Pallis, Monica and Burrows, Francis and Whittall, Abigail and Boddy, Nicholas and Seedhouse, Claire and Russell, Nigel (2013) Efficacy of RNA polymerase II inhibitors in targeting dormant leukaemia cells. BMC Pharmacology and Toxicology, 14 (June). 11/1-11/11. ISSN 2050-6511

Access from the University of Nottingham repository: http://eprints.nottingham.ac.uk/2459/1/claire__SEEDHOUSE--efficacy_RNA.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

This article is made available under the Creative Commons Attribution licence and may be reused according to the conditions of the licence. For more details see: http://creativecommons.org/licenses/by/2.5/

A note on versions:

The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk
Efficacy of RNA polymerase II inhibitors in targeting dormant leukaemia cells

Monica Pallis1,4*, Francis Burrows2, Abigail Whittall3, Nicholas Boddy3, Claire Seedhouse3 and Nigel Russell1,3

Abstract

Background: Dormant cells are characterised by low RNA synthesis. In contrast, cancer cells can be addicted to high RNA synthesis, including synthesis of survival molecules. We hypothesised that dormant cancer cells, already low in RNA, might be sensitive to apoptosis induced by RNA Polymerase II (RP2) inhibitors that further reduce RNA synthesis.

Methods: We cultured leukaemia cells continuously in vitro in the presence of an mTOR inhibitor to model dormancy. Apoptosis, damage, RNA content and reducing capacity were evaluated. We treated dormancy-enriched cells for 48 hours with the nucleoside analogues ara-C, 5-azacytidine and clofarabine, the topoisomerase targeting agents daunorubicin, etoposide and irinotecan and three multikinase inhibitors with activity against RP2 - flavopiridol, roscovitine and TG02, and we measured growth inhibition and apoptosis. We describe use of the parameter 2 × IC50 to measure residual cell targeting. RNA synthesis was measured with 5-ethynyl uridine. Drug-induced apoptosis was measured flow cytometrically in primary cells from patients with acute myeloid leukaemia using a CD34/CD71/annexinV gating strategy to identify dormant apoptotic cells.

Results: Culture of the KG1a cell line continuously in the presence of an mTOR inhibitor induced features of dormancy including low RNA content, low metabolism and low basal ROS formation in the absence of a DNA damage response or apoptosis. All agents were more effective against the unmanipulated than the dormancy-enriched cells, emphasising the chemoresistant nature of dormant cells. However, the percentage of cell reduction by RP2 inhibitors at 2 × IC50 was significantly greater than that of other agents. RP2 inhibitors strongly inhibited RNA synthesis compared with other drugs. We also showed that RP2 inhibitors induce apoptosis in proliferating and dormancy-enriched KG1a cells and in the CD71neg CD34pos subset of primary acute myeloid leukaemia cells.

Conclusion: We suggest that RP2 inhibitors may be a useful class of agent for targeting dormant leukaemia cells.

Keywords: Leukemia, Dormancy, RNA polymerase II inhibitors

Background

Relapse in cancer patients after therapy is due to the continued presence of a subset of cells which is likely to have evaded the effects of treatment by lying dormant [1,2]. Dormant cells are characterised by low levels of RNA, consistent with their lack of proliferation and need to conserve energy [3]. However, cancer cells may be dependent on (“addicted to”) survival gene expression [4,5] and thus be primed for death if the survival genes are down-regulated [6]. Hence we hypothesised that dormant cancer cells, in which RNA levels are already low, may be sensitive to agents that target the transcriptional machinery. Transcriptional cyclin dependent kinases, i.e. CDK9 and CDK7, are permissive for transcription through modulation of the essential RNA elongation factor RNA Polymerase II (RP2). RP2 serine 5 phosphorylation by CDK7 normally occurs early in the initiation of transcription, whereas RP2 serine 2 phosphorylation by CDK9 predominates later, during elongation and termination [7]. Inhibition of RP2, although ultimately fatal to all cells, can allow for a therapeutic window by selectively affecting molecules essential to cancer cell survival. Foremost candidates for this role are those molecules with a short message and protein **
We show that these cells, which have a CD34+CD38−, long-term viability and is undamaged by mTOR inhibition. Chemosensitivity of the KG1a cell line, which retains quiesce and survive. This paper first addresses the hibits mTOR, allowing the cell to conserve resources, growth factor signals such that factor deprivation in-

MTOR is a critical mediator of cell cycle progression [16,17]. In normal cells, mTOR integrates nutrient and growth factor signals such that factor deprivation inhibits mTOR, allowing the cell to conserve resources, quiesce and survive. This paper first addresses the chemosensitivity of the KG1a cell line, which retains long-term viability and is undamaged by mTOR inhibition. We show that these cells, which have a CD34−CD38+, p-glycoprotein+ phenotype characteristic of leukaemic progenitor cells [18], are enriched for features of dormancy by mTOR inactivation. We treat unmanipulated and dormancy-enriched cells with the nucleoside analogues ara-C, 5-azacytidine and clofarabine, the topoisomerase targeting agents daunorubicin, etoposide and irinotecan and three multikinase inhibitors with activity against RP2 - flavopiridol, roscovitine and TG02. We report our findings and extend them to primary leukaemia samples.

Methods

Phenotyping antibodies and isotype controls were obtained from BD Biosciences. TG02-citrate was synthesised by Tragara Pharmaceuticals. Other drugs and reagents were obtained from Sigma unless otherwise stated.

Cells and rapamycin pre-treatment

The KG1a myeloid leukaemia cell line was obtained from the European Collection of Animal Cell Cultures (Salisbury, UK) and was maintained in RPMI 1640 medium with 10% foetal calf serum (FCS; First Link, Birmingham, UK) and 2 mM L-glutamine. All experiments were performed with cell lines in log phase. Continued testing to authenticate the cells was performed by genetic fingerprinting towards the final passage of each batch thawed and through repeated assays of CD34, CD38 and p-glycoprotein status. The cells were pre-treated with rapamycin (LC labs) for 2–9 days before addition of chemotherapy drugs.

Drug treatment in cell lines

Unmanipulated and rapamycin-pre-treated KG1a cells were pelleted and re-suspended in 96 well plates at 2 × 10^5 cells per ml for 48 hours with and without drugs. Cytosine arabinoside (Ara-C), flavopiridol, irinotecan and daunorubicin stock solutions were made in water. Clofarabine stock was made in PBS, 5-azacytidine, etoposide, roscovitine (LC labs) and TG02 were dissolved in DMSO as was the RP2 inhibitor 5,6-dicholoro-1-β-D-ribofuranoslybenzimidazole (DRB). DMSO diluent controls were used for etoposide and roscovitine (because the final DMSO concentration was greater than 1 in 10,000). Drug dilutions were made in culture medium.

Determination of RNA status and RNA synthesis

For flow cytometry, the method of Schmid was used using 7-amino actinomycin D (7-AAD) to label DNA and pyronin Y to label RNA [19]. RNA was also measured on unselected cells by spectrophotometry. RNA synthesis was measured flow cytometrically using the method of Jao and Salic [20]: 5-ethynyl uridine (EU, Invitrogen) incorporation (20 μM, 1 hour) was followed by detection with Alexa 488 azide (Invitrogen). A non-specific fluorescence control tube, missing out the EU incorporation step, was set up for each condition, and the result subtracted from the test fluorescence value before calculating the percentage of untreated control fluorescence for each drug.

To determine modulation of RP2S2, treated and untreated cells were fixed and permeabilized using the Leucoperm kit (AbD Serotec) and were incubated with antibodies to RP2S2 (Abcam #5095,) then with a FITC conjugated second layer.

Determination of reactive oxygen species (ROS)

Cells were incubated with the (non-fluorescent) 15 μM 2′,7′-Dichlorofluorescin diacetate (DCFDA) in triplicate for 25 minutes at 37°C and at 4°C, placed on ice and the fluorescent oxidation product dichlorofluorescin (DCF) was measured immediately by flow cytometry. Baseline (4°C) values were subtracted from test (37°C) values.

Determination of metabolism

Cellular metabolism was measured using the reduction of 2,3-bis(2-methoxy-4-nitro-5-sulphophenyl)-5-((phenylamino) carbonyl)-2H-tetrazolium hydroxide (XTT, Roche) [21]. Cells were plated at 2 × 10^5/ml and cultured for 48 hours, with XTT for the final 6 hours. Relative absorbance was
calculated after adjustment for final cell concentration (measured by haemocytometer).

Immunocytochemistry
Gamma-H2A.X foci were identified and counted using the H score system as previously described [22].

Determination of cell viability and apoptosis in cell lines
Toxicity was measured using the XTT assay kit according to manufacturer’s instructions (Roche). Apoptosis was measured flow cytometrically using the Trevigen Annexin V kit (R & D) according to manufacturers’ instructions.

Dormancy and apoptosis of primary AML cells
Primary cells were cultured in triplicate at 1×10^6/ml in fibronectin coated wells of a flat-bottomed plate in serum-free medium supplemented with cytokines. (A previous publication [23] has further details). Drugs were added after 2–3 hours. After 14–18 hours of further culture, cells were harvested and stained with CD34PerCP and CD45-APCCy7, and with CD71PE or isotype controls. Following two rinses in PBS, the cells were counterstained with Annexin V FITC in the buffer provided (R&D Systems). CD71 expression was measured in cells gated tightly on forward and side scatter, with secondary gating on CD45 and side scatter to exclude lymphocytes. A third gate was set on CD34/low side scatter and a fourth gate on annexin V low positive cells. To ensure at most a 15% co-efficient of variation, cultures with a low number of cells after this four-part gating, i.e. less than 50 positive events, were excluded (explained in detail elsewhere [24]).

Statistical analysis
Univariate analysis of variance main effects modelling was used for comparing multiple treatments, and significant findings were further analysed in 2 way comparisons using paired T-tests, carried out using the Statistical Package for Social Sciences, version 16 (SPSS, Chicago, IL, USA).

Results
mTOR inhibition induces the principal features of dormant cells
Given that inhibition of the mTOR pathway is experimentally proven to maintain the in vivo dormancy and transplantability of haematopoietic and leukaemic cells [25-28], we experimented with the possibility of inhibiting growth in a leukaemic cell line with the mTOR inhibitor rapamycin. In preliminary studies, we cultured KG1a cells with 50-500 nM rapamycin and found similar percentage growth inhibition across the dose range (data not shown), such that 100 nM was chosen for further study. We now show that continuous culture of KG1a cells in 100 nM rapamycin for up to 11 days induced no detectable apoptosis, whereas serum withdrawal, the common method for inducing cells to exit the cell cycle, induced a statistically significant induction of Annexin V within 48 hours, and most cells were dead within a week (Figure 1A,B). Sublethal damage in the rapamycin-treated cells might sensitise them to chemotherapeutic drugs, but we determined that no measurable γH2A.X damage foci were induced by rapamycin (Figure 1C).

We have already previously shown that rapamycin inhibits phosphorylation of the mTOR targets 4E-BP1 and P70S6K in KG1a cells [29]. In a series of experiments performed after 48 hours’ incubation with rapamycin we found that, despite cell growth being slowed rather than totally arrested by rapamycin, the cells acquired key properties of dormant cells. There was a decrease in RNA, measured as a 3.5fold increase in Pyronin Ylow cells, from 13.6 to 48.6% cells and a decrease in total RNA per cell of 54% (Figure 2A). This is an especially important finding, as Pyronin Ylow cells are enriched for dormancy rather than terminal differentiation as demonstrated by their engraftment capacity in both normal haematopoietic cells and tumour initiating cells [30,31]. We also observed a corresponding decrease in cell size (Figure 2C) [3]. We noted that formazan production from XTT, an indicator of mitochondrial metabolism, was reduced by 34% in dormancy-enriched cells (Figure 2D). We also noted a 32% ROS decrease in dormancy-enriched cells (Figure 2E).

Superiority of transcriptional CDK/RP2 inhibitors in targeting dormancy-enriched cells
As nucleoside analogues and topoisomerase inhibitors are the mainstay of AML therapy, we examined the toxicity of these drug classes as well as that of RP2 inhibitors against unmanipulated and dormancy-enriched KG1a cells. We derived dose response curves for the topoisomerase-targeting agents daunorubicin, etoposide and irinotecan, nucleoside analogues ara-C, 5-azacytidine and clofarabine and the transcriptional CDK/RP2 inhibitors flavopiridol, roscovitine and TG02 in proliferating and dormancy-enriched KG1a cells. We also used the specific RNA polymerase 2 inhibitor 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) as positive control for RP2 targeting [4,32]. Figure 3A demonstrates that dose response curves from dormancy-enriched cells have a greater tendency than those from unmanipulated cells to flatten out and there are more residual cells under the flattened part of the curve. We therefore asked a novel question: namely, how can we measure the difficulty for a drug to target further cells after the initial IC_{50} has been passed? For this measure,
the parameter we used was cell reduction at 2 × IC50. Thus, using an example from Figure 3B, roscovitine reduces unmanipulated cell number by 94% at 2 × IC50, i.e. by doubling the IC50 concentration roscovitine managed to deplete a further 44% of cells, whereas araC manages to deplete only a further 9% of cells when the IC50 concentration is doubled (Figure 3B). We established that the RP2 inhibitor group of drugs were significantly more effective at reducing cell number at 2 × IC50 than the topoisomerase targeting agents or the nucleoside analogues (P = 0.001 for topoisomerase targeting agents and P < 0.001 for nucleoside analogues compared with RP2 inhibitors in unmanipulated cells, P = 0.003 for both comparisons in dormancy-enriched cells, Figure 3B.) (DRB was used as a positive control for RP2 targeting and is not a chemotherapeutic agent: its effects were therefore not included in the statistical analysis).

Targeting of RNA polymerase II and RNA synthesis by RP2 inhibitors

Serine 2 of the elongation factor RNA Polymerase II (RP2S2) is a molecular target of CDK9 [33]. Flavopiridol, roscovitine and TG02 have multiple and diverse targets in addition to RP2. We therefore measured whether RP2S2 and RNA synthesis were being targeted at each drug’s IC50. The existing literature, including our own previous work with TG02 [10,13-15] indicated that investigation of these parameters after 6 hours of treatment would show optimal effects. At this timepoint, RP2S2 was significantly downregulated in dormancy-enriched KG1a cells treated with RP2 inhibitors (Figure 4A). RNA synthesis was greatly reduced at the same timepoint (Figure 4B). A number of molecules with short message and protein half-lives are depleted by RNA polymerase II inhibitors [8], including several survival and cycle-related proteins [11-13,15]. Moreover TG02, flavopiridol and roscovitine are all documented to induce cell cycle arrest in G0/G1 [14,34,35], which we confirmed in the KG1a model (data not shown), so it was important to establish whether the decreases in cell numbers relative to untreated controls were solely due to growth inhibition or whether, as would be necessary for dormant cell targeting, they also undergo apoptosis. We observed apoptosis in all cases at the IC50 for DRB, flavopiridol and TG02 (Figure 4C). Roscovitine had notably little ability to induce apoptosis in the dormancy-enriched cells (discussed below).

Sensitivity to RP2 inhibition in dormant CD34+ primary leukaemic cells

We and others have previously documented the in vitro toxicity of TG02 to bulk CD34 + CD38- primary AML cells and demonstrated effective cell reduction at 100 nM [14,15]. The CD34 + CD38- subset is enriched for dormant cells, but to address directly the question of whether RP2 inhibitors target dormant primary cells, we sought a flow cytometric assay that would combine a dormancy marker with an apoptotic marker. Annexin V is the standard, extremely sensitive, marker for apoptosis in non-adherent cells, but its use in permeabilised cells is problematic. Ki-67 is the standard marker for excluding, and thus identifying, dormant cells, but detects an intracellular antigen and thus requires cells to be fixed and permeabilised, which compromises Annexin V staining. We looked for a cell surface marker which would discriminate between dormant and cycling cells and could be used in conjunction with Annexin V to investigate apoptosis in dormant cells. The absence of CD71, the transferrin receptor, has been reported in dormant lymphocytes and in cancer stem cells [36,37]. In preliminary experiments, we established that cells which were negative for CD71 (i.e. found in the lower two quadrants
of the dot plots in Figure 5A) were also almost all Ki-67-negative (i.e. there were very few cells in the lower right quadrants). CD71 negative cells can therefore be classified as dormant. To determine whether RP2 inhibition induces apoptosis in dormant primary AML blasts, we labelled in vitro-treated blasts for Annexin V and CD71. Figure 5B shows our gating strategy. Using eight primary samples, we found clear evidence of CD71neg cells in the Annexin V lowpos subset of CD34+ AML blasts treated with DRB, TG02 or flavopiridol (Figure 5C). When compared with etoposide (which had not been effective in targeting dormancy-enriched KG1a cells as shown in Figure 3) a significantly higher proportion of apoptosing cells was found in the CD71neg compartment after treatment with all three RP2 inhibitors (P < 0.001 for DRB and TG02, P = 0.007 for flavopiridol). It is important to
understand here that we are not comparing the toxicity of different agents but are selecting cells in which apoptosis is occurring to determine in which compartment (dormant or non-dormant) it is occurring. We also took advantage of the fact that primary AML cells in vitro show some spontaneous apoptosis, compared to which all three RP2 inhibitors again were associated with a significantly greater proportion of apoptotic cells in the CD71neg compartment ($P < 0.001$ for DRB, $P = 0.003$ for TG02 and $P = 0.01$ for flavopiridol). Roscovitine at doses up to 2 μM only reduced viable cell concentration in a minority of primary samples studied and we therefore have not documented results with this agent.
Discussion

There is a paradox at the centre of chemoresistance research, in that most anti-neoplastic drugs have been designed to target proliferating cells as a surrogate for tumour cells, and therefore the highly chemoresistant dormant tumour cell does not fit into the mainstream chemotherapeutic paradigm. In the AML field, a vanguard of researchers has been investigating possible solutions to this problem for the last twenty years and more. From in vitro and animal model work, it is clear that non-proliferating AML cells are resistant to ara-C, and that chemosensitivity increases when cells are induced into cycle by growth factor exposure [38-40]. However over a dozen clinical trials reflecting a great deal of effort in applying this knowledge have yielded equivocal results ([41] and references therein) and fresh approaches are needed.

We reasoned that it would be useful to have in vitro models to contribute to the search for ways of targeting dormant leukaemia cells. Whilst there is a need for the creation of suitable in vivo models to test longer-term chemosensitivity in dormant leukaemia cells in an appropriate microenvironment, we suggest that the value of in vitro work is that it allows the comparison of a broad range of drugs and allows for investigations of their mechanisms of action, as is illustrated in the current work.

The overwhelming evidence that activation of the mTOR pathway pushes haematopoietic and leukaemic cells out of dormancy [25-28] led us to investigate this pathway. Moreover an elegant study published after the current work was completed showed that AML cells with an undifferentiated phenotype have prolonged in vivo survival when mTOR activity is knocked out, and that subsequent mTOR re-activation restores the leukaemogenic potential of these cells [42]. In our study, rapamycin slowed, but did not completely arrest growth in KG1a cells (Figure 1A). However, in contrast to serum
withdrawal, which is the most commonly used model for dormancy, rapamycin did not cause apoptosis or DNA damage (Figure 1) - an essential consideration for a model in which the chemosensitivity of previously undamaged cells is to be assessed. We suggest that rapamycin provides a useful model for dormancy because key features, i.e. low RNA, low metabolism and low ROS, are enriched in the rapamycin-treated

Figure 5 Apoptosis in CD34+ dormant patient cells treated with RP2 inhibitors. (A) Ki-67/CD71 co-expression in CD34-gated primary AML cells before culture. For Ki-67 and CD71 quadrant delineation, gating was carried out strictly such that 1% of isotype control fluorescence fell into the positive quadrants. Flow cytometric dotplots of one sample and a diagram summarising mean ± standard deviation of target cell percentage in each quadrant for the seven primary samples studied are shown. (B) An example of CD71 expression in CD34+ annexin V + AML blasts. Patient cells were cultured for 16–18 hours with DRB, TG02, flavopiridol or etoposide. They were then labelled with CD71, CD45 and CD34, rinsed and additionally labelled with Annexin V. CD71 expression was determined in CD34+ early apoptotic cells using the four part gating strategy detailed in the Methods section. (i) Illustration of gating strategy showing how gates P1-P4 are applied; note especially that gates P1 and P4 are narrowed to exclude late stages of apoptosis or necrosis in order to alleviate concern that CD71 might be shed. (ii) Flow cytometric histograms showing CD71 expression in the cell subset gated on P1-P4 (MFI = mean fluorescence intensity). (C) CD71 negative cells shown as a percentage of total early apoptotic cells from the P1-P4 subset of primary samples (n = 8 for TG02 and etoposide, n = 6 for DRB and flavopiridol). As primary samples are heterogeneous, apoptosis-inducing drug concentrations were sample-specific (30-100 nM for TG02 and flavopiridol, 0.2-2 µM for etoposide, 20 µM for DRB). * The low proportions of CD71neg cells in untreated and etoposide-treated samples compared to RP2 inhibitor-treated samples were statistically significant, as detailed in the text.
compared with the untreated cells (Figure 2). Low RNA
is of paramount importance, since cells characterised by
low RNA content retain the capacity to re-enter the cell
cycle and act as progenitors in vivo [30,31]. The RNA-low
characteristic of dormant cells is consistent with their
lack of proliferation and low metabolism [3], but for dor-
mant cancer cells this might be difficult to reconcile
with addiction to survival gene expression, leading us to
suggest that these cells may be sensitive to transcription-
al RP2 inhibitors. A publication several years ago
showed that flavopiridol targets non-cycling A549 cells
[43]. Flavopiridol and roscovitine were initially designed
to target cyclin dependent kinases that drive cell prolif-
eration, and it was only subsequently that the effects
were noted for both of these agents on down-regulating
survival molecules and inhibition of transcription
through inactivation of CDK9 [9,10,13,44]. TG02 has
been characterised more recently and, like the two other
agents, has multiple targets including cycling and tran-
scriptional CDKs [14]. In cell-free assays, TG02 has a
3nM IC50 for CDK9 [14]. As all three agents have mul-
tiple targets, we also used the RP2-specific inhibitor
DRB in our assays [4,32].

We have shown that transcriptional RP2 inhibitors are
better able than conventional agents to target
dormancy-enriched AML cells. We hypothesised that a
therapeutic window might exist for dormant cancer cells
because of the addiction of malignant cells to survival
gene expression [4,5]. Results from clinical trials with
roscovitine and flavopiridol [45] including a trial incor-
porating flavopiridol in combination chemotherapy of
AML [46] have shown some efficacy at sub-toxic doses.
TG02 at tolerated doses induced lasting complete remis-
sions in an AML xenograft model [14] and at the time
of writing, is in Phase I trials for refractory and relapsed
leukaemias. We show that the specific transcriptional
RP2 inhibitor DRB as well as TG02, roscovitine and
flavopiridol down-regulate RNA Polymerase II activation
and RNA synthesis in both unmanipulated and
dormancy-enriched cells. We have not attempted to pick
out specific targets of RP2 down-regulation, as these are
multitudinous [8]. Functionally they tend to be genes in-
volved in rapid cellular responses, such as apoptosis reg-
ulators, mitosis regulators and genes involved in
signalling pathways such as several NFκB target genes
[8]. We have shown that apoptosis is induced by the spe-
cific RP2 inhibitor DRB and by flavopiridol and TG02
(Figures 4 and 5). Roscovitine appears to work mainly by
growth inhibition or a non-apoptotic mechanism of
death. It is noteworthy in this respect that gene expres-
sion profiling of agents inhibiting transcriptional CDKs
found that DRB and flavopiridol had similar broad activ-
ity, whereas roscovitine had a narrower range of activity
[8]. Moreover, in our hands, micromolar concentrations
of roscovitine were found to reduce viable cell concen-
tration in only 5/12 leukaemia samples studied in vitro
(data not shown) in contrast to a robust response to
TG02 at 100 nM [15].

To further validate our results indicating that RP2 in-
hibitors target dormancy-enriched KG1a cells, we sought
agreement for our findings in primary material. In con-
tact to cell lines, primary AML samples are enriched for
cells in G0 of the cell cycle [39]. We examined the extent
of apoptosis induced by RP2 inhibitors in dormant and
proliferative compartments of primary cells. As Annexin
V is a highly sensitive marker for early apoptosis in
primary AML cells, we looked for a cell surface dormancy
marker that could be used in conjunction with Annexin
V to measure apoptosis in dormant compared to prolif-
erating cells. CD71 (the transferrin receptor) is absent in
un-stimulated peripheral blood lymphocytes, in some
cancer stem cells and in long term culture-initiating cells
from normal bone marrow [36,37,47]. Analysis of patient
samples co-labelled with CD71 and Ki-67 indicated that
CD71 is not expressed in dormant AML blasts (Figure 5).
Co-labelling of cells with CD71 and Annexin V clearly
indicated the contrast between the high proportion of
CD71+ apoptotic cells following treatment with DRB,
flavopiridol or TG02 and the high CD71 expression in
etoposide-treated apoptotic cells. Even compensating for
the plasma protein binding of the drug, the concentra-
tion of TG02 used in this experiment is readily achiev-
able in vivo in both animals [14] and humans (as
measured following oral administration in ongoing clin-
cal studies - FB, unpublished).

Conclusion
In conclusion, we have shown that RP2 inhibitors effect-
ively target both KG1a cells enriched for dormancy by
mTOR inhibition and CD71+ primary leukaemia pa-
tient samples thus providing grounds for suggesting that
transcriptional RP2 inhibitors may be a useful class of
agent for targeting dormant cells thought to contribute
to relapses in leukaemia.

Abbreviations
7-AAD: 7-amino actinomycin D; AML: Acute myeloid leukaemia;
araC: Cytarabine; CDK: Cyclin dependent kinase; DRB: 5,6-dicholoro-1-β-D-
ribofuranoslybenzimidazole; EU: 5-ethynyl uridine; DCF: Dichlorofluorescein;
DCFDA: 2′,7′-Dichlorofluorescin diacetate; FCS: Foetal calf serum;
FSC: Forward scatter; HSC: Haematopoietic stem cell; mTOR: Mammalian
target of rapamycin; rapa: Rapamycin; ROS: Reactive oxygen species;
RP2: RNA Polymerase II; RP2S2: RNA Polymerase II serine 2; XTT: 2,3-bis(2-
methoxy-4-nitro-5-sulfophenyl)-5-[(phenylaminocarbonyl]-2H-tetrazolium
hydroxide.

Competing interests
Francis Burrows is an employee of Tragara Pharmaceuticals.
No financial interest/relationships with financial interest relating to the topic
of this article have been declared by the remaining authors.
Authors’ contributions
MP designed the study, participated in all experiments and drafted the manuscript. FB participated in the design of the study and contributed TG02. AW helped to develop the mTOR inhibition model. NB set up and participated in experiments to determine the effects of transcriptional CDK inhibitors on cell survival and RP252 phosphorylation. CS participated in the design of the study, oversaw the RNA experiments and participated in drafting the manuscript. NR participated in the design and coordination of the study and contributed primary AML samples. All authors read and approved the final manuscript.

Acknowledgments
Financial support was obtained from the Nottinghamshire Leukaemia Appeal.

Author details
1Nottingham University Hospitals, Nottingham, UK. 2Tragara Pharmaceuticals, San Diego, USA. 3University of Nottingham, Nottingham, UK. 4Academic Haematology, Clinical Sciences Building, Nottingham University Hospitals City Campus, Nottingham NG5 1PB, UK.

Received: 21 February 2013 Accepted: 5 June 2013 Published: 15 June 2013

References

