A comparison of three different methods for classification of breast cancer dataTools Soria, Daniele, Garibaldi, Jonathan M., Biganzoli, Elia M. and Ellis, Ian O. (2008) A comparison of three different methods for classification of breast cancer data. In: Machine Learning and Applications 2008 (ICMLA'08) Seventh International Conference on Seventh International Conference on Machine Learning and Applications, 11-13 Dec 2008, San Diego, California, USA. Full text not available from this repository.AbstractThe classification of breast cancer patients is of great importance in cancer diagnosis. During the last few years, many algorithms have been proposed for this task. In this paper, we review different supervised machine learning techniques for classification of a novel dataset and perform a methodological comparison of these. We used the C4.5 tree classifier, a Multilayer Perceptron and a naïve Bayes classifier over a large set of tumour markers. We found good performance of the Multilayer Perceptron even when we reduced the number of features to be classified. We found naive Bayes achieved a competitive performance even though the assumption of normality of the data is strongly violated.
Actions (Archive Staff Only)
|