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Abstract

My thesis attempts to examine the determinants of the cross-sectional stock returns.
It mainly consists of three topics on the relation between consumption, stock liquidity,
financial constraints, and expected returns.

The first is “Transaction costs, liquidity risk, and the CCAPM”. I examine how
the consumption-based capital asset pricing model (CCAPM) performs with trans-
action costs and liquidity risk adjustments. Using the effective trading costs of Has-
brouck (2009) and the high-low spread estimates of Corwin and Schultz (2012) as
proxies for transaction costs, I find that a liquidity risk-adjusted CCAPM explains
a larger fraction of the cross-sectional return variations than that of the traditional
CCAPM. I show that my liquidity risk-adjusted model gives more plausible risk aver-
sion estimates than the CCAPM.

The second is “The Liquidity risk adjusted Epstein-Zin model”. In this chapter,
I propose a liquidity risk adjustment to the Epstein and Zin (1989, 1991) model and
assess the adjusted model’s performance against the traditional consumption pricing

models. 1 show that liquidity is a significant risk factor and it adds considerable



explanatory power to the model. The liquidity-adjusted model produces both a higher
cross-sectional R? and a smaller Hansen and Jagannathan (1997) distance than the
traditional CCAPM and the original Epstein-Zin model. Overall, I show that liquidity
is both a priced factor and a key contributor to the adjusted Epstein-Zin model’s
goodness-of-fit.

The third is “Financial constraints, stock liquidity, and stock returns”. I examine
the different impacts of stock liquidity on the stock returns across financially con-
strained and unconstrained firms due to different levels of information asymmetry.
My results show that financial constraints are highly correlated with liquidity and
liquidity risk. More importantly, stock liquidity is a significant determinant of the
cross-sectional stock returns for financially constrained firms, but it is insignificant
for unconstrained firms. In addition, stock liquidity is a main driver of the differ-
ent relations between financial constraints and stock returns. The liquidity premium
accounts for the positive constraint premium, but it cannot be subsumed by the

constraint premium.
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CHAPTER 1

Introduction

1.1 Research questions

Stock liquidity is currently the subject of much research interest. In general, liquidity
is related to transaction costs, thin or infrequent trading, and the impact of trading
on price. There are several empirical measures to measure stock liquidity. I review
these commonly used empirical measures in chapter 2. Many early studies concentrate
on the importance of liquidity. Recent studies examine the role of liquidity risk in
asset pricing. Liquidity risk is related to the difficulties of liquidating a security at a
fair price. In Pastor and Stambaugh (2003), Liu (2006), and Sadka (2006), liquidity
risk is defined as the covariance between stock return and market liquidity. Acharya
and Pedersen (2005) study three forms of liquidity risks: commonality in liquidity
of Chordia, Roll, and Subrahmanyam (2000), stock return sensitivity to the market
liquidity of Pastor and Stambaugh (2003), and stock liquidity sensitivity to market

returns.
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While previous studies focus on the empirical measures of liquidity, recent studies
also investigate the implications of liquidity in asset pricing. Early studies such as
Amihud and Mendelson (1986), Brennan and Subrahmanyam (1996), and Amihud
(2002) point out that investors require higher expected returns to hold less liquidity
assets. Recent studies show that augmenting the traditional CAPM (Sharpe (1964)
and Lintner (1965)) or the Fama-French three-factor model (Fama and French (1993))
with liquidity factors improves the performance of the CAPM and the Fama—French
three-factor model (Pastor and Stambaugh (2003), Liu (2006), and Sadka (2006)).
Note that these papers do not account for consumption growth and financial con-
straints. Financial constraints are generally related to the firms’ inability to access to
low-cost external finance to fund investment because of financial frictions (Lamont,
Polk, and Saa-Requejo (2001)). Many studies develop several empirical proxies to
measure financial constraints. I review the various financial constraints measures in
chapter 2. Moreover, recent studies focus on the asset pricing implications of financial
constraints (e.g., Lamont, Polk, and Saa-Requejo (2001), Whited and Wu (2006), and
Livdan, Sapriza, and Zhang (2009)).

In this thesis, I attempt to understand the effects of consumption, stock liquidity,

financial constraints and I ask the following research questions:

(i)  How does the traditional CCAPM (Rubinstein (1976), Lucas (1978), and Bree-
den (1979)) perform after adjusting for transaction costs and liquidity risk?

Can a liquidity-adjusted CCAPM account for a higher fraction of expected
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cross-sectional returns and produce a more reasonable estimate of risk aversion

than that of the traditional CCAPM?

(i) How does the Epstein and Zin (1989, 1991) model perform with liquidity risk
adjustment? Does a liquidity factor make a significant contribution to a model’s
goodness-of-fit? Is the performance of a liquidity-augmented Epstein and Zin

model better than the traditional CCAPM and Epstein and Zin model?

(iii) Is stock liquidity related to financial constraints? What is the variation of lig-
uidity for the financially constrained firms and unconstrained firms? What is
the variation of liquidity premium for the constrained firms and unconstrained
firms? Do the constrained firms have higher liquidity risk than the uncon-

strained firms?

1.2 Research motivation and contributions

This thesis is motivated by recent studies in asset pricing that highlight the impor-
tant role of liquidity in investors’ consumption and investment decisions. For example,
Parker and Julliard (2005) argue that concerns of liquidity are perhaps imperative
components neglected by consumption risk alone. Liu (2010) and Chien and Lustig
(2010) suggest that liquidity risk may originate from consumption and solvency con-
straints. Naes, Skjeltorp, and Odegaard (2011) find that aggregate stock liquidity has
significant ability to predict consumption growth. Lynch and Tan (2011) show that

transaction costs can produce a first-order effect when they incorporate return pre-
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dictability, wealth shocks, and state-dependent costs into the traditional consuming
and investing problems.

Following this lead, I extend the traditional CCAPM by taking into account the
liquidity effect. I decompose security risk into consumption risk (the covariance be-
tween returns and consumption growth) and liquidity risk (the covariance between
transaction costs and consumption growth). I find that transaction costs, consump-
tion risk, and liquidity risk jointly affect expected stock returns. Moreover, I show
that the three channels of liquidity risk of Acharya and Pedersen (2005) can be cap-
tured by the covariance between transaction costs and consumption growth. The
liquidity-adjusted CCAPM adds, contingent on specifications, up to 77% additional
explanatory power to the cross-sectional variation of expected returns, compared to
the traditional CCAPM. I also find that the estimated risk aversion from the liquidity-
adjusted model is about 10. This is much smaller than the corresponding risk aversion
estimated under the CCAPM. Therefore, my results help to understand the equity
premium puzzle. Further, I find that the patterns of estimated liquidity betas con-
ditional on the economic states provide a liquidity-risk based explanation for the
countercyclical value premium.

While existing studies make adjustment to the CAPM or the Fama-French three-
factor model with liquidity risk and show that models with liquidity adjustment
reveal significantly increased explanatory power (e.g., Pastor and Stambaugh (2003),

Acharya and Pedersen (2005), Liu (2006), and Sadka (2006), and Bekaert, Harvey,
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and Lundblad (2007)), there are few studies incorporating liquidity risk into con-
sumption based pricing models. I extend the Epstein and Zin (1989, 1991) model
by incorporating the liquidity effect. I show that, in my liquidity-augmented model,
the expected stock return is related to the consumption risk, market risk, and liquid-
ity risk. Kan, Robotti, and Shanken (2013) argue that examining whether a factor
makes an incremental contribution to a multi-factor model’s performance is different
from testing whether the factor is priced. I show that the liquidity factor contributes
significantly to the model’s goodness-of-fit. In addition, in terms of both the cross-
sectional R? and HJ distance (Hansen and Jagannathan (1997)), the results show
that my model performs better than the traditional CCAPM and the Epstein-Zin
model based on the equality tests of cross-sectional R? (Kan, Robotti, and Shanken
(2013)) and HJ distance (Kan and Robotti (2009)).

While I have investigated the effects of stock liquidity on investors’ consumption
and investment decisions, I then explore whether financial constraints and stock lig-
uidity are correlated to each other. A growing literature shows that the expected
returns are positively related to stock illiquidity and liquidity risk.! Earlier studies
show that illiquidity may arise from information asymmetry (e.g., Kyle (1985)) or un-
favorable economic states (e.g., Chordia, Sarkar, and Subrahmanyam (2005)). More
recently, Li and Zhang (2010) and Lam and Wei (2011) suggest that investment fric-

tions from firms’ side and transaction frictions from investors’ side tend to be related

! Representative papers include Amihud and Mendelson (1986), Datar, Naik, and Radcliffe (1998), Ami-
hud (2002), Pastor and Stambaugh (2003), Acharya and Pedersen (2005), Liu (2006), and Sadka (2006).
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to each other.

Following these streams of literature, I examine the relation between financial
constraints, stock liquidity, and expected returns under the framework of investment-
based and consumption-based asset pricing.? In my empirical analysis, I show that
the effects of stock liquidity on the cross-sectional returns are significant for finan-
cially constrained firms but insignificant for unconstrained firms. Further, I find that
the mixed relation between financial constraints and stock returns are associated
with stock liquidity and different constraint classifications. The illiquidity premium
accounts for the financial constraint premium, but cannot be subsumed by the con-
straint premium. These findings help to shed light on the mixed relation between

financial constraints and stock returns in existing studies.

1.3 Thesis structure

The remainder of the thesis proceeds as follows. In Chapter 2, I review the classic
asset pricing models, which include the traditional CAPM, the traditional CCAPM,
other advanced consumption-based asset pricing models, and the investment-based
asset pricing model. In Chapter 3, I discuss the basic research methodologies. In
Chapter 4, I discuss the performance of the consumption-based capital asset pricing
model (CCAPM) with transaction costs and liquidity risk adjustments. I attempt

to compare the cross-sectional R? and the implied risk aversion coefficient of my

2See Rubinstein (1976), Lucas (1978), and Breeden (1979) for the consumption-based asset pricing
model, and Cochrane (1991), Cochrane (1996), and Zhang (2005) for the investment-based asset pricing
model.
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liquidity-adjusted model to those the of traditional CCAPM. In Chapter 5, I analyze
the role of liquidity risk in a model’s performance. I attempt to investigate whether
liquidity risk is priced and whether the liquidity risk factor makes an incremental con-
tribution to the model’s goodness-of-fit. In Chapter 6, I link financial constraints and
stock liquidity using the framework of the investment-based asset pricing model and
the consumption-based asset pricing model. I then examine the interaction between
financial constraints, stock liquidity, and expected returns. In Chapter 7, I conclude

the thesis.



CHAPTER 2

Literature Review

2.1 Traditional CAPM

The traditional CAPM of Sharpe (1964) and Lintner (1965) provides foundations for
financial research, e.g., the capital budgets, performance evaluation of managers, and
creation of financial indices. It links asset returns with market risk, the covariance of
individual asset returns and market returns. The traditional CAPM can be developed
by maximizing expected utility of wealth. Specifically, investors maximize U(Wr) =
U(RWj), where Wy is the end-of-period wealth, W} is the beginning-of-period wealth,
and R is a random gross return on an asset. When W) is fixed, Wr is determined
by R. Then the utility function, U(Wr), can be simply expressed as U(R). I expand

U(R) in a Taylor series around the mean of R (E[R)).
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b 2 (R— B[R U™ (E[R)

n!

where U'(), U"(), and U™() are the first, second, and n'* derivatives of the utility
function.

When the return is normally distributed, I can have E [(R — E[R])n] = 0 for any

L3
2

n€?2n+1and E[(R—E[R)"] = (7{/”2)! (:Var[R])

for any n € 2n. Hence, I can

simplify the expected utility as:

Eq. (2.2) indicates that the expectation of utility is determined only by the mean
and variance of the return.

Given the expected returns and the matrix of covariances of returns for n indi-
vidual assets, Merton (1972) provides an analytical solution to the set of portfolio
weights that minimizes the variance of the portfolio for each feasible portfolio ex-
pected return. The expected returns (R,) and variance (07) of the portfolio has the

form:
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=
I
8\
RS

(2.3)

and

o) =uw'Vw, (2.4)

where R = (Ry, Ry, ..., R,)" is a n x 1 vector of the expected returns of the n assets,
w = (w1, ws, ...,wy)" is a n x 1 vector of the portfolio weights, and V' assumed to be of
full rank is the n X n covariance matrix of the returns on the n assets. The portfolio
weights sum to one, i.e., w'e = 1, where e is a n x 1 vector of one.

According to Merton (1972), the optimal weight of n risky asset and a risk-free

asset that maximize the expected utility has the form:

w* = AV (R — Rye), (2.5)

where \ = %, a=RV%le=eVIR ¢=RV™R 6§ =eV'le and Ry is
the risk-free rate. The amount that investors invest in the risk-free asset is 1 — ¢/w*.

For the portfolio that has a zero position in the risk-free asset, I can have ¢'w* = 1.
Using Eq. (2.5), I can have A = (o — dR;)~!. According to Merton (1972), Sharpe

(1964), and Lintner (1965), I can write the weight of efficient frontier portfolio (w™)

as:

10
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W™= (a—6R;)"'WV R — Rye). (2.6)

Define oj; as the n x 1 vector of covariance of the efficient frontier portfolio with

each of the n risky assets. Using Eq. (2.6), I can have

oy =Vw" = (a—0R;) (R — Rye). (2.7)

Further, I can write the variance of the efficient frontier portfolio (o, = W™ Vw™)

as:

Om — (a — (SRf)_l(Rm — Rf), (28)

where R,, = w™R is the expected return on the efficient frontier portfolio.

Using Eqs. (2.7) and (2.8), I can have

R — Rfe = B(Rm - Rf), (29)
where 3 = ZM is the n x 1 vector. Eq. (2.9) is the traditional CAPM of Sharpe (1964)

and Lintner (1965).

2.2 Traditional CCAPM

Breeden (1979), Lucas (1978), and Rubinstein (1976) develop a closed-form relation

between asset returns and consumption, i.e., the traditional consumption-based cap-

11
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ital asset pricing model (CCAPM). Following these studies, I assume that there exits
a representative consumer, i.e., all individuals are identical with respect to utility
and initial wealth, as in Lucas (1978). I develop a model based on the representative
consumer’s multiperiod consumption and investment decision model of Samuelson
(1969) and Merton (1969). The decision interval is a discrete time period and each
period is of unit length. The representative consumer maximizes her lifetime utility
functions with respect to consumption and a terminal bequest function, and chooses
to invest in n risky assets and a risk-free asset.

Let the representative consumer’s time ¢ portfolio weight of the risky asset ¢ be
wit (i =1,2,...,n), the weight of the risk-free asset is then 1 — >"  w;;. Since the
representative consumer is exposed to the market where she gains the net returns,

her wealth at t + 1 is

Wivr = (W — Cy) |:Rf,t+1 + Zwi,t(Ri,t—f—l — Rf,t+1)]7 (2.10)

i=1
where C; is consumption at ¢, W, is wealth at ¢, R; ;41 is the return of risky asset i
from ¢ to t + 1, and Ry 41 is the risk-free rate from ¢ to ¢ + 1.

I assume that the representative consumer has a time-additive, monotonically in-
creasing, and strictly concave von Neumann-Morgenstern utility function for lifetime
consumption. In addition, the utility function is time separable, which means that
utility at time ¢ depends merely on the consuming quantity at ¢ rather than the con-

suming quantity before or after ¢. 1 define I(W};) as the life-time utility function on

12
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wealth, which satisfies the following equation:

T—1
I(Wy,t) =  max F, > U(Ct) + BWr,T) |, (2.11)
5y Wi sy VS, —

where U(C5) is the utility from consumption at time s, Cs, B(Wr) is the ending
bequest function that is monotonically increasing and strictly concave, and Ej[ | is
the expectation conditional on information at time t.

Eq. (2.11) indicates that the representative consumer makes decisions with vari-
ables Cs and w;s (1 = 1,2,...,n) so as to maximize the expected lifetime utility.
The optimization problem of Eq. (2.11) is subject to the constraint condition of Eq.
(2.10). Using stochastic dynamic programming, I can write the first-order conditions

(FOC) of the optimal choice problem as:

UC(Ct*-i—la L+ 1)
E R =1 2.12
[ A el IO (2.12)
and
UC(C;+lvt + 1)
E R; = 1. 2.13
[ e Ry (2.13)

where Uq(CY) is the partial derivative with respect to the representative consumer’s

optimal consumption. From Eq. (2.12) and Eq. (2.13), I have,

UC(Ct*—H)
E, | ————=(R; - R =0. 2.14
t UC(C';“) ( 41 f,t+1) ( )
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Suppose that the representative consumer’s consumption utility is the constant
relative risk aversion (CRRA) function. That is, U(C) = %, where v is the coef-

ficient of constant relative risk aversion. When I aggregate individual consumptions,

the first-order condition yields the following model:

E (1 = yAC41)(Ri 141 — Ry141)] = 0, (2.15)

According to Cochrane (2005), the beta representation of Eq. (2.15) has the form:

E[Rit1 — Ry ] = 1 — ,}/EV[ACH_J 200(Biter, A1) (2.16)
 War(ACy) B,

N 1-— ’yE(ACt+1)

cov(R;, +41,ACt41)
Var(ACi4+1)

where ACy,; is the aggregate consumption growth from ¢ to ¢t+1 and 3, . =
Eq. (2.16) is the traditional CCAPM.

The traditional CCAPM provides a central insight into financial economics. It
shows that assets with higher exposure to consumption risk command a higher risk
premium. However, empirical tests on the performance of the CCAPM are disap-
pointing (Hansen and Singleton (1982), Hansen and Singleton (1983), Breeden, Gib-
bons, and Litzenberger (1989), Campbell (1996) and Cochrane (1996)). Despite these
problems, recent consumption-based research sheds new light on the application of

the CCAPM. I elaborate some typical advanced models in the following sub-sections.
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2.3 Recursive utility function

Epstein and Zin (1989), Epstein and Zin (1991), and Wei (1989) study a recursive
form of utility function, which allows the disentanglement of risk aversion and the
intertemporal elasticity of substitution. Specifically, this function is a recursive ag-
gregation over current consumption and a certainty equivalent of future utility, which

has the following form:

U = [(1— B)C 7 + BYy(Upyy) 7] 77 (2.17)

1

Vi(Uisr) = (E[Ua) ")) 77, (2.18)

where C} is the consumption at date ¢, Uz is the continuation value of the future
consumption plan, 3 denotes the subjective discount factor, 6 is the coefficient of

% is the elasticity of intertemporal substitution (EIS)

relative risk aversion (RRA),
in consumption. When 6 = p, the recursive utility function will be the traditional
constant relative risk aversion (CRRA) utility function. I illustrate the implications
of the coefficient of relative risk aversion (RRA), 0, and the elasticity of intertemporal
substitution (EIS) in consumption, %, below.

Let D;; be the dividend of security ¢, P;; be the price, and S; be the holding

shares. The beginning period wealth of a representative consumer at time ¢ is:

15
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Wt - (Dt + Pt)St (219)

According to the definition of recursive utility function, the optimal dynamic

programming is:

1
1=p
1-0

I(Wy, D) = max {(1 - 5>Ctlip +OE [[179<Wt+1’ Dt+1)} } B (2.20)

According to the homogeneity of utility (Epstein and Zin (1989), Epstein and Zin

(1991), and Wei (1989)), I can write I(W;, D) as:

[(W,D) = A(D)W. (2.21)

The holding proportion of equity 7 is w; = { };?ISZ The raw return is defined as

Ry = Dz’t“P—J;P"‘t“. Thus, the optimal dynamic programming can be rewritten in the

following form:

1
1—p 1—p
1i—

A(D,)W, = max {(1 —0)C} P+ 8(W, — C) P E " [A(Dpen)(Y wiR)] ””}
(2.22)

Accordingly, the portfolio choice is

16



CHAPTER 2. LITERATURE REVIEW

fh¢ = Max Etl%e <[A(Dt+1)(z wiRit)]1_9> . (2.23)

Eq. (2.22) can be further rewritten in the form:

A(DYW, = max {(1 — §)CL " + 6(W, — C)Ppl 177 (2.24)

Suppose R;; is independently and identically distributed over time. The optimal
utility function will only depend on initial wealth, typically, I = AW with A being

the constant item. The portfolio choice can be rewritten as:

y = maXEtl%" [(Z wiRit)l_e}, (2.25)

Eq. (2.25) takes the equivalent form as the constant relative risk aversion (CRRA)
utility function. Therefore, the relative risk aversion of the recursive utility function
is 6.

The intertemporal marginal rate of substitution (IMRS) of the recursive preference

is

(2.26)

Let F(Cy, Vi(Uy1)) = Up; Fy and Fy be the partial differentiation to C} and

Vi(Uis1), respectively. Then, F; and F; can be written as:

17
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ou,

Fl (Cty ‘/t(Ut—i-l)) = %
t

— (1= 0)C " (1= )OI + Vi(Upr)) 7 (227)

= (1 -0)C UL
FQ (Ot, V;(Uﬂ_l)) — 5W(Ut+1)_pUtp. (228)

Partially differentiating the recursive utility function of Eq. (2.17), I can have:

oU,
OC1

OVi(Uis1) y OUy 41
OU;+1 0C144

= F5 (Cy, Vi(Upsr)) %

= F5 (Cy, Vi(Upt1)) X (E[Utﬂ)l*e])m_l X U,;rel X I (Cis1, Vig1(Ug2))

(2.29)

Substituting Eq. (2.27) and Eq. (2.28) into Eq. (2.29), the intertemporal marginal

rate of substitution (IMRS) of the recursive preference can be written as:

Cipa
Cy

_ 5%<Ct+1>_p ( Ut+1 )p_e
Ct ‘/;(Ut-i-l)

According to Eq. (2.30), I can have the following elasticity of intertemporal sub-

Mt,t+1 = B(

) (VilU) ™ ¢ (B[U) 1757 x U x Uf,,)
(2.30)

stitution:
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dIn Ct/0t+1

OEIS =
d ln Mt,t+1

(2.31)

=
Based on the intertemporal marginal rate of substitution (IMRS) of the recur-

Uit
Vi(Ut41)

p—0
sive preference in Eq. (2.30), < ) is the additional risk factor compared

p—0
to the traditional CAPM. However, it is challenging to estimate (w((]ltJil)) , since

p—0
<Vt((](t]ﬁ1)> is a function of unobservable continuation value of future consumption
and V; is also an expectation of a nonlinear function. In Epstein and Zin (1991), they

address this by defining a return to the aggregate wealth, Ry, = Wit Thus, I can

Wi—C;*
have
1-6 Ot-H < Ut+1 >p_0
M, = g1 p
t,t+1 B ( Ct ) W(Ut-{-l)
p—0
1 =1
B ety (LA (2.32)
C, Q(Cé_tl)—p

where Ry ;41 is the return to wealth from date ¢ to date ¢ + 1. The asset pricing
implication of Epstein-Zin model is a two factor model that mixes the traditional
CAPM (Sharpe (1964) and Lintner (1965)) with the traditional CCAPM (Rubinstein

(1976), Lucas (1978), and Breeden (1979)).
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2.4 Campbell and Cochrane’s external habit model

Campbell and Cochrane (1999) argue that consumers tend to form habits of higher
or lower consumption. Consumers may feel uncomfortable when consumption de-
clines to certain level after economic booms. However, consumers may feel satisfied
when they can have the same level of consumption after economic recessions. In the
Campbell and Cochrane (1999) model, the representative consumer maximizes her
lifetime utility with respect to the difference between consumption and habit level.

The individual’s habit level is determined by everyone else’s current and preceding

consumption rather than her own current and preceding consumption.! The power
utility function of the representative individual has the form:
oo
(Cy — X0 -1
U=F ¢ , 2.33

where X, is the level of habit and [ is the subjective time discount factor.

The stochastic discount factor (SDF) in Campbell and Cochrane (1999) is

Ci41 Sem
c, S

M1 = B( ), (2.34)

where S; = Cf%tX‘ denotes the surplus consumption ratio. The aggregate consumption

is assumed to follow an independent and identically distributed lognormal process:

LIf the individual’s habit level relies on her own current and preceding consumption, this habit model
is referred to as the internal habit model. (see Constantinides (1990) for example.)
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IN(ACy1) = g+ vy, v ~ i.i.dN (0, 0%), (2.35)

where AC; denotes the aggregate consumption growth. Since the habit level moves
slowly to consumption, the log surplus consumption ratio is assumed to follow the

autoregressive process:

In(Sit1) = (1 = ¢)In(S) + @ln(Sy) + A(In(St))vVit1, (2.36)

where A(In(S;)) is defined as the sensitivity function, measuring the percentage change
in the surplus consumption ratio arising out of the innovation to output growth.
The coefficient of relative risk aversion (RRA) in Campbell and Cochrane (1999)
is
_GUcc _ B

=, 2.
0o S, (2.37)

The Hansen-Jagannathan (Hansen and Jagannathan (1991)) bound of the external

habit model in Campbell and Cochrane (1999) has the form:

Elr; —ry] |
oy

k3

< _GUcc _ Po.

(2.38)

where o, denotes the standard deviation of ¢;.
Therefore, high coefficient of relative risk aversion (RRA) can generate high equity

risk premium. The coefficient of relative risk aversion (RRA) is high when S; and

21



CHAPTER 2. LITERATURE REVIEW

C; are low, i.e., when economies are in downturns. The relation as shown in Eq.
(2.38) predicts that the equity risk premium increases during economic troughs in
line with the data observed in the postwar U.S. stock market. In addition, even
though consumption volatility is constant, i.e., constant o., the equation can still
produce a time-varying equity risk premium as the surplus consumption ratio, S;
varies over time.

Before I proceed to the next subsection, it is worth noting that the recursive prefer-
ence and habit level are two developments in terms of utility function in the traditional
CCAPM. In particular, Epstein and Zin (1989) develop another time inseparable and
recursive utility function characterized by clearly separating the coefficient of the risk
aversion and the elasticity of substitution; Constantinides (1990) and Campbell and
Cochrane (1999) relax the time separable utility function and establish utility func-
tions characterized as habit persistence. However, it seems that there exists evidence
against consumption-based models in general rather than against particular utility
functions, particular specifications of temporal nonseparabilities such as habit per-
sistence or durability, and particular choices of consumption data and data-handling

procedures (Campbell and Cochrane (2000)).

2.5 Long run risk

Bansal and Yaron (2004) show that a small persistent growth rate component and

fluctuating volatility in the time-series process of consumption and dividend can jus-
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tify the large risk premium and high sharp ratios in the U.S. data. They assume that
a representative consumer has recursive preferences as in Epstein and Zin (1989), Ep-
stein and Zin (1991) and Wei (1989). Recalling Eq. (2.32), I can write the logarithm
of the intertemporal marginal rate of substitution (IMRS) as:

1—-0 0 —

- plog(ﬁ) P

-0

1
m = 1ln(AC't+1) + T In(Rw). (2.39)

AC},1 denotes the growth rate of aggregate consumption. In the model of Bansal
and Yaron (2004), the dynamic of the aggregate consumption and dividend growth

rates In(ACy 1) and In(AD;4q) has the form:

Tir1 = 0Tt + PeOt€ri1 (2.40)

IN(ACi1) = e + 4 + 04t (2.41)
In(ADyy1) = pig + ¢xp + Qo (2.42)
071 = 0" +v(o} — 0%) + oW (2.43)
€ty Mty Ups1, Wiy ~ N.i.i.d(0.1) (2.44)

The persistent component z;, the conditional expectation of consumption growth,
is associated with long run risk. Comovement of any asset with innovation in the
intertemporal marginal rate of substitution (IMRS) m determines the risk of the
asset. Bansal and Yaron (2004) prove analytically that the dynamic of the aggregate

consumption and dividend growth rates contributes two respective risks, namely,
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the fluctuations in the expectation of consumption growth and the fluctuations in

consumption volatility, to the equity premium.

2.6 Other advances in the traditional CCAPM

The empirical research of the CCAPM provides disappointing evidence against the
well interpreted models, e.g., Hansen and Singleton (1983), Grossman, Melino and
Shiller (1987), Campbell (1996), and Cochrane (1996). These studies show that
the explanatory power of the CCAPM to the cross-sectional return variations is no
better or even worse than that of the traditional CAPM (Lettau and Ludvigson
(2001)). Lettau and Ludvigson (2001) extend the traditional CCAPM, using a scaled
variable. Specifically, they show that when the CCAPM is scaled by the consumption-
to-wealth ratio, cay;, the scaled consumption-based model (Lettau and Ludvigson
(2001)) performs just as well as the Fama-French three factors in explaining the
25 Fama-French portfolios. The scaled conditional variable, cay,, is a cointegrating
residual for log consumption, log asset wealth, and log labor income. The stochastic

discount factor (SDF) in Lettau and Ludvigson (2001) has the following form:

M1 =In(Ay) + bz (2.45)

In(Ay) = ag+ a1z (2.46)

by = by + b1z (2.47)

2 = cayy = In(Cy) — agln(Ar) + oy In(Y7), (2.48)
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where A; denotes nonhuman or asset wealth, Y; denotes labor income, a, and «
are cointegrating parameters. Lettau and Ludvigson (2001) show that a conditional
three-factor consumption-based model with CAY;, consumption growth, and their
interaction explains a large proportion of the expected return variations across the
Fama-French 25 value-weighted size and book-to-market portfolios.

Parker and Julliard (2005) focus on long run risk to explore the explanatory
power of consumption CAPM in capturing different expected returns across assets.
They find that despite the fact that contemporaneous consumption risk explains few
differences in expected returns of 25 Fama-French portfolios, the model with the
ultimate consumption risk at an interval of 11 quarters explains a large fraction of
these differences. The stochastic discount factor (SDF) of the ultimate consumption

risk model (Parker and Julliard (2005)) has the form:

u'(Ciiits)
Mtﬁ-l - R{-i—l,t-i—l—f—s (ﬁ) ) (2-49)

where S denotes the time interval. The reason why the long-run consumption risk
matters is that consumers adjust consumption slowly to news, in particularly, due to
slow adjustment of labor supply and housing stock that are related to consumption.
Bansal and Yaron (2004), Parker and Julliard (2005) and Jagannathan and Wang
(2007) show that measuring consumption risk on the basis of longer horizons is able
to explain cross-sectional variation in expected returns.

Yogo (2006) and Piazzesi, Schneider, and Tuzel (2007) specify an intraperiod con-
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stant elasticity of substitution (CES) form of utility function to take other categories
of consumption into account. Specifically, Yogo (2006) considers durable consump-
tion and Piazzesi, Schneider, and Tuzel (2007) consider housing services. The period
utility function is the power utility function consistent with the traditional CCAPM.

Specifically, the period utility functions of a representative individual are

1-60
(e, x) = UC ffjf) , (2.50)
and
1-6
U(C, X) = % (2.51)

where 6 is the coefficient of relative risk aversion (RRA); C' denotes nondurables
and services in Yogo (2006) and nonhousing consumption in Piazzesi, Schneider,
and Tuzel (2007); DUR denotes durable consumption in Yogo (2006) DU R denotes
durable consumption as in Yogo (2006); H denotes housing services as in Piazzesi,
Schneider, and Tuzel (2007).

The intraperiod utility function has the constant elasticity of substitution (CES)

form:

o(C,X) = (1= 8)CP + 6XP)r , (2.52)

where 6 € (0,1) and l%p is the substitution between C' and X. The marginal utility
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of C'is given by

1-0—p
p

Uo = (1—8)CP~ 1 ((1—8§)CP +5XP) v "
(2.53)

= (1-8C"* <1 + 5((%)’) - 1)>

The stochastic discount factor (SDF) is given by

Cr\_, (()éf—ﬁ)p —1) =
Mt,t—i—l = 0( ) < ((%)p _ 1) > ) (254)

1—0—p

Xet1yp_q P
where (Ef%))) is the additional risk factor compared with the traditional
[en
CCAPM. Lustig and Nieuwerburgh (2005), Yogo (2006) and Piazzesi, Schneider,
and Tuzel (2007) emphasize the important role of durable consumption or housing

consumption in asset pricing.

2.7 Investment-based asset pricing

While the consumption-based asset pricing models link expected returns to the in-
tertemporal rate of substitution of consumers, Cochrane (1991), Cochrane (1996),
and Zhang (2005) show that expected returns can also be related to the intertem-
poral rate of transformation of firms from the Q-theory of investment. The firm i

maximizes the expected value of future dividends, which has the following form:
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Vie = By

Z Mt,tJrsDtJrs] , (2.55)

5=0
where Vj; is the value of firm 7 at time ¢, Ej;; [ ] is the expectation function that is
conditional on information at time ¢, M, is the stochastic discount factor from
time t to t 4+ s, and D, is the dividend of the firm at time ¢ + s.

The dividend of firm i (Dy) is given by Dy = II(Ky, Xi) — ©(1y, Kyi), where
II( Ky, Xit) is the profit function (Ilx > 0), K is the capital stock at time t, X
is a vector of exogenous shocks, ®(I;, K;;) is the adjustment cost function, (®; > 0
dy < 0, and ®;; > 0), and [;; is the investment during time ¢. The capital stock
accumulation is given by K41 = Ilit + (1 — 9;) K, where § is capital depreciation
rate.

The firm ¢ maximizes cum-dividend value subject to D;; = T1( Ky, X)) — (L, Kiy)
and K1 = lit + (1 — 0;) K. According to Cochrane (1991), Cochrane (1996), and
Zhang (2005), the investment first-order condition is Ej; [M;41Ri++1] = 1. The

investment return from ¢ to ¢t + 1, Ri{ ++1+ 18 given by

g (K1, Xigr1) — P (L1, Kipgpr) + (1= 0)Pr (L g1, Kipg)
Or(Liy, Kit) '

Rl = (2.56)

Eq. (2.56) shows that the investment return is the ratio of the marginal benefit

of investment at time ¢ + 1 to the marginal cost of investment at time ¢. Specifically,
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O/ (11, Kit) is the marginal cost of investment. IIx (K41, Xiiy1) is the marginal
operating profit. ® (141, K;41) is how an unit capital affects the adjustment cost.
(1 — 6;)®r(L; 441, Kit4+1) is the expected value of marginal profits, after netting out
depreciation.

According to Cochrane (1991), Cochrane (1996), and Zhang (2005), the ex-dividend

firm value, P, has the following form:

Py = Vi — (K, Xit) + O(Liy, Kir). (2.57)

Further, the stock return of i is

P; D;
Fipir T Pt RI,... (2.58)

Rt = 2 i
it

Eq. (2.58) shows that stock return is equal to investment return and lower invest-

ment rate is associated with higher returns.

2.7.1 The production-based model with financial constraints

Cochrane (1991) first develops the production-based asset pricing model to predict
a contemporaneous relation between asset returns and investment returns. Gomes,
Yaron, and Zhang (2006) extend this model by including financial constraints. Ac-
cording to Gomes, Yaron, and Zhang (2006) and Whited and Wu (2006), the invest-

ment return from ¢ to ¢ + 1, RZ{ t+1, 1s given by
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I
Ri,t+1

(1 + pipr ) M r (Ki g1, Xigr1) — Pr (L1, Kipr) + (1= 0) @1 (L 41, K 1)
(L4 pi0)@r(Lig, Kip) ’

(2.59)

where p;; is the Lagrange multiplier that can be interpreted as the shadow cost of
external capital. K, is the capital stock at time ¢, X ; is a vector of exogenous shocks,
I;; is the investment during time ¢, and 6 is the capital depreciation rate. ®;(I;, K;+)
captures the marginal cost of investment at time ¢, where ®; > 0, & < 0, and $;; >
0), g (K41, Xi 1) measures the marginal operating profits from the capital at time

t+ 1, and (1 — 0;)®r(L; 41, K +41) measures the expected present value of marginal

14-p 641

profits net of depreciation at time t+1. — v

represents the relative shadow cost of
external capital, which reflects the role of the financial frictions. When 4; ;11 = i ¢,
financing frictions have no impact on the investment return R’. Eq. (2.59) indicates
that the investment return is the product of the relative shadow cost of external
finance and the ratio of the marginal benefit of investment at time ¢+ 1 to the margin
cost of investment at time ¢. In addition, it implies that financial constraints can only
affect investment return if they are time-varying, where pi; ;41 # pt;:. According to
Gomes, Yaron, and Zhang (2006), it is the cyclical variation in the shadow price of

external funds that affects returns. Higher financial constraints and lower investment

rate are associated with higher returns.
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2.7.2 The asymmetric information asset pricing model

Fazzari, Hubbard, and Petersen (1988) and Morellec and Schiirhoff (2011) find that
financially constrained firms have higher information asymmetry than unconstrained
firms. This motives us to explore the relation between information asymmetry, lig-
uidity, and stock prices. Diamond and Verrecchia (1991) use disclosure of private
information to public as the proxy of changing information asymmetry and examine
the effects of reducing information asymmetry on liquidity and price of a stock. They

model the relation between information and liquidity as follows:

29 (62/6 + )M\ + 1)
Bz 2N+ 7)0e + r(4N2[0 + €] + 0¢)

> 0, (2.60)

where A is the Kyle’s (1985) A as a measurement of the price impact of trading a
security. It is a ratio of the amount of the insider’s private information to the amount
of noise trading, capturing the adverse selection costs of insiders due to information-
based trading. Higher A implies that a security is less liquid. ¢ and £ measure the
degree of information asymmetry between the informed trader and the market. When
0 or € increase, information asymmetry increases and leads to a high price impact.
and ¢ satisfy ¥ = d+¢&, where £ has a normal distribution with zero mean and variance
€. 7 is the disclosure of the informed trader’s private information to public. r is the
aggregate market maker’s asymptotic risk aversion. Equation (2.60) indicates that
the price impact depends on the disclosure of private information §. The increased

disclosure of private information through a decrease in § or € reduces the price impact
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A and makes the market more liquid.
Diamond and Verrecchia (1991) further model the relation between the price of

the security and liquidity as follows:

P 1
% = —5Q(A + PN+ 5r) T2 (TAR? + 230707 4 35Ard + 35r5) < 0, (2.61)

where P, is the transaction price of the market marker at date 1. )y is the total
number of shares outstanding of the firm (Qq > 0).? Equation (2.61) suggests that the
improved liquidity causes institutional investors to take larger positions to buy shares
if a firm discloses more private information to reduce information asymmetry. The
increased demand pushes the current price up, which reduces the required expected
return of the firm and thereby reduces the cost of capital, under the condition of
holding aggregate market maker risk aversion r fixed. It also implies that the firm
can get better off when it sells shares to the public from the improved future liquidity
due to the increased current prices.

Given the relations between financial constraints and stock returns, information
asymmetry, stock liquidity, and stock prices in equations (2.59), (2.60), and (2.61),
I expect that stock liquidity is highly related to financial constraints. Specifically,
firms that are more constrained tend to have higher information asymmetry. As a

result, they have large price impact and low current price, and thus high expected

2The Diamond and Verrecchia (1991) model is a three-period model with date 0, 1, and 2.
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returns. On the contrary, firms that are unconstrained tend to have low information

asymmetry. Therefore, they have small price impact and low expected returns.

2.8 Stock liquidity and stock returns

Liu (2006) highlights four dimensions of liquidity: trading costs, trading quantity,
trading speed, and the impact of trading on price. I review the studies of liquidity
measures based on the four dimensions.

(i) The transaction costs dimension. Amihud and Mendelson (1986) show that
the quoted bid-ask spread is a significant determinant of stock returns. Stocks with
higher quoted bid-ask spread are less liquid. Specifically, using the NYSE stocks from
1961 to 1980, Amihud and Mendelson (1986) sort stocks into seven liquidity groups
based on the quoted bid-ask spread and then within each liquidity group they sort
stocks into seven market beta groups based on the beta of traditional CAPM. They
find that there is a significant relation between the quoted bid-ask spread and average
returns after controlling for market risk.

An expanding literature also finds that lower liquidity is related to higher expected
returns while using a number of different proxies of liquidity. Lesmond, Ogden, and
Trzcinka (1999) use the proportion of daily zero returns to measure liquidity. Their
model is based on the framework of Glosten and Milgrom (1985) and Kyle (1985).
Using the NYSE/AMEX sample stocks from 1963-1990, they find that the proportion

of daily zero returns is related to both the quoted bid-ask spread and Roll’s (1984)
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measure of the effective spread (Lesmond, Ogden, and Trzcinka (1999)). Bekaert,
Harvey, and Lundblad (2007) adopt the proportion of zero returns as a liquidity
measure.

Hasbrouck (2009) develops the effective trading costs measure based on the Roll
(1984) model. Roll’s measure involves the calculation of the negative serial correlation
in returns. Since the correlation of returns is often positive, the effective trading costs
measure minimizes this problem. Using the NYSE/AMEX/NASDAQ sample stocks
from 1926-2006, Hasbrouck (2009) find that stocks with higher transaction costs have
higher average returns, which is robust after controlling for size.

Corwin and Schultz (2012) introduce another bid-ask spread estimate based on
daily high and low prices. They show that the bid-ask spread estimates of Corwin
and Schultz (2012) perform better than other known transaction costs estimates such
as the Roll (1984) measure and the Lesmond, Ogden, and Trzcinka (1999) measure
according to the cross-sectional correlation with TAQ effective spreads. In their asset
pricing tests, they find that the abnormal illiquid-minus-liquid portfolio returns sorted
by their bid-ask spread estimate are significantly positive.

(ii) The trading quantity dimension. Datar, Naik, and Radcliffe (1998) introduce
the turnover measure, which is defined as the ratio of the number of shares traded
to the number of shares outstanding. Stocks with higher turnover are more liquid.
Datar, Naik, and Radcliffe (1998) use the turnover measure to test the model pre-

diction of Amihud and Mendelson (1986), i.e., higher expected returns are related to
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lower turnover. Using the NYSE sample stocks from 1962 to 1991, Datar, Naik, and
Radcliffe (1998) show that turnover is an important determinant of the cross-sectional
returns after controlling for known factors such as size, book-to-market ratio, and firm
risk. Stocks with higher turnover are related to lower expected returns.

Brennan, Chordia, and Subrahmanyam (1998) propose the dollar volume mea-
sure, which is defined as the number of shares traded times the closing price. Stocks
that have higher dollar volume are more liquid than those that have lower dollar vol-
ume. Using the NYSE/AMEX/NASDAQ sample stocks from 1966 to 1995, Brennan,
Chordia, and Subrahmanyam (1998) show that stocks with higher dollar volume are
significantly related to lower expected returns.

(iii) The price impact dimension. Amihud (2002) proposes the price impact mea-
sure, which is defined as the daily absolute-return-to-dollar-volume ratio. Stocks
with higher price impact are less liquid. The construction of this measure is based on
the model of Kyle (1985). Using the NYSE sample stocks from 1964 to 1997, Ami-
hud (2002) shows that stocks with higher price impact have higher expected returns.
Goyenko, Holden, and Trzcinka (2009) show that this liquidity proxy relates closely
to price impact measures estimated from high frequency TAQ and Rule 605 data.
Stocks with higher RV are less liquid.

(iv) The trading speed dimension. Liu (2006) proposes the trading discontinuity
measure, LM, defined at the end of each month as the standardized turnover-adjusted

number of zero daily trading volumes over the prior 12 months. Specifically, Liu’s
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measure has the following form:

1/(12-month turnover)

LM = | Number of zero daily volumes in prior 12 months +
Deflator

(2.62)
21 % 12

X ===
NoTD

where 12-month turnover is the sum of daily turnover (in percentage) over the prior

12 months, NoTD is the total number of exchange trading days in the market over the

prior 12 months, and Deflator is chosen such that 0 < 1/(12-month turnover) < 1 for
Deflator

all sample stocks. The factor 21 x 12/ NoTD standardizes the number of one-month
trading days in the market to 21, which makes the LM values comparable over time.

The LM proxy measures the probability of no trading. Large LM (i.e., high infre-
quent trading) indicates slow trading speed (or low liquidity). Liu (2006) show that
both the traditional CCAPM of Sharpe (1964) and Lintner (1965) and the Fama-
French (1993) three-factor model have difficulties in accounting for the liquidity pre-
mium based on the trading discontinuity measure.

Beginning with Pastor and Stambaugh (2003), a growing literature highlights the
importance of liquidity risk in asset pricing. Pastor and Stambaugh (2003) measure
liquidity as the price reversal caused by the temporary price impact of trading volume.
The aggregate liquidity is calculated as the innovations of market liquidity (i.e., the
average liquidity across individual stocks). They define liquidity risk as the covariance

of stock returns and the innovations of market liquidity.
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Acharya and Pedersen (2005) develop a liquidity-adjusted CAPM based on the
framework of the traditional CAPM of Sharpe (1964) and Lintner (1965). They show
that the expected return is determined by the expected liquidity costs, market risk
as in the CAPM, and liquidity risk. They also identify three sources of liquidity risk,
namely, the covariance of stock returns and market liquidity costs, the covariance of
stock liquidity costs and market liquidity costs, and the covariance of stock liquidity
costs and market returns. Among these different channels of liquidity risk, they find
that the covariance of stock liquidity costs and market returns is a more important
determinant of the cross-sectional expected returns than other sources of liquidity
risk.

Liu (2006) introduces the mimicking liquidity factor based on his trading dis-
continuity measure. The construction of the mimicking liquidity factor is similar to
that of the size and book-to-market factors as in the Fama-French (1993) three-factor
model. Then liquidity risk is defined as the covariance between stock returns and the
mimicking liquidity factor. He also shows that a liquidity-augmented CAPM that
has the market factor and the liquidity factor can subsume the liquidity premium
based on the trading discontinuity measure. However, the traditional CAPM and the
Fama-French three-factor model have difficulties in explaining the liquidity premium.

Sadka (2006) develops the aggregate liquidity innovation that measures liquid-
ity using the components of the price impact model of Glosten and Harris (1988).

He uses the constructed liquidity factor to explain momentum and post-earnings-
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announcement drift anomalies. He shows that a two-factor model with market risk
and liquidity risk explains a larger fraction of cross-sectional expected returns than

does the traditional CAPM.

2.9 Financial constraints and stock returns

While a large literature develops different proxies to measure the degree of financial
constraints, there is a lack of consensus on the best choices of empirical proxies
for financial constraints. Therefore, I summarize a number of financial constraints
measures that are commonly used in the literature.

(i) Gertler and Gilchrist (1994) and Gilchrist and Himmelberg (1995) use asset
size, which is defined as the book values of total assets (Compustat annual item AT),
to measure financial constraints. These studies argue that firms that have smaller
asset size appear to be younger and less known to investors than those that have
larger asset size. Therefore, the effects of financial market imperfections on smaller
firms will be larger than those on larger firms.

(ii) Whited (1992), among others, argues that firms that have bond ratings are
less constrained than firms that have no bond ratings. The bond rating is commonly
defined as a dummy variable, which is equal to one for those firms that never have
their Standard & Poor’s (S&P) bond rated in the sample period and have positive
public debt. The dummy variable is equal to zero for those that have been rated

during the sample period and have positive public debt.
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(iii) Calomiris, Himmelberg, and Wachtel (1995), among others, adopt the pres-
ence of commercial paper ratings to measure financial constraints. The commercial
paper rating is commonly defined as a dummy variable, which is equal to one for
those firms that never have their Standard & Poor’s (S&P) commercial paper rated
in the sample period and have positive public debt. The dummy variable is equal to
zero for those that have been rated during the sample period and have positive public
debt.

(iv) Fazzari, Hubbard, and Petersen (1988), among other, use the payout ratio
as a proxy for financial constraints. The payout ratio is defined as the ratio of total
distributions including dividends for preferred stocks (Compustat annual item DVP),
dividends from common stocks (item DVC), and share repurchases (item PRSTKC)
divided by operating income before depreciation (item OIBDP). Firms with lower
payout ratios are more financially constrained.

It is worth noting that asset size, bond rating, commercial paper rating, and
payout ratio measures use one firm characteristic to proxy financial constraints.
These four financial constraints classifications are widely used in the literature, e.g.,
Almeida, Campello, and Weisbach (2004), Almeida and Campello (2007), and Hahn
and Lee (2009). The following financial constraints measures consist of a number of
firm characteristics.

(v) Lamont, Polk, and Saa-Requejo (2001) use the ordered logit regression coeffi-

cients from Kaplan and Zingales (1997) to construct the KZ index. Specifically, the
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KZ index is a combination of five firm characteristics, which is calculated based on

the following equation:

K7 = —1.001909 * CashFlow/K + 0.2826389 x Tobin'sQ
+ 3.139193 * Debt /TotalCapital — 39.3678 % Dividends /K (2.63)

— 1.314759 * Cash/ K,

where CashFlow/K is the ratio of cash flow (Compustat annual item I B + DP) to
net property, plant, and equipment (item PPENT'). Tobin's @ is the ratio of market
value of assets to book value of assets. The market value is calculated as the book
value of asset (item AT') plus CRSP December market equity less the sum of the book
value of common equity (item C' EQ) and balance sheet deferred taxes (item T X DB).
Debt/TotalCapital is the ratio of debt (item DLTT + DLC) to total capital (item
DLTT + DLC+ SEQ). Dividends/K is the ratio of dividends (item DV C + DV P)
to net property, plant, and equipment (item PPENT'). Cash/K is the ratio of cash
and short-term investments (item C'H E) to net property, plant, and equipment (item
PPENT). Firms with higher KZ index are more financially constrained. Lamont,
Polk, and Saa-Requejo (2001) find that financial constraints are negatively correlated
with average stock returns based on the KZ index.

(iv) Whited and Wu (2006) develop the WW index based on the generalized

method of moments (GMM) estimates of the investment Euler equation. Specifically,
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the WW index can be calculated according to the following equation:

WW = —0.091 « CF — 0.062 * DIV POS + 0.021 * TLTD
(2.64)

—0.044 %« LNTA+0.102 % ISG — 0.035 % SG,

where C'F' is the ratio of cash flow (Compustat annual item /B + DP) to total assets
(item AT), DIV POS is an indicator that takes the value of one if the firm pays
cash dividends (item DV P 4+ DVC), TLTD is the ratio of long-term debt (item
DLTT + DLC) to total assets, LNTA is natural log of total assets, ISG is the
firm’s three-digit industry sales growth, and SG is firm sales (item SALFE) growth.
Firms with higher WW index are more financially constrained. In contrast to the
findings of Lamont, Polk, and Saa-Requejo (2001), Whited and Wu (2006) find that
financial constraints are positively correlated with average stock returns based on
the WW index. Using the KZ index as the financial constraints measure, Lamont,
Polk, and Saa-Requejo (2001) find that financially constrained firms have lower stock
returns than financially unconstrained firms. They argue that the negative premium
is associated with low levels of dividends and low earnings. Moreover, the negative
premium is consistent with previous studies. These studies show that zero-dividend
firms earn negative returns and firms with lower cash flow and earnings earn lower re-
turns. Using the WW index, Whited and Wu (2006) find that financially constrained

firms have higher stock returns than financially unconstrained firms. They argue that
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firms tend to use collateral to borrow capital because of the agency costs. Therefore,
the value of collateral is associated with the firms’ financing ability. When the value
of collateral decreases, financially constrained firms will reduce investment more than
unconstrained firms. Therefore, financially constrained firms tend to be more risky
than unconstrained firms. The positive relation between financial constraints and
stock returns is also consistent with the model implications of Gomes, Yaron, and
Zhang (2006) and Whited and Wu (2006).

(vii) Hadlock and Pierce (2010) cast doubt on the validity of the KZ index to
measure the degree of firms’ financial constraints. They find firms’ size and age are
important determinants of financial constraints and introduce the SA index. Specifi-

cally, the SA index has the following form:

SA = (—0.737  Size) + (0.043 x Size?) — (0.040 x Age), (2.65)

where Size is the log of inflation-adjusted book assets, and Age is the number of
years the firm is listed with a non-missing stock price on Compustat. To calculate
this index, Size is winsorized at the log of $4.5 billion, and Age is winsorized at 37
years. Firms with higher SA index are more financially constrained.

There is a growing literature that investigates the variation of firms’ characteris-
tics across the financially unconstrained firms and financially constrained firms. For
example, Hahn and Lee (2009) show that the effects of debt capacity on the cross-

sectional average returns are only significant for the financially constrained firms. Li
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and Zhang (2010) and Lam and Wei (2011) show that the investment anomalies are
closely related to financial constraints. In general, the investment effect (i.e., low in-
vestment rate is related to high average returns) is more pronounced in the financially
constrained groups than in the financially unconstrained groups. Li (2011) examines
the interaction between financial constraints, research and development expense, and
the cross-sectional returns. The results show that the impact of research and devel-
opment expense on the cross-sectional returns is only significant for the financially
constrained firms. Moreover, the positive relation between financial constraints and
cross-sectional returns is mainly significant for research and development intensive

firms.

2.10 Conclusion

In this chapter, I review the traditional CAPM, consumption-based asset pricing mod-
els, and investment-based asset pricing models. These models provide the theoretical
supports to the following chapters. Specifically, the consumption-based asset pricing
models are the theoretical framework of the liquidity-adjusted models I develop in
chapters 4 and 5. I also review various liquidity measures and the relation between
these liquidity measures and stock returns. Further, I review the empirical proxies of
financial constraints. I use these liquidity measures and financial constraints measures

extensively in the following empirical studies.
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Methodology

Following the literature in asset pricing (e.g., Fama and French (2008)), I use two main
methodologies in my study. One is the portfolio sorts (e.g., Fama-French (1992, 1993))
and the other is the cross-sectional regression (e.g., Fama and MacBeth (1973)).
This chapter reviews the primary asset pricing methodologies. 1 discuss the detailed
applications of different research methodologies in the other chapters based on the

specific research questions.

3.1 Portfolio sorts

There is a large body of literature that uses the methodology of portfolio sorts. In this
thesis, I mainly use it to test asset pricing models and to explore the relation between
firm characteristics, stock liquidity, and stock returns. Fama and French (2008) argue
that the portfolio sorts method can simply show the variation of average returns

related to certain variables. It provides a double check from cross-section regression
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as the inferences from cross-section regression might be dominated by a few extreme
performance stocks. The basic research design is to sort stocks into portfolios based
on variables such as market value, book-to-market ratio, liquidity measures or other
firm characteristics (e.g., financial constraints). The holding period after portfolio
formation can be 1 month, 3 months, 6 months, or 12 months.

I can form portfolios based on the equally-weighted method and value-weighted
method. For the equally-weighted method, I assume that I invest equal amount in all
stocks. For the value-weighted method, I assume that the amount of money invested
in stock ¢ is related to the ratio of the market value of stock ¢ to the total market
value of the portfolio.

The basic portfolio return calculation method is the rebalance method (e.g., Fama-
French (1992, 1993)). Take a 12-month holding period value-weighted portfolio with a
beginning month of July at year ¢, for example. The portfolio weights in each month of
the holding period are assumed to be the weights at the end of June of year ¢. Sorting
stocks based on the market capitalization and book-to-market ratios, Fama-French
(1992, 1993) show that firms with smaller market capitalization have higher stock
returns than those with larger market capitalization and firms with higher book-to-
market ratios have higher stock returns than those with lower book-to-market ratios.
However, Liu and Strong (2008) show that the rebalance method can lead to spurious
statistical inference especially for small and loser stocks and propose a decomposed

buy-and-hold method to calculate portfolio returns. For example, they show that
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the size effect is significant when the rebalance method is used. By contrast, it is
insignificant when the buy-and-hold method is used. When I use quarterly data in
chapter 4, I hold the formed portfolios for one quarter. According to Liu and Strong
(2008), this portfolio formation strategy can obtain the same portfolio returns when
I use either the rebalance method or the buy-and-hold method. Specifically, the
buy-and-hold formula to calculate returns for an equally-weighted portfolio is given

by

LN
Pl = N;R“ (3.1)

N T—1

@ =3 [T (1+ Ry)

Pr = ZN =l ! RiT (32)
=1

T—1
j=111i=1 (1 + Rﬁ)

where R;; is the return of stock 4 in the first month of portfolio formation (month 1);
%4 is the equally-weighted portfolio return in month 1; R;; is the return of stock 7 in
month ¢; R3Y is the equally-weighted portfolio return in month ¢; 7 = 2,3, ...,m. It
is worth noting that the portfolio returns calculated by the buy-and-hold method in
the first holding period are the same as those calculated by the rebalancing method.
However, the returns in the following holding period are the weighted average. The
weight is related to the previous holding-period returns.
The buy-and-hold formula to calculate returns for a value-weighted portfolio is

given by
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where MV is the market value.

3.2 Abnormal returns

After portfolio formation, a large body of literature further investigates the abnormal
returns. That is, portfolio returns are regressed against traded risk factors. The
common asset pricing models in this setting are the traditional capital asset pricing
model (CAPM) of Sharpe (1964) and Lintner (1965) and the three-factor model (FF3)
of Fama and French (1993). The abnormal returns are the regression intercepts based

on these two models. Specifically, they are estimated from the following regressions:

Riy — Rpy = g+ Bimkt Skt + €it; (3.4)

Ri,t - Rf,t = Oyt + 6i,mkt.fmk:t,t + Bi,smbfsmb,t + ﬁi,hmlfhml,t + Eits (35)

where R; ; — Ry, is the raw return of portfolio ¢ in excess of the risk-free rate, fyx:¢ is
the excess return of the value-weighted NYSE/AMEX/NASDAQ index (market fac-
tor), fsme. is the size factor, and fi, is the book-to-market factor. Fama and French
(1993) show that the size factor, femnps, is related to firms’ market value. The traded

factor, fsmpt, is constructed as the return difference between buying portfolios with
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large market capitalizations and selling portfolios with small market capitalizations.
Similarly, Fama and French (1993) show that the book-to-market factor, fumis, is
related to firms’ book-to-market ratios. The traded factor, fumi, is the return differ-
ence between buying portfolios with low book-to-market ratios and selling portfolios

with high book-to-market ratios.

3.3 Cross-sectional regressions

Fama and French (2008) argue that the cross-section regression approach provides
more accurate estimates for many explanatory variables than the portfolio sorts ap-
proach. Further, Bazdrech, Belo, and Lin (2013) argue that some issues arising from
the portfolio sorts, e.g., the specification of breakpoints and the selection of the num-
ber of portfolios, may influence the analysis. Thus, in most asset pricing studies,
both the portfolio sorts method and cross-section regression method are used. In this
section, I review the Fama-MacBeth (1973) cross-sectional regression method. One

basic model of the Fama-MacBeth (1973) cross-sectional regression is

Riyy1— Ryp1 =+ YIN(MV )it 4+ Yaln(B/M )iy + 3 MOM;  + €i 441, (3.6)

where R;;;; is the monthly percent raw returns between July of year ¢ and June of
year t + 1, Ry ;41 is the risk-free rate, In(MV'),, is the natural logarithm of market

capitalization calculated with information available at the end of June of year t,
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In(B/M) is the natural logarithm of the ratio of the book value of equity for the
fiscal year ending in year ¢t — 1 divided by market equity at the end of December of
year t — 1, and MOM is the cumulative compounded stock returns of the previous 6
months at the end of May of year ¢ (e.g., Jegadeesh and Titman (1993)).
Litzenberger and Ramaswamy (1979) develop a generalized least squares (GLS)
method based on the Fama-MacBeth (1973) cross-sectional regression. Specifically,
for each parameter in the above equation, v, (k = 0, 1, 2, 3.), its estimate has the

form:

T
Yk = Zwkﬁkt, (3.7)
t=1

where 4, is the cross-sectional OLS estimate of 45 in month ¢, wy, is the weight for
ke, and T is the total number of cross-section regressions over the sample period.
The variance of 4, is computed as
1 T
Var(Ag) = ———— TweAe — Yi)> 3.8
() = T tzl( WYkt — Fk) (3.8)

Litzenberger and Ramaswamy (1979) show that an efficient weighting, wy,, can be

1/Var(§it)

ST Ve where Var(9x) is the variance estimate of ;.
t=1 kt

calculated as wy; =

3.4 Conclusion

In this chapter, I review two methodologies, namely, the portfolio sorts and the cross-

sectional regressions. These two basic methods are extensively used in the following
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chapters. In the following empirical studies, I generally first sort stocks into portfolios
based on one variable (e.g., one stock liquidity measure). Then I use the cross-
sectional regressions to examine whether the regression coefficient on one variable

(e.g., liquidity risk) is statistically significant or not.
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CHAPTER 4

Transaction Costs, Liquidity Risk,

and the CCAPM

4.1 Introduction

Recent studies in asset pricing suggest that liquidity plays an important role in in-
vestors’ consumption and investment decisions.! Following these leads, I extend the
traditional CCAPM (Rubinstein (1976), Lucas (1978), and Breeden (1979)) by in-
corporating the liquidity effect in the spirit of Acharya and Pedersen (2005). I show
that expected stock return is determined by both consumption risk and liquidity

risk with the latter being defined as the covariance between transaction costs and

IFor instance, Parker and Julliard (2005) suggest that concerns of liquidity are perhaps imperative
components neglected by consumption risk alone. Liu (2010) and Chien and Lustig (2010) argue that
liquidity risk may originate from consumption and solvency constraints. Naes, Skjeltorp, and degaard
(2011) find that stock market liquidity can predict consumption growth. Lynch and Tan (2011) show that
transaction costs can generate a first-order effect when they add return predictability, wealth shocks, and
state-dependent costs to the traditional consuming and investing problems. Further, Lagos (2010) develops
a model with search frictions and shows the importance of the liquidity premium in explaining the equity
premium puzzle.
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consumption growth.? The liquidity-adjusted CCAPM, contingent on specifications,
adds up to 77% additional explanatory power to the cross-sectional variation of ex-
pected returns, and lowers the estimated risk aversion close to the reasonable level of
10, compared to the traditional CCAPM.

Specifically, using the effective trading costs of Hasbrouck (2009) and the high-
low-price-based bid-ask spread estimates of Corwin and Schultz (2012) as proxies
for transaction costs, I show that my liquidity-adjusted CCAPM provides a better
fit for the cross-sectional expected returns across various liquidity-based portfolios,
while the traditional CCAPM fails to capture the liquidity effect.> My model also
accounts for a larger fraction of the variation in expected returns across size and
book-to-market portfolios. This is in contrast to previous studies, which show that
the traditional CCAPM is less successful in explaining the variation in expected port-
folio returns classified by size and book-to-market ratios (e.g., Lettau and Ludvigson
(2001), Bansal and Yaron (2004), Parker and Julliard (2005) and Yogo (2006)).

Lewellen, Nagel, and Shanken (2010) demonstrate that it is necessary for asset
pricing tests to include other sets of portfolios (e.g., industry portfolios) to break down

the strong factor structure of size and book-to-market portfolios. I show that the

2 Acharya and Pedersen (2005) define three sources of liquidity risks, namely, the covariance of a security’s
illiquidity with the market illiquidity, the covariance of a security’s return with the market illiquidity, and the
covariance of a security’s illiquidity with the market return. Pastor and Stambaugh (2003), Liu (2006), and
Sadka (2006) examine liquidity risk measured by the comovements between returns and certain aggregate
liquidity factors.

3 Acharya and Pedersen (2005) show that the CAPM (Sharpe (1964) and Lintner (1965)) fails to capture
liquidity costs and liquidity risks. Liu (2006) and Liu (2010) find that both the CAPM and the Fama-French
(1993) three-factor model have difficulty in capturing the liquidity effect. A few recent studies examine the
explanatory power of the traditional CCAPM to the variation of expected return across portfolios sorted by
different liquidity proxies. For instance, Kang and Li (2011) use the long-run consumption risk framework
of Hansen, Heaton, and Li (2008) to explain liquidity premium.
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liquidity-adjusted CCAPM is robust to the inclusion of industry portfolios.* Recent
studies also highlight the importance of the ultimate or long-run consumption risk
(Parker and Julliard (2005)),% durable consumption (Yogo (2006)), and the fourth-
quarter consumption (Jagannathan and Wang (2007)) in explaining the variations of
expected returns. Parker and Julliard (2005) show that the long-run consumption
risk model at the interval of 11 quarters explains a large fraction of 25 Fama-French
portfolios’ return variations. Yogo (2006) finds that the model with nondurable con-
sumption, durable consumption, and market factor can account for a large proportion
of return variations. Jagannathan and Wang (2007) show that using the fourth-
quarter consumption helps to improve the performance of the traditional CCAPM.
I show that applying the long-run,% total (durable and nondurable), and fourth-to-
fourth quarter consumption growth measures to my liquidity-adjusted model explains
a larger fraction of the variation in cross-sectional expected returns than the CCAPM.

Malloy, Moskowitz, and Vissing-Jorgensen (2009) argue that risk aversion esti-
mates can be an alternative measure of the plausibility of a model. The equity pre-
mium puzzle (e.g., Mehra and Prescott (1985) and Hansen and Jagannathan (1991))

suggests that the traditional CCAPM would require a much higher coefficient of risk

4Recent studies such as Savov (2011) and Kan, Robotti, and Shanken (2013) also incorporate industry
portfolios. They use the 25 Fama-French (1993) size and book-to-market portfolios plus industry portfolios
as test portfolios.

SParker and Julliard (2005) argue: “Rather than measure the risk of a portfolio by the contemporaneous
covariance of its return and consumption growth — as done in the previous literature on the CCAPM and
the cross-sectional pattern of expected returns — I measure the risk of a portfolio by its ultimate risk to
consumption, defined as the covariance of its return and consumption growth over the quarter of the return
and many following quarters” (page 186).

6 A growing literature, e.g., Da (2009), Malloy, Moskowitz, and Vissing-Jergensen (2009), and Favilukis
and Lin (2013), investigates asset pricing models that feature the long-run risk as in Bansal and Yaron
(2004), Parker and Julliard (2005), and Hansen, Heaton, and Li (2008).
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aversion to match the Sharpe ratio observed in the U.S., given the low volatility of
consumption. My model, instead, requires lower risk aversion to match the aver-
age returns. For instance, employing the transactions costs measure of Corwin and
Schultz (2012) and measuring consumption risk over the long run as in Parker and
Julliard (2005),” T show that the estimated risk aversion from the liquidity-adjusted
model is about 10 (the maximum level considered plausible by Mehra and Prescott
(1985)), which is much smaller than the corresponding risk aversion estimated under
the CCAPM.®

I also use a generalized method of moments (GMM), following Hansen and Single-
ton (1983), to estimate risk aversion. The GMM estimates the risk aversion coefficient
by making the sample moments as close as possible to the population moments. Re-
cent studies, e.g., Malloy, Moskowitz, and Vissing-Jgrgensen (2009) and Savov (2011)
also use the GMM method to estimate the risk aversion coefficient. Consistent with
the above finding, my model yields more plausible risk aversion estimates. In ad-
dition, I show that under the same GMM settings results based on some calibrated
transaction costs, as in Liu and Strong (2008), produce similar evidence. Liu and
Strong (2008) use some calibrated transaction costs to calculate the transaction costs
adjusted returns.

Lettau and Ludvigson (2001) and Petkova and Zhang (2005) show that value

stocks have higher risk exposure than growth stocks in bad times. I find that the

7Malloy, Moskowitz, and Vissing-Jergensen (2009) show that measuring stockholder consumption risk
over the long run delivers more plausible risk aversion estimates.

8For example, Savov (2011) shows that the risk aversion from GMM estimate for the excess market
return is above 60 using the long-run consumption risk of Parker and Julliard (2005).
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patterns of estimated liquidity betas conditional on the economic states provide a
liquidity-risk based explanation for the countercyclical value premium. Specifically,
I show that value stocks have higher liquidity risk in bad times than in good times,
while growth stocks have lower liquidity risk in good times than in bad times.
Overall, T make a liquidity adjustment to the consumption-based capital asset
pricing model (CCAPM) and show that the liquidity-adjusted CCAPM is a gener-
alized model of Acharya and Pedersen (2005). My results suggest that investors do
care about the sensitivity of transaction costs to the aggregate consumption growth,
and hence demand high return for securities with high exposure to liquidity risk. By
tying transaction costs with consumption growth, I provide new evidence to the re-
cent literature that highlights the importance of liquidity risk in asset pricing (e.g.,
Chordia, Roll, and Subrahmanyam (2000), Pastor and Stambaugh (2003), Acharya
and Pedersen (2005), Liu (2006), Sadka (2006), and Bekaert, Harvey, and Lundblad
(2007)). While these studies appear to make liquidity adjustment to the CAPM
or the Fama-French three-factor model and show that models with this adjustment
improve the models’ fit, the focus of my paper is on the liquidity adjustment to the
consumption-based pricing models, an area that has attracted little attention in the
literature. The liquidity-adjusted CCAPM produces a more reasonable estimate of
risk aversion than that of the traditional CCAPM, which helps to understand the

equity premium puzzle.

9See Amihud, Mendelson, and Pedersen (2005) for a review of the relation between liquidity and asset
prices.
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The economic meaning on incorporating the sensitivity of transaction costs to con-
sumption growth to the CCAPM is straight-forward. When the economy is haunted
by uncertainties, impacting consumption and squeezing liquidity, individual investors
may unwillingly switch from their securities to cash to smooth out consumption; in-
stitutional investors may reluctantly exchange their holdings for cash to fulfill their
obligations.!® Under these circumstances, securities whose transaction costs are less
sensitive to consumption fluctuations can provide a hedge function against the states
of low consumption. On the contrary, securities whose transaction costs are highly
sensitive to consumption fluctuations impair investors’ abilities to cushion the deteri-
oration in consumption. As a result, investors would be more reluctant to hold high
liquidity-risk securities unless they offer high expected returns.

The remainder of the chapter proceeds as follows. Section 4.2 reviews the related
literature. Section 4.3 derives the liquidity-adjusted CCAPM. Section 4.4 describes
the data. Section 4.5 presents the cross-sectional regression results. Section 4.6
investigates the implied risk aversion. Section 4.7 carries out the robustness tests.
Section 4.8 conducts alternative tests with 12-month portfolio holding period. Section

4.9 concludes the chapter.

10Jagannathan and Wang (2007) claim that investors are more prone to reappraise their targeted con-
sumption and investment plans during periods of slumping stock prices.
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4.2 Related literature

While transaction costs are not taken into account by the traditional CCAPM, they
are the subject currently generating much research interests. Amihud and Mendel-
son (1986) introduce liquidity costs into the present value of stocks and show that
liquidity costs are positively related to expected returns. Jacoby, Fowler, and Gottes-
man (2000) develop a static liquidity-adjusted CAPM using net returns after bid-ask
spread adjustment and show that market risk and liquidity are related. Lo, MacKin-
lay, and Wang (2004), using an equilibrium model with heterogeneous agents, show
that even small transaction costs can significantly affect asset prices. Acharya and
Pedersen (2005) study how investors maximize expected utility with time-varying liq-
uidity costs. They show that liquidity risk has a first-order effect on stock returns.
Most recent studies show that transaction costs can generate liquidity premium which
is in the same order as the costs with time-varying investment opportunity sets (Jang,
Koo, Liu, and Loewenstein (2007)) and with predictable returns, wealth shocks, and
state-dependent transaction costs (Lynch and Tan (2011)).!1

My model is a generalized version of Acharya and Pedersen (2005) and suggests
a novel source of liquidity risk which is the covariance between transaction costs and
consumption growth. I show that the three channels of liquidity risk of Acharya and
Pedersen (2005) can be captured by the covariance between transaction costs and

consumption growth.

HEarly studies such as Constantinides (1986) show that transaction costs only have a second-order effect
in the model with the constant transaction costs.

o7



CHAPTER 4. TRANSACTION COSTS, LIQUIDITY RISK, AND THE CCAPM

One study relates to mine is Marquez, Nieto, and Rubio (2014) where the authors
build a liquidity-adjusted stochastic discount factor. The differences between their
model and mine are, however, that they assume a market illiquidity shock to con-
sumption while I focus on transaction costs following Acharya and Pedersen (2005).
Further, they measure liquidity risk as the covariance between returns and liquidity
factor, while I measure liquidity risk as the covariance between transaction costs and
aggregate consumption growth. Most importantly, except for the model’s explanatory
power, I also analyze the structural features in my model, namely, the estimation of

risk aversion.

4.3 The model

In this section, I incorporate transaction costs, the key ingredient of this article, into

the traditional CCAPM to develop my liquidity-adjusted CCAPM.

4.3.1 Transaction costs and budget constraints

The economy in this section is the same as that in section 2.2 of chapter 2. In my
study, I follow Acharya and Pedersen (2005) by assuming a time-vary transaction cost,
which implies that the representative consumer faces uncertainty with the future costs
of trading. I later show that shocks of transaction costs are countercyclical, consistent
with Acharya and Pedersen (2005) and Lynch and Tan (2011). Specifically, the return

of risky asset ¢ after netting out transaction costs is (assuming trading on the liquid
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risk-free asset incurs no transaction costs),

n Digpr + P — TCit41
i+l
P,

(4.1)

= Ri1 — tcist,

where P;;1; is the ex-dividend stock ¢’s price, D; ;41 is the dividend, T'C;;; is the
per-share cost of selling stock i,'? R; ;1 is the return before transactions costs, R}y
is the net return, and tc;y; is the relative time-varying transaction costs. In the
spirit of Acharya and Pedersen (2005), investors can buy stock ¢ at P, ;41 but have to
sell it at P ;41 — T'C;¢41. This assumption allows us to study the effect of liquidity
risk.

Given the above assumption, I now turn to the effect of transaction costs on the
budget constraints. Let the representative consumer’s time ¢ portfolio weight of the
risky asset ¢ be w;; (i = 1,2, ..., n), the weight of the risk-free asset is then 1= " | w; ;.
Since the representative consumer is exposed to the market where she gains the net

returns, her wealth at ¢t + 1 is

Wi = (Wi = Cy) [Rf, t+1 + Zwi,t<Ri, 41 — tCi i1 — Ry41) | (4.2)

i=1
where C} is consumption at ¢, W, is wealth at ¢, and Ry, is the risk-free rate from

ttot+1.

12Follovving Acharya and Pedersen (2005), D; 41 and T'C; +41 are first-order autoregressive processes.
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To provide a further intuition, I assume a simple two-period wealth dynamic
without labor income. Let Wy and Cy be the representative consumers wealth and
consumption at time 0 (the beginning of the period). She is also assumed to consume
all of her wealth, C'; at time 1 (the end of the period). Then the two-period dynamic

wealth has the form:

Cy = (Wo = Co)[Bpa + D wilRiy = teiss = Ry)] (4.3)

i=1

According to Eq. (4.3), the consumption at time 1 is more negatively affected
when the transaction costs (tc; 1) are higher, consistent with Naes, Skjeltorp, and
(Odegaard (2011). That is, the same stock payoff at time 1 will have a higher value

today in terms of the consumption at time 1 when the liquidity is lower.

4.3.2 Liquidity-adjusted CCAPM

I assume that the representative consumer has a time-additive, monotonically in-
creasing, and strictly concave von Neumann-Morgenstern utility function for lifetime
consumption, which is time separable, i.e., utility at time ¢ depends merely on the
consuming quantity at t rather than the consuming quantity before or after ¢. I
define I(W;) as the life-time utility function on wealth, which satisfies the following

equation:

I(Wy) = max E;

Cs,‘*’i,a Vs,i

, (4.4)
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where U(C5) is the utility from consumption at time s, Cs, B(Wr) is the ending
bequest function that is monotonically increasing and strictly concave, and FE[] is
the expectation conditional on information at time t.

Eq. (4.4) indicates that the representative consumer makes decisions with vari-
ables Cy and w; s (1 = 1,2,...,n) so as to maximize the expected lifetime utility. The
optimization problem of Eq. (4.4) is subject to the constraint condition of Eq. (4.2).
Using stochastic dynamic programming, I can write the first-order conditions (FOC)

of the optimal choice problem as:'?

UC(O:H) _
E, {—UC(CZ‘) Rf’t+1:| =1 (4.5)

and

UC(Ct*Jrl)
E, | —————2(R,; — tc; =1 4.
¢ { Uo(C) (Rit41 — tCit41) ) (4.6)

where Uc(CY) is the partial derivative with respect to the representative consumer’s

optimal consumption. From Eq. (4.5) and Eq. (4.6), I have,

Uc(Cr
Ei %(Ri,t—l—l =ity = Byep) | =0 (4.7)

Suppose that the representative consumer’s consumption utility is a constant rel-

ative risk aversion (CRRA) function, i.e., U(C) = %, where 7 is the coefficient of

13Gee Appendix A for details.
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constant relative risk aversion. Based on the representative consumer’s consumptions,

the first-order condition yields the following equation:

Ei[(1 = vyACk1)(Ri e41 — teie41 — Ry e41)] = 0, (4.8)

where ACY,; is the consumption growth from ¢ to t + 1.

According to Cochrane (2005),'* the beta representation of Eq. (4.8) has the form:

E[Rii41 — Ry 1) = Etc; 141]

Y
R; 111, AC — tci 141, AC 4.9
+1 L EAC] [cov(Ry, t11, ACu11) — cov(tei 41, AC11)] (4.9)
YWar(AC 1)
=Ft i + ic T Dite ’
[ C 7t+1] 1 _ rYE(ACt_Fl) (67 /B:t )
cov(R;, t+1,AC+1 —cov(te;, +4-1,AC 41
Where ﬁi?c = g/l—za;’(zlc't+1)+ ) and /Bivtc = V('l;’l‘&gét+1) - )

Eq. (4.9) above is my liquidity-adjusted CCAPM.'® Tt shows that expected excess
return of an asset/portfolio is related to its expected transaction costs (E[tc; 141]),

consumption risk (3;.), and liquidity risk (5; ). I elaborate the model below.

(i) It shows that the expected return of a stock is positively related to its expected

transaction costs, E|tc; 1+1], which is consistent with prior evidence that trans-

action costs are related to stock returns.!®

14See Cochrane (2005), chapter 1.

15 Acharya and Pedersen (2005) show that the traditional CAPM will convert into a CAPM in net returns
(returns in excess of transaction costs), i.e., their liquidity-adjusted CAPM. Breeden (1979) shows that the
CAPM, as a special case, can be derived from the consumption CAPM. I show in Appendix B that I can
use the liquidity-adjusted CCAPM to derive the liquidity-adjusted CAPM in Acharya and Pedersen (2005).

16 For example, Amihud and Mendelson (1986), using the quoted bid-ask spread as a liquidity measure,
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(i) The sensitivity of stock returns to consumption growth is captured by g;.. It
indicates that stocks with higher exposure to consumption risk command higher

risk premium.!”

(iii) The negative covariance between a stock’s transaction costs and consumption
growth is represented by f; +., which I define as the liquidity risk in this chapter.
Namely, if transaction costs increase when consumption growth decreases, the

asset is then said to be exposed to high liquidity risk (i.e., large ;).

My liquidity-adjusted model shows that high liquidity risk is compensated for
high expected return. The basic mechanism is fairly intuitive. During economic
contractions, investors may have to give up some of their stocks in exchange of cash
either to finance consumption or to honor obligations. Hence, they are more likely to
be content with low expected returns on stocks whose transaction costs are impervious
to plummeting consumption; while they would require high expected returns on stocks

whose transaction costs are highly sensitive to plummeting consumption.

4.4 Data

To empirically test my model, I use two alternative proxies to measure transaction

costs. The first is the effective trading costs (cGibbs) of Hasbrouck (2009),'® and the

find that returns are positively related to stock illiquidity.

"For instance, Rubinstein (1976), Lucas (1978), Breeden (1979), and Breeden, Gibbons, and
Litzenberger (1989).

181 thank Professor Joel Hasbrouck for providing his effective trading costs data on his website:
http://people.stern.nyu.edu/jhasbrou/Research/GibbsCurrent /gibbsCurrentIndex.html.
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second is the bid-ask spread estimates (C'Sspread) of Corwin and Schultz (2012).1
I test my model based on portfolios classified by firm characteristics (e.g., market
capitalization, book-to-market ratio, and liquidity) and industries.

Liu (2006) highlights four dimensions of liquidity: trading quantity, trading speed,
trading costs, and the impact of trading on price. Apart from the two transaction
costs measures mentioned above (cGibbs and CSspread), I also use the following
liquidity proxies with each capturing a different dimension (While DV, RV, and LM
are related to trading quantity, the impact of trading on price, and trading speed, I

do not use them as transaction costs measures.):

(i)  The dollar volume measure of Brennan, Chordia, and Subrahmanyam (1998),
DV, which is defined as the average daily dollar volume over the prior 12

months.

(ii))  The price impact measure of Amihud (2002), RV, which is defined as the daily

absolute-return-to-dollar-volume ratio averaged over the prior 12 months.

(iii) The trading discontinuity measure of Liu (2006), LM, which is defined as the
standardized turnover-adjusted number of zero daily trading volumes over the
prior 12 months. The LM proxy measures the probability of no trading. Large
LM (i.e., high infrequent trading) indicates slow trading speed (or low liquid-

ity).2

191 thank Professor Shane Corwin for sharing with us his high-low spread data.

20Similar to Amihud (2002), the calculation of RV requires that there are at least 80% non-missing daily
trading volumes available in the prior 12 months. Also note that the calculation of RV excludes zero trading
volumes over the prior 12 months. Constructions of DV and LM require no missing daily trading volumes
in the prior 12 months.
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My sample period is from 1950 to 2009, which covers both NYSE and AMEX
ordinary common stocks.?! Consistent with Brennan, Chordia, and Subrahmanyam
(1998), Pastor and Stambaugh (2003), and Acharya and Pedersen (2005), I exclude
NASDAQ stocks since its trading volume data only become available from 1983 and
are inflated compared with NYSE/AMEX stocks. I collect market capitalization
(MV) and monthly stock returns from CRSP. Following Davis, Fama, and French
(2000), I calculate the book equity using data from COMPUSTAT. I use the one-
month treasury bill rate as the risk-free rate.

Panel A of Table 4.1 provides descriptive statistics for the main variables. RV,
LM, cGibbs, and C'Sspread are negatively correlated with MV and positively corre-
lated with book-to-market (B/M). On the other hand, DV is positively correlated
with MV and negatively correlated with B/M. It suggests that small stocks have a
large price impact, are less frequently traded, incur high transaction costs, and have
low trading quantities; and value stocks have high price impacts, discontinuous trades,
high transaction costs, and low trading quantities. The correlation between cGibbs
and CSspread is high (0.705). The positive (negative) correlation of the two trans-
action costs measures with RV and LM (DV) indicates that trading on high-RV/,
high-L M, and low-DV stocks is costly.

I measure the aggregate consumption growth as the percentage change from pre-

ceding period (one quarter) of per capita real (chain-weighted) personal consump-

2ICOMPUSTAT data become available since 1950. I identify ordinary common stocks as those with
CRSP share code 10 and 11.
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tion expenditures on nondurable goods and services from the National Income and
Product Accounts (NIPA Table 7.1). I use the “end of period” timing conven-
tion to match the aggregate consumption growth to stock returns and transaction

22 Since consumption data are quarterly, I first compound monthly returns

costs.
and transaction costs to quarterly values and then employ price deflator series from
NIPA to convert quarterly returns and transaction costs to real terms. The com-
pound quarterly transaction costs for quarter ¢ of month m, m + 1, and m + 2 are
(1 + tey) X (14 tepmar) X (1 + tepmee) — 1. T also use alternative measures for ag-
gregate consumption growth such as the consumption growth of nondurable goods
over 11 quarters as in Parker and Julliard (2005),% the total consumption growth
of Yogo (2006), and the fourth-to-fourth quarter (Q4-Q4) consumption growth of
Jagannathan and Wang (2007) to test the robustness of my results.

My liquidity-adjusted model shows that the expected return of a stock is deter-

mined by both consumption risk and liquidity risk. I use two linear functions of the

aggregate consumption growth to estimate the consumption beta and liquidity beta:

Riy — Rpy = ac+ BAC, + €1y; (4.10)

—Ujp = Qe + BreAC; + €9y, (4.11)

22Under the “end of period” timing convention, I assume that the consumption data measures consump-
tion at the end of the quarter. An alternative convention is the “beginning of period” as in Campbell
(2003).

23The consumption growth over a horizon of S quarters is calculated as ACY = g?f —1.
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where R; ; — Ry, is the return per quarter of stock ¢ in excess of the risk-free rate, AC
is the consumption growth of nondurable goods and services, and u;; is the residual

of the following regression:

tciy = ap + anlci—1 + Uiy, (4.12)

where tc;; is the transaction costs of asset 7 in quarter ¢. Using innovation in trans-
action costs, u;;, is due to the persistency of liquidity, e.g., Pastor and Stambaugh
(2003). The negative residual on the left-hand side of Eq. (4.11) is based on the
liquidity-adjusted CCAPM (Eq. (4.9)) and the definition of liquidity risk in the

—cov(tc;, 141,AC 1)

chapter (5,4 = Var(AC 1) ). In this way, I expect that high liquidity risk is re-

lated to high stock returns. That is, the estimated coefficient on liquidity risk should
be positive in the following empirical tests. This is consistent with prior studies, e.g.,
Pastor and Stambaugh (2003), Liu (2006), and Sadka (2006).

Panel B of Table 4.1 reports the descriptive statistics for various consumption
growth measures and the estimated consumption beta and liquidity beta. The average
quarterly growth in nondurable goods and services is 0.511% in real term, which is
consistent with Yogo (2006) that reports a growth rate of 0.513% (per quarter) over
the sample period 1951-2001. On average, the consumption beta is 3.908,2* and the
liquidity beta is 0.107 with c¢Gibbs and 0.396 with C'Sspread. The positive liquidity

beta and consumption growth indicate positive liquidity risk premium.

24This result is similar to Yogo (2006) that reports the consumption betas ranging from 1.196 to 6.512
with the 25 Fama-French (1993) value-weighted portfolios as test portfolios.
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In order to provide a visual impression of the time-series property of transaction
costs, I in Figure 4.1 plot the aggregate innovations of transaction costs which are the
average of the individual transaction costs measures. The liquidity innovation (u,) is

the residual of the following regression:

te, = ap + aqtei_y + uy, (4.13)

where tc; denotes the average of the transaction costs measures over the sample stocks
in quarter ¢. Figure 4.1 shows that the aggregate shocks of transaction costs are higher
in recessions than in expansions, consistent with Acharya and Pedersen (2005) and

Lynch and Tan (2011).

4.5 Regression results

4.5.1 Cross-sectional R-squares

[ perform my tests on 20 equally-weighted portfolios sorted by MV, B/M, and each
of the five liquidity measures. Using NYSE breakpoints, I form portfolios at the end
of each (calendar) quarter and hold them for one quarter. In addition, I also use
the 4 x 5 MV &B/M-sorted portfolios formed by independent double sort (4 MV
portfolios by 5 B/M portfolios). I conduct comparative tests between my model and

the CCAPM using the following cross-section regressions:
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Rit — Rpe = Y0+ mPbic+ €is (4.14)

Riv — Ry = o +mtcie + 72Bic + 138iee + €, (4.15)

where R; , — Ry, is the quarter ¢ return of portfolio ¢ in excess of the risk-free rate,
Bic is the consumption beta, tc; ; is the transaction costs of portfolio 7, and ;. is
the liquidity beta. Consumption beta is estimated through a time-series regression
of excess return on consumption growth as in Eq. (4.10). Liquidity beta is estimated
through a time-series regression of the liquidity innovation on consumption growth as
in Eq. (4.11).?° Following Jagannathan and Wang (1996) and Lettau and Ludvigson
(2001), I employ the Fama-MacBeth (1973) procedure to calculate the cross-sectional
R-square, which has the following form:
o _ WVard(Rf) — Var(&)]

R2 = _ 4.16
Var.(RS) ’ (4.16)

where R¢ is the time-series average of returns in excess of the risk-free rate for portfolio
1, € is the time-series average of residuals for portfolio 7, and Var, is the cross-sectional
variance. The cross-sectional R-square measures the proportion of the cross-sectional
return variations which are explained by the traditional CCAPM or the liquidity-

adjusted model. This cross-sectional R-square measure is also used in Petkova (2006).

251 estimate the consumption beta and liquidity beta using the entire sample, e.g., Lettau and Ludvigson
(2001) and Acharya and Pedersen (2005), unless noted otherwise.
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Figure 4.2 plots the R-squares for the CCAPM and my model. It shows that,
across the board, the fraction of cross-sectional return variations explained by the
liquidity-adjusted model is larger than that explained by the CCAPM. For instance,
for the 20 B/M-sorted portfolios, 89.72% (with c¢Gibbs) and 88.60% (with C'Sspread)
average return variations are explained by my model, while 31.97% (with ¢Gibbs) and

33.77% (with C'Sspread) are explained by the CCAPM.

4.5.2 The estimates of model coefficients

To test the liquidity-adjusted CCAPM, I estimate the historical consumption beta
and liquidity beta for each of the test portfolios using prior 3-year observations. I take

into account both the liquidity risk and transaction costs in the following regression:

R+ — Ry =y +ntcit +72Bit—1,c + V38it—14c + €ty (4.17)

where R; ; — Ry 4 is the return of portfolio 7 in excess of the risk free rate, tc; ; is the
transaction costs of portfolio %, 3;;_1 . is the historical consumption beta, and 3; ;—1 4
is the historical liquidity beta.

I use the generalized least squares (GLS) to estimate the above regression. Table
4.2 reports the estimated coefficients on transaction costs, consumption risk, and lig-
uidity risk. It shows that the coefficients on liquidity risk are significantly positive for
all the test portfolios at the 1% level, consistent with the expectations. It indicates

that investors care about the covariance between transactions and the aggregate con-
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sumption growth. Therefore, investors demand high returns for holding high liquidity
risk stocks. Moreover, the coefficients on transaction costs are generally insignificant
at the conventional level. It indicates that liquidity risk matters over liquidity level,

which is consistent with Acharya and Pedersen (2005) and Liu (2010).

4.5.3 Fitted versus realized returns

Figure 4.3 plots the realized average excess returns and the fitted excess returns. The
realized average returns are the time-series average returns in excess of the risk-free
rate. The fitted expected returns for the CCAPM are calculated as the fitted value
from Eq. (4.14). The fitted expected returns for my liquidity-adjusted model are cal-
culated as the fitted value from Eq. (4.15). Specifically, in the first step, consumption
beta is estimated through a time-series regression of excess return on consumption
growth as in Eq. (4.10). Liquidity beta is estimated through a time-series regres-
sion of the liquidity innovation on consumption growth as in Eq. (4.11). In the
second step, the coefficients on consumption and liquidity betas are estimated. The
fitted expected returns are computed using the estimated betas in the first step and
their estimated coefficients in the second step. This approach is also used in Lettau
and Ludvigson (2001), Parker and Julliard (2005), Petkova (2006), Yogo (2006), and
Jagannathan and Wang (2007).

The points represent the 20 MV-sorted, B/M-sorted, MV &B/M-sorted, DV-

sorted, RV -sorted, LM-sorted, cGibbs-sorted, and CSspread-sorted portfolios, re-
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spectively. If the fitted expected returns are the same as the realized returns for
each set of test portfolios, these points should lie on the 45 degree line. The vertical
distance of these points to the 45 degree line represents the pricing errors. Figure 4.3
shows that, overall, the pricing errors associated with the liquidity-adjusted model
are smaller than those associated with the CCAPM. I report the magnitudes of pric-
ing errors for each portfolio for the traditional CCAPM and the liquidity-adjusted
CCAPM in Tables 4.3 and 4.4. The pricing errors are the differences between the
fitted returns and realized returns. The results of Tables 4.3 and 4.4 are in line with

Figure 4.3.

4.5.4 Consumption beta and liquidity beta

I estimate the consumption beta and liquidity beta, using c¢Gibbs and C'Sspread as
transaction costs measures, for the 20 MV-sorted, B/M-sorted, MV & B/M-sorted,
DV -sorted, RV-sorted, LM-sorted, cGibbs-sorted, and C'Sspread-sorted portfolios,
respectively.

Tables 4.5 and 4.6 report the results. I find that consumption betas are related
to firm size, small (large) stocks having high (low) consumption betas. However,
consumption betas for the 20 B/M portfolios exhibit a counter intuitive pattern,
consistent with Yogo (2006). The consumption beta for the lowest LM-sorted portfo-
lio is larger than that for the highest L M-sorted portfolio. These paradoxical patterns

of consumption betas across B/M-sorted and LM-sorted portfolios suggest that the
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CCAPM has difficulties in explaining the value and liquidity premiums. In contrast,
I find that the liquidity beta exhibits a consistent tendency across each of the test

portfolios.

4.5.5 Liquidity risk and expected returns

In this sub-section I examine whether stocks with high liquidity betas are related to
high expected returns, as indicated by my liquidity-adjusted CCAPM. To test this, I

run the following cross-section regression:

Ri¢ — Ry o =50+ 11Bic + 72Bite + €its (4.18)

where R; ; — Ry, is the quarterly return of portfolio 7 in excess of the risk-free rate,
Bic is the consumption beta, and f; ¢ is the liquidity beta.

Table 4.7 shows that the coefficients for the liquidity beta are significantly posi-
tive, except for the MV-sorted and C'Sspread-sorted portfolios, indicating that high
liquidity risk generally commands high expected returns. In contrast, consumption
beta shows no or even negative return relation, consistent with early studies that the
CCAPM does a poor job in explaining cross-section stock returns.

As an alternative, I run the following regression:

Ri,t - Rf,t =Y + ’Ylﬂi,t—l,c + 725i,t—1,tc + €, (419)

where R; ; — Ry is the one-month ahead return of portfolio 7 in excess of the risk-free
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rate, B;+—1, is the historical consumption beta, and f3;;—1 4 is the historical liquidity
beta.? I estimate the historical consumption beta and liquidity beta for each set of
the 20 test portfolios using prior 10-year observations. Table 4.8 again shows that the
coefficients for the liquidity beta are significantly positive for all the test portfolios,
except for the MV &B/M-sorted, DV -sorted, and LM-sorted portfolios in Panel A;

while none of the coefficients for the consumption beta are statistically significant.

4.5.6 Liquidity betas in bad and good states

Watanabe and Watanabe (2008) and Akbas, Boehmer, Genc, and Petkova (2010)
highlight the importance of time-varying liquidity risk in asset pricing. Lettau and
Ludvigson (2001) and Akbas, Boehmer, Genc, and Petkova (2010) argue that the
returns of value and growth stocks are related to time-varying risks. Following these
studies, I, in this sub-section, examine the time-varying liquidity betas for value and
growth stocks.

Figure 4.4 plots the average rolling liquidity betas for growth and value stocks in
bad and good states. The rolling liquidity betas for each stock are estimated from the
10-year rolling regressions based on Eqs. (4.11) and (4.12). The estimated liquidity
betas are then allocated into the 20 B/M portfolios. The plotted rolling liquidity
betas are the cross-sectional time-series averages for the lowest (growth) and highest
(value) B/M portfolios. I use NBER recession periods to identify bad states and

other periods as good states. Figure 4.4 shows that the liquidity betas are higher

261 find that the relation between the historical liquidity betas and the quarterly cross-sectional returns
is positive, while the statistical significance is weaker, based on the Fama-MacBeth (1973) regressions.
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in bad than in good states for value stocks, while it is opposite for growth stocks,
consistent with Akbas, Boehmer, Genc, and Petkova (2010).%” The value-minus-
growth betas also show a countercyclical pattern, i.e., liquidity betas decrease from
bad to good states. These suggest that the return of value stocks co-moves more with
market liquidity as in Eq. (4.13) in times when investors may have to give up some
of their stocks in exchange of cash to either finance their consumptions or to honor
their obligations. They would, therefore, require high expected returns to hold value

stocks.

4.6 Implied risk aversion

Malloy, Moskowitz, and Vissing-Jgrgensen (2009) argue that estimated risk aversion
provides an alternative measure on the plausibility of a model. Many studies focus on
the R-squares and pricing errors of different asset pricing models. Lewellen, Nagel,
and Shanken (2010) also argue that the R-squares and pricing errors could lead to
the inaccurate statistical inference of the models’ performance especially when the
testing portfolios are highly correlated with each other and contain a strong factor
structure as the 25 Fama-French portfolios do. Therefore, Malloy, Moskowitz, and
Vissing-Jorgensen (2009) argue that estimated risk aversion can provide the theoret-
ical restrictions of the asset pricing models. In this section, I estimate the degree of

risk aversion of investors for the CCAPM and my liquidity-adjusted model so that

27 Akbas, Boehmer, Genc, and Petkova (2010) use a different model to estimate liquidity risk.
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I can assess the plausibility of the economic magnitudes of risk aversion as a test of

the liquidity-adjusted model’s performance.

4.6.1 A simple illustration

Cochrane (2005) argues that, based on the slope of the mean-standard deviation fron-
tier, risk aversion of investors for the CCAPM is approximately 50 when the historical
U.S. stock returns and consumption growth data are used.?® In this sub-section, I
show mathematically that my liquidity-adjusted model yields a more plausible value
of risk aversion.

[ can rewrite Eq. (4.9), my liquidity-adjusted model, as follows:

YWar(ACy1)  E[Ri 11 — Ry 1 — tci 4]

= 4.20
1 —~vE(AC1) Bi,c + Bi te (4:20)

According to Breeden, Gibbons, and Litzenberger (1989), the CCAPM can be written
as:
YWar(ACi1)  E[Rit1 — Ryl

=2 E(ACy) = 5. . (4.21)

According to Eq. (4.10), consumption betas for Eq. (4.20) and Eq. (4.21) will be
equal in the empirical estimates for stock i. Comparing the right side of Eq. (4.20)
and Eq. (4.21), I find that the liquidity-adjusted model has a smaller numerator and

a larger denominator, since transaction costs and liquidity betas measured in this

288ee Coochrane (2005), page 21.
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study are generally positive. Thus, to fit the data, the coefficient of risk aversion,
v, implied by the liquidity-adjusted CCAPM does not have to be as high as the one
indicated by the traditional CCAPM. This is similar to Liu (2004)’s argument that

incorporating transaction costs makes the investor less risk averse overall.

4.6.2 Risk aversion estimates

In this sub-section I estimate the degree of risk aversion for the CCAPM and the
liquidity-adjusted model. I aim to test whether my model, compared to the CCAPM,
generates a consistently lower risk aversion that matches the average stock returns.
Malloy, Moskowitz, and Vissing-Jgrgensen (2009) show that measuring stockholder
consumption risk over many future quarters generates more plausible risk aversion es-
timates.?? Following Campbell (2003) and Malloy, Moskowitz, and Vissing-Jgrgensen
(2009), I estimate the risk aversion coefficient for the CCAPM and my model by using

the following two equations:

2
o

E[Riy — Ryq] + 71 = Y0iACS; (4.22)
o-i2tc

E[Ritcs — Ry + ™ = V0itencs; (4.23)

_ _ S _ S
where Ritqt = Ri,t —1Cit, OjACS = COU(RM’ Act )7 Oite,ACS — OOU(RitC,ta Act ), and

29For instance, in Malloy, Moskowitz, and Vissing-Jgrgensen (2009), the estimated risk aversion for
stockholders is about 12 when consumption risk is measured over 8 quarters.
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AC? is the consumption growth over S quarters.*

Table 4.9 reports the mean risk aversion estimates based on nondurable goods
and services consumption growth over a horizon of S (S = 0,1,2,...,11) quarters.?!
For each set of the 20 test portfolios, I calculate the risk aversion coefficient using

2
Titc

o .
= ERuRidt s g the CCAPM and v = ElBuet—Ryd+ 5% g my model. Table 4.9

9i,AC8 Tite,ACS

shows that the risk aversion coefficients estimated under the CCAPM range between
50.06 and 301.86. These large estimates are consistent with the documented equity
premium puzzle. In contrast, for each set of the 20 test portfolios, the risk-aversion
coefficients estimated under the liquidity-adjusted CCAPM are smaller than that
of the CCAPM. For a number of occasions, estimates of risk aversion generated
under my model are less than 10, the maximum level considered to be plausible by
Mehra and Prescott (1985).32 Table 4.9 thus provides consistent evidence to my
mathematical prediction that the liquidity-adjusted CCAPM implies a lower level of
risk aversion than that of the CCAPM. Neglecting liquidity in the CCAPM appears

to be responsible to the equity premium puzzle.

30For detailed derivation of Eqs. (4.22) and (4.23), see Appendix C.

31When S = 0, the consumption growth is calculated by ACS = c,cil -1

32Lustig and Nieuwerburgh (2005) show that, under their specific empirical tests, the estimated coefficient
of relative risk aversion is between 2 and 5 for different collateral CAPM models. On the contrary, the
estimated coefficient of relative risk aversion is roughly 15 for the traditional CCAPM and 11 for the
consumption-based model of Piazzesi, Schneider, and Tuzel (2007). Further, Malloy, Moskowitz, and Vissing-
Jorgensen (2009) report that the long-run consumption risk of the wealthiest stockholders can explain the
equity premium puzzle with a risk aversion around 10. Savov (2011) finds that a garbage-based CCAPM
requires a relative risk aversion of 17 to match the equity premium.
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4.7 Robustness tests

In this section I first test the robustness of my results by examining the R-squares
of the cross-section regressions performed on the industry portfolios and many other
measures. | then use the generalized method of moments (GMM) to check the ro-

bustness of risk aversion estimates.

4.7.1 Robustness on R-squares

First, Lewellen, Nagel, and Shanken (2010) argue that the tight factor structure of size
and book-to-market portfolios tends to be less powerful in rejecting misspecified asset
pricing models and results in high R-squares in cross-sectional tests. They advocate
that asset pricing tests should incorporate other set of portfolios to disintegrate the
structure of size and book-to-market portfolios. Following their study, I expand each
set of the 20 test portfolios examined earlier with 10 industry portfolios and the results
are reported in Panel A of Table 4.10. It shows that a greater proportion of cross-
sectional variation in expected returns can be explained by the liquidity-adjusted
CCAPM than the CCAPM. For example, for the set of 20 MV -sorted portfolios plus
the 10 industry portfolios, the liquidity-adjusted model explains 52.45% (with cGibbs)
and 50.98% (with CSspread) cross-sectional return variations, while the CCAPM
explains 38.63% (with c¢Gibbs) and 37.83% (with C'Sspread) variations.

Second, Parker and Julliard (2005) measure the systematic risk as the sensitivity

of returns to future and contemporaneous consumption. Following Parker and Jul-
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liard, I measure consumption risk by using the consumption growth of nondurable
goods over 11 quarters (S = 11) to test the CCAPM and the liquidity-adjusted model.
Panel B shows that the liquidity-adjusted model does a better job than the CCAPM
in explaining the cross-sectional return variations. For instance, the CCAPM explains
38.18% (with c¢Gibbs) and 43.06% (with C'Sspread) cross-sectional return variations,
whereas the liquidity-adjusted model explains larger proportions of the return varia-
tions (53.45% with ¢Gibbs and 60.98% with C'Sspread).

Third, Yogo (2006) highlights the role of durable consumption in explaining the
cross-sectional and time-varying expected returns. Following his method, I substi-
tute the total consumption growth (durable and nondurable) for the consumption
growth of nondurable goods and services. Panel C reports the results and shows
that the liquidity-adjusted model performs better than the CCAPM. Take the 20
RV -sorted portfolios for example, with cGibbs as the transaction costs measure, the
liquidity-adjusted model adds 17% additional explanatory power to the return varia-
tions, compared to the CCAPM.

Finally, Jagannathan and Wang (2007) show that the fourth-to-fourth quarter
consumption growth has high explanatory power in cross-sectional return variations,
since investors are more prone to reappraise consumption and investment decisions
during the fourth quarter. Following Breeden, Gibbons, and Litzenberger (1989) and
Jagannathan and Wang (2007), I construct a mimicking fourth-to-fourth quarter con-

sumption growth factor using the maximum-correlation portfolio (MCP) approach.
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I run regression of the demeaned fourth-to-fourth quarter consumption growth on
annual excess returns of the 10 value-weighted industry portfolios to obtain the MCP
weights.?® I then replace the consumption growth of nondurable goods and services
with the MCP. Panel D reports the results and shows that the liquidity-adjusted
model explains a larger fraction of return variations than the CCAPM. For instance,
for the 20 B/M-sorted portfolios, the explanatory power increases to 78.44% (with
cGibbs) and 75.18% (with C'Sspread) for the liquidity-adjusted model, while they are

52.37% (with cGibbs) and 57.29% (with C'Sspread) for the CCAPM.

4.7.2 Robustness on implied risk aversion

Recent studies (e.g., Malloy, Moskowitz, and Vissing-Jgrgensen (2009) and Savov
(2011)) use the generalized method of moments (GMM) as in Hansen and Single-
ton (1983) to estimate the degree of investors’ risk aversion. Malloy, Moskowitz,
and Vissing-Jorgensen (2009) show that using the long-run stockholder consump-
tion growth can generate the plausible risk aversion estimates. Savov (2011) finds
that using the garbage data can produce the plausible risk aversion estimates. In
this sub-section, I follow Yogo (2006) and apply a two-step GMM method. The
GMM estimator 6 (estimated risk aversion) minimizes the following quadratic form
of: Q(0) = ¢'(0)Wg(0), where W is the positive definite matrix. Hansen and Single-

ton (1983) show that the optimal weighting is W = S~ and S = >~ E[u,u}], where

331 thank Professor Kenneth French for providing the 10 value-weighted industry portfolios data on his
website: http://mba.tuck.dartmouth.edu/pages/faculty /ken.french/.
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uy is the error term. Following Yogo (2006), in the first step, the optimal weighting
matrix is based on the identity matrix, i.e., W = I. Thus, an initial estimate of risk
aversion can be obtained. Then S~ = SA—l(l) can also be obtained. Re-minimizing
Q(0) with Sll(l), I can have new 0®. This procedure continues until convergence.
Moreover, the two-step GMM method can obtain asymptotic efficient statistics which
are robust to the choices of test portfolios (Parker and Julliard (2005)). I also use
the Newey and West (1987) adjustment to take into account heteroscedasticity and
auto-correlation. To estimate risk aversion, I use the empirical moment functions Eq.

(4.24) for the CCAPM and Eq. (4.25) for the liquidity-adjusted model:

EM (Rt — Ryi)z] =0, (4.24)

E[M (Rt — Ryt — tems)z) = 0, (4.25)

where M = 3 (%)_7734 3 is the subjective discount factor, v is the coefficient of
risk aversion, R,,; — Ry, is the market return in excess of the risk-free rate, tc,, is
the aggregate transaction costs, and z; is a 2 x 1 vector of instrumental variables,
which are the three-time-period-lagged risk-free rate and excess return of the market

portfolio. Following Hansen, Heaton, and Li (2008) and Savov (2011), I fix 8 = 0.95 to

focus exclusively on risk aversion.® Results are reported in Table 4.11. It shows that

34This specification is based on the traditional CCAPM with long-run consumption risk as in Parker and
Julliard (2005).

35 According to Egs. (4.24) and (4.25), all inputs are observable except 8 and «. Thus, the risk aversion,
~, would be the only parameter to be estimated when g is fixed.
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the risk version estimates for my model are lower compared to those for the CCAPM,
mirroring the findings shown in Table 4.9. For example, with consumption growth
over 7 quarters and cGibbs as a measure of transaction costs, risk aversion estimate
declines from 44.36 for the CCAPM to 14.02 for the liquidity-adjusted model. With
consumption growth over 2 quarters and C'Sspread as a measure of transaction costs,
risk aversion estimate declines from 67.71 for the CCAPM to 2.91 for the liquidity-
adjusted model.

I also carry out the GMM estimates based on some calibrated transaction costs.
Similar to Liu and Strong (2008),3¢ T assume the transaction costs to be 0.5%, 1%,
or 1.5% each quarter. Again, I find that the risk aversion estimates are lower for the

liquidity-adjusted model than for the CCAPM.

4.8 Alternative tests with 12-month holding pe-

riod

In the following tests, I re-examine the above results by holding portfolios for 12
months. My test assets are a set of 20 equally-weighted portfolios classified by MV —
B/M and by each of the liquidity measures. I form portfolios at the end of June
each year except for the cGibbs portfolios, which are formed at the end of December
each year, and hold them for subsequent 12 months (four quarters). I decompose

the buy-and-hold portfolio return over the 12-month holding period into quarterly

36Liu and Strong (2008) assume some levels of transaction costs to calculate transaction-cost-adjusted
returns.
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returns based on Liu and Strong (2008). In addition, my test also uses the 5 x 4
MV &B/M portfolios formed by independent double sort (5 MV portfolios by 4 B/M

portfolios).

4.8.1 Estimates of consumption beta and liquidity beta with

12-month portfolio holding period

Table 4.14 using c¢Gibbs as transaction costs and Table 4.15 using C'Sspread as trans-
action costs report the consumption beta and the liquidity beta estimated by the
multiple regressions for the 20 MV -sorted portfolios, 20 B/M-sorted portfolios, 5 x 4
MV &B/M-sorted portfolios, 20 DV -sorted portfolios, 20 RV-sorted portfolios, 20
LM-sorted portfolios, 20 cGibbs-sorted portfolios, and 20 C'Sspread-sorted portfo-

lios.

e Consumption betas For Tables 4.14 and 4.15, reading across the rows of Panels A
and C, consumption betas are roughly associated with size premium, i.e., small
stocks have high consumption betas while big stocks have low consumption betas.
Reading across the rows of Panels B and C, the patterns of consumption betas
exhibit the U-shaped relation between portfolio returns classified by book-to-market
ratios and consumption risk. This could be attributed to the potential reasons
for the failure of the CCAPM to explain the value premium (e.g. Yogo (2006)).
Reading across the rows of Panel F, consumption beta for LM1 portfolio (5.214
with ¢Gibbs costs and 5.196 with C'Sspread costs) is larger than that for LM20
(4.388 with cGibbs costs and 4.412 with C'Sspread costs), which is opposite to
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the liquidity premium. The paradoxical pattern of consumption betas across LM-
sorted portfolios, meaning that illiquid stocks have low consumption betas and
liquid stocks have high consumption betas, is one of the potential reasons why
the CCAPM fails to explain the liquidity premium. Reading across the rows of
Panel D, E; G and H, consumption betas display U-shaped patterns. Hence, these
results indicate that the CCAPM has limited power in explaining the cross-sectional

variation of portfolio returns sorted by DV, RV, ¢Gibbs, and CSspread.

o Liquidity betas In Tables 4.14 and 4.15, liquidity betas are generally positive. This
is consistent with the expectation since negative innovations in transaction costs
are low when asset returns are low. Broadly speaking, liquidity risk accounts for
the return characteristics across each set of portfolios. More importantly, liquidity
betas are related with the liquidity premium implied by LM-sorted test portfolios:
LM1 portfolio has smaller liquidity beta (0.089 with c¢Gibbs costs and 0.304 with
CSspread costs) than LM20 (0.233 with cGibbs costs and 1.317 with C'Sspread

costs).

4.8.2 Pricing power with 12-month portfolio holding period

Figure 4.5 (Panel A with cGibbs costs and Panel B with C'Sspread costs) plots the
R-squares for the CCAPM and my liquidity-adjusted model. It shows that, across
the broad, the fraction of cross-sectional return variations explained by my liquidity-
adjusted model is much larger than that explained by the CCAPM. For instance, for
the 20 BM-sorted portfolios, 65.60% (with c¢Gibbs costs) and 63.72% (with C'Sspread
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costs) average return variations are explained by my liquidity-adjusted model, while
just 12.29% (with c¢Gibbs costs) and 14.54% (with C'Sspread costs) are explained by
the CCAPM. The most significant gain in light of the R-squares lies in the 20 DV-
sorted portfolios where my model explains 85.84% (with cGibbs costs) and 61.85%
(with C'Sspread costs) cross-sectional variations of average returns. By contrast, the
CCAPM only accounts for 9.27% (with c¢Gibbs costs) and 10.20% (with C'Sspread

costs) cross-sectional return variations.

4.8.3 Fitted versus realized returns with 12-month portfolio

holding period

Figure 4.6 plots the realized average excess returns and the fitted returns. As can
be seen, the pricing errors associated with my model are much smaller than those
associated with the CCAPM. In particular, Figures 4.6 suggests that the CCAPM
has difficulty in depicting the relation between realized average returns and predicted
average returns for the 20 B/M-sorted and DV -sorted portfolios. On the other hand,
Figure 4.6 shows that my liquidity-adjusted model fits average returns of these port-
folios quite well. For each set of test portfolios, Figure 4.6 shows that for the CCAPM
the smallest and biggest size categories, the highest and lowest book-to-market ratio
categories and the most illiquidity and liquidity categories are the manifest mispric-
ing portfolios. These portfolios generally lie farthest from the 45 degree line. By
contrast, Figures 4.6 indicates that my liquidity-adjusted model shortens the vertical

distance for the small and big portfolios, low and high book-to-market ratio portfolios
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as well as low and high liquidity portfolios. I report the magnitudes of pricing errors
for each portfolio for the traditional CCAPM and the liquidity-adjusted CCAPM in
Tables 4.12 and 4.13. The pricing errors are the differences between the fitted returns
and realized returns. The results of Tables 4.12 and 4.13 are consistent with Figure
4.6. Overall, the liquidity risk adjusted model is more successful at pricing expected

returns than the traditional CCAPM.

4.8.4 Liquidity risk and expected returns with 12-month port-

folio holding period

In this sub-section, I examine whether stocks with high liquidity betas outperform
stocks with low liquidity betas. My model implies that investors care about liquidity
risk and require a compensation for bearing liquidity risk. I first carry out the ex-
amination using pooled cross-sectional time-series regressions of portfolio returns on
the estimated consumption beta and liquidity beta. I then implement the generalized

least squares (GLS) to run the regressions on the following equation:

Rit—Rse =+ 7B t-1.c +728i1-1tc + €its (4.26)

where R; ; — Ry, is the returns of portfolio ¢ in excess of the risk free rate, 3;;1.
is the consumption beta and §;; 14 is the liquidity beta. I estimate the rolling
consumption beta and liquidity beta, 3;;_1 . and ;1 ¢, for each portfolio using prior

3-year observations. Transaction costs are calculated using the cGibbs estimates of
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Hasbrouck (2009) in Panel A of Table 4.16 and the C'Sspread estimates of Corwin
and Schultz (2012) in Panel B of Table 4.16, respectively.

Panel A of Table 4.16 shows that with the cGibbs costs, high liquidity beta is
related to high expected returns for the 20 MV-sorted portfolios, 20 B/M-sorted
portfolios, 5 x 4 MV & B/M-sorted portfolios, 20 DV -sorted portfolios, 20 RV -sorted
portfolios, 20 LM-sorted portfolios, 20 c¢Gibbs-sorted portfolios, and 20 C'Sspread-
sorted portfolios at the 5% level. In addition, Panel B of Table 4.16 shows that
with the C'Sspread costs, high liquidity beta is related to high returns for the 20
MYV -sorted portfolios, 20 B/M-sorted portfolios, 20 ¢Gibbs-sorted portfolios, and 20
C Sspread-sorted portfolios at the 5% level. The coefficient on the liquidity beta is
all positive which is in line with the model prediction.

I carry out further examination by controlling the transaction costs. Specifically,

I run the following regression:

Riy— Ry =0+ mtcie +vlii—1.c + 3Bii—1,c + €irs (4.27)

where R; ;— Ry, is the return of portfolio  in excess of the risk free rate, E(tc; ;) is the
average transaction costs of portfolio ¢, 3;;—1 . is the consumption beta, and 5;¢—1
is the liquidity beta. Panels A and B of Table 4.17 continue to show that investors
require higher expected returns for bearing higher liquidity risk stocks after controlling
transaction costs. The coefficient on the liquidity risk loading shows significant return

association at the 5% level for each set of test portfolio in Panel A and the 20 MV-
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sorted portfolios (¢ = 2.30), 20 B/M-sorted portfolios (t = 1.99), and 20 C'Sspread-
sorted portfolios (¢t = 2.65) in Panel B. Moreover, the coefficient on transaction costs is
insignificant at the 10% level for each set of test portfolio regardless of the transaction

costs measures. It indicates that liquidity risk (73) matters over liquidity level (),

which is consistent with Acharya and Pedersen (2005) and Liu (2010).

4.8.5 Risk aversion estimates with 12-month portfolio hold-
ing period

Tables 4.18 and 4.19 report the estimated risk aversion based on consumption growth

over horizons of S (S = 0,1,2...11).37 For each set of test portfolio, I calculate the risk

2

E[Ri—Ry 4]+ E[Ripe— Ry 4]+ Zite

Pl S for the CCAPM and o = 20 Lt
93,408 Tite,ACS

SEN

aversion coefficients using v =
for my liquidity-adjusted model, where R;; and R;. are the cross-sectional average
values for each set of portfolios. Test portfolios are: the 20 MV -sorted portfolios, 20
B/M-sorted portfolios, 5 x 4 MV &B/M-sorted portfolios, 20 DV -sorted portfolios,
20 RV-sorted portfolios, 20 LM-sorted portfolios, 20 cGibbs-sorted portfolios, and 20
C'Sspread-sorted portfolios.

My results show that the risk aversion estimates are less plausible based on the
CCAPM, consistent with the equity premium puzzle. While the risk version estimates
for my liquidity-adjusted model are lower than those of the CCAPM. In particular,
for the transaction costs measure of Corwin and Schultz (2012) with S = 7, the risk

aversion estimate for my model is around 10, the maximum level considered plausible

37The consumption growth over horizons of S (S =0,1,2...11) is calculated by ACY = g‘:? —1.
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by Mehra and Prescott (1985). While the corresponding risk aversion for the CCAPM
is at least above 45. Thus, high R-squares and more plausible risk aversion coefficients

lend favorable support to my model.

4.8.6 Robustness on cross-sectional R-squares with 12-month

portfolio holding period
e Other testing portfolios

[ carry out further tests on the traditional CCAPM and my liquidity-adjusted model
using 17 and 30 industry portfolios. Moreover, Lewellen, Nagel, and Shanken (2010)
argue that the tight factor structure of size and book-to-market portfolios tends to
be less powerful in rejecting misspecified asset pricing models and results in high
R-squares in cross-sectional tests. They advocate that asset pricing tests should
incorporate other sets of portfolios to disintegrate the structure of size and book-to-
market portfolios. Following their study, I augment each set of test portfolios (the
20 MV -sorted portfolios, 20 B/M-sorted portfolios, 5 x 4 MV & B /M-sorted port-
folios, 20 DV -sorted portfolios, 20 RV -sorted portfolios, 20 LM-sorted portfolios,
20 c¢Gibbs-sorted portfolios, and 20 C'Sspread-sorted portfolios.) with 10 industry
portfolios, respectively. The 10, 17, and 30 industry classification is based on the
Fama-French’s industry classification.®® Panel A of Tables 4.20 and 4.21 show that
a greater proportion of cross-sectional variation in asset returns can be explained

by my liquidity-adjusted model than the CCAPM regardless of the test portfolios

38http: //mba.tuck.dartmouth.edu/pages/faculty /ken.french /.
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and transaction costs measures. For example, for the 17 industry portfolios, the
cross-sectional R-squares increase to 42.44% with ¢Gibbs costs and 20.03% with
CSspread costs from 0.16% with cGibbs costs and 0.39% with CSspread costs.
Take the 20 cGibbs-sorted portfolios plus 10 industry portfolios for another exam-
ple. My model can explain 75.89% (with c¢Gibbs costs) and 68.84% (with C'Sspread
costs) cross-sectional return variations while the CCAPM can explain only 17.53%

(with ¢Gibbs costs) and 16.39% (with C'Sspread costs) of the variations.

e Other model specifications

The ultimate consumption model of Parker and Julliard (2005) measures the sys-
tematic risk as the sensitivity of returns to future and contemporaneous consump-
tion. The ultimate consumption risk takes slow consumption adjustment into ac-
count. Following Parker and Julliard (2005), I measure consumption risk using
the consumption growth of nondurable goods with the horizon (S = 11) to test
the ultimate consumption model and my corresponding liquidity-adjusted model.
Consistent with Parker and Julliard (2005), the CCAPM with S = 11 consumption
growth (R? = 69.67% with cGibbs costs and R* = 68.48% with C'Sspread costs)
is more powerful than the traditional CCAPM (R? = 36.64% with cGibbs costs
and R? = 37.90% with C'Sspread costs) in explaining return variations across the
5 x 4 MV&B/M-sorted portfolios. Despite this, Panel B of Tables 4.20 and 4.21
illustrate that for various test portfolios, my liquidity-adjusted model (with S = 11

consumption growth) does a better job than the CCAPM (with S = 11 consump-
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tion growth) in explaining cross-sectional return variations. For instance, Panel B
of Table 4.20 shows that the CCAPM (with S = 11 consumption growth) is less
powerful in explaining expected returns across the B/M-sorted portfolios (50.38%)
and across the DV-sorted portfolios (66.76%), while my liquidity-adjusted model
(with S = 11 consumption growth) apparently explains larger proportions of return
variations (69.95% for the B/M-sorted portfolios and 85.57% for the DV-sorted

portfolios).

Yogo (2006) emphasizes the role of durable consumption in explaining the cross-
sectional and time-varying expected returns. I thus substitute total consumption
growth for the consumption growth of nondurable goods and services. Panel C of
Tables 4.20 and 4.21 indicate that total consumption risk helps explain return vari-
ation across different sets of test portfolios. Moreover, my liquidity-adjusted model
(with total consumption growth) again performs better than the CCAPM (with to-
tal consumption growth). Specifically, when ¢Gibbs costs are employed, my model
explains 79.10%, 54.50%, 79.19%, 72.79%, 73.70%, 40.21%, 88.44%, and 19.55%
return variations across the 20 MV-sorted portfolios, 20 B/M-sorted portfolios,
5 x 4 MV &B/M-sorted portfolios, 20 DV -sorted portfolios, 20 RV -sorted portfo-
lios, 20 L M-sorted portfolios, 20 ¢Gibbs-sorted portfolios, and 20 C'Sspread-sorted
portfolios, while the CCAPM explains 70.86%, 50.80%, 73.52%, 37.26%, 57.99%,
0.46%, 79.81%, and 1.85% return variations across the respective portfolios. Similar

results can be found when using C'Sspread costs measure.
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Further, Jagannathan and Wang (2007) find that using fourth to fourth quarter
consumption growth possesses higher explanatory power in cross-sectional return
variations due to the fact that investors are more prone to reappraise consumption
and investment decisions during the fourth quarter. I use only the Q4 (4th quarter)
data to estimate consumption beta and liquidity beta. Similar to the results for
the ultimate consumption risk and total consumption risk, Panel D of Tables 4.20

and 4.21 report that my liquidity-adjusted model explains more return variations

than the traditional CCAPM.

4.8.7 Robustness on implied risk aversion with 12-month

portfolio holding period

My GMM regression results again show that the risk version estimates for my model
are lower compared to those for the CCAPM, generally mirroring the findings shown in
Tables 4.18 and 4.19. Specifically, with S = 7, risk aversion estimates decline to 25.71
(with c¢Gibbs costs) and 10.64 (with C'Sspread costs) for my liquidity-adjusted model
from 40.68 (with ¢Gibbs costs) and 40.73 (with C'Sspread costs) for the CCAPM.
In addition, I carry out the GMM estimates based on some calibrated transaction
costs. In particular, I assume that the other transaction costs are 0.5%, 1%, and 1.5%
for each quarter. This is similar to Liu and Strong (2008) who assume some levels
of transaction costs to calculate transaction-cost-adjusted returns. The risk aversion
estimate from my model is all lower than that from the CCAPM. For example, with
S = 7 and cGibbs costs, my model delivers the risk aversion values around 26.84 for
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0.5% transaction costs, 18.04 for 1% transaction costs, and 11.55 for 1.5% transaction

costs to match the data.

4.9 Conclusion

Motivated by recent studies showing the importance of liquidity in asset pricing, I
propose a liquidity adjustment to the consumption-based capital asset pricing model
(CCAPM). In addition to the traditional CCAPM risk (i.e., the covariance between
asset return and consumption growth), the liquidity-adjusted model suggests that
expected return is also associated with transaction costs and liquidity risk (the co-
variance between transaction costs and consumption growth). This is because high
sensitivity of transaction costs to fluctuations in consumption implies the difficulty
to convert investment into cash for consumption. Investors, therefore, demand high
expected return to compensate for high liquidity risk. My model suggests that neglect-
ing transaction costs and liquidity risk would lead to inaccurate estimate of expected
return.

Empirically, I find that the average stock positively exposes to liquidity risk, in-
dicating that the traditional CCAPM underestimates risk and expected return on
average. This also potentially explains why the performance of the CCAPM is em-
pirically poor. In contrast, I show that the liquidity-adjusted CCAPM explains a
larger fraction of the cross-sectional return variations. I extend the literature that

highlights the pricing of various systematic risks associated with consumption (e.g.,
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Lettau and Ludvigson (2001), Bansal and Yaron (2004), Parker and Julliard (2005),
Yogo (2006), Jagannathan and Wang (2007), Savov (2011), and Boguth and Kuehn
(2013)) by showing the positive relation between stock returns and the sensitivity of
transaction costs to consumption growth. My time-varying liquidity-risk explanation
to the value premium lend further supports to Watanabe and Watanabe (2008) and
Akbas, Boehmer, Gene, and Petkova (2010) that show the importance of time-varying
liquidity risk.

I also estimate the risk aversion coefficient with the liquidity-adjusted model,
which complements Lagos (2010) that shows the importance of liquidity in explain-
ing the equity premium puzzle by using calibration exercises. Further, unlike other
advances of consumption-based asset pricing studies (e.g., Parker and Julliard (2005),
Yogo (2006), and Jagannathan and Wang (2007)),% T highlight the importance of lig-
uidity in understanding the empirical failure of the CCAPM and the equity premium
puzzle.

While T explicitly model the liquidity effects as transaction costs in this chap-
ter, I attempt to summarize the communal features of liquidity in the next chapter.
Moveover, by generalizing the liquidity effects, I can not only investigate whether
the liquidity risk factor is priced or not but also test whether it is an important

contributor to the model’s performance.

39See Ludvigson (2010) for a review of the advances of consumption-based asset pricing.
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Table 4.1: Descriptive statistics

Panel A of this table reports descriptive statistics and correlations for the following market variables:

MYV ($m): market capitalization measured in millions of dollars;
B/M: book-to-market ratio;

DV ($000): the average daily dollar volume measured in thousands over the prior 12 months, where daily dollar
volume is the number of shares traded on a day times the closing price on that day;

RV (10%): daily ratio of the absolute return on a day to the dollar volume on that day averaged over the prior 12
months;

LM: standardized turnover-adjusted number of zero daily trading volumes over the prior 12 months;

cGibbs(%): Hasbrouck’s (2009) effective transaction costs measure, which is estimated using daily closing prices in
the prior 12 months (at least 60 reported trading prices);

CSspread(%): the bid-ask spread estimates from daily high and low prices by Corwin and Schultz (2012).

The B/M-related results are determined based on positive B/M stocks. The calculations of DV and LM require
no missing daily trading volumes in the prior 12 months. The calculation of RV requires that there are at least
80% non-missing daily trading volumes available in the prior 12 months. Note that the calculation of RV excludes
zero trading volumes over the prior 12 months. At the end of each month from January 1950 to December 2009,
cross-sectional averages for each variable are calculated over NYSE/AMEX stocks. The reported mean and standard
deviation are based on these time-series cross-sectional averages. Likewise, at the end of each month from January
1950 to December 2009, the cross-sectional Spearman rank correlations are computed, and the time-series average of
those correlations are reported.

Panel B of this table reports the various consumption growth measures in percentage form and the estimated individual
consumption beta and liquidity beta. AC' is the consumption growth of nondurable goods and services. AC® is the
consumption growth of nondurable goods over 11 quarters (S = 11). The consumption growth over a horizon of S
quarters is calculated as AC{Q = % — 1. ACT is the total consumption growth. AC®* is the fourth-to-fourth
(Q4-Q4) consumption growth based on nondurable goods and services. I calculate the Q4-Q4 annual consumption
growth using the fourth quarter consumption data. I use two linear functions of the nondurable goods and services
consumption growth to estimate the consumption beta and liquidity beta:

Rit — Ry = ac+ BcACE + €145
—u; ¢ = ate + Ptc ACt + €24,

where R; ; — Ry ¢ is the return in quarter ¢ of stock 7 in excess of the risk-free rate, AC is the consumption growth
of nondurable goods and services, and u; ¢ is the residual of the following regression:

tcit = ap + a1te; -1 + U4y,

where tc is either ¢cGibbs or C'Sspread.

Panel A: market variables

MV ($m) B/M DV($000) RV(109) LM cGibbs(%) CSspread (%)

Descriptive statistics

Mean 1636.576 1.066 7389.917 4.770 10.352 0.782 1.300

SD 9540.065 5.273 45820.669 34.176 26.028 0.999 2.291

[Cont.]
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(continued)

MV ($m) B/M DV($000) RV (10°) LM cGibbs(%) CSspread(%)
Spearman rank correlation
B/M -0.359 1
DV 0.899 -0.343 1
RV -0.940 0.317 -0.967 1
LM -0.506 0.205 -0.735 0.655 1
cGibbs -0.680 0.207 -0.611 0.691 0.252 1
CSspread -0.627 0.244 -0.529 0.605 0.188 0.705 1

Panel B: consumption growth, consumption beta, and liquidity beta

AC(%) ACS(%) ACT (%) AOQ4(%) 6c tccGibbs ﬁtCSspread

c

Descriptive statistics

Mean 0.511 4.138 0.545 2.065 3.908 0.107 0.396

SD 0.498 3.255 0.860 1.417 23.589 0.674 2.721

, Gi CSspread
Correlation between SEF%* and B5.°%P %

0.187
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Table 4.2: Regressions on the transaction costs, consumption beta, and liquidity beta

This table reports the coefficients by regressing the expected portfolio returns on the transaction costs, consumption
beta, and liquidity beta. Test portfolios are the 20 MV-sorted, 20 B/M-sorted, 4 x 5 MV &B/M-sorted, 20 DV-
sorted, 20 RV-sorted, 20 LM-sorted, 20 cGibbs-sorted, and 20 CSspread-sorted portfolios, respectively. I run the
pooled GLS regression on the following equation:

Ri ¢ — Ry ¢ =0 +v1tci +72Bit—1,c +V3B8it—1,tc + €its

where R;  — Ry ; is the return of portfolio ¢ in excess of the risk free rate, tc; ; is the transaction costs of portfolio
i, Bi,t—1,c is the historical consumption beta, and £; ¢—1,¢c is the historical liquidity beta. I estimate the historical
consumption beta and liquidity beta for each of the test portfolios using prior 3-year observations. Transaction costs
are calculated using the cGibbs estimates of Hasbrouck (2009) in Panel A and the C'Sspread estimates of Corwin and
Schultz (2012) in Panel B. ¢ statistics are shown in parentheses. The 1%, 5%, and 10% significance levels are denoted
with *** ** and *, respectively.

Panel A: ¢Gibbs as a measure of transaction costs

20 MV-sorted portfolios 1 = 0.140 (0.64) ~2 = 0.060%*** (2.91), ~3 = 3.005%"** (7.87)

20 BM-sorted portfolios 71 = 0.811* (1.79)  +» = 0.052%**, (2.36), 3 = 2.037%*** (5.75)

4 x 5 MV&B/M-sorted portfolios 1 = 0.055 (0.27) > = 0.043%"", (2.11), ~3 = 2.566%"** (6.72)

20 DV-sorted portfolios 1 =0.319 (1.51) ~» = 0.056%**", (2.64), ~3 = 2.885%*"" (7.16)

20 RV-sorted portfolios i =0.217 (1.04) ~2 = 0.060%**", (2.88), ~3 = 2.958%**" (7.41)

20 LM-sorted portfolios 1 =0.258 (0.88) ~> =0.051%"", (2.35), ~3 =2.610%"** (6.96)

20 cGibbs-sorted portfolios  +1 = 0.013 (0.08) ~» = 0.087%"**, (4.07), ~3 = 3.214%"** (8.08)

20 CSspread-sorted portfolios 71 = —0.191 (—0.98)  +2 = 0.080%***, (3.72), +3 = 2.934%™** (7.87)

Panel B: CSspread as a measure of transaction costs

20 MV-sorted portfolios 1 = —0.003 (—0.02) ~2 =0.040%", (1.93), 3 =1.355%""" (4.98)

20 BM-sorted portfolios 1 = 0.307", (1.66) > =0.034 (1.51), ~3 =1.019%""* (4.83)

4 x 5 MV&B/M-sorted portfolios 1 = —0.006 (—0.05) ~» =0.024 (1.16), ~3 = 1.189%"** (4.55)

20 DV-sorted portfolios 1 = 0.085 (0.70) > = 0.034 (1.58), ~5 =1.336%"*" (5.07)

20 RV-sorted portfolios 1 =0.035 (0.29) ~> = 0.039%", (1.82), 5 =1.313%"*" (4.94)

20 LM-sorted portfolios 1 = 0.046 (0.32) ~2 =0.033 (1.47), ~3 = 1.149%"** (4.98)

20 cGibbs-sorted portfolios 1 = —0.053 (—0.49) ~2 = 0.055%"", (2.52), ~3 =1.663%"*" (6.08)

20 CSspread-sorted portfolios 71 = —0.170 (—=1.64) +2 = 0.058%*"", (2.67), ~3 = 1.451%™"" (5.56)
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Table 4.3: Pricing errors: c¢Gibbs costs

This table reports the pricing errors (in percent) for the traditional CCAPM and the liquidity-adjusted model. The pricing errors are the differences between the fitted
returns and realized returns. The realized average returns are the time-series average returns in excess of the risk-free rate. The fitted expected returns for the CCAPM
are calculated as the fitted value from E[R; ; — Ry +] = 70 + 7184,c. The fitted expected returns for the liquidity-adjusted CCAPM are calculated as the fitted value
from E[R; + — Ry +] = vo + 11 E[tci, ¢] + v28i,c + V3Bi,tc. Transaction costs are calculated using the cGibbs estimates of Hasbrouck (2009). Test portfolios are: the
20 MV -sorted portfolios, 20 B/M-sorted portfolios, 4 x 5 MV &B/M-sorted portfolios, 20 DV -sorted portfolios, 20 RV -sorted portfolios, 20 LM-sorted portfolios, 20
cGibbs-sorted portfolios, and 20 C'Sspread-sorted portfolios. MV1 (B/M1, DV1, RV1, LM1, cGibbsl, and CSspreadl) denotes the smallest (lowest) MV (B/M, DV,
RV, LM, c¢Gibbs, and CSspread) portfolio and MV20 (B/M20, DV20, RV20, LM20, cGibbs20, and CSspread20) denotes the biggest (highest) MV (B/M, DV, RV,
LM, c¢Gibbs, and CSspread) portfolio. For the 4 x 5 MV &B/M-sorted portfolios, the digit after S denotes the size quintile (1 representing the smallest and 4 the
largest), and the digit after B denotes the book-to-market quartile (1 representing the lowest and 5 the highest). The variable explanations refer to Table 4.1.

Panel A: MV -sorted portfolios

MV1 MV2 MV3 MV4 MV5 MV6 MV7 MV8 MV9 MV10

Traditional CCAPM -0.045 -0.106 0.072 -0.055 -0.203 0.347 0.175 -0.070 0.189 0.056
Liquidity-adjusted CCAPM -0.006 -0.281 0.227 -0.215 0.015 0.198 0.093 -0.123 0.080 0.056
MV11 MV12 MV13 MV14 MV15 MV16 MV17 MV18 MV19 MV20

Traditional CCAPM 0.134 0.266 0.095 0.130 -0.003 -0.034 0.006 0.029 -0.349 -0.634
Liquidity-adjusted CCAPM 0.173 0.154 -0.027 0.181 0.057 0.106 -0.037 -0.001 -0.339 -0.313

Panel B: B/M-sorted portfolios
B/M1 B/M2 B/M3 B/M4 B/Mb B/M6 B/M7 B/M3 B/M9  B/MIO
Traditional CCAPM -0.019 -0.679 -0.182 -0.394 -0.381 -0.298 -0.101 -0.363 -0.351 -0.309
Liquidity-adjusted CCAPM 0.013 -0.224 0.155 -0.124 -0.132 -0.032 0.121 -0.157 -0.175 -0.064
B/M11  B/MI2  B/M13 B/Mi4  B/M15 B/MI6 B/M17  B/MI8  B/M19  B/M20
Traditional CCAPM -0.167 -0.316 0.284 0.138 -0.315 0.388 0.436 0.584 0.741 1.305
Liquidity-adjusted CCAPM -0.038 -0.216 0.301 0.184 -0.206 0.291 0.291 0.209 0.061 -0.257
Panel C: 4 x 5 MV &B /M portfolios

S1B1 S1B2 S1B3 S1B4 S1B5 S2B1 S2B2 S2B3 S2B4 S2B5

Traditional CCAPM -0.656 -0.012 0.317 0.474 1.043 -0.384 -0.119 0.155 0.555 0.406
Liquidity-adjusted CCAPM -0.494 -0.046 -0.098 0.166 0.081 -0.064 0.306 0.440 0.598 0.310
S3B1 S3B2 S3B3 S3B4 S3B5 S4B1 S4B2 S4B3 S4B4 S4B5

Traditional CCAPM -0.344 -0.431 -0.178 0.327 0.614 -0.753 -0.706 -0.501 -0.057 0.249
Liquidity-adjusted CCAPM -0.087 -0.283 -0.168 0.343 0.681 -0.561 -0.555 -0.623 -0.251 0.306

[Cont.]
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(continued)

Panel D: DV -sorted portfolios

DV1 DV2 DV3 DV4 DV5 DV6 DV7 DV8 DV9 DV10
Traditional CCAPM 0.862 0.349 0.076 0.262 0.422 -0.059 0.592 0.224 0.024 0.002
Liquidity-adjusted CCAPM  -0.095 0.083 -0.011 0.046 0.408 -0.348 0.176 0.184 -0.172 -0.054
DV11 DV12 DV13 DV14 DV15 DV16 DV17 DV18 DV19 DV20
Traditional CCAPM -0.277 -0.020 -0.045 -0.030 0.037 -0.236 -0.065 -0.394 -0.413 -1.314
Liquidity-adjusted CCAPM  -0.284 -0.031 -0.079 0.191 0.084 -0.088 0.153 -0.090 0.135 -0.207
Panel E: RV -sorted portfolios
RV1 RV2 RV3 RV4 RV5 RV6 RV7 RV8 RV9 RV10
Traditional CCAPM -0.979 -0.538 -0.323 -0.366 -0.010 0.264 -0.367 0.283 0.162 -0.074
Liquidity-adjusted CCAPM  -0.211 -0.149 -0.155 -0.046 0.110 0.184 -0.251 0.169 -0.243 -0.116
RV11 RV12 RV13 RV14 RV15 RV16 RV17 RV18 RV19 RV20
Traditional CCAPM 0.240 0.023 -0.060 0.167 0.002 0.199 0.407 0.514 0.029 0.427
Liquidity-adjusted CCAPM 0.109 0.056 -0.301 0.239 0.033 0.329 0.108 0.150 0.202 -0.216
Panel F: LM-sorted portfolios
LM1 LM2 LM3 LM4 LM5 LM6 LM7 LM8 LM9 LM10
Traditional CCAPM -1.351 -0.489 -0.239 0.188 -0.246 -0.056 -0.017 -0.073 -0.201 -0.212
Liquidity-adjusted CCAPM  -0.848 -0.106 0.201 0.357 -0.018 0.242 0.058 0.014 -0.130 -0.084
LM11 LM12 LM13 LM14 LM15 LM16 LM17 LM18 LM19 LM20
Traditional CCAPM -0.312 -0.170 0.183 0.099 -0.018 0.327 0.349 0.564 0.750 0.923
Liquidity-adjusted CCAPM  -0.332 -0.201 0.451 0.016 -0.235 0.121 0.342 0.130 0.276 -0.252
Panel G: cGibbs-sorted portfolios
cGibbs1 cGibbs2 cGibbs3 cGibbs4 cGibbsb cGibbs6 cGibbs7 cGibbs8 cGibbs9 c¢Gibbs10
Traditional CCAPM -0.101 -0.183 -0.154 0.067 0.088 -0.091 0.001 -0.202 0.086 -0.142
Liquidity-adjusted CCAPM  -0.158 0.018 -0.039 0.090 -0.062 0.077 0.063 -0.109 0.176 -0.189
cGibbsll  cGibbsl2  c¢Gibbs13  c¢Gibbsl4d  cGibbsl5  c¢Gibbsl6  cGibbsl7  c¢Gibbsl8  c¢Gibbsl9  c¢Gibbs20
Traditional CCAPM 0.138 -0.162 -0.159 -0.468 0.379 0.434 0.104 0.062 0.083 0.220
Liquidity-adjusted CCAPM  -0.016 -0.159 -0.009 -0.086 0.008 0.228 0.120 0.071 0.070 -0.093

Panel H: C'Sspread-sorted portfolios

Traditional CCAPM
Liquidity-adjusted CCAPM

Traditional CCAPM
Liquidity-adjusted CCAPM

CSspreadl CSspread2 CSspread3 CSspread4d CSspreadb CSspread6 CSspread? CSspread8 CSspread9 CSspreadl0O

-0.097
-0.059

CSspreadll CSspreadl2

0.046
0.005

0.125
0.130

0.057
0.056

-0.007 0.011 -0.150 0.064 0.033
-0.000 -0.010 -0.170 0.034 0.050
CSspread13 CSspreadl14 CSspreadl5 CSspreadl6 CSspreadl7?
0.100 0.014 0.026 -0.084 0.021
0.080 -0.045 0.051 -0.091 0.047

-0.121 0.116 -0.144
-0.117 0.101 -0.132
CSspread18 CSspreadl19 CSspread20
0.187 -0.247 0.052
0.235 -0.162 -0.001
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Table 4.4: Pricing errors: C'Sspread costs

This table reports the pricing errors (in percent) for the traditional CCAPM and the liquidity-adjusted model. The pricing errors are the differences between the fitted
returns and realized returns. The realized average returns are the time-series average returns in excess of the risk-free rate. The fitted expected returns for the CCAPM
are calculated as the fitted value from E[R; ¢ — Ry, +] = Y0 +718:,c. The fitted expected returns for the liquidity-adjusted CCAPM are calculated as the fitted value from
E[R; ¢+ — Ryf,+] = vo +v1Eltci, t] +7208i,c +73Bi,tc. Transaction costs are calculated using the C'Sspread estimates of Corwin and Schultz (2012). Test portfolios are: the
20 MV -sorted portfolios, 20 B/M-sorted portfolios, 4 x 5 MV &B/M-sorted portfolios, 20 DV -sorted portfolios, 20 RV -sorted portfolios, 20 LM-sorted portfolios, 20
cGibbs-sorted portfolios, and 20 C'Sspread-sorted portfolios. MV1 (B/M1, DV1, RV1, LM1, cGibbsl, and CSspreadl) denotes the smallest (lowest) MV (B/M, DV,
RV, LM, cGibbs, and CSspread) vigintiles portfolio and MV20 (B/M20, DV20, RV20, LM20, cGibbs20, and CSspread20) denotes the biggest (highest) MV (B/M,
DV, RV, LM, cGibbs, and CSspread) portfolio. For the 4 x 5 MV & B/M-sorted portfolios, the digit after S denotes the size quintile (1 representing the smallest and
4 the largest), and the digit after B denotes the book-to-market quartile (1 representing the lowest and 5 the highest). The variable explanations refer to Table 4.1.

Panel A: MV -sorted portfolios

MV1 MV2 MV3 MV4 MV5 MV6 MV7 MV8 MV9 MV10

Traditional CCAPM 0.006 -0.115 0.031 -0.108 -0.207 0.338 0.138 -0.020 0.156 0.070
Liquidity-adjusted CCAPM 0.016 -0.157 -0.070 -0.077 -0.192 0.270 0.152 -0.030 0.210 0.079
MV11 MV12 MV13 MV14 MV15 MV16 MV17 MV18 MV19 MV20

Traditional CCAPM 0.082 0.294 0.095 0.176 0.008 -0.018 -0.021 0.054 -0.340 -0.618
Liquidity-adjusted CCAPM 0.085 0.311 0.102 0.186 0.041 0.000 -0.023 0.033 -0.346 -0.592

Panel B: B/M-sorted portfolios
B/M1 B/M2 B/M3 B/M4 B/Mb B/M6 B/M7 B/M3 B/M9  B/MIO
Traditional CCAPM 0.018 -0.641 -0.132 -0.394 -0.365 -0.295 -0.061 -0.401 -0.373 -0.344
Liquidity-adjusted CCAPM 0.002 -0.533 0.157 -0.028 -0.016 -0.090 0.028 -0.078 -0.052 -0.182
B/M11  B/MI2  B/M13 B/MI14  B/M15 B/MI6 B/M17  B/MI8  B/M19  B/M20
Traditional CCAPM -0.233 -0.330 0.294 0.126 -0.367 0.369 0.406 0.546 0.828 1.349
Liquidity-adjusted CCAPM 0.054 -0.090 0.284 0.156 -0.258 0.345 0.148 0.285 0.075 -0.209
Panel C: 4 x 5 MV &B /M portfolios

S1B1 S1B2 S1B3 S1B4 S1B5 S2B1 S2B2 S2B3 S2B4 S2B5

Traditional CCAPM -0.687 -0.005 0.312 0.466 1.130 -0.399 -0.115 0.158 0.561 0.405
Liquidity-adjusted CCAPM -0.657 0.251 0.498 -0.060 0.015 -0.071 0.211 0.332 0.301 -0.177
S3B1 S3B2 S3B3 S3B4 S3B5 S4B1 S4B2 S4B3 S4B4 S4B5

Traditional CCAPM -0.350 -0.437 -0.184 0.327 0.616 -0.762 -0.709 -0.507 -0.062 0.241
Liquidity-adjusted CCAPM 0.105 -0.239 -0.062 0.435 0.323 -0.249 -0.394 -0.439 -0.294 0.171

[Cont.]
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(continued)

Panel D: DV -sorted portfolios

DV1 DV2 DV3 DV4 DV5 DV6 DV7 DV8 DV9 DV10
Traditional CCAPM 0.888 0.372 0.088 0.263 0.431 -0.053 0.591 0.215 0.026 0.007
Liquidity-adjusted CCAPM  -0.151 0.286 0.036 0.158 0.208 -0.363 0.305 0.256 -0.266 -0.008
DV11 DV12 DV13 DV14 DV15 DV16 DV17 DV18 DV19 DV20
Traditional CCAPM -0.281 -0.027 -0.036 -0.037 0.035 -0.246 -0.076 -0.411 -0.423 -1.326
Liquidity-adjusted CCAPM  -0.330 0.215 0.035 0.300 -0.045 -0.129 -0.044 -0.163 -0.021 -0.278
Panel E: RV -sorted portfolios
RV1 RV2 RV3 RV4 RV5 RV6 RV7 RV8 RV9 RV10
Traditional CCAPM -0.999 -0.549 -0.328 -0.379 -0.009 0.276 -0.388 0.291 0.175 -0.071
Liquidity-adjusted CCAPM  -0.332 -0.233 -0.336 0.050 0.068 0.092 -0.034 0.252 0.006 0.097
RV11 RV12 RV13 RV14 RV15 RV16 RV17 RV18 RV19 RV20
Traditional CCAPM 0.247 0.019 -0.049 0.158 -0.008 0.187 0.409 0.500 0.050 0.467
Liquidity-adjusted CCAPM 0.094 0.177 -0.298 0.209 -0.176 0.372 -0.165 0.335 -0.112 -0.065
Panel F: LM-sorted portfolios
LM1 LM2 LM3 LM4 LM5 LM6 LM7 LM8 LM9 LM10
Traditional CCAPM -1.331 -0.511 -0.260 0.175 -0.251 -0.064 0.003 -0.062 -0.196 -0.217
Liquidity-adjusted CCAPM  -0.978 -0.245 0.097 0.334 -0.012 0.190 -0.002 0.027 -0.284 -0.226
LM11 LM12 LM13 LM14 LM15 LM16 LM17 LM18 LM19 LM20
Traditional CCAPM -0.306 -0.156 0.171 0.111 -0.008 0.331 0.336 0.578 0.746 0.912
Liquidity-adjusted CCAPM  -0.195 -0.312 0.299 0.002 0.186 0.250 0.376 0.162 0.596 -0.264
Panel G: cGibbs-sorted portfolios
cGibbs1 cGibbs2 cGibbs3 cGibbs4 cGibbsb cGibbs6 cGibbs7 cGibbs8 cGibbs9 c¢Gibbs10
Traditional CCAPM -0.085 -0.189 -0.172 0.064 0.114 -0.099 -0.018 -0.218 0.090 -0.144
Liquidity-adjusted CCAPM  -0.111 0.033 -0.018 0.078 0.013 0.088 0.083 -0.154 0.092 -0.194
cGibbsll  cGibbsl2  c¢Gibbs13  c¢Gibbsl4d  cGibbsl5  c¢Gibbsl6  cGibbsl7  c¢Gibbsl8  c¢Gibbsl9  c¢Gibbs20
Traditional CCAPM 0.134 -0.151 -0.172 -0.492 0.409 0.440 0.080 0.053 0.117 0.240
Liquidity-adjusted CCAPM  -0.033 -0.184 -0.013 -0.123 -0.050 0.295 0.143 0.071 0.036 -0.054

Panel H: C'Sspread-sorted portfolios

Traditional CCAPM
Liquidity-adjusted CCAPM

Traditional CCAPM
Liquidity-adjusted CCAPM

CSspreadl CSspread2 CSspread3 CSspread4d CSspreadb CSspread6 CSspread? CSspread8 CSspread9 CSspreadl0O

-0.066
-0.083

0.039
0.039

0.125 0.016 -0.014 -0.110 0.055 0.034
0.113 0.005 -0.016 -0.127 0.046 0.030
CSspreadll CSspreadl2 CSspreadl3 CSspreadl4 CSspreadlb CSspreadl6 CSspreadl7
0.045 0.087 -0.004 0.007 -0.087 -0.007
0.050 0.083 -0.006 0.016 -0.082 0.071

-0.119 0.100 -0.139
-0.115 0.081 -0.145
CSspread18 CSspreadl19 CSspread20
0.159 -0.279 0.159
0.218 -0.184 0.007
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Table 4.5: The consumption beta and liquidity beta: cGibbs costs

This table reports the patterns of the consumption beta and liquidity beta. Consumption beta is estimated through a time-series regression of returns in excess of the
risk-free rate on consumption growth for each portfolio. Liquidity beta is estimated through a time-series regression of liquidity innovations on consumption growth
for each portfolio. Transaction costs are calculated using the cGibbs estimates of Hasbrouck (2009). Test portfolios are: the 20 MV-sorted portfolios, 20 B/M-sorted
portfolios, 4 x 5 MV & B/M-sorted portfolios, 20 DV -sorted portfolios, 20 RV -sorted portfolios, 20 L M-sorted portfolios, 20 ¢Gibbs-sorted portfolios, and 20 C'Sspread-
sorted portfolios. MV'1 (B/M1, DV1, RV1, LM1, cGibbsl, and CSspreadl) denotes the smallest (lowest) MV (B/M, DV, RV, LM, cGibbs, and CSspread) portfolio
and MV20 (B/M20, DV20, RV20, LM20, cGibbs20, and CSspread20) denotes the biggest (highest) MV (B/M, DV, RV, LM, cGibbs, and CSspread) portfolio.
For the 4 x 5 MV &B/M-sorted portfolios, the digit after S denotes the size quintile (1 representing the smallest and 4 the largest), and the digit after B denotes the
book-to-market quartile (1 representing the lowest and 5 the highest). The variable explanations refer to Table 4.1.

Panel A: MV-sorted portfolios

MV1 MV2 MV3 MV4 MV5 MV6 MV7 MV8 MV9 MV10

Be 4.251 3.542 3.167 3.540 3.791 3.010 3.154 3.158 3.224 3.109
Btec 0.371 0.145 0.181 0.069 0.096 0.075 0.065 0.061 0.038 0.058
MV11 MV12 MV13 MV14 MV15 MV16 MV17 MV18 MV19 MV20

Be 2.970 2.659 2.651 2.700 2.756 2.833 2.414 2.273 2.311 2.733
Bie 0.067 0.056 0.049 0.069 0.065 0.068 0.058 0.065 0.063 0.074

Panel B: B/M-sorted portfolios
B/M1 B/M2 B/M3 B/M4 B/M5 B/M6 B/M7 B/MS8 B/M9 B/M10
Be 4.272 3.356 3.620 3.606 3.416 3.458 3.670 3.090 3.082 2.731
Bte 0.087 0.100 0.044 -0.009 0.003 0.032 0.023 0.009 0.012 0.053
B/M11 B/M12 B/M13 B/M14 B/M15 B/M16 B/M17 B/M18 B/M19 B/M20
Be 2.793 3.077 3.589 2.919 2.310 2.998 3.093 2.553 2.859 3.690
Bie 0.008 0.032 0.010 0.050 0.099 0.084 0.151 0.136 0.190 0.289
Panel C: 4 x 5 MV &B /M portfolios

S1B1 S1B2 S1B3 S1B4 S1B5 S2B1 S2B2 S2B3 S2B4 S2B5

Be 5.371 4.394 3.547 3.968 3.455 3.310 3.692 3.127 2.386 2.503
Biec 0.147 0.139 0.156 0.161 0.219 0.057 0.064 0.056 0.052 0.078
S3B1 S3B2 S3B3 S3B4 S3B5 S4B1 S4B2 S4B3 S4B4 S4B5

Be 3.076 2.503 2.410 2.234 3.152 2.781 2.606 1.898 1.936 2.986
Bie 0.064 0.050 0.066 0.055 0.097 0.064 0.061 0.064 0.078 0.097

[Cont.]
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(continued)

Panel D: DV-sorted portfolios

DV1 DV2 DV3 DV4 DV5 DVeé DV7 DV8 DV9 DV10
Be 4.201 3.767 3.623 3.298 3.324 2.772 2.358 2.999 2.593 2.783
Bte 0.279 0.120 0.119 0.055 0.096 0.053 0.053 0.043 0.042 0.039
DV11 DV12 DV13 DVi14 DV15 DV16 DV17 DV18 DV19 DV20
Be 2.727 2.744 2.601 3.007 2.490 2.612 2.642 2.755 3.098 4.095
Bte 0.058 0.034 0.038 0.040 0.065 0.061 0.068 0.065 0.077 0.075
Panel E: RV -sorted portfolios
RV1 RV2 RV3 RV4 RV5 RV6 RV7 RV8 RV9 RV10
Be 3.247 2.864 2.432 3.038 2.610 2.339 2.988 2.496 2.205 2.909
Bte 0.073 0.062 0.078 0.050 0.067 0.066 0.042 0.058 0.047 0.042
RV11 RV12 RV13 RV14 RV15 RV16 RV17 RV18 RV19 RV20
Be 2.676 3.086 2.730 3.226 3.151 3.336 2.559 2.898 3.656 4.398
Bte 0.056 0.053 0.051 0.064 0.076 0.091 0.118 0.104 0.172 0.317
Panel F: LM-sorted portfolios
LM1 LM2 LM3 LM4 LM5 LM6 LM7 LMS8 LM9 LM10
Be 4.244 3.992 4.037 3.222 3.291 3.186 2.505 2.569 2.311 2.515
Bte 0.060 0.006 0.004 -0.002 -0.005 0.053 0.034 0.015 0.060 0.046
LM11 LM12 LM13 LM14 LM15 LM16 LM17 LM18 LM19 LM20
Be 2.311 2.207 3.077 2.362 2.676 3.047 3.759 3.098 3.812 3.999
Bte 0.008 0.059 0.091 0.090 0.014 0.049 0.082 0.114 0.132 0.244
Panel G: c¢Gibbs-sorted portfolios
cGibbsl cGibbs2 c¢Gibbs3 cGibbs4 cGibbsh cGibbs6 cGibbs7 c¢Gibbs8 cGibbs9 c¢Gibbs10
Be 2.626 2.983 2.890 2.796 2.597 2.993 2.873 2.943 2.938 2.782
Bte 0.051 0.057 0.057 0.060 0.061 0.058 0.059 0.065 0.061 0.061
cGibbsl1 cGibbs12 cGibbs13 cGibbs14 cGibbs15 cGibbs16 cGibbsl7 cGibbs18 c¢Gibbs19 c¢Gibbs20
Be 2.694 2.881 3.100 3.427 2.544 2.811 3.207 3.394 3.762 4.534
Bte 0.070 0.063 0.069 0.075 0.082 0.092 0.116 0.155 0.237 0.401
Panel H: C'Sspread-sorted portfolios
CSspreadl CSspread2 CSspread3 CSspread4 CSspreadb CSspread6 CSspread7 CSspread8 CSspread9  CSspread10
Be 2.366 2.182 2.464 2.557 2.509 2.460 2.960 3.286 2.789 3.287
Bte 0.071 0.067 0.062 0.047 0.052 0.053 0.066 0.050 0.062 0.064
CSspreadll CSspreadl2 CSspreadl3 CSspreadl4 CSspreadld CSspreadl6 CSspreadl? CSspreadl8 CSspreadl9  CSspread20
Be 2.823 3.242 3.214 3.307 3.364 3.919 3.622 3.654 3.230 4.228
Bte 0.057 0.070 0.067 0.050 0.108 0.082 0.134 0.176 0.274 0.433
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Table 4.6: The consumption beta and liquidity beta: C'Sspread costs

This table reports the patterns of the consumption beta and liquidity beta. Consumption beta is estimated through a time-series regression of returns in excess of the
risk-free rate on consumption growth for each portfolio. Liquidity beta is estimated through a time-series regression of liquidity innovations on consumption growth
for each portfolio. Transaction costs are calculated using the CSspread estimates of Corwin and Schultz (2012). Test portfolios are: the 20 MV-sorted portfolios,
20 B/M-sorted portfolios, 4 x 5 MV &B/M-sorted portfolios, 20 DV -sorted portfolios, 20 RV -sorted portfolios, 20 LM-sorted portfolios, 20 c¢Gibbs-sorted portfolios,
and 20 CSspread-sorted portfolios. MV1 (B/M1, DV1, RV1, LM1, cGibbsl, and CSspreadl) denotes the smallest (lowest) MV (B/M, DV, RV, LM, cGibbs, and
CSspread) vigintiles portfolio and MV20 (B/M20, DV20, RV20, LM20, cGibbs20, and CSspread20) denotes the biggest (highest) MV (B/M, DV, RV, LM, cGibbs,
and CSspread) portfolio. For the 4 x 5 MV &B/M-sorted portfolios, the digit after S denotes the size quintile (1 representing the smallest and 4 the largest), and the
digit after B denotes the book-to-market quartile (1 representing the lowest and 5 the highest). The variable explanations refer to Table 4.1.

Panel A: MV-sorted portfolios

MV1 MV2 MV3 MV4 MV5 MV6 MV7 MV8 MV9 MV10

Be 4.262 3.512 3.214 3.511 3.775 3.046 3.180 3.152 3.246 3.118
Btec 0.984 0.473 0.411 0.318 0.314 0.293 0.246 0.248 0.208 0.216
MV11 MV12 MV13 MV14 MV15 MV16 MV17 MV18 MV19 MV20

Be 3.005 2.634 2.659 2.681 2.733 2.825 2.467 2.267 2.309 2.733
Btec 0.202 0.166 0.166 0.160 0.148 0.160 0.144 0.135 0.127 0.130

Panel B: B/M-sorted portfolios
B/M1 B/M2 B/M3 B/M4 B/M5 B/M6 B/M7 B/MS8 B/M9 B/M10
Be 4.276 3.397 3.659 3.609 3.448 3.431 3.698 3.060 3.075 2.744
Btec 0.283 0.322 0.186 0.143 0.159 0.254 0.303 0.199 0.191 0.315
B/M11 B/M12 B/M13 B/M14 B/M15 B/M16 B/M17 B/M18 B/M19 B/M20
Be 2.795 3.079 3.597 2.957 2.334 3.018 3.094 2.571 2.958 3.478
Bte 0.222 0.219 0.342 0.352 0.338 0.347 0.462 0.449 0.643 0.847
Panel C: 4 x 5 MV &B /M portfolios

S1B1 S1B2 S1B3 S1B4 S1B5 S2B1 S2B2 S2B3 S2B4 S2B5

Be 5.317 4.314 3.556 3.998 3.433 3.342 3.750 3.134 2.410 2.511
Bte 0.555 0.406 0.361 0.512 0.676 0.220 0.240 0.220 0.241 0.317
S3B1 S3B2 S3B3 S3B4 S3B5 S4B1 S4B2 S4B3 S4B4 S4B5

Be 3.079 2.513 2.392 2.237 3.154 2.790 2.604 1.907 1.934 2.992
Biec 0.157 0.157 0.161 0.154 0.295 0.118 0.136 0.129 0.179 0.231

[Cont.]
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(continued)

Panel D: DV-sorted portfolios

DV1 DV2 DV3 DV4 DV5 DVeé DV7 DV8 DV9 DV10
Be 4.176 3.731 3.624 3.311 3.284 2.773 2.353 3.002 2.580 2.775
Bte 0.828 0.434 0.400 0.355 0.385 0.313 0.225 0.248 0.270 0.222
DV11 DV12 DV13 DVi14 DV15 DV16 DV17 DV18 DV19 DV20
Be 2.727 2.738 2.588 2.996 2.500 2.618 2.647 2.762 3.102 4.093
Bte 0.223 0.136 0.159 0.155 0.188 0.150 0.181 0.137 0.155 0.146
Panel E: RV -sorted portfolios
RV1 RV2 RV3 RV4 RV5 RV6 RV7 RV8 RV9 RV10
Be 3.248 2.865 2.446 3.036 2.616 2.332 2.995 2.489 2.204 2.885
Bte 0.098 0.129 0.148 0.131 0.156 0.178 0.149 0.171 0.168 0.182
RV11 RV12 RV13 RV14 RV15 RV16 RV17 RV18 RV19 RV20
Be 2.670 3.089 2.729 3.237 3.149 3.340 2.555 2.891 3.611 4.362
Bte 0.227 0.219 0.265 0.272 0.314 0.279 0.360 0.346 0.476 1.034
Panel F: LM-sorted portfolios
LM1 LM2 LM3 LM4 LM5 LM6 LM7 LMS8 LM9 LM10
Be 4.169 4.002 4.036 3.231 3.260 3.175 2.506 2.553 2.313 2.507
Bte 0.221 0.260 0.224 0.222 0.187 0.170 0.221 0.180 0.243 0.227
LM11 LM12 LM13 LM14 LM15 LM16 LM17 LM18 LM19 LM20
Be 2.321 2.210 3.066 2.370 2.682 3.063 3.764 3.141 3.796 3.961
Bte 0.136 0.262 0.228 0.247 0.118 0.299 0.321 0.448 0.353 0.720
Panel G: c¢Gibbs-sorted portfolios
cGibbsl cGibbs2 c¢Gibbs3 cGibbs4 cGibbsh cGibbs6 cGibbs7 c¢Gibbs8 cGibbs9 c¢Gibbs10
Be 2.619 2.987 2.902 2.803 2.576 2.989 2.889 2.950 2.924 2.790
Bte 0.114 0.142 0.143 0.173 0.141 0.166 0.169 0.212 0.234 0.207
cGibbsl1 cGibbs12 cGibbs13 cGibbs14 cGibbs15 cGibbs16 cGibbsl7 cGibbs18 c¢Gibbs19 c¢Gibbs20
Be 2.702 2.875 3.100 3.421 2.535 2.812 3.209 3.379 3.703 4.547
Bte 0.230 0.236 0.233 0.262 0.315 0.276 0.339 0.438 0.636 1.194
Panel H: C'Sspread-sorted portfolios
CSspreadl CSspread2 CSspread3 CSspread4 CSspreadb CSspread6 CSspread7 CSspread8 CSspread9  CSspread10
Be 2.392 2.161 2.437 2.575 2.550 2.474 2.933 3.276 2.814 3.346
Bte 0.097 0.123 0.133 0.154 0.141 0.159 0.172 0.190 0.171 0.195
CSspreadll CSspreadl2 CSspreadl3 CSspreadl4 CSspreadld CSspreadl6 CSspreadl? CSspreadl8 CSspreadl9  CSspread20
2.827 3.300 3.222 3.344 3.339 3.909 3.689 3.641 3.244 4.078
0.213 0.230 0.232 0.249 0.285 0.304 0.433 0.472 0.661 1.267
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CHAPTER 4. TRANSACTION COSTS, LIQUIDITY RISK, AND THE CCAPM

Table 4.7: Regressions on consumption beta and liquidity beta

This table reports the regression coefficients of the expected portfolio returns on the consumption beta and liquidity
beta. Test portfolios are the 20 MV -sorted, 20 B/M-sorted, 4 x 5 MV &B/M-sorted, 20 DV -sorted, 20 RV -sorted, 20
L M-sorted, 20 cGibbs-sorted, and 20 C'Sspread-sorted portfolios, respectively. I run the following Fama and MacBeth
(1973) cross-sectional regression:

Ri ¢ — Ry ¢ =70 +71Bi,c +72B5,tc + €,

where R; ¢ — Ry ; is the quarterly return of portfolio i in excess of the risk-free rate, ; . is the consumption beta
and fB; ¢c is the liquidity beta. Consumption beta is estimated through a time-series regression of return in excess
of the risk-free rate on consumption growth. Liquidity beta is estimated through a time-series regression of liquidity
innovations on consumption growth. Transaction costs are calculated using the cGibbs estimates of Hasbrouck (2009)
in Panel A and the CSspread estimates of Corwin and Schultz (2012) in Panel B. Numbers in parentheses are t
statistics. The 1%, 5%, and 10% significance levels are denoted with *** ** and *, respectively.

Panel A: cGibbs as a measure of transaction costs

20 MV-sorted portfolios 71 = 0.653%" (1.92), > = —0.528% (—0.36)

20 BM-sorted portfolios 71 = —0.659%""" (—3.39), ~2 = 5.165%"" (2.06)

4 x 5 MV&B/M-sorted portfolios 41 = —0.335%" (—1.81), 2 = 8.221%"" (2.36)

20 DV-sorted portfolios 41 = —0.295%""" (—2.63), ~2 = T7.177%""" (3.29)

20 RV-sorted portfolios 1 = —0.079% (—0.84), ~2 =4.727%"* (2.06)

20 LM-sorted portfolios 1 = —0.219% (—1.09), ~2 = 5.441%"** (3.49)

20 cGibbs-sorted portfolios 1 = —0.142% (—0.89), ~2 =4.908%"* (2.09)

20 CSspread-sorted portfolios 1 = 0.168% (0.81), ~2 = —0.080% (—0.04)

Panel B: CSspread as a measure of transaction costs

20 MV-sorted portfolios 1 = 0.578%" (1.84), ~2 = 0.124% (0.16)

20 BM-sorted portfolios 71 = —0.651%*** (—3.27), ~2 = 2.656%"" (2.27)

4 x5 MV&B/M-sorted portfolios 1 = —0.509%"" (—2.42), 2 = 3.494%"" (2.42)

20 DV-sorted portfolios 1 = —0.392%"" (—2.57), 2 = 3.152%"*" (2.87)

20 RV-sorted portfolios 1 = —0.254%** (—2.25), ~2 = 2.110%"" (2.34)

20 LM-sorted portfolios 1 = —0.299% (—1.44), ~2 = 2.804%™"" (3.94)

20 cGibbs-sorted portfolios 1 = —0.096% (—0.68), ~2 = 1.723%"" (1.98)

20 CSspread-sorted portfolios 1 = 0.129% (0.70), ~2 = 0.105% (0.14)
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CHAPTER 4. TRANSACTION COSTS, LIQUIDITY RISK, AND THE CCAPM

Table 4.8: Regressions on historical consumption beta and liquidity beta

This table reports the regression coefficients of the expected portfolio returns on the consumption beta and liquidity
beta. Test portfolios are the 20 MV -sorted, 20 B/M-sorted, 4 x 5 MV &B/M-sorted, 20 DV -sorted, 20 RV -sorted,
20 L M-sorted, 20 cGibbs-sorted, and 20 CSspread-sorted portfolios, respectively. I run the following Fama-MacBeth
(1973) cross-sectional regression:

Ri ¢ — Ry ¢ =~y +71Bit—1,c +720i,t—1,tc + €it,

where R;  — Ry, ; is the one-month ahead return of portfolio i in excess of the risk-free rate, 8; t—1,c is the historical
consumption beta, and B;:_1,c is the historical liquidity beta. I estimate the historical consumption beta and
liquidity beta for each set of the 20 test portfolios using prior 10-year observations. Transaction costs are calculated
using the cGibbs estimates of Hasbrouck (2009) in Panel A and the C'Sspread estimates of Corwin and Schultz (2012)
in Panel B. Numbers in parentheses are ¢ statistics. The 1%, 5%, and 10% significance levels are denoted with ***|
** and *, respectively.

Panel A: cGibbs as a measure of transaction costs

20 MV-sorted portfolios 1 = 0.079% (0.98), ~2 = 3.320%""* (4.72)

20 BM-sorted portfolios 1 = 0.078% (1.43), ~2 =2.203%""* (2.62)

4 x 5 MV&B/M-sorted portfolios 1 = 0.063% (0.96), ~2=1.175% (1.16)

20 DV-sorted portfolios 1 = 0.057% (1.08), ~2 = 1.421% (1.42)

20 RV-sorted portfolios 1 = 0.098% (1.62), ~2 = 1.897%"" (2.16)

20 LM-sorted portfolios 41 = —0.032% (—0.51), ~2 = 0.656% (1.28)

20 cGlibbs-sorted portfolios 1 = 0.072% (1.49), ~2 = 2.990%* (1.93)

20 CSspread-sorted portfolios 1 = 0.088% (1.43), 2 =2.071%"" (2.11)

Panel B: C'Sspread as a measure of transaction costs

20 MV-sorted portfolios 1 = —0.009% (—0.13), ~2 = 1.595%*** (3.70)

20 BM-sorted portfolios 1 = 0.041% (0.81), ~2 = 1.411%*** (2.79)

4 x5 MV&B/M-sorted portfolios 41 = 0.013% (0.20), ~2 =1.074%"" (2.31)

20 DV-sorted portfolios 1 = 0.019% (0.38), ~2 = 1.800%"** (4.05)

20 RV-sorted portfolios 1 = 0.070% (1.23), 2 = 1.084%*** (2.52)

20 LM-sorted portfolios 1 = —0.056% (—0.94), ~2 = 0.586%""" (2.70)

20 cGibbs-sorted portfolios 1 = 0.068% (1.54), ~2 = 1.415%*** (3.25)

20 C'Sspread-sorted portfolios 1 = 0.038% (0.74), ~2 = 1.530%™"" (2.99)
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Table 4.9: Risk aversion estimates

This table reports the estimated risk aversion based on nondurable goods and services consumption growth over a horizon of S (S = 0,1,2,...,11) quarters, which
is calculated as ACtS = g’:f — 1. Test portfolios are the 20 MV -sorted, 20 B/M-sorted, 4 x 5 MV &B/M-sorted, 20 DV-sorted, 20 RV -sorted, 20 LM-sorted, 20

2

! i i i i E[R;+—R i

cGibbs-sorted, and 20 C'Sspread-sorted portfolios, respectively. For each set of the 20 test portfolios, I calculate the risk aversion coefficient using v = [;7f;]+2
[Ne]

2
E[Rite,e— Ryl + 75
ite,ACS
Ritet = Riy — teip, 0; acs = Cov(Ri 4, ACY), 0450 acs = Cov(Rite,r, ACY), and ACS is the consumption growth over the horizon of S quarters. Transaction costs

are calculated using the c¢Gibbs estimates of Hasbrouck (2009) in Panel A and the CSspread estimates of Corwin and Schultz (2012) in Panel B.

for the CCAPM and v = for the liquidity-adjusted model. The reported values of risk aversion are mean values of the 20 test portfolios involved.

Panel A: cGibbs as a measure of transaction costs
HORIZONS SO S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
20 MV -sorted portfolios

Traditional CCAPM 284.37 117.66 91.27 75.92 59.51 57.89 54.34 52.99 63.85 66.76 63.19 64.46
Liquidity-adjusted CCAPM 227.16 94.70 72.29 62.06 48.45 47.87 45.26 44.41 55.20 58.68 55.02 56.53
20 B/M-sorted portfolios
Traditional CCAPM 286.22 119.73 93.02 75.34 59.46 56.94 53.01 51.30 61.24 63.52 60.66 62.19
Liquidity-adjusted CCAPM 173.49 73.92 57.61 47.69 37.62 36.50 34.16 33.18 40.93 42.81 40.75 42.12

4 x5 MV&B/M-sorted portfolios

Traditional CCAPM 299.38 122.85 94.00 7772 61.28 58.92 54.99 53.31 63.92 66.81 62.83 63.98
Liquidity-adjusted CCAPM 233.90 95.71 71.88 61.40 48.18 46.88 43.99 42.72 52.75 56.03 51.88 53.03

20 DV -sorted portfolios
Traditional CCAPM 278.88 113.43 88.96 72.90 56.95 55.04 51.54 50.06 60.69 63.40 60.18 61.95
Liquidity-adjusted CCAPM 209.38 85.19 66.36 56.01 43.50 42.76 40.41 39.53 50.01 53.41 50.44 52.82

20 RV -sorted portfolios

Traditional CCAPM 285.26 116.24 90.56 74.83 58.44 56.47 52.84 51.21 61.76 64.45 61.04 62.53
Liquidity-adjusted CCAPM 226.49 93.09 71.52 60.95 47.31 46.35 43.67 42.52 52.97 56.20 52.91 54.88

[Cont.]
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(continued)

20 LM-sorted portfolios

Traditional CCAPM 288.26 117.52 91.60 75.49 58.94 56.68 52.96 51.13 61.02 63.00 59.52 60.32
Liquidity-adjusted CCAPM 195.85 79.19 61.94  52.66 40.90 39.99 37.72 36.61 45.79 48.09 45.12 46.20
20 cGibbs-sorted portfolios
Traditional CCAPM 280.37 116.82 90.66 74.76 58.57 56.53 53.01 51.46 61.91 64.81 61.52 63.19
Liquidity-adjusted CCAPM 224.85 94.30 71.84 61.59 47.87 46.75 44.30 43.11 53.19 56.52 53.05 54.94
20 C'Sspread-sorted portfolios
Traditional CCAPM 301.41 126.45 96.88 80.47  62.89 60.86 57.04 55.43 66.26 68.89 65.01 66.27
Liquidity-adjusted CCAPM 240.00 101.67  76.50 65.78 51.02 50.05 47.30 46.04 56.49 59.30 55.17  56.46
Panel B: C'Sspread as a measure of transaction costs

HORIZONS S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

20 MV -sorted portfolios

Traditional CCAPM 283.90 117.73 91.42 76.01 59.55 57.99 54.42 53.10 64.07  67.01 63.40 64.69

Liquidity-adjusted CCAPM 102.08 42.84 31.60 27.16 21.12 20.61 19.34 18.81 22.37 23.35 21.52 21.52
20 B/M-sorted portfolios

Traditional CCAPM 286.84 120.30 93.49 75.77 59.81 57.28 53.32 51.62 61.62 63.90 61.02 62.57

Liquidity-adjusted CCAPM 26.48 11.83 8.98 7.60 5.99 5.81 5.44 5.29 6.46 6.64 6.27 6.38

4 x5 MV&B/M-sorted portfolios
Traditional CCAPM 299.81 123.19 94.28 78.00 61.50 59.17  55.23 53.57  64.26 67.18 63.17  64.35
Liquidity-adjusted CCAPM 98.48 40.03 28.83 24.93 19.47 18.70 17.41 16.65 19.49 20.21 18.30 18.11

[Cont.]
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(continued)

20 DV -sorted portfolios

Traditional CCAPM 280.82 114.23 89.57 73.43 57.34 55.42 51.90 50.41 61.11 63.82 60.57 62.34
Liquidity-adjusted CCAPM 79.76 31.95 24.03 20.38 15.66 15.24 14.34 13.85 16.91 17.85 16.62 17.02
20 RV -sorted portfolios
Traditional CCAPM 286.83 116.89 91.09 75.28 58.77 56.79 53.14 51.50 62.12 64.80 61.36 62.86
Liquidity-adjusted CCAPM 98.84 40.76 30.25 25.81 19.94 19.26 18.02 17.37 20.76 21.66 20.12 20.37
20 LM-sorted portfolios
Traditional CCAPM 290.17 118.41 92.26 76.05 59.37 57.09 53.34 51.49 61.42 63.40 59.90 60.73
Liquidity-adjusted CCAPM 49.89 19.31 14.52 12.58 9.61 9.22 8.65 8.20 9.83 10.12 9.32 9.22
20 cGibbs-sorted portfolios
Traditional CCAPM 282.40 117.63 91.30 75.31 58.98 56.94 53.42 51.86 62.43 65.37 62.06 63.77
Liquidity-adjusted CCAPM 90.94 38.08 28.00 24.28 18.73 18.05 17.10 16.47 19.56 20.51 18.86 19.07
20 C'Sspread-sorted portfolios
Traditional CCAPM 301.86 126.87 97.32 80.73 63.09 61.10 57.27 55.69 66.70 69.38 65.45 66.77
Liquidity-adjusted CCAPM 131.31 55.45 40.56 34.91 26.93 26.15 24.63 23.78 28.36 29.38 26.97 27.06
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Table 4.10: Robustness tests on R?

This table reports the cross-sectional R-squares obtained from several robustness tests. For the liquidity-adjusted CCAPM, I use two transaction costs measures: one
is the c¢Gibbs estimates of Hasbrouck (2009) and the other one is C'Sspread, the bid-ask spread estimate of Corwin and Schultz (2012). Test portfolios are the 20
MYV-sorted, 20 B/M-sorted, 4 x 5 MV &B/M-sorted, 20 DV-sorted, 20 RV -sorted, 20 LM-sorted, 20 cGibbs-sorted, and 20 CSspread-sorted portfolios, respectively,
except Panel A. In Panel A, I augment each set of the 20 test portfolios with 10 industry portfolios. The classification of the 10 industries is based on Fama and
French (1997). In Panels B, C and D, I take into account the long run consumption growth (Parker and Julliard (2005)), the total consumption growth (Yogo (2006))
and the fourth quarter consumption growth (Jagannathan and Wang (2007)), respectively. Specifically, in Panel B, I measure consumption risk using the 11-quarter
consumption growth of nondurable goods. In Panel C, I use the total consumption growth. Following Breeden, Gibbons, and Litzenberger (1989) and Jagannathan
and Wang (2007), in Panel D, I construct a mimicking consumption growth factor using the maximum-correlation portfolio (MCP) approach. I run regression of the
demeaned fourth-to-fourth quarter consumption growth on annual excess returns of the 10 value-weighted industry portfolios to obtain the MCP weights. I replace the
consumption growth of nondurable goods and services with the MCP. The portfolio data are annualized values in Panel D.

CSspread as a measure of transaction costs
Traditional CCAPM Liquidity-adjusted CCAPM

cGibbs as a measure of transaction costs
Traditional CCAPM Liquidity-adjusted CCAPM
Panel A: Plus 10 industry portfolios

20 MV -sorted portfolios R? = 38.63% R? =52.45% R? = 37.83% R? = 50.98%
20 B/M-sorted portfolios R? =0.00% R? =59.24% R? =0.02% R? =56.38%
4 x 5 MV &B/M-sorted portfolios R? =3.21% R? =38.81% R? =3.01% R? =20.11%
20 DV-sorted portfolios R? =16.05% R? = 63.02% R? =15.09% R? =52.79%
20 RV-sorted portfolios R? =24.42% R? = 57.64% R? = 23.68% R? = 49.96%
20 LM-sorted portfolios R? =3.59% R? = 47.03% R? =3.96% R? =30.31%
20 ¢Gibbs-sorted portfolios R? =37.24% R? =179.72% R? =36.07% R? =69.81%
20 CSspread-sorted portfolios R? =34.62% R? = 46.33% R? =33.52% R? = 44.80%
Panel B: Consumption growth over 11 quarters
20 MV-sorted portfolios R? =79.74% R? = 91.66% R? =80.03% R? =84.76%
20 B/M-sorted portfolios R?* =171.27% R? =72.19% R? =75.94% R? =178.11%
4 x 5 MV &B/M-sorted portfolios R? =51.21% R? =57.96% R? =3.01% R? =20.11%
20 DV -sorted portfolios R? =71.03% R? = 80.20% R? =15.09% R? =52.79%
20 RV-sorted portfolios R?* = 75.78% R? = 82.39% R? = 23.68% R? = 49.96%
20 LM-sorted portfolios R? =9.14% R? =56.60% R? =9.80% R? =37.87%
20 cGibbs-sorted portfolios R? =73.12% R? =90.53% R? = 74.45% R? =91.38%
20 C'Sspread-sorted portfolios R? = 38.18% R? = 53.45% R? = 43.06% R? = 60.98%

[Cont.]
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(continued)

cGibbs as a measure of transaction costs

CSspread as a measure of transaction costs

Traditional CCAPM Liquidity-adjusted CCAPM

Traditional CCAPM

Liquidity-adjusted CCAPM

Panel C: Total consumption growth

20 MV-sorted portfolios R? =176.61% R? =83.66% R? =76.97% R? =81.75%
20 B/M-sorted portfolios R? = 55.92% R? = 67.50% R? = 62.33% R? = 69.44%
4 x 5 MV &B/M-sorted portfolios R? =19.97% R? = 55.64% R? =20.74% R? = 58.97%
20 DV -sorted portfolios R? = 43.40% R? =81.84% R? =15.09% R? =52.79%
20 RV-sorted portfolios R? = 58.90% R? =75.79% R? = 61.07% R? = 74.59%
20 LM-sorted portfolios R? = 1.41% R? = 57.96% R? =2.37% R? = 48.66%
20 ¢Gibbs-sorted portfolios R? =17817% R? =90.27% R? =79.74% R? =90.02%
20 CSspread-sorted portfolios R? = 40.08% R? = 47.79% R? = 43.06% R? =60.98%
Panel D: Q4-Q4 consumption growth
20 MV -sorted portfolios R? =81.87% R? =83.71% R? =83.17% R? = 84.15%
20 B/M-sorted portfolios R? =52.37% R? = 178.44% R? = 57.29% R? =75.18%
4 x 5 MV &B/M-sorted portfolios R? = 33.48% R? = 43.79% R? =35.25% R? =51.03%
20 DV-sorted portfolios R? =80.43% R? = 83.64% R? =80.76% R? = 87.04%
20 RV-sorted portfolios R? =82.08% R? =83.59% R? =83.59% R? =85.43%
20 LM-sorted portfolios R? = 8.86% R? =63.19% R? =9.12% R? = 49.18%
20 cGlibbs-sorted portfolios R? =88.29% R? =90.85% R? =89.23% R? = 91.88%
20 CSspread-sorted portfolios R? = 59.09% R? = 65.50% R? =60.70% R? =76.75%
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Table 4.11: GMM estimates

This table reports the estimated risk aversion using a generalized method of moments (GMM) based on nondurable goods and services consumption growth over a
horizon of S (S =0,1,2,...,11) quarters, which is calculated as AC? = % — 1. I follow Yogo (2006) and apply a two-step GMM method. I also use the Newey and

West (1987) adjustment to take into account heteroscedasticity and auto-correlation. Estimates are based on the equally-weighted market portfolio together with cGibbs
as the transaction costs proxy in Panel A and with CSspread as the transaction costs proxy in Panel B. Similar to Liu and Strong (2008), I assume the transaction
costs to be 0.5%, 1%, or 1.5% each quarter. I use the empirical moment function E[M;(R: — Ry +)zt] = 0 for the CCAPM and E[M; (Rt — Ry, — tet)zt] = 0 for

my liquidity-adjusted CCAPM, where Mts = B(%)_’Y, B is the subjective discount factor, v is the coefficient of risk aversion, R, — Ry is the market return in

excess of the risk-free rate, tcm,t is the aggregate transaction costs, and z; is a 2 X 1 vector of instrumental variables. I fix 5 = 0.95. The instrument variables are the

three-time-period-lagged risk-free rate and excess return of the market portfolio.

HORIZONS S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
Panel A: Equal-weighted market portfolios (¢Gibbscosts)
Traditional CCAPM 159.67 81.49 65.93 57.99 49.11 46.95 45.36 44.36 46.70 46.25 43.90 44.18
Liquidity-adjusted CCAPM: cGibbs 38.54 24.78 20.04 18.12 15.69 14.93 15.08 14.02 15.84 17.44 16.72 16.60
Liquidity-adjusted CCAPM: 0.5% 11748  50.75  40.79  35.61 30.21 29.12 28.04 27.67 31.23  31.71 30.27  30.58
Liquidity-adjusted CCAPM: 1% 72.26 32.75 26.44 23.09 19.61 18.72 18.28 17.43 19.66 20.64 19.81 19.67
Liquidity-adjusted CCAPM: 1.5% 28.83 18.08 15.24 14.05 12.12 11.88 12.06 11.35 13.23 14.43 13.86 13.92
Panel B: Equal-weighted market portfolios (C'Sspread costs)
Traditional CCAPM 134.95 86.11 67.71 60.53 51.15 49.64 47.88 49.47 54.45 52.57 51.41 50.49
Liquidity-adjusted CCAPM: C'Sspread 32.56 16.20 2.91 9.61 8.34 28.32 30.80 31.39 32.87 44.15 43.48 43.96
Liquidity-adjusted CCAPM: 0.5% 97.42 54.82 43,58 3860 3295 3249 31.78 3347 39.70 3856 3855  38.76
Liquidity-adjusted CCAPM: 1% 66.62 35.60 29.38 26.42 22.50 22.38 22.41 21.78 24.96 25.56 26.20 26.69
Liquidity-adjusted CCAPM: 1.5% 29.00 20.94 18.70 18.52 16.26 17.20 18.25 17.44 19.61 21.71 22.21 23.30
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Table 4.12: Pricing errors with 12-month portfolio holding period: ¢Gibbs costs

This table reports the pricing errors (in percent) for the traditional CCAPM and the liquidity-adjusted model. The pricing errors are the differences between the fitted
returns and realized returns. The realized average returns are the time-series average returns in excess of the risk-free rate. The fitted expected returns for the CCAPM
are calculated as the fitted value from E[R; ; — Ry +] = 70 + 7184,c. The fitted expected returns for the liquidity-adjusted CCAPM are calculated as the fitted value
from E[R; + — Ry +] = vo + 11 E[tci, ¢] + v28i,c + V3Bi,tc. Transaction costs are calculated using the cGibbs estimates of Hasbrouck (2009). Test portfolios are: the
20 MV -sorted portfolios, 20 B/M-sorted portfolios, 4 x 5 MV &B/M-sorted portfolios, 20 DV -sorted portfolios, 20 RV -sorted portfolios, 20 LM-sorted portfolios, 20
cGibbs-sorted portfolios, and 20 C'Sspread-sorted portfolios. MV1 (B/M1, DV1, RV1, LM1, cGibbsl, and CSspreadl) denotes the smallest (lowest) MV (B/M, DV,
RV, LM, c¢Gibbs, and CSspread) portfolio and MV20 (B/M20, DV20, RV20, LM20, cGibbs20, and CSspread20) denotes the biggest (highest) MV (B/M, DV, RV,
LM, c¢Gibbs, and CSspread) portfolio. For the 4 x 5 MV &B/M-sorted portfolios, the digit after S denotes the size quintile (1 representing the smallest and 4 the
largest), and the digit after B denotes the book-to-market quartile (1 representing the lowest and 5 the highest). The variable explanations refer to Table 4.1.

Panel A: MV -sorted portfolios

MV1 MV2 MV3 MV4 MV5 MV6 MV7 MV8 MV9 MV10

Traditional CCAPM -0.143 -0.265 0.219 -0.341 0.348 0.038 0.128 0.050 0.285 0.293
Liquidity-adjusted CCAPM -0.125 -0.124 0.404 -0.271 0.369 -0.137 0.068 -0.121 0.131 0.129
MV11 MV12 MV13 MV14 MV15 MV16 MV17 MV18 MV19 MV20

Traditional CCAPM 0.211 0.086 -0.048 0.100 -0.096 0.103 0.072 -0.022 -0.477 -0.541
Liquidity-adjusted CCAPM 0.122 0.010 -0.182 0.010 -0.073 0.204 0.178 0.108 -0.385 -0.313

Panel B: B/M-sorted portfolios
B/M1 B/M2 B/M3 B/M4 B/Mb B/M6 B/M7 B/M3 B/M9  B/MIO
Traditional CCAPM -0.439 -0.456 -0.337 -0.425 -0.343 -0.367 -0.359 0.005 -0.113 0.106
Liquidity-adjusted CCAPM -0.179 -0.140 -0.159 -0.067 -0.028 -0.091 -0.060 0.098 -0.204 0.007
B/M11  B/MI2  B/M13 B/MI14  B/M15 B/MI6 B/M17  B/MI8  B/M19  B/M20
Traditional CCAPM 0.019 -0.038 0.248 0.320 0.262 0.600 0.502 0.564 0.423 -0.171
Liquidity-adjusted CCAPM -0.055 -0.001 0.193 -0.125 0.095 0.199 0.571 -0.081 0.453 -0.427
Panel C: 4 x 5 MV &B /M portfolios

S1B1 S1B2 S1B3 S1B4 S1B5 S2B1 S2B2 S2B3 S2B4 S2B5

Traditional CCAPM 0.456 -0.328 -0.205 -0.338 -0.624 -0.282 0.087 -0.018 -0.226 -0.380
Liquidity-adjusted CCAPM -0.014 -0.320 -0.140 -0.281 -0.500 -0.322 0.109 -0.082 -0.232 -0.345
S3B1 S3B2 S3B3 S3B4 S3B5 S4B1 S4B2 S4B3 S4B4 S4B5

Traditional CCAPM -0.038 0.281 0.277 0.277 -0.122 0.006 0.155 0.504 0.300 0.218
Liquidity-adjusted CCAPM 0.112 0.225 0.175 0.245 -0.072 0.022 0.143 0.472 0.412 0.394

[Cont.]
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Panel D: DV -sorted portfolios

91T

DV1 DV2 DV3 DV4 DV5 DV6 DvV7 DVs8 DV9 DV10
Traditional CCAPM 0.400 0.352 0.068 0.212 0.343 0.297 0.328 0.341 0.078 0.242
Liquidity-adjusted CCAPM  -0.166 -0.139 0.171 0.225 0.155 0.127 0.139 0.230 -0.037 -0.062
DV11 DV12 DV13 DV14 DV15 DV16 DV17 DV18 DV19 DV20
Traditional CCAPM -0.253 0.044 -0.077 0.032 0.081 -0.304 -0.077 -0.352 -0.548 -1.207
Liquidity-adjusted CCAPM  -0.278 -0.106 -0.154 0.076 0.099 -0.050 -0.106 -0.046 0.134 -0.211
Panel E: RV -sorted portfolios
RV1 RV2 RV3 RV4 RV5 RV6 RV7 RVS RV9 RV10
Traditional CCAPM -0.870 -0.485 -0.298 0.039 -0.090 0.082 -0.319 0.387 -0.011 0.163
Liquidity-adjusted CCAPM  -0.487 -0.194 -0.185 0.112 -0.008 0.144 -0.250 0.155 -0.281 0.119
RV11 RV12 RV13 RV14 RV15 RV16 RV17 RV18 RV19 RV20
Traditional CCAPM 0.143 0.248 0.253 0.106 0.095 0.183 0.432 -0.030 0.003 -0.030
Liquidity-adjusted CCAPM  -0.001 0.055 -0.020 0.081 0.107 0.151 0.521 0.141 0.212 -0.370
Panel F: LM-sorted portfolios
LM1 LM2 LM3 LM4 LM5 LM6 LM7 LMS8 LM9 LM10
Traditional CCAPM -0.662 -0.242 -0.147 0.309 -0.186 0.095 0.062 -0.062 -0.304 -0.410
Liquidity-adjusted CCAPM  -0.372 -0.229 -0.010 0.260 -0.066 0.345 0.114 0.196 -0.049 -0.398
LM11 LM12 LM13 LM14 LM15 LM16 LM17 LM18 LM19 LM20
Traditional CCAPM -0.265 -0.247 0.058 0.023 0.136 0.366 0.301 0.335 0.499 0.341
Liquidity-adjusted CCAPM  -0.238 -0.199 0.174 0.024 -0.079 0.306 0.114 0.163 0.132 -0.191

Panel G: cGibbs-sorted portfolios

cGibbsl cGibbs2 cGibbs3 cGibbs4 cGibbsb c¢Gibbs6 cGibbs7 cGibbs8 cGibbs9 c¢Gibbs10

Traditional CCAPM -0.051 -0.336 -0.199 -0.032 0.161 -0.320 -0.367 -0.381 0.012 -0.191
Liquidity-adjusted CCAPM -0.180 0.011 -0.092 -0.006 0.057 0.002 0.003 -0.096 0.061 -0.176
cGibbsl1 cGibbs12 cGibbsl3  c¢Gibbsl4  cGibbsl5 cGibbsl6  c¢Gibbsl7  cGibbsl8  c¢Gibbsl9  c¢Gibbs20
Traditional CCAPM 0.404 -0.115 -0.144 -0.652 0.176 0.593 0.242 -0.035 0.724 0.510
Liquidity-adjusted CCAPM -0.070 -0.210 0.078 -0.131 0.146 0.342 0.356 -0.101 0.233 -0.229

Panel H: C'Sspread-sorted portfolios

CSspreadl CSspread2 CSspread3 CSspread4d CSspreadb CSspread6 CSspread? CSspread8 CSspread9 CSspreadl0O

Traditional CCAPM -0.199 0.089 -0.002 0.017 -0.181 -0.075 -0.149 0.118 0.041 -0.045

Liquidity-adjusted CCAPM -0.157 0.122 0.052 0.039 -0.167 -0.111 -0.147 0.147 -0.019 -0.068
CSspreadll CSspreadl12 CSspreadl3 CSspreadl4 CSspreadlb CSspreadl6 CSspreadl7 CSspreadl8 CSspreadl9 CSspread20

Traditional CCAPM 0.053 0.034 -0.066 0.280 0.090 0.140 -0.117 0.340 -0.256 -0.113

Liquidity-adjusted CCAPM 0.066 -0.017 -0.087 0.179 0.109 0.045 -0.174 0.382 -0.148 -0.046
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Table 4.13: Pricing errors: C'Sspread costs

This table reports the pricing errors (in percent) for the traditional CCAPM and the liquidity-adjusted model. The pricing errors are the differences between the fitted
returns and realized returns. The realized average returns are the time-series average returns in excess of the risk-free rate. The fitted expected returns for the CCAPM
are calculated as the fitted value from E[R; ¢ — Ry, +] = Y0 +718:,c. The fitted expected returns for the liquidity-adjusted CCAPM are calculated as the fitted value from
E[R; ¢+ — Ryf,+] = vo +v1Eltci, t] +7208i,c +73Bi,tc. Transaction costs are calculated using the C'Sspread estimates of Corwin and Schultz (2012). Test portfolios are: the
20 MV -sorted portfolios, 20 B/M-sorted portfolios, 4 x 5 MV &B/M-sorted portfolios, 20 DV -sorted portfolios, 20 RV -sorted portfolios, 20 LM-sorted portfolios, 20
cGibbs-sorted portfolios, and 20 C'Sspread-sorted portfolios. MV1 (B/M1, DV1, RV1, LM1, cGibbsl, and CSspreadl) denotes the smallest (lowest) MV (B/M, DV,
RV, LM, cGibbs, and CSspread) vigintiles portfolio and MV20 (B/M20, DV20, RV20, LM20, cGibbs20, and CSspread20) denotes the biggest (highest) MV (B/M,
DV, RV, LM, cGibbs, and CSspread) portfolio. For the 4 x 5 MV & B/M-sorted portfolios, the digit after S denotes the size quintile (1 representing the smallest and
4 the largest), and the digit after B denotes the book-to-market quartile (1 representing the lowest and 5 the highest). The variable explanations refer to Table 4.1.

Panel A: MV -sorted portfolios

MV1 MV2 MV3 MV4 MV5 MV6 MV7 MV8 MV9 MV10

Traditional CCAPM -0.144 -0.243 0.213 -0.379 0.362 0.021 0.139 0.078 0.293 0.270
Liquidity-adjusted CCAPM 0.017 -0.286 0.215 -0.423 0.321 -0.029 0.075 0.083 0.273 0.244
MV11 MV12 MV13 MV14 MV15 MV16 MV17 MV18 MV19 MV20

Traditional CCAPM 0.222 0.060 -0.058 0.116 -0.102 0.113 0.068 -0.022 -0.476 -0.533
Liquidity-adjusted CCAPM 0.241 0.062 -0.053 0.086 -0.110 0.134 0.107 0.019 -0.451 -0.523

Panel B: B/M-sorted portfolios
B/M1 B/M2 B/M3 B/M4 B/Mb B/M6 B/M7 B/M3 B/M9  B/MIO
Traditional CCAPM -0.437 -0.464 -0.353 -0.437 -0.346 -0.354 -0.361 -0.004 -0.098 0.116
Liquidity-adjusted CCAPM -0.277 -0.370 -0.138 -0.096 -0.150 0.096 0.038 -0.022 -0.025 0.471
B/M11  B/MI2  B/M13 B/MI14  B/M15 B/MI6 B/M17  B/MI8  B/M19  B/M20
Traditional CCAPM 0.021 -0.026 0.255 0.317 0.257 0.614 0.490 0.560 0.410 -0.161
Liquidity-adjusted CCAPM -0.316 -0.073 0.012 -0.110 0.172 0.320 0.252 0.148 0.363 -0.295
Panel C: 4 x 5 MV &B /M portfolios

S1B1 S1B2 S1B3 S1B4 S1B5 S2B1 S2B2 S2B3 S2B4 S2B5

Traditional CCAPM 0.415 -0.339 -0.216 -0.340 -0.629 -0.274 0.096 -0.015 -0.221 -0.367
Liquidity-adjusted CCAPM 0.169 -0.351 -0.152 -0.247 -0.566 -0.186 0.132 0.034 -0.161 -0.343
S3B1 S3B2 S3B3 S3B4 S3B5 S4B1 S4B2 S4B3 S4B4 S4B5

Traditional CCAPM -0.043 0.275 0.281 0.277 -0.121 0.021 0.162 0.510 0.314 0.214
Liquidity-adjusted CCAPM -0.318 0.295 0.335 0.281 -0.155 -0.009 0.228 0.466 0.389 0.160

[Cont.]
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(continued)

Panel D: DV -sorted portfolios

DV1 DV2 DV3 DV4 DV5 DV6 DV7 DV8 DV9 DV10
Traditional CCAPM 0.387 0.363 0.070 0.211 0.353 0.293 0.328 0.347 0.083 0.246
Liquidity-adjusted CCAPM  -0.275 0.222 0.139 0.223 0.589 0.243 -0.042 0.207 0.008 -0.008
DV11 DV12 DV13 DV14 DV15 DV16 DV17 DV18 DV19 DV20
Traditional CCAPM -0.241 0.053 -0.084 0.028 0.086 -0.309 -0.081 -0.359 -0.556 -1.219
Liquidity-adjusted CCAPM  -0.116 -0.090 0.020 0.103 0.169 -0.152 -0.422 -0.236 -0.051 -0.531
Panel E: RV -sorted portfolios
RV1 RV2 RV3 RV4 RV5 RV6 RV7 RV8 RV9 RV10
Traditional CCAPM -0.876 -0.487 -0.307 0.047 -0.092 0.084 -0.332 0.395 -0.003 0.176
Liquidity-adjusted CCAPM  -0.763 -0.451 -0.271 0.049 -0.046 0.052 -0.333 0.327 -0.003 0.191
RV11 RV12 RV13 RV14 RV15 RV16 RV17 RV18 RV19 RV20
Traditional CCAPM 0.148 0.261 0.246 0.117 0.077 0.188 0.418 -0.057 0.015 -0.020
Liquidity-adjusted CCAPM 0.124 0.233 0.133 0.036 0.014 0.157 0.425 0.099 0.295 -0.268
Panel F: LM-sorted portfolios
LM1 LM2 LM3 LM4 LM5 LM6 LM7 LM8 LM9 LM10
Traditional CCAPM -0.663 -0.268 -0.153 0.310 -0.187 0.090 0.063 -0.067 -0.301 -0.415
Liquidity-adjusted CCAPM  -0.580 -0.178 -0.087 0.360 -0.111 0.189 0.085 0.024 -0.272 -0.432
LM11 LM12 LM13 LM14 LM15 LM16 LM17 LM18 LM19 LM20
Traditional CCAPM -0.255 -0.248 0.049 0.017 0.141 0.380 0.307 0.377 0.507 0.318
Liquidity-adjusted CCAPM  -0.295 -0.240 0.129 0.025 0.094 0.427 0.304 0.371 0.327 -0.140
Panel G: cGibbs-sorted portfolios
cGibbs1 cGibbs2 cGibbs3 cGibbs4 cGibbsb cGibbs6 cGibbs7 cGibbs8 cGibbs9 c¢Gibbs10
Traditional CCAPM -0.053 -0.333 -0.209 -0.043 0.170 -0.332 -0.410 -0.402 0.011 -0.199
Liquidity-adjusted CCAPM  -0.139 0.016 -0.148 -0.035 -0.082 -0.120 -0.097 -0.068 0.315 -0.114
cGibbsll  cGibbsl2  c¢Gibbs13  c¢Gibbsl4d  cGibbsl5  c¢Gibbsl6  cGibbsl7  c¢Gibbsl8  c¢Gibbsl9  c¢Gibbs20
Traditional CCAPM 0.387 -0.106 -0.166 -0.677 0.181 0.587 0.216 -0.047 0.837 0.588
Liquidity-adjusted CCAPM  -0.065 -0.149 0.126 -0.183 0.123 0.350 0.394 -0.173 0.189 -0.140

Panel H: C'Sspread-sorted portfolios

Traditional CCAPM
Liquidity-adjusted CCAPM

Traditional CCAPM
Liquidity-adjusted CCAPM

CSspreadl CSspread2 CSspread3 CSspread4d CSspreadb CSspread6 CSspread? CSspread8 CSspread9 CSspreadl0O

-0.192
-0.187

0.045
0.036

0.100 -0.001 0.014 -0.169 -0.084
0.090 -0.000 0.020 -0.186 -0.094
CSspreadll CSspreadl12 CSspreadl3 CSspreadl4 CSspreadl5 CSspreadl6
0.042 -0.090 0.284 0.085 0.135
0.092 -0.143 0.260 0.108 0.064

-0.144 0.106 0.041
-0.115 0.105 0.029
CSspreadl17 CSspreadl8 CSspreadl9
-0.131 0.328 -0.257
-0.178 0.342 -0.172

-0.043
-0.051
CSspread20
-0.070
-0.020
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Table 4.14: Consumption beta and liquidity beta with 12-month portfolio holding period: c¢Gibbs costs

This table reports the patterns of the consumption beta and the liquidity beta which are estimated from a single multiple time-series regression for each portfolio.
Transaction costs are calculated using the cGibbs estimates of Hasbrouck (2009). Test portfolios are: the 20 MV -sorted portfolios, 20 B/M-sorted portfolios, 5 x 4
MV &B/M-sorted portfolios, 20 DV -sorted portfolios, 20 RV -sorted portfolios, 20 LM-sorted portfolios, 20 cGibbs-sorted portfolios and 20 C'Sspread-sorted portfolios.
MV1 (B/M1, DV1, RV1, LM1, cGibbsl, and CSspreadl) denotes the smallest (lowest) MV (B/M, DV, RV, LM, cGibbs, and CSspread) portfolio and MV 20
(B/M20, DV20, RV20, LM20, cGibbs20, and CSspread20) denotes the biggest (highest) MV (B/M, DV, RV, LM, c¢Gibbs, and CSspread) portfolio. For the 5 x 4
MV &B/M-sorted portfolios, the digit after S denotes the size quintile (1 representing the smallest and 5 the largest), and the digit after B denotes the book-to-market
quartile (1 representing the lowest and 4 the highest). The variable explanations refer to Table 4.1.

Panel A: MV -sorted portfolios

MV1 MV2 MV3 MV4 MV5 MV6 MV7 MV8 MV9 MV10

Be 5.622 5.412 4.365 4.511 4.301 4.192 4.236 3.444 3.643 3.639
Bic 0.300 0.199 0.165 0.130 0.111 0.074 0.083 0.058 0.057 0.052
MV11 MV12 MV13 MV14 MV15 MV16 MV17 MV18 MV19 MV20

Be 3.087 3.203 3.160 3.599 3.241 2.957 2.729 2.629 2.788 2.946
Bic 0.053 0.052 0.041 0.046 0.056 0.062 0.056 0.055 0.047 0.059

Panel B: BM-sorted portfolios
B/M1 B/M2 B/M3 B/M4 B/Mb B/MG6 B/M7 B/MS B/M9 B/MI10
Be 3.533 3.424 3.238 3.405 3.690 3.666 3.840 3.387 3.205 3.411
Bic 0.066 0.051 0.057 0.063 0.067 0.050 0.050 0.071 0.057 0.032
B/MI1 B/M12 B/M13 B/M14 B/MI5 B/M16 B/M17 B/M18 B/M19 B/M20
Be 3.192 3.568 3.351 2.921 3.468 3.258 4.170 3.405 4.996 6.167
Bic 0.075 0.063 0.076 0.076 0.076 0.080 0.098 0.079 0.138 0.211
Panel C: 5 x 4 MV &B/M portfolios

S1B1 S2B1 S3B1 S4B1 S5B1 S1B2 S2B2 S3B2 S4B2 S5B2

Be 3.302 4.012 3.674 3.363 2.964 5.023 3.876 3.457 3.096 2.599
Btc 0.148 0.084 0.070 0.054 0.059 0.137 0.080 0.043 0.046 0.046
S1B3 S2B3 S3B3 S4B3 S5B3 S1B4 S2B4 S3B4 S4B4 S5B4

Be 4.302 3.834 3.126 2.757 2.402 5.505 4.403 3.278 3.885 2.730
Bic 0.194 0.060 0.041 0.049 0.054 0.182 0.075 0.063 0.056 0.077

[Cont.]
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(continued)

Panel D: DV-sorted portfolios

DV1 DV2 DV3 DV4 DV5 DVeé DV7 DV8 DV9 DV10
Be 5.361 3.973 4.425 4.309 3.899 3.705 3.330 3.518 3.585 3.022
Bte 0.280 0.168 0.163 0.117 0.086 0.085 0.096 0.073 0.049 0.057
DV11 DV12 DV13 DVi14 DV15 DV16 DV17 DV18 DV19 DV20
Be 3.712 3.222 3.225 3.399 3.258 3.505 2.882 3.350 3.929 4.312
Bte 0.037 0.050 0.054 0.050 0.046 0.056 0.055 0.062 0.064 0.068
Panel E: RV -sorted portfolios
RV1 RV2 RV3 RV4 RV5 RV6 RV7 RV8 RV9 RV10
Be 3.584 3.296 2.982 2.978 3.363 3.185 3.505 2.560 3.117 3.360
Bte 0.057 0.060 0.050 0.051 0.051 0.056 0.057 0.038 0.031 0.057
RV11 RV12 RV13 RV14 RV15 RV16 RV17 RV18 RV19 RV20
Be 3.659 3.618 3.064 3.911 4.352 4.269 3.774 4.350 5.224 5.709
Bte 0.046 0.047 0.052 0.074 0.083 0.091 0.128 0.165 0.201 0.315
Panel F: LM-sorted portfolios
LM1 LM2 LM3 LM4 LM5 LM6 LM7 LMS8 LM9 LM10
Be 5.214 4.733 4.537 3.892 3.953 4.019 3.084 3.594 2.850 2.841
Bte 0.089 0.046 0.055 0.036 0.059 0.063 0.046 0.067 0.094 0.052
LM11 LM12 LM13 LM14 LM15 LM16 LM17 LM18 LM19 LM20
Be 2.597 2.828 3.536 3.373 3.067 3.806 3.539 3.813 3.874 4.388
Bte 0.062 0.068 0.071 0.076 0.070 0.102 0.118 0.135 0.164 0.233
Panel G: c¢Gibbs-sorted portfolios
cGibbsl cGibbs2 c¢Gibbs3 cGibbs4 cGibbsh cGibbs6 cGibbs7 c¢Gibbs8 cGibbs9 c¢Gibbs10
Be 2.635 3.166 2.942 2.879 2.769 3.230 3.302 3.244 3.022 3.018
Bte -0.030 -0.026 -0.024 -0.023 -0.020 -0.019 -0.016 -0.012 -0.011 -0.006
cGibbsl1 cGibbs12 cGibbs13 cGibbs14 cGibbs15 cGibbs16 cGibbsl7 cGibbs18 c¢Gibbs19 c¢Gibbs20
Be 2.543 2.964 3.334 3.683 3.160 3.020 3.493 3.497 3.398 4.143
Bte -0.003 -0.002 0.005 0.008 0.010 0.030 0.043 0.089 0.166 0.282
Panel H: C'Sspread-sorted portfolios
CSspreadl CSspread2 CSspread3 CSspread4 CSspreadb CSspread6 CSspread7 CSspread8 CSspread9  CSspread10
Be 3.094 2.838 2.769 2.921 3.190 3.106 2.855 3.102 3.196 3.550
Bte 0.050 0.050 0.058 0.054 0.055 0.042 0.055 0.067 0.044 0.060
CSspreadll CSspreadl2 CSspreadl3 CSspreadl4 CSspreadld CSspreadl6 CSspreadl? CSspreadl8 CSspreadl9  CSspread20
Be 3.283 2.865 3.981 4.358 3.429 4.972 5.069 4.567 5.259 5.593
Bte 0.073 0.056 0.075 0.059 0.096 0.078 0.103 0.150 0.214 0.348
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Table 4.15: Consumption beta and liquidity beta with 12-month portfolio holding period: C'Sspread costs

This table reports the patterns of the consumption beta and the liquidity beta which are estimated from a single multiple time-series regression for each portfolio.
Transaction costs are calculated using the C'Sspread estimates of Corwin and Schultz (2012). Test portfolios are: the 20 MV -sorted portfolios, 20 B/M-sorted portfolios,
5 x 4 MV&B/M-sorted portfolios, 20 DV -sorted portfolios, 20 RV-sorted portfolios, 20 LM-sorted portfolios, 20 cGibbs-sorted portfolios and 20 CSspread-sorted
portfolios. MV1 (B/M1, DV1, RV1, LM1, cGibbsl, and C'Sspreadl) denotes the smallest (lowest) MV (B/M, DV, RV, LM, cGibbs, and CSspread) portfolio and
MV20 (B/M20, DV20, RV20, LM20, cGibbs20, and CSspread20) denotes the biggest (highest) MV (B/M, DV, RV, LM, c¢Gibbs, and CSspread) portfolio. For
the 5 x 4 MV &B/M-sorted portfolios, the digit after S denotes the size quintile (1 representing the smallest and 5 the largest), and the digit after B denotes the
book-to-market quartile (1 representing the lowest and 4 the highest). The variable explanations refer to Table 4.1.

Panel A: MV -sorted portfolios

MV1 MV2 MV3 MV4 MV5 MV6 MV7 MV8 MV9 MV10

Be 5.750 5.371 4.333 4.528 4.312 4.219 4.301 3.452 3.616 3.697
Bte 1.216 0.658 0.497 0.411 0.370 0.306 0.280 0.252 0.211 0.230
MV11 MV12 MV13 MV14 MV15 MV16 MV17 MV18 MV19 MV20

Be 3.098 3.257 3.163 3.565 3.229 2.962 2.742 2.656 2.791 2.951
Bte 0.199 0.183 0.162 0.181 0.137 0.170 0.163 0.143 0.125 0.130

Panel B: BM-sorted portfolios
B/M1 B/M2 B/M3 B/M4 B/M5 B/M6 B/M7 B/M8 B/M9 B/M10
Be 3.527 3.453 3.260 3.410 3.700 3.641 3.838 3.391 3.213 3.413
Biec 0.232 0.232 0.186 0.180 0.244 0.189 0.224 0.246 0.209 0.183
B/M11 B/M12 B/M13 B/M14 B/M15 B/M16 B/M17 B/M18 B/M19 B/M20
Be 3.179 3.593 3.350 2.932 3.475 3.239 4.204 3.426 4.997 6.197
Bie 0.283 0.278 0.285 0.272 0.274 0.287 0.393 0.336 0.467 0.657
Panel C: 5 x 4 MV &B/M portfolios

S1B1 S2B1 S3B1 S4B1 S5B1 S1B2 S2B2 S3B2 S4B2 S5B2

Be 3.258 4.012 3.742 3.357 2.978 5.040 3.849 3.479 3.090 2.595
Btc 0.601 0.325 0.217 0.147 0.130 0.420 0.261 0.200 0.147 0.127
S1B3 S2B3 S3B3 S4B3 S5B3 S1B4 S2B4 S3B4 S4B4 S5B4

Be 4.310 3.861 3.128 2.760 2.405 5.531 4.423 3.276 3.856 2.734
Bie 0.630 0.272 0.166 0.165 0.156 0.620 0.308 0.267 0.208 0.201

[Cont.]
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(continued)

Panel D: DV-sorted portfolios

DV1 DV2 DV3 DV4 DV5 DVeé DV7 DV8 DV9 DV10
Be 5.400 3.978 4.448 4.318 3.918 3.722 3.329 3.507 3.604 3.011
Bte 1.257 0.525 0.469 0.417 0.306 0.315 0.307 0.270 0.265 0.216
DV11 DV12 DV13 DVi14 DV15 DV16 DV17 DV18 DV19 DV20
Be 3.685 3.190 3.232 3.395 3.259 3.509 2.879 3.362 3.930 4.313
Bte 0.224 0.209 0.162 0.181 0.160 0.170 0.188 0.156 0.151 0.157
Panel E: RV -sorted portfolios
RV1 RV2 RV3 RV4 RV5 RV6 RV7 RV8 RV9 RV10
Be 3.585 3.292 3.003 2.967 3.373 3.182 3.513 2.564 3.085 3.325
Bte 0.131 0.146 0.132 0.146 0.160 0.179 0.194 0.157 0.180 0.190
RV11 RV12 RV13 RV14 RV15 RV16 RV17 RV18 RV19 RV20
Be 3.647 3.608 3.099 3.905 4.357 4.265 3.803 4.365 5.162 5.827
Bte 0.235 0.243 0.254 0.297 0.344 0.348 0.348 0.406 0.521 1.348
Panel F: LM-sorted portfolios
LM1 LM2 LM3 LM4 LM5 LM6 LM7 LMS8 LM9 LM10
Be 5.196 4.734 4.552 3.905 3.929 4.009 3.084 3.592 2.836 2.840
Bte 0.304 0.303 0.215 0.253 0.300 0.256 0.232 0.279 0.291 0.217
LM11 LM12 LM13 LM14 LM15 LM16 LM17 LM18 LM19 LM20
Be 2.613 2.830 3.549 3.356 3.084 3.834 3.542 3.876 3.852 4.412
Bte 0.211 0.237 0.286 0.214 0.190 0.325 0.414 0.420 0.343 1.317
Panel G: c¢Gibbs-sorted portfolios
cGibbsl cGibbs2 c¢Gibbs3 cGibbs4 cGibbsh cGibbs6 cGibbs7 c¢Gibbs8 cGibbs9 c¢Gibbs10
Be 2.641 3.164 2.949 2.893 2.756 3.230 3.328 3.256 3.017 3.031
Bte 0.045 0.066 0.070 0.081 0.074 0.092 0.103 0.126 0.161 0.142
cGibbsl1 cGibbs12 cGibbs13 cGibbs14 cGibbs15 cGibbs16 cGibbsl7 cGibbs18 c¢Gibbs19 c¢Gibbs20
Be 2.558 2.957 3.342 3.683 3.148 3.024 3.500 3.496 3.321 4.145
Bte 0.144 0.166 0.179 0.187 0.204 0.226 0.286 0.330 0.476 1.319
Panel H: C'Sspread-sorted portfolios
CSspreadl CSspread2 CSspread3 CSspread4 CSspreadb CSspread6 CSspread7 CSspread8 CSspread9  CSspread10
Be 3.105 2.819 2.776 2.911 3.196 3.090 2.858 3.099 3.184 3.572
Bte 0.127 0.120 0.132 0.148 0.151 0.157 0.177 0.175 0.180 0.203
CSspreadll CSspreadl2 CSspreadl3 CSspreadl4 CSspreadld CSspreadl6 CSspreadl? CSspreadl8 CSspreadl9  CSspread20
Be 3.291 2.908 4.018 4.356 3.421 5.009 5.189 4.534 5.217 5.717
Bte 0.200 0.230 0.229 0.266 0.275 0.304 0.358 0.424 0.629 1.300
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CHAPTER 4. TRANSACTION COSTS, LIQUIDITY RISK, AND THE CCAPM

Table 4.16: Regressions on consumption beta and liquidity beta with 12-month port-
folio holding period

This table reports the coefficients by regressing expected returns on the consumption beta and liquidity beta. Test
portfolios are: the 20 MV-sorted portfolios, 20 B/M-sorted portfolios, 5 x 4 MV &B/M-sorted portfolios, 20 DV-
sorted portfolios, 20 RV -sorted portfolios, 20 LM-sorted portfolios, 20 cGibbs-sorted portfolios and 20 CSspread-
sorted portfolios. I run the pooled GLS regression on the following equation:

Ri ¢t — Ry ¢ = +71Bit—1,c +72Bi,t—1,tc + €it,

where R; ¢ — Ry ; is the returns of portfolio ¢ in excess of the risk free rate, 8;;—1, is the consumption beta and
Bi,t—1,tc is the liquidity beta. I estimate the historical risk loadings for each portfolio using prior 3-year observations.
Transaction costs are calculated using the cGibbs estimates of Hasbrouck (2009) in Panel A and the CSspread
estimates of Corwin and Schultz (2012) in Panel B, respectively. The 1%, 5%, and 10% significance levels are denoted
with *** ** and *, respectively.

Panel A: ¢Gibbs costs

20 MV-sorted portfolios 1 = 0.064%™** (3.29), ~2 = 2.366%*** (6.28)

20 BM-sorted portfolios 71 = 0.077%"** (3.81), ~2 = 2.263%""" (5.94)

5x 4 MV&B/M portfolios 41 = 0.056%"** (2.88), 4 = 2.175%"** (5.70)

20 DV-sorted portfolios 71 = 0.065%""" (3.24), ~2 = 2.293%™*" (6.00)

20 RV-sorted portfolios 71 = 0.064%™* (3.23), ~2 = 2.413%*** (6.35)

20 LM-sorted portfolios 1 = 0.080%*** (3.96), ~2 = 2.103%*** (5.63)

20 cGibbs-sorted portfolios 1 = 0.077%** (3.67), ~2 = 3.309%**" (8.35)

20 CSspread-sorted portfolios 1 = 0.071%*** (3.57), ~2 = 2.457%*** (6.63)

Panel B: CSspread costs

20 MV-sorted portfolios 1 = 0.055%**" (2.77), ~2 = 0.566%"" (2.48)

20 BM-sorted portfolios 1 = 0.071%**" (3.48), ~2 = 0.507%"" (2.08)

5x 4 MV&B/M portfolios  +1 = 0.055%**" (2.77), ~2 = 0.206% (1.01)

20 DV-sorted portfolios 1 = 0.060%"** (2.95), ~2 = 0.304% (1.51)

20 RV-sorted portfolios 1 = 0.057%*** (2.85), ~2 = 0.383%" (1.73)

20 LM-sorted portfolios 1 = 0.075%"** (3.70), ~2 = 0.139% (0.82)

20 cGibbs-sorted portfolios 1 = 0.059%*** (2.75), ~2 = 0.898% """ (4.25)

20 CSspread-sorted portfolios 71 = 0.060%"** (2.94), ~2 = 0.608%"" (2.43)
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CHAPTER 4. TRANSACTION COSTS, LIQUIDITY RISK, AND THE CCAPM

Table 4.17: Regressions on transaction costs, consumption beta, and liquidity beta
with 12-month portfolio holding period

This table reports the coefficients by regressing expected returns on transaction costs, consumption risk and liquidity
risk. Test portfolios are: the 20 MV -sorted portfolios, 20 B/M-sorted portfolios, 5 x4 MV & B/M-sorted portfolios, 20
DV -sorted portfolios, 20 RV -sorted portfolios, 20 L M-sorted portfolios, 20 cGibbs-sorted portfolios and 20 CSspread-
sorted portfolios. I run the pooled GLS regression on the following equation:

Ri ¢ — Ry ¢ =70 +71E(tci) +72Bit—1,c +V3Bit—1,tc + €its

where R; ¢ — Ry ¢ is the returns of portfolio ¢ in excess of the risk free rate, E(tc;) is the average transaction costs of
portfolio i, 3; t—1,c is the consumption beta and f3; ;_1,¢c is the liquidity beta. I estimate the historical risk loadings
for each portfolio using prior 3-year observations. Transaction costs are calculated using the cGibbs estimates of
Hasbrouck (2009) in Panel A and the C'Sspread estimates of Corwin and Schultz (2012) in Panel B, respectively. The
1%, 5%, and 10% significance levels are denoted with ***  ** and *, respectively.

Panel A: c¢Gibbs costs

20 MV-sorted portfolios 1 = 0.233 (1.04) 2 = 0.061%*"" (3.05), ~3 = 2.338%""" (6.20)

20 BM-sorted portfolios 41 = 0.526 (1.00) ~2 = 0.076%""* (3.72), ~3 = 2.249%"*" (5.90)

20 MV &B/M portfolios 1 = 0.253 (0.98) 2 = 0.053%*** (2.68), ~3 = 2.156%""" (5.65)

20 DV-sorted portfolios 1 =0.308 (1.37) 2 = 0.062%**" (3.05), ~3 = 2.255%""" (5.89)

20 RV-sorted portfolios 1 =0.193 (0.94) > = 0.061%**" (3.04), ~3 =2.379%""" (6.23)

20 LM-sorted portfolios 1 =0.205 (0.43) ~2 = 0.079%*** (3.90), 5 = 2.094%**" (5.59)

20 cGibbs-sorted portfolios 1 = 0.209 (1.11)  ~2 = 0.074%™"* (3.48), 3 = 3.268%""* (8.22)

20 CSspread-sorted portfolios 1 = —0.228 (—=1.06) 2 = 0.073%**" (3.70), +3 = 2.485% """ (6.69)

Panel B: CSspread costs

20 MV-sorted portfolios 1 = 0.079 (0.65) ~2 = 0.054%""" (2.67), ~3 = 0.536%"" (2.30)

20 BM-sorted portfolios 1 = 0.191 (0.71) ~2 = 0.070%™"* (3.42), 3 = 0.489%"" (1.99)

20 MV&B/M portfolios 4y = 0.163 (0.96) 7> = 0.052%"** (2.61), s = 0.174% (0.84)

20 DV-sorted portfolios 1 =0.120 (1.02) ~> = 0.058%"*" (2.84), ~3 = 0.255% (1.24)

20 RV-sorted portfolios 41 = 0.095 (0.82) 42 = 0.056%"** (2.73), s = 0.342% (1.51)

20 LM-sorted portfolios 41 = 0.023 (0.16) 2 = 0.075%"** (3.67), ~s = 0.136% (0.80)

20 cGibbs-sorted portfolios 1 = 0.124 (0.85) > = 0.057%*** (2.64), s = 0.855%"** (3.96)

20 CSspread-sorted portfolios 1 = —0.135 (—=1.18) 4 = 0.063%"** (3.06), s = 0.681%"** (2.65)
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Table 4.18: Risk aversion estimates with 12-month portfolio holding period: c¢Gibbs costs

This table reports the estimated risk aversion based on consumption growth over horizons of S (S =0, 1,2...11), which is calculated by ACtS = g’%f — 1. Transaction

t— o

. . . . . E[R; +—R -+

costs are calculated using the cGibbs estimates of Hasbrouck (2009). For each set of test portfolios, I calculate the risk aversion coefficients using v = “;7f;]+2
i,AC

o2,
E[Rjtc,t— Ry ]+ -4k

for traditional CCAPM and = 2— for my liquidity-adjusted model. R;; and Rj;i.: are cross-sectional mean values for each set of portfolios.
Y Yy y-ad) , >

Tite,ACS
Ritet = Rit — tcit; 0; aos denotes the covariance of innovations Cov(R;+ — E[R; +], ACY — E[ACY]); Tie.acs denotes the covariance of innovations Cov(Ritc,t —
E[Ritet], ACS — E[ACY]); AC® denotes the consumption growth over period S. Test portfolios are: the 20 MV-sorted portfolios, 20 B/M-sorted portfolios, 5 x 4
MV &B /M-sorted portfolios, 20 DV -sorted portfolios, 20 RV -sorted portfolios, 20 LM-sorted portfolios, 20 c¢Gibbs-sorted portfolios and 20 C'Sspread-sorted portfolios.

HORIZONS SO S1 S2 S3 S4 S5 S6 ST S8 S9 S10 S11
20 MV -sorted portfolios
Traditional CCAPM 244.28 106.11 83.31 69.35 54.97 52.91 49.14 46.58 53.26 53.94 50.62 50.73

Liquidity-adjusted CCAPM 175.19 76.10 59.75 49.74 39.42 37.95 35.24 33.40 38.20 38.69 36.31 36.38
20 B/M-sorted portfolios

Traditional CCAPM 246.63 106.90 83.75 69.61 55.31 53.12 49.34 46.74 53.32 53.94 50.65 50.76

Liquidity-adjusted CCAPM 182.67 79.18 62.03 51.56 40.97 39.35 36.54 34.62 39.49 39.95 37.51 37.60

5 x 4 MV &B/M-sorted portfolios

Traditional CCAPM 256.30 110.18 86.25 71.34 56.64 54.21 50.07 47.26 53.63 53.95 50.61 50.70

Liquidity-adjusted CCAPM 189.15 81.32 63.66 52.65 41.80 40.01 36.95 34.88 39.58 39.82 37.35 37.42
20 DV -sorted portfolios

Traditional CCAPM 240.68 104.70 82.12 68.34 54.33 52.19 48.45 45.86 52.24 52.78 49.44 49.47

Liquidity-adjusted CCAPM 170.80 74.30 58.28 48.49 38.55 37.04 34.38 32.55 37.07 37.45 35.09 35.11
20 RV -sorted portfolios

Traditional CCAPM 241.72 105.06 82.43 68.59 54.48 52.34 48.56 45.96 52.35 52.88 49.55 49.57

Liquidity-adjusted CCAPM 171.75 74.64 58.57 48.73 38.71 37.19 34.50 32.65 37.19 37.57 35.20 35.22
20 LM-sorted portfolios

Traditional CCAPM 240.95 104.64 81.99 68.12 54.13 51.99 48.25 45.69 52.16 52.77 49.51 49.63

Liquidity-adjusted CCAPM 170.06 73.85 57.87 48.08 38.20 36.69 34.05 32.25 36.81 37.24 34.95 35.03

20 cGibbs-sorted portfolios
Traditional CCAPM 300.13 123.87 98.49 81.25 63.69 61.01 56.90 55.97 67.37 70.39 66.15 66.24
Liquidity-adjusted CCAPM 220.87 91.16 72.48 59.79 46.87 44.90 41.88 41.19 49.58 51.80 48.68 48.75
20 CSspread-sorted portfolios
Traditional CCAPM 243.33 105.75 83.10 69.17 54.89 52.84 49.06 46.48 53.12 53.78 50.44 50.53
Liquidity-adjusted CCAPM 174.44 75.81 59.58 49.59 39.35 37.88 35.17 33.32 38.08 38.56 36.16 36.22
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Table 4.19: Risk aversion estimates with 12-month portfolio holding period: C'Sspread costs

Ciys
Ciro1
costs are calculated using the CSspread estimates of Corwin and Schultz (2012). For each set of test portfolios, I calculate the risk aversion coefficients using

This table reports the estimated risk aversion based on consumption growth over horizons of S (S =0, 1,2...11), which is calculated by ACP = — 1. Transaction

2
E[R; t—Ry ¢+ 2 . E[Rype+— Ry )+ Zite
— BlRi B3 g traditional CCAPM and v = Blfiree ~Ryel¥ 75
7i,ac8 %ite,ACS

of portfolios. Ritet = Rit — tcit; 0; acs denotes the covariance of innovations Cov(R;+ — E[R; ], ACtS - E[ACtS]); 0ite,acs denotes the covariance of innovations
Cov(Rite,t — E[Rite,t], AC{S fE[ACtS]); ACS denotes the consumption growth over period S. Test portfolios are: the 20 MV -sorted portfolios, 20 B/M-sorted portfolios,
5 x 4 MV&B/M-sorted portfolios, 20 DV -sorted portfolios, 20 RV-sorted portfolios, 20 LM-sorted portfolios, 20 cGibbs-sorted portfolios and 20 CSspread-sorted
portfolios.

for my liquidity-adjusted model. R; ; and R ; are cross-sectional mean values for each set

HORIZONS SO S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
20 MV -sorted portfolios
Traditional CCAPM 244.22 106.35 83.55 69.63 55.19 53.18 49.39 46.84 53.60 54.27 50.90 51.01

Liquidity-adjusted CCAPM 61.61 26.83 21.08 17.57 13.92 13.42 12.46 11.82 13.52 13.69 12.84 12.87
20 B/M-sorted portfolios

Traditional CCAPM 246.88 107.17 83.97 69.89 55.53 53.36 49.56 46.96 53.56 54.18 50.87 50.98

Liquidity-adjusted CCAPM 78.76 34.19 26.79 22.30 17.71 17.02 15.81 14.98 17.09 17.28 16.23 16.26

5 x 4 MV&B/M-sorted portfolios

Traditional CCAPM 256.36 110.35 86.38 71.50 56.76 54.36 50.22 47.43 53.83 54.13 50.76 50.86

Liquidity-adjusted CCAPM 84.63 36.43 28.52 23.60 18.74 17.95 16.58 15.66 17.77 17.87 16.76 16.79
20 DV -sorted portfolios

Traditional CCAPM 241.63 105.22 82.49 68.68 54.58 52.44 48.67 46.07 52.46 52.99 49.64 49.67

Liquidity-adjusted CCAPM 56.91 24.78 19.43 16.18 12.86 12.35 11.46 10.85 12.36 12.48 11.69 11.70
20 RV -sorted portfolios

Traditional CCAPM 242.73 105.63 82.86 68.97 54.76 52.61 48.80 46.18 52.58 53.10 49.74 49.78

Liquidity-adjusted CCAPM 58.69 25.54 20.03 16.67 13.24 12.72 11.80 11.17 12.71 12.84 12.03 12.04
20 LM-sorted portfolios

Traditional CCAPM 24191 105.15 82.37 68.48 54.39 52.24 48.48 45.90 52.39 52.99 49.72 49.84

Liquidity-adjusted CCAPM 52.79 22.95 17.98 14.94 11.87 11.40 10.58 10.02 11.43 11.56 10.85 10.88

20 cGibbs-sorted portfolios
Traditional CCAPM 301.82 124.58 99.02 81.74 64.04 61.37 57.23 56.31 67.79 70.84 66.56 66.64
Liquidity-adjusted CCAPM 96.30 39.75 31.59 26.08 20.43 19.58 18.26 17.96 21.63 22.60 21.24 21.26
20 C'Sspread-sorted portfolios
Traditional CCAPM 243.53 106.13 83.47 69.53 55.19 53.18 49.37 46.79 53.53 54.17 50.78 50.87
Liquidity-adjusted CCAPM 63.52 27.68 21.77 18.14 14.40 13.87 12.88 12.21 13.96 14.13 13.24 13.27
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CHAPTER 4. TRANSACTION COSTS, LIQUIDITY RISK, AND THE CCAPM

Table 4.20: Summary of R? for robustness tests with 12-month portfolio holding
period: c¢Gibbs costs

This table reports the cross-sectional R-squares obtained from several robustness tests. Transaction costs are calcu-
lated using the cGibbs estimates of Hasbrouck (2009). Test portfolios are: the 20 M V-sorted portfolios, 20 B/M-sorted
portfolios, 5 x 4 MV &B/M-sorted portfolios, 20 DV -sorted portfolios, 20 RV -sorted portfolios, 20 LM-sorted port-
folios, 20 cGibbs-sorted portfolios and 20 C'Sspread-sorted portfolios except Panel A. In Panel A, I test 17 industry
portfolios and 30 industry portfolios. I also augment each set of test portfolios (the 20 M V-sorted portfolios, 20 B/M-
sorted portfolios, 5 x 4 MV & B/M-sort