
University of Nottingham

A Heuristic Solution Technique to the Joint

Replenishment Problem with Quantity Discounts

and Full Truck Loads

By

Mohammed Al-Qaq

Student ID: 4216368

MSc Supply Chain and Operations Management

2013/2014

A Heuristic Solution Technique to the Joint

Replenishment Problem with Quantity Discounts

and Full Truck Loads

By

Mohammed Al-Qaq

2013/2014

A dissertation presented in part consideration for the degree of MSc supply chain
and operations management

Contents

CHAPTER 1. Introduction ...1

CHAPTER 2. Literature Review ...3

2.1 Fundamental Inventory Control Models .. 3

2.1.1 The EOQ Model – Deterministic Demand... 3

2.1.2 The Stochastic Demand Case .. 10

2.2 The Multi-Items Inventory Control Problem .. 15

2.2.1 An Introduction to the Joint Replenishment problem (JRP).......................... 15

2.2.2 The Basic Joint Replenishment Problem: The Deterministic Case 18

2.2.3 The Stochastic Case... 23

2.2.4 The Joint Replenishment Problem with Quantity Discounts.......................... 26

2.2.5 The Full Truck Load JRP Problem ... 29

2.3 Summary ... 31

CHAPTER 3. Methodology ...32

3.1 Aims and Objectives .. 32

3.2 JRP: A Real-life Example .. 33

3.3 Statement of the Problem and Problem Assumptions 34

3.4 Solution Overview ... 36

3.5 Experimental Data... 39

3.5.1 Problem Structure and Boundaries... 39

3.5.2 Simulation Demand Data.. 43

3.5.3 Designing the Experiments ... 48

3.6 The Grouping Heuristic... 54

3.6.1 Model Formulation... 54

3.6.2 The Experimental setup.. 62

3.7 The Joint Replenishment Model ... 68

3.7.1 Formulating T and S .. 68

3.7.2 Determination of the Order Quantities.. 70

3.7.3 The (T, S) Simulation... 71

3.8 The Adjusted EOQ model.. 87

3.8.1 Finding the Economic Order Quantity ... 87

3.8.2 Finding the Re-Order Point ... 88

3.8.3 The adjusted EOQ simulation .. 89

CHAPTER 4. Results..98

4.1 Performance Measures ... 98

4.2 Results... 99

4.2.1 Experiment 1: Similar Demand – Low Ordering Cost - Small Truck Capacity . 99

4.2.2 Experiment 2: Similar Demand – High Ordering Cost - Small Truck Capacity
101

4.2.3 Experiment 3: Similar Demand – Low Ordering Cost - Large Truck Capacity 103

4.2.4 Experiment 4: Similar Demand – High Ordering Cost - Large Truck Capacity
105

4.2.5 Experiment 5: Type 2 Demand – Low Ordering Cost - Small Truck Capacity 107

4.2.6 Experiment 6: Type 2 Demand – High Ordering Cost - Small Truck Capacity109

4.2.7 Experiment 7: Type 2 Demand – Low Ordering Cost - Large Truck Capacity 111

4.2.8 Experiment 8: Type 2 Demand – High Ordering Cost - Large Truck Capacity113

CHAPTER 5. Analysis & Discussion ...115

5.1 Analysis ... 115

5.1.1 Type 1 Demand Experiments: Similar Demand for all Products.................. 115

5.1.2 Type 2 Demand Experiments: Very low demand for most of the products and
high demand for the remaining few products... 125

5.2 The impact of changing the ordering cost and truck sizes 133

5.3 The impact of the products’ demand rates .. 133

5.4 The solution for items with different holding costs 134

CHAPTER 6. Conclusion ..138

References ...141

Appendices...151

List of Figures

Figure 1: The EOQ inventory usage curve... 4

Figure 2: The total cost function curve ... 5

Figure 3: The inventory usage curve with lead time consideration (Balakrishnan, 2012). 7

Figure 4: The Incremental Discount Schedule (Nahmias, 2009)................................... 9

Figure 5: The All-Units Discount Schedule (Nahmias, 2009).. 9

Figure 6: Typical Inventory Usage Curve for (T, S) Systems (Silver, et al., 1998) 14

Figure 7: Behaviour of an item under the (S, c, s) System (Silver, et al., 1998).......... 24

Figure 8: The (T,Q) policy inventory usage curve .. 38

Figure 9: The adjusted (T, S) policy inventory usage curve for two items 38

Figure 10: Simulation data for 1000 days based on Type 1 demand 47

Figure 11: Initial analysis for the design of the experiments 50

Figure 12: Finding the best groups using G(T) vs Average demand rate graph 62

Figure 13: The grouping model for Experiment 1... 65

Figure 14: Grouping initial analysis for Experiment 1 ... 67

Figure 15: T & S calculations for Experimetn 1 .. 73

Figure 16: The Sets Section in the Lingo simulation ... 79

Figure 17: The Data Section in the Lingo simulation .. 80

Figure 18: The Objective Function in the Lingo simulation .. 81

Figure 19: The Secondary Model in the Lingo simulation (Q=0)................................. 82

Figure 20: The Calculations Section (start) ... 82

Figure 21: The Calculations Section (end) .. 83

Figure 22: Example of a Daily Performance Excel Sheet for the simulation model. 84

Figure 23: Overall Performance Sheet for the joint replenishment simulation in
Experiment 1 .. 86

Figure 24: The (R,Q) Policy .. 88

Figure 25: R& Q calculations and the EOQ simulation (Experiment 1 – product 1) 95

Figure 26: Overall Results Spreadsheet - Experiment 1 .. 96

Figure 27: G(T) behaviour with fixed Qs and the best grouping solution 116

Figure 28: G(T) behaviour with fixed Qs and the best grouping solution 120

Figure 29: G(T) behaviour with fixed Qs and the best grouping solution 121

Figure 30: G(T) behaviour with fixed Qs and the best grouping solution 122

Figure 31: Average Stock on Hand in Experiments 1-4... 123

Figure 32: Average Service levels in Experiments 1-4 .. 123

Figure 33: Total holding costs in Experiments 1 to 4 .. 124

Figure 34: Total ordering costs in Experiments 1 to 4 .. 124

Figure 35: Overall costs in Experiments 1 to 4 .. 125

Figure 36: SOH levels for Product 2 in Experiment 5.. 126

Figure 37: Daily SOH level for product 2 originally... 129

Figure 38: The SOH level for product 2 after adjusting experiment 6 129

Figure 39: Average Stock on Hand (Experiments 5 to 8) .. 130

Figure 40: Average Service Levels (Experiments 5 to 8)... 131

Figure 41: Total Holding Costs (Experiments 5 to 8) .. 131

Figure 42: Total Ordering Costs (Experiments 5 to 8) .. 132

Figure 43: Total Costs (Experiments 5 to 8) ... 132

List of Tables

Table 1: Data from P&H case study ... 41

Table 2: Data adopted for this project.. 42

Table 3: Type 1 demand data and standard deviation for 20 products........................ 45

Table 4: Type 2 demand data and standard deviation for 20 products........................ 46

Table 5: Fixed parameters for all experiments .. 51

Table 6: Experiment 1 (Type 1 Demand – Small Trucks – Low Ordering Cost) 51

Table 7: Experiment 2 (Type 1 Demand – Small Truck – High Ordering Cost) 51

Table 8: Experiment 3 (Type 1 Demand – Large Trucks – Low Ordering Cost) 52

Table 9: Experiment 4 (Type 1 Demand – Large Trucks – High Ordering Cost)............ 52

Table 10: Experiment 5 (Type 2 Demand – Small Trucks – Low Ordering Cost)........... 52

Table 11: Experiment 6 (Type 2 Demand – Small Truck – High Ordering Cost) 52

Table 12: Experiment 7 (Type 2 Demand – Large Trucks – Low Ordering Cost)........... 53

Table 13: Experiment 8 (Type 1 Demand – Large Trucks – High Ordering Cost) 53

Table 14: Excel formulas to compute T & S .. 72

Table 15: R & Q formulas in Excel ... 92

Table 16:Excel formulas for the adjusted EOQ simulation ... 93

Table 17:EOQ simulation performance parametres in Excel 94

Table 18: Performance Measures Formulas in Excel ... 97

Acknowledgement

This dissertation could not be written to its fullest without Dr. Luc

Muyldermans, who served as my supervisor, as well as one who challenged and

encouraged me throughout my time spent studying under him. He would have

never accepted anything less than my best efforts, and for that, I thank him.

I would also like to thank my parents and sister. They were always

supporting me and encouraging me with their best wishes.

Abstract

In this project a stochastic multi-item inventory problem is considered. A

wholesaler buys multiple products, with stochastic demand and similar holding

and purchase costs, from a single supplier. The supplier offers an all-unit

quantity discount whenever a full truckload is replenished. For the delivery of the

products trucks with a finite capacity are available. The dispatched trucks arrive

at the wholesaler after a constant leadtime and with each truck fixed shipping

costs are charged independent on the number of units shipped. Since fixed

transportation costs are high coordination of orders and full truckload shipments

can benefit from economies of scale and quantity discounts. A new heuristic

solution to this problem is proposed. The solution includes a direct grouping

strategy and considers the optimal solution from both, the shipping trucks and

products perspectives. In implementing the proposed solution an adjusted

periodic review system is used. An excellent performance of the proposed

solution can be observed when the fixed cost per order is high and the demand

of the different products is similar. While the proposed solution presented in this

project to the joint replenishment problem under consideration has been shown

to be reliable, it nevertheless represents the first step towards the development

of more efficient and versatile future solutions to the problem.

1

CHAPTER 1. Introduction

One of the most valuable and critical resources of any company is its inventory.

In many real life situations a reduction of supply chain costs could be obtained

by an efficient inventory control and management. In this project, we consider

an inventory control environment in which a wholesaler buys multiple products

from a single supplier. The supplier offers an all-unit quantity discount whenever

a full truckload is replenished. The objective of the wholesaler is two-fold: On

the one hand, they aim to minimise their shipping costs, particularly for fast

moving products (i.e. highly demanded items). Therefore, if the fixed ordering

cost is high and the demand is high, they will aim at high truck utilisation.

Ideally, they will aim to have full truckload shipments, not only to minimise the

total number of trucks needed but also to exploit the quantity discount schemes

on offer and to benefit from economies of scale. On the other hand, due to the

stochastic nature of demand, the wholesaler will aim to maximise the flexibility

of shipments, so as to minimise the total lost sales if the demand is higher than

expected, and to minimise the total inventory holding costs, if the demand is

lower than expected. In other words, the wholesaler will seek small and frequent

batches, so as to adapt rapidly to the market.

Clearly, these two aims are contradictory, since a full truckload policy (as

favoured by the supplier) will reduce flexibility in dealing with stochastic

demand, and may increase the inventory holding costs; while replenishing the

inventory in small and frequent batches (as favoured by the wholesaler) will not

only increase the total fixed cost of ordering and the transportation costs, but

may also result in losing the advantages of the quantity discount schemes.

Despite this contradiction in goals, however, the ultimate challenge is clearly to

find a replenishment policy that minimises the long-run total cost, which consists

of the fixed ordering costs and inventory and purchase costs.

The aim of this dissertation is to develop a new heuristic model to solve the joint

replenishment problem (JRP) with stochastic characteristics of demand, quantity

discounts and a fixed cost charged with each dispatched truck. In light of this,

the overall objective is to minimise the total inventory control cost for joint

2

replenishment environments, in which a fixed cost is charged for each truck used

to replenishment the different items. More specifically, the main objectives of

the project are:

 To develop a heuristic to form the different items into efficient groups and

apply this model using the LINGO optimisation software.

 To develop a replenishment policy where order sizes must create full truck

loads to exploit quantity discounts.

 To generate experimental data based on a real life situation, to test the

performance of the grouping heuristic and the joint replenishment policy.

 To perform joint replenishment simulation using LINGO on the generated

data, so as to evaluate the efficiency of the proposed solution.

 To perform an adjusted EOQ simulation using Microsoft Excel.

 To compare both simulation results using the following set of performance

measures: Total inventory cost, Average Inventory Level and the Service

Level.

As an outline, Chapter 2 examines a number of inventory control models,

notably those for the single item problem, as well as a comprehensive literature

review of the joint replenishment problem. Chapter 3, articulate in detail the

problem under examination in this project and, consequently, the methodologies

adopted to achieve the declared aim of this project, namely to develop and

evaluate a heuristic solution to a specific type of JPR. Chapter 4, Presents the set

of experimental results obtained. Chapter 5, provides a detailed analysis of the

results obtained from the simulation and a general evaluation of these results.

Moreover this chapter provides a set of recommendations to improve the

solution and presents some suggestions regarding how the proposed solution

can be used in more complex environments. Finally, Chapter 6 concludes the

main findings of this project and suggests potential areas for further research.

3

CHAPTER 2. Literature Review

One of the most valuable and critical resources of any company is its inventory.

Consequently, managers have long recognised that good inventory control is

crucial to corporate success. In any organisation, inventory control managers

will aim, on the one hand, to cut costs by reducing on-hand inventory levels

while sales managers, on the other hand, will seek to ensure minimum stock-

outs. Clearly, these two aims are contradictory and companies thus need to find

the right balance between low and high inventory levels by implementing the

appropriate inventory control system.

According to Balakrishnan (2012), the aim of most inventory models is to

minimise the total inventory cost by determining the appropriate quantities and

times to issue an order. This chapter examines a number of inventory control

models, notably those for the single item problem (Section 2.1), as well as a

comprehensive literature review (Section 2.2.) of the joint replenishment

problem.

2.1 Fundamental Inventory Control Models

2.1.1The EOQ Model – Deterministic Demand

Developed by Ford W. Harris in 1915, the economic order quantity (EOQ) model

is generally considered the most fundamental of all inventory models (Nahmias,

2009) and remains widely used in many organisations (Silver, et al., 1998). The

model describes the important trade-off between the fixed ordering cost and the

holding cost, and forms the basis for many more complex inventory control

systems. Balakrishnan (2012) summarised the assumptions behind this model

as follows:

1. Demand is known and constant.

2. Lead time is known and constant.

3. Shortages are not permitted.

4. Quantity discounts are not permitted.

4

5. Two variable costs are relative: The cost of placing an order and the cost

of holding inventory items.

Taking these assumptions into account, Figure 1 illustrates the typical inventory

usage curve of an EOQ model. In employing this model, a quantity ܳ is ordered

whenever the inventory level reaches zero. As the curve indicates, the inventory

level drops at a constant rate over time. This is because of the constant demand

assumption. Accordingly, ܳ is ordered at fixed time intervals, as examined by

Balakrishnan (2012).

Figure 1: The EOQ inventory usage curve

Similarly to most inventory models, the objective of the EOQ model is to

minimise the total cost. Silver, et al. (1998) mentioned five fundamental

categories of cost: the basic production or purchase cost, the inventory carrying

cost, the cost of insufficient capacity in the short run, the control system cost

and the cost of changing workforce size and production rate. For an order

quantity system, and in light of the above-mentioned EOQ assumptions, the

significant costs are the ordering and the inventory holding costs. All other costs,

such as the cost of inventory itself, are constant. Consequently, if the sum of the

5

ordering cost and inventory carrying cost is minimised, the total cost is also

minimised.

In this regard, Figure 2 graphs the total cost as a function of the order quantity

(ܳ), illustrating the fundamental trade-off between the inventory holding cost

and the fixed cost per order. It must be noted that a reduction in ܳ corresponds

to decreases in the total number of orders per year and, ultimately, the total

ordering cost. Conversely, as the ܳ value increases, the organisation will have to

maintain larger inventory levels and, therefore, the inventory carrying cost

increases. Commonly referred to as the ‘Optimal Order Quantity’ (ܳ∗), the EOQ

is the quantity at which the total cost is minimised. As shown in Figure 2, ܳ∗ is

the point at which the ordering cost curve intersects with the carrying cost

curve. In other words, ܳ∗ occurs at the point where the holding cost is equal to

the ordering cost (Wee, 2013).

Figure 2: The total cost function curve

Holding Cost

Fixed Ordering Cost

6

2.1.1.1 Determining the EOQ

Since the cost is at a minimum at ܳ∗ and since ܳ∗ occurs at the point where the

ordering cost is equal to the holding cost, then according to Nahmias (2009) the

total cost function can be expressed as:

Total Cost = Total Holding Cost + Total Purchase Cost + Total Purchase Cost

=
ܳ

2
ℎ +

ߣ

ܳ
ܭ + ߣܿ ���(2.1)

Where,

ܳ is the order quantity,

ߣ is the annual average demand rate,

ܭ is the fixed cost per order,

ℎ is the holding cost per item per year,

and ܿ is the purchase cost per item.

Assuming a constant demand rate, the purchase cost is usually ignored. Thus, in

Figure 2 the total cost function can be expressed as:

(ܳ)ܩ =
ܳ

2
ℎ +

ߣ

ܳ
(2.2)����ܭ

Since the ordering cost must equal the inventory carrying cost at ܳ∗, then:

ߣ

ܳ
ܭ =

ܳ

2
ℎ (2.3)

Equation 2.2 thus becomes linear. Nahmias (2009) shows the EOQ can be

determined as follows:

ܱܳܧ = ܳ∗ = ඨ
ߣܭ2

ℎ
(2.4)

7

2.1.1.2 Inclusion of Lead time

In the previous section, it was assumed that the receipt of inventory is

instantaneous. In reality, however, this might take from a few days up to several

weeks. The time elapsing between placing an order and receiving items in stock

is called the ‘lead time’ ()߬ (Ghiani, et al., 2013). As such, if the assumption of

zero lead time is relaxed then determining the value of ܳ∗ is not the only

decision that needs to be made. In particular, to allow for ,߬ it is essential to

determine the level of inventory at which an order quantity of ܳ∗ is triggered, an

inventory level referred to as the ‘re-ordering point’ (ܴ). Figure 3 illustrates the

inventory usage curve when lead times are considered, and shows an order of ܳ∗

units is placed whenever the inventory level reaches ܴ. Thus, the new inventory

arrives after ߬units of time, by which the inventory level reaches zero (Nahmias,

2009). To determine the value of ܴ, the following equation is used:

ܴ = ߣ߬ ���(2.5)

Figure 3: The inventory usage curve with lead time consideration (Balakrishnan, 2012)

8

2.1.1.3 Quantity Discounts

The discussion so far has been based on the assumption that quantity discounts

are not possible, i.e. that the purchase cost per item ()ܿ is fixed and is

independent of the size of the quantity ordered. In real-life, however, this is not

always the case. Indeed, to increase sales revenues and to appropriately adjust

inventory levels, many firms offer quantity discounts to their customers (Ghiani,

et al., 2013).

The two most common discount schedules are the ‘all-units’ discount and the

‘incremental’ discount (Silver, et al., 1998), and their respective discount order

cost functions are shown in Figures 4 and 5. The break points shown in these

figures represent the order quantities that trigger the quantity discount

schemes. Furthermore, the cost per item ()ܿ cam be seen to decrease each time

the order quantity reaches a break point. The difference between the two

schemes is that in the all-units discount scheme the discount is applied to all

units of the order, while in the incremental discount scheme the discount is only

applied to the additional units beyond the break point. Silver, et al. (1998)

discuss several other discount schemes, while Nahmias (2009) suggests iterative

solution techniques for both discount schedules. (This is discussed in further

detail in Section 2.2.4).

9

Figure 4: The Incremental Discount Schedule (Nahmias, 2009)

Figure 5: The All-Units Discount Schedule (Nahmias, 2009)

10

2.1.2The Stochastic Demand Case

While the previous section dealt with the EOQ model for single items with

deterministic demand rates, this deterministic demand assumption is relaxed for

the present section. Unlike basic control models, stochastic inventory control

models are designed to deal with the uncertainty in demand patterns and lead

times (Tayur, et al., 1999). In such models, demand is often treated as a

random variable that follows a random distribution (Balakrishnan, 2012).

According to Silver et al., (1998) a number of inventory control systems deal

with the stochastic demand case, though four principal systems remain the most

common ones. These are the ‘order point, order quantity’ (ܴ,ܳ) system, the

‘order-point, order-up-to-level’ (ܴ,)ܵ system, the ‘periodic review, order-up-to-

level’ (,ܶ)ܵ system and, finally, the ‘Can-Order’ (,ܵ (ݏܿ, policy. For the purpose of

this project, emphasis is placed on the (ܴ,ܳ) and (ܴ,)ܵ models in the following

three sections.

2.1.2.1 The (ࡽ,ࡾ) Inventory Model

The (ܴ,ܳ) model is a continuous review system in which a fixed quantity ܳ is

ordered whenever the inventory position drops to, or below, a predefined re-

order point ܴ. In essence, this model is an extension of the EOQ model, but with

lead time considerations, as discussed in section 2.1.1.2. However, unlike the

basic EOQ, the values of ܴ and ܳ in this model are treated independently. In an

(ܴ,ܳ) policy, triggering an order of ܳ items is based on the inventory position

and not the available stock on hand. This is because the inventory position takes

into account the outstanding orders rather than solely the available items, thus

avoiding excessive inventory levels.

Silver, et al. (1998) emphasise that the main advantage of this model is its

simplicity and its ability to predict the production requirements for suppliers,

thus facilitating production scheduling. The main disadvantage, however, is that

an order of ܳ units may not necessarily raise the inventory position above ܴ,

especially in the case of an unexpected increase in demand. In other words, the

model is not sufficiently flexible when dealing with unexpected and extreme

11

fluctuations in the demand pattern. According to Nahmias (2009), the following

are the main assumptions behind this policy:

1. A continuous review system.

2. Demand is random and stationary.

3. Lead time is constant and positive.

4. Quantity discounts are not permitted.

5. Shortages are possible and penalty costs are therefore assumed.

6. Two other costs are assumed in the total cost function: The inventory

holding cost and the cost per order placed.

According to Silver, et al. (1998), following a normal distribution function, the

random variable of interest in this model is the demand during lead time .(ܦ)

The expected mean demand during lead time, ,(ܦ)ܧ is calculated as follows:

(ܦ)ܧ = =ߤ (2.6)���ߣ߬

Meanwhile, the standard deviation of demand during lead time (ఛߪ) is given as:

ఛߪ = ඥܽݒ (ܦ)ݎ (2.7)

In contrast to the deterministic inventory control models, the objective of this

model is to minimise the ‘expected’ annual cost rather than the actual total cost.

With this in mind, the following equation is used to describe the total cost

function (Nahmias, 2009):

Total Expected Cost = Average Annual Expected Cost

+ Average annual Ordering Cost

+ Average Annual Penalty Cost

= (ܴ,ܳ)ܩ = ℎ൬
ܳ

2
+ ܴ− ߣ߬ ൰+ ܭ

ߣ

ܳ
+ ߣ݌

(ܴ݊)

ܳ
(2.8)

In Equation 2.8, ݌ stands for the stock-out cost identified by managers. Nahmias

(2008) described an analytical approach to determine the optimal values for ܳ

12

and ܴ, so as to minimise .(ܴ,ܳ)ܩ Based on this approach, Nahmias (2009) shows

the optimal solution involves the iterative solving of the following two equations:

ܳ = ඨ
ܭ]ߣ2 + ݊݌ (ܴ)]

ℎ
(2.9)

1 − (ܴ)ܨ =
ܳℎ

ߣ݌
(2.10)

This solution involves toggling iteratively between the two equations until two

successive values of ܳ and ܴ are found to be the same. Assuming a normal

distribution of demand, the expected number of stock outs incurred in a cycle,

(ܴ݊), is computed using the following standardised loss function:

(ݖ)ܮ =�න (߬− (ݖ
ஶ

௭

߶()߬�݀ �߬��(2.11)

Where ߶()߬ is the standard normal density. Given a normal lead time, with mean

ߤ and standard deviation ,ߪ it follows that:

(ܴ݊) = ൬ܮߪ�
ܴ − �ߤ

ߪ
൰= (ݖ)ܮߪ� (2.12)

The value of the standardised variate ݖ is obtained using the normal probability

and partial expectations tables provided by Nahmias (2009).

2.1.2.2 Service Levels in (R, Q) Systems

Although the (ܴ,ܳ) with penalty costs model outlined in the previous section is

realistic in describing many real life inventory control environments, it is

nevertheless difficult to determine the stockout cost .(݌) A common alternative

to the stockout cost is the service level, generally defined as the probability that

a demand or collection of demands is met. Two widely accepted types of

services are the Type 1 and the Type 2 services. Type 1 service is defined as the

probability of not stocking out during the lead time .(ߙ) The values of an (ܴ,ܳ)

13

system that is subject to Type 1 service constraint is determined as follows

(Nahmias, 2009):

1. Determine ܴ to satisfy (ܴ)ܨ = ߙ�

2. Set ܳ = EOQ obtained in Equation 2.4

Meanwhile, the Type 2 service type is defined by the proportion of demands that

are filled from stock .(ߚ) In general, the Type 2 constraint is formulated as:

(ܴ݊)

ܳ
= 1 − ߚ

The term on the left-hand side of the equation represents the average fraction of

demand that stocks out every cycle. In a Type 2 service setting, the order

quantity to the EOQ provides a valid approximation. Therefore,

(ܴ݊) = 1)ܱܳܧ − (ߚ

This is also known as the ‘fill rate’. This type of service is more complex than

Type 1 service. This is because it involves both ܳ and ܴ. Silver, et al. (1998)

explain both types in details and provide the relevant calculations.

2.1.2.3 The (ࡿ,ࢀ) Inventory Policy

Unlike the (ܴ,ܳ) model, the (,ܶ)ܵ system is a periodic review model. Also known

as the ‘replenishment cycle’ model, it is widely used in organisations running

manual inventory control systems and in firms ordering from a single supplier.

Although the term ܴ is commonly used to refer to the review period, ܶ is used in

the present project to avoid confusion with the re-order point described in the

previous section. The control procedure is that, at every ܶ, a quantity ܳ is

ordered such that the inventory level is raised up to level ,ܵ as illustrated in

Figure 6.

14

Figure 6: Typical Inventory Usage Curve for (T, S) Systems (Silver, et al., 1998)

Due to its periodic nature, this inventory system can provide significant savings

through facilitating the coordination of replenishments of related items.

Moreover, in this system, the value of ܵ can be adjusted at regular intervals to

cope with changing demand patterns over time. A main disadvantage, however,

is the high holding cost compared to continuous review inventory control

systems. The policy parameters are computed as follows:

The optimal review period (ܶ∗) is essentially ܳ∗ expressed in terms of time

supply. The EOQ formula to represent the supply time can be expressed as:

(Silver, et al., 1998)

ܶ∗ = ඨ
ܭʹ

ߣ݄
(2.13)

Further, according to Silver (1985) and assuming a Type 2 service constraint,

the order-up-to level is computed similarly to how the order point was in the

previous section:

Q Q

Q

15

(R,Q) (T,S)

R S

Q DT

߬ ߬+ ܶ

2.2 The Multi-Items Inventory Control Problem

While most of the inventory control models described in the previous section are

efficient in dealing with the single item inventory replenishment problem, they

are less so when it comes to the multi-item inventory control problem.

Commonly referred to as the ‘joint replenishment’ problem (JRP), the multi-item

inventory control problem is frequently encountered in real-life situations; for

instance, when a vendor purchases a group of different products from the same

supplier, or when different items are waiting to be packaged on the same

machine. Indeed, it has been a prominent research topic for years and many

solution algorithms have been proposed since the pioneering work by Starr and

Miller (1962). The first part of this section provides an introduction to the joint

replenishment problem, while the second part presents a number of solutions to

the basic deterministic JRP from the literature. The third part discusses two

fundamental models for solving the stochastic JRP, while the fourth part

considers the JRP with quantity discount. Finally, the fifth part discusses several

models for solving a special case of the JRP subject to capacity constraints.

2.2.1 An Introduction to the Joint Replenishment problem (JRP)

2.2.1.1 Definition

There are many types of inventory control models dealing with multiple product

systems (Aksoy & Erenguc, 1989) (Goyal & Satir, 1989) (Simpson & Erenguc,

1995) (Silver, et al., 1998) (Khouja & Goyal, 2008) (Glock, 2012). In most

cases, the objective of these models is to minimise the total cost while satisfying

demand (Aksoy & Erenguc, 1989). Similar to the single-item inventory control

models described in Section 2.1, in the multi-item inventory problem the total

16

cost is composed of the setup cost and the inventory holding cost. In many

cases, however, the setup cost structure is split into two components: First, a

major ordering (replenishment) cost applies when a family of items is

replenished that is independent of the number of different products in the order.

Second, minor replenishment costs are associated with every item and will only

occur when a particular item is replenished (Goyal, 1973). Additionally, for each

item, there is an individual demand rate and inventory holding cost (Andreas,

2006). As mentioned earlier, finding optimal order quantities for multiple

products with major and minor costs is a commonly occurring problem called the

Joint Replenishment Problem (Schouten, et al., 1994). Goyal (1973) provides

further definitions and descriptions of the joint replenishment problem while

Silver, et al. (1998) have examined real-life examples on both procurement and

manufacturing environments.

2.2.1.2 Advantages and Disadvantages

According to Silver, et al. (1998), in real-life procurement processes the

coordinated replenishment of different items is very common for a number of

reasons. First, to increase sales, many suppliers offer quantity discounts on the

purchase cost when the total number of items in an order is greater than a

certain quantity. Further, in many industries, a quantity discount may be

realised if a quantity such as a full container on a ship or a full truckload is

ordered. In many cases, exploiting such quantity discounts may lead to

significant cost savings on the total purchase cost as well as on the

transportation cost-per-unit. Second, since the setup cost of placing an order is

normally high, a reasonable strategy would thus be to reduce the total number

of orders annually by aggregating the different items into a single order. Finally,

the coordinated replenishment of items facilitates the scheduling of buyer time,

receiving and inspection work load.

However, Donal (1998), Silver, et al., (1998) and Khouja and Goyal (2008) have

identified several disadvantages of implementing joint replenishment systems.

First, there is a possible increase in the average inventory level. This is because

when different items are jointly replenished some will be reordered earlier than

17

otherwise needed. Second, unlike single item inventory systems, the

dependence of one product on other items reduces the flexibility in dealing with

unexpected situations such as a sudden increase in demand for a particular item.

Third, due to the complex nature of joint replenishment systems, they are

usually more costly to implement and run than single alternatives.

2.2.1.3 Strategies for Dealing with the JRP

There are two different types of strategies to deal with the JRP. In their work,

Eijs, et al. (1992) classify these into ‘direct grouping’ strategies and ‘indirect

grouping’ strategies. For consistency, in this project a ‘group’ is defined as the

set of items that are replenished in the same replenishment instance and share

the same replenishment cycle. When using indirect grouping strategies, joint

replenishment opportunities are scheduled at constant time intervals and the

quantity ordered for each item is sufficient to last for an integer multiple of the

basic time unit (Andreas, 2006). Further, products that have the same integer

multiple are grouped and replenished together.

This is the most common approach to the problem and, clearly, the main

challenge it presents is to identify the basic cycle time and the integer multiplier

for each product, such that the total cost is minimised. Under direct grouping

strategies, different items are economically grouped together where each group

has its own base period time (Andreas, 2006). Each group has its own base

period time and the number of groups is specified in such a way that the total

cost of items in the family is as low as possible. When comparing both appraches

as applied to a number of problems, Eijs, et al. (1992) concluded that the

indirect grouping methods outperform the direct grouping alternatives in terms

of the total cost. This is especially the case where the major ordering cost is high

compared to the minor individual costs.

18

2.2.2The Basic Joint Replenishment Problem: The Deterministic
Case

The assumptions underlying the derivation of the basic joint replenishment

inventory control system are similar to those of the economic order quantity

discussed earlier in Section 2.1. Typically, the basic joint replenishment problem

relies on the following assumptions (Silver, 1998):

 A constant and deterministic demand rate for each item over an infinite

time horizon.

 Shortages are not permitted.

 Individual items are replenished at equal time intervals.

 The replenishment lead-time is of zero duration.

 The entire quantity is delivered at the same time.

 There are no quantity discounts.

For the purpose of this dissertation, the following terms are used to describe the

JRP:

As mentioned earlier, in solving the JRP the objective, in most cases, is to

minimise the total inventory cost-per-unit time. Three costs are assumed in the

total costs function: a major fixed ordering cost, a minor ordering cost per item

ܶ Base time period, within zero, one or several items can be replenished

ܵ Major replenishment cost for the family of items

ܥܶ Total costs function

݅ A product index: 1,2,…,n

݊ Number of items in the family

௜ܦ Demand rate in units-per-unit-time for item ݅

ℎ௜ Inventory holding-cost-per-unit and time unit for item ݅

௜ݏ Minor replenishment cost for item ݅

௜݇ The integer number of ܶ intervals that the replenishment quantity of

item ݅will last

ܳ௜ Order quantity of product ݅

௜ܶ Time interval between successive replenishments of product ݅

19

and the inventory carrying cost. Further, the JRP is expressed in terms of

determining the frequency of the basic replenishment cycle and the frequency of

replenishing individual items. This ratio is a positive integer used to decide how

often a product is replenished (Goyal & Satir, 1989). For example, if this ratio for

a particular item is 1 then it is included in every replenishment cycle. If the ratio

is 2, then the product is replenished every two replenishment cycles. Sections

2.2.2.1 and 2.2.2.2, respectively, explain the total cost function and highlight

the most recognised solution models to the JRP under deterministic demand.

2.2.2.1 The Total Cost Function

As already mentioned, under a joint replenishment inventory control system the

time between two successful replenishments for any product (௜ܶ) is a positive

integer multiplier (�݇௜) of ܶ, so that:

௜ܶ= ௜݇ܶ ����(2.14)

The order quantity for product ݅is given by:

ܳ௜= ௜ܶܦ௜= ܶ ௜݇ܦ௜ (2.15)

The total annual holding cost (ுܥ) is given by:

ுܥ = ෍
ܳ௜ℎ௜

2
=
ܶ

2
෍ ௜݇ܦ௜ℎ௜

௡

௜ୀଵ

௡

௜ୀଵ

(2.16)

And the total annual ordering cost (௢ܥ) is given by

௢ܥ =
ܵ

ܶ
+ ෍

௜ݏ

௜݇ܶ
= ൭ܵ+ ෍

௜ݏ

௜݇

௡

௜ୀଵ

൱/ܶ����(2.17)

௡

௜ୀଵ

The total cost function under basic joint replenishment system is thus given by:

20

)�ܥܶ (ܭܶ, = ுܥ + ைܥ =
ܶ

2
෍ ௜݇ܦ௜ℎ௜

௡

௜ୀଵ

+ ൭ܵ+ ෍
௜ݏ

௜݇

௡

௜ୀଵ

൱/ܶ����(2.18)

The time period can be found by deriving equation 2.18, as follows:

ܶ(ଵ݇, ଶ݇, , , ௡݇) = ඩ2൭ܵ+ ෍
௜ݏ

௜݇

௡

௜ୀଵ

൱ ෍ ௜݇ܦ௜ℎ௜

௡

௜ୀଵ

൙ (2.19)

If equation 2.19 is substituted back into equation 2.18, then the total cost

function, given a set of ݇ values, can be formulated (Khouja & Goyal, 2008) as

follows:

)ܥܶ ଵ݇, ଶ݇, , , ௡݇) =�൭ܵ+ ෍
௜ݏ

௜݇

௡

௜ୀଵ

൱×�෍ ௜݇ܦ௜ℎ௜

௡

௜ୀଵ

(2.20)

2.2.2.2 Solutions to the JRP under Constant Demand

According to Khouja and Goyal (2008), a policy defined by the basic

replenishment cycle and a set of multipliers for individual products, as in the

joint replenishment policy, is known as a ‘cyclic policy’. In a special form of the

cyclic policy, known as the ‘strict cyclic’ policy, at least one product has an

integer multiplier�݇௜= 1. Under both policies, when solving the JPR the objective

is to minimise the total cost function in Equation 2.18. In other words, the

objective is to solve the following optimisation problem:

minܶܥ�((ܭܶ, (2.21)

The main difficulty presented by the JRP involves finding the best set of -݇

values. As such, several authors have proposed heuristic solutions to the

minimisation problem in Equation 2.21. For example, in his early work, Brown

(1967) proposed a heuristic method based on an iterative technique to find the

set of -݇values. Further, Shu (1971) developed a specifically designed method

for the JRP with two items. Based on the value of the optimal ܶ for a family of

21

products, Goyal (1973) and (1974a) used upper and lower bounds for ܶ to find

best values for the different ௜݇s. All possible combinations of ܶ are then

evaluated, and the combination with the lowest cost is chosen.

Although many sub-optimal heuristics are available to solve the JRP, only a few

algorithms are able to find an optimal solution. One widely recognised algorithm

was developed by Goyal (1974b), who presented a systematic procedure for

obtaining the optimum values of ܶ and ௜݇ݏ to minimise Equation (2.20). The

algorithm is based on the enumeration of the total cost function between a lower

and an upper bound of ܶ. However, according to Eijs (1993), this method can

guarantee optimal solutions only for strict-cyclic policies. Similarly, Andreas

(2006) highlighted the difficulty of determining the lower bound of T, and

pointed out that the method does not guarantee the optimal solution in all

situations. Therefore, Goyal (1988) and then Eijs (1993) adjusted the method

introduced by Goyal (1974b) to guarantee optimality for basic cyclic policies. The

former improved the method by determining a new lower bound.

Moreover, since the JRP is a non-deterministic polynomial-time hard problem

(Arkin, et al., 1989) an algorithmic optimal solution may be complex and thus

computationally prohibitive for large problems. In addition, the solutions

proposed by Goyal (1974b), Goyal (1988) and Eijs (1993) and many others are

onerous to implement and use on a regular basis. As such, a number of more

efficient alternative heuristic algorithms have been developed to solve the JRP.

For instance, Silver (1976) introduced an efficient and non-iterative heuristic

algorithm for solving the JRP that makes use of a convenient graphical aid and

has produced excellent results on a number of numerical tests. In addition to the

assumptions underlying the basic JRP that were discussed in Section 2.2.2, this

model assumes a simple cyclic policy in which different items are jointly

replenished every ܶ unit time, with each item ݅ replenished by a quantity

sufficient to last ௜݇ܶ unit time. Through his method, Silver (1976) modified the

economic order quantity to handle the replenishment of multiple items. The

algorithm ranks the different items in an ascending order of the value of
௦೔

஽೔௖೔
. The

22

item with the lowest ranking is replenished every ܶ while for all other products,

the ௜݇ݏare calculated as follows:

௜݇= ඨ
௜ݏ
௜ܿܦ ௜

ଵܦ ଵܿ

ܵ+ ௜ݏ
(2.26)

The different ௜݇ݏ are subsequently rounded-up to integer multipliers of the first

item. This procedure has produced results at, or near, the optimal solution in

numerous tests (Silver, et al., 1998). The solution’s sub-optimality, however, is

due to the adjustment of the ௜݇ values. Goyal and Belton (1979) suggested

another method of calculating the different ௜݇ݏ that was further improved upon

by Kaspi and Rosenblatt (1983), who combined it with the iterative approach of

finding the ௜݇′ݏ in Goyal (1974a).

Moreover, Kaspi and Rosenblatt (1991) adopted work by Silver (1976) to

develop an enumerative heuristic algorithm called the RAND method. Similar in

concept to Goyal (1974b), this method depends on computing upper bounds and

lower bounds for the optimal replenishment cycle ܶ∗. However, in using the

RAND method, the range between both bounds is divided into a number of

equally-spaced values of ܶ. For each potential value of ,ܶ the improved Silver’s

(1976) algorithm proposed by Kaspi and Rosenblatt (1983) is used. Goyal and

Deshmukh (1993) improved the RAND method by introducing improved tighter

bounds. Khouja and Goyal (2008) emphasised that a tighter lower bound is

desirable since it reduces the range of ܶ.

Furthermore, Kaspi and Rosenblatt (1991) performed a comparative study to

test the performance of the available algorithms, and showed their RAND

method outperformed previous non-enumerative algorithms. Olsen (2005) used

a direct grouping strategy that slightly outperformed the method adopted by

Kaspi and Rosenblatt (1991). Meanwhile, Viswanathan (1996) proposed a new

optimal algorithm for the JRP that reduces the computational effort required by

Goyal (1974b) and Eijs (1993) by improving the bounds for ܶ in an iterative

approach. For their part, Porras and Dekker (2006) showed that it is possible to

solve the JRP with minimum order quantities by applying a global optimisation

23

procedure. Porras and Dekker (2006b) performed a comparative study on the

efficiency of optimal algorithms for the JRP, and their study revealed that for

large minor set-up costs and moderate major set-up cost, Porras and Dekker

(2006) outperformed Goyal (1974b) and Viswanathan (1996). Further

comparative studies are examined in Viswanathan (2002).

2.2.3The Stochastic Case

In the previous section only the case of constant demand has been considered.

In many cases in real life, however, the demand is uncertain which adds

complexity to the JRP. Although a number of authors have presented several

strategies to minimise the total expected cost per unit time, two approaches

remain the most commonly used in practice: The Can-Order system, (S, c, s),

and the periodic review system (Silver, 1998). The objective function of

stochastic joint replenishment models is expressed as the minimisation of the

total relevant expected costs. The costs assumed are essentially the same as

those assumed in solving the deterministic case. However, unlike the

deterministic case, in the stochastic case shortages are permitted and therefore

penalty costs are assumed. In the following two sections, both the (S, c, s)

systems and the periodic review systems for solving the JRP are presented and

discussed.

2.2.3.1 Continues Review Systems

Introduced by Balintfy (1964), the Can-Order (S, c, s) system is a special type

of continuous review system for controlling jointly replenished items. In

implementing this model, three inventory levels are computed individually for

each product in a family. These levels are the order-up-to level (௜ܵ), the can-

order level (௜ܿ) and the re-order level .(௜ݏ) This system is designed for

environments where the main priority is to minimise the setup cost. Can-Order

systems are particularly useful in manufacturing environments where several

products make use of a single machine. In using this system for a group of

items, whenever the inventory position of any item ݅ reaches the ‘must order’

level, ,௜ݏ a replenishment action is triggered to raise the item’s inventory position

up to its order-up-to level, ௜ܵ. At the same time, any other item ݆ within the

24

same group can also be replenished given that its inventory position is below its

can-order level, ௝ܿ. If item ݆ is included then its inventory position is also raised

up to its order-up-to level, ௝ܵ (Goyal & Satir, 1989). The underlying principle

behind the can order level, ௝ܿ, is to indicate that item ݆ is likely to be replenished

soon. Therefore, by including item ݆with the replenishment instant triggered by

item ,݅ savings in future fixed ordering costs may be realised.

Figure 6 shows the behaviour of an item in a (S, c, s) system. The item triggers

a replenishment at time .ଵݐ At ,ଶݐ a second item in the group triggers a

replenishment, but the first item is not included since its inventory position is

above the ௜ܿ level. At time ,ଷݐ a third item triggers a replenishment in which the

first item is included as its inventory level is below the ௜ܿ level.

Figure 7: Behaviour of an item under the (S, c, s) System (Silver, et al., 1998)

A disadvantage of this model is that finding the control variables for all three

levels is a difficult task, especially when the number of different products is high.

Therefore, researchers have considered different ways of calculating these levels

so as to simplify the implementation of the system. Silver (1965), for example,

considered a situation involving two items having identical characteristics,

including unit Poisson demand. The simple Joint ordering policy is to order both

items up to a level Q whenever either of them drops to a zero level. Ignall

25

(1969) considered a similar problem where demand is determined by two

independent Poisson processes. Assuming zero lead time and Poisson demand,

Silver (1973) studied three procedures to determine the total cost function. The

zero lead time assumption is relaxed in Silver (1974). The author emphasised

that substantial cost savings, especially when the fixed costs are high, can be

obtained by implementing the (S, c, s) system. Silver (1981) and Federgruen et

al. (1984) also considers (S, c, s) systems with a Poisson demand distribution.

In more recent work, Schultz and Johansen (1999) developed a decomposition

algorithm for items coordinated by the (S, c, s,) policy. The algorithm assumes

that the time between ordering is Erlang-distributed. The authors emphasised

that this algorithm performs well in comparison with others. Meanwhile,

Melchiors (2002) presented a new method for calculating the (S, c, s,) policy

parameters. The method is based on a compensation approach, where an item

placing an order receives compensation from other items benefitting from the

order opportunity. Johansen and Melchiors (2003) present a new method to

obtain sub-optimal ‘can order’ policy based on Markov decision theory. This

method, however, assumes a periodic review inventory system. Tsai and Huang

(2009) used a clustering algorithm to evaluate the correlated demands among

different items in (S, c, s,) systems. According to the authors, this method helps

to overcome any reduced efficiency when a large number of items are

considered.

2.2.3.2 Periodic Review System

Periodic replenishment systems are widely used in solving the JRP (Johansen &

Melchiors, 2003). Developed by Atkins & Iyogun (1988) for passion distribution,

these systems outperform the (S, c, s) system in many cases (Khouja & Goyal,

2008). In their work, Atkins and Iogyun (1988) propose two replenishment

policies: the first is a periodic policy where all items are ordered in quantities

that raise their inventory position to a base stock level at every replenishment

instance. In essence, this method is an extension of the system discussed earlier

in Section 2.1.2.3. The second method is a modified periodic policy where similar

items are replenished at each replenishment instance - where other items are

ordered at regular replenishment opportunities. In contrast to the first method,

this method accounts for sequence-dependent setup times and production

26

capacity constraints. Both methods are based on the notion of allocating the

major replenishment costs in small amounts to the fastest moving products.

Silver et al. (1998) provide detailed steps for how to apply the procedures that

Atkins and Iogyun (1988) propose. McGee and David (1996) implemented this

procedure for a fastener manufacturer using a spreadsheet to find the

production quantities and safety stock.

Other periodic review systems include the work of Viswanathan (1997)who

presents a policy called the P (s, S) policy, where at every review instant all the

items having an inventory position below their order level (s) are included in the

replenishment. Backed up by several numerical tests, according to the authors,

this method outperforms all earlier periodic review approaches. Nielsen and

Larsen (2005) have improved upon the P(s, S) policy by working out an

analytical solution procedure, which, they argue, has been shown to be superior

to the (S, c, s) system on almost all test problems evaluated in their paper.

2.2.4The Joint Replenishment Problem with Quantity Discounts

Most of the previously mentioned joint replenishment models assume a constant

purchase cost-per-unit, i.e. that the purchase cost per item is independent of the

order quantity. However, as mentioned earlier in Section 2.1.1.3, quantity

discounts to purchase costs may be offered by suppliers to motivate customers

to order larger quantities, whereby the cost per unit is reduced if the quantity

purchased is larger than a specified break point. However, ordering in larger

quantities to obtain the discounts will not always lead to total cost saving, since

additional units increase inventory holding costs. Therefore, it is essential for

inventory control managers to determine when to take advantage of such

discounts. According to Cha and Moon (2005), the most common discount

schemes are the all-units discount schedule and the incremental discount

schedule, both discussed in Section 2.1.1.3 below.

Many authors have studied these quantity discount schedules, most notably

Silver et al., (1998), Miltenburg (1985) and Miltenburg (1987). Dolan (1987)

and Wilson (1993) provide a number of examples of different quantity discount

schedules in many real-life situations. Pirkul and Aras (1985) examined the EOQ

27

model with an all-units discount, and tackled the multi-item problem by finding

the EOQ for each item separately while considering the quantity discount

scheme. Similarly, Guder et al. (1994) considered the multi-item problem but

with an incremental quantity discount scheme based on the independent cycle

approach. Guder and Zydiak (1997) studied the multi-item inventory problem

with a single resource constraint and quantity discounts. They proposed a

heuristic approach for generating non-stationary ordering policies, with order

quantities that can vary over time. Hariri et al. (1995) presented a geometric

programming approach for determining the inventory policy for the same

situation examined by Guder and Zydiak (1997), an approach based on two

models formulated as profit maximisation problems rather than the more

conventional cost minimisation problem. Benton (1991) studied quantity

discount schedules under conditions of multiple items, resource limitation and

multiple suppliers, and proposes an efficient heuristic programming procedure

for evaluating alternative discount schedules.

While many authors have examined quantity discount schedules under

conditions of multiple items using the single item replenishment theories, few

have considered the quantity discount schedules under joint replenishment

conditions before the work of Chakravarty (1984), who proposed a grouping

procedure aimed at replenishing different items at the same instant so as to

exploit the group discounts available on the total purchase value of a group, as

well as the economies of scale of the fixed cost of ordering. The optimal groups

are formed such that the annual (dollar) usage values of the items do not

decrease, from the first to the last group. This method, however, is only

applicable with an all-unit discount schedule (Cha & Moon, 2005). In contrast to

Chakravarty (1984), Chung et al. (1996) present an effective heuristic to solve

the JRP with dynamic demand under both incremental discount schedules and

all-unit discount schedules. This method uses the variable redefinition technique

of Eppen and Martin (1987) to obtain tight lower bounds for reasonable size

problems. Moreover, contrary to Miltenburg (1985) and Miltenburg (1987), who

used a dynamic re-order point policy, Schouten et al. (1994) adopted a

stationary can-order strategy as a basic ordering strategy in their proposed

heuristic method, so as to incorporate quantity discount schedules under

stochastic demand conditions.

28

Silver et al. (1998) present a simple solution to the stochastic JRP with quantity

discounts, based on the work of Miltenburg (1982), which outperformed the

more widely known IMPACT and INFORM systems. The solution works with both

periodic review and continuous review systems. When an item reaches its re-

order point and triggers group replenishment, the inventory level is examined.

Depending on this level, a group replenishment quantity is selected while taking

into account the available discounts. Miltenburg and Silver (1989) propose a

probabilistic decision rule for similar conditions. Eijs et al., (1992), in their

review of the literature on this topic, propose a method for incorporating

discounts into the framework of can-order strategies. They found that, for small

problems, the optimal strategy within this class can be identified with a semi-

Markov decision model. For large sized problems, a one period look ahead

heuristic was proposed.

It’s worth mentioning that most of the models presented so far deal with

stochastic demand characteristics. Cha and Moon (2005), on the other hand,

developed an algorithm, based on the adapted RAND method, that deals with

the JRP under quantity discounts and constant demand, where the authors

considered the all unit discount schedule. Another model dealing with the same

case of constant demand was proposed by Silver et al. (1998), who highlighted

that the analysis for multiple items with quantity discounts is much more difficult

compared to the single item systems. This is because, in a joint replenishment

process, it is typically not necessary to have all the items replenished at each

replenishment instance. Furthermore, the authors highlight that a solution where

the discount is achieved in certain replenishments only is complex to analyse,

since ܶ is not the same for each item. Therefore, rather than attempting to

explicitly model such complex systems, a compromise is suggested in the form

of three possible solutions: The first solution assumes that the total

replenishment is always sufficient to archive quantity discounts, the second

solution assumes that the best result is achieved at the breakpoint, and the third

possibility assumes no quantity discounts. Once evaluated, the solution with the

minimum cost is subsequently chosen. It must be noted that numerous further

research efforts have been carried out on the topic (Chen & Min, 1994) (Khouja

29

& Saydam, 2005) (Li & Liu, 2006) (Moon, et al., 2008) (Kamalia, et al., 2011)

(Kang & Lee, 2012) (Lee, et al., 2013) (Paul, et al., 2014).

2.2.5The Full Truck Load JRP Problem

Most of the replenishment policies mentioned in the previous sections charge a

fixed cost for a replenishment order, independent of the order quantity. As such,

they do not take into account capacity restrictions on the total order volume.

According to Kiesmuller (2009), such models, in many cases, result in a truck

capacity utilisation of 1% and, in other cases, an order quantity that requires

more than a full truckload. Therefore, most of these models are not applicable in

situations where a fixed cost is charged for each dispatched truck.

Some studies (Miltenburg, 1985) have considered capacity restrictions in a JRP

for continuous review policies and periodic review policies. Assuming that the

total volume of the order is known, the author proposes an algorithm for

allocating the total order volume to each item within a family of items. Unlike

the models presented in previous sections, this model aims on maximising the

time between different orders. This method is called the ‘Service Point’ method,

and has been successfully deployed in a number of industrial applications

(Silver, et al., 1998). Some studies (Carlson & Miltenburg, 1988) have discussed

the method in details, providing an application of this allocation rule where

replenishment orders are triggered based on the service level. Other studies

(Pantumsinchai, 1992) perform a comparative analysis between the Service

Point method, Can-Order policies and Periodic policies. The research emphasises

that the Service Point method and the Periodic method performed better than

the Can-Order policy.

A further study (Eijs, 1994) provides another approach that takes into account

capacity constraints. The author presents a periodic replenishment policy in

which an item can be ordered at every review instant. Accordingly, the order

sizes are initially determined based on the single item replenishment policies. A

Markovian decision model is then used to estimate any additional ordering and

holding costs, due to adjustments in order quantity. Subsequently, a decision is

taken as to whether to enlarge the initial order quantities, so as to benefit from

economies of scale. This decision is based on comparing the expected additional

30

ordering and holding costs associated with the enlargement of the order quantity

and the cost of the extra replenishments when the transportation capacity is not

fully utilised. In case of positive expected cost savings, the initial order size is

enlarged to a full container-load. According to some researchers (Kiesmuller,

2009) this method can achieve significant cost savings though it “can still lead to

small total replenishment volumes resulting in low container utilization”.

In another research study on a similar problem (Cachon, 2001), a periodic

review policy is presented that avoids low truck utilisation. According to this

method, orders are only shipped in full truckloads. Orders with less than a

specified truck utilisation are delayed until the next replenishment instant. Unlike

other approaches (Eijs, 1994), when implementing this policy, orders can only

be reduced in size to allow for full truck utilisation. The allocation of different

items into a particular shipment is carried out based on a ‘first-come-first-serve’

rule.

Another study (Kiesmuller, 2009) combined the methodologies of both (Eijs,

1994) and (Cachon, 2001). The result is a dynamic and periodic joint

replenishment control model in which the different order quantities can be

enlarged, as well as reduced, so as to match the desired truck utilisation.

According to this method, the number of full truck loads needed is initially

computed, based on the total inventory position at each review period. Second,

the available transportation capacity is then allocated among all products,

depending on their demand patterns and cost characteristics. This allocation

process is based on the stochastic characteristics of demand, in order to

simulate real life situations. The author (Kiesmuller, 2009) conducted a

comparative analysis of this proposed method against an uncoordinated periodic

replenishment policy (Full Service Policy), in a detailed numerical study, finding

that this method outperforms the full service policy when the average time

between two successful replenishments is not ‘too large’ and fixed ordering costs

are high. Indeed, the proposed policy is close to optimality in these conditions

and reveals large cost savings.

Meanwhile, a further study (Qu, et al., 1999) presents an integrated inventory-

transportation system with a modified periodic review inventory policy. The

31

authors proposed a heuristic decomposition method to minimise the long run

total average cost. The decomposition algorithm works by using separate

calculations for inventory and routing decisions. Others research (Eijs, 1994)

developed a heuristic to decide whether an initial order should be enlarged or

not. The heuristic is based on a comparison of the expected saved shipping cost,

the expected saved ordering cost and the expected extra holding cost, that

would be induced by such an enlargement. Another study (Hoque, 2006)

provides an optimal solution technique for the joint replenishment problem, with

storage and transport capacities and budget constraints, while others (Moon &

Cha, 2006) modified the existing RAND algorithm so as to be applicable to the

JRP with resource restriction, developing a genetic algorithm for the JRP with

resource restriction in the process.

2.3 Summary

Although many of authors have presented different solutions to the JRP, most of

these models are based on indirect grouping strategies and the optimal solution

from the products perspective of the problem. In addition, most of these models

are complex to implement and requires iterative procedures. In contrast to most

of the previously mentioned models, in this project, a new simple solution is

proposed based on a novel angle that have so far been unexplored in past

efforts, the optimal solution from the trucks perspective. Therefore, the purpose

of this project is to solve the joint replenishment problem (JRP) with stochastic

characteristics of demand, quantity discounts and a fixed cost charged with each

dispatched truck, considering both angles: the optimal solution from the

products perspective and the optimal solution from the shipping trucks

perspective. In developing this model, similar to the previous efforts, the

ultimate aim is to minimise the overall cost in multi-product inventory control

environments.

32

CHAPTER 3. Methodology

This chapter aims to articulate in detail the problem under examination in this

project and, consequently, the methodologies adopted to achieve the declared

aim of this project, namely to develop and evaluate a heuristic solution to a

specific type of JPR. The solution is evaluated by performing eight experiments,

in which each is compared against an adjusted EOQ model, so as to evaluate its

performance.

In Section 3.1, the aims and objectives of this project are presented. Before the

problem is articulated in Section 3.3, Section 3.2 provides a real-life example to

illustrate its real life manifestations. Section 3.4 explores the solution to the

problem, while Section 3.5 describes the methods used to generate the relevant

experimental data. Section 3.6 provides an explanation of the proposed joint

replenishment grouping heuristic, and Section 3.7 discusses the methods used

to perform the simulation. Finally, Section 3.8 discusses the EOQ model

simulation.

3.1 Aims and Objectives

The aim of this dissertation is to develop a new heuristic model to solve the joint

replenishment problem (JRP) with stochastic characteristics of demand, quantity

discounts and a fixed cost charged with each dispatched truck. In light of this,

the overall objective is to minimise the total inventory control cost for joint

replenishment environments, in which a fixed cost is charged for each truck used

to replenishment the different items. More specifically, the main objectives of

the project are:

 To develop a heuristic to form the different items into efficient groups and

apply this model using the LINGO optimisation software.

 To develop a replenishment policy where order sizes must create full truck

loads to exploit quantity discounts.

33

 To generate experimental data based on a real life situation, to test the

performance of the grouping heuristic and the joint replenishment policy.

 To perform joint replenishment simulation using LINGO on the generated

data, so as to evaluate the efficiency of the proposed solution.

 To perform an adjusted EOQ simulation using Microsoft Excel.

 To compare both simulation results using the following set of performance

measures: Total inventory cost, Average Inventory Level and the Service

Level.

3.2 JRP: A Real-life Example

The problem under study is based on a real world multi-item inventory control

problem taking place in Palmer and Harvey (P&H), the UK’s number one

delivered wholesaler (P&H, 2014). P&H is a major wholesaler for Coca-Cola

Enterprise (CCE), as well as a marketer, producer and distributor of Coca-Cola

products. P&H stores the products supplied by CCE in three UK warehouses

located at Medway, Coventry and Fareham. These products are then distributed

to different customers. CCE supplies P&H with a range of products categorised

by their packaging size and families. The packaging size ranges from 330ml cans

to 2L bottles and the products are classified into three different families: Coke

TM family, Core 3 family and Fanta family. Inventory holding costs and purchase

costs for the range of available products differ according to packaging size.

CCE delivers its products to P&H in pallets using trucks. Each truck is loaded with

up to three containers. CCE charges P&H a fixed cost per order (per truck

shipped) which is independent of the number of pallets included within each

shipment. The total fixed cost, however, depends on the capacity and number of

trucks used. The smallest truck in the CCE fleet carries up to 26 pallets, where

each pallet must contain 60 cases of either bottles or cans of soft drink, thus

being able to carry up to 1560 (i.e. 60x26) cases. In an attempt to encourage

P&H to place larger orders, CCE offers two quantity discount schemes. The first,

BULK LEVEL 1, is offered whenever P&H orders a full truckload of soft drinks with

34

the same packaging size and from the same products family. The second, BULK

LEVEL 2, is offered whenever P&H orders a full truckload irrespective of the

families or sizes of the products contained. The BULK LEVEL 1 scheme offers an

all units discount of 10p per case (i.e. £156 per pallet), while BULK LEVEL 2

offers an all unit discount of 5p per case (i.e. £78 per pallet). Other truck

capacities include 52 pallets (two containers) and 78 pallets (three containers).

Despite the complexity of their system, and the fact that the inventory

procurement between P&H warehouses and CCE is a typical example of the Joint

Replenishment Problem (presented in Section 2), P&H continue to employ

conventional inventory control policies that are not specifically designed for their

multi-product environment. As such, ignoring specific inventory control needs

may lead to losing the opportunity to reduce the overall replenishment costs

and, consequently, to improve the overall system efficiency. Therefore, P&H and

many other companies facing the same predicament may benefit from

implementing an adapted and specifically designed joint replenishment policy

that takes into account key factors such as the stochastic nature of demand, the

nature of products, discount opportunities, inventory holding costs and

transportation costs. In other words, a policy that aims at finding the best

replenishment solution so as to minimise the overall costs under such conditions.

3.3 Statement of the Problem and Problem Assumptions

In this project, we consider an inventory control environment in which a

wholesaler buys multiple products from a single supplier. To simplify the

problem discussed in the previous section, several assumptions have been

made.

Contrary to the case of P&H and CCE, it is assumed in the present project that

the supplier delivers different items to a single warehouse rather than to

multiple warehouses. Moreover, the demand is assumed to be stochastic and

normally distributed, and the lead time to be constant. Different items are

assumed to have the same purchase cost, and the same inventory carrying cost.

In addition, we assume that the system is under a constraint of satisfying a

35

desired fill rate, the fraction of demand met from the stock (Type 2 Service

described in the literature review chapter), in which unsatisfied demand

represents lost sales.

Similarly to the real life procurement process between P&H and CCE, the

products in this project are assumed to be delivered to the wholesaler using

trucks of finite capacity. Different truck types are available and each truck type

has a specific fixed cost, whenever used in replenishment, as well as a specific

loading capacity. It is also assumed that there is no limit on the number of

trucks available for use, and that there are always enough inventories at the

supply side of the chain to fulfil any ordered quantity. Finally, the supplier offers

an all-unit quantity discount whenever a full truckload is replenished.

The objective of the wholesaler is two-fold: On the one hand, they aim to

minimise their shipping costs, particularly for fast moving products (i.e. highly

demanded items). Therefore, if the fixed ordering cost is high and the demand is

high, they will aim at high truck utilisation. Ideally, they will aim to have full

truckload shipments, not only to minimise the total number of trucks needed but

also to exploit the quantity discount schemes on offer.

On the other hand, due to the stochastic nature of demand, the wholesaler will

aim to maximise the flexibility of shipments, so as to minimise the total lost

sales if the demand is higher than expected, and to minimise the total inventory

holding costs, if the demand is lower than expected. In other words, the

wholesaler will seek small and frequent batches, so as to adapt rapidly to the

market.

Clearly, these two aims are contradictory, since a full truckload policy (as

favoured by the supplier) will reduce flexibility in dealing with stochastic

demand, and may increase the inventory holding costs; while replenishing the

inventory in small and frequent batches (as favoured by the wholesaler) will not

only increase the total fixed cost of ordering and the transportation costs, but

may also result in losing the advantages of the quantity discount schemes.

36

Despite this contradiction in goals, however, the ultimate challenge is clearly to

find a replenishment policy that minimises the long-run average total cost per

period, which consists of the fixed ordering costs and inventory and purchase

costs, and is calculated as follows:

Average Total Cost = average holding cost + average ordering cost + avrage purchase cost =

(ܶ)ܩ =
ℎߣ

2
�ܶ +

ܭ

ܶ
+ ߣܿ� ���(3.1)

For the purpose of this project, the following notation is used to formulate the

Joint Replenishment Problem and solution:

݊ Number of products

݅ Product index number

݉ Number of trucks used in a replenishment

݆ Replenishment index variable (or day index)

ܶ Replenishment time interval

ܳ Order quantity

ߣ The average demand (pallets per day)

∗ Optimality notation

ܭ Ordering cost

ℎ Holding cost per unit per day

ܿ Purchase cost per unit

ܴ Re-order point

ܵ Order-up-to level

3.4 Solution Overview

Assuming that the fixed cost per order is high compared to the inventory holding

cost, and assuming that a significant quantity discount is achieved whenever a

full truckload is shipped, then a reasonable solution is to aim for high truck

utilisation. Therefore, in the proposed solution, trucks are dispatched with full

loads. Moreover, in solving the JRP under consideration, a periodic review order-

up-to level (,ܶ)ܵ system is used. In general, this policy is described as follows.

37

At each review instant, ܶ, the inventory position - which is the stock on hand

plus any outstanding orders - of each item ݅is reviewed, and an order placed so

that the inventory position is raised to the order-up-to level, ௜ܵ, of that item.

As per the Literature Review chapter (notably Sections 2.1.2.3 and 2.2.3.2), this

policy outperforms the can order (,ܵ (ݏܿ, policy in most cases. Moreover, this

policy is practical and simple to implement due to the fewer number of policy

parameters needed. Additionally, because of the periodic review property, this

system is much more preferable in terms of coordinating the replenishments of

related items. The coordination afforded by the periodic review system can

provide significant savings on the shipping costs. In addition, the (,ܶ)ܵ system

offers a regular opportunity to adjust the order-up-to level, a desirable property

when demand is stochastic. However, the main disadvantage of the (,ܶ)ܵ system

is that the inventory holding costs are, typically, higher than those in continuous

review systems.

Typically, (,ܶ)ܵ systems assume no restrictions on the size of the ordered

quantities. Therefore, for the purpose of this project, this policy is slightly

adjusted in order to take into account the capacity restrictions posed by the full

truckload constraint. This is done by allowing the order quantity of each item to

deviate from ௜ܵ at each review period. Whether the deviation from ௜ܵ is an over

achievement or an under-achievement depends on the inventory position and

the demand rates of different products. The idea is therefore to allow for the

coordinated replenishment of different items while maximising truck utilisation

by forming efficient groups of products. Each group of products will be

replenished in one full truck at equal replenishment instances. This is done by

allocating the available truck capacity to different products within one group

while aiming to raise their inventory position to different ௜ܵs, though allowing for

deviation.

The adjusted (,ܶ)ܵ replenishment policy can thus be described as follows: At

each review instant, ܶ, the inventory position of each item, ,݅ within group ݆ is

reviewed, and an order is placed such that its inventory position is raised to

௜ܵ+ ௜݀
ି − ௜݀

ା whereby ௜݀
ି and ௜݀

ା are the over achievement and underachievement

variables. As such, the solution policy can be seen from two perspectives: From

38

the truck perspective, the policy used is a (,ܶܳ) policy in which an order quantity

equivalent to the truck capacity is ordered every ܶ. From the perspective of the

different products, the policy used is the adjusted (,ܶ)ܵ policy. Both perspectives

are illustrated in Figures 8 and 9 below.

Figure 8: The (T,Q) policy inventory usage curve

Figure 9: The adjusted (T, S) policy inventory usage curve for two items

39

3.5 Experimental Data

In this section, the methodology used to generate the set of experimental data

is explained. The problem structure is defined by a set of boundaries and

limitations to the relevant input data. These limitations are based on P&H’s

procurement processes with CCE, and include the number of products to

consider, the range of fixed ordering costs per truck, the range of inventory

holding costs per item per day, the purchase costs per item, the range of truck

capacities and the demand nature and boundaries for different items. Basing the

project’s parameters on those found in P&H is intended to bolster the realistic

aspect of the experimental process, so as to help reasonably judge the solution’s

performance. Second, based on the adopted structure and boundaries, daily

demand data is generated so as to be used in the inventory replenishment

simulation. In generating the required demand data, two scenarios are

represented: A scenario where the average demand for different products is

similar (Type 1 demand); and a scenario where the demand is low for most of

the products and high for others (Type 2 demand). In both scenarios, we

assume a stationary stochastic demand pattern. Finally, the decision regarding

which set of experiments is to be carried out is explained.

3.5.1Problem Structure and Boundaries

Relevant data from P&H’s procurement process with CCE have been collected

from existing literature on the topic (Shumnij, 2010 & Keerthana, 2013) in order

to structure the parameters of the problem under examination in this project. It

was found that the average total demand in pallets per day in P&H’s case is 20.

This total demand rate is adopted in our experiments. Further, it was found that

the total number of items replenished at P&H is around 30 products. For this

dissertation, we assume 20 products for all the experiments. This reduced

number of products is for computational reasons. The more products used, the

much longer it takes to run the grouping and simulation experiment using Lingo

(Section 3.6). In addition, using 20 products matches the demand rate of 20

products, and hence simplifies the process of generating daily demand for the

simulation as the average demand per item is 1. Conversely, using less than 20

40

products will not sufficiently highlight the importance of the proposed grouping

heuristic.

Moreover, it was found that the maximum average demand among all products

is 8.11 pallets per day, and the minimum average demand among all products is

0.07 pallets/ day. In our experiment, therefore, an upper limit of 8 pallets/day

and a lower limit of 0.1 pallets/day are used to generate random average

demand data for the 20 items. In addition, it was observed that the standard

deviation of demand during a 22-week period for the different 31 products

ranges from 0.01 to 2 pallets a day, while the average standard deviation among

all 31 products is 0.2 pallets a day. This reflects a stochastic yet stationary

nature of the demand and a stationary stochastic demand is thus assumed for

the current problem. Furthermore, in order to avoid extreme deviations from the

mean, demand for each product at any day is assumed to follow a normal

distribution, and a value of six Sigma is used to generate daily demand data for

the 20 products in the simulation experiments.

Furthermore, it was observed that the trucks used for shipping products from

CCE to P&H have a capacity of 26, 52 or 78 pallets per truck. In our experiment,

however, we consider capacities ranging from 5 pallets per truck to 70 pallets

per truck. This is particularly to highlight the importance of the proposed

grouping heuristic, as well as to examine the impact of altering the fixed costs of

ordering on the grouping process. Indeed, the importance of the grouping

heuristic can be further highlighted by alternating the total demand per day

figures. However, this is beyond the scope of this project as altering the fixed

costs and the capacity of the different trucks is sufficient. The fixed cost per

order incurred by CCE is estimated at £50 per order in previous research

studies. In this project, we consider a wider range of ordering costs, so as to

examine the behaviour of the products grouping heuristic with high and low

ordering costs. A range between £5 per order to £100 per order is, therefore,

adopted for the purpose of this project. Table 1 summarises the collected data

from the example case, while Table 2 summarises the data used for this project.

41

Table 1: Data from P&H case study

Parameter Value

Number of Products 31 Products

Average Total Demand 20 Pallets/Day

Maximum Average Demand (Pallets/Day) 8.11 Pallets/Day

Minimum Average Demand (Pallets/Day) 0.07 Pallets/Day

Maximum Standard Deviation of Demand 2

Minimum Standard Deviation of Demand 0.01

Truck Capacity (Pallets) 26 - 78 Pallets

Approximate Fixed Cost per Truck Ordered

(Ordering Cost)

£50 /Per Order

Approximate Purchase Cost per Pallet of

Soft Drinks (£/Pallet)

£1000/Pallet

Annual Inventory Carrying Charge 20%

Approximate Holding Cost per Pallet per

Day (£/Pallet/day)

£0.55 /Pallet

42

Table 2: Data adopted for this project

Parameter Value

Number of Products 20 Products

Average Total Demand 20 Pallets/Day

Maximum Average Demand (Pallets/Day) 8 Pallets/Day

Minimum Average Demand (Pallets/Day) 0.1 Pallets/Day

Standard Deviation of Demand 6 Sigma

Truck Capacity 2 - 70 Pallets

Approximate Fixed Cost per Truck Ordered

(Ordering Cost)

£5 - £100/Per Order

Approximate Purchase Cost per Pallet of

Soft Drinks (£/Pallet)

£1000/Pallet (£800 if

discounted)

Annual Inventory Carrying Charge 20%

Approximate Holding Cost per Pallet per

Day (£/Pallet/day)

£0.55 /Pallet

43

3.5.2Simulation Demand Data

In order to assess the performance of the proposed solution, demand data for

one thousand days is randomly generated using statistical methods. The data

analysis Add-In in Microsoft Excel is used to model two demand instances. In the

first instance, we model similar demand values for each product (Type 1 demand

data), whereas in the other we model an instance where the demand rate is very

low for most of the products but very high for a small selection (Type 2 demand

data). As such, we are able to examine the efficiency and performance of the

proposed solution under different conditions.

In order to model similar daily demand data values for the 20 products over a

thousand-day period (Type 1 demand), the following steps are taken:

 Step 1: Identify the maximum and minimum values of average demand

per product. In our case, the desired minimum is 0.1 pallets/day and the

maximum is 8 pallets/day.

 Step2: Decide on the desired mean demand. In our case, since a total

demand of 20 pallets/ day is desired and since the number of products is

20, then we expect an average demand of 1 pallets/ day for each product.

 Step 3: Use the random number generation tool in the data analysis tool

pack Add-In to generate random average demand values for the 20

products, using a normal distribution with a mean of 1 and a standard

deviation of 1.5. A standard deviation of 1.5 is used to increase the

probability of having a demand rate close to 1 pallet/day.

 Step 4: Since a normal distribution function is used, there is a possibility

of having negative demand rates. Therefore, the ABS function in Excel is

used to remove negative values.

 Step 5: Due to the use of the ABS function, and since the generated

numbers are random, the sum of average demand rates for the 20

products is not necessarily equal to 20. Therefore, we normalise the

44

values by multiplying the randomly generated values in the previous step

by 20, then dividing them by their sum.

 Step 6: Decide on the desired demand standard deviation values for the

20 products to be used for modelling the thousand-day demand for each

product. In our example, we use 6σ to define the standard deviation. This

will allow for stochastic, yet stationary, demand rates. The generated

average demand data and the standard deviation for each product are

shown in Table 3.

 Step 7: Use the random and normal inverse functions in MS Excel to

generate demand for the next 1000 days using the average daily demand

and standard deviation for each product (as provided in Table 3 below).

Figure 10 exemplifies the Excel sheet used to generate simulation Type 1

demand data.

To model an instance where the demand rate is very low for most of the

products but very high for the remaining selection (Type 2 demand), the

following steps are followed:

 Step 1: Identify the maximum and minimum values of average demand

per product. In our case, the desired minimum is 0.1 Pallet/Day and the

maximum is 8 Pallets/Day.

 Step 2: In order to generate a model where the demand rate is very low

for most of the products but very high for a small selection, a discrete

distribution function is used. Again, the random number generation tool in

the data analysis tool pack Add-In is used. To compute our discrete

function, the desired value of average demand is first decided. As

described earlier, our mean demand is 1 Pallet/Day. Second, we decide on

the range of values that we anticipate on the discrete function. For low

demand products, a range of 0.1 to 0.5 Pallets/Day was used, while for

high demand ones a range of 5 to 8 Pallets/Day was used.

45

 Step 3: The last input for the random generation tool is the probability of

each range. Knowing that the total probability is 1, and that the desired

average is 1, a probability, P(X), can be allocated to each range. The MS

Excel tool is used and the average demand values for the 20 products are

computed, as shown in Table 4.

 Step 4: Decide on the desired demand standard deviation values for the

20 products to be used for modelling the one thousand day demand for

each product. In our example, we use 6σ to define the standard deviation,

thus allowing for stochastic, yet stationary, demand rates.

 Step 7: Use the random and normal inverse functions in MS Excel to

generate demand for the next 1000 days using Table 4.

Table 3: Type 1 demand data and standard deviation for 20 products

Product ID
Average Demand per Day

(Pallets/ Day)

Standard Deviation

(Pallets)

1 1.21 0.20

2 1.78 0.30

3 0.76 0.13

4 0.70 0.12

5 1.36 0.23

6 0.06 0.01

7 0.85 0.14

8 1.46 0.24

9 0.24 0.04

10 1.03 0.17

11 1.57 0.26

12 0.66 0.11

13 0.02 0.00

14 0.77 0.13

15 2.71 0.45

16 0.56 0.09

17 1.25 0.21

18 0.40 0.07

19 0.78 0.13

20 1.84 0.31

46

Table 4: Type 2 demand data and standard deviation for 20 products

Product ID
Average Demand per Day

(Pallets/ Day)

Standard Deviation

(Pallets)

1 0.28 0.05

2 0.09 0.02

3 0.38 0.06

4 5.09 0.85

5 4.81 0.80

6 6.60 1.10

7 0.09 0.02

8 0.28 0.05

9 0.47 0.08

10 0.09 0.02

11 0.19 0.03

12 0.09 0.02

13 0.09 0.02

14 0.09 0.02

15 0.19 0.03

16 0.09 0.02

17 0.19 0.03

18 0.19 0.03

19 0.38 0.06

20 0.28 0.05

47

Figure 10: Simulation data for 1000 days based on Type 1 demand

48

3.5.3Designing the Experiments

Having presented the structure, limitations and demand data for the problem

under consideration, the next step is to design a set of experiments to test the

model through simulation. Before choosing the various experimental

parameters, the following assumptions have been made:

1. In any experiment, three truck capacities must be available: small

capacity, medium capacity and large capacity.

2. The capacity of any truck is an integer multiple of that of the smallest

truck. This integer is 2 for the medium capacity truck and 3 for the largest

truck. This assumption has been made since in real-life situations truck

sizes are defined by the number of containers attached to them.

3. The ordering cost does not vary linearly with the truck capacity.

4. Although the fixed cost per order, K, increases with bigger trucks, the

ordering cost per item decreases with bigger trucks.

5. If the ଵܭ is the fixed cost per order in a small truck then this cost is ଵܭ1.5

for medium trucks and ଵܭ1.8 for the truck with the largest capacity. This

assumption has been made to represent real life circumstances, in that it

is usually cheaper to send one large truck with a particular capacity than

sending two small trucks with the same overall capacity.

To design the experiments the following steps were carried out:

1. Decide on the smallest truck size for the first set of trucks. For the first

set of trucks, the minimum capacity in Table 2 is used for Experiment 1.

2. Compute the other two sizes for Set 1. This is done using assumption 2

above.

49

3. Decide on the biggest truck size for the second set of trucks. Looking at

Table 2, one can realise that the biggest possible truck capacity is 70

pallets per replenishment. For the purpose of the analysis, truck sizes

between 30 and 70 were eliminated since with the given range of fixed

costs, such sizes will always yield a single group solution and, therefore,

will not reflect the capability or the efficiency of the proposed grouping

heuristic. Accordingly, for the second set the largest truck was allocated a

capacity of 30 pallets.

4. Compute the other two sizes for Set 2. This is done using assumption 2

above.

5. Develop an instance in which K is low for both sets of trucks. Knowing that

the smallest possible K value is 5, we use this value for the smallest

trucks in both sets. Compute K values for the other truck in both sets

using assumption 4 above.

6. Develop an instance in which K is high for both sets of trucks. Knowing

that the largest possible K value is 100, we use this value for the largest

trucks in both sets. Compute K values for the other trucks in both sets

using assumption 4 above. (Note that 99 was used instead of 100 so as to

avoid decimal places when computing K values for the other trucks.)

7. Perform an initial analysis to see whether these options will help in

evaluating the performance. For this purpose, a spreadsheet was

developed to compute the ideal demand rate for each truck and,

consequently, to estimate the possible answers when the model is run.

The formulas used in this spreadsheet are explained in Section 3.7.

8. Design the required experiments. Tables 5 to 9 show the main input

parameters for the chosen eight experiments.

50

Figure 11: Initial analysis for the design of the experiments

51

Table 5: Fixed parameters for all experiments

Parameter Value

Number of Products 20 Products

Average Total Demand 20 Pallets/Day

Purchase Cost per Pallet (£/Pallet) £1000 /Pallet

Discounted Purchase Cost per Pallet (£/Pallet) £800/Pallet

Annual Inventory Carrying Charge 20%

Approximate Holding Cost per Pallet per Day

(£/Pallet/Day)

£0.55 /Pallet

Table 6: Experiment 1 (Type 1 Demand – Small Trucks – Low Ordering

Cost)

Truck Type Capacity (Pallets) K (£/ Order) Demand Type

1 5 5

12 10 7.5

3 15 9

Table 7: Experiment 2 (Type 1 Demand – Small Truck – High Ordering
Cost)

Truck Type Capacity (Pallets) K (£/ Order) Demand Type

1 5 55

12 10 82.5

3 15 99

52

Table 8: Experiment 3 (Type 1 Demand – Large Trucks – Low Ordering
Cost)

Truck Type Capacity (Pallets) K (£/ Order) Demand Type

1 10 5

12 20 7.5

3 30 9

Table 9: Experiment 4 (Type 1 Demand – Large Trucks – High Ordering
Cost)

Truck Type Capacity (Pallets) K (£/ Order) Demand Type

1 10 55

12 20 82.5

3 30 99

Table 10: Experiment 5 (Type 2 Demand – Small Trucks – Low Ordering

Cost)

Truck Type Capacity (Pallets) K (£/ Order) Demand Type

1 5 5

22 10 7.5

3 15 9

Table 11: Experiment 6 (Type 2 Demand – Small Truck – High Ordering
Cost)

Truck Type Capacity (Pallets) K (£/ Order) Demand Type

1 5 55

22 10 82.5

3 15 99

53

Table 12: Experiment 7 (Type 2 Demand – Large Trucks – Low Ordering
Cost)

Truck Type Capacity (Pallets) K (£/ Order) Demand Type

1 10 5

22 20 7.5

3 30 9

Table 13: Experiment 8 (Type 1 Demand – Large Trucks – High Ordering
Cost)

Truck Type Capacity (Pallets) K (£/ Order) Demand Type

1 10 55

22 20 82.5

3 30 99

54

3.6 The Grouping Heuristic

To successfully implement the joint replenishment policy described in Section

3.4, the first step is to place the different items into efficient groups. Each group

is thus replenished in a single truck at every replenishment period. As indicated

earlier, in order to achieve quantity discounts and to benefit from economies of

scale, the proposed solution requires full truckload replenishments. Therefore, at

each review period, the aggregate order quantities of all products in the same

group must be equivalent to a full truckload. Bearing this in mind, in addition to

the multi-item nature of the problem, and the various truck types available, an

optimal solution to the grouping problem may be extremely difficult to find. This

is attributable to two factors: First, due to the complex nature of the problem,

and the significant number of different products to be replenished, a large

number of grouping options may arise. As such, this makes the optimal solution

computationally prohibitive. Second, as indicated earlier, the solution policy

described in Section 3.4 can be viewed from two perspectives. From the truck

perspective of the solution, the policy used is a (,ܶܳ) policy in which an order

quantity equivalent to the truck capacity is ordered every ܶ. From the

perspective of the different products, the policy used is the adjusted (,ܶ)ܵ policy

described in Section 3.4 and, therefore, the capacity of the allocated trucks, is

not necessarily equal to the order quantity such the inventory level is raised to

∑ ௜ܵ. Due to the multiple objective nature of the problem, and knowing that each

policy yields different ideal total λ, total Q and T values, it is extremely difficult to

find a solution that satisfies both perspectives. For this reason, we propose a

simple grouping heuristic based on the capacities of the available trucks and the

real demand rates of the different products. The following three sections

describe this grouping model in details.

3.6.1Model Formulation

3.6.1.1 The optimal solution for a group of products

In Section 3.3, three types of costs were assumed. These are the average total

holding cost, the average total ordering cost and the average total purchase

55

cost. Accordingly, for a given group of products, the total cost function (Equation

3.1) can be rewritten as:

(ܶ)ܩ =
1

2
ܶ෍ ௜ℎ௜ߣ

௡

௜ୀଵ

+
ܭ

ܶ
+�෍ ௜ߣ

௡

௜ୀଵ

௜ܿ (3.2)

For a constant ∑ ௜ߣ
௡
௜ୀଵ , the annual purchase cost is no longer relevant in the

decision making process and is therefore ignored. Further, since it was assumed

(in Section 3.3) that all products have the same purchase and holding costs,

Equation 3.2 can be rewritten as:

(ܶ)ܩ =
ܶ

2
෍ ௜ℎ௜ߣ

௡

௜ୀଵ

+
ܭ

ܶ
(3.3)

According to Silver et al. (1998) for any group of products the value of ܶ such

thatܩ�(ܶ) is at a minimum is given by:

ܶ∗ = ඨ
ܭ2

ℎߣ௧௢௧௔௟
(3.4)

Where ௧௢௧௔௟ߣ is the sum of the demand rates for a family of products included in a

replenishment cycle, expressed as:

௧௢௧௔௟=�෍ߣ ௜ߣ

௡

௜ୀଵ

(3.5)

It follows that the optimal order quantity ܳ∗ for a family of products with a

demand rate of ௧௢௧௔௟ߣ can be expressed as:

ܳ௝
∗ = ×௧௢௧௔௟ߣ �ܶ ∗ (3.6)

56

Note that Equation 3.6 computes the optimal solution from the perspective of

the family of products. In other words, ܳ∗ is calculated without taking into

consideration the capacities of the different truck types available. Accordingly,

grouping the different products based on this solution can lead to high average

total ordering costs, especially when the fixed cost per order is high.

Nonetheless, many authors continue to use this solution by finding ܳ∗ and ܶ∗ for

the entire range of products. All the items are then replenished every ܶ∗ in

different trucks. The number of trucks needed is computed as follows:

ܳ∗

ܥ ܽܽ݌ ݂݋�ݕݐ݅ܿ �ܶ ݇ܿݑݎ

In many cases, this method yields high transportation costs, since the number of

trucks obtained is a rounded number, and the cost per truck shipped is not

considered. For example, a truck where only 20% of its capacity is utilised in the

P&H/CCE case will lead to an opportunity loss due to the lost quantity discount,

and thus to a high transportation cost per item.

3.6.1.2 The truck optimal solution

The optimal solution from a truck perspective can be described by a (,ܶܳ) policy,

where ܳ is equal to its full truckload capacity .(ݒ) Therefore, for any

replenishment ݆(each replenishment ݆is associated with one truck) to obtain the

ideal solution, the first step is to set:

ܳ௝
∗ = ݇ܿݑݎܶ ܥ� ܽܽ݌ ௝ݒ�=ݕݐ݅ܿ (3.7)

Hence, for any replenishment ,݆ substituting Equation 3.7 in Equation 3.6 and

rearranging, the optimal replenishment cycle for ݆ (i.e. the optimal

replenishment cycle of truck)݆ is given as:

௝ܶ
∗ =

௝ݒ

௝ߣ
∗ (3.8)

Further, from Equation 3.4, for a full truckload ௝ܶ
∗ is also obtained using:

57

௝ܶ
∗ = ඨ

ܭ2

ℎߣ௝
∗ (3.9)

Note that ௝ߣ
∗ is the ideal demand from the truck perspective, and that the value

of ௝ߣ
∗ is independent of the ௧௢௧௔௟ߣ obtained in Equation 3.5. To find ௝ߣ

∗, Equation

3.8 is set equal to Equation 3.9, as follows:

௝ݒ

௝ߣ
∗ = ඨ

ܭ2

ℎߣ௝
∗ (3.10)

By rearranging Equation 3.10, the ideal demand rate from the truck perspective

of the problem is obtained as follows:

௝ߣ
∗ =

ℎ(ݒ௝)ଶ

ܭ2
(3.11)

Clearly, ௝ߣ
∗ is independent of the ௧௢௧௔௟ߣ obtained in Equation 3.5, and only

depends on the capacity of the truck used, ,௝ݒ the holding cost, ℎ, and the fixed

cost per order, K, while λ୲୭୲ୟ୪ depends on the actual demand of the different

products. Therefore:

λ୲୭୲ୟ୪ ≠ λ୨
∗ (3.12)

However, using a set of optimal replenishments might not guarantee the least

total cost for the overall replenishment process. This is because a grouping

strategy based on this solution is typically pursued by dividing λ୲୭୲ୟ୪by λ୨
∗ in order

to obtain the total number of replenishments needed, and the value of λ୲୭୲ୟ୪/λ୨
∗ is

rounded to the nearest integer. In some cases, this leads to excess inventory

levels, while in other cases to very low service levels.

58

3.6.1.3 The grouping heuristic for single truck type

To avoid unnecessary replenishments, low service levels, poorly utilised trucks

and quantity discount opportunity losses, a reasonable method for grouping the

products would fully utilise the truck capacity while satisfying the total demand.

Thus, the proposed grouping heuristic is based on a full truckload policy and the

value of λ୲୭୲ୟ୪. Aiming at minimising the total average cost, the principle

underlying the proposed grouping heuristic is to find the best grouping solution

by allowing for deviations from the λ୨
∗ calculated using Equation 3.11 to match

the λ୲୭୲ୟ୪ for a group of products, while using an order quantity that is equal to a

full truckload, ,ݒ or multiple full truckloads. Given these two restrictions, the

relationship between the cost of using a single replenishment, and of using more

than one replenishment of the same type to satisfy the same demand rate, is

obtained as follows:

We know that for a replenishment ,݆ using a single truck,

ܳ௝
∗ = =ݒ� ×௧௢௧௔௟ߣ �ܶ௝ (3.13)

Therefore, for the same λ୲୭୲ୟ୪, for any number of trucks, ݉ , of the same

replenishment type, j, the optimal order quantity is:

ܳ௝
∗ = ݉ × =ݒ �݉ × ×௧௢௧௔௟ߣ �ܶ௝ (3.14)

For a single truck, the total cost is obtained by using:

൫ܶܩ ௝൯=
ℎߣ௧௢௧௔௟

2
�ܶ௝+

ܭ

௝ܶ
(3.15)

Hence, the average total cost for any number of trucks, ݉ , is:

൫ܶܩ ௝൯=
݉ ℎߣ௧௢௧௔௟

2
�ܶ௝+

ܭ݉

௝ܶ
(3.16)

59

Therefore, by dividing Equation 3.15 by Equation 3.16 we obtain:

)ܩ ௝ܶ)

൫ܶܩ ௝൯௠ ஹଵ

=
ℎߣ௧௢௧௔௟

2 ௝ܶ +
ܭ

௝ܶ

݉ ℎߣ௧௢௧௔௟
2

�ܶ௝+
ܭ݉

௝ܶ
൘ �����(3.17)

Based on Equation 3.14, Equation 3.17 can be rewritten as:

௠(ݒ)ܩ ୀଵ

௠(ݒ݉)ܩ ஹଵ
=

௠(ݒ)ܩ ୀଵ

௠(ݒ݉)ܩ ஹଵ
= ൬

ℎݒ

2
+
௧௢௧௔௟ߣܭ

ݒ
൰ ൬

݉ ℎݒ

2
+
௧௢௧௔௟ߣܭ݉

ݒ݉
൰൘ =

1

݉
(3.18)

Consequently, the relationship between the cost of using a single truck and the

cost of using multiple trucks of the same type for the same demand rate is given

as:

௠(ݒ)ܩ ୀଵ = ൬
1

݉
൰(ݒ݉)ܩ�௠ ஹଵ (3.19)

Therefore, for any number of trucks (m > 1), we obtain:

௠(ݒ݉)ܩ ୀଵ�݅ܽ�ݏ ݓ݈ >ݏݕܽ ௠(ݒ݉)ܩ வଵ� (3.20)

In theory, as indicated by Equation 3.20, for any given λ୲୭୲ୟ୪, Q୘୰୳ୡ୩
∗ , K and h

values, it is always cheaper to replenish products using one truck. In real life,

however, as λ୲୭୲ୟ୪ increases, the value of T decreases exponentially as indicated

by equation 3.14. Therefore, as λ୲୭୲ୟ୪→ ∞ , we also observe that T → 0.

In reality, however, a T ≈ 0 is neither practical nor possible. Therefore in our

solution, we assume 1 day to be the minimum value of any ௝ܶ. Hence, for any

replenishment ݆ (i.e. for any truck) the maximum λ୲୭୲ୟ୪ that any truck can

withstand is ௝ܶ = 1. Accordingly, for any truck, we obtain:

ܯ ௝ߣ�ݔܽ =
ܳ௝
∗

ܯ ݅݊ ݅݉ ݉ݑ �ܶ௝�
=
ܳ௝
∗

1
= �ܳ ௝

∗ (3.21)

60

Therefore, only if λ୲୭୲ୟ୪> Max λ୨ is a second truck used to replenish the

remaining λ, and so on.

3.6.1.4 The proposed grouping heuristic for the current problem

Since it was assumed, in Section 3.3, that several truck types with different

capacities are available, and that all the truck types have a capacity of an

integer multiple, ݉ , of the smallest truck capacity, ,ݒ then for any given ,௧௢௧௔௟ߣ

the average total cost ratio between using a single truck of capacity ݒ and a

single truck with capacity ,ݒ݉ is given as:

൫ܶܩ ௝൯௝ୀଵ

൫ܶܩ ௝൯௝ஹଵ

= ൬
ℎߣ௧௢௧௔௟

2
�ܶ +

௝ܭ

ܶ
൰ ൭݉௝ஹଵ൬

ℎߣ௧௢௧௔௟
2

�ܶ +
௝ܭ

ܶ
൰൱൘

=
൫ܳܩ ௝൯௝ୀଵ

൫ܳܩ ௝൯௝ஹଵ

= ቆ
ℎݒ

2
+
௧௢௧௔௟ߣ௝ܭ

ݒ
ቇ ቆ

݉௝ஹଵℎݒ

2
+
௧௢௧௔௟ߣ௝ܭ

݉௝ஹଵݒ
ቇ൙

=
m୨ୀଵ

m୨ஹଵ
+ ቆ

௝ୀଵ݉௝ஹଵܭ

݉௝ୀଵܭ௝ஹଵ
ቇ (3.23)

Hence:

൫ܳܩ ௝൯௝ୀଵ
= ൭�

݉௝ୀଵ

݉௝ஹଵ
+ ቆ

௝ୀଵ݉௝ஹଵܭ

݉௝ୀଵܭ௝ஹଵ
ቇ൱ܩ൫ܳ ௝൯௝ஹଵ

(3.24)

If ݉௝ୀଵ = 1 then:

൫ܳܩ ௝൯௝ୀଵ
= ൭�

1

݉௝ஹଵ
+ ቆ

௝ୀଵ݉௝ஹଵܭ

௝ஹଵܭ
ቇ൱ܩ൫ܳ ௝൯௝ஹଵ

(3.24)

Given Equation 3.23, and assuming an infinite number of trucks in which each

truck is a possible replenishment, the grouping solution in the previous section

(Section 3.6.1.3) is adapted as follows:

61

1. Since the values of ݉௝, ℎ, ݒ and ௝ܭ for any truck type are constant, then

for any truck type the total cost equation is linear with changes in λ୲୭୲ୟ୪.

Figure 12 illustrates an example in which three truck types are

considered. Using the intersection of the three lines, three ranges can be

identified: if λ୲୭୲ୟ୪ is within Range 1, then truck Type 1 is chosen, if λ୲୭୲ୟ୪ is

within Range 2, then truck Type 2 is chosen, and so on.

2. In the previous step the first replenishment is identified. Therefore,

update the value of λ୲୭୲ୟ୪using:

λ୲୭୲ୟ୪= λ୲୭୲ୟ୪− λ୨

Where λ୨ is the total demand rate of the previously identified group

3. Go back to Step 1 until λ୲୭୲ୟ୪ is 0

Note that if λ୲୭୲ୟ୪ is greater than ,ݒ3 then truck Type Three is selected, and we

proceed immediately to Step 2. Moreover, though we assume that as ݒ݉

increases the value of ௝ܭ also increases, the ordering cost per item decreases

with increases in .ݒ݉ This explains the different slopes of the cost function lines

in Figure 12. Furthermore, knowing the different groups of products minimising

the cost in Equation 3.15, we can allocate the different ௜sߣ to the available trucks

using the Bin Packing approach. In a typical bin packing problem, objects of

different volumes must be bin packed into a finite number of bins (containers in

our case), in a way that minimises the number of bins used. For this purpose, a

LINGO optimisation model was developed to solve the set of linear equations

and to perform the Bin Packing process.

62

Figure 12: Finding the best groups using G(T) vs Average demand rate graph

Note that for the purpose of this project, a G(T) vs Demand Rate graph is

produced for each set of trucks used in the experiments. This is in particular to

evaluate the performance of the Lingo grouping model. The Excel sheet used to

develop these graphs is included in the electronic appendix.

3.6.2The Experimental setup

Executing the procedure as described in the previous section manually is clearly

time-consuming. This is especially the case because of the large number of

possible linear equations to be computed in the case of more than three truck

types. Moreover, an allocation of the products to the different selected

replenishments is still needed. Therefore, a LINGO model was developed to solve

our minimisation problem by solving the sets of linear equations. Further, the

model will allocate the different products to the selected replenishments using

the bin packing model. We formulate the model as follows:

63

 Step 1: Decide on decision variables

௜,௝ݔ A binary number. If it is equal to zero then item ݅ is not included in

replenishment .݆ Otherwise, if ௜,௝ݔ = 1 then item ݅ is included in

replenishment .݆

௝ݕ A binary number. If ௝ݕ = 0 then replenishment ݆ is used. Otherwise if ௝ݕ = 1

then replenishment ݆is not used.

௝݀
ି Under-load decision variable to allow for deviation from the ideal demand

for replenishment .݆

௝݀
ା Over-load decision variable to allow for deviation from the ideal demand for

replenishment .݆

 Step 2: Formulate the objective function

The ultimate goal of this grouping heuristic is to minimise the total cost of

replenishing the n items while using full truckloads and satisfying λ୲୭୲ୟ୪.

Accordingly, the objective function is expressed as follows:

෍ ൭
1

2
× ℎ × ܳ௝× +௝ݕ

௝ܭ

ܳ௝
× ෍ λ୧ݔ௜,௝

௡

௜ୀଵ

൱

௠

௝ୀଵ

Where:

ℎ Is the inventory holding cost per pallet per day

ܳ௝ Is the order quantity and, therefore, the truck capacity of replenishment ݆

௝ܭ Is the fixed cost per order

λ୧ Is the average daily demand for any product i

64

 Step 3: Define the constraints

1. Every item should be allocated to one replenishment only, such that:

෍ ௜,௝ݔ = 1 ݐ݁݅�∀ ݉ �݅

௠

௝ୀଵ

2. Logical condition: If item i is loaded in replenishment j, then

replenishment j is used, such that:

௜,௝ݔ ௝ݕ�≥ ݐ݁݅�∀ ݉ ݎ݁�&�݅� ݈݌ ݁݊ ℎ݉ݏ݅ ݁݊ ݆�ݐ

3. Capacity constraint: For any used replenishment j, the sum of the demand

rate included in replenishment j plus a deviation must equal to λ௝
∗.

෍ λ୧ݔ௜,௝+ ௝݀
ି − ௝݀

ା = λ௝
௝ݕ∗ ݎ݁��∀ ݈݌ ݁݊ ℎ݉ݏ݅ ݁݊ �݆�ݐ

௡

௜ୀଵ

4. Special condition: For any replenishment j, ௝ܶ�≥ 1.

෍ λ୧

௡

௜ୀଵ

≥௜,௝ݔ �ܳ ௝ ݎ݁��∀ ݈݌ ݁݊ ℎ݉ݏ݅ ݁݊ ��݆�ݐ

5. ௜,௝ݔ and ௝ݕ are binary numbers.

௜,௝ݔ = �1ݎ݋�0 ݀݋ݎ݌�∀ ݑ ݎ݁�݀݊ܽ�݅�ݐܿ ݈݌ ݁݊ ℎ݉ݏ݅ ݁݊ ��݆�ݐ

௝ݕ = �1ݎ݋�0 ݎ݁��∀ ݈݌ ݁݊ ℎ݉ݏ݅ ݁݊ ݆�ݐ

6. The deviation variables are greater than, or equal to, zero.

௝݀
ି ≥ 0 ݎ݁��∀ ݈݌ ݁݊ ℎ݉ݏ݅ ݁݊ ��݆�ݐ

௝݀
ା ≥ 0 ݎ݁��∀ ݈݌ ݁݊ ℎ݉ݏ݅ ݁݊ ��݆�ݐ

 Step 4: Develop the LINGO code using the above formulas

65

Figure 13: The grouping model for Experiment 1

! GROUPING_EXPERIMENT_1;

! Initiate the model;

Model:

! Initiate the sets;

Sets:
! Create a set of 20 products;

PRODUCT/1..20/:

! For each product define the average demand rate;

DEMAND;

! Create a set of x replenishments. Note that the number of replenishments needed is
computed in an external initial preparation analysis excel sheet;

REP/1..17/:
y, ! is a binary decision variable. If y=1 include rep. j. if y=o do not include rep j;
Q, ! is the truck capacity used in replenishment j;
IDEAL_DEMAND, ! is the ideal demand rate of replenishment j;
D1, ! is the overachievement decision variable;
D2, ! is the underachievement decision variable for replenishment j;
K; ! is the fixed ordering cost of replenishment j;

! define the set of product i and replenishment j;
PXR(PRODUCT,REP):
X; ! is a binary decision variable. If x=0 then product I is not included in replenishment
j. if x=1 then product I is included in replenishment j;
endsets

data:
DEMAND=@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','AVG_DEMAND');
Q=@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','Q');
IDEAL_DEMAND=@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','IDEAL_DEMAND');
H=@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','HOLDING_COST');
K=@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','FIXED_COST');
enddata

!Objective function;
MIN = @SUM (REP(J): (0.5*H*Q(J)*Y(J))+(K/Q(J))*(@SUM (PRODUCT(I): DEMAND(I)*X(I,J))));
!constraints;
!every item should be allocated to one replenishment only;
@FOR (PRODUCT(I): @SUM (REP(J): X(I,J)) =1);
!x is an intejer = 0 or 1 (i.e. x is binary;
@FOR (PXR (I,J): @BIN (X(I,J)));
!y is binary;
@FOR (REP(J): @BIN (Y(J)));
!logical condition;
@FOR(PXR(I,J): X(I,J) <= Y(J));
!loading/capacity constraint;
@FOR(REP(J): (D1(J)- D2(J)+ @SUM (PRODUCT (I): DEMAND(I)*X(I,J)))= IDEAL_DEMAND(J)*Y(J));
! lower bound for T (i.e. T>= 1);
@for (REP(J): (@SUM (PRODUCT (I): DEMAND(I)*X(I,J))) <= Q(J));

end

66

The LINGO IP grouping model for Experiment 1 is illustrated in Figure 13 above.

The grouping models for the other experiments are included in the appendix. It

is worth mentioning that the LINGO software tool is a simple tool for deploying

the power of linear and nonlinear optimization in order to formulate large and

solve problems concisely, as well as analyse their solutions. Optimization

(whether for linear or non-linear problems) can help identify, for instance, the

lowest costs, while maximising resources.

Moreover, Note that in the lingo model the data section is used to import data

relating to variables such as the real demand, trucks ideal demand, ideal order

quantities (i.e. replenishment capacity), holding costs and the fixed ordering cost

for each replenishment from an MS Excel spreadsheet (shown in Figure 14). The

sheet is divided into several parts: Part 1, (the given data), includes the set of

fixed data for the experimental instance. This includes the fixed ordering cost for

the three truck types, the purchase cost per product and the holding cost per

pallet per day. Part 2, (the truck types), presents the specific capacity and fixed

ordering cost for each truck type. Part 3, (the ideal solution), is where the

optimal solution from the truck perspective is computed. In this part, for each

truck, the ideal demand rate, the ideal replenishment cycle, the total cost of the

ideal solution, the cost per unit demand satisfied and the total number of trucks

needed from each truck type are all calculated. Part 4, (the demand data),

demonstrates the average daily demand and the standard deviation of demand

for the products under consideration. Furthermore, in this part, initial analysis to

reduce the number of replenishments used in the LINGO models is performed.

The main rationale behind this is to reduce the total computational time. In this

part, for any truck type, we determine whether a product ݅ is included in

replenishment ݆ for all the truck types. If the average demand rate for product ݅

is greater than the ideal demand rate of truck ,݆ then the product is not

considered when the maximum number of replenishments is computed for truck

.݆ Part 5, finally, lists all the possible replenishments for this particular

experimental instance.

67

Figure 14: Grouping initial analysis for Experiment 1

68

3.7 The Joint Replenishment Model

In Section 3.6, the method of forming different groups of products was

explained. The next step is to implement the inventory control policy presented

in Section 3.3 through the simulation model. Section 3.7.1 explains the

formulation of the policy parameters. Section 3.7.2 sets out the method used to

obtain the order quantities, while Section 3.7.3 explains the simulation model

used to test the solution. Finally, Section 3.7.4 illustrates how the performance

of the performed simulation is assessed.

3.7.1Formulating T and S

Having arrived at the grouping of products in Section 3.6, the next step is to

calculate the review period for each group of products (௝ܶ) and to calculate the

order-up-to level for each product (௜ܵ).Typically, in implementing a (,ܶ)ܵ policy,

for any group of products with the same holding cost the value of ௝ܶ is computed

as:

௝ܶ
∗ = ඨ

ܭ2

ℎߣ௝
(3.25)

Where,

௝ܶ Is the review period (in days) of the group for replenishment j

௝ߣ Is the total average demand for a group of products replenished at ௝ܶ

In our solution, the optimal replenishment cycle ௝ܶ
∗ is not used. This is because

calculating ௝ܶ using Equation 3.25 does not take into account the capacity of the

truck used in replenishment .݆ Instead, ௝ܶ is calculated using the demand rate of

the allocated group and the capacity of the truck as follows:

௝ܶ =
݇ܿݑݎܶ �ܿ ܽܽ݌ ݂݋�ݕݐ݅ܿ ݎ݁� ݈݌ ݁݊ ℎ݉ݏ݅ ݁݊ ݆�ݐ

௝ߣ
=
ܳ௝

௝ߣ
(3.26)

Moreover, note that Equation 3.26 does not necessarily lead to an integer value

of ௝ܶ. Therefore, in the proposed solution, ௝ܶ is rounded to the nearest integer

69

day. Assuming a Type 2 service level with a target Service Level of 99.5%, ௜ܵ

can be calculated as follows:

௜ܵ= ൫ܶܦܦܧ ௝+ ൯߬+ ܵܵ ����(3.27)

Where the expected demand during ߬and ௝ܶ ൫ܶܦܦܧ) ௝+ ൯߬) can be expressed as:

൫ܶܦܦܧ ௝+ ൯߬= ×௝ߣ ൫ܶ ௝+ ൯߬

The safety stock (ܵܵ) is calculated as:

ܵܵ = �݇ ௜× ൫்ߪ ೕାఛ൯

The standard deviation of ߬plus ௝ܶ ൫்ߪ) ೕାఛ൯
) is obtained as follows:

ߪ்
ೕା௟= ܴ)ඥߪ + (ܮ

Note that ߪ is the standard deviation of demand, and that ௜݇ is the safety stock

factor. As such, the value of ௜݇ can be estimated using the loss function (ܭ)ܩ and

the corresponding k value in the normal distribution tables as provided by Silver

(1998). To determine the value of the Safety Factor ௜݇, we use an approximation

approach presented in Silver & Bischak (2011)

)ܩ)݇ =
ܴ(1 − ܲ)

√ܴ + �݈× ܸܥ

Where,

ܸܥ =
ߪ

ߤ

In the above equation, ܲ is the fill rate and ߤ is the mean of the demand.

70

3.7.2Determination of the Order Quantities

After forming the different groups of products and after calculating the (T, S)

policy parameters for each group and for each product, the next step is to obtain

the order quantity for each product. As already stated, the adjusted (T, S) used

here is described as follows: At each review instant, ௝ܶ, the inventory position of

each item ݅in group ,݆ is reviewed and an order is placed such that its inventory

position is raised to ௜ܵ+ ௜݀
ି − ௜݀

ା. In other words, at each review instant, the

order quantity is obtained such that the following equation is satisfied:

ܳ௜,௝+ ௜݀,௝
ି − ௜݀,௝

ା + ௜,௝ܫ = �ܵ ௜
∗ (3.28)

Where,

ܳ௜,௝ Is the order quantity of item ݅on day ݆

௜݀,௝
ି Order quantity underachievement variable of item ݅on day ݆

௜݀,௝
ା Order quantity overachievement variable of item ݅on day ݆

௜,௝ܫ Is the inventory position of item ݅on day ݆

௜ܵ Is the order up to level of item ݅

Further, since the total order quantity must reach a full truckload, the following

equation must also be satisfied:

෍ ܳ௜,௝

௡

௜ୀଵ

= �ܳ ௝ ∀�݀ (3.29)�����݆�ݕܽ

Clearly, for the solution to remain valid, and to avoid unbalanced ordered

quantities for different items, in computing the order quantities one should aim

to minimise the deviation from the ideal order quantity (௜ܵ
∗ .(௜,௝ܫ�− To this

purpose, the following minimisation problem is solved:

݉ ݅݊ ෍ �൫݀ ௜,௝
ି + ௜݀,௝

ା ൯

௡

௜ୀଵ

∀�݀ (3.30)�����݆�ݕܽ

71

In computing the required ܳ௜,௝′ݏ, the minimisation problem in Equation 3.30 is

solved such that Equation 3.28, and the capacity constraint posed by Equation

3.29 are both satisfied. In addition, the order quantity and the deviation

variables must also be positive integer values.

3.7.3The (T, S) Simulation

In Sections 3.6, 3.71 and 3.72, the methods deployed to address the following

three questions were explained:

1. How are the different products grouped?

2. When do we place an order?

3. How much do we order for each product?

The next step is, consequently, to deploy these methods to perform the adjusted

(T, S) policy simulation. As per Section 3.5, the period of interest is 1000 days

and, therefore, an automated simulation model is needed to compute the order

quantities for each product at each review period. To this purpose, a

minimisation model using LINGO is developed, and is described in detail in the

present section. Section 3.7.3.1 explains the MS Excel spreadsheets used to

organise the input parameters for the model. Section 3.7.3.2 lists the notations

used in this model. Section 3.7.3.3 formulates the model used for finding Q

using the formulas in section 3.7.2. Section 3.7.3.4 explains the rationale behind

performing the joint replenishment simulation over the 1000 day period. Section

3.7.3.5 presents the decision logic codes used in LINGO. Finally, Section 3.7.3.6

describes the methods used to compute the performance measures.

3.7.3.1 T and S Calculations in Excel

Before implementing the modified (,ܶ)ܵ policy, the value of ௝ܶ for each group and

the value of ௜ܵ for each product, are all calculated using Equation 3.25 and 3.26,

respectively. For this purpose, a spreadsheet is generated for each experiment.

Figure 15 shows the spreadsheet used to calculate the parameters of the (,ܶ)ܵ

policy for the same experimental example used to demonstrate the grouping

heuristic (i.e. Experiment 1). The Excel sheets for all the experiments under

investigation are provided in the Appendix. The list of formulas used in the Excel

72

sheets is provided in Table 14. Note that the groups in Figure 15 were formed

according to the results of the grouping example in the previous section.

Table 14: Excel formulas to compute T & S

Parameter Formula Cell

Group Name the Group B3

Product ID From the grouping heuristics C3

Average daily demand (Pallets/

Day)
=VLOOKUP(C3,'Input Data'!A$14:C$33,2) D3

Average Group Daily Demand

(Pallet/Day)
=SUM(D3:D7) E3

Truck Type From the grouping heuristics F3

Truck Capacity (Pallets) =VLOOKUP(F3,'Input Data'!E4:H6,4) G3

Kj (£/Order) =VLOOKUP(F3,'Input Data'!E4:H6,4) H3

h (£/Pallet/Day) ='Input Data'!C8 I3

Tj (Day) =G3/E3 J3

Tj to the nearest integer =ROUND(J3,0) K3

Exp Demand Lead time & R =(K$3+3)*D3 L3

SD of average demand =VLOOKUP(C3,'Input Data'!A$14:C$33,3) M3

SD Lead time & R =SQRT(3+K$3)*M3 N3

G(k)
=(K$3*(1-

0.995))/((SQRT(3+K$3))*(M3/D3))
O3

k (From tables) From distribution tables P3

SS =P3*N3 Q3

Si =ROUND((Q3+L3),2) R3

73

Figure 15: T & S calculations for Experimetn 1

74

3.7.3.2 The Simulation Notation

The first step in developing the simulation model is to define the notation to be

used. For the purposes of this project the following notation is adopted:

݅ Index to denote product

݆ Index to denote day

ܮ Lead time

ܴ The review period in days

ܵ The order up to level (in pallets) for product i

ܳ The order quantity for product i at day j

ܫܰ ܸ The inventory position of product i at day j

ܫܰ ܧܸ The inventory position of product i at the end of day j

ܱܵ ܪ The stock on hand of product i at day j

ܱܵ ܧܪ The stock on hand of product i at the end of day j

ܦ The demand rate of product i at day j

1ܦ The overachievement decision variable

2ܦ The underachievement decision variable

ܥܧܴ Received order quantities of product i at the end of day j

ܮܧܦ Quantity of item i delivered to the end customer at day j to satisfy

demand

ܮܧܦܰ Unsatisfied demand of product i at day j

ܮܧܸܧܮܵ Service Level of product i at day j

75

3.7.3.3 The Main Model

This section summarises and reformulates the minimisation model presented in

Section 3.7.3 using the simulation notation, as follows:

1. Decision Variables: These are the variable to be determined so as to

optimise the objective function. In our case, the decision variables are:

 ܳ௜,௝

 1௜,௝ܦ

 2௜,௝ܦ

2. Data: These are the given variables that quantify the relationships

represented in the objective function and the constraints. In our problem

these are:

 ௜ܵ

 ܲܣܥ

 ௜,௝ܦ

 ܴ

 ܮ

Note that the values of ௜ܵ for each product, the review time for each group

and the value of CAP for the group of products are all obtained using the

spreadsheet presented in Section 3.7.2. The demand data for each

product at each day is obtained from the demand data Excel sheet.

3. Objective Function: This function represents how the decision variables

affect the value to be optimised (minimised in our case).

݉ ݅݊ ෍ +1௜,௝ܦ 2௜,௝ܦ

௡

௜ୀଵ

∀݀ ��݆�ݕܽ

76

Note that this is essentially the same minimisation problem shown in

Equation 3.30.

4. Constraints: To represent how the decision variables use resources, which

are available in limited quantities and to articulate any special conditions.

In our problem, the objective function is subject to:

 A capacity constraint, in which the sum of the order quantities must

equal the capacity of the truck:

෍ ܳ௜,௝

௡

௜ୀଵ

= ݀�∀����ܲܣܥ� ݆�ݕܽ

 A resource constraint, in which the order quantity for each item at

each day, plus the minimum deviation obtained using the objective

function, plus the current inventory position, must all equal the

order up to level.

ܳ௜,௝+ −1௜,௝ܦ +2௜,௝ܦ ܫܰ ௜ܸ,௝ = �ܵ ௜ ݀݋ݎ݌�∀ ݑ ݀�&�݅�ݐܿ ݆�ݕܽ

 A condition, according to which the deviation variables are positive:

≤1௜,௝ܦ 0 ݀݋ݎ݌�∀ ݑ ݀�&�݅�ݐܿ ݆�ݕܽ

≤2௜,௝ܦ 0 ݀݋ݎ݌�∀ ݑ ݀�&�݅�ݐܿ ݆�ݕܽ

 A condition, according to which the ordered quantities must be a

positive integer number or zero:

ܳ௜,௝≥ 0 ݀݋ݎ݌�∀ ݑ ݀�&�݅�ݐܿ ݆�ݕܽ

ܳ௜,௝�݅݊݅�݊ܽ�ݏ ݐ݁ ݃ ݉ݑ݊�ݎ݁ ܾ݁ ݎ

77

3.7.3.4 The Sequence of Decisions

To apply the model presented in the previous section at each replenishment day,

the following sequence of decisions is used:

Step 1. Define the size of the replenishment period.

=�ܻܣܦܺܣܯ 1000

Step 2. Initialise data for the first day, such that:

⎩
⎨

⎧
݆= 1

ܫܰ ௜ܸ.ଵ = ܱܵ ௜,ଵܪ = ܫܰ ௜,ଵܧܸ = ܱܵ ௜,ଵܧܪ = �ܵ ௜

௜,ଵܦ� = 0

ܳ௜,ଵ = 0

Step 3. Set j = j + 1

Step 4. Perform modulo calculations to check for incoming goods:

If �݆݉ ݀݋ �ܴ + ≡ܮ 0

Then, ௜,௝ܥܧܴ = �ܳ ௜,௝ି ௟

Else, ௜,௝ܥܧܴ = 0

Step 5. Update Stock on Hand:

ܱܵ ௜,௝ܪ = +௜,௝ܥܧܴ �ܵ ௜,௝ିܧܪܱ ଵ

Step 6. If ܱܵ ≤௜,௝ܪ ,௜,௝ܦ then

ቐ

௜,௝ܮܧܦ = ௜,௝ܦ
௜,௝ܮܧܦܰ = 0

ܱܵ ௜,௝ܧܪ = ܱܵ −௜,௝ܪ ௜,௝ܮܧܦ

Else if ܱܵ ௜,௝ܪ < ,௜,௝ܦ then

ቐ

௜,௝ܮܧܦ = ܱܵ ௜,௝ܪ
௜,௝ܮܧܦܰ = −௜,௝ܦ ௜,௝ܮܧܦ

ܱܵ ௜,௝ܧܪ = 0

Step 7. Update inventory position:

ܫܰ ௜ܸ,௝ = ܫܰ ௜,௝ିܧܸ ଵ

78

Step 8. Perform modulo calculations to check if it’s a review day:

If �݆݉ ݀݋ �ܴ ≡ 0 Then solve the optimisation model in section 3.7.3.3 to

determine ܳ௜,௝,

Else

ܳ௜,௝ = 0

Step 9. Update inventory position at the end of the day:

ܫܰ ௜,௝ܧܸ = ܫܰ ௜ܸ,௝− +௜,௝ܦ ܳ௜,௝

Step 10. Loop:

If ݆< ܻܣܦܺܣܯ go to step 3

Else

If ݆≥ ܻܣܦܺܣܯ

End

3.7.3.5 The LINGO Simulation Model Explained

With the high number of products in the JRP, solving the set of linear equations

to find Q over a long time period can be a difficult and time-consuming task. As

a result, the simulation of the proposed joint replenishment model is

programmed into LINGO as an integer programming problem. The use of integer

programming is due to the fact that full pallets are needed for each product. This

integer programing problem is applied over the required replenishment period,

using the sequence of decisions provided in Section 3.7.3.4.

Integer programming is a mathematical programming technique used to solve

linear problems that require integer solutions, and LINGO uses the well-known

branch-and-bound (B&B) algorithm to search for the optimal solution. The

LINGO simulation model used consists of the following sections:

79

1. The Sets Section

In LINGO, a set is simply a group of related objects. Each member of the set

may have one or more characteristics associated with it. Figure 16 shows an

example of the defined sets for the first group in Experiment 1.

Figure 16: The Sets Section in the Lingo simulation

SETS:

! Generate a set of 6 products;
PRODUCT/1..6/:

! An order-up-to level, S, is assigned to each product, I;
S;

! Generate a set of 1000 days;
DAY/1..1000/:

! Modulo operation is used to determine if day J is a review day or not and to
determine if a previously Ordered batch will be received. The reminder of division
of day, J, by the review period of the group, R (Modulo calculations);
MOD,

!The reminder of division of day, J, by the review period of the group, R, plus the
lead time, L;
MODRL;

! Product i at day j set;
PXD(PRODUCT,DAY):

! Product i at day j the following parameters are defined;

INV, ! Inventory position of product I at day J ;
INVE, ! Inventory Position of product I at the end of day J ;
SOH, ! Stock on Hand of product I at the end of day J;
SOHE, ! Stock on Hand of product I at the end of day J;
Q, ! Order quantity of product I at the end of day J;
D,! Demand of product I at day J;
D1, ! Over Achievement;
D2, ! Under Achievement;
REC, ! Item received at day J;
DEL, ! Satisfied demand of product I at day J;
NDEL, ! Un satisfied demand of product I at day J;
SLEVEl;! Service level;

ENDSETS

80

2. The Data Section

The data section is used for inputting set members and data values. This section

also allows for data isolation from the rest of the model, which is very useful to

facilitate the model’s maintenance and scaling. In LINGO, the model starts with

DATA and ends with ENDDATA. Figure 17 illustrates the data section used in the

LINGO programme for Group 1 in Experiment 1.

Figure 17: The Data Section in the Lingo simulation

Note that @OLE is a lingo function that allows for data importation from MS

Excel. As shown in Figure 14, the S and D data are imported from the external

Excel sheet for Experiment 1, using the @OLE function. The use of this function

is very useful as it automates the process of inputting data, which saves time

and effort and helps prevent errors. Furthermore, this function is also used to

export the results to the Excel sheet. In particular, it is used to export the data

of the SLEVEL, SOH and Q, which can subsequently be used to obtain the

performance measures and thus to conduct the necessary analyses.

DATA:

! Import Order-up-to level data for each product from the Excel sheet -
(T,S) Table;
S =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','S_LEVEL_GA');

! Given mean of demand and the standard deviation of demand,
use excel to generate random demand for the needed number of days.
Then use @OLE function to import demand data;

D = @OLE('\Users\Cripps Hire
Laptop\Desktop\EXP1.xlsx','REAL_DEMAND_GA');

Cap= 10; ! The capacity of the truck allocated to this group;
L = 1; ! Lead time;
R = 2; ! Group review time calculated in the Excel sheet;

!Export to excel;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','SL') = SLEVEL;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','SOH') = SOH;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','Q_OUTPUT') = Q;

ENDDATA

81

3. The Main Model (The Objective Function)

This section represents the core of the model, as this is where the values of Q

are obtained using the model described in Section 3.7.3.3. Figure 18 presents

the LINGO code used to programme the main model at each review period.

Figure 18: The Objective Function in the Lingo simulation

4. The Secondary Model

This model is only used when the current day is not a review day, so as to set a

value of zero to the order quantities. This simple model is shown in Figure 19.

! The following sub model is used to allocate the available truck
capacity to the different products in the group. The model will minimise
the total deviation from the pre-identified order-up-to level;

SUBMODEL FIND_Q:

! At each day minimise the sum of the deviation from S as a percentage
of S of each product;

@FOR (DAY (J)| J #EQ# DAYN: MIN = @SUM (PRODUCT(I):
(D1(I,J)+D2(I,J))));

! Subject to the following constraints:

1- The order quantity is a positive integer value;
@for (pxd (i,J)| J #EQ# DAYN: @gin (Q(i,J)));

! 2- At day J the, the sum of the ordered quantities must fill the
truck;
@for (day (J)| J #EQ# DAYN: @sum (product(i): q(i,j)) = cap);

! 3- define the order quantity function;

@for (day (j)| J #EQ# DAYN: @for (product (i): INV (I,J) + d1(i,j) -
d2(i,j) + Q(i,j) = s(i)));

! The deviation variables are positive;

@for (day (j)| J #EQ# DAYN: @for (product (i): D1(I,J) >= 0));

@for (day (j)| J #EQ# DAYN: @for (product (i): D2(I,J) >= 0));

ENDSUBMODEL

82

Figure 19: The Secondary Model in the Lingo simulation (Q=0)

5. The Calculations Section

This section is for performing computations on raw input data. In LINGO, a CALC

section begins with the keyword CALC, and ends with the keyword ENDCALC.

Each expression must be in the form of an assignment statement, in which a

single variable appears on the left-hand side of an expression, followed by an

equality sign and an arbitrary mathematical expression on the right-hand side.

In our model, the calculation section is used to automatically apply the main

model on the replenishment period using the sequence of decisions described in

Section 3.7.3.4. Further, this section is used to update all the variables that

depend on Q each day. Figure 20 illustrates the initiation of this section. Note

that a WHILE loop is used to perform the same calculations for the required

number of days and that we initiate the loop by setting Day to Day 1. Figure 21

illustrates the rest of the model. Note the use of the @IFC function to distinguish

between the calculations of Day 1 from those of the other day.

Figure 20: The Calculations Section (start)

! This simple model is used if day j is not a review day to set Q(i,j)
values to 0;
SUBMODEL NO_Q:

@FOR (DAY (J)| J #EQ# DAYN: @FOR (PRODUCT (I): Q(I,J) = 0));

ENDSUBMODEL

CALC:

! define the size of the replenishment period;
MXDAY = @SIZE (DAY);

! Set day to day 1;
DAYN = 1;

! Initiate a while loop to apply the sub models (when needed);
@WHILE (DAYN #LE# MXDAY:

83

Figure 21: The Calculations Section (end)

! First we distinguish between day 1 and all the other days;
@IFC (DAYN #EQ# 1:

! For day 1, calculate the reminder of division of day, J, by the review period of the
group, R;
@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!for day 1, calculate he reminder of division of day, J, by the review period of the
group, R, plus the lead time, L;
@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

! Initiate the data for the first day;
! The next 4 functions will set SOH(i,j) = SOHE(I, J) = INV (I, J) = INVE(I, J) = S(I);
@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOHE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INV (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INVE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: REC (i,j) = 0));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SLEVEL (i,j) = 0));

! the second branch of the first @IFC function applies to days greater than 1;
! Here a set of calculations will be performed for any particular day greater than 1;
@ELSE@IFC (DAYN #GT# 1:

@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

@FOR (PRODUCT (I): @FOR (DAY (J) | J #EQ# DAYN: @IFC (DAYN #GE# L+1: REC(I,J) = Q(I, J-L);

@ELSE@IFC (DAYN #LT# L+1: REC (I,J) = 0;););));

@for (product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = REC(I,J) +SOHE(i, j-1)));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): @IFC (SOH(I,J) #GE# D(I,J): DEL(I,J) =
D(I,J); NDEL(I,J) = 0; SOHE (I,J) = SOH(I,J) - DEL (I,J);

@ELSE@IFC (SOH(I,J) #LT# D(I,J): DEL(I,J) = SOH (I,J); NDEL(I,J) = D(I,J) - DEL(I,J);
SOHE (I,J) = 0;););));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): INV (I,J) = INVE (I,J-1)));

););

@for (Day (j) | J #EQ# DAYN: @IFC (MOD(J) #EQ# 0:

@SOLVE (FIND_Q);

@ELSE@IFC (MOD(J) #GT# 0:

@SOLVE (NO_Q););););

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): INVE (I,J) = INV(I,J) -
D(I,J)+ Q(I,J)));

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): SLEVEL (I,J) = DEL (I,J)/
D (I,J)));

DAYN= DAYN + 1;);

ENDCALC

END

84

3.7.3.6 Results

As shown in Figure 17, the @OLE function is used to export the daily

performance measures of each product within the group to an external Excel

sheet. Figure 22 shows the daily performance Excel sheet for group A in

Experiment 1.

Figure 22: Example of a Daily Performance Excel Sheet for the simulation model.

The data in this sheet is then used to compute the overall performance, as

shown in Figure 23. First the performance of each group is calculated

individually, before the overall performance is calculated. The procedure is

carried out as follows:

1. Calculate the average SOH over the 1000 day-period for all products in

the same group. The AVG function in Excel is used for this purpose.

85

2. Calculate the Average service level over the 1000-day period for all

products in the same group. The AVG function in Excel is used for this

purpose.

3. For each group, compute the sum of the ordered quantities:

෍ ෍ ܳ௜,௝

ଵ଴଴଴

ௗ௔௬ୀଵ

௡

௜ୀଵ

4. Calculate the total purchase cost for each group:

෍ ෍ ܳ௜,௝

ଵ଴଴଴

ௗ௔௬ୀଵ

௡

௜ୀଵ

× ௗܿ௜௦௖௢௨௡௧

(The ௗܿ௜௦௖௢௨௡௧ is the purchase cost minus any discounts.)

5. Calculate the total inventory holding cost for each group:

෍ ෍ ℎ × ܱܵ ௜,௝ܪ

ଵ଴଴଴

ௗ௔௬ୀଵ

௡

௜ୀଵ

6. Calculate the total ordering cost by counting the number of orders placed

and then multiplying it by .௝ܭ

7. The overall result is then calculated by adding all the different parameters

for the different groups. Note that the average overall SOH and average

overall service level account need to be taken for the number of products

in each group when calculating these parameters.

86

Figure 23: Overall Performance Sheet for the joint replenishment simulation in
Experiment 1

87

3.8 The Adjusted EOQ model

As discussed earlier in the Literature Review, the EOQ model is one of the oldest

production and replenishment scheduling models. It describes the fundamental

trade-off between fixed ordering costs and holding costs. Despite its simplicity,

the EOQ model forms the foundation for many inventory management models. A

well-known extension to the EOQ theory is the ‘re-order point - order quantity’,

(R, Q), policy. The assumptions behind this policy are essentially the same as

those underlying the EOQ model. In implementing this model, a constant lead

time and stochastic characteristics of demand are assumed. As such, in order to

evaluate the performance of the proposed solution to the JRP, the performance

of an adjusted version of the (R, Q) policy is compared with the proposed

solution in terms of the performance measures identified earlier. This section

explains the procedures used to perform an (R, Q) simulation on the problem

under consideration. Sections 3.8.1 and 3.8.2 formulate the policy parameters,

which are the re-order point R and the order quantity Q for each product, while

Section 3.8.4 discusses the simulation procedures and experimental setup.

3.8.1Finding the Economic Order Quantity

The EOQ model is a single item replenishment model. As such, in using this

model to solve a multi-item inventory problem, each item is considered, and

thus replenished, separately. The key principle underlying the (ܴ,ܳ) policy is that

of placing an order of quantity ܳ whenever the inventory position drops below a

pre-defined re-order point ܴ. This is illustrated in Figure 24 below, where ߬ is the

lead time, (ݐ)ܫ is the inventory level at time ,ݐ and ܳ is the order quantity. To

optimise the solution in an (ܴ,ܳ) policy, the optimal order quantity, ܳ∗, is

typically calculated using the following EOQ formula:

ܱܳܧ = �ܳ ∗ = ඨ
ߣܭ2

ℎ
(3.31)

In the Adjusted (ܴ,ܳ) policy, however, to make use of quantity discount

schemes, ܳ is adjusted to the nearest full truckload for every replenishment.

88

Figure 24: The (R,Q) Policy

3.8.2Finding the Re-Order Point

To determine when to place an order, assuming a Type 2 Service Level, the re-

order point, ܴ, is calculated as follows:

ܴ = ܮܶܦܦܧ + ܵܵ ����(3.32)

In the above, ܮܶܦܦܧ is the expected demand during lead time, expressed as:

ܮܶܦܦܧ = ߣ߬�

The ܵܵ , the safety stock, is expressed as:

݇× ξ ×ߣ ߪ

Here �ఛߪ is the standard deviation of demand, and ݇ is the safety stock factor.

The value of ݇ is obtained using the standardised loss function:

)ܮ)݇ = ܳ ×
1 − ݐܽ ݎ݃ ܵ�ݐ݁ ݒ݅ݎ݁ ܿ݁ �݈݁ ݒ݁ ݈

�ఛߪ

89

Note that for this present study, a target service level – which is the fraction of

demand satisfied immediately from stock on hand - of 99.5% is adopted. The

standard deviation during lead time is calculated as follows:

�ఛߪ = ߣ߬� �× �ߪ�

After finding the value of)ܮ)݇, the specific value of ݇ can be found in the

standard normal distribution tables provided in Silver et al. (1998).

3.8.3The adjusted EOQ simulation

To be able to compare the proposed joint replenishment model with the adjusted

EOQ model, an Excel model is developed to perform the (ܴ,ܳ) simulation. This

section discusses the Excel spreadsheet used for the adjusted EOQ simulation

over the 1000-day period. Section 3.8.3.1 explains the sequence of decisions

used in the simulation mode, while Section 3.8.3.2 explains the logic behind the

Excel formulae and the experimental setup in MS Excel. Finally, Section 3.8.3.3

explains how the different performance measures are computed. These

performance measures will be used as the basis of comparison between the

proposed solution and the adjusted EOQ model.

3.8.3.1 Sequence of Decisions

Using the same notion adopted in the joint replenishment simulation, the EOQ

sequence of decisions for each product is as follows:

1. Update the starting inventory position using:

ܫܰ ௝ܸ = ܫܰ ௝ܧܸ

2. Check for any incoming goods and update �௝ܥܧܴ using:

�௝ܥܧܴ = ܳ�௝ି ଵ

90

3. Update stock on hand at the beginning of the day using:

ܱܵ ௝ܪ = ܱܵ +௝ܧܪ ௝ܥܧܴ

4. Decide whether to place an order or not, as follows:

If

ܱܵ ௝ܪ > ܴ

Then,

ܳ௝ = 0

Else If

ܱܵ ≥௝ܪ ܴ

Then set,

ܳ௝ = ܳ∗

5. Update ܳ௝ to the nearest full truckload.

6. Satisfy demand using the stock on hand and update the other variables as

follows:

If ܱܵ ≤௜,௝ܪ ,௜,௝ܦ then

ቐ

௝ܮܧܦ = ௝ܦ
௝ܮܧܦܰ = 0

ܱܵ ௝ܧܪ = ܱܵ −௝ܪ ௝ܮܧܦ

Else if ܱܵ ௝ܪ < ,௝ܦ then

ቐ

௝ܮܧܦ = ܱܵ ௝ܪ
௝ܮܧܦܰ = −௝ܦ ௝ܮܧܦ

ܱܵ ௝ܧܪ = 0

7. Compute the service level such that:

௝ܮܧܸܧܮܵ =
ݐܽ݋ܶ ௝ܮܧܦ݈�

ݐܽ݋ܶ ௝ܦ݈�

91

This sequence is performed for the entire period. However, it must be pointed

out that this sequence of decisions can only be used for a lead time of 1 day.

3.8.3.2 The Experimental Setup in Excel

Having presented how R and Q are calculated, and established the sequence of

decisions needed to perform the adjusted EOQ simulation, the next step is to

develop an Excel sheet to perform the simulation for each product in every

experiment. Figure 25 illustrates the MS Excel sheet devised for this purpose for

Product 1 in Experiment 1. The spreadsheet is divided into the following

sections:

1. Given data

In this section of the spreadsheet, the input data necessary to perform the

simulation are entered, including the purchase price, the discounted purchase

price, the holding cost, lead time and the target service level. These values are

fixed across all experiments, in both the EOQ and the proposed joint

replenishment model.

2. Available Truck Types

In this section, the relevant truck types and their data are entered for all

products and experiments. For any item, the decision of which truck type to use

is reached by calculating the optimal order quantity, ܳ∗, using the different ܭ

values for the various truck types. The ܭ value that yields the minimum

deviation from ܳ௜
∗ for any truck type is chosen. The ܳ∗ value is then adjusted to

the full capacity of the chosen truck. (In the example shown in Figure 25 the

chosen truck type is highlighted in green.)

3. R and Q Calculations

In this section, the value of ܴ and Q∗ are calculated using Equation 3.31 and

Equation 3.32, respectively. The average daily demand, ,ߣ and the standard

92

deviation of ߣ is entered using an HLOOKUP function from the demand data

sheet. Furthermore, the safety stock factor ()݇ value is obtained from the

standard normal distribution tables. The Excel formulae used in this section are

presented in Table 15.

Table 15: R & Q formulas in Excel

Parameter Excel Formula Cell

Average demand per

day ௜ߣ

=HLOOKUP(B1,'Demand Data'!B1:U3,2) E3

SD λ =HLOOKUP(B1,'Demand Data'!B1:U3,3) F3

SD τ =F3*SQRT(P13) G3

Qi (Pallets) =SQRT((2*P18*E3)/P12) H3

L(k) =(H3*(1-P14))/G3 I3

K Find from tables J3

ED (Pallets) =E3*P13 K3

SS (Pallets) =J3*SQRT(P13)*F3 L3

R (Days) =K3+L3 M3

4. The Simulation

The simulation involves the conducting of the sequence of decisions described in

Section 3.8.3.1, aimed at determining when to place an order. Once the R, Q

and all the other relevant data are determined, this part of the spreadsheet is

dedicated to perform the simulation of the replenishment process in a period of a

thousand days. The daily demand data is inserted into the spreadsheet using an

HLOOKUP function. This function will look for the daily demand values for any

product and any experiment in the demand data sheet produced in Section 3.5.

After defining the initial values of stock on hand, SOH, the inventory position,

INV, stock on hand at the end of the day, SOHE and the inventory position at

the end of the day, INVE, for the first day, the simulation is carried out using the

formulas presented in Table 16.

93

Table 16:Excel formulas for the adjusted EOQ simulation

Parameter Excel Formula Cell

Demand =HLOOKUP(B$1,'Demand Data'!B$9:U$1009,1+A9) B9

INV =I8 C9

SOH =J8 D9

Ordered =IF(C9 >=A$3,0,C$3) E9

Received =E8 F9

Delivered =IF(D9>=B9,B9,D9) G9

Not Delivered =B9-G9 H9

INVE =C9+E9+F9-B9 I9

SOHE =D9-G9+F9 J9

Service level =SUM(G$8:G9)/SUM(B$8:B9) K9

5. Simulation Results

This section of the spreadsheet calculates the set of performance measures for

each product. These include the average inventory level, the average service

level and the total inventory costs. The average SOH for the thousand-day-

period is calculated as follows:

෍ ܱܵ ܪ

ଵ଴଴଴

ௗ௔௬ୀଵ

1000൘

The average service level is calculated as:

෍ ܮܵ

ଵ଴଴଴

ௗ௔௬ୀଵ

1000൘

The overall replenishment cost for the full period is calculated as follows:

Total Cost = Total Inventory Holding Cost

+ Total Ordering Cost

+ Total Purchase Cost

94

Where,

Total Inventory Holding Cost = h෍ Q

Total Ordering Cost = number of orders × K

Total Purchse Cost = Discounted purchase price per pallet ×�෍ Q

Table 17 below summarises the Excel formulae used in determining the

performance parameters:

Table 17:EOQ simulation performance parametres in Excel

Parameter Excel Formula Cell

Average SOH =AVERAGE(D8:D1007) P23

Average Service

Level

=AVERAGE(K8:K1007) Q23

Purchase cost =SUM(E8:E1007)*P10 R23

Ordering cost =COUNTIF(E8:E1007,C3)*P18 S23

Holding cost =SUM(D8:D1007)*P12 T23

Total cost =SUM(P25:P27) U23

95

Figure 25: R& Q calculations and the EOQ simulation (Experiment 1 – product 1)

2

1

5

4

3

96

3.8.3.3 The Overall Simulation Results

In terms of the overall EOQ simulation results, a spreadsheet is generated for

each experiment. Figure 26 below presents the Overall Results Spreadsheet for

Experiment 1.

Figure 26: Overall Results Spreadsheet - Experiment 1

The average SOH for entire simulation is calculated as:

෍ ෍ ܱܵ ௜,ௗ௔௬ܪ

ଵ଴଴଴

ௗ௔௬ୀଵ

ଶ଴

௡ୀଵ

20൘

The average service level is calculated as:

෍ ෍ ௜,ௗ௔௬ܮܧܸܧܮܵ

ଵ଴଴଴

ௗ௔௬ୀଵ

ଶ଴

௡ୀଵ

20൘

The Total Purchase Cost is calculated as follows:

Discounted purchase price per pallet ×�෍ ෍ ܳ௜,ௗ௔௬

ଵ଴଴଴

ௗ௔௬ୀଵ

ଶ଴

௡ୀଵ

The Total Holding Cost is calculated as follows:

97

෍ ෍ ℎ × ܱܵ ௜,ௗ௔௬ܪ

ଵ଴଴଴

ௗ௔௬ୀଵ

ଶ଴

௡

The Total Ordering Cost is calculated as follows:

෍ ෍ ݉ݑ݊ ܾ݁ ݂݋�ݎ ݎ݀݋� �ݏݎ݁

ଵ଴଴଴

ௗ௔௬ୀଵ

× ௝ܭ

ଶ଴

௡

The total cost is given by the sum of the three previous equations. Table 18 presents the

formulae used in MS Excel to compute the performance measures shown in Figure 26.

Table 18: Performance Measures Formulas in Excel

Parameter Excel Formula Cell

Average SOH =('1'!P23+'2'!P23+'3'!P23+'4'!P23+'5'!P23+'6'!P23

+'7'!P23+'8'!P23+'9'!P23+'10'!P23+'11'!P23+'12'!

P23+'13'!P23+'14'!P23+'15'!P23+'16'!P23+'17'!P2

3+'18'!P23+'19'!P23+'20'!P23)/20

B2

Average Service

Level.

=('1'!P24+'2'!P24+'3'!P24+'4'!P24+'5'!P24+'6'!P24

+'7'!P24+'8'!P24+'9'!P24+'10'!P24+'11'!P24+'12'!

P24+'13'!P24+'14'!P24+'15'!P24+'16'!P24+'17'!P2

4+'18'!P24+'19'!P24+'20'!P24)/20

B4

Purchase Cost =('1'!P25+'2'!P25+'3'!P25+'4'!P25+'5'!P25+'6'!P25

+'7'!P25+'8'!P25+'9'!P25+'10'!P25+'11'!P25+'12'!

P25+'13'!P25+'14'!P25+'15'!P25+'16'!P25+'17'!P2

5+'18'!P25+'19'!P25+'20'!P25)+16000

B5

Ordering Cost =('1'!P26+'2'!P26+'3'!P26+'4'!P26+'5'!P26+'6'!P26

+'7'!P26+'8'!P26+'9'!P26+'10'!P26+'11'!P26+'12'!

P26+'13'!P26+'14'!P26+'15'!P26+'16'!P26+'17'!P2

6+'18'!P26+'19'!P26+'20'!P26)

B6

Holding Cost =('1'!P27+'2'!P27+'3'!P27+'4'!P27+'5'!P27+'6'!P27

+'7'!P27+'8'!P27+'9'!P27+'10'!P27+'11'!P27+'12'!

P27+'13'!P27+'14'!P27+'15'!P27+'16'!P27+'17'!P2

7+'18'!P27+'19'!P27+'20'!P27)

B7

Total Cost =SUM(B4:B6) B8

98

CHAPTER 4. Results

The fourth chapter presents the results obtained from the simulation of the joint

replenishment model and the adjusted EOQ model. First, the performance

measures are explained. Second the simulation results for each experiment are

presented.

4.1 Performance Measures

In this section the three performance measures for the analysis are briefly

reviewed:

1. Average Inventory Level. The average inventory level plays a

vital role in determining the overall cost of the inventory control

process. With low average inventory level the service rate is low.

On the other hand, with high average inventory levels the

inventory holding cost is high.

2. Service Level. The service level defines the satisfaction of the

customers. A low service level due to low inventory levels will

impact the company on the long run due to lost sales and

unsatisfied customers.

3. Total Inventory Cost. This is one of the most reliable and

important performance measures. Managers aim at keeping this

value as low as possible through the implementation of efficient

inventory control systems that minimise the average inventory

level while maximising the overall service level and customer

satisfaction. The total inventory cost is composed of the total

purchase cost, the total inventory holding cost and the total

ordering cost.

99

4.2 Results

4.2.1Experiment 1: Similar Demand – Low Ordering Cost - Small
Truck Capacity

1. Joint Replenishment Grouping Results

GROUP A

Product ID Average

Daily

Demand

Group

Demand

Truck

Capacity

K Original T Rounded

T

1 1.21

5 10 7.5 2 2

5 1.36

6 0.06

11 1.57

13 0.02

19 0.78

GROUP B

Product ID Average

Daily

Demand

Group

Demand

Truck

Capacity

K Original T Rounded

T

2 1.78

15 15 9 1 1

3 0.76

4 0.70

7 0.85

8 1.46

9 0.24

10 1.03

12 0.66

14 0.77

15 2.71

16 0.56

17 1.25

100

18 0.40

20 1.84

2. Joint Replenishment Simulation Results

Performance Measure Result

Average Inventory Level (Pallets/
day)

6.23

Average Service Level 99.81%

Total Purchase Cost £16,000,000.00

Total Holding Cost £68,471.08

Total Ordering Cost £8,250.00

Total Cost £16,076,721.08

3. Adjusted EOQ Simulation Results

Performance Measure Result

Average Inventory Level (Pallets/
day)

3.84

Average Service Level 99.51%

Total Purchase Cost £16,020,000.00

Total Holding Cost £ 20,005.00

Total Ordering Cost £ 42,237.64

Total Cost £16,082,242.64

101

4.2.2Experiment 2: Similar Demand – High Ordering Cost - Small
Truck Capacity

1. Joint Replenishment Grouping Results

GROUP A

Product ID

Average

Daily

Demand

Group

Demand

Truck

Capacity
K Original T

Rounded

T

2 1.78

5.32 15 99 2.82 3

3 0.76

9 0.24

13 0.02

14 0.77

16 0.56

18 0.40

19 0.78

GROUP B

Product ID

Average

Daily

Demand

Group

Demand

Truck

Capacity
K Original T

Rounded

T

1 1.21

14.68 15 99 1.02 1

4 0.70

5 1.36

6 0.06

7 0.85

8 1.46

10 1.03

11 1.57

12 0.66

15 2.71

17 1.25

102

20 1.84

2. Joint Replenishment Simulation

Performance Measure Result

Average Inventory Level (Pallets/
day)

14.13

Average Service Level 96.92%

Total Purchase Cost £ 15,996,000.00

Total Holding Cost £ 155,282.72

Total Ordering Cost £ 131,967.00

Total Cost £16,283,249.72

3. Adjusted EOQ Simulation Results

Performance Measure Result

Average Inventory Level (Pallets/
day)

7.98

Average Service Level 99.55%

Total Purchase Cost £ 16,073,000.00

Total Holding Cost £ 87,641.42

Total Ordering Cost £ 133,732.50

Total Cost £ 16,294,373.92

103

4.2.3Experiment 3: Similar Demand – Low Ordering Cost - Large
Truck Capacity

1. Joint Replenishment Grouping Results

GROUP A

Product ID

Average

Daily

Demand

Group

Demand

Truck

Capacity
K Original T

Rounded

T

1 1.21

20 20 7.5 1 1

2 1.78

3 0.76

4 0.70

5 1.36

6 0.06

7 0.85

8 1.46

9 0.24

10 1.03

11 1.57

12 0.66

13 0.02

14 0.77

15 2.71

16 0.56

17 1.25

18 0.40

19 0.78

20 1.84

104

2. Joint Replenishment Simulation

Performance Measure Result

Average Inventory Level (Pallets/
day)

5.82

Average Service Level 99.73%

Total Purchase Cost £16,000,000.00

Total Holding Cost £63,987.54

Total Ordering Cost £7,500.00

Total Cost £16,071,487.54

3. Adjusted EOQ Simulation

Performance Measure Result

Average Inventory Level (Pallets/
day)

6.26

Average Service Level 99.55%

Total Purchase Cost £16,054,000.00

Total Holding Cost £10,030.00

Total Ordering Cost £68,831.31

Total Cost £16,132,861.31

105

4.2.4Experiment 4: Similar Demand – High Ordering Cost - Large
Truck Capacity

1. Joint Replenishment Grouping Results

GROUP A

Product ID

Average

Daily

Demand

Group

Demand

Truck

Capacity
K Original T

Rounded

T

1 1.21

20
20

(originally
30)

82.5 1 1

2 1.78

3 0.76

4 0.70

5 1.36

6 0.06

7 0.85

8 1.46

9 0.24

10 1.03

11 1.57

12 0.66

13 0.02

14 0.77

15 2.71

16 0.56

17 1.25

18 0.40

19 0.78

20 1.84

106

2. Joint Replenishment Simulation

Performance Measure Result

Average Inventory Level (Pallets/
day)

6.29

Average Service Level 99.78%

Total Purchase Cost £ 16,000,000.00

Total Holding Cost £69,107.18

Total Ordering Cost £82,500.00

Total Cost £16,151,607.18

3. Adjusted EOQ Simulation

Performance Measure Result

Average Inventory Level (Pallets/
day)

8.70

Average Service Level 99.46%

Total Purchase Cost £ 16,094,000.00

Total Holding Cost £ 95,552.48

Total Ordering Cost £ 88,759.00

Total Cost £16,278,311.48

107

4.2.5Experiment 5: Type 2 Demand – Low Ordering Cost - Small
Truck Capacity

1. Joint Replenishment Grouping Results

GROUP A

Product ID

Average

Daily

Demand

Group

Demand

Truck

Capacity
K Original T

Rounded

T

2 0.09

5 5 5 1 15 4.81

7 0.09

GROUP A

Product ID

Average

Daily

Demand

Group

Demand

Truck

Capacity
K Original T

Rounded

T

1 0.28

15 15 9 1 1

3 0.38

4 5.09

6 6.60

8 0.28

9 0.47

10 0.09

11 0.19

12 0.09

13 0.09

14 0.09

15 0.19

16 0.09

17 0.19

18 0.19

19 0.38

20 0.28

108

2. Joint Replenishment Simulation Results

Performance Measure Result

Average Inventory Level (Pallets/
day)

16.34

Average Service Level 99.61%

Total Purchase Cost £ 16,000,000.00

Total Holding Cost £ 151,456.61

Total Ordering Cost £ 14,000.00

Total Cost £ 16,165,456.61

3. Adjusted EOQ Simulation

Performance Measure Result

Average Inventory Level (Pallets/
day)

4.30

Average Service Level 99.55%

Total Purchase Cost £ 15,972,000.00

Total Holding Cost £ 47,300.09

Total Ordering Cost £ 14,860.00

Total Cost £16,034,160.09

109

4.2.6Experiment 6: Type 2 Demand – High Ordering Cost - Small
Truck Capacity

1. Joint Replenishment Grouping Results

GROUP A

Product ID

Average

Daily

Demand

Group

Demand

Truck

Capacity
K Original T

Rounded

T

2 0.09

13.21 15 99 1.14 1

3 0.38

4 5.09

6 6.60

7 0.09

9 0.47

10 0.09

12 0.09

13 0.09

14 0.09

16 0.09

GROUP B

Product ID

Average

Daily

Demand

Group

Demand

Truck

Capacity
K Original T

Rounded

T

1 0.28

6.79 15 99 2.21 2

5 4.81

8 0.28

11 0.19

15 0.19

17 0.19

18 0.19

19 0.38

110

20 0.28

2. Joint Replenishment Simulation

Performance Measure Result

Average Inventory Level (Pallets/
day)

26.31

Average Service Level 88.35%

Total Purchase Cost £ 15,996,000.00

Total Holding Cost £ 598,881.65

Total Ordering Cost £ 131,967.00

Total Cost £ 16,726,848.65

3. Adjusted EOQ Simulation

Performance Measure Result

Average Inventory Level (Pallets/
day)

5.61

Average Service Level 99.55%

Total Purchase Cost £ 16,015,000.00

Total Holding Cost £ 61,612.11

Total Ordering Cost £ 140,657.00

Total Cost £16,217,269.11

111

4.2.7Experiment 7: Type 2 Demand – Low Ordering Cost - Large
Truck Capacity

1. Joint Replenishment Grouping Results

GROUP A

Product ID

Average

Daily

Demand

Group

Demand

Truck

Capacity
K Original T

Rounded

T

1 0.28

20 20 7.5 1 1

2 0.09

3 0.38

4 5.09

5 4.81

6 6.60

7 0.09

8 0.28

9 0.47

10 0.09

11 0.19

12 0.09

13 0.09

14 0.09

15 0.19

16 0.09

17 0.19

18 0.19

19 0.38

20 0.28

112

2. Joint Replenishment Simulation

Performance Measure Result

Average Inventory Level (Pallets/
day)

14.67

Average Service Level 98.44%

Total Purchase Cost £16,000,000.00

Total Holding Cost £161,183.43

Total Ordering Cost £ 7,500.00

Total Cost £16,168,683.43

3. Adjusted EOQ Simulation

Performance Measure Result

Average Inventory Level (Pallets/
day)

8.07

Average Service Level 99.48%

Total Purchase Cost £ 16,080,000.00

Total Holding Cost £88,687.32

Total Ordering Cost £7,955.00

Total Cost £16,176,642.32

113

4.2.8Experiment 8: Type 2 Demand – High Ordering Cost - Large
Truck Capacity

1. Joint Replenishment Grouping Results

GROUP A

Product ID

Average

Daily

Demand

Group

Demand

Truck

Capacity
K Original T

Rounded

T

1 0.28

20 20 82.5 1 1

2 0.09

3 0.38

4 5.09

5 4.81

6 6.60

7 0.09

8 0.28

9 0.47

10 0.09

11 0.19

12 0.09

13 0.09

14 0.09

15 0.19

16 0.09

17 0.19

18 0.19

19 0.38

20 0.28

114

2. Joint Replenishment Simulation

Performance Measure Result

Average Inventory Level (Pallets/
day)

13.05

Average Service Level 99.51%

Total Purchase Cost £ 16,000,000.00

Total Holding Cost £ 143,461.28

Total Ordering Cost £ 82,500.00

Total Cost £ 16,225,961.28

3. Adjusted EOQ Simulation

Performance Measure Result

Average Inventory Level (Pallets/
day)

7.79

Average Service Level 99.46%

Total Purchase Cost £ 16,068,000.00

Total Holding Cost £85,621.34

Total Ordering Cost £ 74,030.00

Total Cost £ 16,227,651.34

115

CHAPTER 5. Analysis & Discussion

In the course of this project, the principal aim of developing a new heuristic to

solve the JRP with quantity discounts and similar purchase costs has been

achieved. As discussed in Chapter Two, no notable solutions to this problem had

been offered in the research literature to date. Moreover, most of the previous

research has ignored the fixed cost of sending a truck and the optimal solution

from a truck perspective as well as the significant cost savings that can be

achieved by considering this cost.

Furthermore, the project was successful in achieving its set of objectives. First, a

joint replenishment grouping heuristic was successfully developed and its

efficiency demonstrated in most of the conducted experiments. Second, the joint

replenishment model outperformed the adjusted EOQ model in most of the

experiments, both in terms of the overall cost and the service level. In this

section, a detailed analysis is provided of the results obtained from the

simulation. Second, a general evaluation is undertaken of these results and a set

of recommendations drawn up and presented. Finally, suggestions regarding

how the proposed solution can be used in more complex environments are

presented.

5.1 Analysis

5.1.1Type 1 Demand Experiments: Similar Demand for all
Products

In order to analyse the performance of the grouping heuristic under developed in

this project, a G(T) vs. average demand rate graph was produced for the four

sets of Ks and Qs used for the eight experiments conducted. As mentioned

earlier in Chapter Three, this graph describes the relationship between the

average demand rate and the total cost when the capacities of the different

trucks (and, therefore, Q) are fixed. Figure 27 illustrates the best grouping

solution for Experiment 1. One Type 1 truck is denoted as 1T1, while two Type 1

trucks are denoted as 2T1, and so on. For any truck type, the cost function line

can be seen to stop when the demand rate is equal to the capacity of the truck

or the capacity of a number of trucks of the same type (i.e. when the

116

replenishment period (T) = 1). For example, since the capacity of the smallest

truck in Experiment 1 is 5, a demand rate greater than 5 Pallets/Day will require

using another truck of the same type (i.e. 2T1). Furthermore, the best grouping

solution is obtained graphically by considering the cost lines of using 1 truck of

each type (i.e. 1T1, 1T2, and 1T3). The rest of the graph is useful in indicating

when an additional truck of the same type is needed.

Figure 27: G(T) behaviour with fixed Qs and the best grouping solution

For Experiments 1 and 5

Inspecting Figure 27 above and applying the grouping solution procedure

described in Section 3.6.1.4, the best grouping solution for Experiment 1 - in

which we examined a situation where the trucks are small and the fixed cost is

low- is to send two replenishments per day. The first replenishment would use a

15-pallet truck while the other would use a 5-pallet one. However, given the

0

5

10

15

20

25

30

0 5 10 15 20 25

G
(T

)

Average Demand Rate (Pallets/Day)

1T1

2T1

3T1

4T1

1T2

2T2

1T3

2T3

The best grouping option can be
found using this part of the graph
(1T1, 1T2, 1T3)

Group A

Group B

117

individual demand rates of the 20 products set out in Experiment 1, having a

group of products that generates a daily demand rate of 5 Pallets/Day and

another group of products that generates a demand rate of exactly 15

Pallets/Day is impossible. This is especially the case in light of the assumption

that every item must be replenished in a single replenishment in order to get the

quantity discount. The model thus produced an alternative grouping solution in

which Group A produces a daily demand rate of 5.00006 Pallets/Day and Group

B produces a daily demand rate of 14.9994 Pallets/Day. Recall that in the

original model, the following constraint is used to avoid ܶ < 1�݀ ݕܽ for any

replenishment:

෍ λ୧

௡

௜ୀଵ

≥௜,௝ݔ �ܳ ௝ ݎ݁��∀ ݈݌ ݁݊ ℎ݉ݏ݅ ݁݊ ݆�ݐ

As a result of this constraint, the grouping model failed to recognise that the

difference between 5.00006 Pallets/Day and 5 Pallets/Day is an insignificant one

in practical terms, and consequently deemed the demand rate of 5.00006

Pallets/Day as unfeasible for a replenishment that uses a truck with a 5-pallet

capacity. The model instead used the next best option, which involves using a

15-pallet truck every day and a 10-pallet truck every two days. The impact of

this deviation from the best solution is calculated as follows:

)ܩ ଵܶ)

)ܩ ଶܶ)
=
0.5 × ℎ × ×ߣ ଵܶ + ଵܭ ܶ⁄

0.5 × ℎ × ×ߣ ଶܶ + ଶܭ ܶ⁄
= 0.98

Clearly, the impact of the deviation on the cost is insignificant. Nevertheless,

performing the joint replenishment simulation using the best grouping option is

still possible, and can be done by using the groups identified by LINGO in the

simulation. However, instead of using a 10-pallet truck every two days, a 5-

pallet truck is used daily. Given a demand rate of 5.00006 Pallets/Day for this

group, T can be rounded from 0.9999 days to 1 day without significantly

affecting the solution.

The original grouping solution obtained by the LINGO model was used to

perform the joint replenishment simulation for this experiment over the 1000-

118

day period. Looking at Figures 31 to 34, a number of observations can be

discerned. For instance, the joint replenishment model results in higher average

inventory levels - approximately double the average inventory levels obtained by

the adjusted EOQ model. As a result, the total holding cost is also higher in the

joint replenishment simulation. As mentioned in the Literature Review, this

greater total inventory cost is one of the major drawbacks of (T, S) systems.

However, looking at the other performance measures, the joint replenishment

system outperformed the EOQ model when solving the small-trucks-low-fixed

cost scenario. The service level is slightly higher and the overall cost is £7000

cheaper than that of the adjusted EOQ system.

Furthermore, Figure 28 shows that for Experiment 2, in which we examined a

situation where the trucks are large and the fixed cost per order is low, the best

grouping solution is to use a 15-pallet truck every day for one group and a 15-

pallet truck every three days for the other. The proposed grouping model was

successful in identifying these two replenishment options. However, as in the

previous experiment, given that individual demand rates for the 20 products in

Experiment 2 formed two groups - with a demand rate of 5 Pallets/Day for the

first replenishment and 15 Pallets/Day for the second – this was not deemed

possible. As a result, the model suggests alternative combinations in which

Groups A and B boast average demand rates of 5.32 and 14.68 Pallets/Day,

respectively. Group A is thus replenished every 2.82 days using a 15-pallet

truck, while Group B is replenished every 1.02 days, also using a 15-pallet truck.

However, since an integer number of days was assumed in the experiment, the

T values for Groups A and B were rounded to 3 days and 1 day, respectively. For

Group A, this rounding-up resulted in a daily unsatisfied demand of 0.32 pallets.

As a result, the overall service level for this group was as low as 92%.

Meanwhile, rounding up the value of T for Group B, from 1.02 to 1, resulted in

an extra quantity of 0.32 Pallets/Day to be received. The group’s average

inventory level was consequently up to 20 Pallets/Day, with a service level of

99.9%. Clearly, the rounded values of T created imbalances between the two

groups, and the overall performance of this experiment has been affected as a

result.

119

Looking at Figures 31 to 35, a number of observations can be made. Although

the overall cost of the joint replenishment system for this experiment is slightly

lower than the overall cost of the EOQ simulation, the overall results are not

satisfactory. This is because the savings in the total ordering cost as well as

those to the total purchase are mainly attributable to the low service level of

97%. Nevertheless, the joint replenishment results of this experiment can be

easily improved upon by, for example, moving Product 9 and Product 13 from

Group A to Group B. In doing so, the average daily demand for Groups A and B

is 5.06 and 14.94, producing T values of 2.69 and 1.004, respectively. As such,

the rounding up process has a lesser impact on the overall performance. Another

solution to this problem is to assume that the 0.32 Pallet/Day demand rate is

produced by a separate product (take 0.32 Pallets/Day from Product 2, for

example), and move this product to Group B. Thus, we can use the best

grouping solution for this experiment and improve the overall performance in the

process.

120

Figure 28: G(T) behaviour with fixed Qs and the best grouping solution

For Experiments 2 and 6

The third experiment involved a high fixed cost per order and a small truck size.

Figure 29 shows that the best grouping option is to replenish a quantity of 20

pallets daily using a 20-pallet truck, and the LINGO model was successful in

identifying this solution. Further, the proposed joint replenishment solution

proved satisfactory when compared to the adjusted EOQ solution. Figures 31 to

35 show how the Joint replenishment system outperformed the adjusted EOQ

system across all the performance measures.

0

50

100

150

200

250

0 5 10 15 20

G
(T

)

Average Demand Rate (Pallets/Day)

1T1

2T1

3T1

4T1

1T2

2T2

1T3

2T3

Group BGroup A

121

Figure 29: G(T) behaviour with fixed Qs and the best grouping solution

For Experiments 3 and 7

For Experiment 4, meanwhile, a large truck capacity and a high ordering cost are

assumed. The best replenishment in this case would be to use a Type 3 truck

every 1.5 days. Although the model was successful in identifying this solution; it

was not used in the simulation, due to the assumption of T being an integer

number. As such, using a replenishment period of 1 day will result in a very low

service level, while rounding T to 2 days will result in excess inventory levels.

The second best option was thus adopted, which is to use a 20-pallet truck every

day. Nonetheless, the overall performance of the joint replenishment simulation

outperformed the adjusted EOQ simulation results. The service level, inventory

holding cost, average inventory level, and total purchase cost of the joint

replenishment simulation were all improved, as shown in Figures 31 to 35. Most

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25

G
(T

)

Average Demand Rate (Pallets/Day)

1T1

1T2

1T2

1T3

single group solution

122

importantly, the overall cost when the joint replenishment system was used is

£127,000 less than the corresponding overall cost under the adjusted EOQ.

Figure 30: G(T) behaviour with fixed Qs and the best grouping solution

in Experiments 4 and 8

0

20

40

60

80

100

120

140

0 5 10 15 20 25

A
xi

s
Ti

tl
e

Axis Title

1T1

1T2

1T2

1T3

The second best
Single group solution

123

Figure 31: Average Stock on Hand in Experiments 1-4

Figure 32: Average Service levels in Experiments 1-4

1 2 3 4

EOQ 3.84 7.98 6.26 8.70

JR 6.23 15.11 5.82 6.29

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

SO
H

(P
al

le
ts

/
d

ay
)

1 2 3 4

EOQ 99.51% 99.55% 99.55% 99.46%

JR 99.81% 96.92% 99.73% 99.78%

85.00%

87.00%

89.00%

91.00%

93.00%

95.00%

97.00%

99.00%

101.00%

Se
rv

ic
e

Le
ve

l

124

Figure 33: Total holding costs in Experiments 1 to 4

Figure 34: Total ordering costs in Experiments 1 to 4

1 2 3 4

EOQ £20,005.00 £133,732.50 £68,831.31 £88,759.00

JR £68,471.08 £166,029.15 £63,987.54 £69,107.18

£-

£20,000.00

£40,000.00

£60,000.00

£80,000.00

£100,000.00

£120,000.00

£140,000.00

£160,000.00

£180,000.00

To
ta

lH
o

ld
in

g
C

o
st

1 2 3 4

EOQ £20,005.00 £133,732.50 £68,831.31 £88,759.00

JR £8,250.00 £131,967.00 £7,500.00 £82,500.00

£-

£20,000.00

£40,000.00

£60,000.00

£80,000.00

£100,000.00

£120,000.00

£140,000.00

£160,000.00

To
ta

lo
rd

e
ri

n
g

co
st

125

Figure 35: Overall costs in Experiments 1 to 4

5.1.2 Type 2 Demand Experiments: Very low demand for most of

the products and high demand for the remaining few

products

Since the best grouping solution does not depend on the individual demand rates

of the 20 products, Figures 27, 28, 29 and 30 remain applicable for Experiments

5, 6, 7 and 8, respectively, As such, the best grouping option obtained

graphically for Experiments 1, 2, 3 and 4 will also be the best grouping option

for Experiments 5, 6, 7, 8 respectively. Furthermore, for the remaining four

experiments (Experiments 5 to 8), the second type of demand was used for the

simulation (Demand is very low for most of the products but high for the

remaining few).

With regards to Experiment 5, the best grouping solution, shown in Figure 27, is

that for Experiment 1. However, unlike Experiment 1, the model was successful

in generating ideal groups in which Group A generates a demand rate of exactly

5 Pallets/Day and Group B generates a demand rate of exactly 15 Pallets/Day.

Nevertheless, despite using the best grouping option, the joint replenishment

simulation results for this experiment were not satisfactory. As shown in Figure

1 2 3 4

EOQ £16,082,242 £16,294,373 £16,132,861 £16,278,311

JR £16,076,721 £16,293,996 £16,071,487 £16,151,607

£15,950,000.00

£16,000,000.00

£16,050,000.00

£16,100,000.00

£16,150,000.00

£16,200,000.00

£16,250,000.00

£16,300,000.00

£16,350,000.00

To
ta

lC
o

st

126

39, this is due to the average inventory level in the joint replenishment

simulation being four times bigger than that in the EOQ simulation. As a result,

as Figure 41 indicates, the total inventory holding cost in the joint replenishment

simulation was also much higher. Accordingly, the overall cost of the joint

replenishment system was £131,000 higher than that for the EOQ system (as

shown in Figure 41).

A close examination of the results shows the main issue to be the inventory

holding cost of Product 2 in Group A, which was overloaded with stock (as shown

in Figure 36). However, Product 2 has a very low demand rate of 0.09

Pallets/Day. Rather, the issue here is in the simulation model itself, and will be

discussed later in this chapter (in Section 5.2). Nevertheless, the joint

replenishment model outperformed the adjusted EOQ model in terms of the

service level in this experiment (as shown in Figure 38).

Figure 36: SOH levels for Product 2 in Experiment 5

In Experiment 6, where the ordering cost is high and the Truck size is small, the

performance of the joint replenishment model was very poor, with an average

inventory level that is 5 times that of the EOQ simulation (as shown in Figure

-10

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000 1200

SO
H

le
ve

l

Day

127

39). As a result, the inventory holding cost is very high compared to the total

inventory holding cost in the adjusted EOQ simulation (as indicated in Figure

41).

Moreover, as shown in Figure 40, the average service level is at 88%, which is

significantly lower than that in the adjusted EOQ simulation. Additionally, despite

this very low service level, the total cost of the joint replenishment simulation is

very high, and exceeds the corresponding figure for EOQ by more than

£500,000. Such results clearly signal the presence of a fundamental issue in this

experiment.

Looking at the grouping solution and the detailed simulation results, these poor

results can be explained. As mentioned earlier, the best grouping solution of this

experiment is essentially the same as that for Experiment 2, which involves

replenishing the different items using two 15-pallet trucks, in which the first is

dispatched daily and the second every 3 days. As with Experiment 2, the

problem stems from the grouping model failing to recognise that T must be an

integer value. Accordingly, although LINGO found the best grouping option, this

option is neither practical nor possible to implement in the simulation model.

Indeed, the model grouped the products into two groups, in which Group A

boasts an average demand rate of 13.21 Pallets/Day and Group B a daily

demand rate of 6.79 Pallets/Day, producing T values of 1.14 Pallets/Day and

2.21 Pallets/Day for Groups A and B, respectively. In performing the simulation,

the T values were thus rounded to 1 and 2, respectively. As a result, both

groups suffered from excess inventory levels and, consequently, very high

inventory holding costs. As shown in Figures 39 and 41, the average inventory

level in the joint replenishment simulation is 26.31 Pallets/Day and the total

inventory holding cost is £599,000, which is much higher than the average

inventory level of 5.61 Pallets/Day and the total inventory holding cost of

£62,000 observed in the adjusted EOQ simulation.

In general, with such excess inventory level, one would expect to see very high

service levels. However, as was observed in the previous example, the service

level in this experiment was at 88%, which is very low compared to the 98%

produced by the adjusted EOQ model. This is attributable to the fact the

simulation model is not allocating the replenishment quantity to the different

128

items in an appropriate way. As mentioned earlier, this problem will be discussed

in more detail in Section 5.3.

The grouping issue in this experiment can be solved simply by moving some of

the products from Group B to Group A. For example, moving products 1, 8, 15,

17, 18, 19 and 20 from Group B to A will result in an average demand rate of

exactly 15 Pallets/Day for Group A and exactly 5 Pallets/Day for Group B. This

will, indeed, improve the simulation results. In particular, this way of grouping

will improve the total holding costs and the inventory levels, since this solution

avoids the rounding step.

Implementing these suggestions into Experiment 6, the following results were

obtained:

Performance Measure Result

Average Inventory Level (Pallets/
day)

10.7

Average Service Level 99.63%

Total Purchase Cost £15,996,000.00

Total Holding Cost £ 117,703.3

Total Ordering Cost £ 42,237.64

Total Cost £16,155,940.3

Clearly, these results represent significant improvement in the overall

performance. In fact, as opposite to the original experiment, with these

adjustments the joint replenishment model, clearly, outperforms the adjusted

EOQ model as the total costs have been reduced by £62 thousands. Accordingly,

these adjustments can be added as a further step in the proposed solution to

guarantee robustness in the solution. Moreover, with these adjustments, the

inventory level behaviour of one product (product 2) has been significantly

improved as shown in the Figure 37 and Figure 38 below.

129

Figure 37: Daily SOH level for product 2 originally

Figure 38: The SOH level for product 2 after adjusting experiment 6

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 200 400 600 800 1000

SO
H

Le
ve

l

Day

0

5

10

15

20

25

0 200 400 600 800 1000

SO
H

le
ve

l

Day

130

With regards to Experiment 7, which involves low ordering costs and large truck

sizes, the overall performance of the joint replenishment simulation

outperformed that of the adjusted EOQ simulation, achieving a service level of

99.4%, which is approximately the same as that observed in the adjusted EOQ

simulation. Furthermore, although the total inventory cost is higher in the joint

replenishment simulation, the overall cost is £12,000 lower (as shown in Figure

43).

Finally, in Experiment 8 the grouping solution used is essentially that for

Experiment 4, which involves daily replenishing a 20-pallet truck. The overall

joint replenishment simulation results are satisfactory, with a service level of

99.51%, compared to 99.46% in the EOQ simulation, and an overall cost of

more than £2,500 lower than the EOQ figure.

Figure 39: Average Stock on Hand (Experiments 5 to 8)

5 6 7 8

EOQ 4.30 5.61 8.07 7.79

JR 16.34 26.31 14.67 13.05

0.00

5.00

10.00

15.00

20.00

25.00

30.00

SO
H

Le
ve

l

131

Figure 40: Average Service Levels (Experiments 5 to 8)

Figure 41: Total Holding Costs (Experiments 5 to 8)

5 6 7 8

EOQ 99.55% 99.55% 99.48% 99.46%

JR 99.61% 88.35% 98.44% 99.51%

85.00%

87.00%

89.00%

91.00%

93.00%

95.00%

97.00%

99.00%

101.00%

Se
rv

ic
e

Le
ve

l

5 6 7 8

EOQ £47,300.09 £61,612.11 £88,687.32 £85,621.34

JR £151,456.61 £598,881.65 £161,183.43 £143,461.28

£-

£100,000.00

£200,000.00

£300,000.00

£400,000.00

£500,000.00

£600,000.00

£700,000.00

To
ta

lH
o

ld
in

g
C

o
st

132

Figure 42: Total Ordering Costs (Experiments 5 to 8)

Figure 43: Total Costs (Experiments 5 to 8)

5 6 7 8

EOQ £14,860.00 £140,657.00 £7,955.00 £74,030.00

JR £14,000.00 £131,967.00 £7,500.00 £82,500.00

£-

£20,000.00

£40,000.00

£60,000.00

£80,000.00

£100,000.00

£120,000.00

£140,000.00

£160,000.00

To
ta

lO
rd

e
ri

n
g

C
o

st

5 6 7 8

EOQ £16,034,160. £16,217,269. £16,176,642. £16,227,651.

JR £16,165,456. £16,726,848. £16,168,683. £16,225,961.

£15,600,000.00

£15,800,000.00

£16,000,000.00

£16,200,000.00

£16,400,000.00

£16,600,000.00

£16,800,000.00

To
ta

lC
o

st

133

5.2 The impact of changing the ordering cost and truck sizes

In examining the performance of the new joint replenishment solution, a low

fixed cost per order was adopted in some situations and a high fixed cost per

order in others. As expected, the performance of the model in reducing the

overall cost was greater when the fixed cost per order is high. This is because

the joint replenishment theory is typically designed to reduce the overall costs of

order and, as such, it is designed for situations where the ordering costs are

high. Moreover, as discussed in the Literature Review chapter, (T, S) policies are

also designed to control environments where the ordering costs are high.

However, the performance of the proposed solution is also improved with larger

trucks. This is because using big trucks allows for the ideal joint replenishment

situation to be applied, namely to replenish all different items at once at every

replenishment instance, thus minimising the total ordering cost.

In general, the proposed solution is more likely to succeed in reducing the

overall costs and in improving the overall service level in situations where the

fixed order cost is high and the trucks available are large. Moreover, changing

the values of the ordering costs and the truck sizes also produces an impact on

the way the products are grouped together. In particular, the higher the

ordering cost and the larger the available trucks, the more likely it is that the

solution will involve very few replenishments.

5.3 The impact of the products’ demand rates

In this dissertation, we examined the performance of the proposed solution

using two types of demand. Under Type 1 demand, in which all the products

exhibited similar demand rates, the performance of the grouping heuristic was

efficient in finding the optimal groups. The only issue, as described in Section

5.1, was that raised by the rounding-up step. However, different solutions were

offered to address this problem which, if implemented, would improve the

overall performance.

Furthermore, under Type 1 demand, the performance of the (T, S) simulation

was also acceptable across all experiments, with the overall costs being reduced

134

and the average service levels improved. On the other hand, running the

experiments under Type 2 demand, where most of the products had low demand

rates but a remaining few exhibited high demand levels, it was realised that the

(T, S) model needed further improvements. This is because the (T, S) simulation

model attempts to minimise the total deviation from the order-up-to level, but

without considering the differences in the demand rates among the different

products. Accordingly, when a mix of high and low demand products is present

in a group, the model fails in creating the proper balance when allocating the

truck capacity to the different products. This issue manifested itself in

Experiments 5 and 6 in particular, and a simple solution would be to divide each

high demand product into several products. Indeed, this step was performed

after running the grouping model. For example, in Experiment 5, Product 5 in

Group A had an average demand rate of 4.81 Pallets/Day. Dividing the Product

into 10 sub-products in turn divided the demand rate by 10; yielding 10

products with a demand rate of 0.481 Pallets/Day each. This way, the

unbalanced allocation of the truck capacity, and therefore the ensuing excess

inventory levels for some products and very low service levels for others, can be

avoided. The order-up-to-level for each new product was then re-calculated and

the simulation re-run.

5.4 The solution for items with different holding costs

The proposed solution in this project is particularly designed for joint

replenishment environments where the holding costs for different items is the

same. However, this is not always the case in real life situations. As such, using

the following procedure, the proposed solution can be adapted to situations

where the holding costs are different for different items:

We know that for any truck,

(ܶ)ܩ =
∑ ௜ℎ௜ߣ
௡
௜ୀଵ

2
ܶ+

ܭ

ܶ
(5.1)

Therefore,

135

ܶ∗ = ඨ
ܭ2

∑ ௜ℎ௜ߣ
௡
௜ୀଵ

(5.2)

Further, we also know that,

ܶ∗ =
ܳ∗

∑ ௜ߣ
௡
௜ୀଵ

(5.3)

Therefore,

ܳ∗

∑ ௜ߣ
௡
௜ୀଵ

= ඨ
ܭ2

∑ ௜ℎ௜ߣ
௡
௜ୀଵ

(5.4)

Hence,

෍ ௜ℎ௜ߣ

௡

௜ୀଵ

=
∑)ܭ2 ௜ߣ

௡
௜ୀଵ)ଶ

ܳ∗ଶ
(5.5)

Supposing that =௜ߙ is the % of ௜�inߣ ∑ ௜ߣ
௡
௜ୀଵ , then we have:

=௜ߣ ௜෍ߙ ௜ߣ

௡

௜ୀଵ

(5.6)

Accordingly,

෍ ௜ℎ௜ߣ

௡

௜ୀଵ

= ℎଵߙଵ෍ ௜ߣ

௡

௜ୀଵ

+ ℎଶߙଶ෍ ௜ߣ

௡

௜ୀଵ

+⋯+ ℎ௡ߙ௡ ෍ ௜ߣ

௡

௜ୀଵ

(5.7)

Therefore,

෍ ௜ℎ௜ߣ

௡

௜ୀଵ

= (ℎଵߙଵ+ ℎଶߙ+⋯+ ℎ௡ߙ௡)෍ ௜ߣ

௡

௜ୀଵ

(5.8)

Using Equation 5.1, we obtain:

136

(ℎଵߙଵ+ ℎଶߙ+⋯+ ℎ௡ߙ௡)෍ ௜ߣ

௡

௜ୀଵ

=
∑)ܭ2 ௜ߣ

௡
௜ୀଵ)ଶ

ܳ∗ଶ
(5.9)

As such, the ideal demand rate for any truck of size ܳ∗ can be expressed as:

෍ ௜ߣ

௡

௜ୀଵ

=
ܳ∗ଶ

ܭ2
(ℎଵߙଵ+ ℎଶߙ+⋯+ ℎ௡ߙ௡) (5.10)

Given the ideal demand rate for each truck, we propose the following grouping

heuristic for this problem:

1. Set values for .ݏ௜ߙ

2. Find ∑ ௜ߣ
௡
௜ୀଵ using Equation 5.10.

3. Find �usingݏ′௜ߣ Equation 5.6.

4. Group the products using the Bin-Packing approach. This is done by

allocating the different ݏ௜ߣ to the ideal demand rates of the different

trucks.

Supposing that ℎ௜= ℎଵݎ݋��ℎଶ , ݊ = 2, ଵߙ = ߙ and ଶߙ = ߚ we then obtain:

 The total cost is at a minimum at ߙ = 1 and ߚ = 0 when ℎଵ < ℎଶ

or ߚ = 1 and ߙ = 0 when ℎଶ < ℎଵ

 The total cost is at a maximum at ߙ = 1 and ߚ = 0 when ℎଵ > ℎଶ

or ߚ = 1 and ߙ = 0 when ℎଶ > ℎଵ

 These two conditions set the upper and lower boundaries of ∑ ௜ℎ௜ߣ
௡
௜ୀଵ

137

 This proves that there is no optimum value for ∑ ௜ℎ௜ߣ
௡
௜ୀଵ and that it is

rather dependent on the values allocated for ߙ and ߚ

Therefore, in this heuristic solution, realistic and feasible values of the different

ݏ௜ߙ can be allocated according to the actual percentages of each product from

the overall real demand. Once the products are grouped, the (T, S) system

adopted in this dissertation can be used.

It must be noted, however, that while the proposed solution presented in this

project to the joint replenishment problem under consideration has been shown

to be reliable, it nevertheless represents the first step towards the development

of more efficient and versatile future solutions to the problem, particularly by

integrating novel angles and approaches that have thus far been unexplored in

past efforts.

138

CHAPTER 6. Conclusion

In this final chapter, an overview will first be provided of the main objectives

that were successfully fulfilled in the course of undertaking the present project.

Second, a summary of the key results obtained during the experimental process

(i.e. the joint replenishment simulation) will be presented. Finally, potential

areas of study and further research relevant to the topic will be examined, and a

set of recommendations and suggestions in this regard will be offered.

It must be noted at the outset that this dissertation has accomplished its

principal aim, namely the development of a new heuristic model to solve the

Joint Replenishment Problem (JRP) for a configuration involving stochastic

characteristics of demand, products with similar holding and purchase costs,

quantity discounts and a fixed cost charged with each dispatched truck. To that

purpose, the dissertation successfully fulfilled its overall objective of minimising

the total inventory control cost for joint replenishment environments - in which a

fixed cost is charged for each truck used to replenish the various items.

The first step of the heuristic solution developed in this project involves

efficiently placing the different items into the appropriate groups, in order to

achieve quantity discounts and to benefit from economies of scale. To this effect,

an integer programming grouping model was successfully developed based on a

full truckload policy and total demand. The grouping heuristic was programmed

using the LINGO optimisation software. The widely-used Bin Packing approach

was implemented into the LINGO model in order to allocate the different

products to the appropriate groups, so that each group is replenished every ܶ

using a single full truck.

The second step of the solution involves developing a replenishment policy

where the choice of order size must help ensure full truckloads, so as to exploit

quantity discounts. For this purpose, an adjusted (T, S) policy was used in

which, at each review instant, ܶ, the inventory position of each item, ,݅ within

group ݆ is reviewed. When the order is placed, thus, its inventory position is

raised to ௜ܵ+ ௜݀
ି − ௜݀

ା, whereby ௜݀
ି and ௜݀

ା are the over-achievement and under-

achievement variables.

139

Furthermore, to test the performance of the heuristic solution, experimental data

based on a real-life context was generated. Using this data, different groups of

products were set up and a 1000-day simulation (using LINGO) was conducted,

based on the adjusted (T, Q) policy. This simulation aimed to determine the

order quantities of the different products.

The results obtained from the joint replenishment simulation were subsequently

compared against the simulation results of an adjusted EOQ model that were

performed using Microsoft Excel. In order to conduct this comparative analysis, a

set of key performance measures were adopted: Total inventory cost, Average

Inventory Level and the Service Level.

With regards to the key findings of the simulation, the proposed solution to the

JPR was found to perform better in situations where the fixed cost per order is

high. In addition, it was found that, in most cases, the proposed solution

outperformed that of the adjusted EOQ model. Moreover, in performing the (T,

S) simulation, it was shown that the simulation model programmed in LINGO

attempts to minimise the total deviation from the order-up-to levels of the

different items without taking into consideration the individual needs of the

different items in terms of their order quantities. This is notably the case when

Type 2 demand is adopted when running the simulation. As a result, some

products were overloaded with stock while others experienced very low service

levels due to the unbalanced supply.

As such, a simple solution to this issue was suggested, according to which

products with very high demand rates are divided into several sub-products.

Moreover, the grouping heuristic has been shown not to recognise that the

replenishment cycle (T) must be an integer number of days, which impacted on

the overall results. Nevertheless, a number of simple solutions to this problem

were provided which, if applied, would improve the overall performance and

bolster the robustness of the proposed solution.

The topic of joint replenishment and the Joint Replenishment Problem

specifically, will continue to present interesting issues and challenges for the

140

academic and business community. In this context, the present research work,

while successfully achieving its stated aim and objectives, has also traced a way

towards further work into the topic. Indeed, a number of avenues for future

work into the topic of joint replenishment can prove greatly beneficial in terms

both of academic and practical advantages.

For instance, there is great potential for extending the present solution to allow

it to handle items with different holding costs. Moreover, the solution can be

adapted in a number of interesting ways so as to suit a variety of purposes, for

instance by adopting different policies such as the Can-Order policy. Further

research may also be carried out to help improve and refine the current solution,

such as improving the implementation or conducting more extensive

experimentation.

141

References

Aksoy, Y. & Erenguc, S., 1989. Multi-item inventory models with coordinated

replenishments: A survey.. International Journal of Operations and

Production Management, Volume 8, pp. 63-73.

Andreas, N., 2006. Essays on Joint Replenishment and Multi-Echlon Inventory

Systems, Doctoral dissertation, Luleå University of Technology.

Arkin, E., Joneja, D. & Roundy, R., 1989. Computational complexity of

uncapacitated multi-echelon production planning problems. Operations

Research Letters, 8(2), p. 61–66.

Atkins, D., 1991. The Inventory Joint Replenishment Problem with a General Class

of Joint Costs. European Journal of Operational Research, Volume 51, pp.

310-312.

Atkins, D. & Iyogun, P., 1988. Periodic versus ‘can-order’ policies for coordinated

multi-item inventory systems. Management Science, Volume 34, pp. 791-

796.

Balakrishnan, N., 2012. Managerial Decision Modeling with Spreadsheets. 3rd ed.

:Prentice Hall.

Balintfy, J., 1964. On a Basic Class of Multi-Item Inventory Problems. Management

Science, 10(2), pp. 287-297.

Benton, W., 1991. Quantity discounts under conditions of multiple items, multiple

suppliers and resource limitations. International Journal of Production

Research , Volume 29, p. 1953– 1961.

Brown, G., 1967. Decision Rules for Inventory Management. New York: Rinehart &

Winston.

Cachon, G., 2001. Managing a retailer’s shelf space, inventory, and transportation.

Manufacturing and Service Operations, 3(3), p. 211–229.

142

Carlson, M. & Miltenburg, G., 1988. Using the service point model to control large

group of items. Omega, 16(5), p. 481–489.

Cha, C. & Moon, I., 2005. The joint replenishment problem with quantity discounts

under constant demand. OR Spectrum, 27(4), pp. 569-581.

Chakravarty, A., 1984. Joint inventory replenishments with group discounts based

on invoice value. Management Science , Volume 30, p. 1105–1112.

Chen, C. & Min, K., 1994. A Multi-Product EOQ Model with Pricing Consideration -

T.C.E Cheng's Model Revisited. Journal of Computers and Industrial

Engineering, 26(4), pp. 787-794.

Chung, C., Hum, S. & Kirca, O., 1996. The coordinated replenishment dynamic lot-

sizing problem with quantity discounts. European Journal of Operational

Research, Volume 94, p. 122–133.

Dolan, J., 1987. Quantity discounts: managerial issues and research opportunities.

Marketing Science, 6(1), pp. 1-22.

Doll, L. & Whybark, C., 1973. An Iterative Procedure for the Single-Machine Multi-

Product Lot Scheduling Problem. Management Science , 20(1).

Donal, J., 1998. Quantity Discounts: Managerial Issues and Research Opportunities.

Marketing Scince, 1-22(1), p. 6.

Eijs, M., 1994. Multi-item inventory systems with joint ordering and transortation

decisions. International Journal of Production Economics, Volume 35, pp.

285-292.

Eijs, M., 1994. Multi-Item Inventory Systems with Joint Ordering and Transportation

Decisions. International Journal of Production Economics, Volume 35, pp.

285-292.

Eijs, V., 1993. A note on the joint replenishment problem under constant demand.

Journal of the Operational Research Society, Volume 44 , pp. 185-191.

143

Eijs, V., 1993. A note on the joint replenishment problem under constant demand.

Journal of the Operational Research Society, Volume 44, pp. 185-191.

Eijs, V., Heuts, J. & Kleijnen, C., 1992. Analysis and comparison of two strategies

for multi-item inventory systems with joint replenishment costs. European

Journal of Operational Research, Volume 59, p. 405–412.

Eppen, G. & Martin, R., 1987. Solving multi-item capacitated lot-sizing problems

using variable redefinition. Operations Research, Volume 35, p. 832–848.

Federgruen, A., Groenevelt, H. & Tijms, H., 1984. Coordinated replenishments in a

multi-item inventory system with compound Poisson demand. Management

Science, Volume 30, pp. 344-357.

Ghiani, G., Laporte, G. & Musmanno, R., 2013. Introduction to Logistics systems

Management. NY: Wiley.

Glock, C., 2012. The Joint Ecoomic Lot Size Problem: A Review. International

Journal of Production Economics, 135(2), pp. 671-686.

Goyal, S., 1973. Determination of Economic Packaging Frequency for Items Jointly

Replenished. Management Science, 20(2), pp. 232-235.

Goyal, S., 1974a. Optimum ordering policy for a multi-item single supplier.

Operational Research Quarterly, Volume 25, pp. 293-298.

Goyal, S., 1974b. Determination of optimal packaging frequency of jointly

replenished items. Management Science, Volume 21, pp. 436-443.

Goyal, S., 1988. Determining the optimum production-packaging policy for jointly

replenished items. Engineering Costs and Production Economics, Volume 15,

pp. 339-341.

Goyal, S. & Belton, A., 1979. A Simple Method of Determining Order Quantities in

Joint Replenishment Under Deterministic Demand. Management Science,

Volume 25, p. 604.

144

Goyal, S. & Deshmukh, S., 1993. A note on “the economic ordering quantity for

jointly replenished items''. International Journal of Production, Volume 31,

pp. 2959-2961.

Goyal, S., Harir, A. & Abou-el-ata, M., 1995. The resource constrained multi-item

inventory problem with price discount: a geometric programming approach.

Production Planning & Control , Volume 6, p. 374–377.

Goyal, S. & Satir, S., 1989. Joint Replenishment Inventory Control: Deterministic

and Stochastic Models. European Journal of Operational Research, Volume

38, pp. 2-13.

Guder, F. & Zydiak, J., 1997. Non-stationary ordering policies for multi-item

inventory systems subject to a single resource constraint and quantity

discounts. Computers & Operations Research, 24(1), p. 61–71.

Guder, F. & Zydiak, J., 1999. Ordering Policies for Multi-item Inventory Systems

Subject to Multiple Resource Constraints. Computers and Operations

Research, Volume 26, pp. 583-597.

Guder, F., Zydiak, J. & Chaudhry, S., 1994. Capacitated multiple item ordering with

incremental quantity discounts. Journal of the Operational Research Society,

Volume 45, p. 1197–1205.

Hariri, A., Abou-El-Ata, M. & Goyal, S., 1995. The resource constrained multi-item

inventory problem with price discount: a geometric programming approach.

Production Planning & Control, 6(4), pp. 374-377.

Hoque, M., 2006. European Journal of Operational Research. An Optimal Solution

Technique for the Joint Replenishment Problem with Storage and Transport

Capacities and Budget Constraints, Volume 175, pp. 1033-1042.

Ignall, E., 1969. Optimal continuous review policies for two product inventory.

Management Science, Volume 15, pp. 278-283.

Johansen, S. & Melchiors, P., 2003. Can-order policy for the periodic-review joint

replenishment problem. Journal of the Operational Research Society, 54(3),

pp. 283-290.

145

Kamalia, A., Ghomia, S. & Jolaib, F., 2011. A multi-objective quantity discount and

joint optimization model for coordination of a single-buyer multi-vendor

supply chain. Computers & Mathematics with Applications, 62(8), p. 3251–

3269.

Kang, H. & Lee, A., 2012. A stochastic lot-sizing model with multi-supplier and

quantity discounts. International Journal of Production Research, 51(1), pp.

245-263.

Kaspi, M. & Rosenblatt, M., 1983. An Improvement of Silver's Algorithm for the Joint

Replenishment Problem. IIE Transactions, Volume 15, pp. 264-269.

Kaspi, M. & Rosenblatt, M., 1991. On the economic ordering quantity for jointly

replenished items. International Journal of Production Research, Volume 29,

pp. 107-114.

Keerthana, R., 2013. Implementation of Joint Replenishment Inventory Model with

Quantity Discounts.MSc Dissertation thesis. University of Nottingham.

Khouja, M. & Goyal, S., 2008. A Review of the Joint Replenishment Problem

Literature: 1989-2005. European Journal of Operational Research , Volume

186, pp. 1-16.

Khouja, M. & Saydam, S., 2005. Joint replenishment problem under continuous unit

cost change. International Journal of Production Research, 43(2), pp. 311-

326.

Kiesmuller, G., 2009. A multi-item periodic replenishment policy with full truck

loads. International Journal of Production Economics , Volume 118, pp. 275-

281.

Lee, A., Kang, H., Lai, C. & Hong, W., 2013. An integrated model for lot sizing with

supplier selection and quantity discounts. Applied Mathematical Modelling,

37(7), p. 4733–4746.

Li, J. & Liu, L., 2006. Supply chain coordination with quantity discount policy.

International Journal of Production Economics, 101(1), p. 89–98.

146

Lu, L., 1995. A One Vendor Multi-Buyer Integrated Inventory Model. European

Journal of Operational Research, Volume 81 , pp. 312-323.

McGee, V. & David, P., 1996. Periodic production scheduling at a fastener

manufacturer. International Journal of Production Economics, Volume 46, pp.

65-87.

Melchiors, P., 2002. Calculating can-order policies for the joint replenishment

problem by the compensation approach. European Journal of Operational

Research, 141(3), pp. 587-595.

Miltenburg, G. & Silver, E., 1989. A microcomputer inventory control package for

controlling families of items. Engineering Costs and Production Economics,

Volume 15, p. 201–209.

Miltenburg, J., 1985 . Allocating a Replenishment Order Among a Family of Items.

IEE Transactions , Volume 17, pp. 261-267.

Miltenburg, J., 1987. Co-ordinated control of a family of discount-related items.

INFOR, Volume 25, pp. 97-116.

Moon, I. & Cha, B., 2005. The Joint Replenishment Problem with Quantity Discounts

Under Constant Demand. OR Spectrum , Volume 27, pp. 569-581.

Moon, I. & Cha, B., 2006. The joint replenishment problem with resource restriction.

European Journal of Operational Research, Volume 173, pp. 190-198.

Moon, I. & Cha, B., 2006. The Joint Replenishment Problem with Resource

Restrictions. European Journal of Operational Research , Volume 173, pp.

190-198.

Moon, I., Goyal, S. & Cha, B., 2008. The Joint Replenishment Problem Involving

Multiple Suppliers Offering Quantity Discounts.. International Journal of

Systems Science, 39 (6), pp. 629-637.

Moussourakis, J. & Haksever, C., 2013. Models for Ordering Multiple Products

Subject to Multiple Constraints, Quantity and Freight Discounts. American

Journal of Operations Research , Volume 3, pp. 521-535.

147

Nagasawa, K. & Irohara, T., 2013. Joint Replineshment Problem in Multi-item

Inventory Control with Carrier Capacity and Receiving Inspection Cost.

Operations and Supply Chain Management , Volume 6, pp. 111-116.

Nahmias, S., 2009. Production and Operations Analysis. 6th ed. NY: McGraw-Hill.

Nielsen, C. & Larsen, C., 2005. An analytical study of the Q(s, S) policy applied.

European Journal of Operational Research, Volume 163, pp. 721-732.

Nilsson, A., Segerstedt, A. & Sluis, E., 2007. A New Iterative Heuristic to Solve the

Joint Replenishment Problem Using Spreadsheet Technique. International

Journal of Production Economics, Volume 108, pp. 399-405.

Olsen, A., 2005. An Evolutionary Algorithm to Solve the Joint Replenishment

Problem using Direct Grouping. Computers and Industrial Engineering ,

Volume 48, pp. 223-235.

P&H, 2014. Palmer and Harvey. [Online]

Available at: http://www.palmerharvey.co.uk/

[Accessed 2014 6 30].

Pantumsinchai, P., 1992. A Comparison of Three Joint Ordering Inventory Policies.

Decision Science, 23(1), pp. 111-127.

Paul, S., Wahab, M. & Ongkunaruk, P., 2014. Joint replenishment with imperfect

items and price discount. Computers & Industrial Engineering, Volume 74, p.

179–185.

Pirkul, H. & Aras, O., 1985. Capacitated multiple item ordering problem with

quantity discounts. IIE Transactions, Volume 17, p. 206–211.

Pirkul, H. & Aras, O., 1985. Capacitated multiple item ordering problem with

quantity discounts. IIE Transactions, Volume 17, p. 206–211.

Porras, E. & Dekker, R., 2006. An Efficient Optimal Solution Method for The Joint

Replenishment Problem with Minimum Order Quantities. European Journal of

Operational Research, Volume 174, pp. 1595-1615.

148

Porras, E. & Dekker, R., 2006b. On the efficiency of optimal algorithms for the joint

replenishment problem: A comparative study. Econometric Institute Report

EI, Volume 33.

Porras, E. & Dekker, R., 2008. A Solution Method for the Joint Replenishment

Problem with Correction Factor. International Journal of Production

Economics , Volume 113, pp. 843-851.

Queyranne, M. & Sun, D., 1993. The Performance Ratio of Grouping Policies for the

Joint Replenishment Problem. Discrete Applied Mathematics , Volume 46, pp.

43-72.

Qu, W., Bookbinder, J. & Iyogun, P., 1999. An Integrated Inventory-Transportation

System with Modified Periodic Policy for Multiple Products. European Journal

of Operational Research , Volume 115, pp. 245-269.

Schouten, F., Eijs, V. & Heuts, R., 1994. Coordinated replenishment systems with

discount opportunities. International Journal of Production Research, Volume

32, p. 2879–2895.

Schultz, H. & Johansen, S., 1999. Can-order policies for coordinated inventory

replenishment with Erlang distributed times between ordering. European

Journal of Operational Research, 16(1), pp. 30-41.

Shu, F., 1971. Economic ordering frequency for two items jointly replenished.

Management Science, Volume 17, pp. 406-410.

Shumnij, J., 2010. Investigating Joint Replenishment Inventory Models. MSc

dissertation. The University of Nottingham.

Silver, E., 1965. Some characteristics of a special joint-order inventory model.

Operations Research, Volume 14, pp. 319-322.

Silver, E., 1973. Three ways of obtaining the average cost expressions in a problem

related to joint replenishment inventory control. Naval Research Logistics

Quarterly, Volume 20, pp. 241-254.

149

Silver, E., 1974. A control system for co-ordinated inventory replenishment.

International Journal of Production Research, Volume 12, pp. 647-671.

Silver, E., 1976. A simple method of determining order quantities. Management

Science, Volume 22, pp. 1351-1361.

Silver, E., 1981. Establishing reorder points in the (S,c,s) co-ordinated control

system under compound Poisson demand. International Journal of

Production, Volume 19, pp. 743-750.

Silver, E. & Bischak, D., 2011. The exact fill rate in a periodic review base stock

system under normally distributed demand. Omega, 39(3), pp. 346-349.

Silver, E., Pyke, D. & Peterson, R., 1998. Inventory Management and Production

Planning and Scheduling. 3rd ed. NY: Wiley.

Simpson, C. & Erenguc, S., 1995. Multiple Stage Production Planning Research:

History and Opportunities. International Journal of Production and

Operational Science , 6(16), pp. 25-40.

Starr, M. & Miller, D., 1962. Inventory Control: Theory and Practice. NJ: Prentice

Hall.

Tayur, S., Ganeshan, R. & Magazine, M., 1999. Quantitative Models for Supply Chain

Management. Boston: Kluwer Academic Publishers.

Thompstone, R. & Silver, E., 1975. A co-ordinated inventory control system for

compound Poisson demand and zero lead time. International Journal of

Production Research, Volume 581-602, p. 13.

Toptal, A., Cetinkaya, A. & Lee, C., 2003. The Buyer-Vendor Coordination Problem:

Modeling Inbound and Outbound Cargo Capacity and Costs. IEE Transactions

, Volume 35, pp. 987-1002.

Tsai, C. & Huang, P., 2009. An association clustering algorithm for can-order policies

in the joint replenishment problem. International Journal of Production

Economics, 117(1), pp. 30-41.

150

Viswanathan, S., 1996. A new optimal algorithm for the joint replenishment. Journal

of the Operational Research Society, Volume 47, pp. 936-44.

Viswanathan, S., 1997. Periodic review (s,S) policies for joint replenishment

inventory systems. Management Science, Volume 43, p. 1447–1454.

Viswanathan, S., 2002. On Optimal Algorithms for the Joint Replenishment Problem.

Journal of the Operational Research Society, Volume 53, pp. 1286-1290.

Wee, H., 2013. Inventory Modelling Systems: Modelling and Research Methods.

s.l.:Nova.

Wilson, R., 1993. Nonlinear Pricing. NY: Oxford University Press.

Xu, J., Lu, L. & Glover, F., 2000. The deterministic multi-item dynamic lot size

problem with joint business volume discount. Annals of Operations Research

, Volume 96, p. 317–337.

151

Appendices

(Note that due to the enormous number of appendices, the full list is submitted online

and in the attached CD)

152

Grouping EXP1
!EXP1;

Model:

Sets:

PRODUCT/1..20/:

DEMAND;

REP/1..17/:
y,
Q,
IDEAL_DEMAND,
D1,
D2,
K;

PXR(PRODUCT,REP):
X;

endsets

data:

DEMAND =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','AVG_DEMAND');
Q =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','Q');
IDEAL_DEMAND =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','IDEAL_DEMAND');
H =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','HOLDING_COST');
K =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','FIXED_COST');

enddata

!Objective function;

MIN = @SUM (REP(J): (0.5*H*Q(J)*Y(J))+(K/Q(J))*(@SUM (PRODUCT(I): DEMAND(I)*X(I,J))));

!constraints;

!every item should be allocated to one replenishment only;
@FOR (PRODUCT(I): @SUM (REP(J): X(I,J)) =1);

!x is an intejer = 0 or 1 (i.e. x is binary;
@FOR (PXR (I,J): @BIN (X(I,J)));

!y is binary;
@FOR (REP(J): @BIN (Y(J)));

!logical condition;
@FOR(PXR(I,J): X(I,J) <= Y(J));

!loading/capacity constraint;

@FOR(REP(J): (D1(J)- D2(J)+ @SUM (PRODUCT (I): DEMAND(I)*X(I,J)))= IDEAL_DEMAND(J)*Y(J));
@for (REP(J): (@SUM (PRODUCT (I): DEMAND(I)*X(I,J))) <= Q(J));

end

153

Grouping EXP 5

!EXP1 X;

Model:

Sets:

PRODUCT/1..20/:

DEMAND;

REP/1..7/:
y,
Q,
IDEAL_DEMAND,
D1,
D2,
K;

PXR(PRODUCT,REP):
X;

endsets

data:

DEMAND =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1X.xlsx','AVG_DEMAND');
Q =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1X.xlsx','Q');
IDEAL_DEMAND =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1X.xlsx','IDEAL_DEMAND');
H =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1X.xlsx','HOLDING_COST');
K =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1X.xlsx','FIXED_COST');

enddata

!Objective function;

MIN = @SUM (REP(J): (0.5*H*Q(J)*Y(J))+(K/Q(J))*(@SUM (PRODUCT(I): DEMAND(I)*X(I,J))));

!constraints;

!every item should be allocated to one replenishment only;
@FOR (PRODUCT(I): @SUM (REP(J): X(I,J)) =1);

!x is an intejer = 0 or 1 (i.e. x is binary;
@FOR (PXR (I,J): @BIN (X(I,J)));

!y is binary;
@FOR (REP(J): @BIN (Y(J)));

!logical condition;
@FOR(PXR(I,J): X(I,J) <= Y(J));

!loading/capacity constraint;

@FOR(REP(J): (D1(J)- D2(J)+ @SUM (PRODUCT (I): DEMAND(I)*X(I,J)))= IDEAL_DEMAND(J)*Y(J));
@for (REP(J): (@SUM (PRODUCT (I): DEMAND(I)*X(I,J))) <= Q(J));

end

154

Grouping EXP 2
!EXP2;

Model:

Sets:

PRODUCT/1..20/:

DEMAND;

REP/1..6/:
y,
Q,
IDEAL_DEMAND,
D1,
D2,
K;

PXR(PRODUCT,REP):
X;

endsets

data:

DEMAND =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2.xlsx','AVG_DEMAND');
Q =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2.xlsx','Q');
IDEAL_DEMAND =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2.xlsx','IDEAL_DEMAND');
H =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2.xlsx','HOLDING_COST');
K =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2.xlsx','FIXED_COST');

enddata

!Objective function;

MIN = @SUM (REP(J): (0.5*H*Q(J)*Y(J))+(K/Q(J))*(@SUM (PRODUCT(I): DEMAND(I)*X(I,J))));

!constraints;

!every item should be allocated to one replenishment only;
@FOR (PRODUCT(I): @SUM (REP(J): X(I,J)) =1);

!x is an intejer = 0 or 1 (i.e. x is binary;
@FOR (PXR (I,J): @BIN (X(I,J)));

!y is binary;
@FOR (REP(J): @BIN (Y(J)));

!logical condition;
@FOR(PXR(I,J): X(I,J) <= Y(J));

!loading/capacity constraint;

@FOR(REP(J): (D1(J)- D2(J)+ @SUM (PRODUCT (I): DEMAND(I)*X(I,J)))= IDEAL_DEMAND(J)*Y(J));
@for (REP(J): (@SUM (PRODUCT (I): DEMAND(I)*X(I,J))) <= Q(J));

end

155

EXP 5
!EXP2X;

Model:

Sets:

PRODUCT/1..20/:

DEMAND;

REP/1..16/:
y,
Q,
IDEAL_DEMAND,
D1,
D2,
K;

PXR(PRODUCT,REP):
X;

endsets

data:

DEMAND =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2X.xlsx','AVG_DEMAND');
Q =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2X.xlsx','Q');
IDEAL_DEMAND =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2X.xlsx','IDEAL_DEMAND');
H =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2X.xlsx','HOLDING_COST');
K =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2X.xlsx','FIXED_COST');

enddata

!Objective function;

MIN = @SUM (REP(J): (0.5*H*Q(J)*Y(J))+(K/Q(J))*(@SUM (PRODUCT(I): DEMAND(I)*X(I,J))));

!constraints;

!every item should be allocated to one replenishment only;
@FOR (PRODUCT(I): @SUM (REP(J): X(I,J)) =1);

!x is an intejer = 0 or 1 (i.e. x is binary;
@FOR (PXR (I,J): @BIN (X(I,J)));

!y is binary;
@FOR (REP(J): @BIN (Y(J)));

!logical condition;
@FOR(PXR(I,J): X(I,J) <= Y(J));

!loading/capacity constraint;

@FOR(REP(J): (D1(J)- D2(J)+ @SUM (PRODUCT (I): DEMAND(I)*X(I,J)))= IDEAL_DEMAND(J)*Y(J));
@for (REP(J): (@SUM (PRODUCT (I): DEMAND(I)*X(I,J))) <= Q(J));

end

156

Grouping EXP3
!EXP4;

Model:

Sets:

PRODUCT/1..20/:

DEMAND;

REP/1..16/:
y,
Q,
IDEAL_DEMAND,
D1,
D2,
K;

PXR(PRODUCT,REP):
X;

endsets

data:

DEMAND =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2X.xlsx','AVG_DEMAND');
Q =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2X.xlsx','Q');
IDEAL_DEMAND =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2X.xlsx','IDEAL_DEMAND');
H =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2X.xlsx','HOLDING_COST');
K =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2X.xlsx','FIXED_COST');

enddata

!Objective function;

MIN = @SUM (REP(J): (0.5*H*Q(J)*Y(J))+(K/Q(J))*(@SUM (PRODUCT(I): DEMAND(I)*X(I,J))));

!constraints;

!every item should be allocated to one replenishment only;
@FOR (PRODUCT(I): @SUM (REP(J): X(I,J)) =1);

!x is an intejer = 0 or 1 (i.e. x is binary;
@FOR (PXR (I,J): @BIN (X(I,J)));

!y is binary;
@FOR (REP(J): @BIN (Y(J)));

!logical condition;
@FOR(PXR(I,J): X(I,J) <= Y(J));

!loading/capacity constraint;

@FOR(REP(J): (D1(J)- D2(J)+ @SUM (PRODUCT (I): DEMAND(I)*X(I,J)))= IDEAL_DEMAND(J)*Y(J));
@for (REP(J): (@SUM (PRODUCT (I): DEMAND(I)*X(I,J))) <= Q(J));

end

157

Grouping EXP 4
!EXP5;

Model:

Sets:

PRODUCT/1..20/:

DEMAND;

REP/1..8/:
y,
Q,
IDEAL_DEMAND,
D1,
D2,
K;

PXR(PRODUCT,REP):
X;

endsets

data:

DEMAND =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP5.xlsx','AVG_DEMAND');
Q =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP5.xlsx','Q');
IDEAL_DEMAND =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP5.xlsx','IDEAL_DEMAND');
H =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP5.xlsx','HOLDING_COST');
K =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP5.xlsx','FIXED_COST');

enddata

!Objective function;

MIN = @SUM (REP(J): (0.5*H*Q(J)*Y(J))+(K/Q(J))*(@SUM (PRODUCT(I): DEMAND(I)*X(I,J))));

!constraints;

!every item should be allocated to one replenishment only;
@FOR (PRODUCT(I): @SUM (REP(J): X(I,J)) =1);

!x is an intejer = 0 or 1 (i.e. x is binary;
@FOR (PXR (I,J): @BIN (X(I,J)));

!y is binary;
@FOR (REP(J): @BIN (Y(J)));

!logical condition;
@FOR(PXR(I,J): X(I,J) <= Y(J));

!loading/capacity constraint;

@FOR(REP(J): (D1(J)- D2(J)+ @SUM (PRODUCT (I): DEMAND(I)*X(I,J)))= IDEAL_DEMAND(J)*Y(J));
@for (REP(J): (@SUM (PRODUCT (I): DEMAND(I)*X(I,J))) <= Q(J));

end

158

Grouping EXP5 X

!EXP5X;

Model:

Sets:

PRODUCT/1..20/:

DEMAND;

REP/1..12/:
y,
Q,
IDEAL_DEMAND,
D1,
D2,
K;

PXR(PRODUCT,REP):
X;

endsets

data:

DEMAND =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP5X.xlsx','AVG_DEMAND');
Q =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP5X.xlsx','Q');
IDEAL_DEMAND =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP5X.xlsx','IDEAL_DEMAND');
H =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP5X.xlsx','HOLDING_COST');
K =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP5X.xlsx','FIXED_COST');

enddata

!Objective function;

MIN = @SUM (REP(J): (0.5*H*Q(J)*Y(J))+(K/Q(J))*(@SUM (PRODUCT(I): DEMAND(I)*X(I,J))));

!constraints;

!every item should be allocated to one replenishment only;
@FOR (PRODUCT(I): @SUM (REP(J): X(I,J)) =1);

!x is an intejer = 0 or 1 (i.e. x is binary;
@FOR (PXR (I,J): @BIN (X(I,J)));

!y is binary;
@FOR (REP(J): @BIN (Y(J)));

!logical condition;
@FOR(PXR(I,J): X(I,J) <= Y(J));

!loading/capacity constraint;

@FOR(REP(J): (D1(J)- D2(J)+ @SUM (PRODUCT (I): DEMAND(I)*X(I,J)))= IDEAL_DEMAND(J)*Y(J));
@for (REP(J): (@SUM (PRODUCT (I): DEMAND(I)*X(I,J))) <= Q(J));

end

159

EXP 1 - Group A
! EXP 1 - Group A;

MODEL:

SETS:

! Generate a set of 6 products;
PRODUCT/1..6/:

! An order-up-to level, S, is assigned to each product, I;
S;

! Generate a set of 500 days;
DAY/1..1000/:

! Modulo operation is used to deteminr if day J is a review day or not and to determine if a
previously
ordered batch will be recevied.

The reminder of division of day, J, by the review period of the group, R (Modulo
calculations);
MOD,

! The reminder of division of day, J, by the review period of the group, R, plus the lead
time, L;
MODRL;

! Product I at day J set;
PXD(PRODUCT,DAY):

! Product i at day j will have the following parameters;

INV, ! Inventory position of product I at day J ;
INVE, ! Inventory Position of product I at the end of day J ;
SOH, ! Stock on Hand of product I at the end of day J;
SOHE, ! Stock on Hand of product I at the end of day J;
Q, ! Order quantity of product I at the end of day J;
D,! Demand of product I at day J;
D1, ! Over Achivement;
D2, ! Uner Achivement;
REC, ! Item recevied at day J;
DEL, ! Satesfied demand of product I at day J;
NDEL, ! Un satedfied demand of product I at day J;
SLEVEl;! Seriveice level;

ENDSETS

DATA:

! Import Order-up-to level data for each product from Excelsheet -(R,S) Table;
S =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','S_LEVEL_GA');

! Given mean of demand and the standard deviation of demand,
use excel to generate random demand for the needed number of days.
Then use @OLE function to import demand data;

D = @OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','REAL_DEMAND_GA');

Cap= 10; ! The capacity of the truck allocated to this group;
L = 1; ! Lead time;
R = 2; ! Group review time calculated in the Excelsheet - (R,S) Table;

!Output to excel;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','SL') = SLEVEL;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','SOH') = SOH;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','Q_OUTPUT') = Q;

ENDDATA

! The following submodel is used to allocate the available truck capacity to the different
products in the group.
The model will minimise the total deviation from the pre-identified order-up-to level;

160

SUBMODEL FIND_Q:

! At each day minimise the sum of the deveiation from S as a percenage of S of each product;
@FOR (DAY (J)| J #EQ# DAYN: MIN = @SUM (PRODUCT(I): (D1(I,J)+D2(I,J))));

! Subject to the following constraints:

1- The order quantity is a positive integer value;
@for (pxd (i,J)| J #EQ# DAYN: @gin (Q(i,J)));

! 2- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (J)| J #EQ# DAYN: @sum (product(i): q(i,j)) = cap);

! 3- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (j)| J #EQ# DAYN: @for (product (i): INV (I,J) + d1(i,j) - d2(i,j) + Q(i,j) =
s(i)));

@for (day (j)| J #EQ# DAYN: @for (product (i): D1(I,J) >= 0));

@for (day (j)| J #EQ# DAYN: @for (product (i): D2(I,J) >= 0));

ENDSUBMODEL

! This simple model is used if day j is not a review day to set Q(i,j) values to 0;
SUBMODEL NO_Q:

@FOR (DAY (J)| J #EQ# DAYN: @FOR (PRODUCT (I): Q(I,J) = 0));

ENDSUBMODEL

CALC:

! define the size of the repleishment period;
MXDAY = @SIZE (DAY);

! Set day to day 1;
DAYN = 1;

! Initiate a while loop to apply the submodels (when needed);
@WHILE (DAYN #LE# MXDAY+1:

! First we distinguesh between day 1 and all the othr days;
@IFC (DAYN #EQ# 1:

! For day 1, calculate the reminder of division of day, J, by the review period of the group,
R;
@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!for day 1, calculate he reminder of division of day, J, by the review period of the group, R,
plus the lead time, L;
@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

! Initiate the data for the first day;
! The next 4 functions will set SOH(i,j) = SOHE(I, J) = INV (I, J) = INVE(I, J) = S(I);
@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOHE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INV (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INVE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: REC (i,j) = 0));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SLEVEL (i,j) = 0));

! the seconf branch of the first @IFC function applies to days greater than 1;
! Here a set of calculations will be performed for any particular day greater than 1;
@ELSE@IFC (DAYN #GT# 1:

@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

@FOR (PRODUCT (I): @FOR (DAY (J) | J #EQ# DAYN: @IFC (DAYN #GE# L+1: REC(I,J) = Q(I, J-L);

161

@ELSE@IFC (DAYN #LT# L+1: REC (I,J) = 0;););));

@for (product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = REC(I,J) +SOHE(i, j-1)));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): @IFC (SOH(I,J) #GE# D(I,J): DEL(I,J) = D(I,J);
NDEL(I,J) = 0; SOHE (I,J) = SOH(I,J) - DEL (I,J);

@ELSE@IFC (SOH(I,J) #LT# D(I,J): DEL(I,J) = SOH (I,J); NDEL(I,J) = D(I,J) - DEL(I,J); SOHE
(I,J) = 0;););));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): INV (I,J) = INVE (I,J-1)));

););

@for (Day (j) | J #EQ# DAYN: @IFC (MOD(J) #EQ# 0:

@SOLVE (FIND_Q);

@ELSE@IFC (MOD(J) #GT# 0:

@SOLVE (NO_Q););););

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): INVE (I,J) = INV(I,J) -
D(I,J)+ Q(I,J)));

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): SLEVEL (I,J) = DEL (I,J)/ D
(I,J)));

DAYN= DAYN + 1;);

ENDCALC

END

162

EXP 1 - Group B
! EXP 1 - Group B;

MODEL:

SETS:

! Generate a set of 6 products;
PRODUCT/1..14/:

! An order-up-to level, S, is assigned to each product, I;
S;

! Generate a set of 500 days;
DAY/1..1000/:

! Modulo operation is used to deteminr if day J is a review day or not and to determine if a
previously
ordered batch will be recevied.

The reminder of division of day, J, by the review period of the group, R (Modulo
calculations);
MOD,

! The reminder of division of day, J, by the review period of the group, R, plus the lead
time, L;
MODRL;

! Product I at day J set;
PXD(PRODUCT,DAY):

! Product i at day j will have the following parameters;

INV, ! Inventory position of product I at day J ;
INVE, ! Inventory Position of product I at the end of day J ;
SOH, ! Stock on Hand of product I at the end of day J;
SOHE, ! Stock on Hand of product I at the end of day J;
Q, ! Order quantity of product I at the end of day J;
D,! Demand of product I at day J;
D1, ! Over Achivement;
D2, ! Uner Achivement;
REC, ! Item recevied at day J;
DEL, ! Satesfied demand of product I at day J;
NDEL, ! Un satedfied demand of product I at day J;
SLEVEl;! Seriveice level;

ENDSETS

DATA:

! Import Order-up-to level data for each product from Excelsheet -(R,S) Table;
S =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','S_LEVEL_GB');

! Given mean of demand and the standard deviation of demand,
use excel to generate random demand for the needed number of days.
Then use @OLE function to import demand data;

D = @OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','REAL_DEMAND_GB');

Cap= 15; ! The capacity of the truck allocated to this group;
L = 1; ! Lead time;
R = 1; ! Group review time calculated in the Excelsheet - (R,S) Table;

!Output to excel;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','SLGB') = SLEVEL;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','SOHGB') = SOH;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1.xlsx','QGB') = Q;

ENDDATA

! The following submodel is used to allocate the available truck capacity to the different
products in the group.
The model will minimise the total deviation from the pre-identified order-up-to level;

163

SUBMODEL FIND_Q:

! At each day minimise the sum of the deveiation from S as a percenage of S of each product;
@FOR (DAY (J)| J #EQ# DAYN: MIN = @SUM (PRODUCT(I): (D1(I,J)+D2(I,J))));

! Subject to the following constraints:

1- The order quantity is a positive integer value;
@for (pxd (i,J)| J #EQ# DAYN: @gin (Q(i,J)));

! 2- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (J)| J #EQ# DAYN: @sum (product(i): q(i,j)) = cap);

! 3- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (j)| J #EQ# DAYN: @for (product (i): INV (I,J) + d1(i,j) - d2(i,j) + Q(i,j) =
s(i)));

@for (day (j)| J #EQ# DAYN: @for (product (i): D1(I,J) >= 0));

@for (day (j)| J #EQ# DAYN: @for (product (i): D2(I,J) >= 0));

ENDSUBMODEL

! This simple model is used if day j is not a review day to set Q(i,j) values to 0;
SUBMODEL NO_Q:

@FOR (DAY (J)| J #EQ# DAYN: @FOR (PRODUCT (I): Q(I,J) = 0));

ENDSUBMODEL

CALC:

! define the size of the repleishment period;
MXDAY = @SIZE (DAY);

! Set day to day 1;
DAYN = 1;

! Initiate a while loop to apply the submodels (when needed);
@WHILE (DAYN #LE# MXDAY+1:

! First we distinguesh between day 1 and all the othr days;
@IFC (DAYN #EQ# 1:

! For day 1, calculate the reminder of division of day, J, by the review period of the group,
R;
@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!for day 1, calculate he reminder of division of day, J, by the review period of the group, R,
plus the lead time, L;
@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

! Initiate the data for the first day;
! The next 4 functions will set SOH(i,j) = SOHE(I, J) = INV (I, J) = INVE(I, J) = S(I);
@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOHE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INV (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INVE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: REC (i,j) = 0));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SLEVEL (i,j) = 0));

! the seconf branch of the first @IFC function applies to days greater than 1;
! Here a set of calculations will be performed for any particular day greater than 1;
@ELSE@IFC (DAYN #GT# 1:

@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

@FOR (PRODUCT (I): @FOR (DAY (J) | J #EQ# DAYN: @IFC (DAYN #GE# L+1: REC(I,J) = Q(I, J-L);

164

@ELSE@IFC (DAYN #LT# L+1: REC (I,J) = 0;););));

@for (product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = REC(I,J) +SOHE(i, j-1)));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): @IFC (SOH(I,J) #GE# D(I,J): DEL(I,J) = D(I,J);
NDEL(I,J) = 0; SOHE (I,J) = SOH(I,J) - DEL (I,J);

@ELSE@IFC (SOH(I,J) #LT# D(I,J): DEL(I,J) = SOH (I,J); NDEL(I,J) = D(I,J) - DEL(I,J); SOHE
(I,J) = 0;););));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): INV (I,J) = INVE (I,J-1)));

););

@for (Day (j) | J #EQ# DAYN: @IFC (MOD(J) #EQ# 0:

@SOLVE (FIND_Q);

@ELSE@IFC (MOD(J) #GT# 0:

@SOLVE (NO_Q););););

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): INVE (I,J) = INV(I,J) -
D(I,J)+ Q(I,J)));

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): SLEVEL (I,J) = DEL (I,J)/ D
(I,J)));

DAYN= DAYN + 1;);

ENDCALC

END

165

EXP 1X - Group A
! EXP 1X - Group A;

MODEL:

SETS:

! Generate a set of 6 products;
PRODUCT/1..3/:

! An order-up-to level, S, is assigned to each product, I;
S;

! Generate a set of 500 days;
DAY/1..1000/:

! Modulo operation is used to deteminr if day J is a review day or not and to determine if a
previously
ordered batch will be recevied.

The reminder of division of day, J, by the review period of the group, R (Modulo
calculations);
MOD,

! The reminder of division of day, J, by the review period of the group, R, plus the lead
time, L;
MODRL;

! Product I at day J set;
PXD(PRODUCT,DAY):

! Product i at day j will have the following parameters;

INV, ! Inventory position of product I at day J ;
INVE, ! Inventory Position of product I at the end of day J ;
SOH, ! Stock on Hand of product I at the end of day J;
SOHE, ! Stock on Hand of product I at the end of day J;
Q, ! Order quantity of product I at the end of day J;
D,! Demand of product I at day J;
D1, ! Over Achivement;
D2, ! Uner Achivement;
REC, ! Item recevied at day J;
DEL, ! Satesfied demand of product I at day J;
NDEL, ! Un satedfied demand of product I at day J;
SLEVEl;! Seriveice level;

ENDSETS

DATA:

! Import Order-up-to level data for each product from Excelsheet -(R,S) Table;
S =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1X.xlsx','S_LEVEL_GA');

! Given mean of demand and the standard deviation of demand,
use excel to generate random demand for the needed number of days.
Then use @OLE function to import demand data;

D = @OLE('\Users\Cripps Hire Laptop\Desktop\EXP1X.xlsx','REAL_DEMAND_GA');

Cap= 5; ! The capacity of the truck allocated to this group;
L = 1; ! Lead time;
R = 1; ! Group review time calculated in the Excelsheet - (R,S) Table;

!Output to excel;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1X.xlsx','SLGA') = SLEVEL;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1X.xlsx','SOHGA') = SOHE;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1X.xlsx','QGA') = Q;

ENDDATA

! The following submodel is used to allocate the available truck capacity to the different
products in the group.
The model will minimise the total deviation from the pre-identified order-up-to level;

166

SUBMODEL FIND_Q:

! At each day minimise the sum of the deveiation from S as a percenage of S of each product;
@FOR (DAY (J)| J #EQ# DAYN: MIN = @SUM (PRODUCT(I): (D1(I,J)+D2(I,J))));

! Subject to the following constraints:

1- The order quantity is a positive integer value;
@for (pxd (i,J)| J #EQ# DAYN: @gin (Q(i,J)));

! 2- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (J)| J #EQ# DAYN: @sum (product(i): q(i,j)) = cap);

! 3- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (j)| J #EQ# DAYN: @for (product (i): INV (I,J) + d1(i,j) - d2(i,j) + Q(i,j) =
s(i)));

@for (day (j)| J #EQ# DAYN: @for (product (i): D1(I,J) >= 0));

@for (day (j)| J #EQ# DAYN: @for (product (i): D2(I,J) >= 0));

ENDSUBMODEL

! This simple model is used if day j is not a review day to set Q(i,j) values to 0;
SUBMODEL NO_Q:

@FOR (DAY (J)| J #EQ# DAYN: @FOR (PRODUCT (I): Q(I,J) = 0));

ENDSUBMODEL

CALC:

! define the size of the repleishment period;
MXDAY = @SIZE (DAY);

! Set day to day 1;
DAYN = 1;

! Initiate a while loop to apply the submodels (when needed);
@WHILE (DAYN #LE# MXDAY+1:

! First we distinguesh between day 1 and all the othr days;
@IFC (DAYN #EQ# 1:

! For day 1, calculate the reminder of division of day, J, by the review period of the group,
R;
@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!for day 1, calculate he reminder of division of day, J, by the review period of the group, R,
plus the lead time, L;
@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

! Initiate the data for the first day;
! The next 4 functions will set SOH(i,j) = SOHE(I, J) = INV (I, J) = INVE(I, J) = S(I);
@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOHE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INV (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INVE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: REC (i,j) = 0));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SLEVEL (i,j) = 0));

! the seconf branch of the first @IFC function applies to days greater than 1;
! Here a set of calculations will be performed for any particular day greater than 1;
@ELSE@IFC (DAYN #GT# 1:

@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

@FOR (PRODUCT (I): @FOR (DAY (J) | J #EQ# DAYN: @IFC (DAYN #GE# L+1: REC(I,J) = Q(I, J-L);

167

@ELSE@IFC (DAYN #LT# L+1: REC (I,J) = 0;););));

@for (product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = REC(I,J) +SOHE(i, j-1)));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): @IFC (SOH(I,J) #GE# D(I,J): DEL(I,J) = D(I,J);
NDEL(I,J) = 0; SOHE (I,J) = SOH(I,J) - DEL (I,J);

@ELSE@IFC (SOH(I,J) #LT# D(I,J): DEL(I,J) = SOH (I,J); NDEL(I,J) = D(I,J) - DEL(I,J); SOHE
(I,J) = 0;););));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): INV (I,J) = INVE (I,J-1)));

););

@for (Day (j) | J #EQ# DAYN: @IFC (MOD(J) #EQ# 0:

@SOLVE (FIND_Q);

@ELSE@IFC (MOD(J) #GT# 0:

@SOLVE (NO_Q););););

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): INVE (I,J) = INV(I,J) -
D(I,J)+ Q(I,J)));

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): SLEVEL (I,J) = DEL (I,J)/ D
(I,J)));

DAYN= DAYN + 1;);

ENDCALC

END

168

EXP 1X - Group A
! EXP 1X - Group A;

MODEL:

SETS:

! Generate a set of 6 products;
PRODUCT/1..17/:

! An order-up-to level, S, is assigned to each product, I;
S;

! Generate a set of 500 days;
DAY/1..1000/:

! Modulo operation is used to deteminr if day J is a review day or not and to determine if a
previously
ordered batch will be recevied.

The reminder of division of day, J, by the review period of the group, R (Modulo
calculations);
MOD,

! The reminder of division of day, J, by the review period of the group, R, plus the lead
time, L;
MODRL;

! Product I at day J set;
PXD(PRODUCT,DAY):

! Product i at day j will have the following parameters;

INV, ! Inventory position of product I at day J ;
INVE, ! Inventory Position of product I at the end of day J ;
SOH, ! Stock on Hand of product I at the end of day J;
SOHE, ! Stock on Hand of product I at the end of day J;
Q, ! Order quantity of product I at the end of day J;
D,! Demand of product I at day J;
D1, ! Over Achivement;
D2, ! Uner Achivement;
REC, ! Item recevied at day J;
DEL, ! Satesfied demand of product I at day J;
NDEL, ! Un satedfied demand of product I at day J;
SLEVEl;! Seriveice level;

ENDSETS

DATA:

! Import Order-up-to level data for each product from Excelsheet -(R,S) Table;
S =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1X.xlsx','S_LEVEL_GB');

! Given mean of demand and the standard deviation of demand,
use excel to generate random demand for the needed number of days.
Then use @OLE function to import demand data;

D = @OLE('\Users\Cripps Hire Laptop\Desktop\EXP1X.xlsx','REAL_DEMAND_GB');

Cap= 15; ! The capacity of the truck allocated to this group;
L = 1; ! Lead time;
R = 1; ! Group review time calculated in the Excelsheet - (R,S) Table;

!Output to excel;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1X.xlsx','SLGB') = SLEVEL;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1X.xlsx','SOHGB') = SOHE;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP1X.xlsx','QGB') = Q;

ENDDATA

! The following submodel is used to allocate the available truck capacity to the different
products in the group.
The model will minimise the total deviation from the pre-identified order-up-to level;

169

SUBMODEL FIND_Q:

! At each day minimise the sum of the deveiation from S as a percenage of S of each product;
@FOR (DAY (J)| J #EQ# DAYN: MIN = @SUM (PRODUCT(I): (D1(I,J)+D2(I,J))));

! Subject to the following constraints:

1- The order quantity is a positive integer value;
@for (pxd (i,J)| J #EQ# DAYN: @gin (Q(i,J)));

! 2- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (J)| J #EQ# DAYN: @sum (product(i): q(i,j)) = cap);

! 3- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (j)| J #EQ# DAYN: @for (product (i): INV (I,J) + d1(i,j) - d2(i,j) + Q(i,j) =
s(i)));

@for (day (j)| J #EQ# DAYN: @for (product (i): D1(I,J) >= 0));

@for (day (j)| J #EQ# DAYN: @for (product (i): D2(I,J) >= 0));

ENDSUBMODEL

! This simple model is used if day j is not a review day to set Q(i,j) values to 0;
SUBMODEL NO_Q:

@FOR (DAY (J)| J #EQ# DAYN: @FOR (PRODUCT (I): Q(I,J) = 0));

ENDSUBMODEL

CALC:

! define the size of the repleishment period;
MXDAY = @SIZE (DAY);

! Set day to day 1;
DAYN = 1;

! Initiate a while loop to apply the submodels (when needed);
@WHILE (DAYN #LE# MXDAY+1:

! First we distinguesh between day 1 and all the othr days;
@IFC (DAYN #EQ# 1:

! For day 1, calculate the reminder of division of day, J, by the review period of the group,
R;
@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!for day 1, calculate he reminder of division of day, J, by the review period of the group, R,
plus the lead time, L;
@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

! Initiate the data for the first day;
! The next 4 functions will set SOH(i,j) = SOHE(I, J) = INV (I, J) = INVE(I, J) = S(I);
@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOHE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INV (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INVE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: REC (i,j) = 0));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SLEVEL (i,j) = 0));

! the seconf branch of the first @IFC function applies to days greater than 1;
! Here a set of calculations will be performed for any particular day greater than 1;
@ELSE@IFC (DAYN #GT# 1:

@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

@FOR (PRODUCT (I): @FOR (DAY (J) | J #EQ# DAYN: @IFC (DAYN #GE# L+1: REC(I,J) = Q(I, J-L);

170

@ELSE@IFC (DAYN #LT# L+1: REC (I,J) = 0;););));

@for (product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = REC(I,J) +SOHE(i, j-1)));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): @IFC (SOH(I,J) #GE# D(I,J): DEL(I,J) = D(I,J);
NDEL(I,J) = 0; SOHE (I,J) = SOH(I,J) - DEL (I,J);

@ELSE@IFC (SOH(I,J) #LT# D(I,J): DEL(I,J) = SOH (I,J); NDEL(I,J) = D(I,J) - DEL(I,J); SOHE
(I,J) = 0;););));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): INV (I,J) = INVE (I,J-1)));

););

@for (Day (j) | J #EQ# DAYN: @IFC (MOD(J) #EQ# 0:

@SOLVE (FIND_Q);

@ELSE@IFC (MOD(J) #GT# 0:

@SOLVE (NO_Q););););

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): INVE (I,J) = INV(I,J) -
D(I,J)+ Q(I,J)));

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): SLEVEL (I,J) = DEL (I,J)/ D
(I,J)));

DAYN= DAYN + 1;);

ENDCALC

END

171

EXP 2 - Group A
! EXP 1 - Group A;

MODEL:

SETS:

! Generate a set of 6 products;
PRODUCT/1..8/:

! An order-up-to level, S, is assigned to each product, I;
S;

! Generate a set of 500 days;
DAY/1..1000/:

! Modulo operation is used to deteminr if day J is a review day or not and to determine if a
previously
ordered batch will be recevied.

The reminder of division of day, J, by the review period of the group, R (Modulo
calculations);
MOD,

! The reminder of division of day, J, by the review period of the group, R, plus the lead
time, L;
MODRL;

! Product I at day J set;
PXD(PRODUCT,DAY):

! Product i at day j will have the following parameters;

INV, ! Inventory position of product I at day J ;
INVE, ! Inventory Position of product I at the end of day J ;
SOH, ! Stock on Hand of product I at the end of day J;
SOHE, ! Stock on Hand of product I at the end of day J;
Q, ! Order quantity of product I at the end of day J;
D,! Demand of product I at day J;
D1, ! Over Achivement;
D2, ! Uner Achivement;
REC, ! Item recevied at day J;
DEL, ! Satesfied demand of product I at day J;
NDEL, ! Un satedfied demand of product I at day J;
SLEVEl;! Seriveice level;

ENDSETS

DATA:

! Import Order-up-to level data for each product from Excelsheet -(R,S) Table;
S =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2.xlsx','S_LEVEL_GA');

! Given mean of demand and the standard deviation of demand,
use excel to generate random demand for the needed number of days.
Then use @OLE function to import demand data;

D = @OLE('\Users\Cripps Hire Laptop\Desktop\EXP2.xlsx','REAL_DEMAND_GA');

Cap= 15; ! The capacity of the truck allocated to this group;
L = 1; ! Lead time;
R = 3; ! Group review time calculated in the Excelsheet - (R,S) Table;

!Output to excel;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2.xlsx','SL') = SLEVEL;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2.xlsx','SOH') = SOH;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2.xlsx','QGA') = Q;

ENDDATA

! The following submodel is used to allocate the available truck capacity to the different
products in the group.
The model will minimise the total deviation from the pre-identified order-up-to level;

172

SUBMODEL FIND_Q:

! At each day minimise the sum of the deveiation from S as a percenage of S of each product;
@FOR (DAY (J)| J #EQ# DAYN: MIN = @SUM (PRODUCT(I): (D1(I,J)+D2(I,J))));

! Subject to the following constraints:

1- The order quantity is a positive integer value;
@for (pxd (i,J)| J #EQ# DAYN: @gin (Q(i,J)));

! 2- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (J)| J #EQ# DAYN: @sum (product(i): q(i,j)) = cap);

! 3- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (j)| J #EQ# DAYN: @for (product (i): INV (I,J) + d1(i,j) - d2(i,j) + Q(i,j) =
s(i)));

@for (day (j)| J #EQ# DAYN: @for (product (i): D1(I,J) >= 0));

@for (day (j)| J #EQ# DAYN: @for (product (i): D2(I,J) >= 0));

ENDSUBMODEL

! This simple model is used if day j is not a review day to set Q(i,j) values to 0;
SUBMODEL NO_Q:

@FOR (DAY (J)| J #EQ# DAYN: @FOR (PRODUCT (I): Q(I,J) = 0));

ENDSUBMODEL

CALC:

! define the size of the repleishment period;
MXDAY = @SIZE (DAY);

! Set day to day 1;
DAYN = 1;

! Initiate a while loop to apply the submodels (when needed);
@WHILE (DAYN #LE# MXDAY+1:

! First we distinguesh between day 1 and all the othr days;
@IFC (DAYN #EQ# 1:

! For day 1, calculate the reminder of division of day, J, by the review period of the group,
R;
@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!for day 1, calculate he reminder of division of day, J, by the review period of the group, R,
plus the lead time, L;
@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

! Initiate the data for the first day;
! The next 4 functions will set SOH(i,j) = SOHE(I, J) = INV (I, J) = INVE(I, J) = S(I);
@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOHE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INV (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INVE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: REC (i,j) = 0));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SLEVEL (i,j) = 0));

! the seconf branch of the first @IFC function applies to days greater than 1;
! Here a set of calculations will be performed for any particular day greater than 1;
@ELSE@IFC (DAYN #GT# 1:

@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

@FOR (PRODUCT (I): @FOR (DAY (J) | J #EQ# DAYN: @IFC (DAYN #GE# L+1: REC(I,J) = Q(I, J-L);

173

@ELSE@IFC (DAYN #LT# L+1: REC (I,J) = 0;););));

@for (product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = REC(I,J) +SOHE(i, j-1)));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): @IFC (SOH(I,J) #GE# D(I,J): DEL(I,J) = D(I,J);
NDEL(I,J) = 0; SOHE (I,J) = SOH(I,J) - DEL (I,J);

@ELSE@IFC (SOH(I,J) #LT# D(I,J): DEL(I,J) = SOH (I,J); NDEL(I,J) = D(I,J) - DEL(I,J); SOHE
(I,J) = 0;););));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): INV (I,J) = INVE (I,J-1)));

););

@for (Day (j) | J #EQ# DAYN: @IFC (MOD(J) #EQ# 0:

@SOLVE (FIND_Q);

@ELSE@IFC (MOD(J) #GT# 0:

@SOLVE (NO_Q););););

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): INVE (I,J) = INV(I,J) -
D(I,J)+ Q(I,J)));

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): SLEVEL (I,J) = DEL (I,J)/ D
(I,J)));

DAYN= DAYN + 1;);

ENDCALC

END

174

EXP 2 - Group B
! EXP 2 - Group B;

MODEL:

SETS:

! Generate a set of 6 products;
PRODUCT/1..12/:

! An order-up-to level, S, is assigned to each product, I;
S;

! Generate a set of 500 days;
DAY/1..1000/:

! Modulo operation is used to deteminr if day J is a review day or not and to determine if a
previously
ordered batch will be recevied.

The reminder of division of day, J, by the review period of the group, R (Modulo
calculations);
MOD,

! The reminder of division of day, J, by the review period of the group, R, plus the lead
time, L;
MODRL;

! Product I at day J set;
PXD(PRODUCT,DAY):

! Product i at day j will have the following parameters;

INV, ! Inventory position of product I at day J ;
INVE, ! Inventory Position of product I at the end of day J ;
SOH, ! Stock on Hand of product I at the end of day J;
SOHE, ! Stock on Hand of product I at the end of day J;
Q, ! Order quantity of product I at the end of day J;
D,! Demand of product I at day J;
D1, ! Over Achivement;
D2, ! Uner Achivement;
REC, ! Item recevied at day J;
DEL, ! Satesfied demand of product I at day J;
NDEL, ! Un satedfied demand of product I at day J;
SLEVEl;! Seriveice level;

ENDSETS

DATA:

! Import Order-up-to level data for each product from Excelsheet -(R,S) Table;
S =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2.xlsx','S_LEVEL_GB');

! Given mean of demand and the standard deviation of demand,
use excel to generate random demand for the needed number of days.
Then use @OLE function to import demand data;

D = @OLE('\Users\Cripps Hire Laptop\Desktop\EXP2.xlsx','REAL_DEMAND_GB');

Cap= 15; ! The capacity of the truck allocated to this group;
L = 1; ! Lead time;
R = 1; ! Group review time calculated in the Excelsheet - (R,S) Table;

!Output to excel;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2.xlsx','SLGB') = SLEVEL;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2.xlsx','SOHGB') = SOH;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2.xlsx','QGB') = Q;

ENDDATA

! The following submodel is used to allocate the available truck capacity to the different
products in the group.
The model will minimise the total deviation from the pre-identified order-up-to level;

175

SUBMODEL FIND_Q:

! At each day minimise the sum of the deveiation from S as a percenage of S of each product;
@FOR (DAY (J)| J #EQ# DAYN: MIN = @SUM (PRODUCT(I): (D1(I,J)+D2(I,J))));

! Subject to the following constraints:

1- The order quantity is a positive integer value;
@for (pxd (i,J)| J #EQ# DAYN: @gin (Q(i,J)));

! 2- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (J)| J #EQ# DAYN: @sum (product(i): q(i,j)) = cap);

! 3- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (j)| J #EQ# DAYN: @for (product (i): INV (I,J) + d1(i,j) - d2(i,j) + Q(i,j) =
s(i)));

@for (day (j)| J #EQ# DAYN: @for (product (i): D1(I,J) >= 0));

@for (day (j)| J #EQ# DAYN: @for (product (i): D2(I,J) >= 0));

ENDSUBMODEL

! This simple model is used if day j is not a review day to set Q(i,j) values to 0;
SUBMODEL NO_Q:

@FOR (DAY (J)| J #EQ# DAYN: @FOR (PRODUCT (I): Q(I,J) = 0));

ENDSUBMODEL

CALC:

! define the size of the repleishment period;
MXDAY = @SIZE (DAY);

! Set day to day 1;
DAYN = 1;

! Initiate a while loop to apply the submodels (when needed);
@WHILE (DAYN #LE# MXDAY+1:

! First we distinguesh between day 1 and all the othr days;
@IFC (DAYN #EQ# 1:

! For day 1, calculate the reminder of division of day, J, by the review period of the group,
R;
@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!for day 1, calculate he reminder of division of day, J, by the review period of the group, R,
plus the lead time, L;
@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

! Initiate the data for the first day;
! The next 4 functions will set SOH(i,j) = SOHE(I, J) = INV (I, J) = INVE(I, J) = S(I);
@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOHE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INV (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INVE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: REC (i,j) = 0));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SLEVEL (i,j) = 0));

! the seconf branch of the first @IFC function applies to days greater than 1;
! Here a set of calculations will be performed for any particular day greater than 1;
@ELSE@IFC (DAYN #GT# 1:

@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

@FOR (PRODUCT (I): @FOR (DAY (J) | J #EQ# DAYN: @IFC (DAYN #GE# L+1: REC(I,J) = Q(I, J-L);

176

@ELSE@IFC (DAYN #LT# L+1: REC (I,J) = 0;););));

@for (product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = REC(I,J) +SOHE(i, j-1)));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): @IFC (SOH(I,J) #GE# D(I,J): DEL(I,J) = D(I,J);
NDEL(I,J) = 0; SOHE (I,J) = SOH(I,J) - DEL (I,J);

@ELSE@IFC (SOH(I,J) #LT# D(I,J): DEL(I,J) = SOH (I,J); NDEL(I,J) = D(I,J) - DEL(I,J); SOHE
(I,J) = 0;););));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): INV (I,J) = INVE (I,J-1)));

););

@for (Day (j) | J #EQ# DAYN: @IFC (MOD(J) #EQ# 0:

@SOLVE (FIND_Q);

@ELSE@IFC (MOD(J) #GT# 0:

@SOLVE (NO_Q););););

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): INVE (I,J) = INV(I,J) -
D(I,J)+ Q(I,J)));

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): SLEVEL (I,J) = DEL (I,J)/ D
(I,J)));

DAYN= DAYN + 1;);

ENDCALC

END

177

EXP 2X - Group A
! EXP 2X - Group A;

MODEL:

SETS:

! Generate a set of 6 products;
PRODUCT/1..18/:

! An order-up-to level, S, is assigned to each product, I;
S;

! Generate a set of 500 days;
DAY/1..1000/:

! Modulo operation is used to deteminr if day J is a review day or not and to determine if a
previously
ordered batch will be recevied.

The reminder of division of day, J, by the review period of the group, R (Modulo
calculations);
MOD,

! The reminder of division of day, J, by the review period of the group, R, plus the lead
time, L;
MODRL;

! Product I at day J set;
PXD(PRODUCT,DAY):

! Product i at day j will have the following parameters;

INV, ! Inventory position of product I at day J ;
INVE, ! Inventory Position of product I at the end of day J ;
SOH, ! Stock on Hand of product I at the end of day J;
SOHE, ! Stock on Hand of product I at the end of day J;
Q, ! Order quantity of product I at the end of day J;
D,! Demand of product I at day J;
D1, ! Over Achivement;
D2, ! Uner Achivement;
REC, ! Item recevied at day J;
DEL, ! Satesfied demand of product I at day J;
NDEL, ! Un satedfied demand of product I at day J;
SLEVEl;! Seriveice level;

ENDSETS

DATA:

! Import Order-up-to level data for each product from Excelsheet -(R,S) Table;
S =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2X.xlsx','S_LEVEL_GA');

! Given mean of demand and the standard deviation of demand,
use excel to generate random demand for the needed number of days.
Then use @OLE function to import demand data;

D = @OLE('\Users\Cripps Hire Laptop\Desktop\EXP2X.xlsx','REAL_DEMAND_GA');

Cap= 15; ! The capacity of the truck allocated to this group;
L = 1; ! Lead time;
R = 1; ! Group review time calculated in the Excelsheet - (R,S) Table;

!Output to excel;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2X.xlsx','SLGA') = SLEVEL;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2X.xlsx','SOHGA') = SOHE;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2X.xlsx','QGA') = Q;

ENDDATA

! The following submodel is used to allocate the available truck capacity to the different
products in the group.
The model will minimise the total deviation from the pre-identified order-up-to level;

178

SUBMODEL FIND_Q:

! At each day minimise the sum of the deveiation from S as a percenage of S of each product;
@FOR (DAY (J)| J #EQ# DAYN: MIN = @SUM (PRODUCT(I): (D1(I,J)+D2(I,J))));

! Subject to the following constraints:

1- The order quantity is a positive integer value;
@for (pxd (i,J)| J #EQ# DAYN: @gin (Q(i,J)));

! 2- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (J)| J #EQ# DAYN: @sum (product(i): q(i,j)) = cap);

! 3- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (j)| J #EQ# DAYN: @for (product (i): INV (I,J) + d1(i,j) - d2(i,j) + Q(i,j) =
s(i)));

@for (day (j)| J #EQ# DAYN: @for (product (i): D1(I,J) >= 0));

@for (day (j)| J #EQ# DAYN: @for (product (i): D2(I,J) >= 0));

ENDSUBMODEL

! This simple model is used if day j is not a review day to set Q(i,j) values to 0;
SUBMODEL NO_Q:

@FOR (DAY (J)| J #EQ# DAYN: @FOR (PRODUCT (I): Q(I,J) = 0));

ENDSUBMODEL

CALC:

! define the size of the repleishment period;
MXDAY = @SIZE (DAY);

! Set day to day 1;
DAYN = 1;

! Initiate a while loop to apply the submodels (when needed);
@WHILE (DAYN #LE# MXDAY+1:

! First we distinguesh between day 1 and all the othr days;
@IFC (DAYN #EQ# 1:

! For day 1, calculate the reminder of division of day, J, by the review period of the group,
R;
@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!for day 1, calculate he reminder of division of day, J, by the review period of the group, R,
plus the lead time, L;
@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

! Initiate the data for the first day;
! The next 4 functions will set SOH(i,j) = SOHE(I, J) = INV (I, J) = INVE(I, J) = S(I);
@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOHE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INV (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INVE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: REC (i,j) = 0));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SLEVEL (i,j) = 0));

! the seconf branch of the first @IFC function applies to days greater than 1;
! Here a set of calculations will be performed for any particular day greater than 1;
@ELSE@IFC (DAYN #GT# 1:

@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

@FOR (PRODUCT (I): @FOR (DAY (J) | J #EQ# DAYN: @IFC (DAYN #GE# L+1: REC(I,J) = Q(I, J-L);

179

@ELSE@IFC (DAYN #LT# L+1: REC (I,J) = 0;););));

@for (product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = REC(I,J) +SOHE(i, j-1)));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): @IFC (SOH(I,J) #GE# D(I,J): DEL(I,J) = D(I,J);
NDEL(I,J) = 0; SOHE (I,J) = SOH(I,J) - DEL (I,J);

@ELSE@IFC (SOH(I,J) #LT# D(I,J): DEL(I,J) = SOH (I,J); NDEL(I,J) = D(I,J) - DEL(I,J); SOHE
(I,J) = 0;););));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): INV (I,J) = INVE (I,J-1)));

););

@for (Day (j) | J #EQ# DAYN: @IFC (MOD(J) #EQ# 0:

@SOLVE (FIND_Q);

@ELSE@IFC (MOD(J) #GT# 0:

@SOLVE (NO_Q););););

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): INVE (I,J) = INV(I,J) -
D(I,J)+ Q(I,J)));

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): SLEVEL (I,J) = DEL (I,J)/ D
(I,J)));

DAYN= DAYN + 1;);

ENDCALC

END

180

EXP 2X - Group B
! EXP 2X - Group B;

MODEL:

SETS:

! Generate a set of 6 products;
PRODUCT/1..9/:

! An order-up-to level, S, is assigned to each product, I;
S;

! Generate a set of 500 days;
DAY/1..1000/:

! Modulo operation is used to deteminr if day J is a review day or not and to determine if a
previously
ordered batch will be recevied.

The reminder of division of day, J, by the review period of the group, R (Modulo
calculations);
MOD,

! The reminder of division of day, J, by the review period of the group, R, plus the lead
time, L;
MODRL;

! Product I at day J set;
PXD(PRODUCT,DAY):

! Product i at day j will have the following parameters;

INV, ! Inventory position of product I at day J ;
INVE, ! Inventory Position of product I at the end of day J ;
SOH, ! Stock on Hand of product I at the end of day J;
SOHE, ! Stock on Hand of product I at the end of day J;
Q, ! Order quantity of product I at the end of day J;
D,! Demand of product I at day J;
D1, ! Over Achivement;
D2, ! Uner Achivement;
REC, ! Item recevied at day J;
DEL, ! Satesfied demand of product I at day J;
NDEL, ! Un satedfied demand of product I at day J;
SLEVEl;! Seriveice level;

ENDSETS

DATA:

! Import Order-up-to level data for each product from Excelsheet -(R,S) Table;
S =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2X.xlsx','S_LEVEL_GB');

! Given mean of demand and the standard deviation of demand,
use excel to generate random demand for the needed number of days.
Then use @OLE function to import demand data;

D = @OLE('\Users\Cripps Hire Laptop\Desktop\EXP2X.xlsx','REAL_DEMAND_GB');

Cap= 15; ! The capacity of the truck allocated to this group;
L = 1; ! Lead time;
R = 3; ! Group review time calculated in the Excelsheet - (R,S) Table;

!Output to excel;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2X.xlsx','SLGB') = SLEVEL;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2X.xlsx','SOHGB') = SOH;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP2X.xlsx','QGB') = Q;

ENDDATA

! The following submodel is used to allocate the available truck capacity to the different
products in the group.
The model will minimise the total deviation from the pre-identified order-up-to level;

181

SUBMODEL FIND_Q:

! At each day minimise the sum of the deveiation from S as a percenage of S of each product;
@FOR (DAY (J)| J #EQ# DAYN: MIN = @SUM (PRODUCT(I): (D1(I,J)+D2(I,J))));

! Subject to the following constraints:

1- The order quantity is a positive integer value;
@for (pxd (i,J)| J #EQ# DAYN: @gin (Q(i,J)));

! 2- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (J)| J #EQ# DAYN: @sum (product(i): q(i,j)) = cap);

! 3- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (j)| J #EQ# DAYN: @for (product (i): INV (I,J) + d1(i,j) - d2(i,j) + Q(i,j) =
s(i)));

@for (day (j)| J #EQ# DAYN: @for (product (i): D1(I,J) >= 0));

@for (day (j)| J #EQ# DAYN: @for (product (i): D2(I,J) >= 0));

ENDSUBMODEL

! This simple model is used if day j is not a review day to set Q(i,j) values to 0;
SUBMODEL NO_Q:

@FOR (DAY (J)| J #EQ# DAYN: @FOR (PRODUCT (I): Q(I,J) = 0));

ENDSUBMODEL

CALC:

! define the size of the repleishment period;
MXDAY = @SIZE (DAY);

! Set day to day 1;
DAYN = 1;

! Initiate a while loop to apply the submodels (when needed);
@WHILE (DAYN #LE# MXDAY+1:

! First we distinguesh between day 1 and all the othr days;
@IFC (DAYN #EQ# 1:

! For day 1, calculate the reminder of division of day, J, by the review period of the group,
R;
@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!for day 1, calculate he reminder of division of day, J, by the review period of the group, R,
plus the lead time, L;
@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

! Initiate the data for the first day;
! The next 4 functions will set SOH(i,j) = SOHE(I, J) = INV (I, J) = INVE(I, J) = S(I);
@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOHE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INV (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INVE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: REC (i,j) = 0));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SLEVEL (i,j) = 0));

! the seconf branch of the first @IFC function applies to days greater than 1;
! Here a set of calculations will be performed for any particular day greater than 1;
@ELSE@IFC (DAYN #GT# 1:

@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

@FOR (PRODUCT (I): @FOR (DAY (J) | J #EQ# DAYN: @IFC (DAYN #GE# L+1: REC(I,J) = Q(I, J-L);

182

@ELSE@IFC (DAYN #LT# L+1: REC (I,J) = 0;););));

@for (product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = REC(I,J) +SOHE(i, j-1)));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): @IFC (SOH(I,J) #GE# D(I,J): DEL(I,J) = D(I,J);
NDEL(I,J) = 0; SOHE (I,J) = SOH(I,J) - DEL (I,J);

@ELSE@IFC (SOH(I,J) #LT# D(I,J): DEL(I,J) = SOH (I,J); NDEL(I,J) = D(I,J) - DEL(I,J); SOHE
(I,J) = 0;););));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): INV (I,J) = INVE (I,J-1)));

););

@for (Day (j) | J #EQ# DAYN: @IFC (MOD(J) #EQ# 0:

@SOLVE (FIND_Q);

@ELSE@IFC (MOD(J) #GT# 0:

@SOLVE (NO_Q););););

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): INVE (I,J) = INV(I,J) -
D(I,J)+ Q(I,J)));

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): SLEVEL (I,J) = DEL (I,J)/ D
(I,J)));

DAYN= DAYN + 1;);

ENDCALC

END

183

EXP 4
! EXP 4;

MODEL:

SETS:

! Generate a set of 6 products;
PRODUCT/1..20/:

! An order-up-to level, S, is assigned to each product, I;
S;

! Generate a set of 500 days;
DAY/1..1000/:

! Modulo operation is used to deteminr if day J is a review day or not and to determine if a
previously
ordered batch will be recevied.

The reminder of division of day, J, by the review period of the group, R (Modulo
calculations);
MOD,

! The reminder of division of day, J, by the review period of the group, R, plus the lead
time, L;
MODRL;

! Product I at day J set;
PXD(PRODUCT,DAY):

! Product i at day j will have the following parameters;

INV, ! Inventory position of product I at day J ;
INVE, ! Inventory Position of product I at the end of day J ;
SOH, ! Stock on Hand of product I at the end of day J;
SOHE, ! Stock on Hand of product I at the end of day J;
Q, ! Order quantity of product I at the end of day J;
D,! Demand of product I at day J;
D1, ! Over Achivement;
D2, ! Uner Achivement;
REC, ! Item recevied at day J;
DEL, ! Satesfied demand of product I at day J;
NDEL, ! Un satedfied demand of product I at day J;
SLEVEl;! Seriveice level;

ENDSETS

DATA:

! Import Order-up-to level data for each product from Excelsheet -(R,S) Table;
S =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP4.xlsx','S_LEVEL_GA');

! Given mean of demand and the standard deviation of demand,
use excel to generate random demand for the needed number of days.
Then use @OLE function to import demand data;

D = @OLE('\Users\Cripps Hire Laptop\Desktop\EXP4.xlsx','REAL_DEMAND_GA');

Cap= 20; ! The capacity of the truck allocated to this group;
L = 1; ! Lead time;
R = 1; ! Group review time calculated in the Excelsheet - (R,S) Table;

!Output to excel;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP4.xlsx','SL') = SLEVEL;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP4.xlsx','SOH') = SOH;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP4.xlsx','QGA') = Q;

ENDDATA

! The following submodel is used to allocate the available truck capacity to the different
products in the group.
The model will minimise the total deviation from the pre-identified order-up-to level;

SUBMODEL FIND_Q:

184

! At each day minimise the sum of the deveiation from S as a percenage of S of each product;
@FOR (DAY (J)| J #EQ# DAYN: MIN = @SUM (PRODUCT(I): (D1(I,J)+D2(I,J))));

! Subject to the following constraints:

1- The order quantity is a positive integer value;
@for (pxd (i,J)| J #EQ# DAYN: @gin (Q(i,J)));

! 2- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (J)| J #EQ# DAYN: @sum (product(i): q(i,j)) = cap);

! 3- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (j)| J #EQ# DAYN: @for (product (i): INV (I,J) + d1(i,j) - d2(i,j) + Q(i,j) =
s(i)));

@for (day (j)| J #EQ# DAYN: @for (product (i): D1(I,J) >= 0));

@for (day (j)| J #EQ# DAYN: @for (product (i): D2(I,J) >= 0));

!@for (day (j)| J #EQ# DAYN #and# dayn #gt# 1: @for (product (i): (inv(i,j)+Q(i,j))>=
(D(i,j))));

!@for (day (j)| J #EQ# DAYN #and# dayn #gt# 1: @for (product (i): SOH(i,j) > 1));

ENDSUBMODEl

! This simple model is used if day j is not a review day to set Q(i,j) values to 0;
SUBMODEL NO_Q:

@FOR (DAY (J)| J #EQ# DAYN: @FOR (PRODUCT (I): Q(I,J) = 0));

ENDSUBMODEL

CALC:

! define the size of the repleishment period;
MXDAY = @SIZE (DAY);

! Set day to day 1;
DAYN = 1;

! Initiate a while loop to apply the submodels (when needed);
@WHILE (DAYN #LE# MXDAY+1:

! First we distinguesh between day 1 and all the othr days;
@IFC (DAYN #EQ# 1:

! For day 1, calculate the reminder of division of day, J, by the review period of the group,
R;
@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!for day 1, calculate he reminder of division of day, J, by the review period of the group, R,
plus the lead time, L;
@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

! Initiate the data for the first day;
! The next 4 functions will set SOH(i,j) = SOHE(I, J) = INV (I, J) = INVE(I, J) = S(I);
@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOHE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INV (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INVE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: REC (i,j) = 0));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SLEVEL (i,j) = 0));

! the seconf branch of the first @IFC function applies to days greater than 1;
! Here a set of calculations will be performed for any particular day greater than 1;
@ELSE@IFC (DAYN #GT# 1:

@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

185

!@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

@FOR (PRODUCT (I): @FOR (DAY (J) | J #EQ# DAYN: @IFC (DAYN #GE# L+1: REC(I,J) = Q(I, J-L);

@ELSE@IFC (DAYN #LT# L+1: REC (I,J) = 0;););));

@for (product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = REC(I,J) +SOHE(i, j-1)));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): @IFC (SOH(I,J) #GE# D(I,J): DEL(I,J) = D(I,J);
NDEL(I,J) = 0; SOHE (I,J) = SOH(I,J) - DEL (I,J);

@ELSE@IFC (SOH(I,J) #LT# D(I,J): DEL(I,J) = SOH (I,J); NDEL(I,J) = D(I,J) - DEL(I,J); SOHE
(I,J) = 0;););));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): INV (I,J) = INVE (I,J-1)));

););

@for (Day (j) | J #EQ# DAYN: @IFC (MOD(J) #EQ# 0:

@SOLVE (FIND_Q);

@ELSE@IFC (MOD(J) #GT# 0:

@SOLVE (NO_Q););););

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): INVE (I,J) = INV(I,J) -
D(I,J)+ Q(I,J)));

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): SLEVEL (I,J) = DEL (I,J)/ D
(I,J)));

DAYN= DAYN + 1;);

ENDCALC

END

186

EXP 4X

! EXP 4X;

MODEL:

SETS:

! Generate a set of 6 products;
PRODUCT/1..20/:

! An order-up-to level, S, is assigned to each product, I;
S;

! Generate a set of 500 days;
DAY/1..1000/:

! Modulo operation is used to deteminr if day J is a review day or not and to determine if a
previously
ordered batch will be recevied.

The reminder of division of day, J, by the review period of the group, R (Modulo
calculations);
MOD,

! The reminder of division of day, J, by the review period of the group, R, plus the lead
time, L;
MODRL;

! Product I at day J set;
PXD(PRODUCT,DAY):

! Product i at day j will have the following parameters;

INV, ! Inventory position of product I at day J ;
INVE, ! Inventory Position of product I at the end of day J ;
SOH, ! Stock on Hand of product I at the end of day J;
SOHE, ! Stock on Hand of product I at the end of day J;
Q, ! Order quantity of product I at the end of day J;
D,! Demand of product I at day J;
D1, ! Over Achivement;
D2, ! Uner Achivement;
REC, ! Item recevied at day J;
DEL, ! Satesfied demand of product I at day J;
NDEL, ! Un satedfied demand of product I at day J;
SLEVEl;! Seriveice level;

ENDSETS

DATA:

! Import Order-up-to level data for each product from Excelsheet -(R,S) Table;
S =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP4X.xlsx','S_LEVEL_GA');

! Given mean of demand and the standard deviation of demand,
use excel to generate random demand for the needed number of days.
Then use @OLE function to import demand data;

D = @OLE('\Users\Cripps Hire Laptop\Desktop\EXP4X.xlsx','REAL_DEMAND_GA');

Cap= 20; ! The capacity of the truck allocated to this group;
L = 1; ! Lead time;
R = 1; ! Group review time calculated in the Excelsheet - (R,S) Table;

!Output to excel;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP4X.xlsx','SLGA') = SLEVEL;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP4X.xlsx','SOHGA') = SOH;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP4X.xlsx','QGA') = Q;

ENDDATA

! The following submodel is used to allocate the available truck capacity to the different
products in the group.
The model will minimise the total deviation from the pre-identified order-up-to level;

187

SUBMODEL FIND_Q:

! At each day minimise the sum of the deveiation from S as a percenage of S of each product;
@FOR (DAY (J)| J #EQ# DAYN: MIN = @SUM (PRODUCT(I): (D1(I,J)+D2(I,J))));

! Subject to the following constraints:

1- The order quantity is a positive integer value;
@for (pxd (i,J)| J #EQ# DAYN: @gin (Q(i,J)));

! 2- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (J)| J #EQ# DAYN: @sum (product(i): q(i,j)) = cap);

! 3- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (j)| J #EQ# DAYN: @for (product (i): INV (I,J) + d1(i,j) - d2(i,j) + Q(i,j) =
s(i)));

@for (day (j)| J #EQ# DAYN: @for (product (i): D1(I,J) >= 0));

@for (day (j)| J #EQ# DAYN: @for (product (i): D2(I,J) >= 0));

ENDSUBMODEL

! This simple model is used if day j is not a review day to set Q(i,j) values to 0;
SUBMODEL NO_Q:

@FOR (DAY (J)| J #EQ# DAYN: @FOR (PRODUCT (I): Q(I,J) = 0));

ENDSUBMODEL

CALC:

! define the size of the repleishment period;
MXDAY = @SIZE (DAY);

! Set day to day 1;
DAYN = 1;

! Initiate a while loop to apply the submodels (when needed);
@WHILE (DAYN #LE# MXDAY+1:

! First we distinguesh between day 1 and all the othr days;
@IFC (DAYN #EQ# 1:

! For day 1, calculate the reminder of division of day, J, by the review period of the group,
R;
@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!for day 1, calculate he reminder of division of day, J, by the review period of the group, R,
plus the lead time, L;
@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

! Initiate the data for the first day;
! The next 4 functions will set SOH(i,j) = SOHE(I, J) = INV (I, J) = INVE(I, J) = S(I);
@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOHE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INV (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INVE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: REC (i,j) = 0));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SLEVEL (i,j) = 0));

! the seconf branch of the first @IFC function applies to days greater than 1;
! Here a set of calculations will be performed for any particular day greater than 1;
@ELSE@IFC (DAYN #GT# 1:

@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

188

@FOR (PRODUCT (I): @FOR (DAY (J) | J #EQ# DAYN: @IFC (DAYN #GE# L+1: REC(I,J) = Q(I, J-L);

@ELSE@IFC (DAYN #LT# L+1: REC (I,J) = 0;););));

@for (product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = REC(I,J) +SOHE(i, j-1)));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): @IFC (SOH(I,J) #GE# D(I,J): DEL(I,J) = D(I,J);
NDEL(I,J) = 0; SOHE (I,J) = SOH(I,J) - DEL (I,J);

@ELSE@IFC (SOH(I,J) #LT# D(I,J): DEL(I,J) = SOH (I,J); NDEL(I,J) = D(I,J) - DEL(I,J); SOHE
(I,J) = 0;););));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): INV (I,J) = INVE (I,J-1)));

););

@for (Day (j) | J #EQ# DAYN: @IFC (MOD(J) #EQ# 0:

@SOLVE (FIND_Q);

@ELSE@IFC (MOD(J) #GT# 0:

@SOLVE (NO_Q););););

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): INVE (I,J) = INV(I,J) -
D(I,J)+ Q(I,J)));

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): SLEVEL (I,J) = DEL (I,J)/ D
(I,J)));

DAYN= DAYN + 1;);

ENDCALC

END

189

EXP 5
! EXP 5;

MODEL:

SETS:

! Generate a set of 6 products;
PRODUCT/1..20/:

! An order-up-to level, S, is assigned to each product, I;
S;

! Generate a set of 500 days;
DAY/1..1000/:

! Modulo operation is used to deteminr if day J is a review day or not and to determine if a
previously
ordered batch will be recevied.

The reminder of division of day, J, by the review period of the group, R (Modulo
calculations);
MOD,

! The reminder of division of day, J, by the review period of the group, R, plus the lead
time, L;
MODRL;

! Product I at day J set;
PXD(PRODUCT,DAY):

! Product i at day j will have the following parameters;

INV, ! Inventory position of product I at day J ;
INVE, ! Inventory Position of product I at the end of day J ;
SOH, ! Stock on Hand of product I at the end of day J;
SOHE, ! Stock on Hand of product I at the end of day J;
Q, ! Order quantity of product I at the end of day J;
D,! Demand of product I at day J;
D1, ! Over Achivement;
D2, ! Uner Achivement;
REC, ! Item recevied at day J;
DEL, ! Satesfied demand of product I at day J;
NDEL, ! Un satedfied demand of product I at day J;
SLEVEl;! Seriveice level;

ENDSETS

DATA:

! Import Order-up-to level data for each product from Excelsheet -(R,S) Table;
S =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP5.xlsx','S_LEVEL_GA');

! Given mean of demand and the standard deviation of demand,
use excel to generate random demand for the needed number of days.
Then use @OLE function to import demand data;

D = @OLE('\Users\Cripps Hire Laptop\Desktop\EXP5.xlsx','REAL_DEMAND_GA');

Cap= 20; ! The capacity of the truck allocated to this group;
L = 1; ! Lead time;
R = 1; ! Group review time calculated in the Excelsheet - (R,S) Table;

!Output to excel;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP5.xlsx','SL') = SLEVEL;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP5.xlsx','SOH') = SOH;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP5.xlsx','QGA') = Q;

ENDDATA

! The following submodel is used to allocate the available truck capacity to the different
products in the group.
The model will minimise the total deviation from the pre-identified order-up-to level;

190

SUBMODEL FIND_Q:

! At each day minimise the sum of the deveiation from S as a percenage of S of each product;
@FOR (DAY (J)| J #EQ# DAYN: MIN = @SUM (PRODUCT(I): (D1(I,J)+D2(I,J))));

! Subject to the following constraints:

1- The order quantity is a positive integer value;
@for (pxd (i,J)| J #EQ# DAYN: @gin (Q(i,J)));

! 2- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (J)| J #EQ# DAYN: @sum (product(i): q(i,j)) = cap);

! 3- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (j)| J #EQ# DAYN: @for (product (i): INV (I,J) + d1(i,j) - d2(i,j) + Q(i,j) =
s(i)));

@for (day (j)| J #EQ# DAYN: @for (product (i): D1(I,J) >= 0));

@for (day (j)| J #EQ# DAYN: @for (product (i): D2(I,J) >= 0));

ENDSUBMODEL

! This simple model is used if day j is not a review day to set Q(i,j) values to 0;
SUBMODEL NO_Q:

@FOR (DAY (J)| J #EQ# DAYN: @FOR (PRODUCT (I): Q(I,J) = 0));

ENDSUBMODEL

CALC:

! define the size of the repleishment period;
MXDAY = @SIZE (DAY);

! Set day to day 1;
DAYN = 1;

! Initiate a while loop to apply the submodels (when needed);
@WHILE (DAYN #LE# MXDAY+1:

! First we distinguesh between day 1 and all the othr days;
@IFC (DAYN #EQ# 1:

! For day 1, calculate the reminder of division of day, J, by the review period of the group,
R;
@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!for day 1, calculate he reminder of division of day, J, by the review period of the group, R,
plus the lead time, L;
@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

! Initiate the data for the first day;
! The next 4 functions will set SOH(i,j) = SOHE(I, J) = INV (I, J) = INVE(I, J) = S(I);
@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOHE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INV (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INVE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: REC (i,j) = 0));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SLEVEL (i,j) = 0));

! the seconf branch of the first @IFC function applies to days greater than 1;
! Here a set of calculations will be performed for any particular day greater than 1;
@ELSE@IFC (DAYN #GT# 1:

@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

@FOR (PRODUCT (I): @FOR (DAY (J) | J #EQ# DAYN: @IFC (DAYN #GE# L+1: REC(I,J) = Q(I, J-L);

191

@ELSE@IFC (DAYN #LT# L+1: REC (I,J) = 0;););));

@for (product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = REC(I,J) +SOHE(i, j-1)));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): @IFC (SOH(I,J) #GE# D(I,J): DEL(I,J) = D(I,J);
NDEL(I,J) = 0; SOHE (I,J) = SOH(I,J) - DEL (I,J);

@ELSE@IFC (SOH(I,J) #LT# D(I,J): DEL(I,J) = SOH (I,J); NDEL(I,J) = D(I,J) - DEL(I,J); SOHE
(I,J) = 0;););));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): INV (I,J) = INVE (I,J-1)));

););

@for (Day (j) | J #EQ# DAYN: @IFC (MOD(J) #EQ# 0:

@SOLVE (FIND_Q);

@ELSE@IFC (MOD(J) #GT# 0:

@SOLVE (NO_Q););););

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): INVE (I,J) = INV(I,J) -
D(I,J)+ Q(I,J)));

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): SLEVEL (I,J) = DEL (I,J)/ D
(I,J)));

DAYN= DAYN + 1;);

ENDCALC

END

192

EXP 5
! EXP 5;

MODEL:

SETS:

! Generate a set of 6 products;
PRODUCT/1..20/:

! An order-up-to level, S, is assigned to each product, I;
S;

! Generate a set of 500 days;
DAY/1..1000/:

! Modulo operation is used to deteminr if day J is a review day or not and to determine if a
previously
ordered batch will be recevied.

The reminder of division of day, J, by the review period of the group, R (Modulo
calculations);
MOD,

! The reminder of division of day, J, by the review period of the group, R, plus the lead
time, L;
MODRL;

! Product I at day J set;
PXD(PRODUCT,DAY):

! Product i at day j will have the following parameters;

INV, ! Inventory position of product I at day J ;
INVE, ! Inventory Position of product I at the end of day J ;
SOH, ! Stock on Hand of product I at the end of day J;
SOHE, ! Stock on Hand of product I at the end of day J;
Q, ! Order quantity of product I at the end of day J;
D,! Demand of product I at day J;
D1, ! Over Achivement;
D2, ! Uner Achivement;
REC, ! Item recevied at day J;
DEL, ! Satesfied demand of product I at day J;
NDEL, ! Un satedfied demand of product I at day J;
SLEVEl;! Seriveice level;

ENDSETS

DATA:

! Import Order-up-to level data for each product from Excelsheet -(R,S) Table;
S =@OLE('\Users\Cripps Hire Laptop\Desktop\EXP5X.xlsx','S_LEVEL_GA');

! Given mean of demand and the standard deviation of demand,
use excel to generate random demand for the needed number of days.
Then use @OLE function to import demand data;

D = @OLE('\Users\Cripps Hire Laptop\Desktop\EXP5X.xlsx','REAL_DEMAND_GA');

Cap= 20; ! The capacity of the truck allocated to this group;
L = 1; ! Lead time;
R = 1; ! Group review time calculated in the Excelsheet - (R,S) Table;

!Output to excel;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP5X.xlsx','SL') = SLEVEL;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP5X.xlsx','SOH') = SOHE;

@OLE('\Users\Cripps Hire Laptop\Desktop\EXP5X.xlsx','QGA') = Q;

ENDDATA

! The following submodel is used to allocate the available truck capacity to the different
products in the group.
The model will minimise the total deviation from the pre-identified order-up-to level;

193

SUBMODEL FIND_Q:

! At each day minimise the sum of the deveiation from S as a percenage of S of each product;
@FOR (DAY (J)| J #EQ# DAYN: MIN = @SUM (PRODUCT(I): (D1(I,J)+D2(I,J))));

! Subject to the following constraints:

1- The order quantity is a positive integer value;
@for (pxd (i,J)| J #EQ# DAYN: @gin (Q(i,J)));

! 2- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (J)| J #EQ# DAYN: @sum (product(i): q(i,j)) = cap);

! 3- At day J the, the sum of the ordered quantities must fill the truck;
@for (day (j)| J #EQ# DAYN: @for (product (i): INV (I,J) + d1(i,j) - d2(i,j) + Q(i,j) =
s(i)));

@for (day (j)| J #EQ# DAYN: @for (product (i): D1(I,J) >= 0));

@for (day (j)| J #EQ# DAYN: @for (product (i): D2(I,J) >= 0));

ENDSUBMODEL

! This simple model is used if day j is not a review day to set Q(i,j) values to 0;
SUBMODEL NO_Q:

@FOR (DAY (J)| J #EQ# DAYN: @FOR (PRODUCT (I): Q(I,J) = 0));

ENDSUBMODEL

CALC:

! define the size of the repleishment period;
MXDAY = @SIZE (DAY);

! Set day to day 1;
DAYN = 1;

! Initiate a while loop to apply the submodels (when needed);
@WHILE (DAYN #LE# MXDAY+1:

! First we distinguesh between day 1 and all the othr days;
@IFC (DAYN #EQ# 1:

! For day 1, calculate the reminder of division of day, J, by the review period of the group,
R;
@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!for day 1, calculate he reminder of division of day, J, by the review period of the group, R,
plus the lead time, L;
@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

! Initiate the data for the first day;
! The next 4 functions will set SOH(i,j) = SOHE(I, J) = INV (I, J) = INVE(I, J) = S(I);
@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SOHE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INV (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: INVE (i,j) = S(i)));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: REC (i,j) = 0));

@for(product (i): @ for (Day (j) | J #EQ# DAYN: SLEVEL (i,j) = 0));

! the seconf branch of the first @IFC function applies to days greater than 1;
! Here a set of calculations will be performed for any particular day greater than 1;
@ELSE@IFC (DAYN #GT# 1:

@for (Day (j) | J #EQ# DAYN: MOD(J) = @MOD(DAYN,R));

!@for (Day (j) | J #EQ# DAYN: MODRL(J) = @MOD(DAYN,(R+L)));

194

@FOR (PRODUCT (I): @FOR (DAY (J) | J #EQ# DAYN: @IFC (DAYN #GE# L+1: REC(I,J) = Q(I, J-L);

@ELSE@IFC (DAYN #LT# L+1: REC (I,J) = 0;););));

@for (product (i): @ for (Day (j) | J #EQ# DAYN: SOH (i,j) = REC(I,J) +SOHE(i, j-1)));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): @IFC (SOH(I,J) #GE# D(I,J): DEL(I,J) = D(I,J);
NDEL(I,J) = 0; SOHE (I,J) = SOH(I,J) - DEL (I,J);

@ELSE@IFC (SOH(I,J) #LT# D(I,J): DEL(I,J) = SOH (I,J); NDEL(I,J) = D(I,J) - DEL(I,J); SOHE
(I,J) = 0;););));

@FOR (DAY(J) | J #EQ# DAYN: @FOR (PRODUCT (I): INV (I,J) = INVE (I,J-1)));

););

@for (Day (j) | J #EQ# DAYN: @IFC (MOD(J) #EQ# 0:

@SOLVE (FIND_Q);

@ELSE@IFC (MOD(J) #GT# 0:

@SOLVE (NO_Q););););

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): INVE (I,J) = INV(I,J) -
D(I,J)+ Q(I,J)));

@FOR (DAY(J) | J #EQ# DAYN #and# dayn #gt# 1: @FOR (PRODUCT (I): SLEVEL (I,J) = DEL (I,J)/ D
(I,J)));

DAYN= DAYN + 1;);

ENDCALC

END

195

196

197

198

199

200

201

202

