Sensitivity analysis for comparison, validation and physical-legitimacy of neural network-based hydrological models

C.W. Dawson\textsuperscript{1}, N.J. Mount\textsuperscript{2}, R.J. Abrahart\textsuperscript{2*} and J. Louis\textsuperscript{3}

\textsuperscript{1}Department of Computer Science, Loughborough University, Loughborough, LE11 3TU, UK;
\textsuperscript{2}School of Geography, University of Nottingham, Nottingham, NG7 2RD, UK;
\textsuperscript{3}School of Computing and Mathematics, Charles Stuart University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia. *Corresponding author E-mail: bob.abrahart@nottingham.ac.uk

\textbf{SHORT TITLE}: Sensitivity analysis for comparison, validation and physical-legitimacy

\textbf{ABSTRACT}

This paper addresses the difficult question of how to perform meaningful comparisons between neural network-based hydrological models and alternative modelling approaches. Standard, goodness-of-fit metric approaches are limited since they only assess numerical performance and not physical legitimacy of the means by which output is achieved. Consequently, the potential for general application or catchment transfer of such models is seldom understood. This paper presents a partial derivative, relative sensitivity analysis method as a consistent means by which the physical legitimacy of models can be evaluated. It is used to compare the behaviour and physical rationality of a generalised linear model and two neural network models for predicting median flood magnitude in rural catchments. The different models perform similarly in terms of goodness-of-fit statistics, but behave quite distinctly when the relative sensitivities of their parameters are evaluated. The neural solutions are seen to offer an encouraging degree of physical legitimacy in their behaviour, over that of their generalised linear modelling counterpart, particularly when overfitting is constrained. This indicates that neural solutions are preferable models for transferring into ungauged catchments. Thus, the importance of understanding both model performance and physical legitimacy when comparing neural models with alternative modelling approaches is demonstrated.
KEYWORDS | generalised model, index flood, neural network, partial derivative, sensitivity

analysis, ungauged catchment
This paper presents an approach for delivering greater meaning from the comparison of artificial neural network (ANN) models with alternative modelling approaches in hydrological studies. ANN-based hydrological models are most commonly applied as black-box tools and the internal mechanisms by which the model output is generated are not normally explored in hydrological terms. Used in this way, an ANN’s primary purpose is the optimisation of complex, non-linear relations between a specific set of hydrological input and output data, and standard goodness-of-fit procedures may, therefore, be considered an adequate basis by which to compare its performance to that of other models (Klemes, 1986; Refsgaard and Knusden, 1996). Indeed, assessments of goodness-of-fit have been widely used in comparative hydrological modelling studies to argue that ANN models can perform as well as, or better than alternative modelling approaches (e.g. Shrestha and Nestmann, 2009; Mount and Abrahart, 2011). However, such arguments are informed solely by the degree of optimisation that is achieved by each model. They say nothing about the means by which different models achieve their performance and the relative merits of these alternative means. Indeed, when ANN models are applied solely as black-boxes, their potential relative to other modelling approaches can never be properly understood in a generalised or transferrable manner because the extent to which their modelling mechanisms conform to physically-based, hydrological domain knowledge remains untested (Howes and Anderson, 1988; Sargent, 2011). Consequently, critical questions about whether ANN modelling mechanisms are more or less reflective of real-world hydrological processes than alternative models are seldom addressed directly (Minns and Hall, 1996; Abrahart et al., 2011), and the relative extent to which they are able to deliver hydrological
process insights (i.e. Caswell’s (1976) model duality) is not normally evaluated. The purpose of this paper is to present a method by which these questions may be addressed.

More informative approaches to model comparison are required that explicitly consider the internal behaviours of the different models and assess them according to their conformance with the logical, rational and physical expectations of the modeller (c.f. Robinson, 1997). This process is termed model legitimisation and is discussed in a philosophical context by Oreskes et al. (1994) and an applied, hydrological modelling context by Mount et al. (in press). Sensitivity analysis (Hamby, 1994) is an important and effective means by which the legitimacy of a hydrological model may be explored. It has been widely applied in conceptual and physically-based modelling over several decades (e.g. McCuen, 1973; Beven and Binley, 1992; Schulz and Huwe, 1999; Radwan et al., 2004; Pappenberger et al., 2008; Mishra, 2009; Zhang et al., 2012). A variety of approaches have been used including local (e.g. Turanayi and Rabitz, 2000; Spruill et al., 2000; Holvoet et al., 2005; Hill and Tiedeman, 2007), regional (e.g. Spear and Hornberger, 1980) and global-scale methods (Muleta and Nicklow, 2005; Salteli et al., 2008). By contrast, sensitivity analysis has not been widely adopted in ANN modelling studies beyond a few, isolated examples (Sudheer, 2005; Nourani and Fard, 2012). This is presumably because the equations that relate inputs and outputs in an ANN are considered complex, inaccessible and difficult to interpret (Aytek et al., 2008; Abrahart et al., 2009), making exploration of model sensitivity via direct analysis of the governing equations difficult. Nonetheless, recent progress has been made (Yeung et al., 2010) and relative sensitivity analysis techniques for ANNs have made it possible to assess the internal, mechanistic legitimacy of such models (Abrahart et al., 2012b; Mount et al., in press). However, the focus of these studies has so far been restricted to mechanical considerations. The application of sensitivity analysis to evaluate
the physical legitimacy of ANN-based hydrological models, and thus the degree to which
they can be generalised and transferred, remains an outstanding task.

In this paper, we apply a sensitivity analysis method that can be used to compare the
physical legitimacy of ANN-based hydrological models and alternative model counterparts in
a direct manner. We exemplify the method by comparing the performance and physical
legitimacy of a pair of ANN-based models and an established generalised linear model
(GLM) for median flood magnitude prediction in ungauged catchments in the UK. First
order, partial derivatives of each model’s response function are computed, interpreted and
used as a consistent means by which the physical legitimacy of each model can be evaluated
and compared. This focus on response function behaviour is distinctly different to past
efforts to assess the physical legitimacy of ANN models, which have traditionally explored
internal structural components, such as weights (Abrahart et al., 1999; Olden and Jackson,
2002; Anctil et al., 2004; Kingston et al., 2003, 2005, 2006, 2008) and units (Wilby et al., 2003;
Jain et al., 2004; Sudheer and Jain, 2004; See et al., 2008; Fernando and Shamseldin, 2009;
Jain and Kumar, 2009). However, the uniqueness of ANN structures means that the
information derived from them cannot easily be compared directly with that derived from
alternative models with different internal structures - thus limiting the comparative value of
the information. To overcome this problem, we here assess the physical legitimacy of an
ANN’s overall response function using a standard relative sensitivity-based method that can
be consistently and directly replicated across a range of alternative model types and that is
widely understood and accepted by hydrologists. Consequently, an evaluation of the
physical legitimacy of the means by which each model’s performance is obtained
accompanies the usual assessments of output validity; enabling the extent to which each
model delivers a transferable, general solution to be considered.
The modelling of hydrological responses in ungauged catchments remains an important focus of research for hydrologists, especially as the majority of the world’s river catchments remain ungauged or poorly gauged. In such catchments, the application of distributed physically-based models and statistical approaches is hampered by a lack of input parameter knowledge and datasets. Consequently, lumped models which relate broad physiographic, hydrogeologic and climatologic catchment descriptors to flood frequency curves, have long been recognised as offering potential (Rodriguez-Iturbe and Valdes, 1979; Grover et al., 2002).

The standard UK method (Natural Environment Research Council, 1975; Vogel and Kroll, 1992; Schrieber and Demuth, 1997) models the relationship between the median of the annual flood series ($Q_{MED}$) and a set of regionalised catchment descriptors for rivers in the national, gauged network. The modelled relationship is then applied to ungauged catchments and used to estimate $Q_{MED}$, which is subsequently multiplied by a standard, dimensionless growth curve to estimate flood frequency (Institute of Hydrology, 1999).

Four catchment descriptors are used in the standard UK methodology: 1) AREA (catchment area in km$^2$); 2) SAAR (standard-period average annual rainfall in mm); 3) FARL (flood attenuation due to reservoirs and lakes); 4) BFIHOST (baseflow index derived from HOST data; Boorman et al., 1995).

These catchment descriptors can be thought of as physical controls of $Q_{MED}$ potential. SAAR controls the hydrological inputs to the catchment, AREA controls the scaling of the
catchment response, whilst BFIHOST and FARL control the degree of buffering of the input-output signal.

Of central importance to the above method is the model that is used to relate QMED and the catchment descriptors. These relationships are non-linear and not well represented by standard multiple linear regression. Therefore, the most recent UK method described applies a range of non-linear transformations within a generalised linear modelling (GLM) framework (Kjeldsen et al., 2008; Kjeldsen and Jones, 2009; Kjeldsen and Jones, 2010). The end product is a non-linear regression equation (see Equation 1) from which QMED can be estimated directly from the four catchments descriptors.

ANN models are also very effective at optimising complex, non-linear relations in hydrological data (American Society of Civil Engineers 2000a,b; Maier and Dandy, 2000; Dawson and Wilby, 2001; Maier et al., 2010; Abrahart et al., 2010; 2012b) and a number of studies have highlighted their potential in ungauged catchment prediction (Liong et al., 1994; Muttiah et al., 1997; Hall and Minns, 1998; Hall et al., 2000; Dastorani and Wright, 2001; Dawson et al., 2006; Dastorani et al., 2010). Indeed, the UK relationship between QMED and catchment descriptors has also been modelled using ANNs and been shown to deliver comparable levels of fit when compared to GLMs (Dawson et al., 2006). However, it remains unclear whether the two modelling approaches are similarly comparable with respect to their physical legitimacy. Models with greater physical legitimacy should be more generally transferrable to new catchment settings. Therefore, determining the physical legitimacy of each model is an important element in delivering a physically informed evaluation of how robustly it can be expected to transfer from the gauged catchments upon which it is developed, to the ungauged catchments in which it is intended to be applied.
In the following sections, the importance of evaluating both model performance and physical legitimacy in ANN model comparisons is exemplified by contrasting the performance and legitimacy of the standard GLM method for QMED prediction with two different ANN-based model counterparts. Its use as an example is particularly appropriate because the model inputs and outputs are all physical-based measurements, meaning that patterns observed in inputs and output relations can be interpreted directly in physical terms, also the number of model inputs is relatively small, the first order partial derivatives can be computed for the GLM and directly compared with those of the ANN-based models, and the results of the analysis have real-world relevance and application.

Data

A GLM model and two counterpart ANN models for QMED estimation are developed for comparison, with the model inputs conforming to the four used in the standard UK methodology. These inputs were extracted from a pre-filtered set of HiFlows-UK rural catchment data, available at (http://www.environment-agency.gov.uk/hiflows/97503.aspx). AREA values are derived from the Centre for Ecology and Hydrology’s Integrated Hydrological Digital Terrain Model (based on a 50m grid) and represent surface catchment area projected onto a horizontal plane, draining to the gauging station (Marsh and Hannaford, 2008: 5). SAAR values are derived from UK precipitation records over the standard period 1961-1990. FARL provides a guide to the degree of flood attenuation attributable to reservoirs and lakes above the gauging station. The index ranges from zero (complete attenuation) to one (no attenuation) with values < 0.8 representing a substantial influence on flood response. BFIHOST is derived from the HOST (Hydrology of Soil Types) soil data classification and ranges from zero (impermeable) to one (completely permeable). In
undisturbed catchments, a strong association exists between Baseflow Index (derived from archived gauged daily mean flows) and \textit{BFIHOST}. The relationships between \textit{QMED} and \textit{AREA}, \textit{SAAR} and \textit{FARL} are positive, whilst that between \textit{QMED} and \textit{BFIHOST} is negative.

The data from which our models are derived are almost identical to those from which the GLM that is published in the revitalised UK Flood Estimation Handbook (Kjeldsen \textit{et al.}, 2008) has been developed, and full particulars of the Hi-Flows UK data set can be found in this handbook. A statistical summary of our dataset is provided in Table 1. Some minor discrepancies exist between the data used in this study and that used by Kjeldsen \textit{et al.} (2008) due to our use of the public release version of HiFlows-UK 3.02 rather than the pre-release version originally used. Specifically, our dataset comprises 597 rural catchment records rather than the 602 used previously, and we use an unadjusted flood attenuation variable.

\textbf{Model development procedures}

Three models were developed for comparison.

1. \textit{QMED}_{GLM} – a GLM developed on all 597 catchment records, using the methodology outlined in Kjeldsen \textit{et al.} (2008).

2. \textit{ANN}_{A} – an optimised ANN, selected from 180 candidate solutions of varying complexity and training iterations according to both its goodness-of-fit performance and avoidance of evident overfitting.

3. \textit{ANN}_{B} – a purposely over-trained version of \textit{ANN}_{A} in which the number of training iterations was artificially extended to deliver an overfitted solution. It is included as a means of exemplifying the impact of ANN overfitting on the physical legitimacy of a network response function.
QMED_{GLM} was developed in accordance with the method of Kjeldsen et al. (2008).

Despite the minor differences in the dataset noted above, the resultant regression equation (Equation 1) remains almost identical to Kjeldsen’s original:

\[ QMED_{GLM} = 8.6704 \times AREA^{0.8568} \times 1.1550 \times SAAF^{1.0960} \times FARL^{3.3662} \times 0.0380^{BFIHOST} \]  (1)

ANN_{A} and ANN_{B} comprise a Multi-Layer Perceptron (MLP), with one hidden layer, trained using error back propagation (Rumelhart et al., 1986). The basic structure of these networks is shown schematically in Figure 1. The ANN consists of a number of units or neurons arranged in three layers (although additional hidden layers can be incorporated). The units in the input layer distribute the inputs to the units in the hidden layer, which in turn pass their outputs to the output layer (usually consisting of a single output neuron).

Each neuron consists of a weighted set of inputs and an activation function – typically the logistic sigmoid function (Equation 2). The output from a single unit is calculated by applying this sigmoid function to the weighted sum of its inputs.

\[ f(x) = \frac{1}{1+e^{-x}} \]  (2)

Training such networks using back propagation involves presenting the ANN with training data, calculating the error of the network’s output with respect to the observed values, propagating this error backwards through the network and adjusting the input weights to the neurons accordingly (to reduce this error). This process must be repeated many times, making minor adjustments to the weights of each cycle (or epoch), until the
ANN begins to map input values to the correct output response. The amount by which the weights are adjusted each time can be manipulated by using a learning rate multiplier. Readers that are unfamiliar with ANN concepts, structures and training methods are referred to Kattan et al. (2011) or Nelson (2011).

The simplicity of this ANN has enabled the development of computational methods for delivering first-order partial derivatives of its response function (Hashem, 1992), which we subsequently use as the basis for our comparative assessment of model legitimacy (see Section 3). This standard ANN has been successfully used in many hydrological studies in the past (Abrahart et al., 2012a) and provides an established non-linear modelling benchmark for ANN studies and a starting point against which more novel approaches can subsequently be compared (Mount et al., 2012). Whilst it is recognised that more advanced ANN structures might arguably deliver some additional optimisation advantages, the computational methods required to quantify their response function partial derivatives, and hence deliver directly comparable assessments of their physical legitimacy, are not readily available. Their use is thus avoided in this study.

ANN was developed using the approach described in Dawson et al. (2006) in which a large number of candidate ANNs are trained on a random subset of the data, partitioned according to a 60% calibration to 40% cross-validation ratio. Although there is no agreed standard for splitting the data, this ratio is widely accepted in hydrological modelling (Mount and Abrahart, 2011; See and Openshaw, 2000). 180 candidate models containing 2, 3, 4, 5, 6, 7, 8, 9, 10 hidden units were developed with each candidate being trained for up to 20,000 epochs in steps of 1,000, using a learning rate of 0.1 and a momentum value of 0.9. Each candidate model was cross-validated using the remaining 40% as a means of preventing overfitting (Giustolisi and Laucelli, 2005; Piotrowski and Napierkowski, 2013).
Overfitting of each candidate solution was evaluated according to its cross-validation scores, and the candidate solution displaying the best optimisation performance, whilst avoiding apparent overfitting, was selected as the final model.

ANN_A has nine hidden units, and is trained for 4000 epochs. ANN_B, which we adopt as an example of an overfitted ANN, is structurally identical to ANN_A. However its training epochs have been artificially extended to ten times that of ANN_A (i.e. 40,000 epochs) to promote overfitting. The network unit weights and biases are provided in Table 2 and are used as the inputs to Equation 8, from which relative sensitivity can be computed.

It should be noted that the GLM and ANN models utilise the available data records differently during model development. Whilst the GLM uses all 597 records to define the model, each candidate ANN uses only the first 400 records to refine the model, and the remaining 197 records to constrain it via cross-validation. Indeed, the apparent inconsistency with which the GLM and ANN models use the available data could be cited as an argument to negate the fairness of a direct comparison between them. However, this stance fails to credit that both models do use all of the data in the model development process; they just use it in a characteristically different manner that reflects the fundamental differences between each method. In this sense, the models are comparable; not because they use the same data in the same way, but rather because each one’s use of the data is equally appropriate and justifiable in the context of its own model development method.

MODEL PERFORMANCE AND PHYSICAL LEGITIMACY ASSESSMENT

Model performance evaluation
Each model’s performance was evaluated using standard goodness-of-fit metrics to deliver output validation. To ensure a consistent approach the metrics were generated using HydroTest (http://www.hydrotest.org.uk), a standardised, open access web site that performs the required numerical calculations (Dawson et al. 2007, 2010). Each model’s performance is evaluated using RMSE (root mean squared error) and $R^2$ (R-squared – the coefficient of determination) providing an overall measure of model performance; MSRE (mean squared relative error) and MSLE (mean squared logarithmic error) providing two additional measures of performance which place greater emphasis on errors occurring in lower magnitude predictions. These comparative performance statistics are defined as

$$ \text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (Q_i - \hat{Q}_i)^2} \quad (3) $$

$$ R^2 = \frac{\left[ \sum_{i=1}^{n} (Q_i - \bar{Q})(\hat{Q} - \bar{Q}) \right]^2}{\left[ \sum_{i=1}^{n} (Q_i - \bar{Q})^2 \sum_{i=1}^{n} (\hat{Q}_i - \bar{Q})^2 \right]} \quad (4) $$

$$ \text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (Q_i - \hat{Q}_i)^2 \quad (5) $$

$$ \text{MSLE} = \frac{1}{n} \sum_{i=1}^{n} (\ln Q_i - \ln \hat{Q}_i)^2 \quad (6) $$

where $Q_i$ is observed index flood value $i$ (of $n$ values), $\hat{Q}_i$ is the modelled value $i$, $\bar{Q}$ is the mean of the observed data, and $\bar{Q}$ is the mean of the modelled data.
Physical legitimacy

Following the recent studies of Abrahart et al. (2012b) and Mount et al. (in press), the physical legitimacy of each model was assessed by means of relative, first-order partial derivative sensitivity analysis (see Hamby, 1994 for an overview of sensitivity analysis approaches). Partial derivative sensitivity analysis elucidates the patterns of influence that each model input has on the output (and vice versa) across the output range, thus revealing the internal behaviour of the model response function. First order derivatives reveal the separate behaviours associated with each model input. When using partial derivatives in model comparison studies, it is necessary to standardise derivative values to rates to avoid the difficulties associated with comparing absolute values derived from different inputs with different ranges (Nourani and Fard, 2012). Patterns of relative sensitivity can then be used to directly compare the internal response function behaviour of different models, and legitimacy of these behaviours can then be evaluated according to how well the relative sensitivity patterns conform to the logical, rational and physical expectations of the modeller. The relative sensitivity ($RS_i$) of the output from a model ($O$) with respect to input ($I_i$) can be calculated as:

$$RS_i = \frac{\partial O}{\partial I_i} \cdot \frac{I_i}{O} \quad (7)$$

Partial derivatives can be computed for ANNs via the application of a backward chaining partial differentiation rule as outlined in Hashem (1992). Adapted from Hashem’s more general rule, for an ANN with sigmoid activation functions (i.e. of standard type, as used in our case study), one hidden layer, $i$ input units, $j$ hidden units and one output unit
(O), the partial derivative of a network’s output can be calculated with respect to each of its
inputs as:

\[
\frac{\partial O}{\partial I_i} = \sum_{j=1}^{n} w_{ij} w_{jO} h_j (1 - h_j) O (1 - O)
\]  
(8)

where, \( w_{ij} \) is the weight from input unit \( i \) to hidden unit \( j \), \( w_{jO} \) is the weight from hidden unit \( j \) to the output unit \( O \), \( h_j \) is the output of hidden unit \( j \), and \( O \) is the output from the network.

One important difference between calculating partial derivatives for multiple input, single output GLMs and ANN models should, however, be noted. When computing partial derivatives of a GLM, there is no need to vary the values of the other inputs to investigate the range of sensitivity responses under different input conditions. This is because GLMs deliver a simple additive response function, such that the relative sensitivity for any one variable will involve only that variable, given that all other parts of the expression will cancel out, during the process of scaling the other variables. Hence, relative sensitivity values for each input to the QMED\textsubscript{GLM} model (Equation 1) can be computed according to Equations (9)–(12). The final relative sensitivities of the QMED\textsubscript{GLM} model are provided in Equations (13)–(16).

\[
\frac{\partial QMED}{\partial AREA} = \frac{0.8568 QMED}{AREA}
\]  
(9)

\[
\frac{\partial QMED}{\partial SAAR} = \frac{1864.05 QMED}{SAAR^2}
\]  
(10)
The same is not true for ANNs, which are not constrained to produce simple, additive response functions. When computing partial derivatives for an ANN it is therefore necessary to isolate the pattern of relative sensitivity of each input variable in turn by holding the other inputs at fixed values so that the patterns of sensitivity associated with each variable can be interpreted within the context of the other variable states. To this end we adopt a simple three-step methodology.

Step 1: Compute 25\textsuperscript{th} percentile, median and 75\textsuperscript{th} percentile values for each input variable in the data set.

Step 2: Holding all other variables at either 25\textsuperscript{th} percentile, median or 75\textsuperscript{th} percentile, vary each input variable in turn from across the range of observed values.

Step 3: Plot results and interpret the resultant graphs.

Thus, physically speaking, if variable states in our study are held at the 25\textsuperscript{th} percentile (or the 75\textsuperscript{th} percentile in the case of the inverse BFIHOST measure), the resultant scenario under test is representative of relatively small, dry catchments with high
permeability and high flood attenuation: i.e. low catchment $QMED$ potential. Conversely, when variables states are held at the 75$^{th}$ percentile (with $BFIHOST$ at the 25$^{th}$ percentile), the resultant scenario under test will be representative of relatively large, wet catchments with low permeability and low attenuation: i.e. high catchment $QMED$ potential.

RESULTS

Independence

Figure 2 and Table 3 present an overview of the data showing the relationships that exist between each of the five variables. $AREA$ is not correlated with any of the other three parameters (correlation coefficient ranging from -0.07 to -0.02). There is a negative correlation between $SAAR$ and $BFIHOST$ (correlation coefficient of -0.42) and a similar strength negative relationship between $SAAR$ and $FARL$ (correlation coefficient of -0.39). The only positive correlation is that between $BFIHOST$ and $FARL$ (correlation coefficient of 0.11). These weak relationships indicate a reasonable degree of linear independence between the four variables. The strength of the linear relationship between each of the parameters and $QMED$ ranges from a correlation coefficient score of 0.76 for $AREA$ to -0.07 for $FARL$. The strong linear relationship between $QMED$ and $AREA$, contrasts with the relative sensitivity scores presented later in this paper for the multiple linear regression model, and in so doing emphasises the additional insights provided by sensitivity analysis over basic statistical measures.

Model skill
Figures 3–5 present scatter diagrams of observed versus modelled index flood values for the GLM, ANN\textsubscript{A} and ANN\textsubscript{B} models. The full dataset is depicted in each scatter plot. Figures 3 and 4 reveal comparable amounts of predictive skill for the GLM and ANN\textsubscript{A} model. Both plots, indeed, appear to show a reasonable degree of model performance at lower levels, but typically under-estimate the higher magnitude flood events. In contrast the ANN\textsubscript{B} model appears to perform well across the range of flood event magnitudes and seems very close to correctly modelling the two largest flood events.

Although Figures 3, 4, and 5 provide an interpretive view of the accuracy of the three models, Table 4 provides a more objective, numerical contrast by providing comparative performance statistics for each of the models. It shows that while the ANN\textsubscript{B} model is undoubtedly the most accurate overall according to the RMSE and $R^2$ measures, the GLM is more accurate at modelling low flood indices. Although there appears to be a significant difference between the MSRE statistics of the GLM and the ANN\textsubscript{A} model (0.19 and 16.12, respectively) these results need to be treated with caution. A very basic model, that simply predicts the index flood for every catchment as $1 \text{ m}^3 \text{ s}^{-1}$, results in a MSRE statistic of 0.93 – better than both the ANN models and not too dissimilar from the GLM. One would not seriously contemplate using such a simple model as a prediction of the index flood in an ungauged catchment so it brings into question the suitability of the MSRE as an appropriate measure of performance. It indicates that a model needs to make only a handful of errors at lower levels (which may not be too far from the observed values) to result in a poor MSRE result. This emphasises the importance of using multiple evaluation criteria and understanding the limitations of individual error measures.

Although the scatter diagrams show reasonably similar performance at lower levels, one or two over/under predictions have skewed the results. A more appropriate measure of
performance at lower levels is perhaps the MSLE used by Pokhrel et al. (2012), the results of which are also presented in Table 4. In this case, although the GLM outperforms the ANN\textsubscript{A} and ANN\textsubscript{B} models, the results are not too dissimilar. For the simple model (producing 1 m\textsuperscript{3}s\textsuperscript{-1} for each case) the MSLE is calculated as 15.36 – significantly higher than the more complex models. Given that the ANN\textsubscript{B} performs reasonably well for low Q\textsubscript{MED} values and better than the GLM at large Q\textsubscript{MED} values where prediction is normally more problematic, the goodness-of-fit statistics suggest that ANN\textsubscript{B} could be considered a reasonable alternative to GLM.

SENSITIVITY ANALYSIS AND PHYSICAL INTERPRETATION OF MODELS

GLM

Relative sensitivity plots for the GLM are provided in Figure 6 are calculated using Equations (13)–(16). AREA and FARL are both used as simple scaling variables in the model such that the index flood magnitude increases proportionally for larger catchments with lower flood attenuation. The model behaves in a manner that larger catchments produce consistently larger floods, but the overall significance of this behaviour is relatively small. In a simplistic, conceptual sense, this is physically legitimate behaviour and one would expect the catchment area to act as a proportionally consistent driver of flood magnitude with a ratio close to unity, as a larger catchment will have proportionally greater hydrological inputs. Importantly, FARL as a driver, is shown to be around four times more important than AREA; a pattern that perhaps highlights the overriding importance of in-channel buffering of flood peaks by lakes and reservoirs in the model. SAAR and BFIHOST function as more complex drivers of Q\textsubscript{MED} and their relative sensitivities vary considerably. Indeed, in certain data ranges each has the potential to
become the most influential driver of index flood magnitude. However, their specific patterns of relative sensitivity prove difficult to legitimise in simplified, physical terms. The proportionally greater sensitivity of index flood magnitude to increases in wetness in low rainfall catchments, as opposed to ones possessing high rainfall, does not correspond well with broad hydrological notions. The expectation would be to find low antecedent moisture in low rainfall catchments to result in enhanced infiltration, reduced propensity for Hortonian overland flow and correspondingly lower index flood sensitivity compared to higher rainfall catchments. This suggests that there is a substantive runoff buffering mechanism in wet catchments that is not present in dry ones. Whilst one may postulate that factors such as different vegetation types in dry and wet catchments may buffer flood responses differently, it is difficult to envisage their impact being sufficient to produce the magnitude of difference observed in the relative sensitivity plot. Moreover, the pattern appears counter to notions of antecedent moisture which would be expected to be lower in dry catchments and, therefore, would act to proportionally reduce catchment runoff and index flood magnitude.

Similarly, the sensitivity of the index flood to catchment permeability is counter to basic physical principles with index floods seen to be an order of magnitude more sensitive to a unit change in permeability in a highly permeable catchment when compared with the same proportional change in an impermeable one. Whilst the overall negative relative sensitivity of $Q_{MED}$ to $BFI_{HOST}$ is conceptually legitimate, the specific pattern is difficult to legitimise physically as is the magnitude of the relative sensitivity observed relative to that of the other variables.
The sensitivity analysis thus indicates only partial physical legitimacy of the GLM, with the pattern of sensitivity of QMED to SAAR and BFIHOST being particularly difficult to rationalise.

ANN\textsubscript{A}

Relative sensitivity plots for the ANN\textsubscript{A} model are provided in Figure 7. Importantly, none of the plots exhibit the extreme, localised sensitivity variability that one would expect from an over-fitted model (see ANN\textsubscript{B} below), which in the context of the model skill statistics reported above, suggests ANN\textsubscript{A} offers a reasonable solution. ANN\textsubscript{A} is characterised by generally lower relative sensitivity values in comparison to those observed for the GLM, coupled with enhanced complexity in the sensitivity responses across each variable’s data range, the form of which is strongly influenced by the values of the other variables.

The relatively high sensitivity of QMED to AREA highlights the central importance of catchment size as a determinant of index flood magnitude in this model. This pattern of behaviour is an approximate counterpart of the GLM plot. Relative sensitivity remains roughly consistent at a value close to 1 and AREA is seen to act as a scaling variable in a physically-legitimate manner. However, the same degree of legitimacy is not observed in either the low or high QMED potential plots. Here opposing trends in the relative sensitivity are observed. When all other inputs are set to high QMED potential, proportional changes in catchment area of small catchments is seen to have almost 10 times the impact on QMED than the same proportional change in large catchments. The pattern reverses when inputs are set to low QMED potential. This model behaviour is very difficult to legitimise in physical terms.
Low values associated with $BFIHOST$ highlight the general insensitivity of $QMED$ to catchment permeability in this model. As expected, $BFIHOST$ has a generally negative influence on $QMED$ such that as permeability increases, $QMED$ reduces. A general increase in $QMED$'s sensitivity to $BFIHOST$ is observed as the other inputs are set to increasing levels of $QMED$ potential. This indicates an increased importance of permeability as a constraint on index flood magnitude in catchments with high potential for generating large index floods. However, the very low magnitude of the sensitivities observed makes it difficult to draw any clear conclusions about the physical legitimacy of the patterns observed beyond the fact that $BFIHOST$ is clearly not a particularly important driver of $QMED$.

In contrast to the GLM, $FARL$ acts as a relatively modest driver of $QMED$, indicating that the ANN$_A$ model is less heavily influenced by in-channel controls of peak discharge magnitude than the GLM. In simplistic physical terms, one would expect a reduction in flood attenuation to drive a proportional increase in $QMED$, and the positive relative sensitivity plots confirm this basic assumption. However, the precise form of the sensitivity relationship between $QMED$ and $FARL$ is more difficult to legitimise. The GLM represents the relationship as one of simple scaling and this same basic pattern exists for low and median $QMED$ potential plots across medium to high $FARL$ data ranges (i.e. medium to low levels of attenuation) where relative sensitivity is consistently about 0.5. However, at lower $FARL$ data ranges the proportional response of $QMED$ to change in $FARL$ reduces substantially to 0.1. When other inputs are set to high $QMED$ potential, the decreasing trend is consistent across all $FARL$ ranges. This is less easily rationalised and is most likely attributable to the scarcity of catchments with low $FARL$ values in the data resulting in a lack of data constraint on the form of the ANN model covering this data range, irrespective of the values of the other inputs.
The pattern of sensitivities observed for SAAR can only be partially legitimised in generalised physical terms. At a very simplistic level, the scaling behaviour of SAAR observed in the low QMED potential plot is perhaps reasonable given that proportionally wetter catchments should indeed result in proportionally greater floods. However, the patterns observed in the median and high QMED potential plots possess elements that are both physically rational and irrational. The increasing sensitivity to SAAR at low and mid data ranges could feasibly be explained in terms of antecedent moisture. Indeed, the on-average lower antecedent moisture in dry catchments could be expected to result in a smaller proportion of the rainfall contributing to runoff; leading to reduced hydrograph flashiness and proportionally lower QMED sensitivity to SAAR in dryer catchments. Similarly, the decline in sensitivity in the upper data ranges could be argued to be due to the fact that the catchment is already so wet that any additional rainfall makes relatively little difference to the index flood. However, this explanation ignores the role of overland, Hortonian flow in saturated, wet catchments which one would expect to drive an increase in the relative sensitivity in the upper data ranges. Finally, the negative relative sensitivity observed in the extreme upper ranges of the high QMED potential plot is physically-irrational as it suggests that proportionally increasing the catchment wetness will reduce the proportional response in QMED; in extreme cases even resulting in a reduction in QMED.

For each of the model inputs the behaviour of the ANN\(_A\) model is seen to be particularly influenced by the states of the input variables. When these are set to their median values (i.e. indicative of median QMED potential), the majority of the relative sensitivity plots indicate that the response function produces a model behaviour that can be physically-legitimised. However, this legitimacy is less certain when other variables are set at their 25\(^{th}\) percentile values (i.e. indicative of low QMED potential) and completely breaks
down when set at their 75\textsuperscript{th} percentile value (i.e. indicative of high QMED potential). Indeed, under the latter condition, \textit{AREA}, \textit{FARL} and \textit{SAAR} drive \textit{QMED} in a manner that is particularly difficult to explain in hydrological terms. Crucially then, a link can be made between the lack of physical legitimacy in the model’s behaviour in the upper and lower quartiles of the solution space and a lack of coincident data points which exist there to constrain the form of the ANN model.

\textit{ANN}_B

Relative sensitivity plots for the \textit{ANN}_B model are provided in Figure 8. This ANN model is intentionally over-fitted and the impact of this over-fitting is clearly seen in the relative sensitivity plots. The degree of local variability in relative sensitivity is highly exaggerated when compared to \textit{ANN}_A with variables switching between both negative and positive responses in \textit{QMED} at different data ranges. \textit{QMED} responds to \textit{AREA} and \textit{SAAR} (the most influential drivers in the model) in an irrational manner with high magnitude, localised variation in relative sensitivity being particularly characteristic of the patterns observed. The relative sensitivity plots of \textit{QMED} to \textit{AREA} and \textit{SAAR} are characterised by complex polynomial forms with no consistent trends in the relationship. The patterns observed are indicative of data over-fitting and lack any physical legitimacy.

Relative sensitivity of \textit{QMED} to \textit{FARL} behaves in a more constrained manner than \textit{AREA} or \textit{SAAR}, ranging from +0.8 to -0.3 indicating the relative lack of sensitivity to this variable in \textit{ANN}_B. However, the sensitivity plots for low and median \textit{QMED} potential show both positive and negative responses at different data ranges. Indeed, these plots suggest that in certain data ranges, a proportional decrease in flood attenuation will see a
proportional reduction in flood magnitude: a result that lacks physical legitimacy. The high $QMED$ potential plot is very similar to that of $\text{ANN}_A$. Relative sensitivity of $\text{BFIHOST}$ to $QMED$ is very muted with this variable being an almost irrelevant driver of index flood magnitude when other variables are set to low and median $QMED$ potential. Localised complexity in the relative sensitivity is observed, particularly across low $\text{BFIHOST}$ values where low and median $QMED$ potential plots switch between positive and negative relative sensitivity values in a physically-irrational manner. The high $QMED$ potential plot is perhaps more rational as it displays a flatter, negative response which indicates a negative scaling behaviour.

In contrast with $\text{ANN}_A$, local variation in relative sensitivity for $\text{AREA}$ and $\text{SAAR}$ becomes highly exaggerated when other variables are held at their low $QMED$ potential values. This again highlights difficulties of fitting a ‘bottom heavy’ physically-legitimate ANN model, through upper regions of a solution space that lack sufficient coincident higher magnitude data points to constrain the form of the model.

Physical legitimacy

The broad physical legitimacy of the different model sensitivity plots are compared in Table 5. It is clear that none of the models behave in a manner that can be physically rationalised for all input variables. The GLM displays a basic level of physical legitimacy in the behaviour of $\text{AREA}$ and $\text{FARL}$ but this is lacking for $\text{SAAR}$ and $\text{BFIHOST}$ drivers. $\text{ANN}_A$ displays varying degrees of physical legitimacy in the sensitivity between $QMED$ and each of the input variables, with the least rational responses occurring when other variables are set to the high $QMED$ potential values. However, in all cases, when other variables are set to their median values, the relative sensitivities of the ANN are physically legitimate at least in part.
Indeed, in this sense $\text{ANN}_A$ arguably performs better than its GLM counterpart albeit delivering slightly less favourable goodness-of-fit. $\text{ANN}_B$ is over-fitted and the patterns observed in its relative sensitivity plots cannot be legitimised in a physical sense. However, this lack of model legitimacy is in contrast to the goodness-of-fit statistics which indicate $\text{ANN}_B$ to be the best model. Thus, developing techniques that can deliver a clear physical or mechanistic interpretation of input relative sensitivity analysis patterns in ANN modelling scenarios represents an important consideration for future research. Indeed, the presented results serve as a clear demonstration of the dangers associated with evaluating models on the basis of statistical performance validation approaches alone.

**SUMMARY AND CONCLUSIONS**

This paper has addressed the difficult question of how to make meaningful comparisons between artificial neural network-based hydrological models and alternative modelling approaches. Comparisons which are based solely on goodness-of-fit metrics (i.e. the standard black-box approach presented in much of the literature) are very limited because they only consider model performance and not the means by which the performance is obtained. The commonly encountered limitation of metric equifinality, in which metric scores for the models being compared are insufficiently different to enable conclusive differentiation of the best or preferred model, is evident in our results. Our example of median flood modelling provides a clear demonstration of this with the fit scores obtained by the ANN and GLM models delivering inconclusive evidence about relative overall model performance.

However, the limitations of goodness-of-fit metrics are arguably more fundamental if there is a requirement to compare the transferability of each model from one hydrological
context to another. In such cases, the physical legitimacy of each model must also be
evaluated and compared in a direct manner. Models used in ungauged catchment
prediction are a good example of those that must ultimately be transferred, and that
therefore require evaluation of their physical legitimacy. This study has presented a
consistent means by which the physical legitimacy of ANN models can be evaluated and
compared with alternative modelling approaches. The application of relative sensitivity
analysis in our median flood modelling example has enabled the physical legitimacy of two
ANN-based models to be compared directly with the GLM counterpart used as standard in
the UK. Tables 4 and 5 provide clear evidence that a general ANN modelling approach can
deliver models as good as the GLM approach currently used in the UK Flood Estimation
Handbook, both in terms of their performance and their legitimacy. Whilst the paper does
not purport to be a competition between ANNs and GLMs, in this isolated case the evidence
does lend some support to the view that ANN-based models may have some advantages
over their GLM counterparts. However, one can only build good physically-legitimate ANN
models if ample data of sufficient quality exist, and if the model development process is
sound. It is also evident from this evaluation that ANN solutions can only deliver physical
legitimacy if issues such as overfitting are avoided.

To conclude it is clear that comparing ANN models to alternative approaches on the
basis of goodness-of-fit is insufficient, and that sensitivity analysis offers an important
means by which the physical legitimacy of ANN models can be compared with that of
counterpart models. Indeed, hydrological modellers using ANNs can and should be striving
to evaluate the physical legitimacy of their models as well as their performance. By applying
sensitivity analysis to ANN models a sense of trust is introduced that goes part of the way to
addressing one of the key issues in the international ANN river forecasting research agenda
of Abrahart et al. (2012a), specifically the need for advanced diagnostic techniques that can help counter criticisms of the black-box nature of such models (e.g. Babovic, 2005). It is, therefore, surprising that it remains almost entirely absent from ANN studies and highlights the importance of a broader research agenda to develop robust, computational sensitivity analysis methods across the range of data-driven techniques currently being used in hydrological modelling. Such an agenda should include additional investigations that more fully explore the impact of different architectural structures in ANN models especially the potential bearing that internal complexity might have on the relative sensitivity of solutions to particular types of hydrological modelling problem.

REFERENCES


DOI:10.1029/2007WR006283.


First received 20 November 2012; accepted in revised form 29 May 2013. Available online.

FIGURE CAPTIONS

Figure 1. Typical feed forward ANN structure
Figure 2. Scatter plot matrix of model variable with linear regression lines fitted
Figure 3. GLM versus QMED
Figure 4. ANN_A model versus QMED
Figure 5. ANN_B model versus QMED
Figure 6. Relative sensitivity of QMED to model inputs: GLM
Figure 7. Relative sensitivity of QMED to model inputs: ANN_A
Figure 8. Relative sensitivity of QMED to model inputs: ANN_B

TABLE CAPTIONS

Table 1. Statistical summary of catchment descriptors
Table 2. Network weights and biases. Input neurons I1 - I4 (AREA, BFIHOST, FARL, SAAR, respectively); Hidden neurons H1 – H9; Output neuron O (QMED)

Table 3. Correlation matrix for model variables

Table 4. Numerical accuracy of different models under test

Table 5. Physical legitimacy of GLM and ANN models
## Table 1. Statistical summary of catchment descriptors

<table>
<thead>
<tr>
<th></th>
<th>Median</th>
<th>Minimum</th>
<th>Maximum</th>
<th>25th Percentile</th>
<th>75th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA (km²)</td>
<td>148.70</td>
<td>1.63</td>
<td>4586.97</td>
<td>68.00</td>
<td>327.81</td>
</tr>
<tr>
<td>BFIHOST</td>
<td>0.47</td>
<td>0.20</td>
<td>0.97</td>
<td>0.40</td>
<td>0.57</td>
</tr>
<tr>
<td>FARL</td>
<td>0.99</td>
<td>0.65</td>
<td>1.00</td>
<td>0.96</td>
<td>1.00</td>
</tr>
<tr>
<td>SAAR (mm)</td>
<td>1096</td>
<td>558</td>
<td>2848</td>
<td>830</td>
<td>1375</td>
</tr>
<tr>
<td>QMED</td>
<td>43.54</td>
<td>0.14</td>
<td>992.85</td>
<td>12.92</td>
<td>117.71</td>
</tr>
</tbody>
</table>
Table 2. Network weights and biases. Input neurons I1 - I4 (AREA, BFIHOST, FARL, SAAR, respectively); Hidden neurons H1 – H9; Output neuron O (QMED)

### ANNa

<table>
<thead>
<tr>
<th></th>
<th>Weight</th>
<th>Weight</th>
<th>Weight</th>
<th>Weight</th>
<th>Weight</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>H1</td>
<td>2.112</td>
<td>I2</td>
<td>H1</td>
<td>1.287</td>
<td>I3</td>
</tr>
<tr>
<td>I1</td>
<td>H2</td>
<td>-0.211</td>
<td>I2</td>
<td>H2</td>
<td>-0.392</td>
<td>I3</td>
</tr>
<tr>
<td>I1</td>
<td>H3</td>
<td>2.907</td>
<td>I2</td>
<td>H3</td>
<td>-6.502</td>
<td>I3</td>
</tr>
<tr>
<td>I1</td>
<td>H4</td>
<td>-1.170</td>
<td>I2</td>
<td>H4</td>
<td>-2.792</td>
<td>I3</td>
</tr>
<tr>
<td>I1</td>
<td>H5</td>
<td>0.245</td>
<td>I2</td>
<td>H5</td>
<td>-0.337</td>
<td>I3</td>
</tr>
<tr>
<td>I1</td>
<td>H6</td>
<td>0.009</td>
<td>I2</td>
<td>H6</td>
<td>-1.236</td>
<td>I3</td>
</tr>
<tr>
<td>I1</td>
<td>H7</td>
<td>13.412</td>
<td>I2</td>
<td>H7</td>
<td>4.484</td>
<td>I3</td>
</tr>
<tr>
<td>I1</td>
<td>H8</td>
<td>-1.236</td>
<td>I2</td>
<td>H8</td>
<td>0.008</td>
<td>I3</td>
</tr>
<tr>
<td>I1</td>
<td>H9</td>
<td>-6.588</td>
<td>I2</td>
<td>H9</td>
<td>2.458</td>
<td>I3</td>
</tr>
</tbody>
</table>

### ANNb

<table>
<thead>
<tr>
<th></th>
<th>Weight</th>
<th>Weight</th>
<th>Weight</th>
<th>Weight</th>
<th>Weight</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>H1</td>
<td>-1.877</td>
<td>I2</td>
<td>H1</td>
<td>20.295</td>
<td>I3</td>
</tr>
<tr>
<td>I1</td>
<td>H2</td>
<td>-16.987</td>
<td>I2</td>
<td>H2</td>
<td>-3.354</td>
<td>I3</td>
</tr>
<tr>
<td>I1</td>
<td>H3</td>
<td>3.798</td>
<td>I2</td>
<td>H3</td>
<td>-0.008</td>
<td>I3</td>
</tr>
<tr>
<td>I1</td>
<td>H4</td>
<td>5.559</td>
<td>I2</td>
<td>H4</td>
<td>-0.845</td>
<td>I3</td>
</tr>
<tr>
<td>I1</td>
<td>H5</td>
<td>-2.996</td>
<td>I2</td>
<td>H5</td>
<td>4.687</td>
<td>I3</td>
</tr>
<tr>
<td>I1</td>
<td>H6</td>
<td>8.318</td>
<td>I2</td>
<td>H6</td>
<td>-8.377</td>
<td>I3</td>
</tr>
<tr>
<td>I1</td>
<td>H7</td>
<td>8.324</td>
<td>I2</td>
<td>H7</td>
<td>3.983</td>
<td>I3</td>
</tr>
<tr>
<td>I1</td>
<td>H8</td>
<td>11.702</td>
<td>I2</td>
<td>H8</td>
<td>19.838</td>
<td>I3</td>
</tr>
</tbody>
</table>

### Biases

<table>
<thead>
<tr>
<th>Neuron</th>
<th>Bias ANNa</th>
<th>Bias ANNb</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>-0.596</td>
<td>-0.708</td>
</tr>
<tr>
<td>H2</td>
<td>-0.175</td>
<td>-1.927</td>
</tr>
<tr>
<td>H3</td>
<td>-3.240</td>
<td>0.049</td>
</tr>
<tr>
<td>H4</td>
<td>-0.315</td>
<td>-1.594</td>
</tr>
<tr>
<td>H5</td>
<td>0.413</td>
<td>2.982</td>
</tr>
<tr>
<td>H6</td>
<td>-0.098</td>
<td>-7.794</td>
</tr>
<tr>
<td>H7</td>
<td>-1.459</td>
<td>-0.996</td>
</tr>
<tr>
<td>H8</td>
<td>-0.508</td>
<td>0.627</td>
</tr>
<tr>
<td>H9</td>
<td>-0.720</td>
<td>0.278</td>
</tr>
<tr>
<td>O</td>
<td>0.282</td>
<td>1.707</td>
</tr>
</tbody>
</table>
Table 3. Correlation matrix for model variables

<table>
<thead>
<tr>
<th></th>
<th>AREA</th>
<th>BFIHOST</th>
<th>FARL</th>
<th>SAAR</th>
<th>QMED</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA</td>
<td>1.00</td>
<td>-0.02</td>
<td>-0.07</td>
<td>-0.05</td>
<td>0.76</td>
</tr>
<tr>
<td>BFIHOST</td>
<td>1.00</td>
<td>0.11</td>
<td>-0.42</td>
<td>-0.27</td>
<td></td>
</tr>
<tr>
<td>FARL</td>
<td>1.00</td>
<td>-0.39</td>
<td>-0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAAR</td>
<td>1.00</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Numerical accuracy of different models under test

<table>
<thead>
<tr>
<th></th>
<th>GLM</th>
<th>ANNₐ</th>
<th>ANN₋</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSE (m³·s⁻¹)</td>
<td>43.09</td>
<td>47.49</td>
<td>33.18</td>
</tr>
<tr>
<td>R²</td>
<td>0.89</td>
<td>0.88</td>
<td>0.94</td>
</tr>
<tr>
<td>MSRE</td>
<td>0.19</td>
<td>16.12</td>
<td>1.91</td>
</tr>
<tr>
<td>MSLE</td>
<td>0.13</td>
<td>0.51</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Table 5. Physical legitimacy of GLM and ANN models

<table>
<thead>
<tr>
<th>Input Variable</th>
<th>QMED potential of other catchment variables</th>
<th>Does the pattern of sensitivity response conform to conceptual notions of physically-rationality?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GLM</td>
<td>ANN_A</td>
</tr>
<tr>
<td>AREA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>SAAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td>In Part</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>FARL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td>In Part</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td>In Part</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>BFIHOST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td>In Part</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>In Part</td>
</tr>
</tbody>
</table>
Figure 1. Typical feed forward ANN structure
Figure 2. Scatter plot matrix of model variable with linear regression lines fitted.
Figure 3. GLM versus QMED
Figure 4. ANN$_A$ model versus QMED
Figure 5. $\text{ANN}_B$ model versus $\text{QMED}$
Figure 6. Relative sensitivity of QMED to model inputs: GLM
Figure 7. Relative sensitivity of QMED to model inputs: ANNₐ
Figure 8. Relative sensitivity of $QMED$ to model inputs: $ANN_B$