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Abstract. Two ideas taken from Bayesian optimization and classifier systems 
are presented for personnel scheduling based on choosing a suitable scheduling 
rule from a set for each person’s assignment. Unlike our previous work of using 
genetic algorithms whose learning is implicit, the learning in both approaches is 
explicit, i.e. we are able to identify building blocks directly. To achieve this tar-
get, the Bayesian optimization algorithm builds a Bayesian network of the joint 
probability distribution of the rules used to construct solutions, while the 
adapted classifier system assigns each rule a strength value that is constantly 
updated according to its usefulness in the current situation. Computational re-
sults from 52 real data instances of nurse scheduling demonstrate the success of 
both approaches. It is also suggested that the learning mechanism in the pro-
posed approaches might be suitable for other scheduling problems. 

1   Introduction 

Scheduling problems are generally NP-hard combinatorial problems, and a lot of re-
search has been done to solve these heuristically ([2], [3], [8], [10]). However, research 
into the development of a general scheduling algorithm is still in its infancy. 

Genetic Algorithms (GAs) ([6], [7]) mimicking the natural evolutionary process of 
the survival of the fittest, have attracted much attention in solving difficult scheduling 
problems in recent years. Some obstacles exist when using GAs: there is no canonical 
mechanism to deal with constraints, which are commonly met in most real-world sched-
uling problems, and small improvements of a solution are difficult. To overcome both 
difficulties, indirect approaches have been presented ([3], [9], [10]) for nurse schedul-
ing and driver scheduling. In these indirect GAs, the solution space is mapped and 
then a separate decoding routine builds solutions to the original problem. 



In our previous indirect GAs, learning was implicit and restricted to the efficient ad-
justment of weights for a set of rules that are used to construct schedules. The major 
limitation of those approaches is that they learn in a non-human way. Like most exis t-
ing construction algorithms, once the best weight combination is found, the rules used 
in the construction process are fixed at each iteration. However, normally a long se-
quence of moves is needed to construct a schedule. Using fixed rules at each move is 
unreasonable and not coherent with human learning processes. 

When a human scheduler works, he normally builds a schedule systematically fol-
lowing a set of rules. After much practice, the scheduler gradually masters the knowl-
edge of which solution parts go well with others. He can identify good parts and is 
aware of the solution quality even if the scheduling process is not completed yet, thus 
having the ability to finish a schedule by using flexible, rather than fixed, rules. In this 
paper, we will present two more human-like scheduling approaches, by using a cut-
ting-edge Bayesian Optimization Algorithm (BOA) and an Adapted Classifier System 
(ACS) individually, to implement explicit learning from past solutions. 

In our test problem (nurse scheduling) problem, the number of the nurse is fixed 
(about 30), and the target is to create a weekly schedule by assigning each nurse one 
out of up to 411 shift patterns in the most efficient way. Both of the proposed ap-
proaches achieve this by using one suitable rule, from a rule set that contains a num-
ber of available rules, for each nurse’s assignment. Thus, a potential solution is repre-
sented as a sequence of rules corresponding to the first nurse to the last nurse. 

The long-term aim of our research is to model the learning of a human scheduler. 
Humans can provide high quality solutions, but this is tedious and time consuming. 
Typically, they construct schedules based on rules learnt during scheduling. Due to 
human limitations, these rules are typically simple. Hence, our rules will be relatively 
simple, too. Nevertheless, human generated schedules are of high quality due to the 
ability of the scheduler to switch between the rules, based on the state of the current 
solution. We envisage the proposed BOA and the ACS to perform this task. 

2   The Nurse Scheduling Problem 

Nurse scheduling has been widely studied recently ([4], [5]). The schedules generated 
have to satisfy working contracts and meet the demand for a given number of nurses 
of different grades on each shift. The problem is complicated by the fact that higher 
qualified nurses can substitute less qualified nurses but not vice versa. Thus schedul-
ing the different grades independently is not possible. Due to this characteristic, find-
ing and maintaining feasible solutions for most local search algorithms is difficult. 

2.1   Integer Linear Programming 

The nurse scheduling problem can be formulated as an Integer Program as follows: 
 
Indices: 



i = 1...n nurse index;  
j = 1...m shift pattern index;  
k = 1...14 day and night index (1...7 are days and 8...14 are nights); 
s = 1...p grade index. 

Decision variables: 
xij = 1 if nurse i works shift pattern j otherwise xij = 0. 

Parameters: 
m = Number of shift patterns; 
n = Number of nurses; 
p = Number of grades; 
ajk = 1 if shift pattern j covers day/night k otherwise ajk = 0; 
qis = 1 if nurse i is of grade s or higher otherwise qis = 0; 
pij = Preference cost of nurse i working shift pattern j; 
Rks = Demand of nurses with grade s on day/night k ; 
Ni, Di, Bi = Shifts per week of nurse i if night / day / both shifts are worked; 
F(i) = Set of feasible shift patterns for nurse i, where F(i) is defined as 
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Target function is to minimize total preference cost of all nurses, denoted as 
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Subject to: 
1. Every nurse works exactly one feasible shift pattern: 
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2. The demand for nurses is fulfilled for every grade on every day and night: 
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Constraint set (2) ensures that every nurse works exactly one shift pattern from 
his/her feasible set, and constraint set (3) ensures that the demand for nurses is cov-
ered for every grade on every day and night. Note that the definition of qis is such that 
higher graded nurses can substitute those at lower grades if necessary. 

Typical problem dimensions are n = 30 nurses of p = 3 grades and m = 411 shift 
patterns for each nurse. Thus, the integer programming has some 12000 binary vari-
ables and about 100 constraints. This is a moderately sized problem. However, some 
problem cases remain unsolved after overnight computation using professional soft-
ware [4]. 



2.2   A Graphic Representation for Nurse Scheduling 

Figure 1 shows a graphical representation of the solution structure of the problem: a 
hierarchical and acyclic directed graph. The node })  ,...,2,1{};  ,...,2,1{( rjniN ij ∈∈  in the 

graph denotes that nurse i is assigned by using rule j, where n is the number of nurses 
to be scheduled and r is the number of rules to be used in the building process. The 
directed edge (arrow) from node Nij to node Ni+1,j’ denotes a causal relationship of “Nij 
following Ni+1,j’”, i.e. a rule sub-string for nurse i where the previous rule is j and the 
current rule is j’. In this graph, a possible solution (a complete rule string) is repre-
sented as a directed path from nurse 1 to nurse n connecting n nodes. 

 

Fig. 1. A directed graph for nurse scheduling 

3   A Building Heuristic for Nurse Scheduling 

Similar to the human’s working pattern, a building heuristic is designed to build a 
schedule step by step by using a set of rules. As far as the domain knowledge of 
nurse scheduling is concerned, the following four rules are currently applied. 

The first rule, called ‘Random’ rule, is used to select a nurse’s shift pattern at ran-
dom. Its purpose is to introduce randomness into the search thus enlarging the search 
space, and most importantly to ensure that the proposed algorithm has the ability to 
escape from local optimum. This rule mirrors much of a scheduler’s creativeness to 
come up with different solutions if required. 

The second rule is the ‘k-Cheapest’ rule. Disregarding the feasibility of the sched-
ule, it randomly selects a shift pattern from a k-length list containing patterns with k-
cheapest cost pij, in an effort to reduce the cost of a schedule as much as possible. 

The third rule ‘Cover’ is designed to consider only the feasibility of the schedule. It 
schedules one nurse at a time to cover those days and nights with the highest number 
of uncovered shifts. For each shift in a nurse’s feasible set, we calculate the total num-
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ber of uncovered shifts that would be covered if the nurse worked that shift pattern. In 
order to ensure that high-grade nurses are not ‘wasted’ covering unnecessarily for 
lower-grade nurses, for nurses of grade s, only the shifts requiring grade s nurses are 
counted as long as there is a single uncovered shift for this grade. If all these are cov-
ered, shifts of the next lower grade are considered and once these are filled those of 
the next lower grade. Hence, the ‘Cover’ rule can be summarised as finding those shift 
patterns with the largest amount of undercover of the highest feasible grade. 

The fourth rule ‘Contribution’ is biased towards solution quality but includes some 
aspects of feasibility by computing an overall score for each feasible pattern for the 
nurse currently being scheduled. It is designed to take into account the nurses’ pref-
erences. It also takes into account some covering constraints in which it gives prefer-
ence to patterns that cover shifts that have not yet been allocated sufficient nurses to 
meet their total requirements. This is achieved by going through the entire set of fea-
sible shift patterns for a nurse and assigning each one a score. The one with the high-
est (i.e. best) score is chosen. In formulation, the score of a shift pattern Sij is denoted 
as 
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where wp is the weight of the nurse’s pij value for the shift pattern, ws is the weight of 
covering an uncovered shift of grade s, and dks = 1 if there are still nurses needed on 
day k of grade s otherwise dks = 0. 

Independent of the rules used, the fitness of completed solutions has to be calcu-
lated. Unfortunately, feasibility cannot be guaranteed. This is a problem-specific issue 
and cannot be changed. Therefore, we need a penalty function approach. Since the 
chosen encoding automatically satisfies constraint set (2), we can use the following 
formula to calculate the fitness of solutions: 
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where wdemand is the penalty weight. Note that the penalty is proportional to the number 
of uncovered shifts. 

4   A Bayesian Optimization Algorithm 

Bayesian networks [11] are often used to model multinomial data with both discrete 
and continuous variables by encoding the relationship between the variables con-
tained in the modelled data. Thus, they represent the structure of a problem. More-
over, Bayesian networks can be used to generate new instances of the variables with 
similar properties as those given. Each node in the network corresponds to one vari-
able, and each variable corresponds to one position in the strings representing the 
solutions. The relationship between two variables is represented by a directed edge 
between the two corresponding nodes (as seen in Figure 1). 



Any complete probabilistic model of a domain must represent the joint distribution, 
i.e. the probability of every possible event as defined by the values of all the variables. 
The number of such events is exponential. To achieve compactness, Bayesian net-
works factor the joint distribution into local conditional distributions for each variable. 

Mathematically, an acyclic Bayesian network encodes a full joint probability distri-
bution by the product 
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where xi denotes some values of the variable Xi, pa(Xi) denotes a set of values for 
parents of Xi in the network (the set of nodes from which there exists an individual 
edge to Xi), and P(xi | pa(Xi)) denotes the conditional probability of Xi conditioned on 
variables pa(Xi). This distribution can be used to generate new instances using the 
marginal and conditional probabilities. 

4.1   Learning based on the Bayesian Network 

The graph shown in Figure 1 can be regarded as a Bayesian network, which denotes 
the solution structure of the problem. In this network, learning the best rule sequence 
amounts to counting the frequency of using each rule. Hence, we use the symbol ‘#’ 
meaning ‘the number of’ in the following equations. It calculates the conditional prob-
abilities of each possible value for each node given all possible values of its parents. 
For example, for node Ni+1,j’ with a parent Nij, its conditional probability is  
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Note that nodes N1j have no parents. In this circumstance, their probabilities are 
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These probability values can be used to generate new rule strings, or new solu-
tions. Since the first rule in a solution has no parents, it will be chosen from nodes N1j 
according to their probabilities. The next rule will be chosen from nodes Nij according 
to their probabilities conditioned on the previous nodes. This building process is 
repeated until the last node has been chosen from nodes Nnj, where n is number of the 
nurses. A link from nurse 1 to nurse n is thus created, representing a new possible 
solution. Since all the probability values are normalized, the roulette-wheel method is a 
good strategy for rule selection. 

4.2   A BOA Approach for Nurse Scheduling 

The BOA is applied to learn good partial solutions and then to complete them by 
building a Bayesian network of the joint distribution of solutions [12]. The nodes, or 
variables, in the Bayesian network correspond to the individual rules from which a 
schedule will be built step by step. In the proposed BOA, the first population of rule 



strings is generated at random. From the current population, a set of better rule strings 
is selected. Any selection method biased towards better fitness can be used, and in 
this paper, the traditional roulette-wheel selection is applied. The conditional probabili-
ties of each node in the Bayesian network are computed. New rule strings are gener-
ated by using these conditional probability values, and are added into the old popula-
tion, replacing some of the old rule strings. In detail: 

1. Set t = 0, and generate an initial population P(0) at random;  
2. Use roulette-wheel to select a set of promising rule strings S(t) from P(t); 
3. Compute the conditional probabilities of each node according to this set of 

promising solutions; 
4. For each nurse’s assignment, use the roulette-wheel method to select one rule 

according to the conditional probabilities of all available nodes, thus obtaining 
a new rule string. A set of new rule strings O(t) will be generated in this way; 

5. Create a new population P(t+1) by replacing some rule strings from P(t) with 
O(t), and set t = t+1; 

6. If the termination conditions are not met, go to step 2. 

5   An Adapted Classifier System 

The classifier system is an induction self-learning system in which a set of condition-
action rules, called classifiers, compete to control the system and gain credit based on 
the system’s receipt of reinforcement from the environment. It was first introduced by 
Holland in 1975 and has been extensively studied by others in recent years. In original 
classifier systems [7], the learning procedures consist of two parts: credit assignment 
and rule discovery. The former is critical, which is achieved by using a “bucket bri-
gade” algorithm to rate the rules the system already has. The latter is applied very 
seldom, which is achieved by using GAs to replace rules of low strength and provide 
new rules when environmental situations are ill handled. 

The design of our ACS is based on the idea of learning from the environment by 
providing the system with some measure of its performance. In particular, we study 
reinforcement learning for entities (i.e. for each nurse/rule combination shown in Fig-
ure 1). Each entity is given a learning task and when all tasks are completed, a solution 
is built. This solution will then receive a positive or negative reward according to its 
quality. The reward is  shared among all entities involved. Thus, the process is similar 
to a game such as  chess, where many moves are made before feedback is received. 

In this approach, each building unit has its strength showing its usefulness in the 
current situation, and this strength is constantly assessed and updated. To implement 
learning based on previous solutions, an ACS for nurse scheduling is designed, which 
consists of the following four steps: 

1. Initialise the strengths of all nodes in Figure 1 by assigning each node a same 
constant value, and create an initial solution by randomly picking a rule from 
the rule set for each nurse’s assignment; 



2. Considering the strengths of all nodes in the graph, we use the roulette-wheel 
method to select one node for each nurse, i.e. selection is biased towards 
higher strength. New solutions are generated in this way; 

3. If a new solution is better than the previous one, a positive reward is received 
by this solution and evenly assigned to every associated node, otherwise a 
negative reward is received and evenly assigned to associated nodes; 

4. Keep the best solution found so far. If ending conditions (maximum number of 
iterations) are not met, go to step 2. 

To help understanding how the reward is assigned and shared, we will give a simple 
example of scheduling three nurses using four rules. The initial strength of each node 
is set to 10, and the reward of an improved solution is set to 3. The initial solution is 
generated by using rule 1 for nurse 1, rule 4 for nurse 2 and rule 3 for nurse 3. The next 
solution is generated by using rule 4 for nurse 1, rule 2 for nurse 2 and rule 3 for nurse 
3. Thus, the strength matrix after each generation is updated as follows: 
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It is worth mentioning here, that our proposed two approaches in the way of build-
ing schedules may have similarity with ant colony optimisation. However, their search 
mechanisms are very different. In our BOA, the search is based on the conditional 
probabilities of all available moves, rather than on the local and global trail updating in 
the ants’ method. In our ACS, the searching method is still under development. It is 
currently based on the improvement of a single path, rather than the evolution of a 
group of paths in ant algorithms. 

6   Computational Results 

In this section, we present the results of extensive computer experiments on 52 real 
data instances and compare them to results of the same data instances found previ-
ously by other algorithms. Figure 2 summarises results of 20 runs with different ran-
dom seeds for the BOA and the ACS respectively. Figure 3 gives an overall compari-
son between various algorithms. The runtime of both algorithms is approx 10-20 sec-
onds per run and data instance on a Pentium 4 PC. 
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Fig. 2. Results of the BOA and the ACS 



In Figure 2, the x-axis represents the number of data sets, and the bars above the y-
axis represent solution quality. The black bars show the number of optimal, the white 
near-optimal (within three units) solutions. The bars below the y-axis represent the 
number of times the algorithm failed to find a feasible solution or the solution was 
feasible but non-optimal (more than three units from optimum). The value of three 
units was chosen in consultation with the hospital involved. Hence, the shorter the 
bar below the y-axis and the longer above, the better the algorithm’s performance. 

Figure 2 shows that for the BOA 38 out of 52 data sets are solved to or near to op-
timality. Additionally, feasible solutions are always found for all data sets. Broadly 
speaking, the results for the ACS are similar, but a little weaker. This is unsurprising as 
in its present form the ACS is simple and its search is based on a single solution. 

Figure 3 gives the optimal or best-known solutions found by an IP software pack-
age, and compares performance of different GAs ([1], [3]) with the BOA and the ACS 
presented here. The results are encouraging, with a fraction of the development time 
and simpler algorithms, the complex genetic algorithms are outperformed in terms of 
feasibility, best and average results. Only the hill-climbing GA, which includes an 
additional local search, has a better ‘best case’ performance. We believe that once this 
feature is  added into our approach, by using the ACS as the hill-climber for the BOA, 
we will see the best possible results. Our plan is to implement a post-processor that is 
similar to a human scheduler who ‘improves’ a finished schedule. 
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Fig. 3. Summary results of various algorithms 

Another direction for further research is to see if there are good constructing se-
quence for a fixed nurses’ scheduling order. If so, the good patterns could be recog-
nized and then extracted as new domain knowledge. Then using the ext racted knowl-
edge, we can assign specific rules to the corresponding nurses beforehand, and only 
need to schedule the remaining nurses, hence reducing the solution space. 

7   Conclusions 

This paper presents two scheduling algorithms based on the Bayesian optimization 
and classifier systems. The approach is novel because it is the first time that ideas 
from classifier systems are applied to personnel scheduling. Two effective methods are 
proposed to implement explicit learning from past solutions. Unlike most existing ap-



proaches, the new approach has the ability to build schedules using flexible, rather 
than fixed rules. Experimental results from real-world nurse scheduling problems dem-
onstrate the strength of the proposed approaches. 

Although we have presented this work in terms of nurse scheduling, it is suggested 
that the main ideas of the approaches could be applied to many other scheduling prob-
lems where the schedules will be built systematically according to specific rules. It is 
also hoped that this research will give some preliminary answers about how to include 
human-like learning into scheduling algorithms and may therefore be of interest to 
practitioners and researchers in areas of scheduling and evolutionary computation. In 
future, we aim to extract the ‘explicit’ part of the learning process further, e.g. by keep-
ing learnt rule sequences from one data instances to the next. 
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