A novel photonic crystal band-pass filter using degenerate modes of a point-defect microcavity for terahertz communication systemsTools Chun-Ping, Chen, Anada, Tetsuo, Greedy, Steve, Benson, Trevor M. and Sewell, Phillip (2014) A novel photonic crystal band-pass filter using degenerate modes of a point-defect microcavity for terahertz communication systems. Microwave and Optical Technology Letters, 56 (4). pp. 792-797. ISSN 0895-2477 Full text not available from this repository.AbstractCompact devices are important for the realization of terahertz communications systems. This article proposes a novel photonic crystal-based device for realizing microminiature, high-selectivity high Q band-pass filters (BPF) and the design of a dual-mode square lattice photonic crystal BPF that utilizes the degenerated modes of a point defect microcavity is presented. To design a high Q microcavity, the photonic band-gap is initially calculated using the plane wave expansion method. Second, the eigenfrequencies and modal fields of a point defect microcavity that generates localized states in the band-gap are calculated by a supercell method. Finally, the characteristics of mode splitting and the proposed dual-mode BPFs are numerically studied by a full-wave time-domain method.
Actions (Archive Staff Only)
|