-type studied (Ross, 2009, Sharir and Abood, 2010). These studies are 

summarised in Table 1.4 below. Cell systems used to investigate GPR55 

pharmacology and downstream signalling include: HEK293 (Johns, 2007, Oka 

et al., 2007, Ryberg et al., 2007, Lauckner et al., 2008, Kapur et al., 2009, Yin, 

2009, Anavi-Goffer et al., 2012), human umbilical vein endothelial cell 

(HUVEC) (Waldeck-Weiermair et al., 2008), DRG (Lauckner et al., 2008), 

U2OS (Kapur et al., 2009) and osteoclasts (Whyte et al., 2009). Assay systems 
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used to determine the efficacy and potency of ligands at GPR55 include: 

extracellular regulated kinase (ERK) 1/2 phosphorylation (Oka et al., 2007, 

Lauckner et al., 2008, Waldeck-Weiermair et al., 2008, Kapur et al., 2009, 

Whyte et al., 2009, Anavi-Goffer et al., 2012), Rho (Ryberg et al., 2007, 

Lauckner et al., 2008, Whyte et al., 2009), nuclear factor of activated T cells 

(NFAT) activation (Waldeck-Weiermair et al., 2008), mobilisation of 

intracellular Ca
2+

 (Oka et al., 2007, Lauckner et al., 2008, Waldeck-Weiermair 

et al., 2008), GTPγS (Johns, 2007, Oka et al., 2007, Ryberg et al., 2007) and 

βarrestin binding (Kapur et al., 2009, Yin, 2009). Despite the controversy, it 

seems conclusive that the endogenous lysophospholipid LPI functions as a 

GPR55 agonist (Oka et al., 2007, Lauckner et al., 2008, Kapur et al., 2009, 

Whyte et al., 2009, Yin, 2009).  
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Table 1.4. A comparison of the pharmacological profile of ligands for GPR55. Adapted from (Sharir and Abood, 2010) 

 

Ligand 

 

Cell type 

Read Out  

Citation 
GTPγS 

Assay 

ERK 1/2 [Ca
2+

]
i
 

mobilisation 

Β-

arrestin 

Internalization  RhoA 

activation 

NFAT PKCβ 

LPI 

 

 

 

 

 

 

 

 

 

 

hGPR55-

HEK293 

Agonist Agonist Agonist Agonist Agonist Agonist Agonist Not 

tested 

(Oka et al., 2007, 

Lauckner et al., 

2008, Henstridge 

et al., 2009, Yin, 

2009) 

hGPR55E-

HEK293 

Not 

tested 

Not tested Not tested Not 

tested 

Agonist Not 

tested 

Not 

tested 

Not 

tested 

(Kapur et al., 

2009) 

hGPR55- 

PKCβII-

GFP-

HEK293 

 

Not 

tested 

Not tested Not tested Not 

tested 

Not tested Not 

tested 

Not 

tested 

Agonist (Kapur et al., 

2009) 

hGPR55E-

U2OS 

Not 

tested 

Agonist Not tested Agonist Agonist Not 

tested 

Not 

tested 

Not 

tested 

(Kapur et al., 

2009) 

Mouse 

DRG 

Not 

tested 

Not tested Agonist Not 

tested 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

(Lauckner et al., 

2008) 
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EA.hy926 Not 

tested 

Not tested Agonist Not 

tested 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

(Waldeck-

Weiermair et al., 

2008) 

Human 

osteoclasts 

Not 

tested 

Agonist Not tested Not 

tested 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

(Whyte et al., 

2009) 

Mouse 

osteoclasts 

Not 

tested 

Not tested Not tested Not 

tested 

Not tested Agonist Not 

tested 

Not 

tested 

(Whyte et al., 

2009) 

BV-2 

 

 

 

Not 

tested 

Agonist Agonist Not 

tested 

Not tested Agonist Not 

tested 

Not 

tested 

(Pietr et al., 2009) 

 

AEA 

 

 

 

 

hGPR55-

HEK293 

Agonist Agonist No effect Agonist Not tested Not 

tested 

Not 

tested 

Not 

tested 

(Oka et al., 2007, 

Ryberg et al., 

2007, Lauckner et 

al., 2008, 

Henstridge et al., 

2009, Yin, 2009) 

hGPR55E-

HEK293 

 

Not 

tested 

No effect Not tested Not 

tested 

No effect Agonist Not 

tested 

Not 

tested 

(Kapur et al., 

2009) 

hGPR55E-

U2OS 

Not 

tested 

No effect Not tested No 

effect 

Not tested Agonist Not 

tested 

Not 

tested 

(Kapur et al., 

2009) 

Table 1.4. (cont) 
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BV-2 Not 

tested 

Not tested No effect Not 

tested 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

 

2-AG hGPR55-

HEK293 

Agonist No effect No effect No 

effect 

Not tested Not 

tested 

Agonist Not 

tested 

(Oka et al., 2007, 

Ryberg et al., 

2007, Lauckner et 

al., 2008, 

Henstridge et al., 

2009, Yin, 2009) 

hGPR55E-

HEK293 

Not 

tested 

No effect Not tested Not 

tested 

No effect Not 

tested 

Not 

tested 

Not 

tested 

(Kapur et al., 

2009) 

hGPR55E-

U2OS 

Not 

tested 

No effect Not tested No 

effect 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

(Kapur et al., 

2009) 

BV-2 Not 

tested 

Not tested No effect Not 

tested 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

 

Δ
9
-THC 

 

 

 

 

 

 

 

hGPR55-

HEK293 

 

 

 

Agonist No effect Agonist Agonist Not tested Not 

tested 

Not 

tested 

Not 

tested 

(Oka et al., 2007, 

Ryberg et al., 

2007, Lauckner et 

al., 2008, Yin, 

2009) 

mGPR55-

HEK293 

 

Not 

tested 

Not tested Agonist Not 

tested 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

(Lauckner et al., 

2008) 

Table 1.4. (cont) 
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 hGPR55E-

HEK293 

Not 

tested 

Not tested Not tested Not 

tested 

No effect Agonist Not 

tested 

Not 

tested 

(Kapur et al., 

2009) 

hGPR55E-

U2OS 

Not 

tested 

Not tested Not tested No 

effect 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

(Kapur et al., 

2009) 

Mouse 

DRG 

Not 

tested 

Not tested Agonist Not 

tested 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

(Lauckner et al., 

2008) 

BV-2 Not 

tested 

Not tested Agonist Not 

tested 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

 

CBD 

 

 

hGPR55-

HEK293 

 

Agonist No effect No effect No 

effect 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

(Ryberg et al., 

2007, Lauckner et 

al., 2008, Yin, 

2009) 

hGPR55E- 

U2OS 

Not 

tested 

Not tested Not tested No 

effect 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

(Lauckner et al., 

2008) 

BV-2 Not 

tested 

Not tested Agonist Not 

tested 

Not tested Agonist Not 

tested 

Not 

tested 

 

Human 

osteoclasts 

Not 

tested 

Antagonist Not tested Not 

tested 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

(Whyte et al., 

2009) 

abnCBD hGPR55-

HEK293 

 

 

Agonist No effect No effect No 

effect 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

(Ryberg et al., 

2007, Lauckner et 

al., 2008, Yin, 

2009, (Johns, 

2007)  

Table 1.4. (cont) 
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hGPR55E-

U2OS 

Not 

tested 

Not tested Not tested No 

effect 

No tested Agonist Not 

tested 

Not 

tested 

(Kapur et al., 

2009) 

O-1602 hGPR55-

HEK293 

Agonist Not tested No effect No 

effect 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

(Ryberg et al., 

2007, Yin, 2009, 

(Johns, 2007, Oka 

et al., 2007) 

hGPR55E-

U2OS 

Not 

tested 

Not tested Not tested No 

effect 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

(Kapur et al., 

2009) 

EA.hy926 Not 

tested 

Not tested Agonist Not 

tested 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

(Waldeck-

Weiermair et al., 

2008) 

human 

osteoclasts 

Not 

tested 

Agonist Not tested Not 

tested 

Not tested Agonist Not 

tested 

Not 

tested 

(Whyte et al., 

2009) 

Mouse 

osteoclasts 

Not 

tested 

Not tested Not tested Not 

tested 

Not tested Agonist Not 

tested 

Not 

tested 

(Whyte et al., 

2009) 

CP55940 

 

 

 

 

 

 

 

hGPR55-

HEK293 

 

Agonist 

No effect No effect 

+ 

Antagonist 

No 

effect 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

(Oka et al., 2007, 

Ryberg et al., 

2007, Henstridge 

et al., 2009, Yin, 

2009) 

hGPR55E-

HEK293 

 

Not 

tested  

Not tested Not tested Not 

tested 

No effect Not 

tested 

Not 

tested 

Not 

tested 

(Kapur et al., 

2009) 

Table 1.4. (cont) 
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 hGPR55- 

PKCβII-

GFP-

HEK293 

Not 

tested 

Not tested Not tested Not 

tested 

Not tested Not 

tested 

Not 

tested 

Agonist (Kapur et al., 

2009) 

hGPR55E-

U2OS 

Not 

tested 

Antagonist No effect Not 

tested 

Not tested  Not 

tested 

Not 

tested 

Not 

tested 

(Kapur et al., 

2009) 

BV-2 Not 

tested 

Not tested No effect Not 

tested 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

 

JWH-015 

 

hGPR55-

HEK293 

Not 

tested 

No effect Agonist Not 

tested 

Not tested Agonist Not 

tested 

Not 

tested 

(Lauckner et al., 

2008) 

mGPR55-

HEK293 

Not 

tested 

Not tested Agonist Not 

tested 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

(Lauckner et al., 

2008) 

Mouse 

DRG 

Not 

tested 

Not tested Agonist Not 

tested 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

(Lauckner et al., 

2008) 

hGPR55E-

U2OS 

Not 

tested 

Not tested Not tested Not 

tested 

No effect Not 

tested 

Not 

tested 

Not 

tested 

(Kapur et al., 

2009) 

SR141716A 

 

 

 

 

 

hGPR55-

HEK293 

 

 

 

 

 

Not 

tested 

Agonist Agonist 

+ 

Antagonist 

Agonist Agonist Not 

tested 

Agonist Not 

tested 

(Oka et al., 2007, 

Lauckner et al., 

2008, Henstridge 

et al., 2009, Yin, 

2009) 

Table 1.4. (cont) 
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hGPR55E-

HEK293 

Not 

tested 

No effect Not tested Not 

tested 

Agonist Not 

tested 

Not 

tested 

Not 

tested 

(Kapur et al., 

2009) 

hGPR55E-

U2OS 

Not 

tested 

No effect Not tested Agonist Agonist Not 

tested 

Not 

tested 

Agonist (Kapur et al., 

2009) 

hGPR55- 

PKCβII-

GFP-

HEK293 

Not 

tested 

Not tested Not tested Not 

tested 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

(Kapur et al., 

2009) 

EA.hy926 Not 

tested 

Not tested Antagonist Not 

tested 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

(Waldeck-

Weiermair et al., 

2008) 

Mouse 

DRG 

Not 

tested 

Not tested Antagonist Not 

tested 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

(Lauckner et al., 

2008) 

BV-2 Not 

tested 

Not tested No effect Not 

tested 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

 

AM251 

 

 

hGPR55-

HEK293 

 

 

 

Agonist Not tested Agonist Agonist Agonist Not 

tested 

Agonist Not 

tested 

(Ryberg et al., 

2007, Henstridge 

et al., 2009, Yin, 

2009) 

hGPR55E-

HEK293 

 

Not 

tested 

No effect Not tested Not 

tested 

Agonist Not 

tested 

Not 

tested 

Not 

tested 

(Kapur et al., 

2009) 

Table 1.4. (cont) 
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hGPR55E-

U2OS 

Not 

tested 

Not tested Not tested Not 

tested 

Not tested Not 

tested 

Not 

tested 

Agonist (Kapur et al., 

2009) 

hGPR55-

PKCβII-

GFP-

HEK293 

Not 

tested 

No effect Not tested Agonist Agonist Not 

tested 

Not 

tested 

Not 

tested 

(Kapur et al., 

2009) 

AM281 hGPR55-

HEK293 

 

Agonist Not tested Agonist Not 

tested  

Agonist Not 

tested 

Agonist Not 

tested 

(Kapur et al., 

2009) 

hGPR55E-

U2OS 

Not 

tested 

Not tested Not tested No 

effect 

Not tested Not 

tested 

Not 

tested 

Not 

tested 

(Ryberg et al., 

2007, Henstridge 

et al., 2009) 

Table 1.4. (cont) 
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Several studies have investigated the effect of the aforementioned ligands using 

various pharmacological end-points that have furthered understanding of 

GPR55 downstream signalling (see Figure 1.4).  
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Figure 1.4. Downstream signalling events initiated by GPR55. 

(Oka et al., 2007, Oka, 2009)    (Ryberg et al., 2007)   (Lauckner et al., 2008)         (Waldeck-Weiermair et al., 2008)       (Henstridge et al., 2009) 

             GPR55                                     GPR55                           GPR55                               GPR55           GPR55                       GPR55 

                (LPI)                      (O-1602, anandamide)      (LPI, anandamide, JWH015)     (LPI, O-1602)    (anandamide)                   (LPI)                     
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1.12.2. GPR55 receptor and nociception 

A role for the GPR55 receptor in the modulation of nociception has been 

proposed (Lauckner et al., 2008, Staton et al., 2008, Schuelert and McDougall, 

2011, Breen et al., 2012, Gangadharan et al., 2013). A study from GSK 

suggested GPR55 as a novel target for inflammatory and neuropathic pain 

(Staton et al., 2008). Cutaneous mechanical hyperalgesia failed to develop in 

GPR55 knockout mice subjected to CFA induced inflammation and partial 

sciatic nerve ligation induced nerve injury (Staton et al., 2008). Hind paw 

levels of anti-inflammatory cytokines (IL-4 and IL-10) were increased in 

GPR55 knock out compared to wild-type mice. Evidence suggests pro-

inflammatory cytokines involved in pain and inflammation are modulated by a 

cascade of anti-inflammatory cytokines (Kanaan et al., 1998, George et al., 

2004, Kleinschnitz et al., 2004) suggesting GPR55 potentially contributes to 

inflammatory pain by inhibiting anti-inflammatory cytokine activity. Further 

evidence suggesting a role for GPR55 in nociception was provided by a study 

demonstrating that intra-peritoneal (i.p) administration of the putative GPR55 

agonist O-1602 in an ethanol vehicle prevented the anti-allodynic effects 

observed following administration of the vehicle alone in the CCI model of 

nerve injury and exacerbated the CCI-induced reduction in paw withdrawal 

thresholds (Breen et al., 2012). 

 

 

Recent evidence has implicated a peripheral site of action of the GPR55 

receptor in the modulation of nociception (Lauckner et al., 2008, Gangadharan 

et al., 2013). Behavioural and electrophysiological studies in naïve mice 
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demonstrated that intra-plantar administration of the GPR55 agonist LPI 

induced hind paw mechanical allodynia and mechanical hyperalgesia while 

cutaneous A fibre mechansensitivity assessed in an ex vivo skin nerve 

preparation was increased by LPI (Gangadharan et al., 2013). Although the use 

of GPR55 knock out mice confirmed a contribution of GPR55, a contribution 

of a non-GPR55 mechanism(s) was proposed to mediate effects of LPI at 

higher concentrations and during acute mechanical hyperalgesia. A peripheral 

site of action is corroborated by the demonstration of GPR55 expression in 

mouse DRG neurones predominantly in large diameter (>35µm) neurones but 

also at low levels in small-medium diameter neurones (Lauckner et al., 2008). 

Almost all NF200-positive DRG neurones were strongly GPR55-

immunoreactive, whereas very few/no IB4- and CGRP-positive neurones were 

found to be strongly GPR55-immunoreactive. Medium and large DRG 

neurones expressing GPR55 were weakly and strongly TRPV-1 positive 

respectively (Lauckner et al., 2008). The expression of GPR55 in DRG 

neurones is corroborated by the demonstration that LPI increased intracellular 

Ca
2+

concentration in large diameter DRG neurones (Lauckner et al., 2008), an 

effect that would be expected to increase neuronal excitability and could be the 

mechanistic basis of the pro-nociceptive role of GPR55 demonstrated in the 

aforementioned behavioural studies. 

 

 

Studies have also investigated the intracellular signalling pathways involved in 

mediating GPR55 effects on nociception. Genetic deletion of G13 and Gq/11 

abolished LPI-induced mechanosensitization of cutaneous A-fibre nociceptors 
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to low intensity mechanical stimulation although at higher intensities 

mechanical hypersensitivity to LPI remained (Gangadharan et al., 2013). This 

finding indicates that the hyperalgesic effect of LPI occurs via a G13- and Gq/11-

independent manner. LPI-induced behavioural allodynia was found to be 

dependent on ERK-1/2 activation in DRG nociceptors which was 

predominantly mediated by the G13 pathway although Gq/11 was partially 

involved (Gangadharan et al., 2013).  

 

 

Despite the existence of evidence suggesting a pro-nociceptive role, the GPR55 

receptor has been demonstrated to have an anti-nociceptive role in a model of 

acute inflammatory joint pain (Schuelert and McDougall, 2011). Peripheral 

administration of the synthetic GPR55 agonist O-1602 attenuated the 

mechanosensitivity of nociceptive knee joint afferent C-fibres which was 

abolished by the GPR55 antagonist O-1918, contrasting with the sensitizing 

effects on cutaneous A-fibres described above (Gangadharan et al., 2013). This 

data provides further evidence of a peripheral site of action for the GPR55 

receptor and collectively with data described above suggests that the role of the 

GPR55 receptor in the modulation of nociception is complex and tissue-

specific roles i.e. cutaneous vs joint nociception may be apparent. As such, 

further studies are required to increase understanding of GPR55 and its role in 

modulating nociception and the potential of targeting GPR55 in joint pain. This 

thesis has investigated the role of GPR55 in the modulation of joint afferent 

nociceptor mechanosensitivity under non-pathological conditions and has 
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translated these investigations into a model of arthritic pain (i.e. OA), to assess 

the potential of targeting GPR55 for the relief of chronic joint pain.  

 

 

1.13. Introduction to OA 

OA is the most common form of arthritis with 8.75 million people in the UK 

alone seeking clinical help for treatment each year (Pereira et al., 2011, 

Conaghan et al., 2014). The number of patients suffering from OA is expected 

to double in the next 20 years due to an ageing population and an obesity 

epidemic (Conaghan et al., 2014). The impact of OA on patients and their 

families is comparable to cardiac, neurological and pulmonary diseases while 

loss of working hours due to OA costs the UK economy up to £18 billion per 

year (Loza et al., 2008, Cooper et al., 2011, Nuesch et al., 2011). Therefore, 

long term conditions such as OA are a current NHS priority with an aim to 

improve health-related quality of life (Conaghan et al., 2014).  

 

 

OA was defined by the OA Research Society International (OARSI) in 2011 as 

‘a progressive disease affecting synovial joints that can result in degeneration 

of cartilage and subchondral bone with swelling of the joint’ (see Figure 1.5) 

(Lane et al., 2011). OA is most common in load bearing joints of the knee, hip 

but also in joints of the hand and feet with the disease localised to a single 

joint, a few joints or generalized (Lane et al., 2011). The aetiology of OA is 

complex although risk factors have been identified, including increasing age 

(Arden and Nevitt, 2006, Scott, 2006), obesity (Grotle et al., 2008, Lohmander 
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et al., 2009) and gender with women 1.7 times more at risk (Felson et al., 

1995). Several studies have suggested that OA is a result of abnormal i.a. stress 

and an inability to repair joint damage arising from biomechanical (Sharma et 

al., 2001, Sharma et al., 2006) or biochemical and genetic factors (Garnero et 

al., 2008, Cheung et al., 2010, Valdes and Spector, 2010, Valdes et al., 2011).   

 

 

The symptoms of OA include functional disability and stiffness of the joint but 

pain is the dominant symptom. Pain is the most common complaint in OA 

patients seeking help from a physician (Gwilym et al., 2008) and as such OA 

pain is a major clinical problem that can lead to a poor quality of life and 

significant levels of morbidity (Conaghan et al., 2014). The analgesics that are 

currently available to treat OA pain (e.g. NSAIDs and weak opioids) have 

limitations such as variable pain relief, potential for abuse and use limiting side 

effects associated with chronic usage (Breivik et al., 2006, McDougall and 

Linton, 2012). Due to the limited effectiveness of current analgesics, many 

patients with chronic OA pain eventually undergo joint replacement surgery 

(Dixon et al., 2004) although around 20% of patients still experience pain 

following arthroplasty (Saxler et al., 2007, Gwilym et al., 2008, Wylde et al., 

2011).  

 

 

In order to develop improved analgesics for OA pain, a greater understanding 

of the pathophysiological mechanisms that occur during OA pain development 

is required. It has been proposed that targeting pain at the level of the joint, the 
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source of the injury, may alleviate pain more effectively and reduce the 

prevalence of side-effects (McDougall, 2011). Identification of the importance 

of a peripheral drive to OA pain has already been established with the 

alleviation of pain in 60-80% of patients (depending on the affected site) 

following joint replacement surgery (Kosek and Ordeberg, 2000b) and i.a. 

injection of local anaesthetic (Creamer et al., 1996, Crawford et al., 1998). 

These findings suggest that pain is driven by factors within the local joint 

environment in most patients.  

 

 

In this thesis, knee joint OA was studied as it is the most common joint to be 

affected (Scott, 2006). Methods for assessing pain behaviour and 

electrophysiological characteristics of joint nociceptors that can be applied to 

animal models of knee OA are available (Schaible and Schmidt, 1983a, 

Schaible and Schmidt, 1983b, Kelly et al., 2012). Changes to joint histology, 

pain behaviour and nociceptor mechanosensitivity that mimic the human 

disease have also been established (Vincent et al., 2012).  
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Figure 1.5. Comparison of a normal (A) and OA (B) joint. Taken from 

(Wieland et al., 2005).  

 

 

1.13.1. Pain in OA  

Pain in OA is debilitating and disabling affecting normal daily activities and 

reducing the quality of life of sufferers (Creamer et al., 1998). The pain can be 

use-related as well as spontaneous. Understanding of the mechanisms of OA 

pain has been limited as previous research has focused on the mechanisms 

driving joint degeneration (Neogi et al., 2009) which may not be same as those 

causing pain. Since the development of preclinical models of OA pain 

(Bendele, 2001) the situation is improving.  

 

 

A B 
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Studies examining radiological and magnetic resonance imaging (MRI) 

findings have found that a direct correlation between joint pathology and pain 

severity does not occur for most patients; some patients report severe pain with 

extensive joint pathology while others have extensive joint pathology and are 

asymptomatic with respect to pain (Hannan et al., 2000, Scott, 2006). These 

clinical findings are in line with the monosodium iodoacetete (MIA) rat model 

of OA (Kelly et al., 2012) and spontaneous model of OA in the Dunkin Hartley 

guinea pig in which a correlation between pain behaviour and joint pathology 

did not exist (McDougall et al., 2009). Therefore, it is possible that the 

mechanisms driving OA pain are not identifiable by radiographic and 

histological means.  

 

 

1.13.2. Contribution of joint structure degeneration to OA pain 

The exact anatomical source(s) of pain in OA is not known. The subchondral 

bone, periosteum, joint capsule, synovium, ligaments and meniscus are all 

highly innervated structures and may represent potential sources of pain during 

OA (McDougall and Linton, 2012). The absence of articular cartilage 

innervation indicates that it is unlikely to contribute to pain directly 

(McDougall and Linton, 2012). However, a study identified that in OA, 

angiogenesis occurs within the subchondral bone and extends past the 

calcified/non-calcified joint tidemark into the normally aneural cartilage (Suri 

et al., 2007). Cartilage vascularisation is followed by peri-vascular free nerve 

endings that may enable the previously aneural cartilage to mediate nociception 

and contribute to OA pain (Suri et al., 2007).   
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The presence of bone marrow lesions (BMLs) in knees identified by knee MRI 

has been associated with symptomatic OA (Felson et al., 2001). BMLs could 

be a consequence of an increase of water, blood or fluid inside the bone, 

reflecting oedema or contusions to the joint which may contribute to pain in 

OA patients by increasing intraosseous pressure and activating sensory nerves 

(Felson et al., 2001).  

 

 

The association of synovial inflammation and synovial thickening with pain in 

OA indicates that nociceptor innervation of the synovium may contribute to 

pain (Hill et al., 2001, Ashraf et al., 2011a). Inflammation of the synovium in 

OA is characterised by synovial hyperplasia, tissue fibrosis, thickening of the 

synovial capsule and B and T cell infiltration (Hunter et al., 2008). The 

proinflammatory and pronociceptive mediators (BK, PGs, neuropeptides and 

cytokines) released during the inflammatory response may cause pain by 

directly exciting and/or sensitizing knee joint nociceptors (Heppelmann and 

Pawlak, 1997b, Wang et al., 2006b, Hunter et al., 2008, Richter et al., 2012). 

 

 

The recent development of animal models of OA that not only model its 

histological features but also the associated pain symptoms has broadened our 

understanding of the underlying mechanisms contributing to pain in OA and of 

novel analgesic targets. In this thesis the MIA model was chosen to investigate 

the effects of GPR55 receptor activation on joint nociceptive mechanisms. 
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1.13.3. Pain behaviour and joint degeneration in the MIA model of OA 

Studies aimed at identifying novel analgesic strategies for human OA have 

been hampered due of the lack of rapid, reproducible models that closely 

mimic both the pain and structural changes associated with the disease. The 

MIA model of OA has been recently characterised in the rat (Bove et al., 2003, 

Guzman et al., 2003, Combe et al., 2004, Fernihough et al., 2004, Kelly et al., 

2012, Mapp et al., 2013) and mouse (Harvey and Dickenson, 2009, Ogbonna et 

al., 2013) with studies describing pathological progression, pain symptoms and 

peripheral nerve sensitisation that parallel human OA.  

 

 

MIA is a chemical that when injected into the rodent knee joint (under general 

anaesthesia) inhibits the activity of glyceraldehyde-3-phosphate dehydrogenase 

in chondrocytes which prevents glycolysis and induces cell death leading to 

pathological articular changes that resemble human OA (Guzman et al., 2003). 

Degradation of chondrocytes and an inflammatory response (persisting up to 

49 days) have been observed from day one post-injection (Guzman et al., 2003, 

Fernihough et al., 2004, Mapp et al., 2013). At day 7 post-injection, 

proteoglycan levels in cartilage are reduced and osteoclast numbers are 

increased at the junction between cartilage and subchondral bone, signalling 

the beginning of changes to the subchondral bone and bone resorption. 

Extensive loss of cartilage proteoglycan occurs by 14 days post-injection with 

additional signs of sheer stress in the cartilage. Further, bone resorption 

continues and osteophytes appear by 14 days (Mapp et al., 2013). At 21-28 

days, the cartilage is extensively thinned and the subchondral bone thickened 
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with continued development of osteophytes (Fernihough et al., 2004). By day 

56, joint degeneration is vast with extensive remodelling of the bone, 

subchondral sclerosis and fragmented and necrotic areas of cartilage (Guzman 

et al., 2003).  

 

 

In addition to joint pathology, intra-articular injection of MIA results in pain 

behaviour that mimics pain symptoms associated with human OA including 

significant weight bearing asymmetry, pain in response to movement of the 

joint (flexion and extension of the knee), hind paw mechanical hyperalgesia, 

and secondary tactile allodynia (Bove et al., 2003, Combe et al., 2004, 

Fernihough et al., 2004, Ferreira-Gomes et al., 2010, Kelly et al., 2012). The 

extent of pain behaviour is related to the concentration of MIA (ranging from 

1-3mg) injected (Bove et al., 2003, Guzman et al., 2003, Schuelert and 

McDougall, 2009, Sagar et al., 2010). Weight bearing asymmetry is evident 

from day 1 and peaks at day 3 - 7 with increasing concentrations of MIA 

prolonging the effect, persisting for up to at least 35 days following a 1mg 

(Ashraf et al., 2013) and until at least 63 days following 2mg injection (Combe 

et al., 2004). Ipsilateral hind paw hypersensitivity is evident from days 3 - 7 

post-MIA injection following a 1mg (Fernihough et al., 2004, Ashraf et al., 

2013) or 3mg (Sagar et al., 2010) injection and is maintained at 35 days. In this 

thesis, a 1mg dose was chosen, and studies have been conducted primarily at 

14 days post-injection during established joint pathology and pain behaviour.  

Pain behaviour in the MIA model is attenuated following administration of 

analgesics or anti-inflammatory (e.g. diclofenac and morphine) agents that are 
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affective in man (Combe et al., 2004, Pomonis et al., 2005a, Schuelert and 

McDougall, 2009). This responsiveness to analgesics in clinical use justifies 

the inclusion of the MIA model in studies aimed at understanding mechanisms 

of pain in OA and in the potential screening of therapeutic agents or 

identification of novel analgesic targets. MIA-induced hyperalgesia is 

attenuated by diclofenac and paracetamol (NSAIDs) at 3-14 days post-injection 

although NSAIDs have reduced efficacy at later stages of the model 

(Fernihough et al., 2004, Ivanavicius et al., 2007), suggesting an early 

inflammatory phase followed at later stages by a reduced inflammatory 

component. Evidence suggests that a neuropathic component may also 

contribute to pain in the MIA model. Gabapentin and amitriptyline (used to 

treat neuropathic pain) alleviate pain throughout the progression of the MIA 

model, while ATF-3, a neuronal marker of nerve injury, is upregulated in the 

cell bodies of afferents which innervate the joint (Ivanavicius et al., 2007).  

 

 

Studies have also investigated OA using spontaneously developing (Bendele 

and Hulman, 1988, Mason et al., 2001, McDougall et al., 2009) and surgically-

induced models (Fernihough et al., 2004, Ashraf et al., 2013, Mapp et al., 

2013). Spontaneously developing OA has been identified in some strains of 

mice (e.g. STR/ort), guinea pigs (e.g. Dunkin Hartley), Syrian hamsters and 

non-human primates (Bendele, 2001). Histological characteristics of OA 

develop including, cartilage degeneration, osteophyte formation, damage to 

subchondral bone and thickening of synovial membrane (Bendele and Hulman, 

1988, Bendele, 2001). Increased numbers of spontaneously activate knee joint 
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nociceptors were recorded in a guinea pig model of spontaneous OA 

(McDougall et al., 2009). Limitations of spontaneous models include a slowly 

developing OA (e.g. guinea pigs; 18 months, mice; 9 - 12 months) resulting in 

increased study time and planning, difficulties with regard to selecting an 

adequate control for aged animals and pain testing in animals with bilateral 

disease, as well as variability and uncertainty of the time of onset between 

different animals within an experimental group (Bendele, 2001). Further, a 

limited number of studies have characterised pain behaviour in spontaneously 

developing models of OA (Bendele, 2001).  

 

 

Surgical models of OA have been studied in dogs and rodents including, 

anterior cruciate ligament transection (ACLT) and partial medial 

meniscectomy (MNX) (Bendele, 2001). These models closely resemble the 

human condition and develop more rapidly than spontaneous OA models 

(Bendele, 2001). Pain behaviour has been characterised in the MNX model 

with weight bearing asymmetry and mechanical allodynia developing at 5 days 

post-surgery (Fernihough et al., 2004). However, mechanical hyperalgesia does 

not develop (Fernihough et al., 2004). An absence of weight bearing deficits 

and mechanical allodynia in the ACLT model prevents use in the study of pain 

behaviour (Ferland et al., 2011). The variations in pain behaviour limit the use 

of surgically-induced models of OA.  
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In this thesis, the MIA model was chosen as an experimental model of OA pain 

in which to investigate the in vivo effects of GPR55 receptor activation on joint 

nociception during joint disease as it is a reliable and reproducible model that 

mimics clinically observed joint pathology and pain symptoms. The MIA 

model is associated with both peripheral (Kelly et al., 2012, Kelly et al., 2013a, 

Bullock et al., 2014) and central sensitization (Sagar et al., 2010, Kelly et al., 

2013b), features of human OA pain and is sensitive to analgesics used to treat 

OA pain in man.  

 

 

1.14. Peripheral mechanisms of OA pain 

As discussed previously (Section 1.6.4), understanding of the relationship 

between joint structural change and OA pain are limited. The innervation 

pattern of joint structures indicates that pain may rise from a number (or a 

combination) of articular structures. The innervation of the articular cartilage 

(aneural under non-pathological conditions) during OA disease onset may 

contribute to pain (Suri et al., 2007). Exposure of the OA cartilage to aberrant 

mechanical and chemical stimuli may sensitize innervating nociceptors 

(Schaible and Grubb, 1993, Suri et al., 2007). Subchondral bone may also 

contribute to OA pain as it receives sensory and nociceptive input from trkA 

expressing nociceptors (Aso et al., 2014, Mantyh, 2014). During the OA 

disease process, the subchondral bone plates become denuded and exposed to 

chemical and mechanical stimuli that they would not normally be exposed to 

(Felson et al., 2001, Kidd, 2006). Subchondral bone turnover, dependent on the 

activity of osteoclasts and osteoblasts, precedes changes in cartilage in OA and 
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inhibition of osteoclast activity prior to MIA-induced OA can attenuate the 

development of weight bearing deficits suggesting osteoclast activity may 

contribute to the development of pain in OA (Sagar et al., 2013).  

 

Evidence suggests that the sensitization of knee joint nociceptors is an 

important feature associated with the severity of OA pain in humans and 

animal models (Arendt-Nielsen et al., 2010). The pain behaviour that follows 

MIA injection into rat knee joints (including weight bearing asymmetry) is 

associated with a mechanical sensitization of joint nociceptors (Fernihough et 

al., 2004, Schuelert and McDougall, 2009, Kelly et al., 2012, Kelly et al., 

2013a, Bullock et al., 2014). This sensitization is manifest as an increased 

firing frequency of knee joint nociceptors in response to the application of von 

Frey (vF) monofilaments to their joint associated receptive fields and to 

noxious rotation of the joint as well as reduced mechanical thresholds for firing 

(Schuelert and McDougall, 2006b, Schuelert and McDougall, 2009, Schuelert 

et al., 2010, Kelly et al., 2012, Kelly et al., 2013a, Bullock et al., 2014). This 

increased sensitivity to mechanical stimuli as well as increased rates of 

spontaneous activity of joint nociceptors may underlie the pain OA patients 

experience during joint loading associated with normal daily activities (e.g. 

walking, climbing stairs) and pain at rest, respectively. Identifying the 

substrates and mechanisms that drive the sensitization of knee joint nociceptors 

during OA and thus the underlying pain as well as those that modulate this 

sensitization are likely to be important to the development of improved 
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analgesic strategies. Local targeting of these mechanisms within the diseased 

joint has the potential to reduce side-effects.  

 

 

1.15. Putative peripheral chemical mediators of OA pain 

1.15.1. BK 

BK has been measured in the synovial fluid (SF) of OA joints and the likely 

source of this could be sensory nerves or damaged tissue (Bellucci et al., 2013). 

BK levels correlate with cartilage degradation and markers of inflammation 

(e.g. IL-6) (Bellucci et al., 2013). Evidence suggests that the bradykinin 

receptors (B1 and B2) contribute to OA pain (Kaufman et al., 2011). i.a. 

injection of B1 receptor antagonists in the ACLT surgical model of OA 

alleviates pain behaviour (weight bearing asymmetery) and joint pathology 

(e.g. chondropathy) (Kaufman et al., 2011). B2 receptor polymorphisms in 

humans are associated with increased risk of knee OA and augmented 

radiographic severity (Chen et al., 2012). Further, an i.a. B2 receptor antagonist 

alleviated pain in the MIA model (Cialdai et al., 2009) suggesting that BK has 

local sensitizing effects within the diseased joint. This is supported by the fact 

that BK increases the sensitivity of joint nociceptors to mechanical stimulation 

(Cesare and McNaughton, 1996a, Calixto et al., 2000, Wang et al., 2006a). The 

sensitizing effect of BK (via BK1 and BK2 receptors) is proposed to be 

mediated by an influx of Ca
2+

 ions and a phosphorylation and facilitation of 

TRPV1 function (Linhart et al., 2003) providing a putative mechanism by 

which bradykinin may contribute to pain in OA.   
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1.15.2. Prostanoids 

The important role of PGs in OA pain is evident from the use of NSAIDs as a 

first line analgesic treatment for OA in the clinic (Hunter et al., 2008). PGE2 

levels have been measured in the SF of knee joints from OA patients (Li et al., 

2009). Prostanoids such as PGI2 and PGE2 induce spontaneous activity and 

mechanical sensitization of knee joint afferents and also sensitize neurones to 

other inflammatory agents e.g. BK (Schaible and Schmidt, 1986, Schaible and 

Schmidt, 1988a, Neugebauer et al., 1989, Grubb et al., 1991, McQueen et al., 

1991, Schepelmann et al., 1992, Schaible et al., 2006). Surgical induction of 

OA (cranial cruciate ligament transection) in dogs results in increases in the 

levels of PGE2 in the SF that correlate with pain (lameness and weight bearing) 

(Trumble et al., 2004). In the MIA model of OA, oral administration of a PGI2 

antagonist reduced pain behaviour (weight bearing), similar to that of the 

NSAID diclofenac indicating that PGI2 may contribute to the peripheral 

mechanisms of OA pain (Pulichino et al., 2006). However, as the antagonist 

was administered orally it could be acting centrally so this is not unequivocal 

evidence for a peripheral role.  

 

 

1.15.3. TRPV1 

Evidence from clinical studies has confirmed the relevance of TRPV1 in 

peripheral OA pain mechanisms in man (Remadevi and Szallisi, 2008). Knee 

OA pain is associated with increased TRPV1 expression in human synovia 

(Kelly et al., 2013a) and a single nucleotide polymorphism in the gene 

encoding TRPV1 is associated with the risk of developing symptomatic knee 
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OA (Valdes et al., 2011). Desensitization of TRPV1 expressing nociceptors 

with topical capsaicin patches is effective at alleviating pain in OA patients 

(Kosuwon et al., 2010) and ablation of capsaicin sensitive fibres prevents the 

development of pain behaviour in the MIA model. Systemic administration of 

TRPV1 antagonists in the MIA model abolished increased mechanosensitivity 

(Chu et al., 2011) and thermal hypersensitivity (Okun et al., 2012).  

 

 

Evidence suggests that the analgesic effect of systemically administered 

TRPV1 antagonists is mediated at the level of the joint. A study using Fast 

Blue backlabelled L4 DRG joint afferents identified increased expression of 

TRPV1 in the MIA model compared to control rats (Fernihough et al., 2005). 

Further, i.a injection of the TRPV1 antagonist JNJ-17203212 reversed MIA-

induced weight bearing asymmetry (Kelly et al., 2013a). Electrophysiological 

recordings in the same study identified that JNJ-17203212 inhibited 

mechanically-evoked responses and increased mechanical thresholds in MIA 

rats effectively reversing MIA-induced sensitization. Collectively these studies 

highlight the importance of TRPV1 and TRPV1 expressing afferents in the 

pathogenesis of OA pain.  

 

 

1.15.4. CGRP 

It has been proposed in clinical and pre-clinical studies that the sensory 

neuropeptide CGRP has an important role in the modulation of peripheral 

sensitization during OA pain (Fernihough et al., 2005, Saxler et al., 2007, 
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Ashraf et al., 2011b, Bullock et al., 2014). CGRP immunoreactive fibres 

innervate the joint capsule, synovial membrane, joint ligaments, subchondral 

bone, meniscus, fat pad and tendons (Fernihough et al., 2005). The number of 

CGRP-expressing sensory neurones innervating the outer menisci increased in 

knee OA patients with high chondropathy scores (Ashraf et al., 2011c). A role 

in the modulation of OA pain was indicated by an increase in the number of 

nerve fibres containing GGRP in the hip of painful OA patients while the 

sensory neuropeptide was not found in asymptomatic patients (Saxler et al., 

2007).  

 

 

CGRP-expressing joint nociceptors are also increased in the MIA model 

(Fernihough et al., 2005). Peripheral administration of exogenous CGRP 

sensitizes joint nociceptors to mechanical stimuli in MIA and saline rats with a 

greater proportion sensitized after the development of knee OA (Bullock et al., 

2014).. The mechanically sensitized  responses of joint nociceptors were 

inhibited by a CGRP receptor antagonist in both MIA and MNX rats whereas 

CGRP receptor antagonism had no effect in both saline and sham control rats 

(Bullock et al., 2014). These data suggest that CGRP has an important role in 

the mechanisms driving peripheral sensitization during OA.  

 

 

1.15.5. NGF 

A role for neurotrophin NGF in the mechanisms of OA pain has been 

suggested from studies in humans (Aloe et al., 1992, Iannone et al., 2002, Lane 
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et al., 2010, Balanescu et al., 2013) and animal models (Orita et al., 2011, 

Ashraf et al., 2013). NGF expression increases in the SF of OA patients (Aloe 

et al., 1992) and human OA chondrocytes (Iannone et al., 2002). Recent 

clinical trials have demonstrated that anti-NGF antibodies effectively reduce 

pain and improve joint function in OA patients (Lane et al., 2010, Balanescu et 

al., 2013, Spierings et al., 2013). However, clinical trials were halted because a 

minority of patients developed worsening OA symptoms (rapidly progressing 

OA with osteonecrosis) which eventually required joint replacement 

highlighting a need for a better understanding of the role of NGF in OA. In 

agreement with human studies,  the MIA model of OA is associated with an 

up-regulation of NGF in joint tissues (whole joint homogenates) (Orita et al., 

2011) and MIA-induced pain is augmented following i.a. NGF, which may be 

related to increased expression of the NGF receptor trkA in joint nociceptors 

and facilitated NGF signalling in this model (Ashraf et al., 2013). A broader 

understanding of the consequences of NGF inhibition on the joint is required 

before the full clinical utility of NGF antagonists can be realised. 

 

 

1.16. The peripheral cannabinoid receptor system as a novel target for the 

treatment of pain in OA  

Both clinical and pre-clinical studies have identified that the peripheral 

cannabinoid receptor system is a potential novel analgesic target for the 

treatment of OA pain (Richardson et al., 1998, Schuelert and McDougall, 2008, 

Schuelert et al., 2010). The expression of protein and RNA for CB1 and CB2 

has been identified in the synovium of OA patients undergoing knee 
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arthoplasty (Richardson et al., 2008). The endocannabinoids anandamide and 

2-AG have been measured in the SF of OA patients. Activation of peripheral 

CB1 and CB2 receptors modulates knee joint nociceptor mechanosensitization 

in the MIA model of knee OA (Schuelert and McDougall, 2008, Schuelert et 

al., 2010). The peripheral administration of ACEA (CB1 agonist) inhibited the 

mechanically-evoked firing rate of joint nociceptors (Schuelert and 

McDougall, 2008) while in a separate study GW405833 (CB2 agonist) had a 

paradoxical mechanosensitizing effect (Schuelert et al., 2010). The 

identification of peripheral cannabinoid receptors as modulators of nociception 

in knee OA and the inhibitory effects of GPR55 receptor activation by a 

synthetic agonist in a model of acute joint inflammation (Schuelert and 

McDougall, 2011) provide the rationale for assessing the potential of GPR55 

activation in modulating joint nociception during OA. 

 

 

1.17. Overall aim of this thesis 

GPR55 has recently been identified as a potential novel peripheral target in the 

treatment of pain. However, investigations of the role of GPR55 in nociception 

are at an extremely early stage and evidence for both a pro- and anti-

nociceptive role has been provided that seems to be dependent on the tissue-

type and perhaps pathological condition studied. Given this paucity of data and 

lack of clarity, further studies are required to increase understanding of the role 

of GPR55 in nociception. The mechanical sensitization of joint nociceptors is 

thought to be important in driving joint pain mechanisms in man as well in 

animal models. No studies to date have directly investigated the role of 
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peripheral GPR55 in the modulation of joint nociceptor mechanosensitivity 

under normal conditions, or its modulation of peripheral sensitization in OA 

pain models. Therefore, the overall aim of this thesis was to define the 

potential of GPR55 receptor activation in modulating joint nociceptor 

mechanical sensitivity under non-pathological conditions (naive) and in the 

MIA model of OA pain in the rat. 
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                   Chapter Two 

Materials and methods 
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2.1. Animals 

All in-vivo experiments were carried out in accordance with the Animals 

Scientific Procedures Act (ASPA) 1986 and European Directive 2010/63/EU. 

Licensed procedures were carried out under project and personal license 

numbers 40/3246 and 44/9956, respectively. All experiments were approved by 

the University of Nottingham Animal Welfare and Ethical Review Body 

(AWERB) and were carried out in accordance with the 3R’s (reduction, 

refinement and replacement) and ARRIVE guidelines.  

 

 

Male Sprague Dawley rats (Charles River, Margate, Kent, UK) were used in all 

experiments.  Animals were housed 3 per cage in temperature and humidity 

controlled rooms on a 12:12hr light: dark cycle (lights on at 8:00am). Food 

(standard rat chow) and water were freely available.  

  

 

2.2. Induction of knee OA with MIA 

The MIA model of knee OA was established as described previously (Bove et 

al., 2003, Sagar et al., 2010, Liu et al., 2011, Kelly et al., 2012, Kelly et al., 

2013a, Kelly et al., 2013b, Mapp et al., 2013). Aseptic techniques were used 

throughout, in accordance with Laboratory Animal Science Association 

(LASA) guidelines along with Home Office and Named Veterinary Surgeon 

(NVS) advice. Rats had an average weight of 208 ± 4.96g (range: 152 - 301g) 

at the time of OA induction and 209 ± 4.71g (range: 146 - 266g) at the time of 

saline injection. Animals undergoing recovery procedures were placed into a 
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transparent induction box and anaesthetised with isoflurane (3% in oxygen 

(O2); 2 litres/min) until the righting reflex was lost. The rat was then removed 

from the induction box and anaesthesia was maintained via a facemask, 

allowing the isoflurane concentration to be reduced (2.0 - 2.5% in O2; 1.5 

litres/min) and more precisely controlled. Once an adequate depth of 

anaesthesia was achieved, determined by a lack of withdrawal reflex to a 

strong pinch to the hind paw and monitoring of the rate and depth of breathing, 

the left knee joint was shaved and cleaned with surgical spirit (Vetasept, 

Animalcare, York). With the left knee joint flexed at a 90º angle, 1mg of MIA 

in 50µl sterile saline was injected into the joint space, through the patella 

tendon, using a 0.5ml insulin syringe with a 0.5 inch, 28-gauge needle (Bunzl 

Healthcare, London, UK). Rats in the control group underwent the identical 

procedure but received a 50µl injection of sterile saline. Following knee joint 

injection, rats were recovered and monitored closely until consciousness was 

fully regained before they were returned to fresh home cages and monitored 

daily until completion of the study.  

 

 

2.3. Assessment of pain behaviour 

Pain-like behaviour was assessed immediately prior to knee joint injection 

(baseline; day 0) and then 7, 14 (immediately prior to electrophysiology), and 

in some cases 21 and 28 days post-MIA/saline injection. Behaviour was 

initially assessed up to day 28 post-injection to enable identification of a time-

point where the MIA-induced pain behaviour was maximal. At least one day 

prior baseline testing, each rat was habituated to the testing equipment 
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(incapacitance tester and vF hair testing chamber) and behavioural testing room 

to minimise the effects of stress induced analgesia (Butler and Finn, 2009). On 

the day of testing, before commencement all rats were allowed to briefly (10 

minutes) acclimatise to the testing room. For consistency, behavioural testing 

occurred at a similar time each day (generally 8 - 10am) whenever possible in 

order to minimise the influence of circadian rhythms on pain behaviour 

(Christina et al., 2004).   

 

 

2.3.1. Weight bearing analysis 

Pain arising from the knee joint (and to some extent the hind paw of the 

affected limb in rats) can be measured indirectly by assessing the weight borne 

by each leg (in a clinical setting for OA patients) or hind limbs (in pre-clinical 

tests with animals) (Neugebauer et al., 2007). A shifting of the weight borne by 

the arthritic limb to the non-arthritic limb is used as a translatable measure of 

joint pain (Bove et al., 2003, Combe et al., 2004, Fernihough et al., 2004, 

Pomonis et al., 2005b, Ivanavicius et al., 2007, Schuelert et al., 2010, Kelly et 

al., 2012). An incapacitance tester (Linton Instruments, Norfolk, UK) was used 

to measure alterations in weight distribution between the ipsilateral (injected) 

and contralateral (non-injected) hind limb of each rat. Each rat was placed into 

an angled plexiglass chamber that allowed each hind paw to rest on a separate 

force transducer pad which records the weight borne by each hind limb 

separately (see Figure 2.1). Once the rat was settled, the weight borne in grams 

by each hind limb was taken over a three second period and averaged by the 

incapacitance tester. Recordings were taken in triplicate and averaged for 
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analysis. Results are presented as the weight borne by the contralateral or 

ipsilateral hind limb, expressed as a percentage of the total weight borne by 

both hind limbs, such that a value of 50% represents normal weight bearing 

and anything under 50% represents a deficit in weight bearing (Kelly et al., 

2012).   

 

 

 

Figure 2.1. Weight bearing measurements (Figure modified from (Bove et al., 

2003)).  
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2.3.2. Assessment of hind paw vF hair withdrawal thresholds 

The development of secondary mechanical allodynia can be used as a measure 

of referred pain and provides evidence of changes in central pain pathways 

(Neugebauer et al., 2007). The presence of hind paw mechanical allodynia can 

be assessed using vF monofilaments applied to the plantar surface of the hind 

paw, an approach frequently used in the pain field (Combe et al., 2004, 

Fernihough et al., 2004, Ferreira-Gomes et al., 2010, Sagar et al., 2010). To 

monitor the development of mechanical allodynia in the MIA model of OA 

pain, rats were placed into a Perspex chamber on a metal grid floor that 

allowed access to the plantar surface of each hind paw. Hind paw withdrawal 

thresholds were assessed by applying vF monofilaments (Ugo Basile, Varese, 

Italy, 1-26g), in an ascending order of force, to the mid-plantar region of the 

hind paw for up to 5 seconds. Testing began with the application of a 6g vF 

monofilament to the plantar surface followed by ascending weights of vF 

monofilaments (filaments used were 1g, 1.6g, 2g, 4g, 6g, 8g, 10g, 15g and 26g) 

until a rapid withdrawal response of the hind paw to the mechanical stimulation 

was observed. Following a withdrawal response the paw was re-tested with the 

next lower vF monofilament weight. Again, if no response occurred, ascending 

weights of vF monofilament would be applied until a withdrawal response was 

observed. If no response was elicited by the initial 6g vF monofilament, the 

next lowest weight would be applied (4g) followed by descending weights until 

a withdrawal response was observed. A total of 6 withdrawal responses were 

recorded with the lowest consistent force required to evoke a withdrawal being 

recorded as the paw withdrawal threshold. To avoid sensitising the hind paw 
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and preventing lifting of the paw during testing by the vF monofilament, the 

26g vF was used as the maximum force to assess paw withdrawal thresholds.  

 

 

2.4. Electrophysiology 

Surgical procedures and extracellular recordings from fine filaments of the 

saphenous nerve were carried out largely in accordance with previously 

published work (Kelly et al., 2012, Kelly et al., 2013b, Bullock et al., 2014). 

Rats had an average weight of 322 ± 3.6g (range: 272 - 412g) at the time of 

electrophysiology. In early experiments carried out in naïve rats (see Chapter 

3) anaesthesia was induced using sodium pentobarbital (Sigma Aldrich, UK) 

(intraperitoneal (i.p); 40 - 60mg/kg). However, following advice from the NVS 

a more easily controllable induction method with isoflurane was adopted for 

subsequent experiments. However, throughout all studies anaesthesia was 

maintained with sodium pentobarbital so electrophysiological recordings were 

always carried out under the same anaesthetic. 

 

 

2.4.1. Surgical preparation for electrophysiological recordings 

Anaesthesia was induced with either sodium pentobarbital (50mg/kg, i.p; 

dissolved in ethanol (10%), propylene glycol (20%) and saline (70%)) or 

isoflurane (induction: 3% in O2; 2 litres/min, maintenance: 2 - 2.5% in O2; 0.6 

litres/min). Rats were placed supine onto a homeothermic heating blanket 

(Harvard Apparatus, Kent, UK) which maintained core body temperature 

(37.5ºC) via a rectal probe connected to a feedback control unit which adjusted 
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the blanket temperature automatically. Areflexia and depth of anaesthesia were 

determined by pinch to the contralateral hind paw (and occasionally the fore 

paw) and by monitoring the depth and rate of breathing, and anaesthetic levels 

were adjusted accordingly. Once areflexic, a longitudinal midline incision was 

made in the neck and using blunt dissection (to minimise tissue trauma and 

blood loss) the right external jugular vein and trachea were exposed and 

cannulated to provide anaesthetic maintenance and airway clearance, 

respectively. The jugular vein was cannulated with a 0.5mm outer diameter 

(OD), green luer tipped nylon cannula (SLS, Nottingham, UK) and the trachea 

was cannulated with a 1.5mm internal diameter and 2.1mm OD nylon cannula 

(SLS, UK). In rats anaesthetised with isoflurane, a further cannula was inserted 

into the left carotid artery to allow recording and monitoring of blood pressure. 

The carotid artery was cannulated with a 1.0mm OD, pink luer tipped nylon 

cannula (SLS, UK) connected to a blood pressure transducer (NL108A, 

Digitimer, Hertfordshire, UK). Blood pressure was recorded for offline 

analysis and monitored regularly via a PC interface running Spike2 (v4) 

software (Cambridge Electronic Design (CED), UK). All cannulae were 

secured using non-sterile braided silk suture (size 5 - 0; Harvard Apparatus, 

Kent, UK) and skin incisions were closed with the same suture. Anaesthesia 

was maintained in all rats using sodium pentobarbital administered via the 

external jugular vein (15 - 40 mg/kg/hr, i.v). In rats that had anaesthesia 

induced with isoflurane, sodium pentobarbital anaesthesia was commenced 

following completion of trachea, carotid artery and jugular vein cannulations 

(at least one hour prior to electrophysiological recordings). During the 

anaesthetic switch over, isoflurane levels were slowly reduced with careful 
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monitoring of blood pressure and the hind paw withdrawal reflex to a strong 

pinch. Once blood pressure began to rise and a small withdrawal reflex became 

apparent, sodium pentobarbital bolus injections (0.05ml sodium pentobarbital 

washed in with 0.5ml saline) began and isoflurane was gradually reduced until 

anaesthesia was maintained entirely by sodium pentobarbital.  

 

 

Next, an incision was made along the medial aspect of the right (contralateral) 

hind limb from the abdominal midline extending towards the ankle. The 

femoral artery was then exposed during blunt and fine dissection and a 0.5mm 

OD, green luer tipped nylon cannula (SLS, Nottingham, UK) was inserted into 

and advanced along the artery up to the point of bifurcation of the descending 

aorta (see Figure 2.2). This distance was estimated prior to cannula insertion by 

measuring approximately the distance from where the cannula would enter into 

the femoral artery to the midline of the rat. This distance was marked on the 

cannula to be inserted and the cannula was advanced along the artery until this 

mark was observed. To confirm the cannula remained inside the artery, and 

that it had not ruptured through the vessel wall, blood was gently drawn up the 

cannula prior to securing with suture. This cannula enabled drugs and vehicles 

to be delivered to the ipsilateral hind limb, providing a semi-local, close intra-

arterial administration (Dunham et al., 2008, Kelly et al., 2013a).  

 

 

The left (ipsilateral) hind limb was then attached to a raised Perspex platform 

using modelling clay. An incision was made along the medial aspect of the 
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limb from the inguinal fossa to a midpoint distal to the knee joint and proximal 

to the ankle. The skin overlying the hind limb was then separated from the 

underlying subcutaneous tissue by blunt dissection and attached via thick non-

sterile braided silk suture (size 1; Harvard Apparatus, Kent, UK) to a metal ‘O’ 

shaped ring. The resulting pool was filled with warmed mineral oil (37ºC; 

Sigma-Aldrich, Dorset, UK) to prevent dehydration of tissues. The fat pad 

within the inguinal fossa, which obscures access to the saphenous nerve in the 

groin, was dissected and removed following occlusion and sectioning of a 

branch of the femoral vein. To prevent the recording of activity originating 

from distal parts of the hind limb (ankle and paw) the saphenous nerve was 

transected at a point just distal to the knee. The saphenous nerve was then 

dissected free from connective tissue in the inguinal fossa and sectioned 

centrally in the inguinal region to prevent the recording of antidromic activity 

originating centrally. The medial aspect of the knee joint is innervated by the 

MAN, which arises as a branch of the saphenous nerve (Hildebrand et al., 

1991) (see Section). Recordings from the saphenous nerve, proximal to its 

MAN branch point ensured that knee joint-associated afferents were studied.  
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Figure 2.2. Surgical preparation for electrophysiological recordings.  

 

 

2.4.2. Extracellular recordings 

The central cut end of the saphenous nerve was placed onto a miniature 

dissecting platform. Using fine watch maker forceps the perineurium was 

removed and the nerve was teased into fine filaments which were placed over a 

pair of platinum (0.125mm diameter, Advent Research Materials, Oxford, UK) 

recording electrodes to enable the recording of neuronal activity (see Figure 

2.3). Mechanosensitive knee afferents were identified by probing the 

subcutaneous structures over and around the knee joint with a 15g vF 

monofilament. Recorded units had receptive fields in structures accessible to 
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local mechanical stimulation over the medial aspect of the joint capsule, the 

medial collateral ligament and surrounding tissues.  

 

 

 

 

 

Figure 2.3. View of the recording chamber. Fine filaments of the saphenous 

nerve were placed over a pair of bipolar platinum recording electrodes. 

Neuronal activity is recorded in response to vF stimulation of the knee joint 

RFs.  

 

 

Nerve filaments were teased until 1 - 3 single units could be identified and 

sorted offline using Spike 2 software (CED, Cambridge, UK). Electrical 

activity detected by the recording electrodes underwent first-stage 

Saphenous nerve Recording electrodes 

Knee joint RFs Dissecting platform 
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amplification (x10) and then pre-amplification by an AC pre-amplifier (x200 - 

2000, NL2014, Digitimer, UK; see Figure 2.4). The analogue signal then 

underwent a further stage of amplification (x4.8, NL106, Digitimer, UK) then 

was digitally filtered (NL125, Digitimer, UK) before finally being digitally 

converted (Micro 1401, CED, UK). The low pass frequency cut-off was set at 

5Hz with the notch filter set to reject line frequency interference at 50Hz. The 

high pass frequency cut-off was set at 50Hz with the notch filter set at 10Hz. 

From the filters the signal was sent to an audio amplifier (NL120, Digitimer, 

UK) and speaker as well as digital oscilloscope (OS300 Gould 20MHz 

Oscilloscope) and captured using a micro 1401 and computer interface running 

Spike2 software (CED, UK). 
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Figure 2.4. Flow of recording set-up and signal acquisition. 

 

 

 

 

Micro 1401 

Pressure amplifier 

Oscilloscope 

Speaker 

High and low pass 

filters 

Mechanically-

evoked activity 
AC Pre-amplifier 

AC-DC 

amplifier 

Stimulating needles 

Digitimer D4030 

(Counter and 

pulse generator) 

Rectal probe 

Blanket 

control 

unit 

Heating 

blanket 

Sensonor  pressure 

        transducer 

(carotid cannula) 

Spike Software 

(PC) 



                                                                                                                                        Chapter 2               Chapter 2                                                                                                                                                                                                                                                                                                                                              
 

99 
 

Single unit recordings were acquired by stimulating within discrete receptive 

fields, only activating a single unit or 1 - 3 units that could be sorted offline, 

and by adjusting discriminator settings within the Spike software. Using the 

Spike software it was possible to adjust window discriminator thresholds to 

ensure neuronal activity within a discrete range was recorded. This allowed for 

the selection of recording parameters specific for a single unit or several 

different units that could be sorted offline. Once a single unit with a knee joint 

receptive field was identified, responses of the unit to ascending trains of vF 

monofilament weights (0.16g, 0.4g, 0.6g, 1g, 2g, 4g, 6g, 8g, 10g, 15g) were 

recorded. Each individual vF monofilament was applied to the centre of the 

receptive field for five seconds. To avoid sensitization, a five minute interval 

was used between trains of vF monofilaments i.e. 5 minutes between the 15g 

vF of one train and 0.16g vF of the next train. Trains of stimulation were 

repeated until stable and reproducible responses were obtained (typically 3 - 6 

trains). These responses were used as control responses in subsequent analyses. 

Following stable control responses, drugs were administered (see Section 

2.4.4).   

 

 

At the end of each experiment (to avoid unit loss) the CV of a recorded unit 

was estimated following electrical stimulation (up to 10V, 400ms; DS2A MkII, 

Digitimer, UK) of the centre of the receptive field via bipolar needle (25G) 

stimulating electrodes. Electrical stimulations were controlled by a digital 

counter and a pulse generator (D4030, Digitimer, UK) which delivered trains 

of 10 individual pulses at 0.3Hz. CVs were estimated using the latency 
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between the onset of an action potential and the stimulus artefact and the 

distance between the recording and stimulating electrodes (see Figure 2.5). 

Based on compound action potential recordings in rats of the same gender, 

similar recording conditions and similar weight range (Dunham et al., 2008, 

Kelly et al., 2012), C-fibres had CVs <1.3m/s and Aδ-fibres had CVs of 1.3 - 

15m/s with Aβ fibres CVs above 15m/s. At the end of each experiment 100µl 

potassium chloride (KCl) (250mM) was administered through the contralateral 

femoral artery cannula to confirm that administered drugs reached the 

peripheral terminals of the recorded afferent. Any unit not activated by KCl 

was omitted from further analysis. At the end of each experiment rats were 

euthanized by anaesthetic overdose and death was confirmed by cervical 

dislocation.  
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Figure 2.5. Calculating CVs. Estimation of CVs was made by calculating the 

latency between the stimulus artefact (left hand spike, Cursor 1) and action 

potential onset (right hand spike Cursor 2). For the example in this figure the 

latency = 0.02 m/s (given in the box at the centre of the figure) and the distance 

between electrodes was 24.5mm. The CV for this unit is 1.22 m/s (C-fibre, 

from a naïve rat).  
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2.4.3. Data analysis 

Neuronal activity was recorded and captured for offline analysis using Spike 2 

software (CED, UK) version 4 (v4). Units were first sorted on the basis of the 

shape of the action potential and filtered using the Edit Wavemark function of 

Spike2 software such that only the unit of interest was analysed. This was 

necessary when more than one unit was present during electrophysiological 

recordings. Spike software is able to scan the neuronal activity recorded and 

assign wavemark templates based upon action potential shape and amplitude to 

individual action potentials. The unit of interest can then be selected and 

filtered from other units recorded.  

 

 

Firing rates of the most reliable unit recorded were determined. To determine 

the firing rate, the recording channel was duplicated and a rate histogram of the 

recorded action potential responses was plotted (1s bins) (see Figure 2.6). The 

mean rate of firing over the five second stimulating period for each vF 

monofilament was measured by placing horizontal cursors 5 seconds apart. 

Neuronal activity is expressed throughout as the number of action potentials 

per second (APs/s). 

 

 

The mechanical thresholds of a unit was calculated as the minimum vF 

monofilament weight required to evoked ≥ 2 action potentials over the 5 

second stimulating period.  
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Figure 2.6. Example recordings of mechanically-evoked responses of a single knee joint nociceptor and analysis of firing rates. (A) The captured 

spike trace. (B) The rate histogram corresponding to the evoked responses in (A). Two cursors (1 and 2) are placed 5 seconds apart (timing of the 

stimulus; see cursor regions dialogue box). The dialogue box shows the mean rate of firing between the two cursors. In this case the rate of firing 

of knee joint afferents to stimulation with a 1g vF monofilament is 2.17 APs/s. A bold line indicates the onset of stimulation with the 

corresponding vF monofilament weight shown beneath. The above example is taken from a naïve rat, CV for fibre = 1.11m/s (C fibre).   
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2.4.4. Drug administration 

Following the acquisition of stable and reproducible control mechanically-

evoked firing rates, drugs were administered via the contralateral femoral 

artery. Details of specific drugs can be found in relevant experimental chapters. 

In all instances 100µl bolus injections of drugs were administered and washed 

through the femoral artery cannula with 300µl heparinised (10IU/ml; 

Wockhart, Wrexham, UK) rat Ringer (0.9% NaCl, 0.24% CaCl2, 0.042% KCl, 

0.02% NaHCO3). Effects of drugs on mechanically-evoked responses of 

individual units were recorded at 5 minute intervals for up to approximately 60 

minutes (i.e. 12 trains of vF monofilament stimulation). In vehicle experiments, 

two 100µl injections of Ringers were administered via the contralateral femoral 

artery. This ensured that drug and vehicle experiments were conducted over an 

identical time course so that any increase in neuronal activity could not be 

attributed to mechanical stimulation due to the experimental protocol, and any 

inhibition could not be attributed to general run down of neuronal responses. 

Only one fibre was recorded per rat in drug studies.  
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Figure 2.7. Electrophysiology recording protocol.  
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                Chapter Three 

Characterisation of pain behaviour and  

electrophysiological properties of knee 

joint nociceptors in the MIA model of 

OA pain 
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3.1. Introduction 

The aims of this thesis were firstly to investigate the role of GPR55 in the 

modulation of acute joint nociception and secondly to translate these findings 

to a clinically relevant model associated with chronic joint pain, OA.  

Investigations aimed at identifying novel analgesic targets for OA pain have 

been furthered by the development and use of animal models that replicate the 

articular joint destruction and pain symptoms of the human condition (see 

Chapter 1, Section 1.13.2. and 1.13.3.). After an initial focus on structural 

pathology more recent studies have investigated mechanisms of pain and the 

effectiveness of novel and existing analgesic therapies (Bove et al., 2003, 

Combe et al., 2004, Fernihough et al., 2004, Kelly et al., 2012, Kelly et al., 

2013a, Bullock et al., 2014). The work described in this chapter has 

characterised the development of pain behaviour in the MIA model and has 

used teased saphenous nerve fibre electrophysiological recordings in vivo to 

characterise the mechanical sensitivity of knee joint nociceptors in MIA rats 

during established pain behaviour and compared these responses to those 

recorded in saline controls. The MIA model of OA pain in the rat was selected 

for investigations of the role of GPR55 in the modulation of peripheral 

sensitization during established OA pain behaviour (see Chapter 5).   

 

3.1.1. Pain behaviour in the MIA model 

Characterisation of the MIA model has confirmed the development of pain 

behaviour that closely resembles the pain symptoms associated with human 

OA. The weight bearing asymmetry that manifests in this model reflects the 
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activity-dependent pain during joint loading (e.g. walking, climbing stairs) 

seen in human OA (Christiansen and Stevens-Lapsley, 2010). i.a. injection of 

MIA into the rat knee joint results in a concentration- (0.3 - 3mg) and time-

dependent decrease in weight bearing on the ipsilateral hind limb (Bove et al., 

2003, Fernihough et al., 2004, Kelly et al., 2012). The associated weight 

bearing asymmetry is evident from day 1 post-injection, peaking at day 3 - 7 

and persists for up to at least 35 days following a 1mg (Ashraf et al., 2013) and 

until at least 63 days following 2mg injection (Combe et al., 2004).   

 

Tactile allodynia in the ipsilateral hind paw is also a feature of the MIA model 

consistent with the referred hypersensitivity seen in OA pain patients 

(Hendiani et al., 2003, Neugebauer et al., 2007). i.a. injection of MIA into the 

rat knee joint results in a concentration- (0.3 - 3mg) and time-dependent 

decrease in ipsilateral hind paw mechanical withdrawal thresholds (Fernihough 

et al., 2004, Sagar et al., 2010, Ashraf et al., 2013). The MIA-associated 

development of ipsilateral hind paw hypersensitivity is evident from days 3 - 7 

following a 1mg (Fernihough et al., 2004, Ashraf et al., 2013) or 3mg (Sagar et 

al., 2010) injection and is maintained at 35 days. Injection of 0.3mg MIA does 

not significantly reduce withdrawal thresholds  until 28 days post-injection 

indicating a more slowly developing profile (Sagar et al., 2010). 

 

The development of pain behaviour in the MIA model mimicking pain 

symptoms in human OA validates the use of this model for the study of OA 

pain mechanisms. The pain relieving effects of joint replacement (Dixon et al., 
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2004) and i.a. local anaesthetic (Creamer et al., 1996) highlights the critical 

role of peripheral mechanisms in the drive to OA pain. 

 

3.1.2. Electrophysiological studies of joint afferent responses in OA 

animals 

The effect of experimental OA (spontaneous, chemically and surgically 

induced) on the in vivo electrophysiological properties of knee joint afferents 

have been partially investigated (Schuelert and McDougall, 2006a, Gomis et 

al., 2007, McDougall et al., 2009, Schuelert and McDougall, 2009, McDougall 

et al., 2010, Schuelert et al., 2010, Kelly et al., 2012). These studies of knee 

joint nociceptor recordings have indicated increases in excitability following 

the induction of experimental OA. Changes in joint nociceptor sensitivity to 

mechanical stimulation (Schuelert and McDougall, 2009, Kelly et al., 2012, 

Kelly et al., 2013a, Bullock et al., 2014) of the joint as well as the development 

of spontaneous firing (Kelly et al., 2012) have been reported.  

 

The contribution of knee afferent nociceptor sensitization to pain behaviour in 

these models of OA is poorly understood as many of these studies did not 

assess pain in these animals preventing a direct correlative analysis between 

electrophysiological properties of knee joint nociceptors and pain behaviour 

within individual rats.  
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In the MIA model, the development of knee joint nociceptor mechanical 

sensitization (reduced mechanical thresholds and increased firing rates) present 

by day 3 and which is maintained at day 14 post-injection, demonstrates a 

similar temporal profile to the development of weight bearing asymmetry 

(Kelly et al., 2012). The mechanical sensitization of knee joint nociceptors is 

graded in response to increasing concentrations of MIA, as is the degree of 

pain behaviour (Schuelert and McDougall, 2009). These findings suggest that 

knee joint nociceptors contribute to pain behaviour in this model. If present in 

humans, the increased mechanical sensitivity of Aδ-fibres and spontaneous 

activity in C-fibres may underlie the clinical features of human OA including 

use-dependent pain and spontaneous pain, respectively (Kelly et al., 2012).  

 

Peripheral sensitization appears to be a robust and consistent observation in 

pre-clinical models of OA given that mechanical sensitization of knee joint 

nociceptors has been reported in other experimental models of OA including 

spontaneous OA in the guinea pig (McDougall et al., 2009, McDougall et al., 

2010) and surgically induced OA in the guinea pig (Gomis et al., 2007) and rat 

(Bullock et al., 2014). As such, peripheral sensitization is likely to make an 

important contribution to the associated pain behaviour in these models. In 

support of this, pharmacological agents that reverse the established 

sensitization of knee joint nociceptors reduce OA pain behaviour (McDougall 

et al., 2006, Schuelert and McDougall, 2006b, Schuelert et al., 2011, Kelly et 

al., 2013a). This association provides justification for studies investigating 
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OA-induced excitability changes in joint nociceptors and the modulation of 

this response in OA pain models.  

 

3.2. Aims and Objectives 

The aims of the work presented in this chapter were to establish the MIA 

model in male Sprague Dawley rats and to characterise the development of 

pain behaviour and mechanically-evoked responses of knee joint afferents. 

Whether in my hands alterations in pain behaviour and changes in mechanical 

hypersensitivity are observed following the induction of OA and how these 

responses are related were examined. The development of pain behaviour 0 - 

28 days following the induction of the MIA model was characterised and joint 

nociceptor responses were recorded at day 14.  
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3.3. Methods 

Refer to Chapter 2 for detailed methods regarding OA induction (see Section 

2.2), assessment of pain behaviour (see Section 2.3) and electrophysiology (see 

Section 2.4).  

 

3.3.1. Animals 

Male Sprague Dawley rats (n = 75) with an average weight of 317.5 ± 5.24g at 

the time of electrophysiology were obtained from Charles River (Kent, UK). 

Rats were naïve (n = 39), MIA injected (n = 19) and saline injected (n = 17). 

Control (baseline) data are included in later chapters (see chapters 4 and 5).  

 

3.3.2. Knee joint histology 

Following anaesthetic overdose and cervical dislocation at the end of 

electrophysiological recording, ipsilateral and contralateral knee joints were 

removed from 3 MIA and 3 saline rats and trimmed of excess surrounding 

muscle. Joints were placed in 25ml universal tubes (Sarstedt, Leicester, UK) 

and post-fixed for 48 hours in 10% formal saline (v/v), at room temperature on 

a rocker before being decalcified in 10% ethylenediaminetetraacetic acid 

(EDTA) (w/v) for at least 5 weeks under the same conditions. Using a razor 

blade, joints were then split along the coronal plane, using the medial collateral 

ligament as an anatomical marker. The anterior and posterior joint halves were 

then placed into separate plastic cassettes (VWR, Lutterworth, UK) and sent 

for wax embedding at Kings Mill Hospital using a TEC5 EME2 Tissue Tek 
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embedding centre (Sakura Finetek Europe, The Netherlands) (performed by 

Mr Roger Hill). A single 5µm coronal section was collected onto a polysine 

coated glass slide (Thermo Scientific, UK) using a Thermo Scientific rotary 

Microm microtome HM 355. Sections were collected from the mid-point of the 

ipsilateral joint for saline (n = 3) and MIA (n = 3) rats and left to dry overnight 

at room temperature. For proteoglycan determination, slides were incubated in 

the following solutions: 

 

1) De-waxed in Histo-clear (Fisher Scientific, UK) x 2 – 5 mins each 

2) 100% ethanol x 2 – 5 mins each 

3) 70% ethanol x 2 – 5 mins each 

4) Water – 5 mins 

5) 1% toluidine blue (prepared in 70% ethanol) – 6 mins 

6) Washed in flowing water – 5 mins 

7) 70% ethanol x 2 – 5 mins each 

8) 100% ethanol x 2 – 5 mins each 

9) De-waxed in Histo-clear (Fisher Scientific, UK) x 2 – 5 mins each 

10)  Mounted and coversliped using DPX Mounting Medium (Sigma, UK) 

 

Images of the medial tibial plateau were captured on a Leica DM400B 

microscope using a 5x or 20x objective lens. Images were acquired using 

SimplePCI software (Hamamatsu) and qualitatively analysed offline 

comparing toluidine blue staining intensity and cartilage integrity (loss of 

cartilage and fibrillation of the cartilage surface).   
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3.3.3. Data analysis 

Pain behaviour scores are expressed as detailed in the general methods (see 

Chapter 2, Section 2.3). Neuronal activity is expressed as described previously 

(see Chapter 2, Section 2.4.4).  

 

3.3.4. Statistical analysis 

Data analysis was performed using Prism software (v5 or 6; GraphPad 

Software). Data were tested for normality using the Kolmogorov Smirnov test 

and where normally distributed parametric stats (e.g. two-way ANOVA) were 

used. When data were not normally distributed, non-parametric stats (e.g. 

Mann-Whitney u-test and Friedman’s ANOVA) were used.    
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3.4. Results 

3.4.1. Histological changes in joint sections from MIA and saline rats 

Qualitative histological analysis of toluidine blue stained joint sections was 

performed in order to confirm the presence of OA-like changes in joint 

structure in the MIA model of OA pain. Toluidine blue stains proteoglycan 

content, a marker of cartilage integrity (Sandell and Aigner, 2001, Gerwin et 

al., 2010). Loss of proteoglycan content indicates cartilage dysfunction and the 

early signs of OA development (Milner et al., 2010).  

 

Saline injection (n = 3) had no effect on cartilage, which displayed a smooth 

surface with intense proteoglycan staining (Figure 3.1A and C). A higher 

intensity magnification view of the cartilage from saline rats revealed intense 

proteoglycan staining with an organised arrangement of lacuna and 

chondrocytes (Figure 3.1C). 14 days following i.a. MIA (1mg) injection, a loss 

of cartilage proteoglycan content, spanning the length of the tibial plateau, with 

evident damage to the cartilage surface including cartilage loss and fibrillation 

was observed through the full thickness of the cartilage up to the tidemark 

(black arrow, see Figure 3.1B). MIA rats had reduced chondrocyte numbers, 

indicating chondrocyte cell death (Figure 3.1D) and areas of chondrocyte 

proliferation and early osteophyte formation was evident (Figure 3.1E).  
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Figure 3.1. Effect of MIA (1mg/50µl) injection on joint histology at day 14. 

Representative ipsilateral knee joint sections from saline (A&C) and MIA (B, 

D & E) rats. Saline rats displayed intense toluidine staining blue staining and 

smooth cartilage surfaces. MIA injection resulted in loss of toluidine blue 

stain, fibrillation of the cartilage (black arrow), reduced chondrocyte numbers 

(white arrow) and disruption to the cartilage surface. Chondrocyte proliferation 

(yellow arrow) and small osteophytes (asterisk) were also evident in MIA rats. 

Images were taken at x5 (A and B) and x10 (C, D & E) magnifications. MFC = 

medial femoral condyle, MTP = medial tibial plateaux.  
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3.4.2. Characterisation of pain behaviour in the MIA model of OA 

An initial study was performed in order to assess the impact of MIA injection 

on pain behaviour over time in my hands and to enable the subsequent 

selection of an appropriate time point at which to conduct my 

electrophysiological experiments. Hind limb weight bearing and hind paw 

withdrawal thresholds were assessed in 12 rats in total (n = 6 each MIA and 

saline) over a 28 day period. i.a. MIA or saline injection did not affect weight 

gain over the course of the 28 day study with rats gaining weight within the 

normal range expected for Sprague Dawley rats (Figure 3.2).  
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Figure 3.2. Effect of MIA injection on weight gain. Weight gain in rats 

injected with MIA (1mg/50µl) (n=6) (A) and saline (n=6) (B). Both groups of 

rats continued to gain weight throughout the course of the study.  
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At day 0 (immediately before MIA/saline injection) as expected the percentage 

weight borne by the ipsilateral hind limbs was equal in both groups (% 

ipsilateral weight bearing: saline = 49.52 ± 0.69%, MIA = 49.93 ± 1.01%). 

Treatment with saline (n = 6) had no effect on ipsilateral hind limb weight 

bearing compared to baseline throughout the study (two-way ANOVA with 

Bonferroni multiple comparisons test, Figure 3.3). i.a. injection of MIA (n=6) 

however, was associated with a significant reduction in ipsilateral hind limb 

weight bearing at all-time points compared to baseline (day 0) (p<0.0001 at 

days 7 and 14, p<0.05 at day 21 and p<0.01 at day 28, two-way ANOVA with 

Bonferroni multiple comparisons test, Figure 3.3) and saline rats (p<0.0001 at 

days 7, 14, p<0.05 at day 21 and p<0.01 at day 28, two-way ANOVA with 

Bonferroni multiple comparison, Figure 3.3).  
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Figure 3.3. Effect of MIA injection on ipsilateral hind limb weight bearing 

over a 28 day period. Weight bearing in MIA (n=6) rats was significantly 

reduced compared to baseline (day 0) and saline rats at all time points tested. 

Data presented as mean ipsilateral weight borne as a percentage of the total 

hind limb weight bearing ± SEM. 
+++

p<0.0001, 
++

p<0.01 and 
+
p<0.05 

compared to MIA day 0, 
***

p<0.0001, 
**

p<0.01 and 
*
p<0.05, MIA compared to 

saline, two-way ANOVA plus Bonferroni multiple comparisons test.     
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Further assessment of the impact of MIA injection on pain behaviour was 

carried out by determining hind paw withdrawal thresholds in MIA (n = 6) and 

saline (n = 6) rats over the same 28 day period (Figure 3.4). Ipsilateral hind 

paw withdrawal threshold in MIA and saline rats were not significantly altered 

compared to baseline at any time point (two-way ANOVA, Figure 3.4A). 

However, ipsilateral mechanical withdrawal thresholds in MIA rats were 

significantly reduced compared to saline at day 7 (p>0.05, two-way ANOVA 

with Bonferroni multiple comparisons test, Figure 3.4A).  

 

There was no significant difference in contralateral hind paw withdrawal 

thresholds in either MIA or saline rats compared to their respective baseline 

thresholds (two-way ANOVA with Bonferroni multiple comparisons test, 

Figure 3.4B) or when comparing MIA and saline rats (two-way ANOVA with 

Bonferroni multiple comparisons test, Figure 3.4B).  
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Figure 3.4. Effect of MIA injection on ipsilateral (A) and contralateral (B) 

hind paw withdrawal thresholds. MIA (n = 6) rats had significantly lower 

ispilateral paw withdrawal thresholds than saline rats (n = 6) at day 7 post-

injection. Data presented as mean paw withdrawal thresholds ± SEM. 

B 

A 



                                                                                                                                        Chapter 3 
                                                                                                                                           
 

124 
 

++
p<0.01, compared to saline, two-way ANOVA plus Bonferroni multiple 

comparisons test.   

 

This initial 28 day time course study demonstrated that in my hands maximal 

changes in weight bearing are evident 14 days following MIA injection. 

Therefore subsequent electrophysiological studies characterising the effects of 

MIA on knee afferent mechanically-evoked responses were performed at this 

time point (a time point associated with OA-like changes in joint histology, see 

Figure 3.1). In these animals pain behaviour was assessed at day 7 and 

immediately prior to electrophysiological recordings on day 14  

 

In these rats, overall, in agreement with the initial 28 day time course study 

ipsilateral hind limb weight bearing was significantly reduced in MIA 

compared to saline rats (p<0.0001, two-way ANOVA, Figure 3.5). At day 14, 

MIA rats exhibited a mean % ipsilateral hind limb weight bearing of 38.14 ± 

1.4%, compared to 50.12 ± 0.38% in saline rats (p<0.001, two-way ANOVA 

with Bonferroni’s multiple comparisons test, Figure 3.5).      
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Figure 3.5. Effect of MIA injection on ipsilateral hind limb weight bearing in 

rats subsequently used for electrophysiological study. MIA injection (n = 19) 

resulted in a significant reduction in weight bearing compared to saline (n = 

17) control rats at all-time points investigated. Data presented as mean 

ipsilateral weight borne as a percentage of the total hind limb weight bearing ± 

SEM. 
+++

p<0.0001, compared to MIA day 0, 
***

p<0.0001, MIA compared to 

saline, two-way ANOVA plus Bonferroni’s multiple comparisons test.    
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Also, in agreement with the 28 day time course study ipsilateral hind paw 

mechanical thresholds were significantly reduced in MIA (n = 19) compared to 

saline (n = 17) rats (p<0.001, two-way ANOVA, Figure 3.6A). At the time of 

electrophysiology (day 14), saline median withdrawal thresholds were 11g 

(range = 1 - 26g) whilst median MIA withdrawal thresholds were 5g (range = 

0.6 - 26g) (p<0.001, two-way ANOVA with Bonferroni’s multiple 

comparisons test, Figure 3.6A).  

 

Again, there were no differences in contralateral hind paw withdrawal 

thresholds in MIA and saline rats when compared to their respective baseline 

control thresholds (two-way ANOVA with Bonferroni’s multiple comparisons 

test, Figure 3.6B).  

 

 

 

 



                                                                                                                                        Chapter 3 
                                                                                                                                           
 

127 
 

 

D a y  p o s t- in je c tio n

M
e

c
h

a
n

ic
a

l 
T

h
re

s
h

o
ld

 (
g

)

0 7 1 4

0

5

1 0

1 5

2 0

2 5

** ***

+ + + + + +

S a lin eM IA

Ip s ila te ra l

 

D a y  p o s t- in je c tio n

M
e

c
h

a
n

ic
a

l 
T

h
r
e

s
h

o
ld

 (
g

)

0 7 1 4

0

5

1 0

1 5

2 0

2 5

C o n tra la te ra l

 

Figure 3.6. Effect of MIA injection on ipsilateral hind limb mechanical 

thresholds in rats subsequently used for electrophysiological study. MIA (n = 

19) rats had significantly lower ipsilateral paw withdrawal thresholds than 

saline (n = 17) controls. Data presented as mean paw withdrawal thresholds ± 

SEM. 
+++

p<0.0001, compared to MIA day 0, 
**

p<0.01 and 
***

p<0.001, MIA 
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compared to saline, two-way ANOVA plus Bonferroni’s multiple comparisons 

test.   

 

3.4.3. Electrophysiological characterisation of knee joint nociceptors in 

naïve rats 

During the first pharmacological study of this thesis (see Chapter 4) the 

response properties of knee joint afferents to mechanical stimulation of the 

knee joint under normal (naïve) conditions were characterised. Mechanically 

sensitive receptive fields were located over the medial aspect of the knee joint, 

including the joint capsule, medial collateral ligament and surrounding tissue 

and were typically discrete, covering no more than 1 - 3mm in diameter. CVs 

were estimated following electrical stimulation of their receptive fields (see 

Chapter 2, section 2.4.2) in order to classify them as either A- or C-fibres. 

Figure 3.7 shows the distribution of CVs for the recorded knee joint 

nociceptors (n = 30). CVs ranged from 0.15 - 37 m/sec. Compound action 

potentials recorded in rats of the same sex and similar weight range have 

demonstrated that C-fibres conduct at <1.3m/s, Aδ-fibres at 1.3 - 15m/s and 

Aβ-fibres at >15m/s. Therefore, the majority of knee joint nociceptors recorded 

were C- and Aδ-fibres in agreement with previous studies of knee joint 

nociceptors in the rat (Schaible and Schmidt, 1983b, Schaible and Schmidt, 

1983a, Kelly et al., 2012). A- and C-fibres are discussed collectively 

throughout this thesis.  
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Figure 3.7. Distribution of CVs of knee joint nociceptors recorded in naïve 

rats (n = 30) (range = 0.15 - 37 m/s). Fibres in both the A- and C-fibre CV 

ranges were recorded.  

 

A typical example single unit recording in response to mechanical stimulation 

(15g vF) is shown in Figure 3.8. The C-fibre unit adapted slowly in response to 

the maintained (5 second) mechanical stimulus.  
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Figure 3.8. Example recording of a knee joint nociceptor response to 

application of a 15g vF monofilament to the knee joint-associated receptive 

field in a naïve rat. A) Raw data trace and B) rate histogram illustrating a 

slowly adapting response that was maintained throughout the 5 second 

stimulation.  Insert = AP overlay demonstrating single unit recording. The CV 

of the studied unit was 1.13m/s indicating a C-fibre.  
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Responses to a range of increasing weights of vF monofilaments (0.16 - 15g) 

were recorded to characterise the mechanical sensitivity of the recorded knee 

afferents. An example recording representing the response of a single unit, 

from a naive rat, to increasing weights of vF stimulation is shown in Figure 

3.9. This particular knee joint afferent exhibited a graded response to 

increasing intensity of mechanical stimulation that is characteristic of 

nociceptors and was typical of the afferents studied in this thesis. 
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Figure 3.9. A representative example Spike2 data trace of mechanically-evoked firing of a knee joint nociceptor in a naïve rat. (A) Afferent 

firing evoked by 0.16 - 15g vF stimulation (B) corresponding rate histogram of evoked responses (1s bins). Increasing the weight of vF 

stimulation resulted in a graded increase in the rate of mechanically-evoked responses.  The unit had a CV of 1.87 m/s and was an Aδ-fibre. 

Insert = AP overlay demonstrating single unit recording.  Horizontal lines represent the timing of mechanical stimulation. 
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The mean vF stimulus response data for all fibres recorded in naïve rats 

demonstrated that the fibres recorded from the MAN, with knee joint receptive 

fields (n = 39), were typically nociceptive, with firing rates exhibiting a graded 

increase to increasing intensity of stimulation, thus encoding stimulus intensity 

(Figure 3.10). 
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Figure 3.10. Mechanically-evoked responses of knee joint nociceptors 

recorded in naïve rats. These fibres exhibited a graded response to increasing 

intensity of mechanical stimulation (0.16-15g vF monofilament) of the knee 

joint (n = 39). Data presented as mean ± SEM.  
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The median mechanical threshold of these fibres (the lowest weight vF 

monofilament required to evoke ≥ 2 APs) was 0.6g (Figure 3.11) and ranged 

from 0.16 - 6g indicating that knee joint nociceptors can have low- or high-

threshold mechanical thresholds. 
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Figure 3.11. Mechanical thresholds of knee joint nociceptors recorded in naïve 

rats (n = 39). Horizontal line represents the median mechanical threshold = 

0.6g, median range = 0.16 - 6g.   
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3.4.4. Electrophysiological characterisation of knee joint nociceptor             

responses to mechanical stimulation in MIA rats          

The data presented here was collected during the control (pre-drug) period of 

the pharmacological experiments included in chapter 5. Data from these 

different studies has been pooled and enables the assessment of the impact of 

MIA-induced OA on mechanically-evoked responses of knee joint afferents 14 

days post-induction. Since these data were collected from rats used in 

pharmacological experiments in all cases one fibre was recorded per rat.  

 

Both Aδ- and C-type fibres were recorded in MIA and saline rats and have 

been included in the analysis, with CVs ranging from 0.23 - 12.1m/s (median = 

1.79m/s) in MIA rats and 0.18 - 8.1m/s (median = 1.5m/s) in saline rats. There 

was a similar distribution of CVs when comparing between the two groups and 

there were no significant differences in the CVs of these fibres (Mann Whitney 

t-test, Figure 3.12). In a small number of cases (n = 5) CV measurement was 

not possible following drug treatment as the fibre response had been fully 

inhibited.  
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Figure 3.12. Distribution of CVs of knee joint nociceptors recorded in MIA (n 

= 16) and saline (n = 14) rats. Fibres in both Aδ- and C-fibre CVs were 

recorded.  

 

Similar to the firing properties of knee joint afferents in naïve rats, nociceptors 

from MIA and saline rats exhibited a graded increase in response to 

stimulation by vF monofilaments of increasing weight. Consistent with the 

recordings in naïve rats and with previously published reports of knee joint 

nociceptor receptive fields (Kelly et al., 2012), mechanically-evoked neuronal 

activity could be recorded in response to vF monofilament stimulation of the 

medial aspect of the knee joint including the joint capsule, medial collateral 

ligament and surrounding tissue (see Chapter 2 Figure 2.3). Receptive fields 

were again discrete, covering no more than 1-3mm in diameter. 
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To enable direct comparison, Figure 3.13 below contains raw data traces and 

corresponding rate histograms that are typical examples of mechanically-

evoked responses recorded from Aδ-fibres in a saline and MIA rat. The fibre 

recorded in the MIA rat exhibited increased mechanically-evoked firing rates 

and a lowered mechanical threshold. 
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Figure 3.13. Typical example raw data traces of mechanically-evoked responses of knee joint nociceptors recorded in a saline (A) and MIA rat 

(B). An overlay of the action potentials recorded during each trace is shown as an inset in the respective figures, demonstrating single unit 

recording. Corresponding rate histograms for the saline and MIA rats are shown below each figure demonstrating and enhanced firing rate in the 

MIA example. Arrows in A and C indicate mechanical thresholds. CV for the fibre in A/B is 1.71m/s and in C/D are 1.55m/s indicating that 

these fibres are A-fibres.  
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When mean mechanically-evoked response data from all fibres recorded in 

saline and MIA rats were compared, the vF stimulus response curve for knee 

joint afferents recorded in MIA rats was shifted upwards compared to 

responses in saline rats (Figure 3.14), demonstrating increased knee joint 

nociceptor firing to vF monofilament stimulation (i.e. peripheral sensitization). 

Mechanically-evoked responses were significantly increased in MIA rats 

compared to responses in saline rats (p<0.0001, two-way ANOVA with 

Bonferroni multiple comparison; Figure 3.14). The maximum firing rate of 

nociceptors in MIA rats (evoked by 15g vF monofilament) was 11.95 ± 

2.09APs/s compared to 8.63 ± 1.61AP/s in saline rats. These firing rates are 

consistent with those published from joint nociceptors in similar studies.



                                                                                                                                   Chapter 3            Chapter 3                         
                                                                                                                                           
 

142 
 

 

v o n  F re y  (g )

E
v

o
k

e
d

 R
e

s
p

o
n

s
e

s
 (

im
p

u
ls

e
s

/s
)

0 .1 1 1 0 1 0 0

0

5

1 0

1 5

2 0

M IA S a lin e

***

 

Figure 3.14. Effect of MIA treatment on mechanically-evoked responses of 

knee joint nociceptors. The stimulus response curve in MIA rats (n = 9) is 

shifted upwards compared to saline rats (n = 8) demonstrating significantly 

increased responses to both low and high intensity stimuli. Data represented as 

mean rate of firing ± SEM. 
***

p<0.001, two-way ANOVA with Bonferroni 

multiple comparison.   
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Despite previous reports of lowered mechanical thresholds of joint nociceptors 

in the MIA model, in my hands mechanical thresholds were not significantly 

different in MIA compared to saline rats (median thresholds; MIA = 1g, range 

0.16 - 4g, saline = 0.6g, range, 0.16g - 4g; p>0.05, Mann Whitney u test; 

Figure 3.15).  
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Figure 3.15. Effect of MIA treatment on knee joint nociceptor mechanical 

thresholds 14 days post-injection. MIA injection had no significant effect on 

the mechanical thresholds of knee joint afferents compared to saline controls. 

Line represents median vF monofilament weight. p<0.05, Mann Whitney u 

test.
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3.4.5. Correlation analysis of pain behaviour and electrophysiological 

responses of knee joint nociceptors in the MIA model 

In MIA rats there was no correlation between the ipsilateral day 14 weight 

bearing deficits and paw withdrawal thresholds suggesting that the 

mechanisms underlying these different types of pain behaviour may be distinct 

(p = 0.98, r = -0.1394, Spearman Correlation; Figure 3.16).  
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Figure 3.16. Ipsilateral hind limb weight bearing and paw withdrawal 

thresholds in MIA rats (n = 19) do not correlate.  
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Since pain behaviour measures were obtained along with matched recordings 

of joint afferent mechanically-evoked responses in individual rats, the 

relationship between pain behaviour and mechanical sensitivity of knee joint 

nociceptors in the MIA model was investigated. Correlation analysis of the rate 

of knee afferent firing and pain behaviour measures (weight bearing and hind 

paw withdrawal thresholds at days 7 and 14) was performed. No significant 

correlations were found were found between pain behaviour at days 7 and 14 

and joint nociceptor firing at day 14.  
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 Weight Bearing Paw Withdrawal Threshold 

Post-injection Day Post-injection Day 

vF monofilament weight (g) 7 14 7 14 

0.16 -0.34 -0.02 0.04 -0.05 

0.4 -0.44 0.008 -0.04 -0.12 

0.6 -0.45 -0.32 0.23 0.28 

1 -0.37 -0.11 -0.009 0.01 

2 -0.61 0.1 -0.2 -0.23 

4 -0.43 0.11 -0.09 -0.2 

6 -0.43 0.1 0.03 -0.09 

8 -0.52 0.11 -0.06 -0.19 

10 -0.49 0.19 -0.14 -0.19 

15 0 0.17 0.06 -0.16 
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Table 3.1. Summary of spearman correlation ‘R values’ for knee joint nociceptor firing rates and pain behaviour data (weight bearing and hind 

paw withdrawal thresholds). 
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3.5 Discussion 

The work outlined in this chapter describes the characterisation of pain 

behaviour and electrophysiological properties of knee joint nociceptors in the 

MIA model of OA. This work was essential to confirm that the MIA model had 

been successfully established and developed as expected in my hands. Data 

was collected in ‘normal’ and OA animals under the same laboratory 

conditions in which subsequent pharmacological studies were performed and 

compared (chapters 4 and 5). i.a. injection of 1mg MIA induced the expected 

changes in pain behaviour including a reduction in hind limb weight bearing 

and mechanical allodynia (Bove et al., 2003, Kelly et al., 2012, Ashraf et al., 

2013, Kelly et al., 2013a, Kelly et al., 2013b, Mapp et al., 2013). Only a very 

limited number of studies have characterised joint nociceptor responses to a 

range of mechanical stimuli following MIA injection (Kelly and Donaldson, 

2008, Kelly et al., 2012, Kelly et al., 2013a, Bullock et al., 2014); most have 

used only a single innocuous and noxious mechanical stimulus (i.e. joint 

rotation) (Schuelert and McDougall, 2006b, Schuelert and McDougall, 2008, 

Schuelert and McDougall, 2009, Schuelert et al., 2010, Schuelert and 

McDougall, 2011, Schuelert and McDougall, 2012). Electrophysiological 

recordings of knee joint nociceptors reported here confirmed the development 

of peripheral sensitization in the MIA model manifested by an increase in 

mechanically-evoked firing rates of joint-associated nociceptors compared to 

control rats and validated the further study of pharmacological modulation of 

peripheral sensitization in chapter 5. These findings in the MIA model are 

consistent and build upon published findings from our group (Kelly et al., 

2012, Kelly et al., 2013a, Bullock et al., 2014) and suggest that peripheral 
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sensitization is a robust feature of the MIA model of OA during established 

pain and that the study of its modulation is likely to have relevance to the 

treatment of OA pain. 

 

3.5.1. Pain behaviour 

Joint pain is the most debilitating and disabling symptom of OA and the 

primary reason for patients seeking clinical help. A requirement of animal 

models of OA is to mirror key aspects of human OA pain which validates the 

study of the model to increase the mechanistic understanding of human OA 

pain mechanisms and aid the development of improved analgesics for OA 

treatment. Studies using preclinical models of OA measure weight bearing to 

indirectly measure the development of joint pain (Bove et al., 2003, Sagar et 

al., 2010, Kelly et al., 2012, Mapp et al., 2013). The measurement of weight 

bearing has clinical relevance to human OA as patients report pain in joint use 

e.g. climbing the stairs/walking the dog, running (Messier, 1994, Kul-Panza 

and Berker, 2006). The behavioural data in this chapter demonstrate that MIA 

reduces ipsilateral hind limb weight bearing and hind paw mechanical 

thresholds compared to the saline control group which is in line with studies 

using the same concentration of MIA (1mg) (Bove et al., 2003, Combe et al., 

2004, Fernihough et al., 2004, Kelly et al., 2012, Kelly et al., 2013a, Mapp et 

al., 2013, Bullock et al., 2014). The magnitude and time course of the reduction 

in ipsilateral weight bearing I observed is consistent with that reported in other 

groups (Fernihough et al., 2004, Kelly et al., 2012, Kelly et al., 2013b). 

However, an absence in weight bearing asymmetry (Mapp et al., 2013) and 
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almost a complete reversal to baseline at days 7 and 14 has been observed 

(Bove et al., 2003, Pomonis et al., 2005b).  

 

Pain behaviour in animal models of OA can be assessed by methods other than 

weight bearing which enables the measurement of different aspects of human 

OA pain symptoms. Human OA is accompanied by hypersensitivity of distal 

regions and is suggestive of referred pain, indicating central sensitization. In 

rodent models of OA mechanical allodynia reflective of referred pain can be 

assessed by determining the hind paw withdrawal threshold to vF 

monofilament stimulation (Neugebauer et al., 2007, Mogil, 2009). Evidence 

from clinical studies have demonstrated the translatability of this pain measure 

to human OA as reduced pain pressure thresholds have been detected in OA 

patients at sites distal to the knee joint (Suokas et al., 2012). The magnitude 

and time course reported here is similar to published reports with over 50% 

reduction in mechanical thresholds at days 7-28 post-injection (Combe et al., 

2004, Fernihough et al., 2004, Mapp et al., 2013).   

 

3.5.2. Peripheral sensitization as a contributor to OA-induced joint pain 

Electrophysiological characteristics of knee joint nociceptors, including 

mechanically-evoked firing rates, mechanical thresholds, CVs and receptive 

fields are reported in this chapter. The magnitude of evoked responses and 

mechanical thresholds of knee joint nociceptors in naïve, saline and MIA rats 

were consistent with previous studies (Schaible and Schmidt, 1983b, Schaible 

and Schmidt, 1983a, Kelly et al., 2012) including those conducted in our lab 
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(Kelly et al., 2012, Kelly et al., 2013a, Bullock et al., 2014). Early studies of 

this type that recorded from the MAN in the cat classified the majority of knee 

joint afferents as nociceptors with CVs in the C-type and Aδ fibre ranges 

(Schaible and Schmidt, 1983a, Schaible and Schmidt, 1983b). The finding in 

this chapter that knee joint nociceptors are predominantly Aδ and C-type fibres 

is consistent with this published data. The distribution of receptive fields of the 

studied afferents in this chapter is also similar to published studies recording 

from the cat and rat MAN/saphenous (Schaible and Schmidt, 1983a, Schaible 

and Schmidt, 1985, Kelly et al., 2012, Kelly et al., 2013a, Bullock et al., 2014). 

Discrete receptive fields were located on the medial aspect of the joint with 

activity evoked by probing structures overlying the joint capsule, the heads of 

the femur and tibia, the medial collateral ligament and the surrounding tissue 

and muscle (Schaible and Schmidt, 1983b, Schaible and Schmidt, 1983a, Kelly 

et al., 2012, Kelly et al., 2013a) 

 

The sensitization of knee joint afferents during OA has been indirectly 

suggested in clinical studies and demonstrated here and by others pre-

clinically. In human knee OA, this sensitization has been suggested to be an 

important contributor to the severity of pain experienced (Arendt-Nielsen et al., 

2010) and may promote the transition from acute to chronic pain (Hunter et al., 

2009). Recent published studies have demonstrated peripheral sensitization in 

animal models of OA including following MIA-treatment (Schuelert and 

McDougall, 2009, Kelly et al., 2012, Schuelert and McDougall, 2012), 

spontaneous OA (McDougall et al., 2009) and following surgically induced 

OA in the guinea pig (Gomis et al., 2007). The demonstration in this chapter of 
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an increase in mechanical responsiveness after MIA (1mg) treatment is 

consistent with this and adds to these reports and the degree of sensitization 

was in good agreement with recent studies from our group (Kelly et al., 2012, 

Kelly et al., 2013a, Bullock et al., 2014).  A limited number of these previous 

studies have investigated the relationship between the impact of OA on joint 

nociceptor sensitivity and its relationship to pain behaviour. No significant 

correlation between pain behaviour at days 7 and 14 and joint nociceptor firing 

recorded at day 14 was observed in this study. Despite this, the coincident 

presence of peripheral sensitization and pain behaviour suggests a strong 

association between the two. Peripheral sensitization following OA 

development would be expected to increase nociceptive input from the joint to 

the spinal cord and is likely to make an important contribution to driving 

maladaptive central processes that result in central sensitization and chronic 

pain (Sagar et al., 2010, Sagar et al., 2011, Woolf, 2011, Kelly et al., 2013b). 

The findings in this chapter therefore add further understanding to this area.  

 

The peripheral substrates that drive peripheral sensitization in the MIA model 

and in human OA are currently unknown and this remains an important 

unanswered question. Recent evidence suggests that joint inflammation plays a 

role in OA joint pain (Pelletier et al., 2001, Tindell et al., 2012). An 

inflammatory component has been implicated to contribute to pain in the MIA 

model. Several characteristics of inflammatory pain have been demonstrated 

including an increase in knee joint diameter, expansion of the synovial 

membrane and infiltration of the synovium by inflammatory cells such as 

macrophages (Bove et al., 2003, Fernihough et al., 2004, Mapp et al., 2013). 
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Electrophysiological changes in the Kaolin/Carrageenan model of 

inflammatory arthritis including Aδ and C-type fibres developing increased 

mechanosensitivity and spontaneous activity (Schaible and Schmidt, 1985) are 

similar to the OA-induced peripheral sensitization reported here.  

 

Inflammation in the MIA model could drive peripheral sensitization following 

the release of pro-inflammatory mediators (IL-1, IL-6, TNF-α, PGE2) known to 

modulate nociceptor sensitivity (Orita et al., 2011, Bowles et al., 2014). A 

recent study in our laboratory identified an important role for the sensory 

neuropeptide CGRP in the sensitization of joint nociceptors in the MIA model  

(Bullock et al., 2014). Exogenous CGRP increased the mechanosensitivity of 

knee joint nociceptors in MIA and saline rats and blockade of local CGRP 

receptors reversed MIA- and MNX-induced joint nociceptor sensitization. The 

importance of inflammation to peripheral sensitization and pain behaviour in 

the MIA model is evident from the inhibition of increased knee joint nociceptor 

mechanosensitivity (Schuelert and McDougall, 2009) and weight bearing 

deficits following treatment with anti-inflammatory drugs including diclofenac 

(Bove et al., 2003, Ivanavicius et al., 2007).   

 

3.5.3. Choice of the MIA dose used in this thesis 

A 1mg dose of MIA was chosen to induce this model of OA since 1mg was 

sufficient to produce robust and reproducible pain behaviour (weight bearing 

deficits and reduced paw withdrawal thresholds) and OA-like changes in joint 

structure as reported previously (Bove et al., 2003, Kelly et al., 2012, Mapp et 
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al., 2013), without causing the joint destruction elicited by higher doses (e.g. 

3mg) (Bove et al., 2003, Pomonis et al., 2005a). High doses of MIA causes the 

development of large scale chondrocyte cell death and gross joint pathology 

(Pritzker, 1994). In addition, studies have identified that doses of MIA lower 

than 1mg (e.g. 0.3mg) produce minimal changes in pain behaviour compared to 

control rats (Bove et al., 2003, Pomonis et al., 2005a, Sagar et al., 2010) 

rendering those doses ineffective for studies investigating OA-induced pain. 

Thus, a 1mg dose of MIA enables a balance between ensuring the model is 

clinically relevant by mirroring key aspects of human OA, whilst minimising 

the impact on the animal.   

 

3.5.4. Conclusions 

The work in this chapter characterised the MIA model, with respect to pain 

behaviour and electrophysiological responses of joint nociceptors. 

Electrophysiological and behavioural analysis confirmed that peripheral 

sensitization developed as expected and was coincident with established pain 

behaviour. These findings further highlight the important role that peripheral 

sensitization is likely to play in the development and progression of pain in 

pre-clinical models of OA. The presence of peripheral sensitization in the MIA 

model provides an ideal opportunity for the identification and study of novel 

analgesic targets that might serve to reduce this sensitization, having possible 

relevance to the treatment of OA pain.  
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Chapter Four 

Effect of the GPR55 receptor agonist LPI 

on knee joint nociceptor mechanosensitivity        

in naïve rats   
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4.1. Introduction 

Consistent with their role as nociceptive neurones, findings from the previous 

chapter have demonstrated that joint afferent nociceptors encode mechanical 

stimulus intensity to punctate stimulation of their receptive fields (Kelly and 

Donaldson, 2008, Kelly et al., 2012, Kelly et al., 2013a, Bullock et al., 2014). 

The mechanical sensitivity of joint afferent neurones can be subject to 

plasticity as demonstrated in chapter 3 and the identification of mechanisms 

leading to a decrease in mechanical responsiveness may be future targets for 

the treatment of joint pain. Targeting the pain pathway at the level of the joint 

could potentially maximise analgesia without causing systemically mediated 

side effects. The GPCR GPR55 is known to be present in sensory neurones 

(Lauckner et al., 2008) of the DRG and is thought to have a role in the 

modulation of pain processing (see Chapter 1, Section 1.12.2) (Staton et al., 

2008, Schuelert and McDougall, 2011, Breen et al., 2012, Gangadharan et al., 

2013). However, very few studies have investigated effects of GPR55 receptor 

activation in vivo and almost nothing is known about the role of the GPR55 

receptor in the modulation of joint nociception.  

 

4.1.1. GPR55 receptor and nociception 

Compelling evidence indicates a role for the GPR55 receptor in the modulation 

of nociception. Behavioural studies have identified a pro-nociceptive role in 

acute mechanical nociception (Gangadharan et al., 2013) and in models of 

inflammatory and neuropathic pain (Staton et al., 2008, Breen et al., 2012). The 

periphery appears to be an important site of GPR55 receptor mediated 



                                                                                                                                        Chapter 4 

157 
 

pronociception since expression has been detected in sensory neurones of the 

DRG (Lauckner et al., 2008), intraplantar administration of LPI causes 

mechanical hypersensitivity and electrophysiological recordings from a mouse 

skin-nerve preparation in vitro demonstrated mechanical sensitization of 

cutaneous afferents by LPI (Gangadharan et al., 2013). Although these 

published studies indicate a pro-nociceptive role for GPR55, a recent study 

provided evidence that under some conditions GPR55 receptor activation in 

vivo may be anti-nociceptive. In the 2% kaolin and 2% carrageenan model of 

acute inflammatory joint pain, the synthetic GPR55 agonist O-1602 attenuated 

the mechanosensitivity of nociceptive knee joint afferent C fibres (Schuelert 

and McDougall, 2011). The anti-nociceptive effect of O-1602 was abolished by 

the GPR55 receptor antagonist O-1918. Overall then, the available evidence 

indicates that the GPR55 receptor may have an important role in the 

modulation of nociception, with studies indicating a pro-nociceptive role in 

cutaneous afferent nociceptors under non-pathological, inflammatory and 

neuropathic conditions and an anti-nociceptive role in articular afferents.   

 

4.2. Aims and objectives 

Given the controversy described above, the work presented in this chapter 

sought to further interrogate the role of GPR55 in the modulation of joint 

nociception. LPI was chosen as an experimental tool to examine the effects of 

GPR55 receptor activation in vivo under non-pathological conditions. LPI was 

chosen rather than for example the synthetic agonist O-1918 as it has been 

proposed as the endogenous agonist of GPR55. The effects of LPI on 
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mechanically-evoked responses of knee joint afferent nociceptors were studied 

and the involvement of GPR55 in these effects was determined using the 

GPR55 antagonist cannabidiol.  
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4.3. Methods 

4.3.1. Animals 

Male Sprague Dawley rats (n = 39) (Charles River, Margate, Kent, UK) 

weighing between 336 ± 4.4gms were used in these experiments. Animals were 

housed 3 per cage in temperature and humidity controlled rooms on a 12:12hr 

light: dark cycle (lights on at 8:00am). Food (standard rat chow) and water 

were freely available to animals.  

 

4.3.2. Electrophysiology 

For detailed methods outlining rat surgical preparation for electrophysiology 

and extracellular recordings of knee joint afferent nociceptor responses see 

Chapter 2 (see Section 2.4).  

 

4.3.3. Drug administration 

All drugs and vehicles were administered once stable control responses had 

been established (see Chapter 2, Section 2.4.4). LPI (150 and 250µM; Sigma, 

UK), saline and the putative GPR55 antagonist cannabidiol (50µg/100µl; 

Tocris, UK) were administered peripherally via the contralateral femoral artery 

at a volume of 100µl and washed in with 300µl heparinised saline. The CB1 

antagonist AM281 (1mg/kg; Tocris, UK) was administered via an i.p injection. 

Unless otherwise stated drug effects on mechanically-evoked (vFs 0.6-15g) 

responses were studied at 5 minute intervals for 60mins per dose (see chapter 
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2, section 2.4.2). At the end of the recording period, KCl (250mM) was 

administered via the contralateral femoral artery to confirm that drugs accessed 

the peripheral terminals of joint afferent nociceptors (see chapter 2, Section 

2.4.2). Finally, the CV of the studied afferent was calculated to determine the 

afferent fibre type (see Chapter 2, Section 2.4.2).  

 

A number of separate experimental studies were performed as outlined below: 

 

Study 1:  Effects of cumulative administration of 150µM and 250µM LPI on 

knee afferent nociceptor mechanically-evoked responses were determined (n = 

10).  

 

Study 2: Effects of administration of two consecutive volumes of saline 

(vehicle) (n = 16) on knee afferent mechanically-evoked responses were 

studied over an identical time frame as LPI experiments serving as vehicle 

controls.  

 

Study 3: Effects of cannabidiol (diluted in saline to a concentration of 

50µg/100µl) alone on knee afferent mechanically-evoked responses were 

studied for 30 minutes (n = 12) at which point LPI (250µM) was administered. 

Effects of LPI on knee afferent nociceptor mechanically-evoked responses 
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following cannabidiol pre-administration were then studied for a further 60 

minutes (n = 9).  

 

Study 4: Effects of the CB1 antagonist AM281 (diluted in DMSO, cremaphor 

and distilled H2O to a concentration of 1mg/kg i.p) on knee afferent 

mechanically-evoked responses were studied for 30 minutes (n = 9) at which 

point LPI (250µM) was administered. Effects of LPI post-AM281 

administration were then studied for a further 60 minutes (n = 9).   

 

4.3.4. Statistical analysis 

Data analysis was performed using Prism software (versions 5 or 6; GraphPad 

Software). Data were tested for normality using the Kolmogorov Smirnov (KS) 

test. Where data were normally distributed, a parametric test was used (e.g. 

two-way ANOVA) and where data was not normally distributed a non-

parametric test was used (e.g. Mann Whitney unpaired u-test or Freidman’s 

ANOVA).  
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4.4. Results 

4.4.1. Conduction velocities and fibre type  

Aβ- (n = 1), Aδ- (n = 20) and C-type (n = 9) fibres have been included in the 

analysis for this chapter (median = 1.78m/s, range = 0.15 - 37m/s). CVs could 

not be confirmed in 8 fibres due to complete inhibition of excitability. A- and 

C-fibres are discussed collectively.  

 

4.4.2. Effect of the GPR55 receptor agonist LPI on mechanically-evoked 

responses of knee joint primary afferent nociceptors in naïve rats  

The effect of peripherally administered LPI (150 and 250µM, i.ar) on 

mechanically-evoked responses of knee joint primary afferent nociceptors were 

studied in naïve rats (n = 10) (see Figure 4.3). Generally, an increase in the 

weight of vF stimulation resulted in a graded increase in evoked responses. The 

representative digitised traces included below show typical examples of the 

effects of LPI (250µM) (Figure 4.1) and vehicle saline (see Figure 4.2) on the 

rate of mechanically-evoked firing of two Aδ knee afferent nociceptors. LPI 

almost completely abolished the rate of firing 45 minutes post-administration 

(Figure 4.1 B and D) compared to the control responses (Figure 4.1 A and C). 

Saline had no effect on mechanically-evoked responses 45 minutes post-

administration (Figure 4.2 B and D) compared to control (Figure 4.2 A and C).   
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Figure 4.1. Typical example raw data traces of control mechanically-evoked responses of knee joint nociceptors (A) and 45 minutes post-

administration of 250µM LPI (B) in a naïve rat. An overlay of the action potential recorded in the figures, demonstrating single unit activity. 

Corresponding rate histograms for the control (C) and post-administration of 250µM LPI (D) are shown below each figure showing an inhibition 

in the mechanically-evoked firing rate of knee joint nociceptors after administration of LPI. CV of fibre = 3.45m/s. 
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Figure 4.2. Typical example raw data traces of control mechanically-evoked responses of knee joint nociceptors (A) and 45 minutes post-

administration of 2
nd

 volume of saline (B) in a naïve rat. An overlay of the action potential recorded in the figures, demonstrating single unit 

activity. Corresponding rate histograms for the control (C) and post-administration of 2
nd

 volume of saline (D) are shown below each figure 

showing no effect on the mechanically-evoked firing rate of knee joint nociceptors after administration of saline. CV of fibre = 3.3m/s. 

 



                                                                                                                                 Chapter 4           Chapter 4 

167 
 

When mean responses were analysed, it was found that the administration of 

150µM and 250µM LPI significantly inhibited joint nociceptor mechanically-

evoked responses compared to control (pre-drug) responses (p<0.0001, two-

way ANOVA; Figure 4.3). The inhibition following 250µM LPI was 

significantly greater than at 150µM demonstrating a concentration-dependent 

effect (p< 0.0001, two-way ANOVA).    
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Figure 4.3. Effect of LPI (150µM and 250µM) on knee joint nociceptor 

mechanically-evoked responses in naïve rats (n = 10). LPI (150µM and 

250µM) had significant inhibitory effects compared to control. 
***

 p < 0.0001, 

two-way ANOVA. Data are presented as mean ± SEM.  
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The effect of peripherally administered LPI (150 and 250µM) on the 

mechanical thresholds of knee joint primary afferent nociceptors was also 

determined (n = 10; Figure 4.4). LPI significantly increased knee afferent 

mechanical thresholds (i.e. inhibited mechanosensitivity) at a concentration of 

250µM (median = 0.6g, range = 0.6 - 2g) when compared to control thresholds 

(median = 4g, range = 0.6 - 15g) (p<0.05, Friedman’s ANOVA with Dunn’s 

Multiple Comparisons Test). 150µM LPI had no significant effect (median = 

1g, range = 0.6 - 4g) (Friedman’s ANOVA with Dunn’s Multiple Comparisons 

Test).    
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Figure 4.4. Effect of LPI (150µM and 250µM) on knee afferent nociceptor 

mechanical thresholds in naïve rats (n = 10). LPI (250µM) significantly 

increased knee afferent mechanical thresholds. Horizontal lines represent 

median values. 
*
 p < 0.05, Friedman’s ANOVA with Dunn’s Multiple 

Comparisons Test. 



                                                                                                                                 Chapter 4           Chapter 4 

169 
 

To confirm that these inhibitory effects on joint nociceptor mechanosensitivity 

were mediated by LPI, vehicle control experiments were conducted in a 

separate group of naïve rats. 

 

The effect of vehicle saline on mechanically-evoked responses was studied in 8 

naïve rats (Figure 4.5). Neither administration of saline (i.e. 1
st
 or 2

nd
 100µl 

bolus) had any effect on knee afferent mechanically-evoked responses when 

compared to control (two-way ANOVA; Figure 4.5) confirming effects 

observed in the LPI experiment were LPI-mediated.  
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Figure 4.5. Effect of saline on knee joint afferent mechanically-evoked 

responses in naïve rats (n = 8). Neither administration of saline had any effect 

compared to control (two-way ANOVA). Data are expressed as mean ± SEM.  
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The effect of saline on knee afferent nociceptor mechanical thresholds was also 

studied (n = 8) (Figure 4.6). Neither volume of saline had any effect on knee 

afferent nociceptor mechanical thresholds (1
st
 volume: median = 0.8g, range = 

0.6 - 4g; 2
nd

 volume: median = 0.6g, range = 0.6 - 2g) when compared to 

control thesholds (median = 0.8g, range = 0.6 - 4g) (Friedman’s ANOVA with 

Dunn’s Multiple Comparisons Test, Figure 4.6). These data confirm that the 

increase in mechanical thresholds observed following LPI was LPI-mediated.     
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Figure 4.6. Effect of saline on knee afferent mechanical thresholds in naïve 

rats (n = 8). Neither dose of saline had any effect compared to control 

(Friedman’s ANOVA with Dunn’s Multiple Comparisons Test). Horizontal 

lines represent median values.    
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4.4.3. Effect of the GPR55 receptor antagonist cannabidiol on knee 

afferent nociceptor mechanically-evoked responses and on LPI-mediated 

inhibition  

The effect of blocking any endogenous GPR55 tone on joint nociceptor 

mechanically-evoked responses was determined by peripheral administration 

of cannabidiol (50µg/100µl) in naïve rats (n = 12) (Figure 4.7). Cannabidiol 

alone (over a period of 30mins) had no effect on joint nociceptor mechanically-

evoked firing rates compared to control (pre-drug) responses (two-way 

ANOVA; Figure 4.7). This finding indicates that any endogenous activation of 

the GPR55 receptor does not modulate knee afferent nociceptor 

mechanosensitivity under normal conditions.  
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Figure 4.7. Effect of cannabidiol on knee afferent mechanically-evoked 

responses (n = 12). Cannabidiol had no effect on knee afferent 

mechanosensitivity (two-way ANOVA). Data are expressed as mean ± SEM.  
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The effect of cannabidiol (50µg/100µl) on LPI-mediated inhibition was also 

studied in naïve rats (n = 8) (Figure 4.8). Following the pre-administration of 

cannabidiol, LPI (250µM) had no significant effect on knee afferent 

mechanically-evoked responses (two-way ANOVA, Figure 4.8), indicating that 

pre-administered cannabidiol completely blocked the inhibitory effects of LPI 

observed in previous experiments (see above).  
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Figure 4.8. Effect of cannabidiol on LPI-mediated inhibition of knee joint 

nociceptor mechanically-evoked responses (n = 8). LPI had no effect when 

administered 30 minutes post-cannabidiol (two-way ANOVA). Data are 

expressed as mean ± SEM.  
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Since the effect of LPI alone (250µM) and following pre-administration of 

cannabidiol (50µg/100µl) were studied in separate groups of rats the data from 

these two separate studies were normalised and expressed as a percentage (%) 

of control (Figure 4.9) to enable a direct comparison of LPI effects in the 

absence/presence of cannabidiol. Overall, the pre-administration of cannabidiol 

significantly blocked the inhibitory effects of LPI on mechanically-evoked 

responses of joint nociceptors (Fig 4.9; p<0.001, Kruskal-Wallis).  When post-

LPI % of control responses at individual weights were compared in the 

presence and absence of cannabidiol, 8g responses were significantly greater 

following pre-administration of cannabidiol compared to LPI alone (p<0.05, 

Kruskal-Wallis with Dunn’s multiple comparison). This cannabidiol mediated 

block of LPI-induced inhibition suggests an involvement of GPR55. 
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Figure 4.9. Direct comparisons of the effect of LPI (250µM) alone and 

following the pre-administration of cannabidiol (50µg/100µl) as expressed as 

% of control (represented as a dotted line at 100%). The inhibitory effect of 

LPI on knee afferent nociceptor mechanically-evoked responses was reduced 

after pre-administration of cannabidiol, an effect significant at 8g. 
*
 p<0.05, 

Kruskal-Wallis with Dunn’s Multiple Comparisons Test. Data are expressed as 

median with interquartiles range.  
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4.4.4. Effect of the CB1 receptor antagonist AM281 on knee afferent 

nociceptor mechanically-evoked responses and LPI-mediated inhibition 

AM281 (1mg/kg, i.p) was administered 30 minutes prior to the administration 

of LPI (250µM) to investigate if CB1 receptors are involved in the LPI-

mediated inhibition of joint nociceptor mechanically-evoked responses in naïve 

rats (n = 9) (Figure 4.10). The administration of AM281 alone had no effect on 

knee afferent responses compared to control (two-way ANOVA; Figure 4.10). 

This finding indicates that the CB1 receptor does not endogenously modulate 

knee afferent mechanosensitivity under normal conditions. 
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Figure 4.10. Effect of AM281 (1mg/kg) on knee afferent mechanically-evoked 

responses (n = 9). AM281 had no effect on knee afferent mechanosensitivity 

(two-way ANOVA). Data are expressed as mean ± SEM.  
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In the presence of AM281, LPI (250µM) caused a significant inhibition of the 

mechanically-evoked responses of knee afferent nociceptors (two-way 

ANOVA; Figure 4.11).  

 

0 .1 1 1 0 1 0 0

0

5

1 0

1 5

2 0

v o n  F re y  (g )

E
v

o
k

e
d

 R
e

s
p

o
n

s
e

s
 (

im
p

u
ls

e
s

/s
)

***

C o n tro l
L P I (2 5 0 M ) +

A M 2 8 1  (1 m g /k g )

 

Figure 4.11. Effect of AM281 (1mg/kg) on the LPI-mediated inhibition of 

knee joint nociceptor mechanically-evoked responses (n = 9). LPI (250µM) 

significantly inhibited responses following administration of AM281. 
***

 p < 

0.0001, two-way ANOVA. Data are expressed as mean ± SEM.  
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Since the effects of LPI alone and following pre-administration of AM281 

were studied in separate groups of rats the data was normalised and expressed 

as a percentage (%) of control (Figure 4.12) to enable a direct comparison of 

effects of LPI in the presence/absence of AM281. Overall, the pre-

administration of AM281 significantly reduced the inhibitory effects of LPI on 

joint nociceptor mechanically-evoked responses (p>0.01, Kruskal-Wallis; 

Figure 4.12). However, when post-LPI % of control responses at individual 

weights were compared in the presence and absence of AM281, responses did 

not differ significantly at any weight (Kruskal-Wallis with Dunn’s multiple 

comparison). These data indicate that LPI-mediated inhibition of knee afferent 

mechanically-evoked responses was partially reduced by the CB1 receptor 

antagonist.   
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Figure 4.12. Direct comparisons of the effect of LPI (250µM) alone and 

following the pre-administration of AM281 (1mg/kg) as expressed as % of 

control (represented as a dotted line at 100%). Overall there was a significant 

difference in the inhibitory effect of LPI alone compared to after pre-

administration of AM281 although this did not reach significance for 

individual weights (p>0.01, Kruskal-Wallis with Dunn’s multiple 

comparisons). Data are expressed as median with interquartile range.   
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4.5. Discussion 

The work described in this chapter aimed to determine the effects of GPR55 

receptor activation on joint nociception in vivo under non-pathological 

conditions. Effects of the endogenous GPR55 agonist LPI on the 

mechanosensitivity of joint nociceptors was examined using 

electrophysiological recordings of mechanically-evoked neuronal responses 

taken from the saphenous nerve in naïve Sprague Dawley rats.  Peripheral 

administration of LPI profoundly inhibited the mechanical sensitivity of joint 

nociceptors reducing mechanically-evoked firing rates and increasing 

mechanical thresholds in a concentration-dependent manner.  Saline vehicle 

had no effect on joint nociceptor firing rates or mechanical thresholds 

confirming that the reduction in mechanical sensitivity is attributable to LPI.  

 

An involvement of GPR55 in mediating the inhibitory effects of LPI was 

examined using the putative GPR55 receptor antagonist cannabidiol (Ryberg et 

al., 2007, Whyte et al., 2009, Li et al., 2013). Cannabidiol has been shown to 

antagonise the GPR55 receptor (Ryberg et al., 2007, Whyte et al., 2009, Li et 

al., 2013) and attenuates LPI-evoked increases in ERK phosphorylation in 

human osteoclasts (Whyte et al., 2009). Pre-administration of cannabidiol 

completely prevented the inhibitory effects of LPI confirming that LPI effects 

on joint nociceptor mechanosensitivity were mediated via GPR55 receptor 

activation. Since GPR55 has controversially been proposed to be a ‘third novel 

cannabinoid receptor’ and given that activation of the cannabinoid CB1 

receptor is known to inhibit responses of nociceptive neurones in vivo (Kelly 
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and Donaldson, 2008, Schuelert and McDougall, 2008) the potential 

contribution of the CB1 receptor was also examined. The CB1 receptor 

antagonist AM281 did not block the inhibitory effects of LPI on mechanically-

evoked responses of joint nociceptors, however these inhibitory effects did 

appear to be partially attenuated. These data may suggest an unexpected 

contribution of CB1 to LPI mediated effects in vivo, although there is no 

supporting published literature demonstrating affinity of LPI at CB1 receptors. 

Studies examining ligand activity of cannabinoids in hGPR55 transfected 

HEK293 cells have demonstrated that AM281 exhibits agonist activity 

(Henstridge et al., 2010, Anavi-Goffer et al., 2012). Moreover, AM281 inhibits 

LPI-mediated ERK1/2 phosphorylation in these cells suggesting that AM281 

can behave as both an agonist of GPR55 and an inhibitor of GPR55-mediated 

LPI effects. It has been suggested that AM281 may represent a bitopic ligand at 

GPR55 and could modulate LPI activity at the orthosteric (agonist) and 

allosteric site (Anavi-Goffer et al., 2012). These properties of AM281 may 

account for the apparent partial reduction in LPI-mediated inhibition reported 

here.  

 

Both cannabidiol and AM281 alone had no effect on mechanically-evoked 

firing rates (at least within the 30 minute period studied) indicating that GPR55 

and CB1 receptors do not tonically modulate knee afferent mechanosensitivity 

under normal conditions. These findings of a lack of GPR55 and CB1 

endogenous tone are in agreement with the published literature as deletion of 

GPR55 in mice does not profoundly alter normal nociceptive thresholds 

(Staton et al., 2008) and a number of studies have demonstrated a lack of effect 
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of CB1 receptor antagonists on nociceptive responses (Kelly and Donaldson, 

2008, Schuelert and McDougall, 2008), although there are studies that 

contradict this.  

 

The published literature confirms LPI as a GPR55 receptor agonist (Oka et al., 

2007, Henstridge et al., 2009, Jin et al., 2009, Oka, 2009, Whyte et al., 2009, 

Bondarenko et al., 2010, Ford et al., 2010, Henstridge et al., 2010, Oka et al., 

2010, Obara et al., 2011, Anavi-Goffer et al., 2012, Sharir et al., 2012, Yu et 

al., 2013). However, LPI has been shown to cause opening of the two-pore 

domain mechano-gated K
+
 channels TREK-1 and TRAAK in COS-7 cells in 

culture (Maingret et al., 2000). TREK-1 and TRAAK mRNA is expressed on 

DRG neurones (Talley et al., 2001) with specific expression of TREK-1 

mRNA evident on small diameter peptidergic and non-peptidergic fibres 

(Alloui et al., 2006). Further, TREK-1 genetic deletion in mice increased 

mechanical hypersensitivity indicating an important role in modulation of 

nociception (Alloui et al., 2006). K
+
 channel activation would hyperpolarise 

the cell membrane and decrease neuronal excitability which would be expected 

to have an anti-nociceptive effect. Whether opening of TREK-1 or TRAAK 

channels makes a contribution to the inhibitory effects of LPI reported here 

was not investigated. However, the complete block of LPI’s inhibitory effects 

by cannabidiol argue against a contribution of these channels. The data 

presented in this chapter demonstrates a novel anti-nociceptive effect of LPI on 

knee afferent mechanosensitivity mediated by GPR55 receptor activation in 

vivo.  
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Previous studies have investigated the role of GPR55 in the modulation of 

nociception (Staton et al., 2008, Breen et al., 2012, Gangadharan et al., 2013). 

A pro-nociceptive role has been suggested in the CFA-induced model of 

cutaneous inflammation (Staton et al., 2008), chronic constriction (Breen et al., 

2012) and partial nerve injury models (Staton et al., 2008) of neuropathic pain 

and cutaneous nociception in naïve mice (Gangadharan et al., 2013). Although, 

most published studies on the role of GPR55 in nociceptive processing to date 

have suggested a pro-nociceptive role, a recent study of joint afferent 

nociceptors observed an anti-nociceptive effect of the GPR55 receptor 

synthetic agonist O-1602 in a model of acute joint inflammation (Schuelert and 

McDougall, 2011). The data included in this chapter are in agreement with this 

previous joint afferent recording study and perhaps identifies a novel anti-

nociceptive role for the GPR55 receptor in the modulation of nociceptive 

inputs from the joint under normal conditions. The McDougall study 

demonstrated an inhibition of mechanosensitive C-fibres only, by O-1602 

which was abolished by the GPR55 receptor antagonist O-1918 (Schuelert and 

McDougall, 2011). The categorisation of recorded fibres studied in this chapter 

demonstrated that LPI inhibits the mechanosensitivity of both Aδ- and C-fibres 

in naive rats, while O-1602 had no effect on the firing rate of Aδ-fibres 

(Schuelert and McDougall, 2011). This might be explained by methodological 

differences between this study and the McDougall study, for example the 

GPR55 agonist used (LPI in this study, O-1602 in the McDougall study) and in 

the McDougall study 8 fibres were unclassified, some of these fibres may have 

been Aδ-fibres which could explain the discrepancy. Only one study has 

investigated the expression of the GPR55 receptor in DRG neurones (Lauckner 
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et al., 2008). Large diameter (>35µm) NF200 positive DRG neurones, 

dissociated from BALB/c mice, expressed high levels of GPR55 with low 

levels detected in small and medium sized neurones (Lauckner et al., 2008) 

suggesting a high abundance in A- and A-fibres and low amounts in small 

diameter neurones receiving C-fibres. Electrophysiological effects of LPI on 

A- and C-fibres reported here corroborate these findings. Despite this 

expression in DRG neurones it is not possible to identify with certainty the 

exact site of LPI action in the present study i.e. neuronal or non-neuronal as the 

effects of locally administered LPI were examined in vivo. However, 

expression in mouse DRG neurones points towards a direct action on the 

peripheral terminals of joint innervating nociceptors. No published studies have 

directly investigated GPR55 expression in rat DRG neurones or specifically in 

knee joint afferents and thus further investigation is required. 

 

The McDougall study, taken together with the current study and recently 

published data in cutaneous afferents nociceptors (Gangadharan et al., 2013) 

suggests that the GPR55 receptor may mediate a tissue specific anti-

nociceptive effect at the level of the joint. This theory is supported by studies 

that have observed a tissue-specific effect of GPR55 on cancer cell 

proliferation (Hamtiaux et al., 2011, Huang et al., 2011, Pineiro et al., 2011, 

Perez-Gomez et al., 2013), increasing proliferation in a mouse model of skin 

cancer (Perez-Gomez et al., 2013) and in prostrate and ovarian cancer cell lines 

(Pineiro et al., 2011) whilst reducing proliferation of cholangiocarcinoma 

(Huang et al., 2011) and murine N1E-155 neuroblastoma cells (Hamtiaux et 

al., 2011). Tissue/cell-specific effects might be explained by the complexity of 
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GPR55 receptor-mediated intracellular downstream signalling that is ligand- 

and cell-type dependent (see Figure 1.4) (Johns, 2007, Oka et al., 2007, Ryberg 

et al., 2007, Lauckner et al., 2008, Kapur et al., 2009, Ross, 2009, Yin, 2009, 

Anavi-Goffer et al., 2012). In prostrate and ovarian cancer cell lines, GPR55 

receptor-mediated proliferation is dependent on ERK (Pineiro et al., 2011), 

while in cholangiocarcinoma cells, the anti-proliferative effect of the GPR55 

receptor was mediated by c-Jun N-terminal kinase and the fas death receptor 

complex (Huang et al., 2011).   

 

Studies investigating the intracellular signalling mechanisms of GPR55 

receptor-mediated modulation of nociception are limited. In large diameter 

DRG neurones, activation of the GPR55 receptor by certain cannabinoid 

ligands inhibited M-type K
+ 

currents and elevated intracellular Ca
2+

 levels 

which would be expected to potentiate neuronal excitability (Lauckner et al., 

2008). A recent study investigated the intracellular signalling pathways in 

DRG neurones activated by LPI and is the only current published literature that 

identifies intracellular signalling effectors involved in LPI- and GPR55-

mediated nociception in vivo (Gangadharan et al., 2013). This study 

demonstrated a reduction in LPI-induced mechanical hypersensitivity in mice 

lacking G13 and Gq/11 and following the administration of ERK1/2 and Rho A 

kinase inhibitors. Due to the small number of studies investigating the role of 

GPR55 in models of nociception, the intracellular signalling pathways that 

mediate LPI and GPR55 receptor-mediated anti-nociception are not known and 

therefore knowledge of the mechanisms underlying GPR55 mediated anti-

nociception are incomplete and warrant further investigation.  
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In conclusion, the data presented in this chapter identifies a novel anti-

nociceptive role of the endogenous lysophospholipid and GPR55 agonist LPI 

in the modulation of knee afferent mechanosensitivity. These findings and 

those already published (Schuelert and McDougall, 2011) indicate an anti-

nociceptive role for GPR55 that may be specific for joint afferent nociceptors.  
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5.1. Introduction 

The work in chapter 4 examined the effects of peripheral administration of the 

endogenous lysophospholipid and GPR55 agonist LPI on joint nociceptor 

mechanosensitivity in naive rats. LPI decreased Aδ- and C-fibre mechanical 

responsiveness in a GPR55 receptor-dependent manner. These findings provide 

further evidence that the GPR55 receptor has a role in the modulation of 

nociception and suggests that GPR55 may be a novel analgesic target in the 

treatment of joint pain. This is consistent with an anti-nociceptive effect of the 

synthetic GPR55 agonist O-1602 on joint nociceptor responses in an acute 

model of joint inflammation (Schuelert and McDougall, 2011). However, the 

impact of GPR55 receptor activation on joint nociceptor mechanosensitivity in 

a model of chronic arthritis, in particular chronic knee OA has yet to be 

investigated.   

 

5.1.1. Modulation of joint nociceptor mechanically-evoked responses by 

peripheral administration of pharmacological agents in the MIA model 

An increase in the mechanical sensitivity of joint nociceptors has been 

demonstrated in rat MIA and MNX models and spontaneously and surgically 

induced OA in the guinea pig (Schuelert and McDougall, 2006a, Gomis et al., 

2007, McDougall et al., 2009, Schuelert and McDougall, 2009, McDougall et 

al., 2010, Kelly et al., 2012, Schuelert and McDougall, 2012, Kelly et al., 

2013a, Bullock et al., 2014). Thus, this mechanical sensitization is a key 

feature of preclinical models of OA pain and is likely to contribute to the 

associated pain behaviour. Studies of the effects of peripheral administration of 
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pharmacological agents on knee joint nociceptor mechanosensitivity in the 

MIA model have identified potential novel targets for the treatment of this 

pain, including TRPV1 channels (Kelly et al., 2013a), CGRP (Bullock et al., 

2014), VIP (Schuelert and McDougall, 2006b), CB1 (Schuelert and 

McDougall, 2008) and CB2 receptors (Schuelert et al., 2010) as well as Nav1.8 

Na
+
 channels (Schuelert and McDougall, 2012).  

 

Studies demonstrating inhibitory effects of cannabinoid agonists on joint 

nociceptor responses in the MIA model have indicated the potential importance 

of the peripheral cannabinoid receptor system (Schuelert and McDougall, 

2008, Schuelert et al., 2011). Activation of CB1 receptors attenuated non-

noxious and noxious joint rotation evoked responses in both MIA and saline 

rats (Schuelert and McDougall, 2008). Interestingly, inhibition is enhanced 

following the development of OA pain. Further, following the development of 

OA pain the mechanosensitivity of joint nociceptors is under the endogenous 

inhibitory control of endocannabinoids acting via CB1 (Schuelert and 

McDougall, 2008, Schuelert et al., 2011).  

 

The CB2 receptor agonist GW405833 sensitizes knee joint nociceptors in the 

MIA model paradoxical to inhibitory effects in saline rats (Schuelert et al., 

2010). The sensitizing effect in MIA joints could be a result of TRPV1 

activation (Kelly et al., 2013a) as  GW405833 also functions as a weak partial 

agonist at TRPV1 and the TRPV1 antagonist SB366791 blocks this 

sensitization (Schuelert et al., 2010). TRPV1 activation in vivo would result in 
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the secondary release of the sensitizing neuropeptide CGRP (Bullock et al., 

2014) and may account for these paradoxical sensitizing effects of GW405833.  

 

5.1.2. A role for the GPR55 receptor in the modulation of OA pain? 

As described above, the cannabinoid receptor system modulates joint 

nociception during OA (Schuelert and McDougall, 2008, Schuelert et al., 

2010). Since GPR55 has been proposed as a novel third cannabinoid receptor 

(Johns, 2007, Ryberg et al., 2007, Waldeck-Weiermair et al., 2008, Kapur et 

al., 2009, Yin, 2009) and GPR55 receptor activation modulates joint nociceptor 

responses in naïve rats (see Chapter 4) it may also be a novel target with 

relevance for OA pain treatment. In fact, it is possible that GPR55 mediates the 

paradoxical effects of the CB2 receptor agonist GW405833 on joint nociceptor 

mechanosensitivity described above (Schuelert et al., 2010). GW405833 

functions as a partial agonist at hGPR55 in transfected HEK293 cells (Anavi-

Goffer et al., 2012) and the CB2 receptor antagonist AM630 does not 

completely abolish the modulatory effects of GW405833 in control or MIA 

rats (Schuelert et al., 2010).  Thus, it is possible that the non-CB2 receptor 

mediated effects of GW405833 on joint nociceptors may be mediated by 

GPR55. Whether following the development of OA a change in the functional 

role of GPR55 in joint nociception from an inhibitory (see chapter 4) to a 

facilitatory role could be responsible for mediating the pro-nociceptive effects 

of GW405833 in MIA rats is unknown. Compelling evidence exists for a pro-

nociceptive role for GPR55 in cutaneous Aδ mechanoreceptors (Gangadharan 

et al., 2013) and in the CFA model of cutaneous inflammation (Staton et al., 
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2008) as well as models of neuropathic pain (Staton et al., 2008, Breen et al., 

2012). Furthermore, plasticity is known to occur in the peripheral cannabinoid 

receptor system following OA development (see above).  

 

5.2. Aims and objectives 

Despite previous study of the role of GPR55 in several pathological pain states, 

a role in the modulation of peripheral nociception during knee OA has not been 

investigated. The aim of the work presented in this chapter was to examine the 

effects of LPI on the mechanical sensitivity of knee afferent nociceptors in the 

MIA model during established pain. These studies will elucidate whether the 

role of GPR55 in modulating knee nociceptor mechanically-evoked responses 

is altered following the development of knee OA. A further aim of this work 

was to determine the effects of cannabidiol on knee afferent nociceptor 

mechanosensitivity in the MIA model to determine whether endogenous tone at 

GPR55 modulates joint nociceptor sensitivity during OA. A time point 

associated with joint nociceptor sensitization (day 14) and established pain (see 

chapter 3) was chosen for these studies.  
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5.3. Methods 

5.3.1. MIA model 

For detailed methods regarding OA induction and assessment of pain 

behaviour refer to Chapter 2 (Sections 2.2 and 2.3).  

 

5.3.2. Electrophysiology 

Detailed methods outlining rat surgical preparation and extracellular recording 

of joint afferent nociceptor mechanical responses are described in chapter 2 

(Section 2.4).  

 

5.3.3. Drug administration 

All drugs were administered once stable control responses had been established 

(see Chapter 2, Section 2.4.2). LPI (150 and 250µM; Sigma, UK) and 

cannabidiol (50µg/100µl; Tocris, UK) were administered peripherally via a 

contralateral femoral artery cannula in a 100µl bolus injections washed in with 

300µl heparinised saline. Unless otherwise stated, drug effects on 

mechanically-evoked responses (vF monofilaments 0.16-15g) were studied at 5 

minute intervals for 60 minutes per dose (see Chapter 2, Section 2.4.2). At the 

end of the recording period, KCl (250mM) was administered to confirm that 

drugs accessed the peripheral terminals of joint afferent nociceptors (see 

Chapter 2, Section 2.4.2). Afferents not activated by KCl were excluded from 



                                                                                                                           Chapter 5 

 

194 
 

the analysis. At the end of the experiment, the CV of the studied afferent was 

estimated to determine the afferent fibre type (see Chapter 2, Section 2.4.2).    

 

A number of separate experiments were performed as outlined below: 

 

Study 1: Effects of consecutive administration of 150µM and 250µM LPI on 

knee afferent nociceptor mechanically-evoked responses were determined in 

MIA (n = 9) and saline (n = 8) rats.  

 

Study 2: Effects of cannabidiol (50µg/100µl) alone on knee afferent nociceptor 

mechanically-evoked responses were studied in MIA (n = 9) and saline (n = 9) 

rats at 5 minute intervals for 30 minutes at which point 250µM LPI was 

administered and effects were followed for a further 60 minutes  (n = 6 MIA; n 

= 8 saline).  

 

5.3.4. Statistical analysis 

Data analysis was performed using Prism software (versions 5 or 6; GraphPad 

Software). Data were tested for normality using the KS test. Where data were 

normally distributed, a parametric test was used (e.g. two-way ANOVA) and 

where data was not normally distributed a non-parametric test was used (e.g. 

Mann Whitney unpaired u-test or Freidman’s ANOVA).  
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5.4. Results 

5.4.1. MIA injection evoked pain behaviour 

Analysis of weight bearing and hind paw mechanical withdrawal thresholds 

confirmed OA pain development. As previously described (see Chapter 3 

Section 3.4.2), there was a significant reduction in weight bearing and 

mechanical thresholds on the ipsilateral hind limb in MIA compared to saline 

rats immediately prior to electrophysiology (day 14) (p<0.0001, two-way 

ANOVA with Bonferroni’s multiple comparisons test). Ipsilateral weight 

bearing in MIA-treated rats was 38.14 ± 1.4% compared to 50.12 ± 0.38% in 

saline-treated rats (p<0.001, two-way ANOVA with Bonferroni’s multiple 

comparisons test) with ipsilateral mechanical thresholds of 5 ± 1.77g in MIA 

rats compared to 11 ± 2.39g in saline rats (p<0.001, two-way ANOVA with 

Bonferroni’s multiple comparisons test). These data confirm the presence of 

pain behaviour in MIA rats subsequently used in electrophysiology 

experiments described below.  

 

5.4.2. Conduction velocities and fibre types 

Both Aδ- and C-type fibres have been included in the analysis for this chapter. 

CVs were over a similar range for both MIA (n = 15 fibres) and saline rats (n = 

15 fibres). CVs ranged from 0.2 - 12.1m/s in MIA rats (median = 1.5m/s) and 

0.12 - 9.8m/s in saline rats (median = 1.79m/s). Aδ- and C-fibres are discussed 

collectively. In some cases (n = 5 fibres) CV measurement was not possible 

following drug treatment as the fibre response was completely inhibited.   
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5.4.3. Effect of MIA on knee joint nociceptor mechanically-evoked 

responses 

Figure 5.1 contains raw data traces and corresponding rate histograms that are 

typical examples of mechanically-evoked responses recorded from an Aδ-fibre 

in a saline rat compared to an Aδ fibre recorded in an MIA rat. The fibre 

recorded in the MIA rat (Figure 5.1B and D) exhibited an increased firing rate 

to mechanical stimulation and a lowered mechanical threshold compared to the 

fibre recorded in the saline rat (Figure 5.1A and C).  
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Figure 5.1. Typical example raw data traces of mechanically-evoked responses of knee joint nociceptors recorded in a saline- (A) and MIA (B) 

rat. An overlay of the action potentials recorded in the respective figures, demonstrates single unit activity. Corresponding rate histograms for the 

saline (C) and MIA rat (D) are shown below each figure demonstrating an enhanced firing rate in the MIA example. Arrows in A and B indicate 

mechanical thresholds (0.4g in the saline rat and 0.16g in the MIA rat). CV of fibre in saline rat = 1.41m/s and in MIA rat = 1.64m/s.  



                                                                                                                           Chapter 5      Chapter 5 

 

199 
 

Mean control (pre-LPI administration) joint nociceptor mechanically-evoked 

responses in MIA and saline rats were compared (Figure 5.2). Overall, control 

responses were significantly increased in MIA rats compared to saline rats 

(p<0.001, two-way ANOVA, Figure 5.2) indicating the presence of peripheral 

sensitization 14 days following treatment.  
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Figure 5.2. Effect of MIA (n = 9) and saline treatment (n = 8) on 

mechanically-evoked responses of knee joint nociceptors 14 days following 

injection. Data represented as mean rate of firing ± SEM. 
***

p<0.0001, two-

way ANOVA.   
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5.4.4. Effect of LPI on knee joint nociceptor mechanically-evoked 

responses in the MIA model of OA pain 

Figure 5.3 and 5.4 below include example mechanically-evoked firing rate 

histograms for knee joint afferent nociceptors in a saline and MIA rat, pre- and 

post LPI and illustrates the effects of semi-local LPI administration on 

responses. In these typical examples, LPI causes a marked inhibition in both 

the MIA and saline rats.  
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Figure 5.3. Representative examples of knee afferent mechanically-evoked (8 - 15g vF monofilaments) response data recorded pre- and post-

administration of 250µM LPI in a saline- (A) and MIA- (B) treated rat. Data are rate histograms (1s bins) of action potential firing of joint 

nociceptor (single unit) in response to vF monofilament stimulation. Small inset figures show an overlay of each example fibre recording with 

the corresponding CV, demonstrating single fibre recordings. Both fibres are Aδ-fibres. 
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When mean responses were analysed for all fibres studied it was found that in 

MIA rats the administration of 150µM and 250µM LPI significantly attenuated 

knee afferent mechanically-evoked responses compared to control (p<0.0001, 

two-way ANOVA, Figure 5.4A). The inhibition following 250µM LPI was 

significantly greater than at 150µM demonstrating a concentration-dependent 

effect (p<0.05, two-way ANOVA, Figure 5.4A). In saline rats, the 

administration of 150µM and 250µM LPI also significantly attenuated knee 

afferent mechanically evoked responses compared to control (p<0.0001, two-

way ANOVA, Figure 5.4B) in a concentration-dependent manner (p<0.0001, 

two-way ANOVA, Figure 5.4B).  
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Figure 5.4. Effect of LPI on mechanically-evoked responses of knee afferent 

nociceptors in MIA (n=9) and saline (n=8) rats. There was a significant 

inhibition of knee joint nociceptor mechanically-evoked responses in (A) MIA 

A 

B 
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and B) saline rats. Data are mean evoked responses ± SEM. 
***

p<0.001, two-

way ANOVA.    

 

Figure 5.5 illustrates the inhibitory effect of LPI (150 µM and 250µM) on 2g 

and 15g mechanically-evoked responses of knee joint afferent nociceptors over 

time in MIA rats. Evoked responses were typically reduced by 15-20 minutes 

and remained inhibited for the duration of the experiment.  

 

Figure 5.6 illustrates the timecourse of the inhibitory effects of LPI (150 µM 

and 250µM) on 2g and 15g mechanically-evoked responses of knee joint 

afferent nociceptors in saline rats.  In response to a 2g vF monofilament, 

evoked responses were typically reduced by 0-5 minutes while in response to a 

15g vF monofilament, evoked responses were inhibited for the duration of the 

experiment.  
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Figure 5.5. Time course of the inhibitory effect of LPI on mechanically-

evoked responses of joint nociceptors in MIA rats. Inhibitory effects of LPI in 

MIA rats over an hour recording period for each dose of LPI, at a low (2g) (A) 

A 

B 
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and high (15g) (B) vF monofilament. Data presented as the average rate of 

firing for each vF monofilament train ± SEM. 
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Figure 5.6. Time course of the inhibitory effect of LPI on mechanically-

evoked responses of knee joint nociceptors in saline rats. The inhibitory effects 

of LPI on knee joint nociceptor responses in saline rats over an hour recording 
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period for each dose of LPI, at a low (2g) and high (15g) vF monofilament. 

Data presented as the average rate of firing for each vF monofilament train ± 

SEM.  

 

5.4.5. Comparison of the inhibitory effects of LPI on knee joint nociceptor 

mechanically-evoked responses in MIA and saline rats  

To enable a direct comparison of the magnitude of the inhibitory effects of LPI 

in MIA and saline data were normalised and expressed as % of control (Figure 

5.7). The inhibition of joint nociceptor mechanosensitivity after administration 

of both concentrations of LPI was not different in MIA-compared to saline rats 

(two-way ANOVA with Bonferroni’s Multiple Comparisons Test, Figure 5.7).  
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Figure 5.7. Direct comparison of the effect of LPI (150µM, 250µM) on joint 

nociceptor mechanically-evoked responses in MIA (n = 9) and saline (n = 8) 

rats as expressed as % of control (represented as a dotted line at 100%). The 

inhibitory effects of LPI in MIA and saline rats were not different (two-way 

ANOVA with Bonferroni’s Multiple Comparisons Test). Data are expressed as 

mean ± SEM. 
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5.4.6. Effect of LPI on knee afferent mechanical thresholds in the MIA 

model of OA pain 

The effect of LPI on knee afferent mechanical thresholds in MIA (n = 9) and 

saline (n = 8) rats were also determined (Figure 5.8). Control (pre-drug) 

mechanical thresholds showed a tendency to be lowered in MIA rats (median = 

0.6g, range = 0.16 - 4g) compared to saline (median = 1g, range = 0.4 - 4g) 

although overall thresholds were not significantly different (Mann Whitney u-

test, Figure 5.8). In MIA rats, 150µM LPI had no effect on mechanical 

thresholds (n = 0.6g, range = 0.6 - 15g), whereas 250µM LPI significantly 

increased thresholds (median = 6g, range = 0.6 - 15g) (p<0.05, Friedman’s 

ANOVA with Dunn’s Multiple Comparisons Test, Figure 5.8).    

 

In saline rats, LPI (150 and 250µM) increased mechanical thresholds 

(significantly at 250µM, p<0.01, Friedman’s ANOVA with Dunn’s Multiple 

Comparisons Test, Figure 5.8). The effects of LPI (150 and 250µM) on 

mechanical thresholds were not different when comparing MIA and saline rats 

(Mann Whitney u-test, Figure 5.8).   
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Figure 5.8. Effect of LPI on joint nociceptor mechanical thresholds in MIA 

(n=10) and saline (n=8) rats. LPI (150 and 250µM) increased the mechanical 

thresholds of fibres in saline and MIA rats. A significant increase was observed 

in response to 250µM LPI in both groups. Horizontal lines are medians. 
* 

p < 

0.05 and 
** 

p < 0.01, Friedman’s ANOVA with Dunn’s Multiple Comparisons 

Test comparing to control mechanical thresholds.    

 

 

 

 

 



                                                                                                                      Chapter 5           Chapter 5 

 

212 
 

5.4.7. Effects of the GPR55 receptor antagonist cannabidiol on LPI-

mediated inhibition of joint nociceptor mechanically evoked responses in 

the MIA model of OA pain  

In order to investigate the involvement of GPR55 in the effects of  LPI on joint 

nociceptor mechanosensitivity LPI effects of pre-administration of cannabidiol 

on LPI (250µM)-mediated inhibition of joint nociceptor  mechanical evoked 

responses was studied in MIA (n = 6) and saline (n = 8) rats (Figure 5.9A & 

B). Pre-administration of cannabidiol (50µg/100µl) completely blocked the 

inhibitory effects of LPI (250µM) on joint nociceptor mechanically-evoked 

responses in both MIA and saline rats; post-LPI responses were not 

significantly different when compared to control (pre-LPI) responses (recorded 

60 minutes post-cannabidiol) in both groups (two-way ANOVA, Figure 5.9A 

& B).    
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Figure 5.9. Effect of cannabidiol (50µg/100µl) on LPI (250µM)-mediated 

inhibition of joint nociceptor mechanically-evoked responses in MIA (n = 6) 

and saline-(n = 8) rats. LPI had no significant effect on mechanically-evoked 

A 

B 
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responses in MIA (A) and saline (B) rats compared to control responses 

(recorded 60 minutes post-cannabidiol). Data are expressed as mean evoked 

responses ± SEM. p>0.05, two-way ANOVA.  

 

5.4.8. Effect of cannabidiol on joint nociceptor mechanically-evoked 

responses in the MIA model of OA pain 

In order the examine whether GPR55 endogenous tone modulates joint 

nociceptor mechanosensitivity following the development of MIA-induced OA 

pain the effects of peripheral administration of cannabidiol (50µg/100µl) on 

joint nociceptor mechanically-evoked responses was investigated in MIA (n = 

9) and saline (n = 9) rats (Figure 5.10).. Cannabidiol alone had no effect on 

responses compared to control (pre-cannabidiol) in both MIA or saline rats 

(two-way ANOVA, Figure 5.1A & B).    
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Figure 5.10. Effects of cannabidiol (50µg/100µl) on joint nociceptor 

mechanically-evoked responses in MIA (n = 9) and saline (n = 9) rats. There 

was no significant effect of cannabidiol on responses in MIA (A) and saline 

A 

B 
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(B) rats. Data are expressed as mean evoked responses ± SEM. Two-way 

ANOVA.  

 

5.4.10. Effects of LPI on mean arterial blood pressure 

Mean arterial blood pressure (MAP) was measured throughout the recording 

protocol (including during LPI administration) via a cannula inserted into the 

carotid artery to ascertain whether any effects of LPI on knee afferent 

nociceptor function are related to effects on blood pressure. LPI had no effect 

on MAP in both MIA and saline rats which remained stable throughout the 

period of vF monofilament stimulation. Example raw MAP recordings pre- and 

post-LPI are included in Figure 5.11.   
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Figure 5.11. Effect of LPI on blood pressure recordings in MIA (A) and saline 

(B) rats. Representative raw blood pressure traces demonstrating the lack of 

effect of LPI in an MIA and a saline rat. 
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5.5. Discussion  

The work presented in this chapter investigated whether the GPR55 receptor 

has a role in the modulation of joint nociceptor mechanosensitivity during 

established pain in the MIA model of knee OA. Effects of the endogenous 

GPR55 receptor agonist LPI on the mechanosensitivity s of joint nociceptors in 

MIA and saline rats were examined using electrophysiological recordings of 

mechanically-evoked neuronal responses taken from the saphenous nerve in 

vivo. Peripheral administration of LPI inhibited the mechanosensitivity of joint 

nociceptors in both groups of rats reducing the magnitude of mechanically-

evoked firing rates and increasing mechanical thresholds. These data indicate 

that the inhibitory effects of peripherally administered LPI are maintained 

during established OA pain. The involvement of the GPR55 receptor in 

mediating the inhibitory effects of peripheral administration of LPI was 

confirmed using the GPR55 receptor antagonist cannabidiol (Whyte et al., 

2009). Pre-administration of cannabidiol entirely prevented the inhibitory 

effects of LPI in both MIA and saline rats. These data indicate that LPI has a 

novel anti-nociceptive effect on joint nociceptor mechanosensitivity in the 

MIA model of knee OA and that the inhibitory effects of GPR55 receptor 

activation in vivo are maintained during established OA pain.  

 

The findings of an anti-nociceptive role for the GPR55 receptor on knee 

afferent nociceptors in the MIA model are in agreement with the data presented 

in chapter 4 from naïve rats as well as the McDougall study that demonstrated 

an anti-nociceptive effect of the synthetic GPR55 receptor agonist O-1602 on 

C-fibre knee afferent nociceptors in a model of acute joint inflammation 
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(Schuelert and McDougall, 2011). The effects of GPR55 receptor activation 

following the development of chronic OA pain have not previously been 

reported. Consistent with data presented in chapter 4 from naïve rats, the 

categorisation of recorded fibres studied in this chapter demonstrated that LPI 

inhibits the mechanosensitivity of both Aδ- and C-fibres in both MIA- and 

saline treated rats , while O-1602 had no effect on the firing rate of Aδ-fibres 

(Schuelert and McDougall, 2011). Possible reasons accounting for this 

discrepancy were discussed in chapter 4.  

 

An inflammatory component has been implicated to contribute to pain in the 

MIA model (Bove et al., 2003, Fernihough et al., 2004, Ivanavicius et al., 

2007, Schuelert and McDougall, 2009, Mapp et al., 2013, Bullock et al., 2014). 

Several characteristics of inflammatory pain have been demonstrated including 

an increase in knee joint diameter, expansion of the synovial membrane and 

infiltration of the synovium by inflammatory cells such as macrophages (Bove 

et al., 2003, Fernihough et al., 2004, Mapp et al., 2013). Electrophysiological 

changes in the Kaolin/Carrageenan model of inflammatory arthritis including 

Aδ and C-type fibres developing increased mechanosensitivity and 

spontaneous activity (Schaible and Schmidt, 1985) are similar to the OA-

induced peripheral sensitization reported here.  

 

Up-regulation of inflammatory mediators (e.g. IL-1, IL1β, IL-6, IL-10, NGF) 

known to modulate nociceptor sensitivity occurs in the MIA model (Orita et 

al., 2011, Bowles et al., 2014). Blockade of the CGRP receptor reversed the 
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increased joint nociceptor sensitization in the MIA model (Bullock et al., 

2014). Clinically used anti-inflammatory drugs including diclofenac (Schuelert 

and McDougall, 2009), naproxen, rofecoxib and acetaminophen (Bove et al., 

2003, Ivanavicius et al., 2007) have an analgesic effect on pain behaviour and 

knee afferent mechanosensitivity in the MIA model. Studies have indicated a 

modulatory role for GPR55 in inflammatory pain as genetic deletion in mice 

abolished mechanical hyperalgesia (Staton et al., 2008) and receptor activation 

attenuated C fibre mechanosensitivity in an acute model of joint inflammation 

(Schuelert and McDougall, 2011).  

 

 

The MIA model is also thought to have a neuropathic component (Ivanavicius 

et al., 2007, Ferreira-Gomes et al., 2010, Orita et al., 2011, Thakur et al., 2012).  

Up-regulation of markers of nerve injury are known to occur in the DRG 

following MIA, including the ATF-3 (Ivanavicius et al., 2007, Ferreira-Gomes 

et al., 2010, Orita et al., 2011, Thakur et al., 2012), neuropeptide Y (Ferreira-

Gomes et al., 2010) and growth associated peptide-43 (Ferreira-Gomes et al., 

2010, Orita et al., 2011). Further evidence of the contribution of nerve injury to 

pain in the MIA model can be observed by the analgesic effect of gabapentin 

(Ivanavicius et al., 2007, Vonsy et al., 2009) and amitriptyline (Ivanavicius et 

al., 2007) which are used clinically to treat neuropathic pain. A role for the 

GPR55 receptor in neuropathic pain is evidenced by the absence of hind paw 

mechanical hyperalgesia following sciatic nerve ligation in GPR55 receptor 

knockout mice (Staton et al., 2008).  Although this pro-nociceptive role is in 

contrast to the inhibition of knee joint nociceptor mechanosensitivity 
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demonstrated here, an anti-nociceptive role in modulating the response to  

nerve injury in the MIA model, could be explained by a tissue-specific role of 

GPR55 in articular (Schuelert and McDougall, 2011) versus cutaneous 

(Gangadharan et al., 2013)  nociceptors.  

 

 

Cannabidiol alone had no effect on knee afferent mechanically-evoked 

responses in rats injected with MIA or saline indicating that the GPR55 

receptor does not have a basal modulatory role on knee joint nociception under 

non-pathological conditions (chapter 4) and this remains true following the 

development of OA. The absence of a tonic modulatory role in saline-injected 

(normal) rats is in agreement with data presented in chapter 4 and with 

published literature (Staton et al., 2008). However, the genetic deletion of 

GPR55 prevented the development of mechanical hyperalgesia in an CFA 

model of cutaneous inflammation and a partial nerve ligation model of 

neuropathic pain indicating that the GPR55 receptor develops a tonic role 

under certain pathological pain conditions, the present data here indicates that 

the same cannot be said for MIA-induced OA, at least at the level of the joint 

and under the conditions of this study.  

 

 

In summary, the data presented in this chapter identifies a novel peripheral 

anti-nociceptive role for the endogenous lysophospholipid LPI in the MIA 

model of OA pain. These findings support and extend data presented in chapter 
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4 and those already published (Schuelert and McDougall, 2011) that indicate 

an anti-nociceptive role that appears to be specific for joint afferent 

nociceptors. These data demonstrating an inhibition of OA-induced peripheral 

sensitization suggest that local administration of GPR55 receptor agonists may 

have potential to treat the pain of established OA and this warrants further 

investigation.  
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                     Chapter Six 

Immunohistochemical investigations  

of GPR55 expression in L3-L5  

dorsal root ganglia in the rat 
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6.1. Introduction 

In vivo electrophysiological data presented in chapters 4 and 5 (see Sections 

4.4.2 and 5.4.4) demonstrated that peripheral administration of the GPR55 

agonist LPI to the ipsilateral limb attenuates mechanically-evoked responses of 

knee joint nociceptors in naïve, MIA and saline rats. Experiments with the 

putative GPR55 receptor antagonist cannabidiol (see Chapter 4, Section 4.4.3 

and Chapter 5, Section 5.4.7) indicate that these inhibitory effects are mediated 

by activation of peripherally expressed GPR55 receptors. Since the 

electrophysiological effects of peripherally administered LPI were studied in 

vivo, it is not known on what tissues of the joint (neuronal or non-neuronal) the 

effects of LPI were mediated. Previous published findings in the mouse suggest 

that GPR55 receptors are expressed on large, medium and small sensory 

neurones of the DRG (Lauckner et al., 2008). The work presented in this 

chapter sought to investigate whether the in vivo electrophysiological effects of 

LPI reported in this thesis could be mediated via a direct action on the 

peripheral terminals of joint innervating afferent nociceptors.  

 

 

6.1.1. Evidence supporting sensory neuronal GPR55 receptor expression 

A small number of published studies have demonstrated a role for the GPR55 

receptor in the modulation of nociception with reports of both pro- (Staton et 

al., 2008, Breen et al., 2012, Gangadharan et al., 2013) and anti-nociceptive 

roles (Schuelert and McDougall, 2011). Behaviourally, activation of peripheral 

GPR55 induces an increase in sensitivity to non-noxious and noxious 

mechanical stimuli which is indicative of allodynia and hyperalgesia, 
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respectively (Gangadharan et al., 2013). Electrophysiological studies in the rat 

(in vivo teased nerve) (Schuelert and McDougall, 2011) and mouse (skin nerve  

preparation) (Gangadharan et al., 2013) have demonstrated effects of GPR55 

activation on sensory neurone responses. Local GPR55 receptor activation in 

vivo has previously been shown to have an inhibitory influence on  knee joint 

afferent nociceptor mechanosensitivity in a rat model of acute joint 

inflammation (Schuelert and McDougall, 2011) findings corroborated and 

extended by data presented in chapters 4 and 5. Sensitizing effects of LPI on 

A-fibre cutaneous afferents of the mouse in a skin-nerve preparation were 

found to be partially mediated via GPR55 (Gangadharan et al., 2013). These 

behavioural and electrophysiological effects of GPR55 activation on sensory 

afferents in both in vivo and ex vivo preparations are in line with responses to 

GPR55 receptor activation on sensory neurones in vitro (Lauckner et al., 2008, 

Gangadharan et al., 2013). In cultured DRG neurones, LPI increases the 

phosphorylation of ERK1/2, an effect absent in cultured DRG neurones from 

GPR55 knockout mice (Gangadharan et al., 2013). LPI-evoked an increase in 

intracellular Ca
2+

 levels in large diameter DRG neurones in vitro (Lauckner et 

al., 2008). Collectively, these findings suggest that GPR55 receptors are 

expressed by sensory neurones of the DRG and that the effects of LPI reported 

in this thesis could be mediated by GPR55 expressed by knee joint afferent 

nociceptors in addition to possible expression by other tissues of the joint.    

 

 

Direct immunohistochemical evidence of GPR55 expression on DRG neurones 

is limited. In DRG neurones dissociated from naïve BALB/c mice, high levels 
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of GPR55 receptor expression were found on large diameter cells (>35µm) 

with low levels of expression in small cells (Lauckner et al., 2008). To date 

there has been no published studies that have investigated GPR55 expression in 

rat DRG neurones and whether DRGs at levels that innervate the knee joint 

(L3-L5) (Salo and Theriault, 1997) express GPR55 is currently unknown.  

 

 

6.2. Aims and objectives 

The overall aim of the work presented in this chapter was to establish an 

immunohistochemistry protocol to enable the investigation of GPR55 protein 

expression in rat DRG neurones at the levels that innervate the knee. The 

primary objective of this work was to increase our understanding of the 

mechanisms of action of LPI and of GPR55 activation on knee afferent 

mechanosensitivity. To this end, immunohistochemistry protocols using an 

avidin-biotin complex (ABC) and hydrogen peroxidase (HRP) approach were 

developed.  
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6.3. Methods 

6.3.1. DRG isolation 

Rats were deeply anaesthetised with sodium pentobarbital (120mg/kg, i.p, 

Sigma, UK) and transcardially perfused with at least 150ml each of ice cold 

PBS followed by 4% paraformaldehyde (PFA) and left and right L3-L5 DRGs 

were removed. Lumbar DRGs were identified based on previous dissections of 

the sciatic nerve and originating DRGs (L4-6) (Decosterd and Woolf, 2000). 

Based on this, L5 was consistently found to be at the level of the pelvic horn 

allowing caudal and rostral DRGs to be identified. The spinal cord of 10 day 

old (p10) male Sprague Dawley rats was a gift from Dr Gareth Hathway 

(University of Nottingham) and was utilized as a positive control as GPR55 

expression had been demonstrated previously in this tissue (Dr Gareth 

Hathway, personal communication).  
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6.3.2. DRG and p10 spinal cord processing and sectioning 

Dissected L3-L5 DRGs and p10 spinal cord were post-fixed overnight in 4% 

PFA and then cryoprotected overnight in 30% sucrose (at 4°C). Following this, 

DRGs and p10 spinal cord were rapidly frozen in optimum cutting temperature 

(OCT) compound (VWR, UK) filled plastic moulds (Dispomould, 24 x 37 x 

5mm) using liquid nitrogen chilled isopentane (Fischer Scientific, UK). 

Moulds were filled with OCT compound and 3 adjacent DRGs or 2 sections of 

p10 spinal cord taken from the lumbar enlargement were placed into each 

mould using a paint brush, separated such that they could be cut out of the 

block individually. Moulds were labelled so that each individual DRG or p10 

spinal cord could be identified. Following equilibrium of the DRGs and p10 

spinal cord in the OCT (2-5 minutes), moulds were carefully lowered into 

isopentane that had been chilled over liquid nitrogen. Freezing of the moulds 

was rapid (<1 minute) and once the OCT had frozen completely, blocks were 

wrapped in parafilm and tin foil, labelled and stored at -80°C until sectioning. 

DRGs and p10 spinal cord were sectioned sequentially at 10µm onto 

SuperFrost Plus slides (6 sections per slide) (Fischer Scientific, UK) using a 

Bright OFT5000 cryostat (Bright Instruments, Cambridge, UK) with a chamber 

temperature of -30°C and a specimen temperature of -26°C. Pairs of slides that 

contained sectioned DRG or p10 spinal cord were wrapped in parafilm and 

aluminium foil and stored at -20°C until use.  
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6.3.3.  Primary and secondary antibodies 

Antibodies were aliquoted into single use volumes upon arrival and stored at -

20°C prior to use. Details of antibodies used can be found in Table 6.1 below.  
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Target Species 

Specificity 

Host Dilution Incubation 

Time 

Supplier Cat. 

Number 

TRPV1  

Channel 

Human, rat Guinea pig 1:1500 48 hours Neuromics, 

USA 

GP14100 

GPR55 

Receptor 

Rat Rabbit 1:1000-1:10000 24-96 hours Professor Ken 

Mackie, 

University of 

Indiana, USA 

N/A (Gift) 

NeuN Human, rat and 

mouse 

Rabbit 1:300 1 hour Millipore, UK ABN78 

Anti-TRPV1 

Secondary 

Guinea pig Goat 1:300 2 hours Molecular Probes, 

UK 

A-11073 

Anti-GPR55 

Secondary 

Rabbit Goat 1:400 2 hours Vector 

Laboratories, UK 

AK-500 

Anti-GPR55 

Secondary 

(HRP) 

Rabbit Goat 1:100 1 hour Molecular Probes, 

UK 

T-20922 

Table 6.1. Details of primary and secondary antibodies used. 
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6.3.4. TRPV1 immunohistochemistry 

Immunohistochemistry training was carried out by Dr Rebecca Chapman 

initially using a TRPV1 antibody used in house (Kelly et al., 2013a) for which 

an optimised protocol for use in DRGs had already been developed. L3-L5 

DRG sections were blocked with 1% blocking solution (1ml 0.1M PBS, 3µl 

triton X-100, 30µl donkey serum) for 1 hour and then incubated with a guinea 

pig polyclonal anti-TRPV1 antibody (1:1500; Neuromics, USA) for 48 hours 

at 4°C. Following 3 x 10 minute washes with PBS, sections were incubated for 

2 hours with a donkey anti-guinea pig secondary antibody (1:300; Molecular 

Probes, UK). Slides were washed with PBS for 5 x 10 minutes then mounted 

and coverslipped with Fluoromount (Sigma, UK). A no primary antibody 

negative control (incubation with TTBS) slide was included. Apart from the 

primary antibody incubation, all other incubations took place at room 

temperature and the antibody was prepared in TTBS.   

 

 

6.3.5. GPR55 immunohistochemistry: ABC method 

A schematic is included below to illustrate the principles of the ABC method 

used (Figure 6.1). Slides containing L3-L5 DRG and p10 spinal cord sections 

were incubated with 1% blocking solution (see Section 6.3.4 above) overnight 

at 4°C. Sections were incubated with a rabbit polyclonal anti-GPR55 antibody 

(1:10000) (generous gift from Dr Ken Mackie, Indiana University, USA, 

supplied by Dr Gareth Hathway) for 72 hours at 4°C. The primary antibody 

binds to the target antigen via immunoaffinity (Figure 6.1). Following primary 

antibody incubation, slides were washed with 0.1M PBS for 3 x 10 minutes. 
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Sections were incubated with a biotinylated goat anti-rabbit secondary 

antibody (1:400; Vector Laboratories, UK) for 90 minutes at room 

temperature. The biotinylated secondary antibody detects the target antigen by 

binding to the primary antibody (Figure 6.1). Sections were incubated with 

reagents A (Avidin DH) and B (biotinylated alkaline phosphatase H) (4µl of 

each in 1ml TTBS; Vector Laboratories, UK) for 30 minutes at room 

temperature. The preformed ABC covalently binds to the biotinylated 

secondary antibody (Figure 6.1). Following 3 x 10 minute washes with PBS, 

sections were incubated with tyramide solution (1:75; Perkin Elmer, UK) for 7 

minutes at room temperature. The alkaline phosphatase in the ABC activates 

multiple copies of the Alexa Fluor 488-labeled tyramide derivative and the 

resultant highly reactive, short-lived tyramide radicals covalently couple to 

nucleophilic residues in the vicinity of the alkaline phosphatase-target 

interaction site (Figure 6.1). As a result, there is a minimal diffusion-related 

loss of signal localization. Sections were washed with PBS for 2 x 15 minutes. 

Sections were incubated with FITC avidin (1:600; Invitrogen, UK) and then 

washed with PBS for 5 x 10 minutes. FITC avidin binds to the biotinylated 

antibody and is a further staining step to increase the sensitivity of antigen 

detection (Figure 6.1). Slides were mounted and coverslipped with 

Fluoromount (Sigma, UK).  A no primary antibody negative control 

(incubation with TTBS) slide was included.     
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Figure 6.1. Schematic illustration of the ABC method.   
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A number of subsequent studies were conducted with the aim of  optimising 

the detected immunoreactivity by varying either a) the primary antibody 

incubation period or b) the primary antibody dilution factor. Tissue sections 

were incubated with different concentrations of the anti-GPR55 antibody 

(1:5000, 1:2500 and 1:1500) for 48 hours andin a separate study, sections were 

incubated with the rabbit polyclonal anti-GPR55 antibody (1:1000) for 24, 48 

or 72 hours at room temperature.  

 

 

In these latter experiments autofluorescence was detected and further studies 

were conducted with the aim of determining its cause (see Section 6.4.5).  

Sections were either a) incubated with TTBS after incubation with the rabbit 

polyclonal anti-GPR55 antibody (1:2500) for 48 hours at room temperature or 

b) incubated with TTBS instead of the primary antibody for 48 hours at room 

temperature then underwent the secondary antibody steps described above.  

 

 

6.3.6. GPR55 immunohistochemistry: HRP method 

In order to overcome problems associated with tissue autofluorescence when 

using the ABC method, HRP was utilised to detect antigen-antibody binding. 

A schematic is included below to illustrate the principles of the HRP method 

used (Figure 6.2).  L3-L5 DRG and p10 spinal cord sections were incubated 

with a 10mg/ml blocking solution for 1 hour at room temperature or 4°C.  

Tissue sections were incubated with the rabbit polyclonal anti-GPR55 antibody 

(1:1000) (see above) for 72 hours at room temperature. The primary antibody 
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binds to the target antigen via immunoaffinity (Figure 6.2). Slides were then 

washed with PBS for 3 x 10 minutes then incubated with a HRP-conjugated 

goat anti-rabbit secondary antibody (1:100; Molecular Probes, UK) for 60 

minutes at room temperature. The HRP-conjugated secondary antibody detects 

the target antigen by bindings to the primary antibody (Figure 6.2). Following 

washing of sections with PBS for 3 x 10 minutes, they were incubated with 

tyramide working solution (1:100; Molecular Probes, UK) for 10 minutes at 

room temperature. Slides were washed with PBS for 3 x 10 minutes then 

mounted and coverslipped with Fluoromount (Sigma). A no primary antibody 

negative control (incubation with TTBS) slide was included.     
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Figure 6.2. Schematic illustration of HRP method.  
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6.3.7. NeuN immunohistochemistry 

NeuN immunohistochemistry was carried out to check that the HRP kit used in 

experiments described in section 6.3.5 was viable, using a NeuN primary 

antibody protocol that had already been optimised in house. L3-L5 DRG 

sections were blocked with 1% blocking solution (1ml 0.1M PBS, 3µl triton 

X-100, 30µl goat serum) for 1 hour and then incubated with a rabbit polyclonal 

anti-NeuN antibody (1:300; Millipore, UK) for 1 hour at 4°C. Following 3 x 

10 minute washes with PBS, sections were incubated with a goat anti-rabbit 

HRP-conjugated secondary antibody (1:100), incubated for 1 hour. Sections 

were washed for 3 x 10 minutes with PBS before and after 10 minute 

incubation with tyramide working solution (1:100). Slides were mounted and 

coverslipped with Fluoromount (Sigma). All incubations took place at room 

temperature and antibodies were prepared in TTBS.  

 

 

6.3.8. Image acquisition and analysis 

Images of DRGs were captured on a Leica DM4000B fluorescence microscope 

(TRITC filter: NeuN; FITC filter: GPR55). Images were acquired using 

SimplePCI software to control a Mamatsu Orca C4692-92 camera. 

Immunoreactive cells were determined subjectively based on the intensity of 

staining compared to the background. Cell size analysis was carried out using 

Image J software.   
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6.4. Results 

6.4.1. TRPV1 immunoreactivity in L3-L5 DRGs  

Training in the basic principles of immunohistochemistry was carried out using 

an optimised TRPV1 immunohistochemistry protocol. Immunohistochemical 

staining for the TRPV1 channel was detected on small-sized L4 DRG neuronal 

cell bodies (Figure 6.3A & B). TRPV1 expression was primarily distributed 

within the cytoplasm and cell membrane of neurones (Figure 6.3B). Omission 

of the primary antibody for TRPV1 resulted in a lack of staining in DRG 

sections (Figure 6.3C), confirming the specificity of the primary antibody and 

of the immunoreactivity observed. These findings are consistent with previous 

studies that have examined identified TRPV1 expression in DRG neurones 

(Greffrath et al., 2003, Yu et al., 2008, Zacharova and Palecek, 2009) and also 

validates my general immunohistochemical technique.  
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Figure 6.3. TRPV1 immunoreactivity was detected in small sized L4 DRG 

neurones. (A) A representative L4 DRG section that demonstrates 

immunoreactivity for TRPV1 was acquired at x10 and (B) x20 magnifications 

(white arrows). (C) Negative control sections did not demonstrate TRPV1 

immunoreactivity.  
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6.4.2. GPR55 immunoreactivity in L3-L5 DRG neurones and p10 rat 

spinal cord: ABC method 

An immunohistochemistry protocol using the ABC method was developed 

with the aim of determining whether the GPR55 receptor is expressed in L3-L5 

DRG neurone cell bodies. Rat p10 spinal cord was used as a positive control. 

Immunohistochemical staining for the GPR55 receptor was detected in L3-L5 

DRG neuronal cell bodies following incubation with a 1:10000 concentration 

of the GPR55 primary antibody for 96 hours at 4°C using an ABC method 

(Figure 6.4A & B). GPR55 was distributed within the cytoplasm and at the cell 

membrane of small, medium and large neurones. GPR55 did not appear to be 

expressed in the nucleus. As expected, incubation of the positive control p10 

spinal cord sections with the primary antibody for GPR55 resulted in staining 

(Figure 6.4D) which confirms that the staining protocol is viable. Omission of 

the primary antibody for GPR55 resulted in a lack of staining in DRG sections 

(Figure 6.4C) and p10 spinal cord (Figure 6.4E), confirming the specificity of 

the primary antibody and of the immunoreactivity observed.  
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Figure 6.4. GPR55 immunoreactivity was detected in L3-L5 DRG neurones 

and p10 spinal cord using an ABC method. (A) A representative L3-L5 DRG 

section that demonstrates immunoreactivity for GPR55 (white arrows) was 

acquired at x10 and (B) x20 magnifications. (C) L3-L5 DRG sections in which 

the primary antibody was omitted did not demonstrate staining. (D) A 

representative p10 spinal cord section showing staining for GPR55 (white 

arrows) and (E) no staining in the absence of the GPR55 antibody.  Scale bar = 

17µm.  
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6.4.3. Optimising the ABC immunohistochemistry staining method: effect 

of varying GPR55 primary antibody incubation period 

A further experiment was conducted with the aim of optimising the GPR55 

receptor immunohistochemistry protocol by determining the optimum 

incubation period for the GPR55 primary antibody. Sections of L3-L5 DRGs 

were incubated with a 1:10000 concentration of the primary antibody for either 

24, 48 or 72 hours at room temperature. However, unexpectedly (given the 

initial positive staining response observed, see above Figure 6.4) a lack of 

positive staining was found after incubation with the primary antibody and 

images of sections looked similar to the negative control sections.   
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6.4.4. Optimising the ABC immunohistochemistry staining method: effects 

of varying GPR55 primary antibody concentration 

Due to the unexpected absence of staining in the previous experiment, the next 

logical approach was to determine if increasing the concentration of the 

GPR55 receptor primary antibody (from 1:10000) would result in the detection 

of GPR55 immunoreactivity as initially observed (Section 6.4.2. and Figure 

6.4). Sections of L3-L5 DRG were incubated with the GPR55 primary 

antibody at concentrations of 1:5000, 1:2500 or 1:1500 for 48 hours at room 

temperature. Under these conditions, immunoreactivity was observed at all 

concentrations of primary antibody (Figure 6.5A - F) but was also present on 

negative control slides (Figure 6.5G - H) suggesting that the staining observed 

was not due to GPR55 receptor expression but might be attributed to 

autofluorescence. Similar encountered issues in the Hathway lab (School of 

Life Sciences) in experiments using this primary antibody on p10 spinal cord 

indicated that the detected immunofluorescence may be attributable to 

autofluorescence.  
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Figure 6.5. Fluorescence was present after incubation of L3-L5 DRG sections. 

GPR55 primary antibody concentrations of 1:5000 (A-B), 1:2500 (C-D) or 

1:1500 (E-F) (white arrows) as well as in negative control sections (G-H) 

(yellow arrows). Images were acquired at x10 (A, C, E, G) and x20 (B, D, F, 

H) magnifications.   
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6.4.5. Determination of the cause of autofluorescence 

The next experiment aimed to determine the cause of autofluorescence. To 

determine whether the secondary antibody steps were the cause, L3-L5 DRG 

sections were incubated with a 1:2500 concentration of the primary antibody 

for 48 hours at room temperature and the secondary antibody steps were 

omitted (Figure 6.6A & B) while the remaining slides were incubated with 

TTBS instead of the primary antibody but underwent the secondary antibody 

steps as described above (section 6.3.5). Surprisingly, autofluorescence was 

encountered under all conditions, and the cause was not identified from this 

experiment.  
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Figure 6.6. Determination of the cause of autofluorescence. L3-L5 DRG 

neurones were incubated with a 1:2500 concentration of the GPR55 receptor 

primary antibody and were incubated with TTBS alone during the secondary 

antibody incubations (A and B). Separate sections were incubated with TTBS 

alone and underwent incubation with the secondary antibody (C and D).  
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6.4.6. Establishing the HRP method using a NeuN primary antibody 

Given the problems associated with autofluorescence using the ABC method 

described above, further experiments were undertaken using an HRP approach 

in an attempt to avoid this issue. Due to the small amount of GPR55 primary 

antibody available, the HRP staining protocol was tested using a NeuN 

primary antibody that had been successfully used in our lab previously 

(Bullock et al., 2014). As expected, L3-L5 DRG neurone cell bodies (all sizes) 

(Figure 6.7A) and p10 spinal cord (Figure 6.7B) demonstrated NeuN 

immunoreactivity. Omission of the primary antibody for NeuN resulted in a 

lack of staining in DRG and spinal cord sections, confirming the specificity of 

the primary antibody and of the immunoreactivity observed (Figure 6.7C & 

D). This experiment confirmed that the HRP kit was viable to investigate 

GPR55 receptor expression on L3-L5 DRG neurones.  
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Figure 6.7. NeuN immunoreactivity was detected in L3-L5 DRG and p10 

spinal cord. (A) A representative image of a L3-L5 DRG and (C) p10 spinal 

cord section demonstrating immunoreactivity for NeuN. (B) Negative control 

L3-L5 DRG and (D) p10 spinal cord sections did not show NeuN 

immunoreactivity. Images were acquired at a magnification of x10.  
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6.4.7. Detection of GPR55 immunoreactivity using an HRP method of 

immunohistochemistry 

The HRP method had been used successfully to detect GPR55 expression in 

p10 spinal cord (Dr Gareth Hathway, personal communication). In initial 

experiments using the HRP method no GPR55 staining was observed in L3-L5 

DRG neurone cell bodies or p10 spinal cord incubated with a 1:1000 

concentration of the GPR55 primary antibody for 72 hours at a temperature of 

4°C.   

 

 

The GPR55 receptor immunohistochemistry protocol was repeated using the 

HRP method, incubating L3-L5 DRG sections with a 1:1000 concentration of 

the GPR55 primary antibody for 72 hours at room temperature.  Consistent 

with previous initial observations (see section 6.4.2 and figure 6.4) GPR55 

receptor immunoreactivity was detected in L3-L5 DRGs (Figure 6.8). In 

general, GPR55 expression was primarily distributed within the cytoplasm and 

around the perimeter of some DRG cells (Figure 6.8A & B). GPR55 did not 

appear to be expressed in the nucleus. GPR55 immunoreactivity appeared to be 

associated with both large (51.82±1.95µm) and small to medium 

(23.86±1.24µm) DRG neurones. Despite this, the pattern of staining appeared 

to differ between the two types of cell; with some small to medium cells 

exhibiting high levels of immunoreactivity throughout the cytoplasm and some 

large cells exhibiting immunoreactivity around the perimeter of the cell in what 

could be satellite glial cells (SGCs) and lower levels within the cytoplasm of 

the neurone. Omission of the primary antibodies for GPR55 resulted in a lack 
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of staining in DRG sections, confirming the specificity of the primary 

antibodies and of the immunoreactivity observed (Figure 6.8 C&D).  

 

 

      

       

 

Figure 6.8. GPR55 immunoreactivity was detected in L3-L5 DRGs. (A) A 

representative L3-L5 DRG section demonstrating immunoreactivity for 

GPR55 with images acquired at a magnification of x10 and (B) x20 (white 

arrows). (C) No immunoreactivity was observed on negative control DRG 

sections with images acquired at a magnification of x10 and (D) x20.  
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6.5. Discussion 

The work outlined in this thesis chapter has demonstrated the expression of the 

GPR55 receptor in L3-L5 (knee innervating) DRGs from naïve rats. Incubation 

of rat L3-L5 DRGs with a polyclonal GPR55 receptor primary antibody 

resulted in immunoreactivity that was associated with both large and medium 

to small DRG neurones and the included negative controls confirmed the 

specificity of the observed immunoreactivity.  

 

These data are the first demonstration of GPR55 receptor protein expression in 

rat DRG neurones and support and extend a previous study demonstrating 

GPR55 receptor expression in large and small mouse DRG neurones 

(Lauckner et al., 2008). The Lauckner study is the only other study that 

investigated the expression of GPR55 in DRGs and reported that the receptor 

was preferentially expressed in large neurones with low levels in small cells 

which contrasts with the findings reported here. Differences in the reported 

expression could be due to species differences (rat vs mouse), differences in 

DRG levels, GPR55 primary antibody, or immunohistochemistry protocol 

used. Expression of GPR55 in small and medium sized rat DRG neurones is 

consistent with the electrophysiological effects of peripheral LPI on both C- 

and Aδ-fibre knee joint nociceptors reported in chapters 4 and 5. Moreover, 

this immunohistochemical evidence supports direct effect of LPI on knee joint 

nociceptor peripheral terminals, although GPR55 receptor 

immunohistochemistry was not combined with retrograde labelling of knee 

joint afferents. As such expression by these neurones cannot be unequivocally 

confirmed.  
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Initial immunohistochemistry training carried out using a TRPV1 

immunohistochemistry protocol optimised in house confirmed the expression 

of the TRPV1 channel with a distribution consistent with the current literature 

(Fernihough et al., 2005). These findings meant that I could next investigate 

GPR55 expression with a GPR55 receptor antibody not previously used on 

DRGs confident in the validity of my general technique. GPR55 

immunoreactivity was initially investigated using an ABC based method and 

produced encouraging results (described above), although some optimisation 

was required. These optimisation experiments encountered problems and 

although GPR55 immunoreactivity was initially detected using the ABC 

method, subsequent optimisation experiments (varying incubation periods and 

primary antibody concentrations) all failed to detect GPR55 immunoreactivity 

in L3-L5 DRG neurones. Fluorescence was present in both sections that had 

been incubated with the primary antibody and those used as negative control 

sections not exposed to the primary antibody, an effect thought to be attributed 

to autofluorescence.  The Hathway laboratory had been successful in 

overcoming the issue of autofluorescence by using a HRP 

immunohistochemistry protocol. This approach was then adopted for my 

studies and used successfully, detecting. GPR55 expression in L3-L5 DRG 

neurones that again ranged from small-, medium- and large- cell diameters (in 

agreement with earlier experiments using the ABC method). The 

immunoreactivity associated with large DRG neurones was located around the 

perimeter of the cell. The appearance of this staining indicated possible 

expression at the cell membrane and/or expression in SGCs. In the DRG, 

SGCs wrap completely around sensory neurones, with each neurone being 
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surrounded by several SGCs (Hanani, 2005). The neurone and its surrounding 

SGCs are said to form a distinct morphological and functional unit (Hanani, 

2005). Published findings indicate that SGCs do not merely provide 

mechanical support to the neurones as previously thought, but share many 

functions with CNS glia including being able to receive and transmit chemical 

signals and are known to express various receptors for neurochemicals 

(Hanani, 2005). Given these characteristics, SGCs are likely to participate in 

signal processing and transmission in sensory ganglia and are thought to play a 

role during chronic pain states (Liu et al., 2012, Warwick and Hanani, 2013). 

Thus, with this in mind, the possible expression of GPR55 in SGCs of the 

DRG is intriguing. GPR55 mRNA has been demonstrated in both mouse 

primary microglia cells and in the immune cell line BV2 and its expression is 

increased in these cells following exposure to an inflammatory stimulus (Pietr 

et al., 2009). This increased GPR55 expression during microglia activation 

suggests a possible involvement in modulating inflammatory signalling. In 

fact, GPR55 is known to influence the regulation of cytokines during 

inflammatory hyperalgesia (Staton et al., 2008)   SGCs are thought to release 

cytokines, and thus influence DRG neurones expressing corresponding 

cytokine receptors. GPR55 may play a role in modulating sensory processing 

at the level of the DRG by regulating cytokine expression in SGCs. Studies 

examining GPR55 co-expression with a SGC marker, glial fibrillary acidic 

protein (GFAP) or glutamine synthetase (GS) (Hanani, 2005) would be 

required to confirm expression in these important cells. 
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As discussed above, GPR55 expression in L3-L5 DRG neurones suggests that 

the electrophysiological effects of LPI reported in chapters 4 and 5 could occur 

at least in part via a direct activation of GPR55 receptors localised on the 

peripheral terminal endings of knee joint nociceptors. However, I cannot 

exclude the possibility that an indirect effect of LPI on knee joint nociceptors 

was mediated via an activation of non-neuronal cells within the joint. For 

example mast cells are known to be expressed in both normal (Russell et al., 

2012) and inflamed (Schiltz et al., 2002) rat knee joint synovia and the 

activation of GPR55 expressed by human mast cells inhibits their 

degranulation and subsequent NGF release (Cantarella et al., 2011). I postulate 

that these cells could be a non-neuronal site of action of LPI, activation of 

which could potentially modulate the release of NGF at the level of the 

synovium (de Lange-Brokaar et al., 2012). This inhibition of NGF release 

would reduce mast cell degranulation and the release of other pro-nociceptive 

mediators (histamine, 5-HT) (Lewin et al., 1994). NGF is known to have an 

important role in joint pain mechanism, including following the development 

of MIA-induced OA  (Ashraf et al., 2013). Intra-articular injection of NGF 

induces weight bearing asymmetry (Ashraf et al., 2013) suggesting an NGF 

induced mechanical sensitization of joint nociceptors. Whether activation of 

GPR55 receptors expressed by mast cells at the level of the joint has the 

potential to reduce joint nociceptor mechanosensitivity via an inhibition of 

mast cell mediated NGF release is an intriguing possibility. Moreover whether 

these effects could account for the electrophysiological response to LPI 

reported in earlier chapters is unknown.  
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In summary, the data presented in this chapter identified a novel expression of 

the GPR55 receptor in DRG neurones that are at the level innervating the knee 

joint (L3-L5) in naïve rats. These findings suggest that the in vivo 

electrophysiological effects of LPI presented in chapters 4 and 5 could be 

mediated at least in part by GPR55 receptors expressed on the peripheral 

terminals of knee joint afferent nociceptors. However, future work using 

retrograde labelling would be required to unequivocally localise expression to 

knee joint innervating nociceptors.  
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                 Chapter Seven 

                                                    General Discussion 
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7.1. Discussion of findings 

Overall, the findings of this thesis highlight a role for the GPR55 receptor in 

the modulation of joint nociceptor mechanosensitivity and in the inhibition of 

peripheral sensitization during established OA pain behaviour in the MIA 

model. These findings provide insight into the potential of GPR55 as a novel 

analgesic target for joint pain that could have relevance for the treatment of 

OA knee pain. Electrophysiological studies have demonstrated for the first 

time that activation of peripheral GPR55 receptors by the putative endogenous 

ligand LPI inhibited the sensitivity of joint nociceptors to mechanical 

stimulation under non-pathological (naïve) conditions and in the MIA model of 

knee OA pain. This demonstration of an anti-nociceptive role of GPR55 on 

joint nociceptive inputs that is maintained during an arthritis pain state is in 

agreement with a previous study that used the synthetic agonist O1602 in an 

acute model of joint inflammation (Schuelert and McDougall, 2011). Blockade 

of LPI effects by the putative GPR55 antagonist cannabidiol confirmed an 

involvement of GPR55. LPI’s inhibitory effects were partially attenuated by 

AM281, a CB1 antagonist that also shows partial agonist activity at GPR55 

(Henstridge et al., 2009, Anavi-Goffer et al., 2012) and inhibits LPI-mediated 

ERK1/2 phosphorylation in hGPR55-HEK293 cells (Anavi-Goffer et al., 

2012).  

 

The electrophysiological studies in this thesis demonstrated that joint 

nociceptors are sensitized in the MIA model at day 14, during established pain 

behaviour. These findings support those of recent published studies from our 
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lab (Kelly et al., 2012, Kelly et al., 2013a, Bullock et al., 2014) and others 

(Schuelert et al., 2010), collectively pointing towards a critical role for aberrant 

input from the joint in maintaining OA pain. This suggestion is supported by 

clinical studies that demonstrate the pain relieving effects of i.a. local 

anaesthetic (Creamer et al., 1996) and of joint replacement surgery (Kosek and 

Ordeberg, 2000a) and by the attenuation of pain behaviour by interventions 

that block peripheral nociceptor activity at the level of the joint in animal 

models of OA (McDougall et al., 2006, Schuelert and McDougall, 2006a, 

Schuelert and McDougall, 2012, Ashraf et al., 2013, Kelly et al., 2013a).  

 

Candidate chemical mediators, ion channels and receptors that have been 

suggested to be involved in the maintenance of joint nociceptor sensitization in 

OA include SP (Ahmed et al., 2012), CGRP (Bullock et al., 2014), BK 

(Cialdai et al., 2009), NGF (Ashraf et al., 2013), TRPV1 (Puttfarcken et al., 

2010, Kelly et al., 2013a), Nav1.8 (Schuelert and McDougall, 2012), and 

paradoxically the CB2 receptor (Schuelert et al., 2010). Given recent published 

data suggesting that GPR55 might have a role in the modulation of nociception 

(Staton et al., 2008, Breen et al., 2012, Gangadharan et al., 2013) including 

during acute inflammatory arthritis (Schuelert and McDougall, 2011), the work 

described in this thesis focused on the role GPR55 in the modulation of joint 

nociceptor excitability and demonstrated that activation of GPR55 at the level 

of the knee joint (using LPI) potently inhibited joint nociceptor excitability in 

control rats and importantly this inhibition was maintained in MIA rats, 

highlighting a critical novel anti-nociceptive role for GPR55 during 

experimental OA pain. Findings in untreated and saline rats suggest that 
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GPR55 receptor activation can regulate the normal level of mechanical 

sensitivity of joint nociceptors. However the physiological relevance of this 

suggestion is challenged by the fact that local administration of cannabidiol 

had no effect on mechanical sensitivity of joint nociceptors in both control and 

MIA rats. Despite this, the fact that inhibitory effects of GPR55 receptor 

activation are maintained in the face of joint nociceptor mechanical 

sensitization in OA rats suggests that further investigation of the potential of 

GPR55 agonists as a therapeutic strategy in OA for the alleviation of pain 

during established joint degeneration and pain warrants further investigation.  

 

The work in this thesis demonstrated that semi-local administration of LPI 

modulated the mechanical sensitivity of joint nociceptors via a mechanism that 

was abolished by pre-administration of the GPR55 antagonist cannabidiol. 

These novel findings suggest that the activation of peripheral GPR55 receptors 

within the joint has the potential to desensitize joint nociceptors to mechanical 

stimuli. While the desensitizing effects of GPR55 activation corroborate 

previous findings of GPR55 receptor activation on C-fibre joint nociceptor 

responses (Schuelert and McDougall, 2011), a direct sensitizing effect for LPI 

has been observed on cutaneous afferents from naive mice (Gangadharan et al., 

2013). This sensitising effect of LPI on cutaneous afferents is in line with 

previous studies that have identified a pro-nociceptive role for the GPR55 

receptor in the CFA-induced model of cutaneous inflammation (Staton et al., 

2008), chronic constriction (Breen et al., 2012) and partial nerve injury models 

(Staton et al., 2008) of neuropathic pain. The identification of an anti-

nociceptive role of GPR55 on joint nociceptors with a pro-nociceptive role in 



                                                                                                  Chapter 7                                                                                                                            

 

260 
 

cutaneous pain indicates that the nociceptive role of GPR55 may be tissue-

specific (Ross, 2009).  

 

Since the effects of LPI on joint nociceptor mechanosensitivity were studied in 

vivo it is not known whether the inhibition of joint nociceptor responses 

occurred via a direct neuronal effect through GPR55 expressed by joint 

afferents or by GPR55 expressed elsewhere in the joint. A previous study in 

the mouse has demonstrated GPR55 expression on DRG neurones (Lauckner 

et al., 2008), however expression in rat DRGs has not previously been 

reported. The work in this thesis demonstrated that GPR55 receptor protein 

was expressed in L3-L5 DRG (at the level that innervates the knee joint) in 

naive rats. Whilst this does not conclusively confirm that functional GPR55 

receptors are formed on knee afferent neurones, given the electrophysiological 

findings presented in this thesis it is a plausible suggestion. That said, 

expression by other cells of the joint in other tissues (e.g. synovium) cannot be 

excluded and activation of GPR55 receptors at these sites may contribute to 

effects of LPI on joint nociceptors in vivo.  

 

The role of the GPR55 receptor as a novel third cannabinoid receptor was 

initially proposed by GSK and AstraZeneca patents that identified cannabinoid 

ligands as having affinity and efficacy at the recently cloned GPR55. As a 

consequence, several studies investigated whether GPR55 was indeed a new 

member of the cannabinoid receptor family (Petitet et al., 2006, Ryberg et al., 

2007, Lauckner et al., 2008, Yin, 2009, Henstridge et al., 2010, Anavi-Goffer 
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et al., 2012) with endocannabinoids (anandamide, 2-AG), phytocannabinoids 

(Δ
9
-THC, cannabidiol) and synthetic cannabinoids (AM251, O-1602) 

identified as  GPR55 ligands. The pharmacology of cannabinoid ligands at 

GPR55 is controversial as published studies have produced conflicting 

findings. Some cannabinoid ligands (e.g. AM251, anandamide, 2-AG, 

CP55940, O-1602) function as GPR55 agonists and in other studies have no 

effect. These conflicting findings could be due to the use of different cell lines 

(HEK293, U2OS) and assays (GTPγS, Ca
2+

 currents, β-arrestin binding, ERK 

phosphorylation) between groups. The classical cannabinoid receptors and 

GPR55 exhibit  low sequence homology (10-15%) and do not share a common 

functional fingerprint to enabling ligand binding (Petitet et al., 2006). Given 

that GPR55 has a unique response profile to cannabinoid ligands, sequence 

homology and functional fingerprint compared to CB1 and CB2 suggests that 

GPR55 is more accurately defined as an atypical cannabinoid receptor rather 

than a new member of the cannabinoid receptor family.  

 

7.1.1. Limitations of the work presented 

One possible limitation of the work presented in this thesis is the use of LPI in 

as a GPR55 receptor agonist to investigate the effects of GPR55 activation on 

joint nociceptor sensitivity. A recent study identified that in GPR55 knockout 

mice LPI still partially modulated pain behaviour depending on the 

concentration of LPI and strength or duration of mechanical stimuli 

(Gangadharan et al., 2013). Further studies have demonstrated that LPI causes 

the opening of two pore domain mechanogated K
+
 channels TREK-1 and 
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TRAAK. As a consequence, this effect would facilitate membrane 

hyperpolarization and reduce neuronal excitability. Despite these effects, the 

inhibitory response to LPI was completely blocked by the GPR55 antagonist 

cannabidiol. Due to the investigation of GPR55 being at an early stage and the 

receptor not being fully characterised, the pharmacological tools available to 

investigate GPR55 function have their limitations. However, on the balance of 

what has been published to date I chose LPI since most studies were in 

agreement that LPI is a good candidate as a GPR55 agonist.  

 

Another limitation of this work may relate to the use of AM281 in this thesis to 

investigate if the effects of LPI on knee joint nociceptor sensitivity were 

mediated by the CB1 receptor. Although some studies have found that AM281 

has no effect at GPR55 (Kapur et al., 2009), other studies have identified that 

AM281 can increase intracellular Ca
2+

 concentration (Henstridge et al., 2010) 

and phosphorylate ERK1/2 (Anavi-Goffer et al., 2012) in hGPR55 expressing 

HEK293 cells and can inhibit LPI-mediated phosphorylation of ERK1/2 in the 

same model system in which  it functioned as an agonist (Anavi-Goffer et al., 

2012). It is possible that AM281 inhibited the LPI-mediated inhibition of knee 

joint nociceptor mechanical sensitivity by modulating GPR55 making it 

difficult to conclude definitively that the effect of LPI is mediated by a non-

CB1 receptor mechanism.  

 

Significant difficulties were encountered with establishing a reliable 

immunohistochemistry protocol. The work involved in attempting to overcome 
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issues such as autofluorescence and unreliable staining in initial experiments, 

was time consuming and unfortunately prevented further characterisation of 

GPR55 receptor expression in L3-L5 DRG neurones and specifically in 

retrograde labelled knee afferents as well as other tissues of the joint.  

 

 

7.1.2. Future directions  

The findings in this thesis provide the rationale for further investigations into 

the role of GPR55 in the modulation of joint pain. Further work is required to 

fully investigate the role of the GPR55 receptor in pathological joint conditions 

such as OA, to determine whether GPR55 agonists warrant clinical 

investigation in man. Although the electrophysiological studies in this thesis 

point towards GPR55 being a novel analgesic target for the treatment of joint 

pain conditions, a study investigating the effects of i.a. injection of a GPR55 

receptor agonist on pain behaviour is required to confirm this. Generation of 

nociceptor specific GPR55 knock out mice would facilitate further 

investigations into the role of peripherally expressed GPR55 in the generation 

of pain behaviour under normal physiological conditions (in naïve mice) or 

following OA-induction. 

 

Further electrophysiological studies could investigate the effects of LPI on 

joint afferents in a surgical model of OA (e.g. MNX) to enable an assessment 

of the generalizability of these findings to OA pain and in a slowly progressing 

model (e.g. rat low dose MIA model) to assess the role of GPR55 in the 
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modulation of knee afferent mechanosensitivity during early versus late stage 

OA pain. Studies investigating GPR55 expression by FG backlabelled knee 

afferent neurones and the investigation of GPR55 expression in synovia would 

further understanding of of GPR55 receptor mediate antinociception at the 

level of the joint. Finally, further, studies examining GPR55 co-expression 

with a SGC marker, GFAP or GS would be required to confirm expression in 

these important cells.  

 

7.2. Concluding remarks 

Overall, the studies presented in this thesis provide new information regarding 

the role of the GPR55 receptor in the modulation of knee joint nociceptor 

mechanosensitivity under non-pathological conditions and in an experimental 

model of OA. This thesis has identified a novel role for the GPR55 receptor in 

attenuating nociceptive inputs from the joint, including during established OA 

pain, and has provided novel insights into the analgesic potential of targeting 

GPR55 at the level of the joint. The outcomes of this thesis could have direct 

relevance for future investigations of the clinical utility of GPR55 receptor 

agonists for the treatment of human joint pain. In addition, understanding the 

sites and mechanisms of action of GPR55 receptor agonists has important 

implications for the development of site directed therapies. The outcomes of 

this thesis support the idea that the GPR55 receptor system may function as an 

endogenous pain control system at the level of the joint. 
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