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Abstract-The immune system is a complex biological system 
with a highly distributed, adaptive and self-organising nature. 
This paper presents an artificial immune system (AIS) that 
exploits some of these characteristics and is applied to the task 
of film recommendation by collaborative filtering (CF). Natural 
evolution and in particular the immune system have not been 
designed for classical optimisation. However, for this problem, 
we are not intereste d in finding a single optimum. Rather we 
intend to identify a sub-set of good matches on which 
recommendations can be based. It is our hypothesis that an AIS 
built on two central aspects of the biological immune system will 
be an ideal candidate to achieve  this: Antigen - antibody 
interaction for matching and antibody - antibody interaction for 
diversity. Computational results are presented in support of this 
conjecture and compared to those found by other CF 
techniques. 
 
I. INTRODUCTION 
 
 Over the last few years, a novel computational intelligence 
technique, inspired by biology, has emerged: the artificial 
immune system (AIS). This section introduces the AIS and 
shows how it can be used for solving computational 
problems. In essence, the immune system is used here as 
inspiration to create an unsupervised machine-learning 
algorithm. The immune system metaphor will be explored, 
involving a brief overview of the basic immunological 
theories that are relevant to our work. We also introduce the 
basic concepts of collaborative filtering (CF). 
 
Overview of the Immune System 
 A detailed overview of the immune system can be found in 
many textbooks [14]. Briefly, the purpose of the immune 
system is to protect the body against infection and includes a 
set of mechanisms collectively termed humoral immunity. 
This refers to a population of circulating white blood cells 
called B-lymphocytes, and the antibodies they create. 
 The features that are particularly relevant to our research 
are matching, diversity and distributed control. Matching 
refers to the binding between antibodies and antigens. 
Diversity refers to the fact that, in order to achieve optimal 
antigen space coverage, antibody diversity must be 
encouraged [11]. Distributed control means that there is no 
central controller, rather, the immune system is governed by 
local interactions between cells and antibodies. 
 The idiotypic network hypothesis [13] (disputed by some 
immunologists) builds on the recognition that antibodies can 
match other antibodies as well as antigens. Hence, an 
antibody may be matched by other antibodies, which in turn 
may be matched by yet other antibodies. This activation can 

continue to spread through the population and potentially has 
much explanatory power. The idiotypic network has been 
formalised by a number of theoretical immunologists [15]. 
 There are many more features of the immune system, 
including adaptation, immunological memory and protection 
against auto-immune attack. Since these are not directly 
relevant to this work, they will not be reviewed here. 
 
Overview of Collaborative Filtering 
 In this paper, we are using an AIS as a CF technique. CF is 
the term for a broad range of algorithms that use similarity 
measures to obtain recommendations. The best-known 
example is probably the “people who bought this also 
bought” feature of the internet company Amazon [2]. 
However, any problem domain where users are required to 
rate items is amenable to CF techniques. Commercial 
applications are usually called recommender systems [16]. A 
canonical example is movie recommendation. 
 In traditional CF, the items to be recommended are treated 
as ‘black boxes’. That is, your recommendations are based 
purely on the votes of your neighbours, and not on the 
content of the item. The preferences of a user, usually a set of 
votes on an item, comprise a user profile, and these profiles 
are compared to build a neighbourhood. The key decisions to 
be made are: 
 Data encoding: Perhaps the most obvious representation 
for a user profile is a string of numbers, where the length is 
the number of items, and the position is the item identifier. 
Each number represents the 'vote' for an item. Votes are 
sometimes binary (e.g. did you visit this web page?) but can 
also be integers in a range (say [0,5]) or rational numbers. 
 Similarity Measure: The most common method to compare 
two users is a correlation-based measure like Pearson or 
Spearman, which gives two neighbours a matching score 
between -1 and 1. Vector based, e.g. cosine of the angle 
between vectors, and probabilistic methods are alternative 
approaches. 
 The canonical example is the k Nearest Neighbour 
algorithm, which uses a matching method to select k 
reviewers with high similarity measures. The votes from 
these reviewers, suitably weighted, are used to make 
predictions and recommendations. 
 Many improvements on this method are possible [10] . For 
example, the user profiles are usually extremely sparse 
because many items are not rated. This means that similarity 
measurements are both inefficient (the so-called ‘curse of 
dimensionality’) and difficult to calculate due to the small 
overlap. Default votes are sometimes used for items a user 



has not explicitly voted on, and these can increase the overlap 
size [4]. Dimensionality reduction methods, such as Single 
Value Decomposition, both improve efficiency and increase 
overlap [3]. Other pre -processing methods are often used, e.g. 
clustering [1]. Content-based information can be used to 
enhance the pure CF approach [10], [6]. Finally, the 
weighting of each neighbour can be adjusted by training, and 
there are many learning algorithms available for this [7]. All 
these improvements could in principle be applied to our AIS 
but in the interests of a clear and uncluttered comparison we 
have kept the CF algorithm as simple as possible. 
 The evaluation of a CF algorithm usually centres on its 
accuracy. There is a difference between prediction (given a 
movie, predict a given user’s rating of that movie) and 
recommendation (given a user, suggest movies that are likely 
to attract a high rating). Prediction is easier to assess 
quantitatively but recommendation is a more natural fit to the 
movie domain. We present results evaluating both these 
behaviours. 
 
Using an AIS for Collaborative Filtering 
 To us, the attraction of the immune system is this: if an 
adaptive pool of antibodies can produce 'intelligent' 
behaviour, can we harness the power of this computation to 
tackle the problem of preference matching and 
recommendation? Thus, in the first instance we intend to 
build a model where known user preferences are our pool of 
antibodies and the new preferences to be matched is the 
antigen in question. 
 Our conjecture is that if the concentrations of those 
antibodies that provide a better match are allowed to increase 
over time, we should end up with a subset of good matches. 
However, we are not interested in optimising, i.e. in finding 
the one best match. Instead, we require a set of antibodies 
that are a close match but which at the same time distinct 
from each other for successful recommendation. This is 
where we propose to harness the idiotypic effects of binding 
antibodies to similar antibodies to encourage diversity. 
 The next section presents more details of our problem and 
explains the AIS model we intend to use. We then describe 
the experimental set-up and present some initial results. 
Finally we review the results and discuss some possibilities 
for future work. 
 
 
2. ALGORITHMS 
 
Application of the AIS to the EachMovie Tasks 
 The EachMovie database [5] is a public database, which 
records explicit votes of users for movies. It holds 2,811,983 
votes taken from 72,916 users on 1,628 films. The task is to 
use this data to make pre dictions and recommendations. In 
the former case, we provide an estimated vote for a 
previously unseen movie. In the latter case, we present a 
ranked list of movies that the user might like. 
 The basic approach of CF, is to use information from a 
neighbourhood to make useful predictions and 
recommendations. The central task we set ourselves is to 

identify a suitable neighbourhood. The SWAMI (Shared 
Wisdom through the Amalgamation of Many Interpretations) 
framework [9]  is a publicly accessible software for CF 
experiments. Its central algorithm is as follows: 
 
Select a set of test users randomly from the database 
FOR each test user t  
 Reserve a vote of this user, i.e. hide from predictor) 
 From remaining votes creat e a new training user t’ 
 Select neighbourhood of k reviewers based on t’ 
 Use neighbourhood to predict vote 
 Compare this with actual vote and collect statistics 
NEXT t  
 
 The code shown in italics indicates a place where SWAMI 
allows an implementation-dependent choice of algorithm. We 
use an AIS to perform selection and prediction as below. 
 
Algorithm Choices 
 We use the SWAMI data encoding: 
  { } { } { }{ }nn scoreidscoreidscoreidUser ,...,,, 2211=  

Where id corresponds to the unique identifier of the movie 
being rated and score to this user’s score for that movie. This 
captures the essential features of the data available. 
 EachMovie vote data links a person with a movie and 
assigns a score (taken from the set {0, 0.2, 0.4, 0.6, 0.8, 1.0} 
where 0 is the worst). User demographic information (e.g. 
age and gender) is provided but this is not used in our 
encoding. Content information about movies (e.g. category) 
is similarly not used. 
 
Similarity Measure 
The Pearson measure is used to compare two users u and v: 
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 Where u and v are users, n is the number of overlapping 
votes (i.e. movies for which both u and v have voted), ui is 
the vote of user u for movie i and u is the average vote of 
user u over all films (not just the overlapping votes). The 
measure is amended as follows 
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 The two default values are required because it is 
impossible to calculate a Pearson measure in such cases. Both 
were set to 0. Some experimentation showed that an overlap 
penalty P was beneficial (this lowers the absolute correlation 
for users with only a small overlap) but that the exact value 



was not critical. We choose a value of 100 because this is the 
maximum overlap expected. 
 
Neighbourhood Selection 
 For a Simple Pearson predictor, neighbourhood selection 
means simply choosing the best k (absolute) correlation 
scores, where k  is the neighbourhood size. Not every 
potential neighbour will have rated the film to be predicted. 
Reviewers who did not vote on the film are not added to the 
neighbourhood. 
 
For the AIS predictor, a more involved procedure is required: 
 
Initialise AIS 
Encode user for whom to make predictions as antigen Ag 
WHILE (AIS not stabilised) & (Reviewers available) DO 
 Add next user as an antibody Ab 
 Calculate matching scores between Ab and Ag 
 Calculate matching scores between Ab and other antibodies 
 WHILE (AIS at full size) & (AIS not stable) DO  
  Iterate AIS 
 OD 
OD 
 
 Our AIS behaves as follows: At each step (iteration) an 
antibody’s concentration is increased by an amount 
dependent on its matching to the antigen and decreased by an 
amount which depends on its matching to other antibodies. In 
absence of either, an antibody’s concentration will slowly 
decrease over time. Antibodies with a sufficiently low 
concentration are removed from the system, whereas 
antibodies with a high concentration may saturate. An AIS 
iteration is governed by the following equation: 
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 This is a slightly modified version of Farmer et al’s 
equation [8]. In particular, the first term is simplified as we 
only have one antigen, and we normalise the suppression 
term to allow a ‘like for like’ comparison between the 
different rate constants. k1 and k 2 were varied as described in 
the next section. k 3 was fixed at 0.1, while the concentration 
range was set at 0–100 (initially 10). We fixed N at 100. The 
matching function is the absolute value of the Pearson 
correlation measure. This allows us to have both positively 
and negatively correlated users in our neighbourhood, which 
increases the pool of neighbours available to us. 

 The AIS is considered stable after iterating for ten 
iterations without changing in size. Stabilisation thus means 
that a sufficient number of ‘good’ neighbours have been 
identified and therefore a prediction can be made. ‘Poor’ 
neighbours would be expected to drop out of the AIS after a 
few iterations. 
 Once the AIS has stabilised using the above algorithm, we 
use the antibody concentration to weigh the neighbours. 
However, early experiments showed that the most recently 
added antibodies were at a disadvantage compared to earlier 
antibodies. This is because they have had no time to mature 
(i.e. increase in concentration). Likewise, the earliest 
antibodies had saturated. To overcome this, we reset the 
concentrations and allow a limited run of the AIS to 
differentiate the concentrations: 
 
Reset AIS (set all antibodies to initial concentrations) 
WHILE (No antibody at maximum concentration) DO 
 Iterate AIS 
OD 
 
Prediction 
 We predict a rating pi by using a weighted average over N, 
the neighbourhood of u, which was taken as the entire AIS. 
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 Where wuv is the weight between users u and v, ruv is the 
correlation score between u and v, and xv is the concentration 
of the antibody corresponding to user v. 
 
Evaluation 
 
 Prediction Accuracy: We take the mean absolute error, 
where np is the number of predictions: 
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 Mean number of recommendations: This is the total 
number of unique films rated by the neighbours. 
 
 Mean overlap size: This is the number of recommendations 
that the user has also seen. 
 
 Mean accuracy of recommendations: Each overlapped film 
has an actual vote (from the antigen) and a predicted vote 
(from the neighbours). The overlapped films were ranked on 
both actual and predicted vote, breaking ties by movie ID. 
The two ranked lists were compared using Kendall’s Tau t. 
This measure reflects the level of concordance in the lists by 



counting the number of discordant pairs. To do this we order 
the films by vote and apply the following formulae: 
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 Where n is the overlap size and ri is the rank of film i as 
recommended by the neighbourhood. Note that i here refers 
to the antigen rank of the film, not the film ID. ND is the 
number of discordant pairs, or, equivalently, the expected 
cost of a bubble sort to reconcile the two lists. D is set to one 
if the rankings are discordant. 
 
 Mean number of reviewers. This is the number of 
reviewers looked at before the AIS stabilised. 
 
 Mean number of neighbours: This is the final number of 
neighbours in the stabilised AIS. 
 
 
3 EXPERIMENTS 
 
 Experiments were carried out on a Pentium 700 with 
256MB RAM, running Windows 2000. The AIS was coded 
in JavaTM JDK1.3. Each run involved looking at up to 15,000 
reviewers (20% of the EachMovie data set, randomly chosen) 
to provide predictions and recommendations for 100 users. 
Averaged statistics are then taken for each run. Runtimes 
ranged from 5 to 60 minutes, largely dependent on the 
number of reviewers. 
 
Experiments on Simple AIS 
 Initial experiments concentrated on a simple AIS, with no 
idiotypic effects. The goal was to find a good stimulation 
rate, but also to ensure that the ‘baseline’ system operates 
similarly to a Simple Pearson predictor (SP). Therefore, we 
set the suppression rate to zero, and varied only the 
stimulation rate, i.e. the weighting given to antigen binding. 
Other parameters had been fixed by preliminary experiments. 
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Effect of stimulation on number of users looked at 
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Figure 1: Effect of stimulation rate on neighbourhood and reviewers. 
 
 The graphs show averaged results over five runs at each 
stimulation rate. The bars show standard deviations. In order 
to have a fair comparison, the Simple Pearson parameters 
(neighbourhood and number of reviewers looked at) match 
the AIS values for each rate. In figure 2, we show the 
prediction error, number of recommendations, number of 
overlaps and recommendation accuracy for each algorithm. 
Note that low prediction error values are better, whereas for 
the other measures we are looking for high values. 
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Effect of stimulation on recommendation accuracy
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Effect of Stimulation on number of recommendations
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Effect of Stimulation on number of overlaps
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Figure 2: Effect of stimulation rate on prediction and recommendation. 
 
 It can be seen that the simple AIS gives broadly similar 
prediction performance to the Simple Pearson. The MAE 
measurements from different runs are not normally 
distributed, so a non-parametric statistic is appropriate. We 
performed a Wilcoxon analysis, which showed that the 
difference between prediction errors of SP and AIS is zero 
with 95% confidence. In addition, the choice of an 
appropriate stimulation rate did make a significant difference 
(a rate of 0.2 compared with 0.02 at the 95% level). 
 For recommendation, the AIS performs better than the SP 
at stimulation rates above 0.1. Again, we performed a 
positive 95% Wilcoxon analysis to assess significance. We 
excluded cases where a recommendation score was 
unavailable (due to an insufficient number of overlaps). The 
number of recommendations and overlaps show similar 
trends though the AIS gives a more constant value. Again, 
some stimulation was beneficial. 
 In later experiments, the stimulation rate was fixed at one 
of the better values (0.2, 0.3 or 0.5), in order to give us a 
good base to work on. These values give us generally good 
performance, while keeping a good neighbourhood size and 
still evaluating a reasonable number of reviewers. 
 
Experiments on the Idiotypic AIS 
 Having fixed all the simple parameters, we tested the effect 
of suppression for stimulation rates of 0.2, 0.3 and 0.5. Not 
surprisingly we found that suppression changed the number 
of reviewers looked at and the number of neighbours: 
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Effect of suppression on number of reviewers looked at
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Figure 3: Effect of suppression rate on neighbourhood size and reviewers. 
 
 We then tested the effect of suppression on the AIS 
performance. Here we fixed the baseline rate at stimulation 
only (no suppression), and took measurements relative to this 
baseline. Again, it should be noted that the first graph shows 
prediction error (hence, a good result is low). 
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Effect of suppression on recommendation accuracy
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Effect of suppression on number of overlaps
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Effect of suppression on number of recommendations

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

0 0.2 0.4 0.6 0.8 1

Suppression rate

N
u

m
b

er
 o

f r
ec

o
m

m
en

d
at

io
n

s 
(r

el
at

iv
e 

to
 b

as
el

in
e)

Rate 0.2

Rate 0.3

Rate 0.5

 
Figure 4: Effect of suppression rate on prediction and recommendation. 
 
 Again, the graphs show averaged results over five runs at 
each suppression rate. The bars show standard deviations 
(similar size bars for rates 0.2 and 0.5 have been omitted in 
the interests of clarity). At low levels of stimulation, 
prediction accuracy is not significantly affected. However 
recommendation accuracy is improved significantly (95% 
Wilcoxon). For instance, for 0.3 stimulation, rates from 0.05 
to 0.2 gave a significantly improved performance. In actual 
terms, the Kendall measure rises from 0.5 to nearly 0.6. This 
means that the chance of any two randomly sampled pairs 
being correctly ranked has risen from 60% to 80%. Too much 
suppression had a detrimental effect on all measures. 
 
 
4. CONCLUSIONS 
 
It is not particularly surprising that the simple AIS performs 
similarly to the SP predictor. This is because they are, at their 
core, based around the same algorithm. The stimulation rate 
(in absence of any idiotypic effect) is effectively setting a 
threshold for correlation. This has both strengths and 
weaknesses. It has been shown that a threshold is useful in 
discarding the potentially misleading predictions of poorly 
correlated reviewers [10]. On the other hand, a rigid 
threshold means that one has to ‘prejudge’ the appropriate 
level to avoid both premature convergence and empty 
communities. Indeed, detailed examination of the individual 
runs showed that the AIS had a tendency to fill its 
neighbourhood either early or not at all. The setting of a 
threshold also means that sufficiently good antibodies are 
taken on a first come, first served basis. It is interesting to 
observe that such a strategy nevertheless seems (in these 
experiments) to provide a more constant level of overlaps, 
and better recommendation quality. 
 The richness of our AIS model comes when we allow 
interactions between antibodies. Early, qualitative 
experimentation with the idiotypic network showed antibody 
concentration rising and falling dynamically as the 
population varied. For instance, in the simple AIS, the 
concentration of an antibody will monotonically increase to 
saturation, or decrease to elimination, unaffected by the other 
antibodies. However, there is a delicate balance to be struck 
between stimulation and suppression. An imbalance may lead 
to a loss in population size or diversity. The graphs show that 

a small amount of suppression may indeed be beneficial to 
AIS performance, in particular recommendation. It is 
interesting to note that the increase in recommendation 
quality occurs with a relatively constant overlap size. At too 
high levels of suppression, it is harder to fill the 
neighbourhood, with consequent lack of diversity and hence 
recommendation accuracy. 
 We believe that these initial results show two things. 
Firstly, population effects can be beneficial for CF 
algorithms, particularly for recommendation; secondly, that 
CF is a promising new application area for artificia l immune 
systems. In fact, we can widen the context, since the process 
of neighbourhood selection described in this paper can easily 
be generalized to the task of ad-hoc community formation. 
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