
MEASUREMENTS OF VASCULAR FUNCTION IN

The University of
Nottingham

HAEMODIALYSIS AND OBESE PATIENTS BY MYOGRAPHY

Adil Abushufa

MB Ch B, MSci (Nephrology) UK

Thesis submitted to the University of Nottingham for the

degree of

DOCTOR OF MEDICINE

November 2013

rv~E1J !C!~"L L!;3~jfJ:,RV
QUEENS fVitDICAL CENTRE



Abstract

Background: Patients with chronic kidney disease (CKD) face a markedly increased risk

of cardiovascular morbidity and mortality. In this setting, aberrant endothelial function is

a key initiating event in vascular disease. Haemodialysis (HD) patients characteristically

exhibit significant abnormalities in vascular structure and function, which impact

cardiovascular morbidity and mortality. Micro- and macro-vascular dysfunctions are the

principle factors contributing to the increased risk of morbidity and mortality associated

with obesity. Impaired endothelial function represents the earliest abnormality in the

development of vascular disease in obesity and exhibits increased risk of cardiovascular

disease. We first aimed to investigate the effect of HO and obesity on the vascular

reactivity through directly examines the isolated subcutaneous arteries using wire

myography. The second goal was to study changes that might underlie altered vascular

responses following bariatric surgery and whether reduction in weight improves

endothelial function. We also intended to correlate the ex vivo myography data with the

in vivo results of pulse wave velocity (PWV) and blood pressure (BP) in both HO and

obese patients. Methods: Abdominal subcutaneous fat biopsies were obtained from HO

patients (n= l l ) during non-HO visits through small lower abdominal incisions using

local anaesthetics; obese patients (n=12) during the time of bariatric surgery (using a

laparoscopic port); and non-HD, non-obese healthy controls (n=26) during the time of

elective surgery (hernia repair). Additional abdominal subcutaneous fat samples (n=4)

were also obtained from obese patients at six months after bariatric surgery through an

extra incision in the lower abdominal region using local anaesthetics. Different-sized
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arteries (small with internal diameter between 200 urn - 500 urn and large between 600

urn - 900 urn) were dissected, mounted and conducted on a wire myography on the same

day. Cumulative concentration-response curves were constructed for the following

vasoactive agents: noradrenalin (NA), endothelin-I (ET-I), U46619, angiotensin II

(AngII), vasopressin, bradykinin (BK), acetylecholine (Ach) and sodium nitroprusside

(SNP). Carotid-to-femoral arterial PWV was measured using an oscillometric device

(Vicorder, Skidmore Medical Ltd., UK) for HD and obese patients in addition to

measuring blood pressure (BP). Laboratory data were expressed as mean ± SEM and

groups were compared by t-test. Results: In both HD and obese patients, greater

contractile response to different vasoconstrictors was observed in different-sized arteries

compared to control group. Although the potency of these drugs was similar between HD

patients and controls, large vessels of HD patients were highly potent to U46619 and

vasopressin compared to controls. Similarly, in obese patients, large vessels were also

significantly more sensitive to U46619 and vasopressin than that of controls, while small

vessels were highly potent to vasopressin response. The maximum vasorelaxation

response of small and large vessels to Ach and BK (endothelium-dependent vasodilators)

was significantly lower in both HD and obese patients than vessels of controls. A similar

response to SNP (an endothelium-independent vasodilator) was obtained in all groups.

However, the potencies of all vasodilators in all groups were similar. In HD patients, in

vivo PWV was significantly correlated with the maximum contractile response of large

arteries to vasopressin response (r = 0.829, P = 0.042). PWV was positively correlated

with the percentage of maximum contractile response of small arteries to vasopressin (r =

0.886, P = 0.019). The diastolic but not systolic BP of HD patients was significantly
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inversely correlated with the response of large vessels to SNP (r = -0.954, P = 0.012), it

was also negatively correlated with the percentage of contractile response of small

arteries to vasopressin (r = -0.829 P = 0.042). There was no correlation observed in the

responses of isolated small arteries to the other vasoconstrictor substances in terms of

PWV or BP. In obese patients, The PWV was significantly correlated with the maximum

contractile response of large arteries to U46619 (r = 0.928, P = 0.006), and with the

maximum contractile response of small arteries to vasopressin (r = 0.885, P = 0.033).

However, positive correlation was obtained between systolic (but not diastolic BP) of

obese patients and the response of large vessels to U46619 (r = 0.785, P = 0.048). There

was no significant difference in the vasocontractile or vasorelaxation responses of

isolated vessels in obese patients before and after surgery; however, a trend of more

contractile response to vasoconstrictors was observed in the obese group before surgery

compared to those after surgery. Conclusion: These results suggest that HO and obesity

can alter endothelial function via an incremental increase in vasocontractility in response

to various stimuli and an impaired vasodilatation response to endothelium-dependent

agonists in isolated different-sized vessels. In both groups, ex vivo arterial responses

were correlated to in vivo assessment of arterial function. The association between these

risk groups and endothelial dysfunction in isolated arteries would be expected to

accelerate cardiovascular events, which impacts cardiovascular morbidity and mortality

among these groups of patients. Therefore. the development of cardiovascular disease is

mediated, at least partly, by functional alterations at the level of microcirculation.
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Chapter 1
General Introduction



Chapter 1: General introduction

1.1 Chronic Kidney Disease (CKD)

1.1.1 Background and definition

Each kidney consists of approximately one million nephrons (the functional

filtering units of the kidney) that are continuously responsible for filtering blood while

removing waste products (urea, creatinine etc.), salts and excess fluid from the body.

Kidneys can fail in two ways: rapidly, which occurs over days, weeks or months (acute

renal failure), or slowly, which occurs over a period of years (chronic renal failure). The

most common diseases associated with chronic renal failure are diabetes mellitus,

hypertension and glomerular disease (Sowers and Epstein, 1995). Chronic kidney disease

(CKD) is increasingly recognised as a worldwide major health problem that affects the

population, resulting in multiple adverse outcomes, including renal failure,

cardiovascular disease (CVO) and premature death.

The definition of CKD is based on the impairment of kidney function, damage

and an assessment of chronicity. Assessment of kidney function is most usually based on

the measurement of serum creatinine and estimation of the glomerular filtration rate

(eGFR). According to the kidney disease outcome quality initiative (KlDOQI, 2(02)

(Eknoyan and Levin, 2002), kidney damage can be defined as structural and functional

abnormalities in the kidney with or without decreased GFR for three months or more.

This is manifested by either pathologic abnormalities or markers of kidney damage,

including abnormalities in the composition of the blood or urine or abnormalities in

imaging tests. CKD can also be defined as a reduction in eGFR « 60 mUminl1.73m2
)
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for three months or more with or without kidney damage, irrespective of cause (Goolsby,

2002). This destruction of renal mass can lead to irreversible fibrosis and loss of

nephrons and, in turn, can cause progressive decline in eGFR.

Kidney damage can be ascertained firstly by a reduction in the estimated

glomerular filtration rate. This can be estimated from calibrated serum creatinine using

the Modification of Diet in Renal Disease (MDRD) study equation, which is an accurate

equation that predicts GFR as measured by an accepted method (urinary clearance of

125I-iothalamate) (Levey et al., 2003). Another measurement for clinical assessment of

kidney disease is measured creatinine clearance using 24 hr urine collection, which is

inconvenient and frequently inaccurate compared to the estimated GFR using MDRD

equations (Levey et al., 1999). Also, urinary cystatin C is independently associated with

acute kidney injury (Nejat et al., 2010). Haematuria and proteinuria are also predictors of

developing CKD stage 3 or higher (Yamagata et al., 2007). The presence of proteinuria

(either unselective or albuminuria) is known to be the most important marker of kidney

damage, measured as albumin-to-creatinine ratio> 30 mg/g in at least two of three spots

of urine specimens.

Other markers of kidney damage include urine sediment abnormalities (epithelial

and tubular casts), imaging abnormalities (polycystic kidney disease, hydronephrosis,

and small 'echogenic' kidneys) and abnormalities in the urine and blood composition

(nephrogenic diabetes insipidus, renal tubular acidosis, Fanconi syndrome, etc.).
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1.1.2 Classification of CKD

Following the proposed classification by the National Kidney Foundation

KlDOQI 2002, CKD can be divided into five stages (Tablel). This simple and initial

classification is based on the severity of renal failure and the level of eGFR using eGFR

estimated equations.

Table 1 KlDOQI 2002 classification of CKD (Based on the severity)

Stages renal function GFR
mVminll.73 m2

related terms

Stage 1 normal kidney function ~90 Albuminuria, proteinuria
haematuria

mild reductions in RF 60- 89 Albuminuria, proteinuria
haematuria

Stage 2

Stage 3 moderate reduction in RP 30-59 Chronic and early renal
Insufficiency

Stage 4 sever reduction in RP 15 - 29 Chronic and late renal
Insufficiency-pre ESRD

Stage 5 kidney failure and ESRD < 15 Renal failure, uremia
ESRD

Abbreviation: CKD chronic kidney disease, ESRD end-stage renal disease, GFR glomerular
filtration rate, RF renal function.
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1.2 End stage renal disease

1.2.1 Background

End stage renal disease (ESRD) is the last stage of CKD (CKD stage five), which

can be defmed as a reduction in eGFR by less than 15 mlIminl1.73 m2• The reduction in

eGFR results from progressive and irreversible loss of renal function that makes the

kidneys fail to perform their normal functions. Renal replacement therapy (RRT) must be

considered for patients who have developed ESRD or CKD stage five to replace renal

function, either by haemodialysis (HD), peritoneal dialysis (PO) or renal transplantation.

1.2.2 Epidemiology of CKD and ESRD

In the twentieth century, the major cause of death and disability were infectious

disease; however, in this century, non-communicable, non-infectious chronic diseases

have become the major cause of morbidity and mortality (Yach et al., 2004, Beaglehole

and Yach, 2003). The number of patients developing ESRD is increasing annually.

Diabetes mellitus is the most common chronic disease affecting the worldwide

population, and its prevalence is predicted to double in the next decades, particularly in

developing countries (Wild et al., 2004). The majority of diabetic nephropathy patients

usually die from cardiovascular complications before reaching ESRD (Rossing et al.,

1995). Hypertension, together with diabetes, is now the major cause of ESRD worldwide,

not only within the developed world, but also increasingly within the developing world.

The incidence of ESRD in the UK, as calculated by the number of new patients

undertaking RRT, varies between 80 and 110 patients per million of population (pmp)

per year (UK Renal Registry 2(02). The prevalence rate of ESRD in the UK increased
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from 724 pmp in 2006 to 746 pmp in 2007 according to the UK renal registry (UKRR) in

2008 (Farrington UKRR 2008). This prevalence rate remained lower in England (746

pmp) than in Northern Ireland (791 pmp), Scotland (797 pmp) and Wales (798 pmp),

(Farrington et al., 2009) as shown in Table 2.

Table 2 Prevalence of RRT therapy of adults in UK (2007)

England Wales Scotland N Ireland UK

All UK centres 37,614 2,377 4,101 1,392 45,484

Total population, 51.1 3.0 5.1 1.8 61.0
mid-2007(millions)

Prevalence pmp HD 318 339 346 393 323

Prevalence pmp PD 74 109 77 60 76

Prevalence pmp dialysis 392 448 423 453 399

Prevalence pmp transplant 344 350 374 338 347

Prevalence pmp total 736 798 797 791 746

Confidence intervals 729-744 766-830 773-822 750-833 739-753
Total
Abbreviations: RRT, renal replacement therapy; PO, peritoneal dialysis; HO, haemodialysis.

Adaptedfrom Farrington et aI2009.

Similarly, this elevated trend has also been seen in the United States. The

prevalence rate of patients treated by dialysis and transplantation from 1999 to 2004 was

higher than in the period from 1988 to 1994 (Palmer et al., 1988b). The study observed
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an increase in diagnosed diabetes and hypertension from 10% in 1988-1994 to 13.1% in

1999-2004. It also showed that the percentage of both albuminuria and reduction in

eGFR were increased from 1988-1994 to 1999-2004, based on the measurement of

persistent microalbuminuria (>30 mg/g) and estimated GFR using the MDRD study

equation. The overall increase in the prevalence rate of CKD, particularly among older

people and those with diabetes and hypertension suggests that plans for future health

services will be focused on the management of CKD.

1.3 Cardiovascular disease in CKD patients

1.3.1 Background

Cardiovascular disease is the major cause of morbidity and mortality in CKD

patients, and this is frequently complicated by cardiac and vascular changes. Since the

introduction of RRT in the form of dialysis and renal transplantation, patients with ESRD

have been successfully treated and no longer die of uraemia; however, the most

threatening cause of death among that group is now premature cardiovascular death.

Cardiovascular disease was believed to occur only in the late stages of CKD and dialysis

patients; however, previous studies have shown evidence of its development even in the

early stages of the disease (Go et al., 2004). Go et al., in a community-based study

involving one million adults, observed that the risk of both cardiovascular events and

death were increased even in the earliest stages of CKD where eGFR decreased below

60mVminl1.73m2. The study also showed that the highest risk group were those with

CKD stages 4 and 5 (Go et al., 2004, Ritz, 2003) (Figurel). This association between
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renal function, death, and cardiovascular events may highlight the importance of

determining and controlling modifiable cardiovascular risk factors in the earlier stages of

CKD.
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Figure 1 Age standarized rates of
cardiovascular events (A) and death from any
cause (B) in relation to eGFR
Large population-based longitudinal study
(Adapted from Go et al, 2004).

260 45-59 30-44 15-29 <15

EsUmatad GFR(mlfminfl.ll mZl

No. of Events 25,803 11,569 7802 4408 184.2

B

A cardiovascularevent was defined as;
hospitalization for coronary artery disease,
heart failure, ischemic stroke, and peripheral
arterial disease.

The risk of morbidity and mortality from cardiovascular disease in CKD patients

is significantly higher. Previous studies have indicated that 40% to 50% of deaths from

cardiovascular disease were observed in patients with ESRD (Foley et al., 1998). The

risk of cardiovascular mortality in patients receiving haemodialysis (HO) or peritoneal

dialysis (PD) was shown to be 10 to 20 times higher than that of the general population

(Foley et al., 1998). Cardiovascular morbidity was also higher among that group, and
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approximately 75% of patients receiving dialysis therapy developed left ventricular

hypertrophy as detected by ultrasound. (Foley et al., 1995).

Mcintyre et al. (2008) has shown that patients on long-term haemodialysis

therapy are at high risk of developing vascular ischemia, particularly, myocardial

ischemia which, in tum, results in the development of regional wall motion abnormalities

(RWMA) and myocardial stunning even in the absence of coronary artery disease

(McIntyre et al., 2(08). This study demonstrated for the first time that haemodialysis is

associated with significant reduction in myocardial blood flow (MBF). It has been shown

that patients on dialysis therapy who have acute myocardial infarction have higher

mortality rate from cardiac causes and poor long-term survival rate (Herzog et al., 1998).

Moreover, the most prevalent pathological forms of cardiovascular disease among that

group are: left ventricular hypertrophy, atherosclerosis and arteriosclerosis.

1.3.2Cardiovascular risk factors in CKD

Cardiovascular diseases (CVD) are quite common in CKD and dialysis patients,

due to the high prevalence of conventional risk factors. The increased prevalence of CVD

in CKD patients may result from the consequences of higher prevalence of diabetes

mellitus, hypertension, hyperlipidaemia, and aging (Fuster et al., 2011). There are some

concerns about intervention management to decrease the risk of incidence and prevalence

of CVD. These include angiotensin converting enzyme blockers, angiotensin receptor

blockers, platelet inhibitors, thrombolytic, and aspirin usage, which may be unexploited

among CKD patients, though their utility among this group of patients (Saran and
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DuBose, 2008). Additional non-traditional risk factors unique to these patients have been

suggested to playa part in the progression of CVD (Samak and Levey, 2000). These

factors have been identified to be involved in a number of mechanisms of cardiac

damage and are predictive of adverse outcomes in individuals with CKD stages 3 and 4

(Samak and Levey, 2000, Weiner et al., 2008). However, vascular abnormalities,

especially arterial calcification and stiffness are important risk factors contributing to

cardiovascular mortality and morbidity in late CKD patients (stages 4 and 5) (London et

al.,2003).

Traditional and non-traditional risk factors have been implicated in the elevated

CVD development in CKD patients (Menon et al.• 2005). The prevalence of hypertension

and diabetes mellitus is higher in CKD and play an important role in increased mortality

and morbidity among this group. However, these traditional risk factors play major roles

in vascular damage and alteration in left ventricular function in CKD patients (Zoccali et

al., 2003). One of the most important non-traditional cardiovascular risks in CKD

patients is albuminuria, which is known as a continuous cardiovascular risk factor in

CKD and diabetic patients. Normal albuminuria is defined as the urinary albumin /

creatinine ratio (ACR) < 30 mg/g. The role of albuminuria as cardiovascular risk was

first recognised to macroalbuminuria, in which the ACR > 300 mg/g (Grimm et al.,

1997), but this level was extend to microalbumiuria (ACR. 30 to 300 mg/g) (Keane and

Eknoyan, 1999). The reason why microalbuminuria is a powerful predictor of CVD is yet

unknown; however, one of the principle pathophysiological mechanisms has been

proposed to the consequences of endothelial damage or to the pathogenicity of
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miroalbuminuria itself (Schiffrin et al., 2007). The other important non-traditional risk

factors are discussed in section 1.4.3.

Table 3 Traditional and non-traditional risk factors

Pathology Traditional risk factors Non-traditional risk factors

Cardiomyopathy
Older age Albuminuria
Hypertension Reduced glomerular filtration rate
Valvular disease Anemia
Dvslinidemia Inflammation
Smoking Arteriosclerosis
Diabetes Extracellular fluid volume overload

Atherosclerosis Older age Albuminuria
Male gender Reduced Jdomerular filtration rate
Hypertension Anemia
Diabetes Inflammation
Dvslipidemia Oxidative stress
Smoking Endothelial dvsfunction
Ph~sical inactivity Homocysteine
Le t ventricular hvpertrophv Lipoprotein

Malnutrition
Thrombogenic factors
S~«:thetic activity
Ins . resistance/metabolic syndrome

Arteriosclerosis Older age Albuminuria
Male gender Reduced }domerular filtration rate
Smoking Endothelial dysfunction
Hypertension Abnormalcalcium.phosphate
Diabetes metabolism
Dvslipidemia Metabolic syndrome

Adapted from (Menonet al., 2005)
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1.4 Vascular endothelium and CKD

1.4.1 Vascular endothelium

The interior surface of blood vessels of the circulatory system from heart to

capillaries is lined with a single layer of endothelial cells, which is a specialized type of

simple squamous epithelium separated from the surrounding outer layers by a basal

lamina (Gunthner et aI., 2009) see Figure 2. These cells control the passage of

materials-and the transit of white blood cells-into and out of the bloodstream.

Endothelial cells have mechanoreceptors that allow them to sense shear stress due to

flow of blood over their surface. By signalling this information to the surrounding cells

(smooth muscle cells), it enables blood vessels to adapt their diameter and wall thickness

to suit the blood flow (Simionescu et al., 1984), a maintain end organ perfusion in the

setting of altering systemic blood flow.

Endothelium normally provides a non-thrombogenic surface and reduces

turbulence of blood flow. This layer acts as a selective barrier between the vessel lumen

and surrounding tissue, and regulates angiogenesis, vessel tone and function, and

mediates inflammatory processes (Cines et al., 1998). It additionally plays an important

role in the biology of arterial wall via release of vasoactive and trophic factor. The most

important cellular component in the tunica media is the vascular smooth muscle layer

that responsible for vasodilatation and vasoconstriction through secretion of various

hormones and growth factors that regulate proliferation, migration and extracellular

matrix formation in this layer (Betsholtz and Armulik, 2006).
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Smooth muscle cell

Figure 2 Cross-section of a vessel wall

Adapted from (Gunthner et al., 2009)

Vascular endothelium plays an important role in the regulation of vascular

function by providing a protective action through modulation of vascular structure, tone

and interaction of blood components with the vascular wall (Annuk et al., 2001, Baragetti

et al., 2007). It has an atheroprotective effects through production and release of a wide

range of vasoactive substances that include vasoconstrictors such as endothelins,

thromboxane A2, and vasodilators nitric oxide (NO), prostacyclin, arachidonic acid

derivatives and endothelium-derived hyperpolarising factors (EDHF) (Cross, 2002).

Different chemical substances such as acetylcholine (Ach), bradykinin (BK), serotonin,

and substance P stimulate the endothelium to initiate the vasodilatation mechanism

(Vallance and Chan, 2001). This occur either through endothelium-deriving relaxing

factor which was first demonstrated as NO (Furchgott and Zawadzki, 1980) or through
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mediated hyperpolarization of vascular smooth muscle cells via NO-independent

pathway (Busse et al., 2(02).

1.4.2 Measurement of endothelial function

Several techniques are now available for the assessment of endothelial function in

humans including invasive and non-invasive techniques. These methods are based on the

assessment of endothelium-mediated responses of peripheral arteries by measuring the

effects of their receptor agonists on the vascular resistance.

The initial in vivo studies on the endothelial function was on investigating

coronary circulation, involved local infusion of Ach with measurement of the vascular

diameter using coronary angiography (Cox et al., 1989). Subsequently, these methods

have been repeated using Doppler flow wires to measure resistance of the vascular

function (Drexler and Zeiher, 1991). The physiological responses of vascular

endothelium to various stimuli including Ach, BK, and substance P have also been

investigated in vivo using flow-mediated dilatation (FMD) of conduit arteries (Nabel et

al., 1990). A number of alternative non-invasive methods have also developed to

investigate endothelial function in peripheral circulation, particularly, forearm resistance

vessels. These include venous occlusion plethysmography, which is one of the widely

used techniques in cardiovascular research (Benjamin et al., 1995). This method is based

on the measurement of increase in forearm volume after suppression of the venous return

by using specific pneumatic cuff placed at the level of the arm. Another non-invasive

assessment method of endothelium function in peripheral arteries is studying the effects
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of their receptor agonists on blood flow using non-invasive Doppler and intravascular

ultrasound imaging (Donald et al., 2(06). Laser Doppler is also one of the widely used

method to assess the endothelium function of cutaneous microcirculation (Johnson et al.,

1984).

A number of ex vivo technique have been also introduced to investigate the

endothelial function through measurement of vascular contractility and various aspects of

excitation-contraction coupling process. These include wire myograph (Mulvany and

Aalkjaer, 1990), that described in details in methodology chapter section 2.4. The other

technique is pressure myograph, which is used to study the physiological function of

small isolated vessels, it allows to investigate the pharmacological effects of different

vasoactive stimuli on the isolated vessels under near physiological conditions (Halpern

and Kelley, 1991). Both techniques are widely used in the ex vivo research which

enabling the researchers to directly investigate the vascular function in isolated vessels

from different tissues. However, in these methods, vessels possess many of their in vivo

properties.

1.4.3 Endothelial dysfunction in CKD

Endothelial dysfunction can be defmed as an alteration in the normal function of

the endothelium. It can also be defined as partial or complete loss of balance between

vasoconstrictors, growth and inhibiting factors, pro-coagulant and anti-coagulant factors

(Caballero, 2(03). During endothelial dysfunction, endothelial cells release paracrine

factors such as vascular endothelial growth factor (VEGF), endothelin-l and interleukin-
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6 that act either as growth factors to induce smooth muscle cell proliferation, or as

chemokines to stimulate circulating inflammatory cells (Bolton et al., 2001). Endothelial

damage is recognised as a common risk of vascular damage in many conditions

associated with increased cardiovascular risk including CKD.

Endothelial dysfunction has been implicated in different pathological diseases

including CVD, CKD, obesity, hypertension, diabetes mellitus, and peripheral vascular

disease (Schiffrin, 2004). Endothelial dysfunction has been reported to occur in various

stages of CKD even in the early stages (Go et al., 2004). However, the occurrence of

endothelial dysfunction in CKD can be independently to traditional factors, this may

highlight the presence of other 'kidney-specific' mechanisms that contribute to CKD~

related endothelial dysfunction. For example, Kari et al. observed the presence of

endothelial dysfunction in uremic children without hypertension and dyslipidaemia (Kari

et al., 1997). In 1990, the endothelial dysfunction was first demonstrated in forearm

vessels of hypertensive patients (Panza et al., 1990). Impaired endothelium-dependent

vasodilatory function was demonstrated in ESRD patients in ex vivo (Morris et al., 2001,

Luksha et al., 2011) and in vivo studies (Morris et al., 2000, Bolton et al., 2001, Yildiz et

al., 2003). Moreover, such impairment has also been observed in obese patients in ex vivo

(Georgescu et al., 2011, De Ciuceis et al., 2011) and in vivo studies (Nielsen et al.• 2004).

endothelial dysfunction can also occurs in other conditions including assessment of the

vascular function in peripheral vascular beds of hypertensive (Park et al., 200 1)

(Schiffrin et al., 2000) and diabetic patients (Rizzoni et al., 2001a, Schofield et al., 2002).

The pathophysiological mechanisms of endothelial dysfunction in CKD patients is
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complex and incompletely understood, however many proposed mechanisms have been

suggested.

Several studies investigating the mechanisms of endothelial dysfunction in

uremic patients have focused mainly on the impairment of NO bioavailability resulting to

impaired endothelium-dependent vasodilation as the principal event that leading to

endothelial dysfunction. The exact mechanisms for altered NO activity in uremic patients

is yet unclear, however some non-traditional uraemia-specific risk factors are being

widely discussed, including excessive oxidative stress and reactive oxygen species

(Ferraro et al., 2003, Hasdan et al., 2002, Miyazaki et al., 2000), hyperhomocysteinemia

that found in the majority of renal patients (Bostom and Culleton, 1999) and elevated

plasma levels of endogenous competitive inhibitors of nitric oxide synthase (eNOS), such

as asymmetric dimethyl arginine (ADMA) in dialysis patients (Vallance et al., 1992),

which has been discussed in details in this chapter.

1.4.3.1 L-argentine- NO pathway and endothelial dysfunction

NO is a soluble gas that is synthesized from the amino acid I-arginine in

endothelial cells by a calcium-calmodulin-dependent enzyme (endothelium nitric oxide

synthase eNOS (Palmer et al., 1988b). L-arginine is an amino acid known to be a

physiological precursor for NO synthesis in the culture of vascular endothelial cells

(Palmer et al., 1988a). The synthesis of NO occurs after oxidation of guanidine nitrogens

terminal of L-arginine by NO synthase enzyme, activated by an increase in endothelial

intracellular calcium concentration, to produce NO and L-citruline (Bredt, 1999). The
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generator cell (endothelial cell) releases NO as a gas or attached to other molecules to the

target cell (smooth muscle cell) (figures 3 and 3.1). In the target cell, NO stimulates

soluble guanylayl cyclase and subsequently produce an increased concentration of cyclic

guanosine monophosphate (cGMP) (MacAllister and Vallance, 1994). This in turn leads

to different activities, such as decrease intracellular calcium levels and smooth muscle

relaxation.

Generator cell (endothelial cell)

Target cell (smooth muscle cell)

l·NMMA
02 L-Citrulline

NO-Haem GC

!r~
NO synthase GTP cGMP

Figure 3 L-arginine- NO pathway.

Abbreviation, L-NMMA (NG-monomethyJ-L-arginine), GC (guanyJayJ cyclise), GTP
(guanosine

triphosphate), cGMP(cycIic guanosine monophosphate).
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Figure 3.1 Proposed metabolisms of methylearginines within the endothelial cell
Figures 3 and 3.1 are Adapted from MacAllister 1994.

NO has appeared as the most notable endothelium-derived vasorelaxant released

from the vascular endothelium following stimulation of endothelial cells by numerous

stimulating factors including; acetylcholine, thromboxane All, thrombin, bradykinin,

histamine (Cannon, 1998). It can promotes vascular homeostasis such as maintaining

vascular function, regulates local cell growth and protects the vessel from blood

circulating cells and platelet aggregation (Michel and Vanhoutte, 2010). In addition to its

vasodilator effect, NO can inhibit the following; Platelet aggregation and adhesion,

vascular smooth muscle proliferation, vascular smooth muscle contraction, endothelin

production, monocyte adhesion and migration, and expression of adhesion molecules

(Radomski et al., 1987).
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1.4.3.2 NO inhibitors and the effect of renal failure on NO synthesis.

Different substances have been proposed to directly affect NO synthesis. These

include a group of guanidine compounds such as W-dimethyl-L-arginine (asymmetrical

dimethylarginine, ADMA), methylguanidine, and W-monomethyl-L-arginine (L-

NMMA). These endogenous naturally occurring substances are accumulated in renal

failure as a result of reduced excretion and/or metabolism. They accumulate in sufficient

amounts to competitively inhibit NO synthase enzyme (NOS) (Cross, 2002).

Dimethylearginines (OMAs) that include asymmetric dimethylarginine (AOMA) and

symmetric dimethylarginine (SOMA) have been shown to be accumulated in plasma of

patients suffering from renal failure (Cross, 2(02).

Plasma ADMA is water soluble substance derived from the catabolism of

proteins containing methylated arginine residues (Chan and Chan, 2002). It has been

shown that more than 10 mg of plasma AOMA is normally excreted in urine over 24 hr

(Vallance et al., 1992), however patients with ESRD who are oligouric or anuric,

excretion of plasma ADMA is blocked (Matsuguma et al., 2006). AOMA directly

inhibits eNOS and reduces NO synthesis (Vallance et al., 1992), while SOMA does not

inhibits eNOS, but may competes with L-arginine for transport into endothelial cells

(Teerlink et al., 2(02). These circulating inhibitors are accumulated in a sufficient

amount to inhibit NO synthesis in patients with renal failure, though the precise

mechanism underlying accumulation of ADMA and SOMA in uremic CKD patients is

not fully understood. DMAs are freely filtered and removed from the plasma of dialysis

patients along with various uremic toxins during dialysis procedure (Anderstam et al.,

1997). However, accumulation of these compounds occurs as a result of poor clearance
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during dialysis procedure and substantial rebound that occurs at the end of dialysis

session (Eloot et al., 2(05).

Many studies have demonstrated marked elevation of plasma ADMA in patients

with ESRD. In 1992, Vallance et al. reported for the first time that concentration of

plasma ADMA and SOMA are up-to 4-fold increase in uremic patients compared to

control groups in a study recruited 9 HO patients and 6 normal controls (Vallance et al.,

1992). Kielestein et al. highlighted markedly increased plasma AOMA in early stages of

non-smoking, non-diabetic CKD patients (even those with normal eGFR), with highly

significant differences between patients and control groups (Kielstein et al., 2002).

Moreover, Fleck et al. in his large study that include 221 patients with different stages of

renal diseases, observed that plasma ADMA concentration were raised by 38% in CKD

group, whereas plasma SOMA was elevated by 250% in CKD compared to healthy

subjects (Fleck et al., 2(03) (see figure 4). The study also showed that both AOMA and

SOMA are elevated further by about 5.5-fold in haemodialysis patients (HO) compared

to normal controls. However, following renal transplantation, only the concentrations of

SOMA were decreased compared to non-transplant HO group, whereas ADMA remains

nearly unchanged. Furthermore, the study suggested that SOMA is another risk marker

for endothelial dysfunction and both OMAs may contribute to increased risk of CV

mortality and enhancement of hypertension in CKD patients.
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Figure 4 ADMA and SDMA concentrations in patients with different RRT
Renal failure (CRF), haemodialysis (HD), renal transplant (RT), and Control group

n= patients numbers, *significantly different from control;
+significant difference to CRF; #significant difference between
RT and HD (p < 0.05).Adaptedjrom Fleck et al 2003.

1.4.3.3 NO inhibitor (ADMA) and cardiovascular dysfunction

It has been shown that NO inhibitors may contribute to cardiovascular

dysfunction. Kielstein et al. demonstrated the effect of plasma ADMA on cardiac output,

systemic vascular resistance and blood pressure. The study involved healthy subjects

infused with different concentrations of ADMA intravenously to assess the effect of

ADMA on NO production and renal haemodynamic (Kielstein et al., 2004). It observed

that an acute elevation in plasma ADMA concentrations within the physiological relevant

range (2-lOJlmollL) can cause a significant decrease in plasma cyclic guanosine

monophosphate concentration (cGMP), the main second messenger of NO in the
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cardiovascular system. It also showed that infusion of healthy subjects with 0.10 mg.kg

I.min-I concentration of ADMA can result to a significant sustained reduction in cardiac

output and increased systemic vascular resistance (figure 5 and 5.1 respectively).

AT

4+-~~~~~.-~~~~~~~~~~~~
o 20 40 60 80 100 120 140 160 180 200 220

time (min)

Figure 5 Effects of ADMA on cardiac output on healthy volunteers.
Data adapted from (Kielstein et aI., 2004).
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Figure 5.1 Effects of ADMA on systemic vascular resistance on healthy volunteers.
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1.4.3.4 Uremia and endothelial dysfunction

Uremic toxins are attributed to the progressive retention of a large number of

compounds, which under normal conditions are excreted by the healthy kidneys. These

compounds are called uremic retention solutes, or uremic toxins when they interact

negatively with biologic functions (Vanholder et aI., 2001). A number of uremic

compounds have been identified including low molecular weight solutes, protein-bound

solutes and middle molecules such as guanidines. These physiological molecules are

difficult to remove by dialysis (Vanholder et aI., 2001, Vanholder et al., 2008). Table 4,

illustrates some of the currently known uremic retention solutes, classified according to

the characteristics that potentially influence their removal pattern during dialysis

(Vanholder et al., 2003, Vanholder et al., 2008). The pathophysiological mechanisms by

which uremic toxins can cause endothelial damage is still understood, however some of

these toxins can induce release of endothelins and enhance angiogenesis by stimulating

vascular endothelial growth factors (Anagnostoulis et al., 2008).
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Table 4 Compounds with the pel tential to provoke vascular damage.

Small water-

soluble compounds

Protein-bound molecules

Middle molecules

Guanidines (ADMA, SOMA, Methylguanidine,

Argininic acid, guanidinopropionic acid,

Guanidinoacetic acid, Guanidonosuccinic acid,

Taurocyamine).

AGE (3-deoxyglucosone, Fructoselysine, Glyoxal,

Methylglyoxal, Pentosidine, dinucleotide

polyphosphates, indoxyl sulphate), indoles (Indole-3-

acetic acid, Indoxyl sulphate, Kinurenine).

Homocysteine, leptin, Phenylacetic acid, TNF- u,

AGE, dinucleotide polyphosphates, leptin, TNF- u,

Adrenornedullin , Atrial natriuretic peptide, -endorphin

B2-microglobulin, Cystatin, Endothelin, Interleukin-l B,

Interleukin-6

Methionine-enkephalin, Neuropeptide, Parathyroid

hormone.

Abbreviation:AGE, advanced glycationend products;TNF tumour necrosis factor alpha,ADMA,
asymmetric dimethyl argentine; SOMA, symmetric dimethyl argentine. Data adapted from
Vanholder et al. 2008.

Uremia is associated with other conditions that probably accelerate the

development of atherosclerosis, such as increased production of reactive oxygen species

(ROS), increased homocysteine levels, acidosis, recurrent infections, and complementing

activation, which may contribute to impaired endothelial function (Gunthner et al.,

2009). Similarly, other conditions including diabetes, hypertension, hyper-

cholesterolaemia, congestive heart failure, and hyper-hornocystinaemia have been
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associated with endothelial dysfunction (Cannon, 1998). In these conditions, alteration in

endothelial cells can promote inflammation, oxidation of lipoproteins, smooth muscle

proliferation, platelet activation, thrombus formation, extracellular matrix deposition and

accumulation of lipid-rich materials. All these consequences may contribute to the

pathogenesis of atherosclerosis. However, these inflammatory conditions may predispose

to endothelial damage.

1.4.3.5 Oxidative stress and endothelial dysfunction

Oxidative stress plays a pivotal role in the pathogenesis of vascular injury and in

the progression of atherosclerosis. This can occurs through several mechanisms, some of

which are associated with inhibition of NO synthase activity and inactivation of NO by

reactive oxygen species (Harrison, 1997). Oxidative stress has been found to be elevated

in different stages of CKD patients (Pawlak et al., 2004). Release of reactive oxygen

species (ROS) in uremic patients can occur as a result of an imbalance between pro-

inflammatory and anti-inflammatory mechanisms which can be manifested by decreased

NO levels (Morena et al., 2005). Impaired NO bioavailability as a result of excessive

production of ROS may contribute to endothelial cell damage and vascular dysfunction

(Morena et al., 2005). Although endothelial cells have an antioxidant defence mechanism

against these products, over production of ROS gradually over time can damage these

cells. Many experimental and clinical studies have demonstrated that uraemia is

associated with an increased state of oxidative stress (Ferraro et al., 2003, Hasdan et al.,

2002). This condition is characterized by an increase of lipid peroxidation products and
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retention of oxidized solutes (Cruz et al., 2008). Moreover, Annuk et al. observed the

direct relation between increase plasma markers of uremic oxidative stress and

endothelial dysfunction (Annuk et al., 2001).

1.4.3.6 Homocysteine and endothelial dysfunction

Homocysteine is a sulphur-containing amino acid, known to be an independent

cardiovascular factor that is associated with endothelial dysfunction (Clarke et al., 1991).

Homocysteine has been shown to be associated with increased risk of atherosclerosis and

venous thromboembolism. Approximately 50% of patients with severe hyper-

homocysteinaemia develop a clinically significant vascular event even prior to the age of

30 (Mudd et al., 1985). Homocysteine is frequently seen in patients with CKD and it has

been found in more than 90% of patients on dialysis treatment (Francis et al., 2004). It is

one of the uremic factors that accumulates in renal failure and contributes to endothelial

and cardiovascular dysfunctions (Mallamaci et al., 2002). Although, the precise

mechanism underlying the effect of hyper-homocysteinaemia on endothelial dysfunction

remains unclear, several studies have suggested that hyper-homocysteinaemia is

indirectly associated with endothelial dysfunction. One mechanism proposed that the

defect can occurs via impaired NO bioavailability (Sydow et al., 2003), either through its

oxidation to hydrogen peroxide and other reactive oxygen species (Lang et al., 2000) or

secondary to accumulation of endogenous NO synthase inhibitor (ADMA) (Boger et al.,

20(0). It has also been shown that increased plasma homocysteine but not cysteine
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concentration between 10-50 umol/L might inhibit endothelial cell proliferation (Wang

et al., 1997).

Various studies have determined that hyper-homocysteinaemia is a risk marker of

cardiovascular mortality and morbidity in haemodialysis patients (Mallamaci et al., 2002,

Buccianti et al., 2004). It has been shown, in dialysis patients, that hyper-

homocysteinaemia can be successfully treated by folic acid therapy via administration of

folate and B-vitamins. Baragetti et al. compared 19 peritoneal dialysis patients receiving

oral folic acid (5-methyltetrahydrofolate therapy) with other dialysis group without

treatment for the same period of time (12 week follow-up) (Baragetti et al., 2007). The

study showed that treatment with folic acid can lowers, but does not normalize, plasma

homocysteine level with 30% reduction in plasma homocysteine levels among the

treatment group (see figure 6). It also observed significant improvement in the

endothelial function measured using B-mode Ultrasonography in the brachial artery by

daily administration of the drug among treatment group, independently to the reduction

in homocysteine plasma levels. However, recent randomised clinical trials assessing

clinical effectiveness of homocystein-lowering interventions (HLI) in non-CKD people

with or without pre-existing cardiovascular disease did not observe the evidence to

support the use of HLI to prevent cardiovascular events (Marti-Carvajal et al., 2009).
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Figure 6 Effects of 5-MTHF treatment on plasma homocysteine level
Assessment of homocysteine level was at (T'I and T2) in dialysis (treatment and control
group). Endothelial function measured by B-mode ultrasonography in the brachial artery
(Baragetti et al., 2007).

r.s Wire myograph

Wire myograph is an ex vivo technique that used to investigate the vascular

function of isolated small resistance vessels and tubular tissues including ureters and

bronchi. Bevan and Osher firstly described the technique in 1972. They investigated

small vessels with internal diameters around 100 urn to assess the contractility of small

isolated arteries to agonist stimulation (Bevan and Osher, 1972). This technique,

thereafter, was developed by Mulvany and Halpern to allow an in vitro measurement of

both active and passive properties of small arteries (with internal diameter 60 urn to 300

urn) under isometric conditions using wire myograph (Mulvany and Halpern, 1977). In

this system, vessel segments are threaded on two small wires (40 urn) as a ring
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preparation. Each wire is secured to each of the jaws, one of the wires is fastened to a

force transducer and the other is attached to micrometer for adjustment of vessel

circumference and the application of tension. This arrangement helps the researchers to

measure the internal circumference of the vessel, wall tension, and isometric force

responses to chemical drugs (agonists and antagonists).(Rizzoni et al., 2003). Details of

the myography technique and procedures are described in methodology chapter, section

2.4.

1.6 In vivo vascular studies in CKD

Structural remodelling in vascular resistance has been observed in uremic and

hypertensive humans and animal models. In experimental uremic hypertensive animals,

structural changes characterised by an increased wall/lumen ratio with decreased lumen

diameter have been observed in the mesenteric arteries of Wistar-Kyoto rats, suggesting

that these vessels undergo remodelling in uremic hypertension (New et al., 2004).

Impaired peripheral vascular perfusion, measured in vivo using laser Doppler perfusion

imaging, has been observed in uremic rats induced by subtotal nephrectomy (Jacobi et

al.,2006).

In humans, several in vivo studies have confirmed impaired endothelial-

dependent vasodilation in peripheral vascular beds of uremic patients. Morris et al.

examined endothelial function in uremic peripheral forearm vessels by measuring

changes in the forearm blood flow induced by carbachol (endothelium-dependent

vasodilator) and SNP (endothelium-independent vasodilator) using forearm

plethysmography (Morris et al., 2000). The study observed reduced vasodilatation
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responses to carbacol in uremic patients, with preserved vasorelaxation function in

response to SNP. Hand et al. identified impaired endothelium-dependent vasodilatation

in adult haemodialysis patients using non-invasive vascular measurements of dorsal hand

veins (Hand et al., 1998). The study examined 12 haemodialysis patients and 8 healthy

controls (non-HD) comparing responses of Ach (activator of NO synthase) and glyceryl

trinitrate (GTN, a NO donor) to preconstricted dorsal hand vessels before and after

dialysis using dorsal hand vein measurement. This study observed an impaired

venodilatation response to Ach before dialysis, which corrected after each dialysis

session. whereas venodilatation in response to GTN was similar before and after dialysis.

The study also showed that Ach-dependent venodilatation was corrected before dialysis

by co-infusion of L- but not D-arginine. From these findings, the authors suggested that

patients on haemodialysis have impaired Ach-mediated venodilation as a result of

accumulated NOs inhibitors, which are cleared by dialysis therapy. Baragetti et al. also

examined the endothelial function in the forearm vessels of uremic dialysis patients

(Baragetti et al., 2(07) using B-mode (Biosound) ultrasonography on the brachial artery

as discussed in detail in section 1.4.3.6.

1.7 Ex vivo vascular studies in CKD

An ex vivo study of small arteries is an important and helpful tool for assessing

vascular abnormality in uremic patients who are at high risk of developing the structural

and functional cardiovascular abnormalities that may occur as a result of microvascular

dysregulation.
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In ex vivo animal studies, altered myogenic constriction and impaired EDHF-

mediated relaxation has been observed in isolated small vessels of uremic hypertensive

rats (Vettoretti et al., 2006). Decreases in Ach-mediated vasorelaxation but not in SNP-

mediated response have been demonstrated in isolated small vessels of severely

hypertensive uremic rats induced by renal mass reduction (Benchetrit et al., 2003).

Moreover, endothelial function in isolated uremic arteries has been investigated using

arterial responses to different concentrations of acetylcholine (Ach) and sodium

nitoprusside (SNP) in controls (non-uremic) and uremic rats induced by nephrectomy

(Thuraisingham and Raine, 1999). The study observed that normal agonist-induced

endothelium-dependent relaxation was maintained in experimental uraemia.

Despite the high prevalence of cardiovascular events in CKD, few studies have

examined vascular and endothelial function in isolated subcutaneous vessels of uremic

patients. For example, Morris et al. examined the effects of uraemia on the vascular

function through measurement of isolated human subcutaneous resistant arteries using

wire myography. In this study, subcutaneous fat biopsies were obtained from the anterior

abdominal wall from twelve uremic patients with different stages of CKD at the time of

peritoneal dialysis catheter insertion or renal transplantation, and eight control samples

without kidney disease at the time of abdominal elective surgery. Small resistant arteries

were dissected and conducted by wire myography, and cumulative concentration-

response curves for norepinephrine (NA), endotheline-I (ET-I), acetylcholine (Ach), and

sodium nitroprusside (SNP) were constructed (Morris et al., 2001). This study showed no

significant differences between both groups in response to NA and ET-l (see Figure 7),

however more tendency of increased maximum contraction to the highest doses of these
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compounds were observed in uremic patients than control group. The potency and

maximum relaxation to SNP (endothelium-independent vasodilator) were similar in the

two groups, while the maximum % of relaxation to Ach (endothelium-dependent

vasodilator) was significantly lower in uremic patients compared to control group (Figure

8).
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Figure 7 Concentration response curves for vasoconstrictors in uremic and controls
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Effects of uremia on the structure and function of isolated subcutaneous small

arteries has also been studied recently in ESRD patients using both wire and pressure

myography (Luksha et al., 2011). In this study. 35 patients starting peritoneal dialysis

were matched with 30 healthy controls. It observed impaired endothelium-dependent

vasodilatation in response to Ach, while preserved endothelium-independent function in

response to SNP. However. the study found that the vasocontractile function of isolated

vessels in response to NA. ET-I. and angiotenisn II was similar between both groups.

On the other hand, vascular dysfunction due to other disorders such as

hypertension has been well investigated in human subcutaneous resistance arteries by

myography. Such studies have examined vascular dysfunction and remodelling (James et

al., 2006. Rizzoni et al., 2006). as well as, evaluate the use of some pharmacological

interventions (Buus et al., 2007, Schiffrin et al., 2002). Early morphological studies on

the conduit arteries have shown that vascular alterations are characterized by

atherosclerosis in HD patients (Pascazio et al., 1996. London and Drueke, 1997). In

experimental uraemia, increased wall-to-Iumen ratio in intra-myocardial small vessels

with significant architectural abnormalities in the aorta has been shown in uremic rats

(Amann et al., 1995a).

1.S Obesity and cardiovascular dysfunction

1.S.1 Background and Epidemiology

Obesity is a major worldwide health problem. and well known as one of the most

common risk factors for cardiovascular disease. The Framingham Heart study data has
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indicated that obese and overweight people are associated with an increased relative risk

for development of cardiovascular events (Wilson et aI., 2002). It has been recognised as

a major modifiable cardiovascular risk factor. Obesity and excessive weight gain

significantly increase the risk for coronary artery disease, hypertension, and diabetes in

both men and women (Sharma, 2003). Increased risk of developing congestive heart

failure has been observed in obese people compared to controls with normal BMI

(Kenchaiah et aI., 2(02).

The risk of cardiovascular morbidity and mortality is increased in obese people as

a result of vascular dysfunction, particularly coronary complications (Ninomiya et aI.,

2004). Obesity is associated with increased risk of premature death, particularly from

cardiovascular events. It has been recognised that the life expectancy of obese people in

the current and future generations is expected to be reduced as a result of cardiovascular

events and other associated chronic diseases (Karuparthi et al., 2008). Several central and

peripheral abnormalities have been identified in obesity that contributes to the

development of high blood pressure (Rahmouni et al., 2005). These include activation of

the rennin-angiotensin-aldosteron system, and activation of the sympathetic nervous

system (Figure 9).
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system.Data adapted from (Rahmouniet al., 2005).

1.8.2 Obesity and endothelial dysfunction

Obesity, insulin resistance, and metabolic syndrome have been shown contribute

to vascular endothelial dysfunction and decreased arterial compliance (Fomoni and Raij,

2005, Ritchie et al., 2004). The association between obesity and endothelial dysfunction

is decisive because the crucial role of endothelial dysfunction in the pathogenesis of

atherosclerosis and development of cardiovascular events (Widlansky et al., 2003).

It has been shown that obesity-related conditions such as diabetes mellitus,

hypertension, and hyperlipidaemia may cumulatively damage vascular endothelium

(Meyers and Gokce, 2007). The mechanisms responsible for endothelial dysfunction in

obese patients are yet unclear; however it is likely that various mechanisms may be

involved. An endothelial cell adhesion molecule that facilitates cellular adhesion and

52



endothelial cell migration has been reported in obese patients (Escobar-Morreale et al.,

2(03). Increased vascular endothelial expressions of some oxidase enzymes and elevated

endothelial oxidative stress have also been found in obese and overweight subjects

(Silver et al., 2(07). Impaired NO bioavailability has a major role in endothelial

dysfunction. Since NO plays a crucial role in maintaining vascular tone, monocyte

adhesion, cellular proliferation and inhibits platelet aggregation, therefore reduction in

NO function may contributes to the development of macrovascular disease in obesity.

The exact mechanism by which impaired NO function can cause endothelial dysfunction

in obesity is not completely understood. However, a number of contributory factors

including insulin resistance (Steinberg et al., 1996), increased concentration of pro-

inflammatory cytokines (Aldhahi and Hamdy, 2003), increased free fatty acid levels

(Steinberg et al., 2000), and increased endothelin-dependent vascular tone (Mather et al.,

2002), have all been observed in obesity. Therefore these factors may responsible for the

underlying mechanisms that mediate vascular endothelial dysfunction (Poirier et al.,

2006).

1.8.2.1 Increased concentrations of pro-inflammatory cytokines and lipotoxicity

It is now clear that adipose tissue secretes different bioactive proinflammatory

substances and hormones, such as adiponectin and leptin, which have been shown

elevated in obese people. Dysregulation of these substances can lead to the incidence of

obesity-related diseases including glomerulopathy and CKD (Trayhurn et al., 2008).

Leptin is a hormone produced from adipocytes that stimulates the hypothalamus gland
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resulting in appetite suppression (Trayhurn et al., 2(08). It has been found that the

concentration of circulating leptin is directly proportionate to the amount of adipose

tissue present (Bagby, 2004, Sharma and Considine, 1998). Reduction in the

concentration of circulating leptin has been observed in obese people who undergo

weight loss (Leichman et al., 2(08). In ex vivo animal studies, it has been shown that

leptin stimulates the proliferation of cultured glomerular endothelial cells through the

generation of reactive oxygen species (Bouloumie et al., 1999). In rats, administration of

high doses of leptin can increase glomerulosclerosis and proteinuria (Wolf et al., 1999).

Lipotoxicity is a process of lipid overload seen in obesity that promotes the cellular

deposition of free fatty acids (FFAs) and triglycerides (TGs) which contributes to organ

dysfunction (Wahba and Mak, 2(07). In lipotoxicity, the continuous production of

mediators, such as FFAs, other adipokines like interleukin-6 (IL-6) and tumour necrosis

factor alpha (TNF- a), can increase platelet activity, activate renin-angiotensin system,

impair insulin action and mediate insulin resistance. All of which contribute to

glomerulonephritis, acute renal failure and tubulo-interstitial nephritis (Wahba and Mak,

2007). It has also been demonstrated that different mediators in obesity, such as TNF- a,

interleukin (lL)-6, resistin and leptin, have some direct and / or indirect effects on the

vascular endothelium (Aldhahi and Hamdy, 2(03). The chronic inflammatory cascade

that occurs in obesity contributes to the development of atherosclerotic diseases which

predict increased risk of cardiovascular mortality and morbidity in this group.
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1.8.2.2Increased insulin resistance

It has been shown that obese patients with hyperfiltration have extremely high

levels of insulin resistance (Chagnac et al., 2000), however, the exact underlying

mechanism behind this remains unclear. One potential underlying mechanism is that

insulin increases sodium reabsorption in the proximal tubules, thick ascending limb and

distal tubule. This leads to associated fluid retention and the development of systemic

hypertension (Tiwari, 2007, El-Atat, 2004). There is also increased extracellular

proliferation, increased lipid production, and hyaluronate deposition, which act to

increase intrarenal pressure. This causes compensatory lowered renal vascular resistance,

raised kidney plasma flow, glomerular hyperfiltration and activation of the renin-

angiotensin system (El-Atat, 2004).

It remains to be determined whether changing these potential factors contribute to

improvement in the vascular function in obesity. Therefore, decreased obesity may

improve vascular function and reduce cardiovascular disease in these high-risk subjects.

1.8.3Bariatric surgery

Different bariatric surgical procedures are available to reduce the weight in obese

people. The principle target in this procedure is to achieve weight loss by reducing the

size of stomach. This can be achieved either by gastric banding which is performed by

implanting a medical device, or gastric bypass surgery, which resections and reroutes the

small intestines to a small stomach pouch. A third approach is billiopancreatic diversion,

which is performed through the removal of a small portion of the stomach with a
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duodenal switch. Long term studies on obese people have observed that a significant

reduction in the body weight is associated with significant improvement in the

cardiovascular risk factors (Robinson, 2009).

1.8.4Bariatric surgery and renal function

Few studies have established the relation between bariatric surgery and renal

function. In a study of eight obese patients without kidney disease, the glomerular

filtration rate (GFR), renal plasma flow (RPF), BMI, and albuminuria were studied

before and after bariatric surgery and compared with controls (Chagnac et al., 2003). In

this study, obese patients had a higher baseline GFR and RPF than controls by 61% and

32% respectively. Over a period of 12 to 17 months, BMI decreased from 48 +/-

2.4kg/m2 to 32.1+/-1.5 kg/m2 and GFR and RPF both decreased by 24% and 13%

respectively. Albumin excretion also reduced with weight loss from 161lg/ml (range, 4 to

1521lg/ml) to 51lg/ml (range, 3 to 371lg/ml). Another study followed-up 61 extremely

obese patients over a period of 24 months after bariatric surgery and compared with

normal weight controls (Navarro-Diaz et al., 2006). At baseline the weight, BMI, GFR

(calculated by 24 hour creatinine clearance), and 24-hour proteinuria were higher in the

obese patients than in the controls. After one year, all the above parameters improved in

obese patients with only albuminuria continuing to decrease at the end of the second

year. This was attributed to the slowing of weight loss after the first year. In obese

patients with established CKD and ESRD, one study showed stabilisation or

improvement of the initial renal disease in nine patients out of 31 after bariatric surgery,
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but each was presented as a case study, and measurements were not uniform (Alexander

et al., 2(09).

Decrease in weight following bariatric surgery is associated with an improvement

in a number of cardiovascular risk factors. At two and ten-year follow ups it was shown

that surgery patients had a lower incidence rate of diabetes, hypertriglyceridemia, and

hyperuricemia than controls (van Etten et al., 2002, Dixon et al., 2008). Improvement in

left ventricular relaxation has been shown in adult obese patients after nine months post-

surgery (Ouchi et al., 2003, Leichman et al., 2(08). Reduction in left ventricular

hypertrophy has also been shown in adults with weight reduction post-surgery

(Ikonomidis et al., 2007).

1.S.S In vivo vascular studies in obesity

Endothelial dysfunction that manifests either as abnormal circulating products of

endothelial cells or impaired physiologic responses to endothelium-dependent vasodilator

stimuli has been demonstrated in both human and animal obesity (Laight et al., 2000). In

the animal model, impaired NO-dependent dilatation in muscular arterioles has been

observed in hypertensive diabetic obese rats using television microscopy, and vessel

dilatation was measured with a video micrometre (Frisbee and Stepp, 2001). The study

found that impaired vascular perfusion in obese rats was due to elevated oxidative stress.

In humans, several in vivo studies using non-invasive techniques have suggested

impaired endothelial function in the peripheral vessels of obese patients. Perticone et al.

assessed endothelial function through measurement of forearm blood flow in response to

acetylcholine (Perticone et al., 2001). The authors observed that the presence of
57



endothelial dysfunction in obese humans is due to reduce NO bioavailability secondary

to the increased production of reactive oxygen species. Another in vivo study assessed

endothelial function in obese patients underwent a dietary restriction regimen through the

measurement of forearm blood vessels (Sciacqua et al., 2003). The study demonstrated

significant improvement in the maximal vasodilator responses of forearm vessels to the

high dose of acetylcholine in healthy obese subjects following an energy-restricted diet.

Moreover, endothelium-dependent and independent vasodilatation has also been assessed

in the forearm vessels of patients with visceral obesity using non-invasive

plethysmography (Nielsen et al., 2004). Arkin et al. examined endothelial function in two

groups of obese patients including super-obese group (BMI~50) and morbidly obese

patients (BMI~40), investigating the vascular response to endothelium-dependent and

independent vasodilatation using flow-mediated dilatation on brachial artery (Arkin et

al., 2008). The study observed significant impairment in endothelium-dependent

dilatation in the super-obese group compared with the other obese group, with similar

vasorelaxation response to nitroglycerin-mediated dilatation has observed between both

groups.

1.8.6 Ex vivo vascular studies in obesity

Several ex vivo studies have been conducted in animal models. Vascular and

cardiac functions have been examined in rats with diet-induced obesity (Boustany-Kari et

al., 2(07). The study observed increased vascular contractility and decreased coronary

vascular relaxation of isolated vessels to various stimuli. Chinen et al. demonstrated
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impaired endothelium-dependent vasodilatation in isolated aortic vessels of obese rats

using wire myography (Chinen et al., 2007). The author found that reduction in the

vasorelaxation response to Ach in obese Zucker rats was induced by FFAs and the

overproduction of ROS. It also observed that the vasorelaxation response to SNP was

identical in the two groups.

In humans. some studies have identified impaired endothelium-dependent

vasodilatation in isolated resistance arteries of obese patients. De Ciuceis et al. examined

endothelium-dependent vasodilatation in the isolated subcutaneous arteries of

normotensive and hypertensive obese patients compared to non-obese controls (De

Ciuceis et al., 2011). The study showed significant impairment in acetylcholine-

dependent relaxation in both normotensive obese and hypertensive obese patients

compared to controls. The authors also observed improvement in endothelial relaxation

in response to acetylcholine in a small number of obese patients one year after bariatric

surgery. Significant impairment in acetylcholine-induced relaxation has been observed in

isolated subcutaneous arteries from severely obese patients compared to lean subjects (P

< 0.01), with preserved endothelium-independent vasodilatation in response to SNP

(Grassi et al., 2010b). Impaired endothelial-dependent vasodilatation response has been

reported in other conditions such as diabetes mellitus. Rizzoni et al. observed impaired

vasorelaxation response of small isolated vessels to Ach and BK in normotensive and

hypertensive diabetic patients (Rizzoni et al., 200 1b).

In addition to microvascular disturbances, structural remodelling in small vessels

characterised by an increased media-to-lumen ratio has been observed in the obesity

milieu (Rizzoni et al., 2012). Vascular alterations such as thickening of the intima and
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media of the vessel wall are frequently found in obesity, promoting endothelial damage

and initiating atherosclerosis and cardiovascular disease (Georgescu et al., 2011). Grassi

et al. also found that media thickness and media-to-Iumen ratio were significantly greater

in the subcutaneous resistance arteries of obese patients compared with non-obese

controls (Grassi et al., 201Ob). The authors also observed that these structural alterations

were accompanied by changes in endothelial function. Moreover, in a study compared 14

lean healthy controls, 13 obese patients, and 12 participants with metabolic syndrome

(Grassi et al., 2010a). Small arteries isolated from abdominal subcutaneous fats were

investigated for structural and functional properties. The study found that media

thickness and media-to-Iumen ratio of the resistance arteries were significantly greater in

the metabolic syndrome and obese groups compared with controls. Impaired Ach-

induced endothelium-dependent relaxation was also observed in the obese and metabolic

syndrome groups but not in the control group.

1.9 Vasoconstrictors

Vasoconstriction can be defined as a narrowing of the internal diameter of blood

vessels as a result of contraction of their muscular layer, particularly small arterioles,

large arteries and veins. This process is important for controlling haemorrhage and acute

blood loss (Hynynen and Khalil, 2006). The muscular layer of all blood vessels from

heart to capillaries are involuntary controlled in response to various substances,

chemicals and hormones resulting in either vasoconstriction or vasodilatation. During

constriction of blood vessels, blood flow is restricted or decreased resulting to an

increase in vascular resistance (Groeneveld et al., 1988). Generalised vasoconstriction
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usually causes an increase in systemic blood pressure; however, vasoconstriction may

also occur in particular tissues leading to localised reduction in the blood flow. This

process can initiate tissue ischemia and necrosis (Black et al., 2(03). One proposed

mechanism of vasoconstriction is that increased concentration of calcium (Ca2+ ions)

within vascular smooth muscle cells (Brayden and Nelson, 1992).

1.9.1 Noradrenaline (Norepinephrine)

Noradrenaline (NA) is an endogenous potent vasoconstrictor catecholamine that

acts as a-adrenergic receptor agonist. It is the neurotransmitter of the sympathetic

nervous system. It stimulates alpha adrenoceptors that are found throughout the vascular

system resulting in contraction of the muscular layer within the vascular system,

therefore causing restriction of blood vessels and elevation of blood pressure (Teerlink et

al., 1994). NA is chemically similar to adrenaline; both are synthesized and secreted from

adrenal glands. It is well-recognised that NA promotes high K+- depolarisation which

activates Ca2+ influx and induces maintained contraction whereas epinephrine induces an

initial transient contraction through releases of Ca2+ from the vascular cells, followed by

activation of Ca2+ influx to induce sustained contractions (Bolton, 1979). In humans and

animals, it has been shown that infusions of NA can elevates arterial pressure and

peripheral resistance without any changes on the cardiac output (Lansing and Stevenson,

1958). The vascular endothelium when exposed to vasoconstrictor stimuli such as NA, it

can modulates and maintains the normal vascular tones and homeostasis through the

secretion of endothelium-derived relaxing factors such as NO. NA has been tested in
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several ex vivo studies to assess the vascular function in uremic CKD patients (Morris et

al., 2001), hypertensive (Rizzoni et al., 2oo1a, Amann et al., 2001, Black et al., 2003),

and obese patients (Georgescu et al., 2011). Moreover, it has been tested in vivo to

examine the vascular reactivity in haemodialysis patients (HD)(Morris et al., 2000).

Intravenous infusion of NA in haemodialysis patients during haemodialysis session can

induce vasoconstriction and increased in the total peripheral resistance that improve

haemodynamic instability (Nette et al., 2006).

1.9.2 Endothelins

Endothelin is an endogenous potent 21-amino-acid vasoconstrictor amino acid

peptide produced primarily in the endothelium, discovered in 1980s (Yanagisawa et al.,

1988). There are four subtypes of endothelins including; ET-I, ET-2, ET-3, and ET-4.

The main isoform is endothelin-l (ET -1) which released from the endothelial cells and

acts by stimulating endothelin receptors in the endothelial cells and vascular smooth

muscles (VSM) resulting to control of cellular growth, proliferation and regulation of

vascular function (Luscher and Barton, 2000). The vascular endothelin system can

control and modulate vascular tone, growth, and function. ET-1 may contribute to the

elevation of blood pressure that observed in both human and experimental models, seems

to be a risk factor in many cardiovascular diseases (Hynynen and Khalil, 2006).

However, the exact roles of endothelins and its receptors in the regulation and

pathogenesis of hypertension is still unclear. The proinflammatory effects of ET-l

induces vasoconstriction may promotes fibrosis and it has an effects on the VSM through
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stimulation of specific receptors on the VSM cells resulting in VSM proliferation. This

may suggest the involvement of ET-l in the process of thickening of vascular intima and

media in uremic patients and therefore development of cardiovascular disease (Amann et

al.,2(01).

1.9.3 Thromboxane AIl (U46619)

Thromboxane A2 (TXA2) is a vasoconstrictor and potent hypertensive agent that

potentiates platelets aggregation. Firstly discovered by Hamberg et al. (1975) as an

eicosanoid that synthesized in platelets from prostaglandin H2 (archidonic acid

derivatives) through thromboxane-A synthase enzyme (Hamberg et al., 1975). The extent

of TXA2 induced alteration in the microcirculation is basically dependent on the

endothelial function. Endothelial damage such as endothelial calcification or

atherosclerosis may associated with a reduction in TXA2 inhibitors and thus promotes

platelet activation and adhesion at the site of endothelial injury, which ends by thrombus

formation (Schror, 1990). For that reason, in myocardial ischemia, the major source of

TXA2 seems to be due to platelet activation. TXA2 was shown to cause contraction in

human coronary arteries by thrombin-stimulated platelets, this kind of response was

resulting from platelet-derived TX2 (Ellis et al., 1976). It has been tested in vivo to

induce coronary vasoconstriction which in turn resulting to sever myocardial ischemia

and sudden death in rabbits (Lefer et al., 1980).

Similarly, Terashita et al. 1978 confirmed these vasocontractile effects in isolated

small coronary microcirculation in ex vivo animal model (Terashita et al., 1978). The
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study observed that TXA2 can cause strong contraction in renal vascular beds in isolated

glomerulous of rats (Cavarape et al., 2003). TXA2 was believed as predisposing factor

that lead to coronary and cerebral vascular ischemia as a result of its potent

vasocontractile effects associated with platelets aggregation (Smith et al., 1980).

1.9.4 Angiotensin II

Angiotensin is an oligopeptide hormone that acts as an endocrine hormone

constricting blood vessels and involved in the regulation of rennin-angiotensin system.

Angiotensin II (AngII) when given in low doses, may raise blood pressure slowly and

progressively (Griffin et al., 1991). It is derived from the precursor angiotensinogen, a

globulin that synthesized in the liver. Angiotensin I converted to AngII through removal

of two C-terminal residues via the enzyme called angiotensin converting enzyme (ACE)

(Skurk et al., 2001). AngII has a prothrombotic effect through aggregation and adhesion

of platelets (Skurk et al., 2001, Gesualdo et al., 1999). Renin-angiotensin system can be

activated during cardiac and vascular damage such as atherosclerosis and endothelial

alteration (Gesualdo et al., 1999). By stimulation of angiotensin-l receptor, AnglIcan

initiates different actions including vasoconstriction, sodium and water retention,

facilitates adrenergic nerve activity and production of reactive oxygen species.

AngII also acts as a vascular growth factor promoting vascular smooth muscle

proliferation and atherogenesis (Kanaide et al., 2003). An in vitro testing of AngII on the

vascular smooth muscle has been shown to have a mitogenic (Lyall et al., 1988) and

trophic effects (Berk et al., 1989). It has not been demonstrated to have these effects in
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vivo, though it's capability to promote a new vessel formation (Fernandez et al., 1985). In

the animal model, it has been observed that infusion of AngII in low doses for 10 days

raises arterial pressure slowly and progressively, causing structural change in resistance

vessels and increased cardiac weight (Griffin et al., 1991). AngII has been shown to

induce other vascular changes such as vascular smooth muscle growth, vascular cell

adhesion, deposition of extracellular matrix proteins, cell migration and inflammation

(Intengan and Schiffrin, 2(01). AngII has a role in the vascular hypertrophy through

significantly increase vascular media thickness and media / lumen ratio (Griffin et al.,

1991). The contractile effect of AngII has been investigated in vivo in rats by intravenous

perfusion of 100 oM (10-7 M) of the drug which potentiates the contraction of resistant

arteries through endothelial production of endothelin (Dohi et al., 1992).

1.9.5 Vasopressin

Vasopressin is a vasoconstrictor peptide hormone (also known as anti-diuretic

hormone), synthesized in the hypothalamus and secreted in response to hypovolemia,

hypotension, hyperosmolarity and sympathetic stimulation (see Figure 10). The

vasopressin prohormone with its glycopeptides is transported through nerve axons to pars

nervosa of the posterior pituitary gland where it is stored as granules (Giovannucci and

Stuenkel, 1997). It has the following two main principle sites of action: the first place is

in the kidney, it stimulates vasopressin 2 receptor (V2 receptor) located on the renal

collecting tubules and regulates extracellular fluid volume by increase water permeability

and decrease urine formation, leading to increase blood volume, cardiac output and blood
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pressure (Maturi et al., 1991). The second action is on blood vessels, vasopressin can

initiate the process of vasoconstriction and elevation of arterial pressure through

stimulation of V1 receptor on the vascular smooth muscle .
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Figure 10 Vasopressin physiology
Adapted from (den Ouden and Meinders, 2005)

The normal physiological concentrations of vasopressin are less than its

vasocontractile range. However, in severe hypovolemic shock or hypotension, the

production of vasopressin is increased resulting to compensatory increase in systemic

vascular resistance (den Ouden and Meinders, 2005). Vasopressin is a contractile agent

that increases systemic vascular resistance and causes an elevation in arterial blood

pressure. It has also been shown that infusion of low-dose vasopressin can promote renal,

cerebral and pulmonary vasodilatation mediated by endothelial release of nitric oxide

(Vanhoutte et al., 1984). Vasopressin has been tested to study vascular contraction in

isolated human cerebral arteries (de Aguilera et al., 1990). In this study human cerebral

medium size arteries (500 - 700 11m diameter) were isolated during autopsy of 15
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patients and cumulative concentration response curves for vasopressin were constructed

in arteries with endothelium and without endothelium (mechanically removed), the study

observed powerful constrictor effects of vasopressin on both groups through direct

stimulation of vasopressin-l receptor that located in the vascular smooth muscle.

1.10 Vasodilator agents

Vasodilatation is a mechanism that leads to relaxation of the smooth muscle of

blood vessels, either in the arteries, which results in decrease in systemic vascular

resistance or in veins, which leads to reduction in venous blood pressure (Shapira et al.,

1999). Some vasodilator agents, including arteriolar vasodilators, can be used in the

treatment of hypertension and heart failure, while venous vasodilators are effective in the

treatment of angina (Daly et al., 1984). Some vasodilator agents have functional ability to

dilate both arteries and veins. The vascular endothelium plays an important role in the

regulation of blood flow through mechanical control of vascular smooth muscle.

Common substances that mediate endothelium relaxation are nitric oxide (NO) and

prostaglandin 12 (prostacyc1in, PGI2), both of which are known as endothelium-derived

chemicals that exhibit a potent vasorelaxation (Tormakangas et al., 2006). The third

substance is endothelium-derived hyperpolarizing factor (EDHF) that mediates

hyperpolarization of smooth muscle cells through activation of potassium channels in

both smooth muscle and endothelial cells (Feletou and Vanhoutte, 1999). Arterial

pressure is also regulated by vasodilator substances such as bradykinin, acetylcholine,

mineral ions (potassium and magnesium), endogenous nitric oxide, carbon dioxide and

hydrogen gases.
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1.10.1 Bradykinin

Bradykinin (BK) is one of the most potent endogenous endothelium-dependent

vasodilator amino acid peptide that formed of nine amino acids. It causes vasodilatation,

increase vascular permeability and natriuresis (increase urinary sodium excretion)

causing reduction in blood pressure (Han et al., 2002). BK stimulates two types of BK

receptors including B1 receptor which expressed during tissue injury and inflammation

(Mclean et al., 2(00) and has a role in endothelial cells receptor pathway (Duchene et al.,

2007). The action of BK on B2 receptor is mainly associated with vasodilatation. It is

well recognized that BK stimulates endothelial cells resulting to release of different

vasorelaxant agents such as NO and EDHF (O'Kane et al., 1994). BK has been widely

investigated in many ex vivo studies of the vascular function (Rizzoni et al., 200 1b,

Hadoke et al.• 2000. Lang et al., 2(07). Moreover. it has been demonstrated that BK-

induced relaxation of isolated human coronary artery was principally endothelium

dependent (Forstermann et al., 1988. Okamura et al., 1989). Some studies showed that

BK stimulates the release of endothelium-derived nitric oxide (Forstermann et al., 1988)

and hyperpolarizing factor (Nakashima et al.• 1993). BK has also been tested in vivo as a

potent vasodilator in human forearm resistance vessels, resulting to vasorelaxation via

hyperpolarization of the vascular wall independent of NO (Honing et al., 2000).

1.10.2 Acetylcholine (Ach)

Ach is a neurotransmitter chemical compound that stimulates both peripheral and

central nervous system. Ach is primarily synthesized from their precursor compounds
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choline and acetate in neurons through the enzyme choline acetyltransferase (Blusztajn et

al., 1987). Ach acts to stimulate two main types of receptors including nicotinic receptors

which located in the muscles, central nervous system and autonomic ganglia. This type

of receptor is stimulated by both nicotine and Ach to promote sodium, potassium and

chloride permeability (Jones, 2005). The second type is muscarinic receptors, these

located in different tissue and organs in the body resulting to various biological

functions. Stimulation of Ach to muascarinic receptors in blood vessels and heart can

results to decrease cardiac contraction and cardiac output. Ach stimulates endothelium-

dependent vasodilation in most of isolated mammalian arteries (Vanhoutte and Miller,

1985). This relaxation is mediated by activation of muscarinic receptors on the

endothelial cells (Furchgott and Zawadzki, 1980), resulting to increase production of

cyclic guanosine monophosphate (cGMP). Endothelial cells that exposed to Ach

stimulation can produce various diffusible substances known as endothelium-derived

relaxants. Early studies have proposed that adenosine and adenosine monophosphate are

endothelium-dependent relaxant factors, however many substances released from the

endothelium in response to Ach promotes the vasorelaxation mechanism, these factors

are known as endothelium-derived hyperpolarizing factors (EDHF) (Furchgott and

Zawadzki, 1980).

1.10.3 Sodium nitroprusside (SNP)

SNP is a complex chemical compound that has a potent endothelium-independent

vasorelaxation effect. It was first prepared and investigated in the middle of nineteenth
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century (Lefebvre, 1995). The hypotensive action of SNP was established first in 1929. It

has been given intravenously in severe and acute hypertensive emergencies and during

surgical procedures to control blood pressure. It is also an effective vasodilator agent in

congestive heart failure (Subramanyam et al., 1982). SNP breaks down in the blood and

releases NO which activates the guanylate cyclase in the vascular smooth muscle and

enhances the production of intracellular (cGMP) which in tum promotes the process of

smooth muscle relaxation and therefore vasodilation (Grossi and D'Angelo, 2005). It has

been frequently used to test endothelium-independent vasodilation in many ex vivo

(Morris et al., 2001, James et al., 2006, Rizzoni et al., 2006, Thuraisingham and Raine,

1999) and in vivo studies (Morris et al., 2000, Hand et al., 1998, Annuk et al., 2001) in

humans and animals.

1.11 Aims ofthe thesis

Alterations in the microcirculatory structure and function may be considered an

important mechanism of organ damage. This project has been planned to test the

following hypothesis:

Uremia and obesity induces alteration in the vascular function through variable

enhancement in the contractile responses of isolated different-sized arteries of HD and

obese patients respectively in response to various vasoconstrictors, and impaired

endothelium-dependent vasodilatation with preserved endothelium-independent

vasodilatation. This alteration may progress to development of major cardiovascular

consequences in both risk groups.
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Ex vivo assessment of vascular function in uremic and obese patients is not a new

technique and has been carried-out in few studies. However, most of previous studies

were focused on investigating small-sized arteries in response to a limited suit of

vasoactive agents. This study is novel in that it is designed to investigate the vascular

function in different-sized arteries isolated from subcutaneous fats of a homogenous

uremic group of patients who purely on HD and obese patients underwent bariatric

surgery with comparison to non-uremic non obese control groups. Since pulse wave

velocity (PWV) as measures of arterial stiffness is correlated with increased risk of

cardiovascular disease in both risk groups, we hypothesised presence of a relationship

between elevated PWV and changes in the ex vivo vascular function. Therefore to test

this hypothesis the following aims will be addressed:

Firstly, to investigate the vascular function in isolated different-sized arteries

obtained from subcutaneous fats of HO patients using wire myography, to establish

whether uremic HO patients show enhanced vasocontractility and impaired endothelial-

dependent vasodilation. In addition, to assess how that ex vivo intrinsic function

correlates to in vivo assessments of cardiovascular status. The results of these aims are

presented in chapter 3.

Secondly, this study also aimed to assess an arterial function in isolated different-

sized arterial segments obtained from subcutaneous fat of obese patients undergoing

bariatric surgery. This was to investigate the vascular reactivity in obese patients through

measurement of their responses to different vasoconstrictors and vasodilators. The study

also addressed changes that might underlie altered vascular responses associated with

obesity and following surgery (decrease in weight). This work is presented in chapter 4.
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Chapter 2: Methodology

2.1 Ethical approval
The study recruited haemodialysis (HD) patients for subcutaneous fat samples,

entering them in multi-centre randomised controlled cross-sectional trials. The recruited

patients were all males and females willing and able to provide consent, age ~ 16 years

old, all within the 90 days of having started dialysis at least 03 times a week. They will

be recruited from both main hospital and satellite dialysis units of five centres (Derby

Hospitals NHS Foundation Trust, University Hospitals of North Staffordshire NHS Trust

at Stoke, University Hospitals of Leicester NHS Trust, Heart of England NHS

Foundation Trust and University Hospital Birmingham NHS Foundation Trust in

Birmingham. Obese patients involved in the observational study "Improvement of Renal

Disease and Cardiovascular Function in Patients Undergoing Bariatric Surgery" were

recruited for subcutaneous fat samples. This study was conducted according to the

standards of Good Clinical Practice Guideline, Research Ethics Committee regulations,

Trust and Research Office policies and procedures. All protocols were approved and

granted by the Derbyshire Research Ethics Committee and the local NHS Research &

Development department to allow for the collection of subcutaneous fat biopsy samples

from HD patients, obese patients, and normal controls (non-HD, non-obese patients).

All participants were provided with an information sheet describing their biopsy

procedure and with sufficient information for subjects to make an informed decision

about their participation in the study. Subjects signed a consent form to indicate that they
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were giving their valid consent to participate. Few and minimal risks to the subjects were

associated with the biopsy technique.

2.2 Human subcutaneous fat samples

2.2.1 Background

The majority of subcutaneous fat biopsies that have been previously studied to

examine vascular function by myography were obtained from either a patient's gluteal

region or an anterior abdominal wall, and they were obtained under local anaesthesia

using 3-5 ml of 1% or 2% lignocain hydrochloride (Rizzoni et al., 2003, Aalkjaer et al.,

1987, De Ciuceis et al., 2(07). In these studies, the biopsy size varied from 1-3 cm long,

0.5-1 em wide and 0.5-1.5 em deep. These biopsies were taken through a standard skin

biopsy technique using a horizontal (1-2 em-long) incision of the skin in the upper

external gluteal quadrant or lateral abdominal wall. Many ex vivo studies have used this

technique to obtain fat samples of 1 cm long, 0.5 cm wide and 0.5 cm deep from

superficial gluteal tissue (Joannides et al., 2006, Wang et al., 2000, Wang et al., 2003,

Intengan et al., 1999). In the present study, human subcutaneous fat biopsies were

obtained from the following sources: haemodialysis patients (to measure ex vivo vascular

function in haemodialysis patients, and to establish the effects of uraemia on vascular

function); obese patients (to investigate the vascular reactivity in obese patients, and to

study changes in the vascular response that might occur following bariatric surgery); and

from non-haemodialysis, non-obese control patients (to compare them with the

haemodialysis and obese patient samples).
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2.2.2 Human haemodialysis fat samples

The present study involved HD patients in a multi-centre, randomised controlled

cross-sectional trials ''The effects of cooling a dialysate on systolic dysfunction in

Haemodialysis patients". This study is conducted by our research team to investigate

whether or not cooling the dialysate fluid will reduce the degree of cardiac systolic

dysfunction and the incidence of cerebral ischemia. In this study, patients were randomly

given either standard temperature dialysis or individualised cooled dialysis within 90

days of starting HO. The recruited patients were included males and females aged ::::16

years old having HO treatment at least three times per week. Patients with heart failure

grad IV and cardiac transplant recipients were excluded. Consenting patients underwent

two visits: a baseline assessment visit and a follow-up visit after one year. Investigations

that were carried out in each visit are illustrated in (Figure 11). In each visit (that taken

on the non-HD session day), all patients had cardiac and brain MRI at Nuffield Hospital /

Derby. Thereafter, each patient was transferred to the study area at Graduate Entry

Medical School, University of Nottingham, Royal Derby Hospital/Department of Renal

Unit for fat sampling.
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Figure 11 Summary of cooling study including the time of fat sampling.

All subcutaneous fat biopsies were performed by trained renal researchers who

conducted the cooling study using local anaesthetic (1% lignocaine, 2-3 ml). A small (1-

2 em long) right or left lower lateral abdominal single transverse incision was made
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under full aseptic technique. The subcutaneous adipose tissue was then dissected

carefully and separated from the adherent skin using a scalpel. Using a forceps, a piece of

fat was held up gently and, using surgical scissors, a piece of subcutaneous fat tissue was

taken (in the majority of samples the piece of fat was small diamond in shape with nearly

1.5cm long, 1 cm wide and 1 cm deep).

Following cleaning and cessation of any small bleeding from the site of the

operation, the wound was closed under full aseptic technique using 2-3 wire sutures.

Suture removal occurred during the normal healing time. which was usually less than two

weeks. In our patients, the majority of samples were straightforward, taken without

complications. However. two patients developed prolonged bleeding that was relieved by

prolonged pressure on the site of operation.

All samples were immediately placed in chilled physiological salt solution (PSS)

and transferred to the clinical sciences laboratory department for dissection and mounting

of vessels to the myography (see myography techniques, section 2.4) on the same day of

biopsy.

2.2.3 Human obese fat samples

Subcutaneous fat samples were obtained from patients undergoing bariatric

surgery. This was part of a prospective observational study "Improvement of Renal

Disease and Cardiovascular Function in Patients Undergoing Bariatric Surgery,

observational single centre pilot study". The study was designed to investigate the effects

of obesity on vascular function, renal function and cardiovascular function before and

after surgery. All non-diabetic, non-cirrhotic obese patients with age of 18 or over were

76



invited to participate in the study. Each patient was assessed at four weeks before surgery

and then again at three and six months post-surgery (details of patient's assessment in

this study are described in Figure 12). Samples of subcutaneous fat tissue were obtained

at zero months (baseline samples) and at six months post-surgery. The baseline

subcutaneous fat samples were approximately 2cm long, 1.5 cm wide and 1.5 cm deep

was taken at the time of operation using laparoscopic port. The second subcutaneous fat

samples were obtained at six months following bariatric surgery using extra lower

abdominal incision (as described in HD fat samples). Once harvested, the biopsy was

immediately transferred in a container with chilled PSS to the laboratory sciences

department for dissection and mounting on the same day of the biopsy (as described in

section 2.4.3).

2.2.4 Control fat samples

Normal control samples were provided from appropriately consented patients

(non-obese non-haemodialysis patients) who underwent either elective laparoscopic or

abdominal surgery (elective hernia repair). All information about the size of fat biopsy

that must be obtained to get enough sample size was provided to the surgeon who

responsible to take the biopsy. Most of the samples that harvested from these patients

were approximately 2cm long, 1.5 cm wide and 1.5 cm deep). Following harvesting,

samples were immediately transferred in cold PSS to the laboratory sciences to be

dissected and experimented on the day of biopsy as described before.
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• Padents Identified from referral
I.ttera and Information sheet
sent with explanatory letter

Inclusion criteria:
Male or female. aged ~18 years
Undergoing barlatrlc surgery
Willing to provide consent
Exclusion criteria:
Diagnosis of diabetes
Liver cirrhosis
Chronic Kidney Disease stage 5
Unable to stop ACEUARB
Mental incapacity
Inability to understand English

Patients recruited and
consented (separate consent
for fat samplIng)

• Fasting bloods
• 24 hr urine collection
• lohexol clearance
• Cardiovascular assessment
• Body assessment

Surgery (pIU. fat
lampl'", If toftsented)

• Fasting bloods
·24 hr urine collection
- lohexol clearance
• Cardiovascular assessment
• Body assessment

Figure 12Bariatric study design and timeline.
* Angiotensin Converting Enzyme inhibitors (ACE) and Angiotensin Receptor Blockers (ARB).
(The figure Adapted from bariatric study protocol).

• Fasting bloods
• 24 hr urine collection
• lohexol clearance
• Cardiovascular assessment
• Body assessment
• Fat sampling (If consented)
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2.3 Materials

2.3.1 Physiologic salt solutions

Two types of solution were made to conduct each experiment. These including;

Physiologic Salt Solution (PSS), which is a solution that intended to act as a medium for

maintaining live tissue and blood vessels providing some buffering to maintain the pH of

the solution. It is composed of different salts with different concentrations (Table 5).

Sodium chloride (NaCL). potassium chloride (KCL). calcium chloride (CaCL), sodium

bicarbonate (NaHC03), calcium dehydrate (CaClz,2H20), Dsglucose, and EDTA were

purchased from Sigma-Aldrich (USA), while magnesium sulphate (MgS04.7h20) and

potassium dihydrogen sulphate (KH2P04) were purchased from Fisher Scientific

Chemicals (UK) and BDH Laboratory Suppliers (UK) respectively. The second type of

physiologic solution is Potassium Physiologic Salt Solution (KPSS), which is the same as

PSS, but with potassium chloride concentration (124 mmollL) substituted for sodium

chloride (Table 5.1). KPSS is used to assess the integrity of arteries by their ability to

contract by at least 5 mN (0.5g tension) to a high KPSS buffer. It has been determinant

that high K+- depolarization activates Ca 2+ influx to induce maintained contraction.

Table (5 and 5.1) illustrates the molecular weight and concentration of different

chemicals that make both PSS and KPSS that have been used in all experiments. Salts

were dissolved completely in double distilled water before adding the calcium chloride.

The mixture was bubbled in 5% CO2 in O2 for 20 minutes and then the calcium chloride

was added to the mixture. The solution was bubbled again for a further 10 minutes until
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the pH of the solution reached 7.4. Both solutions were made on the day before the

biopsy conduction and stored in cold room (-4c).

Table 5 The composition of PSS.

Chemical Molecular weight Concentration (mmol/L) Amount g/L

Sodium chloride 58.44 119 6.954

(NaCL)
Potassium chloride 74.56 4.7 0.35

(KCL)
2.5 0.368

Calcium dehydrate 147.02

(CaCL2.2H20)
5.5 1.091

Mesium sulphate 246.68

(MgSO". 7H20)
25 2.1

Sodium bicarbonate 84.01

(NaHCO\) 1.18 0.161
Potassium phosphate 136.1

(KH2PO,,) 372.24 0.027 0.010
EDT A
D-Glucose 198.77 1.17 0.289
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Table 5.1 The composition of KPSS.

Chemical Molecular weight Concentration (mmol/L) Amount g/L

Sodium chloride 58.44 0 0

(NaCL)
Potassium chloride 74.56 123.7 9.223

(KCL)
0.368Calcium dehydrate 147.02 2.5

(CaCL2.2H20)
1.17 0.289

Mesium sulphate 246.68

(MgSO.. 7H20)
84.01 25 2.1

Sodium bicarbonate
(NaHCO,)

136.1 l.18 0.161
Potassium phosphate
(KH2PO.) 372.24 0.027 0.010
EDTA
D-Glucose 198.77 5.5 l.091

2.3.2 Vasocontractile agents

Vasoconstrictor agents that have been investigated in this project included; L-

Noradrenalin hydrochloride (NA), endothelin-l (ET-I), a thromboxane All mimetic

(U46619), angiotensin II (AngII) and vasopressin. L-Noradrenalin hydrochloride (lOO

mg) and vasopressin acetate salt (Irng) were purchased from Sigma-Aldrich (UK), while

ET-I, a human porcine (lOO ug), U46619, (lmg) and AngII (5mg) were purchased from

Tocris Bioscience (USA). These drugs have been tested to examine vascular function in

resistant arteries in ex vivo and in vivo studies as described in introduction chapter. 1 mg

of L-noradrenalinhydrochloridepowder (M. Wt = 205.64)was dissolved in 486.3 ~L of distilled
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water and stock concentration of 10-2 M (10 mM) of the solution was prepared. ET-1 10-4M

(100 J.1M)was made and stored as stock concentration by adding ET-1 human porcine

100 ug (M. Wt = 2492) to 401.3 ilL distilled water. Stock concentration of U46619 10-2 M

(10 mM) was made by dissolve 1 mg of U46619 (M. Wt = 350.5) in 285.3 J.1Lof methyl

acetate. AngII (M. Wt = 1046.2) was purchased as 5 mg powder and the drug was

dissolved in 477.9 ul, of distilled water to make 10-2 M (10 mM) stock concentration.

Vasopressin 10-3 M (1 mM) stock concentration was prepared by dissolve 1 mg of

vasopressin acetate salt (M. Wt = 1084.2) in 922.3 fJLdistilled water. Fresh serial dilutions

from stock concentration of these vasocontractile agents were prepared on the same day

of experiment.

2.3.3 Vasodilator agents

Vasodilators that have been examined in this project were include; acetylcholine

(Ach), sodium nitroprusside (SNP) and bradykinin (BK). Ach and SNP (25 g bottles)

were purchased from Sigma-Aldrich (UK), while BK (5 mg) was purchased from Tocris

Bioscience (USA). These agents have been used to investigate vascular function in ex

vivo and in vivo studies (see introduction chapter). Ach 10-2 M (10 mM) stock

concentration was made by dissolve 1 mg of Ach powder (M. Wt = 181.66) in 550.4 fJL

distilled water. SNP 10-2 M (10 mM) stock concentration was made by dissolve 1 mg of

SNP dehydrate solid powder (M. Wt = 298.0) in 335.5 ul,distilled water. The Ach and SNP

stock concentrations and fresh serial dilutions were prepared on the same day of

experiment. BK 10-2 M (10 mM) was made and stored as stock concentration by
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dissolve 5 mg of BK white solid powder (M. Wt = 1060.2) in 471.6 J.1Ldistilled water. Fresh

serial dilutions of BK were prepared on the same day of biopsy. Details of different

vasocontractile agents and their stock concentration, dissolves and concentration curves

are described in Table 6.

Table 6 Vasoactive drug concentrations.

Drug Stock Concentration Dissolved in Cumulative Concentration

Noradrenaline 10.2 M(10 mM) Distilled water 100pM-IOO JIM

Endothelin-1 10'" M(100 JIM) Distilled water 1 pM -1 JIM

U466l9 10.2 M (10 mM) Methyl acetate 1 pM -1 J.1M
~

Angiotensin n 10'· M(10 mM) Distilled water 1 pM -1 JIM

Vasopressin 10·3M(1 mM) Distilled water 1pM -1 JIM
.~

Bradykinin (BK) 10· M(lOmM) Distilled water 100 pM-lOO JIM

Acetylcholine (Ach) 10.2 M(10 mM) Distilled water 100 pM-lOO JIM
~

Sodium nitroprusside (SNP) 10'· M(10 mM) Distilled water 100pM-lOO JIM

Abbreviaticas are: M, molar; m~1,millimolar; JI~I, micromolar; pM, piccmolar

2.4 Wire myography

2.4.1 Background

Wire myography is an in vitro technique that is used to investigate the functional

responses and vascular reactivity of isolated low-resistance vessels. This technique

allows an in vitro measurement of both active and passive properties of small arteries

(with internal diameter 60 to 300 J.1m) under isometric conditions as described before
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(Mulvany and Halpern, 1977). In the present study we used multi-chamber wire

myography. This model of myography was intended for the study of four isolated vessel

ring preparations with diameters ranging from 60 to 1000 urn, which were assessed

simultaneously, arteries with diameter larger than 1000 urn were mounted using hocks.

Each round chamber is stainless steel (for easy cleaning) and it has separate controlled

gas inflow and suction conduits (Figure 13). The sensitive force transducer permits

measurements of isometric muscle tension, while the micrometer site allows the setting

of vessel diameter. This system is automatically heated to a user-defmed set temperature.

Figure 13 Multi chamber wire myograph system-620 M.

The apparatus composed of; two stainless steel jaws, micrometer, force

transducer, ports for oxygenation and solution removal and two mounting wires (30 urn

to 40 urn diameters) (Figure 14). In this system, vessel segments are threaded on two

small wires (40 urn) as a ring preparation. Each wire is secured to each of the jaws, one

of the wires is fastened to a force transducer and the other is attached to micrometer for

adjustment of vessel circumference and the application of tension (Figure 15).
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This arrangement can helps to measure the following parameters; internal circumference

of the vessel, wall tension, isometric force responses to chemical drugs (agonists and

antagonists), effective pressure, and media to lumen ratio (MIL) of blood vessels in

normalized condition.(Rizzoni et al., 2003).

Figure 14 Myography jaws.

Figure 15 Vessel segments are threaded on 2 stainless steel wires in the myography.
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2.4.2 Myography calibration

The myography was calibrated before each experiment. Standard operating

procedures, settings and the protocol for myography calibration are attached in the

appendix 1 (chapter 6).

2.4.3 Myography

2.4.3.1 Dissection procedure

After the biopsy was obtained following surgical procedure, the sample was

immediately placed in cold PSS (4 CO) and transferred to the laboratory. It was placed

onto a dissection tray (about 9 cm in diameter) under the microscope. The dissection tray

contains ice-cold PSS. Under a dissecting microscope, manipulation and dissection of the

vessels was carefully and gently carried out using dissection scissors and Dumont forceps

to search for arteries. Some features can helps to differentiate between arteries and vein

such as arterial wall usually thicker than venous wall, the branch point of arteries are V-

shaped compared to U- shaped in veins (figure 16), and the lumen of the vein usually

collapsed.
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Vein U-shaped

V-shapedArtery

Figure 16 Differences between the artery and the vein

During the dissection procedure, adipose tissue was dissected away to expose the

artery and vein to identify them, then the vein was dissected away from the artery using

scissors to cut the connective and adipose tissue between them. The fine membrane

between the artery and adipose tissue was carefully cut to avoid any damage that might

happen to the artery, and then the artery was cut away from the tissue and placed in a

fresh beaker of iced PSS. The excess sample was disposed in a container tube to be

wasted in disposable bin and not be used for further investigation. The arteries were

taken from the beaker and placed back onto a clean dissecting petri dish with fresh PSS.

The arteries were further cleaned of all excess tissue using scissors and forceps. Once the

artery was cleaned, it was cut into small segments (2-3 mm). Arterial segments were

placed into a clean beaker with fresh PSS to be ready for mounting. The duration of

vessel dissection, cleaning and cutting into segments were ranged from 1-3 hr depends on
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the size and vasculature of subcutaneous fat samples. Some samples especially from HD

and controls patients were small containing few and small superficial branches that been

difficult to dissect and mount.

2.4.3.2 Mounting procedure

Following dissection and cleaning procedure, vessels are ready for mounting as a

ring preparation on the myography (see Figure 17). The equipment that required for

mounting procedure includes: a stereomicroscope, fibre light source, two pairs of fine

forceps, and pair of fine scissors, small screwdriver and wires.

Comec1edlo
micrometer

Connected ID force
tIalsdueer

Figure 17 Diagram of small arterial segments mounted in wire myography
The figure is adapted from (Wang et aI., 2000).
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Myography chambers were filled with cold PSS (about 3 ml), and arteries were

mounted one by one under the microscope with the micrometer support to my left, and

partly both jaws were closes. The first wire was hold with forceps and placed between

the two heads of the jaws, when the wire was in position, both jaws were tightening

together. The bottom end of the first wire was fixed to the bottom left screw. The vessel

segment to be investigated was gently hold and placed close to the proximal end of the

wire (I had hold the arteries using the adherent tissue of the vessel by the tips of forceps,

then the artery was mounted onto the wire. Both jaws now were released (jaws were

opened) and the segment was pulled gently towards the space between both jaws. The

top end of the wire was fixed to the top left screw. The second wire was carefully guided

into the lumen of the vessel along the first wire. Both jaws were adjusted closely

together, and carefully the top end of the second wire was fixed under the top right screw

head (at this stage 1 have looked at the vessel to be not stretched or moved in the

longitudinal direction). The lower end of the second wire was fixed under the bottom

right screw head. Both wires now were parallel, straight and tight. Once mounted, the

myography tail is connected to the interface, with all vessels kept at 37°C in PSS and

aerated with 5%C02 and 95%02.

2.4.3.3 Normalization

The normalization of microvessels has been investigated by Professor Michael

Mulvany who determined that the optimal pre-tension conditions (internal

circumference) for microvascular studies is best defined as the size when the vessel is
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fully relaxed and under a trans-mural pressure of 100 mmHg (Mulvany and Halpern,

1977). It is a process during which the artery will be measured and stretched to an

optimum tension (0.9 Ll00). The aim of the normalization procedure is to determine the

internal circumference at which the vessel would be relaxed and under a transmural

pressure of 100 mmHg. A standard normalization procedure can be achieved after three

to four stretches of arteries by applying effective transmural pressure exceeding 13.3kpa

(100 mmHg) (Hadoke et al., 2000, Schiffrin et al., 2002), then the internal circumference

of the vessel will be calculated (Mulvany and Halpern, 1977). In the present study, we

aimed to dissect different-sized subcutaneous arteries which categorized into small

subcutaneous arteries with diameter < 600 J..1mand large subcutaneous-sized arteries with

diameter > 600 J..1m. This classification based on the literature, where some studies have

classify small arteries with diameters < 600 J..1m(Paisley et al., 2009, Rizzoni et al., 2012)

and the others categorized large arteries with ID > 600 J..1m(Blacher et al., 2002, Hadoke

et al., 2000, Lu and Kassab, 2011). Before the experiment has been conducted, the

myography was calibrated one day before the experiment or being calibrated recently

during two weeks before the experiment. During the normalization of vessels, all

myography jaws were closed together and the normalization process was started by

applying the tension on the vessel (stretching of vessels) gradually using the adjusting

micrometer until the pressure of 13.3 KPa or more has obtained and the internal

circumference (lC) of the vessel was recorded by Lab Chart Program. The internal

diameter of the arteries (ID) was then calculated by dividing the internal circumference

by n as following:

ID (J..1m)= IC In (3.12)
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2.5 General protocol of experiment

Following mounting, and warming process, resistance vessels were continuously

bubbled with 5% C02 and 95% 02 for about 30 minutes, and then arteries were

subjected to standard normalization process. The integrity of arteries was tested by their

ability to contract by at least 5 mN (0.5g) tensions either to a high potassium physiologic

buffer KPSS or contract to a thromboxane A2 mimetic (U46619). Following

normalization procedure, arteries were first exposed twice to a high KPSS solution. After

KPSS stimulation in each conducted segments, arteries were washed-out three times

(every 2-3 minutes) with PSS solution to allow arteries relaxed back to the baseline. All

arteries were then contracted by stimulating them using 50 nmol/L (5 x 10-8 molar)

thromboxan A2(U46619) with addition of 10 nmol/L U46619 every 3-5 minutes for each

artery until the plateau contraction phase had been reached. Once the fixed contraction

has reached, then 10 IlM of bradykinin (endogenous vasorelaxant) was added to assess

whether the endothelium function / intact. Then all arteries were washed-out again three

times (every 2-3 minutes) with PSS until the base line have been reached. Vessels that

respond to contraction by at least (5 mN) to either KPSS or U46619 were completed the

cumulative concentration response curves for different vasoconstrictor agents. Whereas

those did not respond to both KPSS and U46619 were discarded.

2.5.1 Vasoconstrictor protocol

Once all arteries have been relaxed back following a wash out of vessels and re-

establish the base line (as described in the general protocol), cumulative-concentration
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response curves were constructed for the following vasoconstrictors; NA (10-10 mollL -

104 mollL), ET-l (10-12 mollL - 10-6mollL), U46619 (10-12 mollL - 10-6 mollL), AngII

(10-12 mollL - 10-6 mollL), and vasopressin (10-12 mollL - 10-6 mollL). In each

myography chamber, stimulation of each arterial segment with specific drug was starting

with the lowest concentration of the drug allowing 3-5 minutes per stimulation until the

highest concentration. The cumulative concentration of each drug is detailed in Table 6.

In each experiment, we dissected different-sized arteries (ranged from 6-12 segments

depends on the arteries available in each fat sample). Therefore, we could not test the

arterial segments that dissected from each patient to all vasoconstrictors. We planned that

the target number of arterial segments in each sized-arteries of HD and obese groups is 6,

while in control group is double of those of HD which is 12. However, we did not dissect

different-sized arteries from each patient (in all groups), the reason for that because few

numbers of samples were small in size and consists only of small arteries and capillaries.

2.5.2 Vasodilators protocol

Separate protocol was carried out for vasodilator drugs. Following a washout

period and re-establishment of the baseline (as described in the general protocol), arteries

was first contracted using a combination of (100 nmollL U46619 and 1 nmollL ET-1).

Once the peak steady contraction of arteries had reached, cumulative-concentration

response curves were constructed for different vasodilator drugs including BK, Ach, and

SNP. Stimulation of each artery with a specific drug was starting from the lowest

concentration of the drug to the highest concentration, allowing 3-5 minutes per
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stimulation (Table 6). The drug concentration that used for these vasodilators was started

from lOOpM (10-10 molar) to lOOJ.1M(10-4 molar).

Similarly, we could not test the arterial segments of each patient (in all groups) to

all vasodilators. For example, some patients were tested only to BK and SNP but not

Ach, since in some samples; there were no enough segments to test them to each of

vasoactive agent.

2.5.3 In vivo haemodynamic measurements

PWV and blood pressure were measured in a supine position after 10 minutes

rest. Brachial artery blood pressure was measured in the non-fistula arm using an

oscillometric device (Datex-Ohmeda, GE Healthcare, USA). Carotid-to-femoral arterial

PWV was measured using an oscillometric device (Vicorder, Skidmore Medical Ltd,

Bristol, UK) as previously described (Pucci et al., 2013). A carotid pressure cuff is

applied over the neck to detect the right carotid artery and a pressure cuff is placed

around the proximal right upper thigh to detect the femoral artery. The distance from the

suprasternal notch to the middle of the thigh cuff was measured and entered into a PC

running the Vicorder software. The cuffs are simultaneously inflated to a low pressure

40-60 mm Hg and signal from each cuff is analysed to derive arterial transit time. PWV

is calculated by the software by dividing arterial transit time by measured distance. The

mean of 2 measurements was recorded.
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2.6 Statistical methods

The statistical methodology varied depending on the individual analysis used. All

statistical analysis was undertook by the author using software package prism 5 for

windows (GraphPad Prism-5 software Inc, San Diego, USA) and SPSS V12 (SPSS Inc,

Chicago, USA). Some complex statistical analysis was advised by an independent

statistician employed by Nottingham University and by our colleagues conducting

cooling study. The power calculation is based on detecting a significant change in

increased vasocontractility in response to vasoconstrictors and / or decreased

vasorelaxation in response to endothelium-dependent vasodilators from the baseline. A

sample size would appear to be sufficient to detect a significant difference between the

groups. The sample size is also similar to the previous studies that using similar

technique (Morris et al., 2001, Luksha et al., 2011). However, not all the arterial

segments that dissected from the fat samples were included in the analysis, arteries those

did not respond to KPSS and I or U46619 were discarded.

Once each experiment has completed, increased in contraction for each drug stimulation

was recorded from the Lab Chart, then all data was transferred to the excel file. Increased

in milliNewtons (mN) from the base line for each agent in each artery (Rmax) was

calculated as following:

Rmax = contraction per stimulation (mN) - base line (mN)

However, the percentage relaxation from the preconstrictor state (Rmax) for each

vasodilator drug was calculated as following:

~ = preconstriction stable contraction (mN) - base line (mN)

R = relaxation per stimulation (mN)
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% relaxation = preconstriction stable contraction (mN) - R I ~ x lOO

All continuous variables were tested for normality using their histograms and

normality tests. Contractile responses were expressed as an increased contraction in

milliNewtons (mN) above the isometric baseline and related to vessel segment length

(mm), which described the developed wall tension (mN/mm). The maximum contractile

response (Rmax) for each agent in all groups were calculated and drug potency (EC50)

value (defined as the concentration of drug required to produce 50% of the maximum

response), while the response for vasodilators BK, Ach, and SNP was expressed as

maximum % relaxation from the preconstriction state. All data were expressed as mean

with standard error of the mean (mean ± SEM). The differences were tested at multiple

dose-response time points for all data. The comparison between HD and control groups,

obese and control groups was carried out using students Hest for unpaired observations

and the differences were considered significant when P < 0.05. PWV and blood pressure

data of each HD and obese patient were correlated with the response of each vessel size

to each vasoconstrictor and vasodilator drug. PWV data was expressed as mean ± SEM

and the analysis was undertaken using either SPSS V12 and / or GrapbPad Prism-5

software. The comparison of in vivo haemodynamic measurements of PWV and blood

pressure with ex vivo responses of all sized arteries to different stimuli was undertaken

using spearman's rho correlation coefficient. The correlation was considered significant

at *p = 0.05, and **p = 0.01 levels (2-tailed). Arterial segments that dissected from

obese patients at six month following bariatric surgery were experimented to the same

vasoactive agents that experimented in obese patients at baseline. Differences in the

arterial responses of obese patients before and after surgery were determined either by
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paired Hest or repeated measures of two-way analysis of variance (ANOVA) with

Bonferroni's post tests for multiple comparisons.
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Chapter 3
Results of Haemodialysis patients



Chapter 3: The effect of lID on vascular function in isolated

subcutaneous arteries.

3.1 Introduction

HO patients are characterised by a wide range of both structural and functional

abnormalities of the cardiovascular system. These include small vessel vascular structure

and function. There is strong emerging evidence that the HD procedure itself causes

significant systemic circulatory stress (Burton et al., 2009). This circulatory stress

interacts with complex haemodynamic factors causing perfusion anomalies that

accelerate end organ damage in a wide range of vulnerable vascular beds (McIntyre,

2010). Fixed structural abnormalities of the vascular tree develop during the lifetime of a

progressive CKD patient. These include coronary arterial calcification and other drivers

of reduced arterial compliance. These changes are the result of fixed vascular structural

change but importantly additional functional microvascular abnormalities are potentially

superimposed onto these processes (Sigrist and McIntyre, 2(08). These may be more

important in determining the propensity to multi organ based demand ischaemia.

It is unclear to what degree the observed abnormalities of microvascular function

are related to the uremic milieu and exposure of relatively normal vasculature to a variety

of functionally modifying factors, and to what degree there are intrinsic defects in pressor

response in these vessels. Vascular endothelium plays an important role in the regulation

of vascular function and tone through production and release of a wide range of

vasoactive substances including endothelin, nitric oxide (NO), and thromboxane A2

(Stankevicius et al., 2(03)
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Arterial hyperreactivity to some vasoconstrictors such as noreadrenalin (NA) and

endothelin-l (ET -1) has been shown in isolated subcutaneous arteries from uremic CKD

patients (Morris et al., 2(01). However recent studies observed similar contractile

response to NA and ET-l between the isolated arteries of ESRD (patients starting PD)

and controls (Luksha et al., 2012). In fact, there are no data available about the effect of

HO on the isolated arterial response to different vasoconstrictors.

Vascular endothelium plays a crucial role in the regulation and control of vascular

tone through release of various vasoactive substances. Vasorelaxation is mediated by the

release of endothelium-derived relaxants including nitric oxide (NO) and prostaglandin

12 (Stankevicius et al., 2003). Both substances are known as potent endothelium

vasodilators (Tormakangas et al., 2006). Vascular endothelium would seem a reasonable

target for different factors that ends by alterations in their function and structure.

Different mechanisms have been proposed to cause endothelial dysfunction in

HO patients, which is largely due to a defect in the endothelial NO bioavailability

(Baylis, 2008). Several uremia-associated factors (discussed in details in section 1.4.3)

including oxidative stress and reactive oxygen species (Hasdan et al., 2002, Ferraro et al.,

2003), homocysteine (Bostom and Culleton, 1999) and plasma ADMA (Vallance et al.,

1992) are found in high levels in the plasma of HO patients and may also contribute to

endothelial dysfunction. However, the exact underlying mechanisms involved remain

unclear. Endothelial dysfunction has been reported to occur in various stages of CKD

even in the early stages (Go et al., 2004). This may explain the accelerated rate of

cardiovascular diseases associated with renal impairment.
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In uremic patients, some in vivo and ex vivo studies have suggested that

functional alterations in blood vessels are primarily based on impaired NO bioavailability

resulting in impaired endothelium-dependent vasodilatation. Such defect has been

observed in other conditions, namely hypertension (Taddei and Salvetti, 2(02),

hyperlipidaemia (Warnholtz et al., 2(01) and diabetes (van Etten et al., 2002). Early in

vivo studies have demonstrated that NO-dependent flow-mediated vasodilation is

decreased in HD patients (van Guldener et aI., 1998, Holvoet et al., 1996). Such

impairment was also observed in peripheral vessels of uremic CKD (pre-dialysis and post

peritoneal dialysis (PD) patients) using forearm plethysmography (Morris et al., 2000,

Annuk et al., 2001).

Most of the limited number of initial ex vivo studies to date (Morris et aI., 200 1,

Luksha et al., 2011, Luksha et al., 2012), have examined small isolated arteries (using

myography) removed from uremic patients selected to be undergoing a surgical

procedure relating to their ongoing care needs (PO catheter insertion and renal transplant)

and challenged with a limited suite of vasoactive agents (comprising of NA, ET-I, Ach,

and SNP).

Some reports have shown that the HD procedure itself may effects on endothelial

function. Miyazaki et al. has demonstrated that a single haemodialysis session

significantly blunted endothelium-dependent vasodilatation measured by non-invasive

flow-mediated dilation (FMD) in the brachial artery (Miyazaki et al., 2000). Moreover,

the HO procedure can acutely impairs endothelial function assessed by FMD in

children's brachial artery (Lilien et al., 2005). The Lilien's study observed decreased in

FMO in HD children compared to healthy control children. It was also observed that HD
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induces further decreases in FMD when measured during an HD session. Therefore, it

remains unknown whether the HD per se causes endothelial dysfunction. However, the

underlying mechanism may be multifactorial.

Vascular remodelling and arterial stiffening in uremic patients have been

identified in epidemiological studies as an independent risk factors that contribute to

increased cardiovascular mortality in ESRD patients (Guerin et al., 2005, London, 2000).

Such vascular alterations (increased media-to-lumen ratio and vascular smooth muscle

hypertrophy), are frequently found in patients with hypertension (Mulvany, 2002),

diabetes mellitus (Hadoke et al., 2000), obesity (Rizzoni et al., 2012), and sever

renovascular hypertension (Brunner et al., 2(05). These vascular changes develop rapidly

in uremic CKD patients and believed to be responsible for increased incidence of

cardiovascular risks and all-cause mortality including ischemic heart disease, left

ventricular hypertrophy, congestive heart failure, and sudden death, particularly those

receiving dialysis therapy (Blacher et al., 2001, Guerin et al., 2008). In addition, vascular

calcification and associated cardiovascular dysfunction have been demonstrated in

patients with CKD stage 4, HD, and patients on PD with significant differences between

all groups (Sigrist et al., 2(06). This represents a fixed vascular structural change onto

which microvascular abnormalities are potentially superimposed (Sigrist and McIntyre,

2008).

Measurement of pulse wave velocity (PWV) is another helpful method to assess the

vascular function. Large vessel compliance (arterial stiffness), as measured by increased

PWV, is higher in patients on dialysis (and with non-dialysis dependant CKD) compared

with the general population (Shinohara et al., 2004). Increased PWV is associated with
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elevated cardiovascular morbidity and mortality risks in patients with CKD stage 5

(Blacher et al., 1999). A strong association has been observed between PWV and

abdominal aorta calcification in HO patients (Raggi and Bellasi, 2007). Arterial stiffness

was also demonstrated in HO patients undergoing transplantation compared with non-

dialysis controls (Chung et al., 2010). This change in compliance is partially due to

material alterations in the conduit arteries, however it is also blood pressure (BP) and

endothelial dysfunction related, and modifiable by long-term treatment with angiotensin

converting enzyme inhibitors (ACEIs) in CKD (Agata et al., 2004) and non-uremic

hypertensives (Ong et al., 2011). It remains uncertain whether the isolated large arteries

of uremic patients had similar relaxation response to small arteries.

3.2 Aims

In view of this background literature, we hypothesised that uremia may induces

microvascular dysfunction in HD patients characteristically through enhanced

vasocontractility and impaired endothelium-dependent vasodilatation of isolated

different-sized arteries of HO patients in response to various stimuli.

This defect was observed previously in isolated arteries (small sizes) obtained

from uremic CKD patients (non HO), investigating a limited suit of vasoactive stimuli.

Therefore, the current project is novel in that, firstly we extend this principle of

investigation to include different -sized arteries isolated from a homogenous uremic group

of patients who purely on HO and testing them to various stimuli including NA, ET-I,

U46619, AngII, vasopressin, BK, Ach, and SNP, with comparison to appropriate

matched non uremic control arteries, isolated from an identical sampling site, using wire
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myography. Secondly, to establish whether these vessels exhibit impaired endothelial-

dependent vasodilation, as previously suggested (Morris et al., 2001, Luksha et al., 2011,

Luksha et al., 2012). However, it remains uncertain whether the isolated large arteries of

HD patients had similar contractile and relaxation responses to small arteries. The study

also intended to characterize the relation between ex vivo vascular changes and in vivo

parameters, correlating ex vivo myography data with in vivo results of pulse wave

velocity (PWV) and blood pressure (BP) for each patient.

3.3 Materials and Methods

3.3.1 Participants and subcutaneous tissue biopsies

Subcutaneous fat samples were obtained from 11 HD patients (8 males; average

age 62.3±15.6), who were within the first 90 days of starting dialysis. Control fat samples

were obtained from 26 appropriately consented healthy volunteers (24 males; average

age 63.9±11.17) without documented renal disease, who underwent either elective

laparoscopic or abdominal surgery (elective hernia repair). The ethical approval was

sought and granted by the Derbyshire Research Ethics Committee and the local NHS

R&D department. Informed written consent was obtained in accordance with Good

Clinical Practice guidelines according to the principles expressed in the Declaration of

Helsinki. Different-sized arteries (small < 600 urn and large> 600 urn) were dissected

from each sample and mounted as a ring preparation on wire myography. Details on
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obtaining, transfer of fat samples for experimental study and the techniques of arterial

dissection and mounting on wire myography are described in section 2.4.3.

3.3.2 Preparation of vasoactive agents

Vasoconstrictors and vasodilators that have been used to investigate the vascular

function in isolated arteries of HD patients were include NA, ET-I, AngII, U46619,

vasopressin, BK, Ach, and SNP. Purchases and preparation of these agents and other

physiologic salt solutions are described in details in section 2.3.2 and 2.3.3

3.3.3 Protocol of experiment

Following mounting, arteries were kept for 15-30 minutes to be acclimatized and

then subjected to normalization process. The general protocol of experiment is detailed in

section 2.5. The internal diameter of arteries was calculated as described in section 2.4.3.

For vasoconstrictor protocol, following a wash out of vessels and re-establish the base

line, cumulative-concentration response curves were constructed for the following

vasoconstrictors; NA (10-10 mol/L - 10-4 mollL), ET-l (10-12 mollL - 10-6 mollL),

U46619 (10-12 mollL - 10-6mollL), AngII (10-12 mollL - 10-6mollL), and vasopressin

(10-12 mollL - 10-6mollL) starting with the lowest concentration of the drug allowing 3-5

minutes per stimulation as detailed in chapter 2 and Table 6.

For vasodilator protocol, separate protocol was carried out for vasodilators.

Following washout period and re-establishment of the baseline (as described before in

the general protocol), arteries were first contracted by stimulating them to a combination
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of (lOO nmol/L U46619 and 1 nmollL ET-I). Once the peak steady contraction had

reached, cumulative-concentration response curves for different vasodilators including;

bradykinin (BK), acetylcholine (Ach), and sodium nitroprusside (SNP) were constructed

starting with the lowest concentration of the drug to the highest concentration, which was

100 pM (10-10 molar) to 100 J.lM(104 molar) for all vasodilators allowing 3-5 minutes

per stimulation (as described in section 2.5.2 and Table 6). There were some differences

in the baseline relaxation starting points between both groups (but not significant),

however, we used a combination of low concentration of (100 nmollL U46619 and 1

nmollL ET-1) for preconstriction until got a steady contraction before starting

vasorelaxation response curves.

3.3.4 In vivo haemodynamic measurements

Carotid-to-femoral arterial PWV was measured using an oscillometric device

(Vicorder, Skidmore Medical Ltd, Bristol, UK). Brachial artery blood pressure was

measured in the non-fistula arm using an oscillometric device (Datex-Ohmeda, GE

Healthcare, USA). PWV is calculated by the software by dividing arterial transit time by

measured distance. The mean of 2 measurements was recorded (as described in section

2.5.3).

3.3.5 Statistical analysis

Contractile responses were expressed as an increased contraction in milliNewtons (mN)

above the isometric baseline. Details on Lab Chart data calculation are described in
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section 2.6. The maximum contractile response (Rmax)for each agent in all groups were

calculated and EC50 value (defined as the concentration of drug required to produce 50%

of the maximum response), while the response for vasodilators BK, Ach, and SNP was

expressed as maximum % of relaxation from the preconstriction state. All data were

expressed as mean with standard error of the mean (mean ± SEM) and the analysis was

using GraphPad Prism-5 software. All continuous variables were tested for normality

using their histograms and normality tests. The differences were tested at multiple dose-

response time points for all data The comparison between all groups was performed by

using students t-test and differences were considered significant when P < 0.05. We

correlated the PWV and blood pressure data of each patient with each vasoactive drug in

each vessel size. All PWV and blood pressure data was expressed as mean ± SEM.

Relationships between in vivo and ex vivo data was determined using spearman's rho

correlation coefficient, which considered significant at *p = 0.05, and **p = 0.01 levels

(2-tailed). All statistical analysis was undertaken using GraphPad Prism-S software and

SPSS VI2.
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Table 7 Characteristics or HD and control patients

Characteristic (~l) 1) &1l!~cl P value
= _6)

Age (Yean) 61.3:t 1~.6 53.9t11.1 0936

Sex M = S, F =3 1\1= 2'+, F = 2 ~s
Systollc BP (/IIi11 HgJ 1.+1.6± 10,6 13.t,~± 16,~ o -SI

Diastolic BP (11/11/ HgJ -s,-+ ± 10,~ SQ,6± 9,5 0891

)'1AP 11C.05:t81 9S,-± -,1 0356

Creatinine' (lima! L J ~A 8U ± 59 ~~

eGFR (ml-nsinL. -3 I!r'! ~A S-+,·U:5,2 ~S

B)'ll 2-,5:t18 26,2± 2.3 C." -+6

Smoker (n) 3 10 )J'S

IHD 2

CVA 0

Abbreviation: N, number of patients; eGFR, estimated glomerular filtration rate; BP, blood pressure; MAP,
main arterial pressure; BMI, body mass index; IHD. ischemic heart disease; CVA, cerebrovascular accident;
NA. non-annlicable: NS. non-significant.

3.4 Results

The background characteristics of HD patients and control group are described in

(Table 7). There was no difference in the important characteristics of HD and non-HD

patients other than uremic status Age and sex were similar between both groups, and
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there was no statistically significant difference in systolic and diastolic blood pressure

between HD and controls.

3.4.1 Vaseular size

The total number of all small vessels investigated per vasoactive agents was 48 in

HO (08 arteries were discarded) and 72 in control groups (11 arteries were discarded)

(Table 8), whereas in large arteries, it was 42 in HD (03 arteries were discarded) and 65

in controls (07 arteries were discarded) (Table 9). The diameter of small vessels in HD

patients was ranged between 192 urn - 580 urn, while in normal controls was between

220 urn - 575 urn, whereas the size of large vessels was (612 urn - 922 urn in HD and

610 urn - 886 urn in controls). In vessels investigated per vasocontractile agent. the

average internal diameter (ID) was similar between HD and control groups, it was 472.6

± 42.4 urn in HO (n = 30) versus 449.3 ± 78.7 urn in control (n = 45). P = 0.821.

Similarly, there was no significant difference in the size of large vessels between both

groups, it was 738.4 ± 96.2 urn (n = 27) versus 716.5 ± 88.6 urn (n = 40) in HD and

controls respectively. P = 0.869.

In vessels that investigated per vasodilator drugs, there was a similarity in the

vessel size between HO and controls. The average ID of all small arteries was 478 ± 81.2

urn in HO (n = 18), and 512.3 ± 44.7 urn in controls (n = 27), P = 0.691. While in large

arteries, the average ID was 761.5 ± 62.3 urn (n = 15) and 744.8 ±91.2 urn (n = 25) in

HO and controls respectively, P = 0.896.
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Table 8 The internal diameter of smaUarteries size in HD and controls
ADsmaD arteries size of the used experiments testing the effects of DD on all vasoactive
agents.

HD (n = 11) Control (n = 26) Pvalue

NoradrenalinNumber 6 10Le 436.6 :68.1 4013 : 65.1 0.728

Endothelin-l
Number 6 9Le 4253: 82.1 411.1 : 53.6 0.633

U4Number 6 9Le 381.1 ± 81.4 424.4 ± 78.1 0.716

Anmotensi IINumber 6 8Lo 458.8 ±292 435.5 ± 39.2 0.686

v~ressinN er 6 9Lo 472.3 ± 32.9 453.7 ±67.3 0 ..835

BradvkininNumber 6 9Le 5375±47.8 521.1± 46.6 0.817

Acetvlechohne
Number 6 9Le 482.6±44.6 504.2± 60.1 0.797

Sodium JUtnu,rossideNumber 6 9Le 474.8 ±41.8 519.4± 41.8 0.482

Abbreviation: n, number of patients; HD, haemodialysis; Number, is the number of small arteries used for
concentration-response curves to all vasoactive agents. Lo is the normalized internal diameter of arteries; U4,
thromboxane A2. Data are expressed mean ± SEM and the comparison is by t-test.
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Table 9 The internal diameter of large arteries size in HD and controls
AD smaD arteries size of the used experiments testing the effects of HD on all vasoactive
agents.

.o ______

lID In = III Control {n =261 Pvalue
oo ________ .·~_,,_·, .~-,~---.-~.--- ....•~,~~-~-

Noradrenaline
Number 6 9La 735.8 ± 78.3 683.8 ±42.2 0.532

Endothelin-I
Number 5 9La 770.4 ± 80.5 749.2 :1:92.6 0.871

U4
Number 6 8La 733.8 ± 84.6 702.1 ±42.8 0.724

Angiotensi n
Number 5 7La 676.8 :1:54.4 693.1 ±66.2 0.861

Vasopressin
Number 5 7La 724.1 ±68.1 681.1±57.5 0.635

Bradvkinin
Number 5 8La 722.6 ±63.8 715.2 :1:41.1 0.922

Acetvlecholine
Number 5 8La 785.1 ± 76.7 710.8 ± 55.9 0.447

Sodium nitruprosside
Number 5 9La 720.2 ± 77.7 729.1 ±79.5 0.944

Abbreviations: n, number of patients; HD, haemodialysis; Number, is the number of large arteries used for
concentration-response curves to all vasoactive agents. Lo is the normalized internal diameter of arteries; U4,
thromboxane A2. Data are expressed as mean ± SEM, and the comparison is by Hest.
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3.4.2 Vascular function

3.4.2.1 Effects of lID on the KPSS contractile response in different-sized vessels

The contractile response to KPSS in all size arteries (in vasoconstrictor and

vasodilator experiments) was measured. In all small-sized arteries, the difference in the

maximum KPSS contraction between both groups was not statistically significant. This

response was 9.1 ± 5.6 mN in HO (n = 48), and 6.9 ± 1.8 mN in controls (n = 72), P =
0.663. Similarly, there was no significant difference in the average of maximum KPSS

between both groups in all large arteries, it was 14.1 ± 4.2 mN in HD (n = 42), and 13.0

± 6.5 mN in controls (n = 63), P = 0.899. However, from the bar chart (Figure 17), we

observed that, largest diameter arteries had higher maximal contractile responses to

KPSS in each group.
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Smau alze arterlea
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KPSS contraction

Large alze artarlea
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KPSS contraction

Figure 18 The maximum KPSS response in different-sized vessels of HD and controls

Abbreviations:KPSS. Potassiumphysiologicsalt solution;HD. haemodialysis

3.4.2.2 Effects of lID on the contractile response of different-sized arteries to

different vasoconstrictors

In small vessels, results for the maximum contractile response of small arteries to

all vasocontractile agents (Rma.). and the potency of drug (ECso) are described in Table

10. The maximum contractile responses of small vessels (mN) to ET-I, U46619, AngII
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and vasopressin were greater in HD compared to controls, being highly significant in

U46619, AngII, and vasopressin (P < 0.0001 in each drug) as showed in Figures 19 C, D,

and E. In NA response curve, the contractile response was similar between the two

groups (Table 10 and Figure 19 A). Our results also showed that, the highest contractile

response in HD group was in response to vasopressin (15.1 mN ± 0.3), whereas in

controls was in response to U46619 (9.3 mN ± 0.3). The lowest contractile response in

HD group was in response to NA (5.7 mN ± 0.1), while in control group was in response

to AngII (4.8 mN ± 0.2). The potency of each vasocontractile agent (NA, ET-I, U4,

AngII and vasopressin) was similar between both groups (no significant difference in the

ECso between HD and controls in each type of drug (see Table 10 and Figure 19).

In large vessels, details for all vasoconstrictor results of large arteries in both

groups are showed in (Table 11 and Figure 20). Similarly, the contractile response to

different vasoconstrictors in large arteries was greater in HD than controls. This

contraction was highly significant in response to U46619, Ang II, and vasopressin as

showed in Figures 20 C, 0, and E. In NA and ET-I, the response was higher in HD

compared to controls with (P = 0.022 and P = 0.082 respectively). Unlike small arteries,

large arteries of HD patients require significantly less concentration of U46619 and

vasopressin than controls to give 50 % of maximum contraction (see Table II, and

Figures 20 C and E). From these response curves, we observed that the potency of NA,

End-I, and Ang II in large arteries was similar in both groups (no statistical difference

between the two groups). Moreover, we observed that the response of isolated large

vessels of HO patients to vasopressin was the highest in the group of vasoconstrictors

(16.8 mN ± 0.4), whereas in control group the highest vasocontraction was in response to
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U46619 (12.4 mN ± 0.4). The lowest contractile response in both groups was in response

to AngII (11.9 ± 0.3 mN in HD group and 6 ± 0.2 mN in controls).

Table 10 The maximum response of small arteries and Potency of aU vasoconstrictors in
HD and controls

R_ HD [n ss l l ) Control (n = 26)

Noradrenaline 5.7±0.1 mN 5.6±0.1 mN

Endothelin-l 11.1 ±0.2mN 8.9±0.6mN

U46619 14.1 ±0.3 mN 9.3 ±0.3 mN

Angiotensin IT 7.3±0.2mN 4.8±0.2mN

Vasopressin 15.1 ±0.3 mN 7.0±0.4mN

Pvalue

0.6875

0.0155

<0.0001

< 0.0001

<0.0001

ECso

Noradrenaline 7.7 ±0.1 8.2 ± 0.1

Endothelin-l 9.9±0.1 10.3 ± 0.1

U46619 8.3 ±O.O 8.3 ±0.1

Angiotensin IT 9.2±0.0 9.4 ±0.1

Vasopressin 10.5±0.1 10.1±0.2

0.085

0.051

0.951

0.316

0.224

Abbreviations; n. number of patients; R max. maximum response in mN; ECso' potency of drug
(expressed as the negative logarithm of the ECso); HD. haemodialysis; U46619, thromboxane A2.
Data are mean ± SEM. and comparison is by t-test.
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Table 11 The maximum response of large arteries and Potency to aU vasoconstrictors in HO
and controls

R_ lID (n e l l) Control (n = 26) Pvalue
.-...-.-- .•---.--.-.--.

Noradrenaline 13.1±0.3mN 11.1 ±0.5 mN 0.022

Endothelin-l 12.7fOJmN 1l.7fO.3 mN 0.082

U46619 16.0fO.4mN 12.4±0.4mN 0.0002

Angiotensin II 11.9±O.3 mN 6.0±0.2mN <0.0001

Vasopressin 16.8fO.4mN 11.3 fO.5 mN < 0.0001

ECso

Noradrenalin 7.4fO.3 7.7±0.1 0.091

Endothelin-1 9.4 fO.l 9.8 ±0.2 0.061

U46619 9.5 ±0.4 8.9 fOA 0.008

Angiotensin II 9.6 ±O.l 9.6±O.6 0.861

Vasopressin 10.3±O.1 9.3 fO.l 0.001

Abbreviations; n, number of patients; R max. maximum response in mN; ECso' potency of drug
(expressed as the negative logarithm of the ECso); HD. haemodialysis; U466l9. thromboxane A2.
Data are mean ± SEM. and comparison is by Hest.
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Figure 19 Concentration-response curves for vasoconstrictors in small vessels of HD and
controls
Data are expressed as mean ± SEM. NA (A), ET-l (B), U4 (thromboxaneA2) (C), AngII (D)
and vasopressin (E). The differences were tested at multiple dose-response time points.
Comparison is by students r-test, *p < 0.05, ••P< 0.001, ·"P < 0.0001.
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Large arteries
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Figure 20 Concentration-response curves for vasoconstrictors in large vessels of HO and
controls
Data are expressed as mean ± SEM. NA (A), ET-l (B), U4 (thromboxane A2). (C), AngII
(D) and vasopressin (E). The differences were tested at multiple dose-response time
points. Comparison is by students r-test, *p < 0.05, **p < 0.001, ***p < 0.0001.
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3.4.2.3 Effects of lID on the contractile response of ditTerent-sized arteries to

V8SOCOnstrictors-KPSS

The contractile response of small and large vessels to different vasoconstrictors

was also expressed as a percentage of maximum KPSS-induced contraction in an effort

to normalise the data. In HD patients the percentage maximum contractile response of

small arteries to all vasoconstrictors (NA. ET-I. U46619. AngII, and vasopressin) was

significantly higher compared to controls (Table 12). In both groups the highest % of

maximum contractile response of small vessels was in response to U46619 (144.3 ± 3.3

% KPSS in HD and 120.9 ± 3.1 % KPSS in controls), while the lowest % of contraction

was in response to AngII (78.9 ± 2.1 % KPSS in HD and 65.3 ± 2.1 % KPSS in controls).

However, the potency of all vasoconstrictors was similar in both groups.

In large vessels, the % of maximum KPSS-induced contraction to all

vasoconstrictors was significantly greater in HD group compared to controls (Table 13).

In HD and controls, the contractile response to vasopressin was the highest in the group

(135.8.0 ± 3. J % KPSS in HD, and 113.2 ± 3.7 % KPSS in controls, P < 0.05), whereas

the lowest % was in response to AngII (85.3 ± 2.5 % KPSS and 74.6 ± 1.9 % KPSS in

HD and controls respectively. P < 0.05). However. vasopressin and U46619 was less

potent in large arteries of control group compared to HD patients. The potency of

vasopressin was (9.3 ± 0.1 in control versus 10.2 ± 0.1 in HD. P < 0.(01). while in

U46619 was (8.9 ± 0.1 in controls versus 9.6 ± 0.1 in HD. P < 0.05). The ECso of NA,

ET-I. and AngII was similar between the two groups.
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Table 12 The % maximum KPSS -induced contraction in smaU arteries of HD and controls

~.MaxKPSS HO (n =11) Control (n = 26) Pvalue

Noradrenalin 108.9± 2.5 % 89.9 ± 2.8 ~/o 0.0004

Endothelin-I 134.5 ± 4.5 % 102.5 ± 2.7 % < 0.0001

U46619 144.3 ± 3.3 0.''0 120.9 ± 3.1 % 0.0003

Angiotensin II 78.9 ± 2.1 % 65.3 ± 2.1 % 0.001

Vasopressin 137.0 ± 3.5 % 90.6± 3.1 % < 0.0001

Abbreviations; ~"IMax KPSS, percentage of maximum KPSS contraction;Data are mean ± SEM,
~ comparison is by Hest.

%Max KPSS HD (n =11) Control (n = 26) Pvalue

Noradrenalin 107.4± 2.9 % 80.4± 2.5 % < 0.0001

Endothelia -1 102.9 ± 3.1 % 96.8 ± 2.7 % 0.007

U46619 118.2 ± 3.3 % 99.5 ± 3.6 % 0.003

Angiotensin II 85.3 ± 2.5 % 74.6 ± 1.9 ~'o 0.006

Vasopressin 135.8.0 ± 3.1 % 113.2 ± 3.7 ~'o 0.001

Abbreviations; % Max KPSS, percmtage of maximum KPSS contraction; Data are mean ± SEM,
an~ comparis<D is byt-test,
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3.4.2.4 Effects or lID on the vasorelaxation response of ditTerent-sized arteries to

diff'erent vasodilators

In small arteries. details for the percentage of maximum relaxation (Rmax)and the

potency of drug (ECso) to all vasodilator agents are described in Table 14. The potency of

all vasodilator drugs (BK. Ach and SNP) was similar between the two groups; however.

the % of relaxation in response to BK and Ach was significantly lower in HO compared

to controls (see Figures 21 A and B). In Ach group. the % of relaxation was 36.2 ± 1.2 %

in HD. and 53.8 ± 1.3 % in controls (P < 0.0001). While in BK group. it was 35.6 ± 0.7

% and 40.0 ± 0.6 % in HD and controls respectively (P < 0.05). Relaxation to SNP was

similar between the two groups as described in Table 14 and Figure 21 C.

In large vessels. the percentage of maximum relaxation to all vasodilator agents

(Rmax)and the potency of drug (ECso) are described in Table 15. Similarly. the results of

large arteries showed no statistically significant difference in the potency of all

vasodilator drugs (ECso) between HD and control groups; however significantly lower

relaxation response curves to BK and Ach were obtained in HO patients compared to

controls. The % relaxation of large arteries to Ach was 38.7 ± 1.8 % in HD and 65.6 ±

1.4 % in controls (P < 0.0001). while in the BK group. it was 46.2 ± 0.9 % in HD and

52.8 ± 0.8 % in controls (P < 0.000 1). A similar relaxation response curve to SNP was

observed in both groups (64.2 ± 1.9 % in HD and 67.5 ± 1.3 % in controls). see Figure 22

C).
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Table 14 The % relaxation of small arteries and Potency to vasodilators in UD and
controls

R_ lID Control (n = 26) Pvalue

Bradykinin 35.6±0.7% 40.1 ±0.6% 0.001

Actt}ichdint 36.2 ± 1.2~. 53.8±1.3% < 0.0001

Sodium nitropusside 59.4 ± 1.2 ~Io 62.4 ± 1.3 % 0.134

ECso
Bradykinin 6.7 ±O.l 6.9 ±O.l 0.187

Acttylchdine 7.3 iO.! 7.1 iO.! 0.142

Sodium nitropusside 7.2 ±O.O 7.0±0.3 0.155
Abbreviations: R_. maximum percentageofrelaxation(~\); ECso,potencyofdrug (expressed as the
negat:i\'e logarithm oftbe [C50). Data aremean±SEM, and comp arison is by stu~nts t-test.

Table 15 The % relaxation of large arteries and Potency to vasodilators in HD and controls

R_ HO (n=ll) Control (n = 26) Pvalue

Bradykinin 46.2 ±0.9~. 52.8±0.8% < 0.0001

Acetylchdine 38.7 ± 1.8 ~/i 65.6± 1.4% <0.0001

Sodium nitropusside 64.2 ± 1.9°/, 67.5 ± 1J % 0.160

EC50

Bradykinin 7.1 ±0.2 7.2 ±O,! 0.880

Acetylchciine 7.6±0.6 7.4±0.2 0.164

Sodium nitropusside 7.0±OJ 7.2±0.3 0.147

Abbmiations: R_.maximum percentage of relaxation ('4); [Cso,potency of drug (expressed as the
negative logarithm of the £Cso)' Data aremean:l:SEM, and comp arison is by students t-test.
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Figure 21 Concentration-response curves for vasodilators in large vessels of HD and
controls

Data are expressed as mean ± SEM. BK (A), Ach (B), and SNP (C). The differences were
tested at multiple dose-response time points. Comparison is by students r-test, *p < 0.05,
**p < 0.001, ***p < 0.0001.
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Figure 22 Concentration-respome curves for vasodilators in large vessels of HO and
controls

Data are expressed as mean ± SEM. BK (A), Ach (B), and SNP (C). The differences were
tested at multiple dose-response time points. Comparison is by students r-test, *p < 0.05,
•• p < 0.001, ••• P < 0.0001.
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3.4.2.5 Effects of lID on ditTerent vasoactive response in each vessel size

To investigate the pattern of the vascular response in different-sized vessels of

HO and control individuals, we compared the arterial response in small arteries with

those large sizes in each group (Table 16 and 17). In both HO and controls, the

contractile response (Rmax) to all vasoconstrictors was significantly higher in large

arteries than small ones. In addition, our results showed that larger size arteries from HO

patients significantly relax more to BK and SNP than small arteries. This variable

relaxation response when comes in Ach stimulation a trend of more relaxation appears in

large arteries compared to small ones, though the difference was not statistically

significant. In control group. significantly higher relaxation responses to BK and Ach

were obtained in large vessels compared to small vessels, with no significant relaxation

difference was observed in response to SNP.
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Table 16 The maximum responses of small and large sized vessels to different vasoactive
agents in HO.

R_ Small Larae Pvalue

Noradrenalin 5.7 ± 0.1 mN 13.1 ± OJ mN < 0.0001

Endothelin-l 11.1 ±0.2mN 12.7 ± OJ mN 0.0004
U46619 14.l ±0.3mN 16.0±0.4mN 0.002

An~otmsinn 7J ± 0.2 mN 11.9± OJ mN < 0.0001

Vasopres~ 15.1 ± OJ mN 16.8 ±0.4mN 0.004

Bradykinin 35.6± 0.7 % 46.2±0.9% < 0.0001

Acetylcholine 36.1 ± 1.2% 38.7 ± 1.8 % 0.250

Sodium nitropusside 59.4± 1.2% 64.2 ± 1.9 % 0.043

Abbreviaions; Rt.,mamnmn response in mN;%, percesage of relaxaion; Data aremean ±
SEM, and comparison is by t-test.

Table 17 The maximum responses of small and large sized vessels vessels to ditTerent
vasoactive agents in controls.

R_ Small Large Pvalue

Noradrenalin 5.6 ± O.l mN 11.1 ± 0.5 mN < 0.0001

Endothelin-l 8.9±0.6mN 11.7 ± OJ mN 0.003

U46619 9J ± OJ mN 12.4± 0.4mN <0.0001

Angiotensin n 4.8±0.2mN 6.0±0.2mN 0.001

Vasopressin 7.0±0.4mN 11J ± 0.5 mN < 0.0001

Bradykinin 40.1 ± 0.6 % 52.8 ± 0.8 % < 0.0001

Acetylcholine 53.8±lJ% 6S.6± 1.4 % < 0.0001

Sodium nitropussidt 63.4± IJ % 65.8 ± 1.7% 0.272

Abbreviafices; R max, muimmn response in mN; %, percentage of relaxation; Data are mean ±
SEM and comparison is by Hest.
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3.4.3 Correlation or ex vivo data with in vivo haemodynamic measurements of lID

patients

Haemodynamic measurements including Pulse wave velocity (PWV), systolic

blood pressure (SBP) and diastolic blood pressure (DBP) for each individual HD patient

were measured in vivo as described in section 3.3.4. Tables 18 and 19 illustrated the

relationship between haemodynamic measurements in HD patients with the maximum

vasoactive response and with the percentage of maximum contractile- KPSS response

respectively. PWV was significantly correlated with the maximum contractile response

of large arteries to vasopressin (r = 0.829. P = 0.042), see Figure 23.1 (B). However,

when the data was expressed as the percentage of maximum KPSS response. a positive

correlation was also seen between PWV and percentage of maximum contractile

response of small arteries to vasopressin (r = 0.886, P = 0.019). However, the correlation

of PWV with the percentage response of large vessels to vasopressin was lost. The

correlation between PWV and the other vasoactive agents was not statistically

significant.

With regard to the correlation of ex vivo myography data with blood pressure, a

significant inverse correlation was observed between the DBP of HD patients and the

response of large vessels to SNP (r = -0.974, P = 0.016), see Figure 23.2 (D). There was

also a negative correlation between DBP and the percentage of contractile response of

small arteries to vasopressin-KPSS responses (r = -0.829, P = 0.042). However, there

was no significant correlation between SBP and the response of isolated arteries of HD

patients to vasoactive agents.
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17. 1 Demographic detaik of in vivo measurements of HO patients

------ ..-----~---
Characteristk HD

(:"= 11)

Age (yean I 62.H: 15.6

Sex :'-1=S.f=3

Systolic BP (/1/11/ Hg. P16±:0.6

Drastclic BP (:11111 HgJ -S ..l:i: 10.~

~1AP 1100~~S.1

PWY (111 s ) S ..l = 21

Smoker (1/) 3

D\I ...-
IHD ...-
C',A 0

Control Pvalue
(:"= 26)

63.9 ± : 1.2 0.936

:'-1= 1.l. F = 2 ~S

13+.2 ~ 16.~ O.-SI

SO.6 ± 9.5 O.S91

9S.- ~ -.1 O.3~6

10

Abbreviation: PWV. pulse wave velocity; SBP. systolic blood pressure; OBP, diastolic
blood pressure; OM. diabetes mellitus. IHO. ischemic heart disease; eVA,
cerebrovascular accident: (rn/s), meter/second.
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Table 18 Correlations of in vivo data with ex vivo vasoactive responses of isolated different-
sized vessels of HD patients to different stimuli.

Y.'ioadlu Yf'i\fldu PWY SBP DBP
AgfD~

r 'aht~ Pnlu~ r value P,a1u~ r value Pnlue

Noradrenaline Small 0.r6 O.-IS- C..:.9~ OJ ~~ -o.~r C.-9-
Large :) ~O(l O.-S3 o oeo I.O~O O.!OO (6S3

Endothelin-I Sn.all :)1-1: 0.S01 -0.:00 0.-13 0.31-1 0.~63
Large -OJJO C.683 0.000 1.050 0.105 0.-S3

C'-I6619 1,,:all J.l-l-l 0.S01 -0.-163 0.355 -J"+6: O.:~~
arge J.13: 0.6~8 0.015 1.000 O.OJO 1.000

Al.giulCl1;)iu II SI/lull J ...!~S 0-119 oms 1.000 -0 2~- 0.6:8
Large JI00 0.9~0 -O.SOO O.~33 0.100 0.-83

v asopressin SIIIUI,' O~~- 0.6~S 0.5-11 C9- -a 1-+1 O.SC·:!
LOI-ge OS~9 0.(-11- -C600 0.1-11 -0.31-1 C~63

Bradykinin ~";a!l -0 .13 ~ C65S -0.05- 0.919 0.3"6 0.-19-
arge J.OOO 1.000 O.SO·) 0.133 0.:00 C.-S3

Acetylcholine Smol] -0 -_. U01 -0. ~-I1 0.SC'1 0.31-1 0.~63
Large -O.DO C9~0 0.000 I.O~O -0.153 0'-83

Sodium nitroprusside Ssnc]] :).~.j: 0.:9- 0.1~- C6~S -0 -I1S 0.-119
Large -OJJO C6S3 O.(tOO 1.0~0 -0.9- -I CO 16"

Abbreviation: PWV. pulse wave velocity: SSP. systolic blood pressure; OSP, diastolic blood
pressure: r value. correlation coefficient: small. *Correlation is significant at the 0_05 level (2-
tailed), **Correlation is significant at the 0.01 level (2-tailed)
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Table 19 Correlation of;1I vivo data with the % maximum vasoconstrictor-KPSS induced
response of HD patients

Correlation of PWV, SBP, and OBP with the % maximum vasoconstrictor-KPSS induced
response of isolated different-sized vessels ofHO patients to different vasoconstrictors.

"asocon~trlctor Vessel size PWY SBP DBP
-KPSS AgeD~

rlalue Pnlue r value P,"alae r value P,"alUt'

Koradrenaliue Siv ail OJ:~ 0.~63 0.100 ;)'-13 ·O.~O;) 0.-13
Large 0'-00 0.133 0.200 0.-83 0.200 0.-S3

Endothelm-l 5,,'ail OJ -1 OA9- 0.r1 0..+9- 0.~~2 0.29-
Lorge 03(10 0.683 ·0.100 0.95;) -0 S:O 0.:33

t".t6619 l,,'ail ocs O-H) 0.6;)0 0.2-H 0.+25 OH)
arge 08:8 OO~S 0.1+1 O.SO~ -0.028 I.CIOO

Angiotensin II 511/a,'/ 031+ 0.~63 005~ 0.919 -0.+28 0.+ 19
Large 09(10 0.083 -O.-WO O.~16 -C.-HO O.~ 16

vasopressin Suall 0.556 0.019' _I).~-+: 0.29- ·0.529 0.0-+2 '
Large -OJ -1 O.4~- 0200 0'-13 0.600 0208

Abbreviation: PWV. pulse wave velocity; SBP, systolic blood pressure; OBP, diastolic blood
pressure; r value. correlation coefficient; s; *Correlation is significant at the 0.05 level (2-tailed),
**Correlation is significant at the 0.01 level (2-tailed).
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Figure 23.1 Correlation Plots of Pulse Wave Velocity (PWV) of HD patients with the
maximum contractile response (Rmax) of small vessels (A) and large vessels (B) in
response to vasopressin.

Panels C and 0 describe the correlation of PWV with the Rmax of small and large vessels
in responses to U46619 respectively. Correlation coefficient (r) and P values are shown
in each panel.
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Figure 24.2 Correlation Plots of diastolic blood pressure (OBP) of HO patients with the %
relaxation responses of small vessels (A) and large vessels (B) to BK.

The correlation of OBP with the % relaxationof small and large vessels to SNP are shown
in curves (C and D) respectively. In each panel. correlation coefficient (r) and P values
are shown.
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3.5 Discussion

Endothelial dysfunction is a crucial element in the pathophysiology of increased

cardiovascular risk amongst CKD patients, including those on HD. Limited human

studies reported to date (Morris et al., 2001, Luksha et al., 2011) have examined the

effect of uraemia on vascular function in isolated subcutaneous arteries. These studies

were conducted on small arteries isolated from ESRD patients (with a very wide range of

dialysis vintages), investigating a limited suit of vasoactive agents. The current study was

therefore conducted on subcutaneous different-sized arteries isolated from HD patients

investigating different vasoconstrictors and vasodilators.

The present study provides a number of key findings. Firstly there is a markedly

increased responsiveness of isolated arteries from HD patients to different

vasoconstrictors even with low drug concentrations. Secondly, impaired endothelium-

dependent vasodilatation, while preserved endothelium-independent vasodilatation were

observed in subcutaneous arteries of HD patients. Thirdly, different-sized arterial

responses were correlated to clinically relevant in vivo assessment of cardiovascular

system function.

The data published to date on enhanced vasocontractile responses of isolated

arteries have been somewhat contradictory. Increased contractile responses of isolated

subcutaneous arteries have been reported before in CKD patients (not HD), characterised

by greater and more prolonged response to NA and ET-1 (Morris et al., 200 1). These

vascular responses have not been replicated in subsequent study (Luksha et al., 2011). In

later study similar contractile response of small arteries to NA, ET-t, and AngII was

observed between uremic and control groups. This is in contrast to our study with
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consistently observed significant increments in the arterial contraction in isolated

different-sized arteries of HO patients in response to NA, ET-I, U466I9, AngII, and

vasopressin. Small and larger isolated arteries from HO patients show significant

enhanced contractile response to U466l9, AngII, and vasopressin compared with

controls. In small arteries, we did not demonstrate significant differences in the potency

of pressor agents; however the overall contractile response was markedly higher in HD

patients compared to controls. Furthermore, the large arteries of our HD patients had

higher sensitivity to U46619 and vasopressin than control values and were characterized

by statistically significant difference in the EC50• When all vasocontractor data were

expressed as a percentage of KPSS response, the difference in the contractile response

between both groups was maintained with greater response in HD compared to controls

in all vasoconstrictors. Similarly, large arteries of HD patients showed highly sensitivity

to vasopressin and U466l9. This may reflects enhanced vascular response secondary to

vascular changes such as arterial stiffness which has been demonstrated previously in HO

patients (Shinohara et al., 2004. Chung et al.• 2010) or probably vascular hypertrophy

that described in experimental uraemia (Amann et al., 1995b). in addition to that, higher

levels of vasopressin plasma concentration have been observed in HD patients than that

of normal controls (Nord and Danovitch, 1979).

The data derived from our study are consistent with a previous report on isolated

subcutaneous arteries with more sustained contraction at the highest concentration of NA

and ET-1 was observed in patients with ESRD (Morris et al., 200 1), but is in contrast

with the earlier myography study by Aalkjaer et al, in which a similar response to NA

and AngII was observed between controls and patients with chronic intermittent dialysis
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(Aalkjaer et al., 1986), also in contrast with the recent study that showed no differences

in response to NA, ET-I. and AngII between uremic and control patients (Luksha et al.,

2011). Our population was unselected (no survivor or transplant bias) and all had been

exposed to a very similar and short period of HO «90 days), furthermore a larger

number of arterial segments were studied with the benefits of robust normal volunteer

comparators.

In addition to excessive pressor response of isolated arteries from HD patients, all

showed significant decreased in the vasorelaxation. This was exclusively endothelium-

dependent vasodilatation (to BK and Ach). This defect was observed regardless of vessel

sizes in HO patients. Vasorelaxation response to SNP (endothelium-independent

vasodilator) was preserved in HO group. Previous studies on isolated subcutaneous

arteries of uremic ESRD patients have demonstrated impaired vasodilatory function in

response to Ach (Morris et al., 2001, Luksha et al., 2011). In both studies Ach response

was significantly blunted among uremic patients with normal SNP-induced relaxation.

Furthermore, recent study by Luksha et al. found that the percentage relaxation and the

sensitivity (EC50) to both BK and Ach were reduced in isolated small arteries of patients

commencing PD (Luksha et al., 2012). Similar results have been reported previously in

vivo using non-invasive techniques such as Doppler ultrasound measurements of brachial

artery or dorsal hand vein in adult HO patients (Hand et al., 1998), as well as, in study

using forearm plethysmography in patients with chronic renal failure (Morris et al.,

2000). Conversely, Cupistis et al. showed similar Ach-induced vasorelaxation of skin

microcirculation (measured by laser Doppler flowmetry) in non-hypertensive uremic
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patients (as compared to controls) with reduced vasorelaxation response to Ach (Cupisti

et al., 2(00).

This impaired relaxation response could be due to NO dysfunction or decreased

ability of vascular endothelium to produce and release vasodilator substances such as

endothelium-derived hyperpolarizing factor (EDHF). These vasodilators act by

stimulating release of both NO and NO-independent factor (possibly EDHF), from the

endothelium of human resistance arteries (Mcintyre et al., 1998), However, the exact

mechanism underlying endothelial changes is still unclear. Circulating uremic factors in

HO patients may responsible for these changes. These retained toxins have being widely

considered and include elevated plasma homocysteine level (Mallamaci et al., 2002),

increase reactive oxygen species (Ferraro et al., 2003, Hasdan et al., 2002), and elevated

plasma levels of nitric oxide synthase inhibitors such as ADMA in dialysis patients

(Vallance et al., 1992, Kielstein et al., 2002). The manner of endothelial dysfunction has

previously been determined in other conditions including diabetes (van Etten et aI., 2002)

and hypertension (Taddei and Salvetti, 2002). However, in our study diabetic patients

were excluded and both controls and HO patients had similar systolic and diastolic blood

pressure. The arteries were examined after being removed from exposure to humeral

consequences of CKD.

An interesting observation in our data is that the contractile and relaxation

responses varied from small to large arteries. Previous data on diabetic patients have

shown greater contractile response to NA and ET-l observed in large than small arteries

(Hadoke et al., 2(00). However, the present study extends this principle to include

various stimuli. We showed that the contractile response to NA, ET-I, U46619, AngII,
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and vasopressin was significantly higher in large arteries compared to small vessels in

each group. Moreover. our results showed that larger size arteries from HO patients

significantly relax more to BK and SNP than smaller size. This variable relaxation

response when it comes in Ach stimuli a trend of more relaxation appears in large

arteries compared to small, though the difference was not statistically significant. This

response has not been reported in uremic patients before; though Hadok et al conversely

observed that different-sized vessels of diabetic patients had similar response to BK and

SNP (Hadoke et al., 2(00). Therefore, these observations may indicate presence of

functional heterogeneity between small and large resistance arteries obtained from

subcutaneous fat of different human tissue. These vascular alterations, particularly

damage of large arteries. are the major contributory factor to the high cardiovascular

morbidity of patients with ESRD (Blacher et al., 2(02).

This study represents the first attempt to systematically examine the association

between in vivo cardiovascular performance and ex vivo arterial function. PWV as a

measure of arterial stiffness positively correlated with a greater response to vasopressin.

These findings reflect the aberrant haemodynamic response of isolated arteries in HO

patients which can be characterised by an exaggerated vasocontractile response and

deficient relaxation. However, we did not observe any significant correlation between

PWV and the vascular response to the other vasoconstrictors.

In addition, the present study compared the ex vivo vasocontractor and vasodilator

data with the in vivo measurement of BP in HO patients. It was found that the DBP was

inversely correlated with the contractile response of small arteries to vasopressin, as well

as, negatively correlated with the vasorelaxation response of large arteries to SNP. The
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existence of overhydration in those dialysis patients which have been identified as

hypertensive is far from universal. Wabel and co-workers measured pre-dialysis SBP and

fluid status in 500 HO patients by bioimpedance monitoring (compared to a matched

healthy population). Only 15% of patients fitted the stereotype of fluid overload with

hypertension. 13% of patients had hypertension despite dehydration and 10% had fluid

overload despite normal BP or hypotension (Wabel et al., 2(08). Similar findings were

seen in another study using the same methodology in 639 patients using PD. These

studies highlight that although physicians often estimate hydration status by BP, the two

factors are often dissociated in the setting of the profound physiological derangement

characteristic of dialysis dependant CKD. A wide variety of potential other

pathophysiological processes characteristic of dialysis patients may contribute to

generating hypertension without recourse to simple fluid overload, and enhanced pressor

response of abnormal uremic resistance vessels appears important.

In summary, this study demonstrated additional insights into the effect of HD on

vascular function characterized by incremental increased in vasocontractility and blunted

endothelium-dependent vasodilatation. The detailed mechanistic responses underlying

these changes are still unclear. However, exaggerated pressor response and endothelium

based failure of relaxation are associated with in vivo measurements of markers of

cardiovascular performance we already know to be important in determining HO patient

survival. In addition this defective vascular response may be important in sensitising HD

patients to recurrent cumulative ischaemic end organ injury driven by the circulatory

stress of HD.
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Chapter 4
Results of obese patients



Chapter 4: EefTects of obesity on vascular function in isolated

subcutaneous arteries.

4.1 Introduction

The increasing incidence and prevalence of obesity across developed countries

worldwide has an enormous impact on elevated cardiovascular risk (Frisbee, 2007).

Obesity is frequently associated with a number of well-recognised risk factors including

insulin resistance, oxidative stress, and inflammatory conditions which can damage the

endothelium (Meyers and Gokce, 2007, Karalis et al., 2(09). Changes in the

microcirculation of isolated arteries including vascular wall thickening and a reduction in

the internal lumen have been recognised in obesity milieu (Grassi et al., 201Ob). It also

well demonstrated in essential and secondary hypertension (Mulvany, 1990, Schiffrin,

2004, Levy et al., 2(08), and type II diabetes mellitus (Levy et al., 2008, Rizzoni et al.,

2oo1a). These alterations may contribute to an increase in peripheral resistance. Not only

the vascular structure altered in obesity but also functional responses, especially

endothelium-dependent function. The exact mechanisms by which obesity can cause

endothelium dysfunction are unclear, however several factors may possibly responsible

for obesity-related endothelial alterations, including insulin resistance, inflammatory

conditions (Zeidan et al., 200S), oxidative stress and reactive oxygen species (Karalis et

al., 2(09), activation of renin-angiotensin system and sympathetic nervous system

(Grassi et al., 2009). These obesity-associated factors may contribute to the development

of cardiovascular disease (Poirier et al., 2006).
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Impaired endothelial function as measured by vasodilator response to Ach has

been demonstrated in human small resistance arteries of hypertensive (Cupisti et al.,

2000), diabetic (Rizzoni et al., 2001b), and uremic(Luksha et al., 2011) patients.

However, few data are available about the functional study of isolated arteries from

severely obese patients undergo bariatric surgery. Several in vivo studies have examined

the vascular function in obesity. For example, significantly greater vascular response to

AngII infusion has been observed in obese patients compared to non-obese subjects using

venous occlusion plethysmography (Nielsen et al., 2004). Other studies have also

examined the vascular function in human forearm vessels using non-invasive methods

(Perticone et al., 2001. Sciacqua et al.• 2(03).These studies observed reduction in the

endothelium-dependent vasorelaxation in response to Ach in obese patients compared

with healthy controls. In animal models. Boustany-Kari et al. observed enhanced

vascular reactivity of coronary arteries to phenylephrine and impaired endothelium-

dependent vasodilatation of coronary blood flow in obese rats (Boustany-Kari et al.,

2007).

Limited ex vivo human studies have examined vascular remodelling and vascular

function in obese patients. especially those without diabetes or hypertension. Recently,

Grassi et al. evaluated vascular structure and function in 17 severely obese patients

compared to 16 non-obese individuals. Small resistance arteries were dissected from

abdominal subcutaneous fat and conducted using wire myography (Grassi et al.,

2010b).The study observed that media thickness and media-to-Iumen ratio were

significantly greater in obese subjects than in non-obese subjects. It also showed
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impaired Ach-induced endothelial-dependent vasodilatation in obese patients. In

subsequent study the author observed that media thickness and media-to-Iumen ratio

were markedly greater in obese patients compared to lean controls, and Ach-induced

vasodilatation was impaired in obese patients compared to lean controls (Grassi et al.,

20IOa). Impaired endothelium-dependent vasorelaxation has also been observed in the

subcutaneous arteries of severely obese patients (De Ciuceis et al., 2011). This study

compared three groups of patients: hypertensive non-obese, severely obese and non-

obese controls. It observed that Ach-induced vasodilatation was significantly reduced in

obese and hypertensive patients compared to normotensive non-obese controls. The exact

mechanisms of endothelial dysfunction in obese patients are still understood, however

several factors were advocated to explain the obesity-related endothelial alterations,

including insulin resistance, inflammatory conditions, oxidative stress and reactive

oxygen species (Karalis et al., 2009, Zeidan et al., 2005).

In addition, some studies proposed that different mediators associated with

obesity such as free fatty acid (FFAs), tumour necrosis factor alpha (TNF- (1,),

interleukin (IL)-6, resistin, and leptin, have been shown to have a direct and / or indirect

effects on the vascular endothelium. For example leptin has been demonstrated to cause

direct effect on the endothelial production of NO (Winters et al., 2000). These trigger

factors may cause vascular alterations through thickening of intima and media of the

vascular wall (Ouchi et al., 2003).

Large vessel compliance (arterial stiffness), as measured by increased pulse wave

velocity (PWV), is higher in obese patients compared with the general population. PWV
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measured in the upper limbs was increased significantly in obese people (n = 27)

compared to non-obese controls (n = 25) independent of age, gender, and blood pressure

(Toto-Moukouo et al., 1986). In the overall population, a significant positive correlation

was observed between PWV and the degree of obesity (r = 0.85, P < 0.001) (Toto-

Moukouo et al., 1986). It has also been shown that obesity is associated with increase in

aortic stiffness, independent of age and blood pressure level (Sutton-Tyrrell et al., 2001).

This change in the arterial elasticity has been shown associated with impaired

endothelium-dependent vasodilatation (Arcaro et al., 2(02). The pathophysiological

mechanism of vascular stiffness in obese people is still largely unknown. However,

adipocytes have an elevated lipolytic activity that results in increased free fatty acids

release and insulin resistance (Safar et al., 2006). Indeed, obese patients with high levels

of leptin have been shown to be correlated with decrease in arterial distensibility

(Singhal, 2(05).

Patients undergoing bariatric surgery have decreased overall mortality compared

to those who do not have surgery (Sjostrom et al., 2007). Weight loss post bariatric

surgery has been shown to improve a number of cardiovascular risk factors including left

ventricular relaxation (Leichman et al., 2008), and left ventricular hypertrophy

(Ikonomidis et al., 2007). Marked decrease in body weight and BMI, together with

reduction in the blood glucose level, serum cholesterol, triglycerides and plasma lipids

have been observed in one-year follow-ups of severely obese patients who had

undergone bariatric surgery (De Ciuceis et al., 2011). However, very few data are

presently available about improvement of vascular function in isolated vessels from
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obese patients following surgery. On the other hand, several in vivo studies have

established that, reduction in the body weight and changes in the lifestyle can improve

endothelial function. Sasaki et al observed enhanced forearm blood flow in response to

Ach-induced endothelium-dependent vasodilatation in obese patients following diet-

induced weight loss (Sasaki et al., 2(02). Raitakari et al. showed that weight loss with

low calorie diet can improve flow-mediated vasorelaxation in obese patients (Raitakari et

al., 2(04). Similar findings have been demonstrated by Hamdy et aL. who observed

improvement in the macrovascular endothelial function in obese patients following six

months weight loss and exercise (Hamdy et al., 2(03). Sciaqua et al. demonstrated that

energy-restricted diet induce a significant and clinically improvement in Ach-mediated

vasodilatation of forearm vessels in obese healthy individuals (Sciacqua et al., 2003).

Moreover, significant reduction in media thickness and media-to-lumen ration was also

observed in this group of patients after one year following bariatric surgery (De Ciuceis

et al., 2011), however a few number of patients had improvement in endothelium-

dependent vasorelaxation in response to Ach following the surgery. Also, a marked

improvement in Ach-mediated vasodilatation has observed in dorsal hand vein of obese

patients after weight loss induced by bariatric surgery (Vazquez et al., 2005). Persistent

reduction in the body weight following bariatric surgery seems to improve vascular

function and reduces vascular structural alterations; however the responsible mechanisms

for that are still not understood. Some studies (Intengan and Schiffrin, 2001, Savoia and

Schiffrin, 2007) have proposed the possible roles of oxidative stress and inflammation in

the development of both endothelial dysfunction and vascular alterations.
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4.2 Aims

In light of the literature, we hypothesized that obesity can alters vascular structure

and function. Such alteration was observed previously in isolated arteries (small sizes)

obtained from obese patients, investigating a limited suit of vasoactive stimuli.

(Georgescu et al., 2011, De Ciuceis et al., 2011). Therefore, the current project was

focused to extend this principle of investigation to include different-sized arteries

isolated from severely obese patients who were undergoing bariatric surgery with

comparison to appropriate matched non obese control arteries. This was to understand

the vascular reactivity in obese patients through measurement of their responses to

different stimuli, and to establish whether obesity alters the vascular function by

impaired endothelium-dependent vasodilatation and preserved endothelium-independent

function. The study was also aimed to assess changes that might underlie altered vascular

responses following bariatric surgery (decrease in weight), and whether reduction in

weight will improve endothelial function. We also intended to characterize the relation

between ex vivo vascular responses and in vivo assessment of vascular function in obese

patients.

4.3 Materials and Methods

4.3.1 Participants and subcutaneous fat samples

Subcutaneous fat samples were obtained from 12 obese patients (7 males; average

age 38.7 ± 10.9), who were severely obese (average BMI 54.2 ± 6.1) undergoing bariatric
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surgery. Control fat samples were obtained from 26 appropriately consented healthy

volunteers (24 males; average age 63.9±11.17) without documented obesity and diabetes

mellitus, who underwent elective surgery (elective hernia repair). The ethical approval

was sought and granted by the Derbyshire Research Ethics Committee and the local NHS

R&D department. Informed written consent was obtained in accordance with Good

Clinical Practice guidelines according to the principles expressed in the Declaration of

Helsinki. Details on obtaining baseline fat samples and at six month after bariatric

surgery described in methodology chapter section 2.2.3. In the present study, different

size arteries (small < 600 urn and large> 600 urn) were dissected from each sample and

mounted as a ring preparation on wire myography as previously described in section

2.4.3.

Four abdominal subcutaneous fat samples were also obtained from six month

follow-up post bariatric surgery patients. Arteries were dissected from these samples in

each patient and investigated to the same vasoactive agents that used in the baseline ones.

Details on the biopsy procedure transfer of fat samples for experimental study and the

techniques of arterial dissection and mounting on wire myography are described in

section 2.4.

4.3.2 Preparation of vasoactive agents

Vasoconstrictor and vasodilator agents that used per experiments in this project to

investigate the vascular function in obese subjects were include NA, ET-I, AngII,
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U46619, vasopressin, BK, Ach, and SNP. Details of the purchases and preparation of

these agents and the physiologic solutions are described in detail in section 2.3.

4.3.3 Protocol of experiment

Following mounting, arteries were kept for 15-30 minutes to be acclimatised and

then subjected to normalisation process. The general protocol of experiment is described

in detail in the methodology chapter section 2.5. The internal diameter of arteries was

calculated as described before in section 2.4.3.

For the vasoconstrictor protocol, following a wash out of vessels and re-establish

the base line, cumulative-concentration response curves were constructed for the

following vasoconstrictors; NA (10.10 mol/L - 10-4mollL), ET-l (10-12 mollL _ 10-6

mol/L), U46619 (10-12 mol/L - 10-6 mol/L), AngII (10-12 mollL - 10-6 mol/L), and

vasopressin (10-12 mol/L - 10-6mollL) starting with the lowest concentration of the drug

allowing 3-5 minutes per concentration.

Separate protocol was carried out for experiments testing vasodilator drugs.

Following washout period and re-establishment of the baseline (as described before in

the general protocol), arteries were first contracted by stimulating them to a combination

of (100 nmol/L U46619 and 1 nmol/L ET-1). Once the peak steady contraction had

reached, cumulative-concentration response curves for different vasodilators including;

bradykinin (BK), acetylcholine (Ach), and sodium nitroprusside (SNP) were constructed

starting with the lowest concentration of the drug to the highest concentration, which was
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100 pM (l0-1Omolar) to 100 JlM (l0-4 molar) for all vasodilators allowing 3-5 minutes

per stimulation (as described in section 2.5.2 and Table 6).

4.3.4 In vivo haemodynamic measurements

Carotid-to-femoral arterial PWV was measured using an oscillometric device

(Vicorder, Skidmore Medical Ltd, Bristol, UK). Brachial artery blood pressure was

measured in the non-fistula arm using an oscillometric device (Datex-Ohmeda, GE

Healthcare, USA). PWV is calculated by the software by dividing arterial transit time by

measured distance. The mean of 2 measurements was recorded (as described in section

2.5.3).

4.3.5 Statistical analysis

Contractile responses were expressed as an increased contraction in milliNewtons

(mN) above the isometric baseline. The maximum contractile response (Rmax) for each

agent in all groups were calculated and EC50 value (defined as the concentration of drug

required to produce 50% of the maximum response), while the response for vasodilators

BK, Ach, and SNP was expressed as maximum % of relaxation from the preconstriction

state. Details on Lab Chart data calculation are described in section 2.6. All data were

expressed as mean with standard error of the mean (mean ± SEM) and the analysis was

using GraphPad Prism-5 software. The differences were tested at multiple dose-response

time points for all data. All continuous variables were tested for normality using their
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histograms and normality tests. The comparison between all groups was performed by

using students t-test and differences were considered significant when P < 0.05. In regard

to correlation of in vivo with ex vivo data, we correlated the PWV and blood pressure

data of each patient with each vasoactive drug in each vessel size. All PWV and blood

pressure data was expressed as mean ± SEM. Relationships between in vivo and ex vivo

data was determined using spearman's rho correlation coefficient, which considered

significant at *p = 0.05, and **p = 0.01 levels (2-tailed). All statistical analysis was

undertaken using GraphPad Prism-5 software and SPSS VI2.

Differences in the arterial responses of obese patients before and after surgery

were determined either by paired Hest or repeated measures of two-way analysis of

variance (ANOVA) with Bonferroni's post tests for multiple comparisons.

4.5 Results

The background characteristics of obese and control groups are described in

(Table 20). The mean age of obese patients was younger than that of controls, and sex

were similar between both groups. As expected, BMI was significantly higher in obese

patients compared with controls. There was no significant difference in systolic and

diastolic blood pressure between both groups. Patients and controls had similar renal

function and smoking habits. Five patients were on angiotensin converting enzyme

inhibitors (ACEIs), and two patients were on angiotensin receptor blockers (ARB).
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4.5.1 Vascular size

The total number of all small vessels tested in all vasoactive agents was 53 in

obese (07 arteries were discarded) and 72 in control groups (11 arteries were discarded),

whereas the total number of all large arteries was 47 in obese (05 arteries were discarded)

and 65 in controls (07 arteries were discarded) (Table 21). In small vessels used per

vasocontractile agent, the average arterial size in obese patients was ranged between 235

urn - 577 urn in diameter, whereas in normal controls was between 220 urn - 575 urn, In

small arteries, the internal diameter (ID) was similar between obese and control groups

440.7 ± 82.9 urn in obese (n = 33), and 447.6 ± 76.4 urn in control groups (n = 45), P =
0.951. Similarly, there was no significant difference in the size of large vessels between

both groups, it was 730.2 ± 94.3 urn (n = 30) and 716.5 ± 78.6 urn (n = 40) in obese and

controls respectively, P = 0.911. In vessels that investigated per vasodilator drugs, there

small arteries size was similar between obese and controls with average ID (urn) 492 ±

53.4 urn in obese (n = 20), and 517.6 ± 45.1 urn in control groups (n = 27), P = 0.715.

While the average ID of large arteries tested per vasodilator drugs was 738.3 ± 81.1 urn

(n = 17) and 717.7 ± 45.1 11m (n = 25) in obese and controls respectively, P = 0.812.

147



Table 20 Characteristics of obese and control patients

Characteristic Obese Control
(N= 11) (N=:6 )

Age: (veari 38.7 ± 10.9 63.9 - 11.2

Sex ~I=7,F=5 1\1= 24, F = 2

systolic BP (111111 HgJ 137.~= 12.7 1H.: = 16.5

Diastolic BP (111111 HgJ S1.2= 10.5 80.6 = 9.5

~IAP 100.0=9.3 98.' = '.1

Creatinine unn LI 82.9 = 11.3 84.8 = 5.9

~GFR (mlminI. i 3 m-) is.l=lIA g-t ..:l = 5.2

B~lI 5..L2 = 6.1 26.2 = 2.3

Smoker -+ 10

D~I ....'
HTN -l 3

IHD :
eVA 0

P value

O.O"!_:J

0.899

0.969

0.915

0.8"'0

0.564

<: 0.0001

)."s

)."s

)."S

)."5

~s
Abbreviation: N, number of patients; eGFR, estimated glomerular filtration rate; BP, blood pressure;
MAP, main arterial pressure; BMI, body mass index; OM, diabetes mellitus; HTN, hypertension;
IHO, ischemic heart disease; CVA, cerebrovascular accident; NA, non-applicable; NS, non-
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Table 21 The internal diameter of small and large arterial sizes in obese and controls
AUarteries size of the used experiments testing the etTects of obesity on vasoactive agents.

Obese Control Pvarue
Small SmaD

Noradrenaline
7

401J°::l: 65.1Eumber 419.4 ::1:623 0.84

~dothehn-l 7 9umber
502.2 ::I: 85.1 47U ::I: 101.6 0.82

U4
Eumber 7 9

452.4 ::1:98.5 424.4: 129.1 0.86

t~y,t:w n 6 8
396.8 : 101.3 435.5 : 39 ..2 0 ..85

Vaso~ressin 9Num er
484.1 :67.4L" 453.7:67.3 0.69

H~t'~ 7 9
L" 478.8::1:26.4 521..2::1:46.6 0.47

Ac~lecholine
486.8: 82.4

~~ er 504.2::1: 60.1 0.86

So~ nitr1.wrosside 7 9N er
L. 482.2::1:21.3 519.4: 41.8 0.48

Obese Control P value
Luge Large

Noradrenaline
6Number 9

L. 735.8 : 78.3 683.8 ::1:42.2 0.53

Endothehn-l
Number 6 9
L. 770.4: 80.5 749.2 ::I: 92.6 0.87

U46619 8umber 7
L. 733.8 : 84.6 702.1: 42.8 0.73

AnRiotensi II
Number 6 7
L 686.8 : 54.4 693.1 ::1:66.2 0.94

Vasopressin
7Number 5

L. 724.1::1:68.1 681.1 :57.5 0.63

Bracfvkinin
Number 5 8
L- 738.6: 52.9 715.2 :41.1 0.86

Acetv1echoline
Number 6 8
L· 692.8: 45.8 710.8: 55.9 0.92

Sodium nitruprosside
9Number 6

L· 748.6: 62.5 729.1::1:79.5 0.68
.---.----. ¥--'--'-~-----'---"-'------"--'--'-"-~--'--""--- .., • ~"~"'·"·"·'A ___'__.••

Number, is the numberoflarge arteries that usedper concentration-response CUJVeto an vasoactive
agents. Lo is the nonnalized internal diameter of arteries. Data are expressed as mean e SlIM and the
comparison is byt-test.
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4.5.2 Vascular function

4.5.2.1 Effects of obesity on the KPSS contractile response.

The maximum KPSS contraction in all each-sized arteries was similar between

control and obese patients. In small size vessels. the KPSS contraction was 9.1 mN ± 6.2

in obese (n = 53). and 6.9 mN ± 1.8 in controls (n = 72). P = 0.701. Similarly, in all large

arteries the difference in the maximum KPSS response between both groups was not

significant. it was 15.4 mN ± 7.9 in obese (n = 47) and 13.0 mN ± 6.5 in controls (n =
65), P = 0.890. However. we observed that arteries with large diameter size had a higher

maximal contractile response to KPSS in each groups (Figure 24).

Smell .Iz.arterlea
j

r
/

KPSS contraction

Large alz. arterlea

KPSS contraction

Figure 2S The maximum KPSS contraction in smaU and large arteries of obese and controls
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4.5.2.2 EtTects of obesity on the contractile response of different-sizes arteries to

different vasoconstrictors

In small vessels, results for the maximum contraction of arteries (Rmax), and the

potency of drug (ECso) to all vasocontractile agents in small arteries are presented in

Table 22. Greater contractile response to all vasoconstrictors was observed in small

arteries isolated from obese patients compared to controls. This contraction was highly

significant in response to U46619 and vasopressin (P<O.OOOI)(see Figures 25 C, D and

E). Significantly greater contractile responses to NA, ET-l and AngII were also observed

between both groups (P = 0.015, 0.006 and 0.004 respectively). The highest contractile

response in each group was observed in response to U46619 (Rmax, 12.7 mN ± 0.3 in

obese and 9.3 mN ± 0.3 in control groups), while the lowest contractile response was

observed in response to NA and AngII. The potency of NA, ET-I, AngII and vasopressin

was similar between the two groups. However, small vessels of obese patients were

highly potent to U4 than small vessels of control group (ECso, 9.0 molar ± 0.1 in obese

and 8.3 molar ± 0.1 in controls, P = 0.(02) (see Table 22 and Figure 25 C).

In large arteries, Table 23 and Figure 26 showed the results for all

vasoconstrictors of in both groups. Greater contractile responses to all vasoconstrictors

were obtained in large arteries of obese individuals compared to controls. The difference

in the contractile response to NA, ET-1, U46619 and AngII was highly statistically

significant between both groups with P < 0.0001 in each drug. A significant greater

contractile response to vasopressin was also observed in large vessels of obese patients

than controls (P = 0.001). These results also showed that the highest contractile response

obtained in both groups was in response to U46619 (17.3 mN ± 0.4 in obese and 12.4
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mN ± 0.4 in controls), whereas the lowest response was in AngII response (8.4 mN ± 0.3

and 6.0 mN ± 0.2 in obese and controls respectively), as described in Table 23. Our data

also observed that large arteries of obese patients were highly potent to U46619 and

vasopressin than large vessels of controls, characterized with significantly less

concentration of both drugs were required to produce 50 % of the maximum response in

compared with controls (P = 0.001 and P = 0.019 respectively), see Figures 26 C and E.

The ECso of the other vasoconstrictors (NA, ET-I, and AngII) was similar.

Table 22 The maximum response of small arteries and Potency of aU vasoconstrictors in
obese and controls.

R_ Obese (n = 12) Control (n = 26) P value

Noradrenalin 6.2±0.1 mN 5.6±0.1 mN 0.015

Endothelin-l 10.3 ±0.2mN 8.9±0.6mN 0.006

U46619 12.7±0.3 mN 9.3 ±0.3 mN <0.0001

Angiotensin II 7.4 ±0.1 mN 4.8±0.2mN 0.004

Vasopressin 11.1 ±0.4 mN 7.0±OAmN <0.0001

sc.,
Noradrenalin 7.9 ±0.2 8.2±0.1 0.171

Endothelin-l lOA ± 0.1 10.3 ±0.1 0.519

U46619 9.0±0.1 8.3±0.1 0.002

Angiotensin II 9.1 ±0.1 9.4 ± 0.2 0.132

Vasopressin 9.9±0.1 10.1 ± 0.2 0.638

Abbreviations: Rca. maximum response inmN; %, percentage of relaxation; EC se- potency 0f drug;
(expressed as the negative logarithm of the ECso)' Data are mean::!: S~ and comparison is by
students t-test.

152



Small arteries

A -- Control (n=10)

-- Obese (n=7)

*
8

·10 -8 -8 -4
log concentration of Noradrenaline (molar)

B -- Control (n=9)
-- Obese (n=7)

·12 ·10 -8 -8 -4
log concentration of Endothelln-1 (molar)

c -- Control (n=9)

-- Obese (n=7)115 ***

-12 ·10 -8 -8 ·4
Log concentration of U4 (molar)

D -- Control (n=8)

-- Obese (n=6)

t 8

.5 6

**

I:
·12 ·10 -8 -8 -4

log concentration of Angiotensin II ( molar)

E -- Control (n=9)

-- Obese (n=6)15

·12 ·10 -8 -8 -4
log concentration of Vasopressin (molar)

Figure 26 Concentration-response curves for vasoconstrictors in small vessels of obese and
controls
Data are expressed as mean ± SEM. NA (A), ET-l (B), U4 (thromboxane A2) (C), AngII
(D) and vasopressin (E). The differences were tested at multiple dose-response time
points for all data. Comparison is by students t-test, *p < 0.05, **p < 0.001, ***p <
0.0001.
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Table 23 The maximum response of large arteries and Potency of aU vasoconstrictors in
obese and controls

R_ Obese (n = 12) Control (n =26) Pvalue

Noradrenaline 15.3 ±0.3 mN 11.1 ±O.SmN <0.0001

Endothelin-l 14.6±0.3 mN l1.7±O.3 mN <0.0001

U46619 l7.3±0.4mN l2A±OAmN <0.0001

Angiotensin n 8.4±O.3mN 6.0±O.2mN 0.0002

Vasopressin l4.5±0.4mN 11.3 ±O.5 mN 0.001

ECso

Noradrenaline 7A±0.1 7.7±0.1 0.117

Endothelin-l 10.1 ±O.l 9.8±0.2 0.129

U466l9 9.8 ±0.1 8.9 ±OA 0.001

Angiotensin II 9.5 ±0.3 9.6±O.6 0.714

Vasopressin 9.9±0.1 9.3±0.1 0.019

Abbreviations: R.max.maximumresponseinmN; %,percaltage of relaxation; ECwpotencyofdrug
(expressed as the negative logarithm of the ECso Data are mean± SEM, and comparison is by students r-test.
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Large arteries
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Figure 27 Concentration-response curves for vasoconstrictors in large vessels of obese and
controls
Data are expressed as mean ± SEM. NA (A), ET-l (B), U4 (thromboxane A2) (C), AngII
(D) and vasopressin (E). The differences were tested at multiple dose-response time
points for all data Comparison is by students t-test, "P < 0.05, **p < 0.001, ***p <
0.0001.
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4.5.2.3 Effects of obesity on the contractile response of different-sized arteries to

vasoconstrictors- KPSS

Vasocontractile response of both sized-vessels to different vasoconstrictors was

assessed as a percentage maximum KPSS-induced contraction in an effort to normalise

the data. The percentage of maximum contractile response was maintained as a greater

response of all sized vessels to all vasoconstrictors was observed in obese patients

compared to controls. In obese patients the maximum contractile response of small

arteries to ET-I, U46619, AngII, and vasopressin was significantly higher compared to

controls (Table 24), while it was not significant in response of NA. In obese group, the

highest % maximum contractile response of small vessels was in response to vasopressin

(138.2 ± 3.6 % KPSS). In control group, it was in response to U46619 (120.9 ± 3.1 %

KPSS). In both groups, the lowest % of contraction was in response to AngII (84.8 ± 2.4

% KPSS in obese versus 65.3 ± 2.1 % KPSS in controls). However, the potency of all

vasoconstrictors was similar between both groups.

In large vessels, statistically significant difference in the % maximum contractile

response to ET-I, U46619, AngII, and vasopressin has obtained with greater response in

obese group compared to controls (Table 25), whereas no difference has observed in NA

response. In obese and controls, the vasopressin contractile response was the highest in

the group (125.6 ± 3.6 % KPSS in obese and 113.2 ± 3.7 % KPSS in controls, P =
0.043). Whereas in obese patients, the lowest % was in response to NA (85.2 ± 2.6 %

KPSS), and in controls, it was in response to AngII (74.6 ± 1.9 % KPSS). In obese group,

large arteries were highly potent to vasopressin and U46619 than controls. In vasopressin

response, the potency was (9.3 ± 0.1 in control and 9.8 ± 0.12 in obese, P = 0.023), while
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in U46619 (8.9 ± 0.1 in control versus 9.7 ± 0.3 in obese, P = 0.012). Similar drug

potency of NA, ET -1, and AngII was obtained between the two groups.

Table 24 The % maximum KPSS -induced contraction in small arteries of obese and
controls

Obese (n = 12) Control (n =26) P value

92.5±3.·"'0 89.9 ± 2.S °0 0.56-1

II.U ±:U D;' 101.5 ± 1.700 0.009

136.6±3.i% 120.9± 3.1 00 0.006

S-LS±2A 'lo 65.3 ± 2.1 °0 < 0.0001

138.::± 36°0 90.6 ± 3.1 °'0 < 0.0001

'{ oread rer a I·ne

Endothelin-I

J-t6619

Ar.gictenstn II

Vasopressin

Abxeviations : • DMax KPS S. percentage of maximrn; KPSS contracnon; Data are mean = StM.
and comparison is by t-resr

Table 2S The % maximum KPSS-induced contraction in large arteries of obese and
controls

%MaxKPSS Obese (n = 12) Control (n = 26) Pvalue

Noradrenaline 85.2±2.6~/o 80.4±2.5 % 0.280

Endothelin-l 105.4±2.6% 96.8±2.7% 0.015

U46619 1l0.8±3.6% 99.5 ± 3.6 % 0.048

Angiotensin II 101.4±1.4% 74.6± 1.9% <0.0001

Vasopressin 125.6±3.6% 113.2±3.7% 0.043

Abbre\iations; % Max ms, percentage of maximum KPSS contraction; Data are mean ± SEM,
and comparison is by students t-test.

157



4.5.2.4 Effects of obesity on the vasorelaxation response of different-sized arteries to

different vasodilators

In small arteries, results for the percentage relaxation (Rmax)of small arteries and

the potency of drug (EC50) to all vasodilators (BK, Ach, and SNP) in the two groups are

described in Table 26 and Figure 27. There were some differences in the baseline

relaxation starting points between both groups (but not significant), however, we used a

combination of low concentration of (lOO nmol/L U46619 and 1 nmol/L ET-I) for

preconstriction until got a steady contraction before starting vasorelaxation response

curves. There was no significant difference in the potency of these drugs between obese

and controls. However, the % of relaxation in response to Ach and BK (endothelium-

dependent vasodilators) was significantly lower in obese patients compared to controls

(Figures 27 A and B). The % relaxation in response to Ach was 49.4 % ± 0.6 and 53.8 %

± 1.3 in obese and controls respectively (P = 0.021). While in BK, it was 37.4 % ± 0.7 in

obese and 40.1 % ± 0.6 in controls, P = 0.008. Relaxation to SNP was similar in the two

groups (62.7 % ± 1.6 in obese and 62.4 % ± 1.3 in controls, P = 0.886).

In large arteries, Table 27 and Figure 28 illustrate the percentage maximum

relaxation (Rmax)of larger arteries to all vasodilators including Ach, BK, and SNP, and

the potency of these drugs (EC50). Despite similar observation in the vasodilator drug

potency in large vessels of obese and control groups, the maximum vasorelaxation

response to BK and Ach obtained in obese patients was also significantly less than that

obtained from controls (Figures 28 A and B). The % relaxation in Ach group was 56.7 %

± 1.8 in obese and 65.6 % ± 1.4 in controls, P < 0.0001. The % relaxation in BK group
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was 48.8 % ± 0.9 in obese and 52.8 % ± 0.8 in controls, P = 0.009. The Relaxation

response to SNP was similar between both groups (Figure 28 C).

Table 26 The % relaxation of small arteries and potency of aU vasodilators in obese and
controls

...._-;.,_----R_ Obese (n = 12) Control (n =26) ~va1ue

Bradykinin 37.4±0.7 % 40.1 ±0.6% 0.008

Acetylcholine 49.4±0.6% 53.8 ± 1.3 %, 0.021

Sodium nitroprusside 62.7± 1.6% 62.4 ± 1.3 % 0.886

Bradykinin

Acetylcholine

6.8±0.1 6.9±0.1

7.1 ±0.1

0.427

6.9±O.2 0.117

Sodium nitroprusside 6.8±0.1 7.1 ±O.3 0.100

Abbreviations: Ram, maximumresponseinmN; %, percentage of relaxation; ECS(l,potency ofdrug
(expressed as the negative logarithm of the ECS(l).Data are meane SEM, and comparison is by t-tes1
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Table 27 The % relaxation of large arteries and potency of all vasodilators in obese and
controls

Obes (n = 12) Contt (n = 26) P value

Bradykinin

Acetylcholine

48.8±0.9% 52.8 ±O.S% 0.009

56.7 ± 1.8% 65.6±1.4% < 0.0001

Sodium nitroprusside 66.7±0.2 % 67.5 ± 1.3% 0.629

ECso__ ...£::L ,_, ",.,.•.•' ••0''"_.''." ••_." ,,,.,.

Bradykinin

Acetylcholine

7.4±0.3 7.2 ±O.l 0.131

7.2 ±0.1 7.4±0.2 0.365

Sodium nitroprusside 7.4 ±0.2 7.2±0.3 0.646

Abbreviations: R mil, maximum response inmN; %, percentage of relaxation; ECso' potency of drug
(expressed as the negative logarithm of the ECso)' Data are mean± SEM, and comparison is by t-test
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Small arterlea

A
-- Control (n=9)

.. Obese (n= 7)
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B
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·10 ·2
Log concentration of Ach (molar)

c
- Control (n=9)

.. Obese (n= 7)

·10 -4 ·2
Log concentration of SNP (molar)

Figure 28 Concentration-response curves for vasodilators in small vessels of obese and
controls
Data are expressed as mean ± SEM. BK (A), Ach (B), and SNP (C). The differences
were tested at multiple dose-response time points for all data Comparison is by students
t-test, *p < 0.05, **p < 0.001, ***P < 0.0001.
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Large arteries

A
- Control (n=8)

~ Obese (n=5)

-10 -8 -6 -4 -2
Log concentration of BK (molar)

B
- Control (n=8)

~ Obese (n=6)

-10 -8 -6 -4 -2
Log concentration of Ach (molar)

c
- Control (n=9)

~ Obese (n=6)

-10 -8 -6 -4 -2
Log concentration of SNP (molar)

Figure 29 Concentration-response curves for vasodilators in large vessels of obese and
controls
Data are expressed as mean ± SEM. BK (A), Ach (B), and SNP (C). The differences
were tested at multiple dose-response time points for all data Comparison is by students
Hest, *p < 0.05, **p < 0.001, ***p < 0.0001.
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4.5.2.5 EtTects of obesity on ditTerent vasoactive response in each vessel size

To investigate the pattern of the vascular response in different vessel size in obese

patients, we analyzed the arterial response in small and large arteries. The contractile

response (Rmax) to all vasoconstrictors was significantly higher in large vessels compared

with small ones (P < 0.0001 in each drug response). In vasorelaxation responses, our

results observed that the percentage relaxation to all endothelium-dependent and

endothelium-independent vasodilators was significantly higher in large than small

arteries, this difference being highly statistically significant in response to BK (P <

0.0001) see Table 28.

Table 28 The maximum responses of aU sized-vessels to different vasoactive agents in obese
patients

Ram Small Large Pvalue

Noradrenaline 6.2±OJ mN 15.3± 0.3 mN <0.0001
Endothe1in-l 10.3±O.2 mN 14.6±O.2mN <0.0001
U46619 12.7± OJ mN 17J±0.4mN <0.0001
Angiotensin n 7.4±O.l mN 8.4±0.3 mN 0.004
Vasopressin 1l.1 ± 0.4 mN 14.5± 0.4 mN <0.0001
Bradykinin 37.4±O.7% 48.8 ± 0.9 % <0.0001
Acetylcholine 49.4±O.6 % 56.7 ± i.s % 0.004
Sodium nitroprusside 62.7 ± l.6 % 66.7±0.2 % 0.038

Abbreviations: R.mx, maximwnresponsein mN; %, percentage ofrelaxation; Data are mean ±SEM, and
Comparisonis by students I-test.
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4.5.3 EtTects of weight loss on the vascular function in obese patients following

bariatric surgery

The study investigated the vascular function in isolated small arteries obtained

from obese patients at six months after bariatric surgery. The results from six month

samples were compared with those before surgery (baseline samples) for each vasoactive

agent in each patient. Background data on the total number of small arteries used per

vasoactive agent and their internal diameter (ID) in all obese patients following surgery

are illustrated in Table 29. The vessel size in each vasoactive drug was similar between

pre-surgery and post-surgery groups. The average ID was 502.2 ± 58.3 urn in pre-surgery

group, while it was 495.4 ± 62.6 urn in post-surgery group. In KPSS response, there was

no significant difference in the maximum KPSS contraction in obese patients before and

after surgery. The total average KPSS contraction of small arteries was 9.3 ± 5.6 mN (n =

26) in obese patients before surgery, and 8.0 ± 2.9 mN (n = 26) after surgery, P = 0.875

(Figure 29).

Small arter'"

I

I
J

KPSS contraction

Figure 30 The maximum KPSS response in small arteries (Obese vs Post surgery).
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Tables 30 and 31 described results of the average maximum response (Rmax) of

small arteries to all vasoactive agents and the potency of these agents (ECso) in obese

individuals before and after surgery. In regard to the effect of surgery on the vascular

response to different stimuli, a similar vasocontractile response of small vessels to NA,

ET-I, U46619, AngII, and vasopressin was obtained in obese patients before and after

surgery. However a trend of maximum contractile response to each drug was obtained in

pre-surgery group compared with those post-surgery (Figure 30). We also observed that

the highest contractile response obtained in both groups was in response to U46619 (13.5

± 0.3 mN pre-surgery vs 11.6 ± 0.4 mN post-surgery group) and vasopressin (11.5 ± 0.4

mN pre-surgery vs 10.3 ± 0.3 mN post-surgery group), whereas the lowest arterial

contraction in both groups was observed in response to NA (6.5 ± 0.1 mN pre-surgery vs

6.1 ± 0.2 mN post-surgery patients). Similarly, there was no significant difference in the

potency (ECso) of each vasocontractile agent observed between the two groups (Table

31).

In the vasorelaxation response of isolated vessels to BK, Ach, and SNP (Figure

31), our results observed that the average % of vascular relaxation in obese patients

before and after surgery was not statistically significant, though the response to BK and

Ach was slightly more in post-surgery patients compared with those before surgery. In

BK response, the % of vasorelaxation was 37.3 ± 0.8 % in pre-surgery and 40.6 ± 1.1 %

in post-surgery group, P < 0.240, while in Ach response; it was 49.1 ± 0.9 % and 51.8 ±

1.8 % in pre-surgery and post-surgery groups respectively, P < 0.324. The % of

vasorelaxation in response to SNP was 63.1 ± 2.0 % in pre-surgery and 62.7 ± 1.6 % in
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post-surgery group, P < 0.924. The potency of each vasodilator drug was similar between

both groups. These results were also analysed using two-way repeated measures of

ANOYA to find out the effect of surgery on the vascular response. We observed that no

significant difference in the potency and the maximum response of small vessels to NA,

U46619, AngII, and vasopressin was obtained between the two groups. However, the

contractile response to ET-l was statistically significant (P = 0.043).

Table 29 The internal diameter of smaUarteries of obese patient's pre and post- surgery

Pre-surgery tn =4) Post-surgery (n =4)

Noradrenaline
Number 4 4.
1.. 492.7 %53.3 461.5 ± 76.8
Endothelin-l
Number 3 3
1... 489.7 %72.6 522.6 ±35.3
U4
~umber 3 3

458.2 %68.8 517.2±48.4

An2iotensiII
3Number 3

L. 511.4 ± 93.4 538.9 ± 88.3
Vasopressin
~umber 3 3

509.8 ± 73.9 463.8 ± 112.3

~~~Djn 3 3
525.6 %38.5 492.6 ± 74.5

A=holineNum 4 4
1.. 482.3 ± 76.5 504.8 %64.3
Sod1um nitruprosside
~umber 3 3

548.6 ±47.5 511.3 %21.3

Pvalue

0.604

0.837

0.668

0.689

0.885

0.462

0.759

0.357

Number is the number 0 fsmaB arteries that complete the concentration-response curve. to is the normalized
intemal dWneterofarteries. Data are expressed asmean% SEM andthecomparisonis by studentst-test.
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Table 30 The maximum vasoactive response of small arteries in obese patient's pre and
post-surgery

R_ Pre-surgery Post-surgery Pvalue *Pvalue
(n = 4) (n = 4)

Noradrenaline 6.5 ± 0.1mN 6.1 ± 0.2 mN 0.277 0.679
Endothe1in-l 11.5±0.4mN 9.1 ± 0.3 mN 0.114 0.043
U46619 13.5±0.3mN 11.6±0.4mN 0.261 0.457
Angiotensin D 8.5±0.2mN 7.9±0.2mN 0.138 0.084
Vasopressin 11.5± 0.4 mN 10.3 ±0.3 mN 0.371 0.551
Bradykinin 37.3 ± 0.8 % 40.6 ± 1.1 ~/D 0.240 0.143
Acetylcholine 49.1 ± 0.9 % 51.8 ± 1.8% 0.324 0.390
Sodium nitroJlllsside 63.1 ± 2.0 % 62.7 ± 1.6% 0.924 0.301

Abbre\'iations: n,number of patients; R II1II., average maxim\D'!l response of aD patients; %, average percentage
ofrdaxation; Data a.remean ± SEM, and Comparison is bypail'ed t-test (P). and 2-way ANOVA C*P).

Table 31 The potency of all vasoactive agents in small arteries of obese patient's pre and
post-surgery

ECso Pre-surgery Post-surgery Pvaluc
(n = 4) (n=4)

Noradrenaline 7.6 ± 0.1 7.3 ± 0.2 0.251
Endothe1in-l 10.5 ± 0.1 10.2 ± 0.6 0.580
U46619 9.3±OJ 9.1±0.7 0.705
Angiotensin n 8.9 ± 0.1 9.1 ±0.2 0.504
Vasopressin 9.3 ± 0.5 9.7 ± 0.5 0.187
Bradykinin 6.8± 0.2 6.9±0.2 0.767
Acetylcholine 6.9 ± 0.1 6.8 ±O.l 0.647
Sodium ninoprusside 6.9 ± 0.1 7.0±0.1 0.521

Abbreviations: n,number 0fpatients; EC 5~'avelage potency of drug (; expressed as the negative logaritlun of
the ECso).Data are mean±SEM andcomparisonis by paired t-test.
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Figure 31 Concentration-response curves for vasoconstrictors in obese patients (pre-
surgery vs post-surgery)
The differences were tested at multiple dose-response time points for all data. Data are
expressed as mean ± SEM. Comparison is by paired t-test.
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Figure 32 Concentration-response curves for vasodilators in obese patients (pre-surgery vs
post-surgery)
The differences were tested at multiple dose-response time points for all data. Data are
expressed as mean ± SEM. Comparison is by paired t-test.
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4.5.4 Correlation of ex vivo data with in vivo haemodynamic measurements of obese

patients

Haemodynamic measurements including Pulse wave velocity (PWV), systolic

blood pressure (SBP) and diastolic blood pressure (DBP) for each individual (obese

patients pre-surgery and post-surgery) were measured in vivo as described in section

3.3.4. Tables 32 and 33 illustrated the relationship between haemodynamic

measurements in obese patients with the maximum vasoactive response and with the

percentage of maximum contractile-KPSS response respectively. PWV was significantly

correlated with the maximum response of large arteries to U46619 (r = 0.928, P = 0.006)

see Figure 33 B. It is also positively correlated with the maximum response of small

arteries to vasopressin (r = 0.885, P = 0.033) (Figure 33 C). These correlations lost when

the data was expressed as a percentage of maximum KPSS response (Table 33). The

correlation of PWV with other vasoactive agents was not statistically significant.

With regard to the correlation of ex vivo myography data with blood pressure, a

positive correlation was obtained between SBP of obese patients and the response of

large vessels to U46619 (r = 0.785, P = 0.048) (Figure 34 B). However, there was no

significant correlation between DBP and the vascular response of isolated vessels in

obese patients. In obese patients following surgery, our results observed no significant

correlations between ex vivo vasoactive response and in vivo measurement of PWV and

blood pressure, however a number of correlated points were small.

170



Table 32 Correlations of in vivo data with ex vivo vasoactive responses of isolated different-
sized vessels of obese patients to different stimuli.

Vasuaenve vesset sue P\VY SDP DDP
.A2tnts r value Pvalue r value P value r value P value

Noradrenaline S/llal/ 0.000 0..t61 0.150 0.59.t -O..t1.t 0.353Large 0.714 0.136 0.608 0.141 0.018 1.000

Endothelin-l Small 0.11.t 0.661 0.185 0.556 -0,185 0.556Large 0.31.1 0.563 -0.028 1.000 0.028 1.000

U46619 Small 0.46.1 0.301 0.392 0.395 0.607 0.166
Large 0.918 O.006~· 0.785 0.048~ 0.036 0.963

Angiotensin II SIT/all 0.371 0.497 0.3~7 OA97 0.142 0.802Large 0.771 0.102 -0.637 0.175 0.314 0.563

vasopressin Small 0.885 0.033" 0.376 0.497 0.521 0.297Large 0.600 0.350 0.153 0.783 0.500 OA50

Bradykinin ST11a/l -0.357 0.444 -0.418 0.353 -0.321 0.497
Large -0.300 0.683 0,600 0.350 -0.359 0.516

Acetylcholine Small -0.485 0.355 -0.71-1 0,136 -0.231 0.658Large -0.3 71 0.497 -0.3.1 7 1,497 0.600 0.2-11

Sodium nitroprusside Small -0.571 0.100 -0.126 0.781 0.702 0.088Large -0.600 0.2-11 -0.666 0.175 0.405 0.419--~...--.-.-.- ..--.-.-- ..-....-.--.------ ..-.....----~_.__ ...,._ ...._-_ ......._---
Abbreviation: PWV, pulse wave velocity; SBP, systolic blood pressure; OBP, diastolic blood
pressure; r value, correlation coefficient; small, *Correlation is significant at the 0.05 level (2-
tailed), **Correlation is significant at the 0.01 level (2-tailed)
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Table 33 Correlation of in vivo data with the % maximum vasoconstrictor-KPSS induced
response of lID patients

Correlation of PWV, SBP, and DBP with the % maximum vasoconstrictor-KPSS induced
response of isolated different-sized vessels of HD patients to different vasoconstrictors.

Ya!loactln- Ye!l!lrl size PWY SBP DBP
KPSS Agents r \ alur P \ alue r \ ulue p, alue r value P value

Noradrenaline Smail -0..t6~ 0.302 0.200 0.713 -0.200 0.713
L(J,.~e O.31~ 0.563 0.200 0.783 0.200 0.783

Fndorhelin-l Sm(]" -0.071 0.906 0.3 71 0.497 0.5 42 0.297
Large -0.542 0.297 -0.100 0.950 -0.820 0.133

U46U19 SlIIull 0.5 71 0.200 0.600 0.2-11 0.428 0 ... 19
Large 0.607 0.166 0.142 0.802 -0.01& 1.000

Anziotcnsin II Small 0.711 0.136 O.OS5 0.1)11) -O.12S O. Ill)
Large OAR:' O.l":' -0.-100 0.:'10 -0.1 10 0.,"10

Vasopressin Small -0.141 0.801 -0.085 0.919 -0.100 0.713
Large -0.300 0.683 0.200 0.713 0.1-12 0.802

Abbreviation: PWV, pulse wave velocity; SBP, systolic blood pressure; DBP. diastolic blood
pressure; r value, correlation coefficient; s; *Correlation is significant at the 0.05 level (2-tailed),
**Correlation is significant at the 0.01 level (2-tailed).
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Figure 33 Correlation Plots of Pulse Wave Velocity (PWV) of obese patients with the
maximum contractile response (R.u.,.) of smaUvessels (A) and large vessels (B) to U46619.

Panels C and D describe the correlation of PWV with the Rmax of small and large vessels
in responses to vasopressin respectively. Correlation coefficient (r) and P values are
shown in each panel.
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Figure 34 Correlation Plots of systolic blood pressure (SBP) of obese patients with the Rmax

of smaU vessels (A) and large vessels (B) to U46619.

The correlation of SBP with the Rmax of small and large vessels to vasopressin are shown
in curves (C and D) respectively. Correlation coefficient (I) and P values are shown in
each panel.
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4.8 Discussions

Impaired endothelium-dependent function has been demonstrated in isolated

vessels of obese patients (Grassi et al., 2010b, Georgescu et al., 2011). These studies

were mainly focused on the Ach-induced vasorelaxation. This chapter reports interesting

key findings on the effects of obesity on the vascular function of isolated subcutaneous

arteries obtained from obese patients who have undergone bariatric surgery. Firstly,

hyper-responsiveness of these arteries to different vasoconstrictors compared to control.

Secondly, impaired endothelium-dependent vasodilatation in response to Ach and BK

was observed in subcutaneous different-sized arteries of obese patients. Thirdly, there

was no significant improvement in the vascular function in a small group of patients six

months after bariatric surgery.

4.8.1 Isolated arterial function in response to vasoconstrictors

In light of the literature, greater contractile response to NA and ET-1 has been

observed in isolated vessels of diabetic (Hadoke et al., 2000) and uremic (Morris et al.,

2001). However, few data are available on the effect of obesity on the vasocontractility

of isolated vessels. Recent studies showed significant enhancement in the vascular

contraction (in response to NA) of isolated arteries in obese patients and obese patients

with diabetes compared to controls (Georgescu et al., 2011). In contrast, De Ciuceis et al.

observed no significant difference in the vasocontractile response of isolated vessels to

NA between obese, hypertensive obese, and control groups (De Ciuceis et al., 2011).

Therefore, to address that, we extend this principle of increased vascular reactivity in
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isolated vessels of obese patients by testing different-sized arteries to various stimuli

including NA, ET-I, U46619, AngII, and vasopressin.

The current study demonstrates that obesity can produce a significant vascular

hyper-reactivity to different vasoconstrictors. Although, the potency (EC50) of some

vasoconstrictors in small and large vessels was similar between the two groups, isolated

vessels of obese patients were significantly more constricted than that of controls. This

vasoconstriction was highly significant in response to U46619, AngII, and vasopressin

than that observed in NA, ET-l. These findings were similar to the response of isolated

small arteries from HD obtained in chapter 3. This may indicate that isolated vessels

from HD and obese patients are highly responsive to these drugs and / or these agents are

potent vasoconstrictors. However the isolated vessels of obese patients were highly

potent to U46619 and vasopressin. This may indicate that subcutaneous vessels of obese

patients are highly sensitive in response to these agents. Furthermore, the vascular

response was maintained when the data expressed as a percentage of KPSS response,

where significantly higher percentage of vasoconstriction in response to all

vasoconstrictors showed in obese patients compared to controls.

The exact mechanism by which the isolated vessels of obese patients showed

increment vascular contractility has not been known yet, however one proposed reason

could be due to the vascular alteration such as vascular hypertrophy and stiffness.

Recently, alteration in the vascular function in obese patients has been shown to be

accompanied with changes in the vascular structure including increase media thickening

and media-to-Iumen ratio (Grassi et al., 201Ob, De Ciuceis et al., 2011). Moreover, these
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structural changes together with impaired endothelium-dependent function in response to

Ach have also been recently demonstrated in isolated small arteries of obese patients

(Rizzoni et al., 2012), and patients with obesity and metabolic syndrome (Grassi et al.,

201Oa). All these findings might suggest presence of a mechanistic links between

functional abnormalities and structural changes among this risk group. However, the

present findings suggest presence of vascular dysfunction in obese patients characterised

by exaggerated vascular contractility in obesity, which probably could be secondary to an

alteration in the vascular structure that have been demonstrated previously.

Recent data on obesity-related vascular hyper-reactivity of human gluteal

subcutaneous vessels clarified that both anti-contractile function of subcutaneous vessels

and increase in the NO function are reduced among this group (Greenstein et al., 2009).

Other authors suggested that some factors are amplified in obesity; these include insulin

resistance, sympathetic nervous system activity and rennin-angiotensin system activity

(Grassi et al., 2009). These factors responsible for increased the vascular contractility in

obese individuals either through direct arterial response and reduced compensatory

vasodilator response in obese patients (Kataoka et al., 2001) or by increased adrenergic

and sympathetic activity (Landsberg, 2001).

Our data also observed variability in the vasoreactive response in isolated

different-sized vessels of obese patients. Functional heterogeneity in isolated different

range of vessel sizes has been demonstrated previously in diabetic patients with greater

contractile response in large arteries compared with large veins and small arteries

(Hadoke et al., 2000). The author observed no difference in the relaxation response to
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BK and SNP between the three categories of vessels, however large arteries did not

produce an active relaxation to Ach compared with small vessels. In the animal model,

variable contractile response from the highest to the lowest vasocontraction has observed

in large, medium, and small isolated vessels from normal animals using isovolumic

myography method (Lu and Kassab, 2011). However, there are no data published on the

vasoreactive response of isolated different-sized vessels from subcutaneous fats of obese

patients. The results presented in this chapter showed significantly greater contractile

response to all vasoconstrictors in large arteries than that observed in small vessels.

Furthermore, the relaxation response to all vasodilators was significantly more in large

arteries.

4.8.2 Isolated arterial function in response to vasodilators

The current chapter also demonstrated impaired endothelium-dependent function

in obesity characterized by a significant decrease in BK and Ach-induced vasorelaxation

in obese patients. The effect of obesity and obesity-associated factors on the endothelial

function has been reported in several studies investigating isolated small resistance

vessels from subcutaneous fats of obese people. In sever obese humans, both Ach-

induced vasodilatation (Grassi et al., 201Ob) and BK-mediated vasorelaxation (Sato et

al., 2002) in subcutaneous small resistance arteries (diameter ranged between 150 urn -

450 urn) were reduced compared with controls. Moreover, marked reduction in the

vasorelaxation response to Ach in isolated subcutaneous arteries has been observed in

patients with obesity alone and obesity together with diabetes mellitus (Georgescu et al.,

2011). Recently, significant reduction in the vasodilatation response to Ach was observed
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in isolated small subcutaneous vessels of normotensive and hypertensive obese patients

compared to controls (De Ciuceis et al., 2011). In both studies only small vessels were

investigated either in response to Ach alone or Ach compared with SNP. However to

address that issue, the present study was focused to investigate the vascular function in

different-sized vessels by testing them to different vasodilators (BK, Ach, and SNP).

Interestingly, the results presented here show that there is a marked impairment in the

vasorelaxation response of different-sized vessels of obese patients to both endothelium-

dependent vasodilators (BK and Ach), while similar vasorelaxation response to SNP has

observed in both groups. Therefore, impaired endothelial function in obesity does not

only affect large arteries (Levy et al., 2008) it also impairs small vessels as well. Our

findings are in keeping with the recent results of human obesity described previously in

this section and with the results comparing isolated small vessels of severely obese

patients with controls using pressurized myoraphy (Grassi et al., 201Ob), in which

endothelium-dependent function in response to Ach was impaired. Since BK mediated

it's action through stimulation of endothelial cells to release either NO (Michel and

Vanhoutte, 2010) or EDHF (Bellien et al., 2008), Ach also promotes it's action through

stimulation of the endothelium release of EDHF (Garland et al., 2011). Thus impaired

endothelial function could possibly due to a defect in NO or EDHF pathway. On the

other hand, Sivitz et al. observed that in vivo vascular responses to both Ach and

nitroprusside were impaired to approximately the same extent in the forearm vessels of

obese patients (Sivitz et al., 2007), suggesting this defect does not reflect a specific

abnormality in the endothelium-dependent function. However there is a general
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agreement that obese individual alone or with other chronic diseases such as diabetes and

hypertension have impaired endothelium-dependent function.

The association between obesity and vascular dysfunction has been widely

discussed; however, the exact pathophysiological mechanisms by which obesity can

cause impaired endothelial function are still unclear. Many proposed that insulin

resistance can impair NO vasodilator function through reduce the expression of NO

synthase (eNOS) in obese human endothelial cells (Georgescu et al., 2011). Also,

enhanced production of tumour necrosis factor (TNF) in obesity can down-regulate the

expression of eNOS and up-regulate ET-l in human extracellular matrix (Jonk et al.,

2007). Furthermore, presence of some hormonal factors such as insulin resistance

(Gustafson et al., 2007) and increase sympathetic activity (Grassi et al., 2004), might

have a role in obesity-related endothelial dysfunction. Other metabolic mediators in

obesity field might also have multiple adverse effects on the vascular function; these

include leptin, adipokines, TNF-a, and excess release of reactive oxygen species

(Knudson et al., 2008). These factors can impair endothelial function through stimulation

of vascular smooth muscle hypertrophy (Zeidan et al., 2005, Knudson et al., 2008). In

conditions other than obesity, an early data suggested impaired endothelium-dependent

vasodilatation in diabetic (Johnstone et al., 1993) and hypertensive patients (Panza et al.,

1990, Taddei et al., 1993). In our study, however we did not exclude the diabetes from

obese patients, while we exclude it from the control group. Therefore, we can suggest

that either the circulating factors associated with obesity and I or other co-morbidities are

most likely the contributory factor responsible for endothelial dysfunction.
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In obesity, increased in the arterial stiffness and decreased in elasticity as

measured by elevated PWV has been shown to impair endothelium-dependent function

(Arcaro et al., 2(02). In the current study, PWV as a measure of arterial stiffness

positively correlated with a vascular response of isolated different-sized vessels of obese

patients to vasopressin and U46619. Moreover, the present study also observed

significantly positive correlation between SBP of obese patients and the vascular

response to U46619. These findings reflect the aberrant response of isolated vessels of

obese patients which can be characterised by an exaggerated vasocontractile response of

isolated vessels to different stimuli. This change in compliance is partially due to

material alterations in the conduit arteries; however it is also BP and endothelial

dysfunction related.

In this chapter, we also measured the vascular reactivity in obese patients at six

months following bariatric surgery. Limited studies have previously examined the effect

of weight loss on endothelial vasodilatory function in isolated vessels of obese patients.

Recently, De Ciuceis et al. observed improvement of Ach-mediated endothelial

vasodilatation in isolated subcutaneous arteries in a few number (4 of the total 8 recruited

for surgery) of obese patients following bariatric surgery (De Ciuceis et aI., 2011).

However, the current results did not show significant differences in the contractile and

relaxation response of the recruited small number of obese patients before and after

surgery though a trend of higher contractile response has observed in obese patients

before surgery compared with those post-surgery. On the other hand, greater decrease in

the body weight with pronounced improvement in endothelium-dependent function of the
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forearm vessels was observed previously in obese patients following gastric bypass

surgery (Gokce et al., 2(05). Conversely, vascular function in obese patients' brachial

artery assessed by flow-mediated dilatation and nitroglycerin-mediated dilatation did not

change after weight loss (Brook et al., 2004). Our data on isolated vessels did not

demonstrate significant improvement in the endothelium-dependent function after

surgery; however the corresponding in vivo results (data not shown) of the same patients

showed significant improvement in the renal function characterized by marked

improvement in eGFR and reduction in albuminuria.

Although the results provided about the effect of bariatric surgery on the vascular

function did not achieve the statistical significance, particularly improvement in the

endothelium-dependent function, the percentage of vasorelaxation response to BK and

Ach appears more in post-surgery group compared with pre-surgery (but not significant).

This finding might provide some suggestions about the possibility of improved

endothelium-dependent function in obese patients with persistent weight loss induced by

bariatric surgery. Therefore, a large study with long-term follow-up is helpful to confirm

such improvement. Since impaired endothelial function in obese patients is associated

with increased future cardiovascular risks (Gokce et al., 2005), this kind of surgical

intervention might be associated with long-term clinical benefits.

In summary, obesity is associated with marked functional alterations in isolated

subcutaneous arteries of obese patients which are characterized by significant increment

responsiveness of subcutaneous resistance arteries to a wide range of vasoconstrictor

stimuli, and impaired endothelium-dependent vasodilatation in response to BK and Ach.
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Similar findings were observed in chapter 3, in which similar endothelial dysfunction

was observed in HD patients, indicating that vascular endothelium in HD and obese

patients would seem a reasonable target for uremic and obesity-associated factor

respectively. These changes highlights the elevated risks of cardiovascular, cerebral and

renal events reported in these risk groups. Improvement in the renal function and BMI

was observed after decreased in weight induced by bariatric surgery; however we did not

observe a significant improvement in the endothelial function in obese patients at six

month after surgery assessed by the response of isolated small arteries to endothelium-

dependent vasodilators (Ach and BK) investigating a small number of patients.

Therefore, further longer studies with large number of participants are needed to confirm

that.
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Chapter 5
General discussion



Chapter S: General discussion

Previous studies have identified impaired endothelium-dependent vasodilatation

in isolated subcutaneous small vessels of both uremic (Morris et al., 2001, Luksha et al.,

2011, Luksha et al., 2012) and obese patients (Georgescu et al., 2011, De Ciuceis et al.,

2011). Several reports established that ESRD and obesity are associated with vascular

alteration including functional and structural changes (Guerin et al., 2005, Grassi et al.,

201Ob, Rizzoni et al., 2012). Although, the effect of uremic on the vascular function in

isolated subcutaneous resistance arteries was demonstrated in ESRD patients, particularly

those on peritoneal dialysis (PD) and renal transplantation, very little information is

available on the effect of HD on the isolated vascular function. Enhanced vascular

contraction of isolated subcutaneous vessels from uremic patients in response to

vasoconstrictors has been reported before in one study (Morris et al., 2(01), though other

studies have not (Luksha et al., 2011, Luksha et al., 2012). These studies demonstrated

impaired endothelium-dependent vasodilatation in subcutaneous vessels of uremic

patients.

Therefore, the main aim of the current project was to establish whether the

isolated subcutaneous arteries of HD and obese patients show enhanced vascular

response and impaired endothelium-dependent function, and whether the bariatric

surgery improves vascular function. In obesity, exaggerated responses of isolated vessels

to vasoconstrictors (Georgescu et al., 2011), and impaired endothelium-dependent

function (Georgescu et al., 2011, De Ciuceis et al., 2011) have been reported before. We

dissected different sized-vessels, assuming that the vascular response varies depending

184



on the size of the vessel; however lack of data to-date on the effect of uremia and obesity

on the vascular response of isolated different sized vessels. Therefore, we extended the

principle of vascular response in previous work to include investigation of isolated

different-sized vessels from the three groups (HD, obese, and controls) by testing them to

various stimuli.

In the first part of this project (chapter 3), we have examined the vascular

function (using wire myography technique) in isolated different-sized vessels in a group

of homogenous patients starting HD, and correlating the ex vivo myography data with in

vivo haemodynamic measurements of PWV and BP. The major finding in this part of the

project was that HD patients had impaired endothelium-dependent vasodilatation and

enhanced vasocontractility. This vascular enhancement in response to vasopressin was

significantly correlated to the in vivo measurement of PWV. The present data also

observed an inverse correlation of diastolic BP of HD patients with the contractile

response of small arteries to vasopressin, and with the vasorelaxation response of large

arteries to SNP. In light of these findings, we can suggest that PWV as a measure of

arterial stiffness positively correlated with a greater response to vasopressin. This may

reflect the aberrant haemodynamic response of isolated arteries in HD patients which can

be characterised by an exaggerated contractile response and deficient relaxation. The

reason for that could be due to an alteration in the vascular structure including arterial

calcification and thickening of muscular media that have been reported previously in this

risk group of patients (Adragao et al., 2009). These findings, however strengthens an

association between HD and increased conduit arterial stiffness.
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The vascular fmdings in this project are consistent with previous studies

highlighting impaired vasorelaxation response to BK and Ach (both endothelium-

dependent vasodilators) in uremic patients (Morris et al., 2001, Luksha et al., 2011,

Luksha et al., 2012). Similarly, these findings have also been demonstrated in human

with severe obesity (Grassi et al., 201Ob), and in patients with obesity alone or obesity

with chronic diseases such as diabetes mellitus and hypertension (Georgescu et al., 2011,

De Ciuceis et al., 2011). Only small isolated resistance vessels were investigated in all

these studies ex.amined a limited suite of vasoactive stimuli. In order to examine this

further in the current study small and large isolated arteries from the three groups of

participants were directly investigated to different vasoactive agents using wire

myography. This will ex.tend the study research area to a different range of vessel sizes

and a wide range of stimuli.

We provide some major findings on the effect of both HD and obesity on the

vascular function. In chapter 3, we demonstrated significant incremental increase in the

arterial contraction in both small and large arteries of patients who are purely on HO.

Such response has not been observed before in HO patients. However, this finding is in

keeping with uremic study by Morris et al. 2001, at least in part with enhanced response

of small vessels to NA and ET-1 in uremic patients compared to controls (Morris et al.,

2001), but in contrast with the recent study of Luksha et al. 2011, in which uraemia had

no effect on the response of small isolated vessels to NA, ET-I, and AngU (Luksha et al.,

2011). However in both studies, impaired endothelium-dependent vasodilatation was in

agreement with our observation that the vasorelaxation response to Ach and BK was

significantly blunted in HD patients. This will support the concept of an impaired
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endothelial function in the uremic milieu in all late stages of CKD including those on

dialysis. Interestingly, similar results (enhanced vascular contractility and impaired

endothelium-dependent function) were obtained in isolated different-sized vessels of

obese patients (in chapter 4).

In obesity, previous studies that examined the endothelial function in isolated

small vessels were focused on the assessment of Ach-induced relaxation in patients with

obesity alone or associated with chronic diseases. In chapter 4, our data was in keeping

with the results that show enhanced response to NA and ET-l in isolated small vessels

from patients with type 2 diabetes (Hadoke et al., 2000), and in patients either with

obesity alone or obesity with diabetes (Georgescu et al., 2011). However it was in

contrast with the fmdings observed that isolated vascular contractility in response to NA

was not altered in obese and hypertensive obese patients (De Ciuceis et al., 2011). The

vascular response in these studies has not been investigated with regard to different sized

vessels and different stimuli. Therefore, to address this issue, the current project was

examined the vascular function in different -sized vessels by testing them to various

stimuli. In all vessel sizes of obese patients, we showed that the vasocontractile response

to different vasoconstrictors was greatly enhanced and the endothelium-dependent

relaxation, to Ach and BK was significantly decreased. However, in effort to normalize

the data, similar vasocontractile results in all vessel sizes in both HD and obese patients

were observed when these results were expressed as a potentiated maximum KPSS

response.

An interesting finding in this project was that small and large vessels of both HD

and obese patients show highly contract to U46619 and vasopressin more so than the
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other vasoconstrictors, while these vessels contract less to NA and AngII. Furthermore,

large vessels of both groups are highly potent to U46619 and vasopressin, which could

indicate that these vessels are highly sensitive to both vasoconstrictors. In light of these

results, we highlighted presence of endothelial defect in both groups of patients

characterized by failure of all sized vessels to relax in response to Ach and BK, while

they normally relaxed to SNP. One proposed reason for such failure is alteration in the

vascular structure such as vascular hypertrophy, thickening of vascular media, and

arterial stiffness that have been reported recently in HD (Chung et al., 2010) and obesity

(Grassi et al., 201Ob). In obesity, it has also been found that alteration in the vascular

structure can lead to vascular dysfunction appears as increased in the vascular

contractility and reduced endothelium-dependent vasorelaxation (Georgescu et al., 2011).

In regard to this explanation, there may be an association between changes in the

vascular function and alteration in the structure of the vascular wall. This possibly was

emphasized in our HO and obese patients by significant positive correlation between

enhanced vasocontractility in response to vasopressin and PWV (in HO patients) and

significant positive correlations between PWV and SBP with vasocontractile response to

U46619 (in obese patients). These observations may indicate presence of alteration in the

vascular wall structure, particularly conduit vessels, among this risk group of patients.

This correlation may strengthen the link between ESRD and elevated arterial stiffness

(Peralta et al., 2009). However, elevated peripheral vascular resistance and increased

sympathetic activity in ESRO patients could also be enhance the vasoreactivity in this

group of patients. These vascular alterations, particularly in large vessels, may predict

cardiovascular mortality as described previously (Blacher et al., 2002).
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The results in chapters 3 and 4 showed that different sized isolated arteries in both

HD and obese patients fail to relax in response to endothelium-dependent vasodilators

(Ach and BK). This particular impairment in subcutaneous vessels has not been

published before. Previous ex vivo myography studies on uremic and obese patients have

examined only small-sized isolated arteries (Morris et al., 2001, Luksha et al., 2011,

Georgescu et al., 2011). In our HD and obese patients the size of the vessel was ranged

from small to large arteries. In the current project, endothelial dysfunction in the

microvasculature of HD and obesity was further strengthened by significantly blunted

vasorelaxation response to BK and Ach, and preserved response to SNP in all vessel

sizes.

Taken with the results in chapter 3 and chapter 4, we suggest that uremia and

obesity can alter the vascular reactivity of subcutaneous isolated arteries by enhanced

vasocontractility and impaired endothelial function. However, the exact underlying

mechanism of endothelial dysfunction is unclear. Several reports have proposed that

circulating uremic factors in HD patients, as well as obesity-related factors (mentioned in

chapters 3 and 4) may be responsible for these changes. It is also important to note that

ED can occur in other conditions such as hypertension (Taddei and Salvetti, 2002),

diabetes mellitus (van Etten et al., 2002), and cigarette smoking (Heitzer et al., 1996),

and seems to be controversial in hypertension. Our HD patients were non-diabetic, and

they had similar BP with controls. There were no obvious cardiovascular diseases in HD

patients, and the average BMI was normal in HD. Thus in uremic HD, it is more likely

that uremic toxins, and not the existing co-morbidities, are the main factors responsible
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for altered vascular function and ED. Therefore, the present findings may contribute to

the explanation of the relationship between uraemia and vascular alteration.

In obesity, several reports have suggested that impaired NO bioavailability (Jonk

et al., 2(07) and alteration in the vascular structure (Zeidan et al., 2005) are the primary

responsible factors that affect the endothelial function through different

pathophysiological mechanisms involving metabolic and hormonal factors associated

with obesity. These include insulin resistance, adipocytokines, and excess release of

reactive oxygen species. We did not investigate these factors in this study; however

incremental increase in the vasocontractility together with failure in the endothelium-

dependent vasorelaxation in our obese patients may suggest alteration in the vascular

structure or could probably a defect in NO function, where all sized vessels of obese

patients were normally relaxed to NO donor (SNP). However, the exact underlying

mechanism is still unclear. Therefore from the results obtained in chapters 3 and 4, we

can suggest that there are some associated factors linked in HD and obese patients that

alter the vascular function which, in our results, are characterized by vascular hyper-

responsiveness and impaired endothelium-dependent vasodilatation.

In order to further investigate whether the vascular function will be improved in

obese patients following bariatric surgery, small isolated arteries from the same patients

were investigated to the same vasoactive drug after six month follow-up post-surgery.

Improvement in the endothelium-dependent function in obese patients after bariatric

surgery has been observed in few numbers of isolated subcutaneous arteries (De Ciuceis

et al., 2011), as well as, in forearm vessel (Gokce et al., 2(05). This is in contrast to the

in vivo study by Brook et al. in which endothelium-dependent vascular function in
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brachial artery did not change in obese patients following surgery (Brook et al., 2004).

Therefore, the effect of surgery on the vascular function is still controversial. In chapter

4, results of obese patients following bariatric surgery did not significantly differ from

the baseline results. However a noticeable trend of higher contractile response to all

vasoconstrictors was observed in obese patients before surgery compared with the same

patients after surgery. In regard to the vasorelaxation response, our results did not reveal

a significant improvement in the endothelium-dependent function following surgery,

though the percentage relaxation to Ach and BK appeared more in obese patients after

surgery, but this difference was not statistically significant. This may likely indicate that

reduction in the body weight might decrease the vasoreactivity and improve the vascular

relaxation in obesity. However, further large studies with extensive follow-up are needed

to confirm these results.

In regard to the difference in the vasoreactive response of different-sized vessels

in all groups of participants, our data observed that the contractile response varies along

the vascular tree. Previous data on diabetic patients have shown greater contractile

response to NA and ET-l observed more in large arteries than small (Hadoke et al.,

2000). However, the present study extends this principle to include various

vasoconstrictors in different subjects including HD, obese, and controls. In the present

study, large arteries from all groups were significantly contract to all vasoconstrictors

than small vessels. Moreover, in our obese patients, large arteries significantly relax to all

vasodilators more so than small arteries. While in HD group, similar results were

obtained in response to BK and SNP but not Ach. These findings have not been reported
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before in uremic and obese patients; though Hadok et al. conversely observed similarity

in the response of isolated different-sized vessels of diabetic patients to BK and SNP

(Hadoke et al., 2000). Therefore, these observations might indicate presence of

functional heterogeneity between small and large resistance arteries obtained from

subcutaneous fat of different human tissue.

The focus of this project is investigating ex vivo vascular function in a high-risk

group of subjects; HD and obese patients, and the conclusion from chapters 3 and 4 is

that there is enhanced vascular contractility and impaired endothelium-dependent

function. These findings suggesting that vascular endothelium in HD and obesity would

seem a reasonable target for uremic and obesity-associated factor respectively. The exact

underlying mechanism of impaired endothelial function in both groups is complex and

yet unclear. It might be that there is impaired NO function or could probably be an

alteration in the vascular structure, which has been reported previously in uraemia and

obesity milieu, but with different associated factors involved in the complicated

pathophysiological mechanisms.

5.1 Limitations and future work

The key aspect of this thesis was to investigate ex vivo vascular function in high-

risk and selective patients, HO patients and severely obese individuals who had

undergone bariatric surgery. The results in this project provide interesting findings on the

effects of HO and obesity in isolated vascular function despite a small number of

participants, which may limit the greater applicability of the results. The reason for

recruiting a small number of HD patients is the nature of subcutaneous fat sampling with
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extra incision required in this highly sensitive group of patients. Together with minor

complications of the procedure such as minor bleeding and scar formation. All of which

could result to either refuse the patients or withdraw them from the participation in the

study. However, a large number of arterial segments from different-sized vessels were

recovered from a homogenous group of incident dialysis patients, and a large number of

control participants were included in the study. Since the mechanism of endothelial

dysfunction in uraemia and obesity is multi-factorial, several reports have suggested that

impaired NO function through elevated ADMA (Kielstein et al., 2004),

hyperhomocystinaemia (Mallamaci et al., 2(02) and excessive oxidative stress (Pawlak

et al., 2004) play crucial roles in the mechanism of endothelial dysfunction in uraemia.

Also, insulin resistance (Poirier et al., 2(06), adipocytokines (Knudson et al., 2008) and

excess reactive oxygen species (Silver et al., 2007) may be responsible for the same

mechanism in obesity. However, we did not measure these circulating indices that could

support our results.

Although we demonstrated an interesting positive correlation between the

contractile response of small and large vessels in response to vasopressin with the in vivo

measurements of PWV, a large number of patients had an additional association between

in vivo hemodynamic measurements and the ex vivo functional findings. These would

allow us to raise new possible mechanisms of vascular dysfunction, thus necessitating

further study of the effect of vasopressin response on vascular function. Arterial function

could have been affected either by the biopsy procedure or use of local anaesthetics,

however, all arteries that completed the experiments were tested for their ability to
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contract at least 5 mN either to a high KPSS or U46619, and the endothelium function

was assessed using BK.

As a result of the relatively few number of obese patients evaluated post

operatively, our results did not provide enough information about the effect of surgery on

vascular function, which may also limit the discussion about the vascular response

following surgery in obese patients. The reason for recruiting only small numbers of

post-surgery obese patients could also be due to the nature of an extra incision needed to

collect subcutaneous fat samples in patients who already had major surgery six months

prior. Although these results are derived from a small HD and obese sample size, a large

number of control participants were included in the study, and statistical significance was

achieved between the patient and control groups. Endothelial dysfunction in ESRD and

obesity are likely to occur in the earliest stages of the disease, thus, further studies are

necessary to identify ways of preventing such a defect; this includes haemodynamic and

biochemical investigation.

Despite these limitations, our study demonstrated that HO and obesity can alter

the vascular function in isolated different-sized vessels through impaired endothelium-

dependent vasodilatation and enhanced vasocontractility. The future aim would be to

extend the myography study to further investigate the role of endothelium-dependent

function through abrasion of the endothelial layer lining the isolated vessels using human

hair. Also, by using NO synthase inhibitors, such as NG-nitro-L-arginine methyl ester

(L-NAME), we could investigate the role of endothelium-derived NO. Moreover, the

future work would be to extend the same investigations into these risk groups correlating

ex vivo vascular response with biochemical measures of circulating factors that might be
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responsible for endothelial dysfunction in HO and obese patients. A larger study would

further investigate the association between the circulating markers and functional

responses in the isolated vessels would be helpful in finding new insights into the

underlying mechanisms. A morphological examination of isolated vessels, including

measurement of vascular wall thickness and media-to-lumen ratio to determine their

histological features, should be considered as well.

5.2 Conclusion

The overall aim of this thesis was to investigate the ex vivo vascular function in

HO and obese patients using wire myography. This project provides new insights into the

effect of HO and obesity on human resistance artery function. We show that HO and

obesity affects endothelial function via incremental increase in the vascular contractile

response to various stimuli and blunted dilatation response to endothelium-dependent

agonists, while preserved endothelium-independent function in isolated different-sized

vessels. The detailed mechanistic responses underlying these changes are still unclear.

However, the failure of arterial relaxation is mediated by endothelial dysfunction. The

association between HO and obesity with endothelial dysfunction in isolated arteries

would be expected to accelerate the cardiovascular risk which impacts on cardiovascular

morbidity and mortality. These findings further highlight the general state of endothelial

dysfunction in both ESRD including those on dialysis and obesity with or without

associated hypertension and diabetes mellitus. We therefore propose that development of

cardiovascular disease in such risk patients is mediated, at least partly, by functional

alterations at the level of microcirculation. An ex vivo vascular function of isolated
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vessels from HO and obese patients were correlated to in vivo assessment of arterial

function characterised by an exaggerated vasocontractile response and deficient

relaxation, which in turn, strengthens an association between these risk groups and

increased conduit arterial stiffness. Proper weight loss following bariatric surgery may

improve the renal function and BMI; however, these are not accompanied by the

improvement in the endothelial function though further large studies with longer time

follow-up or increased the patient's number are necessary to establish the effect of

surgery on improvement of endothelial function.
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7 Appendix

7.1 Protocol for myograph calibration ( Small jaws for resistance vessels)

• Turn on myograph and turn on the heat

• Add 3-5 ml of distilled water to each chamber, and wait until 37°C

• Attach a wire to the 'transducer' jaw. Make sure the wire is on tight and there is

no slack - it should look like below:

Aim to place the

balance arm in this

• Open a chart file

• On channel I, place the calibration bridge over the transducer jaw. Make sure

that the tip of the balance arm is in the space between the jaw on the inside of the

wire as shown in the diagram (think about the fact that the arm will press against

the wire causing the change in tension to be recorded on the transducer)

• On channel I, open 'input amplifier'

• Turn off the unit conversion (so amplifier is reading in V)
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• On the myograph, so to the calibration screen and select the channel you want t

calibrate by pressing F2.

• It will read 'No force on Force l' - press F2 to continue and now read the 'Y'

value on the chart file - should be around O.OOOY (no force should = no V)

• Next it will read '2 gram on Force l' - place the 2 g weight on the transdu er

arm. When the reading is stable, press F2: cal and read the 'V' value on the chart

file.

• Now go back to the Units Conversion section in 'Input Amplifier' and enter the

value in Y obtained at 0 force and the value obtained at with the weight - we

measure in mN, which is 9.81mN. Make sure the units conversion is on bef re

leaving the screen.

9.!24 mN

"I~ Input!

Point!: (!)I~ J.I~___ __J rri'4

Polnt2: (!)[?~ _..J.~.8C J mN

2V

.:J2V

Unts".

Untts: ( rri'4

Dedmal placeS! !3 :~
Set units for:

I

(0) New data only

... JI

.:J
so

1-._---1 ~
o

,.- ·'40

30

20
10

M

o

.:Jzv-so

OK Cancel II AppIv I [ ~
t •

• The channel is now calibrated!
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• Repeat for the other 3 transducers

7.2 Normalization of arteries by wire myography

• Turn on lab chart version 5 ensuring it is calibrated. Important to calibrate it

before conducting the experiment if the myography has not been calibrated in the

past two weeks.

• Mount the vessels as described before

• Once the vessels are mounted start the chart reader running

• From the top tool bar select DMT and normalization settings. Enter the following

information below

Eye piece calibration

Target pressure 13.3 KPA

ICI/IC 100 0.9
Online averaging time

Delay time

2 seconds

60 seconds

• Then select DMT and channell, 2, 3 and so on for the desired amount of

channels you wish to normalise. Once selected in put the following data

Tissue end point I and 3

Wire diameter 40J..lm

• Bring the jaws together until the reading is at a negative number >30 mN is fine
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• Allow the first reading to be taken then move the jaw slightly apart so that the

number on the myography screen is as close to zero as possible.

• Allow the normalization to begin, add tension giving the vessel around 2 mN

tensions. Let the software time the normalization for 60 seconds. Once this has

happened you will need to take note of the micrometer screw reading and add this

to the programme.

• Keep adding tension until a pressure of 13.3 KPA has been reached. When this

occurs then take the final micrometer reading and input it into the programme.

• The programme will then return the corresponding micrometer position that will

give 13.3 KPA, the programme will also return the inner circumference of the

vessel. Using this circumference it is thus possible to work out the diameter by

dividing the circumference by 1t.
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