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Do I dare
Disturb the universe?

In a minute there is time
For decisions and revisions which a minute will reverse.

— T.S. Eliot, The Love Song of J. Alfred Prufrock

In humble dedication to the loving memory of my mother, Els, and
my father, Jan.



ABSTRACT

Quantum Markov processes are widely used models of the dynamics
open quantum systems, a fundamental topic in theoretical and math-
ematical physics with important applications in experimental realisa-
tions of quantumsystems such as ultracold atomic gases andnewquan-
tum information technologies such as quantum metrology and quan-
tum control. In this thesiswe present amathematical frameworkwhich
effectively characterises dynamical phase transitions in quantumMar-
kov processes, using the theory of large deviations, by combining in-
sights developed in non-equilibrium dynamics with techniques from
quantum information and probability.

We provide a natural decomposition for quantum Markov chains
into phases, paving the way for the rigorous treatment of critical fea-
tures of such systems such as phase transitions and phase purification
(Ch. 4). A full characterisation of dynamical phase transitions beyond
properties of the steady state is described in terms of a dynamical per-
spective through critical behaviour of the quantum jump trajectories
(Ch. 5).

We extend a fundamental result from large deviations for classical
Markov chains, the Sanov theorem, to a quantum setting; we prove this
Sanov theorem for the output of quantumMarkov chains Ch. 6, a result
which could be extended to a quantum Donsker-Varadhan theory.

In Ch. 7 we perform an in-depth analysis of the atom maser, an in-
finite-dimensional quantum Markov process exhibiting various types
of critical behaviour: for certain parameters it exhibits strong intermit-
tency in the atom detection counts, and has a bistable stationary state.
We show that the atom detection counts satisfy a large deviations prin-
ciple, and thereforewe deal with a phase cross-over rather than a genu-
ine phase transition, although the latter occurs in the limit of infinite
pumping rate. As a corollary, we obtain the Central Limit Theorem for
the counting process.
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So it goes.

— Kurt Vonnegut, Slaughterhouse-Five
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Part I

BACKGROUND

I thought of a labyrinth of labyrinths, of one sinuous
spreading labyrinth that would encompass the past and

the future and in some way involve the stars.

— Jorge Luis Borges, The Garden of Forking Paths



1
INTRODUCT ION

This thesis is, in essence, about the connection between rare events and
critical behaviour in quantum systems. The theory of large deviations
is a probabilistic framework for establishing how unlikely rare events
are. Intuitively speaking, if we flip a coin many times, it would be an
unlikely event for it to come up heads each time. Indeed, if we ima-
gine continuing this Sisyphean task ad infinitum, we would imagine
it increasingly unlikely to only see the one side of the coin. Large de-
viations aims to answer the following question: with what rate does
the probability of such unlikely events decay to zero? In Ch. 2 we will
introduce the ideas and results of large deviations in detail.
The other main topic in this thesis is the identification of quantum

phase transitions in a class of dynamical systems called quantumMar-
kov processes; in Ch. 3 we will introduce quantum Markov processes
in discrete and continuous time. The topics of large deviations and
quantum phase transitions are connected through a shared language
of statistical mechanics. In Sec. 2.6 and Sec. 2.7 we explain that large
deviations is a natural way of looking at systems in classical statist-
ical mechanics; meanwhile, in Sec. 3.4 and Sec. 3.7 we will see how the
concept of quantum jump trajectories leads to a non-equilibrium stat-
istical mechanics point of view in quantum systems.
These two background chapters make up the first part of the thesis;

in the second part, consisting of Chs. 4 - 7, we will present our results.
In Ch. 4 we show how a natural algebraic structure arises from a quan-
tumMarkov chain;we use this structure to obtain a decomposition into
blocks, which we call phases. This allows us to rigorously define a type
of phase transition, and we state and prove a result concerning purific-
ation towards such phases. We also explain how large deviations rate
functions exhibit indications of phase transitions and phase purifica-
tion. We look at several examples that illustrate these ideas.

2



introduction 3

In Ch. 5 we look at how phase transitions may be characterised, not
only in terms of properties of the stationary state, but also through
the behaviour of the trajectories. As will be shown in four examples,
intermittency and jumps in the trajectories are typical of systems near
critical points.
The shorter Ch. 6 contains a more technical result, which we refer to

as the Sanov theorem for quantumMarkov chains. This result extends
a fundamental result in large deviations to the output of a quantum
Markov chain. The ‘higher-level’ rate function associated with this res-
ult could serve as a more advanced indicator of phase transitions, in
cases where the usual rate function is unable to uncover critical beha-
viour.

The final chapter, Ch. 7, is an in-depth study of a particular quantum
Markov process, the atommaser. We discuss features of the stationary
state and the trajectories that indicate possible critical behaviour and
phase transitions. We show that a large deviations principle holds for
the rate function associated to a counting process for the output of the
atom maser; this means that a phase transition in one strict sense, fail-
ure of the rate function to be a smooth function, is only present in a
limit of infinite pump rate.



2
LARGE DEV IAT IONS

2.1 introduction

We are studying the behaviour of quantum dynamical systems in the
framework of large deviations. This is a wide-ranging topic in probab-
ility theory; in the book by denHollander [5] we find a concise descrip-
tion:

Large deviation theory is a part of probability theory that deals
with the description of events where a sum of random vari-
ables deviates from itsmean bymore than a “normal” amount,
i.e., beyond what is described by the central limit theorem.

To get an idea of what is meant by large deviations, consider the
following simple example. Suppose X1,X2, . . . is a sequence of real-
valued i.i.d. (independent and identically distributed) random vari-
ables with distribution P. Then the sequence S1,S2, . . . of partial sums
Sn = X1 + . . .+ Xn has its ‘normal’ behaviour described by the Strong
Law of Large Numbers (SLLN) and the Central Limit Theorem (CLT.)
These state, respectively, that

1

n
Sn → µ almost surely w.r.t. P

and

1

σ
√
n
(Sn − µn)→ Z in law w.r.t. P

where µ and σ are the mean and respective variance of P and Z is a
standard normal random variable. (Recall that a sequence of random
variables Xn converges almost surely w.r.t. P to X if

P
(
lim
n→∞Xn = X

)
= 1;

4



2.2 large deviations: basic results 5

Figure 2.1: Coin toss: typical trajectory (with sample mean converging to 1/2)
and rare trajectory

Xn converges to X in law w.r.t. P if the cumulative distribution func-
tions of Xn converge to that of X. [6]) The SLLN tells us that the em-
pirical average converges to µ, while the CLT gives us the probabil-
ity that the empirical average differs from µ by an amount of order
√
n. Large deviations means asking about the probability of quantities,

such as the empirical average, differing from their expected value by
an amount of order n.

2.2 large deviations: basic results

Large deviations can be considered for any sequence of random vari-
ables. Exhaustive treatments of the classical theory of large deviations
may be found in the books [7, 5, 8]. In the following section we review
large deviations for independent and identically distributed (i.i.d.) ran-
dom variables, and for Markov chains.
First we look at the important results for i.i.d. random variables: Cra-

mér’s theorem, which is a large deviations principle for the empirical
mean, and the Sanov theorem, which looks at large deviations for the
empirical measure.

2.2.1 Cramér theorem

At the most basic level we can consider large deviations for the sample
means of a sequence of i.i.d. random variables; a large deviations state-
ment in this case is ameasure of howunlikely it is thatwe find a sample
mean different from that predicted by the SLLN.



2.2 large deviations: basic results 6

Figure 2.2: Coin toss rate function I(z), 0 6 z 6 1; note that I(z) is convex and
minimal at E(X) = 1/2 (highlighted)

An intuitive understanding of theCramér theoremmay be gained by
a simple example, namely a sequence of identical coin tosses (see Fig.
2.1). In this case, we have the i.i.d. random variables (Xi) with P(X1 =

0) = P(X1 = 1) =
1
2 . Setting Sn =

∑n
i=1 Xi we get, for all a > 1

2 ,

lim
n→∞ 1n logP(Sn > an) = −I(a)

where the rate function is given by

I(z) = log 2+ z log z+ (1− z) log(1− z) (2.1)

if z ∈ [0, 1] and∞ otherwise.
Cramér’s Theorem is about the large deviation behaviour of the em-

pirical average 1nSn.

Theorem 2.1 (Cramér’s Theorem). Let (Xi) be i.i.d. R-valued random
variables satisfying

ϕ(t) = E(etX1) <∞ ∀t ∈ R.

Let Sn =
∑n
i=1 Xi. Then, for all a > E(X1),

lim
n→∞ 1n logP(Sn > an) = −I(a),

where

I(z) = sup
t∈R

[zt− logϕ(t)].

The proof of Cramér’s Theorem consists of showing that the lim sup
(lim inf) of 1n logP(Sn > 0) is bounded above (below) by the quantity
log ρ, where ρ = inft∈Rϕ(t). The lim sup bound follows from a result
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called the exponential Chebyshev inequality, but the lim inf ismore dif-
ficult. In particular, the lower bound is shown using a technique called
the Cramér transform (or Cramér tilting); this is a change of probability
measure, which effectively makes rare events become regular events. 2
The function I(z) is called the rate function and it satisfies some nice

properties; in particular, we have I(z) > 0 with equality if and only
if z = µ; I ′′(µ) = 1/σ2; and I is smooth and strictly convex (roughly
speaking) whenever it is finite. Note that I is the Legendre transform of
the logarithm of the moment generating function ϕ.
There are some technical points in the book [5] which allow us the

loosen the hypothesis of the above theorem, but we skip these for now.
Finally, note that we can rewrite the result of Cramér’s Theorem as

lim
n→∞ 1n logP

(
1

n
Sn ∈ A

)
= − inf

z∈A
I(z)

where A = [a,∞),a > µ. This paves the way for generalizations to
other subsets A of R, and besides leads to the following adage:

Any large deviation is done in the least unlikely of all the
unlikely ways.

2.2.2 Sanov theorem for the empirical measure

The next step is to generalize Cramér’s Theorem. The firstway inwhich
we will generalize that result is by looking at large deviations not just
for the average of a sequence of i.i.d. random variables X1,X2, . . ., but
for the frequency at which they take on certain values. We assume that
X1 takes on finitelymany values in the set Γ = {1, . . . , r}; the distribution
of X1 is determined by

P(X1 = s) = ρs > 0

for all s ∈ Γ .
We define the empirical measure LXn associated to the process X =

(X1, . . . ,Xn) by

LXn =
1

n

n∑
i=1

δXi

where, for s ∈ Γ , δXi(s) = 1 if Xi = s and 0 otherwise. This is a probab-
ility measure on Γ : in particular, for s ∈ Γ ,

LXn(s) =
1

n
# {i ∈ {1, . . . ,n} : Xi = s} ∈ [0, 1]
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which is the empirical frequency of the event s. However, LXn is a ran-
dom probability measure (in the literature referred to as a point pro-
cess) since it depends on the random process (Xi). Each realisation
x = (x1, x2, . . . , xn) ∈ Γn defines (up to permutations) a probability
measure Lxn ∈ L1(Γ).
Note that the space of probability measures L1(Γ) is in one-to-one

correspondence with the probability simplex m1(Γ) defined as

m1(Γ) =

{
ν = (ν1, . . . ,νr) ∈ [0, 1]r :

r∑
s=1

νs = 1

}
;

in particular, to Ln is associated the element (Ln(1), . . . ,Ln(r)) ∈ m1(Γ).
This probability simplex can be given a topology from the total vari-
ational distance

d(µ,ν) = 1

2

r∑
i=1

|µs − νs|

which allows us to consider convergence of Ln. Using the SLLN, we
have that

lim
n→∞d(Ln, ρ) = 0 P − a.s.

The CLT gives us, for each s ∈ Γ ,

lim
n→∞

√
n

σ
(Ln(s) − ρs) ∼ Z(0, 1)

where

σ2 = Var(δX1(s)) = ρs(1− ρs).

Sowe are able to describe the ‘normal’ behaviour of Sn, but what about
the large deviations behaviour? We know that the probability of Ln
not converging to ρ goes to zero with n, but at what rate? This is what
Sanov’s Theorem tells us: the probability of Ln staying outside of some
ball around ρ.

Theorem 2.2 (Sanov’s Theorem for the empirical measure). Let (Xi) be
i.i.d. random variables taking values in Γ = {1, . . . , r} with probability
P(X1 = s) = ρs > 0. Then, with Ln as above, for all a > 0,

lim
n→∞ 1n logP(Ln ∈ Bca(ρ)) = − inf

ν∈Bca(ρ)
Iρ(ν)

where Bca(ρ) is the open ball of radius a around ρ,

Bca(ρ) = {ν ∈ m1(Γ) : d(ν, ρ) < a} ,

and Iρ(ν) is the relative entropy H(ν|ρ) of νwith respect to ρ,

Iρ(ν) =

r∑
s=1

νs log
(
νs

ρs

)
.
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2.2.2.1 Example: fair q-sided die

To illustrate Sanov’s theorem for the empirical measure, consider the
following example [9, Ex. 2.3]. In the first example we showed how
the empirical mean of a sequence of fair coin tosses satisfies a large
deviation principle; in this example we now consider repeated rolls of
a fair q-sided die, and look at the large deviationsmean of the empirical
measure.
Supposewe roll a fair q-sided dien times and record the outcomes in

a sequenceω = ω1, . . . ,ωn. Then we can useω to work out the empir-
icalmeasure for this process: denote byπ1, . . . ,πq howoften each of the
q possible outcomes 1, . . . ,q appears inω. Then the empirical measure
is the vector Ln(ω) = (π1, . . . ,πq). Intuitively, we expect that as n→∞,
the empirical measure gets closer to the vector µ := (1/q, . . . , 1/q). The
Sanov theorem for the empirical measure is a way of making this ob-
servation into a rigorous statement, using a large deviations principle
for Ln.
For each n ∈N the space of outcomes isΩn = {1, 2, . . . ,q}n; for every

ω ∈ Ωn we define for i = 1, . . . ,q the random variable

Lni (ω) =
1

n

n∑
j=1

δωj(i)

where δωj(i) is 1 ifωj = i and 0 otherwise. Then the empirical measure
is given by Ln(ω) = (Ln1 (ω), . . . ,Lnq(ω)). For any subset A ⊂ Ωn define
the probability

Pn(A) =
∑
ω∈A

1

qn
.

Then the law of large numbers states that Ln − µ → ∞ in law wrt. Pn
as n → ∞. The Sanov theorem gives us information about the large
deviations behaviour of Ln, which means the rate of decay of the prob-
ability that Ln stays away from µ. To make this precise, [9, Thm. 2.4], for
any subset A ⊂ m1(Γ) we have

lim
n→∞ 1n log Pn (Ln ∈ A) = −min

ν∈A
I(ν|µ)

where I denotes the relative entropy

I(ν|µ) =

q∑
i=1

νi log(νiq).
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2.2.3 Sanov theorem for the pair empirical measure

In order to study Markov chains, in which case the process X1,X2, . . .
is generally not i.i.d., we now turn to pair empirical measures. With the
process (Xi) as before, these are measures L2n defined by

L2n =
1

n

n∑
i=1

δ(Xi,Xi+1)

where Xn+1 = X1. Then for (s, t) ∈ Γ × Γ we have

L2n(s, t) =
1

n
# {i ∈ {1, . . . ,n} : Xi = s,Xi+1 = t}

so L2n(s, t) gives the empirical frequency of the subsequent events (s, t).
Then L2n is a random probability measure on Γ × Γ ; in particular, it is
an element of the set

m̃1(Γ × Γ) =
{
ν = (νst) ∈ m1(Γ × Γ) :

∑
t

νst =
∑
t

νts∀s
}

due to the periodic boundary condition. With the total variation dis-
tance from before

d(µ,ν) = 1

2

∑
s,t

|µst − νst|

we can use the SLLN to get

d(L2n, ρ× ρ)→ 0 P − a.s..

For large deviations away from ρ× ρ we then have the following the-
orem.

Theorem 2.3 (Sanov’s Theorem for the pair empirical measure). Let
(Xi) be i.i.d. random variables as before, and L2n as above. Then for all
a > 0,

lim
n→∞ 12 logP(L2n ∈ Bca(ρ× ρ)) = − inf

ν∈Bca(ρ×ρ)
I2ρ(ν)

where the open ball Ba is

Ba(ρ× ρ) = {ν ∈ m̃1(Γ × Γ) : d(ν, ρ× ρ) 6 a}

and the rate function I2ρ is

I2ρ(ν) =
∑
s,t
νst log

(
νst

ν̄sρt

)
where ν̄s =

∑
t νst.
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We skip the proof; it is similar to the previous Sanov’s Theorem, but
more complicated due to the combinatorics involved. In Ch. 6 we will
consider the Sanov theorem for the empirical measure, the pair em-
pirical measure and the empirical measure for longer sequences for
quantum Markov processes.

2.3 large deviations principle: gärtner-ellis theorem

In this section we state an important result, the Gärtner-Ellis theorem;
it is a generalisation of Cramér’s theoremwhich no longer requires the
sequence of randomvariables to be independent. TheGärtner-Ellis the-
orem gives a sufficient condition for the existence of a large deviations
principle. Before we state the theorem, we introduce a rigorous defin-
itions of the large deviations principle. Abstractly speaking, the large
deviations principle characterises the limiting behaviour, as n→∞, of
a family of probability measures {µn} on a topological space (X,B) in
terms of a rate function.

Definition 2.1 (Rate function [8], p. 4). A (good) rate function I is a
lower semicontinuous function I : X→ [0,∞] (that is, for all α ∈ [0,∞),
the level set {x ∈ X : I(x) 6 α} is a closed (compact) subset of X). The
domain of I is the set of points in X for which the rate function I is
finite.

The limiting behaviour of the probability measures {µn} is character-
ised in terms of asymptotic upper and lower bounds on the values that
µn assigns to measurable subsets Γ ∈ B.

Definition 2.2. (Large deviation principle [8, p. 5]). The sequence of
probability measures {µn} satisfies a large deviation principle with a
rate function I if, for all Γ ∈ B,

− inf
x∈Γ0

I(x) 6 lim inf
n→∞ 1

n
logµn(Γ) 6 lim sup

n→∞
1

n
logµn(Γ) 6 − inf

x∈Γ̄
I(x)

(2.2)

where Γ0 and Γ̄ denote the interior and closure of Γ , respectively.

The sentence “µn satisfies the LDP” is used as shorthand for “{µn}
satisfies the large deviation principle with rate function I.” Loosely
speaking, the above chain of inequalities may be summarised [10, p.
120] by the notation

µn(dx) ≈ e−nI(x)dx (2.3)
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which is the informal idea behind the large deviation principle. We
now state the Gärtner-Ellis theorem. Different versions of the theorem
generally only differ by technicalities; we follow one of the main refer-
ences to large deviations [8].
The Gärtner-Ellis theorem relies on technical details from convex

analysis, which we will first introduce. Let Λ be a convex function
on Rd and let DΛ =

{
λ ∈ Rd : Λ(λ) <∞}. Then Λ is called essentially

smooth [8, Df. 2.3.4] if the interior D0Λ is nonempty, Λ is differentiable
on D0Λ, and Λ is steep: |∇Λ(λn)| → ∞ for any sequence (λn) ⊂ D0Λ

converging to a boundary point of D0Λ. The function Λ is called lower
semi-continuous if for any a > 0 the level set

{
x ∈ Rd : Λ(x) 6 a

}
is a

closed subset of Rd. For example, any function which is differentiable
on Rd is lower-semicontinuous and essentially smooth.

Theorem 2.4 (Gärtner-Ellis theorem [8], pp. 44-55). Let (Zn) be a se-
quence of random variables in Rd with laws µn. Suppose that the log-
arithmic moment generating function

Λ(λ) = lim
n→∞ 1n logE

[
e〈nλ,Zn〉

]
, λ ∈ Rd (2.4)

exists as an extended real number and is finite in a neighbourhood
of the origin, and let Λ∗ denote the Fenchel-Legendre transform of Λ,
given by

Λ∗(x) = sup
λ∈Rd

{〈λ, x〉−Λ(λ)} . (2.5)

IfΛ is an essentially smooth, lower semicontinuous function then (Zn)

satisfies a LDP with good rate function Λ∗, that is, for any F ∈ B(Rd),

− inf
x∈Fo

Λ∗(x) 6 lim inf
n→∞ 1

n
logµn(F) (2.6)

6 lim sup
n→∞

1

n
logµn(F) 6 − inf

x∈F̄
Λ∗(x). (2.7)

Note that the original statement of the Gärtner-Ellis theorem formu-
lates a weaker form of the LDP consisting of upper and lower bounds
when the smoothness assumptions are dropped. This theorem con-
tains Cramér’s theorem as a special case, obtained by setting Zn to be
the sample mean (X1 + . . .+Xn)/n of a sequence (Xn) of i.i.d. random
vectors with finite moment generating functions ([9, p. 115]). The func-
tion Λ(λ) then equals logE

[
e〈t,X1〉

]
with corresponding rate function

Λ∗ the same as in Cramér’s theorem.
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2.4 rate functions and the classical perron-frobenius the-
orem

The Perron-Frobenius Theorem is an important step in proving any
large deviations principle for classical processes, as the asymptotic be-
haviour of eigenvectors plays a key role in determining the existence of
a rate function. Transition matrices, such as those characterising Mar-
kov chains, are stochastic matrices; that is, their elements are all non-
negative and the rows sum to 1. For details on the concept of irredu-
cibility for non-negative matrices we refer the reader to [11]; we briefly
review the main definitions and theorems following [12] (Ch. 8).
A non-negative matrix X is called irreducible [8] if for all pairs of in-

dices (i, j) there exists n ∈ N such that [Xn]i,j > 0. The spectral circle
of a matrix X consists of those eigenvalues λ of X satisfying λ = ρ(X),
where ρ(X) is the spectral radius of X. The Perron-Frobenius theorem
for such irreducible non-negative matrices considers the multiplicity
of ρ(X) and the positive eigenvectors of X.
The classical Perron-Frobenius theorem for irreducible (finite-dimen-

sional) matrices says that the spectral radius is an eigenvalue with a
positive eigenvector, and establishes invariance of the entire spectrum
with respect to rotations of the complex plane.

Theorem 2.5 (Perron-Frobenius [13], p. 27-32). Let A be a positive irre-
ducible matrix.

1. The spectral radius r = r(A) is strictly positive, and r is a simple
eigenvalue;

2. The matrix A has a strictly positive eigenvector x corresponding
to r and any positive eigenvector of A is a multiple of x;

3. If A has h eigenvalues of the same modulus, say

λ0 = re
iθ0 , λ1 = reiθ1 , . . . , λh−1 = reiθh−1 , (2.8)

0 = θ0 < θ1 < · · · < θh−1 < 2π (2.9)

then these eigenvalues are simple and are the distinct roots of
λh − rh = 0;

4. The spectrum of A is invariant under a rotation of the complex
plane by 2π/h.
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Note that this result does not exclude the possibility of finding other
eigenvalues on the spectral circle. An irreducible non-negative matrix
X is called primitive if it has only one eigenvalue on the spectral circle,
namely the spectral radius itself. In other words, amatrix T is primitive
if and only if it is irreducible and aperiodic.
An irreducible matrix which is not primitive has h > 1 eigenvalues

on its spectral circle, and as such is periodic with period h. A result of
Frobenius characterises primitive matrices, and can be used as a defin-
ition: a non-negative matrix X is called primitive if there exists m ∈ N

such that [Xm]i,j > 0 for all indices i, j.
In the following section, we will see how the Perron-Frobenius the-

orem plays a vital role in proving large deviation principles for non-
i.i.d. stochastic processes.

2.5 large deviations for markov processes

We noted in Sec. 2.3 that the Gärtner-Ellis theorem generalises Cra-
mér’s theorem to non-i.i.d. sequences of random variables. We will
now see an application of the Gärtner-Ellis theorem by proving a large
deviations principle for a class of non-i.id. processes, namely Markov
chains. A sequence of random variables Y1, Y2, . . . taking values in a fi-
nite set Σ is called aMarkov chain if, given the value of Ym at some time
m, for any n > 0 the probability distribution of Ym+n is completely
determined. In particular, the transition probabilities

π(i, j) = P (Ym+1 = j|Ym = i)

completely characterise the process; we denote byΠ = [π(i, j)] the trans-
ition matrix of the Markov process.
The Cramér theorem can be generalised to a Markov chain (Yi)with

transition matrix Π taking values in a finite set Σ. In order to define
an empirical mean, we need to map the random variables Yi to an ad-
ditive space via a deterministic function f : Yi 7→ Xi = f(Yi) ∈ Rd.
The empirical mean is then given by Sn =

∑n
i=1 f(Yi). In particular [8,

p. 76], suppose we take f as an indicator function of the form f(Y) =

(11(Y), . . . , 1|Σ|(Y)). Then Sn is the empirical measure for the Markov
chain, and we obtain the Sanov theorem for this measure by the fol-
lowing Cramér theorem.
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It is also possible to use Cramér’s theorem for Markov chains to
prove an analogue of the Sanov theorem for the pair empirical meas-
ure. This is done by defining a new process Zi consisting of the pairs
Zi = (Yi, Yi+1). This is itself a Markov chain, to which the Sanov the-
orem for the empirical measure can be applied; at the level of the pro-
cess Yi, this translates to the pair empirical measure (in this case, the
rate function may be expressed as a relative entropy [8, p. 79]).
This is of particular interest for the results discussed in Ch. 6 where

we state and prove a Sanov theorem (for the empirical measure, the
pair empirical measure, and longer sequences of outcomes). Our proof
also relies on the construction of a new process; in our case, this in-
volves constructing a transition operator for a new quantum Markov
process, on a larger space of outcomes. (In general, this approach of
considering large deviation principles on all different levels, i.e. sample
means, empirical measures (for the mean, pairs, etc.) and empirical pro-
cesses, is referred to as Donsker-Varadhan theory.)
Note that irreducibility plays an important role in defining a large

deviations principle for Markov chains; a reducible Markov chain may
lead to non-analyticities in the LD rate function [14].

Theorem 2.6. (Cramér theorem for Markov chains [8, p. 74]). Let (Yi)
be a Markov chain, with finite state space Σ and irreducible transition
matrix Π = [π(i, j)]. Define the empirical mean Sn in terms of a given
deterministic function f : Σ→ Rd as

Sn =
1

n

n∑
i=1

f(Yi).

Denote by Pπσ the probability measure associated to the Markov chain
defined by

Pπσ(y1, . . . ,yn) = π(σ, 1)π(1, 2) · · ·π(n− 1,n).

Then for any subset Γ ⊂ Rd and any initial state σ ∈ Σ,

− inf
z∈Γo

I(z) 6 lim inf
n→∞ 1

n
log Pπσ(Sn ∈ Γ)

6 lim sup
n→∞

1

n
log Pπσ(Sn ∈ Γ) 6 − inf

z∈Γ̄
I(z)

where the rate function I is given by the Legendre transform of the log-
arithm of the Perron-Frobenius eigenvalue of the deformed transition
matrix Πλ,

I(z) = sup
λ∈Rd

[〈λ, z〉− log ρ(Πλ)]
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where we define the deformed matrix elements

πλ(i, j) = π(i, j)e〈λ,f(j)〉, λ ∈ Rd; (2.10)

that is, Sn satisfies a large deviation principle with good rate function
I.

Proof. The proof of this theorem relies on the Gärtner-Ellis theorem;
since this way of proving that an LDP holds is quite general (in fact, it
is how we approach our Sanov theorem in Ch. 6) we briefly sketch the
proof. For λ ∈ Rd define the sequence of logarithmic moment generat-
ing functions

Λn(λ) = logE
[
e〈λ,Sn〉

]
.

Then the limit (cf. Eq. 2.4)

Λ(λ) = lim
n→∞ 1nΛn(nλ)

satisfies the conditions of the Gärtner-Ellis theorem: in particular, Λ is
finite and differentiable on Rd. To see why, note that

Λn(nλ) = logE
[
e〈λ,

∑n
i=1 f(Yi)〉

]
= log

|Σ|∑
y1,...,yn=1

Pσ (Y1 = y1, . . . , Yn = yn)

n∏
k=1

e〈λ,f(yk)〉

= log
|Σ|∑
yn=1

Πnλ (σ,yn)

using the Markov property and the definition of πλ in Eq. 2.10. Since
Πλ is irreducible and positive, the Perron-Frobenius theorem applies,
and we conclude that the dominating term in Πnλ is the spectral radius
ρ(Πλ), and

Λ(λ) = log ρ(Πλ).

Because ρ(Πλ) is a simple eigenvalue, we may conclude that it is pos-
itive, finite and differentiable, and so the large deviation principle fol-
lows.

Aswewill see in the next chapters, the perturbed transition operator
obtained by rescaling its matrix elements plays a central role, both in
classical and quantum applications of large deviations.
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2.6 large deviations and statistical mechanics

Aswewill explained below, the use of large deviations in quantum sys-
tems has its roots partially in statistical mechanics [9]. It is in this con-
text that phase transitions are traditionally studied, and it is therefore
instructive to take some time to consider the developments that lead
to the formulation of quantum phase transitions. We suggest [15] for a
reference on classical thermodynamics. The review article [9] offers a
very good overview of large deviations and its connection to statistical
mechanics; in this section we will only consider one example from this
article.
We will look at the Curie-Weiss model, in which we consider the

sample means (using Cramér’s theorem) for the magnetisation. This
model is a particular type of ferromagnetic model on a lattice, which
is a larger class of spin systems including the Curie-Weiss-Potts model
and the Ising model. Dynamical phase transitions arise from two com-
peting microscopic effects: attractive forces of interaction, ordering the
system (measured in energy), and thermal excitations, randomising the
system (measured in entropy). In phase transitions at sufficiently low
temperatures, energy effects predominate.

2.6.1 Curie-Weiss model: introduction

The Curie-Weiss model is a spin system defined on an increasing se-
quence of subsets of N given by Λn = {1, 2, . . . ,n}. The configuration
space of this model is Ωn = {−1, 1}Λn ; a sequence ω ∈ Ωn represents
the values of the spin at each of the n sites. We assign a probability 2−n

to each sequence, which extends to a probability measure Pn on Ωn.
We define a function Hn : Ωn → R called the Hamiltonian, given by

Hn(ω) = −
n

2

(
1

n

n∑
i=1

ωi

)2
.

The state of the system is described by a probability measure on the set
{Λn : n ∈N} called the finite-volume Gibbs state; this state is defined by
a probability measure Pn,β on each Λn, and is parametrised by the in-
verse absolute temperature β > 0. The probabilitymeasure Pn,β is defined
for ω ∈ Ωn as

Pn,β(ω) =
1

Zn(β)
exp [−βHn(ω)]Pn(ω)
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where the normalisation factor Zn(β), called the partition function, is
defined by

Zn(β) =

∫
Ωn

exp [−βHn(ω)]Pn(dω).

2.6.2 Curie-Weiss model: large deviations

Usually in statistical mechanics, large deviations are considered for a
macroscopic observable: by this, wemean a sequence of randomvariables
(Yn) such that Yn/|Λn| has a limit as n → ∞. In this example we con-
sider the magnetisation, which is defined as the average spins per site
Sn/nwhere

Sn =

n∑
i=1

ωi.

In particular, the sequence
{
Pn,β(Sn/n ∈ dx) : n ∈N

}
satisfies a large

deviation principle [9, Thm. 9.1] on R with rate function

Iβ(x) = I(x) −
β

2
x2 − inf

y∈R

{
I(y) −

β

2
y2
}

shown in Fig. 2.3. Here I is the rate function for fair coin tossing (cf. Eq.
2.1) given by

I(x) =
1− x

2
log(1− x) + 1+ x

2
log(1+ x)

for |x| 6 1 and∞ otherwise. The rate function Iβ reflects two competing
effects: there is a thermal effect, randomisation, coming from the I(x)
term, while there is an ordering effect from the quadratic term.
Notice that the Hamiltonian is minimal when the system is in a con-

figuration where all spins have the same sign (denoted byω+ andω−).
The Gibbs state assigns larger probabilities to configurations where
more sites agree in sign (which is why the Gibbs state models a fer-
romagnet.) For β = 0 the probability measure Pn,β becomes the fair
coin tossing measure discussed before; we know this satisfies a law of
large numbers and a large deviations principle. On the other hand, as
β → ∞, the probability measure Pn,β becomes the sum of two Dirac
delta measures on the extremal configurations ω+ and ω−: as n→∞,

lim
β→∞Pn,β =

1

2
(δω+ + δω−)
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Figure 2.3: Curie-Weiss model: rate function Iβ(x) for various β including
βc = 1, showing multiple minima for β > βc

Figure 2.4: Curie-Weiss model: ‘phase diagram’ of the rate function Iβ(x),
with the minimal values (white line) showing the phase transition
as a splitting at β = βc

for which the law of large numbers fails and the rate function becomes
non-convex. We therefore expect there to be some critical temperature
βc > 0.
For β 6 1 the rate function Iβ(x) attains its infimum 0 at the unique

point x = 0, and Iβ is strictly convex on the interval [−1, 1]. For β > 1
there is no longer a unique infimum: Iβ(x) = 0 at some m+(β) ∈ (0, 1)
and at −m+(β) and Iβ is no longer convex (see Figs. 2.3 and 2.4)..
This behaviour at the critical inverse temperature βc = 1 can be seen

in a breakdown of the law of large numbers [9, Thm. 9.2]: if β 6 1 we
have the limit as n→∞

Pn,β(Sn/n ∈ dx)→ δ0
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Figure 2.5: Rate function Iβ(x) (blue) and the rate function from the Gärter-
Ellis theorem (red), for β = 1.2. For β > βc, Iβ is non-convex and
the Gärtner-Ellis theorem fails to give the correct rate function: it
gives us the convex envelope of the actual rate function.

so a law of large numbers is valid; however, if β > 1we have

Pn,β(Sn/n ∈ dx)→
1

2

(
δm+(β) + δ−m+(β)

)
meaning the law of large numbers is no longer valid; this breaking
downof the lawof large numbers is called a phase transition. It is import-
ant to note that it is still possible (for example, in this case) for a large
deviations principle to hold at such a phase transition; however, the
Gärter-Ellis theorem fails to give the correct rate function, as shown
in Fig. 2.5. Using the Gärtner-Ellis theorem, by considering the non-
analyic or non-convex behaviour of the rate function, to indicate phase
transitions is something we will return to in Ch. 7.

2.7 review of statistical mechanics of trajectories

Our treatment of large deviations in quantum systems is founded on
a similar approach to large deviations in statistical mechanics, called
the statistical mechanics (or thermodynamics) of trajectories. In this
subsection we present a short literature review on the use of large de-
viations in statistical mechanics, focused on the development towards
the formalism of thermodynamics of trajectories. The recent compre-
hensive review article [16] considers the connections between the the-
ory of large deviations and equilibrium and non-equilibrium statist-
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ical mechanics, including the ensembles of trajectories and phase trans-
itions in non-equilibrium systems considered in this section.
Trajectories for a statistical mechanical model consist of realisations

of the stochastic dynamics. For the Curie-Weiss model from the previ-
ous section, for example, one particular trajectory takes the formω(t) =

ω1(t),ω2(t), . . . of the spins on each site. The Curie-Weiss model fea-
tures a phase transition at a critical point βC > 0; at this point, traject-
ories show intermittency in time, coming from the competing order and
disorder from the two phases. This is a feature of the thermodynamics
of trajectories approach: phase transitions are indicated by intermittent
behaviour of the trajectories.
The role played by large deviations in the thermodynamics of tra-

jectories is the same, in spirit, as in the coin toss example at the begin-
ning of this chapter: there, rare trajectories stayed away from the mean,
and typical trajectories converge to the mean. Associating a probabil-
ity measure to trajectories allows us to rigorously talk about ‘rare’ and
‘typical’ realisations. In particular, a large deviations parameter intro-
duced as a field swhich couples to one of the order parameters. Taking
s 6= 0, themaster operator of the dynamics then generates trajectories for
which the rare realisations become typical [17].

The pair of articles [18, 19] play an important role in the develop-
ment of the thermodynamics of trajectories formalism. The authors
study the occurrence of phase transitions by considering ensembles of
trajectories in the framework of large deviations: this is done by defin-
ing a large deviations rate function which encodes information about
fluctuations around typical trajectories. The rate function depends on
some order parameter s; singularities near s = 0 correspond to trans-
itions between phases of distinct dynamical activity. This rate function
is obtained as the largest real eigenvalue of the superoperator associ-
ated to theMarkov dynamics. (See also [20, 21] for a treatment of phase
transitions between regions of differing dynamical activities.)
The influential article [22] introduces Ruelle’s thermodynamic form-

alism: here the large deviations rate function is identified as largest real
eigenvalue of the master superoperator (sometimes referred to as the
Lebowitz-Spohn operator [23]). Degeneracies in the largest real eigen-
value are shown to imply the existence of metastable phases in [24], an
important relationship, which plays a role in our results.
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A particular class of models in which the thermodynamics of traject-
ories approach has been applied succesfully are kinetically constrained
models [25] of slowly relaxing systems called glasses [26]. Again, traject-
ories are classified according to their dynamical activity [27] and phase
transitions, called glassy transitions[28, 29, 30], are shown to occur. In
terms of trajectories, coexistence of the phases is shown by the existence
of large “bubbles” of low activity in the space-time trajectory. A prob-
ability density may be defined for the occurrence of such bubbles; lar-
ger (mesoscopic) bubbles are rare and dominate the non-Gaussian (ex-
ponential tail) of the “magnetisation” (or activity) distribution [31, 32].
This non-traditional phase transition is characterised in [33, 34] using
a field s that couples to the activity.
In Ch. 5 we will consider quantum analogues of statistical mechan-

ical models, and see how phase transitions appear in their trajectories.



3
QUANTUM MARKOV PROCESSES

3.1 introduction

In this chapter we first introduce the necessary background to quan-
tum Markov processes, in discrete time and in continuous time. We
briefly review existing prior work on the use of large deviations in
quantum systems and outline the framework of thermodynamics of
quantum trajectories.

Real quantum systems are "open" in the sense that they interact with
their environment, which leads to an irreversible loss of coherence and
to energy dissipation. In many cases, the dynamics can be well de-
scribed by the Markov approximation in which the environment pos-
sesses nomemory and interacts weaklywith the system. The joint unit-
ary evolution of the system and environment can be described through
the input-output formalism [35] using quantumstochastic calculus [36].
In this framework, theMarkov semigroup can be seen as the average of
a stochastic quantum trajectories arising from continuous-time meas-
urements performed in the environment. Since in many experiments
the system is not directly accessible, its (conditional) evolution is in-
ferred from the detection trajectories via stochastic Schrödinger (or fil-
tering) equations [37, 38]. In the next two sections we will introduce
quantum Markov processes in discrete and continuous time; in part
this follows the treatment of this topic found in [39].

3.1.1 Notation and mathematical background

We briefly review somemathematical background used in the descrip-
tion of quantum systems; we refer the reader to e.g. [40] for a complete
introduction. Pure states of a quantum system are unit vectors in some

23
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Hilbert space h (i.e. a complete inner product space h), and observables
are self-adjoint operators acting on h. If h is finite-dimensional, h ≡ Cd,
say, the set of all linear combinations of observables on h is equivalent
to the spaceMd of complexd×dmatrices;we refer toMd as the algebra
of observables associated to the quantum system. (In this context, an
algebra is simply a vector space on which multiplication is defined.)
If h is infinite-dimensional, the algebra of observables associated to

the system is given by the setB(h) of all bounded operators on h. In the
finite-dimensional case, B(Cd) coincides with the matrix algebra Md.
(For later reference, we note that the algebra B(h) is a C∗-algebra, and
specifically, a von Neumann algebra.)
If the quantum system is in a pure state ψ ∈ h we compute expecta-

tion values of observables X ∈ B(h) as the inner product 〈ψ,Xψ〉. More
generally, a state on B(h) is defined by a positive† operator ρ ∈ B(h)

with unit trace, called a density operator; any such density operator
ρ may be expressed as a convex linear combination of pure states by
writing ρ =

∑
i pi|ψ〉〈ψ|. Such a state is called a mixed state, and ex-

pectation values of X ∈ B(h) are computed as the trace Tr [ρX].

3.1.2 Completely positive maps and Kraus operators

In the following sections we will consider time evolution of quantum
systems. If the time evolution is a reversible change of the state of the
system (that is, there is an operationwhich takes us back to the original
state) it is described by a unitary operator U ∈ B(h) (i.e. U∗U = UU∗ =

1h) defining a change to the state ρ 7→ UρU∗. (We note that this is a de-
scription of the change in the Schrödinger picture, describing the way
states change; dual to this is theHeisenberg picture, in which states are
fixed and observables change.) More generally, irreversible changes to
a quantum system are described by completely positive maps, which
are the most general description of any change, dynamical or other-
wise, to a quantum system.

A map T on an operator algebra B(h) is called positive if it leaves
invariant the set of all positive elements in B(h); T is called completely
positive if

T ⊗ Id : B(h)⊗Mn → B(h)⊗Mn

†An operator X ∈ B(h) is called positive, denoted X > 0, if 〈Xψ,ψ〉 > 0 for all ψ ∈ h.
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is a positive map for all n ∈ N. In the section on Perron-Frobenius
theory below we will discuss more notions of positivity.
Completely positive maps satisfy an abstract result called the Stine-

spring representation theorem [41], from which we obtain the follow-
ing Kraus form. T is a completely positive map on a finite-dimensional
algebraB(h) if and only if there exists a family ofKraus operatorsV1, . . . ,Vk
in B(h) such that, in the Heisenberg picture,

T(X) =

k∑
i=1

V∗i XVi (3.1)

for all X ∈ B(h); T is identity preserving if and only if
∑k
i=1 V

∗
i Vi = 1

(and in this case, T is also referred to as a channel). Clearly the dual
(Schrödinger picture) map T∗ satisfies

T∗(ρ) =
k∑
i=1

ViρV
∗
i

for all density operators ρ ∈ B(h).

3.2 discrete time: quantum markov chains

We first consider quantum Markov processes in discrete time; in this
case, we refer to them as quantumMarkov chains. Intuitively speaking,
a quantumMarkov chain is a family of states (ρ(0), ρ(1), ρ(2), . . .)where
each state at time t, ρ(t), is obtained from the state at the preceding time
t− 1 by some transition operator T∗,

ρ(t) = T∗(ρ(t− 1)).

Note that this is analogous to a classical Markov chain, where the prob-
ability distribution (state) at a time t is obtained by applying the trans-
fer matrix to the state at the previous time t− 1. Replacing the probab-
ility distribution by a density matrix, and the transfer matrix by a com-
pletely positive trace-preservingmap called the transition operator, we
arrive at a quantum Markov chain.
A quantum Markov chain is constructed as the state of a system

which repeatedly interacts with identical copies of an auxiliary system
(sometimes referred to as the environment). TheMarkov approximation,
which lets us conclude that at any given time t, the state of the system
only depends on the state at the previous time t− 1, limits our choice
for stating how the system interacts with each auxiliary system.
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which repeatedly interacts with identical copies of an auxiliary system
(sometimes referred to as the environment). The Markov approximation,
which lets us conclude that at any given time t, the state of the system
only depends on the state at the previous time t- 1, limits our choice
for stating how the system interacts with each auxiliary system.

�.�.� Schrödinger picture

Suppose the system is described by an algebra A and each auxiliary
system is described by an algebra B. Note that A and B can be regarded
as algebras of bounded operators on some Hilbert spaces hA and hB,
respectively.

Let the initial state of A be ⇢(0), and (as the auxiliary systems are
identically prepared) let the initial state of each B be denoted by '.
We consider what happens during a single time step of this quantum
Markov chain; that is, we will obtain an expression for ⇢(1) in terms of a
transition operator applied to ⇢(0). First, the chain of auxiliary systems
moves one place to the right, and the current copy of B couples to A:

A

⌦
. . . ⌦ B ⌦ B ⌦ B ⌦ B ⌦ B ⌦ . . .

!

This means we have a joint system A⌦B whose state is ⇢(0)⌦'. Next,
the coupled systems interact: since we are considering only the closed
system A⌦B this interaction is described by some unitary operator U 2
A⌦B, and the joint state after this interaction is U ⇢(0)⌦'U⇤. Finally,
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Figure 3.1: Diagram of a quantum Markov chain (see text)

3.2.1 Schrödinger picture

Suppose the system is described by an algebra A and each auxiliary
system is described by an algebraB. Note thatA andB can be regarded
as algebras of bounded operators on some Hilbert spaces hA and hB,
respectively.
Let the initial state of A be ρ(0), and (as the auxiliary systems are

identically prepared) let the initial state of each B be a mixed state rep-
resented by a density matrix ϕ. We consider what happens during a
single time step of this quantum Markov chain; that is, we will obtain
an expression for ρ(1) in terms of a transition operator applied to ρ(0).
First, the chain of auxiliary systems moves one place to the right, and
the current copy of B couples to A (see Fig. 3.1).
This means we have a joint system A ⊗ B whose state is ρ(0) ⊗ ϕ.

Next, the coupled systems interact: since we are considering only the
closed systemA⊗B this interaction is described by some unitary oper-
atorU ∈ A⊗B, and the joint state after this interaction isUρ(0)⊗ϕU∗.
Finally, the auxiliary system decouples: the resulting state of the sys-
tem is ρ(1), and is given by the partial trace over the auxiliary system:

ρ(1) = TrB (Uρ(0)⊗ϕU∗) .

Note that in the above equation each of the above steps is clearly re-
flected: coupling with the auxiliary system, unitary evolution, partial
trace. Moreover, the composition of these three operations is itself a
completely positive trace preserving map T∗ : A → A, referred to as
the Schrödinger picture transition operator. This one time-step can be
applied to the state at any time, and we arrive at the desired relation

ρ(n+ 1) = T∗ (ρ(n)) (3.2)

= TrB (Uρ(n)⊗ϕU∗) . (3.3)
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It is clear that the transition operator T∗, and therefore the quantum
Markov chain, is completely specified by a unitary operator, U, and
the initial state for the auxiliary system, ϕ; that is,

T∗(ρ) = TrB (Uρ⊗ϕU∗) . (3.4)

The Markov property means that repeated applications of the map T
can be represented as powers of T∗. For example, we compute the state
ρ(n+ 2) by tracing over B one at a time as

ρ(n+ 2) = TrB⊗B (U2 (U1 ρ(n)⊗ϕU∗1)⊗ϕU∗2)

= TrB (U2 T∗(ρ(n))⊗ϕU∗2)

= T2∗ (ρ(n)),

and in general, ρ(n+m) = Tm∗ (ρ(n)).

3.2.2 Heisenberg picture

In the Heisenberg picture the transition operator is denoted by T ; this
linear map is composed of the maps dual to the maps that make up T∗.
The maps T∗ and T satisfy the duality relation

Tr [XT∗(ρ)] = Tr [T(X)ρ]

for all X ∈ A and all density operators ρ ∈ A∗. This allows us to derive
an explicit form for T ,

Tr [T(X)ρ] = TrA [XTrB (Uρ⊗ϕU∗)]

= TrA,B [U∗X⊗ 1Uρ⊗ϕ]

= TrA [Pϕ (U∗X⊗ 1U) ρ]

where Pϕ is a conditional expectation [41]. This means that Pϕ is a map
A⊗B→ A such that for any Z ∈ A⊗B,

TrA [P(Z)ρ] = TrA,B [Zρ⊗ϕ] ;

in other words, it is a map dual to the map ρ 7→ ρ⊗ϕ. In conclusion,
this allows us to write the Heisenberg picture transition operator T as

T(X) = Pϕ (U∗X⊗ 1U) . (3.5)
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3.2.3 State of output chain

Although we will go in more detail when we prove results in the fol-
lowing chapters, we will briefly make some helpful observations now.
Since any finite-dimensional algebras A are composed of matrix al-

gebras, we can find a concrete expression for the Kraus operators. Let
the system algebra be Md and suppose that each auxiliary algebra is
isomorphic to Mk, and for simplicity assume that the initial state for
each auxiliary system is a pure state |ϕ〉 ∈ Ck. If the system is also
in a pure state, say |ψ〉, we can write the action of U on the joint state
|ψ〉 ⊗ |ϕ〉 as

U(|ψ〉 ⊗ |ϕ〉) =
k∑
i=1

Vi|ψ〉 ⊗ |bi〉.

Here {|bi〉} is a basis for Ck, associated to which is the set of Kraus
operators {Vi} ⊂ Md, which are obtained from U as Vi = 〈bi|U|ϕ〉. In
this thesis we are interested in the output of such quantum Markov
chains; especially inCh. 6wherewe consider the statistics of the output
from a large deviations point of view.With this in mind, the basis {|bi〉}
is usually chosen as a basis of eigenvectors of some observable on the
output sites.
Suppose we keep the assumption from above that the initial states

for the system and environment are pure. The product structure, due
to the Markov property, is clear in the total state after n steps, which is
the state given by

k∑
i1,...,in=1

Vin · · ·Vi1 |ψ〉 ⊗ |bi1 , . . . ,bin〉. (3.6)

If we measure the state of the system and find the state |ψF〉, say, then
the resulting state on the output chain is the (unnormalised) matrix
product state (MPS)

k∑
i1,...,in=1

〈ψF|Vin · · ·Vi1 |ψ〉|bi1 , . . . ,bin〉;

we will return to this idea in Sec. 5.2.

3.2.4 Quantum jump trajectories in discrete time

Suppose we have an output chain of length n and measure the same
observable X simultaneously on each site; if we obtain the outcomes
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X(1) = i1, . . . ,X(n) = in then the state on the output chain will be
|bi1 , . . . ,bin〉. Ifwe consider the state of the system conditioned on these
outcomes, we obtain a realisation of the quantum Markov chain. This
means that the unnormalised state of the system has followed the evol-
ution

|ψ〉 7→ Vin · · ·Vi1 |ψ〉;

we refer to this as the quantum jump trajectory associated to the quantum
Markov chain (also referred to as an unravelling of the system state). It
is our knowledge of the state of the system after n steps, given that
measuring the output chain resulted in the values i1, . . . , in.
If the initial state of the system is not a pure state, the unravelling of

the dynamics takes the following form. To each of the k Kraus operat-
ors Vi we may associate a jump operator Ti such that

T∗,i(ρ) = ViρV
∗
i .

Then the unravelling of the transition operator is given by

T∗(ρ) =
k∑
i=1

T∗,i(ρ) (3.7)

and the conditional state of the system, after having measured the out-
comes ω = (λit , . . . , λin) on the output chain, is given by

ρn(ω) = Z−1Tin,∗ ◦ · · · ◦ Ti1,∗(ρ) (3.8)

where Z is a normalisation factor.

3.3 continuous time: quantum markov processes

The quantum Markov chain, as introduced in the previous section, is
a discrete time process; as a result, it is easily described in terms of a
repeated interaction scheme. If wemove to continuous time it becomes
less straightforward to find such an interpretation; however, the conti-
nuous time approach is far more general.

3.3.1 Lindblad generator

In the discrete time case we were able to work directly with a trans-
ition operator T (or T∗); in the case of continuous time, the most useful
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description is the quantum master equation, which describes the time
evolution of the state ρ(t) as a differential equation

dρ

dt
= L(ρ)

where L is the generator of the continuous time dynamics. In particular,
L is the generator of a quantum dynamical semigroup {Tt}t>0 of transition
operators: for all t, s > 0 we have

ρ(t+ s) = Tt(ρ(s)).

As before, we denote the system algebra by A. If A is finite dimensio-
nal, any generator L of a quantum dynamical semigroup on A has a
Lindblad (or GKSL) form [42, 43]

L(ρ) = −i[H, ρ] +
k∑
i=1

(
LiρL

∗
i −

1

2
(L∗iLiρ+ ρL

∗
iLi)

)
. (3.9)

Here H is the Hamiltonian describing a free evolution of the system,
while the jump operators Li are associated to the possible ways the
system can interact with the environment. In particular, if the system
is closed, the master equation simply describes a unitary evolution.

3.3.2 Quantum dynamical semigroups

TheHeisenberg picture Lindblad operatorL is the generator of a strong-
ly continuous semigroup onB(h) (cf. [44] for an introduction to the gen-
eral theory.) This means that there exists a family (T(t))t>0 of maps on
B(h) which satisfy the semigroup property

T(t)T(s) = T(t+ s) for all t, s > 0,

T(0) = I,

such that t 7→ T(t)(X) is norm continuous for all X ∈ B(h). Moreover,
T(t) is completely positive and unit preserving for all t > 0. In general,
the Lindblad form in Eq. (3.9) is not valid when h is infinite-dimen-
sional; the generator L can be recovered by

L(X) = lim
h↓0

1
h
(T(h)(X) −X) ,

for all X in the domain of L. Although no simple expression exists for
the operators T(t) in terms of the generator L, it is helpful to think of
T(t) as the exponential of the generator

T(t)(X) = etL(X), (3.10)
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especially from the point of view of relating spectral properties of L to
those of T(t), e.g. spectral mapping theorems. Eq. (3.10) is valid for finite-
dimensional systems; for infinite-dimensional systems, it is more com-
plicated. By definition, Eq. (3.10) does hold for analytic vectors of L
which form a core of its domain (for details, see proof of Lemma 7.1).

3.3.3 Dilation and QSDE

In the discrete time case we were able to write the transition operator
as the composition of coupling to the environment, unitary evolution,
and tracing out the environment (Eq. 3.2). We will now show how the
continuous time case affords a very similar interpretation, which also
allows us to sketch how the master equation is derived. As before, we
couple the system to an auxiliary algebra, called the environment; the
joint state is ρ(0)⊗ϕ. We then apply a unitary operator, and trace out
the environment (which is assumed to be in a vacuum state) to obtain
the state of the system at some later time: for any t > 0,

ρ(t) = Tt (ρ(0)) (3.11)

= Trenv (U(t) ρ(0)⊗ϕU(t)∗) . (3.12)

The difference between the unitary operator defined in Eq. 3.2 and the
continuous-time case here, is that we now have a continuous family of
stochastic unitary operators {U(t)}t>0, whereas before we had a single
fixed unitary generating the dynamics. In the discrete time setting, the
unitary operator is generally defined by a Hamiltonian describing the
interaction between the system and each copy of the environment. In
the continuous time case, the unitary operator is found as a solution to
a quantum stochastic differential equation (or QSDE), see [45, 46, 47].
This equation takes the form

dU(t) =

k∑
i=1

(
LidA

∗
i,t − L

∗
idAi,t −

1

2
L∗iLidt

)
U(t), (3.13)

where the Li are the jump operators, each of which couples to a pair
of increments dAi,t,dA∗i,t of creation and annihilation operators. Each
of these operators A∗i,t represent the creation of an excitation in the
bosonic field associated to the ith channel (see [36]).
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We briefly discuss the fundamental noiseswhich are a vital ingredient
in QSDEs [48]. If we start with a Hilbert space H, we may define the
symmetric Fock space F(H) as

F(H) =
⊕
n>0

H⊗n;

the kth term in the direct sum is referred to as the k-particle subspace.
The vacuum state is the vector |Φ〉 = 1⊕ 0⊕ 0⊕ . . . ∈ F(H). In this sense,
the Fock space describes an arbitrary number of particles. Associated
to any f ∈ H we define the exponential vector e(f) ∈ F(H) by

e(f) =
⊕
n>0

1√
n!
f⊗n.

For every f ∈ H we may then define the Weyl operator W(f) on F(H)

which acts on the dense subset D = {e(f) : f ∈ H} as

W(f)e(g) = exp
(
−〈f,g〉− 1

2
‖f‖2

)
e(f+ g).

For each f ∈ H, the set {W(tf) : t ∈ R} is a strongly continuous one-
parameter group of unitary operators on F(H); by Stone’s theorem
there exists a selfadjoint generator for this group, denoted B(f) - we
refer to this as the field operator associated to f.
An important class of field operators is obtained by taking f to be an

indicator function 1A. In this case, the field operators
{
B(1[0,t)) : t > 0

}
all commute with each other; they can be considered as classical ran-
domvariableswith respect to the vacuumstate, distributed as Brownian
motion. Specifically,wedefine the randomvariablesBt = 〈Φ|B(1[0,t))|Φ〉;
then the stochastic process {Bt}t>0 is a Brownian motion. Associated
to this process are creation operatorsA∗t and annihilation operatorsAt
defined by

A(t)∗ =
1

2

(
B(i1[0,t)) + iB(1[0,t))

)
A(t) =

1

2

(
B(i1[0,t)) − iB(1[0,t))

)
.

From the commutation relation for the field operators, [B(f),B(g)] =

2iIm〈f,g〉wederive the familiar canonical commutation relations (CCR)
for the creation and annihilation operators,

[A(t),A(s)] = [A∗(t),A∗(s)] = 0, [A(t),A∗(s)] = min {t, s} .

Another operator associated to the QSDE is the counting operatorΛ(t),
which counts how many particles there are in the interval [0, t). This
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dX \ dY dA(t) dΛ(t) dA(t)∗ dt

dA(t) 0 dA(t) dt 0

dΛ(t) 0 dΛ(t) dA(t)∗ 0

dA(t)∗ 0 0 0 0

dt 0 0 0 0

Table 3.1: Quantum Itô table, specifying the products dXdY

self-adjoint operator on F(H) is implicitly defined, through Stone’s the-
orem, as the generator of the strongly continuous one-parameter group
of unitary operators {Γ (exp [isPt]) : s ∈ R}. Here Pt is the projection
P(t)(f) = 1[0,t)f and Γ is the second quantisationmap defined by

Γ : B(H)→ B(F(H)) : X 7→
⊕
n>0

X⊗n.

Then the random variables Λt = 〈Φ|Λ(t)|Φ〉 form a Poisson process
{Λt}t>0.
To summarise, we have defined the fundamental martingales: these are

the Brownian motion {Bt}t>0 and the Poisson process {Λt}t>0. Asso-
ciated to these are the three fundamental operator-valued processes
A(t),A(t)∗,Λ(t).Without going into the details, we state a fundamental
result in the theory of QSDEs, which is the quantum Itô calculus sat-
isfied by the increments of these processes. In particular, we wish to
compute the increment of a product d (XtYt) where Xt and Yt can be
any of the four aforementioned processes. Then the quantum Itô rules
say that

d (XtYt) = XtdYt + dXtYt + dXtdYt

where the final term is given in the quantum Itô table (Table 3.1).
The QSDE formalism allows us to derive the continuous timemaster

equation. This is done by taking the derivative of Eq. (3.12) to obtain
dρ(t) and using the expression for dU(t) in Eq. (3.13); working out the
Itô rules then gives

lim
dt→0

dρ(t)

dt
= L(ρ(t)),

where L is as in Eq. 3.9. Note that the evolution of the state of the sys-
tem,

Tt : ρ(0) 7→ ρ(t)
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is usually irreversible: if the inverse exists T−1t exists, it is not a com-
pletely positive, trace-preserving map. However, on the combined al-
gebra of the system and the auxiliary space, the evolution is unitary
and therefore reversible. This construction, going from an irreversible
evolution to a reversible unitary one, is called a dilation. The dilation is
an abstract approach to quantum dynamical semigroups, and a more
physical derivation of a master equation is possible in specific cases by
taking a quantum Markov limit, see e.g. [35].

3.3.4 Counting in continuous time

In the previous section, we explained how measurements performed
on the output of a quantumMarkov chain allows us to construct a con-
ditional evolution for the state of the system; we referred to this as the
quantum jump trajectory, or unravelling. Nowwe will perform an ana-
logous construction in the continuous time case. The theory underly-
ing continuous-time measurements in quantum systems is deep and
we will only skim the surface in this section; for an approachable intro-
duction to the topic we refer the reader to [48].
In Eq. 3.7 we presented an unravelling of the discrete time dynam-

ics. We will now define an analogous concept in continuous time. The
continuous time dynamics is governed by the QSDE in Eq. 3.13; the
changes that occur in the system are due to the coupling between the
jump operators Li and the increments dAi,t.
The input-output formalism allows us to express the output of a conti-

nuous time quantumMarkov process in terms the increments of count-
ing operators associated to the Li. In particular, we denote by Γi,t and
Λi,t the counting operator in the ith input field and the ith output field,
respectively. These two operators are related by the evolution equation

Λi,t = U(t)
∗ (1⊗ Γi,t)U(t) (3.14)

whereU(t) is a solution to the QSDE 3.13. Excitations are created in the
output fields as a result of interaction with the system, and the family
of k equations in Eq. 3.14 provides the total counting statistics of the
output fields.
Suppose for simplicity that k = 1, that is, there is a single jump op-

erator L1 = L, and we are interested in the distribution of the output
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field counting operator Λi,t = Λt at some time t > 0. This is equival-
ent to solving the problem in the Schrödinger picture of finding the
conditional state at time t given that we have recorded n counts in the
output field (in short, Λt = n).
In this case, we may suppose that counts have occurred at times t >

tn > . . . > t1 > 0. This means that the evolution of the system state
has undergone jumps due to L at these times, while the evolution in
between jumps was a coherent evolution. This is what we understand
by unravelling of the master equation in continuous time: we write the
generator L from Eq.3.9 as a sum

L = L0 + J (3.15)

whereL0 is the generator of the smooth evolution between jump events

L0(ρ) = −i[H, ρ] − 1
2
(L∗Lρ+ ρL∗L)

and J is the instantaneous jump operator J(ρ) = LρL∗. (Note that L0
can be seen as a generalisation of the effective Hamiltonian H+ i

2L
∗L

to the evolution of mixed states.)
In a continuous-timemeasurement, we record the jumps due to J up

to some time t > 0. If we know that n jumps have occurred, the space
of outcomes is the set

Ωn([0, t)) = {(t1, . . . , tn) : t > tn > . . . > t1 > 0} .

If we do not know how many jumps have occurred, the space of out-
comes Ω([0, t)) is the union of all Ωn([0, t))

Ω([0, t)) =
∞⋃
n=0

Ωn([0, t)); (3.16)

this space Ω([0, t)) is referred to as the Guichardet space.
Now that we have the necessary tools, the unravelling (3.15) and the

Guichardet space of outcomes (3.16), we can write down the state of
the system after performing a measurement, using an approach due
to Davies [49, 50]. Given a sequence of outcomes ω = (t1, . . . , tn) ∈
Ω([0, t)) and an initial state ρ we can write the (unnormalised) condi-
tional state of the system as

ρ̃t(ω) = T0(t− tn)JT0(tn − tn−1)J · · · JT0(t2 − t1)JT0(t1)(ρ)

where (T0(t))t>0 is the semigroup generated by L0.
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We are interested in the conditional state given that we have recor-
ded n jumps; in terms of the conditional state ρ̃t(ω) we can write this
as an integral

ρn(t) =

∫
Ωn([0,t))

ρ̃t(dω)µ(dω)

where µ is a natural probability measure on Ω([0, t)). As the details of
µ are not important for our purposes, we note an equivalent, perhaps
more intuitive way of expressing ρn(t) as an integral. We may use the
unravelling (3.15) to integrate over all possible time intervals between
jumps and obtain the Dyson expansion [51]

ρn(t) =

∫t
tn

∫tn
tn−1

· · ·
∫t1
0

T0(t− tn)JT0(tn− tn−1)J · · · JT0(t1)(ρ)dt1 · · ·dtn.

The state of the system evolves according to the semigroup (T(t))t>0,
but we may also obtain the state of the system at time t by taking the
average of the conditional states ρn(t). We therefore end up with

ρ(t) =
∑
n>0

ρn(t) = T(t)(ρ),

which relates the two approaches to continuous time measurements:
the unravelling and the quantum dynamical semigroup.
The unravelling takes different forms depending on whether we are

working in discrete or continuous time. In Ch. 5 we will consider a
discretisation scheme which bridges the gap between the two unravel-
lings.We also note that we have only considered unravellings based on
counting statistics; other unravellings are possible, such as homodyne
detection [48].

3.4 s-ensembles and quantum dynamical phase transitions

Recall that in Ch. 2, we considered the relation between large devi-
ations and phase transitions in statistical mechanical systems. In the
following two sections we will see that such a relation also exists be-
tween large deviations and phase transitions for quantum systems.
The example in Sec. 2.6, the Curie-Weiss model, showed a phase

transition in the thermodynamic limit for a macroscopic observable of
the system. Specifically, the law of large numbers for the average spin
broke down at a critical value βc of the inverse absolute temperature.
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This was reflected in the large deviation rate function Iβ for the aver-
age spin, which went from being convex with a unique infimum for
β < βc, to having two different infima for β > βc.
For closed systems, quantum phases transitions are generally stud-

ied in terms of the ground states and spectra of the Hamiltonians gov-
erning the dynamics [52]. In open quantum systems, dynamical phase
transitions are also often (but not always, as we discuss in Ch. 5) in-
dicated by static quantities; in this case, spectral properties of the gen-
erator. However, a more interesting approach [53] lies in a dynamical
view, which involves looking at phase transitions through the statistics
of the output.
The vital observation in defining quantum phase transitions is that

(quantum analogues of) macroscopic observables may be expressed as
large deviations rate functions for some stochastic process associated
to the system, usually statistics of some measurement.
Aswe have seen in Ch. 2, when considering large deviations for a sto-

chastic process, moment generating functions play an important role
(especially in Thm. 2.4, the Gärtner-Ellis theorem). In this section we
will look at howmoment generating functions are defined for quantum
Markov processes.
In Sec. 3.2 we explained how trajectories are obtained for quantum

Markov chains: measuring the same observable X on each of the n sites
on the output chain results in a trajectoryX(1) = i1, . . . ,X(n) = in of out-
comes. In terms of the unravelling of the dynamics from Eq. (3.7), the
conditional state of the system corresponding to this jump trajectory is
Tin,∗ ◦ · · · ◦ Ti1,∗(ρ).
If we recall the example from Sec. 2.6, we found a phase transition in

the Curie-Weiss model which was visible, through Crámer’s theorem,
on the level of the sample means (this was a simple example, and the
analogywith quantum systems is with non-equilibrium statistical mech-
anics). The quantum analogue of a phase transition on this level in-
volves looking at the trajectories of the system through this statistical
mechanics framework: in short, the thermodynamics of quantum jump
trajectories [53]. For related work on ergodicity of quantum trajectories
see [54, 55, 56].
For simplicity, suppose that there are two possible outcomes λ1, λ2

to the measurement. Let Λn be the counting operator which tracks the
number of times outcome λ1 has been measured at time n. To com-
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plete the analogy with the Curie-Weiss model, consider the following
questions:

• does the quantity Λn/n satisfy a large deviations principle?

• does the associated rate function indicate phase transitions?

Both these questions will be answered in detail, for different models,
in Chs. 5,6 and 7, in discrete and continuous time (see below).
The moment generating function for Λn is given by

Zn(s) =
∑
k>0

P(Λn = k)e−sk,

where the probabilityP(Λn = k) is the trace of the unnormalised condi-
tional state of the system ρk(n) given that k jump events have occurred
up to time n. Given an initial state ρ this conditional state is computed
as a ‘sum over paths’ over all trajectories containing k jumps,

ρk(n) =
∑

|{j:ij=1}|=k

Tin,∗ ◦ · · · ◦ Ti1,∗(ρ).

Then the moment generating function may be expressed as

Zn(s) = Tr

∑
k>0

∑
|{j:ij=1}|=k

Tsin,∗ ◦ · · · ◦ T
s
i1,∗(ρ)

 ; (3.17)

here we introduce maps Ts1 = e−sT1 (and Ts2 = T2) by modifying the
maps T1 and T2 from the unravelling in Eq. (3.7). These new maps
define a biased unravelling

Ts,∗(ρ) = Ts1,∗(ρ) + T
s
2,∗(ρ).

This allows us to write the moment generating function in the econom-
ical form [19, 32, 57]

Zn(s) = Tr
(
Tns,∗(ρ)

)
. (3.18)

It is important to note the similarity between the modified transition
operator Ts defined here and the approach used in the proof of Cra-
mér’s theorem for Markov chains (see Thm. 2.6), where a modified
transition matrix was constructed.
Suppose that, in this simple case, there are two phases, characterised

by a difference in the expectation value ofΛn/n in the thermodynamic



3.4 s-ensembles and quantum dynamical phase transitions 39

limit n→∞; this means that the first moment, Z ′n(s), is discontinuous
at s = 0. In particular, suppose that in the limit n→∞

lim
s→0−

Z ′n(s) < lim
s→0+

Z ′n(s).

This discontinuity in the expected sample mean can be understood in-
tuitively if we regard s as a field which couples to the counting field
Λn. For s < 0, this forces the sample mean to be the lower of the two.
In terms of the moment generating function Zn(s) in Eq. (3.17), we can
see this as s < 0 increases the contribution of trajectories which are
less active, that is, have fewer events of type λ1. On the other hand, if
s > 0, this increases the contribution of trajectories which are more act-
ive in this sense. Thus wemay interpret this type of phase transition as
a transition between different ensembles of trajectories; this formulation
is referred to as the s-ensemble. The development of this approach is
outlined in section 3.7 below.
In the previous chapter, we saw that the Perron-Frobenius theorem

plays an important role in establishing a large deviations principle; an
approach similar to that used in the proof of Thm. 2.6 can be followed
in the quantum setting. To show that the counting process Λn satisfies
a large deviations principle, we use the Gärtner-Ellis theorem. Using
Eq. (2.4) this means that the logarithmic moment generating function

Z(s) = lim
n→∞ 1n logZn(s)

exists and is a smooth function of s. From Eq. (3.18) we see that (similar
to the proof of Thm. 2.6)

Z(s) = lim
n→∞ 1n log Tr

(
Tns,∗(ρ)

)
. (3.19)

Under the right conditions, we are then able to write Z(s) = log ρ(Ts),
where ρ(Ts) is the spectral radius of Ts.

This is an important feature of large deviations for quantumMarkov
processes: we are able to express the rate function of some output stat-
istics as the spectral radius of a perturbation of the transition operator,
just as in the classical case. But the difference is that, in the classical
case, this spectral radius had the desired properties due to the Perron-
Frobenius theorem for transitionmatrices. Nowwe are in the quantum
setting, and we need a Perron-Frobenius type result for transition oper-
ators. Such results will be studied in Sec. 3.5 below.
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So far we have only discussed quantum phase transitions and large
deviations in discrete time. The approach to the continuous time prob-
lem is similar, but requires a shift from looking at a perturbed trans-
ition operator Ts, to looking at a perturbed generator Ls; then Ls gen-
erated a perturbed semigroup of transition operators. This approach
will be used in detail in Ch. 7 below.

One aspect of quantum phase transitions that we will discuss in this
thesis is the role played by bistability [58], or degeneracy of the station-
ary state, at critical points. In the stationary regime, intermittency of
the trajectories (see Sec. 3.7 below) is caused by the existence of mul-
tiple stationary states - or being close to this degenerate situation. Such
intermittency has recently been observed in experiments with quan-
tum spin chains [59, 60].

3.5 non-commutative perron-frobenius theory

Our results depend on the transition operator T in question satisfying
certain properties; in particular, we require that T is irreducible. Irredu-
cibility for linear maps on finite-dimensional von Neumann algebras
is defined in [61], from which we quote the following definitions.
A matrix X ∈ Mn is called strictly positive, denoted X > 0, if X is

positive and invertible (i.e. there exists ε > 0 such that X > ε1). A
linear map T :Mn →Mn is called positive if T(X) > 0 for all X > 0; T is
called strictly positive if T(X) > 0 for all non-zero X > 0.
We say T is reduced by a projection P ∈Mn if there exists λ > 0 such

that T(P) 6 λP; T is said to be irreducible if it is not reduced by any non-
trivial projections. The following characterisation (ibid., Lemma 2.1) is
occasionally useful: a positive linear map T onMn is irreducible if and
only if (1+ T)n−1 > 0 (that is, 1+ T is primitive).
Irreducible positive maps form a useful class of operators; in par-

ticular, they satisfy the a quantum analog of the commutative Perron-
Frobenius theorem, given below. As we noted in Sec. 3.1.1, it suffices
to keep in mind a concrete algebra of bounded operators B(h) for any
von Neumann algebra considered in these results.

Definition 3.1 (Schwarz map). A linear map φ on a von Neumann al-
gebra A is called a Schwarz map if φ(1) = 1 and φ(x∗x) > φ(x)∗φ(x) for
all x ∈ A.
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The Schwarz property is stronger than positivity, but weaker than 2-
positivity [62]. If we restrict ourselves to completely positive maps, the
concept of irreducibility can be reformulated in terms of the associated
Kraus operators [63]: the map is irreducible if and only if there are no
nontrivial invariant subspaces for all of the Kraus operators.
We conclude this section with the following extension of the Perron-

Frobenius theorem. The development of Perron-Frobenius theory for
positive maps on operator algebras is an interesting topic [64, 65, 66,
67, 68, 69]; for our purposes, the following early formulation due to
Evans [61] is instructive. This theorem applies to the Schwarz maps
introduced above, which includes unital completely positive maps [70,
Prop. 3.3].

Theorem 3.1. (Perron-Frobenius theorem for Schwarzmaps [61, Thms.
4.3-4.4]) Let T be an irreducible Schwarz map onMn and let σ(T) de-
note the spectrum of T .

• The spectral circle Γ = {λ ∈ σ(T) : |λ| = 1} of T is a discrete group
(acting on σ(T)) of m elements generated by γ = exp(2πi/m);
moreover, each eigenvalue in Γ is simple.

• The spectral circle is trivial, Γ = {1}, if and only if Tk is irreducible
for all k > 1.

• The set of eigenvectors associated to the eigenvalues in Γ form an
abelian group isomorphic to Γ ; we have

T(Uk) = γkUk.

where the unitary matrix U ∈Mn has spectral decomposition

U =

m−1∑
k=0

γkPk

with T(Pk) = Pk−1 (with T(P0) = Pm−1).

This last statement has a dual interpretation in the Schrödinger pic-
ture; since T is irreducible, there is a unique faithful invariant state ω
for T∗.

†A subset V of a Banach space X is called relatively compact if its closure is compact;
V is called compact if, whenever the union of a family of subsets of X contains V , there
is a finite number of elements in this family whose union also contains V .
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The Krein-Rutman theorem is an extension of the Perron-Frobenius
theorem to the infinite-dimensional setting of general Banach spaces
(see [71] for a nice historical overview), which lacks any statements
about invariance properties of the spectrum. (Recall that a Banach space
is a complete normed vector space; in particular, any Hilbert space is a
Banach space.) The following generalisation of the Krein-Rutman the-
orem to ordered Banach spaces will be used in Ch. 7. The abstract defin-
ition of a compact linear operator T on a Banach space X is that the
image if any bounded set is relatively compact; in Ch. 7 we will need
to prove compactness for a family of linear maps, and we refer to that
chapter for discussion on compactness in terms of spectral properties
of the map.

Theorem 3.2 (Krein-Rutman for Banach spaces [72]). LetX be a Banach
space and T : X → X a compact linear operator that is positive with
spectral radius r(T) > 0. Then r(T) is an eigenvalue and there exists
a non-zero x > 0 such that Tx = r(T)x. Moreover, r(T∗) = r(T) is an
eigenvalue of T∗.

Restricting [72] the compact operator T to be strictly positive means
there are no other eigenvalues of the same modulus. This version of
the Krein-Rutman theorem therefore coincides with the first part of
the Perron-Frobenius theorem.

3.6 the atom maser

The topics covered in this chapter so far will be used in this section, as
we introduce the atommaser and itsMarkov semigroup and the count-
ing processes associated to the jump terms in the Lindblad generator.
In the final chapter in this thesis, Ch. 7, we will return to this model
as we prove a large deviations result and discuss the dynamical phase
transitions that occur in a thermodynamic limit.
In the atom maser, two-level atoms pass successively through a cav-

ity and interact resonantlywith the electromagnetic field inside the cav-
ity. The two-level atoms are identically and independently prepared in
the excited state, and for simplicity we assume that only a single atom
passes through the cavity at any time. In addition, the cavity is also
coupled to a thermal bathwhich represents the interaction between the
(non-ideal) cavity and the environment. The combined effects of the
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Figure 3.2: Atoms enter a cavity, which is in contact with a thermal bath, in
the excited state; the cavity state |n〉 gains energy from interaction
with the atom

interactions with the atoms and the environment changes the state of
the cavity (see Fig. 3.2) whose time evolution is described by a quantum
Markov semigroup, in a certain coarse grained approximation described
below; see Refs. [73] and [74] for a mathematical overview, and [75] for
the physical derivation of the master equation. In this section we give
an intuitive description of the dynamics starting with a simplified dis-
crete time model, with an emphasis on the statistics of measurements
performed on the atoms.

3.6.1 Atom maser

The cavity is described by a onemode continuous variable systemwith
Hilbert space h = `2(N) whose canonical basis vectors (|en〉)n>0 rep-
resent pure states of fixed number of photons. Therefore, if |ψ〉 ∈ h

is a pure state, the photon number distribution of the cavity is given by
|〈en,ψ〉|2. Mixed states are described by density operators, i.e. trace-
class operators ρ ∈ L1(h) which are positive and normalised to have
unit trace, and the observables are represented by self-adjoint elements
of the vonNeumann algebra of bounded operatorsB(h)whose predual
is L1(h). Recall that the annihilation operator a on h is defined by

a|en〉 =


√
n|en−1〉 if n > 0

0 if n = 0

;

its adjoint is the creation operator a∗, and N = a∗a is the photon num-
ber operator such that N|en〉 = n|en〉. The atom is modelled by a two-
dimensional Hilbert spaceC2with standard orthonormal basis {|0〉, |1〉}
consisting of the "ground" and "excited" states. We denote by σ∗ and σ
the corresponding raising and lowering operators (i.e. σ∗|0〉 = |1〉 etc.).
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The interaction between an atom and the cavity is described by the
Jaynes-Cummings hamiltonian on C2 ⊗ h

Hint = −g(σ⊗ a∗ + σ∗ ⊗ a),

where g is the coupling constant which, for simplicity, is considered to
be constant across the cavity. The free hamiltonian is

Hfree = ω1⊗ a∗a+ωσ∗σ⊗ 1,

whereω is the frequency of the resonant mode; however by passing to
the interaction picture the effect of the free evolution can be ignored.
Therefore if the interaction lasts for a time t0, the joint evolution is de-
scribed by the unitary operator U := exp(it0Hint) whose action on a
product initial state is

U : |k〉 ⊗ |1〉 7→ cos(φ
√
k+ 1)|k〉 ⊗ |1〉+ sin(φ

√
k+ 1)|k+ 1〉 ⊗ |0〉,

where φ := t0g is the accumulated Rabi angle. If a measurement is per-
formed on the outgoing atom in the standard basis, then the cavity
remains in state |k〉 with probability cos2(φ

√
k+ 1) or gains an excita-

tion with probability sin2(φ
√
k+ 1). If we average over the outcomes,

we obtain the cavity transfer operator T∗ : L1(h)→ L1(h)

T∗(ρ) = K1ρK
∗
1 +K2ρK

∗
2 = K1(ρ) +K2(ρ) (3.20)

where the Kraus operators Ki are given by

K1 = a
∗ sin(φ

√
aa∗)√

aa∗
, K2 = cos(φ

√
aa∗),

and Ki are the corresponding jump operators on the level of density
matrices. Since each atom interacts with the cavity only once, the state
of the cavity after n such interactions is given by ρ(n) = Tn∗ (ρ), which
can be interpreted as a discrete time quantumMarkov dynamics. Let us
imagine that after the interaction, each atom is measured in the stand-
ard basis and found to be either in the excited or the ground state. The
master dynamics can be unravelled according to these events as (cf. Eq.
(3.15))

Tn∗ (ρ) =
∑

i=(i1,...,in)
Kin . . .Ki1(ρ). (3.21)

Here each term of the sum represents the (unnormalised) state of the
cavity after a certain sequence i = (i1, . . . , in) ∈ {e,g}n of measurement
outcomes, whose probability is

P(i1, . . . , in) = Tr(Kin . . .Ki1(ρ)).
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If Λn(i) := #{j : ij = g} denotes the number of ground state atoms
detected up to time n, we can use the previous relation to compute its
moment generating function

E
(
esΛn

)
=
∑
k>0

P (Λn = k) esk

=
∑
i
esΛn(i)Tr(Kin . . .Ki1(ρ)) = Tr(Tn∗s(ρ))

(3.22)

where

T∗s(ρ) = esK1(ρ) +K2(ρ)

is a "deformed" transfer operator, i.e. a completely positive but not trace
preserving map on L1(h). The relation (3.22) and its continuous time
analogue (3.30) will be the key to analysing the large deviations proper-
ties of the counting process in terms of spectral properties of operators
such as Ts and Ls below.
To make the model more realistic we will pass to a continuous time

description in which the incoming atoms are Poisson distributed in
time with intensity Nex, and the cavity is in contact with a thermal
bath. If one ignores the details of short term cavity evolution, the dis-
crete time dynamics can be replaced by coarse grained continuous time
Lindblad (master) equation [76]

d
dtρ(t) = L∗(ρ(t)),

L∗(ρ) =
4∑
i=1

(
LiρL

∗
i −

1

2
{L∗iLi, ρ}

)

=

4∑
i=1

LiρL
∗
i +L

(0)
∗ (ρ) =

4∑
i=1

Ji(ρ) +L
(0)
∗ (ρ) (3.23)

with jump operators Li defined by

L1 =
√
Nexa

∗ sin(φ
√
aa∗)√

aa∗
, (3.24)

L2 =
√
Nex cos(φ

√
aa∗), (3.25)

L3 =
√
ν+ 1a, (3.26)

L4 =
√
νa∗. (3.27)

As before, the operators L1 and L2 are associated to the detection of an
atom in the ground and excited state, respectively. The emission and
absorption of photons due to contact with the bath is represented by
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Figure 3.3: Meanphoton number (black line) andphoton number distribution
(background) in the stationary state ρss as function of α =

√
Nexφ

operators L3 and L4, respectively. As explained in Sec. 3.3, the Heis-
enberg picture Lindbladian L is the generator of a strongly continuous
semigroup (T(t))t>0 onB(h)which described the time evolution of the
system state ρ(t+ s) = T(t)(ρ(s)).
The Markov semigroup (T(t))t>0 has a unique stationary state ρss

which has diagonal density matrix in the Fock (photon number) basis
with entries

ρss(n) := ρss(0)
n∏
k=1

(
ν

ν+ 1
+
Nex
ν+ 1

sin2(φ
√
k)

k

)
(3.28)

equal to the probabilities of finding n photons in the cavity, with ρss(0)
taken such that Tr(ρss) = 1. Moreover, the Markov semigroup is er-
godic, in the sense that any initial states ρ converges to the stationary
state [77]

lim
t→∞T∗(t)(ρ) = ρss.

The dependence of the stationary mean photon number and photon
number distribution on the "pumpingparameter"α :=

√
Nexφ is shown

in Fig. 3.3, for ν = 0.15 andNex = 150. We note two interesting features
in this figure: first, there is a sharp change in the mean photon number
at α ≈ 1 followed by less pronounced jumps near α = 6.66 and α = 12.
The other, related, feature to note is that the photon number distribu-
tion has a single peak for most values of α except in certain regions
such as around the critical point α ≈ 6.66, where the stationary state
has two local maxima. We will come back to these aspects in the next
section.
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3.6.2 The counting process

In Sec. 3.3.4 we introduced the counting processes associated to the
unraveling of continuous-time quantum Markov processes. To better
understand the behaviour of the stationary state illustrated in Figure
3.3, we unravel the Markov semigroup T∗(t) with respect to the four
counting processes associated to the jump terms (3.24 - 3.27), each of
them corresponding to a counting measurement of the quantum out-
put process. If ρ is the initial state of the cavity, then ρ(t) := T∗(t) is the
evolved state at time twhich (in analogy to Eq.(3.21)) can be seen as an
average over all possible counting events in the environment

ρ(t) := T∗(t) =
∑
k>0

4∑
i1,...ik=1

∫
. . .

∫
06t16···6tk6t

ρ(t; t1, i1 . . . , tk, ik)dt1 . . . dtk

(3.29)

where the integrand

ρ(t; t1, i1, . . . , tk, ik) := e(t−tk)L
(0)
∗ Jik . . . e

(t2−t1)L
(0)
∗ Ji1e

t1L
(0)
∗ (ρ),

is the unnormalised state of the cavity given that detections of type
i1, . . . , ik ∈ {1, 2, 3, 4} have occurred at times 0 6 t1 6 · · · 6 tk 6 t,
and no other counting events happened in the meantime. From the
four counting processes we focus on the first one associated with the
detection of an atom in the ground state and simultaneous absorption
of a photon by the cavity. We denote by Λt the total number of such
atoms detected up to time t. Similarly to the discrete case, by using the
above unravelling we can show that the moment generating function
of Λt is given by

E
(
esΛt

)
= Tr (T∗s(t)(ρ)) = Tr (ρTs(t)(1)) . (3.30)

where (T∗s(t))t>0 is the completely positive semigroup on L1(h) with
generator

L∗s(ρ) = esJ1(ρ) +
4∑
i=2

Jj(ρ) +L
(0)
∗ (ρ) = (es− 1)J1(ρ) +L∗(ρ), (3.31)

and (Ts(t))t>0 is the dual semigroup on B(H). Equation (3.30) plays a
central role in our treatment of the atom maser in Ch. 7; we will use it
to formulate a large deviations principle for the counting process Λt,
and in particular, to relate the moment generating function of Λt to
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Figure 3.4: The birth (blue) and death rates as functions of ϑ for different val-
ues of α. The intersection points correspond to minima and max-
ima of the stationary distribution.

the spectral properties of Ls. Note that Ls differs from the Lindblad
generator by the factor es multiplying the jump term associated to the
detection of a ground state atom. It is still the generator of a completely
positive semigroup, but it is no longer identity preserving, and there-
fore does not represent a physical evolution except for s = 0.
The unravelling (3.29) allows for a classical interpretation of the cav-

ity dynamics. Indeed, the semigroup generated by L (and Ls) leaves
invariant the commutative subalgebraN ⊂ B(h) generated by the num-
ber operator N, and the restriction of (T(t))t>0 to the diagonal algebra
is the dynamical semigroup of a classical birth-death process on the state
space {0, 1, 2, . . . }, with rates

λ2k := Nex sin(φ
√
k+ 1)2 + ν(k+ 1), k > 0

µ2k := (ν+ 1)k, k > 1 (3.32)

and stationary distribution πss(n) = ρss(n). Figure 3.4 shows the birth
and death rates (minus the common factor νk) as functions of the para-
meter ϑ :=

√
(k+ 1)/Nexα in the limit Nex → ∞. The intersection

points correspond to minima and maxima of the stationary distribu-
tion [76] as suggested by the following argument. For α < 1 the death
rate is always larger than the birth rate and the distribution is max-
imum at the vacuum state. For 1 < α < 4.6 there is a single non-trivial
intersection point such that the birth rate is larger to its left and smaller
to its right, and therefore corresponds to the maximum of the station-
ary distribution. Similarly, when 4.6 < α < 7.8 the rates intersect in
three points, the first and last are located at local maxima while the
middle point is a local minimum, so we deal with a bimodal distri-
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Figure 3.5: Rescaled potentials U(n)/Nex as function of n/Nex, for various fi-
nite Nex converge to a limit potential for Nex → ∞. For α < 1

the potential is minimum at zero; for 1 < α < 4.6 it has a unique
minimum away from n = 0; for 4.6 < α < 7.8 there are two local
minima which become equal at α ≈ 6.66.

bution. However, while this analysis clarifies the emergence of mul-
timodal distributions, it does not explain the sudden jump of themean
photon number at α ≈ 6.66.

This feature can be intuitively understood by appealing to the effect-
ive potential model [78]. If we think of the photon number as a conti-
nuous variable and introduce a fictitious potential U defined by

ρss(n) = ρss(0)e
−U(n), (3.33)

then the photon number distribution appears as the thermal equilib-
rium distribution of a particle moving in the potential U (with kB · T =

1), see Figure 3.5. When the potential has a single local minimum (for
0 < α < 4.6), the stationary distribution is unimodal and concentrates
around this point. The cavity state fluctuates around the mean, and
Λt increases steadily with average rate. When there are two (or more)
local minima of different height, the higher minimum corresponds to
a metastable phase from which the system eventually escapes due to
thermal fluctuations. The rate of return to the metastable phase is typ-
ically much lower due to the larger potential barrier that needs to be
climbed. The point α ≈ 6.66 where the two local minima are equal
plays the role of a "phase transition", and corresponds roughly to the
point where the mean photon number changes abruptly. Here the cav-
ity spends long periods of time around the two local maximawith rare
but quick transitions between them. The change from the low energy
to the high energy mode is accompanied by a clear change in the slope
of the counting process Λt
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E(Λt)

t
= Nex

∑
n

ρss(n) sin2(φ
√
n+ 1) = Nex

(∑
n

nρss(n) − ν

)
.

Unlike the "first order transition occurring at α = 6.66, a "second
order transition occurs at α ≈ 1. Here the first derivative of the mean
photonnumber has a jump in the limit ofNex →∞. This and the scaling
of the potential Uwith Nex will be discussed in Sec. 7.4.
The statistics of the trajectories are therefore closely related to the

dynamics of the cavity and consequently with its stationary state. The
next step is to think of the time trajectories as "configurations" of sto-
chastic system draw from ideas in non-equilibrium statistical mechan-
ics and large deviations theory to study their phases and phase trans-
itions. Here the idea is to identify dynamical phase transitions of the open
system, by analysing the statistics of jump trajectories in the long time
(stationary) regime. The trajectories play an analogous role to the con-
figurations of a statistical mechanics model at equilibrium.
In this analogy, the parameter s of the moment generating function

(3.30) can be seen as a "field" which biases the distribution of trajector-
ies in the direction of active or passive trajectories by effectively chan-
ging the probability of a trajectory ω := (i1, t1, . . . , in, tn) by a factor
exp(sΛt(ω)).
When α is such that the stationary distribution is unimodal, the tra-

jectories’ distribution changes smoothly from passive ones for s < 0 to
active ones for s > 0. However, near α ≈ 6.66 (corresponding to the
jump in the mean photon number) there is a steep change in the count-
ing rates around s = 0. The active trajectories are associated to periods
when the cavity is in the higher, excited phase while the passive tra-
jectories are connected to the lower phase. Since the cavity makes very
rare transitions between the phases, any trajectory – when followed for
long but finite periods of time – falls typically into one of the two dis-
tinct categories (see Figure 3.6). Our goal is to investigate whether this
distinction survives the infinite time limit, inwhich casewewould deal
with a dynamical phase transition characterised by the non-analyticity
of a certain large deviations rate function. We will show that this is
not the case, but rather we deal with a cross-over behaviour; that is, the
count rate does not jump but has a very steep change around s = 0,
which appears to become a jump in the limit of infinite pumping rate
Nex →∞ (see Sec. 7.4).
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Figure 3.6: Sample trajectories for cavity state (top) and output paths Λt (bot-
tom) withNex = 50, corresponding to stationary state distribution
(center) showing large variance at α ≈ 1 (red) and bistability at
α ≈ 6.66 (green)

3.7 review of large deviations in quantum systems

Our approach to large deviations in quantum systems is based on the
thermodynamics of quantum trajectories framework. This is not the
first time that the theory of large deviations has been used to study
quantum systems: large deviations has natural applications in the the-
ory of estimation and quantum hypothesis testing [79, 80, 81, 82, 83, 84,
85, 86]. There are also many results on the large deviations for (finitely
correlated or KMS) states on quantum spin chains [87, 88, 89, 90, 91,
92, 93, 94] as well as a generalised theory of quantum statistical mech-
anics and entropic functionals [95, 96, 97, 98, 99, 100]. Finally, some
approaches consider large deviations behaviour not for measurement
outcomes but for operators themselves [101, 102].
In [53] a new perspective was put forward, which looks at quan-

tum jumps from the viewpoint of non-equilibrium statistical mechan-
ics [103] (see also [104]). For recent work on quantum dynamical phase
transitions we refer to [53, 32, 34, 33, 105, 4]. In [87] (see also [89]) a
large deviation principle is shown to hold for correlated states on quan-
tum spin chains; large deviations for quantumMarkov semigroups are
studied in [102]. Metastable behaviour in a different atom maser has
been investigated in [106]. More broadly, there is a large body of large
deviations work in quantum systems [107, 87, 92, 93, 108, 84].
The use of quantum trajectories (or quantum-jump approach) in quan-

tum optics is studied in the review article [38]; as we will be using the
quantum trajectories framework in most of what follows, we refer the
reader to this article for more information. We also note [109] as an
important article in the development of quantum trajectories. The ap-
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Figure 3.7: Examples of quantum jump trajectories showing intermittency
(taken from Sec. 4.4)

proach involves obtaining quantum trajectories by performing meas-
urements on the output fields of an open quantum system [38]. The
three-level system and atommaser, which we consider below, are stud-
ied using quantum trajectories; the authors note the intermittency vis-
ible in the trajectories, showing bright and dark periods in the emission
events (see also [110] for a treatment of such phenomena with experi-
ments in mind).
The use of large deviations to study open quantum systems in terms

of thermodynamics of ensembles of quantum jump trajectories was
started in [53] (see also Viewpoint commentary in [104]). The systems
studied all have in common that they undergo quantum jumps of some
type which allows defining ensembles of trajectories defined by some
activity. The LD approach involves a biased master operator (corres-
ponding to different ensembles of trajectories) whose largest real eigen-
value corresponds to the LD function. Singularities in the phase dia-
gram for the micromaser corresponds to space-time phase transitions
between different dynamical activities.
The thermodynamic formalism for quantum jump trajectories in dis-

sipative systems is related to large deviations in [53] (see also [4, 111,
112, 113, 105, 114, 115]), where (dissipative) quantum non-equilibrium
systems are studied using the large deviations method. The systems
examined all have in common that they undergo quantum jumps of
some type which allows defining ensembles of trajectories defined by
some activity. Examples considered are the driven two-level system,
the three-level system (electron shelving) and the atom maser (studied
in detail below). This article introduces some important features: sin-
gularities in the phase diagram for corresponds to phase transitions
between different dynamical activities, much like in (classical) statistical
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mechanics; biased trajectories give rise to the LD function as largest
eigenvalue of biased master operator.



Part II

RESULTS

Time passes and the constants stay.

— James Blake, Overgrown



4
PHASE PUR I F ICAT ION

4.1 introduction

In this chapter we show how a natural decomposition for the space
associated to a discrete-time quantum Markov chain may be found by
considering the algebraic structure of the commutant of Kraus oper-
ators. Using this decomposition, we are able to define phases, what it
means to purify towards such phases in terms of measurement traject-
ories; we refer to this as phase purification.
We will also clarify the meaning of phase transitions in this context

and connect these notions of phase purification and phase transitions
to the behaviour of large deviations rate functions.
In the continuous-time setting we will connect our findings to a res-

ult due to [116]; we finish the chapterwith several illustrative examples.

4.2 structure of discrete-time quantum markov chains

In this section we introduce a structure theorem which describes the
state space of discrete-time quantum Markov chains; we will use this
structure theorem to carefully define the notion of phases for quantum
Markov processes.
In classical Markov processes, the state space can generally be de-

composed into transient and recurrent components, characterised by the
asymptotic behaviour of the process. The set of recurrent states are the
states in which the process will end up almost surely. Conversely, the
transient states are those states whose probability of being visited van-
ishes in the asymptotic limit.

55
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4.2.1 Recurrent subspace

The first step in the structure theorem is the quantum analogue of a
decomposition into recurrent and transient states. Suppose that the dy-
namics takes place on the algebra of operators on some finite-dimen-
sional Hilbert space H = Cn: then using the definitions from Ch. 3
we have a transition operator T which is a completely positive, identity
preserving map

T :Mn →Mn.

In general, any identity-preserving completely positive map T on
Mn can be decomposed into a recurrent and transient part as follows.
The recurrent projection P0 of T is found by taking the projection onto
the maximal range of all positive matrices that remain invariant under
T ; then T is said to be recurrent if P0 = 1.
The restriction T0 to the recurrent subalgebra P0MnP0 is again a trace-

preserving positivemap, and T0 is recurrent with respect to this restric-
tion. Conversely, the transient subalgebra P⊥0MnP

⊥
0 (or decaying subspace

[116]), is obtained by taking the restriction of T to the subspace P0H.
This subspace is characterised by [61, Thm. 3.3]

lim
k→∞P⊥0 Tk∗ (ρ)P⊥0 = 0 for all ρ ∈ S(Mn).

Note that this definition applies to discrete and continuous time quan-
tum Markov processes; the only difference is that in the continuous
time case, we take the limit t → ∞ for the elements of the semigroup
T∗,t.
The upshot of these definitions is that, given the transition operator

T for a quantumMarkov process, we can always define its recurrent re-
striction T0 which is itself a quantum Markov process. For this reason,
we will in the following assume for simplicity that the quantum Mar-
kov process is already recurrent.

4.2.2 Structure

Our treatment of the structure of quantum Markov chains starts with
the Kraus decomposition introduced in Eq. (3.1): for all states ρ the
transition operator T∗ takes the form

T∗(ρ) =
k∑
i=1

ViρV
∗
i
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where the Kraus operators are denoted by V1, . . . ,Vk. We start with
considering the commutant of the Kraus operators, denoted by A: this
is the set of all elements in Mn that commute with all of the Kraus
operators,

A = {V1, . . . ,Vk} ′

= {X ∈Mn : [Vi,X] = 0 for all i = 1, . . . ,k} .

Then A is a subalgebra ofMn, and we may write A in the form [117]

A =
⊕
a

B (Ka)⊗ 1Ha

corresponding to a decomposition of the originalHilbert spaceH = Cn

of the type

H =
⊕
a

Ka ⊗Ha. (4.1)

Here {Ka} and {Ha} are all finite-dimensionalHilbert spaces;wedenote
by Pa the orthogonal projection onto the subspaceKa⊗Ha. EachKi is
the multiplicity space associated to Hi, accounting for the equivalences
between copies of Hi: in the notation of [116] we may write

Ka ⊗Ha = Cn(a) ⊗Ha (4.2)

where n(i) is the number of equivalent blocks Hi. By definition of A,
the Kraus operators then have the decomposition

Vi =
⊕
a

1Ka
⊗ V(a)

i ,

where V(a)
i ∈ B (Ha).

This decomposition of Mn is the finest possible splitting in the fol-
lowing sense. Suppose ψ ∈ Ka is a unit vector. Then the space Haψ :=

ψ⊗Ha is a minimal invariant subspace for T , corresponding to a one-
dimensional projection in the algebra B (Ka)⊗ 1Ha

and the restriction
of T to B

(
Haψ

)
is an irreducible map (for a related decomposition, see

decoherence free subspaces found in [118].)

4.2.3 Dephasing and equivalences

The next step in this decomposition is defining a notion of equivalence
of diagonal blocks PaMnPa. Note first that an important feature of this
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decomposition is that T acts independently on the blocks PaMnPb: that
is, T (PaXPb) = PaT(X)Pb for all X ∈Mn. We denote by Ta,b the restric-
tion of T to the block PaMnPb.
Note that the spectrum of the restriction σ(Ta,b) is is a subset of the

spectrum of T ; as T is a contraction, σ(T) is contained in the complex
unit disc. Suppose first that all eigenvalues lie strictly within the unit
disc; that is, for all λ ∈ σ(Ta,b)wehave |λ| < 1. Then for any Y ∈ PaMnPb

lim
n→∞ Tna,b(Y) = 0,

which means that the block PaMnPb shows relative dephasing between
Pa and Pb.
The other possibility is that Ta,b has an eigenvalue λ such that λ =

eiϕa . In this case the Kraus operators associated to Ta,b are related by
the phase λ [119],

V
(a)
i = eiϕaV

(b)
i

and the block PaMnPb does not dephase: the eigenmatrices associated
to eigenvalues on the unit circle show no decay.
Note that such equivalences are not the same as a unitary equival-

ence of the type V(a)
i = UV

(b)
i U∗ where U is a unitary matrix; such

equivalences are already accounted for in the original decomposition.
Our aim is to obtain a decomposition of H such that off-diagonal

blocks all exhibit dephasing. This is done by collecting blocks that have
no relative dephasing, which takes the form of an equivalence relation
on the indices with classes

[a] = {b : PaMnPb shows no dephasing }

= {b : |λ| = 1 for some λ ∈ σ(Ta,b)} .

By collecting equivalent blocks in Eq. (4.1) we obtain the decomposi-
tion

H =
⊕
[a]

 ⊕
b∈[a]

Kb ⊗Hb


while the Kraus operators take the form

Vi =
⊕
[a]

 ⊕
b∈[a]

eiϕb1Kb
⊗ V(a)

i


=
⊕
[a]

[
U[a] ⊗ V(a)

i

]
.
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In the last line we have introduced a unitary operator Ua, acting on⊕
b∈[a]Kb, given by

U[a] =
⊕
b∈[a]

eiϕb1Ka
.

Then the off-diagonal blocks associated to the equivalence classes all
exhibit relative dephasing, as desired.

Definition 4.1 (Phases). The phases of a quantum Markov process on
Mn are the diagonal blocks P[a]MnP[a] obtained by grouping together
equivalent diagonal blocks in the decomposition Eq. (4.1).

We denote by P[a] the orthogonal projection onto the subspace⊕
b∈[a]

Kb ⊗Hb,

which may be written as P[a] =
∑
b∈[a] Pb.

4.2.4 Stationary states

The block structure we have identified carries over to the structure of
stationary states of T . We first note that relative dephasing for states
means that P[a]ρ(n)P[b] → 0 as n→∞ for any [a] 6= [b]. If ρ[a] is a state
supported by P[a] then its evolution takes the form

ρ[a](n) = U
n
[a] ⊗ Tn[a](ρ[a]);

a unitary rotation supported on the multiplicity space
⊕
b∈[a]Kb and

an evolution due to the Kraus operators, supported on
⊕
b∈[a]Hb.

As a result of relative dephasing between the blocks, stationary states
onH are convex linear combinations of stationary states supported by
blocks: we denote by S(H) the set of stationary states for T , then

S(H) =

⊕
[a]

λ[a]ρ[a] : λ[a] > 0,
∑
[a]

λ[a] = 1, ρ[a] ∈ S[a]

 . (4.3)

Here S[a] denotes the set of stationary states supported by P[a]H, given
by convex combinations of the extremal points

Se(H) =
{
|ψ〉〈ψ|⊗ σ[a] : |ψ〉 is an eigenvector of U[a]

}
(4.4)

where σ[a] is the unique stationary state for T[a].
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Note that, if U[a] has nondegenerate spectrum, S[a] is a simplex gen-
erated by a finite set of extremal points. If U[a] has degenerate spec-
trum, the set S[a] is more subtle; for example if U[a] = 1 then the set
of eigenvectors for U[a] is a complex projective space (e.g. the Bloch
sphere in two dimensions).
We point out that it is possible, for restricted evolutions T[a], T[b],

with [a] 6= [b], to be unitarily equivalent in the sense

T[a]
(
Uρ[a]U

∗) = UT[b] (ρ[b])U∗,
while there still is dephasing between blocks. This is unitary equival-
ence on the level of the transition operator T , which is different from
unitary equivalence of Kraus operators (this can happen, for example,
as a result of non-uniqueness of the Kraus decomposition).

4.2.5 Measurement and trajectories

The decomposition into phases can be related to the statistics of meas-
urements on the output. For our convenience we will suppose that the
dynamics decomposes into two phases; furthermore, we assume that
the phases have no multiplicity space associated to them. This last as-
sumption is justified as follows. Since we are interested in the measure-
ment statistics in the stationary regime, the probability distribution of
a sequence of outcomes from a particular phase is

Pss
a (i1, . . . , in) = Tr

(
Vi1 · · ·Vi1 |ψ〉〈ψ|⊗ ρssV∗i1 · · ·V

∗
in

)
.

By the previous discussion, Vi = Ua ⊗ V(a)
i and |ψ〉 is an eigenvector

of Ua. The above trace therefore simplifies to

Pss
a (i1, . . . , in) = Tr

(
V
(a)
i1
· · ·V(a)

i1
ρssV

(a)∗
i1
· · ·V(a)∗

in

)
,

showing that a multiplicity space with unitaryUa does not change the
stationary distributions.
In this setting of two phases without multiplicity space, the phase

decomposition of H takes the form H = Ha ⊕Hb and the Kraus oper-
ators are of the form

Vi = V
(a)
i ⊕ V(b)

i .

At this point we note that it is possible for the two phases to give the
same measurement output distributions. For example, suppose that
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Vi =
√
λiU

(a)
i ⊕√λiU(b)

i where U(a)
i and U(b)

i are unitary operators,
and λi > 0,

∑k
i=1 λi = 1. Then the restricted transition operators are

Ta,∗(ρa) =
k∑
i=1

λiU
(a)
i ρaU

(a)∗
i

Tb,∗(ρb) =
k∑
i=1

λiU
(b)
i ρbU

(b)∗
i ;

then trajectories generated by Ta and Tb have the same distributions,
namely i.i.d. outcomes with probabilities λi. However, this does not
exclude the possibility that a different choice of measurement will be
able to distinguishes the two phases. In fact [119], two blocks in the de-
composition Eq. (4.1) are not dephasing if and only if their stationary
quantum output states are the same; therefore, the classical measure-
ment distributions are equal for any choice ofmeasurement. Therefore,
by construction of the phases, this means that there exists a measure-
ment that gives different distributions for the two phases.
Suppose now that the system starts in a superposition of two states

|ψa〉 and |ψb〉, associated to phase a and b, respectively, with initial
state |ψ〉 =

√
λ|ψa〉+

√
1− λ|ψb〉. Then the probability distribution for

trajectories coming from the total system is

Pψ(i1, . . . , in) = λPψaa (i1, . . . , in) + (1− λ)Pψbb (i1, . . . , in);

in other words, the distribution Pψ of trajectories is a mixture of dis-
tributions P

ψa
a and P

ψb
b associated to the two phases, with weights

given by the initial state weights. Asymptotically, due to decay of cor-
relations, therewill be no dependence on the initial states |ψa〉 and |ψb〉
within each phase; therefore in the stationary regime, the distribution
is a similar mixture given by Pss = λPssa + (1− λ)Pssb .

4.2.6 Purification of phases

The discussion of phases so far has concerned itself mainly with the
measurement output. We will now see how phases play a role in the
conditional evolution of the state of the system. Associated to a traject-
ory of outcomes is the conditional state of the system; if we have ob-
tained a measurement trajectory (i1, . . . , in) then the conditional state
of the system is (cf. Eq. (3.8))

ρ(i1, . . . , in) =
Vin · · ·Vi1ρ0V∗i1 · · ·V

∗
in

Tr
(
Vin · · ·Vi1ρ0V∗i1 · · ·V

∗
in

) ,
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where ρ(0) is the initial state.

Definition 4.2 (Phase purification). Suppose H = Ha ⊕Hb is the de-
composition of the system into two phases. Then the system exhibits
phase purification if the conditional state becomes supported on one of
the phases; that is, if

lim
n→∞Tr [Paρ(i1, . . . , in)] ∈ {0, 1} ,

almost surely with respect to the stationary probability distribution on
trajectories.

It is vital to note that the notion of phase purification depends on the
choice of measurement. In particular, suppose that the distributions
associated to the phases are identical (Pa = Pb). This means that we
cannot decide from looking at the trajectories whether the state of the
system is in phase a or phase b, and so no purification occurs.
Phase purification is a statement about the conditional state, but it also

appears in the stationary states. Suppose the initial state ρ0 hasweights
λ = Tr [Paρ0] and 1− λ = Tr [Pbρ0]. Then the stationary state ρss will
take the form

ρss = λρ
(a)
ss ⊕ (1− λ)ρ

(b)
ss , (4.5)

where ρ(i)ss is the unique stationary state in phase i. The ratio of ini-
tial weights λ gives the proportion of trajectories associated to phase a,
versus those associated to phase b.

4.2.7 Large deviations and phase transitions

Large deviations rate functions may be used to show that phase puri-
fication should occur, for suppose that the stationary output distribu-
tions Pa,Pb are not identical. Then, as we noted above, there is some
local statistic on which the two distributions disagree (i.e., they have
different means). Then the large deviations rate functions, say Λa(·)
and Λb(·) associated to the phases are not the same.
Since the distribution of the trajectories from the total system is a

mixture

P = λPa + (1− λ)Pb.
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(a) Λ(s) (b) Λ ′(s)

Figure 4.1: Different rate functions for the phases (red and green) lead to the
rate function for the combined system (blue) exhibiting a jump in
the first derivative (cf. Fig. 4.7b below)

The large deviation rate function for any stochastic process Xn associ-
ated to the output (for instance, the sample mean of counts) is

Λ(s) = lim
n→∞ 1n log

(
λEa

[
esXn

]
+ (1− λ)Eb

[
esXn

])
= max

a,b
{Λa(s),Λb(s)} .

Then, as shown in Fig. 4.1, this will lead to a non-analyticity at some
s for the rate function λ(·), although the individual rate functions are
smooth.
For example, consider the simple case of the sample mean of the

counting process associated to the output. It is possible for phase puri-
fication to occur, without this being visible in the distribution for the
sample mean. In this case, the rate function for a higher level statistic
is required to show phase purification. For more on higher level rate
functions, see Ch. 6.
If the sample mean distributions are different, this does not neces-

sarily happen for the first moments (i.e., the mean); rather, a higher
moment such as the variance might be required to see the difference.
This corresponds to a discontinuity at s = 0 appearing on a higher de-
rivative of the rate function. Of course, taking a higher moment as the
initial statistic causes the phase transition to appear at the level of the
first moment of this new statistic.
The connection between the phase structure and the large deviations

rate function may be summarised as follows. If there is a single phase,
then the rate function is analytic, and there is no dynamical phase trans-
ition.
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If there are two (or more) phases, there are the following two possib-
ilities:

a. themeasurement processes have the samedistribution (although
the output quantum states are not identical) — equivalently, the
phases are dephasing at the level of the master equation;

b. the measurement processes have different distributions: in this
case, it is possible for the rate function to be non-analytic (e.g. a
jump in the first moment), and this is a dynamical phase trans-
ition associated to phase purification.

4.2.8 Phase transition as change in phase structure

So far we have discussed phase purification, where a dynamical phase
transitions in the sense of a discontinuity of a rate functionwith respect
to a large deviations parameter s. We can also look at phase transitions
in a more general sense, and say that a phase transition occurs when
the phase structure changes, as a result of a change in a parameter g
of the system. In terms of phase purification this means, for example,
that a critical point g = g0 is a phase transition if there is no phase
purification for g < g0, while there is phase purification for g > g0.

The distinction between non-analytic behaviour in s for some fixed
g, and non-analytic behaviour in g itself, may be illustrated as follows.
In terms of the large deviations rate function Λ(s), this means that Λ
is smooth for g < g0 while Λ is non-analytic at s = 0 for g > g0. This
point of view allows us to track phase transitions by considering non-
analytic behaviour in the two-variable function Λ(s,g). The depend-
ence on gmay be visible in the output on higher level large deviations
but not the first one, as in the third example below. This shows that the
higher level large deviations contain more information than the first.
The example discussed below has a smooth family of Kraus operators
{V
g
i } such that in the limit g → g+0 the stationary state converges to ρ1s

and in the limit g → g−0 the stationary state converges to ρ2s , where
both limiting stationary states are non-faithful (e.g. pure); in this case,
Λ(s,g) is non-analytic in g at g0 but analytic in s.
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4.3 continuous-time phase structure

For continuous-time processes, the discretisation scheme discussed in
Sec. 5.2 can be employed to obtain an analogous discrete-time system
described by a family of Kraus operators. To this system one can then
apply the methods from the previous section.
An alternative approach is found in [116] (see also [120, 121]). The

authors consider the structure of quantum dynamical semigroups in
continuous time in terms of algebraic properties of the commutant
N = {H,Lk} ′ of the Hamiltonian H and the jump operators {Lk}. This is
done as follows: orthogonal projections Pi in N correspond to minimal
collecting subspaces PiMnPi; these correspond precisely to the blocks in
our decomposition.
As in our setting, off-diagonal blocks PiMnPj donot necessarily show

dephasing; equivalent minimal collecting subspaces are grouped to-
gether to obtain projectionsQi. Then the blocksQiMnQj are relatively
dephasing, and each such blockQiMnQi consists of repetitions of unit-
arily equivalent blocks; the Hilbert spaceHmay be expressed as in Eq.
(4.1) where QiH = Ki ⊗Hi. The restricted evolution on a subspace
QiMnQi is of the form Ut ⊗ T (i), where T (i) has a unique stationary
state and Ut is a fixed unitary on the multiplicity space.
In Eq. (4.3) we described the set of stationary states in the case of

discrete time. In continuous time [116, Thm. 2 (3)], for all initial states
ρ the time evolution Tt,∗(ρ) satisfies the asymptotic form

lim
t→∞

∣∣∣∣∣Tt,∗(ρ) −
N⊕
i=1

λie
−iHitRie

iHit ⊗ ρi
∣∣∣∣∣ = 0 (4.6)

where 0 6 λi 6 1 with
∑N
i=1 λi = 1, and each Ri ∈ Mn(i) is a positive

matrix with trace one. The weights λi and the matrices Ri depend on
the initial state ρ, and each ρi is a unique stationary state on Hi.
This asymptotic form shows that, as we expect due to the dephasing

condition introduced before, the state ρ(t) becomes concentrated on
the subspacesQiMnQi. Eq. (4.6) shows that the time evolution in each
block is reduced to a unitary (reversible) evolution on the multiplicity
space with Ui,t = exp(iHit). As a direct corollary of this, the set of
stationary states Sss(Mn) consists of the states formed inEq. (4.6)where
each Ri commutes with the unitary Ui,t:

Sss(Mn) =

{
N⊕
i=1

λiRi ⊗ ρi : [Hi,Ri] = 0, λi > 0,
N∑
i=1

λi = 1

}
.
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Comparingwith Eq. (4.3) shows the similarities between the continuous-
time and discrete-time settings.

4.4 examples

In this section, we will examine both discrete-time and continuous-
time cases and see how the features discussed in the previous two sec-
tions appear in some basic models.

4.4.1 Example 1: intermittency and purification

The first examplewe consider is a discrete time quantumMarkov chain
onM2, which physically can be interpreted as a single qubit channel.
Consider the dynamics given by the pair of Kraus operators

V1 = a

 1 0

0 −1

 , V2 = b

 −1 0

0 1

 .

Then there is a single phase,with a two-dimensionalmultiplicity space:
the phase decomposition is effectively given by C⊕C and the station-
ary states are of the form ρ⊗ σwhere ρ is unique and σ is in the space
spanned by the eigenvectors of the unitary operator acting on the mul-
tiplicity space (as in Eq. (4.4)). The stationary phase is one-dimensional
and there are two Kraus operators acting on it,

V11 = a1, V12 = −b1,

corresponding to a restriction of the original Kraus operators to the
state |0〉; since the space is one-dimensional these can be thought of as
a and −b, respectively. If instead we restrict the Kraus operators to the
state |1〉we obtain the same operators but with opposite minus sign,

V21 = −a1, V22 = b1,

These restricted Kraus operators can be considered simultaneously by
writing

Vi = U⊗ Vi1, U =

 1 0

0 −1

 .

At this point, we do not observe any intermittency in the trajectories to
indicate a phase transitions, since there is no sense in which the phase
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Figure 4.2: Sample trajectories with the perturbed Kraus operators showing
intermittency and no long-time purification

splits into two separate phases for some value of the parameters a,b.
The evolution of the state in this casewill simply rotatewith the unitary
operator U on the multiplicity space.
So far, the one-dimensional phases are equivalent and therefore no

phase purification occurs. Nowwe consider an extension of the model
which lets us construct a point where the system goes from being de-
generate to being nondegenerate. The Kraus operators are given by a
perturbation of the previous ones,

V1 =

 a0 ε1

0 a1

 , V2 =

 b0 0

ε2 b1

 ,

with a0 6= a1, b0 6= b1, and εi > 0.
Previously there was a single phase with a multiplicity space of di-

mension two; if a0 6= a1 and ε1 = 0 (and similar for V2), we have
i.i.d. measurements and phase purification occurs. If we are close to
the Kraus operators from the last example (that is, a0 ≈ a1, b0 ≈ b1
and εi > 0) we see intermittency in the trajectories; this is most visible
by choosing the perturbation from the diagonal case an order of mag-
nitude larger than εi. Purification comes from the phases having statist-
ically different trajectories; intermittency comes from the off-diagonal
εi allowing for transitions between phases. - For example, in Fig.4.2 we
show sample trajectories with the Kraus operators

V1 =

 0.77 0.01

0 −0.63

 , V2 =

 −0.63 0

−0.01 0.77

 .

These trajectories show jumps between the stationary states |0〉 and |1〉
of the unperturbed Kraus operators. For short timescales we see puri-
fication towards these eigenstates, but on longer timescales jumps be-
tween these phases due to the off-diagonal perturbation.
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Figure 4.3: Sample trajectories with the perturbed Kraus operators showing
purification without intermittency

Figure 4.4: Derivatives of the rate functions associated to the Kraus operators
from Fig. 4.2 without purification (blue), and those from Fig. 4.3
with purification (red), showing that the rate function with puri-
fication is non-analytic at s = 0.

We see purification towards the eigenstates without intermittency
by removing the off-diagonal perturbations; in 4.3 we take

V1 =

 0.72 0

0 −0.71

 , V2 =

 −0.70 0

0 0.71

 .

With no perturbation present to allow transitions between the phases,
we see that the trajectories purify towards the eigenstates. In Fig. 4.4we
show the derivatives of the large deviations rate functions associated
to the two cases. When there is purification, there is a discontinuity in
the rate function at s = 0.

4.4.2 Example 2: four-level system

The next example is a continuous time quantum Markov process; we
are looking at a four-level system with a single jump operator; this can
be interpreted as a system composed of two interacting qubits. The
four levels are denoted {|0〉, |0 ′〉, |1〉, |1 ′〉}; the Hamiltonian is

H = Ω1|0〉〈1|+Ω2|0 ′〉〈1 ′|+Λ|1〉〈1 ′|+ h.c.



4.4 examples 69

(a) Real parts (b) Imaginary parts

Figure 4.5: Top four eigenvalues ofmaster operatorLwithΩ1 = Ω2 = 1. Note
λ1 = 0 is doubly degenerate for Λ > 0, and quadruply degenerate
for Λ = 0.

and the jump operator acts coherently (i.e. identically on the subsys-
tems) as

L =
√
κ
(
|0〉〈1|+ |0 ′〉〈1 ′|

)
.

Time evolution of the density operator ρ is then given by the master
operator

L(ρ) = −i [H, ρ] + LρL∗ − 1
2
{L∗L, ρ} .

We will initially consider the case where the subsystems have the
same couplingΩ1 = Ω2 (so the dynamics is symmetric with respect to
the interchange 0 ↔ 0 ′, 1 ↔ 1 ′). Coupling between the subsystems is
governed by Λ; when Λ = 0 the subsystems evolve independently. To
investigate the possible occurence of phase a dynamical phase trans-
ition at Λ = 0 we consider the following questions:

• Does the activity K(Λ, s) = ∂sλ(Λ, s) show any interesting beha-
viour around this critical point?

• Is the top eigenvalue of L degenerate at Λ = 0 and does increas-
ing Λ lift this degeneracy?

• Do the jump trajectories dependonΛ? In particular, do they show
intermittency near Λ = 0?

• What does the stationary state look like (can it be decomposed
into states on the subsystems, or a tensor product with a sym-
metric or anti-symmetric state)?
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(a) K(Λ, s),Ω1 = Ω2 = 1 (b) K(Λ, s) for Λ = 0, 1, 2

Figure 4.6: Activity K(Λ, s) for equal Ω1 = Ω2, showing a smooth first deriv-
ative K(Λ, s) = ∂sλ(Λ, s) of the rate function

(a) K(Λ, s),Ω1 = 1,Ω2 = 2 (b) K(Λ, s) for Λ = 0, 1, 2

Figure 4.7: K(Λ, s) forΩ1 6= Ω2, showing a jump at Λ = 0; this is a dynamical
phase transition in s, or a quantum phase transition in the limit
Λ→ 0

The activity K(Λ, s) is given by the derivative with respect to s of the
top eigenvalue of the perturbed master operator Ls(·)

Ls(ρ) = −i [H, ρ] + e−sLρL∗ − 1
2
{L∗L, ρ} .

In Fig. 4.6a the activity is shown as a function of Λ and s, while in Fig.
4.6b the activity is plotted for fixed values ofΛ. The activity appears to
be a smooth function of s for all values of the subsystem coupling Λ; if
there is indeed a phase transition, it is not indicated by this parameter.
Note that when the symmetry is broken (Ω1 6= Ω2) the activity shows
a jump at s = 0.
Fig. 4.5 shows the four largest eigenvalues of L (including degen-

eracies). At Λ = 0 the top eigenvalue λ1 = 0 is quadruply degenerate.
This degeneracy is partially lifted by increasing Λ, which introduces a
complex conjugate pair λ2, λ̄2 while the degeneracy of λ1 is decreased
to two.
The simplest scenario in this model is the choice of parametersΩ1 =

Ω2 and Λ = 0. The initial state |ψ〉 determines the evolution (when
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(a) Real parts (b) Imaginary parts

Figure 4.8: Top four eigenvalues of master operator L with Ω1 = 1,Ω2 = 2.
Note λ1 = 0 is doubly degenerate only for Λ = 0.

Λ = 0). To see this, note that theHilbert space decomposes intoC2⊗C2

(one phase with two-dimensional multiplicity space) and any station-
ary state is of the form P|ψ〉〈ψ| ⊗ ρss (see Eq. (4.4)). In particular, eigen-
matrices of L are given by ρi = Ei ⊗ ρwhere

ρ =

 κ2+4Ω1
2

4Ω1
2

κi
2Ω1

− κi
2Ω1

1


and E1, . . . ,E4 are the standard matrix units,

E1 =

 1 0

0 0

 ,E2 =

 0 0

0 1

 ,E3 =

 0 1

0 0

 ,E4 = E∗3.

In this case, clearly ρ1 and ρ2 can be normalised to be valid density
matrices ρ̃1, ρ̃2; ρ3 and ρ4 are neither self-adjoint nor can they be nor-
malised. However, ρ3 = ρ∗4 so any stationary state is of the form

ρss = tρ̃1 + (1− t)ρ̃2 + zρ3 + z̄ρ4

where 0 6 t 6 1 and z ∈ C. This reflects the fact that the dynamics
on the multiplicity space C2 is fully degenerate, meaning there is the
entire Bloch sphere of stationary states on the multiplicity space.
We nowmove to a more complex model and take our parameters to

be Ω1 6= Ω2 and Λ = 0; the phase decomposition is now C2 ⊕C2, so
there are two phases C2 with no multiplicity. This is most clearly seen
in the nullspace of L, which is now two-dimensional:

ρ1 =



κ2+4Ω1
2

4Ω1
2

κi
2Ω1

0 0

− κi
2Ω1

1 0 0

0 0 0 0

0 0 0 0


, ρ2 =


0 0 0 0

0 0 0 0

0 0 κ2+4Ω2
2

4Ω2
2

κi
2Ω2

0 0 − κi
2Ω2

1


.
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As in the previous case, these may be normalised to obtain density
operators ρ̃1, ρ̃2 and any stationary state is represented by a density
matrix of the form

ρss = tρ̃1 + (1− t)ρ̃2

where 0 6 t 6 1; this is exactly the situation described in Eq. 4.5 above,
with the parameter tdetermined by the phaseweight of the initial state.
Rather than having a full Bloch sphere of all states onC2, we are now re-
stricted to convex combinations of two extremal states. Fig. 4.9b shows
a trajectory corresponding to this choice of parameters, andwe see that
phase purification indeed occurs.

So far, the coupling Λ has been considered zero. The most interest-
ing dynamics occur when the coupling parameter is taken to be non-
zero. WithΩ1 = Ω2 andΛ > 0 the nullspace is again two-dimensional,
spanned by the matrices ρ1, given by

0 1 −κ
2+4Λ2+4Ω1

2

4ΛΩ1
− κi
2Λ

1 0 κi
2Λ −Ω1Λ

−κ
2+4Λ2+4Ω1

2

4ΛΩ1
− κi
2Λ 0 1

κi
2Λ −Ω1Λ 1 0


and ρ2, given by

κ2+4Λ2+4Ω1
2

4Ω1
2 0 κ3 i+4κΛ2 i+4κΩ1

2 i

8ΛΩ1
2 −κ

2+4Λ2

4ΛΩ1

− κi
Ω1

1 κ2−4Λ2

4ΛΩ1
κi
2Λ

κ (κ2+4Λ2+4Ω12) i
8ΛΩ1

2 −κ
2+4Λ2

4ΛΩ1

κ2+4Λ2+4Ω1
2

4Ω1
2 0

κ2−4Λ2

4ΛΩ1
κi
2Λ − κi

Ω1
1


.

Since

ρ∗2 =
iκ

Ω1
ρ1 + ρ2

we have L(ρ∗2) = 0 and we obtain a stationary state ρ̃ from normalisa-
tion of ρ2+ ρ∗2. Since ρ1 is traceless and self-adjoint, the general station-
ary state is of the form

ρss = ρ̃+ tρ1

where t ∈ R. Since this family of stationary states is fully supported,
there can be no dephasing: there are no stationary states which are
located only in either one of the phases.
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(a) Λ > 0 (b) Λ = 0

Figure 4.9: Phase weight Tr1ρ of representative trajectories (blue) near Λ = 0;
fidelity F of moving average with the stationary phases ρss,1, ρss,2
(red and green) with Ω1 = 1 and Ω1 = 1.15.

With Ω1 6= Ω2,Λ > 0 the nullspace of L is one-dimensional, with a
unique stationary state ρss; again, no dephasing occurs. We conclude
that whenever Λ > 0, there is only a single phase, with no multiplicity
in this last case. Fig. 4.9a shows a trajectory corresponding to these
parameters. Over short timescales, phase purification occurs, with tra-
jectories moving towards one phase or the other. However, on longer
timescales, intermittency plays a role, since we now have communica-
tion between the two phases; long-term purification is not possible.

4.4.2.1 Phase transitions

In the case of a single (coherent) jump, the most interesting behaviour
is near Λ = 0 with Ω1 slightly different from Ω2. As seen in Fig. 4.8a
and the discussion above, when Λ → 0 the unique eigenvector ‘de-
couples’ into a direct sum of eigenvectors ρss,1 ⊕ ρss,2 supported in the
subspaces {|0〉, |1〉} and {|0 ′〉, |1 ′〉} respectively.
For Λ = 0 and Ω1 6= Ω2 the stationary state ρss may be expressed as

a convex combination of the stationary states ρa, ρb corresponding to
the separate two-level systems (or phases),

ρss = λρa + (1− λ)ρb, 0 6 λ 6 1.

The simulations 4.9 show that, although theoretically any of the above
convex combinations ρss are valid stationary states, the system always
ends up in either ρa or ρb. This is exactly the phase purification we
discussed in the previous section.
The quantum phase transition occurs in the limit Λ → 0; for any

Λ > 0 the system has no dephasing, and the multiplicity components
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(a) ω = 0.1 (b) ω = π/4 (c) ω = π/2

(d) ω = π/1.9 (e) ω = 3π/4 (f) ω = π/1.05

Figure 4.10: Representative trajectories showing dramatic variation in beha-
viour. The critical points are ω = 0 and ω = π/2; other paramet-
ers as in Fig. 4.12.

are trivial: the phase decomposition is simply C4. At the point Λ = 0

this phase structure changes into C2⊗C2 if the ratesΩi are equal, and
C2 ⊕C2 if the rates are different. In Fig. 4.7 the first derivative of the
rate function shows a jump at s = 0when Λ→ 0, indicating this phase
transition.

4.4.3 Example 3: ‘symmetry breaking’ from perturbation: XX0 interaction

The final example is again a discrete time quantumMarkov chain; this
example could be seen as a generalisation of the first example. The in-
teraction is given by the Heisenberg XYZ model, where U = exp(−iH)
with

H = −
1

2
(Jxσxσx + Jyσyσy + Jzσzσz) ,

where σx,σy and σz are the standard Pauli operators. In particular, we
are interested in the case where Jx = Jy = ω and Jz = 0, in which case
the Kraus operators take the form

K0 =

 λ 0

iµ sinω λ cosω

 , K1 =

 µ cosω iλ sinω

0 µ
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Figure 4.11: Sample trajectory with events associated to different levels.

where λ = cosϕ1 andµ = e−iϕ2 sinϕ1 are the components of the initial
state of the incoming qubits. We will refer to this setting as the ‘XX0’
model.
In Fig. 4.10 sample trajectories are plotted on the Bloch sphere for

various values of ω showing how behaviour changes qualitatively. Be-
low we will investigate in more detail how the different patterns of
behaviour may be explained.

4.4.3.1 Rate functions and spectral properties

In Ch. 6 below we discuss the Sanov theorem for quantum systems.
In Fig. 4.12 we have computed the Sanov theorem level 1 and level 2
rate functions. The level 1 rate function is associated to frequencies of
outcomes, while the level 2 rate function is associated to frequencies
of pairs of outcomes. Interestingly, the level 1 rate function shows no
dependency on ω, while the level 2 rate function does vary with ω.
This suggests that higher level rate functions are able to detect more
information than lower level rate functions, in the following sense. In
this context, there are only two types of jumps: thismeans that the level
1 rate function is associated to the mean number of jumps of one type.
The level 2 rate function can distinguish between trajectories for which
this mean is the same, by detecting the different rates at which pairs of
jumps occur, which is illustrated in Fig. 4.11.
Fig. 4.13 shows the spectrum of the transition operator T as a func-

tion of ω, showing that degeneracy appears at ω = 0 and ω = π. At
the point ω = 0 the stationary state is fully degenerate i.e. any state is
a stationary state; this suggests a phase decomposition C2 ⊗ {1} with
maximal multiplicity space. At ω = π the set of stationary states is
the convex hull of the extremal stationary states |0〉 and |1〉 (that is, the
vertical line joining the north and south poles of the Bloch sphere;) the
phase decomposition associated to this degeneracy isC⊗C, with a one-



4.4 examples 76

(a) Level 1 r(t) (b) Level 1 r ′(t)

(c) Level 2 r(t) (d) Level 2 r ′(t)

Figure 4.12: Sanov level 1 and 2 spectral radii and their derivatives for theXX0
model (t = [t,−t] for level 1 and t = [t,−t;−t, t] for level 2). Initial
atom state angle π/4 and phase π.

Figure 4.13: Spectrum of transition operator (real and imaginary parts) show-
ing 4-fold degeneracy at ω = 0 and 2-fold degeneracy at ω = π
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(a) ε ≈ 0.005 (b) ε ≈ 0.01

Figure 4.14: Expectations of Pauli operators σi in the ‘XXε’ model at ω = π

critical point (note different scales)

dimensional multiplicity space. In between these critical values the de-
composition may be written as 1⊗C2, with a unique stationary state
for 0 < ω < π.

4.4.3.2 Trajectories and phase transitions

This example shows an interplay between dynamical phase transitions
(in s) and quantum phase transitions (in ω). We consider the trajector-
ies of this system near the points ω = 0 and ω = π to see how the
behaviour changes near these critical points. In Figs. 4.15 and 4.14 we
consider the expectation values of the Pauli operators along sample tra-
jectories close to these critical points. We approach the critical point by
choosing a very small Jz = ε. The trajectories suggest there is some in-
termittency in the expectation value of σz, which is shown in Fig. 4.18.
The stationary state at ω = π depends strongly on the direction of

the limit used to approach the critical point. In Fig. 4.16 we see that the
limit

lim
g→0

lim
ω→π

ρ
(J)
ss (4.7)

depends strongly onwhich particular line in the (ω,g)planewe choose
to approach the limit J = [π,π, 0]. For example, we see that (following
the green line)

lim
g→0+

lim
ω→π+

ρ
(J)
ss = |0〉〈0| (4.8)

while

lim
g→0+

lim
ω→π−

ρ
(J)
ss = |1〉〈1|. (4.9)
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(a) ε ≈ 0.005 (b) ε ≈ 0.01

Figure 4.15: Expectations of Pauli operators σi in the ‘XXε’ model at ω = 0

critical point

(a) ρss for g = −0.01, 0, 0.01 (b) Contour plot of 〈σz〉ss as function of
ω and g

(c) 〈σz〉ss in ρss from previous figure (d) As before but with g =

−0.001, 0, 0.001

Figure 4.16: Jump in the stationary state ρss at ω = πwith J = [ω,ω− g, 0]
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(a) 〈σy〉 (b) d/dδ〈σy〉 (c) 〈σz〉

Figure 4.17: Expectation values of σy and σz with parametrisation J = [π +

δ,π+ ε, 0] (change of coordinates from Fig. 4.16 (b).)

(a) 〈σz〉, ε = −0.01 (b) 〈σz〉, ε = 0 (c) 〈σz〉, ε = +0.01

(d) 〈σy〉, ε = −0.01 (e) 〈σy〉, ε = 0 (f) 〈σy〉, ε = +0.01

Figure 4.18: Expectation values of σy and σz along trajectories for varying ε
in the δ, ε parametrisation
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Differentiating the σy expectation value in the stationary state (Fig.
4.17) with respect to δ gives nearly exactly the same plot as the original
σz expectation value (as in Fig. 4.17)
This is reflected in fluctuations appearing around J = [π,π, 0] in the

trajectory expectation values for σy and σz. Note that the sign of σy
changes after each jump; tomake the fluctuations clearerwe have taken
absolute values. In Fig. 4.18 we see that the average value of σy hardly
changeswith different ε, which is reflected in Fig. 4.17 (a) not changing
rapidly around ε, δ = 0.

4.5 conclusion

In this chapter, we have used the algebraic structure of the Kraus oper-
ators to find a decomposition for a quantum Markov process. This al-
lowed us to clearly define the notions of phases, phase purification and
phase transitions; we have also showed how large deviations comes
into play in the occurrence of dynamical phase transitions in suchmod-
els. Three examples served to illustrate this framework, showing evid-
ence of dynamical phase transitions and quantum phase transitions.
As the results have been only for finite-dimensional systems, an ex-

tension to infinite-dimensional systems would be of interest. However,
we anticipate this is more difficult due to the nontrivial algebraic struc-
ture of infinite-dimensional algebras of operators. In particular, the de-
composition used in Eq. (4.1) does not have a straightforward infinite-
dimensional counterpart.
Staying in the finite-dimensional regime, Eqs. (4.4),(4.3) characterise

the set of stationary states; the exact topological structure of the state
space [122, 123] is worth further study. This would allow us to relate
phase transitions to changes in topological features of states, in addi-
tion to analytic features of rate functions.



5
CHARACTER IZAT ION OF DYNAMICAL PHASE
TRANS IT IONS IN QUANTUM JUMP TRA JECTOR IES

5.1 introduction

As we noted in Ch. 3, the occurrence of phase transitions in an open
quantum system can be understood through the statistical behaviour
of its jump trajectories. The main purpose of this chapter (and [2]) is
to characterise dynamical phase transitions through means other than
the behaviour of the stationary states of a system (i.e. through static
order parameters, in the language of statistical mechanics). This static
approach has been used in the analysis of quantum phase transitions
in open many-body quantum systems [124, 125, 112, 126]; we will see
in this chapter that the use of quantum jump trajectories provides an
additional way to characterise phases and phase transitions. Further-
more, the example of glassy systems below shows that this dynamical
approach may uncover phases that are not identified by the static pic-
ture.
Our approach may be outlined as follows: we first make use of a

discretisation scheme introduced in [127, 128, 129] which allows for
a description of the master dynamics of an open quantum system in
terms of a matrix product state (MPS) [130]. This connection between
the quantum jump trajectories and MPSs already hinted at in Eq. (3.6):
the unravelling of the master evolution leads to the individual realisa-
tions of the dynamics as jump trajectories, which are stochastic quantit-
ies; the entire ensemble of jump trajectories is encoded in the associated
MPS.

This chapter is an adapted version of [2].

81
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The generator of themaster evolution (or the quantummaster operator
(QMO)) offers a description which is in a sense dual to the trajector-
ies point of view. Spectral properties of the QMO contain information
about the phase structure. In particular, when considered as a func-
tion of a parameter of the system, non-analytic behaviour in the eigen-
values closest to 0 is characteristic of dynamical phase transitions[131,
132, 112, 133]. The reason for using trajectories as an alternative [134]
approach to uncovering a phase structure is that, especially in many-
body systems, calculating spectral properties of the QMO is typically
too computationally involved.
Aside from this, trajectories are, by definition, directly accessible ex-

perimentally: as we explained in Sec. 3.2.3 and 3.3.4, the trajectories
associated to open quantum systems exist as a consequence of meas-
urements in their output. Although stationary behaviour is studied ex-
perimentally, as we will see later, the stationary state does not always
reflect the phase transitions. As we saw in Ch. 3, large deviations plays
a natural role in uncovering dynamical phase transitions in the jump
trajectories framework. The examples considered in this chapter will
show how dynamical phase transitions appear in trajectories as fluc-
tuations between different regimes (illustrated in Fig. 5.2). In the ther-
modynamics of trajectories framework, as mentioned in Sec. 3.7, this
dynamical heterogeneity is interpreted as fluctuations between differ-
ent ensembles of trajectories.
After presenting the approach, we will use this formalism to study

various open quantum systems, starting with a three-level system (dis-
cussed in Sec. 5.3 below), a quantum Ising model and the atom maser
(in Sec. 5.4). These three examples all have dynamical phase transitions
which are also reflected in the spectral properties of the QMO, and
range from the simplest possible system exhibiting such behaviour, to
a complex many-body system. Another model considered in Sec. 5.4
is a dissipative model of quantum glassy behaviour, which is differ-
ent from the first three examples in that the dynamical phase trans-
itions are not reflected in the behaviour of its stationary states; this
final example emphasises the usefulness of the dynamical approach
introduced here.
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5.2 preliminaries and formalism

In Ch. 3 we introduced the time evolution of the density operator ρ of a
continuous-time open quantum system; it is given by ∂tρ = L(ρ)where
L is the master operator (QMO). The master operator has the Lindblad
form given in Eq. (3.9), and it is convenient to write L = H+D. Here
H describes the Hamiltonian (or coherent) dynamics,

H(ρ) = −i[H, ρ],

and D describes the dissipative part of the dynamics,

D(ρ) =

N∑
i=1

(
LiρL

∗
i −

1

2
(L∗iLiρ+ ρL

∗
iLi)

)
.

As noted in Eq. (3.6), the ensemble of output trajectories of a dis-
crete time quantumMarkov process may be expressed[127] as anMPS.
We will use this observation to relate the (dynamical) phases in quan-
tum jump trajectories to the (static) phases of the ground state of a one-
dimensional spin system. That observation is for discrete time systems;
since we are looking at continuous-time quantum Markov processes,
the first step is a discretisation scheme to obtain a discrete time pro-
cess. The evolution of the density operator ρ on a short time interval
δt, given by Tδt,∗(ρ), may be approximated by discrete time transition
operator (see Eq. (3.1))

Tδt,∗(ρ) =
N∑
m=0

VmρV
∗
m. (5.1)

Here the Kraus operators are discrete-time approximations to jump
events in the continuous evolution: V0 is the event that no jumps oc-
cur

V0 = e
−iδtH

(
1− δt

N∑
k=1

L
†
kLk

)1/2
while for m = 1, . . . ,N the Kraus operator Vm represents the action of
the jump operator Lm,

Vm = e−iδtH
√
δtLm.

The map Eq. (5.1) is therefore a discrete-time analogue of the conti-
nuous time evolution generated by L; in particular, the state ρ(t) may
be approximated by

ρ(t) ≈ Tnt/n,∗(ρ).
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As in Eq. (3.6), if the initial state of the system is a pure state |ψI〉, the
output state is the MPS

|Ψn〉 =
N∑

i1,...,in=0

∑
ψF

〈ψF|Vin · · ·Vi1 |ψI〉 ⊗ |bi1 , . . . ,bin〉

where the sum over ψF runs over a basis of final states. This MPS en-
codes the statistics of all possible quantum jump trajectories, in that
the coefficients give the probability of a trajectory (i1, . . . , in) as

P(i1, . . . , in) =
∑
ψF

|〈ψF|Vin · · ·Vi1 |ψI〉|2.

Taking into consideration the physical meaning of an MPS, this means
that we can represent this discretised dynamics as a chain (of length n)
of (N+ 1)-dimensional spins, the total state of which is the (unnormal-
ised) MPS

|Ψn(F)〉 =
N∑

i1,...,in=0
〈ψF|Vin · · ·Vi1 |ψI〉 ⊗ |bi1 , . . . ,bin〉 (5.2)

(so |Ψn〉 =
∑
ψF

|Ψn(F)〉.) This formal connection between continuous-
time open quantum systems and spin chains shows that dynamical
phase transitions in the former (which appear in time correlations in
trajectories) are reflected in spatial correlations of the latter.
The large deviations approach introduced in Ch. 2 is valid only in

the asymptotic regime (i.e. as t → ∞.) In terms of the spin chain rep-
resentation, this is equivalent to the thermodynamic limit. In the ther-
modynamic limit, two-point correlations of any pair of observables on
the output chain satisfy the following asymptotic form: suppose the
observables A and B are located at positions x and x+ y, respectively.
Then as n→∞we have [135]

〈Ψn(F)|A(x)B(x+y)|Ψn(F)〉 ∝ <(µ2)
y = e−y/ξ cos(yφ2) (5.3)

where <(z) denotes the real part of a complex number z. The coeffi-
cients appearing on the RHS are related to spectral properties of the
transition operator Tδt from Eq. (5.1): the eigenvalues of Tδt, ordered
by their absolute value, are denoted by 1 = µ1,µ2, . . .. We write µ2 =

|µ2|e
±iφ2 and let ξ−1 = − log|µ2| denote the inverse correlation length.

The spectra of Tδt, as δt → ∞, and those of the continuous-time
semigroup generated by L, are the same; in terms of the eigenvalues
of L, the correlation function in Eq. (5.3) takes the form〈

A(t)B(t+ t ′)
〉
∝ exp(−t ′/τ) cos (ωt ′).
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(a) (b) Spectrum of L (c) Sample trajectory,Ω2 = 0.01κ
and Ω1 = 4κ

Figure 5.1: Three-level system

Here the eigenvalues of L, arranged by decreasing real part, are de-
noted as 0 = λ1, λ2, . . .; the spectral gap of L is <(λ2) = −1/τ, and
ω = =(λ2).
This shows that the two-point correlation functions exhibit damped

oscillations when µ2 has non-zero imaginary part (which we will see
in the examples below), or when ω 6= 0. The spectral gap −1/τ plays
an important role, as the correlation lengths divergewhen this spectral
gap closes; closing of the spectral gap is a feature associated to the oc-
curence of dynamical phase transitions, as we will see in the following
examples.

5.3 three-level system

The first example we consider is a three-level system [38, 57] (see dia-
gram in Fig. 5.1a); this is a simple system which displays many of the
features discussed in the previous section. The continuous-time dy-
namics consists of a Hamiltonian

H = Ω1 |0〉〈1|+Ω2 |0〉〈2|+ h.c.

and a single jump operator L =
√
κ |0〉〈1|. This system shows a dynam-

ical phase transition at Ω2 = 0, associated to which is a closing of the
spectral gap (λ2 = 0) visible in the circled region in Fig. (5.1b). For very
small Ω2, this is visible in the jump trajectories in intermittent beha-
viour: if we takeΩ1 � Ω2 ≈ 0, we see strongly intermittent patterns in
the photon emissions in Fig. (5.1c) [136]. This intermittency reflects the
decoupling of the dynamics atΩ2 = 0 into two separate phases consist-
ing of a driven, active two-level system and a dark, inactive level. This
is seen in the spectrumofL as the dominant eigenvalue λ1 = 0 becomes
degenerate at Ω2 = 0.
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(a) Ising model (b) Atom maser

Figure 5.2: Sample jump trajectories

The phase transition at Ω2 = 0 is a first-order transition, clearly
present in the trajectories by the switching between the two phases
for small Ω2. In the language of thermodynamics of trajectories there
are two ensembles of trajectories: one such ensemble is associated to
the dark, inactive (‘shelved’) level |2〉〈2|, in which trajectories show no
jumps at all. The other ensemble is the active subsystem with jumps
occurring due to L, and the trajectories in this ensemble reflect this
with a high density of jumps. Trajectories close to Ω2 = 0 fluctuate
between these two ensembles, resulting in switching between periods
of no jumps, and periods with many jumps in the trajectories.
Another feature shown by thismodel is the oscillating two-point cor-

relations: the eigenvalue λ2 acquires a nonzero imaginary part, which
is a dynamical transition point for Ω2 6= 0 (boxed region in Fig. 5.1b).

5.4 other models

5.4.1 Dissipative Ising model

The dissipative Ising model [131, 112] is a model of a quantum spin
chain. In particular, the Isingmodel with L spins is composed of L sites,
each with dimension 2. The Hamiltonian is

H = Ω

L∑
k=1

σ
(k)
x + V

L∑
k=1

σ
(k)
z σ

(k+1)
z

where σx,σy and σz are the Pauli operators, and the superscript k =

1, . . . ,N + 1 ≡ 1 denotes the site index. There are N jump operators,
one acting on each site, Lk =

√
κσ

(k)
− . Acting independently of the other

sites, the jump operator Lk flips the spin on the kth site i.e. Lk| ↑〉 = | ↓〉,
with rate κ.

In Fig. 5.2a a sample trajectory for the Ising model is shown, clearly
illustrating the intermittent behaviour of the quantum jumps. This in-
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dicates a many-body dynamical first-order phase transition with the
spectral gap closing as L→∞ [2]. This intermittency is, as in the previ-
ous example, reflected in bistable static properties of the system [112].

5.4.2 Dissipative quantum glass

The next model we consider is the a model of dissipative quantum
glass[126]. As the previous example, this is also a spin chain of L two-
dimensional sites, but the Hamiltonian is given by

H = Ω

L∑
k=1

σ
(k)
x f2k+1(p)

where the fk(p) are kinetic constraints, and the jump operators are Lk =
√
κσ

(k)
− fk+1(p); this is a quantum analogue of the glassy models men-

tioned in Sec. 2.7. In our model, we take the constraints to be fk(p) =

pQk + (1− p)1, with 0 6 p 6 1, where

Qk =
1

2
1+ κ

2ω
σ
(k)
z −

2Ω

ω
σ
(k)
y

Themodel displays a dynamical first-order phase transition in the para-
meter p. In particular, when p = 0 the model reduces to a noninteract-
ing (uncorrelated) version (V = 0) of the previous example; in this case,
the stationary state is a unique product state ρss. On the other hand, for
p = 1 the model is a fully constrained [126] quantum glass. This means
that the dynamics is strongly correlated: when p = 1, the spin state
|φ〉k of site k can only change if its neighbour satisfies Qk+1|φ〉k+1 6= 0.
For this reason, we would expect there to be a dynamical transition

as p→ 1. Interestingly, the stationary state is independent of p: for any
value of p, the stationary state is the uncorrelated state ρss from the p =

0 case. However, the trajectories show a dramatic change in behaviour
as p changes from 0 to 1:or p ≈ 1, the jumps are extremely clustered in
space and time. This is referred to as dynamical heterogeneity, which is
a typical feature of glassy dynamics [137].

5.4.3 Atom maser

The final example we look at in this chapter is the atom maser, which
we will study in detail later in this thesis; we refer to Ch. 7 for more de-
tails, and discuss here some features relevant to this chapter. The atom
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(a) Spectrum of L (b) Mean stationary photon number

Figure 5.3: Atom maser, stationary properties

maser is a quantum Markov process on an infinite-dimensional Hil-
bert space, which sets it apart from the previous examples considered
here. The atom maser consists of a single-mode resonant cavity which
is coupled to a finite-temperature bath. Two-level atoms, identically
prepared in a known state, are sent into the cavity one at a time at
a constant rate r. As usual, the dynamics is represented by a master
equation; see Eq. (3.23) in Ch. 7 for details.
The atom maser has a family of transition points: a second order

dynamical transition, followed by a sequence of first-order transitions
[138, 139, 140, 76, 4, 3]. These transition points are apparent in the
spectrum of L, shown in Fig. 5.3a; the second-order transition point
(red circle) near α ≈ 1 shows a closing of the spectral gap, along with
all other eigenvalues increasing in density. The first-order transition
points (blue box) are also associated to a closing of the spectral gap,
butwithout the other eigenvalues increasing.Near the first-order trans-
ition point the jump trajectories (associated to one of the jump operat-
ors) show fluctuations between two regimes, see Fig. 5.2b. This inter-
mittent behaviour is related to near bistability of the stationary state
for that value of α. This stands in contrast with the second-order trans-
ition point where the trajectory shows no such intermittency. As dis-
cussed in Ch. 7, these dynamical transitions are reflected in the station-
ary state: at each of the second-order transition points themean photon
number in the stationary state undergoes a jump [138, 139, 140, 76].

5.5 entanglement entropy

We have considered examples which show evidence of critical beha-
viour in their trajectories and in their static properties; in the example
of the dissipative quantum glass, only the dynamic picture was able to
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exhibit the critical features. Static quantities are unable to see the trans-
ition in complex systems such as glasses and other many-bodymodels.
This is because the transitions are driven by fieldswhich do not directly
couple to obvious static quantities, but instead to time-integrated ob-
servables (for example, counting fields that arise when computing full
counting statistics [141, 142, 143, 144, 145] of dynamical observables
[32, 57]).
As discussed in Sec. 3.4, transitions visible in the trajectories are ex-

hibited in the behaviour of the moment generating functions Zt(s) of
the number of jump events

Zt(s) =
∑
n>0

Pt(n)e
−sn

where Pt(n) is the probability of observing n jumps in time t. As we
have seen in Eq. (3.18), the MGF Zt(s) may be expressed as the largest
eigenvalue of a deformation Ls of the QMO. In the asymptotic regime,
t→∞, phase transitions in the ensemble of trajectories are indicated by
singular behaviour of Zt(s) at some critical value s = sc [19, 32, 57]. In
this sense, the field s couples directly to the spectrum; a singularity of
the MGF at sc indicates the existence of close to degenerate dynamical
states, which results in intermittency in the trajectories. By driving the
field s one can single these states out; see Refs.[57, 146, 147] for details.
We may express the MGF in terms of the MPS |Ψ〉 as

Zt(s) = 〈Ψ(s)|Ψ(s)〉,

where |Ψ(s)〉 = e−sĴ/2|Ψ〉; here Ĵ is an operator that counts the number
of nm>0 in a state |n1, ...,nM〉. The MGF Zt(s) has a thermodynamic
interpretation as a partition sum over trajectories, where s is a chem-
ical potential which biases for, or against, quantum jumps. The biased
MPS |Ψ(s)〉 is a superposition of the MPS from (5.2), where each term
is weighed by a factor e−s/2 for each jump.
As indicated previously, the largest eigenvalue of Ls is related to the

MGF Zt(s); the (normalised) eigenstate ρs corresponding to this eigen-
value satisfies ρ0 = ρss, and it is related to |Ψ(s)〉 by

Trψ|Ψ(s)〉〈Ψ(s)| = Zt(s)ρs.

By studying counting fields at this level, they become more similar to
the standard static fields which drive phase transitions; the difference
is that they couple directly to the relevant order parameters which
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reveal the transitions in quantum jump trajectories. This framework
makes it possible to study dynamical phase transitions in systemswith
no obvious changes in spatial correlations, such as the strongly correl-
ated many-body systems mentioned before.
At this level counting fields work in a similar manner to more stand-

ard static fieldswhich drive phase transitions, but couple directly to the
relevant dynamical order parameters that reveal transitions in quan-
tum jump trajectories. This perspective should be useful in the study
of dynamical phase transitions in systemswhere they are not obviously
connected to a change in spatial correlations.

5.6 conclusion

In this chapterwe have discussed the results published in [2]. Themain
result is that features of dynamical transitions in open quantum sys-
tems, traditionally approached through the static picture, may be un-
covered readily through the dynamical picture of quantum jump tra-
jectories. We have studied several examples which served to illustrate
this framework; in particular, more complicated many-body systems
require this dynamical framework to see dynamical phase transitions
as any static quantities do not reflect critical features.



6
SANOV THEOREM FOR QUANTUM MARKOV
CHAINS

6.1 introduction

In Sec. 2.2 we discussed the Sanov theorem, a fundamental result in
large deviations. We now prove a large deviations principle for fre-
quencies of arbitrary length sequences of measurement outcomes on
a spin chain, which we refer to as the Sanov theorem for the empirical
measure. This can be seen as an extension of the results in [87] concern-
ing large deviations for the sample mean of measurements of finitely
correlated states on the output of a quantum Markov chain.
We first discuss large deviations for the empirical measure corres-

ponding to measurements on a spin chain. The empirical measure con-
tains the frequencies with which measurement outcomes appear after
measuring the same observable on each site of the output chain. As
the number of sites increases, the empirical measure should converge
by the law of large numbers. Analogous to the Cramer theorem for the
sample means, the Sanov theorem states that a large deviations prin-
ciple holds for the empirical measure and thus quantifies the rate of
convergence.
Having gained a physical intuition for the empirical measure, we

define the lengthm empiricalmeasurewhich tracks the frequencywith
which sequences of lengthm appear in the output chain. This general-
isation contains the usual empiricalmeasurewithm = 1.Weprove that
a large deviations principle holds for this lengthm empirical measure,
using a similar approach to that employed in [87]. This involves the
construction of a new level m transition operator, and showing that
(using irreducibility and the Perron-Frobenius theorem) its spectral ra-
dius satisfies the Gärtner Ellis theorem, thus establishing the LDP.

91
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6.2 background

We follow the argument found in [87], which is an extension to the
quantum setting of the approach used in [8] (Sec. 3.1) to obtain large
deviations results for finite state Markov chains. We aim to apply the
Gärtner-Ellis theorem (cf. Thm. 2.4):

Theorem 6.1 (Gärtner-Ellis). Let µ1,µ2, . . . be a sequence of probability
measures on Rd. If for the sequence of moment generating functions
Γn

Γn(t) =

∫
en〈t,x〉dµn(x)

the limit

F(t) = lim
n→∞ 1n log Γn(t)

exists for all t ∈ Rd as an extended real number and is finite in a neigh-
bourhood of 0 then (µn) satisfies a LDP with rate function

I(x) = sup
t

{〈t, x〉− F(t)} .

In order to apply the Gärtner-Ellis theorem, we use the following
lemma.

Lemma 6.1. ([87, Lemma C.2]). if a strictly positive operator Φ has a
strictly positive eigenvector then

lim
n→∞ 1n logϕ(Φn(x)) = log r

where r = r(Φ) is the spectral radius of Φ, for any nonzero positive
linear functional ϕ and any positive x.

The non-commutative Perron-Frobenius theory discussed in Sec. 3.5
tells us that irreducible and aperiodic operators have strictly positive
eigenvectors: ifΦ > 0 is irreducible then r(Φ) is a simple eigenvalue of
Φ and Φ(z) = rz for some z > 0. We combine Thm. 6.1 and Lem. 6.1 to
obtain a desired large deviations principle as follows.

Corollary 6.1. Let t ∈ Rd, suppose Φt is an irreducible and aperiodic
positive map onMd, and let ω be a state onMk. Then the sequence of
expectation values Γn(t) = ω(Φnt (x)) satisfies a LDP on Rd.
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This means that, starting with a sequence of moment generating
functions Γn(t), we need to construct an irreduciblemodified transition
operator Teta > 0 such that

Γn(t) = ω(Teta(1B)). (6.1)

For the length m moment generating functions, the same principle
holds: we will construct a transition operator Tt,m on a larger algebra
which keeps track of previous outcomes, and which allows us to ex-
press the moment generating functions Γ (m)

n (t) in the same form.
Beforewe state the levelmmoment generating functions and the res-

ults, we will outline the setting. We are working with a discrete quan-
tum Markov chain as discussed in Ch. 3. In the Schrödinger picture,
change to the state after interaction of the cavity with a single atom
(c.f. [39], Sec. 4.5.5) is described by the evolution operator

E∗ : Md →Md ⊗Mk

: ρ 7→ U(ρ⊗ψ)U∗

where ψ is the initial state of the atom, and the unitary operator U
models the interaction via the isometry acting on pure state vectors
as

|ϕ〉 7→ U(|ϕ〉 ⊗ |ψ〉).

The Kraus operators associated to projective measurements Pi = |i〉〈i|
are obtained by expressing the effect of E∗ as

U(|ϕ〉 ⊗ |ψ〉) =
k∑
i=1

Vi|ϕ〉 ⊗ |i〉.

Considering only pure states, the final total state |ψ(n)〉 on n sites and
the system[148]

|ψ(n)〉 =
k∑

i1,...,in=1
Vin · · ·Vi1 |ψ〉|in, . . . , i1〉. (6.2)

where |ψ〉 is the initial state of the system. For mixed states, the joint
state ρ(n) on the cavity and n sites, using the Markov approximation,
is recursively given by

ρ(n) = (E∗ ⊗ I⊗(n−1))ρ(n− 1),

where I⊗n denotes the identity map onM⊗nk . We will be using the ex-
pression in Eq. (6.2) to compute expectation values for measurements
on the output chain, and to express these in the form given in Eq. (6.1).
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6.3 result

Given the output state of the quantum Markov chain as computed in
Eq. (6.2), we want to look at the statistics of sequences of outcomes for
a given one-site observable X. For example, the simplest case would
be to ask how often pairs of outcomes occur: how many times do we
obtain a pair (Xk = i,Xk+1 = j)? The Sanov theorem for this ‘level 2’
statistic establishes a large deviations principle for the frequencies of
such pairs of outcomes.
In our main result, Thm. 6.2, we establish a Sanov theorem for all

levelm > 1 statistics. The result relies on first formulating the sequence
of moment generating functions Γn associates to these outcomes; we
then express these as in Eq. (6.1), in order to obtain the LDP by apply-
ing Col. (6.1).
We denote by X(l) the Rm-valued random variable which represents

the outcomes on m subsequent sites: for a sequence of outcomes i =

(i1, . . . , im) we have

(X(l) = i)⇔ (Xl = i1, . . . ,Xl+m−1 = im)

where Xj is the random variable associated to measurement outcomes
of the observable X on site j. The moment generating function Γ (m)

n of
X(l) is defined for t ∈ Rm as

Γ
(m)
n (t) = E

[
exp〈t,X(1) + . . .+X(n−m+1)〉

]
.

Writing P(l)i1 · · ·P
(l+m−1)
im

for the projection onm subsequent sites asso-
ciated to a sequence of outcomes (X(l) = i), we may express this MGF
as

Γ
(m)
n (t) = E

exp
n−m+1∑

l=1

k∑
i1,...,im=1

ti1,...,imP
(l)
i1
· · ·P(l+m−1)

im

 .
Computing this expectation value in the state |ψ(n)〉 from Eq. 6.2 we
then get

Γ
(m)
n (t) =

k∑
i1,...,in=1

〈ψ|V∗i1 · · ·V
∗
in
Vin · · ·Vi1 |ψ〉 (6.3)

× exp
(
n−m+1∑
l=1

til,...,il+m−1

)
. (6.4)
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We introduce a transition operator Tt,m which keeps track of the previ-
ousm− 1 sites; we define the map

Tt,m :Md ⊗
(
Ck
)⊗(m−1) →Md ⊗

(
Ck
)⊗(m−1) , (6.5)

[Tt,m(Y)]i1,...,im−1
=

k∑
im=1

V∗i1 [Y]i2,...,im Vi1 exp (ti1,...,im) (6.6)

where we refer to the (i1, . . . , im−1)th block of Y ∈ Md ⊗
(
Ck
)⊗(m−1)

using the notation [Y]i1,...,im−1
. The moment generating function Γ (m)

n

may then be expressed as

Γ
(m)
n (t) = 〈ψ|

k∑
i1,...,im−1=1

[
Tn−m+1
t,m

(
M(m)

)]
i1,...,im−1

|ψ〉

where[
M(m)

]
i1,...,im−1

= V∗i1 · · ·V
∗
im−1

Vim−1
· · ·Vi1 .

Note that this expression for the moment generating functions Γ (m)
n (t)

is analogous to them = 1 form in Eq. 6.1; our main result is as follows.

Theorem6.2 (Sanov theorem for quantumMarkov chains). Let T be the
irreducible and aperiodic transition operator for a quantum Markov
chain onMd. Then the the levelm empirical measure, defined in terms
of the sequence of moment generating functions Γ (m)

n (t) defined in Eq.
6.3, satisfies a large deviations principle on Rm−1. The rate function is
the Legendre transform of the spectral radius log ρ(Tt,m)where Tt,m is
the map defined in Eq. 6.5.

Proof. The proof consists of showing that Tt,m is positive and irredu-
cible. Since a block diagonal matrix is (strictly) positive if and only if
each block is (strictly) positive, it is straightforward to verify that Tt,m
is positive.
For irreducibility, let the subspace Bm ⊂Md⊗

(
Ck
)⊗(m−1) be given

by

Bm =

k⊕
i1,...,im−1

Qi1,...,im−1
MdQi1,...,im−1

where Q is the projection onto the support ofM(m).
Then it remains to show that

1. Tt,m leaves this subalgebra invariant ,



6.3 result 96

2. its restriction T̃t,m to Bm is irreducible,

1. Invariance. Denote by T̃t,m the restriction of Tt,m to the subspace
Bm defined as

[
T̃t,m(Ỹ)

]
i1,...,im−1

=

k∑
im=1

V∗i1
[
Ỹ
]
i2,...,im Vi1 exp(ti1,...,im)

where
[
Ỹ
]
i1,...,im−1

∈ Qi1,...,im−1
MdQi1,...,im−1

. The subspace Bm is left
invariant by T̃t,m if every block of T̃t,m(Ỹ) satisfies

[
T̃t,m(Ỹ)

]
i1,...,im−1

∈ Qi1,...ım−1
MdQi1,...,im−1

for every Ỹ ∈ Bm. To show that this is the case, we show that

V∗i1
[
Ỹ
]
i2,...,im Vi1(u) = 0

for allu ∈ ker
[
M(m)

]
i1,...,im−1

, or equivalently (since ker(A∗A) = ker(A))
all u ∈ ker(Vim−1

· · ·Vi1). Now

[
Ỹ
]
i2,...,im (v) = 0 for all v ∈ ker(Vim · · ·Vi2)

and we either have u ∈ ker(Vi1) or Vi1(u) ∈ ker(Vim−1
· · ·Vi2) we con-

clude that for everyu ∈ ker
[
Ỹ
]
i1,...,im−1

wehaveu ∈ ker(
[
T̃(Ỹ)

]
i1,...,im−1

),
proving that T̃t,m leaves Bm invariant.

2. Irreducibility. Since, for some positive constant c we have T̃t,m >

cT̃0,m it suffices to show that T̃0,m is irreducible.
We prove that T̃0,m is irreducible by showing that there exists n ∈N

such that, for any X ∈ Bm,

T̃n0,m(X) > c1B

for some c > 0 [61]. We can assume that n > m, in which case

[
T̃n0,m(X)

]
i1,...,im

=

k∑
im,...,im+n−1=1

V∗i1 · · ·V
∗
in

[X]in+1,...,im+n−1
Vin · · ·Vi1

= V∗i1 · · ·V
∗
im−1

 k∑
im,...,in=1

V∗im · · ·V
∗
in
X̂Vin · · ·Vim

Vim−1
· · ·Vi1

where X̂ is the sum of the blocks of X given by

X̂ =

k∑
i1,...,im−1=1

[X]i1,...,im−1
.
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The remaining sum can be written in terms of the original transition
operator T associated to the quantum Markov chain; recall that (Eq.
(3.1)) for Y ∈Md

T(Y) =

k∑
i=1

V∗i YVi

from which we obtain the expression[
T̃n0,m(X)

]
i1,...,im

= V∗i1 · · ·V
∗
im−1

Tn−m+1(X̂)Vim−1
· · ·Vi1 .

We assume the original Markov chain, and so T , to be irreducible and
aperiodic; this means (see Sec. 3.5) that there exists r ∈ N such that
Tr(X̂) > c1 for some c > 0. Therefore, with n > r+m− 1,[

T̃n0,m(X)
]
i1,...,im−1

> cV∗i1 · · ·V
∗
im−1

Vim−1
· · ·Vi1

> cQi1,...,im−1

= c [1B]i1,...,im−1
.

Since M(m) ∈ Bm we can compute the moment generating functions
on this restriction i.e. Γn(t) = 1

n logϕ
(
T̃nt,m(V(m))

)
. This completes the

proof of the Sanov theorem.

We briefly clarify why at t = 0 the dominant eigenvalue of our map
Tt,m is 1. The idea is that our Tt,m is related by a similarity transforma-
tion to another transition operator which more clearly has the desired
properties at t = 0. We define a map T0m on Bm which acts on each
block separately as[

T0m(Y)
]
i1,...,im−1

= V∗i1 · · ·V
∗
im−1

Yi1,··· ,im−1
Vim−1

· · ·Vi1 .

If we define another map T̄0m by[
T̄0m(Y)

]
i1,...,im−1

= V−1
im−1

· · ·V−1
i1
Yi1,··· ,im−1

V−1∗
i1
· · ·V−1∗

im−1

then T̄0m is the inverse of T0m - since we have restricted ourselves to the
support of products Vi1 · · ·Vim−1

this is well defined. Finally, we define
the map T̃t,m by writing[

T̃t,m(Y)
]
i1,...,im−1

=
[
T̄0m ◦ Tt,m ◦ T0m(Y)

]
i1,...,im−1

;

then [
T̃t,m(Y)

]
i1,...,im−1

= [Tt,m(Y)]i1,...,im−1
.

We may conclude that Tt,m and T̃t,m are identical up to a similarity
transformation; the latter map is identity preserving for t = 0, which
means the dominant eigenvalue at t = 0 is indeed 1.



6.4 conclusion 98

(a) Level 1 r ′(t) (b) Level 2 r ′(t)

Figure 6.1: Derivatives of Sanov level 1 and 2 spectral radii for the XX0model,
see Fig. 4.12

6.4 conclusion

We have shown that a large deviations principle holds for the arbit-
rary length empirical measure for the output of a quantum Markov
chain. In studying phase transitions in models of open quantum sys-
tems, higher level rate functions, associated to suchmore complexmeas-
ures, might be used when the ‘ordinary’ rate function does not reflect
any critical behaviour. For example, in Sec. 4.4 we studied the XX0
model. As Fig. 6.1 shows, the level one spectral radius (and so the rate
function) shows no dependence on the physical parameter ω, while
the level two does change with ω.
If we go back to the use of large deviations in statistical mechan-

ics, we find that higher-level rate functions from the Sanov theorem
are used in Donsker-Varadhan theory in the study of phase transitions
in the Curie-Weiss-Potts model, an extension of the Curie-Weiss model
studied in Ch. 2 [9]. Furthermore, an infite-length limit of Sanov the-
ory, called the empirical process, is employed to study the Ising model.
This leads us to one possible extension of our results, which is to realise
a Donsker-Varadhan theory in open quantum systems.



7
LARGE DEV IAT IONS AND DYNAMICAL PHASE
TRANS IT IONS FOR THE ATOM MASER

7.1 introduction

In this chapter we will apply the theory of large deviations introduced
in Ch. 2 in order to investigate the occurrence of dynamical phase trans-
itions in the atom maser. We introduced this model in Sec. 3.6 and we
refer the reader to this section for the mathematical background and
notation used in this chapter.
For certain parameters the atommaser exhibits strong intermittency

in the atom detection counts, and has a bistable stationary state. Al-
though previous numerical results suggested that the "free energy"
may not be a smooth function, we show in our main result (Theorem
7.1) that the atom detection counts satisfy a large deviations principle
(LDP), and therefore we deal with a phase cross-over rather than a
genuine phase transition. We argue however that the latter occurs in
the limit of infinite pumping rate. Such results have already been ob-
tained in the context of discrete time quantum Markov chains with
finite dimensional systems [87], but the novelty here is that we con-
sider a continuous time Markov process with an infinite-dimensional
system. As a corollary, we obtain the Central Limit Theorem for the
counting process, using a result of [149].
The physical motivation lies in the new approach to the study of

phase transitions for open systems developed in [53, 4] and reviewed
in Sec. 3.7. Our investigation was motivated by the numerical results
of [4] indicating a possible non-analytic behaviour of λ(s). For finite

This chapter is an adapted version of [3] (see also [1]).
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dimensional systems the counting process Λt satisfies an LDP when
theMarkov dynamics is mixing, i.e. irreducible and aperiodic [87]. The
proof uses the Gärtner-Ellis theorem according to which it suffices to
prove the convergence of the cumulant generating function to a smooth
limit.
Some steps of the proof rely on a special feature of the maser dy-

namics which allows us to restrict the attention to the commutative
invariant algebra of diagonal operators. However, the line of the proof
is applicable to general infinite dimensional quantumMarkov dynam-
ics.We use an L2-representation [74, 73] of the semigroup generated by
Ls and show that the corresponding semigroup is compact. We then
use the Krein-Rutman Theorem [150, 72] to establish the uniqueness
and strict positivity of the eigenvector of λ(s), and hence the existence
of the spectral gap.
In Sec. 7.2 we formulate the large deviations results and give a point

by point outline of the proof. The details of the proof found in Section
7.3. The results of a detailed numerical analysis are presented in Sec.
7.4, where we argue that dynamical phase transitions do occur in the
thermodynamic limit of very large pumping rate.

7.2 main result

Ourmain results are the following Large Deviations and Central Limit
theorems. For reader’s convenience we outline the key steps of the
proofs below, followed by more technical details in the next section.
The LDP for the counting process Λt of the atom maser is obtained
by applying the Gärtner-Ellis theorem, which in this context says that
Λt satisfies an LDP if the following limit exists and is a differentiable
function,

λ(s) := lim
t→∞ 1t logE

(
esΛt

)
= lim
t→∞ 1t log Tr (ρTs(t)(1)) . (7.1)

We will show that this is indeed true and λ(s) is spectral bound (i.e. the
eigenvalue with the largest real part) of a certain generator Ls which
is closely related to Ls. An essential ingredient is the Krein-Rutman
theorem, a generalisation of the Perron-Frobenius Theorem to com-
pact positive semigroups which ensures that λ(s) is real, and under ad-
ditional conditions, non-degenerate. In particular our analysis shows
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that λ(s) is smooth and its derivatives at s = 0 are the limiting cumu-
lants of Λt

lim
t→∞ 1tCk(Λt) =

dkλ(s)

dsk

∣∣∣∣
s=0

, k > 1,

the first two being the mean and the variance. Moreover the generator
Ls has a non-zero spectral gap; this spectral analysis is illustrated in
Figure 7.1.

Theorem 7.1. The limit λ(s) in (7.1) exists, and is a smooth function
of s equal to the spectral bound of a certain semigroup generator L(d)s
defined below. Therefore the counting processΛt satisfies the large de-
viations principle with rate function equal to the Legendre transform
of λ(s). In particular the atommaser does not exhibit dynamical phase
transitions, but rather cross-over transitions which become sharper as
Nex increases.

Corollary 7.1. The counting processΛt satisfies the Central Limit The-
orem

1

t
(Λt − t ·m)

D−→ N(0,V),

whereDdenotes convergence in distribution andm andV are themean
and variance

m =
dλ(s)

ds

∣∣∣∣
s=0

, V =
d2λ(s)

ds2

∣∣∣∣
s=0

.

Proof.

1. The operator

Ls(X) = ∆s(X)+L(X) = (es− 1)L∗1XL1+
4∑
i=1

(
L∗iXLi −

1

2
{L∗iLi,X}

)
.

is the generator of a strongly continuous semigroup (Ts(t))t>0 of
∗-weakly continuousCPmaps Ts(t) onB(h), and has the samedo-
mainD(L) asL. For s = 0 the semigroup reduces to the "physical"
(master) semigroup (T(t))t>0with generatorL. Themoment gen-
erating function of Λt is given by

E
(
esΛt

)
= Tr (ρinTs(t)(1)) .

where ρin is the initial state of the cavity.
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2. Define the following "representation" of (T(t))t>0 on L2(h). Let i
be the symmetric embedding

i : B(h)→ L2(h)

X 7→ ρ
1/4
ss Xρ

1/4
ss .

Then ([73], Thm. 2.3) there exists a unique strongly continuous
contraction semigroup (T(t))t>0 on L2(h) such that

T(t)(i(X)) = i(T(t)(X)), X ∈ B(h).

For every X ∈ D(L) the Hilbert-Schmidt operator i(X) belongs to
the domain of the generator L of (T(t))t>0 ([73], Prop. 3.2) and

L(i(X)) = i(L(X)), X ∈ D(L).

Because we deal with a reversible quantumMarkov process L is a
self-adjoint operator on the Hilbert space L2(h). Moreover the set
M(h) of finite rank operators given by finitematrices with respect
to the Fock basis form a core ([73], Thm. 3.3) for L.

3. Similarly,wedefine the embeddedversion (Ts(t))t>0 of the semig-
roup (Ts(t))t>0. This is a semigroup with generator Ls = L+ δs,
with δs a bounded perturbation. The domain of Ls coincideswith
that of L and

Ls(i(X)) = i(Ls(X)).

4. Themoment generating function ofΛt can be expressed in terms
of the embedded semigroup as (see Lemma 7.1)

E(esΛt) = Tr(ρinTs(t)(1)) = Tr(ρ̃inTs(t)(ρ1/2ss )) = 〈ρ̃in, Ts(t)(ρ1/2ss )〉HS,

where ρ̃in := ρ
−1/4
ss ρinρ

−1/4
ss is assumed to belong to L2(h). This

holds for instance if ρin has a finite number of photons.

5. The semigroup (Ts(t))t>0 leaves invariant the subspace L2d(h) ⊂
L2(h) ofHilbert-Schmidt operatorswhich are diagonal in the Fock
basis, andwedenote its restriction to this subspace by

(
T
(d)
s (t)

)
t>0

,
and similarly for the generator. Since ρss ∈ L2d(h) the moment
generating function can be expresses as

E(esΛt) = 〈ρ̃(d)in , T (d)s (t)(ρ
1/2
ss )〉HS

with ρ̃(d)in denoting the diagonal of ρ̃in. The analogous restriction
of (T(t))t>0 to the diagonal sub-algebra of B(h) can be identified
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with the transition semigroup of the birth-death process on N

with rates (3.32).

6. The restricted generator L(d) has compact resolvent, and
(
T (d)(t)

)
t>0

is immediately compact (i.e. T (d)(t) is compact for all t > 0).
Moreover, the semigroup

(
T
(d)
s (t)

)
t>0

is also immediately com-
pact.

7. The semigroup (T
(d)
s (t))t>0 is strictly positive, that is T (d)s (t)(D) >

0 for all operators D > 0 in L2d(h) and t > 0.

8. Since (Ts(t))t>0 is compact and strictly positive, theKrein-Rutman
theorem implies that the spectral radius of Ts(t) is an eigenvalue
with strictly positive right and left eigenvectors r(s) and l(s) [150,
72]. The spectral radius is equal to etλ(s) where λ(s) is the spectral
bound of Ls, i.e. the eigenvalue with the largest real part. Using
point 4. this implies that

E(esΛt) = 〈ρ̃in, Ts(t)(ρ1/2ss )〉HS

= etλ(s)
(
〈ρ̃in, r(s)〉HS〈l(s), ρ1/2ss 〉HS + o(t)

)
. (7.2)

Since r(s), l(s) > 0 and ρ̃in, ρ1/2ss > 0 the inner products are non-
zero and we obtain the limiting cumulant generating function

lim
t→∞ 1t logE(esΛt) = λ(s).

9. Using analytic perturbation theory, the spectral bound λ(s) is shown
to be a smooth function of s.

10. Using points 8. and 9., we apply the Gärtner-Ellis theorem to con-
clude that Λt satisfies the LD principle with rate function equal
to the Legendre transform of λ(s). In particular, the limiting cu-
mulants of Λt can be computed as derivatives of λ(s) at s = 0,

lim
t→∞ 1tCk(Λt) =

dkλ(s)

dsk

∣∣∣∣
s=0

.

11 Again by analytic perturbation theory, the spectral bound is ana-
lytic in the neighbourhood of the origin of the complex plane. By
the result of [149], it follows that Λt satisfies the Central Limit
Theorem.
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7.3 details of proof

Here we give point by point details on the steps of the proof.
1. The strongly continuous semigroup (T(t))t>0 ofw∗-continuous, iden-
tity preserving CP maps on B(h) was analysed in [74]. Since ∆s is a
bounded perturbation, by the bounded perturbation theorem (cf. [44],
Theorem III 1.3) the operator

Ls(X) = ∆s(X) +L(X)

is the generator of a strongly continuous semigroup (Ts(t))t>0, and has
the same domain D(Ls) = D(L).

2. Denote Ei,j := |ei〉〈ej| and Ei := |ei〉〈ei| the rank one "matrix ele-
ments". For any X =

∑
jk xj,kEj,k in the domain, the explicit action of

generator is [73]

L(X) = −
1

2

∑
j,k>0

(
λ2j + λ

2
k + µ

2
j + µ

2
k

)
xj,kEj,k

+
∑
j,k>0

√
λjλkµj+1µk+1

(
xj+1,k+1Ej,k + xj,kEj+1,k+1

)
.

where the coefficients λn,µn are the rates of the associated birth-and-
death process (3.32). It can be directly checked that L is symmetric oper-
ator but proving its selfadjointness is non-trivial and holds only under
certain assumption about λn,µn [73].

Point 4. is proved in the following lemma.

Lemma 7.1. The moment generating function of Λs can be expressed
in terms of the embedded semigroup (Ts(t))t>0 as follows

E(esΛt) = Tr(ρinTs(t)(1)) = Tr(ρ̃inetLs(ρ1/2ss )) = 〈ρ̃in, Ts(t)(ρ1/2ss )〉H-S,

where ρ̃in := ρ
−1/4
ss ρinρ

−1/4
ss ∈ L2(h).

Proof. We first note that the linear span M of the matrix units Ej,k are
analytic vectors for Ls, i.e. there exists a time T > 0 such that for all
0 6 t < T , the series∑

k>0

tkLks (x)

k!
, x ∈M.

converges in norm inB(h) and the limit is Ts(t)(x). The proof is similar
to that of Lemma 5.4 in [151] to which we refer for details. A similar
statement holds for the generator Ls on L2(h).
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We now define the truncation

Xn = PnXPn,

of an arbitrary operatorX ∈ B(h) to the finite dimensional space defined
as the span of the first n Fock basis vectors, whose orthogonal projec-
tion is Pn. Recall that the action of Ts(t) = etLs and its predual semig-
roup are related by

Tr(etLs∗(ρ)X) = Tr(ρetLs(X)), ρ ∈ L1(h),X ∈ B(h)

where Ls∗ is the generator of (Ts∗(t))t>0. We want to show that

Tr(ρinetLs(1)) = Tr(ρ̃inetLs(ρ1/2ss )) (7.3)

for all t > 0. Partition the time t by writing t = t1 + . . . + tl where
ti < T . The main idea behind showing the above equality is by ap-
plying sequentially the analyticity of finite-rank operators and weak-∗
continuity to ‘move over’ each element of the semigroup etiL to the
trace-class operators and then the Hilbert-Schmidt operators, and re-
peat this until the entire semigroup lives on the other side. Using the
projections Pn introduced above,we find that byweak-∗ continuity and
the semigroup property we have

Tr
(
ρine

(t1+...+tl)Ls(1)
)
= lim
n→∞Tr

(
ρine

t1Ls
(
Pne

(t2+...+tl)Ls(1)Pn
))

.

Let A := e(t2+...+tl)Ls(1) ∈ B(h) and Ã := ρ
1/4
ss Aρ

1/4
ss ∈ L2(h) and

define the finite-rank truncations An = PnAPn, and Ãn = PnÃPn.
Since An is an analytic vector for Ls, we may express the RHS as a
power series and thus we obtain

lim
n→∞Tr

ρin∑
k>0

tk1L
k
s

k!
(An)

 = lim
n→∞Tr

ρ−1/4ss ρinρ
−1/4
ss

∑
k>0

tk1L
k
s

k!
(Ãn)


by definition of the embedded generator Ls. Now Ãn is analytic for Ls
so the inner sum is equal to et1Ls(Ãn) and the limit may be written as

lim
n→∞Tr

(
ρ̃ine

t1Ls
(
Ãn
))

= lim
n→∞〈ρ̃in, et1Ls(Ãn)〉HS

= lim
n→∞〈et1L∗s(ρ̃in), Ãn〉HS

= 〈et1L∗s(ρ̃in), Ã〉HS.
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The last equality follows from the fact that Ãn converges weakly to Ã
in L2(h). Indeed for any positive τ ∈ L2(h) we have

〈τ,Pnρ1/4ss Aρ1/4ss Pn〉HS = Tr
(
τPnρ

1/4
ss Aρ

1/4
ss Pn

)
= Tr

(
ρ
1/4
ss τρ

1/4
ss PnAPn

)
→ Tr

(
ρ
1/4
ss τρ

1/4
ss A

)
;

taking into account that ρ1/4ss τρ1/4ss ∈ L1(h) by

Tr
(
ρ
1/4
ss τρ

1/4
ss

)
= Tr

(
ρ
1/2
ss τ

)
= 〈ρ1/2ss , τ〉HS <∞.

We now repeat the same argument for the term et2Ls , by defining
B = e(t3+...+tl)Ls(1), and B̃,Bn, B̃n as before. Then

Tr(ρinetLs(1)) = Tr
(
ρ̃ine

t1Ls
(
ρ
1/4
ss e

(t2+...+tl)Ls(1)ρ1/4ss
))

= lim
n→∞Tr

(
et1Ls∗(ρ̃in)ρ

1/4
ss e

t2Ls (PnBPn) ρ
1/4
ss

)
= 〈e(t1+t2)Ls∗(ρ̃in), B̃〉HS

and after a finite number of steps we arrive at (7.3). This shows that the
semigroup Ls on the Hilbert-Schmidt space gives rise to the desired
expectation values.

Point 5. follows immediately from the definition of the generator Ls.

Point 6. is shown in the following lemma.

Lemma 7.2. The restricted generator L(d) has compact resolvent, and(
T (d)(t)

)
t>0 is immediately compact, i.e. T (d)(t) is compact for all t > 0.

Moreover, the semigroup
(
T
(d)
s (t)

)
t>0

is also immediately compact.

Proof. Let L(d) be the restriction of L to the subspace L2d(h) of diagonal
Hilbert-Schmidt operators with respect to the Fock basis. Its concrete
action on a diagonal operator D =

∑
j>0 djEj is

L(D) = −
∑
j>0

(
λ2j + µ

2
j

)
djEj +

∑
j>0

λjµj+1
(
dj+1Ej + djEj+1

)
:= A(D) +B(D).

In order to establish that L(d) has compact resolvent,we extend a sim-
ilar argument used in [152] to our setting. Note that A is a selfadjoint
operator with (point) spectrum

σp(A) = {aj := −(λ2j + µ
2
j ) : j ∈N}.
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The resolvent operator R(z,A) = (A− zId)−1 is well defined whenever
z /∈ σp(A) and is given by

(A− zId)−1(X) =
∑
j>0

(aj − z)
−1xjEj

Since |aj| → ∞ when j → ∞, R(z,A)(X) may be approximated in the
L2-norm by its finite-rank truncations

R(z,A)(X) = lim
N→∞

N∑
j=0

(aj − z)
−1xjEj, X ∈ N

and so A has compact resolvent.
To show that L(d) = A+ B itself has compact resolvent it is enough

to show that B is a relatively bounded perturbation ofA ([153] Thm. 3.17,
p. 214). This means showing that there exists a b > 0 such that

Tr (B(X)∗B(X)) 6 bTr (A(X)∗A(X)) for all X ∈ L2d(h)

Using the Cauchy-Schwarz inequality in the Hilbert space L2(h) such
a bound is readily found, and we may conclude that L has compact
resolvent.
We now show that T (d)(t) is immediately compact. Since L(d) is self-

adjoint, we find that its resolvent operator R(z,L) satisfies the bound
([153] Thm. 3.16, p. 271)

‖R(iz,L)‖ 6 |Im(z)|−1 for all Im(z) 6= 0.

Therefore ([44] Thm. II 4.20 p. 115) the semigroup (T (d)(t))t>0 is imme-
diately norm continuous. An immediately norm continuous semigroup
whose generator has compact resolvent is immediately compact ([44]
Thm. 4.29, p. 119), therefore the semigroup (T (d)(t))t>0 is immediately
compact.
Similarly, the restriction L(d)s is the perturbation of the generator L(d)

L
(d)
s (D) = L(d)(D) + δs(D),

δs(D) = (es − 1)Nex
∑
j>0

sin2(φ
√
j+ 1)

µj+1

λj
dj+1Ej

Since δs is bounded, the semigroup
(
T
(d)
s (t)

)
t>0

is also immediately
compact, cf. [44] Thm. III.1.16.
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Point 7. We show first that the unperturbed semigroup (T(t))t>0 on
L2d(h) is strictly positive. Since any positive D ∈ L2d(h) is of the form
D =

∑
k dkEk with dk > 0, it is enough to show that T (d)(t)(Ei) > 0.

This is equivalent to

〈Ej, T (d)(t)(Ei)〉HS > 0, i, j ∈N.

By using the technique of Lemma 7.1 we find

〈Ej, T (d)(t)(Ei)〉HS = Tr(EjT(d)(t)(Ei)) = Tr(EiT(d)
∗ (t)(Ej))

where the right side is the probability Pj,i(t) of going from state j to i
in time t, for the associated birth and death process. This probability
can be unravelled as

Pt(j, i) =
∑
k>0

4∑
i1,...ik=1

∫
. . .

∫
06t16···6tk6t

pj,i(t; t1, i1 . . . , tk, ik)dt1 . . . dtk

where

pj,i(t; t1, i1, . . . , tk, ik) := Tr
(
Ej · e(t−tk)L0Jik . . . Ji1et1L0(Ei)

)
,

is the probability density for the trajectory consisting of jumps of type
i1, . . . ik occurring at times 0 6 t1 · · · 6 tk 6 t, respectively. To show
strict positivity, we can restrict our attention to trajectories which ex-
hibit only jumps of type 3 and 4 and connect the states j and i. Since
the jump rates are strictly positive, the probability of such a trajectory
is strictly positive and therefore T(d)(t) and T (d)(t) are strictly positive.
The same argument can be repeated for the semigroup

(
T
(d)
s (t)

)
t>0

whose unravelling is

〈Ej, T (d)s (t)(Ei)〉HS =
∑
k>0

4∑
i1,...ik=1

∫
. . .

∫
06t···6tk6t

p
(s)
j,i (t; t1, i1 . . . , tk, ik)dt1 . . . dtk

where

p
(s)
j,i (t; t1, i1 . . . , tk, ik) = e

sn(1)pj,i(t; t1, i1, . . . , tk, ik),

with n(1) equal to the number of jumps of type 1.

Point 8. Recall that to establish the LDP for the counting process Λt it
is enough to show that the limit

lim
t→∞ 1t logE

(
esΛt

)
= lim
t→∞ 1t log Tr(ρ̃inetLs(ρ1/2ss ))
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exists and is a smooth function of s.
Since (T (d)s (t)) is an immediately compact semigroup, we have ([44],

Col. IV.3.12) a spectral mapping theorem of the form

etσ(L
(d)
s ) = σ(T

(d)
s (t)) \ {0} , t > 0;

in particular, the spectral radius of T (d)s (t) is given by

rs(t) := r(T
(d)
s (t)) = etλ(s).

where λ(s) is the spectral bound of L(d)s ,i.e. the real part of the eigenvalue
with the largest real part. Since T (d)s (t) is compact and strictly positive,
the Krein-Rutman Theorem implies that λ(s) is a real eigenvalue with
unique strictly positive right and left eigenvectors r(s) and l(s) such
that 〈l(s)|r(s)〉 = 1 . In particular Ls has a spectral gap g(s) = λ(s) −

Reλ1(s) and
T
(d)
s (t)(D) = etλ(s)|r(s)〉〈l(s)|+ R(t)

where the reminder term satisfies ‖R(t)‖ 6 Cet(λ(s)−g+ε) for some con-
stant C and ε < g. Therefore (7.2) holds.

Point 9. To complete the proof we need to show that λ(s) is a differen-
tiable function of s. This follows from analytic perturbation theory for
the generator L(d)s , cf. [154] (Prop. 3.25, p. 141); any isolated eigenvalue
(of finite multiplicity) and its associated eigenprojection are analytic
functions of s in some disc around s = 0. Applied to the family of per-
turbations

L
(d)
s = L(d) + δs,

we find that the spectral bound of λ(s) is an analytic function of s, and
remains isolated as a function of s.

7.4 dynamical phase transitions

The existence of a "phase transition" in the atom maser has been dis-
cussed in several theoretical physics papers [139, 76, 138, 140, 4]. There
is a general agreement that if Nex is sufficiently large (for instance
Nex ≈ 150 ), then "for all practical purposes" we can consider that the
mean photon number of the stationary state has a jump at α ≈ 6.66 (see
Figure 3.3) which matches up with a jump between the left and right
derivatives of λ(s) at s = 0, in the dynamical scenario (see Figure 7.1).
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(a) λ ′(s) (b) g(s)

Figure 7.1: λ ′(s) and the spectral gap g(s) of Ls as functions of s and α =

φ/
√
Nex (after Fig. 3 in [4]).

However, the question whether we are dealing with a "true" (dynam-
ical) phase transition or rather a steep but smooth cross-over was left
open, and motivated this investigation. Having proved that the latter
is the case, we would like to briefly put the result in the context of a
numerical analysis.
As the proof shows, dynamical phase transitions are intimately con-

nected with the closing of the spectral gap of the semigroup generator.
Figure 7.1 shows the close match between the behaviour of the first
derivative of λ(s) and the spectral gap g(s) := λ(s) − Reλ1(s). In par-
ticular, at first sight it would appear that for α > 4.6 (the point where
the stationary state becomes bistable), the entire s = 0 line is a phase
separation line. However, by zooming in a vertical strip of size 10−7 in
this region (see Figure 7.2), we find that the line separating the phases
is not perfectly vertical but crosses s = 0 at α ≈ 6.6 which corresponds
roughly to the transition point for the stationary state. Moreover, on
this scale it is clear that we deal with a steep but smooth transition
between phases.
Figure 7.2 shows that the phase separation lines become sharper

with largerNex, and a "true" phase transition emerges in infinite pump-
ing rate limit. A similar conclusion can be drawn by plotting the res-
caled stationary mean 〈N〉/Nex, cf. Figure 7.3. This can be intuitively
understood by appealing to the effective potential (3.33). As Nex in-
creases the potential barrier becomes larger and two stable phases ap-
pear at the point where the local minima are equal. Indeed, Figure 3.5
shows the plot of the rescaled potential U/Nex as a function of the res-
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Figure 7.2: Phase boundaries at the s = 0,α ≈ 6.66 crossover with Nex =

75, 100 and 125.

Figure 7.3: Rescaled stationary state mean photon numbers, 〈ρss〉/Nex for in-
creasing Nex, showing phase transition becomes sharp as Nex →∞.

caled variable x = n/Nex, which approaches the (Nex independent)
limit

v(x) = −

∫x
0

log[(ν+ sin2(α√y))/(ν+ 1)]dy

as it can be deduced from the formulas (3.28) and (3.33). Therefore, in
the limit of large pumping rate we deal with a particle in a fixed poten-
tial v(x) at inverse temperature 1/kT = Nex. At α ≈ 1 the dependence
of the mean on Nex switches from constant to linear behaviour as the
minimum of the potential v(x) moves away from zero. When the two
minima are at different heights, the lower one becomes the stable and
other one is metastable. Communication between the phases becomes
increasingly unlikely, with probability decreasing exponentially with
Nex. When the two minima are equal, we have two stable states, and
the corresponding value of α is the phase transition point for the mean
photon number.
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Figure 7.4: Spectrum of semigroup generator for Nex = 150

More information about the dynamical phase transitions may be ob-
tained from the rest of the spectrumof the semigroup generator, shown
in Figure 7.4. We note several points of interest: firstly, at all "transition
points" the spectral gap closes; but at the second order transition point
α ≈ 1 the gap closes considerably more slowly than at the other trans-
ition points α ≈ 6.66, . . .. Secondly, at α ≈ 1 the spectrum becomes in-
creasingly dense, in the sense that a fixed interval contains an increas-
ing number of eigenvalues as Nex increases.
Although the mean of the counting process Λt coincides with the

mean of the stationary state photon number distribution, aswe show in
Figure 7.5, this is not the case with the respective variances. The critical
point α ≈ 1, associated with an increasing density of the spectrum of
the generator and closing of the spectral gap, also exhibits a change in
the scaling of the cumulants with Nex.

Figure 7.5: Variance of stationary state (left) and variance of counting process
(right), rescaled by factors of N−1

ex and N−1.6
ex , respectively
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7.5 conclusion

We have studied the counting process associated to the measurement
of the outgoing atoms in the atom maser, and shown that this process
satisfies the large deviations principle. In particular, this means that
the cross-over behaviour observed in numerical simulations is not as-
sociated with the non-analyticity of the limiting log-moment generat-
ing function, as one would expect for a genuine phase transition. The
rescaled counting process Λt/Nex does exhibit such a transition in the
limit of infinite rateNex, as argued in the previous section using the po-
tential model, and illustrated in Figures 3.5, 7.2, and 7.3. In particular,
the transitions occurring at α ≈ 1 and α ≈ 6.66 are of different types,
as seen in the scaling of the moments as well as the behaviour of the
spectrum at these points.
As a corollary, we have showed that the counting process satisfies

the central limit theorem, which can be used to develop the statistical
estimation theory of local asymptotic normality [1].
The model we have investigated has the property that the stationary

state is diagonal in the Fock basis and all the jump operators leave the
set of diagonal states invariant. The large deviations problem could
then be considered in the framework of "classical" probability, as a
property of the birth-death process process associated to the cavity dy-
namics. Indeed, at one point our proof relies on the restriction to the di-
agonal algebra for proving the strict positivity of the dynamical semig-
roup. However, the steps of the proof are formulated in the language
of non-commutative probability theory and offer a general recipe for
other settings where no classical reduction is possible. An example
would be the atommaser where the outgoing atoms are measured in a
different basis than the standard one, thus breaking the invariance of
the diagonal algebra. In this case, using analytic perturbation theory
one can show that the limiting log-moment generating function λ(s) is
smooth in a neighbourhood of s = 0 but we were not able to extend
this to all s.
The compactness of the Markov semigroup makes our model tract-

able as it becomes essentially finite dimensional, as the bath decay
dominates the absorption due to the atom interaction. An interesting
problemwould be to explore more general classes of infinite dimensio-
nal systems (e.g. continuous variables or infinite spin chains) where a
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similar phenomenon holds. Another issue is the general relation be-
tween the "static" transitions which refer to non-analytic properties of
the stationary state, and dynamic transitions which characterise prop-
erties of the measurement process. As shown in [2] one can construct
examples where the stationary state does not change while the system
undergoes a dynamical phase transition.
Finally, amore general large deviations setup can be consideredwhich

takes into account the correlations between the detection events rather
than the total number of counts (see Ch. 4).



8
CONCLUS ION

8.1 summary

In Chs. 2 and 3 we presented an introduction to the theory of large de-
viations and quantum Markov processes, respectively. The two topics
are connected through the framework of thermodynamics of quantum
trajectories; a point of view which, as we explained, is useful in uncov-
ering phase transitions in open quantum systems.
We followed these introductory chapters with a presentation of sev-

eral results which are all part of a promising and new approach to
the dynamics of open quantum systems. What all these results have
in common is that they use the statistical properties of quantum jump
trajectories as indicators of critical dynamical features such as phase
transitions, while in the individual chapters we have considered differ-
ent aspects of this approach. This may be summarised as follows: Ch.
4 considered phase decompositions and purification, followed by Ch.
5, where we argued that the trajectories serve as indicators of critical
features. This was followed by Ch. 6wheremore subtle statistical prop-
erties of trajectories was studied, while Ch. 7 served as a case study in
the application of this approach to a particular model.
In Ch. 4 we established a decomposition for quantum Markov pro-

cesses into phases; we used this structure to define phase purification
and phase transitions, with large deviations rate functions serving as
an indicator of both these critical features. The examples we discussed
served to illustrate this result.
In Ch. 5 have discussed the results published in [2]. The important

message in this chapter is that features of dynamical transitions in open
quantum systems may be uncovered readily through the dynamical
picture of quantum jump trajectories, rather than solely through the
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static properties such as the stationary state; several examples illus-
trated this framework.
We stated and proved a Sanov theorem for the output of quantum

Markov chains in Ch. 6. This result allows us to define higher-level rate
functions, which in turn may be used to distinguish critical behaviour
in systems for which the usual rate function does not show any fea-
tures.
Finally, in Ch. 7 we established a large deviations principle for the

counting process on the output of a particular quantum Markov pro-
cess, the atommaser. We discussed the cross-over behaviour of numer-
ical simulations and concluded that these features are not associated
to any non-analytic behaviour of the large deviations rate function. We
argue that the counting process does exhibit critical behaviour in the
limit of infinite pumping rate.

8.2 outlook

In general, future directions involve building on the research presen-
ted in this thesis. This means exploiting the developed mathematical
framework to investigate physical models of dynamical phase trans-
itions, and exploring metastability in quantum non-equilibrium dy-
namics and its applications in quantum control theory.
The phase structure, discussed inCh. 4, could be extended to infinite-

dimensional systems (such as the atom maser, or the many-body sys-
tems from Ch. 5); however, since infinite-dimensional operator algeb-
ras have a more complicated structure, this would be more mathemat-
ically involved. Aside from this, another further direction is to more
deeply examine the topological structure of the space of stationary
states. This would allow for phase transitions to be considered as a
topological, as well as analytic, phenomenon.
The results in Ch. 5 may be extended in the development of a purely

quantum theory of large deviations by exploiting the connection with
matrix product states, which generalises the results on “classical” LD
for measurement trajectories. After this, a future direction is to com-
pute the parent Hamiltonian of physically relevant interacting spin
models and explore their relevance for this large deviation theory.
The Sanov theorem for the output of a quantum Markov chain in

Ch. 6 has a natural extension to the empirical process. This essentially
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means taking the infinite limit of the length of the sequence in the
Sanov theorem; this leads us to one possible extension of our results,
which is to realise a Donsker-Varadhan theory in open quantum sys-
tems.
Our study of the atom maser in Ch. 7 was limited to the case where

the choice of measurement (the counting process) led to a commutat-
ive restriction of the dynamics, which somewhat simplified a few of
the steps required in the proof. As the majority of the proof is formu-
lated in the language of non-commutative probability theory it offers
a general recipe for other settings where no classical reduction is pos-
sible. For example, if the output atoms of the atommaser aremeasured
in a different basis than the standard one, this breaks the invariance of
the commutative algebra. In this case, using analytic perturbation the-
ory one can show that the limiting log-moment generating function
λ(s) is smooth in a neighbourhood of s = 0 but we were not able to
extend this to all s. A keymathematical property is compactness of the
semigroup; another interesting problemwould be to exploremore gen-
eral classes of infinite dimensional systems (e.g. continuous variables
or infinite spin chains) where a similar phenomenon holds. Finally, a
more general large deviations setup can be consideredwhich takes into
account the correlations between the detection events rather than the
total number of counts.
A topic not presented in this thesis is the possible role played by

large deviations in quantum random walks, which we have only stud-
ied numerically so far by extending the four-level model from Ch. 4.
We would like to develop numerical and theoretical methods for a sys-
tematic study of dynamical transitions in quantum randomwalks; the
obtained insights may be used to attack open problems related to the
quantum jump (stochastic Schrödinger) evolution of open systems ob-
served from the environment.
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