
SEMANTIC METHODS

FOR

FUNCTIONAL HYBRID MODELLING

JOHN CAPPER, BSc.

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

November 2014

Abstract

Equation-based modelling languages have become a vital tool in many areas of

science and engineering. Functional Hybrid Modelling (FHM) is an approach

to equation-based modelling that allows the behaviour of a physical system to

be expressed as a modular hierarchy of undirected equations. FHM supports a

variety of advanced language features — such as higher-order models and vari-

able system structure — that sets it apart from the majority of other modelling

languages. However, the inception of these new features has not been accom-

panied by the semantic tools required to effectively use and understand them.

Specifically, there is a lack of static safety assurances for dynamic models and

the semantics of the aforementioned language features are poorly understood.

Static safety guarantees are highly desirable as they allow problems that

may cause an equation system to become unsolvable to be detected early, dur-

ing compilation. As a result, the use of static analysis techniques to enforce

structural invariants (e.g. that there are the same number of equations as un-

knowns) is now in use in main-stream equation-based languages like Modelica.

Unfortunately, the techniques employed by these languages are somewhat lim-

ited, both in their capacity to deal with advanced language features and also

by the spectrum of invariants they are able to enforce.

Formalising the semantics of equation-based languages is also important.

Semantics allow us to better understand what a program is doing during exe-

cution, and to prove that this behaviour meets with our expectation. They also

allow different implementations of a language to agree with one another, and can

ii

be used to demonstrate the correctness of a compiler or interpreter. However,

current attempts to formalise such semantics typically fall short of describing

advanced features, are not compositional, and/or fail to show correctness.

This thesis provides two major contributions to equation-based languages.

Firstly, we develop a refined type system for FHM capable of capturing a larger

number of structural anomalies than is currently possible with existing methods.

Secondly, we construct a compositional semantics for the discrete aspects of

FHM, and prove a number of key correctness properties.

Acknowledgements

Writing this thesis has been a long and difficult task, and I am certain that it

would not have been possible without a great deal of support and friendship from

my friends, family, and colleagues. First and foremost I would like to thank my

supervisor Henrik Nilsson whose guidance, assistance, and constant enthusiasm

has been invaluable. This thesis would not have been possible without him.

It has been a pleasure to work in the Functional Programming Laboratory

and I wish to thank everyone there for making the last five years so interesting

and enjoyable. In particular, I would like to acknowledge Graham Hutton and

Thorsten Altenkirch who have been teaching me since my first year as an un-

dergraduate. Florent Balestrieri, Iain Lane, Darin Morrison, Neil Sculthorpe,

George Giorgidze, Laurence Day, and Bas van Gijzel also deserve many thanks

for providing feedback and help with this thesis or earlier papers. I also thank

my examiners Venanzio Capretta and Walid Taha for their time and construct-

ive comments.

Finally, special thanks go to my parents who made this thesis possible with

their continual support.

List of Figures

2.1 A simple electrical circuit. 13

2.2 Block diagram modelling the simple electrical circuit. 15

2.3 Block diagram modelling an electrical circuit with two resistors. . 16

2.4 Full-wave rectifier modelled using ideal diodes. 19

2.5 Components connected in series and parallel. 35

2.6 Breaking pendulum. 37

4.1 H∆ types. 53

4.2 H∆ terms. 54

4.3 H∆ values. 56

4.4 Comparison of Hydra and H∆. 57

4.5 H∆ small-step semantics. 59

4.6 H∆ typing rules. 62

4.7 H∆ type equality. 63

4.8 An elastic bouncing ball. 73

4.9 H� types. 79

4.10 H� terms. 80

4.11 H� values. 81

4.12 Comparison of Hydra and H�. 82

4.13 H� typing rules. 85

4.14 Half-wave rectifier with in-line inductor. 91

LIST OF FIGURES vi

5.1 Comparison of Hydra and HJK. 117

5.2 Equivalence rules. 137

5.3 Congruence rules for functional terms. 137

5.4 Substitution interaction rules for functional terms. 138

5.5 Computation rules. 138

5.6 Substitution rules. 139

Contents

1 Introduction 1

1.1 Static Semantics for Equation-based Languages 3

1.2 Dynamic Semantics for Equation-based Languages 4

1.3 Contributions of this Thesis . 5

1.4 Overview of Peer-Reviewed Publications 7

1.5 Prerequisites . 8

1.6 Structure of this Thesis . 8

2 Equation-Based Modelling 11

2.1 Preliminaries . 11

2.1.1 Systems of Equations . 11

2.1.2 Causality . 14

2.1.3 Modularity . 15

2.1.4 First-class Components 17

2.1.5 Hybrid Systems . 18

2.1.6 Structural Dynamism . 19

2.2 Modelica . 20

2.2.1 An Object-Oriented Approach 20

2.2.2 A Simple Model in Modelica 22

2.3 Functional Hybrid Modelling . 25

2.3.1 A Functional Approach 26

2.3.2 Functional Reactive Programming 26

CONTENTS viii

2.3.3 First-class Signal Relations 28

2.3.4 Hydra: an FHM Language 29

2.3.5 Hydra by Comparison . 31

2.3.6 A Simple Model in Hydra 32

2.3.7 Higher-order Modelling 34

2.3.8 Structurally Dynamic Modelling 36

3 Agda and Notation 41

3.1 Overview of Agda . 41

3.2 Agda in this Thesis . 42

3.2.1 Implementations and Mechanised Proofs 43

3.2.2 Notation . 43

4 Structural Types 45

4.1 Preliminaries . 45

4.1.1 Outline . 45

4.1.2 Structural Properties . 46

4.2 A Type System for Simple Balance 49

4.2.1 Key Ideas . 49

4.2.2 H∆: A Core Language for Simple Balance 51

4.2.3 Semantics . 56

4.2.4 A H∆ Type System . 58

4.2.5 Preservation of Balance 61

4.3 A Constraint-based Structural Type System 68

4.3.1 Key Ideas . 68

4.3.2 Structural Criteria . 69

4.3.3 H�: A Core Language for Structural Types 77

4.3.4 A H� Type System . 81

4.3.5 Metatheoretical Properties 84

4.4 Evaluation . 88

4.4.1 Structural Properties in the Wild 88

ix CONTENTS

4.4.2 Case Study: Half-Wave Rectifier 90

5 A Semantic Model of FHM 97

5.1 Preliminaries . 97

5.1.1 Outline . 97

5.1.2 Models and Metalanguages 99

5.1.3 Embedding a Model . 100

5.1.4 Normalisation by Evaluation 101

5.2 A Semantic Model of FHM . 107

5.2.1 HJK: A Core Language for a Semantic Model 107

5.2.2 A Model of HJK . 117

5.2.3 Normalisation . 128

5.3 Correctness and Other Properties 134

5.3.1 Correct by Construction 135

5.3.2 Convertibility . 136

5.3.3 Indexing and Reindexing 139

5.3.4 Embeddings . 142

5.3.5 Proof of Normalisation . 143

5.3.6 Approaches to Mechanised Theorem Proving 145

5.4 A Model of Dynamism . 146

5.4.1 Shapes and Deformations 147

5.4.2 Oracles and Interpretation 151

5.4.3 Metatheoretical Properties 153

5.5 Extensions . 154

5.5.1 Local Signal Variables . 155

5.5.2 Delayed Branch Normalisation 162

6 Related Work 167

6.1 Structural Types . 167

6.1.1 Modelica . 167

6.1.2 Broman, Nyström, and Fritzson 168

CONTENTS x

6.1.3 Nilsson . 169

6.1.4 Bunus and Fritzson . 170

6.1.5 Furic . 172

6.1.6 Modelyze . 172

6.2 Semantics . 173

6.2.1 Kågedal . 174

6.2.2 Henzinger . 175

6.2.3 Giorgidze . 176

6.2.4 Pepper et al. 177

6.2.5 Broman . 178

6.2.6 Wan and Hudak . 179

6.2.7 Acumen . 179

6.2.8 Sol . 179

6.2.9 Danielsson . 180

7 Summary and Future Work 181

7.1 Summary . 181

7.2 Future Work . 183

Bibliography 198

Chapter 1

Introduction

Systems of equations, also known as simultaneous equations, are a fundamental

concept in many areas of mathematics, science, and engineering. Equations are

used in many ways, such as to describe the behaviour of a physical process or to

state the laws of a logical theory. Modelling and simulation, optimisation prob-

lems, and artificial intelligence are but a few possible applications. There are

numerous types of equation systems. For example, linear systems of equations

(i.e. equations that permit only linear operations such as addition and mul-

tiplication by a constant) play a vital role in many engineering and computer

science problems. Another example is differential algebraic systems, which per-

mit a much larger variety of operations (e.g. computing derivatives) and are

key to the field of physical modelling and simulation.

The introduction of digital computers with ever improving performance has

made it feasible to handle increasingly large and complex systems of equations.

This in turn has spurred the creation of dedicated programming languages de-

signed specifically to aid in the construction of equation systems that would

otherwise be unmanageable. These languages typically support a modular ap-

proach, allowing systems to be described in a hierarchical fashion via the com-

position of individual equation system fragments. The systems can also be

CHAPTER 1. INTRODUCTION 2

parameterised, describing not just a specific problem instance but a set of prob-

lems. In this thesis we investigate the semantics of equation-based languages.

One such class of languages that makes extensive use of equations are the

physical modelling languages, which have received a significant amount of atten-

tion in the last few decades as they have been shown to be very useful for mod-

elling a broad spectrum of physical phenomena [Cellier, 1996, Elmqvist, 1978,

Mod, 2012, Nilsson et al., 2003, Simulink, 1992]. Examples include electronics,

chemical reaction rates, population distribution, and the spread of infectious

diseases [Cellier, 1991]. Moreover, there is ongoing research into a variety of

more advanced features, such as support for first-class models, variable model

structure, and iteratively-staged execution [Giorgidze, 2011, Zimmer, 2007].

For these reasons our work focuses on modelling and simulation languages as

they provide a concrete setting that is representative of the wider field. While

we wish to keep the scope of the thesis as broad as possible, a concrete setting

has a number of advantages, and in light of our previous remarks, modelling

languages provide a suitable such setting:

• The syntax and language features of existing modelling and simulation

languages provide a solid foundation to begin semantic investigation.

• Our work can be phrased in terms of existing language design and imple-

mentation problems, which makes it easier to demonstrate that our work

is of immediate practical value.

• The contributions of the thesis will be more accessible to those already

familiar with the field of modelling and simulation languages.

• We are able to make contributions directly to the field of modelling and

simulation languages. For example, the implementation of our refined

type system (see Chap. 4) is immediately of use to modelling languages

such as Modelica [Mod, 2012] and MKL [Broman and Fritzson, 2008].

3 CHAPTER 1. INTRODUCTION

1.1 Static Semantics for Equation-based

Languages

In modern, high-level programming languages, types play a crucial role. Types

help to create safe programs that conform with their specification. The strength

of type systems can vary greatly, from the weak systems found in languages

such as C [Kernigham and Ritchie, 1978], to the more powerful systems found

in language such as Agda [Bove et al., 2009]. Stronger type systems allow more

precise invariants of programs to be expressed, enabling a larger set of invalid

programs to be statically rejected as ill-typed.

Equation-based languages are also often typed, with the types playing much

the same roles as in conventional programming languages. Additionally, simple

invariants relating to the structure of an equation system may be enforced, such

as there being an equal number of variables and equations. The hope is that

it becomes possible to statically detect structural problems that are likely to

render a system ill-formed and thus unsolvable.

However, the development of advanced modelling language features has

made the detection of structural anomalies a more difficult task. For example,

first-class models mean that the fully-assembled structure of an equation system

cannot be determined prior to elaboration (the process of “flattening” a hier-

archical system of equations into a set). Detecting structural anomalies is even

more challenging in a structurally-dynamic setting (i.e. where the equations de-

scribing the behaviour of a system may change during simulation) as structural

invariants may only be violated at certain points in time during simulation.

Thus, there is considerable scope for improving the type systems of current

equation-based languages. In one respect, the type systems can be generalised

to a setting were equation system fragments have first-class status and where

the systems of equations may be structurally dynamic. In the other respect,

the type systems can be improved by refining the enforced structural invariants,

thus allowing more potential problems to be detected early during compilation.

CHAPTER 1. INTRODUCTION 4

1.2 Dynamic Semantics for Equation-based

Languages

Dynamic semantics express the computation of a language by explaining how

the terms of the language are evaluated. Formalising a semantics is important

as it allows us to better understand what a program is doing during execution,

and to prove that this behaviour meets with our expectation. Semantics also

allow different implementations of a language to agree with one another, and

can be used to demonstrate the correctness of a compiler or interpreter.

Recent advances in equation-based language features have created an ex-

pressive framework for describing systems of equations. However, the semantics

of these features are often poorly understood, which creates a rift between the

user’s perception of a program and the actual program behaviour. Structural

dynamism, for example, introduces difficulties as it may be a long time before

a structural configuration arises that exhibits unexpected behaviour.

To make matters worse, existing attempts often conflate the semantics of

computing a set of equations with the semantics of solving the equation system

[Giorgidze, 2011, Pepper et al., 2011]. This coupling is undesirable as it makes

the semantics non-modular, and means it is often difficult to separate the two

aspects. This may become a problem when we wish to change the type of equa-

tions (e.g. from linear to differential algebraic) as the semantics may be tied to a

specific approach to describing a particular type of equation. Many of these ap-

proaches also produce non-compositional semantics [Broman, 2010, Henzinger,

1996, Kågedal, 1998, Kågedal and Fritzson, 1998], which means that language

features are not always described independently, and that the introduction of

new features alongside existing functionality can be a difficult task.

Thus, there is a need for a compositional semantics for equation-based lan-

guages that separates the act of computing equations and solving them. The

semantics must be capable of describing advanced equation-based language fea-

tures, such as first-class equation system fragments and structural dynamism.

5 CHAPTER 1. INTRODUCTION

There is then the opportunity to use the semantics to prove correctness prop-

erties of the language; for example, showing that a program cannot get “stuck”

when attempting to compute a new system configuration.

1.3 Contributions of this Thesis

The motivation for the work in this thesis was born out of a desire to improve

and better understand equation-based modelling languages such as Functional

Hybrid Modelling (FHM). Advanced modelling techniques have been a very

active area of research in recent years, yet the tools needed to understand and

work with them have received relatively little attention. In this thesis, we ad-

vance the current state-of-the-art in two ways: by improving upon existing

static methods for detecting structural anomalies in equation systems, and by

mechanically formalising the discrete aspects of a fully-featured equation-based

modelling language. As such, the contributions of this thesis fall into two cat-

egories.

The first part of this thesis investigates how the type system of FHM can

be refined to include additional structural information. The development of

the type system is broken down into two phases. Firstly, the global property

of “equation-variable balance” is captured, allowing the type system to enforce

that there are globally the same number of equations as variables, without re-

quiring that this property be enforced locally for every subcomponent. Secondly,

the balance criterion is further refined such that the type system is able to

capture a much broader spectrum of structural anomalies. In summary, the

contributions to static checking are as follows:

1. A novel type system for modular systems of equations supporting first-

class components and structural dynamism.

2. A refined set of structural invariants based on classification of equations,

allowing a larger class of structural anomalies to be prevented compared

CHAPTER 1. INTRODUCTION 6

with existing approaches.

3. A concise small-step semantics for the core of FHM, capturing the subtle

behaviour of variables in a modular system of equations.

4. A proof of correctness for the simple balance type system.

The second part of the thesis is dedicated to finding a semantic model for

the discrete parts of an FHM-like modelling language. The semantics are para-

meterised by the continuous aspects, allowing the continuous behaviour (i.e.

finding a solution to a flat set of equations) to be described in whatever way is

most appropriate for a given domain.

FHM supports many advanced modelling language features, and thus we

argue that it is an ideal candidate for metatheoretical study. We develop a non-

standard semantic model that captures aspects which are common to equation-

based languages but that are rarely seen in other domains. In addition to

describing how an initial flat set of equations is computed, we also describe how

the system responds (at simulation runtime) to discrete events to produce new

system configurations. In summary, the contributions to dynamic semantics of

equation-based languages are as follows:

1. A compositional semantics for the discrete aspects of an acausal, hybrid,

structurally dynamic modelling language expressed in dependent type the-

ory using Normalisation by Evaluation. The discrete semantics encompass

not only the translation of a hierarchical system of equations into a flat

set, but also handle structural changes in response to events during sim-

ulation.

2. A novel formalisation of dynamism and the generation of new structural

configurations that is declarative, avoiding the traditional imperative bias

common to other approaches to dynamism.

3. A semantics that is carefully structured so as to allow the continuous

aspects to be described separately, in whatever way is most appropriate

7 CHAPTER 1. INTRODUCTION

for the purpose at hand, while retaining the ability to describe precisely

how a system evolves in response to discrete events.

4. Mechanised proofs of type preservation, termination and totality, and

completeness for the semantics.

1.4 Overview of Peer-Reviewed Publications

The work in this thesis draws on three earlier publications [Capper and Nilsson,

2010, 2012, 2013] co-authored by myself and Henrik Nilsson. These publica-

tions have been superseded by this thesis. This thesis was written by myself

and presents my own contributions. I have implemented the type systems and

semantics described in this thesis, and the source code is available online from

my personal webpage 1.

The first peer-reviewed publication [Capper and Nilsson, 2010] describes the

preliminary investigation into the refinement type system. The work introduces

the concept of adding structural information to types and the structural criteria

used to generate constraints. However, the simple balance type system is not

formalised and structural dynamism is not considered. The paper also makes

no attempt to prove any metatheoretical properties, and the formalisation of

the constraint-based system is more complicated than it appears in this thesis.

The second peer-reviewed publication [Capper and Nilsson, 2012] covers the

initial work into constructing a semantic model for FHM. The paper uses the

same approach as found in this thesis, but is less comprehensive. As in this

thesis, the model is expressed in Agda and is thus known to be both total and

terminating. No attempt is made to show any other meta-theoretical properties

in this publication. The approach to structural dynamism is incomplete, and

the semantics of local variables are not considered.

The third peer-reviewed publication [Capper and Nilsson, 2013] builds upon

the earlier work on the refinement type systems by simplifying the presentation

1http://www.cs.nott.ac.uk/~jjc

http://www.cs.nott.ac.uk/~jjc

CHAPTER 1. INTRODUCTION 8

and adding support for structural dynamism. It also provides a more thorough

case study into the applications of the type system.

1.5 Prerequisites

This thesis assumes that readers are familiar with functional programming and

also, though not essential, are familiar with Haskell in particular. Readers that

are unfamiliar with functional programming or Haskell should refer to Peyton

Jones [2003], Hutton [2007], or Thompson [1996].

The thesis also assumes a familiarity with elementary type theory and set

theory. For an introduction to both see Pierce [2002].

Finally, Chap. 5 assumes that the reader is familiar with dependent type

theory and mechanised theorem proving in Agda. An understanding of similar

languages, such as Coq [Bertot and Castéran, 2004] is likely to be sufficient, but

readers may also wish to refer to Norell [2009] for a tutorial on Agda.

1.6 Structure of this Thesis

The remainder of this thesis is structured as follows:

• Chapter 2 introduces the fundamental concepts of equation-based model-

ling such as modularity, causality, and structural dynamism. The chapter

then describes two different approaches to equation-based modelling, name-

ly object-oriented modelling as illustrated by Modelica, and functional

modelling as illustrated by FHM.

• Chapter 3 provides an introduction to Agda and other specialised notation

used throughout the thesis.

• Chapter 4 develops the concept of a refined type system for detecting

structural anomalies in equation-based languages. The chapter begins

by describing a type system that tracks simple equation-variable balance.

9 CHAPTER 1. INTRODUCTION

The correctness of the balance type system is given with respect to an

operational semantics. The refinements are then further developed to

create a type system capable of detecting more kinds of structural errors.

The chapter ends with a case study that demonstrates the applications of

the refined type systems.

• Chapter 5 develops a semantic model of a core language based on FHM.

Certain correctness properties are then established for the model and its

interpreter. The chapter then presents a model of structural dynamism,

and concludes by considering a number of extensions to the base model,

such as delayed branch evaluation.

• Chapter 6 provides an overview of work closely related to our own.

• Finally, chapter 7 summarises the conclusions of our work and discusses

possible future work.

Chapter 2

Equation-Based Modelling

This chapter introduces the fundamental concepts of equation-based modelling.

Two different approaches are discussed: object-oriented modelling as illustrated

by Modelica, and functional modelling as illustrated by Functional Hybrid Mod-

elling (FHM). We pay particular attention to the latter approach as it forms

the basis for much of the work in this thesis.

2.1 Preliminaries

2.1.1 Systems of Equations

A core principle of equational modelling is describing the behaviour of a physical

system via a system of equations. A system of equations is a set of equations over

a set of variables or unknowns. It has a solution if every variable in the system

can be instantiated with a value such that all the equations are simultaneously

satisfied. Moreover, if only one such instantiation exists, then the system has

a unique solution. The following is an example of a system consisting of 2

CHAPTER 2. EQUATION-BASED MODELLING 12

equations and 2 unknowns:

x2 + y = 0 (2.1a)

3x = 10 (2.1b)

The domain of the variables and signatures for equations is mostly orthogonal

to the work presented in this thesis. The dimensions of an object are important

to the kind of analyses that we investigate, and thus we will assume that all

variables are of zero dimensions. Furthermore, for reasons of presentation, we

will use the domains of reals or time-varying reals unless stated otherwise.

Returning to the equation system above, it can be solved by using (2.1b) to

solve for x , substituting the value of x into (2.1a), thus enabling the latter to

be used to solve for y.

Now consider the following parametrised version of the system instead. The

solvability of the system now depends on the value of the coefficient c. For

example, when c = 0, no solution exists.

x2 + y = 0 (2.2a)

cx = 10 (2.2b)

Whether or not a system of equations has a solution is an important prop-

erty. For example, if a system of equations is intended to model a physical

system, unsolvability would be indicative of a modelling fault. However, as the

trivial example above illustrates, unless all aspects of the system are known, it

may not be possible to answer this question, at least not directly. Moreover,

depending on the domain, the question is in general undecidable (e.g. [Matiya-

sevich, 1993]).

Figure 2.1 shows a representation of a simple electrical circuit. The circuit

is a typical example of a physical system. It consists of a number of two-pinned

electrical components and a ground component. Much like any other domain,

13 CHAPTER 2. EQUATION-BASED MODELLING

S
R

C

G

L

uC

uRuS uL

i

i1 i2

Figure 2.1: A simple electrical circuit.

the behaviour of an electrical system can be modelled via a system of equations.

Four equations can be formulated to describe the components (2.3a – 2.3d) and

three equations describe the circuit topology (2.3e – 2.3g). The interested reader

can consult Cellier [1991] for further information on how an equational model

can be derived from a physical system.

uS = sin(2πt) (2.3a)

uR = Ri1 (2.3b)

i1 = C
duC
dt

(2.3c)

uL = L
di2
dt

(2.3d)

i1 + i2 = i (2.3e)

uR + uC = uS (2.3f)

uS = uL (2.3g)

In this example, the signature of the equations is given by implicit differential

CHAPTER 2. EQUATION-BASED MODELLING 14

algebraic equations (DAEs) [Cellier and Kofman, 2006] and the domain of the

variables is the time-varying reals. As a reminder, the signature and variable

domain are not of particular importance to our work; for example, we could

just as easily describe a linear system of equations over the integers instead.

2.1.2 Causality

The DAE system above is said to be implicit as the cause-and-effect relationship

between variables is not made explicit. The equations are undirected : both

known and unknown variables may appear on both sides of the equality, and

thus no specific order in which to solve the equations is provided. By contrast,

an explicit system can be seen as a series of assignments, whereby known (at

that point) variables appear on one side of the equation with a single unknown

appearing on the other (which then becomes known in subsequent equations).

Ordinary differential equations (ODEs) are one example of an explicit system.

A language that only provides support for explicit equation systems, such as

Simulink [1992], is known as causal. Conversely, a language such as Hydra that

allows for implicit equations is known as a noncausal (or acausal) language.

Consider Pell’s equation [Barbeau, 2003] over the two unknowns x and y

and parametrised by an integer n:

x2 − ny2 = ±1 (2.4)

The equation is implicit: depending on which variable is known in a specific

context, the equation can be translated into two different assignments :

x :=
√

ny2 ± 1 (2.5a)

y :=
√

(x2 ± 1)÷ n (2.5b)

There are a number of advantages of noncausal modelling [Cellier, 1996]:

1. The equations are more reusable: Pell’s equation can be used in two

15 CHAPTER 2. EQUATION-BASED MODELLING

∫

∫

Σ
+1

+1

Σ
+1

-1

i2
i

i1
uS

L

1

C

1

R

1

Figure 2.2: Block diagram modelling the simple electrical circuit.

ways, but neither individual assignment is sufficient for capturing the full

behaviour of the equation (i.e. depending upon whether x or y is known).

2. Implicit equations are more declarative: the modeller is free to express

an equation in whatever way is most clear, without undue concerns about

how the larger system is going to be solved.

3. In practice, causal models can be hard to maintain: a small change in

the physical structure of the system may have global consequences in the

causality of the equations.

To further highlight the advantages of expressing a system implicitly consider

a model of the simple electrical circuit in a causal language such as Simulink

[Simulink, 1992] by transforming the circuit into the block diagram in Fig. 2.2.

The diagram bears little structural resemblance to the physical circuit that it

models, and the process of deriving the causal model is in general a difficult task,

with the burden of translation resting entirely with the modeller. Consider also

the impact of introducing a second resistor to the circuit (see Fig. 2.3), which

alters the diagram in a nontrivial and, crucially, non-compositional way.

2.1.3 Modularity

The equation systems needed to describe real-world problems are usually large

and complex. However, there tends to be a lot of repetitive structure, making it

beneficial to describe the systems in terms of reusable equation system fragments

CHAPTER 2. EQUATION-BASED MODELLING 16

∫

∫

Σ
+1

+1

Σ
+1

-1

i2 i

i1
uS

L

1

C

1

R1

1

Σ
+1

+1
R2

1

Figure 2.3: Block diagram modelling an electrical circuit with two resistors.

[Cellier and Kofman, 2006]. For example, in the simple electrical circuit, each

component can be described by a small equation system, and the entire circuit

can then be describedmodularly by composition of instances of these for specific

values of any parameters. Moreover, the aspects common to each component

— for example, the equations that are inherent to any two-pinned electrical

component — can be abstracted over and reused.

While the exact syntactic details vary between languages, the idea is to

encapsulate a set of equations as a component with a well-defined interface.

Let us illustrate with an example, temporarily borrowing the syntax of the

λ-calculus for the abstraction mechanism:

λ(x, y) →
x+ y + z = 0

x− z = 1

This abstraction is a relation that constrains the possible values of the two in-

terface variables x and y according to the encapsulated equations. The variable

z is local to the abstraction. If we call the above relation rel , it can now be used

as a building block by instantiating it: substituting expressions for the interface

17 CHAPTER 2. EQUATION-BASED MODELLING

variables and renaming local variables as necessary to avoid name clashes:

u+ v + w = 10 (2.6a)

rel(u, v) (2.6b)

rel(v, w + 7) (2.6c)

After unfolding and renaming, often referred to as flattening or elaboration, the

following unstructured (as opposed to modular) set of equations is obtained:

u+ v + w = 10 (2.7a)

u+ v + z1 = 0 (2.7b)

u− z1 = 1 (2.7c)

v + (w + 7) + z2 = 0 (2.7d)

v − z2 = 1 (2.7e)

The relation rel contributes 2 equations for each application. Including the top-

level equation, the fully elaborated system thus consists of 5 equations in total

over 5 unknowns. Note the need to rename the local variable z when unfolding.

2.1.4 First-class Components

A complete model can be constructed by manipulating and composing indi-

vidual equation-system fragments (or simply components) programmatically. If

components are elevated to a first-class status it creates a far more expressive

language for higher-order and structurally dynamic modelling.

The precise meaning of a first-class language entity varies somewhat from

field to field, and hence for our purposes we will define it as follows: a language

entity is first class if it can be passed as a parameter to functions, returned as a

result from functions, constructed at runtime, and be placed in data structures

[Scott, 2009]. Thus, for the remainder of this thesis, when referring to language

CHAPTER 2. EQUATION-BASED MODELLING 18

entities as first-class, we will be adhering to the above definition.

To our knowledge, the notion of first-class was first introduced by Chris-

topher Strachey [Burstall, 2000] in reference to functions being first-class values

in higher-order, functional programming languages.

2.1.5 Hybrid Systems

A hybrid system is a general term for any system that exhibits both continuous-

time and discrete-time behaviour. Hybrid systems are very useful in practice

as they allow dramatic changes in the behaviour of a system to be expressed

easily [Mosterman and Biswas, 1997]. A cyber-physical system is an example

of a hybrid system that allows digital computers to interact with a continuous

physical system to effectuate discrete changes [Lee, 2008].

In order to model a hybrid system it must contain both continuous and

discrete values. The continuous and discrete parts of the model interact via

discrete transitions at distinct points in time. These interactions are known as

events. In between events, the model evolves continuously: all discrete values

remain fixed. Since the model may depend conditionally on the discrete values,

each discrete value assignment defines a potentially unique configuration or

mode of continuous operation. In general, the total number of modes can be

enormous, or even unbounded, and often cannot be predicted a priori.

Hybrid systems encompass a broad spectrum of modelling behaviours. For

example, as we will discuss in the following section (Sect. 2.1.6), structural

dynamism provides a means to mix the continuous and discrete by allowing

the very equations that model the system to change over time [Nilsson et al.,

2003]. Dirac impulses, as explored by Nilsson [2003], also allow a form of hybrid

modelling for systems that are only piecewise continuous.

19 CHAPTER 2. EQUATION-BASED MODELLING

S uS

G

C uC

i

R uR

D 1 D
2

D 3
D

4

Figure 2.4: Full-wave rectifier modelled using ideal diodes.

2.1.6 Structural Dynamism

In a temporal setting, where equations express relations among time-varying

entities, structural dynamism allows the equations of a system to change at

various points in time to capture changes in the system configuration. As an

example, consider the system in Fig. 2.4 of a full-wave rectifier [Nilsson and

Giorgidze, 2010]. The modeller has chosen an ideal model for the diodes: an

electrical switch that is closed (diode conducting) whenever the voltage across

it is positive, and open otherwise (diode not conducting). Depending on which

switches are open and which are closed, there are up to 24 = 16 structural

configurations, each corresponding to a distinct system of equations.

Structural dynamism offers a form of temporal composition as opposed to

the spatial composition that arises from constructing an equation system in a

modular fashion. This form of temporal composition has been shown to be very

useful in practice, particularly in a setting that supports first-class components

[Giorgidze and Nilsson, 2009]. However, the greater expressivity that comes with

structural dynamism also create many problems [Giorgidze and Nilsson, 2009,

Nilsson et al., 2003, Nytsch-Geusen et al., 2005, Zimmer, 2010]. Of particular

CHAPTER 2. EQUATION-BASED MODELLING 20

concern in this thesis is the meaning of structurally dynamic systems and the

early detection of structural errors. In the latter case, an error in a system with

a large — or possibly even unbounded — number of configurations may take a

very long time to surface if the error only manifests itself when specific system

configurations become active. There are also issues that we do not investigate

in the thesis, such as the re-initialisation of variables between events that allow

continuity assumptions to be preserved. For example, if one were to model a

bouncing ball using a structural configuration for each trajectory, it would be

necessary to preserve the position of the ball between events. Initialisation of

hybrid systems is known to be a difficult problem in general [Pantelides, 1988],

but we do not consider it here as it is not of immediate relevance to our work.

2.2 Modelica

Before we introduce FHM it is both useful and informative to take a look at an

alternative approach to noncausal modelling, as illustrated by Modelica. Model-

ica is a high-level, declarative language for noncausal modelling and simulation

of physical systems, and it is the current industry state-of-the-art.

While a familiarity with Modelica is not essential for understanding the

work presented in this thesis, it provides a useful reference point for the state

of contemporary, noncausal modelling languages. Furthermore, this section

demonstrates that there are many core principles in equation-based languages

that are not specific to FHM. Thus, we hope that a wider understanding of the

field will give the reader a fuller appreciation of the contributions of this thesis.

2.2.1 An Object-Oriented Approach

Modelica programs are structured using an object-oriented paradigm. It fea-

tures a class system that is reminiscent of the type systems found in many

other modern object-oriented languages, such as C++, Java, or C#. However,

unlike these languages where the behaviour of an object is specified via methods

21 CHAPTER 2. EQUATION-BASED MODELLING

according to a particular interface, in Modelica the behaviour of an object is

given via equations. Thus, the variables that the equations constrain are the

fields of the object along with any parameters that may be passed into it.

As with FHM, equations in Modelica are given via implicit DAEs. A Mod-

elica program can be “run” by compiling the hierarchal equation system into

simulation code using a number of sophisticated symbolic techniques, which is

then executed to simulate the system.

The approach taken by Modelica is very successful, and understandably so

as it builds on many years of research into structuring programs using objects.

However, Modelica suffers from a lack of first-class equation system fragments,

making it difficult to express higher-order models in a straightforward manner.

Modelica has some support for parameterised models by allowing the fields of

a model to be replaced in a derived class. For example, a model of a circuit

containing a resistor could be refined by deriving a new model that replaces

the resistor with a thermistor. However, this notion of parameterisation is very

restrictive as the replacement mechanism is entirely static and prevents models

from being created dynamically. The lack of first-class models in noncausal

languages was one of the primary motivations for FHM [Giorgidze, 2011].

Modelica is also limited in its ability to express structurally dynamic mod-

els. It is possible to express simple dynamism through various control flow

mechanisms, but Modelica statically rules out the dynamic addition and re-

moval of time-varying variables. It also lacks the ability to perform runtime

symbolic processing or to generate new simulation code in response to discrete

events during simulation. This means that all possible modes must be static-

ally computable, and the number of modes must be relatively small in order

to generate simulation code upfront for every possible structural configuration.

This shortcoming was another motivating factor in the design of FHM.

CHAPTER 2. EQUATION-BASED MODELLING 22

2.2.2 A Simple Model in Modelica

We introduce the Modelica language by way of a small example: the electrical

circuit depicted in Fig. 2.1. In keeping with object-oriented philosophy, Mod-

elica makes it easy to create abstractions, and we make use of this by isolating

the behaviour that all two-pinned, electrical components have in common:

connector Pin

flow Real i ;

Real v ;

end Pin ;

model TwoPin

Pin p, n;

Real u, i ;

equation

u = p.v − n.v ;

0 = p.i + n.i ;

i = p.i ;

end TwoPin ;

A two-pinned component has a positive and negative pin, denoted p and n

respectively. A Pin is given by a connector record that represents electrical

connectors. The connector record introduces the variable i , representing the

current flowing into the connector, and the variable v , representing the voltage

across the connector. A connector does not introduce equations itself, but in-

stead is used in conjunction with connect statements to specify the topology of

a model. Connectors can be used in any physical domain where both flow vari-

ables and potential variables are present; for example, in electrical, hydraulic,

and mechanical domains. A discussion of how equations are generated from

connectors and connect statements is deferred until the end of the section.

In addition to a positive and negative pin, the TwoPin model also contains

a further two quantities: the variable u represents the voltage drop across the

23 CHAPTER 2. EQUATION-BASED MODELLING

component, and i represents the current flowing into the positive pin. Finally,

TwoPin defines the noncausal equations that these variables satisfy, which cor-

respond to Kirchhoff’s laws for electrical circuits [Serway, 2004].

It is now possible to derive specific two-pinned components by extend ing

TwoPin and adding any new quantities and equations as required. This mech-

anism is a form of inheritance that allows models to be highly reusable. Below

we define the models representing a resistor, a capacitor, an inductor, and a

voltage source. Variables marked as parameters can be set when instantiating

a new object of the class, otherwise, parameters take the specified default value.

model Resistor

extends TwoPin ;

parameter Real R = 1 ;

equation

R ∗ i = u;

end Resistor ;

model Capacitor

extends TwoPin ;

parameter Real C = 1 ;

equation

C ∗ der (u) = i ;

end Capacitor ;

model Inductor

extends TwoPin ;

parameter Real L = 1 ;

equation

u = L ∗ der (i);

end Inductor ;

model VSourceAC

extends TwoPin ;

CHAPTER 2. EQUATION-BASED MODELLING 24

parameter Real VA = 1 ;

parameter Real FreqHz = 1 ;

constant Real PI = 3 .14159 ;

equation

u = VA ∗ sin (2 ∗ PI ∗ FreqHz ∗ time);

end VSourceAC ;

We define one more component with a single physical connection to represent

the ground component:

model Ground

Pin p;

equation

p.v = 0 ;

end Ground ;

Finally, the simple circuit can be assembled by composing instances of the

components. The Modelica compiler analyses the connect statements and ap-

propriate connect equations are generated. Connected flow variables generate

sum-to-zero equations, and connected potential variables generate equality con-

straints stating that all connected potential variables are equal at any point in

time. For the SimpleCircuit model, a total of three sum-to-zero equations and

six equality constraints are generated.

model SimpleCircuit

VSourceAC S ;

Resistor R;

Capacitor C ;

Inductor L;

Ground G;

equation

connect (S .p, R.p);

connect (S .p, L.p);

connect (R.n,C .p);

25 CHAPTER 2. EQUATION-BASED MODELLING

connect (S .n, C .n);

connect (S .n, L.n);

connect (S .n, G.p);

end SimpleCircuit ;

Modelica is specifically designed to make it easy to abstract over the repet-

itive structure of large, complex models. The use of noncausal equations makes

it easy to express the topology of a circuit, as demonstrated in the above ex-

ample. In a causal setting, the user would be required to manually causalise the

circuit model. Furthermore, components representing the same physical entity

may not even be reusable if a different causality is required for the equations in

each instance. However, note that Modelica performs all symbolic translations

once prior to simulation (i.e. causalisation). In the next section we will see

an example of a model that causes changes in causality during simulation. In

contrast to FHM, such models are rejected at compile time by Modelica as there

is not one valid causalisation for every mode.

2.3 Functional Hybrid Modelling

FHM is a high-level functional framework for equation-based modelling that

provides a concrete setting for the work presented in this thesis. Hydra is an

example of an FHM language and we adopt its syntax to express functional hy-

brid models until a formal core language is introduced in Chap. 4 and 5. The

work in this thesis is applicable to the more general notion of equation-based

languages, and much of it is not specific to equation-based modelling. Never-

theless, FHM has first-class equation system fragments, spatial and temporal

composition, and is embedded in a pure functional language, making it both

representative of equation-based languages and also ideal for formal study.

CHAPTER 2. EQUATION-BASED MODELLING 26

2.3.1 A Functional Approach

There are a number of good reasons for why purely functional programming

provides a great setting for hybrid modelling. Functional languages typically

have more powerful abstraction capabilities compared with their imperative

counterparts, such as first-class functions, parametric datatypes, and ad-hoc

polymorphism (though many of these features are now finding their way into

mainstream imperative languages [Kiselyov, 1999]).

Purely functional languages are usually easier to formally manipulate and

reason about, which is particularly relevant in this thesis. Much like Modelica,

functional programming is also declarative, which lightens the burden on the

end user by simplifying the translation of physical systems into models.

The functional languages that we consider are also equipped with powerful,

static type systems. For example, parametricity is useful when trying to ensure

that components are used consistently in a system topology that may be chan-

ging during simulation. Indeed, a key contribution of this thesis is to refine the

type system of a functional modelling language to check a variety of structural

properties during compilation.

There are also a number of advantages specific to Haskell, the host language

for Hydra. Haskell is well-established as a host language for modelling causal

physical systems (i.e. Functional Reactive Programming [Hudak, 1999]), due,

at least in part, to its support for Embedded Domain Specific Languages (ED-

SLs). It provides meta-programming and customisable syntax through Tem-

plate Haskell and Quasi-quoting [Mainland, 2007, Sheard and Peyton Jones,

2002], and provides powerful abstraction mechanisms such as monads for pro-

gramming with effects [Wadler, 1993].

2.3.2 Functional Reactive Programming

FHM is strongly influenced by Functional Reactive Programming (FRP), and

in particular the Yampa framework. In many ways, FHM can be viewed as a

27 CHAPTER 2. EQUATION-BASED MODELLING

generalisation of FRP. Thus, we will first cover the fundamentals of FRP.

An FRP language can be considered to have two levels: a time-invariant

functional level and a time-varying reactive level [Wan et al., 2001]. The func-

tional level, typically provided by a functional host language, is a pure func-

tional language into which the reactive level is embedded. The reactive level is

concerned with time-varying values called signals. At this level, signal combin-

ators are provided to construct a directed, synchronous dataflow network. The

levels are mutually dependent: the reactive level uses the functional level to

compute time-invariant values and perform point-wise computations on signals,

while certain reactive objects appear as first-class entities at the functional level.

Choosing which reactive objects to promote to first-class functional entities is

a matter of design [Sculthorpe, 2011]. In Yampa, it is the functions on signals,

rather than the signals themselves, that are given first-class status.

FRP can be understood by a conceptual model. Signals are modelled as

functions from continuous time to a value. As time is taken to be continuous

we represent it by the set of nonnegative real numbers:

Time ≃ {t ∈ R | t > 0 }

Signal α ≃ Time → α

The type parameter α specifies the type of values carried by the signal;

for example, Signal N might represent the number of seconds since execution

began, or Signal (R,R) might represent the change in position of a moving ball.

SF α β ≃ Signal α → Signal β

Conceptually, a signal function is a function on signals. It is these signal

functions that are taken as the first-class abstraction in Yampa, while signals

have no independent status of their own. A signal function of type SF α β can

be applied to an input signal of type Signal α to produce an output signal of

type Signal β. Interestingly, as a pair of signals (i.e. (Signal α, Signal β)) is

isomorphic to a signal of a pair of the same types (i.e. Signal (α, β)), unary

signal functions are sufficient for handling signal functions of any arity.

CHAPTER 2. EQUATION-BASED MODELLING 28

It is important to stress the conceptual nature of this model. In a typ-

ical digital implementation the continuous time needs to be approximated by

sampling the signal over a discrete sequence of time steps. Nevertheless, a con-

ceptual model allows us to abstract away from such details. It allows us to

make no assumptions about the rate of sampling, whether the sampling rate is

fixed, how sampling is performed, or how to handle numerical inaccuracies. In-

stead, it provides an ideal model of FRP and describes a simple semantics that

can be easily understood. Moreover, it can be used as a benchmark, with the

expectation that any “reasonable implementation” converges toward the ideal

semantics as the sampling interval tends to zero [Wan and Hudak, 2000].

There is also the further caveat that a signal function must be temporally

causal. This idea should not be confused with equational causality, but instead

states that the value of the signal function at any given point in time may only

depend on earlier values, and cannot depend on the future.

2.3.3 First-class Signal Relations

The causality of a signal function — or even an ordinary function for that matter

— is fixed: it takes a known signal as input and produces a previously unknown

signal as output. This causality can be eliminated if we generalise the notion

of a signal function to a signal relation. Rather than specifying which variables

are inputs and which are outputs, we simply state that some signals are in a

particular relation to each other, imposing constraints on the signals.

Just as an ordinary relation can be seen as a predicate that determines

whether some given values are related, a signal relation can also be viewed as a

predicate on signals. Here, Prop is taken to be the type of propositions:

SR α ≃ Signal α → Prop

Solving a relation amounts to finding a valuation for each unknown, such

that the constraints imposed by a signal relation are satisfied. As the unknowns

are time-varying entities, finding a solution is equivalent to finding a value of

29 CHAPTER 2. EQUATION-BASED MODELLING

type α for all points in time. Thus, the solution to a signal relation is a signal.

The pairing isomorphism that held for signal functions is also true for signal

relations. Thus, solving a relation between many signals is no different from

finding the set of signals that satisfy the n-ary predicate.

equal :: SR (R,R)

equal s = ∀ t : Time. fst (s t) ≡ snd (s t)

The above binary signal relation states that, for all points in time, the two

signals are equal. Or equivalently, that the two components of the one signal

are equal at all points in time.

2.3.4 Hydra: an FHM Language

Hydra is an FHM language that is heavily inspired by Yampa. It is currently im-

plemented as a Haskell EDSL using quasiquoting [Giorgidze, 2012], but for con-

venience, we will use an idealised Hydra syntax that avoids the implementation-

specific details.

Just like Yampa, Hydra is a two-levelled language embedded in Haskell.

However, the primary abstraction mechanism of the signal level is first-class

signal relations, as opposed to the signal functions of Yampa. Definitions at

the signal level may freely refer to entities defined at the functional level, but

signal-level objects are not permitted to escape to the functional level, with

the exception of instantaneous values of signals, which may be fed back to

the functional level at the time of discrete events. This allows future system

configurations to depend on earlier results.

In Hydra, signal relations are constructed using the sigrel primitive:

sigrel pattern where equations

This syntax constructs a first-class, time-invariant, function-level object that

encapsulates a set of equations. The equations range over signal variables in-

troduced by the pattern, similar to the abstraction mechanism presented in

CHAPTER 2. EQUATION-BASED MODELLING 30

Sect. 2.1.3. We refer to these signal variables as interface variables. Signal

variables that occur in the set of equations but not in the pattern are referred

to as local variables. They do not occur anywhere else in the system.

There are two basic forms of equation:

atomic equation: s1 = s2

signal relation application: sr ⋄ s3

Here, sr is a time-invariant expression (signal variables must not occur in

it) denoting a signal relation, and ⋄ denotes signal relation application. The

symbols s1, s2, and s3 denote signal expressions ; that is, a time-varying ex-

pression that appears in an equation. Equations do not have types, but their

subcomponents are required to be well typed. Thus, in the above, if sr has the

type SR α then s3 must have the type Signal α. Taken together, the two types

of equation form a hierarchical system of equations: the atomic equations are

leaves representing simple equality constraints, and ⋄ allows us to instantiate

an equation system fragment with expressions containing the in-scope signals.

To express structurally dynamic systems, Hydra employs a switch construct

that allows equations to be introduced and removed from a model as needed:

initially [;when condition] ⇒

equations1

when condition ⇒

equations2

...

when condition n ⇒

equationsn

Only the equations from one branch are active at any one point in time. The

equations of a branch are switched in whenever the condition guarding the

branch becomes true, at which point those from the previously active branch

are switched out. Practically speaking, this usually amounts to determining

31 CHAPTER 2. EQUATION-BASED MODELLING

when the value of a signal expression would cross zero (i.e. when it is zero and

its left derivative is nonzero).

The keyword initially designates the initially active branch. An optional

condition allows for the initial branch to be re-activated later. Should more

than one switch condition within a switch construct trigger simultaneously, the

branches are prioritised syntactically from the top down.

Complications arise due to the need to properly initialise the new system

of equations after each switch. This is a hard problem in general, but it can

be addressed by providing separate initialisation and reinitialisation equations

[Nilsson and Giorgidze, 2010].

2.3.5 Hydra by Comparison

The distinction between building and solving equations is an approach that Hy-

dra shares with many other equation-based languages, such as Acumen [Taha

et al., 2012], Modelica [Mod, 2012], and Simulink [Simulink, 1992]. Before

demonstrating the language features of Hydra by example, it is useful to put

Hydra in context by comparing it to other similar languages (see the table be-

low). Our list of comparable languages is far from exhaustive as, at this point,

it is not our intention to give a full review of other languages, this task is ad-

dressed in Chap. 6. Instead, we wish to show that Hydra occupies a fairly

unique point in that it supports first-class components, acausal modelling, and

highly-dynamic structure (unbounded dynamism).

Language Causality First-class Dynamism

Hydra Noncausal Yes Highly dynamic

Yampa Causal Yes Highly dynamic

Modelica Noncausal Limited Mostly static structure

Simulink Causal No Static

CHAPTER 2. EQUATION-BASED MODELLING 32

Languages such as MOSILAB [Nytsch-Geusen et al., 2005] and Sol [Zimmer,

2013] that build upon the Modelica standard fall somewhere between Modelica

and Hydra in their support for dynamic structure.

2.3.6 A Simple Model in Hydra

Consider once again the simple circuit example from Fig. 2.1. Following the

same approach used for Modelica, we begin by defining an abstract two-pinned

circuit component. A pin is represented by a tuple of reals for the quantities

of current and potential difference, respectively. For convenience, we allow

ourselves access to the subexpressions via the named record fields i and v ,

rather than the verbose fst and snd functions.

type Pin = (R,R)

twoPin : SR (Pin ,Pin ,Voltage)

twoPin = sigrel (p, n, u) where

p.i + n.i = 0

p.v − n.v = u

To clarify the above example, twoPin contains two atomic equations and the

symbols p, n, and u are interface variables introduced by the relation. There

are no local variables, and hence, the relation constrains a total of five signal

variables (recall that each pin contains two signal variables).

resistor : Resistance → SR (Pin ,Pin)

resistor r = sigrel (p, n) where

local u

twoPin ⋄ (p, n, u)

r ∗ p.i = u

It is now possible to derive concrete electrical components from the twoPin

definition. In the example above, resistor takes a resistance r as a parameter

and creates a relation between two pins. Note that a parameterised signal

relation is just an ordinary function returning a signal relation. The syntax

33 CHAPTER 2. EQUATION-BASED MODELLING

local is used to make the quantification of the local variable u explicit, and

to make it easily distinguishable from r , which is a time-invariant, functional-

level parameter. The local signal variables are not exposed in the pattern.

Consequently, u can only be constrained in this signal relation, unlike the rest

of the variables in the pattern, which can be constrained further.

From here, we can define models for other two-pin components such as

inductors and capacitors in the same way. Note how the twoPin signal relation

is reused in each case. The keyword der indicates the time derivative of a signal.

inductor : Inductance → SR (Pin ,Pin)

inductor i = sigrel (p, n) where

local u

twoPin ⋄ (p, n, u)

l ∗ der p.i = u

capacitor : Capacitance → SR (Pin ,Pin)

capacitor c = sigrel (p, n) where

local u

twoPin ⋄ (p, n, u)

c ∗ der u = p.i

The complete circuit can now be assembled by applying the relevant signal

relations and connecting the components together according to the circuit to-

pology. As before, we adopt a special connect syntax to denote an electrical

circuit junction. However, this time the connect statement accepts n argu-

ments, and results in one sum-to-zero equation and n − 1 voltage equalities.

simpleCircuit : SR ()

simpleCircuit = sigrel () where

local rp, rn, cp, cn, gp

local lp, ln, sp, sn

resistor 2200 ⋄ (rp, rn)

capacitor 0 .00047 ⋄ (cp, cn)

CHAPTER 2. EQUATION-BASED MODELLING 34

inductor 0 .01 ⋄ (lp, ln)

vSourceAC 12 ⋄ (sp, sn)

ground ⋄ gp

connect sp rp lp

connect rn cp

connect sn cn ln gp

Notice that in the simpleCircuit relation the pattern introduced no interface

variables. This is because the relation represents a fully assembled system, and

hence, all variables are effectively local to the relation.

Before moving on, it is important to understand how twoPin contributes

to the definitions of the derived electrical components. Let us consider what

happens when the resistor model is elaborated (or flattened). Elaboration pro-

ceeds by replacing the applied relation with its body, substituting interface

variables for the applied expressions. Again, one needs to be careful to rename

local variables during elaboration to avoid name clashes (see 2.1.3). The aim of

elaborating a complete modular system of equations is to produce a flat list of

equations (i.e. a flat DAE).

twoPin ⋄ (p, n, u)

220 ∗ p.i = u

The above equations are the result of applying resistor to 220 . A single

step of unfolding eliminates the relation application, producing a flat system of

3 equations: two originating from twoPin , and a third contributed by resistor .

p.i + n.i = 0

p.v − n.v = u

220 ∗ p.i = u

2.3.7 Higher-order Modelling

A higher-order model is a model parameterised on other models. In a setting

with first-class signal relations it is easy to express a higher-order model as a

35 CHAPTER 2. EQUATION-BASED MODELLING

p1 n1 p2 n2 np
sr1 sr1

p1 n1

np

p2 n2

sr1

sr2

Figure 2.5: Components connected in series and parallel.

model that can be passed into or returned from a function like any other value.

Consider the two different methods of connecting circuit components to-

gether given in Fig. 2.5. Both methods share a common interface: they take a

pair of two-pinned components as input and return a new two-pinned compon-

ent as output representing the composite of the two inputs. It is straightforward

to model these in Hydra, and the code for serial and parallel are given below.

serial : SR (Pin ,Pin) → SR (Pin ,Pin) → SR (Pin ,Pin)

serial sr1 sr2 =

sigrel (p, n) where

local p1 p2 n1 n2

sr1 ⋄ (p1, n1)

sr2 ⋄ (p2, n2)

connect p p1

connect n1 p2

connect n2 n

parallel : SR (Pin ,Pin) → SR (Pin ,Pin) → SR (Pin ,Pin)

parallel sr1 sr2 =

sigrel (p, n) where

local p1 p2 n1 n2

sr1 ⋄ (p1, n1)

sr2 ⋄ (p2, n2)

CHAPTER 2. EQUATION-BASED MODELLING 36

connect p p1 p2

connect n n1 n2

2.3.8 Structurally Dynamic Modelling

In this final example of the chapter, we look at how Hydra handles structurally

dynamic models. We model a “breaking pendulum”, which consists of two

modes: a swinging pendulum and a freefalling mass. The idea is to model a

swinging pendulum until a specific point in time, at which point the pendulum’s

rod will brake and the pendulum will go into freefall. To highlight the structural

aspects as opposed to the physics of a more realistic model, we make a number

of simplifying assumptions.

The first mode consists of a point mass m at the end of a massless rod l

swinging from a frictionless pivot in a vacuum. That is, we wish to model the

simple swinging pendulum given in Fig. 2.6. The second mode consists of the

mass m freefalling from an initial position and velocity.

Despite the relative simplicity of the example, the abrupt change in beha-

viour during simulation makes it very difficult for Modelica to handle. The issue

is that a change in causality arises between the two modes. This is problematic

as Modelica performs all symbolic transformations (e.g. causalisation) prior

to simulation. While there are workarounds for this particular example (that

involve the end user manually causalising the system), Modelica is unable to

handle these sorts of dynamic models in general.

On the other hand, the breaking pendulum is relatively easy to express

in Hydra. The two modes can be modelled as distinct, first-class components.

These two components can then be temporally composed using thewhen syntax

to express the transition conditions. The current implementation of Hydra

[Giorgidze and Nilsson, 2011] uses just-in-time (JIT) compilation to ensure that

new generations of equations are generated only when needed. As such, symbolic

transformations are performed at the point of a discrete event, making it easy

37 CHAPTER 2. EQUATION-BASED MODELLING

m

g

l
φ

Figure 2.6: Breaking pendulum.

to handle a change in causality between modes.

type Mass = R

type Pos = (R,R)

type Vel = (R,R)

type Body = (Pos ,Vel)

g : R

g = 9 .81

Definitions are provide above for the mass, position, and velocity of the

pendulum. The force of gravity is approximated by the constant g. The function

pendulum takes the breaking time, the mass, the rod length, and the initial angle

of deviation as parameters. It produces a relation on the body that represents

the mass; that is, it provides constraints to determine the position and velocity

of the mass at any given time, whether swinging or falling.

pendulum : Time → Mass → R → R → SR Body

pendulum t m l φ0 = sigrel (pos , vel) where

local u, φ, φd

initially ⇒

init φ = φ0

init φd = 0

pos = (l ∗ sin φ,− l ∗ cos φ)

CHAPTER 2. EQUATION-BASED MODELLING 38

φd = der φ

m ∗ l ∗ l ∗ der φd + m ∗ g ∗ l ∗ sin φ = u

when time − t > 0 ⇒

init pos = pre pos

init vel = pre vel

m ∗ der vel = m ∗ (0 ,−g)

The initially branch provides the behaviour of the swinging pendulum. As

this branch has no reactivation conditions, it is impossible for the rod to become

reattached after it has broken. The when branch provides the behaviour of the

freefalling mass. In this case, the branch will only ever be activated once as the

condition will only ever become true on one occasion.

The reader may have noticed that this example included the new syntax init

and pre. The details of init and pre are not of particular importance in this

thesis. They have been included in this example for the purpose of providing

an illuminating and working model. The init syntax allows us to mark an

equation as initial. An initial equation (not to be confused with the equations

appearing in the initially block) is a constraint that only holds for the first

time step in which it is active. For example, when a new branch is switched-in,

any equations marked init will become active for the time step immediately

following the event that caused the switch.

The syntax pre allows us to refer to instantaneous values immediately prior

to an event. For example, pre x might be used in an init equation to give

the value of x in the time step immediately before an event occurred. Taken

together, init and pre allow continuity assumptions to be preserved. For ex-

ample, the resistance of a component should not jump discontinuously between

modes. In the pendulum example, init and pre are used to preserve the position

and velocity of the mass as the pendulum breaks.

The dynamism in pendulum is quite simple: it consists of only two modes

and only a single discrete event. Despite this, the pendulum example highlights

the limitations of structural dynamism in Modelica, compared to the relative

39 CHAPTER 2. EQUATION-BASED MODELLING

ease of expression in Hydra. It is entirely possible to create models in Hydra

with many more modes, and we will see examples of this in later chapters.

Chapter 3

Agda and Notation

This chapter gives an overview of Agda and its role in this thesis. We discuss

how Agda is used to implement and verify much of our work and why Agda is

suitable for our purposes. We also discuss specialised notation that is adopted

for the sake of presentation. This chapter is not intended to be a tutorial;

readers not sufficiently familiar with Agda may consult an introductory text;

for example Norell [2009], McBride [2012], or Bove et al. [2009].

3.1 Overview of Agda

Agda, developed by Ulf Norell for his doctoral thesis [Norell, 2007], is both

a dependently typed programming language and a proof assistant. Agda is

based on Martin-Löf Type Theory (MLTT) [Martin-Löf, 1975] and shares many

similarities with other dependently typed proof assistants, such as Coq [Bertot

and Castéran, 2004] and Epigram [McBride, 2004]. However, the syntax of

Agda is similar to that of Haskell.

The essence of dependent types is that the type of the result of a function

may depend on the value of its argument (i.e. a dependent function space), and

that the inhabitants of a datatype may depend on the values of its parameters

(i.e. an inductive family). The standard example is the type of vectors of a

CHAPTER 3. AGDA AND NOTATION 42

given length, which are specified via an inductive family indexed on a natural

number (i.e. a value). Thus, functions that operate on vectors typically depend

on the length of the input vector to compute the output; for example, appending

an element to a vector increments its length.

As Agda allows arbitrary terms to appear in types, the language is restricted

to allow only total and terminating programs. This restriction means that,

while the language is no longer Turing complete, type checking in Agda remains

decidable. Moreover, this feature means that Agda can exploit the Curry-

Howard Correspondence [Howard, 1980]. The correspondence states that types

can be treated as propositions, and that well-typed programs can be treated

as proofs. Uninhabited types represent false propositions and inhabited types

represent true propositions, with the constituent programs serving as a witness

to this fact. Termination is key here as it rules out non-terminating proofs.

3.2 Agda in this Thesis

Agda is used throughout the remainder of this thesis for several reasons. It

has a powerful termination checker, which makes it particularly convenient for

showing termination of our programs, and, along with other decision proced-

ures such as pattern coverage checking, it contributes toward showing totality.

In many situations, no special considerations need to be made and the checker

is able to automatically decide termination without user intervention. In situ-

ations where the termination of a program is not apparent to the checker, there

exist techniques for providing additional information (e.g. using well-founded

recursion [Saaman and Malcolm, 1987], or sized types [Abel, 2010]).

Agda is based on a strong theory of types, which makes it easy to specify

and prove theorems about our programs. This is particularly evident in Chap. 5

where we construct a mathematical model of an FHM-like language and use this

to prove metatheoretical results, all within Agda itself.

Agda has a flexible syntax that permits Unicode symbols and mixfix oper-

43 CHAPTER 3. AGDA AND NOTATION

ators, meaning that the syntax of our implementations very closely resemble

that of Hydra and FHM. Agda is also similar to other popular, contemporary

functional languages, such as Haskell, hopefully making the code presented in

this thesis accessible to a wide audience.

3.2.1 Implementations and Mechanised Proofs

Most of the work in this thesis has been formalised in Agda. In Chap. 4 we

develop two type systems, both of which have been implemented in Agda. These

implementations ensure that the type systems are total and terminating. The

safety of the refined type systems has not been formalised in Agda.

In Chap. 5 we develop a semantic model and interpreter for an FHM-like

language. We prove that this interpreter obeys the equational theory of the

language and show a number of corollaries. We provide a semantics of structural

dynamism and conclude with two extensions. The implementation and all proofs

from this chapter have been formalised in Agda. A complete archive of all code

relating to this thesis can be found on the author’s website 1.

3.2.2 Notation

The program code in this thesis uses a variety of specialised notations to make

it easier to express ideas and to prevent code fragments from becoming too

verbose. Our notational conventions are as follows:

• Where appropriate, the introduction of implicit arguments is omitted.

This includes dependent function spaces (e.g. {a : A} → B a is simplified

to B a) and inductive families (e.g. data X {a : A} (b : B a) : Set where

becomes just data X (b : B a) : Set where). Any free identifiers present

should be assumed to be universally quantified at the top level.

• Implicit arguments that can be inferred by the reader are omitted even if

Agda cannot infer them.

1http://www.cs.nott.ac.uk/~jjc

http://www.cs.nott.ac.uk/~jjc

CHAPTER 3. AGDA AND NOTATION 44

• We allow ourselves to overload symbols when the definition being used

is obvious from the context. For example, we use ≃ to denote program

equivalence for both functional terms and equation system fragments.

• We allow ourselves to use ... notation to denote uninteresting code, as is

already the case for Agda’s with notation.

• Haskell uses the :: symbol to denote the “has type” operator, whereas

Agda uses the : symbol. We use the latter throughout this thesis for

consistency, even when presenting FHM code (a Haskell EDSL). Where

the list concatenation operator is needed, we use the :: symbol instead.

Chapter 4

Structural Types

4.1 Preliminaries

4.1.1 Outline

Broadly speaking, the contributions of this thesis can be split into two groups:

those contributions concerned with novel type systems for equation-based lan-

guages (i.e. enriching the static semantics), and those contributions related to

finding a semantic model for equation-based languages (i.e. investigating the

dynamics semantics). While these two aspects are deeply interconnected, this

chapter will focus on investigating the former, leaving it up to the following

chapter (Chap. 5) to explore the latter. However, the relationship between the

static and dynamic semantics is such that a discussion of both topics to at least

some extent is inevitable in both chapters.

The starting point for the type system developed in this chapter is a system

capable of tracking so-called equation-variable balance. From here we develop a

more sophisticated type system, which captures a much larger class of structural

anomalies in equation-based languages. However, even the simple type system

advances the state-of-the-art regarding balance checking of equation-based lan-

guages. Specifically, this chapter makes the following contributions:

CHAPTER 4. STRUCTURAL TYPES 46

1. A novel type system for modular systems of equations supporting first-

class components and structural dynamism.

2. A refined set of structural invariants based on classification of equations,

allowing a larger class of structural anomalies to be prevented compared

with existing approaches.

3. A concise small-step semantics for the core of FHM, capturing the subtle

behaviour of variables in a modular system of equations.

4. A proof of correctness for the simple balance type system.

The basis of the work in this chapter was first published in Capper and

Nilsson [2010], the work was then further developed in Capper and Nilsson

[2013]. A prerequisite for this chapter is Chap. 2.

4.1.2 Structural Properties

An important question regarding a system of equations is whether or not it

has a solution, and if one exists, if said solution is unique. In general, one can

only answer this question by studying a complete system of equations where

all coefficients are known. Unfortunately, this is in direct opposition to the

modular approach discussed in Sect. 2.1.3 as it would rule out the checking

of components in isolation. Furthermore, as typical application domains, such

as physical systems modelling, necessitate that the form of equations is not

unduly restricted, one cannot in general hope to construct a decidable type

theory capable of determining if an arbitrary modular system of equations has a

solution. For example, a modelling language for physical systems that restricted

the systems of equations to be linear would be of very limited practical use.

However, there are simple criteria that while neither necessary nor sufficient

for guaranteeing solvability, are such that violations of them are likely to be

indicative of problems. Indeed, they may even be necessary preconditions for the

specific approach to solving equations used by a particular tool. Thus, enforcing

47 CHAPTER 4. STRUCTURAL TYPES

that such criteria be met through the static semantics of an equation-based

language can be very useful, and is in fact often done in practice. The following

are two commonly used criteria for checking the well-formedness of systems (see

Broman et al. [2006], Bunus and Fritzson [2002], Capper and Nilsson [2010], Mod

[2012], Nilsson [2008]):

1. Balanced system: the number of equations and variables are equal.

2. Structurally non-singular system: there is a bijection between the vari-

ables and the equations such that each variable is paired with an equation

in which it occurs.

Property 2 implies property 1. Note that these properties are strictly struc-

tural: no information beyond which variables occur, and in which equations, is

assumed. For illustration, consider the following system:

x+ y = z (4.1a)

x+ 3 = 12 (4.1b)

y2 + 9 = z2 (4.1c)

The bijection {x 7→ 4.1b, y 7→ 4.1c, z 7→ 4.1a} between the set of variables

{x, y, z} and the set of equations {4.1a, 4.1b, 4.1c} pairs each variable with an

equation in which it occurs. Therefore, this system is both balanced and struc-

turally non-singular. Furthermore, if we assume that the above is a conventional

algebraic system of equations over the real numbers then it has a solution at

x = 9 , y = −4 , z = 5 , and this solution is unique.

On the other hand, it is easy to construct a system that violates the above

criteria, but yet still possesses a solution. Consider:

x = 2 (4.2a)

x2 + 1 = 5 (4.2b)

CHAPTER 4. STRUCTURAL TYPES 48

This system is neither structurally non-singular nor is it balanced. Yet x = 2

is clearly a solution. This shows that the above criteria are not necessary for the

existence of a solution. It is also easy to demonstrate that the criteria are not

sufficient either. For example, the system below is structurally non-singular,

yet possesses no solution:

x2 + y = 4 (4.3a)

y = 5 (4.3b)

Given the above examples, it is reasonable to ask what is it that makes

these two criteria useful? The criteria stem from the fact that a linear system

of equations has a unique solution if and only if the equations are independent

and the number of equations and variables agree. If a linear system of equations

has more variables than independent equations, it is said to be underdetermined.

Conversely, if there are more independent equations than variables, it is said to

be overdetermined. Intuitively, one could interpret each variable as a degree of

freedom, and each equation as a constraint that eliminates a degree of freedom

(i.e. is used to solve for a variable).

Broadly speaking, this latter intuition is also valid for general systems of

equations. In particular, structural non-singularity, which says that there is an

equation that can be used to solve for each variable, is exactly what is needed for

a number of (symbolic and/or numerical) methods that attempt to solve general

systems of equations. Thus, if a system is structurally singular, commonly used

methods will definitely fail to find a solution.

The balance criterion is a coarse approximation of structural non-singularity,

essentially assuming that any equation can be used to solve for any variable.

However, the criterion is easy to check, and if violated it implies that the sys-

tem is certainly structurally singular. On the other hand, even though neither

criterion is necessary for the existence of a solution, insisting that the criteria be

met is not overly restrictive in practice. For rare cases where an over-constrained

49 CHAPTER 4. STRUCTURAL TYPES

system is a practical necessity (e.g. see work by Nilsson and Giorgidze [2010]

on initialisation problems), one can imagine relaxing the rules by providing

simple language mechanisms that allow the user to selectively turn off struc-

tural checks. Such an approach would not undermine the benefit of continuing

to check the rest of the system. Consequently, both criteria constitute useful

static checks that can help find errors early during compilation.

4.2 A Type System for Simple Balance

4.2.1 Key Ideas

In this section we develop a type system that captures the first structural re-

quirement outlined earlier in Sect. 4.1.2, that of equation-variable balance.

In Chap. 2 the equation-based modelling language framework of Functional

Hybrid Modelling was presented, along with a rough outline of its type system.

In particular, a syntax for encapsulating a modular set of equations is introduced

and associated with a new type constructor SR. By precisely formulating the

type system of FHM, we show in this section how the type constructor SR can

be refined to capture the desired structural properties.

The key idea is to annotate SR with an additional parameter that denotes

the number of equations a signal relation is capable of contributing to the wider

system. Intuitively, the contribution of a relation is the number of excess equa-

tions that are not required to solve for the local variables. At this point we

are not concerned with which variables occur in which equations. Instead, it is

assumed that any equation may solve for any variable. Thus, a signal relation

composed of n equations and m local variables will contribute n − m equations

when n > m, and otherwise will be under-determined.

As FHM permits higher-order models a signal relation may be parameterised

on other relations, and thus, its type may have a parametric contribution. As

CHAPTER 4. STRUCTURAL TYPES 50

a result, a notion of balance variables is required to express polymorphic sig-

nal relations that contribute a varying number of equations depending on the

context in which they are used.

To illustrate the above, consider the resistor example from Chap. 2:

resistor : Resistance → SR (Pin ,Pin) 2

resistor r = sigrel (p, n) where

local u

twoPin ⋄ (p, n, u)

r ∗ p.i = u

A contribution of two equations is determined for resistor, which is easy

to justify: the application of twoPin contributes two equations, the body of

resistor adds a single equation, but one equation must be deducted from the

overall contribution to account for the local variable u. To see balance variables

in action we need to consider a higher-order model. For example, take the

par function below, which performs the parallel composition of a two-pinned

electrical component with itself:

par : SR (Pin ,Pin) n → SR (Pin ,Pin) (2n − 2)

par sr = sigrel (p, n) where

local p1 p2 n1 n2

sr ⋄ (p1, n1)

sr ⋄ (p2, n2)

p.i + p1.i + p2.i = 0

n.i + n1.i + n2.i = 0

p.v = p1.v

p.v = p2.v

n.v = n1.v

n.v = n2.v

Given a relation sr contributing n equations, par returns a new relation

contributing 2n − 2 equations. As before, this can just be computed in a

bottom-up fashion: 2n is contributed from the two applications of sr and −2

51 CHAPTER 4. STRUCTURAL TYPES

equations are contributed from the number of atomic equations minus the num-

ber of local variables. Recall that each pin contains two variables and as such

the variables p1, p2, n1, and n2 account for 8 local unknowns, which when

subtracted from the 6 atomic equations, result in a contribution of −2 .

The remainder of this section is dedicated to describing and formalising

the simple balance type system. We develop a new core language, giving a

rigorous account of the semantics and typing rules. Moreover, we show novel

metatheoretical results for the new type system, specifically, we present a proof

for preservation of balance with respect to the semantics.

4.2.2 H∆: A Core Language for Simple Balance

A precise account of a type system first demands a precise account of the pro-

gramming language upon which it is built. To that end, the first step to form-

alising the above intuition is to make precise the object language of study; the

goal of this subsection. This guideline holds true not only for the simple balance

system but for type systems in general. Hence, the language presented in this

section will be the first of several in this thesis, each one designed to focus only

on aspects that are necessary and relevant to their respective type systems. We

designate the language of simple balance H∆.

The simple balance type system aims to be applicable not just to FHM

but to equation-based modelling languages in general. Where then should one

start when designing a syntax for such a language? A formalisation of Hydra

alone would be complex, monotonous, and likely impenetrable as a resource to

understand the type system (e.g. one would need to formalise module systems,

pattern matching, and expansion of syntactic sugar, to name but a few difficult

aspects). A more reasonable compromise would be to design a core language

that captures the essence of FHM without introducing unnecessary details.

Notionally, there is still a tension between the desire to design a core lan-

guage and theory of general applicability, and opting for a FHM-like core lan-

CHAPTER 4. STRUCTURAL TYPES 52

guage. However, an FHM-like language with support for both spatial compos-

ition (modular equation fragments) and temporal composition (equations that

evolve over time) is a very general setting, covering a large number of conceiv-

able concrete domains. Despite our choice to use a syntax specific to FHM, for

example, the use of relations on signals, it should be straightforward to translate

our methods to similar languages such as Modelica or MKL [Broman, 2010].

The first simplification we will make here is an obvious one: to replace the

functional host language of Haskell with the λ-calculus. In Sect. 2 we saw how

Hydra was partitioned into two levels: the time-invariant functional host level

(now portrayed by the λ-calculus), and the time-variant signal level. A language

of equations mediates between these two levels, allowing functional values to be

embedded as constants at the signal level. Accordingly, a mediating syntactic

layer of equations is also included in this core language. As it turns out, a

syntax for signal expressions is unnecessary in H∆. At first, this might seem

like a significant departure from the languages envisioned by FHM. However, the

simple balance type system is unconcerned with the shape of signal expressions.

In fact, it is entirely unconcerned about signal expressions at all, but instead

only about the number of equations and local variables that occur in a signal

relation. In later sections, core languages that incorporate a notion of signal

expressions are explored. However, even in these languages the shape of such

expressions is mostly orthogonal. After all, this thesis is primarily interested in

techniques that are applicable to equation-based languages in general, and not

just to specific classes of equation systems (e.g. linear systems of equations)

A typed language certainly needs a language of types, which we spell out

in Fig. 4.1. At the functional level we permit either function spaces or signal

relation types. Ordinarily, signal relations would be required to carry the type of

the signal that they constrain (e.g. Pin). However, by doing away with signal

expressions we also obviate the need for signal types. To reiterate, in later

sections we present a core language that is not excused from such details, as

they will be relevant and interesting in such a context. In the current context,

53 CHAPTER 4. STRUCTURAL TYPES

τ ::= type:
τ1 → τ2 function space
SR e signal relation
∀ b . τ balance abstraction

ν ::= equation type:
Eq e equation

e ::= balance:
Z integer
b variable
e1 + e2 addition

Figure 4.1: H∆ types.

however, we are interested in the contribution of a signal relation, which is

described by the language of constraint expressions e.

Functional types also permit us to abstract over balance variables, denoted

by the ∀ symbol, allowing a system to be polymorphic in its balance. While

this concept is notionally similar to type abstraction found in second-order

calculi such as System F, the quantification in our system does not range over

the language of types and thus the usual difficulties associated with proving

properties of these systems do not arise (see Girard [1972]).

Constraint expressions are either integers, variables or addition. In other

words, we use the monoid 〈 Z,+ 〉, as such a uniform structure will prove to be

very useful in later sections when reasoning about equality.

The language of types also add something that was not seen in FHM: the cat-

egory ν provides types for equations. Previously, equations were only required

to be well-typed insofar as requiring that the constituent components be well-

typed. However, in H∆, equations are also annotated with their contribution,

in much the same way as signal relations.

Looking at the language of terms and equations given by t and q respectively,

we can see how the language is partitioned. The terms consist of the standard

productions from the λ-calculus (variables, abstraction, application, and let

bindings) and additionally a syntax for constructing signal relations. In the

CHAPTER 4. STRUCTURAL TYPES 54

t ::= term:
x variable
t1 t2 application
λ x : τ . t abstraction
let x = t1 in t2 let binding
sigrel i l where q signal relation
Λ b . t balance abstraction
t [e] balance application

q ::= equation:
atomic atomic
q1 ∧ q2 pairing
t ⋄ application
sw switch block

sw ::= switch:
initially q initial branch
sw when q event branch

i , l ::= variable accumulator:
Z integer

Figure 4.2: H∆ terms.

absence of signal expressions, we provide sigrel with two new parameters that

record the number of interface variables and local variables occurring in the

body of the relation; information that is easy to compute statically.

The syntax of terms also provides constructs for abstracting over balance

expressions (Λ b . t) and balance application (t [e]). These constructs are

related to their abstraction and application counterparts in System F, in that

they permit balance variables to occur in signal types. However, to reiterate

our earlier remark, the abstraction mechanism in our system is much simpler

as it only allows abstraction over balance expressions, and thus does not create

an impredicative hierarchy of types, as is the case in System F.

The category q describes equations as a non-empty tree of atomic equations,

relation applications, and switches, the syntax of which is provided by sw .

However, we have simplified the syntax as we do not consider signal expressions

in this formulation. Instead, Hydra equations of the form s1 = s2 will simply

55 CHAPTER 4. STRUCTURAL TYPES

be written atomic, and equations of the form t ⋄ (s1, ..., sn) will simply be

written as t ⋄. Switch blocks describe a list of equations. The production

initially denotes the initially active branch, while when denotes the branch

that may become active during simulation. Continuing to follow our policy of

omitting signal expressions, we can omit the signal expression responsible for

describing the switching condition. We are not interested at this stage with

describing the semantics of switching, and so defer this discussion to Chap. 5.

Fig. 4.3 provides the syntax of values. In both halves of the partition,

the grammars have done away with application, as these will either have been

redexes that are eliminated, or they will appear under a binder. The latter case

is acceptable as we will not be attempting reduction under binders.

A switch value requires only that the initially branch be reduced. There are

a number of reasons why it might be desirable to defer reduction of a branch

until it becomes active, which are discussed in depth in Sect. 5.5.2 when we

consider the semantics of dynamism in earnest. For the purposes of this chapter,

it is sufficient to point out that, from an operational standpoint, premature

reduction of branches is in general wasteful as a branch may never be activated.

Moreover, the number of possible structural configurations may be very large,

and in a setting supporting general recursion (note that our let-expressions are

not recursive) even unbounded [Giorgidze and Nilsson, 2009].

A Comparison to Hydra

In the pursuit of dispelling any confusion about H∆, we will take a quick de-

tour to relate our new core language back to Hydra and FHM. In Fig. 4.4 the

implementation of the par function in each language can be seen side-by-side.

Immediately of note is the extent to which the core language simplifies the

equations appearing in the body of the signal relation. Nonetheless, the core

language still captures the structure of Hydra. Indeed, H∆ is in fact imposing

slightly more structure on the equations. The pairing operation (∧) implicitly

associates to the left creating a list of equations as opposed to a set. This will

CHAPTER 4. STRUCTURAL TYPES 56

v ::= value:
λ x : τ . t abstraction
Λ b . t balance abstraction
sigrel i l where qv signal relation

qv ::= equation value:
atomic atomic equation
qv1 ∧ qv2 pairing
sv switch block

sv ::= switch value:
initially qv initial branch
sw when q event branch

Figure 4.3: H∆ values.

allow us to prescribe a simple notion of reduction to signal relation application.

Also of note is the need to explicitly abstract over the balance variable that

is used as a parameter to the incoming signal relation. Furthermore, the explicit

introduction of local variables has been replaced by the pair of natural numbers

(i.e. 4 and 8) that denote the number of signal variables and local variables in

scope in the body of the relation.

4.2.3 Semantics

Describing the meaning of a program can be rife with difficulties, not least, due

to the number of different approaches available, each with their own advant-

ages and disadvantages. Of particular interest to this thesis are denotational

semantics and operational semantics. The former describe the meaning of a

program by constructing a mathematical object, whereas the latter describe

how a program can be interpreted as a sequence of computational steps. Of

course, the distinction is not always so clear cut and both topics have been of

great interest to computer scientists for several decades.

A number of factors are often considered when attempting to settle on a

specific approach. For example, operational semantics tend to be quite simple

and intuitive compared with their denotational counterpart, describing the valid

57 CHAPTER 4. STRUCTURAL TYPES

par sr = sigrel (p, n) where

local p1 p2 n1 n2

sr ⋄ (p1, n1)

sr ⋄ (p2, n2)

p.i + p1.i + p2.i = 0

n.i + n1.i + n2.i = 0

p.v = p1.v

p.v = p2.v

n.v = n1.v

n.v = n2.v

par = Λ b .λ sr : SR b .

sigrel 4 8 where

sr ⋄ ∧

sr ⋄ ∧

atomic ∧

atomic ∧

atomic ∧

atomic ∧

atomic ∧

atomic

Figure 4.4: Comparison of Hydra and H∆.

computational steps on some suitably abstract machine. In a sense, operational

semantics can be viewed as interpreting the terms of the object language. Con-

versely, denotational semantics use structural induction to define a valuation

function that maps programs to elements of some suitably chosen model. An

important characteristic of denotational semantics is that they are composi-

tional : the meaning of a program fragment is defined directly in terms of the

meaning of its respective components.

In this section we opt to use small-step operational semantics. The goal of

the semantics is to help the reader understand the simple balance type system

and its interaction with evaluation. Thus, the benefits of an operational se-

mantics are a simple and clear presentation at the expense of some desirable

mathematical properties (such as compositionality).

In Chap. 5 we revisit the problem of providing a semantics for Hydra where

we opt for a denotational approach over the operational approach used in this

chapter. Constructing a denotational model for Hydra is difficult due to the

non-standard language features, the details of which need to be spelled out

carefully. It is for this reason that we choose an operational semantics in this

CHAPTER 4. STRUCTURAL TYPES 58

chapter as it provides an appropriate foundation for the simple balance type

system. In particular, it makes for a simple formalisation that can be used to

check the safety of the type system, allowing us to focus on the problems of

immediate interest. However, unlike the denotational semantics in Chap. 5 the

operational semantics is not compositional.

The semantics in Fig. 4.5 reveals an interesting peculiarity of FHM; the

treatment of local variables and interface variables differs. In a richer language,

such as Hydra, the interface variables are treated in much the same way as λ-

bound variables in the λ-calculus, naming a token that will later be substituted

for during reduction. On the other hand, local variables will never be substituted

away but are instead accumulated as reduction proceeds. Precisely capturing

the behaviour of variables is crucial for giving an honest account of the meaning

of an FHM program. To this end, the semantics are specified via two relations:

t1 −→ t2, the term t1 reduces to t2 in one step, and q1
l

−→ q2, the equation

q1 reduces to q2 and introduces l new local variables in the process.

The first relation is the usual notion of reduction in an operational semantics

for the functional terms. To understand the second relation take the rule S-

SigRel as an example, which reduces the equations contained within a relation

and adds any new local variables discovered this way to the context. Recall

that in the core language we are only interested in maintaining the number of

local variables, and hence do not store the list of variables directly.

4.2.4 A H∆ Type System

The purpose of the typing rules is to express a minimal set of axioms to type

check the terms of our language. Moreover, the rules also suggest a simple

algorithm for traversing a tree of equations and accumulating the number of

equations that a compound equation is capable of contributing.

The rules (see Fig. 4.6) relate four aspects: the functional context Γ, the

balance context ∆, a syntactic category of terms, and an associated category

59 CHAPTER 4. STRUCTURAL TYPES

t1 −→ t2

(λ x : τ . t) v −→ [x 7→ v] t
(S-AppAbs)

t1 −→ t2

t1 [e] −→ t2 [e]
(S-TApp)

t1 −→ t2

t1 t3 −→ t2 t3
(S-App1)

t1 −→ t2

v t1 −→ v t2
(S-App2)

(Λ b . t) [e] −→ [b 7→ e] t
(S-TAppAbs)

q1
l2−→ q2

sigrel i l1 where q1 −→ sigrel i (l1 + l2) where q2
(S-SigRel)

t1 −→ t2

let x = t1 in t3 −→ let x = t2 in t3
(S-Let)

let x = v in t −→ [x 7→ v] t
(S-LetV)

q1
l

−→ q2

q1
l

−→ q3

q1 ∧ q2
l

−→ q3 ∧ q2
(S-Pair1)

q1
l

−→ q2

qv ∧ q1
l

−→ qv ∧ q2
(S-Pair2)

t1 −→ t2

t1 ⋄
0

−→ t2 ⋄
(S-RApp)

(sigrel i l where qv) ⋄
l

−→ qv
(S-RAppAbs)

q1
l

−→ q2

initially q1
l

−→ initially q2
(S-Initial)

sw1
l

−→ sw2

sw1 when q
l

−→ sw2 when q
(S-When)

Figure 4.5: H∆ small-step semantics.

CHAPTER 4. STRUCTURAL TYPES 60

of types. For example, the relation Γ,∆ ⊢ t : τ states that a functional

term t has type τ in the contexts Γ and ∆. The context Γ is the usual typing

context used to store λ-bound variables and their associated types. The context

∆ records the list of balance variables currently in scope.

The strategy is exemplified by the rule T-SigRel that allows us to check

the type of a signal relation by computing the contribution of its constituent

equations and then removing enough equations to solve for the local variables.

In a similar vein, T-Pair aggregates the contribution of its sub-equations, and

T-RelApp states that an applied signal relation simply contributes the same

number of equations as the relation being applied. The T-SigRel rules in-

cludes an additional assumption, specifically that e > l . As e is an expression

containing bound balance variables, it may not be possible to determine upfront

if this assumption holds. Rather than attempting to encode this in the rules,

the problem is left as a quality of implementation issue. Thus, in any reason-

able implementation, when applying the rule T-SigRel or T-TApp, a decision

procedure can check that their still exist possible instantiations of the balance

available such that the contribution of the relation would be non-negative.

The rules T-Initially and T-When provide a means to check the contribu-

tion of a switch block by requiring that each branch have an equal contribution.

Rather than require that the contributions be syntactically equal or even defin-

itionally equal, we submit a more flexible notion of equality (denoted by ≃e),

which requires only that contributions be equal up to the laws of the abelian

group of integers with addition. There are a number of suitable candidates for

equality of contribution, and the story becomes even more complicated, and

the choices more numerous, when we begin to consider the constraint-based

approach in the following section. As a result, a thorough discussion of such

matters is deferred until Sect. 4.3.2.

The rules of the functional aspect of the language should not come as much

of a surprise as they are mostly identical to those of the simply-typed λ-calculus.

This makes for a very simple presentation of the balance type system, something

61 CHAPTER 4. STRUCTURAL TYPES

that will unfortunately not be preserved in the constraint-based approach.

4.2.5 Preservation of Balance

The formalisation of a mathematical system is often motivated by the desire

to show that certain properties hold for that system. These metatheoretical

properties, while not the only motivation for our work, give us assurances that

the system we have designed is logical and well behaved.

The soundness of a type system is often specified via two properties: progress

and preservation (also known as subject reduction) [Pierce, 2002, p. 95]. A type

system has progress if, for every closed well-typed term t , either t is a value or

else there exists some t ′ for which t −→ t ′. A type system has subject reduction

if the reduction of an expression preserves the type of that expression. Type

equality, which we shall denote ∆ ⊢ τ ≃τ σ is an essential notion in stating

the latter. In H∆ we have designed type equality to express that the types τ and

σ should be equal up to equality of balance expressions within the same context

of balance variables (given by ∆), see Fig. 4.7. The rules are the normal laws

of equivalence, congruences, and the monoidal laws of 〈 Z,+ 〉. The E-Forall

rule allows terms to be equal up to α-equivalence of balance variables.

Due to the mutual dependencies between functional- and equational-level

terms in H∆, proofs of the aforementioned safety properties for both levels are

also necessarily mutually dependent. We will begin by formally stating both

properties and then first present proofs for the equational level, making forward

references to the functional-level proofs that follow. For each pair of proofs

of this nature, we take special care to assume only induction hypotheses on

structurally smaller terms, ensuring that our proofs remain terminating.

The following proofs make use of a few basic lemmas. Firstly, an inversion

principle states that if a term is well typed, then its subterms are also well

typed. The shape of the subterms corresponds to the premises of the typing

rules, and as there is only one typing rule for each syntactic form, the inversion

CHAPTER 4. STRUCTURAL TYPES 62

Γ,∆ ⊢ t : τ

Γ ⊲ x : τ1,∆ ⊢ t : τ2

Γ,∆ ⊢ λ x : τ1 . t : τ1 → τ2
(T-Abs)

Γ,∆ ⊢ t : ∀ b . τ

Γ,∆ ⊢ t [e] : [b 7→ e] τ
(T-TApp)

Γ,∆ ⊢ t2 : τ1
Γ,∆ ⊢ t1 : τ1 → τ2

Γ,∆ ⊢ t1 t2 : τ2
(T-App)

Γ,∆ ⊲ b ⊢ t : τ b /∈ free (Γ)

Γ,∆ ⊢ Λ b . t : ∀ b . τ
(T-TAbs)

x : σ ∈ Γ

Γ,∆ ⊢ x : σ
(T-Var)

Γ,∆ ⊢q q : Eq e e > l

Γ,∆ ⊢ sigrel i l where q : SR (e − l)
(T-SigRel)

Γ,∆ ⊢ t1 : τ1
Γ ⊲ x ,∆ : τ1 ⊢ t2 : τ2

Γ,∆ ⊢ let x = t1 in t2 : τ2
(T-Let)

Γ,∆ ⊢q q : ν

Γ,∆ ⊢ t : SR e

Γ,∆ ⊢q t ⋄ : Eq e
(T-RelApp)

Γ,∆ ⊢q q1 : Eq e1 Γ,∆ ⊢q q2 : Eq e2

Γ,∆ ⊢q q1 ∧ q2 : Eq (e1 + e2)
(T-Pair)

Γ,∆ ⊢q atomic : Eq 1
(T-Atomic)

Γ,∆ ⊢sw sw : ν

Γ,∆ ⊢q q : ν

Γ,∆ ⊢sw initially q : ν
(T-Initial)

Γ,∆ ⊢sw sw : Eq e2
Γ,∆ ⊢q q : Eq e1 e1 ≃e e2

Γ,∆ ⊢sw sw when q : Eq e1
(T-When)

Figure 4.6: H∆ typing rules.

63 CHAPTER 4. STRUCTURAL TYPES

∆ ⊢ τ ≃τ σ

∆ ⊢ τ1 ≃τ τ2 ∆ ⊢ σ1 ≃τ σ2

∆ ⊢ τ1 → σ1 ≃τ τ2 → σ2
(E-Fun)

c /∈ ∆ ∆ ⊲ c ⊢ [a 7→ c] τ ≃τ [b 7→ c] σ

∆ ⊢ ∀ a . τ ≃τ ∀ b .σ
(E-Forall)

∆ ⊢ e1 ≃e e2

∆ ⊢ SR e1 ≃e SR e2
(E-SR)

∆ ⊢ e1 ≃e e2

∆ ⊢ Eq e1 ≃ν Eq e2
(E-Eq)

∆ ⊢ e1 ≃e e2

∆ ⊢ e1 + e2 ≃e e2 + e1
(E-EAddComm)

∆ ⊢ e1 ≃e e2 ∆ ⊢ e2 ≃e e3

∆ ⊢ e1 ≃e e3
(E-ETrans)

∆ ⊢ (e1 + e2) + e3 ≃e e1 + (e2 + e3)
(E-EAddAssoc)

∆ ⊢ e + 0 ≃e e
(E-EUnit)

∆ ⊢ e ≃e e
(E-ERefl)

∆ ⊢ e2 ≃e e1

∆ ⊢ e1 ≃e e2
(E-ESym)

∆ ⊢ e1 ≃e e3 ∆ ⊢ e2 ≃e e4

∆ ⊢ e1 + e2 ≃e e3 + e4
(E-EAddCong)

Figure 4.7: H∆ type equality.

CHAPTER 4. STRUCTURAL TYPES 64

lemma follows directly from the typing relation. We also make use of a simple

substitution lemma: Γ,∆ ⊲ b + P ⊢ t : τ implies Γ,∆ + P ⊢ [b 7→

e] t : [b 7→ e] τ (where ∆ + P is concatenation of contexts). This is simply

a translation of the well-known substitution lemma to the type-level [Pierce,

2002]. As given below, we also establish unicity of typing.

Lemma 1. (Unicity of Typing) Given a term t, if Γ,∆ ⊢ t : τ1 and Γ,∆ ⊢

t : τ2 then ∆ ⊢ τ1 ≃τ τ2.

Proof. There is exactly one typing judgement for each syntactic construct.

Thus, the proof follows immediately from induction on the structure of t and

applications of the induction hypothesis. Note that E-Forall allows us to

show the equivalence for the Λ b . t case.

Lemma 2. (Equational Subject Reduction) Given two equations q and q ′, if

q
l

−→ q ′ and Γ,∆ ⊢q q : ν then Γ,∆ ⊢q q ′ : µ where ∆ ⊢ ν ≃ν µ − l .

Proof. The proof, as with many others in this thesis, proceeds by induction on

the typing derivation Γ,∆ ⊢q q : ν. In each case, we can fill in the details about

q and v from the derivation. If required, we can then match on the semantic

relation q
l

−→ q ′ given what we have learnt about the syntactic form of q.

• Case T-Atomic:

Impossible, no evaluation rules with atomic on the left-hand side.

• Case T-RelApp:

By appealing to the inversion principle we can pick apart the deriv-

ation by instantiating q to an equation of the form t ⋄ and ν to an

equation type Eq e. We also now know the type of t to be SR e.

Herein, we write an instantiation of y with x as y := x .

By applying these instantiations to the semantic derivation q
l

−→

q ′ we end up with the more specific derivation t ⋄
l

−→ q ′. There are

then two applicable evaluation rules (i.e. rules where an equation

65 CHAPTER 4. STRUCTURAL TYPES

of the form t ⋄ appears on the left-hand side): S-RApp and S-

RAppAbs. In each case, we may make further instantiations as we

learn more about the syntactic structure of q, q ′, and l .

For S-RApp, we learn that l := 0 and q ′ := t ′ ⋄. We also

learn t −→ t ′ from the premise of S-RApp, and by applying the

mutual induction hypothesis (theorem 1) to this, we have a proof of

Γ,∆ ⊢ t ′ : SR e ′ and ∆ ⊢ SR e ≃τ SR e ′. Thus, all that

remains to complete this subcase is to show that there exists a µ

such that Γ,∆ ⊢q t ′ ⋄ : µ, and that ∆ ⊢ Eq e ≃ν µ − 0 , which

follows immediately if we take µ := Eq e ′.

For S-RAppAbs, given t := sigrel i l q ′, the proof obligation is

simply e − l ≃e e − l , which is trivially true by reflexivity.

• Case T-Pair:

Given ν = Eq (e1 + e2) and q = q1 ∧ q2, by inversion we learn

that q1 : Eq e1 and q2 : Eq e2. There are two applicable rules.

For S-Pair1, there exists a q′1 such that Γ,∆ ⊢q q′1 : Eq e ′ and

q1
l

−→ q′1. We must show Eq (e1 + e2) ≃ν Eq ((e ′ + e2) − l).

Using the induction hypothesis, which tells us that Eq e1 ≃ν

Eq (e ′ − l), and some equational reasoning on expressions, the

proof obligation can be fulfilled.

For S-Pair2, this case follows the same pattern as above with the

induction hypothesis invoked on the second component of the pair.

Theorem 1. (Functional Subject Reduction) Given two terms t and t ′, if

t −→ t ′ and Γ,∆ ⊢ t : τ then Γ,∆ ⊢ t ′ : σ where ∆ ⊢ τ ≃τ σ.

Proof. Once again, the proof proceeds by induction on the typing derivation.

For a number of the cases (e.g. the trivial T-Var case) the proofs are unchanged

CHAPTER 4. STRUCTURAL TYPES 66

from that of the simply-typed λ-calculus. Hence, we omit these details here and

instead refer the reader to external resources on the topic (see Pierce [2002]).

• Case T-SigRel:

Given t = sigrel l q and Γ,∆ ⊢ t : SR e the only applicable

reduction rule is S-SigRel. From S-SigRel we know there exists

a q ′ such that q
l′

−→ q ′ and q ′ : Eq e ′. The goal is then to

prove SR (e − l) ≃τ SR (e ′ − (l + l ′)), which follows from the

application of lemma 2 to q
l′

−→ q ′ and equational reasoning.

• Case T-TApp:

For this derivation we have t = t1 [e] and τ = [b 7→ e] τ1.

Mirroring term-level abstraction and application, there are two re-

duction rules that can be applied to this initial term. For S-TApp

one learns from the induction hypothesis that given t ′ = t2 [e] then

Γ,∆ ⊢ t2 : ∀ b′ .σ and also ∀ b . τ1 ≃τ ∀ b′ . τ2. It is then straight-

forward to construct a proof of [b 7→ e] τ1 ≃τ [b′ 7→ e] τ2.

The other applicable rule is S-TAppAbs. There are no induction

hypotheses to invoke for this rule. However, we can apply the afore-

mentioned substitution lemma, resulting in a trivial proof obligation.

Lemma 3. (Equational Progress) Given a closed, well-typed equation ǫ, ǫ ⊢q q,

either there exists q ′ and l such that q
l

−→ q ′ or else q is a value.

Proof. The proof proceeds by induction on a typing derivation of q (recall that

q is required to be well-typed, hence ǫ, ǫ ⊢q : ν). Thus, there are three cases

that need our attention.

Case T-Atomic:

Immediate: q := atomic, which is a value.

Case T-RelApp:

67 CHAPTER 4. STRUCTURAL TYPES

Given q := t ⋄ and ν := Eq e, we also know by inversion t : SR e.

Invoking theorem 2 on t , we learn that either t is a value, or else there

exists some t ′ such that t −→ t ′. If t is indeed a value, then by canonicity

t := sigrel i l ′ where qv , and as a result S-RAppAbs applies with

q ′ := qv and l := l ′. Alternatively, if t can make progress, then

S-RApp applies with q ′ := t ′ ⋄ and l := 0 .

Case T-Pair:

For T-Pair we have q := q1 ∧ q2, ν := Eq (e1 + e2), and by inversion

ǫ, ǫ ⊢q q1 : Eq e1 and ǫ, ǫ ⊢q q2 : Eq e2. Applying the induction

hypothesis to the first component of the pair reveals that either q1 is a

value, or else there exists q′1 and l1 such that q1
l1−→ q′1. In the case that

q1 can make progress then the rule S-Pair2 applies. If q1 is a value then

we must appeal to the induction hypothesis on q2. For the case that both

q1 and q2 are values then the pairing of the two equations is also a value.

Otherwise, the rule S-Pair1 applies.

Theorem 2. (Functional Progress) Given a close, well-typed term ǫ, ǫ ⊢ t ,

either there exists t ′ such that t −→ t ′ or else t is a value.

Proof. By taking the usual approach and using induction on the typing deriva-

tion of t we find there is only one case of genuine interest.

Case T-Sigrel:

Taking t := sigrel i l where q and τ := SR e, inversion of T-Sigrel

also informs us that ǫ, ǫ ⊢q q : Eq e. By applying lemma 3 to q we

can decide if q is a value, in which case the expression sigrel i l where q

is a value as a whole, or if q can make progress, in which case the rule

S-Sigrel applies with t ′ := sigrel i (l + l ′) where q ′.

CHAPTER 4. STRUCTURAL TYPES 68

4.3 A Constraint-based Structural Type System

4.3.1 Key Ideas

So far we have only addressed the property of equation-variable balance. Thus,

it is natural to wonder to what extent we can capture the stronger property

of structural non-singularity using types. Nilsson [2008] is the earliest known

effort in investigating such properties to their full extent by annotating types

with equation-variable incidence matrices. The incidence matrices keep track of

exactly which variables occur in each equation. Thus, an n × m matrix tracks

the occurrences of n variables over a set of m equations.

However, while initially compelling, attempting to capture such a strong

property proved to be quite difficult. In particular, Nilsson does not consider

first-class components, but instead requires that all components are concrete,

and thus that all incidence matrices are known during type checking. This

assumption also suggests that the matrices may be breaking encapsulation,

leaking precise structural information to the wider system. Moreover, complex

algorithms — both from a human, and computational complexity standpoint —

are required for disambiguation purposes, particularly when considering more

advanced modelling techniques such as structural dynamism. However, Nils-

son’s work is significant, and this preliminary work provided much of the in-

spiration and motivation for the systems developed in this chapter.

The solution in this chapter is to find a middle ground between balance

checking and singularity detection. We compromise on type system strength by

falling short of full singularity detection (as attempted by Nilsson), but instead

prioritise the handling of first-class components and structural dynamism.

The crux of the type system is to enrich the simple approach with sets of

balance constraints (hereafter simply constraints). These constraints restrict the

interval of the balance variables occurring in types. Constraints may involve the

contributions of several components, and are thus not directly associated with

a single signal relation in general. Hence, we adopt a syntax similar to Haskell’s

69 CHAPTER 4. STRUCTURAL TYPES

type class constraints to express that a set of constraints restricts the intervals

of the variables occurring in a type. To illustrate, consider the following type:

foo : ∀ n m .(n 6 m, n > 2) ⇒ SR n → SR m

Whilst contrived, the above type quantifies over and relates two balance

variables, demonstrating how the contributions of the two components are re-

stricted. The meaning of such a type can then be thought of in terms of the set

of valid instantiations. A valid instantiation is any valuation of balance vari-

ables such that the constraints remain consistent. For example, the following

are all valid instantiations for the type of foo:

bar : (3 6 5 , 3 > 2) ⇒ SR 3 → SR 5

baz : ∀ n . (n 6 4 , n > 2) ⇒ SR n → SR 4

qux : ∀ o m .(n 6 (o + 1), n > 2) ⇒ SR n → SR (o + 1)

Should the set of instantiations be empty (i.e. should the constraints be

inconsistent) then the type is rejected as ill-formed. It is through this mech-

anism that we determine if the structure of an equation or its composition is

acceptable.

4.3.2 Structural Criteria

With the knowledge that detection of structural singularities is at the very least

infeasible and likely also intractable, we turn our attention to devising structural

criteria that are both easily expressed as constraints over balance variables, and

also eclipse the strength of simple balance checking alone. A number of criteria

are introduced in the following section, stemming from the setting of FHM,

from which such type constraints can be generated.

It is possible that what constitutes a useful constraint may vary across ap-

plication domains. We will take care when developing the constraint-based type

system to ensure that the constraints chosen are not tied to any specific domain.

The only restriction we place on the constraints is that they are linear inequal-

ities. However, even this predicate is only a weak requirement stemming from

CHAPTER 4. STRUCTURAL TYPES 70

our choice of constraint solver. Indeed, one could potentially even parameterise

our system on the language of constraints and a means with which to solve

them, for example, as is the case with Dependent ML (Xi [2007]).

Structurally Well-Formed Signal Relations

In order to formulate structural criteria for well-formedness of signal relations,

let us first define a number of terms and quantities pertaining to the different

kinds of variables and equations. Given a signal relation, the number of interface

variables (Sect. 2.3) is denoted by iZ . The number of local variables, denoted

lZ , is then just the number of variables occurring in the equations minus the

number of interface variables. The set of equations in a signal relation can be

partitioned into disjoint subsets of interface, local, and mixed equations:

• interface equation: only interface variables occur.

• local equation: only local variables occur.

• mixed equation: both interface and local variable occur.

It is worth noting that the classification of equations into interface, local,

and mixed is a coarse approximation of an incidence matrix. In the simple

balance type system we disregarded occurrences by effectively assuming that

every variable occurred in every equation, thereby defining the coarsest pos-

sible approximation of an incidence matrix. By distinguishing between different

kinds of equations our approach is a middle ground between simple balance and

incidence matrices; we do not retain a completely faithful view of variable oc-

currences, but we do not assume that, for example, a local variable occurs in an

interface equation, as is the case in the simple balance type system. However,

what we do assume is that, for example, all local variables occur in each local

equation (i.e. any local equation can be used to solve for any local variable).

The number of interface, local, and mixed equations is denoted iQ, lQ, and

mQ respectively. The total number of equations aQ = iQ + lQ + mQ. A

relation is structurally well-formed if the following criteria are satisfied:

71 CHAPTER 4. STRUCTURAL TYPES

1. lQ + mQ > lZ : The local variables are not underconstrained.

2. lQ 6 lZ : The local variables are not overconstrained.

3. iQ 6 iZ : The interface variables are not overconstrained.

4. aQ − lZ 6 iZ : A signal relation must not contribute more equations than

there are interface variables (no over-contribution).

5. lQ > 0 ,mQ > 0 , and iQ > 0 : When considering structurally dynamic

systems we will permit negative contributions at intermediate stages (e.g.

when checking the branches of a switch), but insist that at the top level

the contribution of each equation kind must be non-negative.

To illustrate, let us return to the resistor example from Sect. 2.3. We have

iZ = 4 (recall that each Pin contains two variables), lZ = 1, iQ = 0, lQ = 0,

mQ = 3 (the application of twoPin contributes 2 mixed equations), and thus

aQ = 3. The following 7 constraints are generated from the 5 criteria: (1)

0 + 3 > 1, (2) 0 6 1, (3) 0 6 4, (4) 3 − 1 6 4, and (5) 0 > 0, 3 > 0, 0 > 0.

All constraint criteria are satisfied. Hence, resistor is structurally well-formed

according to the above criteria.

The question remains as to how the above criteria relate to the two criteria

discussed in the previous section. The criteria here are stronger than insisting on

balance, as a modular form of variable counting can be derived using criteria (4)

and (5) alone. However, the constraints are weaker than insisting on a bijection

between equations and variables: the constraints would need to consider the

incidence matrices of equations and variables to determine if a bijection exists,

as investigated by Nilsson [2008]. However, by taking some account of which

variables occur in which equations through the partitioning into interface, local,

and mixed equations, we have achieved a better approximation for checking

for structural non-singularity than basic balance checking, while retaining a

modular formulation that, as we will see in the next section, can be extended

to account for structural dynamism.

CHAPTER 4. STRUCTURAL TYPES 72

Structurally Sound Dynamism

Recall that a structurally dynamic system of equations is one where the equa-

tions may vary over time. As FHM permits structurally dynamic systems, we

need to consider how to generalise the notion of structural well-formedness to

work in a structurally dynamic setting. The nature of structural dynamism in

FHM means that a very large, possibly even unbounded, number of system con-

figurations are possible. Thus, we cannot hope to enumerate the configurations

and check each one. Rather, we need to reconcile the structural properties of the

branches of the switch blocks (the variable parts of an FHM system) — without

losing too much information — into structural properties that hold at all times

for each switch block as a whole, and then use this reconciled information to

determine the well-formedness of the entire system.

As a simple example of unbounded dynamism consider a bouncing ball that

experiences elastic collision with the floor (see Fig. 4.8). The behaviour that

describes the ball falling to the ground can be modelled as a single component.

As the ball touches the ground a discrete event is triggered that causes the

vertical velocity of the ball to be inverted and a transition occurs from the first

continuous mode of operation (m1) to the next (m2). At this point we can

once again model the ball as a freefalling mass. As we are modelling an elastic

collision, the ball will bounce indefinitely, and therefore an infinite number of

structural configurations will potentially be generated.

In Hydra, we can model the bouncing ball as given below. For convenience,

we use the record accessors p.x and p.y to refer to the x and y position of the

body, and the accessors v .x and v .y to refer to their rate of change.

type Pos = (R,R)

type Vel = (R,R)

freeFall : SR (Pos ,Vel)

freeFall = sigrel (p, v) where

der p = v

73 CHAPTER 4. STRUCTURAL TYPES

x

y

b

m1 m2 m3

Figure 4.8: An elastic bouncing ball.

der v .x = 0

der v .y = −g

bouncingBall : SR (Pos ,Vel)

bouncingBall = sigrel (p, v) where

initially ⇒

freeFall ⋄ (p. v)

when y 6 0 ⇒

bouncingBall ⋄ (p, (v .x ,−v .y))

The above example serves as a reminder of the type of structural changes we

wish to accommodate. We must now consider how the structural constraints on

a dynamic model can be formalised such that they are an accurate description

of a models structure, regardless of the current mode of operation.

There are a number of ways to compare the structure of different switch

branches. One approach might be to insist that each branch have an identical

structure: every branch consists of the same number of each kind of equation.

Let us call this the strong approach for the purpose of this discussion. However,

this approach is very restrictive. To understand why, consider a switch with two

branches: the first branch consists of an interface equation and a local equation,

the second branch consists of two mixed equations. These branches clearly have

CHAPTER 4. STRUCTURAL TYPES 74

a very different structure, but are arguably interchangeable: both branches can

be used to solve for one interface variable and one local variable.

An obvious alternative is to discard the equation kind information altogether

and require only that each branch of a switch block contribute the same number

of equations. Let us call this the weak approach. Clearly, the previous example

now checks under this scheme as both branches contribute 2 equations. How-

ever, this approach is arguably too permissive: there are equation systems that

contribute the same number of equations but are not structurally compatible.

Indeed, this was the very reason to introduce equation kinds in the first place.

Instead, we adopt reconciliation constraints that enforce a stronger notion

of structural compatibility than simple equation-variable balance, without re-

quiring the branches of a switch block to be structurally identical. We refer to

this as the fair approach. The constraints are defined over an n-branch switch

block, containing n sets of equations q1 ... qn, where qk consists of lk local equa-

tions, mk mixed equations, and ik interface equations. The variables l , m, and

i are fresh variables denoting the local, mixed, and interface contribution of the

reconciled block as a whole. The constraints are parametrised on k , and the

reconciliation constraints for a switch block are obtained by instantiating them

for each branch (i.e. for each k in 1 ... n):

6. l > lk > 0 : The reconciled system contributes at least as many local

equations as the systems being reconciled. There cannot be a negative

contribution of local equations.

7. i > ik > 0 : The reconciled system contributes at least as many interface

equations as the systems being reconciled. There cannot be a negative

contribution of interface equations.

8. m 6 mk − (l − lk) − (i − ik): The reconciled system may use mixed

equations (from inside or outside the switch block) to compensate for any

deficit in the required number of interface or local equations. This may

result in m being negative, requiring the enclosing context of the switch

75 CHAPTER 4. STRUCTURAL TYPES

block to contribute additional mixed equations.

9. l + m + i = lk + mk + ik: The reconciled system contributes the same

number of equations as each branch. Thus, each branch must have the

same contribution.

The driving intuition is that we must find and associate some specific, time-

invariant number of local variables and interface variables with each switch

block such that the block, regardless of which branch is active, can provide that

many equations to solve for the interface and local variables, respectively. We

can then rely on the block to always contribute equations to that end, meaning

we effectively can view the block as a static equation system fragment with

that specific contribution. Of course, reconciling a block need not find a unique

contribution and, in-line with the rest of the system, may merely restrict the

contribution to an interval, which will later be resolved to a concrete value when

used in a complete model. Note that l and i must be at least as high as the

maximal number of local equations and interface equations, respectively, over

all branches. Otherwise some branches will contribute more local or interface

equations than can be used. A subtlety is that the number of mixed equations

contributed by a switch block is allowed to be negative. This just means that the

switch block may need to “borrow” some mixed equations from the enclosing

context in order to make up for a deficit of the number of local or interface

equations in some branches.

To demonstrate, consider the following contrived example dynamism1:

dynamism1 : SR (R,R) → SR R

dynamism1 sr = sigrel x where

local u

initially

f u = 0

g x = 0

when u < 0 ⇒

sr ⋄ (x , u)

CHAPTER 4. STRUCTURAL TYPES 76

The relation contains a switch block with two branches: the initially branch

consists of 1 local equation and 1 interface equation, while the when branch

consists of n mixed equations, where n is the contribution of the relation sr .

The switch block would be rejected under the strong approach, as the structure

of the two branches is not identical.

However, under the fair approach, the block is reconcilable. Applying the

rules to each branch results in 8 constraints that must be satisfied: l > 1 > 0,

l > 0 > 0, i > 0 > 0, i > 1 > 0, m 6 0−(l−1)−(i−1),m 6 n−(l−0)−(i−0),

l +m + i = 2, and l +m + i = n. Through simplification, we can verify that

they are satisfiable with l = 1, m = 0, i = 1, and n = 2.

For another example, consider dynamism2 below. The switch block provides

an interface equation in one branch and a local equation in the other. These

branches are thus not immediately reconcilable. However, by considering the

mixed equation in the enclosing context, it is possible for the entire relation to

be balanced, regardless of which branch is active:

dynamism2 : SR R

dynamism2 = sigrel x where

local u

h x u = 0

initially

f x = 0

when x > 0 ⇒

g u = 0

Applying the fair approach results in the following constraints: l > 0 > 0,

l > 1 > 0, i > 1 > 0, i > 0 > 0, m 6 0−(l−0)−(i−1), m 6 0−(l−1)−(i−0),

l +m + i = 1, l +m + i = 1. Simplification yields a solution at l = 1, i = 1,

m = −1. Thus, the switch block contributes (or in this case requires) −1 mixed

equations. The above switch block can be interpreted as being reconcilable

provided that it appears in a context containing at least 1 mixed equation.

Finally, consider the example dynamism3 where the weak approach is too

77 CHAPTER 4. STRUCTURAL TYPES

permissive, but, by contrast, the fair approach correctly rules out the switch

block as irreconcilable:

dynamism3 : SR R

dynamism3 = sigrel x where

local u v

initially

u = v

f u v = 0

when u + v < 0 ⇒

g x = 0

x = u

The initially branch consists of 2 local equations, whereas the when branch

consists of 1 interface equation and 1 mixed equation. Clearly, with only a single

mixed equation, it should not be possible to account for the 2 local equations

demanded by the reconciled relation. Indeed, running the criteria over the above

relation results in the constraints l > 2, i > 1, and l+m+ i = 2, implying that

m 6 −1. However, there are no additional mixed equations in the enclosing

context, and criterion 5 insists that m must be non-negative when checking the

body of a signal relation. Hence, dynamism3 is rightly rejected.

4.3.3 H�: A Core Language for Structural Types

We return again to the topic of formalisation. However, this time our motiva-

tions are slightly different. Our formalisation of the balance type system was

born out of the desire to show that certain metatheoretical properties hold.

Conversely, the driving motivation now is to provide a reference implementa-

tion that accurately describes the constraint-based type system and to provide a

specification that can easily be implemented and adapted for existing equation-

based languages. Furthermore, rather than strive for metatheoretical properties

such as safety, which as it turns out, does not hold for this system, we instead

aim to present a system that is amenable to other desirable properties, such as

CHAPTER 4. STRUCTURAL TYPES 78

total, annotation-free type reconstruction. The lack of safety, and justification

for its absence, are discussed later in the section.

Types and Schemes

The main difference between the H∆ andH� categories of types (see Fig. 4.9) —

and the first suggestion that we are heading in a more pragmatic direction with

the constraint-based type system — is the segregation of types into monotypes

(types) and polytypes (schemes). Consequently, from a theoretical standpoint,

the language of types has been greatly restricted. However, from a practical

standpoint, the changes make sense: we are trading off theoretical strength for

type reconstruction. Of course, higher-rank types have found many applications

in other languages (e.g. Schrijvers et al. [2008]), but we are more interested in

creating a type system with immediate practical value. Indeed, type recon-

struction is more than a mere convenience: it allows us to hide the language of

constraints entirely from the user. They need only be revealed when an equation

is found to be structurally unsound. Moreover, insisting that the user manually

annotate all balance variables and constraints for every abstraction would be

both time-consuming and error prone, as illustrated by the earlier examples.

Supplying equation types with three parameters instead of one is another

notable difference. Rather than representing the overall balance of an equation

the parameters now represent the number of local, mixed, and interface equa-

tions that an equation is capable of contributing. Once again, the strategy will

be to compute these quantities in a bottom-up fashion.

Terms

The shape of the terms of the constrained language (see Fig. 4.10) is funda-

mentally the same as those for the simple balance language. Equations in H�

differ only in that they encode more information about the concrete equations

they represent (as opposed to the abstraction used in the core language). In

particular, they record the kind of an equation or application - information that

79 CHAPTER 4. STRUCTURAL TYPES

σ ::= type scheme:
∀ b .σ balance abstraction
c ⇒ τ constrained type

τ ::= type:
τ1 → τ2 function space
SR e signal relation

µ ::= equation:
c ⇒ ν constrained equation

ν ::= simple equation:
Eq e1 e2 e3 equation

c ::= constraints:
ǫ empty
e1 6 e2 constraint
c1, c2 constraint conjunction

e ::= balance:
Z integer
b variable
e1 + e2 addition
− e negation

Figure 4.9: H� types.

CHAPTER 4. STRUCTURAL TYPES 80

t ::= term:
x variable
t1 t2 application
λ x . t abstraction
let x = t1 in t2 let binding
sigrel i l where q signal relation

q ::= equation:
atomic k atomic
q1 ∧ q2 pairing
t ⋄ k application
sw switch block

sw ::= switch:
initially q initial branch
sv when q event branch

k ::= equation kind:
local local equation
mixed mixed equation
interface interface equation

i , l ::= variable accumulator:
Z integer

Figure 4.10: H� terms.

is easy to determine statically, prior to type checking - as this information is

necessary to capture the constraint criteria presented in Sect. 4.3.2.

Additionally, we drop the explicit notion of balance variables as we plan to

move over to an implicit Hindley-Milner style (Milner [1978]) setting instead.

Values

Values in the constraint-based system also remain very similar to their simple

balance system counterparts. Once again, where relevant, equations have been

annotated with a kind. Explicit balance quantification has also been removed.

A Comparison to Hydra

The syntax of H� is very similar to that of H∆. Nevertheless, to reinforce

the right intuitions about the meaning of the constructs, it may be helpful to

81 CHAPTER 4. STRUCTURAL TYPES

v ::= value:
λ x . t abstraction
sigrel i l where qv signal relation

qv ::= equation value:
atomic k atomic equation
qv1 ∧ qv2 pairing
sv switch block

sv ::= switch value:
initially qv initial branch
sv when q event branch

Figure 4.11: H� values.

revisit the par (see Fig. 4.12) example so as to relate the syntax of H� directly

to Hydra. The most important difference is the inclusion of equation kinds,

providing more information about the nature of the equations appearing in the

body of par . Also of note is the absence of balance quantification and type

annotations appearing on λ-abstractions. These annotations are left implicit as

the type checking algorithm will be capable of inferring this information.

4.3.4 A H� Type System

Despite the differences between H∆ and H�, the approaches to formalising both

type systems are conceptually the same: a relation is constructed for each major

syntactic grammar of the language with one axiom per production. For a term

t , Γ ⊢ t : σ states that t has the type scheme σ in the context Γ. Similarly,

Γ ⊢q q : µ states that q has the constrained equation type µ in the context Γ.

The typing rules for H� can be seen in Fig. 4.13. For a number of reasons

we have chosen to give a formulation with an implicit notion of balance variable

quantification, making use of a Hindley-Milner style presentation using general-

isation and instantiation rules (see Milner [1978]). One alternative approach is

to make the unification constraints explicit in the context of a rule, as seen in the

presentation of type reconstruction in Pierce [2002]. However, we believe that

this detracts from the main focus of the rules: to capture balance constraints in

CHAPTER 4. STRUCTURAL TYPES 82

par sr = sigrel (p, n) where

local p1 p2 n1 n2

sr ⋄ (p1, n1)

sr ⋄ (p2, n2)

p.i + p1.i + p2.i = 0

n.i + n1.i + n2.i = 0

p.v = p1.v

p1.v = p2.v

n.v = n1.v

n1.v = n2.v

par = λ sr .

sigrel 4 8 where

sr ⋄ local ∧

sr ⋄ local ∧

atomic mixed ∧

atomic mixed ∧

atomic mixed ∧

atomic local ∧

atomic mixed ∧

atomic local

Figure 4.12: Comparison of Hydra and H�.

a language of equations. Indeed, we make no contributions to type inference at

all as our algorithm uses completely standard techniques for inferring the most

general type of an equation system. Thus, we do not present the details of this

algorithm here, but refer the interested reader to the accompanying code.

The functional rules are mostly straightforward with only the added burden

of accumulating the generated balance constraints. For example, in the rule T-

App, we need to combine the constraints generated from both of the subterms.

Of course, combining two consistent sets of constraints does not necessarily

yield a consistent set of constraints. Thus, we add the implicit assumption that

a type is only well-formed if all constraint sets occurring in the type can be

satisfied. To determine if a set of constraints is consistent we use the Fourier-

Motzkin Quantifier Elimination (or FMQE) algorithm (see Pugh [1991]). The

advantage of this algorithm is that it can find a continuous interval for each

balance variable, which is particularly useful for type equality (i.e. two types

are equal only if they agree on the interval of each balance available).

Fourier-Motzkin elimination has worst case exponential time complexity in

the number of balance variables. However, as shown by Pugh (see Pugh [1991]),

83 CHAPTER 4. STRUCTURAL TYPES

the modified variant that searches for integer solutions is capable of solving most

common problem sets in low-order polynomial time. Furthermore, systems

typically involve only a handful of balance variables, making it feasible to check

most cases where complexity is exponential in the number of variables.

Turning our attention to the rules themselves, the reader will notice that

the generation of constraints is passed off to a pair of helper functions con

and consw. These functions simply generate constraints that correspond to the

constraint criteria presented in Sect. 4.3.2. Note that we allow ourselves to use

the shorthand e1 6 e2 6 e3, which is expanded to e1 6 e2, e2 6 e3, and the

shorthand e1 = e2, which is expanded to e1 6 e2, e2 6 e1.

con (Eq iQ mQ lQ, iZ , lZ) =

iQ + mQ + lQ − lZ 6 iZ ,

iQ 6 iZ ,

lQ 6 lZ 6 lQ + mQ,

0 6 iQ, 0 6 mQ, 0 6 lQ

consw (Eq l m i ,Eq lk mk ik) =

0 6 lk 6 l ,

0 6 ik 6 i ,

m 6 mk − (l − lk) − (i − ik),

l + m + i = lk + mk + ik

Forming equation types is slightly more involved in the presence of con-

straints. Fortunately, we can use two more functions to simplify the presenta-

tion. Under the simple balance approach the rules T-Atomic and T-RelApp

contributed 1 and e equations, respectively. Now that we are differentiating

between different equation kinds, we must construct an appropriate equation

type that reflects this kind:

kind (local, e) = Eq 0 0 e

kind (mixed, e) = Eq 0 e 0

kind (interface, e) = Eq e 0 0

The ⊕ operator performs a point-wise sum of contributions:

(Eq c1 c2 c3) ⊕ (Eq d1 d2 d3) = Eq (c1 + d1) (c2 + d2) (c3 + d3)

The symbols fresh and free denote functions that create a fresh balance

variable, and compute the set of free variables occurring in types, respectively.

CHAPTER 4. STRUCTURAL TYPES 84

These functions are left abstract, leaving them as implementation details of a

specific algorithm used to implement this type system.

Finally, we define a ⊑ predicate with the rule given below. The rule ensures

that no free variables occuring in the monotype become bound by a quantifier,

but existing quantifiers may be replaced by new types, including types that

introduce new balance variables:

τ2 = [αi 7→ τi] τ1 fresh (βi)

∀ α1 ... ∀ αn . τ1 ⊑ ∀ β1 ... ∀ βm . τ2

4.3.5 Metatheoretical Properties

The typical notion of type system safety, as explored forH∆ (see 4.2.5), emerges

from the conventional definition of what a type system should be. Pierce defines

a type system as follows (see Pierce [2002]):

“A type system is a tractable syntactic method for proving the ab-

sence of certain program behaviours by classifying phrases according

to the kinds of values they compute.”

In particular, Milner [1978] introduced the well-known mantra “well-typed

programs do not go wrong”, which was subsequently developed into a syntactic

techinque by Wright and Felleisen [1994]. This line of thinking has given rise

to the idea that a type system should guarantee the absence of a particular

class of errors from well-typed programs. Conversely, an ill-typed program

should be ruled out as it may exhibit undesirable behaviour. Of course, what

may be considered as undesirable behaviour is dependent upon the specific

type system in question. Certainly, it can be very difficult indeed — and in

many cases impossible, for example, if non-termination is considered undesirable

behaviour — to design a type system that captures all undesirable behaviour.

Equivalently, this viewpoint implies that a well-typed program is definitely not

flawed, for an appropriate value of flawed.

85 CHAPTER 4. STRUCTURAL TYPES

Γ ⊢ t : σ

x : σ ∈ Γ

Γ ⊢ x : σ
(T-Var)

Γ ⊢ t2 : c2 ⇒ τ2
Γ ⊢ t1 : c1 ⇒ τ2 → τ1

Γ ⊢ t1 t2 : c1, c2 ⇒ τ1
(T-App)

Γ ⊢q q : c2 ⇒ Eq e1 e2 e3 c1 = con (e1, e2, e3, i , l)

Γ ⊢ sigrel i l where q : c1, c2 ⇒ SR (e1 + e2 + e3 − l)
(T-SigRel)

Γ ⊢ t1 : c1 ⇒ τ1
Γ ⊲ x : c1 ⇒ τ1 ⊢ t2 : c2 ⇒ τ2

Γ ⊢ let x = t1 in t2 : c2 ⇒ τ2
(T-Let)

Γ ⊲ x : ǫ ⇒ τ1 ⊢ t : c ⇒ τ2

Γ ⊢ λ x . t : c ⇒ τ1 → τ2
(T-Abs)

Γ ⊢ t : σ n /∈ free (Γ)

Γ ⊢ t : ∀ n .σ
(T-Gen)

Γ ⊢ x : σ1 σ1 ⊑ σ2

Γ ⊢ x : σ2
(T-Inst)

Γ ⊢q q : µ

Γ ⊢ t : c ⇒ SR e

Γ ⊢q t ⋄ k : c ⇒ kind (k , e)
(T-RelApp)

Γ ⊢q atomic k : ǫ ⇒ kind (k , 1)
(T-Atomic)

Γ ⊢q q1 : c1 ⇒ ν1 Γ ⊢q q2 : c2 ⇒ ν2

Γ ⊢q q1 ∧ q2 : c1, c2 ⇒ ν1 ⊕ ν2
(T-Pair)

Γ ⊢sw sw : µ

c2 = consw (Eq l m i , ν)
Γ ⊢q q : c1 ⇒ ν fresh (l ,m, i)

Γ ⊢sw initially q : c1, c2 ⇒ Eq l m i
(T-Initial)

c3 = consw (ν1, ν2)
Γ ⊢q q : c2 ⇒ ν2 Γ ⊢sw sw : c1 ⇒ ν1

Γ ⊢sw sw when q : c1, c2, c3 ⇒ ν1
(T-When)

Figure 4.13: H� typing rules.

CHAPTER 4. STRUCTURAL TYPES 86

However, there is an alternative viewpoint: a well-typed program is not

definitely flawed. By pulling the negation up to the top level we have exchanged

our optimism for pessimism: rather than proving the absence of flaws in a well-

typed program we instead prove the presence of flaws in ill-typed programs.

Of course, this means that well-typed programs may go wrong, so why take

such a viewpoint? One consequence is that the type system can now search

for more flaws without necessarily guaranteeing their absence. Arguably, the

error-finding power of the type system is increased, particularly in a refined

type system where the system can catch strictly more flaws than before. Such

a viewpoint is especially effective for modular programming; errors in a library

that will definitely lead to undesirable behaviour can be caught before the lib-

rary is deployed and used. We are not the first to observe this alternative view

of type systems, for example, work on Hybrid Type Checking (Flanagan [2006])

and Gradual Typing (Siek and Taha [2006]) could be classified as not-definitely-

flawed type systems.

The notion of subject reduction, which makes sense from the conventional

standpoint, is no longer meaningful when we accept that well-typed programs

may still go wrong. This discussion is sparked by the fact that our constraint-

based system does not fall within the conventional definition of a type system.

Equation kinds are only an approximation of structural non-singularity. Hence,

as we take a step of reduction, new information may be discovered about the

kind of an equation. Consequently, a constraint that was satisfiable before

reduction may no longer be so in light of new structural information.

Consider the foo example below. Checking the constraints reveals that the

two branches contained within foo are reconcilable: each branch contributes two

equations that must be compatible with a contribution of two local equations

(i.e. the second branch is compatible as it contributes two mixed equations).

However, if one expands the application of bar it is revealed that the second

branch is not directly compatible as it contributes one local equation and one

interface equation. While these two branches are still reconcilable, the con-

87 CHAPTER 4. STRUCTURAL TYPES

straints are no longer the same. Specifically, a mixed equation is now needed

from the enclosing context to make sense of the relation, but there is no such

equation. Thus, the resulting program is ill-typed.

bar : SR Double 2

bar = sigrel (x , a, b) where

x = 0

a = b

foo : SR Double 0

foo = sigrel x where

local a b

f x = 0

initially

g a = 0

h b = 0

when x > 0 ⇒

bar ⋄ (x , a, b)

This problem is not just inherent to structurally dynamic systems, but can

also occur in programs with no dynamism whatsoever. Clearly, the usual notion

of soundness does not hold for the constraint-based type system.

One can imagine alternative notions of type soundness that give us some

assurances that the constraint-based system behaves in a reasonable manner.

One such notion is that an ill-typed H� term implies that there exists some

structural configuration (i.e. a particular choice of switch branches) such that

the term elaborates to a structurally singular system of equations. Subject

expansion is another way to specify soundness, which states that a well-typed

term may only come from another well-typed term. That is, for all terms t1

and t2 such that t1 → t2, if Γ ⊢ t2 : σ then Γ ⊢ t1 : σ.

A related notion is whether or not the system has a substitution property.

In other words, if we substitute a variable with an expression of the same type

CHAPTER 4. STRUCTURAL TYPES 88

from the environment, does the program remain well typed and is this type

the same as before? We do not formally establish this theorem in this thesis.

However, we speculate that it is most likely true as our substitution machinery

is entirely standard, and the lack of type preservation arises from the reduction

of signal relation applications.

We do not attempt to prove these notions of safety outlined in the above

paragraphs, but believe that such proofs are an important avenue of research

to pursue in the future, not only for the purposes of our type system, but also

for its wide applications to other “non-conventional” type systems.

4.4 Evaluation

We have carried out our development in the context of an abstract version of an

FHM-like, acausal modelling and simulation language, leaving out those aspects

that were not directly relevant to our specific purposes. We did this partly to

keep things simple and allow ourselves to focus on the core issues, and partly,

as explained earlier, because the ideas underpinning our type system could be

useful for any language with a notion of modular systems of equations.

However, this begs the question of how we might evaluate what we have

achieved so far, as up to this point we have not been in a position to carry

out any large usability studies. In this section, we attempt to address the

question in two ways. First, we position our work relative to other work based

on exploiting structural properties of systems of equations for which there is

independent evidence of usability. Second, we provide a substantial case study

that covers all aspects of the language, including structural dynamism.

4.4.1 Structural Properties in the Wild

Based on years of practical experience, a notion of balance checking was con-

sidered to be sufficiently useful to be incorporated into version 3.0 of the Mod-

elica standard (see Mod [2012]) in 2007. See Sect. 6.1.1 for a discussion of how

89 CHAPTER 4. STRUCTURAL TYPES

Modelica compares to the work described in this chapter from the perspect-

ive of variable and equation balance. Here we just point out that our system

checks more fine-grained structural properties than the Modelica system can as

we distinguish between different kinds of equations. This means our system is

capable of catching a strictly larger set of errors, and thus, we argue, is no less

useful than the system presently used in Modelica.

Of course, by strengthening the requirements on programs according to the

constraint criteria, we inevitably reject some “good” programs that would be

accepted by the simple balance approach. The constraint criteria are necessarily

an approximation of the true structure of a flat equation system, hence, it may

be possible to solve a flat equation system that would be ill formed in its modular

state. Despite this, we still firmly believe that the constraint-based approach has

distinct advantages over simple equation-variable balance. At the very least, one

can experiment with different constraint criteria to find an appropriate balance

between error-finding power and usability. Indeed, if in practice the constraint

criteria outlined in Sect. 4.3 turned out to be too restrictive for a particular

domain, it is easy in our formalisation to weaken the constraints such that

fewer “good” programs would be rejected.

Our type-based approach scales to first-class equation fragments and struc-

turally dynamic systems of equations, features that may be commonplace in

the next generation of acausal modelling languages (see [Broman, 2010, Zim-

mer, 2013]). Moreover, our approach is also modular in the sense that different

constraints can be added and removed from the type system as desired for a

specific domain.

The work by Bunus & Fritzson (see Bunus and Fritzson [2002]), discussed in

Sec. 6.1.4, lies at the other end of the spectrum in terms of precision. Because

Bunus et al. work on systems of equations after flattening, they are able to

perform a global analysis, which is much more detailed than our type system

— or Modelica’s balance checking — is capable of performing. For example,

Bunus & Fritzon show how their approach can identify specific equations as

CHAPTER 4. STRUCTURAL TYPES 90

likely being the cause of a problem and even prioritise among a number of ways

to address a problem. In essence, the key difference is that Bunus & Fritzson

do an analysis at the granularity of individual variable occurrences, while we

approximate this by considering occurrences of variables only at the granularity

of two different variable kinds: local and interface variables.

While Bunus and Fritzson’s approach does not support checking of com-

ponents in isolation, and is thus not a feasible starting point for a type system

for modular equations, their approach does demonstrate the practical utility

of taking more fine-grained structural properties into account than just the

equation-variable balance.

In summary, in terms of “error finding power”, the type systems presented

in this chapter are somewhere between what currently is used in Modelica and

the approach investigated by Bunus and Fritzson, both of which have shown to

be empirically useful for finding problems. Yet, our constraint-based type-based

approach offers distinct advantages over both.

4.4.2 Case Study: Half-Wave Rectifier

To demonstrate the practical applications of the type system developed in this

chapter, we now present a case study. At this point, the reader may want to first

review the examples that were presented earlier in this chapter. These demon-

strated the constraint-based type system at work, including how it can catch

certain mistakes. However, the examples were small and in some cases also

artificial. In contrast, this case study concerns a complete model of a half-wave

rectifier composed of a number of electrical components including, in particular,

a diode: see Fig. 4.14. We are going to model the diode as an ideal component

(initially closed), resulting in a structurally dynamic model. The model, bor-

rowed from a paper on FHM (see Nilsson and Giorgidze [2010]) and originally

adapted from Cellier’s and Kofman’s book Continuous System Simulation (see

[Cellier and Kofman, 2006, pp. 439-443]), raises particular simulation challenges

91 CHAPTER 4. STRUCTURAL TYPES

S uS

L

uL
uDi

D

G

C uC R2 uR2

R1

uR1

Figure 4.14: Half-wave rectifier with in-line inductor.

as the in-line inductor causes the causality to change when the model switches

between the two different structural configurations (i.e. when the ideal diode is

open or closed).

Besides the diode, the half-wave rectifier includes a voltage source, an in-

ductor, two resistors, a capacitor, and a ground reference. The implementation

of some of these components, such as the resistor, can be found earlier in the

paper. However, for convenience the definition of each of these components is

given below along with their refined types (with trivially satisfied constraints

omitted) and a brief justification for assigning each type.

First of all, recall the definition of twoPin , the abstraction that captures the

common aspects of electrical components with two pins:

twoPin : () ⇒ SR (Pin ,Pin ,Voltage) 2

twoPin = sigrel (p, n, u) where

p.i + n.i = 0

p.v − n.v = u

There are manifestly two (interface) equations and no local variables to

solve for, so the net contribution is two equations. All constraints generated are

constant inequalities (i.e. they contain no variables) and are trivially satisfiable.

The alternating current voltage source is defined as follows, with the amp-

litude and frequency given by the parameters v and f , respectively:

vSourceAC : () ⇒ Voltage → Frequency → SR (Pin ,Pin) 2

CHAPTER 4. STRUCTURAL TYPES 92

vSourceAC v f = sigrel (p, n) where

local u

twoPin ⋄ (p, n, u)

u = v ∗ sin (2 ∗ π ∗ f ∗ time)

Applying the constraint criteria to the voltage source component gives an

overall contribution of two equations. This contribution is easily justified. The

application of twoPin contributes two equations. In this case, they are mixed.

The atomic equation is local and has to be used to solve for the local variable

u, leaving the two mixed equations as the contribution. Applying the typing

rules and then simplifying constraints yields the same result.

The resistor, inductor, and capacitor are defined as follows:

resistor : () ⇒ Resistance → SR (Pin ,Pin) 2

resistor r = sigrel (p, n) where

local u

twoPin ⋄ (p, n, u)

r ∗ p.i = u

inductor : () ⇒ Inductance → SR (Pin ,Pin) 2

inductor i = sigrel (p, n) where

local u

twoPin ⋄ (p, n, u)

l ∗ der p.i = u

capacitor : () ⇒ Capacitance → SR (Pin ,Pin) 2

capacitor c = sigrel (p, n) where

local u

twoPin ⋄ (p, n, u)

c ∗ der u = p.i

Like the voltage source, the relations that result from resistor , capacitor , and

inductor (after the application of any functional parameters) each contribute

two equations for similar reasons to the above. From the perspective of our type

93 CHAPTER 4. STRUCTURAL TYPES

system, the sets of equations that constitute each component are essentially the

same: an application of twoPin to a set of mixed variables, and an atomic

equation. The only difference here is that the atomic equation is mixed.

The ground component, unlike previous components, is connected via only

a single pin, itself containing two signal variables (p.v and p.i):

ground : () ⇒ SR Pin 1

ground = sigrel p where

p.v = 0

Its purpose is to set a reference voltage level. Thus, this component is very

simple: it contains only a single equation and introduces no new local variables.

Hence, our intuition would dictate that the ground component contributes one

equation as there are no local variables. This is in agreement with the type

assigned by our type system.

The final, and most involved component in the circuit is the diode:

icDiode : () ⇒ SR (Pin ,Pin) 2

icDiode = sigrel (p, n) where

local u

twoPin ⋄ (p, n, u)

initially;when p.v − n.v > 0 ⇒

u = 0

when p.i < 0 ⇒

p.i = 0

The diode is a particularly interesting example as the type of equations con-

tributed is dependent upon the current structural configuration: initially, the

switch block defines a local equation, whereas the second branch defines an in-

terface equation. This apparent conflict is resolved thanks to the fair policy

(Sect. 4.3.2) employed when generating constraints for structurally dynamic

code. The two branches of the switch block are reconciled by demanding that a

mixed equation is present in the enclosing context. In other words, the switch

CHAPTER 4. STRUCTURAL TYPES 94

block contributes 1 interface equation, 1 local equation, and -1 mixed equa-

tion. The application of twoPin contributes 2 mixed equations, satisfying the

demand from the switch block of “borrowing” a mixed equation from the en-

closing context. This means we can simply add the contribution from the switch

block and from the application of twoPin , yielding 1 interface equation, 1 local

equation, and 1 mixed equation. The 1 local equation has to be used to solve

for the 1 local variable, meaning that the overall contribution from the diode is

2 equations. At this point, it is worth noting that the strong approach would

be too restrictive: the contributions from the different branches are clearly not

identical. The complete half-wave rectifier can now be described as follows:

halfWaveRectifier : () ⇒ SR () 0

halfWaveRectifier = sigrel () where

local lp ln r1p r1n r2p r2n

local dp dn cp cn acp acn gp

resistor 1 .0 ⋄ (r2p, r2n)

icDiode ⋄ (dp, dn)

capacitor 0 .0 ⋄ (cp, cn)

vSourceAC 1 .0 1 .0 ⋄ (acp, acn)

ground ⋄ gp

connect acp lp

connect ln r1p

connect r1n dp

connect dn cp r2p

connect acn cn r2n gp

The rectifier is a non-trivial example, consisting of seven subcomponents,

many of which have subcomponents of their own. However, if one follows the

typing rules, it is straightforward to construct the appropriate type. There

are a total of 26 local variables (recall that each pin contains two variables)

and, by no coincidence, the body of the relation contains a total contribution

of 26 equations. Note that the connect keyword is used as a shorthand for

95 CHAPTER 4. STRUCTURAL TYPES

Kirchhoff’s circuit laws, where connect p1 ... px desugars to x atomic equations:

a sum-to-zero equation and x − 1 voltage equalities.

The type system does not merely guarantee that the model is balanced, it

strengthens the claim by imposing additional constraints that are also satisfied.

For example, suppose the programmer made an error in the implementation of

diode: instead of applying twoPin to a mixed set of variables (i.e. twoPin ⋄

(p, n, u)), the application was instead made to a set of interface variables (i.e.

twoPin ⋄ (p, n, 0)). In a setting with more than a few interface and local

variables it is entirely plausible that such an error might go unnoticed. This

mistake would mean that there are no mixed equations to satisfy the -1 mixed

equation requirement of the switch block. Interestingly, if one were to only

count variables and equations, without any notion of kinds (see related work,

Sect. 6.1.1), the aforementioned error would not be detected. Furthermore,

in our system this error would be detected early and modularly, while type

checking the code for icDiode in isolation, and not only once the full model has

been assembled, as is the case in the work by Bunus and Fritzson [2002].

Chapter 5

A Semantic Model of FHM

5.1 Preliminaries

5.1.1 Outline

In recent years the popularity of acausal, hybrid modelling languages has grown

substantially. This highly modular and declarative approach to modelling has

proven to be very useful in practice when designing large and complex systems

of equations. Increased interest in these languages has spurred interest in their

semantics, with specific approaches tending to focus on either the discrete or

continuous aspects of the language (see Broman [2010], Giorgidze [2011], Hen-

zinger [1996], Kågedal [1998], Kågedal and Fritzson [1998], Pepper et al. [2011]).

However, previous attempts have been restricted to languages without first-

class components or structural dynamism, have produced non-compositional

semantics, and/or have not attempted to show any correctness properties.

In this chapter, we attempt to give a semantic model for the discrete as-

pects of an FHM-like language that covers all of the above issues. Our semantic

model is parameterised by the continuous behaviour, where such aspects merely

describe (an approximation of) a solution to the equations describing a par-

ticular structural configuration, if such a solution exists. This separation of

CHAPTER 5. A SEMANTIC MODEL OF FHM 98

concerns is deliberate: how prescriptive the continuous aspects of the semantics

should be depends on the purpose in hand; consequently, we wish to formalise

the discrete part of the semantics in such a way that it fits with any reason-

able approach describing the continuous part. For example, one view of our

semantics is describing the computation of fragments of a hybrid automata on

demand. Thus, work focusing solely on the continuous aspects of the language

should be both complementary and orthogonal to our own.

The discrete semantics of FHM can be separated into two aspects:

1. How a modularly composed model is transformed into a flat system of

equations that describes the continuous-time dynamic behaviour for a

particular structural configuration.

2. How new structural configurations are computed in response to events

triggered by the dynamic behaviour of the current configurations.

We formalise a compositional semantics for both of the above aspects in

type theory. As our system is parameterised by the continuous aspects, events

triggered by the continuous behaviour are left abstract and are injected into the

model via an oracle that is postulated in our formalisation.

This chapter makes the following contributions:

1. A compositional semantics for the discrete aspects of an acausal, hybrid,

structurally dynamic modelling language expressed in dependent type the-

ory using Normalisation by Evaluation.

2. A novel formalisation of dynamism and the generation of new structural

configurations that is declarative, avoiding the traditional imperative bias

common to other approaches to dynamism.

3. A semantics that is carefully structured so as to allow the continuous

aspects to be described separately, in whatever way is most appropriate

for the purpose at hand, while retaining the ability to describe precisely

how a system evolves in response to discrete events.

99 CHAPTER 5. A SEMANTIC MODEL OF FHM

4. A mechanised proofs of type preservation, termination and totality, and

normalisation for the semantics.

The basis of the work in this chapter was first published in Capper and

Nilsson [2012]. The work was then further developed with the proof of normal-

isation in Sect. 5.3 and the extensions appearing in Sect. 5.5. The prerequisites

for this chapter are Chap. 2 and Chap. 3.

5.1.2 Models and Metalanguages

Work on denotational semantics stretches back many years. A particularly

notable milestone was set by Scott and Strachey in the early 1970s with their

work on denotations for recursively defined programs (see [Scott and Strachey,

1971]). They proposed working with continuous functions between domains

(specifically complete partial orders) to denote partial and recursive programs.

However, of particular importance is the compositionality of the semantics: the

denotation of a phrase is given entirely by the denotations of its sub-phrases.

We want to construct a compositional semantics for an FHM-like language.

In a similar fashion to H∆ and H�, the setting is a simply-typed calculus and

we are not concerned with partial or general recursive functions, and by ex-

tension Scott-style continuous functions and domains. Instead, we choose a

type-theoretic basis, specifically Martin-Löf Type Theory (MLTT) [Martin-Löf,

1984], as realised by the dependently typed programming language and proof

assistant Agda [Bove et al., 2009].

The only constraint that we wish to place on our choice of type theory

is that it is constructive: the specification of our model in such a theory is

simultaneously a semantics and an implementation, intimately relating the two

concepts. Of course, we could easily choose another constructive theory of types,

or work within a different proof assistant (e.g. Coq). That said, Agda has a

number of advantages:

1. Agda has a powerful termination checker.

CHAPTER 5. A SEMANTIC MODEL OF FHM 100

2. Agda is based on a strong theory of types, which makes it easy to specify

and prove theorems about our formulation.

3. Agda has a flexible syntax that permits Unicode symbols and mixfix oper-

ators, allowing the syntax of our object language to very closely resemble

that of Hydra.

4. Agda is similar to other popular, contemporary functional languages, such

as Haskell, hopefully making the code presented in this thesis accessible

to a wider audience.

5.1.3 Embedding a Model

The depth of a language embedding suggests how closely the syntax and eval-

uation model of the object language are tied to that of the metalanguage (i.e.

Agda). Thus, it is important to consider the implications of the embedding

depth when deciding on a specific approach to implementing the semantics.

At one end of the spectrum is the shallow embedding of Higher-Order Ab-

stract Syntax (HOAS) ([Pfenning and Elliot, 1988]), which makes direct use

of both the syntax and the reduction machinery of the host language. At the

other end of the spectrum are deep embeddings: terms are given as data and

reduction is specified as a function on the data.

Using a deep embedding allows one to define and prove properties by in-

duction on the structure of a formula, for example, one could reason directly

about the depth of a derivation. Unfortunately, this approach can be intricate

and error-prone: the details need to be spelled out carefully and the evaluation

mechanisms of the metalanguage are left unexploited. For example, one needs

to deal explicitly with the binding and substitution of variables.

Using a shallow embedding allows one to exploit features of the metalan-

guage, and it is often quite convenient for “importing” results proved in the

metalanguage. Unfortunately, this can make shallow embedding, such as HOAS,

very permissive, allowing a large, unrestricted set of functions to be defined.

101 CHAPTER 5. A SEMANTIC MODEL OF FHM

For example, functions can be defined using pattern matching and intermedi-

ary data structures. We want a semantics for a much simpler language and do

not want our term language to be contaminated with arbitrary metalanguage

terms. Additionally, standard definitions of HOAS for the λ-calculus are typ-

ically not strictly positive (see [Abbott et al., 2005]), which is a requirement in

Agda. Simple and clear reasoning about HOAS in type theory that does not

violate the positivity requirements of Agda is being explored by [Capretta and

Felty, 2009] and may provide an intermediate solution to the problem.

Fortunately, there is a middle ground between these two approaches: we

can use metalanguage objects as the semantic domains. This turns out to be

ideal for our specific needs. The terms of the language are defined as data,

in line with the deep embedding, which are then interpreted as metalanguage

objects, allowing us to use Agda’s evaluation mechanisms to reduce terms. The

middle-ground procedure we use is called Normalisation by Evaluation.

Generally speaking, normalisation refers to the process of finding a normal

form in a term rewriting system (i.e. an open term for which no rewrite equa-

tions apply). In our work, normalisation can be thought of as a reduction-free

process that extends evaluation to work on open terms with the rewriting sys-

tem given by the equational theory of the language (i.e. the theory that specifies

which terms are related to one another via the reduction rules of language).

5.1.4 Normalisation by Evaluation

Normalisation by Evaluation (NbE) was first described in the early 1990s for

the simply-typed λ-calculus [Berger and Schwichtenberg, 1991]. Among other

advances it has been extended to richer theories such as Martin-Löf type theory

[Abel et al., 2007]. NbE has shown to be particularly useful in the implement-

ation of proof assistants (e.g. MINLOG [Slaney, 1997]) and dependently-typed

languages as a method to normalise proof terms and find normal forms for types,

often an essential aspect of type equality. NbE is also typically type directed

CHAPTER 5. A SEMANTIC MODEL OF FHM 102

— the denotation of a program phrase is governed by the type of the program

— and is thus closely related to type-directed partial evaluation [Danvy, 1996].

Once the choice to use NbE has been made, suitable approaches to a number

of aspects of the work follow almost mechanically. The target model serves as

a denotation for our language, and together the normalisation and reification

functions serve as both an implementation and as a constructive proof that the

model is a faithful representation of the language. This technique produces

β-normal, η-long normal forms, and importantly, the model and evaluation are

both compositional.

Monoid Expressions

To explain the steps of NbE, and to help the reader become accustomed with

our approach and presentation of NbE, we begin with a very simple example: a

monoid over elements of a given set A. From this point onward we present our

implementation as pseudo-Agda code, as described in Chap. 3.

A monoid expression consists of an identity element (id), an associative

binary operator (◦), and the elements of the underlying set (var).

data Expr (A : Set) : Set where

id : Expr A

◦ : (x y : Expr A) → Expr A

var : (a : A) → Expr A

The first step is to define an appropriate model for our expression language.

The objects of the model represent the normal forms, thus, expressions with

the same normal form (i.e. expressions that are convertible to one another)

should be represented by the same object. In other words, the model identifies

expressions up to the equational theory, which in this instance is the three

monoid laws: id ◦ x = x , x ◦ id = x , and (x ◦ y) ◦ z = x ◦ (y ◦ z). In

this example a normal form can be found via a simple technique: shuffle all the

parentheses to the right and eliminate the composed identities; that is, let us

103 CHAPTER 5. A SEMANTIC MODEL OF FHM

take our convertibility relation to be a set of rewriting rules.

The free monoid of lists could be used as a model here. However, this

representation requires us to define an inductive list datatype and a recursive

concatenation function. Instead, a simpler representation (in the sense that it

does not require any new definitions) is to view a monoid as a function space.

Composition is used instead of concatenation and the “list” of expressions that

results from normalisation is terminated by id rather than the empty list.

Model : Set → Set

Model A = Expr A → Expr A

The monoid identity is then interpreted as the identity function, and the

binary operator is interpreted as function composition. Using this interpretation

allows us to exploit the evaluation mechanisms of the metalanguage.

J K : Expr A → Model A

J id K x = x

J y ◦ z K x = J y K (J z K x)

J var a K x = var a ◦ x

The above interpretation function corresponds to completeness of the model;

for every monoid expression there exists a suitable object in the model. Con-

versely, reification shows that the model is a sound representation; for every

object in the model there is a corresponding monoid expression. As the expres-

sion language is essentially untyped, reification is straightforward.

reify : Model A → Expr A

reify f = f id

nbe : Expr A → Expr A

nbe x = reify J x K

There are two important theorems that capture the correctness of normalisa-

tion. We use ≃ to denote convertibility and ≡ to denote propositional equality,

CHAPTER 5. A SEMANTIC MODEL OF FHM 104

the theorems are as follows:

nbe t ≃ t (5.1a)

s ≃ t ⇒ J s K ≡ J t K (5.1b)

Theorem 5.1a states that a term should be convertible to its normal form. In

isolation this means that nbe performs enough reductions to make equational

convertibility syntactically decidable. This guarantee is strengthened in sub-

sequent sections as we construct nbe such that it is guaranteed to produce nor-

mal forms free of redexes. This says something very strong about the behaviour

of our normaliser. Namely, that normalisation performs only valid reductions

and that it performs reductions until all redexes have been eliminated.

Theorem 5.1b states that convertible terms are represented by the same

objects in the model. If the equational theory states that two programs are

equivalent then they should have the same denotation (i.e. the same meaning).

Taken together the two theorems tell us that a term is convertible to its normal

form, and that all convertible terms have syntactically equal normal forms.

A number of interesting corollaries can also be derived from the two primary

theorems. From theorem 5.1a, one can derive corollaries 5.2a, 5.2c, and the

backward direction of 5.2d. Theorem 5.1b gives rise to the remaining corollaries

5.2b and the forward direction of 5.2d.

nbe (nbe t) ≃ nbe t (5.2a)

nbe (nbe t) ≡ nbe t (5.2b)

s ≃ t ⇔ nbe s ≃ nbe t (5.2c)

s ≃ t ⇔ nbe s ≡ nbe t (5.2d)

Normalisation by evaluation provides a reduction-free view of evaluation:

the semantics is specified by translation into a model rather than by a sequence

of reductions. As such, we need not be concerned with proofs of reduction-based

105 CHAPTER 5. A SEMANTIC MODEL OF FHM

theorems, for example, the first Church-Rosser theorem (confluence).

Typed Expressions

Before starting work on FHM in earnest we take a last detour to visit an ex-

ample that highlights important aspects of NbE that were not covered by the

previous example. In particular, we consider a typed expression language that

demonstrates the type-directed nature of NbE. Furthermore, the structure of

this example bears many similarities to that of our FHM development.

We begin by defining codes for the types in our language. The types are

very simple; we provide natural numbers and Boolean values:

data Type : Set where

nat : Type

bool : Type

The terms of the language are given by the type-indexed family Term. The

index ensures that only well-typed expressions are considered as we are not

interested in attempting to normalise ill-typed terms:

data Term : Type → Set where

zero : Term nat

succ : Term nat → Term nat

add : Term nat → Term nat → Term nat

tt : Term bool

ff : Term bool

if : Term bool → Term τ → Term τ → Term τ

The normal forms of the language are the terms that are redex-free. As we do

not have access to any form of subtyping in Agda we express the normal forms

as a new datatype. Nrm is intended to be a subset of Term and an embedding

function embed allows normal forms to be translated back into terms. The

definition of embed is straightforward and we omit it here.

data Nrm : Type → Set where

zero : Nrm nat

CHAPTER 5. A SEMANTIC MODEL OF FHM 106

succ : Nrm nat → Nrm nat

tt : Nrm bool

ff : Nrm bool

The definition of the model shows that our approach is type directed. The

model is defined by matching on the type of the expression being modelled.

For each case an Agda type is used to denote the meaning, for example, nat is

denoted by the set of natural numbers N. At this point it is worth noting that

we have constructed a simple universe [Martin-Löf, 1975], Type are the codes

and Model is the decoding function mapping codes to types. We will see this

design pattern repeated for FHM, but with a more interesting type of codes.

Model : Type → Set

Model nat = N

Model bool = Bool

The interpretation function is straightforward, mapping expressions in the

object language to their counterparts in the metalanguage.

J K : Term τ → Model τ

J zero K = 0

J succ n K = 1 + J n K

J add n m K = J n K + J m K

J tt K = true

J ff K = false

J if b s t K = if J b K then J s K else J t K

We deviate from the previous example by reifying objects to normal forms

(i.e. Nrm) rather than terms (i.e. Term). Targeting normal forms requires the

model to be complete with respect to the smaller, redex-free set of normal forms.

Thus, in turn, the process of interpreting and reifying a term is guaranteed to

produce a value. Reification of the model is also more interesting, depending

first and foremost on the type of the model.

107 CHAPTER 5. A SEMANTIC MODEL OF FHM

reify : (τ : Type) → Model τ → Nrm τ

reify nat 0 = zero

reify nat (1 + n) = succ (reify nat n)

reify bool true = tt

reify bool false = ff

To complete the round trip to and from the model we must convert normal

forms back into terms using embed.

nbe : Term τ → Term τ

nbe {τ } t = embed (reify τ J t K)

5.2 A Semantic Model of FHM

5.2.1 HJK: A Core Language for a Semantic Model

For the third time in this thesis we are in need of a core language to form

the basis of a formalisation. As before, the core language is designed with

the specific needs of the formalism in mind. We are interested in showing the

correctness of the semantics, and importantly, we need a core language that is

representative of FHM and Hydra as a whole. With this in mind, we present

HJK using the proof assistant Agda.

We make a number of changes to earlier core languages that make HJK more

suitable for our specific needs here. We aim to stay honest to the original

presentation of FHM by including signal-level expressions for the first time in

this thesis. However, even in this setting the interaction between the signal

level and the rest of the language is simple. We are not attempting to simplify

signal expressions in the hope of finding a solution to the equations; this is the

job of the continuous semantics upon which our semantics is parameterised.

Indeed, the genuinely interesting interactions in the discrete semantics occur at

CHAPTER 5. A SEMANTIC MODEL OF FHM 108

the boundary between equations and the functional host language, and between

different structural configurations.

In contrast toH∆ andH�, where the simply-typed λ-calculus was used as the

host language, here we opt to use λσ: the λ-calculus with explicit substitutions

[Abadi et al., 1991]. Explicit substitutions are useful for a number of reasons:

1. It is easier to express and reason about the calculus in Agda as the com-

putational rules of the language can be expressed as a binary relation

indexed solely by values.

2. Substitutions can be used to give a simple definition of closures, which

are used in the formalisation (see Sect. 5.2.1).

3. Substitutions allow us to suspend evaluation, which provide a means to

delay branch normalisation, an extension found in Sect. 5.5.2.

Explicit substitutions are not strictly necessary to achieve the results presen-

ted later in this chapter, nor do they enhance their value. However, the first

item in the above list is a particularly compelling reason to use them. Ex-

plicit substitutions allow our approach to be syntax directed. The indices of

constructors are restricted to data, which is far easier for Agda to unify. In par-

ticular, the computational rules of the language can be expressed as a binary

relation indexed solely on values. In a recent article, McBride [2014] articu-

lates this viewpoint, in which he argues against the use of “green slime” (i.e.

functions used to compute indices from structure, rather than impose it).

The normalisation procedure we present in this chapter for HJK produces

β-normal, η-long normal forms. Thus, a normal form does not contain any

β-redexes, including terms under binders, and has been η-expanded as far as

possible without introducing β-redexes. As an example, consider normalising

the identity function λ f . f at the type (α → β) → (α → β) to produce the

normal form λ x .λ y .x y. To simplify the initial development we abide by this

aggressive approach when normalising branches of switch statements. However,

109 CHAPTER 5. A SEMANTIC MODEL OF FHM

in Sect. 5.5 we investigate different approaches to allow delayed evaluation of

switch branches as seen in the earlier core languages. Furthermore, we reserve

treatment of local variables until a dedicated section in Sect. 5.5. Rather than

identifying a local variable we merely tag its location instead, once again to

simplify the initial presentation.

Types

An inductively defined datatype can also be viewed as a recursively defined

grammar. Equally, an indexed family of datatypes can be viewed as a set of de-

ductive rules. For example, the dependently-typed language Epigram provides a

two-dimensional syntax to emphasise this point [McBride, 2004]. Consequently,

to avoid repetition, we present the grammars and rules of HJK directly as Agda

datatypes from here onward.

The HJK language has a simple type system that is stratified into two levels:

one level for functional types and one for signal types. This reflects the stratified

nature of FHM. By contrast to the previous core languages, signal relation types

are now parameterised by a signal-level type, which consists of the unit type (for

representing nullary signal relations) and signal-level products. For simplicity,

we use an uninterpreted numeric type Num, which the reader can consider as

a placeholder for a more appropriate type, such as floating point numbers.

data SType : Set where

unit : SType

num : SType

× : SType → SType → SType

data Type : Set where

num : Type

→ : Type → Type → Type

sr : SType → Type

CHAPTER 5. A SEMANTIC MODEL OF FHM 110

Contexts and Substitutions

The meaning of an expression is not given in isolation but instead exists within

a (possibly empty) typing context. A context associates each free variable with

a type. In this formulation, rather than identifying variables using a token, we

opt for a nameless approach using de Bruijn indices [de Bruijn, 1972]. This

representation obviates the need for variable freshness conditions and makes

α-equivalent terms definitionally equivalent, which is particularly helpful for

formulating the system in Agda. Under this approach, contexts are an injection

from indices to types. Thus, one implementation is a list of types with the index

given by the position in the list.

data Ctx : Set where

◦ : Ctx

⊲ : Ctx → Type → Ctx

Following Hydra, we allow only one interface signal variable to be bound at

a given point. With the reintroduction of the signal level and tuples in H� it

once again becomes possible to express a signal relation over multiple interface

signals using just one variable and tupling.

data SCtx : Set where

◦ : SCtx

⊲ : SType → SCtx

Working in the λσ-calculus dictates that we find a representation for substi-

tutions. As the name suggests, a substitution describes a method for replacing

the free variables in an expression with terms of an appropriate type. Renaming

is a very similar operation where one replaces the variables in an expression with

other variables. As such, we keep our representation general, allowing variables

to be replaced by arbitrary “term-like” objects by defining a general notion of

replacement (⇒). An object is term-like if it has a type in a given context. For

example, terms, variables, and normal forms are all term-like objects.

111 CHAPTER 5. A SEMANTIC MODEL OF FHM

One way to express the above is to give the relationship between the contexts

before and after the replacement is applied. Replacements should also preserve

the type of the variable being replaced. We take a conventional approach by

providing syntax for both extension and weakening. Replacements also form a

category with an identity and composition:

TmLike, STmLike : Set1

TmLike = Ctx → Type → Set

STmLike = SCtx → SType → Set

data ⇒ {T : TmLike} : Ctx → Ctx → Set where

id : Γ ⇒ Γ

◦ : Γ ⇒ ∆ → ∆ ⇒ E → Γ ⇒ E

⊲ : Γ ⇒ ∆ → T ∆ τ → (Γ ⊲ τ) ⇒ ∆

wkn : Γ ⇒ (Γ ⊲ τ)

data ⇒S {S : STmLike} : SCtx → SCtx → Set where

id : Φ ⇒S Φ

◦ : Φ ⇒S Ψ → Ψ ⇒S X → Φ ⇒S X

⊲ : S Φ σ → (⊲ σ) ⇒S Φ

The implicit parameters T and S denote the term-like objects that will

be used as replacements for variables when extending. These parameters will

be omitted when they can be inferred from usage, as is the case in the above

definitions. When the instantiation is not obvious a superscript will be used to

indicate the intended type. The meaning of each replacement is as follows:

• id: The identity replacement, mapping indices back to themselves.

• γ ◦ δ: Composition of replacements, realised by first applying the replace-

ment γ, followed by applying the replacement δ.

• wkn: Weakening is the shift replacement, incrementing each index. Weak-

ening is not required for signal-level replacements as they contain at most

one index that cannot be incremented.

CHAPTER 5. A SEMANTIC MODEL OF FHM 112

• γ ⊲ t : Extension is the replacement of the first variable for the object t ,

followed by the weakened application of the replacement γ. That is, if Γ

can be replaced by ∆, and there exists an object t in ∆, then Γ can be

extended to use t as a replacement for the first variable.

There are number of useful auxiliary definitions and properties related to

the replacements. Notably, replacements are functorial in the object parameter.

map : (X E τ → Y E τ) → Γ ⇒X ∆ → Γ ⇒Y ∆

map f id = id

map f (γ ◦ δ) = map f γ ◦ map f δ

map f (γ ⊲ t) = map f γ ⊲ f t

map f wkn = wkn

There also exists a replacement from the empty context into any other con-

text. To help understand this type consider specialising ⇒ to renamings, that

is, T is instantiated as de Bruijn indices. Applying the empty remaining to a

term containing no free variables states that variables may be freely added and

renamed without causing name clashes.

empty : {X : TmLike} → (Γ : Ctx) → ◦ ⇒X Γ

empty ◦ = id

empty (Γ ⊲ τ) = empty Γ ◦ wkn

These definitions of contexts and substitutions for a nameless representation

in dependent type theory are very similar to the standard approaches taken in

much of the existing literature. We choose to follow the approach of Abadi

et al. [1991] et al. in our choice of substitution primitives, and our encoding

of substitution is very similar to the work of Chapman [2009]. However, our

representation is slightly more flexible as it is generalised to any term-like object.

Well-typed Terms

The typical pen-and-paper approach to formalising a language – as exemplified

by both H∆ and H� – is to first define the raw terms, followed by a typing rela-

113 CHAPTER 5. A SEMANTIC MODEL OF FHM

tion that relates terms, contexts, and types. However, an alternative approach

in dependent type theory is to define data that is correct by construction (for

a suitable notion of correct). In this instance, we wish to define the terms that

are well-typed and well-scoped. In doing so, we define not only the terms them-

selves, but also typing derivations. The distinct advantage of this approach is

that from here on out we need only consider the well-typed, well-scoped terms

when giving definitions. Additionally, it becomes straightforward to state meta-

theoretical properties of terms when the type and context of the term appear

immediately as an index. This notion of correct by construction also sits at the

heart of the correctness proof found in Sect. 5.3.

Once again, the stratified terms of FHM are mirrored by the mutually in-

ductive datatypes given below for the functional level (Tm), the signal level

(STm), equations (QTm), and switch blocks (Switch).

The bracket notation (e.g. [γ] t) denotes the application of a functional

substitution γ to the term t . This operation, inherited from the λσ-calculus,

expresses explicit substitutions in the term language. In the same manner, a

signal-level substitution is denoted by angled brackets (e.g. 〈 φ 〉 s).

The shape of a substitution application is given via a Closure. For a given

context-indexed type T , Closure states that T is functorial with respect to

substitution (i.e. a substitution can be mapped across the structure of T).

To convince ourselves that this is the correct specification, take T to be the

language of terms. Closure then becomes: ∆ ⇒ Γ → Tm ∆ τ → Tm Γ τ ,

which corresponds to the usual notion of a term paired with a substitution. For

readability we will adopt the notation Tm · τ as shorthand for λ Γ → Tm Γ τ .

Note that this notation is not valid Agda syntax and is just used in this thesis

to denote partial application.

Closure : (Ctx → Set) → (Ctx → Set)

Closure T Γ = ∆ ⇒ Γ → T ∆ → T Γ

SClosure : (SCtx → Set) → (SCtx → Set)

CHAPTER 5. A SEMANTIC MODEL OF FHM 114

SClosure S Φ = Ψ ⇒S Φ → S Ψ → S Φ

The var, lam, and app constructors represent the well-known method of

defining well-typed λ-terms in dependent type theory. The only exception being

var, which, due to our formulation of explicit substitutions, represents only

the most recently bound variable. Other variables can be constructed through

explicit weakening, for example, the third most recently bound variable can be

constructed as [wkn ◦ wkn] var. The remaining Tm constructors are lit, which is

simply a token to represent numeric literals, and sigrel, which embeds equations.

data Tm : TmLike where

lit : Tm Γ num

var : Tm (Γ ⊲ τ) τ

lam : Tm (Γ ⊲ τ1) τ2 → Tm Γ (τ1 → τ2)

app : Tm Γ (τ1 → τ2) → Tm Γ τ1 → Tm Γ τ2

sigrel : QTm Γ (⊲ σ) → Tm Γ (sr σ)

[] : Closure (Tm · τ) Γ

The goal of this chapter is to present a semantic model of an FHM-like

language and at the same time to present an understandable implementation.

In keeping with the latter goal, we defer a proper handling of local variables

until Sect. 5.5 as they add another layer of complexity and syntactic noise that

we believe detracts from the overall message of this section. With that in mind,

local variables are represented using the anonymous token lvar.

The fun constructor allows time-invariant functional expressions to be em-

bedded into the signal level. Terms of an arbitrary type cannot be embedded

as the functional level and signal level do not have a perfect intersection of

types. Of course, one could specify a predicate for the common types and

provide marshalling between these types, but little is gained from doing so in

this formalisation. We restrict the type of the embedded terms to num.

The remaining signal expressions represent the kind of operations one would

typically find in an equation-based modelling language. Pairs allow us to ab-

115 CHAPTER 5. A SEMANTIC MODEL OF FHM

stract over and build compound signal expressions.

data STm (Γ : Ctx) : STmLike where

tt : STm Γ Φ unit

svar : STm Γ (⊲ σ) σ

lvar : STm Γ Φ num

fun : Tm Γ num → STm Γ Φ num

binop : STm Γ Φ num → STm Γ Φ num → STm Γ Φ num

pair : STm Γ Φ σ1 → STm Γ Φ σ2 → STm Γ Φ (σ1 × σ2)

fst : STm Γ Φ (σ1 × σ2) → STm Γ Φ σ1

snd : STm Γ Φ (σ1 × σ2) → STm Γ Φ σ2

[] : Closure (STm · Φ σ) Γ

〈 〉 : SClosure (STm Γ · σ) Φ

Equations are once again described as a tree using the pairing operation

(∧) with leaves consisting of atomic equations (=), signal relation applications

(⋄), and switch blocks (switch). The only notable deviation from FHM and the

earlier core languages is the design of switching blocks. Rather than specifying

an initial branch with other branches that may become active during simulation,

we instead describe a finite, fixed-length vector of branches with one currently

active branch chosen by an argument of type Fin. Here, the type Fin n represents

a finite set containing exactly n elements. There are a number of advantages

specific to this implementation:

• The representation is more uniform, no special status is given to the initial

branch. Thus, the initial branch can now be reactivated as all branches

have switching conditions. Note that in H�, a switching condition is

simply a signal s of type num that is “activated” when s crosses zero.

• The number of branches is verifiably fixed throughout evaluation and sim-

ulation, the length index enforces this invariant by construction.

• When we discuss the semantics of dynamism in Sect. 5.4 the use of Fin

will prevent switching events selecting non-existent branches.

CHAPTER 5. A SEMANTIC MODEL OF FHM 116

data QTm (Γ : Ctx) (Φ : SCtx) : Set where

empty : QTm Γ Φ

∧ : QTm Γ Φ → QTm Γ Φ → QTm Γ Φ

= : STm Γ Φ σ → STm Γ Φ σ → QTm Γ Φ

⋄ : Tm Γ (sr σ) → STm Γ Φ σ → QTm Γ Φ

switch : Fin n → Switch Γ Φ n → QTm Γ Φ

[] : Closure (QTm · Φ) Γ

〈 〉 : SClosure (QTm Γ ·) Φ

data Switch (Γ : Ctx) (Φ : SCtx) : N → Set where

[] : Switch Γ Φ 0

branch : Switch Γ Φ n → STm Γ Φ num

→ QTm Γ Φ → Switch Γ Φ (1 + n)

[] : Closure (Switch · Φ n) Γ

〈 〉 : SClosure (Switch Γ · n) Φ

It is worth noting that, when elaborated to pair of a substitution and a term,

our usage of closures is the same approach to substitution application as taken

by Danielsson [2006], which in turn is inspired by Abadi et al. [1991].

A Comparison to Hydra

We take a break from definitions to take a quick look at how HJK compares to

Hydra. A notable extension compared to the previous core languages is a more

thorough account of the signal level. Note that we retain infix operator syntax

and numeric literals for clarity in the example in Fig. 5.1. Also of note is the

anonymity of local variables, which, to reiterate, will be addressed in subsequent

sections. Finally, without access to pattern matching, we must explicitly project

the components of the local variable.

117 CHAPTER 5. A SEMANTIC MODEL OF FHM

par t = sigrel (p, n) where

local p1 p2 n1 n2

t ⋄ (p1, n1)

t ⋄ (p2, n2)

p.i + p1.i + p2.i = 0

n.i + n1.i + n2.i = 0

p.v = p1.v

n.v = n1.v

p.v = p2.v

n.v = n2.v

par = lam (sigrel

var ⋄ pair lvar lvar ∧

var ⋄ pair lvar lvar ∧

fst (fst svar) + fst lvar + fst lvar = 0 ∧

fst (snd svar) + fst lvar + fst lvar = 0 ∧

snd (fst svar) = snd lvar ∧

snd (snd svar) = snd lvar ∧

snd lvar = snd lvar ∧

snd lvar = snd lvar ∧)

Figure 5.1: Comparison of Hydra and HJK.

5.2.2 A Model of HJK

Normal Forms

Our next goal is to write a normalisation function that flattens a modular

system of equations into an initial set of equations to begin simulation. In

the context of λ-calculi, normalisation typically manifests itself as a map from

open terms to terms that contain no reducible expressions (redexes); that is,

nbe : Tm Γ τ → Tm Γ τ . Thus, the obvious codomain for nbe would be to

reuse the representation of terms from the previous section (Sect. 5.2.1), with

the image of nbe being the subset of Tm that represents redex-free terms.

However, it turns out to be far more useful, particularly for the purposes of

showing correctness, to create a new set of datatypes that contain exactly the

image of nbe and nothing more. That is, the inhabitants of the new datatypes

are the well-scoped, well-typed terms that are β-normal and η-long. The typed

expressions example from Sect. 5.1.4 shows this method at work for a simple

expression language without binding.

The representation of normal forms need not contain closures as any closure

CHAPTER 5. A SEMANTIC MODEL OF FHM 118

can be eliminated by carrying out a substitution during evaluation. In order to

exclude substitution application, an explicit representation of non-zero-indexed

variables is needed, as variables with an index greater than 0 can no longer be

represented via substitutions applied to the 0th variable.

data Var : TmLike where

vz : Var (Γ ⊲ τ) τ

vs : Var Γ τ1 → Var (Γ ⊲ τ2) τ1

data SVar : STmLike where

vz : SVar (⊲ σ) σ

A functional variable is encoded as a typed de Bruijn index into a typing

context. The constructor vz points to the end of the context; that is, the most

recently bound variable. The constructor vs weakens a variable by extending

the context into which it points. Intuitively, the type Var Γ τ can be thought of

as the set of indices pointing to variables of type τ in the context Γ. As there

will only ever be a single signal-level variable in scope, a new definition is not

strictly necessary, but is included for symmetry.

The following embeddings allow us to convert back to the previous approach

of implicitly formulated de Bruijn variables:

embVar : Var Γ τ → Tm Γ τ

embVar vz = var

embVar (vs v) = [wkn] (embVar v)

embSVar : SVar Φ σ → STm Γ Φ σ

embSVar vz = svar

With the goal of creating a canonical representation of terms in mind, the

Base and SBase predicates identify base types. Values of base type will be left

uninterpreted, such as numeric values. During normalisation, all values will be

η-expanded as far as possible (without introducing β-redexes), unless they can

be shown to be of base type.

119 CHAPTER 5. A SEMANTIC MODEL OF FHM

data Base : Type → Set where

num : Base num

data SBase : SType → Set where

unit : SBase unit

num : SBase num

The approach taken to define normal forms is to partition the representation

into a pair of mutually defined datatypes that stratify the terms such that occur-

rences of β-redexes are prevented. The two strata are often called normal terms

and neutral terms. Normal terms are those terms whose outermost constructor

is known. Conversely, neutral terms are those terms for which reduction has

been impeded by the presence of a variable in a key position (e.g. a variable

being applied to an argument). Using this approach, terms representing object-

level constructors or values are considered normal terms, while variables and

object-level destructors are consider to be neutral. It is then easy to compose

normal and neutral terms such that destructors are never directly applied to

constructors, thus forbidding the construction of redexes.

Given below is the stratification of the functional level. In the typed expres-

sion example from Sect. 5.1.4, neutral terms were not required as there were no

bound variables that impeded reduction.

data Nrm : TmLike where

lit : Nrm Γ num

lam : Nrm (Γ ⊲ τ1) τ2 → Nrm Γ (τ1 → τ2)

sigrel : QNrm Γ (⊲ σ) → Nrm Γ (sr σ)

neu : Base τ → Neu Γ τ → Nrm Γ τ

data Neu : TmLike where

var : Var Γ τ → Neu Γ τ

app : Neu Γ (τ1 → τ2) → Nrm Γ τ1 → Neu Γ τ2

There are two key ideas behind this representation. Firstly, the stratifica-

CHAPTER 5. A SEMANTIC MODEL OF FHM 120

tion prevents destructors being directly applied to constructors, for example,

preventing the left subtree of app being a lam. This restriction prevents the oc-

currence of β-redexes. Secondly, the neu constructor only permits neutral terms

to appear as normal terms at a base type. This restriction means that values

must be either fully η-expanded or else are of an uninterpreted base type.

A similar approach is taken at the signal level. We do not wish to solve or

even simplify the equations of a model, and hence, there is little computational

behaviour to capture. However, as products were introduced as a way of ab-

stracting over multiple interface variables we will perform the usual β-reductions

and η-expansions associated with this type.

data SNrm (Γ : Ctx) : STmLike where

tt : SNrm Γ Φ unit

fun : Nrm Γ num → SNrm Γ Φ num

binop : SNrm Γ Φ num → SNrm Γ Φ num → SNrm Γ Φ num

pair : SNrm Γ Φ σ1 → SNrm Γ Φ σ2 → SNrm Γ Φ (σ1 × σ2)

neu : SBase σ → SNeu Γ Φ σ → SNrm Γ Φ σ

data SNeu (Γ : Ctx) : STmLike where

lvar : SNeu Γ Φ num

svar : SVar Φ σ → SNeu Γ Φ σ

fst : SNeu Γ Φ (σ1 × σ2) → SNeu Γ Φ σ1

snd : SNeu Γ Φ (σ1 × σ2) → SNeu Γ Φ σ2

The representations of equations and switches do not need to be stratified

as it is not possible to construct a redex with these datatypes alone. Therefore,

QNrm and SwNrm follow the same structure as their term counterparts, but

with the references to neutral and normal terms carefully chosen to prevent

redexes appearing elsewhere. It is also worth noting that the reappearance of

a length index on switching blocks will allow us to verify that the number of

branches for a given block does not change during normalisation.

data QNrm (Γ : Ctx) (Φ : SCtx) : Set where

121 CHAPTER 5. A SEMANTIC MODEL OF FHM

empty : QNrm Γ Φ

∧ : QNrm Γ Φ → QNrm Γ Φ → QNrm Γ Φ

⋄ : Neu Γ (sr σ) → SNrm Γ Φ σ → QNrm Γ Φ

= : SNrm Γ Φ σ → SNrm Γ Φ σ → QNrm Γ Φ

switch : Fin n → SwNrm Γ Φ n → QNrm Γ Φ

data SwNrm (Γ : Ctx) (Φ : SCtx) : N → Set where

[] : SwNrm Γ Φ 0

branch : SwNrm Γ Φ n → SNrm Γ Φ num

→ QNrm Γ Φ → SwNrm Γ Φ (1 + n)

Just as with variables, it is possible to recover a term from a normal form

representation. After all, the normal forms represent the image of the normal-

isation function, and thus, are necessarily a subset of the terms.

embNrm : Nrm Γ τ → Tm Γ τ

embNrm lit = lit

embNrm (lam t) = lam (embNrm t)

embNrm (sigrel q) = sigrel (embQNrm q)

embNrm (neu b t) = embNeu t

Amap of the form embFoo exists for all Foo ∈ {Nrm,Neu, SNrm, SNeu,QNrm,

SwNrm}. It is interesting to note that the embedding function is a section of

the normalisation function (dually, normalisation is a retraction of embedding).

The idea of using a new datatype for normal forms that can be embedded

back into the term representation is fairly common in the existing literature, par-

ticularly when attempted to formalise normalisation in type theory (Chapman

[2009], Danielsson [2006], McBride [2000]). Partitioning the terms to prevent

redexes from occurring is a standard technique, though there are novel aspects

to our formalisation as we consider a language with multiple levels.

CHAPTER 5. A SEMANTIC MODEL OF FHM 122

Context Morphisms and Weakening

All terms that are related to one another by the equational theory should be rep-

resented by the same object in the model. Therefore, there is a canonical object

in the model for each element of the set of terms quotiented by convertibility.

The canonical object represents terms that are βη-equivalent to one another by

effectively representing the fully reduced and fully η-expanded term to which

all other equivalent terms can be converted. Thus, when reifying an object into

a normal form, we may need to build a subterm in a context extended by new

variables. To see why this is the case consider η-expanding the term λ f . f at

the type (τ1 → τ2) → (τ1 → τ2), or equivalently, the HJK term given below:

etaFun : Tm Γ ((τ1 → τ2) → (τ1 → τ2))

etaFun = lam var

The term is expanded to λ f . λ x . f x , which constructs the subterm f x in a

context extended by the new variable x . This behaviour is accounted for in the

model using so-called context morphisms.

A context morphism is a preorder (a reflexive and transitive binary relation)

specified by the type Γ ⊑ ∆ to denote a transformation from the context Γ to

∆. Context morphisms (from now on simply morphisms) are a general mech-

anism for weakening contexts and are closely related to renamings; specifically,

a morphism allows variables to be renamed, reordered, or even added to a con-

text. The symbol ⊑ is chosen to emphasise that the context on the right may

be weaker than the context appearing on the left; that is, any term that is

well-scoped in Γ is also well-scoped in ∆ by weakening.

⊑ : Ctx → Ctx → Set

Γ ⊑ ∆ = Γ ⇒Var ∆

Thanks to our parameterised definition of substitutions, context morphisms

can simply be represented as a substitution from variables to variables. This

presentation is particularly convenient for this work as it integrates smoothly

123 CHAPTER 5. A SEMANTIC MODEL OF FHM

with the choice to use explicit substitutions in HJK. In particular, much of the

machinery already defined for substitutions can be reused. For example, the

above definition fulfils the requirements of a preorder due to id and ◦.

It is helpful to derive a number of definitions from the specification above.

Of particular interest are morphisms that will be useful in later sections of this

paper. Variables can be exchanged, implying that variables can be arbitrarily

reordered. The relation is monotonic, that is, a morphism can be extended on

both sides. There is also the lifting (lift) of renamings to substitutions:

exch : (Γ ⊲ τ1 ⊲ τ2) ⊑ (Γ ⊲ τ2 ⊲ τ1)

exch = (wkn ◦ wkn) ⊲ vz ⊲ vs vz

mono : Γ ⊑ ∆ → (Γ ⊲ τ) ⊑ (∆ ⊲ τ)

mono γ = (γ ◦ wkn) ⊲ vz

lift : Γ ⊑ ∆ → Γ ⇒Tm ∆

lift = map embVar

The application of a context morphism to a context-index type is charac-

terised by the type Weaken. It is straightforward to express how a type, such

as Tm, can be rephrased into a weaker context. The payoff of representing

morphisms as replacements is evident in the implementation of wknTm, which

consists of simply lifting and then applying the morphism. Returning to the

η-expansion of λ-abstractions, the subterm f x now simply exists in the original

context weakened by the morphism wkn.

Weaken : (Ctx → Set) → Set

Weaken T = Γ ⊑ ∆ → T Γ → T ∆

wknTm : Weaken (Tm · τ)

wknTm γ t = [lift γ] t

It would also be useful to express weakening of normal forms. Unfortunately,

the explicit substitution constructor is not available to us for the Nrm family of

CHAPTER 5. A SEMANTIC MODEL OF FHM 124

types. This is for good reason: we want to be assured that all redexes have been

eliminated from a normal form. However, it is possible to define weakening by

recursion, for example, the weakening of variables and neutral terms is given

below. We omit weakening definitions (of which there are many) and instead

follow the naming scheme that wknFoo denotes the function that weakens the

indexing context of the type Foo.

wknVar : Weaken (Var · τ)

wknVar id v = v

wknVar (γ ◦ δ) v = wknVar δ (wknVar γ v)

wknVar (γ ⊲ t) vz = t

wknVar (γ ⊲ t) (vs v) = wknVar γ v

wknVar wkn v = vs v

wknNeu : Weaken (Neu · τ)

wknNeu γ (var s) = var (wknVar γ s)

wknNeu γ (app f x) = app (wknNeu γ f) (wknNrm γ x)

Defining Models by Decoding Types

As promised at the start of this section, we can now present the maps that

describe how a HJK type, given in context, should be translated to the metalan-

guage. Given such a map f , a term of type τ in HJK can then be interpreted as

an inhabitant of the type f τ . Viewing HJK types as a universe, the following

maps are the decoding functions that allow us to write generic definitions over

objects of the model, of which interpretation and reification are arguably the

most important in this chapter.

Base types, such as unit and num are to be left uninterpreted; that is, there

is no computational behaviour associated with these types. Consequently, base

types are mapped directly to normal forms as no reductions or expansions will

need to be performed, effectively short-circuiting the process of normalisation.

Signal products are mapped to actual products of signal objects, defined re-

125 CHAPTER 5. A SEMANTIC MODEL OF FHM

cursively by the signal-level map SVal. This definition will enable the reduction

of signal-level products that were introduced to allow multiple signal variables

to be bound from a single sigrel, in the same fashion as FHM.

SVal : Ctx → STmLike

SVal Γ Φ unit = SNrm Γ Φ unit

SVal Γ Φ num = SNrm Γ Φ num

SVal Γ Φ (σ1 × σ2) = SVal Γ Φ σ1 × SVal Γ Φ σ2

At the functional level, HJK function spaces are mapped to actual function

spaces with an additional context morphism. When reifying the model back

into a normal form, the context morphism will be an essential mechanism for

weakening contexts, which is needed to perform η-expansion.

To illustrate this point, consider a term f of type α → β in a context

Γ. When the object that represents f is reified back to a normal form it is

η-expanded at least once to λ x . f x . The expanded term exists in the same

context as the original term. However, the subterm f x exists in the context Γ

extended by x . In order to construct the application of f to x we must weaken

the context of f . As the extent to which a term must be η-expanded is not

known prior to normalisation (e.g. consider f : (α → β) → (α → β),

which requires two steps of expansion, and thus appears in a doubly-weakened

context), a context morphism is used to accumulate individual weakenings.

Val : TmLike

Val Γ num = Nrm Γ num

Val Γ (τ1 → τ2) = Γ ⊑ ∆ → Val ∆ τ1 → Val ∆ τ2

Val Γ (sr σ) = Γ ⊑ ∆ → SVal ∆ Φ σ → QVal ∆ Φ

For the remaining syntactic categories – equations and switching blocks –

there is no computational behaviour to account for, and thus, they remain

effectively uninterpreted. In Chap. 5.5 we will see that there are some nontrivial

equivalences between equations that we might want to capture that will be

manifest in a revised definition of the model of equations. However, in the

CHAPTER 5. A SEMANTIC MODEL OF FHM 126

interest of keeping the initial presentation as simple and clear as possible, we

will ignore these non-essential aspects in this section.

QVal : Ctx → SCtx → Set

QVal Γ Φ = QNrm Γ Φ

SwVal : Ctx → SCtx → Set

SwVal Γ Φ = SwNrm Γ Φ

The objects of the model, as defined by the Val family of decoding functions,

are parameterised on a context so that they can decode the types of open terms.

When we define the interpreter we will need a way to find the meaning of free

variables appearing in an open term. This is achieved by using an environment.

In its simplest form, an environment is a injection from variables to model

objects. As variables are denoted by de Bruijn indices, and taking inspiration

from the definition of contexts, an obvious implementation is a list of objects

that correlates with the current context. This correlation can be made precise

by indexing an environment on the context, ensuring that the environment is

the correct length, and that the objects are of the correct type:

data EnvBad : Ctx → Set where

◦ : EnvBad ◦

⊲ : EnvBad Γ → Val Γ τ → EnvBad (Γ ⊲ τ)

Unfortunately, this definition is difficult to use in practice. Each object of

the environment exists in a different context, meaning the objects will often need

to be explicitly weakened when being used. Furthermore, weakening a context

with a morphism would require any environment indexed on this context to be

weakened as well, which in general is impossible using the above definition. For

example, consider applying the morphism exch.

The solution used in this thesis is to add an additional context parameter

that will serve as a context for all the objects in the environment. Thus, when

passing under a binder the new context parameter can be weakened accordingly,

127 CHAPTER 5. A SEMANTIC MODEL OF FHM

weakening each object in the environment as a consequence. This new context

parameter does not interfere with the previous context index, which can con-

tinue to track the length and types of the objects independently. A notion of

environments is needed at both the functional level and signal level.

data Env (∆ : Ctx) : Ctx → Set where

◦ : Env ∆ ◦

⊲ : Env ∆ Γ → Val ∆ τ → Env ∆ (Γ ⊲ τ)

data SEnv (∆ : Ctx) (Ψ : SCtx) : SCtx → Set where

⊲ : SVal ∆ Ψ σ → SEnv ∆ Ψ (⊲ σ)

Finally, we can package up all of the components defined so far to give a

model for each syntactic category of HJK. Note that the functional-level en-

vironment is needed at every level of the language due to the fun constructor,

which embeds functional terms as time-invariant entities at the signal level.

Model : TmLike

Model Γ τ = Env ∆ Γ → Val ∆ τ

SModel : Ctx → STmLike

SModel Γ Φ σ = Env ∆ Γ → SEnv ∆ Ψ Φ → SVal ∆ Ψ σ

QModel : Ctx → SCtx → Set

QModel Γ Φ = Env ∆ Γ → SEnv ∆ Ψ Φ → QVal ∆ Ψ

SwModel : Ctx → SCtx → Set

SwModel Γ Φ = Env ∆ Γ → SEnv ∆ Ψ Φ → SwVal ∆ Ψ

In summary, a model is created for each syntactic category. Each model

behaves as an environment machine: it accepts a number of environments and

produces a value. The environments that a particular model depend upon are

determined by the kinds of variables that may occur bound in an expression

for its syntactic category. For example, both functional variables and signal

CHAPTER 5. A SEMANTIC MODEL OF FHM 128

variables may occur in the syntax of a signal expression. As a result, the model

of a signal expression requires both environments.

5.2.3 Normalisation

We have yet to define both interpretation and reification, the two main in-

gredients of Normalisation by Evaluation. Instead, thus far, we have focused

on carefully defining the terms and the model. However, much of the hard

work has now been done, and defining the two functions is straightforward.

This is due, at least in part, to the approach of building data that is correct-

by-construction; that is, encoding invariants (where feasible) directly into the

definition of a datatype. The invariants put Agda’s constraint solving mechan-

isms to work, allowing many impossible cases to be ruled out automatically; for

example, eliminating ill-typed function applications.

We now show how terms can be interpreted into the model and how a normal

form can be recovered from the model, thus achieving the first goal of this

chapter: to transform a closed modular systems of equations into a flat set of

equations via a process that is intimately related to the denotational semantics

of the language. The requirement that the system of equations be closed means

that the top-level definition will have the type Tm ◦ (sr unit), which in turn

means that there will be no free functional variables and only one trivial (of

type unit) interface signal variable. Consequently, we guarantee that there will

be no redexes to impede the reduction of the modular system to a completely

flat system of equations.

Interpretation

For each syntactic category an interpreter is defined that translates terms into

objects of the appropriate model. Interpretation is implemented as a simple

environment machine: when passing under a binder — be it a lam or a sigrel —

the value that is bound by a variable is added to the environment. Values in

129 CHAPTER 5. A SEMANTIC MODEL OF FHM

the environment can later be recalled when they are required to be substituted

for occurrences of the variables to which they refer.

An explicit substitution must also be interpreted explicitly, which we de-

scribe as a function on environments. As the application of a substitution exists

in a potentially weaker context than the term being closed over, we need to be

able to strengthen the environment again by discarding those variables from

the environment that we know are not needed. The substitution encodes the

relationship between the enclosed term’s environment and the new weaker en-

vironment. Thus, the transformation of the environment proceed by examining

the substitution to construct a new environment that excludes those variables

that are not required. Further details are deferred until later in this section.

The interpreters are defined by induction on the terms. In each case, the

meaning of a term is given independently, based solely on the meaning of any

subterms. Put simply, the interpretation is compositional.

At the functional level there are a number of interesting cases to consider.

Variables are particularly easy to interpret as HJK only gives an explicit rep-

resentation of the first variable, which is simply the value stored at the end of

the environment. Application proceeds by first interpreting the object function

into an actual function, which is then applied to the identity morphism and

interpreted argument. Recall that while the trivial identity morphism is used

during interpretation, a non-identity morphism will be required during reifica-

tion. Similarly, λ-abstractions are interpreted as actual meta-level abstractions,

extending the environment with the newly bound variable and weakening the

environment with respect to the new morphism. Recall that the body of an

abstraction exists in a different context to that of the abstraction itself (i.e. t

exist in the same context as lam t , except that it has been extended by a new

variable). It is for this reason that, in addition to the environment e, interpret-

ation of an abstraction also requires a morphism γ that can be used to perform

the appropriate transformation of the environment, allowing it to be used in the

interpretation of t . As meta-level functions were also chosen to represent signal

CHAPTER 5. A SEMANTIC MODEL OF FHM 130

relations their interpretation is also meta-level abstraction, only this time the

signal environment is extended instead.

J K : Tm Γ τ → Model Γ τ

J lit K e = lit

J var K (ρ ⊲ v) = v

J app f x K e = J f K e id (J x K e)

J lam t K e = λ γ v → J t K (wknEnv γ e ⊲ v)

J sigrel q K e = λ γ v → J q KQ (wknEnv γ e) (⊲ v)

J [γ] t K e = J t K (J γ K⇒ e)

Signal-level interpretation is primarily structural, with the only interest-

ing computation occurring for products. The constructors and destructors for

products are interpreted as one would expect, with π1 and π2 providing the

meta-level projections and , denoting the meta-level constructor. With only

one bound signal variable in scope at any given time, svar is interpreted as the

contents of the signal-level environment.

J KS : STm Γ Φ σ → SModel Γ Φ σ

J tt KS e g = tt

J svar KS e (⊲ v) = v

J lvar KS e g = neu σ lvar

J fun t KS e g = fun (J t K e)

J binop a b KS e g = binop (J a KS e g) (J b KS e g)

J fst s KS e g = π1 (J s KS e g)

J snd s KS e g = π2 (J s KS e g)

J pair a b KS e g = (J a KS e g), (J b KS e g)

J [γ] s KS e g = J s KS (J γ K⇒ e) g

J 〈 φ 〉 s KS e g = J s KS e (J φ KS
⇒

e g)

The application of a signal relation is interpreted in the same way as its

functional counterpart, unsurprising given the similarity of their representations

in the model. Atomic equations make use of reifyS, which will be defined later

in the section, to convert signal values back to normal forms. This forward

131 CHAPTER 5. A SEMANTIC MODEL OF FHM

dependency could have been avoided if equation values were instead redefined

using atomic equations of signal values. However, in this thesis the benefit of

redefining equations is strongly outweighed by the added complexity and noise

such a definition would cause. The remaining signal-level constructors along

with switching blocks simply preserve the structure of the equation.

J KQ : QTm Γ Φ → QModel Γ Φ

J empty KQ e g = empty

J q1 ∧ q2 KQ e g = J q1 KQ e g ∧ J q2 KQ e g

J t ⋄ s KQ e g = J t K e id (J s KS e g)

J s1 = s2 KQ e g = reifyS σ (J s1 KS e g) = reifyS σ (J s2 KS e g)

J switch b sw KQ e g = switch b (J sw KSw e g)

J [γ] q KQ e g = J q KQ (J γ K⇒ e) g

J 〈 φ 〉 q KQ e g = J q KQ e (J φ KS
⇒

e g)

J KSw : Switch Γ Φ → SwModel Γ Φ

J [] KSw e g = []

J branch sw s q KSw e g = branch (J sw KSw e g) (J s KS e g) (J q KQ e g)

J [γ] sw KSw e g = J sw KSw (J γ K⇒ e) g

J 〈 φ 〉 sw KSw e g = J sw KSw e (J φ KS
⇒

e g)

Interpreting explicit substitutions is needed for transforming an environment

when normalising a closure. The process is best understood via an example.

Given a term t in the context Γ and a substitution φ from Γ to ∆, the applied

closure [φ] t and corresponding environment ρ exist in the context ∆. If we

wish to interpret t , then we must construct an environment in the context Γ.

Initially, this seems like it may be problematic as ∆ is weaker than Γ. However,

as a substitution describes how the two contexts are related, we can use it to

reorganise an environment, discarding any values that are not of use.

J K⇒ : ∆ ⇒ E → Env Γ E → Env Γ ∆

J id K⇒ e = e

J γ ◦ δ K⇒ e = J γ K⇒ (J δ K⇒ e)

CHAPTER 5. A SEMANTIC MODEL OF FHM 132

J γ ⊲ t K⇒ e = J γ K⇒ e ⊲ J t K e

J wkn K⇒ (e ⊲ v) = e

Note that at the signal level a functional environment is required for the

mutually recursive calls in the case for extension.

J KS
⇒

: Ψ ⇒S P → Env Γ ∆ → SEnv Γ Φ P → SEnv ∆ Φ Ψ

J id KS
⇒

e g = g

J φ ◦ ψ KS
⇒

e g = J φ KS
⇒

e (J ψ KS
⇒

e g)

J ⊲ φ KS
⇒

e g = ⊲ (J φ KS e g)

Given the above definitions of interpretation, it may not be clear why expli-

cit substitutions are at all useful or why context morphisms are included in the

model. In particular, it would have been much simpler to define interpretation

with an implicit notion of substitution. However, as we will discover in the

following sections, the benefits of explicit substitutions are reaped when form-

alising the equations of convertibility and when proving correctness properties.

While context morphisms serve no obvious purpose during interpretation, the

reader is reminded that they will be essential during reification.

Our interpreter is similar to existing approaches in earlier literature. With

the exception of context morphisms, our interpreter takes roughly the same

approach as the earliest work on Normalisation by Evaluation by Berger and

Schwichtenberg [1991]. The morphisms are needed in our work as part of the

framework for dealing with fresh variable generation and to avoid variable name

clashes. Berger et al. assume the existence of a function “gensym” for generat-

ing fresh names, whereas we use de Bruijn indices, well-typed and well-scoped

contexts, and context morphisms to handle weakening.

The approach taken by Dybjer and Filinski [2000] solves the problem of name

generation in a very similar way to our own approach, though their formalisation

is not implemented in type theory and thus they leave implicit a number of issues

that we must deal with explicitly (e.g. weakening). They define evaluation and

reification with respect to a family of terms indexed on the set of variable names.

133 CHAPTER 5. A SEMANTIC MODEL OF FHM

This is the same idea as indexing terms on the context as in our formalisation.

Reification

If the model represents the denotation of HJK then the interpreter defined in

the previous subsection provides half of the correspondence between the two;

the model is sound as all well-typed programs can be represented in the model.

Thus, all that remains is to give the remaining half of the correspondence; the

model is complete as each object of the model is associated with a well-typed

program (specifically, a normal form). This mapping is often called reification

and is manifested by a function taking objects of the model back to terms, or

in our case, normal forms. The connotations of the terminology are intentional:

the model is a very abstract representation of the language and reification aims

to make this representation more concrete.

Reification is type directed and compositional. Reification is simply the

identity at base types as they are mapped to normal forms in the model. As

reification is responsible for η-expansion, it is not surprising that no operations

are performed on types that are intentionally left uninterpreted.

We also define the reflect functions, which are the conceptual dual of reifica-

tion. Reflection takes neutral terms to values, and as we shall see shortly, they

will be used to construct values from variable indices of arbitrary types.

reifyS : (σ : SType) → SVal Γ Φ σ → SNrm Γ Φ σ

reifyS unit n = n

reifyS num n = n

reifyS (σ1 × σ2) (a, b) = pair (reifyS σ1 a) (reifyS σ2 b)

reflectS : (σ : SType) → SNeu Γ Φ σ → SVal Γ Φ σ

reflectS unit n = neu unit n

reflectS num n = neu num n

reflectS (σ1 × σ2) n = (reflectS σ1 (fst n)), (reflectS σ2 (snd n))

Signal-level products are the only interesting case at the signal level with the

CHAPTER 5. A SEMANTIC MODEL OF FHM 134

usual η-expansion rule for products being used to expand values. We follow the

same discipline at the functional level, using the η-rules for function spaces and

signal relations to build normal forms. Notice that our context morphisms are

finally of use, allowing the application of function values to occur in a weakened

context when η-expanding.

reify : (τ : Type) → Val Γ τ → Nrm Γ τ

reify num n = n

reify (τ1 → τ2) n = lam (reify τ2 (n wkn (reflect τ1 (var vz))))

reify (sr σ) n = sigrel (n id (reflectS σ (var vz)))

reflect : (τ : Type) → Neu Γ τ → Val Γ τ

reflect num n = neu num n

reflect (τ1 → τ2) n = λ γ x → reflect τ2 (app (wknNeu γ n) (reify τ1 x))

reflect (sr σ) n = λ γ x → wknNeu γ n ⋄ reifyS σ x

All that remains is to put together the pieces to produce the full normal-

isation procedure. The symbol idEnv denotes the identity environment, which

maps variables back to themselves.

nbe : Tm Γ τ → Tm Γ τ

nbe t = embNrm (reify (J t K idEnv))

5.3 Correctness and Other Properties

Metatheoretical results are often a driving force in programming language form-

alisation. Demonstrating that a language and its semantics are well-behaved

allows the user to safely reason about programs. Type systems are a prolific

approach to specifying what it means for a program to be correct, and in con-

junction with a formal semantics, provide a tractable method for proving the

absence of certain program behaviours, and show that these proofs are consist-

ent with evaluation.

135 CHAPTER 5. A SEMANTIC MODEL OF FHM

In this section a number of desirable properties inherent to the formalisation

of HJK are discussed. A large portion of the section, and a major contribution

of this chapter, is dedicated to demonstrating how the types used in the form-

alisation can be refined to help prove normalisation, a key correctness theorem.

5.3.1 Correct by Construction

An important property of the formalisation is termination and totality. It is

guaranteed that normalisation will terminate for all input terms. The iteration

of normalisation steps is also guaranteed to be productive. In both instances,

these properties are provided by Agda’s support for automatic termination and

productivity checking. Taken together, one can state that while a program may

be simulated indefinitely (which may well be the intended behaviour, e.g. mod-

elling Brownian motion with events occurring at particle collisions to compute

new trajectories), the process never gets stuck attempting to compute a new

generation of equations during simulation.

The normalisation procedure is guaranteed to produce canonical normal

forms, which arises by construction as it is impossible to construct a normal

form that violates these properties. Combined with termination, the result

is the strong property that normalisation always finds a normal form for all

input terms. Later in this section we will strengthen this claim by showing the

correctness of normalisation: we prove that a normal form is reached only via

a sequence of zero or more applications of rules from the equational theory.

The type of normalisation (Tm Γ τ → Tm Γ τ) witnesses the fact that the

normalisation procedure is type preserving. Only well-typed terms are accepted

for normalisation (indeed, only well-typed terms may even be constructed), with

the type of each step of normalisation (e.g. reification) enforcing preservation.

Finally, compared to a more direct approach of a shallow embedding, our

approach is relatively efficient. Furthermore, through standard optimisation

techniques, NbE can be made to rival the efficiency of the underlying metalan-

CHAPTER 5. A SEMANTIC MODEL OF FHM 136

guage [Boespflug, 2009]. While the metalanguage currently used is not particu-

larly efficient, one could extract or transcribe the procedure into a more efficient

functional language, such as Haskell.

5.3.2 Convertibility

In Sect. 5.1.4 we discussed what it meant for Normalisation by Evaluation to

be correct. An important component of correctness that is particularly relevant

to our existing metatheoretical properties is theorem 5.3.

nbe t ≃ t (5.3)

Working toward a proof of theorem 5.3 for HJK we are first obliged to specify

the convertibility relations (≃), often called the equational theory, that will be

used to characterise the behaviour of the normalisation function. Rather than

providing the reader with every axiom of all the relations involved – which

would be very tedious and repetitive – we outline only the different types of

rules that are present for each equivalence, giving concrete examples taken from

the relation for functional terms.

Equivalence

All the relations are equivalences : they are reflexive, symmetric, and transitive

(Fig. 5.2). These axioms are not strictly required as they could be derived

from the definition of each relation directly (see Danielsson [2006]). However,

such derivations can be involved and time consuming, and given that we do not

intend to match on a proof of convertibility, it serves just as well to postulate

these additional rules. This is the same approach as taken by Chapman [2009].

137 CHAPTER 5. A SEMANTIC MODEL OF FHM

t ≃ t
(Refl)

t1 ≃ t2

t2 ≃ t1
(Symm)

t1 ≃ t2 t2 ≃ t3

t1 ≃ t3
(Tran)

Figure 5.2: Equivalence rules.

Congruence

The relations are also the obvious congruences. Figure 5.3 gives the congruence

rules for functional terms.

f1 ≃ f2 x1 ≃ x2

app f1 x1 ≃ app f2 x2
(Congapp)

t1 ≃ t2

lam t1 ≃ lam t2
(Conglam)

q1 ≃ q2

sigrel q1 ≃ sigrel q2
(Congsr)

γ1 ≃ γ2 t1 ≃ t2

[γ1] t1 ≃ [γ2] t2
(Cong[])

Figure 5.3: Congruence rules for functional terms.

Substitution Application

Due to the decision to use a calculus of explicit substitutions, the interaction

between terms and substitutions must be given by the equational theory. The

interaction axioms (Fig. 5.4) are inspired by Chapman [2009], and while not

minimal, the axioms turn out to be very convenient for our purposes.

The Iden, Comp, and Proj rules describe how to eliminate an explicit

substitution. The sub family of rules allow a substitution to move under a con-

structor. The rule Sublam is noteworthy as the substitution is both weakened

and extended. The extension by var means that the new variable is substituted

for itself, thus rendering the substitution inert for this newly bound variable.

Similar rules also exist at the signal level for signal-level terms and substi-

tutions. By comparison, in a language of implicit substitutions, the behaviour

of applying a substitution would instead be given by a function.

CHAPTER 5. A SEMANTIC MODEL OF FHM 138

[id] t ≃ t
(Iden)

lam ([γ ◦ wkn ⊲ var] t) ≃ [γ] (lam t)
(Sublam)

[γ1 ◦ γ2] t ≃ [γ2] [γ1] t
(Comp)

sigrel ([γ] q) ≃ [γ] (sigrel q)
(Subsr)

t ≃ [γ ⊲ t] var
(Proj)

app ([γ] f) ([γ] x) ≃ [γ] (app f x)
(Subapp)

Figure 5.4: Substitution interaction rules for functional terms.

Computation

Arguably the most interesting aspect of the equational theory is the set of

computational rules describing the valid β and η conversions (see Fig. 5.5).

Only a handful of the rules express computational behaviour, the remainder of

the rules, of which there are many, are relatively mundane by comparison.

〈 ⊲ s 〉 q ≃ sigrel q ⋄ s
(β-SR)

[id ⊲ t1] t2 ≃ app (lam t2) t1
(β-Lam)

sigrel (t ⋄ svar) ≃ t
(η-SR)

lam (app ([wkn] t) var) ≃ t
(η-Lam)

s1 ≃ fst (pair s1 s2)
(β-Fst)

s2 ≃ snd (pair s1 s2)
(β-Snd)

pair (fst s) (snd s) ≃ s
(η-Prod)

Figure 5.5: Computation rules.

Substitution Equivalence

Finally, a number of equations are given to describe the equivalence of substi-

tutions (Fig. 5.6). The Assoc, IdL, and IdR rules are the normal categorical

laws of associativity, left identity, and right identity, respectively. Wkn, Shift,

and ExtId are a number of convenient rules for manipulating substitutions.

Shift is particularly interesting as it allows us to commute extension (⊲) across

composition (◦). As before, a similar set of rules exist for the signal level.

Agda is currently much more successful at unifying indices if they are in a

139 CHAPTER 5. A SEMANTIC MODEL OF FHM

(γ1 ⊲ t) ◦ γ2 ≃ γ1 ◦ γ2 ⊲ [γ2] t
(Shift)

wkn ◦ (γ ⊲ t) ≃ γ
(Wkn)

γ1 ◦ (γ2 ◦ γ3) ≃ (γ1 ◦ γ2) ◦ γ3
(Assoc)

id ◦ γ ≃ γ
(IdL)

id ≃ (id ◦ wkn) ⊲ var
(ExtId)

γ ◦ id ≃ γ
(IdR)

Figure 5.6: Substitution rules.

constructor-headed form (i.e. syntax directed). Thanks to the use of explicit

substitutions, all of the rules in the equational theory are syntax directed making

them much easier to work with in Agda.

5.3.3 Indexing and Reindexing

The principal idea behind the normalisation proof is to use a technique due

to Danielsson [2006] that refines the types of normal forms and values. The

technique involves adding a term index to said types with the invariant that

the types be “equationally related” to the index. A reindexing operation allows

the index term of a value or normal form to be changed provided that the new

term index is convertible to the previous. A proof of convertibility is stored as

a witness to this requirement. Thus, as normalisation proceeds it is required to

reindex values and normal forms each time a rule of the equational theory is

applied. In effect, the normalisation of each term is associated with a proof tree

that demonstrates how the input term can be converted to the output term.

The indexed variants of Nrm and Neu are given below to demonstrate the

technique. The indexing of normal forms is very regular and predictable. At

this point, the reader can refer back to Sect. 5.2.2 for a comparison with the

original definitions. The indexing is mostly structural; the cases for lit, lam,

neu, sigrel, and app simply wrap up their argument indices with the appropriate

constructor. Variables (var) use embVar to embed the given variable into a term.

data Nrm : Tm Γ τ → Set where

CHAPTER 5. A SEMANTIC MODEL OF FHM 140

lit : Nrm lit

lam : Nrm t → Nrm (lam t)

sigrel : QNrm q → Nrm (sigrel q)

neu : Base τ → Neu t → Nrm t

:: : t1 ≃ t2 → Nrm t1 → Nrm t2

data Neu : Tm Γ τ → Set where

var : (v : Var Γ τ) → Neu (embVar v)

app : Neu t1 → Nrm t2 → Neu (app t1 t2)

:: : t1 ≃ t2 → Neu t1 → Neu t2

The new constructor :: has also been added to both datatypes, allowing the

index of a normal form to be cast to another term, provided that the new index

and old index are convertible. Another perspective on the new index is to treat

normal forms as a view of terms constructed using nbe. Thus, a normal form

is a canonical view of a term, which may be cast to represent the view of any

other convertible term.

With the indexed variant of normal forms in hand, the modification to values

(Val) to include a term index is possible. For base types, a value is a canonical

view of the term. For function spaces and signal relations, the context morphism

is used to weaken the indexing term before it is applied. Values for signals,

equations, and events are also modified in a similar manner.

Val : Tm Γ τ → Set

Val {num} t = Nrm t

Val {sr σ} t = (γ : Γ ⊑ ∆) → SVal s → QVal (wknTm γ t ⋄ s)

Val {σ → τ } f = (γ : Γ ⊑ ∆) → Val x → Val (app (wknTm γ f) x)

Just as a cast constructor (::) is required to reindex a normal form, a cast

function can be derived for values. The cast function is defined using the same

approach as values by discriminating against the type of the indexing term.

The next step is to define an indexed model. A crucial component of the

model are the environments. The functional and signal environments are re-

141 CHAPTER 5. A SEMANTIC MODEL OF FHM

defined with substitution and signal-level substitution indices, respectively. The

choice of a substitution index is motivated by the need to keep track of the re-

lationship between the two indexing contexts.

data Env : ∆ ⇒ Γ → Set where

◦ : Env empty

⊲ : Env γ → Val t → Env (γ ⊲ t)

:: : γ1 ≃ γ2 → Env γ1 → Env γ2

The refined model is given below. The family of functions swknFoo weaken

the signal context of the type Foo, where Foo ∈ {QTm, STm, Switch}. For ex-

ample, the signature defined by SModel should be read: given an environment

indexed on a substitution γ and a signal environment indexed on a signal sub-

stitution φ, construct a signal value indexed on the input signal term s , but

first weaken s by γ and then φ. The choice of weakening order is arbitrary, it

would have worked equally well to first weaken by the signal substitution.

Model : Tm Γ τ → Set

Model t = Env γ → Val (wknTm γ t)

QModel : QTm Γ Φ → Set

QModel q = Env γ → SEnv φ

→ QNrm (swknQTm φ (wknQTm γ q))

SModel : STm Γ Φ σ → Set

SModel s = Env γ → SEnv φ

→ SVal (swknSTm φ (wknSTm γ s))

SwModel : Switch Γ Φ → Set

SwModel sw = Env γ → SEnv φ

→ SwNrm (swknSwTm φ (wknSwTm γ sw))

It is worth recognising that the representations of normal forms, values,

and the model have not fundamentally changed. While it is the case that the

CHAPTER 5. A SEMANTIC MODEL OF FHM 142

representations are no longer isomorphic up to propositional equality, they are

still equivalent in the sense that one can freely discard all cast constructors.

It is also worth mentioning that both wknFoo and swknFoo trivially unfold

to constructor headed terms. This is another instance where the choice to use

explicit substitutions has paid off by creating constructor-headed indices.

As a number of type definitions have been refined, it remains to refine the

functions that depend on these types. The primary concerns are, of course,

reification and interpretation. All that needs to be done is to insert casts at

appropriate locations (e.g. where reduction is being performed). Only a few

equations are included to demonstrate the idea of inserting casts, for a compre-

hensive list of all changes, consult the accompanying material.

J K : (t : Tm Γ τ) → Model t

J lam t K e = λ γ v → ... βlam ... :: J t K (wknEnv γ e ⊲ v)

J ... K e = ...

reifyS : (σ : SType) → SVal t → SNrm t

reifyS (σ1 × σ2) (s1, s2) = ηprod :: reifyS s1, reifyS s2

reifyS ... n = ...

Modulo the cast constructors, the implementation of the indexed version is

no different from the original implementation. The ... stands for uninteresting

code. For example, the case for interpretation of lam states that there is a

proof of convertibility involving the βlam rule. For signal reification, the case

for products is converted simply by using the ηprod rule.

5.3.4 Embeddings

Our attention is now turned to the task of using the indices to derive the nor-

malisation proof. This turns out to be quite straightforward. While one might

argue that the modifications to include complex indices in the previous section

complicate the presentation somewhat, the power they give to concisely present

a proof of normalisation becomes clear in the following section. A more detailed

143 CHAPTER 5. A SEMANTIC MODEL OF FHM

comparison of the of merits of verification versus correctness by construction are

discussed at the end of this section.

The most direct route to a proof is to show that the family of embedding

functions (embFoo) from normal forms to terms respects convertibility. As a

working example, the embedding from Nrm to Tm is given below.

embNrm : Nrm t → Tm Γ τ

embNrm lit = lit

embNrm (lam t) = lam (embNrm t)

embNrm (sigrel q) = sigrel (embQNrm q)

embNrm (neu b t) = embNeu t

embNrm (p :: n) = embNrm n

The proof below states that the embedding of a normal form into a term is

convertible to the index of the normal form. At base types, the proof is reflexiv-

ity. For other constructors, the appropriate congruence rules and recursive calls

are used. The cast constructor requires the use of transitivity. This pattern is

the same for all of the embedding proofs.

embNrmResp : {t : Tm Γ τ } → (n : Nrm t) → embNrm n ≃ t

embNrmResp lit = refl

embNrmResp (lam t) = congLam (embNrmResp t)

embNrmResp (neu b n) = embNeuResp n

embNrmResp (sigrel q) = congSr (embQNrmResp q)

embNrmResp (p :: n) = trans (embNrmResp n) p

The above proof is true due to the invariant we have established for Nrm.

Specifically, an element of Nrm t represents a normal form that is convertible

to the term t . As our convertibility relation (≃) acts on terms, the proof

embNrmResp simply states that embNrm respects convertibility.

5.3.5 Proof of Normalisation

Finally, the main normalisation theorem can be shown. The proof is construct-

ive and does not depend on any postulates. Thus, if so inclined, one can execute

CHAPTER 5. A SEMANTIC MODEL OF FHM 144

the proof to compute the witness that a term is convertible to its normal form.

normProof : (t : Tm Γ τ) → nbe t ≃ t

normProof t = trans (embNrm (nbe t)) idL

As an example, consider the definitions of the S and K combinators given

below, v2 and v3 define abbreviations for the second and third most recently

bound variables, respectively.

v2 : Tm (Γ ⊲ τ1 ⊲ τ2) τ1

v2 = [wkn] var

v3 : Tm (Γ ⊲ τ1 ⊲ τ2 ⊲ τ3) τ1

v3 = [wkn ◦ wkn] var

K : Tm Γ (τ1 → τ2 → τ1)

K = lam (lam v2)

S : Tm Γ ((τ1 → τ2 → τ3) → (τ1 → τ2) → τ1 → τ3)

S = lam (lam (lam (app (app v3 var) (app v2 var))))

The identity combinator can be derived from S and K as demonstrated

below. However, more importantly, using normProof we can also compute the

proof tree that explains how app (app S K) K ≃ lam var. Inspecting the tree

also reveals the computational rules that justify each step of reduction.

> nbe (app (app S K) K)

lam var

> normProof (app (app S K) K)

trans (trans (congLam ...) idL

In Sect. 5.1.4, a number of corollaries of the main theorems are discussed. It

is easy to express these corollaries in our formalisation. In particular,≃-idem-nbe

states that nbe is idempotent, which follows immediately from normProof. Nor-

malisation is congruent with respect to convertibility, which is demonstrated us-

ing simple equational reasoning by ≃-cong-nbe. The inverse can also be shown

145 CHAPTER 5. A SEMANTIC MODEL OF FHM

that nbe is injective with respect to convertibility, shown by ≃-inj-nbe, once

again via equational reasoning. Finally, by ascertaining that ≡ ⇒ ≃, it is

trivial to derive ≡-inj-nbe from ≃-inj-nbe.

≃-idem-nbe : ∀ t → nbe (nbe t) ≃ nbe t

≃-cong-nbe : ∀ t u → u ≃ t → nbe u ≃ nbe t

≃-inj-nbe : ∀ t u → nbe u ≃ nbe t → u ≃ t

≡-inj-nbe : ∀ t u → nbe u ≡ nbe t → u ≃ t

5.3.6 Approaches to Mechanised Theorem Proving

We have shown a proof of normalisation by encoding the necessary invariants

directly into the structure of terms. Of course, the proof method used in this

section is not the only possible approach. A more conventional approach would

be to prove correctness “directly” from the unindexed representation. This

approach separates the representation from the properties and involves verifying

the desired properties after the data has been constructed. In many situations,

this separation can cause difficulties as the representation and the properties

are often needed together anyway. Moreover, to show that a property holds

for a subterm one typically needs to decompose the property to prove further

lemmas about the term. Of course, the proof method we have chosen is not

without its disadvantages. Notably, the representations become less reusable,

and the additional indices make the formulation more complicated. However, as

Danielsson has demonstrated, the chosen method is effective and can scale up

to very expressive type theories (i.e. dependent types). Furthermore, the types

of our functions also become somewhat more accurate: interpretation takes a

term t and constructs a model of (indexed on) t .

A correct-by-construction approach may appear to have a big impact on

the way something is formalised, to extend that aspects pertaining to the proof

obscure the data. However, we argue that for our proof the fundamental idea is

quite simple: we “remember” the term we started with by explicitly recording

CHAPTER 5. A SEMANTIC MODEL OF FHM 146

the equational laws used in each step. It is then very easy to extract this log

of steps to produce a proof. Thus, while the additional indices may sometimes

obscure the data, their introduction is quite straightforward and is a mostly

mechanical process. One should also remember that verification is not without

its complexities; for example, verifying lemmas relating to substitution and

binding can be an intricate task.

There are advantages and disadvantages to both approaches. Verification is

notionally simpler from first principles as only a simple representation of terms

is needed. Properties and invariants can then be established incrementally on

top of this foundation. However, as these properties are not inherent to the

structure of a term they often need to be passed around explicitly as premises.

Finally, there is no need to assume that these two approaches must be mutu-

ally exclusive. A simple representation can usually be recovered from an indexed

variant using an erasure function. In many cases, there is also a mapping from

a simple datatype to an indexed variant that constructs indices from the veri-

fication function (i.e. (a : Simple) → NotSoSimple (verify a)). Moreover,

recent work on aspect-oriented programming and ornaments [Mcbride, 2011]

may provide a means to further integrate these two different approaches.

5.4 A Model of Dynamism

Structural dynamism — the temporal composition of components — has shown

to be very useful in practice. The generality and flexibility of the approach to

dynamism taken in Hydra sets it apart from the current industry state-of-the-

art. Hydra makes it easy to express structural changes, allowing a very large,

or possibly even unbounded set of structural configurations to be specified.

The dynamism in HJK is restricted slightly in that the number of configura-

tions is always bounded. This is due to the lack of recursion in the functional

host language. We decided to disallow recursively defined functions as their in-

clusion significantly complicates the formalisation. The focus of the semantics,

147 CHAPTER 5. A SEMANTIC MODEL OF FHM

and this thesis, should be on the aspects that are new and relatively unexplored.

Nevertheless, we believe that recursion is compatible with our formalisation and

would make for interesting work worth pursuing in the future.

A core tenet of the semantics described thus far has been compositionality;

the meaning of a term is given entirely by the meaning of its subterms. We

continue to abide by this tenet in this section, phrasing dynamism in a manner

that is compatible with compositionality. Of course, our approach is not the

only possible approach. Indeed, the syntax does not completely fix the pos-

sible interpretations of a term, and thus, our semantics is not the only possible

meaning for a structurally dynamic term. We will discuss each design decision

on an individual basis when presenting the implementation.

5.4.1 Shapes and Deformations

The dynamism semantics are based on two principles: shapes and deformations.

A flattened system of equations describes a rose tree structure: the data at

the nodes and leaves are equation system fragments, and the tree branching

corresponds to the branches of a switch block. It is the structure of these trees

that is captured by a shape. In other words, a shape describes the tree of

possible structural configurations, in a manner not all that dissimilar to the

graph of configurations described by a hybrid automata.

In our formalisation we define shapes inductively, resulting in a finite tree.

In a setting with recursively defined configurations, shapes would be described

coinductively, allowing branches of infinite depth, though remaining finitely

branching. The shape tree is derived directly from the syntax of a flattened

system of equations, leaving few design choices to be made at this point.

data QShape : Set where

end : QShape

∧ : QShape → QShape → QShape

switch : Fin n → SwShape n → QShape

CHAPTER 5. A SEMANTIC MODEL OF FHM 148

The node and leaf data, which represents equation system fragments, is

given by QShape. This shape retains the inherent tree structure of equations

due to the ∧ constructor. Thus, we are in fact defining a pair of mutually

defined trees. The end constructor denotes leaf equations that cannot result in

structural reconfiguration, such as an empty or atomic equation. The switch

constructor describes the shape of switching blocks. Even in a coinductive

setting the number of branches is finite, allowing the currently active branch to

be identified by the argument of type Fin.

data SwShape : N → Set where

[] : SwShape 0

branch : QShape → SwShape n → SwShape (1 + n)

The shape of a switch block, like the term counterpart, is indexed on a

natural number that fixes the number of branches. Notice that the recurrence

of the N index in each representation of switching blocks allows us to once again

verify that the number of branches remains unchanged during a transformation.

The constructors of SwShape reflect those of Switch, defining a finite vector

of equation shapes with one shape for each branch of the switch.

Shapes are useful as they provide an abstract representation of the structure

of an equation. A change in structure can now be represented as a manipulation

of an equation’s shape. Of course, not all manipulations are valid. Indeed, the

validity of a manipulation depends on the desired semantics of switching. We

classify the valid manipulations using a datatype of deformations, thereby fixing

the semantics of switching. An alternative semantics (e.g. allowing more than

one branch to be active at a time) could be achieved by considering a different

set of deformations. While we do not investigate alternatives in this thesis, we

discuss the choice of deformations and how they impact upon the semantics.

The deformation of an equation or switch is expressed as a binary relation

on shapes. An equation with shape h1 can be structurally reconfigured to an

equation with shape h2 if there exists a deformation from h1 to h2. Thus, de-

149 CHAPTER 5. A SEMANTIC MODEL OF FHM

formations are a sufficient condition for switching. However, they are not a

necessary condition as there exist manipulations that are not meaningful (e.g.

eliminating the second component of a ∧). Indeed, it is exactly the manipula-

tions without meaning that we wish to exclude. Hence, a deformation is a model

of switching and its interpretation provides a semantics and implementation for

structural dynamism in HJK.

data QDeform : QShape → QShape → Set where

end : QDeform end end

new : (x y : Fin n) → x 6≡ y

→ QDeform (switch x w) (switch y w)

∧ : QDeform h1 h3 → QDeform h2 h4

→ QDeform (h1 ∧ h2) (h3 ∧ h4)

switch : (x : Fin n) → SwDeform (toN x) h1 h2

→ QDeform (switch x w1) (switch x w2)

The QDeform datatype provides four ways to build an equation deformation.

The switch and ∧ constructors allow us to move through an equation without

disturbing the structure. They effectively serve as congruence rules, allowing

a deformation to be applied deep within a shape. The switch constructor also

retains knowledge of the currently active branch, and passes this information

onto SwDeform in the form of an additional index x . This is to ensure that only

the active branch can be manipulated.

The end deformation insists that a leaf shape must be mapped back to

another leaf shape. As no other constructors target end, we can be sure that

leaf equations are not manipulated accidentally.

If a deformation is to have any effect it must eventually change the active

branch of a switch. Switching from the x th branch to the yth branch is indicated

by the constructor new x y p, where p is a proof that x and y are not equal. The

proof is not strictly required as it will not be used to interpret the deformation.

However, the proof prevents new from “switching” from a branch back to itself,

an operation that does not make sense from a discrete event standpoint.

CHAPTER 5. A SEMANTIC MODEL OF FHM 150

data SwDeform (x : N) : SwShape n → SwShape n → Set where

[] : SwDeform x [] []

skip : SwDeform x w1 w2 → SwDeform x (branch h w1) (branch h w2)

do : x ≡ n → QDeform h1 h2

→ SwDeform x (branch h1 w) (branch h2 w)

The SwDeform datatype dictates how the branches of a switching block can

be deformed. The main purpose of the datatype is to ensure that only the

active branch can be manipulated. This is achieved through the do and skip

constructors, which allow a branch to be either deformed or left untouched,

respectively. Any branch may be skipped, including the active branch, allowing

a switch deformation to have no effect. Only the active branch can be deformed

thanks to the equality proof in do.

Notice that do does not require an inductive deformation argument on the

remaining branches of the shape w as there should only be one active branch

at a time, and thus, deformations of any other branches are disallowed.

Furthermore, newly activated branches cannot themselves be deformed. A

branch that is inactive when an event is raised cannot simultaneously raise an

event as none of its switching conditions would be “live” at this point.

Before moving on to the meaning of a deformation, we take a brief detour to

spell out the details of computing a shape from a flattened equation, as realised

by the maps shapeQ and shapeSw. These maps perform the expected operations,

extracting the abstract structure of an equation as characterised by a shape.

shapeQ : QNrm ◦ Φ → QShape

shapeQ empty = end

shapeQ (s1 = s2) = end

shapeQ (q1 ∧ q2) = shapeQ q1 ∧ shapeQ q2

shapeQ (switch x q) = switch x (shapeSw q)

Recall that a flat system of equations necessarily contains no functional

variables, hence the empty context (◦) can be used for the arguments to shapeQ

151 CHAPTER 5. A SEMANTIC MODEL OF FHM

and shapeSw. Working on functionally-closed terms means that we can safely

ignore the case for ⋄ as all signal relation applications have been eliminated.

shapeSw : SwNrm ◦ Φ n → SwShape n

shapeSw [] = []

shapeSw (branch sw s q) = branch (shapeQ q) (shapeSw sw)

5.4.2 Oracles and Interpretation

As we have opted to parameterise our system on the continuous behaviour it

is not immediately clear how the concepts of flat equations, simulation runtime

events, and deformations are related. Our solution is to introduce an abstract

oracle that can compute a deformation from a flat system of equations:

postulate oracle : (q : QNrm ◦ (sr unit))

→ ∃ (h : QShape) (QDeform (shapeQ q) h)

Reading the type of oracle we see that it accepts a flat system of equations

q with the type of a top-level signal relation definition. It claims that there

exists a shape h into which the shape of q can be deformed. In more con-

crete terms, oracle represents our simulation or “solving” function. Simulation

runtime events are translated into deformations, for example, triggering the

switching condition of an inactive branch corresponds to the new deformation.

It is then a simple matter to construct a full deformation tree in a bottom-up

manner that represents the discrete event. Thus, oracle is an abstraction over

the continuous semantics in our formalisation, allowing us to explicitly state the

potentially infinite iteration of flattening and runtime events.

Before presenting the interpreter for deformations it is useful to define QNrmSh

and SwNrmSh that represent shaped equations : flat equations indexed by their

shape. These datatypes represent a new view of shapes: a shape h is viewed as

the set of equations qs where ∀ q : qs . shapeQ q = h. Once again it is safe to

omit the ⋄ constructor as all usages have been eliminated.

CHAPTER 5. A SEMANTIC MODEL OF FHM 152

data QNrmSh (Φ : SCtx) : QShape → Set where

empty : QNrmSh Φ end

∧ : QNrmSh Φ h1 → QNrmSh Φ h2 → QNrmSh Φ (h1 ∧ h2)

= : SNrm ◦ Φ σ → SNrm ◦ Φ σ → QNrmSh Φ end

switch : (x : Fin n) → SwNrmSh Φ n h → QNrmSh Φ (switch x h)

data SwNrmSh (Φ : SCtx) : (n : N) → SwShape n → Set where

[] : SwNrmSh Φ 0 []

branch : SwNrmSh Φ n h2 → SNrm ◦ Φ num

→ QNrmSh Φ h1 → SwNrmSh Φ (1 + n) (branch h1 h2)

Finally, the meaning of a deformation is given by a function on shaped

equations. The benefit of using shaped equations is evident in the type of

J KQD. The interpreter is defined by matching first on the deformation and

then on the shaped equation. Leaf equations should not been manipulated,

hence, the case for end is just the identity. The interpretation of ∧ and switch

is structural, simply applying the interpretation recursively. In the case of new,

the argument indicating the active branch is updated.

J KQD : QDeform h1 h2 → (QNrmSh Φ h1 → QNrmSh Φ h2)

J end KQD q = q

J d1 ∧ d2 KQD (q1 ∧ q2) = J d1 KQD q1 ∧ J d2 KQD h2

J switch x wd KQD (switch .x sw) = switch x (J wd KSwD sw)

J new x y KQD (switch .y sw) = switch y sw

A switch deformation is interpreted by stepping through the branches of a

switch in search of the active branch. If skip is encountered then we move on

to the next branch. If [] is encountered, then all branches (including the active

branch) have been skipped, implying that the switch deformation has no effect.

If do is encountered then we have reached the active branch and the stored

deformation can be interpreted using the equation at this branch.

J KSwD : SwDeform x h1 h2 → (SwNrmSh Φ n h1 → SwNrmSh Φ n h2)

J [] KSwD [] = []

153 CHAPTER 5. A SEMANTIC MODEL OF FHM

J skip wd KSwD (branch sw s eq) = branch (J wd KSwD sw) s eq

J do d KSwD (branch sw s eq) = branch sw s (J d KQD eq)

For the interpreters to be of any use we must be able to convert freely

between shaped and unshaped equations, that is, between QNrm and QNrmSh.

The maps Q+Shape and Sw+Shape provide a means to embellish equations

and switches with their shape information. Equally, the maps Q-Shape and

Sw-Shape let us erase all shape information.

Q+Shape : (q : QNrm ◦ Φ) → QNrmSh Φ (shapeQ q)

Sw+Shape : (sw : SwNrm ◦ Φ n) → SwNrmSh Φ n (shapeSw sw)

Q-Shape : QNrmSh Φ h → QNrm ◦ Φ

Sw-Shape : SwNrmSh Φ n h → SwNrm ◦ Φ n

As a coherence condition we show that QNrm is a retract of QNrmSh, and

similarly that SwNrm is a retract of SwNrmSh. The proofs retractQ and retractSw,

which can be shown by induction on the input term, provide evidence that the

aforementioned conversion functions are well-behaved, and that the round-trip

does not alter the structure of the equation or switch.

retractQ : (q : QNrm ◦ Φ) → Q-Shape (Q+Shape q) ≡ q

retractSw : (sw : SwNrm ◦ Φ n) → Sw-Shape (Sw+Shape sw) ≡ sw

5.4.3 Metatheoretical Properties

In general, we cannot prove that an arbitrary equation system has a solution.

Thus, given an initial set of equations, it is not possible to decide which switching

condition, if any, will become active first. Even with a concrete oracle, we would

not necessarily be able to relate the input equations (and switching conditions)

to the output of our interpretation function. That is, we cannot show that

the flat system of equations to be simulated will fire an event that corresponds

to the deformation generated by oracle, and that ultimately, the resulting new

generation of equations is related to the previous generation.

CHAPTER 5. A SEMANTIC MODEL OF FHM 154

However, even though our formulation is parameterised on the continuous

semantics , there are still some desirable properties of the interpreter that can be

shown. The proofs identityQD and identitySwD show that interpreting an identity

deformation produces the identity function. A similar theorem for composi-

tion cannot be shown as deformations are necessarily non-compositional. If

a deformation could be composed then invariants of the datatype would not

hold. For example, a new branch of a switch could be activated and then be

immediately deformed.

identityQD : (q : QNrmSh Φ h) → (d : QDeform h h)

→ J d KQD q ≡ q

identitySwD : (sw : SwNrmSh Φ n h) → (wd : SwDeform b h h)

→ J wd KSwD sw ≡ sw

5.5 Extensions

In this section we discuss a number of extensions to the HJK core language.

There are many ways that the core language could be extended, but we choose

to focus on those that we believe are of particular importance: local signal

variables and delayed evaluation of inactive switch branches. The former is

more of a necessity than extension, which we have deferred until now due to the

added complexity local variables bring to the implementation and semantics.

Each extension is implemented on top of the base core language as seen

at the end of Sect. 5.2.1, keeping the presentation of each extension relatively

simple. However, for the most part, the extensions are not in conflict with one

another and could be implemented together.

Chapter 7 discusses avenues of future work, including further extensions

to the HJK core language. Notable extensions include recursively-defined signal

relations, modelling connections à la. Broman and Nilsson [2012], and initialisa-

tion of dynamic models. We hope that our implementation of HJK will provide

155 CHAPTER 5. A SEMANTIC MODEL OF FHM

a suitable framework to continue to explore the denotations and design space

for cutting-edge equation-based modelling languages.

5.5.1 Local Signal Variables

Local signal variables had a profound impact on the small-step semantics of the

balance type system in Sect. 4. It should come as no surprise then that local

signal variables also present an interesting problem for our denotation model.

The key issue is that local variables do not behave in a conventional man-

ner. Rather than serving as a token that is abstracted over and later substituted

away, local variables instead represent the degrees of freedom in a set of equa-

tions. As reduction proceeds, local variables are accumulated in a bottom-up

fashion. Thus, a fully-evaluated top-level signal relation will declare the local

variables (via local) for the entire system of equations.

If we wish to verify that local variables are only ever used in a well-typed

and well-scoped manner, then the process of accumulation becomes problematic.

For λ-bound and interface signal variables, a context tracks the type of each

variable. A variable can then only be used if it points to a valid position in

the context. If we wish to apply this same technique to local variables, then

the local variable context would need to be weakened as new local variables

are discovered during reduction. The process of weakening is not in itself a

problem: after all we have already designed a flexible notion of weakening using

substitutions. The problems arise when determining what the new weakened

context should be. The type of a signal relation (i.e. sr σ) gives no clues as

to the set of local variables contained within. The set of local variables for a

flattened equation cannot simply be determined prior to evaluation.

At this point one might be tempted to suggest that information about local

variables could be stored in the type of a signal relation (in the same manner

as the interface variables). However, that would be an abstraction leak: when

writing functions over equation fragments one should not be concerned with the

CHAPTER 5. A SEMANTIC MODEL OF FHM 156

local variables; an operation on equations should work for any fragment with a

compatible interface, regardless of its internal details.

A solution to our problem is hinted at by the small-step semantics for the

balance type system (see Fig. 4.5). To derive an algorithm from the semantics

one might create a function taking an equation as input and producing a pair of

a set of local variables and a flattened equation. By the same logic, our model

of equations becomes a dependent product of a local variable context and a flat

equation in that context.

Contexts, Terms, and Normal Forms

The structure of the local variable context is very similar to that of the functional

context: a list of (signal) types. We generalise the existing notion of a context to

allow both local and functional contexts to be derived from the same definition.

data GenCtx (A : Set) : Set where

◦ : GenCtx A

⊲ : GenCtx A → A → GenCtx A

Ctx, LCtx : Set

Ctx = GenCtx Type

LCtx = GenCtx SType

Many of the original definitions involving context, such as variable indices,

can also be generalised in the same way. Additionally, we define concatenation of

context, which will be useful when describing the accumulation of local variables.

++ : GenCtx A → GenCtx A → GenCtx A

◦ ++ D = D

(C ⊲ a) ++ D = C ++ D ⊲ a

For the most part, the definition of the language remains unchanged, with

the largest alterations appearing in the model, and by extension, the interpreter.

The notable exception being the representation of local variables (lvar), which

157 CHAPTER 5. A SEMANTIC MODEL OF FHM

in conjunction with an additional LCtx index gives an honest representation

of a local variable by replacing the anonymous tokens used in the base core

language.

data STm (Γ : Ctx) (Φ : SCtx) : LCtx → SType → Set where

svar : STm Γ (⊲ σ) Λ σ

lvar : Var Λ σ → STm Γ Φ Λ σ

Just as in H∆, the local variables of an equation are bound by the enclosing

signal relation by an additional parameter Λ to sigrel.

data Tm : Ctx → Type → Set where

sigrel : (Λ : LCtx) → QTm Γ (⊲ σ) Λ → Tm Γ (sr σ)

By the same reasoning that requires QTm and Switch to carry an index

Φ, they are also required to carry the local variable context LCtx as an index.

Similar alterations are also made to the normal forms, which are omitted here.

For a full code listing consult the accompanying resources.

data QTm (Γ : Ctx) (Φ : SCtx) (Λ : LCtx) : Set

data Switch (Γ : Ctx) (Φ : SCtx) (Λ : LCtx) : N → Set

Objects of the Model

There are many ways to express the weakening of a variable. In the base core

language we specialised a notion of replacements as this worked well with other

aspects of the language, such as closures. This same notion of weakening could

be reused for local variables, though it would require replacements to be further

generalised away from Type. Moreover, we will never need to substitute a local

variable, and thus the extension replacement (⊲) is redundant.

A simpler option that suffices for our purposes is to define local context

weakening as a function on variables, as given by ⊆.

⊆ : LCtx → LCtx → Set

Λ ⊆ K = Var Λ τ → Var K τ

CHAPTER 5. A SEMANTIC MODEL OF FHM 158

A function space provides us with the usual identity (⊆-refl) and composition

rules (⊆-trans), which give rise to the useful implication ≡ ⇒ ⊆. Using

concatenation, a more general version of wkn can also be derived (⊆-wkn).

⊆-refl : Λ ⊆ Λ

⊆-trans : Λ ⊆ K → K ⊆ J → Λ ⊆ J

⊆-wkn : Λ ⊆ (Λ ++ K)

≡-implies-⊆ : Λ ≡ K → Λ ⊆ K

Just as before with the functional-level weakening, we can characterise what

it means to weaken the local variable context of a LCtx-indexed set. The family

of functions wknFooΛ descend through the structure of a term applying the

weakening to each local variable.

WeakenΛ : (LCtx → Set) → Set

WeakenΛ T = Λ ⊆ K → T Λ → T K

wknQNrmΛ : WeakenΛ (QNrm Γ ∆ ·)

wknSNrmΛ : WeakenΛ (SNrm Γ ∆ · σ)

wknSValΛ : WeakenΛ (SVal Γ ∆ · σ)

We have now reached what is arguably the most important aspect of the

extension: modifying Val and Model. These definitions are the semantic model

of the core language and so we must be mindful when modifying them as even

a small change might have a profound impact on the rest of the formalisation.

With this in mind, the changes we make to the Val family of definitions are

modest. The changes reflect the comments made at the start of the section:

the meaning of a value in isolation (i.e. not yet in context with a corresponding

environment) is a dependent product (or existential). The product states that

there exists a new local variable context that is used to weaken the “underlying”

value. For equations and switches the underlying values are simply normal

forms. At the signal level, the underlying value is given by the original definition

from the base core language.

159 CHAPTER 5. A SEMANTIC MODEL OF FHM

QVal : Ctx → SCtx → LCtx → Set

QVal Γ Φ Λ = ∃ (K : LCtx) (QNrm Γ Φ (Λ ++ K))

SwVal : Ctx → SCtx → LCtx → N → Set

SwVal Γ Φ Λ n = ∃ (K : LCtx) (SwNrm Γ Φ (Λ ++ K) n)

SValΛ : Ctx → SCtx → LCtx → SType → Set

SValΛ Γ Φ Λ σ = ∃ (K : LCtx) (SVal Γ Φ (Λ ++ K) σ)

Val : Ctx → Type → Set

Val Γ num = Nrm Γ num

Val Γ (τ1 → τ2) = Γ ⊑ ∆ → Val ∆ τ1 → Val ∆ τ2

Val Γ (sr σ) = Γ ⊑ ∆ → SVal ∆ Φ Λ σ → QVal ∆ Φ Λ

We can further reason as to why this definition makes sense by looking

at the example terms t1 and t2 given below. The model of t1 is a function

Γ ⊑ ∆ → SVal ∆ Φ Λ σ → QVal ∆ Φ Λ, where Λ needs to be universally

quantified as the precise context cannot be deduced from the type of t1. Since

the equation q1 may make reference to local variables in Λ1, the return type

QVal ∆ Φ Λ effectively only claims Λ as a lower bound for the context of

local variables in the resulting equation. As the signal expression s in t2 is

restricted to the set of local variables Λ2, the context Λ2 is the lower bound in

the application t1 ⋄ s , which is subsequently extended to the context Λ2 ++ Λ1

due to the existential in QVal.

t1 = sigrel Λ1 q1

t2 = sigrel Λ2 (t1 ⋄ s)

For cohesion with accumulation the definition of SEnv is also updated to

use the new definition of signal values (SValΛ as opposed to SVal). This is

necessary for the sigrel case of the interpreter where signal values will be added

to the environment in a potentially extended local context.

data SEnv (Γ : Ctx) : SCtx → SCtx → LCtx → Set where

CHAPTER 5. A SEMANTIC MODEL OF FHM 160

⊲ : SValΛ Γ Φ Λ τ → SEnv Γ Φ (⊲ τ) Λ

Only minor changes are required to the Model family of definitions to carry

through the recently-included local context indices.

Model : Ctx → Type → Set

Model Γ τ = Env ∆ Γ → Val ∆ τ

QModel : Ctx → SCtx → LCtx → Set

QModel Γ Φ Λ = Env ∆ Γ → SEnv ∆ Ψ Φ Λ → QVal ∆ Ψ Λ

SModel : Ctx → SCtx → LCtx → SType → Set

SModel Γ Φ Λ σ = Env ∆ Γ → SEnv ∆ Ψ Φ Λ → SValΛ ∆ Ψ Λ σ

SwModel : Ctx → SCtx → LCtx → N → Set

SwModel Γ Φ Λ n = Env ∆ Γ → SEnv ∆ Ψ Φ Λ → SwVal ∆ Ψ Λ n

Interpretation

All that remains is to update the interpreter in light of the new model. In most

cases this is a straightforward exercise in propagating local variable contexts

and weakening the returned objects appropriately. We discuss the interesting

cases, particularly those that highlight important aspects of the design.

The interpretation of interface signal variables demonstrates quite succinctly

why SValΛ is needed in SModel. With the exception of the svar case, the inter-

pretation of a signal expression would not need to expand on the initial local

context. However, if we are to use the corresponding value in the signal en-

vironment — the only sensible option — then we must accept that new local

variables may be introduced as a result. Indeed, looking back to our earlier ex-

ample involving t1 and t2, the signal expression s must be weakened to account

for the incoming local context Λ1 during the reduction of t1 ⋄ s .

J svar KS e (⊲ v) = v

161 CHAPTER 5. A SEMANTIC MODEL OF FHM

The use of ◦ below indicates that the interpretation of lvar does not introduce

new local variables. However, we must still make use of ⊆-wkn as Λ is not

definitionally equal to Λ ++ ◦.

J lvar n KS e g = ◦, reflectS (lvar (⊆-wkn n))

To demonstrate the propagation of local contexts, consider the pair example

below. As both subterms may independently introduce a local context, the

resulting local context is an aggregate of the two, and each sub-value must be

weakened to encompass the local context of the other.

J pair s1 s2 KS e g =

let v1 = J s1 KS e g

v2 = J s2 KS e g

in (π1 v1 ++ π1 v2), (wknSValΛ ... (π2 v1),wknSValΛ ... (π2 v2))

The story for ⋄ is much the same as the previous case: interpreting each sub-

term individually and then aggregating any new local contexts before returning

an appropriately weakened composite value.

J t ⋄ s KQ e g =

let sv = J s KS e g

tv = J t K e id (π2 sv)

in (π1 sv ++ π1 tv),wknQNrmΛ ... (π2 tv)

Finally, saving the most interesting and subtle case to last, we look at the

interpretation of sigrel. Modulo the signal context, the intermediate definition

qv looks very similar to the interpretation of sigrel in the base core language.

Using Val as a guide we know that interpreting q should result in an object

of type QVal ∆ Φ Λ; that is, Λ is the “base” local context. As the supplied

signal value v comes in a context K, we must weaken v and package it up with

K before placing it in the interface signal environment. Once again referring

back to the earlier example, v corresponds to the interpreted signal expression

s , which must be weakened with respect to Λ1 before it can be used.

CHAPTER 5. A SEMANTIC MODEL OF FHM 162

Recall that before returning qv , we must also explicitly specify the new local

variables introduced as a result of interpreting the subterms. In this case, the

context Λ is revealed along with any new local variables introduced as a result

of interpreting q, hence Λ ++ π1 qv are accumulated alongside K.

J sigrel Λ q K e = λ {K } φ v →

let qv : QVal ∆ Φ Λ

qv = J q KQ (wknEnv φ e) (⊲ (K,wknSValΛ ... v))

in (Λ ++ π1 qv),wknQNrmΛ ... (π2 qv)

Successfully implementing the interpreter gives us some assurances. Spe-

cifically, local variables remain well-typed and importantly, well-scoped during

normalisation, giving us some confidence that our approach is correct.

5.5.2 Delayed Branch Normalisation

There are a number of situations where it is desirable to defer the normalisation

of a switching branch until that branch becomes active. Rather than eagerly

evaluating every branch of a switch, instead, only the active path is computed

to produce the set of equations that are required for the current generation of

simulation. Reasons for deferring normalisation include (but are not limited

to):

• Operationally, premature normalisation of branches is in general wasteful

as a branch may never be activated. Thus, leaving inactive branches

unnormalised reflects what an efficient implementation should do.

• To address the issue of simulation state transfer across switches, it is

necessary to allow normalisation to depend on state information at the

time of a switching event, by allowing references to signal values just prior

to a switch event, or by events carrying a payload. Once such functionality

is added to the language it will not in general be possible to normalise a

branch before it is activated.

163 CHAPTER 5. A SEMANTIC MODEL OF FHM

• From many real-world applications, it is also desirable, or even essential,

to allow equations to be computed by tail-calling a signal relation, guard-

ing the recursive calls by a branch (for example, consider modelling a

state machine). Postponing normalisation of branches permits a form of

guarded corecursion, allowing such calls to be productive.

In the base core language we were not concerned with the above points;

efficiency is a low priority, transfer of simulation state is not considered, and re-

cursive relations are omitted to keep the initial presentation tenable. Of course,

this is not to say that the above points are without value, and each one could

make for interesting work in the future. Therefore, it is essential to investigate

delayed branch normalisation as a prerequisite to these extensions.

The key issue is that we wish to delay only a fragment of a larger program.

While a branch may be left unevaluated, the surrounding context will still be

fully reduced. This leads to a situation where a variable bound outside the

fragment is substituted for a value. This effectively removes the variable from

the context as all instances of it will be replaced by the new value, including

those inside the inactive branches of a switch.

In an earlier article (see [Capper and Nilsson, 2012]), we solved the problem

by defining a family of substitution functions that traverse the structure of

a term and substitute the “external” variables without performing any further

reduction. This was a reasonable solution that allowed us to adjust the contexts

of an inactive branch to keep it compatible with the enclosing program.

However, the above solution was devised for a core language without an

explicit notion of substitutions. In HJK we have a much simpler way to adjust

the context of a term called explicit substitution application that is denoted

[φ] t . By converting environments to substitutions we demonstrate a simple

technique for delaying the evaluation of a subterm in a setting with explicit

substitutions.

CHAPTER 5. A SEMANTIC MODEL OF FHM 164

Equation Modes

The base core language does not distinguish between active and inactive branches

as every branch is fully normalised, and thus is represented as a normal form

(i.e. QNrm). If we wish to delay the normalisation of an inactive branch we

must represent the branch as an unnormalised term (i.e. QTm). Therefore, the

representation of an equation at a given branch depends upon whether or not

that branch is active. Thus, the first step is to make this dependency explicit

by refining the representation of normal forms and by using equation modes :

data QMode (Γ : Ctx) (Φ : SCtx) (m : N) : N → Set where

here : QNrm Γ Φ → QMode Γ Φ m m

there : m 6≡ n → QTm Γ Φ → QMode Γ Φ m n

An equation mode (herein simply mode) is intended to replace the represent-

ation of an equation at a branch. A mode is indexed on two natural numbers

m and n. The first number denotes the index of the active branch and the

second number denotes the index of the branch containing the mode. Only

when the two numbers are equal (here) (i.e. the current branch is the active

branch) should we represent the branch equation as a normal form. In all other

circumstances the current branch must be inactive and an unevaluated term

should be used to represent the equation instead.

To use a mode we can thread the information about the active branch

through from the switch to the QMode. This is simply a case of adding an

additional parameter to SwNrm to record the index of the active branch.

data SwNrm (Γ : Ctx) (Φ : SCtx) (m : N) : N → Set where

[] : SwNrm Γ Φ m 0

branch : SwNrm Γ Φ m n → SNrm Γ Φ num

→ QMode Γ Φ m n → SwNrm Γ Φ m (1 + n)

data QNrm (Γ : Ctx) (Φ : SCtx) : Set where

switch : (x : Fin n) → SwNrm Γ Φ (toN x) n → QNrm Γ Φ

165 CHAPTER 5. A SEMANTIC MODEL OF FHM

Environments as Substitutions

Environments bear a number of similarities to substitutions. An environment is

indexed on two contexts: the first represents the context of the values contained

within, and the second is used to constrain the length of the environment and

the types of its values. It is implicit in the definition of Env Γ ∆ that Γ subsumes

∆, and it is this subsumption that gives rise to a substitution.

A environment is, in some sense, a more general notion than a substitution.

An environment might be empty, for which there is a corresponding empty

substitution. An environment can also be extended, just like a substitution. It

is this correspondence that allows us to map an environment to a substitution

provided we have a means to convert a value to a term. However, there is no

obvious way to express the composition of environments, and thus we cannot

express the inverse map from substitutions to environments.

envToSub : Env Γ ∆ → Γ ⇒ ∆

envToSub ◦ = empty

envToSub (e ⊲ v) = envToSub e ⊲ embNrm (reify v)

sEnvToSub : SEnv Γ Φ Ψ → Φ ⇒S Ψ

sEnvToSub (⊲ v) = ⊲ embSNrm (reifyS v)

The interpretation of the equations at a branch is now handled by an in-

terpretation function for modes (J q KQM e g) that proceeds by determining if

the current branch is active. We make use of the decidable predicate m
?
= n,

which returns yes if the numbers are equal along with a witness to this fact or

else it returns no with a proof to the contrary. If the decision procedure returns

yes then the branch is active and we should interpret the contained equation.

If it returns no then the branch is inactive and we must explicitly weaken the

equations by the converted environments.

J KQM : QTm Γ Φ → Env ∆ Γ → SEnv ∆ Ψ Φ → QMode ∆ Ψ m n

J q KQM e g with m
?
= n

CHAPTER 5. A SEMANTIC MODEL OF FHM 166

... | yes refl = here (J q KQ e g)

... | no p = there p (〈 sEnvToSub g 〉 [envToSub e] q)

J KSw : Switch Γ Φ m → SwModel Γ Φ m n

J [] KSw e g = []

J branch sw s q KSw e g = branch (J sw KSw e g) (J s KS e g) (J q KQM e g)

This procedure allows us to avoid premature normalisation, or even inspec-

tion of the equations at an inactive branch. Only when the branch is activated

will the explicit substitutions be eliminated and the equations be normalised.

To date, we have not investigated the impact of this extension on the se-

mantics of dynamism (see Sect. 5.4). Integrating this extension with dynamism

is not trivial as the current implementation relies on knowing the complete struc-

ture of a flattened equation prior to simulation runtime. We speculate that a

formulation involving potentially “unknown” shapes might provide a solution,

and look forward to investigating these problems in the future.

Chapter 6

Related Work

6.1 Structural Types

6.1.1 Modelica

Modelica is an industrial-strength, equation-based language for acausal model-

ling of hybrid systems. The language design draws heavily from object-oriented

languages with notions like classes and inheritance used to structure the models.

As per the Modelica specification [Mod, 2012, pp. 43–48] models are required

to be locally balanced. A model is locally balanced if it locally declares or inher-

its the same number of variables as equations. Global balance is then defined

as equation-variable balance for a complete, composite model, which follows

immediately if all subcomponents are locally balanced.

The language specification only requires checking of the local balance once

specific values of parameters are known. The number of variables and equations

may depend on the constants through conditional selection among blocks of

equations and array sizes. Checking that a model is locally balanced for all

possible values of the parameters is left as a “quality-of-implementation” issue.

Compared to our approach, Modelica is quite restrictive: there are good reas-

ons for why certain components need to be locally unbalanced, and then used

CHAPTER 6. RELATED WORK 168

as building blocks of larger systems that ultimately will be balanced. For this

reason, Modelica allows components to be marked as partial, thereby disabling

balance checking (in isolation) for those components. Furthermore, Modelica

does not classify equations depending on which variables occur in them (i.e. dis-

tinguishing between local, mixed, and interface equations). As such, the class of

structural properties checked by Modelica is similar to the simple balance type

system (see Sect. 4.2), except without consideration for locally unbalanced mod-

els. Therefore, Modelica checks for a much smaller class of structural properties

than the constrained type system (see Sect. 4.3).

Finally, Modelica lacks a notion of first-class models: there are methods for

parametrising models on other models, but these do not approach the generality

of FHM (see [Giorgidze, 2012]). However, this does mean that checking balances

late, once parameters are fully known, suffices in the case of Modelica.

6.1.2 Broman, Nyström, and Fritzson

Broman et al. [2006] have developed a more flexible approach to modular balance

checking than the approach described by the current Modelica specification.

Notably, models are not required to be locally balanced provided that the fully

assembled system is balanced. The type system, called Structural Constraint

Delta (C∆), is developed for a subset of Modelica called Featherweight Modelica.

The idea behind C∆ is to refine the notion of type equality such that two

models are equal only if they are equal under the Modelica interpretation (see

[Mod, 2012]) and have the same equation-variable balance. This refinement is

motivated by the principle of safe substitution: replacing one class by another

is safe only if the replacement preserves the global balance of the system.

The refined notion of type equality is realised by annotating the type of a

class with the difference (C∆) between the total number of defined equations and

variables. The annotation is a concrete value as Featherweight Modelica classes

are not first-class entities: the information required to compute the annotation

169 CHAPTER 6. RELATED WORK

is always manifest in the structure of the object being analysed. Hence, the C∆

may always be computed in a bottom-up fashion.

By contrast, the type system discussed in this thesis lifts a number of re-

strictions inherent to C∆ . Our approach permits first-class models. Hence, we

do not rely on manifest type information as the structure of a model may be

partially or even completely unknown. Furthermore, parameterised models are

parametric in their balance; a model may be instantiated with different values

for its parameters, resulting in distinct balances for each usage of the model

within the same context. As with Modelica, the approach taken by Broman

et al. is strictly balance oriented. Thus, once again the class of structural

properties checked by C∆ is smaller than that of our type system H�.

To our knowledge, the idea of incorporating balance checking into the type

system of a non-causal modelling language was suggested independently by

Nilsson et al. [2003] and Broman et al. [2006], with the latter giving the first

detailed account of such an approach.

6.1.3 Nilsson

As a precursor to the work presented in this thesis, Nilsson [2008] conducted

a preliminary investigation into a type system for checking stronger properties

relating to the structure of equations and variables beyond that of simple bal-

ance. Nilsson’s structural types are designed to rule out systems with structural

singularities that would otherwise be accepted under a simple balance check-

ing approach. Furthermore, Nilsson also developed his approach for the FHM

framework, and thus, his motivations were much the same as our own.

Nilsson’s approach is centred around the notion of incidence matrices. The

incidence matrix of a system of equations represents the occurrences of vari-

ables in equations. By approximating incidence matrices in the types of signal

relations and equations, Nilsson approaches the capabilities of the techniques

described by Bunus and Fritzson [2002], while retaining the capability of check-

CHAPTER 6. RELATED WORK 170

ing fragments in isolation. Partitioning equations into classes depending on

whether the occurring variables are local, interface, or both is central to Nils-

son’s approach and led to the notion of equation kinds in this thesis.

However, Nilsson’s work is only a preliminary investigation into structural

types. Notably, the approach does not consider first-class models; that is, Nils-

son assumes that the concrete structure of an equation required to compute an

instance matrix is known statically. While this is sufficient for a language such

as Modelica, it is not clear that it would be possible to generalise the method

to a first-class setting while retaining the precision of the types.

Nilsson formalises the fundamental concepts of computing incidence matrices

from concrete signal relations, including equation composition and handling

situations that may give rise to ambiguity. Nilsson forgoes a presentation of the

type system in its entirety (i.e. expressing the type system as a deductive set

of rules and relating this to a semantics) due to the preliminary nature of the

work. Instead, Nilsson presents an algorithm for determining the (approximate)

best possible structural type for an abstract system of equations.

The time complexity of the algorithm for computing structural types is also

a concern as it relies on partitioning the set of mixed equations in all possible

ways. Moreover, a disadvantage of the precision of the types is that they may

be hard to understand and cumbersome to use in practice. Suitable methods to

communicate type errors to the programmer would also have to be investigated,

although the paper does suggest that the work by Bunus & Fritzson could

provide a good starting point. By contrast, the type system presented here

does handle first-class models, but is not able to detect as many structural

problems. Furthermore, this thesis also considers structural dynamic systems.

6.1.4 Bunus and Fritzson

Bunus and Fritzson [2002] describe a static analysis technique for pinpointing

problems with modular systems of equations developed in equation-based lan-

171 CHAPTER 6. RELATED WORK

guages such as Modelica. The primary motivation for their work is to develop

effective debugging techniques for equation systems.

They are concerned with the same structural properties as we are, but

by permitting systems to be flattened before analysis allows them to perform

a much more fine-grained localisation of problems. In essence, viewing the

flattened system as a bipartite graph (the nodes being the equations on the

one hand and the occurring variables on the other), they attempt to put the

equations in a one-to-one correspondence with variables occurring in them by

performing a Dulmage-Mendelsohn canonical decomposition. This technique

partitions the system into a well-constrained part (a one to one correspondence

is possible), an over-constrained part (too many equations), and an under-

constrained part (too many variables). If the latter two parts are empty, the

system as a whole is structurally well-constrained.

The main contribution of the work is the localisation and reporting of pro-

gram errors in a method consistent with the programmers perception of the

system. An efficient technique for annotating equations for future analysis is

also outlined. The methods discussed are robust, even in the face of program

optimisations that may change the intermediate structure of the modular sys-

tem of equations. Bunus and Fritzson implemented a prototype of their tool,

attached to the MathModelica simulation environment, and evaluated the us-

ability of their system in that setting. A case study is presented in their paper.

The methods outlined by Bunus and Fritzson are applicable only to a mod-

ularly constructed system once it has been flattened. Thus, the methods are in

many ways complimentary to the work presented in this thesis. The methods

could even be performed during simulation, making them potentially very useful

for analysis of iteratively-staged, structurally-dynamic systems.

The work by Bunus and Fritzson illustrates the benefits of going beyond

basic balance checking when finding problems with systems of equations. Some

of those benefits are also realised by our type systems thanks to the classification

of equations into different kinds depending on the variables that occur in them

CHAPTER 6. RELATED WORK 172

(i.e. by approximating individual variable occurrences).

6.1.5 Furic

Furic [2009] proposes a novel approach to model composition for Modelica.

The approach is centred around a notion of equation-variable balance, which

provides improved guarantees of compositionally. Once again, no classification

of equations is made depending on whether occurring variables are local or oth-

erwise. Furic’s balance checking algorithm works on a physical connection graph

describing the structure of an assembled system. Thus, its present formulation

is not modular. However, Furic suggests that the additional syntactic informa-

tion that the proposed approach makes available could form a basis for a type

system for enhanced static checking and separate compilation. Interestingly,

Furic’s approach supports a much more flexible notion of structural dynamism

than Modelica does at present, although this hinges on either pre-enumerating

all configuration for checking purposes, or running the checking algorithm at

each structural change during simulation.

Despite being quite different from our type-based approach, Furic’s work

underscores the practical importance of enforcing constraints on the equation-

variable balance for a modularly constructed system of equations. Moreover, his

approach to composition offers a number of advantages over Modelica’s, such as

the protection of intellectual property when building models from proprietary

libraries, and it would be interesting to see if the approach can be recast into a

type-based approach and adapted to the FHM setting.

6.1.6 Modelyze

Broman and Siek [2012] have developed a framework, called Modelyze, in which

domain-specific modelling languages can be embedded. The goal of their work

is to provide a host language that can be extended, as required, to accommodate

the needs of a specific domain. The language is based on gradual typing, which

173 CHAPTER 6. RELATED WORK

allows fine-grain control over a mix of both static and dynamic types. This is

used to provide types for symbolic expressions that, due to symbolic lifting ana-

lysis, are integrated seamlessly into the language. This integration means that

symbolic errors arising from domain-specific features remain meaningful and

easy to understand to the domain expert. Moreover, the separation of domain-

specific features means that the core language is simple and straightforward to

formalise compared to the current industrial state-of-the-art (e.g. Modelica).

The key features of Modelyze are first-class functions for structuring models

and symbolic types for detecting symbolic errors. Like Hydra, the functional

host language provides mechanisms for abstracting over and composing models.

However, compared with Hydra, the type of symbolic errors that can be detected

statically are much weaker. In particular, no degree-of-freedom analysis (such

as equation-variable balance) is checked. Instead, Modelyze only verifies static

information that can be checked in isolation, such as uninitialise signals.

As such, we believe that the work on Modelyze could be mutually beneficial

to our own. Our work on static analysis in the presence of unknown model struc-

ture would be beneficial to Modelyze, and the symbolic integration it supports

could be used in Hydra to provide a better experience for the end user.

6.2 Semantics

In this section we look at the work that is closely related to our own work on

dynamic semantics. NbE is a key component of our method, and the field of

NbE is an area of active research [Aehlig et al., 2012, Altenkirch et al., 2001,

Fiore, 2002, Vestergaard, 2000]. This existing literature makes contributions to

the field of NbE by studying the theory of the semantic technique directly. By

contrast, our work makes contributions to the field of equation-based languages,

and only uses NbE as a tool, in a similar manner to that of Danielsson [2006]

or Fridlender and Pagano [2013]. Thus, in this section we focus on the work

that is related to our contributions: work that attempts, by whatever means,

CHAPTER 6. RELATED WORK 174

to formalise the semantics of equation-based languages.

6.2.1 K̊agedal

To our knowledge, the earliest attempt to formally specify the semantics of a

noncausal modelling language is Kågedal’s natural semantics for a subset of

Modelica [Kågedal, 1998, Kågedal and Fritzson, 1998]. The approach is similar

to our own: the semantics provide a translation from a Modelica model into a

specialised language of flat equations called Flat Modelica.

The main focus of the work is to accurately capture the meaning of Model-

ica’s object-oriented constructs (e.g. classes, inheritance, etc.) as well as Mod-

elica specifics such as connect-equations. The formal specification was written

in response to difficulties arising from the under-specification and ambiguity in

early versions of the Modelica language. Furthermore, the targeted language of

flat equations needed to be compatible with existing equation solvers, and the

output of a translation was expected to be human readable.

An additional goal of the work is the automatic generation of a Modelica

implementation from the semantics, an aspect that is reminiscent in our work as

we attempt to capture both semantics and implementation using Normalisation

by Evaluation. However, this is where the similarities between our two works

end. The semantics is expressed in RML, a restricted form of natural semantics

that can be compiled into fairly efficient code.

Kågedal’s work provides an important first step, though it remains “incom-

plete” in a couple of aspects. As there is no notion in Modelica of generating

new structural configurations during simulation, Kågedal’s semantics is (as men-

tioned earlier) entirely static: it encompasses conventional static semantics (i.e.

Modelica’s type system etc.) and a translation into flat equations.

Modelica does have limited support for hybrid systems: the “if” and “when”

language constructs provide a restricted form of dynamism, and the more gen-

eral notion of algorithm blocks provide some means to capture hybrid beha-

175 CHAPTER 6. RELATED WORK

viour. However, no attempt is made in Kågedal’s work to capture the dynamic

semantics of such constructs. Instead, after static checking, such constructs are

transliterated into the output format. Thus, Flat Modelica is a rich language,

including not just ordinary mathematical equations, but also an algorithmic

sub-language and facilities for handling events. This is in contrast to our work:

the meaning of a structural configuration in our setting is given by a simple set

of conventional mathematical equations, and our semantics does explain how

the system evolves in response to events. Furthermore, no attempt is made

to prove any formal properties of Kågedal’s semantics, neither manually nor

through the use of a mechanised theorem prover.

6.2.2 Henzinger

Henzinger [1996] proposed the hybrid automaton as a formal model for a hybrid

system. A hybrid automaton is given by a graph along with a finite set of

time-varying variables. The vertices of the graph represent a possible system

configuration and contain equations that describe the dynamic behaviour of the

system in that state. The edges of the graph represent the switching conditions

that dictate when transitions between states can and must occur. For that

reason, a hybrid automaton provides a model of both the discrete and ideal

continuous semantics for a system of equations.

A hybrid automaton effectively represents a set of flattened equation sys-

tems that describe the continuous behaviour along with a set of predicates that

describe the discrete behaviour. It is not in itself concerned with the process of

reaching a flat system from a modular structure (whatever an abstract repres-

entation of the modular structure might be). It is, however, a suitable semantic

model into which noncausal, hybrid languages can be translated. For example,

Beek et al. [2006] use this approach to give semantics to the modelling and

simulation language χ (Chi).

Our semantics can be understood as describing a tree of structural config-

CHAPTER 6. RELATED WORK 176

urations, whereby the continuous behaviour is given by the equations at the

active node and its direct ancestors. If we realise unbounded structural dy-

namism then our semantics could be viewed as describing the construction of

the reachable parts of a possibly infinite hybrid automata on demand from a

high-level, declarative, system model. Taken together, this thesis and hybrid

automata would provide a complete semantics of FHM, and thus Henzinger’s

work is very much complementary to our own.

6.2.3 Giorgidze

Giorgidze [2012] was the first to attempt a semantics for FHM, and to our

knowledge, the first to try and capture both continuous and discrete aspects of

a noncausal language that supports unbounded structural dynamism.

Giorgidze’s approach is to translate the concrete syntax of Hydra (itself

an embedded domain specific language of Haskell) into a Haskell expression

augmented with second order propositional logic that describes the continuous

behaviour of the system. The semantics is “ideal,” with the meaning of an equa-

tion fragment being the solution to the equations, if a solution exists. Giorgidze

also works in a non-constructive setting, as the decidability of the semantics

depend on evaluating arbitrary functional values and deciding signal equality.

The approach described by Giorgidze is quite different to our own. We

make no attempt to describe the continuous aspects in this thesis, but instead

seek to separate these concerns, allowing the continuous aspects to be described

in whatever way is most appropriate for the application. As a result, we do

not couple continuous concepts to the discrete semantics (e.g. using a double

precision floating point number as an approximation of continuous time).

Our semantics is interpreted into a model, whereas Giorgidze’s semantics

is more closely related to compilation: it takes a high-level DSL into a more

primitive expression language, with the meaning of a program ultimately relying

on the semantics of Haskell. As we were able to design our model from the

177 CHAPTER 6. RELATED WORK

ground up, we have more control over the meaning of an equation fragment,

allowing us to make fundamental aspects of FHM explicit that are left implicit

in Giorgidze’s formulation (e.g. local signal variable propagation).

Finally, our approach is constructive: the semantics and implementation

are one and the same. Conversely, in Giorgidze’s semantics it is not clear,

for example, what the meaning of non-termination or convergent events (the

occurrence of infinite events in finite time) may be. Moreover, no properties of

Giorgidze’s system are demonstrated, mechanically or otherwise.

6.2.4 Pepper et al.

Taking a new approach, Pepper et al. [2011] give a semantics to a Modelica-

style language with variable structure by giving meaning directly to a modular

system of components. They describe the continuous semantics of a component

in situ without first flattening the system of equations. The individual semantic

blocks can then be composed to provide meaning for a complete model.

Pepper et al. consider variable-structure systems that are slightly more

permissive than those currently accepted by the Modelica standard. However,

as with our semantics, their approach is still restricted to bounded dynamism,

and requires that all possible system configurations be computed statically.

They consider both an ideal semantics and an approach based on simulation

semantics (i.e. “real” semantics that account for approximations and uncer-

tainty problems) for continuous aspects of the language. In contrast to our own

work, they are not interested in flattening a modular system, and thus, their

work is primarily focused on the continuous rather than the discrete. Hence,

their work is in some ways complementary to our own.

While the idea of prescribing a semantics before flattening is both novel and

interesting, it is unclear how to relate the semantics to an implementation: the

former does not naturally give rise to the latter, as is the case in our thesis. The

approach we have taken strongly resembles a real-world implementation (i.e. our

CHAPTER 6. RELATED WORK 178

interpreter uses methods very similar to those found in the Hydra framework).

Furthermore, Pepper’s work is centred around Modelica, a language that lacks

a true notion of first-class models. Therefore, it would be interesting to see

how Pepper’s work could be modified to work in the more general framework of

FHM, in a setting where the structure of a model may be completely unknown.

6.2.5 Broman

Broman [2010] (also [Broman and Fritzson, 2008]) has developed Modelling Ker-

nel Language (MKL), a meta-modelling language intended as a core language

for noncausal modelling languages such as Modelica. MKL is a functional lan-

guage with a notion of first-class models, making it quite similar to FHM. How a

model should be used, along with other useful meta-operations, can be specified

as part of a model definition, allowing useful properties and constraints to be

directly encoded in a library of components.

MKL utilises a hybrid type system, with the core of the language given

by a statically-typed, effectful λ-calculus. Conversely, models in MKL are

dynamically-typed and the static and dynamic aspects of the type system are

unified using Gradual Typing [Siek and Taha, 2006].

Broman provides a small-step operational semantics for MKL, and thus,

his approach is similar to earlier work of our own [Capper and Nilsson, 2010]

and to the semantics we present in Chap. 4.2.3. Furthermore, Broman uses his

semantics as a basis to prove the conventional notion of type safety (progress

and preservation) for his type system.

To date, the work on MKL has not yet considered systems of variable struc-

ture, though Broman has stated (through personal communication) that struc-

tural dynamism is an area of active research for MKL. Hence, we hope that

the work presented in this thesis will be useful, not only for MKL, but for any

semantic investigation into structurally-dynamic modelling languages.

179 CHAPTER 6. RELATED WORK

6.2.6 Wan and Hudak

Wan and Hudak [2000] have given semantics to both the continuous and discrete

parts of a simple FRP language. They present both an ideal semantics and also

an operational semantics that makes use of discrete sampling. The discrete

semantics is shown to converge to the ideal continuous semantics in the limit as

the time steps approach zero.

It would be interesting to see how the techniques employed by Wan and

Hudak could be adapted to work for FHM. In particular, generalising their ap-

proach from signal functions to signal relations would be an important first step,

assuming such a generalisation is possible using their methods. They also make

some strong assumptions, that while appropriate for their applications, may not

be admissible when working in an acausal setting. For example, their approach

forbids instantaneous predicates events and they assume uniform convergence.

6.2.7 Acumen

Acumen [Zhu et al., 2010] is a language for modelling and simulation of struct-

urally-dynamic hybrid systems. The continuous aspects of the language are

specified via DAEs, like Hydra, along with partial differential equations (PDEs).

Unlike Hydra, however, the discrete aspects are modelled via an event-oriented

paradigm of FRP. Acumen has recently been extended to support unbounded

structural dynamism [Taha et al., 2012].

To date, the work on Acumen has been focused on automatic methods for

mapping analytical models to executable code. While no formal verification

has been attempted so far, the authors earlier work on verifying multi-staged

programs [Inoue and Taha, 2012] suggests that our work may also be a useful

starting point for formalising Acumen.

6.2.8 Sol

Zimmer [2013] has developed Sol (see also [Zimmer, 2007]), a language similar to

CHAPTER 6. RELATED WORK 180

Modelica that focuses on efficiently modelling systems of variable structure. The

language supports unbounded structural dynamism and makes use of symbolic

methods to try and minimise the number of equations that need to be modified

or added as the result of a discrete event. As Zimmer is primarily interested

in language design and advanced implementation techniques only an informal

account of the semantics is provided.

6.2.9 Danielsson

The proof technique that allows us to give a proof of normalisation (see Sect. 5.3)

is due to Danielsson [2006]. In his article, Danielsson is interested in showing

how a language with inductive-recursive families can be used to formalise a

dependently-typed λ-calculus. While the article is not directly focused on giving

a semantic model, it does provide the first formal account of Normalisation by

Evaluation for a dependently-typed language.

Chapter 7

Summary and Future Work

7.1 Summary

In this thesis, we have made contributions to the static and dynamic semantics

of equation-based languages, and specifically to languages for modelling and

simulation. These contributions came in the form of a type system designed to

enforce desirable structural invariants, and from the construction and partial

verification of a semantic model of an FHM-like language.

Chapter 1 introduced equation-based languages, and specifically, languages

for physical modelling. Two different areas of interest were identified: the use of

static techniques to detect structural anomalies in modular equation systems,

and the formalisation of a discrete semantics for equation-based languages.

Chapter 2 introduced the fundamental concepts common to many equation-

based modelling languages, such as modularity, acausality, hybrid behaviour,

and structural dynamism. Equation-based modelling was illustrated through

the object-oriented approach of Modelica, and through the functional approach

of FHM. Due to the importance of structural dynamism in this thesis, the

flexibility and expressiveness of FHM’s approach was highlighted and compared

to the relatively restrictive approach of Modelica.

CHAPTER 7. SUMMARY AND FUTURE WORK 182

Chapter 3 provided a brief introduction to Agda and the specialist nota-

tion used throughout this thesis. An overview of the aspects that have been

mechanically formalised in this thesis was also given.

Chapter 4 considered structural properties and type systems to aid in the

early detection of structural anomalies for equation-based languages. This

chapter constituted the first half of two major technical contributions of this

thesis. The chapter began by discussing the structural properties that are typ-

ically considered to be highly desirable when modelling physical systems. The

first of these properties was then expressed in a language called H∆ that lent

itself to metatheoretical study. Specifically, the type system of the language

was refined to include annotations on the types of signal relations that indicate

the number of equations the relation is capable of contributing.

A more refined approach was then taken by considering a much richer set

of structural properties to produce H�: a language with type-level constraints.

The constraints allowed us to better approximate structural singularity detec-

tion without violating model abstractions by considering the kinds of equations

and unknowns. The formalisation of this language was more pragmatic, and

a type inference algorithm was developed to demonstrate that the constraint-

based type system could have genuine practical applications. To reinforce this,

the chapter concluded with a real-world case study of a half-wave rectifier model.

Chapter 5 investigated the denotational semantics of an FHM-like modelling

language called HJK by constructing a model and implementing an interpreter

using Normalisation by Evaluation. This chapter constitutes the second half

of our technical contributions. The chapter began by introducing the semantic

model and normalisation procedure. The chapter then investigated various

metatheoretical properties and proceeded to show a proof of normalisation, a

major theorem of the semantics. The chapter then turned its focus toward

investigating the semantics of dynamism. The chapter ended by considering

two extensions: local variables semantics and delayed branch normalisation.

Chapter 6 discussed the work most closely related to our own.

183 CHAPTER 7. SUMMARY AND FUTURE WORK

7.2 Future Work

There are several examples in this thesis of the refined type systems being of

practical use in FHM. However, it would be interesting to see to what extent

these techniques can be adapted to the object-oriented approach, and then in

particular to Modelica-like languages.

Modelica lacks first-class models, and the ability to track simple balance in

such a setting has already been explored by Broman et al. [2006]. Therefore,

the first step should be to investigate how our more sophisticated constraint-

based approach can be realised in a language such as Modelica. The benefits

of tracking additional structural properties in Modelica programs have already

been demonstrated by Bunus and Fritzson [2002], and thus we would expect

that modular detection of some of these additional properties at compile time

would be both a useful and popular addition to the current Modelica standard.

Zimmer [2007] has developed Sol, a Modelica derivative with first-class mod-

els and variable structure. Our work on refined type systems was developed with

language features such as these specifically in mind. Thus, it would also be inter-

esting to see how, initially, the simple balance approach, and then subsequently,

the constraint-based approach could each be applied to Zimmer’s framework.

Another important consideration is the usability of the refined type systems.

From the perspective of translating a model into a program, full type inference

means the modeller need not be concerned with annotating (or even understand-

ing) the constraints at work in the background. However, it is then unclear how

best to communicate type errors resulting from unsatisfiable constraints to the

modeller. While simple examples might result in obvious structural invariants

being violated, desugaring of higher-level syntactic features may cause equation

systems to become unrecognisable to the modeller. In such instances, the work

by Bunus and Fritzson [2002] may prove useful in tracking the surface-level

meaning of programs through syntactic transformations, allowing errors to be

communicated in a more meaningful way.

CHAPTER 7. SUMMARY AND FUTURE WORK 184

Further investigation into additional or alternative structural constraint cri-

teria may also be worthwhile. For example, a piecewise-continuous equation

system may need to re-initialise the unknowns of the system at each discrete

event in order to preserve continuity assumptions (i.e. the value of a signal may

not be allowed to jump discontinuously). Hence, in addition to the standard

equations that describe the time-varying behaviour of the system, the system

also uses instantaneous equations to describe initialisation constraints. In such

circumstances it would be incorrect to include these initialisation equations

as part of a signal relation’s contribution, and these equations would be con-

sidered a new kind of equation. Moreover, there might then be new structural

constraints specific to initialisation equations, such as checking that every local

unknown is re-initialised in each structural configuration.

An important and interesting avenue of future work would be to investigate

how our type system can be extended to operate on objects of higher dimensions.

At present, all local variables are assumed to be dimensionless, and thus effect-

ively account for a single unknown. By introducing higher-dimension objects,

such as vectors and matrices (i.e. with dimensions of 1 and 2, respectively),

one would need to reason about the size of these objects during type checking.

This is precisely the kind of problem that has been solved by dependent types.

In particular, Dependent ML allow the sizes of objects to be computed and

checked entirely automatically Xi [2007]. Thus, it would be valuable to see how

this work on dependent types could be translated into our setting.

There are numerous avenues of future work for the semantic model. A

particularly interesting avenue might be to explore a semantic core language

that supports recursively-defined signal relations. Such a language would allow

models exhibiting unbounded structural dynamism to be defined. For example, a

perpetually bouncing ball can be modelled as a pair of mutually recursive signal

relations: one relation is used for each direction of motion and discrete events

switch between them when the ball touches the floor or reaches its apex. Work

by Capretta [2005] (see also [Bove and Capretta, 2003]) and Danielsson [2012]

185 CHAPTER 7. SUMMARY AND FUTURE WORK

could provide a useful starting point for the investigation. Depending on how

one chooses to model recursive signal relations, we envisage that the semantics

of dynamism could be restated to allow an infinite number of configurations to

be described using a cotree. This may then resolve the incompatibility between

the dynamism semantics and delayed branch evaluation.

Another avenue is to show further metatheoretical results for the semantic

core language. Obvious candidates for study would be to show that the se-

mantics objects are the canonical representation for their equivalence class, and

to demonstrate some overall correctness properties for the local variables exten-

sion. Unfortunately, as discussed by Danielsson [2006], the technique used to

prove normalisation may complicate a proof of object canonicity, and thus an

alternative approach might need to be considered. In either case, proving this

property is likely to be a large, albeit important, undertaking.

Finally, a long term goal is that our semantics lead (or at least contribute)

to a verified implementation of FHM. One option would be to translate the

semantic formalisation into a proof assistant such as Coq [Bertot and Castéran,

2004] that is capable of erasing proof objects and extracting a relatively efficient

OCaml implementation [Leroy et al., 2013].

Bibliography

M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions.

Journal of Functional Programming, 1(4):375–416, 1991.

Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers: Construct-

ing strictly positive types. TCS: Theoretical Computer Science, 342, 2005.

Andreas Abel. Miniagda: Integrating sized and dependent types. Proceedings

Workshop on Partiality and Recursion in Interactive Theorem Provers, PAR

2010, Edinburgh, UK, 15th July 2010, pages 14–28, 2010.

Andreas Abel, Klaus Aehlig, and Peter Dybjer. Normalization by Evaluation for

Martin-Löf Type Theory with One Universe. Electronic Notes in Theoretical

Computer Science, 173:17–39, 2007.

Klaus Aehlig, Florian Haftmann, and Tobias Nipkow. A compiled implement-

ation of normalisation by evaluation. J. Funct. Program, 22(1):9–30, 2012.

Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Philip Scott. Nor-

malization by evaluation for typed lambda calculus with coproducts. In Pro-

ceedings of the 16th Annual IEEE Symposium on Logic in Computer Science

(LICS-01), pages 303–310, Los Alamitos, CA, June 16–19 2001. IEEE Com-

puter Society.

Edward J. Barbeau. Pell’s Equation, Problem Books in Mathematics. Springer-

Verlag, 2003.

BIBLIOGRAPHY 188

D. A. Van Beek, K. L. Man, M. A. Reniers, J. E. Rooda, and R. R. H. Schiffelers.

Syntax and consistent equation semantics of Hybrid Chi. The Journal of Logic

and Algebraic Programming, 68:129–210, June 2006.

Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation func-

tional for typed lambda-calculus. In Proceedings of the Sixth Annual IEEE

Symposium on Logic in Computer Science (LICS), pages 203–211, 1991.

Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program

Development. Coq’Art: The Calculus of Inductive Constructions. Texts in

Theoretical Computer Science. Springer, 2004.

Mathieu Boespflug. Efficient normalization by evaluation. In The 2009 Work-

shop on Normalization by Evaluation. HAL - CCSD, 2009.

Ana Bove and Venanzio Capretta. Modelling general recursion in type theory.

Submitted to Mathematical Structures in Computer Science, 2003.

Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of agda - A functional

language with dependent types. In Stefan Berghofer, Tobias Nipkow, Chris-

tian Urban, and Makarius Wenzel, editors, Theorem Proving in Higher Order

Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany,

August 17-20, 2009. Proceedings, volume 5674 of Lecture Notes in Computer

Science, pages 73–78. Springer, 2009.

David Broman. Meta-Languages and Semantics for Equation-Based Modeling

and Simulation. PhD thesis, Department of Computer and Information Sci-

ence, Linkping University, Sweden, 2010.

David Broman and Peter Fritzson. Higher-Order Acausal Models. In Proceed-

ings of the 2nd International Workshop on Equation-Based Object-Oriented

Languages and Tools, pages 59–69, Paphos, Cyprus, 2008.

David Broman and Henrik Nilsson. Node-based connection semantics for

equation-based object-oriented modeling languages. In Claudio V. Russo and

189 BIBLIOGRAPHY

Neng-Fa Zhou, editors, Practical Aspects of Declarative Languages - 14th In-

ternational Symposium, PADL 2012, Philadelphia, PA, USA, January 23-24,

2012. Proceedings, volume 7149 of Lecture Notes in Computer Science, pages

258–272. Springer, 2012.

David Broman and Jeremy G. Siek. Modelyze: a gradually typed host language

for embedding equation-based modeling languages. Technical report, EECS

Department, University of California, Berkeley, Jun 2012.

David Broman, Kaj Nyström, and Peter Fritzson. Determining over- and under-

constrained systems of equations using structural constraint delta. In Pro-

ceedings of the 5th international conference on Generative programming and

component engineering, pages 151–160. ACM, 2006.

Peter Bunus and Peter Fritzson. A debugging scheme for declarative equation

based modeling languages. In Proceedings of the 4th International Symposium

on Practical Aspects of Declarative Languages (PADL 2002), volume 2257 of

Lecture Notes in Computer Science, pages 280–298, OR, USA, January 2002.

Springer-Verlag.

Rod M. Burstall. Christopher strachey - understanding programming languages.

Higher-Order and Symbolic Computation, 13(1/2):51–55, 2000.

John Capper and Henrik Nilsson. Static balance checking for first-class modular

systems of equations. In Proceedings of the 11th Symposium on Trends in

Functional Programming, Oklahoma, USA, May 2010.

John Capper and Henrik Nilsson. Towards a formal semantics of structurally

dynamic non-causal modelling language. In Proceedings of the 7th Workshop

On Types in Language Design and Implementation, Philadelphia, USA, 2012.

John Capper and Henrik Nilsson. Structural types for systems of equations:

Type refinements for structurally dynamic first-class modular systems of

equations. In Higher-order and Symbolic Computation, 2013.

BIBLIOGRAPHY 190

Venanzio Capretta. General recursion via coinductive types. Logical Methods

in Computer Science, 1(2), 2005.

Venanzio Capretta and Amy Felty. Higher-order abstract syntax in type theory.

In S. Barry Cooper, Herman Geuvers, Anand Pillay, and Jouko Väänänen,

editors, Logic Colloquium 2006, volume 32 of Lecture Notes in Logic, pages

65–90. Cambridge University Press, 2009.

François E. Cellier. Continuous System Modeling. Springer Verlag, 1991.

François E. Cellier. Object-oriented modelling: Means for dealing with sys-

tem complexity. In Proceedings of the 15th Benelux Meeting on Systems and

Control, Mierlo, The Netherlands, pages 53–64, 1996.

François E. Cellier and Ernesto Kofman. Continuous System Simulation.

Springer Verlag, 2006.

James Maitland Chapman. Type checking and normalisation. PhD thesis, De-

partment of Computer Science, Nottingham University, Nottingham, UK,

July 2009.

Nils Anders Danielsson. A formalisation of a dependently typed language as

an inductive-recursive family. In Thorsten Altenkirch and Conor McBride,

editors, TYPES, volume 4502 of Lecture Notes in Computer Science, pages

93–109. Springer, 2006.

Nils Anders Danielsson. Operational semantics using the partiality monad. In

Proceedings of the 17th ACM SIGPLAN international conference on Func-

tional programming (ICFP 2012), 47(9):127–138, September 2012.

Olivier Danvy. Type-directed partial evaluation. In In Proceedings of the 23rd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages (POPL’96), pages 242–257, St. Petersburg, Florida, January 1996.

ACM Press.

191 BIBLIOGRAPHY

Nicolaas G. de Bruijn. A lambda calculus notation with nameless dummies,

a tool for automatic formula manipulation, with application to the church-

rosser theorem. Indagationes Mathematicae, 34:381–392, 1972.

Peter Dybjer and Andrzej Filinski. Normalization and partial evaluation. In

Gilles Barthe, Peter Dybjer, Luis Pinto, and João Saraiva, editors, APPSEM,

volume 2395 of Lecture Notes in Computer Science, pages 137–192. Springer,

2000.

Hilding Elmqvist. A Structured Model Language for Large Continuous Systems.

PhD thesis, Department of Automatic Control, Lund Institute of Technology,

Sweden, 1978.

Marcelo Fiore. Semantic analysis of normalisation by evaluation for typed

lambda calculus. In Proceedings of the Fourth ACM SIGPLAN Conference

on Principles and Practice of Declarative Programming (PPDP-02), pages

26–37, New York, October 2002. ACM Press.

Cormac Flanagan. Hybrid type checking. In Proceedings of the 33th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL 06), volume 41, 1 of ACM SIGPLAN Notices, pages 245–256, New

York, January 2006. ACM Press.

Daniel Fridlender and Miguel Pagano. A type-checking algorithm for martin-

Löf type theory with subtyping based on normalisation by evaluation. In

Masahito Hasegawa, editor, Typed Lambda Calculi and Applications, 11th

International Conference, TLCA 2013, Eindhoven, The Netherlands, June

26-28, 2013. Proceedings, volume 7941 of Lecture Notes in Computer Science,

pages 140–155. Springer, 2013.

Sébastien Furic. Enforcing model composability in Modelica. In Francesco Case-

lla, editor, Proceedings of the 7th International Modelica Conference, Como,

Italy, 20–22 September 2009, volume 43 of Linköping Electronic Conference

Proceedings, pages 868–879. Linköping University Electronic Press, 2009.

BIBLIOGRAPHY 192

George Giorgidze. First-class Models: On a Noncausal Language for Higher-

order and Structurally Dynamic Modelling and Simulation. PhD thesis,

School of Computer Science, University of Nottingham, Nottingham, UK,

2011.

George Giorgidze. First-class models: on a noncausal language for higher-order

and structurally dynamic modelling and simulation. Nonpeerreviewed, De-

partment of Computer Science, Nottingham, July 2012.

George Giorgidze and Henrik Nilsson. Higher-order non-causal modelling and

simulation of structurally dynamic systems. In Francesco Casella, editor,

Proceedings of the 7th International Modelica Conference, Como, Italy, 20–22

September 2009, volume 43 of Linköping Electronic Conference Proceedings,

pages 208–218. Linköping University Electronic Press, 2009.

George Giorgidze and Henrik Nilsson. Mixed-level embedding and JIT compila-

tion for an iteratively staged DSL. In Julio Mariño, editor, Proceedings of the

19th Workshop on Functional and (Constraint) Logic Programming (WFLP

2010), volume 6559, pages 48–65. Springer-Verlag, 2011.

Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures dans

l’arithétique d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

Thomas A. Henzinger. The theory of hybrid automata. In Proceedings of the

11th Annual IEEE Symposium on Logics in Computer Science (LICS 1996),

pages 278–292, 1996.

William A. Howard. The formulae-as-type notion of construction, 1969. To H.

B. Curry: Essays in Combinatory Logic, Lambda Calculus, and Formalism,

pages 479–490, 1980.

Paul Hudak. Functional reactive programming. Lecture Notes in Computer

Science, 1576, 1999.

193 BIBLIOGRAPHY

Graham Hutton. Programming in Haskell. Cambridge University Press, Cam-

bridge, UK, 2007.

Jun Inoue and Walid Taha. Reasoning about multi-stage programs. In Pro-

gramming Languages and Systems – 21st ESOP’12 (Part of 15th ETAPS’12),

volume 7211 of Lecture Notes in Computer Science (LNCS), pages 357–376.

Springer-Verlag (New York), Tallinn, Estonia, March 2012.

Brian W. Kernigham and Dennis M. Ritchie. The C Programming Language.

Prentice-Hall, 1978.

Oleg Kiselyov. Functional style in C++: closures, late binding, and Lambda

abstractions. ACM SIGPLAN Notices, 34(1):337–337, January 1999.

David Kågedal. A natural semantics specification for the equation-based mod-

eling language Modelica. Master’s thesis, PELAB, Department of Computer

and Information Science, Linköping University, October 1998.

David Kågedal and Peter Fritzson. Generating a Modelica compiler from nat-

ural semantics specifications. In The 1998 Summer Computer Simulation

Conference (SCSC’98), Reno, Nevada, U.S.A, July 1998.

Edward A. Lee. Cyber physical systems: Design challenges. In ISORC, pages

363–369. IEEE Computer Society, 2008.

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy,

and Jérôme Vouillon. The OCaml system release 4.01: Documentation and

user’s manual, September 2013.

Geoffrey Mainland. Why it’s nice to be quoted: quasiquoting for haskell. In Gab-

riele Keller, editor, Proceedings of the ACM SIGPLAN Workshop on Haskell,

Haskell 2007, Freiburg, Germany, September 30, 2007, pages 73–82. ACM,

2007.

Per Martin-Löf. An intuitionistic theory of types: Predicative part. In Logic

Colloquium ’73, pages 73–118. North-Holland, 1975.

BIBLIOGRAPHY 194

Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.

Yuri V. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, Cambridge, Mas-

sachusetts, 1993.

Conor McBride. Dependently Typed Functional Programs and their Proofs. PhD

thesis, LFCS, University of Edinburgh, Edinburgh, Scotland, 2000.

Conor McBride. Epigram: Practical programming with dependent types. In Ad-

vanced Functional Programming, volume 3622 of Lecture Notes in Computer

Science, pages 130–170. Springer, 2004.

Conor Mcbride. Ornamental algebras, algebraic ornaments. In Journal of Func-

tional Programming, December 2011.

Conor McBride. Agda-curious?: an exploration of programming with dependent

types. In Peter Thiemann and Robby Bruce Findler, editors, ACM SIGPLAN

International Conference on Functional Programming, ICFP’12, Copenha-

gen, Denmark, September 9-15, 2012, pages 1–2. ACM, 2012.

Conor Thomas McBride. How to keep your neighbours in order. In Proceedings

of the 19th ACM SIGPLAN International Conference on Functional Pro-

gramming, ICFP ’14, pages 297–309, New York, NY, USA, 2014. ACM.

Robin Milner. A theory of type polymorphism in programming. JCSS: Journal

of Computer and System Sciences, 17, 1978.

Modelica — A Unified Object-Oriented Language for Systems Modelling; Lan-

guage Specification Version 3.3. Modelica Association, May 2012.

Pieter J. Mosterman and Gautam Biswas. Formal specifications for hybrid

dynamical systems. In IJCAI, pages 568–577. Morgan Kaufmann, 1997.

Henrik Nilsson. Functional automatic differentiation with dirac impulses. In

Proceedings of the Eight ACM SIGPLAN International Conference on Func-

tional Programming, 38(9):153–164, 2003.

195 BIBLIOGRAPHY

Henrik Nilsson. Type-based structural analysis for modular systems of equa-

tions. In Peter Fritzson, François Cellier, and David Broman, editors, Proceed-

ings of the 2nd International Workshop on Equation-Based Object-Oriented

Languages and Tools, Linköping Electronic Conference Proceedings, pages

71–81, Paphos, Cyprus, July 2008. Linköping University Electronic Press.

Henrik Nilsson and George Giorgidze. Exploiting structural dynamism in Func-

tional Hybrid Modelling for simulation of ideal diodes. In Proceedings of the

7th EUROSIM Congress on Modelling and Simulation, Prague, Czech Re-

public, September 2010. Czech Technical University Publishing House.

Henrik Nilsson, John Peterson, and Paul Hudak. Functional hybrid modeling.

In Proceedings of PADL’03: 5th International Workshop on Practical Aspects

of Declarative Languages, volume 2562 of Lecture Notes in Computer Science,

pages 376–390, New Orleans, Lousiana, USA, January 2003. Springer-Verlag.

Ulf Norell. Towards a practical programming language based on dependent

type theory. PhD thesis, Department of Computer Science and Engineering,

Chalmers University of Technology, Göteborg, Sweden, September 2007.

Ulf Norell. Dependently typed programming in agda. In Andrew Kennedy

and Amal Ahmed, editors, Proceedings of TLDI’09: 2009 ACM SIGPLAN

International Workshop on Types in Languages Design and Implementation,

Savannah, GA, USA, January 24, 2009, pages 1–2. ACM, 2009.

Christoph Nytsch-Geusen, Thilo Ernst, Andre Nordwig, Peter Schwarz, Peter

Schneider, Matthias Vetter, Christof Wittwer, Thierry Nouidui, Andreas

Holm, Jurgen Leopold, Gerhard Schmidt, Alexander Mattes, , and Ulrich

Doll. Mosilab: Development of a Modelica-based generic simulation tool sup-

porting model structural dynamics. In Proceedings of the 4th International

Modelica conference, Hamburg, Germany, 2005.

Constantinos C. Pantelides. The consistent initialization of differential-algebraic

BIBLIOGRAPHY 196

systems. SIAM Journal on Scientific and Statistical Computing, 9(2):213–231,

March 1988.

Peter Pepper, Alexandra Mehlhase, Christoph Höger, and Lena Scholz. A com-

positional semantics for modelica-style variable-structure modeling. In 4th

International Conference on Equation-based Object-oriented Modelling Lan-

guages and Tools, ETH Zürich, Switzerland, 2011.

Simon Peyton Jones. Special issue: Haskell 98 language and libraries. Journal

of Functional Programming, 13, January 2003.

Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In Proceed-

ings of the SIGPLAN ’88 Conference on Programming Language Design and

Implementation, pages 199–208, June 1988.

Benjamin Pierce. Types and Programming Languages. The MIT Press, 2002.

William Pugh. The Omega Test: a fast and practical integer programming

algorithm for dependence analysis. In Supercomputing 91, 1991.

Erik Saaman and Grant Malcolm. Well-founded recursion in type theory. Com-

puting science notes, Department of Mathematics and Computer Science,

University of Groningen, 1987.

Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin

Sulzmann. Type checking with open type functions. ACM SIGPLAN Notices,

43(9):51–62, September 2008.

Dana S. Scott and Christopher Strachey. Toward a mathematical semantics for

computer languages. In Proc. Symp. Computers and Automata. Polytechnic

Inst. of Brooklyn Press, 1971. Also Technical Monograph PRG-6, Program-

ming Research Group, Oxford University.

Michael L. Scott. Programming Language Pragmatics (3. ed.). Academic Press,

2009. ISBN 978-0-12-374514-9.

197 BIBLIOGRAPHY

Neil Sculthorpe. Towards safe and efficient functional reactive programming.

PhD thesis, Department of Computer Science, Nottingham University, Not-

tingham, UK, July 2011.

Raymond Serway. Physics for scientists and engineers. Thomson-Brooks/Cole,

Belmont, CA, 2004.

Tim Sheard and Simon Peyton Jones. Template metaprogramming for Haskell.

In Manuel M. T. Chakravarty, editor, ACM SIGPLAN Haskell Workshop 02,

pages 1–16. ACM Press, October 2002.

Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In

Proceedings, Scheme and Functional Programming Workshop 2006, pages 81–

92. University of Chicago TR-2006-06, 2006.

Simulink. SIMULINK - User’s Guide. MathWorks, Inc., Cochinate Place, 24

Prime Park Way, Natick, MA, 1992.

John Slaney. MINLOG: A minimal logic theorem prover. In William McCune,

editor, Proceedings of the 14th International Conference on Automated de-

duction, volume 1249 of LNAI, pages 268–271, Berlin, July 1997. Springer.

Walid Taha, Paul Brauner, Yingfu Zeng, Robert Cartwright, Veronica Gaspes,

Aaron Ames, and Alexandre Chapoutot. A core language for executable

models of cyber-physical systems (preliminary report), June 2012.

Simon Thompson. Haskell: The Craft of Functional Programming. Addison

Wesley, July 1996.

Rene Vestergaard. Normalisation by evaluation for system F using staged out-

ermost reduction, June 2000.

Philip Wadler. Monads for Functional Programming. Prentice Hall, 1993.

Zhanyong Wan and Paul Hudak. Functional reactive programming from first

principles. In Proceedings of PLDI’01: Symposium on Programming Language

Design and Implementation, pages 242–252, June 2000.

BIBLIOGRAPHY 198

ZhanyongWan, Walid Taha, and Paul Hudak. Real-time FRP. ACM SIGPLAN

Notices, 36(10):146–156, October 2001.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type

soundness. Information and Computation, 115(1):38–94, 1994. URL

citeseer.nj.nec.com/wright92syntactic.html.

Hongwei Xi. Dependent ML: An Approach to Practical Programming with

Depedent Types. Journal of Functional Programming, 2(17):215–286, 2007.

Angela Yun Zhu, Edwin M. Westbrook, Jun Inoue, Alexandre Chapoutot,

Cherif Salama, Marisa Linnea Peralta, Travis Martin, Walid Taha, Marcia K.

O’Malley, Robert Cartwright, Aaron Ames, and Raktim Bhattacharya. Math-

ematical equations as executable models of mechanical systems. In ICCPS

’10 Proceedings of the 1st ACM/IEEE International Conference on Cyber-

Physical Systems, pages 1–11. ACM, 2010.

Dirk Zimmer. Enhancing modelica towards variable structure systems. In

Peter Fritzson, François E. Cellier, and Christoph Nytsch-Geusen, editors,

Proceedings of the 1st International Workshop on Equation-Based Object-

Oriented Languages and Tools, EOOLT 2007, Berlin, Germany, July 30,

2007, volume 24 of Linköping Electronic Conference Proceedings, pages 61–

70. Linköping University Electronic Press, 2007.

Dirk Zimmer. Towards improved class parameterization and class generation in

modelica. In Peter Fritzson, Edward A. Lee, François E. Cellier, and David

Broman, editors, Proceedings of the 3rd International Workshop on Equation-

Based Object-Oriented Modeling Languages and Tools, EOOLT 2010, Oslo,

Norway, October 3, 2010, volume 47 of Linköping Electronic Conference Pro-

ceedings, pages 33–42. Linköping University Electronic Press, 2010.

Dirk Zimmer. A new framework for the simulation of equation-based models

with variable structure. Simulation, 89(8):935–963, 2013.

citeseer.nj.nec.com/wright92syntactic.html

	1 Introduction
	1.1 Static Semantics for Equation-based Languages
	1.2 Dynamic Semantics for Equation-based Languages
	1.3 Contributions of this Thesis
	1.4 Overview of Peer-Reviewed Publications
	1.5 Prerequisites
	1.6 Structure of this Thesis

	2 Equation-Based Modelling
	2.1 Preliminaries
	2.1.1 Systems of Equations
	2.1.2 Causality
	2.1.3 Modularity
	2.1.4 First-class Components
	2.1.5 Hybrid Systems
	2.1.6 Structural Dynamism

	2.2 Modelica
	2.2.1 An Object-Oriented Approach
	2.2.2 A Simple Model in Modelica

	2.3 Functional Hybrid Modelling
	2.3.1 A Functional Approach
	2.3.2 Functional Reactive Programming
	2.3.3 First-class Signal Relations
	2.3.4 Hydra: an FHM Language
	2.3.5 Hydra by Comparison
	2.3.6 A Simple Model in Hydra
	2.3.7 Higher-order Modelling
	2.3.8 Structurally Dynamic Modelling

	3 Agda and Notation
	3.1 Overview of Agda
	3.2 Agda in this Thesis
	3.2.1 Implementations and Mechanised Proofs
	3.2.2 Notation

	4 Structural Types
	4.1 Preliminaries
	4.1.1 Outline
	4.1.2 Structural Properties

	4.2 A Type System for Simple Balance
	4.2.1 Key Ideas
	4.2.2 H: A Core Language for Simple Balance
	4.2.3 Semantics
	4.2.4 A H Type System
	4.2.5 Preservation of Balance

	4.3 A Constraint-based Structural Type System
	4.3.1 Key Ideas
	4.3.2 Structural Criteria
	4.3.3 H: A Core Language for Structural Types
	4.3.4 A H Type System
	4.3.5 Metatheoretical Properties

	4.4 Evaluation
	4.4.1 Structural Properties in the Wild
	4.4.2 Case Study: Half-Wave Rectifier

	5 A Semantic Model of FHM
	5.1 Preliminaries
	5.1.1 Outline
	5.1.2 Models and Metalanguages
	5.1.3 Embedding a Model
	5.1.4 Normalisation by Evaluation

	5.2 A Semantic Model of FHM
	5.2.1 H"464A671 "564B679 : A Core Language for a Semantic Model
	5.2.2 A Model of H"464A671 "564B679
	5.2.3 Normalisation

	5.3 Correctness and Other Properties
	5.3.1 Correct by Construction
	5.3.2 Convertibility
	5.3.3 Indexing and Reindexing
	5.3.4 Embeddings
	5.3.5 Proof of Normalisation
	5.3.6 Approaches to Mechanised Theorem Proving

	5.4 A Model of Dynamism
	5.4.1 Shapes and Deformations
	5.4.2 Oracles and Interpretation
	5.4.3 Metatheoretical Properties

	5.5 Extensions
	5.5.1 Local Signal Variables
	5.5.2 Delayed Branch Normalisation

	6 Related Work
	6.1 Structural Types
	6.1.1 Modelica
	6.1.2 Broman, Nyström, and Fritzson
	6.1.3 Nilsson
	6.1.4 Bunus and Fritzson
	6.1.5 Furic
	6.1.6 Modelyze

	6.2 Semantics
	6.2.1 Kågedal
	6.2.2 Henzinger
	6.2.3 Giorgidze
	6.2.4 Pepper et al.
	6.2.5 Broman
	6.2.6 Wan and Hudak
	6.2.7 Acumen
	6.2.8 Sol
	6.2.9 Danielsson

	7 Summary and Future Work
	7.1 Summary
	7.2 Future Work

	Bibliography

