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Abstract  

This study investigates to apply the ARCH family model to assess the impact 

of inflation on S&P 500 stock return volatility using daily data from 2004 to 

2014 in the U.S. it is found that no evidence shows that the inflation has the 

predictive power for stock return volatility in the U.S. this finding is consist with 

Davis and Kutan (2003) results for the U.S. market, but disagree with 

Schewert (1989) who find weak effect form inflation to the stock market 

volatility in U.S.  In addition, this paper finds the GARCH model under the 

Generalized error distribution has more power when modeling the conditional 

volatility than the traditional normal distribution assumption. Moreover, the 

impact of asymmetric shocks exists in the S&P 500 conditional return volatility. 

 

Key words: stock return volatility, ARMA, T-GARCH, GED, impact of inflation, 
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Chapter 1 

Introduction  

The majority of studies are to examine the effect of inflation to the stock returns 

based on the genesis of Fisher effect hypothesis financial theory, which 

suggests that the nominal stock returns should vary with the inflation. However, 

the realistic return series always tend to have a time-varying volatility feature 

found and provided evidence by Akgiray (1989), Bollerslev (1987), Chou 

(1988), and French et al. (1987) , therefore, it is also interesting to investigate 

and examine the impact of the  inflation on the stock return volatility.  

 

This paper is to investigate the possible predictive power of U.S inflation to 

S&P 500 stock return volatility by using daily data from 05th/01/2004 to 

30th/06/2014. Where the approximate daily inflation data is obtained by linear 

interpolation method, and the S&P 500 stock return volatility is measured by 

using appropriate Autoregressive Conditional Heterosecaedastic (ARCH) 

family model.  

 

The S&P 500 index is one of a most popular index in U.S. it is the market-value 

weighted index which are proxies for the market portfolio in the U.S. market 

rather than the share index which focus on some particular industries in the 

Country. Therefore, it is better to analyse the potential causes from the macro 

view, and the inflation is one of a key macro variables for a Country.  

 

The rest of this paper shows the literature review of the topic; secondly the 

study for modeling daily S&P 500 index return volatility by ARCH family models 

and then finally  investigates the study: does the inflation can predict and has 

effect on this volatility by adding the lag inflation value as the exiguous variable 
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in the volatility time series model.  

 

However, this paper does not separate the Methodology Part and Analysis 

Part. This because even based on reading the references for modeling the 

volatility, the empirical study should more obey the practical sample data. The 

most appropriate model for this sample return volatility should be identified 

according to the different problems and features in this sample data. The 

remainder of this paper is arranged as below:  

 

Chapter 2: literature review  

Chapter 3: obtain and analyse the S&P 500 return series; 

Chapter4: according to the series correlation feature, investigate the ARMA 

model; 

Chapter 5: modeling the volatility by simple ARCH; 

Chapter 6: according to the problem of long lag order of ARCH model, 

implement the traditional GARCH model; 

Chapter 7: according to the no feasible distribution assumption, implement the 

GARCH with GED assumption; 

Chapter 8: test the possible leverage effect by TGARCH and try GARCH-M 

model. 

Chapter 9: obtain the approximate daily inflation and use as the ex variable. 

Chapter 10: conclusion 
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Chapter 2  

Literature review  

 

2.1 Stock return volatility 

Return Volatility shows the return uncertainty, the risk when holding this stock. 

From the return time series picture, it means the fluctuations away from the 

average return. It is usually represented by the standard deviation (Std) of the 

return or the variance of the return. Stock return volatility refers to the 

variability of stock price changes a time period. It is a critical factor in options 

trading and it is regarded as a measure of risk by analysts, dealers, brokers, 

investors and regulators. (Karolyi et al, 2001 ) This paper uses the variance of 

the log return as the volatility. However, the return time-varying volatility exists, 

the higher volatility represents the higher distance that the return volatile away 

from the mean value. Therefore influence the wealth for the stock holders. 

 

The analysis of the time varying stock return volatility involves two main filed: 

one is modeling volatility by using the high frequency data to obtain the low 

frequency volatility, using the time series model et al. or even forecast the 

volatility using these models. These are the univariate analysis.  

 

The other research study field is to investigate the possible causes and 

potential explanations for this stock return volatility changes. Therefore, many 

articles study the influence from the view of macro-environment of the stock 

market, such as the relationship between macro variable volatility and the 

stock return volatility, or the macro variable for the stock market return volatility. 

The hypothesis that the macro-variables have effects on the stock market 
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originally put forward to investigate the causes for the highly time varying stock 

return volatility. Because these will potentially contribute to the financial 

decision, which if successfully examine the association, therefore the investor 

would based on the macro variables changes as one of the indicator to make 

investment decision; besides, it would contribute to the financial risk 

management as well. The inflation is a key indicator of one of the 

macro-variable. Fama (1981) argues that the stock prices is the reflector of 

various macro variables such as inflation. Many other researchers also carried 

out study in this field: French and Roll (1986) and (Schwert, 1989) study the 

day-of-the-week effects, macroeconomic variables to the stock return volatility. 

Ederington and Lee (1993) and Berry and Howe (1994) study the release of 

scheduled macroeconomic news to the return volatility and the trading volume 

to the return volatility. Although Blair (2001) concludes some weaknesses of 

these possible explanations for time-varying stock return volatility, these 

articles still make a huge contribution for investigate the possible causes for 

volatility.  

 

 

 

2.2 Inflation and importance of inflation 

 

The Customer Price Index for All Urban (CPI-U) represents the changes in the 

prices paid by urban consumers for a representative basket of goods and 

services” (U.S. Department of Labor). The definition of inflation in U.S. given 

by U.S. Department of Labor is "the overall general upward price movement of 

goods and services in an economy." The CPI-U usually as the indicator 

represents the Inflation, or using the rate of return of CPI as the inflation rate. 

Therefore, the inflation represents the changes rate of the prices paid by urban 



9 
 

consumers for the same basket of goods and services during a time duration.  

 

Fisher (1930) puts forward the famous Fisher Effect Hypothesis that provides 

the normal interest rate and the real interest rate relationship: 

                                          

 

Or                               

Where: the          is the nominal interest rate, 

                             is the real interest rate. 

 

This means the nominal interest rate is co-movements with its corresponding 

inflation rate.  

 

A simple example to explain the importance of the inflation rate: if the nominal 

annual interest rate of return is 5% in one year in one Country, one investor 

invest 100 Pounds into bank, and after one year he will obtain 100 

(1+5%)=105 pounds which is the initial capital together with the interest. He 

loses or uses the opportunity cost for dong other invest during this period, 

instead he obtains the extra 5 pounds in return.  

 

If further assumes that the inflation rate is 10% in this Country in this year, i.e. 

purchasing a set of basket of goods costs 100 Pounds at the beginning of this 

year, however at the end of this year, purchasing the same set of basket of 

goods costs 110 pounds. Therefore, in this example, the investor not only does 

not obtain the profit, but also even lose the value of the initial capital.  

 

This is only an example for the importance of inflation to the bonds return 

based on the Fisher Effect. The same influence of inflation to the stock return 

based on this Effect that is the nominal stock return should co-movements with 
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the inflation rate in one Country. And the real stock return should be immuse to 

the inflation.  

 

There are a lots of papers empirically investigate this Fisher Hypothesis by 

examining the relationship between inflation and stock return, Firth (1979) and 

Gultekin (1983) give the positive relation between nominal stock returns and 

inflation in United Kingdom. Loannidis et al. (2004) examines the Finsher 

Effect in Greece from 1985 to 2003. Anari and Kolari (2001) and Luintel and 

Pandyal (2006) also give empirical evidences prove the Fisher effect, and 

some researchers find the Fisher effect does not hold in some Countries in 

some period. Linter (1975), Bodie (1976), Nelson (1976), Jaffe and Mandelker 

(1976), and Fama and Schwert (1977). Spyrou (2001) suggests the relation 

between stock return and inflation may change over time and may also depend 

on the period examined. Based on this strong evidence of the association 

between inflation and stock return, therefore, and also because the stock 

returns exhibit time vary volatility feature, this paper tends to study does the 

inflation can influence the stock return volatility. 

 

 

 

2.3 Inflation and Stock return volatility 

Schewert (1989) analyses and concludes the weak evidence of the relation of 

stock market volatility and the macroeconomic variables including inflation rate 

for USA from 1857 to 1987, using monthly data.  

 

Palm (1996) motivates GARCH models of volatility into the Factor-GARCH 

models that are the return and conditional variance in GARCH-type models 

being interpreted by adding the new economic variables and financial data.  
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Hamilton and Lin (1996) analyses the U.S. market return and return conditional 

volatility by using S&P 500 index from 1965 to 1993, they find the evidence of 

the economic activity (including the inflation) drives stock return volatility in the 

economic recessions.  

 

NICOLE DAVIS and ALI M. KUTAN (2003) use monthly data from 1957 to 

1999 to investigate the impact of inflation as the exogenous variables on both 

the stock return and on the conditional volatility modeled by the standard 

GARCH (1,1) model and EGARCH (1,1) model among 13 industrial and 

developing countries. The results show that including the USA, there is no 

evidence that macroeconomic activity given by inflation has significant power 

to predict the stock return volatility in nine countries. The evidence shows in 

The Finland, Germany, Japan and the Netherlands, inflation plays a significant 

and negative impact on the conditional volatility. But the return value is 

sensitive to the inflation movement in the UAS.  

 

Ali M. Kutan and Tansu Aksoy (2004) use the monthly data from 1996 to 2001 

and expand the GARCH model to modeling the stock return volatility for The 

ISE composite (National-100) index in Turkey which has a relative high level of 

inflation rate. Then they use both CPI and first lag of CPI as the possible 

exogenous variables influencing the Turkey stock market, the results suggest 

that neither CPI nor lag-1 CPI is insignificantly influence the stock return 

volatility.  

 

Generally, Engle and Rangel (2005) examine the impact of economy’s overall 

health on unconditional market volatility. They provide that countries with high 

rates of inflation experience larger expected volatilities than those with more 

stable inflation rate. 
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After finding the strong time varying volatility in Toronto Stock Exchange (TSE) 

and Istanbul Stock Exchange (ISE) in Turkey with highly inflation rate, Saryal 

(2007), therefore, uses the same method, further discovers the inflation can 

determinant this return volatility. However, there is no evidence on Canada.  

 

Bekaert and Engstrom (2009) study in the US show that high expected 

inflation has tended to coincide with periods of heightened uncertainty about 

real economic growth together with unusually high risk aversion, both in 

rationally raise equity yields. 

 

Md. Arifur Rahman (2009) use the VAR method finds the significant 

association between the industrial-level stock returns volatility in Australia and 

the Australia inflation.  

 

Sagarika Mishra and Harminder Singh (2010) investigate the relationship 

between macro-economic variables including inflation and stock volatility, 

using monthly Data from 1998 to 2008 from two major stock indices in India, 

although, no significance between return and inflation, but they find that the 

increased inflation affects one stock return volatility go up.  

 

Shehu Usman Rano Aliyu (2012) use the monthly data and use the first lag of 

inflation ( the difference of natural lgrithum CPI) as the variable to explain the 

time varying return volatility described by the simply GARCH(1,1) and 

QGARCH (1,1) model, the results show both two countries the Nigeria with 

Nigeria stock exchange (NSE) market and Ghana with GSE market show the 

significant evidence at 10% level that the inflation has an impact on the stock 

return volatility, the negative coefficient in the Nigeria and positive coefficient in 

the Ghana.  

 

Engle, R. F. and Rangel, J. G. using the monthly data with five year interval for 
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50 countries observes that the higher return volatility is match the relative 

higher inflation, and for low return volatility countries, the inflation rate is 

relative low. Moreover, the volatility of inflation presents a positive impact to the 

return volatility.  

 

Goabaone Otisitswe Boitumelo Moffat (2000) uses the quarterly data from 

1999 to 2009 analysis the Botswana Stock Exchange market (BSE), using 

cointegration method. the results show firstly, there is a positive relationship 

between market volatility and market development, secondly there is a 

negative relationship between inflation rate and market development, therefore, 

indicating a negative association between market volatility and inflation rate.  

 

Because after 1993, non study investigates the inflation and market return 

volatility in the U.S., also considering the timeliness, this paper investigates the 

effect of inflation on the market return for recent ten years from 2004 to 2014. 

 

 

 

2.4 ARCH family model 

However, the volatility for return series cannot be observed directly. Unless the 

higher frequency of the return data can be obtained, the standard way for 

calculating the daily standard deviation cannot compute the daily volatility. 

Therefore, the Autoregressive Conditionally Heteroscedastic (ARCH) family 

model, which models the conditional volatility of the stock price return 

conditional on current available information is popularly used in the financial 

analysis.  

 

Engle (1982) firstly establishes the ARCH model, which can capture the 

heteroscedastic feature in the financial return series. Bollerslev (1986) 
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improves the ARCH model into Generalised ARCH (GARCH) model, which 

adds the past value of variance(s) as the explanations, this releases the high 

constrains for the coefficients in the variance equation in the ARCH model and 

meanwhile reduces the number of parameters in the model and therefore 

minimises the standard errors when estimating the model. After using the 

GARCH model empirically to analyse the financial time series, Bollerslev, Ray 

and Kenneth (1992) concludes that the GARCH(1,1) model has the availability 

to estimate the conditional volatility for a wide range of financial series data. 

When studying the US stock market data, Akgiray (1989), Pagan and Schwert 

(1990), Brailsford and Faff (1996) and Brooks (1998) found that the GARCH 

model, especially GARCH (1,1) outperformed.  

 

In order to capture the leverage effect, which means the asymmetrical effect 

from positive and negative news in error, one famous extension GARCH model 

is developed by Glosten, Jagannathan and Runkle (1993), namely Threshold 

GARCH (T-GARCH), it explains this asymmetrical effect more successfully 

than the simple GARCH. Chris Brooks (2008) represents an illustration for 

using T-GARCH to model monthly S&P 500 return series from December 1979 

to June 1998, the result shows that the sample return volatility does have the 

asymmetric effect. The Exponential GARCH (E-GARCH) model by Nelson 

(1991) also can capture the asymmetric effect. Based on the financial theory 

that high risk should be reward high return, Engle, Lilen and Robins (1987) 

extend the GARCH-in-mean, which adds the conditional variance as the 

explanation in the return series.  

 

However, for high frequency financial time series data, the conditional 

assumption of normality for the error term in the mean equation is often 

unrealistic due to the skewness and kurtosis of the distribution (Brooks, et al, 

2000). Mandelbrot (1963) and Fama (1965) firstly observed the financial time 
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series tend to be distributed as sharper peak and fatter tails than normal 

distribution. Therefore, researchers have begun to describe these non-normal 

distributions of return or other financial time series. Mandelbrot (1963) 

proposed the stable Paretian distribution. Bollerslev (1987), among others, 

implement the Student t distribution, and Nelson (1991) expands the use of the 

Generalized Error Distribution (GED), which has a thinner peak and thicker 

tails than the normal distribution when the sharp parameter less than 2. 

 

Based on the previous studies, this paper will also try to model the return 

volatility under different distribution assumption, and also check the volatility 

asymmetric effect and try the GARCH-in-mean model in order to find the most 

appropriate model for modeling the S&P 500 stock return series. 
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Chapter 3 

The S&P 500 Return Series 

 

In order to analyses the causes of the stock index volatility, it is necessary to 

measure the daily stock return volatility. Before modeling the volatility by ARCH 

type model, it is necessary to obtain and analyse the stock return series. 

 

 

 

 

3.1  S&P 500 index 

This paper uses the recent ten years daily S&P 500 index data from 2nd 

January 2004 to 30th June 2014, totally 2641 observations. The S&P 500 index 

daily closing data is downloaded from Yahoo finance website. The main 

software used in the paper is the STATA software. 

 

However, the daily stock price data obtained only includes the trading days 

during the chosen duration which does not contain all of the weekends and the 

bank holidays. This is because the stock market is not trading in the weekends 

and bank holidays. Therefore, when inputting the data into the STATA 

software, this time series data is with gaps avoiding the non-trading days.  

 

 

3.2  Return series 

This paper uses the log return as the daily S&P 500 index return (rt) that is the 

changes in the natural logarithm stock index price. It is a daily rate of return 
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shows the yield continuously compounded during the period from t-1 to t, 

therefore, no any U.S. dollar or another unit describes this rate of return. This 

return is calculated as that the investor reinvests the profit obtained from the 

stock as the new capital, and the frequency of this compounded process is 

continuous during one period (t-1 to t). 

 

The daily S&P 500 return time series {rt} from the S&P 500 index is given by: 

          
  

    
                          (1)     

 

Where: rt is the log return at time t, 

Pt is the stock price at time t,  

                t is the day number  

 

Because the log return calculated based on two prices, the current day’s (Pt) 

and previous day’s (Pt-1), when obtain the daily log return series, there must at 

lease lose one value. Because the S&P 500 index price time series {Pt} is with 

large volume of gaps, there must be lots of missing values for the log return, 

more specifically, one gap with n number of non-trading day(s) between the 

price data must lead to n+1 lose values of the log return time series. Therefore, 

in order to compute a daily log return with no gaps, this paper only uses the 

trading calendar rather than the normal calendar to construct the daily price 

time series, and then obtain the log return time series with no gaps.  
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3.3  Data descriptive analysis 

 

Figure 1 

S&P 500 index time series from 02
th

/01/2004 to 30
th

/06/2014 

 

Where: the time is the trading day count, totally 2641 observations. 

The first observation in time series (i.e. t= 1) is 02
nd

/01/2004; 

t= 600 is 19
th
/05/2006;      t= 1200 is 07

th
/10/2008; 

t= 1800 is 24
th
/02/2011;     t= 2400 is 16

th
/07/2013. 

The last observation in time series (i.e. t=2641) is 30
th
/06/2014 

 

Figure 1 shows the daily S&P 500 index time series from 2nd January 2004 to 

30th June 2014, totally 2641 observations. The horizontal line shows the daily 

time series, which is the trading day account; the vertical line shows the S&P 

500 index price. Except the time interval from about t= 1000 to about t=1300, 

which is from December 2007 to March 2009, the S&P 500 index series is 

mainly increases with some big and small fluctuations during the sample 

duration.  
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Figure 2 

S&P 500 log return time series from 02
th

/01/2004 to 30
th

/06/2014 

 
Where: the time is the trading count, totally 2640 observations. 

The first observation in time series (i.e. t= 1) is 05
th
/01/2004; 

t= 600 is 22
nd

/05/2006;      t= 1200 is 08
th
/10/2008; 

t= 1800 is 25
th
/02/2011;     t= 2400 is 17

th
/07/2013. 

The last observation in time series (i.e. t=2640) is 30
th
/06/2014 

 

Figure 2 shows the S&P 500 daily log return time series from 5th January 2004 

to 30th June 2014, totally 2640 trading days. The horizontal line (i.e. the X-axis) 

shows the daily time series, the vertical line (i.e. the Y-axis) shows the log 

return values. This return series is non-linear with highly frequent fluctuations 

over whole sample interval. But the main trend of this series seems horizontal 

with the X-axis, which is near and just above the Y = 0 line.  

 

Together with Figure 1, interestingly, the extremely big magnitudes of return 

variations become when the index significantly drop, such as in October 2008 

(when about t=2000 in both figure 1 and Figure 2), May 2010 and August 2011. 

But these big variations of return do not last for a very long time. This together 

with the main horizontal trend (i.e. no trend) reflects the mean reversion 
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feature in the return time series. That is the time-varying return volatility is not 

unlimited, and the return volatile around its mean values, and will back to its 

mean values.  

 

 Volatility Clustering 

There were large fluctuations around t=1200. i.e. in year 2008, this return 

series becomes more volatile, this heavy fluctuations did not decay 

immediately, but followed by some large fluctuations too. Figure 2 shows a 

tendency that some large changes of fluctuations of return tend to be followed 

by large changes, like the blue circle in year 2008, and vice verse, like the 

green circle in year 2011 (around t=2000). This feature reflected by return 

series is called the volatility clustering.  

 

Because of the feature of return volatile continuously with different magnitudes 

as the time varying, this daily return has a time varying volatility, and these 

volatile return, for instance, holding the stock on current day t, the return on 

next day rt+1 maybe unchanged, maybe dramatically increase or unacceptable 

decrease. These fluctuations of the return series in Figure 2 represent risks for 

the stockholders, i.e the return volatility in the economic way. From a statistical 

view, these volatility is measured by the second moments i.e. the standard 

deviation (Std) or variance (the square of the Std). 
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Table 1 

Descriptive statistics for return series 

 

 

Table 1 shows the descriptive statistics for the return samples. The mean of 

the sample is above zero (0.0002159 or 0.02159%). However, comparing to 

the mean value, the minimum value and the maximum value in the sample are 

extremely small and extremely large representing the high fluctuations for the 

return values. This is showed by the standard deviation (0.012657) which is 

not a small figure, comparing with the mean value.  

 

The skewness and kurtosis describe the sample distribution, therefore, these 

two figures cannot be compared with return value. The sample distribution is 

nearly symmetrical (Skewness= -0.3366737), but the Kurtosis of 14.35698 

means that the considerable volume of returns around the mean value.  

 

 

 

 

 

 

 

 

 

 

Mean 0.0002159

Minimum value -0.094695

Maximum value 0.109572

Standard deviation 0.012657

Skewness -0.336674

Kurtosis 14.35698
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Figure 3 

 

Figure 3 (a): Distribution of sample return, 

Figure 3 (b): Q-Q Plot of sample return.    

                 

 Distribution Leptokurtic 

Figure 3 (a) the gray area shows the totally 2640 return samples’ distribution. 

The X-axis shows the return values, the Y-axis is the frequency of the return 

appearing in the 2640 observations. The blue bell curve together with the 

X-axis constitutes the normal distribution area which is the best fitted normal 

distribution to the samples. However, the sample distribution is higher peak 

and fatter tails than the corresponding normal distribution and this feature of 

return distribution is called leptokurtic. This means the considerable volume of 

return values around its mean value, but also not small number of return 

values are extremely large or small representing the very high risk for S&P 500 

index in the sample period.  

 

Figure 3 (b) is the Q-Q Plot of the return series which re-examines this 

leptokurtic feature more clearly. It compares the normal distribution with the 

return sample distribution. If the bold line is fitted with the thin straight line, it 

means the sample distribution is normality; otherwise, the sample distribution 

is not normality. The bold line deeply below the reference line in the left side 

and above the reference line in the right side means the higher peak and fatter 
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tails of the sample distribution respectively. 

 

Figure 4 

 

Figure 4 (a): ACF picture of return series, 

Figure 4 (b): ACF picture of square of return series                       

 

Figure 4 (a) is the Autocorrelation function (ACF) of the return time series {rt}. It 

shows the linear correlation coefficients between series {rt} and its lagged 

values. The X-axis shows the lag number and the Y-axis shows the 

auto-correlation coefficients values. If the series is serial correlation, the 

autocorrelation values of return series will significantly differ from zero in 95% 

confidence interval. Otherwise, all the plots will be in the gray area in ACF 

picture.  

 Serial Correlation 

The Fig 4 (a) ACF of S&P 500 return series shows that this time series firstly 

exhibits low levels of significant autocorrelations in first 5 lags; until the lag-15, 

lag-18, lag-21, the autocorrelations become significantly different from zero 

again. This is a small magnitude of the serial correlation in the return series. 

The Autoregressive (AR) model can describe this serial correlation 

characteristic in the return series or even using Autoregressive Moving 

Average (ARMA) model.  
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 Serial Dependence 

However, the square of return series {  
 } has significantly much higher level of 

autocorrelations at least within 40-lags shown by Figure 4 (b). Therefore, this 

return time series is low serial correlation but with highly non-linear 

dependencies in the second moment. The ARCH family model will try to 

capture this dependence in the return series.  

 

 

 

 

3.4 Section summary 

Therefore, after analysis this return series, it has four main characteristics 

which are the same findings in other stock returns time series no matter the 

high-frequency data or low-frequency data. These are mean reversion, 

volatility clustering, distribution leptokurtic, and series dependence. Based on 

the previous research for financial assets return series such as Hinich and 

Patterson (1985); Baillie and Bollerslev (1989); Brooks (1996), these 

characteristics can be best captured by an ARCH family model, which is 

modeling non-linear in variance (Chris Brooks,2008). However, the serial 

correlation feature in sample return cannot be described by ARCH-type model. 

Therefore, this paper will use ARCH-type model together with ARMA model 

(ARMA-ARCH) rather than a simple ARCH-type model for modeling return 

volatility.  

 

The outline for next two Chapters is shown by the process chart below: 
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Chapter 4 

ARMA model for the mean equation 

 

This S&P 500 return series has a small magnitude autocorrelation tested by 

ACF picture, which can be described by the autoregressive (AR) model, or 

even autoregressive moving average (ARMA) model (Box and Jenkins, 1976). 

Therefore, this paper is going to add ARMA model to describe the 

autocorrelation in mean equation in ARCH model. 

 

However, the majority of the literatures, modeling for S&P 500 or other stock 

return volatility by using time series models, just simply regress the return on a 

constant and use ARCH–type model, without combining the AR or ARMA 

model. This may because their return series do not exhibit the serial 

correlation or just exhibit very slight magnitude autocorrelations, such as the 

low-frequency monthly data rather than the high frequency daily data used in 

this paper.  

 

Because the main aim is to choose the best model for modeling sample 

volatility, the necessary for using AR or ARMA model just make sure the mean 

equation is adequacy. 

 

The rest of this Chapter outline: 

 Introducing ARMA model 

 Stationary process --- Dickey-Fuller test 

 ARMA order --- AIC & BIC 

 Modeling adequacy checking --- Portmanteau test & ACF  



27 
 

For an ARMA (m, n) model: 

               

 

   

         

 

   

                        

           

Where: 

m is the lag order for AR part, which is a positive integral number; 

n is the lag order for MA part, which is a positive integral number; 

ci is the coefficient parameter for lag return value, for i = {1, 2, 3, … , m}; 

rt-i is the lagged return value, for i = {1, 2, 3, … , m}; 

dj is the coefficient parameter for lag error term value, for j = {1, 2, 3, … , n}; 

ɛt-j is the lagged error term value, for j = {1, 2, 3, … , n}. 

ɛt is the error term at time t. 

 

The Equation (2) is called the mean equation, describing the return series. It 

shows the return rt is a linear combination of its lagged values (rt-i) and lagged 

error terms (ɛt-j). The second term in the bracket is the AR model part, 

capturing the serial correlation in S&P 500 return series {rt}. The third term in 

the bracket is the MA model part.  

Because the square of sample series exhibits high autocorrelation, which 

means the sample series is with heteroscedastic, which the variance of error 

term is not constant over time, and also because the ARMA model cannot 

capture this heteroscedastic feature, therefore the error term in equation (2) 

here only is assumed with zero mean, and zero autocovariance over time.  

 

This ARMA model (equation 2) is used as the mean equation in ARCH model.  
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4.2  Check the series Stationary 

 Stationary process 

Firstly examining return series is a stationary process or not from statistical 

way, because a weak stationary process has a mean reverting property. It 

means the effect from the previous value(s) become small and small, and 

decay as time passed, for a return series, it means even the return is volatile; it 

would not volatile unlimited, and will back to its mean values.  

 

A weakly stationary process {Yt}, but not a white noise, has a constant mean 

and constant variance over time, and a non-zero auto-covariance only 

depends on the number of lag k, not depends on the time t, i.e.:  

                                        (3)              

                                          (4)              

                                          (5)              

 

The lag-k autocorrelation ρk for a time series {Yt}: 

   
            

       
 

  

  

                                             

If the absolute values of auto-correlation of the series is less than 1, (|ρk| <1 for 

kǂ0), this time series could be a stationary process, which the effect from the 

previous value(s) become small and small, and decay as time passed; if no 

auto-correlation feature (ρk=0, for kǂ0), this could be a white noise; if the 

autocorrelation equal to 1 (ρk=1, for kǂ0), it is a unit root process or called 

random walk, which the shocks from lag values do not decay and do not 

increase, and its ACF picture are firstly approaching 1 and be seen decay very 

slowly; if the autocorrelation of the series is above 1, (ρk >1 for kǂ0), it is a 

deterministic trend process, which can be obviously observed from the time 

series picture with observed main trend with fluctuations.  
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Because sample return series has an autocorrelation, and does not exhibit 

deterministic trend, therefore, the sample series either a stationary process or 

unit root process. Because the ACF for lag-1 in Figure 3 (a) seems between 

(-0.2, -0.1) not approach value 1, simply observed, the sample series is a 

stationary process. However sometimes it is not easy to distinct these two 

processes clearly from simply observed an ACF picture (Brooks, 2008), for 

insurance for the result, this paper implements Dickey-Fuller test for non-unit 

root (or stationary) test to re-examine the observed feature of mean reversion 

in sample return series. 

 

 Dickey-Fuller test 

The null hypothesis (H0) is: series being a unit root process; reject the null here 

(H1): series is a stationary process.  

 

Step 1: For a series {yt}, 

                         (7.1)          

Where: c is the coefficient parameter for yt-1, and ɛt is the error term, the null 

hypothesis becomes:                      

 

Step 2: Taking the first difference for Equation (7.1): 

                                  (7.2)         

                                           

                                      or,  

                                     (7.3)         

Therefore the null hypothesis becomes:                           

 

Step 3: Under the null hypothesis, Test statistics does not follow a usual 

t-distribution, but rather than following a non-standard distribution, where: 
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                  (8)         

Where: SE means standard error.  

Accept the null, if the p-value of the test statistics is above the significant level. 

Reject the null, if the P-value for test statistics is at 5% significant level.  

 

Table 2: Dickey-Fuller test for S&P 500 return 

Test Statistic:    -57.3370  

p-value:          0.0000 

Table 2 shows the result of Dickey-Fuller test for sample return. The p-value of 

the test statistic (0.0000) is highly significantly at 1% level. Therefore, we 

strongly reject the null of unit root process, so the sample S&P 500 return 

series is indeed a stationary process.  

 

 

4.3  Re-examining the Serial Correlation 

 Portmanteau Test:  

Secondly, this paper re-examines the return serial correlation by Portmanteau 

Test. This is the same function as ACF picture to test the series {rt} is serial 

correlation or not, from the statistic way. This method is modified by Ljung and 

Box (1978). The null hypothesis (H0) is the series being white noise from the 

view of no autocorrelation within at least m lags; then the series’ 

autocorrelations are all jointly zero within m lags. Reject the null, if any of the 

autocorrelation is significantly different zero.  

                                       (9)           

                                             (10)           

Where: ρk is the lag-k autocorrelation, k is the positive integer. 
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Under the null hypothesis, the general statistic of linear dependence Q (m) 

should be distributed as a Chi-square random variable with m degree of 

freedom (df), then the p-value of Q(m) should greater than the α, where the α 

is the significance level chose.  

            
  

  

   

  

   

       
                                  

 

Where: 

      T is the sample size; 

      m is the maximum lag length;  

        
  is the 100(1-α)th percentile of a Chi-squared distribution with m degree of 

freedom. 

 

Ruey s. Tsay shows that the simulation studies result for         provides 

better performance. Reject the null if       α
  with m degrees of freedom, 

then the provided p-value of Q (m) by software is less than or equal to α, 

where α is the significance level.  

 

Because the return sample observation is:         

Then:                                                   

 

Table 3 

Portmanteau Test for sample S&P 500 return series 

Portmanteau (Q) statistic :   116.3556 

 Prob > chi2(20) :           0.0000 

Portmanteau (Q) statistic :    57.9747 

 Prob > chi2(8) :            0.0000 

According to the Portmanteau test with m=20 and m=8 degree of freedom (df) 

that the Q (20) = 116.3556 and Q (8) = 57.9747. The p-values of these two 
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statistics both are 0.0000 less than 5% significant level, then reject the null 

hypothesis of series no autocorrelation, together with the ACF of return picture, 

suggesting the sample return does have an autocorrelation feature.  

 

 

4.4  Decide using ARMA for return series 

Figure 5 

  

Figure 5 (a): ACF of the sample S&P 500 log returns from 5
th
/01/2004 to 30

th
/06/2014; 

Figure 5 (b): PACF of the sample S&P 500 log returns in same time interval.  

 

 

 PACF picture 

The partial autocorrelation function (PACF) τk measures the partial 

autocorrelation between current value and lag-k value after controlling for the 

effects of observations at all lags<k. For example: for a stationary AR (1) 

model for {yt} time series: 

                             (12.1)            

Where: the c1 is the correlation coefficient for yt-1,  

ɛt is the error term which assumption should be a white noise process, that is zero 

mean, constant variance all time and zero autocorrelations for all the time. 

Then:                                                (12.2) 

Then yt could be written as:                            (12.3) 
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                            (12.4)           

   
                         (12.5)           

Therefore the correlation coefficient between yt and yt-2 is   
 . However, 

because yt is an AR (1) model that only depends on lag-1 value, hence, after 

controlling the effect of yt-1 to the yt, yt-2 cannot provide additional information 

for yt. The effect of yt-2 to the yt is zero. i.e. The partial autocorrelation for lag-2 

is zero. The same reason for PACF of lag-2, lag-4, … … are all zero. Therefore, 

for a stationary AR (1) series, this series’ PACF is cut off at lag-1. For a pure 

AR (m) time series, it is PACF is cut off at lag-m.  

 

Figure 5 (a) and (b) shows the ACF and PACF of sample return series within 

20 lags respectively. The ACF picture shows the sample series has the 

significantly small magnitude serial autocorrelation the same result with 

Portmanteau Test, and this can be captured by the AR model. However, the 

PACF firstly significantly differ from zero within first five lags, and 

re-significantly differ from zero at lag-10, lag-15, and lag-18, which means the 

PACF of this sample series does not exactly significantly cut off at some lag 

order at least within 20 lags. Therefore, Fig. 5 (a) and (b) show that it is 

necessary to implementing an AR model, but only a pure AR model might not 

be adequate to describe the mean equation for sample S&P 500 return series. 

Therefore, this paper tries to implement the ARMA model, which explains the 

series using both the lagged return and lagged error term in the mean 

equation. 

 

 

 

 

 

 



34 
 

4.5 Define the orders for ARMA model 

Fourthly, define the possible orders for ARMA model for the/a mean equation 

by using the Akaike’s (1974) information criterion (AIC) and Schwarz’s (1978) 

Bayesian information criterion (BIC): 

                           (13)            

                           (14)            

Where: 

      L is the maximum likelihood estimates, 

      T is the sample size, 

      K is the number of parameters in the mean equation, 

 

The first term in Equation AIC measures the goodness of fit of the ARMA 

model to the data, the bigger the lnL is, the better the goodness of fit of the 

model is. Whereas the second term in Equation (13) is the penalty function of 

the criterion. The less the parameters used, the better the model. Or consider, 

if two models both can explain a series well in the same level, the less the 

parameters the better the model. Therefore, the less the AIC value the better 

the model fit to the series.  

 

The K*lnT is another penalty function resulting in another information criteria 

(i.e. BIC). The less the BIC value the better the model fit to the series. 

Therefore choose the orders for ARMA model that has the minimum AIC value 

and the minimum BIC value. According to these two information criteria, these 

two ‘best’ orders may be different or may be the same orders for ARMA model.  

 

 Implementing AIC & BIC: 

Because the autocorrelation coefficients after lag-5 decays and insignificantly 

differ from zero until lag-10, although in lag-10 and lag-15, the autocorrelation 

coefficients become significantly differ from zero, the ACF of return series is 



35 
 

approximately cut off at lag 5.  

 

From the PACF picture, the partial autocorrelation coefficients are significantly 

different from zero for lag-1, lag-2, lag-5. Lag-5 and re-significantly differ from 

zero until lag-18. Therefore, this paper estimates the ARMA(p,q) for 

p={0,1,2,3,4,5} and q={0,1,2,3,4,5}, and choose the one which minimizes the 

AIC and the one minimizes the BIC value. 

 

Table 4  

AIC & BIC values for ARMA model for return series 

(m,n)  AIC       BIC      (m,n)   AIC       BIC 

(0,0)  -15576.34  -15564.58   (3,0)  -15618.63 -15589.24 

(0,1) -15610.93  -15593.29   (3,1) -15616.79 -15581.52 

(0,2)  -15617.24 -15593.73  (3,2) -15627.29 -15586.14 

(0,3) -15617.42 -15588.03  (3,3) -15639.82 -15592.79 

(0,4) -15617.28 -15582.01  (3,4)  -15637.84 -15584.93 

(0,5)  -15621.15 -15580      (3,5) -15625.01 -15566.23 

       

(1,0)  -15606.22 -15588.58  (4,0)  -15617.39 -15582.12 

(1,1)  -15614.76 -15591.25  (4,1)  -15618.19 -15577.04 

(1,2) -15617.34 -15587.95  (4,2)  -15639.86 -15592.84 

(1,3)  -15615.83 -15580.55  (4,3)  -15637.83 -15584.92 

(1,4)  -15617.6 -15576.45  (4,4)  -15636     -15577.21 

(1,5) -15628.63 -15581.6      (4,5)  -15631.8 -15567.13 

       

(2,0) -15618.96 -15595.45  (5,0)  -15621.64 -15580.49 

(2,1)  -15618.56 -15589.17  (5,1)  -15627.02 -15579.99 

(2,2)  -15617.61 -15582.34  (5,2)  -15626.13 -15573.23 

(2,3) -15626.58 -15585.43  (5,3)  -15624.21 -15565.42 

(2,4)  -15639.99 -15592.96  (5,4)  -15634.4 -15579.73 

(2,5)  -15626.97 -15574.06  (5,5)  -15636.88 -15566.34 

Where: the (m,n) means the ARMA order number, m for AR order, n for MA order. 

 

Table 4 shows the AIC and BIC values output by STATA. The minimizing value 

of AIC (-15639.99) is for ARMA (2,4) and the minimizing value for BIC is 



36 
 

-15595.45 for ARMA (2,0). Thus, the next step is to implement ARMA (2,0) and 

ARMA(2,4) for S&P 500 return series respectively and to check which model is 

more suitable.  

 

 The ARMA (2,0) model for sample return series is shown below: 

                                                   (15.1)      

The standard errors for estimated parameters are 0.0002158; 0.0108606; and 

0.0082858 respectively, all are very small. They measure the accuracy for the 

estimated parameters, which means the values of parameters’ coefficients 

provide  good performance. Except the constant has p-value larger than 10% 

significant level, other two lagged return values are both significantly at 1% 

level. Therefore, equation (15.1) could be re-written as: 

 

                                              (15.2)      

 

 

 ARMA (2,0) adequacy: 

If an AR or ARMA model is adequate, then the estimated residual    , which 

estimates for the value of error term    in the mean equation, should be a 

white noise process with zero mean, constant variance and zero 

autocorrelation all the time. However, the sample return series has a time 

varying variance, thus the time-varying variance is for error term, because this 

heteroscedastic feature will be described by ARCH –type model, here just test 

the ARMA(2,0) model’s adequacy from the view of no-autocorrelation in the 

estimated residual by observing the ACF picture of estimated residual (shown 

in Figure 6) and Portmanteau Test  
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Figure 6 

 

Figure 6 shows the autocorrelation function of estimated residual, when using 

ARMA (2,0) model to sample S&P 500 log return series. Because majority 

ACFs within 20 lags are in the gray area, which are not significantly different 

from zero, only two ACF values are just above 0.05 and just under -0.05 

respectively, which suggests the estimated residual     is not significantly 

serial correlation. 

 

Table 5  

Portmanteau Test for estimated residual in ARMA (2,0) 

Portmanteau Q(10) statistic :     18.0729 

 Prob > chi2(10):                 0.0537 

Portmanteau Q(8) statistic :      12.8091 

 Prob > chi2(8) :                 0.1186 

 

Table 5 shows the Portmanteau Test for estimated residual in ARMA (2,0) 

model. because Q(10)=18.0729 with p-value =0.0537 is slightly bigger than 5% 

significant level, and Q(8)=12.8091 with p-value is bigger than the 5% 

significant level (11.86% > 5%), then accept the null hypothesis of estimated 

residual in ARMA(2,0) model is not serial correlation, therefore together with 

the ACF picture examined, the ARMA (2,0) model for return series in the mean 

equation is adequate.  
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The ARMA(2,4) for sample series as the mean equation is shown below:  

                                                               

                                                 

 

Except the p-value of constant is not significant within 5% level, other p-values 

for explainers all are significantly in 5% level. All of the standard errors for 

estimated coefficients are less than 0.013, which means the estimated 

coefficients are estimated well. The ARMA(2,4) equation could be re-written 

as: 

                                                                   

                                 

 

It is noticed that the coefficient of rt-1 (-0.7208521) and coefficient of  t-1 

(0.6808711) tend to be offset, and the same situation to the coefficient of rt-2 

(-0.9868351) and the coefficient of  t-2 (0.8535012). Because the software run 

the ARMA(2,4) for sample return series, if the ARMA(2,4) is the suitable model 

for sample return, then output results with significant p-value and small 

standard error for coefficients would be obtained, however, if the ARMA(2,4) 

model is not suitable for sample return series, then the software will impose 

this model to sample series. Simply observed the output for the offsetting 

estimated coefficients, it is conjectured that the ARMA(2,4) is not suitable for 

sample series, and the ARMA(2,4) model may contain too much over lagged 

values for describing return series.  
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 Checking ARMA (2,4) model adequacy: 

Table 6 

Portmanteau Test for estimated residual in ARMA (2,4) 

 

 

Table 6 shows the portmanteau test for estimated residual in ARMA (2,4) 

model. even though the p-value of Q(8) is insignificant at 5% level 

(0.1217 >5%), the p-value of Q(20) significantly at 5% level means the residual 

series in ARMA(2,4) model exhibits low autocorrelations within 20 lags.  

 

The Figure 7 of ACF picture of estimated residual in ARMA (2,4) shows the this 

residual series has low magnitude autocorrelations with lag-8, lag-16 and 

lag-18., which is consistent with the results in table 5. Therefore, due to the 

autocorrelation feature in residual in ARMA(2,4), the ARMA(2,4) cannot 

capture all the autocorrelation features in the sample return series and it is not 

adequate for using in the mean equation.  

 

Figure 7 

ACF picture: estimated residual in ARMA (2,4) 

 
 

        Portmanteau (Q=20) statistic =    40.4684

        Prob > chi2(20)                     =     0.0044

        Portmanteau (Q=8) statistic  =    15.2945

        Prob > chi2(8)                     =     0.1217
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Therefore, after examining the two models for the mean equation, only ARMA 

(2,0 ) is adequate for describing mean equation. 

 

Table 7 

Descriptive statistics for residual in ARMA (2,0) 

 

 

Table 7 shows the descriptive statistics for residual obtained from ARMA (2,0) 

model. The mean value is extremely near zero. However, the 13.44373 

kurtosis shows the distribution of this residual series is still excess taller than a 

normal distribution with kurtosis equal to 3. This also examined in the Figure 8 

(a) and (b). The inverse ‘S’ shape of the bold line in the Q-Q plot Fig.(b) shows 

the distribution of the residual series is distribution leptokurtic as the sample 

return series. 

 

 

 

 

 

 

 

 

 

 

 

 

Mean 0.0000008970

Standrd deviation 0.0125454

Variance 0.0001574

Skewness -0.5478653

Kurtosis 13.44373
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Figure 8 

 

Figure 8 (a): distribution of the residual in ARMA (2,0) 

(b): Q-Q Plot of residual in ARMA (2,0) 

(c): ACF of square of residual in ARMA (2,0) 

(d): ACF of absolute residual in ARMA (2,0) 

 

Figure 8 (c) and (d) show the high autocorrelations in both the square of 

residual and absolute residual in ARMA (2,0) model, which means the 

dependence feature in the residual series, therefore it can be described by 

ARCH type model, i. e, implementing ARCH type model is meaningful. 

Therefore, the next section is to combine the ARCH model with ARMA(2,0).  
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Chapter 5  

Modeling Volatility: ARMA-ARCH model 

 

An ARMA (m, n) - Autoregressive Conditionally Heteroscedastic ARCH (p) 

model is consistent with the following three equations (Engle, 1982): 

 

               

 

   

         

 

   

                                

                                          (17.1)        

               
  

                      (18)        

 

Where: t is the positive integral number, stand for the dates during the chosen duration 

 rt is the log daily return at time t, 

      ɛt is the error term or residual at time t, 

      I t-1 is the all of the information set at time t-1, it also includes the information before 

t-1. 

      ht is the conditional variance of ɛt, 

      a0 is a non-negative constant,  

ak is the parameter of the ɛ
2
t-k, for k = { 1, 2, 3, … , p}, and ak <1, otherwise the ht 

will continuously increase over time.  

p represents the lagged order number, which is a positive integral number,  

All the boundaries of the parameters in equation (18) are making sure the ht is 

non-negative.  

 

Equation (2) represents the mean equation, it describes that the return series 

at time t is explained by the ARMA model and the rest residual par at time t ɛt. 
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Thus, this error term represents the unexpected news or innovations on the 

return at time t.  

         

Equation (17) means that conditional on all of the information set in time t-1, 

the error term ɛt at time t is normally distributed with mean zero and variance 

ht at time t. Therefore, this allows the error term variance to be a time-varying 

variance and this feature is called the heteroscedastic in the equation (2), 

rather than the homoscedastic, which the variance of the error term is constant 

all the time.   

 

Based on Engle (1982) said the ARCH model can capture the leptokurtic 

feature in error term, therefore, Here the assumption for error term is the 

conditional normality assumption, which cannot directly be observed from the 

data, rather than an unconditional distribution shown by Figure 8 (a).  

 

Equation (17.1) can also be alternatively written down as (17.2), (17.3): 

                                       (17.2)        

                                        (17.3)        

Where:    is the standardized error term, which is an unconditionally identical 

independent distribution (i.i.d). Based on the assumption for error term 

conditional normality distribution, the standardized residual   , therefore, is 

unconditionally normally distributed with zero mean and unit variance. 

Therefore, in order to check this normality assumption right or not, it is easy to 

check the standardized residual unconditional distribution is normal or not.  

 

Therefore, the conditional variance of the return at time t, conditional on 
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information set at time t-1, is equal to this conditional variance of the error term 

at time t (ɛt)  

 

Equation (18) is the variance equation to capture the dependence in the return 

series, i.e. the serial correlation in the square of return series. Equation (18) 

shows this conditional volatility of the error term at time t (ht) depends on the 

lagged of the square of error term values (ɛ2
t). Therefore, this variance 

equation can capture the changes in the conditional variance of the error term 

over time, hence captures the changes in the conditional variance of the return 

series over time.  

 

Furthermore, variance equation explains the return volatility clustering feature 

Engle (1982).  

 

Moreover, In the variance equation (18): all of the boundaries for the 

parameters firstly make sure the ht is a non-negative value, and the secondly 

the effect from lagged value ɛ2
t should decay, such as: a1 + … +aq <1, and ak 

<1, for k={1, 2, …, q}. 
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5.2  Implement ARCH model with ARMA (2,0) 

Because the appropriate order for ARMA for return series in the mean equation 

is ARMA(2,0), this paper next is to combine this model AR(2) together with 

ARCH-type model. 

 

 

5.2.1 Possible order determination for ARCH 

Firstly this paper defines the possible lagged order for ARCH model for 

sampling series. There is no accurate method to determine the order of ARCH 

model, Ruey S. Tsay (2005) uses the Partial autocorrelation function (PACF) of 

the square of error term series {ɛ2
t} obtained in mean equation (2) to define the 

possible order.  

 

The PACF measures the partial autocorrelation for the series. If the PACF of 

series {ɛ2
t} cut off at lagged q, controlling for the effect from ɛ2

t-1, …, ɛ2
t-q, the 

partial autocorrelation between ɛ2
t and ɛ2

t-k is zero, for k>q. Any k lagged 

values cannot provide additional information. ɛ
2
t-1, ɛ

2
t-2, …, ɛ

2
t-q exhausts all 

information about the past values of the variable ɛ2
t. Therefore the series {ɛ2

t} 

is autoregressive within lagged q: 

  
        

 

   

     
                                     

Where:  c0 is constant; 

Ck are parameters for     
 , for k = {1, 2, 3, …, p}; 

et is the error term at time t. 

 

If the PACF of ɛ2
t cut off at lagged p, Ruey S. Tsay (2005) says then the 

possible order for ARCH model for return series {rt} is p order, i.e. ARCH(p).  
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Because of equation (19): 

                        

Therefore: 

                        

=           

         

 

   

     
           

       

 

   

     
  

However, this method only provides the possible order, it is necessary to test 

this ARCH (p) effect in the next step.   

 

Figure 9 

PACF of square of estimated error in AR (2) 

 

Regress the S&P 500 log return series {rt} on the appropriate ARMA model, i.e. 

AR (2), to predict the residual ɛt series, and then obtain the estimated {ɛ2
t} 

series. Figure 9 shows the PACF of the {ɛ2
t} time series after regressing 

sample return on AR (2) model. Because from the first lagged order to 14th 

lagged order, except the lag-8, all partial autocorrelation are statistically 
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significance at 95% confidence interval, while almost partial autocorrelation of 

lag k values are nearly insignificant, for k > 14. This suggests the possible 

ARCH order for this return series is 14.  

 

5.2.2 Test the ARCH (p) effect --- Lagrange multiplier test 

Before applying the possible AR(2)-ARCH(p) model, we should examine 

whether this return series presents an ARCH (p) effect or not by using the 

Lagrange multiplier test. 

 

Step 1, regress the return series on propitiate ARMA model and obtain the 

estimated residuals       and then obtain its squares value    
   .  

 

Step 2, based on the possible p order obtained before, regress estimated ɛ2
t 

on its lags ɛ2
t-1, … , ɛ2

t-p, i.e. the equation (25), obtain R2 of this regression.  

 

Step 3, the joint null hypothesis (H0) of no ARCH (q) effect is that all 

parameters of p lags of the squared residuals (c1, c2, …, cq) are all 

significantly zero, which means the calculated value (T-q) R2 should be 

distributional with critical Chi-square value at the p degree of freedom with 5% 

significant level, where the T is the total sample return population: 

 

                                         
          (26)        

                                        
          (27)        

 

Reject the null (H1), if the calculated value (T-q) R2 is greater that it’s critical 

value. It means at least one of this coefficient parameter (c1, c2, …, cp) is 

significantly not zero. 



48 
 

 

Test the AR(2)-ARCH(14) for S&P 500 return series, the R2 in step 2 is 0.3524, 

the total number of observations for return is 2640, the Chi-square with 14 

degrees of freedom at 5% significant level is 23.68, therefore: 

(T-q) R
2
 = 0.3524 (2640 – 14) = 925.4024 > 23.68 

Where: All the critical chi-square values used in this paper are obtained from: 

http://passel.unl.edu/pages/informationmodule.php?idinformationmodule=113

0447119&topicorder=8&maxto=15&minto=1 

Then null hypothesis of no ARCH (14) on return series is rejected. i.e. the 

ARCH effect does exist in the sample return series. 

 

 

4.2.3 Modeling the ARCH (p) model 

After running the ARMA (2,0)-ARCH(14) model for S&P 500 return time series, 

However, the p-values for ARCH part lag-14, lag-13, lag-12, and lag 1 of 

square of residuals are not significantly within 5% level, therefore, it could be a 

ARCH (11) model. 

 

Test the ARCH (11) effect for S&P 500 return series using Lagrange multiplier 

test using STATA software: (T-q) R2 = (2640 – 11) 0.3306 = 869.1474 >χ2
11 = 

19.68, at 5% significant level, then reject the null-hypothesis of no ARCH (11) 

effect. Use STATA to run ARCH (11). Except the lag-1 in ARCH model part and 

lag-2 in AR model part, all the p-values for explainers are significantly at 5% 

level. 
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5.3 Check the adequacies of the ARMA(2,0)-ARCH(11) model 

Firstly, check the mean equation adequacy: if the mean equation is adequate, 

the estimated standardized residual (   ) should be a white noise process, 

rather than serial correlation, where the standardized residual is equal to: 

                                       recall (6)        

A white noise process {yt} has a constant mean and constant variance for all 

time, and zero auto-covariance. These three conditions make the white noise 

series is independent and identical distribution: 

E(yt) = 0, for all time t,                   (28) 

Var(yt) = σ
2, for all t,                     (29) 

Cov(yt,ys) = 0, fot time tǂ time s            (30) 

The white noise is checked by the Portmanteau test and also checked by the 

ACF picture of the series. These are checked from the view of no serial 

correlation. 

 

Secondly, check the Variance equation adequacy: the variance equation is 

adequate, only if the square of standardized residual    
   is white noise rather 

than serially correlated.  

 

Thirdly, check that the standardized residual term      that should be normally 

distributed. This is checked from the assumption of equation (7): 

                                     recall (7)        
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(1) The Mean equation checking: 

Figure 10 

ACF of standardized residual ARMA(2,0)-ARCH(11) 

 

Figure 10 shows the autocorrelation function of standardized residual, when 

using ARMA(2,0) - ARCH (11) model for S&P 500 log return series. However, 

according to this graph, this standardized residual is not significantly 

auto-correlated with its past lag values, together with Table 8, the p-value for 

Q(20) and for Q(8) both are above 5% significant level, therefore accept the 

null hypothesis of no serial autocorrelation for standardized residual; therefore 

the mean equation is adequate.  

Table 8  

Portmanteau Test for standardized residual in AR(2)-ARCH(11) 

Portmanteau Q(20) statistic :     15.8130 

 Prob > chi2(20):                0.7282 

Portmanteau Q(8) statistic :      6.0260 

 Prob > chi2(8) :                0.6443 
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(2) Variance equation checking: 

Figure 11 

ACF of square of standardized residual AR(2)-ARCH(11) 

 

 

Table 9 

Portmanteau Test for square of standardized residual in AR(2)-ARCH(11) 

Portmanteau Q(20) statistic :     7.6022 

 Prob > chi2(20):                0.9942 

Portmanteau Q(8) statistic :      0.4015 

 Prob > chi2(8) :                0.9999 

 

Because the ACF of the square of standardized residual is not significantly 

different from zero in Figure 9, and Portmanteau test for the square of 

standardized residual shows the p-value for Q(20) and Q(8) both are above 5% 

significant level. Therefore, the square of standardized residual is no 

autocorrelation, hence, the variance equation for AR(2)-ARCH(11) is 

adequate.  
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(3) normality checking: 

Table 10 

Descriptive statistics for Standardized residual  

AR(2)-ARCH(11) Distribution 

Mean           -0.034907         

Std. Dev.         0.9995707  

Skewness        -0.4466433 

Kurtosis          4.137793 

 

 

Figure 12 

Q-Q Plot: standardized residual ARMA(2,0)-ARCH(11) 

 

The Q-Q plot for the square of standardized residual in ARMA (2,0)-ARCH(11) 

shows that the bold line is nearly fit the reference thin straight line, which 

means the distribution of the standardized residual ARMA (2,0)-ARCH(11) is 

nearly normality distributed but not exactly normality distributed. This may 

because the sample size is not big enough, so the distribution is not perfectly 

normality. This may because the model is not adequate enough for the sample 

S&P500 return, which cannot meet this initial assumption in the ARCH model 

that the standardized residual is normality distributed.  

 

Table 7 analyses this standardized residual in ARMA (2,0)-ARCH(11) in detail. 

Comparing with the critical value for normal distribution, The -0.4466433 
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Skewness is nearly zero, and Kurtosis is a little bit bigger than the critical value 

(4.137793 > 3). Consequently, it can be concluded that the standardized residual 

in AR(2)-ARCH(11) is nearly normality distributed, considering the simple size is 

2640, we accept that the normality distribution is adequate. Thus, the 

AR(2)-ARCH(11) model is adequate for modeling the sample S&P 500 return 

series variance, then the volatility.  

 

However, the basic assumption a1 + … +aq <1 for the variance equation (4) in 

ARCH model gives the bounders of the ARCH model, and the more lagged the 

ARCH model, the more complex the bounders will be. Moreover, the more the 

parameters needed to estimate, the more likely the error occurs in estimating 

the parameters.  

 

As for the sample return, the appropriate ARCH order is 11 which contains 

many lagged values, Therefore it is needed to introduce and use the 

Generalized ARCH (GARCH) model, which can express the variance equation 

using smaller explanatory, by simply adding the lagged variance value as the 

explanatory in variance equation. This is because the ht can be explained by 

lagged square of error terms, then use the lagged variance as the explanatory 

can replace may lagged square of error terms. The next section (4.4) 

describes the application of the GARCH model with ARMA (2,0) to model the 

volatility of sample return series.  
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Chapter 6  GARCH model 

The variance equation in a GARCH (p, q) model (Bollerslev, 1986) is: 

               
  

            
 
      (5) 

 

 

Where: 

      ɛt is the error term at time t, 

      I t-1 is the all of the information before and including the t-1 time, 

      ht is the conditional variance of ɛt, 

p is the lag square error term order number; which is a positive integral number, 

q is the lag conditional variance order number; which is a positive integral number, 

c is a constant,  

      a0 is a non-negative constant,  

ap is the parameter of the ɛ
2
p-1, 

bq is the parameter of the hq-1, 

      all the boundaries of the parameters in equation (5) are making sure the ht is a 

non-negative.  

 

 

Therefore, the conditional variance in GARCH model, which conditional on the 

information set at time t-1, is consistent by the square of lagged error terms 

and the lagged conditional variance term.  

 

The necessary for implementing ARCH model is that if series can be described 

by low order ARCH model, for example ARCH (1), then it might be the ARCH 

(1) model is enough. Secondly, it is necessary to test the ARCH effect, even if 

we directly use GARCH, otherwise either ARCH or GARCH model cannot be 

used. 

 

Because the small order for p, and q, in GARCH can have the same effect as 

the large order for ARCH model, then try the three most popular GARCH 

model and contain small orders: GARCH(1,1); GARCH(1,2); GARCH(2,1) for 

modeling variance for sample return series.  
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Bollerslev, Ray and Kenneth (1992) state that the GARCH(1,1) has superiors 

for modeling the majority time series volatility and except the GARCH (1,2) and 

GARCH (2,1) no higher order implementing in the GARCH model. 

Consequently, this paper tries to implement the ARMA (2,0) with GARCH(1,1), 

GARCH (1,2) and GARCH (2,1). 
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Table 11.1 

 

Where: the std. error is the standard errors for estimated coefficients. 

 

Table 11.1 shows the ARMA(2,0) model with GARCH(1,1); GARCH(1,2) and with 

GARCH(2,1) respectively. For model ARMA (2,0)-GARCH(1,1), all the standard errors for 

estimated coefficients are less than 0.023. The smaller the standard errors are, the better for 

the estimated coefficients, then the better for the model. Excepting the p-value for rt-2 (0.073), 

all the p-values of parameters are at 5% significant level.  

 

For the model ARMA(2,0)-GARCH(1,2), all the standard errors for estimated coefficients are 

less than 0.073. Excepting the p-value for rt-2 (0.062), all the p-values of parameters are at 5% 

significant level. It is noticed that the coefficient for ht-1 is very large (1.553264). The total sum 

of the coefficients in the variance equation is extremely near 1 (0.9908883), which means if 

this model is appropriate for modeling the returns variance, then the past values of variance 

and the square of error term would dominantly influence the current variance, and this effect 

would decay very slowly.   

 

 

Distribution assumption Normal Normal Normal

Mean equation

Constant 0.000546 0.000 0.000 0.0005439 0.000 0.000 0.000537 0.000 0.000

rt-1 -0.0605861 0.023 0.007 -0.0608913 0.021 0.004 -0.0622873 0.018 0.001

rt-2 -0.0370281 0.021 0.073 -0.0380397 0.020 0.062 -0.0401465 0.022 0.063

Variance equation

constant 1.68E-06 2.58E-07 0.000 1.00E-06 1.96E-07 0.000 2.59E-06 3.79E-07 0.000

εt-1
2 0.0899301 0.008 0.000 0.0457729 0.007 0.000 -0.0068691 0.012 0.557

εt-2
2 / / / / / / 0.1228789 0.016 0.000

ht-1 0.894596 0.0094706 0.000 1.553264 0.073 0.000 0.8591149 0.013 0.000

ht-2 / / / -0.6081486 0.065 0.000 / / /

sum of coefficients 0.9845261 0.9908883 0.9751247

log-likelihood 8578.54 8587.675 8593.281

AIC -17145.09 -17161.35 -17172.56

BIC -17109.82 -17120.2 -17131.41

ARMA(2,0)-GARCH(1,1) ARMA(2,0)-GARCH(1,2) ARMA(2,0)-GARCH(2,1)

coefficient p-valuestd.error coefficient p-valuestd.error coefficient p-valuestd.error
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For the model ARMA(2,0)-GARCH(2,1), all the standard errors for estimated coefficients are 

less than 0.022, which is the smallest standard errors in these three models, shows that the 

model estimates the coefficients very well. The p-value for rt-2 is also insignificant at 5% level 

(0.063> 5%). Besides, however, the p-value for     
  is 0.557 even more than 10% significant 

level, therefore, this model can be re-written as in Table 11.2 below:  

 

Table 11.2 

 

 

Table 11.1 also shows the AIC and BIC information criteria for three models respectively. The 

minimum value for AIC among these three models and the minimum value for BIC among 

these three models both are the third model ARMA (2,0)-GARCH(2,1) under normal 

distribution assumption. Therefore, the third model provides a better describe for sample 

return volatility.  

 

 

 

 

 

 

Mean equation

Constant 0.000546 0.0005439 0.000537

rt-1 -0.0605861 -0.0608913 -0.0622873

rt-2 -0.0370281 -0.0380397 -0.0401465

Variance equation

constant 1.68E-06 1.00E-06 2.59E-06

εt-1
2 0.0899301 0.0457729 /

εt-2
2 / / 0.1228789

ht-1 0.894596 1.553264 0.8591149

ht-2 / -0.6081486 /

coefficient

ARMA(2,0)-

GARCH(1,1)

ARMA(2,0)-

GARCH(1,2)

ARMA(2,0)-

GARCH(2,1)

coefficient coefficient
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Table 11.3  

Checking adequacies for ARMA-GARCH models under Normal distribution 

 
Where:  

 the adequacy 1 is checking the Standardized Residual for mean equation checked by Portmanteau 

test and ACF picture;  

 The adequacy 2 is checking the Square of Standardized Residual for variance equation checked by 

Portmanteau test and ACF picture; 

 The adequacy 3 is checking the standardized residual distribution normality checked by the Q-Q 

plot and the standardized residual distribution kurtosis and skewness. 

Adequacy 1

Adequacy 2

Adequacy 3

Kurtosis   

Skewness

(j) (k) (l)

Distribution

picture

-0.4867017

Q-Q Plot

(g) (h) (i)

ACF picture

(d) (e) (f)

4.453757 4.365114 4.323114

-0.5042864 -0.4866329

(b) (c )

Portmanteau

test

p-value of Q(20)=  0.0440 <5% p-value of Q(20)=   0.4350 >5% p-value of Q(20)=   0.8537 >5%

p-value of Q(8)=    0.0163 <5% p-value of Q(8)=     0.2151 >5% p-value of Q(8)=     0.9720 >5%

Portmanteau

test

p-value of Q(20)= 0.6749 >5% p-value of Q(20)=  0.7392 >5% p-value of Q(20)=   0.6925 >5%

p-value of Q(8)=   0.7003 >5% p-value of Q(8)=    0.6851 >5% p-value of Q(8)=     0.6855 >5%

ACF picture

(a)

ARMA(2,0)-GARCH(1,1) ARMA(2,0)-GARCH(1,2) ARMA(2,0)-GARCH(2,1)
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Table 11.3 shows the checking adequacies for the three models ARMA 

(2,0)-GARCH(1,1); ARMA(2,0)-GARCH(1,2) and ARMA(2,0)-GARCH(2,1).  

 

Adequacy 1 means the test for the mean equation adequacy, if it is adequate, 

i.e. no serial autocorrelations in the standardized residual series, then the 

p-values of the Portmanteau test for standardized residual should be bigger 

than the 5% significant level. And the ACF picture of standardized residual 

should not be significantly different from zero. From the tables 8.3, all the 

p-value of Q(20) and p-value of Q(8) for standardized residuals in three 

models are bigger than 5%, and ACF pictures for three standardized 

residuals Table.8.3 (a), (b), (c) are not significantly different from zero, 

therefore all three models’ mean equation are adequate.  

 

Adequacy 2 means the test for the variance equation adequacy, if it is 

adequate, i.e. no serial correlations in the square of standardized residual 

series. Then the p-values of the Portmanteau test for square of standardized 

residual should be bigger than the 5% significant level. And the ACF picture of 

square of standardized residual should not exhibit significantly difference 

from zero too. However, the p-value of Q(20) and p-value of Q(8) for the 

square of standardized residual in ARMA(2,0)-GARCH(1,1) model both are 

less than the 5% significant level, which means the square of standardized 

residual in this model has serial correlation. The ACF picture of this square of 

standardized residual Table 11.3 (d) also exhibits the serial correlation 

feature in lag-1, lag-2, and lag-10, therefore, the variance equation for 

ARMA(2,0)-GARCH(1,1) model is not adequate. Therefore, the 

ARMA(2,0)-GARCH(1,1) model is not adequate for modeling the sample 

return variance.  

 

Both the model ARMA(2,0)-GARCH(1,2) and ARMA(2,0)-GARCH(2,1) are 

adequate in the variance equation. Especially the third model 
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ARMA(2,0)-GARCH(2,1) shows more adequacy than the second model 

ARMA(2,0)-GARCH(1,2), because the p-value of Q(20) and Q(8) are 

extremely larger than 5% for the square of standardized residual in the third 

model than in the second model (0.8537 > 0.4350 > 5%, and 0.9720 > 

0.2151 >5% respectively).  

 

Adequacy 3 means the test for the standardized residual normality distributed. 

There is no need to check the first model due to the first model is not 

adequate in variance equation.  

 

Because no one model’s standardized error is exactly normality distributed, 

especially due to the litter bit higher peaked in the distribution than normal 

distribution. Then Table 11.3 adds the standardized error distribution kurtosis 

figures and skewness figures separately compared with the normal 

distribution kurtosis critical value 3 and skewness critical value 0. Both 

ARMA(2,0)-GARCH(1,2) and ARMA(2,0)-GARCH(2,1) models’ standardized 

residual distributions are near the normal distribution, but with higher peak 

and fat tails than the normal distribution. Due to the third model’s 

standardized residual distribution has a lower kurtosis (4.323114) which has 

smaller difference from normal distribution kurtosis (4.323114 – 3= 1.323114 

< 4.365114 – 3= 1.365114), then together with the Adequacy 1 and 

Adequacy 2 checking, the ARMA(2,0)-GARCH(2,1) is and more appropriate 

for sample return series.  

 

For the non-exactly normal distribution for the standardized residual in 

ARMA(2,0)-GARCH(2,1), considering the total 2640 observation in the 

sample series, it may because the sample size is not big enough, thus the 

distribution for standardized residual is near normal distribution but not 

exactly. Secondly it may be that the standardized residual is actually not a 

normal distribution, not as initially assumed, therefore, in these circumstance, 
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the ARMA(2,0)-GARCH(2,1) model with standardized error normal 

distribution would be not appropriate for modeling the return variance. 

Therefore, it is necessary to try to change the assumption for residual being 

conditional normal distribution.  
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Chapter 7  

Generalized error distribution (GED) 

 

Although the ARCH-type model can capture the leptokurtic feature in the 

residual series { t} from the mean equation (Giorgio Canarella, 2008), 

Considering the standardized residual  
  

   
  unconditional distribution cannot 

meet the normal assumption, which tends to be excess peak and fat tails and 

has a little skewness comparing with the corresponding normal distribution, 

therefore, this conditional normal distribution assumption for residual { t} may 

be not the most appropriate assumption for our sample study, which is 

consistent with the Bollerslev (1987) result that the leptokurtosis captured by 

ARCH –type model is not large enough to explain the extremely excess 

kurtosis.  

 

Furthermore, based on the unconditional distribution for error term in ARMA 

(2,0) model shows a highly peak, fatter tails and little skewness features, 

which means the returns series tend to exhibit some more risky extremely 

large or extremely small values, therefore, when making the conditional 

assumption for the residual distribution, it is more likely to build a distribution 

which could have a high peak, fatter tails and skewness features than the 

normal distribution.  

 

Bollerslev (1987), among others, proposes the conditional Student-t 

distribution and in 1991, Nelson suggests the Generalized Error Distribution 

(GED) as the conditional distribution assumption. No matter the changing into 

the Student-t or GED or keeping the normality assumption for the error term 

{ t}, the aim for this is to make sure the unconditional variance of error to be 
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infinite. Therefore, this section will change the conditional distribution 

assumption into GED distribution, which has a thinner peak and fatter tails 

than the normal distribution when the shape value equal to 2. Therefore, this 

paper compares the results with the ARMA (2,0)-GARCH (2,1) under the 

normality assumption and under the GED assumption, in order to choose the 

most appropriate model for the sample return series.  

 

The probability density function of Generalized Error Distribution (GED) is:  

              
 

 
  

 

    
     

   
    

 

 
       

  

         

 

Where:  

    
      

             
 

     

 

                                  

  is a shape parameter determining the high or low peak and fat or thin tails, 

which is estimated during the Maximum log-likelihood estimation by STATA 

software when estimates the models. Figure below shows the GED with 

different shape values. When     the GED becomes the normal 

distribution; when     the GED becomes the Laplace distribution; when 

    then GED becomes the high and thin peak with thicker tails than the 

corresponding normal distribution; when     then GED becomes the 

thinner tails than the corresponding normal distribution; however when     

he unconditional variance for error term    does not exist. 

     is the Gamma function.  

σ  is the distribution’s standard deviation. 
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GED distribution with different shape values 

 

Where: the   is the GED shape parameters. 

This paper uses the maximum log-likelihood function estimation to estimates 

the parameters in the ARCH-type models. Essentially, this method is to find 

the most likely values of the parameters to produce the actual data. And all 

the works are to search over the parameter-space until the parameter values 

maximize the log-likelihood function, and then choose these set of parameter 

values as the coefficient values in a defined order ARCH-type models (or 

together with the ARMA models).  

 

Giorgio Canarella and Stephen K Pollard (2008) simply uses the maximum 

log-likelihood values as a kind of indicators together with the AIC and BIC 

when comparing three GARCH models with exactly same orders but under 

different conditional distribution assumptions. Therefore, this paper also uses 

the log-likelihood values as one of the indicators to compare GARCH models 

under different distribution assumptions.    
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Table12.1 

ARMA-GARCH model under GED assumption 

 

Where:  

The distribution is the distribution assumption for conditional error term      in 

mean equation. Therefore, in table 10.1, all the models are assumed as the 

GED distribution. i.e.: 

                                       recall (17.2)        

                                            (17.5)        

The   is the shape parameter for distribution estimated by the maximum 

log-likelihood function.  

Log-likelihood is maximized log-likelihood values output by STATA.  

 

For model ARMA(2,0)-GARCH(1,1)-GED, excepting the lag-2 value of return 

in the mean equation with p-value of 0.114, all the p-values for the 

parameters are at the 5% significant levels, and the standard error for all 

parameters are less than 0.02. 

 

Distribution GED GED GED

shape v 1.281734 0.048 1.290955 0.049 1.294779 0.049

Mean equation

Constant 0.0008283 0.000 0.000 0.0008152 0.000 0.000 0.0008205 0.000 0.000

rt-1 -0.0593772 0.020 0.002 -0.05987 0.019 0.001 -0.0603098 0.017 0.000

rt-2 -0.0295614 0.019 0.114 -0.029806 0.019 0.109 -0.0310191 0.019 0.111

Variance equation

constant 1.46E-06 0.000 0.001 9.04E-07 0.000 0.001 2.39E-06 0.000 0.000

εt-1
2 0.0906167 0.013 0.000 0.0468828 0.012 0.000 -0.0096535 0.017 0.580

εt-2
2 / / / / / / 0.1301933 0.025 0.000

ht-1 0.8974576 0.014 0.000 1.549168 0.113 0.000 0.8586905 0.019 0.000

ht-2 / / / -0.603448 0.101 0.000 / / /

sum of coefficients 0.988076 0.9926024 0.9792303

8641.608 8648.425 8652.938

AIC -17269.22 -17280.85 -17289.88

BIC -17228.07 -17233.82 -17242.85

ARMA(2,0)-GARCH(1,1) ARMA(2,0)-GARCH(1,2) ARMA(2,0)-GARCH(2,1)

coefficient std.error p-value coefficient std.error p-value coefficient std.error p-value

Log-likelihood
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For model ARMA(2,0)-GARCH(1,2)-GED, excepting the lag-2 value of return 

in the mean equation with p-value of 0.109, all the p-values for the 

parameters are highly significant at the 5% level. Excepting the lag-1 and 

lag-2 values of variance in the variance equation with a standard error of 

0.113 and 0.101 respectively, the standard errors for rest parameters are less 

than 0.019.  

 

For model ARMA (2,0)-GARCH(2,1)-GED, the p-value for lag-2 return value 

is still insignificant with 0.111, however, the p-value for     
  in the variance 

equation is highly insignificant (0.580), the p-value for rest parameters are 

highly significant at 1% level. The standard errors for all the parameters are 

all less than 0.025. Therefore, the lag-2 return values in all three models here 

under GED assumption exhibit insignificance with p-values all more than the 

10% significant level. This agrees Bera (1995) that the adding GARCH model 

for describing the return variance feature will minimizes the effect of the return 

autocorrelation feature. Because of highly insignificance p-value in the third 

model, the third model ARMA (2,0)-GARCH(2,1)-GED should be modified 

without     
  value.  
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Table 12.2  

Residual Diagnostics for ARMA-GARCH model under GED 

 

(j) 

statistic value P-value statistic value P-value statistic value P-value

Q(20) for ϵt 17.0981 0.647 15.938 0.7205 16.6504 0.6755

Q(8) for ϵt 5.7785 0.672 5.8694 0.6619 5.9018 0.6582

Q(20) for ϵt
2

29.7484 0.074 19.7175 0.4757 13.2948 0.8644

Q(8) for ϵt
2

16.6473 0.034 9.6463 0.2907 2.0726 0.9787

ACF for ϵt

ACF for ϵt
2

Distribution for ϵt
2

Kurtosis   4.503198 4.403601 4.360299

Skewness -0.5089808 -0.4890501 -0.4887276

Bera-Jaeque 0.000 0.000 0.000

(h) (i)

Distribution

assumption
GED GED GED

(a) (b) (c )

(d) (e) (f)

(g)

ARMA(2,0)-GARCH(1,1) ARMA(2,0)-GARCH(1,2) ARMA(2,0)-GARCH(2,1)
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Where: the Q(m) is the Ljung-Box Portmanteau Test for lag m. 

 t is the standardized residual:           

the Bera-jaeque is the kurtosis and skewness normality test.  

     (j) is the standard GED distribution ,with mean zero, unit variance, and shape 

equal to 1.294779, the same shape with the GED in ARMA(2,0)-GARCH(2,1)-GED 

model 

 

 

Table 10.2 shows the residual Diagnostics for ARMA-GARCH model under 

GED assumption. Portmanteau Test for standardized residual Q(20) and Q(8) 

with p-value 0.647 and 0.672 respectively, both more than the 5% significant 

level show that the standardized residual for model ARMA-GARCH(1,1)-GED 

is serial uncorrelated. The ACF picture of the standardized residual in Figure 

(a) also examines this result. Therefore the mean equation in this model is 

adequate for describing the autocorrelation feature in return series. However, 

the p-values in the portmanteau test for the square of standardized residual 

Q(20) and Q(8) are both more than 5% significant level (0.074 and 0.034 

respectively), which means    
   series has the serial correlation, therefore, 

the variance equation for describing return variance is not enough adequate 

for describing the return series dependence feature. Therefore, the ARMA 

(2,0)-GARCH(1,1) is not enough adequate for modeling the sample return 

variance.  

 

For the model ARMA(2,0)-GARCH(1,2)-GED and the model ARMA(2,0) 

-GARCH(2,1)-GED, both of them use the ARMA(2,0) to describe the return 

series, the p-values for portmanteau test within 20 lags Q(20) and Q(8) for 

standardized residual are 0.7205 and 0.6619 in 

ARMA(2,0)-GARCH(1,2)-GED model and 0.6755 and 0.6582 in 

ARMA(2,0)-GARCH(2,1)-GED model, which all are bigger than 5% 

significance level, this means both models’ standardized residuals are not 
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serial correlation, therefore the ARMA(2,0) in the two models is enough to 

describe the return series.  

 

The portmanteau test of the square of standardized residuals give Q(20) with 

p-value 0.4757 and Q(8) with p-value 0.2907 confirming that the variance 

equation in ARMA(2,0)-GARCH(1,2)-GED is adequate at the 5% significant 

level. The variance equation in ARMA(2,0)-GARCH(2,1)-GED is also 

adequate at 5% level with p-value of Q(20) and Q(8) bigger than 5% 

(0.8644>5%; 0.9787>5%). Comparing these two models, however, the 

p-values for portmanteau test Q(20) and Q(8) for GARCH (2,1)-GED both are 

bigger than corresponding p-values in GARCH(1,2)-GED, (0.8644 > 0.4757 > 

5%; and 0.9787 > 0.2907 > 5%), therefore, the ARMA(2,0)-GARCH(1,2)-GED 

is more appropriate than ARMA(2,0)-GARCH(2,1)-GED. The ACF pictures 

under these two models can also confirm this conclusion (see figure (e) and 

figure (f)).  

 

 Bera-Jarque test 

The Bera Jarque (1981) test is for the distribution normality test from view of 

skewness and kurtosis of the distribution. The null hypothesis is the 

distribution is a normal distribution with symmetric and mesocratic (kurtosis 

equal to 3).  

                                         

                                             

 

The test statistic W is:  

     
  
 

 
 

       

  
                           

Where: the b1 and b2 are the coefficients of skewness and kurtosis:  
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Where the   is the mean of the sample distribution, and the σ2 is the 

variance of the sample distribution, the T is the sample size. Under the null 

hypothesis, the test statistics W should follow a Chi-Square with 2 degree of 

freedom; then the test statistic would not be significant at the 5% level. Reject 

the null, if the test statistics is above the critical value, then the test statistic 

would be statistically significant.  

 

From table 10.2 the Bera-Jarque test for ARMA(2,0)-GARCH(1,2)-GED and 

ARMA(2,0)-GARCH92,1)-GED both are statistically significant at the 1% level, 

therefore, rejecting the null hypothesis of standardized residual being normal 

distribution. As a result, under the both models, the standardized residual 

distributions are not normal. The distribution pictures for two model 

standardized residual shown in (h) and (i) both show the distributions are with 

higher peak and fatter tails than the corresponding normal distributions. 

Because the shape parameters   estimated by the maximum log-likelihood 

function for these two models are 1.295 and 1.291 (see table 10.1) 

respectively, which are in the (1,2) interval. Therefore the estimated GED 

distributions for these two models both have a high peak and fatter tails than 

the corresponding normal distribution, which correspond with the results by 

the distribution pictures in Table 12.2 (h) and (i). Therefore, the conditional 

GED distribution assumption for error term εt with shape parameters between 

(1,2) interval cannot be rejected. Therefore, two models are adequate for 

GED assumption. Considering the GARCH(2,1) shows better in the variance 

equation, therefore, the ARMA(2,0)-GARCH(2,1)-GED is the most 

appropriate models under the GED assumption.  
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In summary, under the normal distribution assumption, the ARMA 

(2,0)-GARCH(2,1)-N is the most appropriate model, but the distribution of 

standardized error still does not meet the assumption and the p-value for rt-2 

and     
  are insignificant at the 5% level. Under the GED assumption, the 

ARMA(2,0)-GARCH(2,1)-GED is adequate and the most appropriate model, 

also with p-value for rt-2 and     
  are insignificant at the 5% level, therefore 

these two models should be modified without the rt-2 and     
 . Table 13 

shows the Log-likelihood value; AIC and BIC values for two models. Because 

the log-likelihood value of second model is bigger than the value in first model 

and the minimum value for AIC and minimum value for BIC both are the 

second model, therefore the second model ARMA(2,0)-GARCH(2,1)-GED 

provides a better performance for modeling the return volatility.  

 

Table 13 

 

 

 

 

 

 

 

 

8652.938 8593.281

AIC -17289.88 -17172.56

BIC -17242.85 -17131.41

Log-likelihood

ARMA(2,0)-

GARCH(2,1)-Normal

ARMA(2,0)-

GARCH(2,1)-GED
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Chapter 8  

Extension of GARCH  

 

 T-GARCH 

However, the GARCH model assumes the lagged positive shocks (i.e. the 

positive error term) and lagged negative shocks (negative error term) have 

the same effect to the current variance. However, in reality, people tend to 

have more panic when the return decrease than the return increase, therefore, 

Glosten, Jagannathan, and Runkle (1993) develop the GARCH model into a 

Threshold-GARCH model, which aims to capture this leverage effect in the 

financial series, that is a volatility reacts differently to a increase in the return 

(or to a good news coming) than to a decrease in the return or bad news 

coming. In Threshold GARCH (p,q) model, the variance equation changes 

into: 

                   

 

   

     
     

 

   

                          

 

 Where Dt-k is a dummy variable: 

      
           
           

                                                  

 K is a positive number, for k = {1, 2, 3, …, p}; 


 ϒk is the coefficient for Dt-k, 

 

Therefore, when the shock is positive, the effect from     
 to the ht is ak, when 

the shock is negative, the effect from the     
  is       

 . When the     , 

the effect from negative shocks (negative lag ɛ) for the variance is bigger than 
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the effect from positive shocks, and vice verse. When the     , the effect 

from negative news and positive news are the same to the return variance. 

This is allows testing whether the downward movements in the sample return 

treated as the bad news has the same magnitude variance of upward 

movements (i.e. the good news) to the current variance.  

 

Because ARMA(2,0)-GARCH(2,1) with GED distribution assumption are 

adequacies for sample return series, therefore, implementing 

ARMA(2,0)-TGARCH(2,1) with GED distribution.  

 

 

 

 GARCH-in-mean 

Based on the capital asset pricing model (CAPM) in the financial theory that 

encountering with higher risk tends to have a higher return, Engle, Lilen and 

Robins (1987) extend the GARCH-in-mean model (GARCH-M), that is adding 

the current variance obtained in the variance equation as the variable to 

explain the current return in the mean equation: therefore comparing with the 

GARCH model, the GARCH-M model changes the mean equation into:  

                    

 

   

         

 

   

                           

 

Where: the c is the coefficient parameter for ht. It means variance increases 

return by a factor of c. This paper also implements the ARMA 

(2,0)-GARCH(2,1)-M in the conditionally GED distribution assumption for 

error term   .  
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Table 14.1 

 

 

Table 14.1 shows the results by running three ARMA(2,0)-GARCH(2,1) 

models. The first model is ARMA(2,0)-T-GARCH(2,1) model based on the 

conditional GED distribution assumption. The shape parameter estimated by 

the log likelihood function for the GED distribution is 1.370588 which is less 

than 2 with the standard error of 0.050, which means the conditional 

distribution is higher and thinner peak and thinker tails than the corresponding 

normal distribution. All the standard errors of the parameters are less than 

0.038. However the p-value of the parameters suggests that the rt-2;     
 ; and 

         
 are insignificant at the 5% level. Therefore the model should be 

refined by dropping these three parameters: 

 

Mean equation

ht / / / 1.527031 1.592 0.338

Constant 0.0005992 0.000 0.000 0.0007227 0.000 0.000

rt-1 -0.054579 0.017 0.001 -0.0613843 0.017 0.000

rt-2 -0.0300582 0.019 0.116 -0.0323712 0.020 0.097

Variance equation

constant 1.71E-06 3.30E-07 0.000 2.39E-06 6.05E-07 0.000

εt-1
2 0.0479151 0.034 0.158 -0.0084632 0.018 0.633

εt-2
2 0.1087425 0.037 0.003 0.1289647 0.025 0.000

Dt-1ɛt-1
2

-0.1256137 0.034 0.000 / / /

Dt-2ɛt-2
2 -0.0497472 0.038 0.192 / / /

ht-1 0.9052297 0.014 0.000 0.8587674 0.019 0.000

sum of coefficients 0.8865264 0.9792689

Distribution GED GED

Shape 1.370588 0.050 1.294538 0.049

log-likelihood 8693.484 8653.233

AIC -17366.97 -17288.47

BIC -17308.18 -17235.56

Std.error P-value

ARMA(2,0)-T-GARCH(2,1) ARMA(2,0)-GARCH(2,1)-M

Coefficient Std.error P-value Coefficient
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The non-zero parameter (-0.1256137) for           
 statistically significantly 

captures the different effect from the negative shock and positive shocks, that 

is when the shock  t-1 is negative, the effect from     
  to ht is -0.1256137, 

whereas, when the shock  t-1 is positive, the effect from     
  to ht is zero. 

This means when the past innovation is negative to the return rt, i.e. the 

negative  t, the return volatile is less than the good news coming, but this 

difference is at the small level. Therefore, the leverage effect indeed exists 

and is successfully captured by the Threshold GARCH model. 

 

The sum of the coefficients in the variance equation becomes: 1.0139722>1 

when the past shock is positive. This means that if the shocks continuously 

being positive, then the return variance would continuously increase. The 

sum of the coefficients in the variance equation becomes 0.8883585 <1 when 

the past shocks is negative. This means that if the shocks continuously being 

negative, the past effect from past square errors and past variance would 

decay slowly. This shows that the return variance has a mean reversion 

feature that is the sample return variance would back to its mean value.  

 

The second model is the ARMA (2,0)-GARCH(2,1)-in-mean model under the 

GED distribution assumption. However, the coefficient for ht in the mean 

equation as the unique feature in the GARCH-in-mean model has the p-value 

insignificantly even bigger than 40%, it means this variable has no 

significantly power to explain the dependent variable return series. Together 

with the high standard error for estimating the parameter for ht (1.736), which 
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cannot be ignored, this means that this model should be re-fine by deleting 

this ht variable in the mean equation. Therefore, both p-value and standard 

error for ht indicate that the GARCH-in-mean is not suitable for describing 

sample return series.  

 

Therefore, there is no need to further implement Threshold-GARCH together 

with GARCH-in-mean model, and it will be sufficient by only examines the 

model adequacies for ARMA(2,0)-T-GARCH(2,1) model. 

 

Figure 13 

 

(a): the ACF for standardized residual in ARMA(2,0)-T-GARCH(2,1) 

(b): the ACF for Square of standardized residual in ARMA(2,0)-T-GARCH(2,1) 

 

The ACF of sample standardized residual in Figure (a) fails to suggest any 

significant serial correlations in the standardized residual series     . The 

ACF of the square of standardized residual in Figure (b) fails to suggest any 

significant serial correlations in the square of standardized residual series 

   
  , which suggests no conditional heteroscedasticity in the standardized 

residual series     . More specifically, in Table 13.2 the portmanteau test for 

standardized residual Q(20) with p-value 0.8217 and Q(8) with p-value 

0.6909 both are higher than the 5% significant level, and portmanteau test for 

the square of standardized residual Q(20) with p-value of test statistic 0.8507 

and Q(8) with p-value 0.8310 both are more than 5%, therefore, the model 
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ARMA(2,0)-T-GARCH(2,1) appears to be adequate in describing the linear 

dependence in return series and return variance series.  

 

Table 14.2 

Checking adequacies for ARMA (2,0)-T-GARCH (2,1) 

 

 

The distribution of standardized residual is near a normal distribution 

represented by Q-Q plot (j) which shows that the bold line is near the straight 

reference line. However, compared with the normal distribution, this 

distribution of standardized residual is with taller peak and little fat tail on the 

left side, and not exactly symmetric with -0.491 skewness.  

 

Therefore, the ARMA(2,0)-T-GARCH(2,1)-GED model is adequate for 

modeling the sample return volatility, and because the p-values for           
  

and shown in Table 10.1 are significant with small standard error, which 

means the symmetric effect does exist in the sample return volatility, therefore, 

the T-GARCH model rather than the traditional GARCH can better explain the 

return volatility. Graph X shows the predicted conditional variance of the 

sample return from ARMA (2,0)-T-GARCH(2,1)-GED model.  

 

 

 

 

Statistic value P-value

Q(20) for ϵt 14.1714 0.8217

Q(8) for ϵt 5.6089 0.6909

Q(20) for ϵt
2 13.5889 0.8507

Q(8) for ϵt
2 4.2798 0.8310
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Figure 14 

 
Where: The first observation in time series (i.e. t= 1) is 05

th
/01/2004; 

t= 600 is 18
th
/05/2006;      t= 1200 is 06

th
/10/2008; 

t= 1800 is 23
rd

/02/2011;     t= 2400 is 15
th
/07/2013. 

 

In summary, the S&P 500 return series has the time-varying variance, and 

this variance can be captured by the ARCH-type models. Because the small 

orders in GARCH can capture the longer orders in ARCH model, therefore 

the GARCH model is superior than the ARCH model, especially in the return 

series exhibits long lag serial dependence. However, the traditional 

conditional normal assumption for the error term obtained in the mean 

equation is not suitable for daily S&P 500 log return series as the distribution 

of the sample return series and the error term series in the mean equation 

both exhibit higher and thinner peak and thinker tails than the corresponding 

normal distribution, which suggests that the conditional distribution for the 

error term series might be thinner peak and thinker tails. This paper 

empirically examines this assumption changing into a generalized error 

distribution (GED). The results show that the conditional assumption for the 
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GED distribution is more appropriate than the normal distribution assumption, 

and can provide a better performance confirmed by the AIC, BIC information 

criteria and log-likelihood values. Furthermore, the Threshold-GARCH model 

proves the return variance has the leverage effect, and therefore has a better 

performance than the simple GARCH model. However, this paper fails to use 

the GARCH- in-mean model, which suggests that the current variance has no 

direct influence on the return at the same time. Therefore, the most 

appropriate model for modeling the daily S&P 500 return series is 

ARMA(2,0)-T-GARCH under GED assumption.  

 

However, this paper does not deal with the small magnitude sknewness in the 

standardized error distribution.  
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Chapter 9 

Inflation  

 

This paper uses the first difference of the natural logarithm of the daily U.S. 

Customer Price Index (CPI) as the daily inflation rate     . “The CPI (CPI-U) 

represents the changes in the prices paid by urban consumers for a 

representative basket of goods and services” (U.S. Department of Labor, 时

间). Therefore, the log inflation rate ft will reflect the changing rate of the 

prices paid by urban consumers from time t-1 to time t. therefore, the inflation 

rate is one of and is the most important rate indicating the whole 

macro-environment in a Country. The daily inflation rate is obtained as below: 

 

        
    

      
             

 

Where: the t is the day number; 

CPIt is the daily customer price index at time t. 

 

However, there is no published daily CPI available. The most frequent data 

for CPI is monthly data. This paper obtained the U.S. Customer price index 

for all urban (CPI-U) provided by the U.S. Department of Labor Bureau of 

Labor Statistic obtained from the Inflation.data.com as the monthly CPI data, 

which is from December 2003 to July 2014, ten years duration. This CPI data 

is based on the average of the year from 1982 to 1984 as the 100 value, and 

then based this value, the CPI in the other time periods is calculated (U.S. 

Department of Labor).  

In order to obtain the daily CPI data, this paper uses the Linear Interpolation 
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method to obtain the approximate daily data from the monthly data.  

 

 Linear interpolation: 

For example: In a two-dimensional coordinate, the horizontal line is X-axis, 

the vertical line is Y-axis. For a function        shown in the Figure (15.1) 

with only two known values A          and B          in this 

two-dimensional coordinate, where the point A with   value equals to  , 

   value equals to     , and the point B with    value equals to   ,   value 

equals to      shown in the Figure (15.1), the linear interpolation method 

can calculate the approximate function’s value for a point C with   value 

equaling to   , under the        function, where the   is in between the   

and   :   

Figure (15.1) 

 

 

A

B

C

f(b)

f(a)

a bc

Y

X

y=f(x)

(drawn by ) 

(Source: Peter Oliver, Lecture notes) 

The approximate value for      calculated by using linear interpolation 

method is: 
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The approximate value for      is represented as       which is shown in the 

Figure (15.2). The point C’ is the approximate point estimated by the linear 

interpolation method. 

Figure (15.2) 
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 Calculating the approximate daily CPI 

This paper supposes that the monthly CPI data is treated as the daily data in 

the middle of the date in the corresponding month, i.e. the 15th date in the 

corresponding month, and uses the linear interpolation method to obtain the 

approximate daily data in this month.  

 

Taking the January 2014 for an example, the monthly CPI index for January 

2014 is 233.916, and the monthly CPI index for February 2014 is 234.781. 

Therefore, the daily CPI for 15th January 2014 is treated as 233.916, and the 



83 
 

daily CPI for 15th February 2014 is treated as 234.781. Because the first 

month in year 2014 has 31 calendar days, therefore from day 15th January 

2014 (treated as the day zero) to the day 15th February 2014 (treated as the 

day 31st) totally is 31 days, which means this paper then needs to interpolate 

total 30 days values between 15th/01/2014 to 15th/02/2014. Therefore:  

 

The CPI of the first day (i.e. the day 16th/01/2014) is approximately: 

          
     

      
                                    

           
     

      
                   

                             

The Nth day daily CPI is approximately:  
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Table 15 

The approximate daily CPI using linear interpolation method 

 

The Table 15 shows the approximate daily U.S. CPI values from 15th/01/2014 

to 15th/02/2014 using linear interpolation method. Therefore, this daily 

approximate CPI index for these 31 days constitute an arithmetic sequence, 

which means that the increased CPI part during these 31 days is assumed to 

be equally weighted increased by these 31 days. Therefore, all the 

approximate daily U.S. CPI values from 02/01/2004 to 30th/06/2014 are 

obtained by using the same method.  

 

However, this daily CPI series is based on the calendar days rather than 

trading days, thus, when inputting the CPI data into the STATA software, all of 

the non-trading day’s values are deleted.  

Calender day Day's number N Approx. daily CPI

2014/1/15 0 CPI0 = 233.916

2014/1/16 1 233.944

2014/1/17 2 233.972

2014/1/18 3 234.000

2014/1/19 4 234.028

2014/1/20 5 234.056

2014/1/21 6 234.083

2014/1/22 7 234.111

2014/1/23 8 234.139

2014/1/24 9 234.167

2014/1/25 10 234.195

2014/1/26 11 234.223

2014/1/27 12 234.251

2014/1/28 13 234.279

2014/1/29 14 234.307

2014/1/30 15 234.335

2014/1/31 16 234.362

2014/2/1 17 234.390

2014/2/2 18 234.418

2014/2/3 19 234.446

2014/2/4 20 234.474

2014/2/5 21 234.502

2014/2/6 22 234.530

2014/2/7 23 234.558

2014/2/8 24 234.586

2014/2/9 25 234.614

2014/2/10 26 234.641

2014/2/11 27 234.669

2014/2/12 28 234.697

2014/2/13 29 234.725

2014/2/14 30 234.753

2014/2/15 31 CPI31 = 234.781
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Figure 16  

U.S. Daily approximate CPI index from 02/01/2004 to 30/06/2014 

 
Where: the time is the trading day count, totally 2641 observations. 

The first observation in time series (i.e. t= 1) is 02
nd

/01/2004; 

t= 600 is 19
th
/05/2006;      t= 1200 is 07

th
/10/2008; 

t= 1800 is 24
th
/02/2011;     t= 2400 is 16

th
/07/2013. 

The last observation in time series (i.e. t=2641) is 30
th
/06/2014 

 

Figure 16 shows the U.S. daily approximate CPI index (trading days account) 

using the linear interpolation method, from 2nd/01/2004 to 30th/06/2014 totally 

2641 observations. The approximate U.S. daily CPI mainly increases with 

some fluctuations. The non-highly frequent fluctuations is mainly because the 

actual data obtained is low monthly frequent data, the approximate daily data 

by the linear interpolation method only show the main trend between two 

actual values.  
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Figure 17 

U.S. Daily approximate Inflation from 05/01/2004 to 30/06/2014 

 
Where: the time is the trading day count, totally 2640 observations. 

The first observation in time series (i.e. t= 1) is 05
th
/01/2004; 

t= 600 is 22
nd

/05/2006;      t= 1200 is 08
th
/10/2008; 

t= 1800 is 25
th
/02/2011;     t= 2400 is 17

th
/07/2013. 

The last observation in time series (i.e. t=2640) is 30
th
/06/2014 

 

The U.S. daily approximate log inflation rate is obtained and shown by Figure 

17, which is from 5th/01/2004 to 30th/06/2014, totally 2640 observations. This 

inflation rate mainly fluctuates between zero and value 0.0005. It is noticed 

that in August 2008 (about t=2000), this inflation rate is sharply down to its 

bottom value about -0.0018 during the ten year duration, and then increase 

back to its mean value. This significant drop in the August 2008 is 

corresponding to the extremely significant S&P 500 return volatiles around 

August 2008 in Figure 2, and therefore also corresponding to the huge 

sharply increased conditional daily S&P 500 return variance obtained by 

ARMA (2,0)-T-GARCH(2,1)-GED model in Figure 14, where the daily 

conditional variance reaches its highest peak value around August 2008 
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(about t=2000 in Figure 14). Moreover, the main ten fluctuations for this 

inflation series in the ten-year duration reflect the possible seasonal influence 

on the log inflation rate.  

 

Figure 18 

Distribution of the U.S. Daily approximate log Inflation 

 

 

Figure 18 shows the distribution of the sample approximate U.S. daily log 

inflation rate. This distribution exhibits highly kurtosis, together with Table 16, 

the variance of this distribution is very small (         ), therefore, the 

approximate daily inflation rate is mainly around its mean value (         ). 

However, the sample inflation series also contains extreme values, which the 

minimum value is down to            , and the maximum value reaches 

to            . The skewness (-0.336188) is not obvious in the distribution 

picture. 
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Table 16 

Descriptive statistics for sample U.S. log inflation 

 

Once the appropriate model for modeling daily S&P 500 stock return volatility 

from 05th/01/2004 to 30th/06/2014 is determined i.e. the 

ARMA(2,0)-T-GARCH(2,1) model under the GED assumption for error term, 

the next step is to investigate the predictive power of inflation on the 

conditional variance. To do so, this paper follows the method adapted by Lin 

and Hamilton (1996), who use the conditional variance of return series as the 

function of the past square errors, the past conditional variance(s) and the 

possible past variable value(s) to study the influence from the inflation to the 

conditional variance in the U.S. Palm (1996) motivates this kind of model as 

the Factor-GARCH model.  

 

In the U.S. market, the Schewert (1989) firstly studies the stock market 

volatility and the macro-variables including Inflation from 1859 to 1987 using 

monthly data. Until 2003, Nicole Davis and M.Kutan used the Factor-GARCH 

model to examine the power of inflation for U.S. stock market volatility from 

1957 to 1999 monthly data. The appropriate model they used is the EGARCH 

(1,1) under the normal assumption for error term. Based on the likelihood 

method, they decide to add lag-1, lag-2 and lag-3 of inflation values as the 

exogenous variables in the EGARCH variance equation. Because the value 

of monthly inflation rate is small compared with the value of conditional 

variance, the inflation data used by them is computed based on the 

log-differenced of CPI multiplied by 100.  

 

Minimum value -0.0018820

Maximum value 0.0015644

Mean 0.0000963

Variance 0.0000000617

Skewness -0.3361884

Kurtosis 13.3033400
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Considering the previous studies, this paper uses the 

Factor-ARMA-T-GARCH-GED model with the lag inflation value(s) as the 

exogenous variables in the conditional variance equation to investigate the 

possible predictive power from daily inflation to the S&P 500 return volatility 

which the S&P 500 stock index is treated as the U.S. stock market index.  

Because the mean of the approximate daily inflation data is           with 

          small variance, while the mean for the conditional variance 

obtained from ARMA (2,0)-T-GARCH(2,1)-GED is relative big            

with relative big variance           shown in Table 16, therefore, this 

paper decides to use the inflation multiply 100 as the exogenous variables 

adding in the Factor-GARCH model, which is as the same method as Nicole 

Davis and M.Kutan’s. The model is as follow: 

                         

                    

              

                   

 

   

     
     

 

   

                  

 

   

 

 

The same explanations as before, however, the new explanation    is the 

coefficient of the parameter         . The m is the positive integer number 

for            .      is the lag-m approximate daily inflation value.  

 

When deciding how many lag values of inflation need in the conditional 

variance equation, this paper follow the Nicole Davis and M.Kutan’s method 

by using the likelihood ration tests. 
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 Likelihood ratio (LR) test:  

The LR test is implemented to consider whether the model should add one or 

some new parameter(s). It involves estimation under the two models. One is 

the model with restrictions of adding new parameter(s) in the model, the other 

model is called unconstrained model, which allows the researcher to adds   

new parameter(s) in the model. The null hypothesis is the first constrained 

model is more sufficient than the unconstrained model. Under the null 

hypothesis, the LR statistics should follow the Chi-Square with m degree of 

freedom.  

                                        χ     

 

LLF is the log-likelihood function. Here the LLF denotes the after the model 

uses the log-likelihood function method to estimates the model parameters’ 

coefficients, Therefore,                means the maximum log-likelihood 

number for the first constrained model;                  means the maximum 

log-likelihood value for the unconstrained model. The m is the number of new 

parameters added in the unconstrained model.  

 

Reject the null hypothesis, if the LR is above the corresponding Chi-square 

critical values. Then the unconstrained model with new adding parameters is 

more sufficient than the constrained model.  

 

Therefore, this paper is to decide how many lag values of the approximate 

inflation should be added into the model ARMA(2,0)-T-GARCH(2,1)-GED, 

here called original model, by comparing the original model with the model 

adding lag-1 of inflation, and comparing the this original model as constrained 

model with the model adding lag-1 and lag-2 of inflation values, and so on.  

 

This test is used in the situation when adding the new parameters into the 

model, the new model should have a bigger maximum log-likelihood value 
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than that of constrained model. However, if the model with more parameter(s) 

has a maximum log-likelihood value which is smaller than the original model, 

then the new model will not to be considered.  

 

Table 17 

Maximum log-likelihood value for models 

 

 

Table 17 shows the maximum log-likelihood values for different models when 

using log-likelihood function to estimate the model’s parameters. Beside the 

original model, Table 17 only lists four Factor GARCH models, because when 

adding more lag inflation values into the original model, the maximum 

log-likelihood values are even less than the original model’s. Therefore, there 

is no need to list and compare those kinds of models. Because the second 

model in the table exhibits the highest value of the maximum log-likelihood 

value in these five models, therefore, if the second model is sufficient than the 

original model after testing the LR test for original model and this second 

model, then there is no need to implement other rest models into LR test.  

LR test for comparing the original model with the second model is shown in 

Table 17: 

                                 

                                   

 

Because LR test is above the corresponding critical Chi-square value with 1 

degree of freedom at the 5% significant level, the unconstrained model, i.e. 

the model with lag-1 inflation value is preferable.  

Model's variance equation Maximum log-likelihood value

1st ARMA(2,0)-T-GARCH(2,1)-GED  original model 8693.484

2nd ARMA(2,0)-T-GARCH(2,1)-GED with lag-1 inflation value 8703.585

3rd ARMA(2,0)-T-GARCH(2,1)-GED with lag-2 inflation value 8699.500

4th ARMA(2,0)-T-GARCH(2,1)-GED with lag-1, lag-2 inflation values 8699.663

5th ARMA(2,0)-T-GARCH(2,1)-GED with lag-1, lag-2, lag-3 inflation values 8696.015

Model
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Table 18 shows the result of ARMA (2,0)-T-GARCH (2,1)-GED with lag-1 of 

inflation as variable in the variance equation. The ft-1100 i.e. the lag-1 

approximate daily inflation multiplied by 100 is as the possible variable to 

explain the S&P 500 return conditional volatility. If this past inflation value is 

appropriate to describe the conditional variance, it means the inflation can 

predict the conditional variance. The inflation movements can have effect on 

the conditional variance. However, the p-value of ft-1100 is 0.297, it is 

insignificant even at the 10% significant level. Furthermore, the coefficient of 

ft-1100 is 5.03430 however with big standard error of 4.830, together with the 

insignificant p-value, therefore, the lag-1 value of approximate daily inflation 

cannot explain the conditional variance of S&P 500 return. i.e. the inflation 

does not have the predictive power and no effect for this conditional variance. 

 

Table 18 

 

 

Coefficient Std.error P-value

Mean equation

Constant 0.0006073 0.000 0.000

rt-1 -0.0533896 0.016 0.001

rt-2 -0.0238756 0.019 0.199

Variance equation

constant -13.09523 0.188 0.000

ft-1100 5.03430 4.830 0.297

εt-1
2 0.0381544 0.034 0.265

εt-2
2 0.1420804 0.037 0.000

Dt-1ɛt-1
2

-0.2283373 0.033 0.000

Dt-2ɛt-2
2 0.0375888 0.034 0.270

ht-1 0.9180229 0.011 0.000

sum of coefficients 0.9075092

Distribution GED

Shape 1.37549 0.054

log-likelihood 8703.585

AIC -17385.17

BIC -17320.51

ARMA(2,0)-T-GARCH(2,1) with lag-1 infation
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This result is consistent with the Davis and Kutan (2003) result, that in the 13 

Countries, only four Countries show that the lag values of inflation have 

negative effect on the Countries’ stock market return volatility at the 10% 

significant level. Other nine Countries including U.S. do not show any 

evidence that the lag values of influence have impact on the conditional 

variance. The proper lag length for the inflation variables they used are lag-1, 

lag-2 and lag-3 in the variance equation.  

 

However, this result disagrees with results from Schewert (1989) and 

Hamilton and Lin (1996). Hamilton and Lin (1996) results treat S&P 500 stock 

index as the Market index, and study the market return volatility and the 

economic recessions, they use the output and inflation as the exogenous 

variables both on stock returns and its conditional volatility. The results shows 

together with other 13 Countries, the economic activities is an importance 

source of stock market return volatility, the U.S. inflation does have predictive 

power on both the return and return volatility at the 10% significant level after 

Wold War II from 1965 to 1993. The fact that this paper’s result is differing 

from that of Hamilton and Lin (1996) might be attributed to the different study 

period. They study the period after the great economic recessions, and 

comparing the period from 1965 to 1993 and the period from 2004 to 2014, 

although there is a Financial Crisis during the 2008, however, the main 

economic development now is better than during the 1965 to 1993.  

 

The possible predictive power from inflation to the stock return volatility is a 

hypothesis, there is no any financial theory supporting this point. The only 

direct relation between inflation and the stock return rather the stock return 

volatility is the famous Fisher Effect, which suggests that the stock return 

should fluctuate with inflation rate. This is the genius debate for the return and 

inflation relationship. Other journals show the relationship between stock 

return and inflation is based on the Country’s monetary policy such as the 
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countercyclical financial policies and procyclical policy. This second point is 

developed and examined by lots of studies such as Kaul (1987) study U.S. 

Country for this topic, whose time period of research is 1953 to 1983, that is 

slightly different with that of Hamilton and Lin (1996). Kaul (1987) finds that 

the link between inflation and stock return and this is related with the 

Counter-cyclical policy.  

 

These previous results give a possible hypothesis that: does the relationship 

between inflation and stock return volatility is based on the relationship 

between inflation and stock return? However, from the journals Davis and 

Kutan (2003), which both investigates the inflation to return and inflation to 

return volatility, the Israel, Netherlands and U.S. all has the relation between 

inflation and Country’s stock market return, however, these Countries in the 

same period do not exhibit the predictive power from inflation to stock return 

volatility. Therefore, this hypothesis is rejected.  

 

After comparing the results with previous studies, secondly, the approximate 

data obtained by the linear interpolation method only captures the main trend 

of the CPI values, therefore, captures the main tend of the inflation 

movements. More specifically, under the linear interpolation method, the CPI 

within one month, from the middle of one month to next middle of month, 

constitute an arithmetic sequence, therefore, the log–differenced value of CPI 

i.e. the log inflation data within one month become a smooth relative steady 

line. However, return volatility fluctuates more frequently than the 

approximate log inflation, which means that only capturing the main trend by 

the approximate inflation may be not adequate enough to explain this high 

fluctuations data (return volatility). Therefore, even if the inflation had effect 

on the S&P 500 return series volatility, this effect could not be reflected 

clearly.  
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Therefore, this paper also investigates: does the inflation have effect on the 

return volatility by using monthly data during the same time interval from 

January 2004 to June 2014. Based on the previous studies, this paper uses 

the traditional GARCH(1,1) to model the monthly S&P 500 return volatility.  

 

Table 19.1 shows the GARCH (1,1) with Normal distribution assumption for 

S&P 500 return series from January 2004 to June 2014. Except the p-value of 

constant in variance equation is 0.348 insignificance, the significance of the 

other parameters with p-values are all at the 5% level. The standard errors for 

all coefficient parameters are under 0.098.  

 

 

Table 19.1 

GARCH (1,1) for monthly S&P 500 return series  

 

 

Table 19.2 shows the test for the standardized error in the GARCH (1,1) 

model. the Portmanteau Test for standardized residual gives Q(20)=21.949 

with p-value 0.343, and Q(5)=3.027 with p-value 0.696>5% significant level. 

The Portmanteau Test for square of standardized residual Q(20)=15.930 with 

p-value 0.721 and Q(5)=5.870 with p-value 0.319 > 5% significant level, 

Coefficient Std.error P-value

Mean equation

Constant 0.0069293 0.003 0.023

Variance equation

constant 0.00007 0.000 0.348

εt-1
2 0.2589835 0.087 0.003

ht-1 0.7174895 0.096 0.000

sum of coefficients 0.976473

Distribution Normal

log-likelihood 237.8328

AIC -467.6655

BIC -456.3523

GARCH(1,1) 
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therefore, both standardized residual series and square of standardized 

residual are not serial correlation, therefore the GARCH(1,1) model for 

monthly S&P 500 return series appears to be adequate in describing the 

linear dependence in the return and conditional volatility series.  

 

Table 19.2  

 

 

Figure 13 

  

 

However, the Bera- Jaeque with p-value of 0.01 <5% shows that the 

standardized residual distribution is not normal. The Q-Q plot and Distribution 

picture of the standardized residal in GARCH(1,1) for monthly data also 

shows the non-normal distribution. This may because the sample size for 

monthly data is very small from January 2004 to June 2014, total 125 

observations, therefore, this paper accepts this standardized residual is near 

Statistic value P-value

Q(20) for ϵt 21.949 0.343

Q(5) for ϵt 3.027 0.696

Q(20) for ϵt
2 15.930 0.721

Q(5) for ϵt
2 5.870 0.319

Bera-Jaeque 0.010

mean -0.0626363

variance 0.9872674

Kurtosis   3.168346

Skewness -0.7228757

Diagnostic Test for GARCH(1,1)
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normal, but with skewness. Figure 14 shows the condtional variance by 

GARCH(1,1) and the monthly inflation series. 

 

Figure 14 

 

 

After checking the GARCH(1,1) model is adequate for modeling the monthly 

S&P 500 return volatility, next step is to add the monthly past inflation value 

as the possbile variable(s) in the variance equation. However, when try to 

adding the past inflation value(s) as the exogenous variables, such as adding 

lag-1, or adding lag-1 and lag-2, or adding lag-1, lag-2 and lag-3 of the 

inflation, non of the Factor model provides a higher maximum log-likelihood 

value than the original GARCH(1,1) model in Table 19 with maximum 

log-likelihood value of 237.8328, and the original GARCH(1,1) without any 

past inflation value(s) provides the lowest value of AIC and BIC.  

 

The most approperiate model with past inflation value(s) is GARCH(1,1) with 

lag-1 inflation value shown in Table 20. However, ft-1100 is with large 

standard error of 3.038 and insignificant P-value of 0.583, which means the 

lag-1 monthly inflation has no effect to the monthly S&P 500 return conditional 

variance.  
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Therefore, this paper concludes that neither in daily data or using monthly 

data, the inflation has no predictive power for S&P 500 return conditional 

variance.  

 

Table 20 

GARCH(1,1) with lag-1 inflation for monthly S&P 500 return 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coefficient Std.error P-value

Mean equation

Constant 0.0071556 0.003 0.015

Variance equation

constant -10.17993 2.222 0.000

ft-1100 1.66910 3.038 0.583

εt-1
2 0.2567971 0.088 0.003

ht-1 0.7198926 0.094 0.000

sum of coefficients 0.9766897

Distribution Normal

log-likelihood 235.665

AIC -461.3301

BIC -447.2287

GARCH(1,1) with lag-1 infation
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Chapter 10 

Conclusion 

This paper investagates the possiable predictive power of inflation for S&P 

500 stock return volatility by using high frequent daily data of ten-years period 

from 5th/01/2004 to 30th/06/2014. The method is using the past inflation value 

as the exogenous variable into the conditional variance equation. The 

approximate daily inflation data is obtained by using the linear interpolation 

method. The time varying return volatility is obtained by using ARCH famliy 

model. 

 

The paper concludes that there is no evidence of the relationship between 

U.S. inflation and S&P 500 stock return volatility for both daily data and 

monthly data, the inflation has no predictive power for S&P 500 stock return 

volatility from 2004 to 2014, and it not a underlying determinant for stock 

market volatility in U.S. this result is cosistent with the results from Davis and 

Kutan (2003), who argue that the inflation cannot influence the market stock 

return volatility from 1957 to 1999. But this result disagrees with the Schewert 

(1989) using monthly data from 1857 to 1987. 

 

the ARMA(2,0) model is applied to deal with the small magnitude serial 

correlation in the S&P 500 return series. Moreover, the possiable ARCH 

model for S&P 500 return series is ARCH(11), the GARCH model is used as 

well to minimise the standard errors when estimating the model. However, it is 

confirmed that the superious GARCH(1,1) model fail to model S&P 500 return 

series from 2004 to 2014,while the GARCH(2,1) is adequate to describe this 

return serial dependence feature.  
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It is found that the Generalised error distribution GED with shape parameter 

less than 2 has a thinner peak and fatter tails than the normal distribution, so 

it has more power and advance than the conditional normal assumption for 

the error term in the return mean equation, which confirms the previous 

studies. Furthermore, the daily S&P 500 stok return volatility does exist the 

aymmetric effect, which are successfully captured by the Thresholder 

GARCH model, and the negative shocks has slight effect on the conditional 

variance compared with the the positive shocks. However, the 

GARCH-in-mean model fails to model the sample series.  

 

However, this paper ignores the slight skewness of the distribution in the 

return and error term when modeling the conditional variance. Secondly the 

approximate daily inflation data is obtained by using the linear interpolation 

method not the real data, which will influence the result’s accuracy.  
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Appendix 

Appendix 1: STATA software Code: 

 

gen mydaily=daily(dailydate,"YMD") 

gen time=_n 

tsset time 

gen price=adjclose 

gen return= ln(price/l.price) 

 

 

*analysis return 

tsline price 

tsline return 

su return, d 

summarize return 

histogram return, freq normal 

qnorm return 

ac return 

gen sreturn = abs(return) 

gen sqreturn=return^2 

ac sqreturn 

 

*mean equation*********************** 

dfuller return, 

wntestq return, lag(20) 

wntestq return, lag(8) 

ac return, lags (20) 

pac return, lags (20) 

 

forvalues p=0/4 { 

forvalues q=0/4 { 

arima return, arima (`p',0,`q')nolog 

estat ic  

} 

} 

*try ARMA(2,4) 

arima return, arima(2,0,4) nolog 
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predict e24, residual 

ac e24, lags(20) 

wntestq e24, lags(20) 

wntestq e24, lags(8) 

 

*try ARMA(2,0): 

arima return, arima(2,0,0) nolog 

predict e20, residual 

ac e20, lags(20) 

wntestq e20, lags(20) 

wntestq e20, lags(8) 

*analysis e2 

histogram e20, freq normal 

qnorm e20 

ac e20, lags(30) 

gen se20 = e20^2 

ac se20, lags (30) 

summarize e20 

su e20, d 

gen abe20= abs(e20) 

ac abe20, lags (30) 

 

*possible arch order***************** 

gen sqe2=e2^2 

pac sqe2 

*arch effect 

regress sqe2 l(1/14).sqe2 

arch return, arch(1/14) arima(2,0,0) nolog 

regress sqe2 l(1/11).sqe2 

arch return, arch(1/11) arima(2,0,0) nolog 

*model adequacy check arma(2,0)-arch(11) 

predict h211, variance 

predict e211, residual 

gen v211=e211 / h211^(1/2) 

ac v211, lags  

wntestq v211, lags(20) 

wntestq v211, lags(8) 

*check variance equation 

gen sqv211= v211^2 
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ac sqv211 

wntestq sqv211, lags(8) 

wntestq sqv211, lags(20) 

histogram v211, freq normal 

qnorm v211 

su v211, d 

sktest v211 

 

*arma (2,0)-GARCH (1,1)********************************** 

arch return, arch(1/1) garch(1/1) arima(2,0,0)  nolog 

estat ic 

predict h2011, variance 

predict e2011, residual 

gen v2011=e2011 /h2011^(1/2) 

ac v2011, lags (20) 

wntestq v2011, lags(20) 

wntestq v2011, lags(8) 

*variance equation checking 

gen sqv2011 = v2011^2 

ac sqv2011, lags (20) 

wntestq sqv2011, lags(20) 

wntestq sqv2011, lags(8) 

histogram v2011, freq normal 

qnorm v2011 

su v2011, d 

sktest v2011 

 

*ARMA(2,0)-GARCH(1,2) 

arch return, arch(1/1) garch(1/2) arima(2,0,0)  nolog 

estat ic 

predict h2012, variance 

predict e2012, residual 

gen v2012=e2012 /h2012^(1/2) 

ac v2012, lags (20) 

wntestq v2012, lags(20) 

wntestq v2012, lags(8) 

*variance equation checking 

gen sv2012 = v2012^2 

ac sv2012, lags (20) 



109 
 

wntestq sv2012, lags(20) 

wntestq sv2012, lags(8) 

histogram v2012, freq normal 

qnorm v2012 

su v2012, d 

sktest v2012 

 

*ARMA(2,0)-GARCH(2,1)OKK!!!! 

arch return, arch(1/2) garch(1/1) arima(2,0,0)  nolog 

estat ic 

predict h2021, variance 

predict e2021, residual 

gen v2021=e2021 /h2021^(1/2) 

ac v2021, lags (20) 

wntestq v2021, lags(20) 

wntestq v2021, lags(8) 

*variance equation checking 

gen sv2021 = v2021^2 

ac sv2021, lags (20) 

wntestq sv2021, lags(20) 

wntestq sv2021, lags(8) 

histogram v2021, freq normal 

qnorm v2021 

su v2021, d 

sktest v2021 

 

 

*ARMA(1,0)-GARCH(2,1)OKK!!! 

arch return, arch(1/2) garch(1/1) arima(1,0,0)  nolog 

estat ic 

predict h1021, variance 

predict e1021, residual 

gen v1021=e1021 /h1021^(1/2) 

ac v1021, lags (20) 

ac v1021 

wntestq v1021, lags(20) 

wntestq v1021, lags(8) 

*variance equation checking 

gen sv1021 = v1021^2 
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ac sv1021, lags (20) 

wntestq sv1021, lags(20) 

wntestq sv1021, lags(8) 

histogram v1021, freq normal 

qnorm v1021 

su v1021, d 

sktest v1021 

 

*GED**********************************************************************

* 

*arma(2,0) garch(1,1)GED 

arch return, arch(1/1) garch(1/1) arima(2,0,0) distribution (ged) 

estat ic 

predict e2011e, residual 

predict h2011e, variance 

gen v2011e = e2011e/ h2011e^(1/2) 

ac v2011e, lags(20) 

wntestq v2011e, lags(20) 

wntestq v2011e, lags(8) 

gen sv2011e = v2011e^2 

wntestq sv2011e, lags(20) 

wntestq sv2011e, lags(8) 

ac sv2011e, lags(20) 

ac sv2011e 

histogram v2011e 

qnorm v2011e 

su v2011e, d 

sktest v2011e 

 

*arma(2,0)-garch(1,2)GED 

arch return, arch(1/1) garch(1/2) arima(2,0,0) distribution (ged) 

estat ic 

predict e2012e, residual 

predict h2012e, variance 

gen v2012e = e2012e/ h2012e^(1/2) 

ac v2012e, lags(20) 

wntestq v2012e, lags(20) 

wntestq v2012e, lags(8) 

gen sv2012e = v2012e^2 
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ac sv2012e, lags(20) 

wntestq sv2012e, lags(20) 

wntestq sv2012e, lags(8) 

histogram v2012e, freq normal 

qnorm v2012e 

su v2012e, d 

sktest v2012e 

 

 

*GED arma(2,0)-GARCH(2,1) 

arch return, arch(1/2) garch(1/1) arima(2,0,0) distribution (ged) 

estat ic 

predict e2021e, residual 

predict h2021e, variance 

gen v2021e = e2021e / h2021e^(1/2) 

ac v2021e, lags(20) 

wntestq v2021e, lags(20) 

wntestq v2021e, lags(8) 

gen sv2021e = v2021e^2 

ac sv2021e, lags(20) 

ac sv2021e 

wntestq sv2021e, lags(20) 

wntestq sv2021e, lags(8) 

histogram v2021e, freq normal 

qnorm v2021e 

su v2021e, d 

sktest v2021e 

 

*tarch************************************************************* 

arch return, arch(1/2) tarch(1/2) garch(1/1) arima(2,0,0) nolog 

predict ht, variance 

tsline ht 

predict et, residual 

gen vt = et / ht^(1/2) 

wntestq vt, lags(40) 

wntestq vt, lags (20) 

wntestq vt, lags (8) 

ac vt, lags (60) 

ac vt, lags (30) 



112 
 

gen svt=vt^2 

wntestq svt, lags (40) 

wntestq svt, lags (20) 

wntestq svt, lags (8) 

ac svt, lags (30) 

histogram vt, freq normal 

su vt, d 

qnorm vt 

 

predict htt, variance 

predict returntt, xb 

tsline htt 

 

* 

sort time, 

gen t=_n 

sum t 

gen shock5 = (t-77)/15 

sum shock5 

predict h5, variance at (shock5 1) 

twoway (spike h5 shock5, sort) if shock5>= -4 & shock5<= 4 

 

***T+GED******************************************************************

*** 

arch return, arch(1/2) tarch(1/2) garch(1/1) arima(2,0,0) distribution (ged) nolog 

estat ic 

predict htg, variance 

su htg, d 

tsline htg 

predict etg, residual 

gen vtg = etg / htg^(1/2) 

wntestq vtg, lags(40) 

wntestq vtg, lags (20) 

wntestq vtg, lags (8) 

ac vtg, lags (60) 

ac vtg, lags (30) 

gen svtg=vtg^2 

wntestq svtg, lags (40) 

wntestq svtg, lags (20) 
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wntestq svtg, lags (8) 

ac svtg, lags (30) 

histogram vtg,  

su vtg, d 

qnorm vtg 

histogram vtg, normal kdensity 

********************************************************************* 

* in mean  

arch return, arch(1/2) garch(1/1) archm arima(2,0,0)  distribution (ged) 

estat ic 

predict hm, variance 

predict em, residual 

gen vm = em / hm^(1/2)  

wntestq vm, lags(20) 

wntestq vm, lags(8) 

ac vm, lags (60) 

ac vm, lags (30) 

gen svm = vm^2 

wntestq svm, lags(20) 

wntestq svm, lags(8) 

ac svm, lags (30) 

su vm, d 

histogram vm, normal  

qnorm vm 

 

gen logf100=logf1*100 

arch return, abarch(1/2) atarch(1/2) sdgarch(1/1) arima(2,0,0)distribution(ged) het(logf100) 

nolog 

estat ic 

* simple rate 

gen simplef=(cpi-l.cpi)/l.cpi 

gen simplef1=l.simplef 

gen simplef2 = l.simplef1 

* log rate 

gen logf=ln(cpi/l.cpi) 

gen logf1=l.logf 

gen logf2=l.logf1 

gen logf3=l.logf2 

tsline cpi, from 
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tsline logf  

histogram logf 

su logf ,d 

sum logf 

gen cpi1=l.cpi 

 

arch return, arch(1/1) garch(1/1) het(logf1) nolog 
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Appendix 2: Matlab software Code: 

 

x = -6:0.01:6; 

rho = [1.294779]; 

p = []; 

for k = 1:length(rho) 

    p = [p exp(-abs(x').^rho(k)) / (2*gamma(1+1/rho(k)))]; 

end 

figure, hold on; set(gca,'fontsize',14); 

plot(x,p,'linewidth',2); 

str = num2str(rho'); 

clear str2; 

for k = 1:length(rho) 

    str2(k,:) = ['\it\rho =' str(k,:)]; 

end 

legend(str2); xlabel('\itx'); ylabel('\itGG(x\rm;\it\rho)'); xlim([-6 6]) 

 

 

 

 

x = -6:0.01:6; 

rho = [1.3 2 3]; 

p = []; 

for k = 1:length(rho) 

    p = [p exp(-abs(x').^rho(k)) / (2*gamma(1+1/rho(k)))]; 

end 

figure, hold on; set(gca,'fontsize',14); 

plot(x,p,'linewidth',2); 

str = num2str(rho'); 

clear str2; 

for k = 1:length(rho) 

    str2(k,:) = ['\it\rho =' str(k,:)]; 

end 

legend(str2); xlabel('\itx'); ylabel('\itGG(x\rm;\it\rho)'); xlim([-6 6]) 

 

 

 

 

 


