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Abstract- A Bayesian optimization algorithm for the 
nurse scheduling problem is presented, which involves 
choosing a suitable scheduling rule from a set for each 
nurse’s assignment. Unlike our previous work that 
used GAs to implement implicit learning, the learning 
in the proposed algorithm is explicit, i.e. eventually, we 
will be able to identify and mix building blocks 
directly. The Bayesian optimization algorithm is 
applied to implement such explicit learning by 
building a Bayesian network of the joint distribution 
of solutions. The conditional probability of each 
variable in the network is computed according to an 
initial set of promising solutions. Subsequently, each 
new instance for each variable is generated by using 
the corresponding conditional probabilities, until all 
variables have been generated, i.e. in our case, a new 
rule string has been obtained. Another set of rule 
strings will be generated in this way, some of which 
will replace previous strings based on fitness selection. 
If stopping conditions are not met, the conditional 
probabilities for all nodes in the Bayesian network are 
updated again using the current set of promising rule 
strings. Computational results from 52 real data 
instances demonstrate the success of this approach. It 
is also suggested that the learning mechanism in the 
proposed approach might be suitable for other 
scheduling problems. 

1 Introduction 

Scheduling problems are generally NP-hard combinatorial 
problems, and a lot of research has been done to solve 
these problems heuristically (Aickelin and Dowsland, 
2002 and 2003; Li and Kwan, 2001a and 2003). However, 
most previous approaches are problem-specific and 
research into the development of a general scheduling 
algorithm is still in its infancy. 

Genetic Algorithms (GAs) (Holland 1975; Goldberg 
1989), mimicking the natural evolutionary process of the 
survival of the fittest, have attracted much attention in 
solving difficult scheduling problems in recent years. 
Some obstacles exist when using GAs: there is no 
canonical mechanism to deal with constraints, which are 
commonly met in most real-world scheduling problems, 
and small changes to a solution are difficult. To overcome 
both difficulties, indirect approaches have been presented 

(Aickelin and Dowsland, 2003; Li and Kwan, 2001b and 
2003) for nurse and driver scheduling. In these indirect 
GAs, the solution space is mapped and then a separate 
decoding routine builds solutions to the original problem. 

In our previous indirect GAs, learning was implicit 
(‘black-box’) and restricted to the efficient adjustment of 
weights for a set of rules that are used to construct 
schedules. The major limitation of those approaches is 
that they learn in a non-human way. Like most existing 
construction algorithms, once the best weight combination 
is found, the rules used in the construction process are 
fixed at each iteration. However, normally a long 
sequence of moves is needed to construct a schedule and 
using fixed rules at each move is thus unreasonable and 
not coherent with the human learning processes. 

When a human scheduler works, he normally builds a 
schedule systematically following a set of rules. After 
much practice, the scheduler gradually masters the 
knowledge of which solution parts go well with others. He 
can identify good parts and is aware of the solution 
quality even if the scheduling process is not completed 
yet, thus having the ability to finish a schedule by using 
flexible, rather than fixed, rules. In this paper, we design a 
more human-like scheduling algorithm, by using a 
Bayesian optimization algorithm to implement explicit 
learning from past solutions. A nurse scheduling problem 
with 52 real data instances  gathered from a UK hospital is 
used as the test problem. 

Nurse scheduling has been widely studied in recent 
years, and an extensive summary of the approaches can be 
found in Hung (1995) and Sitompul and Randhawa 
(1990). This problem is highly constrained, making it 
extremely difficult for most local search algorithms to 
find feasible solutions, let alone optimal ones. In our 
nurse scheduling problem, the number of the nurses is 
fixed (up to 30), and the target is to create a weekly 
schedule by assigning each nurse one out of up to 411 
shift patterns in the most efficient way. The proposed 
Bayesian approach achieves this by choosing a suitable 
rule, from a rule set containing a number of available 
rules, for each nurse. A potential solution is therefore 
represented as a rule string, or a sequence of rules 
corresponding to nurses from the first one to the last. 

As a model of the selected strings, a Bayesian network 
(Pearl 1998) is used in the proposed Bayesian 
optimization algorithm to solve the nurse scheduling 
problem. A Bayesian network is a directed acyclic graph 



with each node corresponding to one variable, and each 
variable corresponding to the individual rule by which a 
schedule will be constructed step by step. The causal 
relationship between two variables is represented by a 
directed edge between the two corresponding nodes. 

The Bayesian optimization algorithm is applied to 
learn to identify good partial solutions and to complete 
them by building a Bayesian network of the joint 
distribution of solutions (Pelikan et al, 1999; Pelikan and 
Goldberg, 2000). The conditional probabilities are 
computed according to an initial set of promising 
solutions. Subsequently, each new instance for each node 
is generated by using the corresponding conditional 
probabilities, until values for all nodes have been 
generated, i.e. a new rule string has been generated. 

 Another set of rule strings will be generated in the 
same way, some of which will replace previous strings 
based on roulette-wheel fitness selection. If stopping 
conditions are not met, the conditional probabilities for all 
nodes in the Bayesian network are updated again using 
the current set of rule strings. The algorithm thereby tries 
to explicitly identify and mix promising building blocks. 

It should be noted that for most scheduling problems, 
the structure of the network model is known and all 
variables are fully observed. In this case, the goal of 
learning is to find the rule values that maximize the 
likelihood of the training data. Thus, learning can amount 
to ‘counting’ in the case of multinomial distributions. 

The rest of this paper is organized as follows. Section 2 
gives an overview on the nurse scheduling problem, and 
the following section 3 introduces the general concepts 
about graphical models and Bayesian networks. Section 4 
discuses the proposed Bayesian optimization algorithm, 
describing the construction of a Bayesian network, 
learning based on the Bayesian network, and the four 
building rules in detail. Computational results using 52 
data instances gathered from a UK hospital are presented 
in section 5. Concluding remarks are in section 6. 

2 The Nurse Scheduling Problem 

2.1 General Problem 
Our nurse scheduling problem is to create weekly  
schedules for wards of nurses by assigning one of a 
number of possible shift patterns to each nurse. These 
schedules have to satisfy working contracts and meet the 
demand for a given number of nurses of different grades 
on each shift, while being seen to be fair by the staff 
concerned. The latter objective is achieved by meeting as 
many of the nurses’ requests as possible and considering 
historical information to ensure that unsatisfied requests 
and unpopular shifts are evenly distributed. 

The problem is complicated by the fact that higher 
qualified nurses can substitute less qualified nurses but 
not vice versa. Thus scheduling the different grades 
independently is not possible. Furthermore, the problem 
has a special day-night structure as most of the nurses are 
contracted to work either days or nights in one week but 
not both. However due to working contracts, the number 

of days worked is not usually the same as the number of 
nights. Therefore, it becomes important to schedule the 
‘correct’ nurses onto days and nights respectively. The 
latter two characteristics make this problem challenging 
for any local search algorithm, because finding and 
maintaining feasible solutions is extremely difficult. 

The numbers of days or nights to be worked by each 
nurse defines the set of feasible weekly work patterns for 
that nurse. These will be referred to as shift patterns or 
shift pattern vectors in the following. For each nurse i and 
each shift pattern j all the information concerning the 
desirability of the pattern for this nurse is captured in a 
single numeric preference cost pij. These costs were 
determined in close consultation with the hospital and are 
a weighted sum of the following factors: basic shift-
pattern cost, general day/night preferences, specific 
requests, continuity problems, number of successive 
working day, rotating nights/weekends and other working 
history information. Patterns that violate mandatory 
contractual requirements are marked as infeasible for a 
particular nurse and week by giving them a suitably high 
pij value. 

2.2 Integer Programming 
The problem can be formulated as an integer linear 
program as follows. 
 
Indices: 
i = 1...n nurse index;  
j = 1...m shift pattern index;  
k = 1...14 day and night index (1...7 are days and 8...14 
are nights);  
s = 1...p grade index. 
 
Decision variables: 


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
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pattern shift   works nurse   1, ji
xij

. 

 
Parameters: 
m = Number of shift patterns; 
n = Number of nurses; 
p = Number of grades; 



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day/night  covers pattern shift    1, kj

a jk
; 


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else   ,0
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qis
; 

pij = Preference cost of nurse i working shift pattern j; 
Rks = Demand of nurses with grade s on day/night k ; 
Ni = Working shifts per week of nurse i if night shifts are 
worked; 
Di = Working shifts per week of nurse i if day shifts are 
worked; 
Bi = Working shifts per week of nurse i if both day and 
night shifts are worked {for special nurses}; 
F(i) = Set of feasible shift patterns for nurse i, where F(i) 
is defined as 
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Target function: 
Minimize total preference cost of all nurses, denoted as  
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Subject to: 
1. Every nurse works exactly one feasible shift pattern: 

ix
iFj

ij ∀=∑
∈

,1
)(

;                                                                (3) 

2. The demand for nurses is fulfilled for every grade on 
every day and night: 
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Constraint set (3) ensures that every nurse works 

exactly one shift pattern from his/her feasible set, and 
constraint set (4) ensures that the demand for nurses is 
covered for every grade on every day and night. Note that 
the definition of qis is such that higher graded nurses can 
substitute those at lower grades if necessary. 

Typical problem dimensions are 30 nurses of three 
grades and 400 shift patterns. Thus, the Integer 
Programming formulation has about 12000 binary 
variables and 100 constraints. This is  a moderately sized 
problem. However, some problem cases remain unsolved 
after overnight computation using professional software. 

3 Graphical Models and Bayesian Networks 

In this section, we introduce concepts from graphical 
models in general and Bayesian networks in particular. 
Section 4 will then explain how we applied these concepts 
to our nurse scheduling problem. 

Graphical models are graphs in which nodes represent 
random variables, and the lack of edges represents 
conditional independence assumptions (Edwards 2000). 
They have important applications in many multivariate 
probabilistic systems in fields such as statistics, systems 
engineering, information theory and pattern recognition. 
In particular, they are playing an increasingly imp ortant 
role in the design and analysis of machine learning 
algorithms. 

As described by Jordon (1999), graphical models are a 
marriage between probability theory and graph theory. 
They provide a natural tool for dealing with uncertainty 
and complexity that occur throughout applied 
mathematics and engineering. In a graphical model, the 
fundamental notion of modularity is used to build a 
complex system by combining simpler parts. Probability 

theory provides the glue to combine the parts, ensuring 
that the whole system is consistent, and providing ways to 
interface models to data. The graph theory provides an 
intuitively appealing interface by which humans can 
model highly interacting sets of variables, and a data 
structure that leads itself naturally to the des ign of 
general-purpose algorithms. 

There are two main kinds of graphical models: 
undirected and directed. Undirected graphical models are 
more popular with the physics and vision communities. 
Directed graphical model, also called Bayesian networks, 
are more popular with the artificial intelligence and 
machine learning communities. Bayesian networks are 
often used to model multinomial data with both discrete 
and continuous variables by encoding the relationship 
between the variables contained in the modelled data, 
which represents the structure of a problem. 

Moreover, Bayesian networks can be used to generate 
new instances of the variables with similar properties as 
those of given data. Each node in the network corresponds 
to one variable, and each variable corresponds to one 
position in the strings representing the solutions. The 
relationship between two variables is represented by a 
directed edge between the two corresponding nodes. 

Any complete probabilistic model of a domain must 
represent the joint distribution, the probability of every 
possible event as defined by the values of all the variables. 
The number of such events is exponential. To achieve 
compactness, Bayesian networks factor the joint 
distribution into local conditional distributions for each 
variable given its parents. 

Mathematically, an acyclic Bayesian network encodes 
a full joint probability distribution by the product 
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where xi denotes some values of the variable Xi, pa(Xi) 
denotes a set of values for parents of Xi in the network 
(the set of nodes from which there exists an individual 
edge to Xi), and P(xi | pa(Xi)) denotes the conditional 
probability of Xi conditioned on variables pa(Xi). This 
distribution can be used to generate new instances using 
the marginal and conditional probabilities. 

4 A Bayesian Optimization Algorithm for 
Nurse Scheduling 

This section discusses the proposed Bayesian optimization 
algorithm for the nurse scheduling problem, including the 
construction of a Bayesian network, learning based on the 
Bayesian network and the four building rules used. 

4.1 The Construction of a Bayesian Network 
In our nurse scheduling problem, the number of the nurse 
is fixed (up to 30), and the target is to create a weekly 
schedule by assigning each nurse one shift pattern in the 
most efficient way. The proposed approach achieves this 
by using one suitable rule, from a rule set that contains a 
number of available rules, for each nurse’s assignment. 
Thus, a potential solution is represented as a rule string, or 



a sequence of rules corresponding to nurses from the first 
one to the last one individually. 
We chose this approach, as the longer-term aim of our 
research is to model the explicit learning of a human 
scheduler. Human schedulers can provide high quality 
solutions, but the task is tedious and often requires a large 
amount of time. Typically, they construct schedules based 
on rules learnt during scheduling. Due to human 
limitations, these rules are typically simple. Hence, our 
rules will be relatively simple, too. Nevertheless, human 
generated schedules are of high quality due to the ability 
of the scheduler to switch between the rules, based on the 
state of the current solution. We envisage the Bayesian 
optimisation algorithm to perform this role. 

 

 
Figure 1: A Bayesian network for nurse scheduling 

 
Figure 1 is the Bayesian network constructed for the 

nurse scheduling problem, which is a hierarchical and 
acyclic directed graph representing the solution structure 
of the problem. 

The node }),...,2,1{};,...,2,1{( njmiN ij ∈∈  in the network 

denotes that nurse i is assigned using rule j, where m is the 
number of nurses to be scheduled and n is the number of 
rules to be used in the building process. The directed edge 
from node Nij to node Ni+1,j’ denotes a causal relationship 
of “Nij causing Ni+1,j’”. In our particular implementation, 
an edge denotes a construction unit (or rule sub-string) for 
nurse i where the previous rule is j and the current rule is  
j’. In this network, a possible solution (a complete rule 
string) is represented as a directed path from nurse 1 to 
nurse m connecting m nodes. 

4.2 Learning based on the Bayesian Network 
According to whether the structure (topology) of the 
model is known or unknown, and whether all variables are 
fully observed or some of them are hidden, there are four 
kinds of learning (Heckerman 1998). According to 

Heckerman, the learning process for the proposed 
approach belongs to the category of “known structure and 
full observation,” and the learning goal is to find the 
variable values of all nodes Nij that maximize the 
likelihood of the training date containing T independent 
cases. 

In the proposed approach, learning amounts to 
counting and hence we use the symbol ‘#’ meaning ‘the 
number of’ in the following equations. It calculates the 
conditional probabilities of each possible value for each 
node given all possible values of its parents. For example, 
for node Ni+1,j’ with a parent node Nij, its conditional 
probability is  
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Note that nodes N1j have no parents. In this 

circumstance, their probabilities are computed as 
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These probability values can be used to generate new 

rule strings, or new solutions. Since the first rule in a 
solution has no parents, it will be chosen from nodes N1j 
according to their probabilities. The next rule will be 
chosen from nodes Nij according to their probabilities 
conditioned on the previous nodes. This building process 
is repeated until the last node has been chosen from nodes 
Nmj, where m is number of the nurses. A link from nurse 1 
to nurse m is thus created, representing a new possible 
solution. Since all the probability values are normalized, 
the roulette-wheel method is good strategy for rule 
selection. 

For clarity, consider the following toy example of 
scheduling five nurses with two rules (1: random 
allocation, 2: allocate nurse to low-cost shifts). In the 
beginning of the search, the probabilities of choosing rule 
1 or 2 for each nurse is equal, i.e. 50%. After a few 
iterations, due to the selection pressure and reinforcement 
learning, we experience two solution pathways: Because 
pure low-cost or random allocation produces low quality 
solutions, either rule 1 is used for the first 2-3 nurses and 
rule 2 on remainder or vice versa. In essence, BOA learns 
‘use rule 2 after 2-3x using rule 1’ or vice versa. 

4.3 A Bayesian Optimization Algorithm 
Based on the estimation of conditional probabilities, this 
section introduces a Bayesian optimization algorithm for 
the nurse scheduling problem. It uses techniques from the 
field of modelling data by Bayesian networks to estimate 
the joint distribution of promising solutions. The nodes, or 
variables, in the Bayesian network correspond to the 
individual rules by which a schedule will be built step by 
step. 

In the proposed Bayesian optimization algorithm, the 
first population of rule strings is generated at random. 
From the current population, a set of better rule strings is 
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selected. Any selection method biased towards better 
fitness can be used, and in this paper, the traditional 
roulette-wheel Selection is applied. The conditional 
probabilities of each node in the Bayesian network are 
computed. New rule strings are generated by using these 
conditional probability values, and are added into the old 
population, replacing some of the old rule strings. In more 
detail, the steps of the Bayesian optimization algorithm 
for nurse scheduling are: 

1. Set t = 0, and generate an initial population P(0) at 
random;  

2. Use roulette-wheel to select a set of promising 
rule strings S(t) from P(t ); 

3. Compute the conditional probabilities of each 
node according to this set of promising solutions ;  

4. For the assignment of each nurse, the roulette-
wheel method is used to select one rule according 
to the conditional probabilities of all available 
nodes, thus obtaining a new rule string. A set of 
new rule strings O(t) will be generated in this 
way; 

5. Create a new population P(t+1) by replacing some 
rule strings from P(t) with O(t ), and set t = t+1; 

6. If the termination conditions are not met (we use 
2000 generations), go to step 2. 

4.4 Four Building Rules 
Similar to the working pattern of a human scheduler, the 
proposed schedule-constructing process uses a set of rules 
to build a schedule step by step. As far as the domain 
knowledge of nurse scheduling is concerned, the 
following four ru les are currently investigated. 
 
4.4.1 Random Rule 
The first rule, called ‘Random’ rule, is used to select a 
nurse’s shift pattern at random. Its purpose is to introduce 
randomn ess into the search thus enlarging the search 
space, and most importantly to ensure that the proposed 
algorithm has the ability to escape from local optimum. 
This rule mirrors much of a scheduler’s creativeness to 
come up with different solutions if required. 
4.4.2 k-Cheapest Rule 
The second rule is the ‘k-Cheapest’ rule. Disregarding the 
feasibility of the schedule, it randomly selects a shift 
pattern from a k-length list containing patterns with k-
cheapest cost pij, in an effort to reduce the total cost of a 
schedule as more as possible. 
4.4.3 Cover Rule 
Compared with the first two rules, the ‘Cover’ rule and 
last 'Contribution’ rule are relatively more complicated. 
The third ‘Cover’ rule is designed to consider only the 
feasibility of the schedule. It schedules one nurse at a time 
in such a way as to cover those days and nights with the 
highest number of uncovered shifts. 

The ‘Cover’ rule constructs solutions as follows. For 
each shift pattern in a nurse’s feasible set, calculate the 
total number of uncovered shifts and would be covered if 
the nurse worked that shift pattern. For simplicity, this 
calculation does not take into account how many nurses 
are still required in a particular shift. For instance, assume 
that a shift pattern covers Monday to Friday nights. 

Further assume that the current requirements for the 
nights from Monday to Sunday are as follows: (-3, 0, +1, -
2, -1, -2, 0), where a negative number means undercover 
and a positive over cover. The Monday to Friday shift 
pattern hence has a cover value of 3, as the most negative 
value it covers is -3. In this example, a Tuesday to 
Saturday pattern would have a value of 2. 

In order to ensure that high-grade nurses are not 
‘wasted’ covering unnecessarily for nurses of lower 
grades, for nurses of grade s, only the shifts requiring 
grade s nurses are counted as long as there is a single 
uncovered shift for this grade. If all these are covered, 
shifts of the next lower grade are considered and once 
these are filled those of the next lower grade. Due to the 
nature of this approach, nurses’ preference costs pij are not 
taken into account by this rule. However, they will 
influence decisions indirectly via the fitness function. 
Hence, the ‘Cover’ rule can be summarised as finding 
those shift patterns with corresponding largest amount of 
undercover. 
4.4.4 Contribution Rule 
The fourth rule, called ‘Contribution’ rule, is biased 
towards solution quality but includes some aspects of 
feasibility by computing an overall score for each feasible 
pattern for the nurse currently being scheduled. 

The ‘Contribution’ rule is designed to take into account 
the nurses’ preferences. It therefore works with shift 
patterns rather than individual shifts. It also takes into 
account some of the covering constraints in which it gives 
preference to patterns that cover shifts that have not yet 
been allocated sufficient nurses to meet their total 
requirements. This is achieved by going through the entire 
set of feasible shift patterns for a nurse and assigning each 
one a score. The one with the highest (i.e. best) score is 
chosen. If there is more than one shift pattern with the 
best score, the first such shift pattern is chosen. 

The score of a shift pattern is calculated as the 
weighted sum of the nurse’s pij value for that particular 
shift pattern and its contribution to the cover of all three 
grades. The latter is measured as a weighted sum of grade 
one, two and three uncovered shifts that would be covered 
if the nurse worked this shift pattern, i.e. the reduction in 
shortfall. Obviously, nurses can only contribute to 
uncovered demand of their own grade or below. More 
precisely and using the same notation as before, the score 
pij of shift pattern j for nurse i is calculated with the 
following parameters: 

• dks = 1 if there are still nurses needed on day k of 
grade s otherwise dks = 0; 

• ajk = 1 if shift pattern j covers day k otherwise ajk = 0; 
• ws is the weight of covering an uncovered shift of 

grade s; 
• wp is the weight of the nurse’s pij value for the shift 

pattern. 
Finally, (100- pij) must be used in the score, as higher pij 
values are worse and the maximum for pij is 100. Note 
that (- wppij) could also have been used, but would have 
led to some scores being negative. Thus, the scores are 
calculated as follows: 
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The ‘Contribution’ rule can be summarised as follows: 
• Cycle through all shift patterns of a nurse; 
• Assign each one a score based on covering uncovered 

shifts and preference cost; 
• Choose the shift pattern with the highest score. 

4.5 Fitness Function 
Independent of the rules used, the fitness of completed 
solutions has to be calculated. Unfortunately, feasibility 
cannot be guaranteed. This is a problem-specific issue and 
cannot be changed. Therefore, we still need a penalty 
function approach. Since the chosen encoding 
automatically satisfies constraint set (3) of the integer 
programming formulation, we can use the following 
formula, where wdemand is the penalty weight, to calculate 
the fitness of solutions. Note that the penalty is 
proportional to the number of uncovered shifts. 
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5 Computational Results 

In this section, we present the results of extensive 
computer experiments and compare them to results of the 
same data instances found previously by other algorithms. 
Table 1 lists the full and detailed computational results of 
20 runs with different random seeds, where N/A indicates 
no feasible solution was found. Figures 2 summarises this 
information, Figure 3 shows a single typical run and 
finally Figure 4 gives an overall comparison between 
various algorithms. 

5.1 Details of Algorithms  
The results listed in Table 1 are  always based on 20 runs 
with different random seeds and the last row contains the 
mean value of all columns: 

• IP: Optimal or best-known solutions found with IP 
software (Dowsland and Thompson, 2000); 

• GA: Best result out of 20 runs from a parallel genetic 
algorithm with multiple sub-populations and 
intelligent parameter adaptation (Aickelin and 
Dowsland, 2000); 

• Rd: Bayesian optimization, but only the random rule  
is used, i.e. equivalent to random search; 

• CP: Bayesian optimisation, where all four rules are 
used (see 4.4), but no conditional probability are 
computed, i.e. every rule has a 25% probability of 
being chosen all the time for all nurses; 

• Op: Best result out of 20 runs of standard Bayesian 
optimization, i.e. four rules and conditional 
probabilities are used as described in section 4.1-4.4; 

• Inf: Number of runs terminating with the best 
solution being infeasible; 

• #: Number of runs terminating with the best solution 
being optimal or equal to the best known; 

• <3: Number of runs terminating with the best solution 
being within three cost units of the optimum. The 
value of three units was chosen as it corresponds to 
the penalty cost of violating the least important level 
of requests in the original formulation. Thus, these 
solutions are still acceptable to the hospital. 

For all data instances, the Bayesian optimisation 
algorithm used a set of fixed parameters as follows: 

• Maximum number of generations = 2000; 
• Penalty weight for each uncovered unit : wdemand =200; 
• For the ‘k-Cheapest’ rule, k  = 5; 
• Weight set for the ‘Contribution’ rule: w ={8,2,1,1}; 
• Population size = 140; 
• Keep the best 40 solution in each generation; 
• The executing time of the algorithm is approx. 10-20 

seconds per run and data instance on a Pentium 4 PC. 
N.B.: These fixed parameters are not necessarily the 
best for each instance. At this stage, there are based on 
our experience and intuition. We have kept them the 
same for consistency at this stage. When computing the 
mean a censored cost value of 255 has been used when 
an algorithm failed to find a feasible solution (N/A). 

5.2 Analysis of Results 
First, let us discuss the results in Table 1. Comparing the 
computational results on various test instances , one can 
see that using the random rule alone does not yield a 
single feasible solution. This underlines the difficulty of 
this problem. In addition, without learning the conditional 
probabilities, the results are much weaker, as the CP 
column shows. Thus, it is not simply enough to use the 
four rules to build solutions. Overall, the Bayesian results 
found rival those found by the complex multi-population 
GA. For some data instances, the results are much better. 
Particular impressive is the fact that in 100% of cases a 
feasible solution is found. Note that independent of the 
algorithm used, some data instances are harder to solve 
than others due to a shortage of nurses in some weeks. 
 

Set IP GA Rd CP Op Inf # <3 
01 8 8 N/A 27 8 0 19 20 
02 49 50 N/A 85 56 0 0 0 
03 50 50 N/A 97 50 0 2 5 
04 17 17 N/A 23 17 0 20 20 
05 11 11 N/A 51 11 0 8 16 
06 2 2 N/A 51 2 0 17 17 
07 11 11 N/A 80 14 0 0 3 
08 14 15 N/A 62 15 0 0 11 
09 3 3 N/A 44 14 0 0 0 
10 2 4 N/A 12 2 0 2 10 
11 2 2 N/A 12 2 0 2 20 
12 2 2 N/A 47 3 0 0 2 
13 2 2 N/A 17 3 0 0 20 
14 3 3 N/A 102 4 0 0 7 
15 3 3 N/A 9 4 0 0 20 
16 37 38 N/A 55 38 0 0 20 
17 9 9 N/A 146 9 0 4 11 
18 18 19 N/A 73 19 0 0 20 
19 1 1 N/A 135 10 0 0 0 
20 7 8 N/A 53 7 0 5 19 
21 0 0 N/A 19 1 0 0 20 
22 25 26 N/A 56 26 0 0 15 
23 0 0 N/A 119 1 0 0 20 
24 1 1 N/A 4 1 0 20 20 
25 0 0 N/A 3 0 0 18 20 
26 48 48 N/A 222 52 0 0 1 



27 2 2 N/A 158 28 0 0 0 
28 63 63 N/A 88 65 0 0 3 
29 15 141 N/A 31 109 0 0 0 
30 35 42 N/A 180 38 0 0 3 
31 62 166 N/A 253 159 0 0 0 
32 40 99 N/A 102 43 0 0 4 
33 10 10 N/A 30 11 0 0 8 
34 38 48 N/A 95 41 0 0 2 
35 35 35 N/A 118 46 0 0 0 
36 32 41 N/A 130 45 0 0 0 
37 5 5 N/A 28 7 0 0 7 
38 13 14 N/A 130 25 0 0 0 
39 5 5 N/A 44 8 0 0 3 
40 7 8 N/A 51 8 0 0 10 
41 54 54 N/A 87 55 0 0 15 
42 38 38 N/A 188 41 0 0 1 
43 22 39 N/A 86 23 0 0 13 
44 19 19 N/A 70 24 0 0 0 
45 3 3 N/A 34 6 0 0 2 
46 3 3 N/A 196 7 0 0 0 
47 3 4 N/A 11 3 0 13 20 
48 4 6 N/A 35 5 0 0 10 
49 27 30 N/A 69 30 0 0 2 
50 107 211 N/A 162 109 0 0 0 
51 74 N/A N/A 197 171 0 0 0 
52 58 N/A N/A 135 67 0 0 0 
Av. 21 37 N/A 83 30 0 3 9 
Table 1: Comparison of results over 52 instances. 
 

Figures 2 and 3 show the results graphically. The bars 
above the y-axis represent solution quality. The black bars 
show the number of optimal, the grey near-optimal 
(within three units) solutions. The bars below the y-axis 
represent the number of times the algorithm failed to find 
a feasible solution. Hence, the shorter the bar is below the 
y-axis and the longer above, the better the algorithm’s 
performance. Note that ‘empty’ bars mean that feasible, 
but not optimal solutions were found. 
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Figure 2: The Bayesian optimisation algorithm. 

Figure 2 shows that for the Bayesian algorithm 38 out 
of 52 data sets are solved to or near to optimality. 
Additionally, feasible solutions are always found for all 
data sets  and hence nothing is plotted below the x-axis . 

For the GA in figure 3 the results are similar: 42 data 
sets are solved well, however many solutions are 
infeasible and for two instances not a single feasible 
solution had been identified. Both algorithms have 
difficulties solving the later data sets (nurse shortages), 
but BOA less so than the GA. 

Adaptive Multi-Population GA
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Figure 3: The Genetic Algorithm. 

The behaviour of an individual run of the Bayesian 
algorithm is as expected. Figure 4 depicts the 
improvement of the schedule for the 04 data instance. At 
the generation of 57, the optimal solution cost 17 has been 
achieved. Although the actual values may differ among 
various instances, the characteristic shapes of the curves 
are similar for all seeds and data instances . 

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80

Generation

Cost

 

Figure 4: Sample run of the Bayesian algorithm. 

Finally, Figure 5 compares performance of different 
GAs (Aickelin and Dowsland, 2000 and 2003) with the 
(Basic) Bayesian optimization algorithm presented here. 
The results are encouraging: with a fraction of the 
development time and simpler algorithm, the complex 
genetic algorithms are outperformed in terms of 
feasibility, best and average results. 

Only the Hill-climbing GA, which includes an 
additional local search, has a better ‘best case’ 
performance. We believe that once this feature is added 
into the Bayesian optimization algorithm, we will see the 
best possible results. Our plan is to implement a post-
processor that is similar to a human scheduler who 
‘improves’ a finished schedule. 



0
10
20
30
40
50
60
70
80
90

100

Basic
GA

Adapt
GA

Multipop
GA

Hillclimb
GA

Basic
BOA

Optimal
IP

Type of Optimisation Algorithm

F
ea

si
bi

lit
y 

/ S
ol

ut
io

n 
C

os
t  

Feasibility Average Best

 

Figure 5: Summary results of various algorithms. 

6 Conclusions  

A new scheduling algorithm based on Bayesian networks 
is presented in this paper. The approach is novel because 
it is the first time that Bayesian networks have been 
applied to the field of personnel scheduling. An effective 
method is proposed to solve the problem about how to 
implement explicit learning from past solutions. Unlike 
most existing approaches, the new approach has the 
ability to build schedules by using flexible, rather than 
fixed rules. Experimental results from real-world nurse 
scheduling problems have demonstrated the strength of 
the proposed Bayesian optimization algorithm. 

The proposed approach mimics human behaviour 
much more strongly than a standard GA based scheduling 
system. Although we have presented this work in terms of 
nurse scheduling, it is suggested that the main idea of the 
approach could be applied to many other scheduling 
problems where the schedules will be built systematically  
according to specific rules. 

It is also hoped that this research will give some 
preliminary answers about how to include human-like 
learning into scheduling algorithms and may therefore be 
of interest to practitioners and researchers in areas of 
scheduling and evolutionary computation. In future, we 
will try to extract the ‘explicit’ part of the learning process 
further, e.g. by keeping partial solutions and learnt rules 
from one data instances  to the next. 
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