A Pyramidal Evolutionary Algorithm with Different Inter-Agent Partnering Strategies for Scheduling Problems

This paper combines the idea of a hierarchical distributed genetic algorithm with different inter-agent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence, higher-level sub-populations search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes amongst the agents on solution quality are examined for two multiple-choice optimisation problems. It is shown that partnering strategies that exploit problem-specific knowledge are superior and can counter inappropriate (sub-) fitness measurements.

Dr Uwe Aickelin

School of Computer Science
University of Nottingham
NG8 1BB UK
uxa@cs.nott.ac.uk
The Nurse Scheduling Problem

Objective:

• To create weekly schedules on ward basis.

• To satisfy working contracts and to have fair schedules.

• To take as many nurses’ requests into account as possible.
Decomposition:

1. Ensuring that nurses present can cover the overall demand.

2. Scheduling the days and/or nights a nurse works.

3. Splitting the day shifts into early and late shifts.

Typical Dimensions of Data:

30 nurses, 3 grade bands, 7 part time options, 411 different shift patterns, varying demand levels.
The Nurse Model

\(x_{ij} = \begin{cases}
1 & \text{1 nurse i works pattern j} \\
0 & \text{else}
\end{cases} \)

\(a_{jk} = \begin{cases}
1 & \text{pattern j covers day k} \\
0 & \text{else}
\end{cases} \)

\(q_{is} = \begin{cases}
1 & \text{1 nurse i is of grade s or higher} \\
0 & \text{else}
\end{cases} \)

\(p_{ij} = \text{penalty cost of nurse i working pattern j} \)

\(R_{ks} = \text{demand of nurses with grade s on day k} \)

\(F(i) = \text{set of feasible shift patterns for nurse i} \)

\[
\sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij} x_{ij} \rightarrow \min!
\]

\[
\sum_{j \in F(i)} x_{ij} = 1 \quad \forall i
\]

\[
\sum_{i \in F(i)} \sum_{j=1}^{m} q_{is} a_{jk} x_{ij} \geq R_{ks} \quad \forall k, s
\]
The Mall Problem
The Mall Model

Shop Income Factors:

• The attractiveness of the area in which the shop is located.
• The total number of shops of the same type in the mall.
• The size of the shop.
• Synergy effects with neighbouring shops.
Constraints:

• Maximum number of shops per shop type.
• Maximum number of small / medium / large shops.
• One shop unit per location.
Pyramidal Structure for the Nurses

Split according to grades:
Pyramidal Structure for the Mall

Split according to areas:
Partnering Strategies

• Rank-Selection (S) based on sub-fitness score

• Random (R)

• Best (B) based on sub-fitness

• Distributed (D) on a toroidal grid

• Joined (J)

• Attractiveness (A): rank-based & probabilistic depending on created fitness

• Partner Choice (C): Select Best Partner out of 10.
Nurse Scheduling Results

Basic GA:

- Some instances solved satisfactorily but many infeasible solutions.

Pyramidal GA:

- Marked improvement in performance but not yet as good as other methods.

Partnering Strategies:

- The more important the sub-fitness scores, the better they worked: R & D did poorly, A & C best
Mall Problem Results

Basic GA:

• Good results close to theoretic bounds.

Pyramidal GA:

• Far poorer results than with standard GA.

Partnering Strategies:

• All apart from B improve results.
• A & C better than standard GA.
Conclusions

• Partnering strategies improve results (crossover-hillclimber).

• Local search hillclimber still required.

• If sub-fitness measure is good, selection-based methods work well.

• If sub-fitness measure is poor then random works as well as others.

• Try Partnering strategies for obtaining sub-fitness scores?