
A Bayesian Optimization Algorithm for the Nurse Scheduling Problem

Proceedings of 2003 Congress on Evolutionary Computation (CEC2003), pp. 2149-2156, IEEE Press, Canberra, Australia, 2003.

Jingpeng Li
School of Computer Science

University of Nottingham
NG8 1BB UK

jpl@cs.nott.ac.uk

Uwe Aickelin
School of Computer Science

University of Nottingham
NG8 1BB UK

uxa@cs.nott.ac.uk

Abstract- A Bayesian optimization algorithm for the
nurse scheduling problem is presented, which involves
choosing a suitable scheduling rule from a set for each
nurse’s assignment. Unlike our previous work that
used GAs to implement implicit learning, the learning
in the proposed algorithm is explicit, i.e. eventually, we
will be able to identify and mix building blocks
directly. The Bayesian optimization algorithm is
applied to implement such explicit learning by
building a Bayesian network of the joint distribution
of solutions. The conditional probability of each
variable in the network is computed according to an
initial set of promising solutions. Subsequently, each
new instance for each variable is generated by using
the corresponding conditional probabilities, until all
variables have been generated, i.e. in our case, a new
rule string has been obtained. Another set of rule
strings will be generated in this way, some of which
will replace previous strings based on fitness selection.
If stopping conditions are not met, the conditional
probabilities for all nodes in the Bayesian network are
updated again using the current set of promising rule
strings. Computational results from 52 real data
instances demonstrate the success of this approach. It
is also suggested that the learning mechanism in the
proposed approach might be suitable for other
scheduling problems.

1 Introduction

Scheduling problems are generally NP-hard combinatorial
problems, and a lot of research has been done to solve
these problems heuristically (Aickelin and Dowsland,
2002 and 2003; Li and Kwan, 2001a and 2003). However,
most previous approaches are problem-specific and
research into the development of a general scheduling
algorithm is still in its infancy.

Genetic Algorithms (GAs) (Holland 1975; Goldberg
1989), mimicking the natural evolutionary process of the
survival of the fittest, have attracted much attention in
solving difficult scheduling problems in recent years.
Some obstacles exist when using GAs: there is no
canonical mechanism to deal with constraints, which are
commonly met in most real-world scheduling problems,
and small changes to a solution are difficult. To overcome
both difficulties, indirect approaches have been presented

(Aickelin and Dowsland, 2003; Li and Kwan, 2001b and
2003) for nurse and driver scheduling. In these indirect
GAs, the solution space is mapped and then a separate
decoding routine builds solutions to the original problem.

In our previous indirect GAs, learning was implicit
(‘black-box’) and restricted to the efficient adjustment of
weights for a set of rules that are used to construct
schedules. The major limitation of those approaches is
that they learn in a non-human way. Like most existing
construction algorithms, once the best weight combination
is found, the rules used in the construction process are
fixed at each iteration. However, normally a long
sequence of moves is needed to construct a schedule and
using fixed rules at each move is thus unreasonable and
not coherent with the human learning processes.

When a human scheduler works, he normally builds a
schedule systematically following a set of rules. After
much practice, the scheduler gradually masters the
knowledge of which solution parts go well with others. He
can identify good parts and is aware of the solution
quality even if the scheduling process is not completed
yet, thus having the ability to finish a schedule by using
flexible, rather than fixed, rules. In this paper, we design a
more human-like scheduling algorithm, by using a
Bayesian optimization algorithm to implement explicit
learning from past solutions. A nurse scheduling problem
with 52 real data instances gathered from a UK hospital is
used as the test problem.

Nurse scheduling has been widely studied in recent
years, and an extensive summary of the approaches can be
found in Hung (1995) and Sitompul and Randhawa
(1990). This problem is highly constrained, making it
extremely difficult for most local search algorithms to
find feasible solutions, let alone optimal ones. In our
nurse scheduling problem, the number of the nurses is
fixed (up to 30), and the target is to create a weekly
schedule by assigning each nurse one out of up to 411
shift patterns in the most efficient way. The proposed
Bayesian approach achieves this by choosing a suitable
rule, from a rule set containing a number of available
rules, for each nurse. A potential solution is therefore
represented as a rule string, or a sequence of rules
corresponding to nurses from the first one to the last.

As a model of the selected strings, a Bayesian network
(Pearl 1998) is used in the proposed Bayesian
optimization algorithm to solve the nurse scheduling
problem. A Bayesian network is a directed acyclic graph

with each node corresponding to one variable, and each
variable corresponding to the individual rule by which a
schedule will be constructed step by step. The causal
relationship between two variables is represented by a
directed edge between the two corresponding nodes.

The Bayesian optimization algorithm is applied to
learn to identify good partial solutions and to complete
them by building a Bayesian network of the joint
distribution of solutions (Pelikan et al, 1999; Pelikan and
Goldberg, 2000). The conditional probabilities are
computed according to an initial set of promising
solutions. Subsequently, each new instance for each node
is generated by using the corresponding conditional
probabilities, until values for all nodes have been
generated, i.e. a new rule string has been generated.

 Another set of rule strings will be generated in the
same way, some of which will replace previous strings
based on roulette-wheel fitness selection. If stopping
conditions are not met, the conditional probabilities for all
nodes in the Bayesian network are updated again using
the current set of rule strings. The algorithm thereby tries
to explicitly identify and mix promising building blocks.

It should be noted that for most scheduling problems,
the structure of the network model is known and all
variables are fully observed. In this case, the goal of
learning is to find the rule values that maximize the
likelihood of the training data. Thus, learning can amount
to ‘counting’ in the case of multinomial distributions.

The rest of this paper is organized as follows. Section 2
gives an overview on the nurse scheduling problem, and
the following section 3 introduces the general concepts
about graphical models and Bayesian networks. Section 4
discuses the proposed Bayesian optimization algorithm,
describing the construction of a Bayesian network,
learning based on the Bayesian network, and the four
building rules in detail. Computational results using 52
data instances gathered from a UK hospital are presented
in section 5. Concluding remarks are in section 6.

2 The Nurse Scheduling Problem

2.1 General Problem
Our nurse scheduling problem is to create weekly
schedules for wards of nurses by assigning one of a
number of possible shift patterns to each nurse. These
schedules have to satisfy working contracts and meet the
demand for a given number of nurses of different grades
on each shift, while being seen to be fair by the staff
concerned. The latter objective is achieved by meeting as
many of the nurses’ requests as possible and considering
historical information to ensure that unsatisfied requests
and unpopular shifts are evenly distributed.

The problem is complicated by the fact that higher
qualified nurses can substitute less qualified nurses but
not vice versa. Thus scheduling the different grades
independently is not possible. Furthermore, the problem
has a special day-night structure as most of the nurses are
contracted to work either days or nights in one week but
not both. However due to working contracts, the number

of days worked is not usually the same as the number of
nights. Therefore, it becomes important to schedule the
‘correct’ nurses onto days and nights respectively. The
latter two characteristics make this problem challenging
for any local search algorithm, because finding and
maintaining feasible solutions is extremely difficult.

The numbers of days or nights to be worked by each
nurse defines the set of feasible weekly work patterns for
that nurse. These will be referred to as shift patterns or
shift pattern vectors in the following. For each nurse i and
each shift pattern j all the information concerning the
desirability of the pattern for this nurse is captured in a
single numeric preference cost pij. These costs were
determined in close consultation with the hospital and are
a weighted sum of the following factors: basic shift-
pattern cost, general day/night preferences, specific
requests, continuity problems, number of successive
working day, rotating nights/weekends and other working
history information. Patterns that violate mandatory
contractual requirements are marked as infeasible for a
particular nurse and week by giving them a suitably high
pij value.

2.2 Integer Programming
The problem can be formulated as an integer linear
program as follows.

Indices:
i = 1...n nurse index;
j = 1...m shift pattern index;
k = 1...14 day and night index (1...7 are days and 8...14
are nights);
s = 1...p grade index.

Decision variables:





=
else ,0

pattern shift works nurse 1, ji
xij

.

Parameters:
m = Number of shift patterns;
n = Number of nurses;
p = Number of grades;



=

else ,0
day/night covers pattern shift 1, kj

a jk
;



=

else ,0
higheror grade of is nurse 1, si

qis
;

pij = Preference cost of nurse i working shift pattern j;
Rks = Demand of nurses with grade s on day/night k ;
Ni = Working shifts per week of nurse i if night shifts are
worked;
Di = Working shifts per week of nurse i if day shifts are
worked;
Bi = Working shifts per week of nurse i if both day and
night shifts are worked {for special nurses};
F(i) = Set of feasible shift patterns for nurse i, where F(i)
is defined as

.,

 shifts combined ,

 shiftsnight ,

 shiftsday ,

)(

14

1

14

8

7

1

i

jBa

jNa

jDa

iF

k
ijk

i
k

jk

i
k

jk

∀





























∈∀=

∈∀=

∈∀=

=

∑

∑

∑

=

=

=
 (1)

Target function:
Minimize total preference cost of all nurses, denoted as

min!
1)(

→∑ ∑
= ∈

n

i

m

iFj
ijij xp . (2)

Subject to:
1. Every nurse works exactly one feasible shift pattern:

ix
iFj

ij ∀=∑
∈

,1
)(

; (3)

2. The demand for nurses is fulfilled for every grade on
every day and night:

∑ ∑
∈ =

∀≥
)(1

,,
iFj

n

i
ksijjkis skRxaq (4)

Constraint set (3) ensures that every nurse works

exactly one shift pattern from his/her feasible set, and
constraint set (4) ensures that the demand for nurses is
covered for every grade on every day and night. Note that
the definition of qis is such that higher graded nurses can
substitute those at lower grades if necessary.

Typical problem dimensions are 30 nurses of three
grades and 400 shift patterns. Thus, the Integer
Programming formulation has about 12000 binary
variables and 100 constraints. This is a moderately sized
problem. However, some problem cases remain unsolved
after overnight computation using professional software.

3 Graphical Models and Bayesian Networks

In this section, we introduce concepts from graphical
models in general and Bayesian networks in particular.
Section 4 will then explain how we applied these concepts
to our nurse scheduling problem.

Graphical models are graphs in which nodes represent
random variables, and the lack of edges represents
conditional independence assumptions (Edwards 2000).
They have important applications in many multivariate
probabilistic systems in fields such as statistics, systems
engineering, information theory and pattern recognition.
In particular, they are playing an increasingly imp ortant
role in the design and analysis of machine learning
algorithms.

As described by Jordon (1999), graphical models are a
marriage between probability theory and graph theory.
They provide a natural tool for dealing with uncertainty
and complexity that occur throughout applied
mathematics and engineering. In a graphical model, the
fundamental notion of modularity is used to build a
complex system by combining simpler parts. Probability

theory provides the glue to combine the parts, ensuring
that the whole system is consistent, and providing ways to
interface models to data. The graph theory provides an
intuitively appealing interface by which humans can
model highly interacting sets of variables, and a data
structure that leads itself naturally to the des ign of
general-purpose algorithms.

There are two main kinds of graphical models:
undirected and directed. Undirected graphical models are
more popular with the physics and vision communities.
Directed graphical model, also called Bayesian networks,
are more popular with the artificial intelligence and
machine learning communities. Bayesian networks are
often used to model multinomial data with both discrete
and continuous variables by encoding the relationship
between the variables contained in the modelled data,
which represents the structure of a problem.

Moreover, Bayesian networks can be used to generate
new instances of the variables with similar properties as
those of given data. Each node in the network corresponds
to one variable, and each variable corresponds to one
position in the strings representing the solutions. The
relationship between two variables is represented by a
directed edge between the two corresponding nodes.

Any complete probabilistic model of a domain must
represent the joint distribution, the probability of every
possible event as defined by the values of all the variables.
The number of such events is exponential. To achieve
compactness, Bayesian networks factor the joint
distribution into local conditional distributions for each
variable given its parents.

Mathematically, an acyclic Bayesian network encodes
a full joint probability distribution by the product

))(|(),...,(
1

1 ∏
=

=
n

i
iin XpaxPxxP

, (5)
where xi denotes some values of the variable Xi, pa(Xi)
denotes a set of values for parents of Xi in the network
(the set of nodes from which there exists an individual
edge to Xi), and P(xi | pa(Xi)) denotes the conditional
probability of Xi conditioned on variables pa(Xi). This
distribution can be used to generate new instances using
the marginal and conditional probabilities.

4 A Bayesian Optimization Algorithm for
Nurse Scheduling

This section discusses the proposed Bayesian optimization
algorithm for the nurse scheduling problem, including the
construction of a Bayesian network, learning based on the
Bayesian network and the four building rules used.

4.1 The Construction of a Bayesian Network
In our nurse scheduling problem, the number of the nurse
is fixed (up to 30), and the target is to create a weekly
schedule by assigning each nurse one shift pattern in the
most efficient way. The proposed approach achieves this
by using one suitable rule, from a rule set that contains a
number of available rules, for each nurse’s assignment.
Thus, a potential solution is represented as a rule string, or

a sequence of rules corresponding to nurses from the first
one to the last one individually.
We chose this approach, as the longer-term aim of our
research is to model the explicit learning of a human
scheduler. Human schedulers can provide high quality
solutions, but the task is tedious and often requires a large
amount of time. Typically, they construct schedules based
on rules learnt during scheduling. Due to human
limitations, these rules are typically simple. Hence, our
rules will be relatively simple, too. Nevertheless, human
generated schedules are of high quality due to the ability
of the scheduler to switch between the rules, based on the
state of the current solution. We envisage the Bayesian
optimisation algorithm to perform this role.

Figure 1: A Bayesian network for nurse scheduling

Figure 1 is the Bayesian network constructed for the

nurse scheduling problem, which is a hierarchical and
acyclic directed graph representing the solution structure
of the problem.

The node }),...,2,1{};,...,2,1{(njmiN ij ∈∈ in the network

denotes that nurse i is assigned using rule j, where m is the
number of nurses to be scheduled and n is the number of
rules to be used in the building process. The directed edge
from node Nij to node Ni+1,j’ denotes a causal relationship
of “Nij causing Ni+1,j’”. In our particular implementation,
an edge denotes a construction unit (or rule sub-string) for
nurse i where the previous rule is j and the current rule is
j’. In this network, a possible solution (a complete rule
string) is represented as a directed path from nurse 1 to
nurse m connecting m nodes.

4.2 Learning based on the Bayesian Network
According to whether the structure (topology) of the
model is known or unknown, and whether all variables are
fully observed or some of them are hidden, there are four
kinds of learning (Heckerman 1998). According to

Heckerman, the learning process for the proposed
approach belongs to the category of “known structure and
full observation,” and the learning goal is to find the
variable values of all nodes Nij that maximize the
likelihood of the training date containing T independent
cases.

In the proposed approach, learning amounts to
counting and hence we use the symbol ‘#’ meaning ‘the
number of’ in the following equations. It calculates the
conditional probabilities of each possible value for each
node given all possible values of its parents. For example,
for node Ni+1,j’ with a parent node Nij, its conditional
probability is

),(#),(#

),(#

)(

),(
)|(

,1,1

,1

,1
,1

trueNfalseNtrueNtrueN

trueNtrueN

NP

NNP
NNP

ijjiijji

ijji

ij

ijji
ijji

==+==

==
=

=

′+′+

′+

′+
′+ .(6)

Note that nodes N1j have no parents. In this

circumstance, their probabilities are computed as

T

trueN

falseNtrueN

trueN
NP j

jj

j
j

)(#

)(#)(#

)(#
)(1

11

1
1

=
=

=+=

=
= .(7)

These probability values can be used to generate new

rule strings, or new solutions. Since the first rule in a
solution has no parents, it will be chosen from nodes N1j
according to their probabilities. The next rule will be
chosen from nodes Nij according to their probabilities
conditioned on the previous nodes. This building process
is repeated until the last node has been chosen from nodes
Nmj, where m is number of the nurses. A link from nurse 1
to nurse m is thus created, representing a new possible
solution. Since all the probability values are normalized,
the roulette-wheel method is good strategy for rule
selection.

For clarity, consider the following toy example of
scheduling five nurses with two rules (1: random
allocation, 2: allocate nurse to low-cost shifts). In the
beginning of the search, the probabilities of choosing rule
1 or 2 for each nurse is equal, i.e. 50%. After a few
iterations, due to the selection pressure and reinforcement
learning, we experience two solution pathways: Because
pure low-cost or random allocation produces low quality
solutions, either rule 1 is used for the first 2-3 nurses and
rule 2 on remainder or vice versa. In essence, BOA learns
‘use rule 2 after 2-3x using rule 1’ or vice versa.

4.3 A Bayesian Optimization Algorithm
Based on the estimation of conditional probabilities, this
section introduces a Bayesian optimization algorithm for
the nurse scheduling problem. It uses techniques from the
field of modelling data by Bayesian networks to estimate
the joint distribution of promising solutions. The nodes, or
variables, in the Bayesian network correspond to the
individual rules by which a schedule will be built step by
step.

In the proposed Bayesian optimization algorithm, the
first population of rule strings is generated at random.
From the current population, a set of better rule strings is

. . .

. . .

. . .

. . .

. . .

.

N11 N12 N1,n

N21 N22 N2,n

N31 N32 N3,n

Nm-1,1 Nm-1,2 Nm-1,n

Nm,1 Nm,2
Nm,n

selected. Any selection method biased towards better
fitness can be used, and in this paper, the traditional
roulette-wheel Selection is applied. The conditional
probabilities of each node in the Bayesian network are
computed. New rule strings are generated by using these
conditional probability values, and are added into the old
population, replacing some of the old rule strings. In more
detail, the steps of the Bayesian optimization algorithm
for nurse scheduling are:

1. Set t = 0, and generate an initial population P(0) at
random;

2. Use roulette-wheel to select a set of promising
rule strings S(t) from P(t);

3. Compute the conditional probabilities of each
node according to this set of promising solutions ;

4. For the assignment of each nurse, the roulette-
wheel method is used to select one rule according
to the conditional probabilities of all available
nodes, thus obtaining a new rule string. A set of
new rule strings O(t) will be generated in this
way;

5. Create a new population P(t+1) by replacing some
rule strings from P(t) with O(t), and set t = t+1;

6. If the termination conditions are not met (we use
2000 generations), go to step 2.

4.4 Four Building Rules
Similar to the working pattern of a human scheduler, the
proposed schedule-constructing process uses a set of rules
to build a schedule step by step. As far as the domain
knowledge of nurse scheduling is concerned, the
following four ru les are currently investigated.

4.4.1 Random Rule
The first rule, called ‘Random’ rule, is used to select a
nurse’s shift pattern at random. Its purpose is to introduce
randomn ess into the search thus enlarging the search
space, and most importantly to ensure that the proposed
algorithm has the ability to escape from local optimum.
This rule mirrors much of a scheduler’s creativeness to
come up with different solutions if required.
4.4.2 k-Cheapest Rule
The second rule is the ‘k-Cheapest’ rule. Disregarding the
feasibility of the schedule, it randomly selects a shift
pattern from a k-length list containing patterns with k-
cheapest cost pij, in an effort to reduce the total cost of a
schedule as more as possible.
4.4.3 Cover Rule
Compared with the first two rules, the ‘Cover’ rule and
last 'Contribution’ rule are relatively more complicated.
The third ‘Cover’ rule is designed to consider only the
feasibility of the schedule. It schedules one nurse at a time
in such a way as to cover those days and nights with the
highest number of uncovered shifts.

The ‘Cover’ rule constructs solutions as follows. For
each shift pattern in a nurse’s feasible set, calculate the
total number of uncovered shifts and would be covered if
the nurse worked that shift pattern. For simplicity, this
calculation does not take into account how many nurses
are still required in a particular shift. For instance, assume
that a shift pattern covers Monday to Friday nights.

Further assume that the current requirements for the
nights from Monday to Sunday are as follows: (-3, 0, +1, -
2, -1, -2, 0), where a negative number means undercover
and a positive over cover. The Monday to Friday shift
pattern hence has a cover value of 3, as the most negative
value it covers is -3. In this example, a Tuesday to
Saturday pattern would have a value of 2.

In order to ensure that high-grade nurses are not
‘wasted’ covering unnecessarily for nurses of lower
grades, for nurses of grade s, only the shifts requiring
grade s nurses are counted as long as there is a single
uncovered shift for this grade. If all these are covered,
shifts of the next lower grade are considered and once
these are filled those of the next lower grade. Due to the
nature of this approach, nurses’ preference costs pij are not
taken into account by this rule. However, they will
influence decisions indirectly via the fitness function.
Hence, the ‘Cover’ rule can be summarised as finding
those shift patterns with corresponding largest amount of
undercover.
4.4.4 Contribution Rule
The fourth rule, called ‘Contribution’ rule, is biased
towards solution quality but includes some aspects of
feasibility by computing an overall score for each feasible
pattern for the nurse currently being scheduled.

The ‘Contribution’ rule is designed to take into account
the nurses’ preferences. It therefore works with shift
patterns rather than individual shifts. It also takes into
account some of the covering constraints in which it gives
preference to patterns that cover shifts that have not yet
been allocated sufficient nurses to meet their total
requirements. This is achieved by going through the entire
set of feasible shift patterns for a nurse and assigning each
one a score. The one with the highest (i.e. best) score is
chosen. If there is more than one shift pattern with the
best score, the first such shift pattern is chosen.

The score of a shift pattern is calculated as the
weighted sum of the nurse’s pij value for that particular
shift pattern and its contribution to the cover of all three
grades. The latter is measured as a weighted sum of grade
one, two and three uncovered shifts that would be covered
if the nurse worked this shift pattern, i.e. the reduction in
shortfall. Obviously, nurses can only contribute to
uncovered demand of their own grade or below. More
precisely and using the same notation as before, the score
pij of shift pattern j for nurse i is calculated with the
following parameters:

• dks = 1 if there are still nurses needed on day k of
grade s otherwise dks = 0;

• ajk = 1 if shift pattern j covers day k otherwise ajk = 0;
• ws is the weight of covering an uncovered shift of

grade s;
• wp is the weight of the nurse’s pij value for the shift

pattern.
Finally, (100- pij) must be used in the score, as higher pij
values are worse and the maximum for pij is 100. Note
that (- wppij) could also have been used, but would have
led to some scores being negative. Thus, the scores are
calculated as follows:

∑ ∑
= =

+−=
3

1

14

1

)()100(
s k

ksjkissijpij daqwpws
 (8)

The ‘Contribution’ rule can be summarised as follows:
• Cycle through all shift patterns of a nurse;
• Assign each one a score based on covering uncovered

shifts and preference cost;
• Choose the shift pattern with the highest score.

4.5 Fitness Function
Independent of the rules used, the fitness of completed
solutions has to be calculated. Unfortunately, feasibility
cannot be guaranteed. This is a problem-specific issue and
cannot be changed. Therefore, we still need a penalty
function approach. Since the chosen encoding
automatically satisfies constraint set (3) of the integer
programming formulation, we can use the following
formula, where wdemand is the penalty weight, to calculate
the fitness of solutions. Note that the penalty is
proportional to the number of uncovered shifts.

min!0;max
14

1 1 1 11 1

→







−+ ∑∑ ∑∑∑∑

= = = == = k

p

s

n

i

m

j
ijjkisksdemand

n

i

m

j
ijij xaqRwxp

.(9)

5 Computational Results

In this section, we present the results of extensive
computer experiments and compare them to results of the
same data instances found previously by other algorithms.
Table 1 lists the full and detailed computational results of
20 runs with different random seeds, where N/A indicates
no feasible solution was found. Figures 2 summarises this
information, Figure 3 shows a single typical run and
finally Figure 4 gives an overall comparison between
various algorithms.

5.1 Details of Algorithms
The results listed in Table 1 are always based on 20 runs
with different random seeds and the last row contains the
mean value of all columns:

• IP: Optimal or best-known solutions found with IP
software (Dowsland and Thompson, 2000);

• GA: Best result out of 20 runs from a parallel genetic
algorithm with multiple sub-populations and
intelligent parameter adaptation (Aickelin and
Dowsland, 2000);

• Rd: Bayesian optimization, but only the random rule
is used, i.e. equivalent to random search;

• CP: Bayesian optimisation, where all four rules are
used (see 4.4), but no conditional probability are
computed, i.e. every rule has a 25% probability of
being chosen all the time for all nurses;

• Op: Best result out of 20 runs of standard Bayesian
optimization, i.e. four rules and conditional
probabilities are used as described in section 4.1-4.4;

• Inf: Number of runs terminating with the best
solution being infeasible;

• #: Number of runs terminating with the best solution
being optimal or equal to the best known;

• <3: Number of runs terminating with the best solution
being within three cost units of the optimum. The
value of three units was chosen as it corresponds to
the penalty cost of violating the least important level
of requests in the original formulation. Thus, these
solutions are still acceptable to the hospital.

For all data instances, the Bayesian optimisation
algorithm used a set of fixed parameters as follows:

• Maximum number of generations = 2000;
• Penalty weight for each uncovered unit : wdemand =200;
• For the ‘k-Cheapest’ rule, k = 5;
• Weight set for the ‘Contribution’ rule: w ={8,2,1,1};
• Population size = 140;
• Keep the best 40 solution in each generation;
• The executing time of the algorithm is approx. 10-20

seconds per run and data instance on a Pentium 4 PC.
N.B.: These fixed parameters are not necessarily the
best for each instance. At this stage, there are based on
our experience and intuition. We have kept them the
same for consistency at this stage. When computing the
mean a censored cost value of 255 has been used when
an algorithm failed to find a feasible solution (N/A).

5.2 Analysis of Results
First, let us discuss the results in Table 1. Comparing the
computational results on various test instances , one can
see that using the random rule alone does not yield a
single feasible solution. This underlines the difficulty of
this problem. In addition, without learning the conditional
probabilities, the results are much weaker, as the CP
column shows. Thus, it is not simply enough to use the
four rules to build solutions. Overall, the Bayesian results
found rival those found by the complex multi-population
GA. For some data instances, the results are much better.
Particular impressive is the fact that in 100% of cases a
feasible solution is found. Note that independent of the
algorithm used, some data instances are harder to solve
than others due to a shortage of nurses in some weeks.

Set IP GA Rd CP Op Inf # <3
01 8 8 N/A 27 8 0 19 20
02 49 50 N/A 85 56 0 0 0
03 50 50 N/A 97 50 0 2 5
04 17 17 N/A 23 17 0 20 20
05 11 11 N/A 51 11 0 8 16
06 2 2 N/A 51 2 0 17 17
07 11 11 N/A 80 14 0 0 3
08 14 15 N/A 62 15 0 0 11
09 3 3 N/A 44 14 0 0 0
10 2 4 N/A 12 2 0 2 10
11 2 2 N/A 12 2 0 2 20
12 2 2 N/A 47 3 0 0 2
13 2 2 N/A 17 3 0 0 20
14 3 3 N/A 102 4 0 0 7
15 3 3 N/A 9 4 0 0 20
16 37 38 N/A 55 38 0 0 20
17 9 9 N/A 146 9 0 4 11
18 18 19 N/A 73 19 0 0 20
19 1 1 N/A 135 10 0 0 0
20 7 8 N/A 53 7 0 5 19
21 0 0 N/A 19 1 0 0 20
22 25 26 N/A 56 26 0 0 15
23 0 0 N/A 119 1 0 0 20
24 1 1 N/A 4 1 0 20 20
25 0 0 N/A 3 0 0 18 20
26 48 48 N/A 222 52 0 0 1

27 2 2 N/A 158 28 0 0 0
28 63 63 N/A 88 65 0 0 3
29 15 141 N/A 31 109 0 0 0
30 35 42 N/A 180 38 0 0 3
31 62 166 N/A 253 159 0 0 0
32 40 99 N/A 102 43 0 0 4
33 10 10 N/A 30 11 0 0 8
34 38 48 N/A 95 41 0 0 2
35 35 35 N/A 118 46 0 0 0
36 32 41 N/A 130 45 0 0 0
37 5 5 N/A 28 7 0 0 7
38 13 14 N/A 130 25 0 0 0
39 5 5 N/A 44 8 0 0 3
40 7 8 N/A 51 8 0 0 10
41 54 54 N/A 87 55 0 0 15
42 38 38 N/A 188 41 0 0 1
43 22 39 N/A 86 23 0 0 13
44 19 19 N/A 70 24 0 0 0
45 3 3 N/A 34 6 0 0 2
46 3 3 N/A 196 7 0 0 0
47 3 4 N/A 11 3 0 13 20
48 4 6 N/A 35 5 0 0 10
49 27 30 N/A 69 30 0 0 2
50 107 211 N/A 162 109 0 0 0
51 74 N/A N/A 197 171 0 0 0
52 58 N/A N/A 135 67 0 0 0
Av. 21 37 N/A 83 30 0 3 9
Table 1: Comparison of results over 52 instances.

Figures 2 and 3 show the results graphically. The bars
above the y-axis represent solution quality. The black bars
show the number of optimal, the grey near-optimal
(within three units) solutions. The bars below the y-axis
represent the number of times the algorithm failed to find
a feasible solution. Hence, the shorter the bar is below the
y-axis and the longer above, the better the algorithm’s
performance. Note that ‘empty’ bars mean that feasible,
but not optimal solutions were found.

Basic BOA

-20

-10

0

10

20

No. infeasible No. Optimal No. within 3

Figure 2: The Bayesian optimisation algorithm.

Figure 2 shows that for the Bayesian algorithm 38 out
of 52 data sets are solved to or near to optimality.
Additionally, feasible solutions are always found for all
data sets and hence nothing is plotted below the x-axis .

For the GA in figure 3 the results are similar: 42 data
sets are solved well, however many solutions are
infeasible and for two instances not a single feasible
solution had been identified. Both algorithms have
difficulties solving the later data sets (nurse shortages),
but BOA less so than the GA.

Adaptive Multi-Population GA

-20

-10

0

10

20

No. infeasible No. Optimal No. within 3

Figure 3: The Genetic Algorithm.

The behaviour of an individual run of the Bayesian
algorithm is as expected. Figure 4 depicts the
improvement of the schedule for the 04 data instance. At
the generation of 57, the optimal solution cost 17 has been
achieved. Although the actual values may differ among
various instances, the characteristic shapes of the curves
are similar for all seeds and data instances .

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80

Generation

Cost

Figure 4: Sample run of the Bayesian algorithm.

Finally, Figure 5 compares performance of different
GAs (Aickelin and Dowsland, 2000 and 2003) with the
(Basic) Bayesian optimization algorithm presented here.
The results are encouraging: with a fraction of the
development time and simpler algorithm, the complex
genetic algorithms are outperformed in terms of
feasibility, best and average results.

Only the Hill-climbing GA, which includes an
additional local search, has a better ‘best case’
performance. We believe that once this feature is added
into the Bayesian optimization algorithm, we will see the
best possible results. Our plan is to implement a post-
processor that is similar to a human scheduler who
‘improves’ a finished schedule.

0
10
20
30
40
50
60
70
80
90

100

Basic
GA

Adapt
GA

Multipop
GA

Hillclimb
GA

Basic
BOA

Optimal
IP

Type of Optimisation Algorithm

F
ea

si
bi

lit
y

/ S
ol

ut
io

n
C

os
t

Feasibility Average Best

Figure 5: Summary results of various algorithms.

6 Conclusions

A new scheduling algorithm based on Bayesian networks
is presented in this paper. The approach is novel because
it is the first time that Bayesian networks have been
applied to the field of personnel scheduling. An effective
method is proposed to solve the problem about how to
implement explicit learning from past solutions. Unlike
most existing approaches, the new approach has the
ability to build schedules by using flexible, rather than
fixed rules. Experimental results from real-world nurse
scheduling problems have demonstrated the strength of
the proposed Bayesian optimization algorithm.

The proposed approach mimics human behaviour
much more strongly than a standard GA based scheduling
system. Although we have presented this work in terms of
nurse scheduling, it is suggested that the main idea of the
approach could be applied to many other scheduling
problems where the schedules will be built systematically
according to specific rules.

It is also hoped that this research will give some
preliminary answers about how to include human-like
learning into scheduling algorithms and may therefore be
of interest to practitioners and researchers in areas of
scheduling and evolutionary computation. In future, we
will try to extract the ‘explicit’ part of the learning process
further, e.g. by keeping partial solutions and learnt rules
from one data instances to the next.

Acknowledgements

The work was funded by the UK Govern ment’s major
funding agency, Engineering and Physical Sciences
Research Council (EPSRC), under grand GR/R92899/01.

References

Aickelin, U. and Dowsland, K. (2000) "Exploiting Problem
Structure in a Genetic Algorithm Approach to a Nurse
Rostering Problem," Journal of Scheduling 3(3): 139-153.

Aickelin, U. and Dowsland, K. (2002) "Enhanced Direct and
Indirect Genetic Algorithm Approaches for a Mall Layout
and Tenant Selection Problem," Journal of Heuristics 8(5):
503-514.

Aickelin, U. and Dowsland, K. (2003) “An Indirect Genetic
Algorithm for a Nurse Scheduling Problem,” Computers &
Operations Research (in print).

Dowsland, K.A. and Thompson, J.M. (2000) “Nurse Scheduling
with Knapsacks, Networks and Tabu Search,” Journal of
Operational Research Society: 825-833.

Edwards, D. (2000) "Introduction to Graphical Modelling," (2nd
Ed.) Springer-Verlag.

Goldberg, D.E. (1989) “Genetic Algorithms in Search,
Optimization and Machine Leaning,” Addison-Wesley.

Heckerman, D. (1998) “A Tutorial on Learning with Bayesian
Networks,” In Jordan, M. (Ed.), Learning in Graphical
Models, MIT Press.

Holland, J.H. (1975) “Adaptation in Natural and Artificial
Systems: an Introductory Analysis with Applications to
Biology, Control, and Artificial Intelligence,” University of
Michigan Press.

Hung, R. (1995) “Hospital Nurse Scheduling,” Journal of Nurse
Administration 1: 21-23.

Jordan, M.I. (Ed.) (1999) “Learning in Graphical Models,” MIT
Press.

Li, J. and Kwan, R.S.K. (2001a) "A Fuzzy Simulated Evolution
Algorithm for the Driver Scheduling Problem," in
Proceedings of Congress on Evolutionary Computation
(CEC2001), pp. 1115-1122, IEEE Press.

Li, J. and Kwan, R.S.K. (2001b) “A Fuzzy Theory Based
Evolutionary Approach for Driver Scheduling,” in Spector,
L. et al. (Eds.), Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO2001), pp. 1152-1158,
Morgan Kaufmann Publishers.

Li, J. and Kwan, R.S.K. (2003) “A Fuzzy Genetic Algorithm for
Driver Scheduling,” European Journal of Operational
Research 147(2): 334-344.

Pearl, J. (1988) “Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference,” Morgan Kaufmann.

Pelikan, M. and Goldberg, D. (2000) “Research on the Bayesian
Optimization Algorithms,” IlliGAL Report No 200010,
University of Illinois.

Pelikan, M., Goldberg, D. and Cantu-Paz, E. (1999) “BOA: The
Bayesian Optimization Algorithm,” IlliGAL Report No
99003, University of Illinois.

Sitompul, D. and Randhawa, S. (1990) “Nurse Scheduling
Models: A State-of-the-art Review,” Journal of the Society of
Health System 2: 62-67.

