DAMP: a protocol for contextualising goodness-of-fit statistics in sediment-discharge data-driven modelling

Abrahart, R.J., Mount, Nick J., Ab Ghani, Ngahzaifa, Clifford, Nicholas J. and Dawson, C.W. (2011) DAMP: a protocol for contextualising goodness-of-fit statistics in sediment-discharge data-driven modelling. Journal of Hydrology, 409 (3-4). pp. 596-611. ISSN 0022-1694

Full text not available from this repository.

Abstract

The decision sequence which guides the selection of a preferred data-driven modelling solution is usually based solely on statistical assessment of fit to a test dataset, and lacks the incorporation of essential contextual knowledge and understanding included in the evaluation of conventional empirical models. This paper demonstrates how hydrological insight and knowledge of data quality issues can be better incorporated into the sediment-discharge data-driven model assessment procedure: by the plotting of datasets and modelled relationships; and from an understanding and appreciation of the hydrological context of the catchment being modelled. DAMP: a four-point protocol for evaluating the hydrological soundness of data-driven single-input single-output sediment rating curve solutions is presented. The approach is adopted and exemplified in an evaluation of seven explicit sediment-discharge models that are used to predict daily suspended sediment concentration values for a small tropical catchment on the island of Puerto Rico. Four neurocomputing counterparts are compared and contrasted against a set of traditional log-log linear sediment rating curve solutions and a simple linear regression model. The statistical assessment procedure provides one indication of the best model, whilst graphical and hydrological interpretation of the depicted datasets and models challenge this overly-simplistic interpretation. Traditional log-log sediment rating curves, in terms of soundness and robustness, are found to deliver a superior overall product — irrespective of their poorer global goodness-of-fit statistics.

Item Type: Article
RIS ID: https://nottingham-repository.worktribe.com/output/1009555
Additional Information: NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Hydrology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Hydrology, 409(3-4), (2011), doi: 10.1016/j.jhydrol.2011.08.054
Schools/Departments: University of Nottingham, UK > Faculty of Social Sciences > School of Geography
Identification Number: https://doi.org/10.1016/j.jhydrol.2011.08.054
Depositing User: Mount, Dr Nick
Date Deposited: 29 Jan 2015 13:11
Last Modified: 04 May 2020 20:23
URI: https://eprints.nottingham.ac.uk/id/eprint/28058

Actions (Archive Staff Only)

Edit View Edit View