The diversity of Class II transposable elements in mammalian genomes has arisen from ancestral phylogenetic splits during ancient waves of proliferation through the genome

Hellen, Elizabeth H.B. and Brookfield, John F.Y. (2012) The diversity of Class II transposable elements in mammalian genomes has arisen from ancestral phylogenetic splits during ancient waves of proliferation through the genome. Molecular Biology and Evolution, 30 (1). pp. 100-108. ISSN 0737-4038

[img] PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Available under Licence Creative Commons Attribution.
Download (458kB)

Abstract

DNA transposons make up three percent of the human genome, roughly the same percentage as genes. However, due to their inactivity, they are often ignored in favour of the more abundant, active, retroelements. Despite this relative ignominy, there are a number of interesting questions to be asked of these transposon families. One particular question relates to the timing of proliferation and inactivation of elements in a family. Does an ongoing process of turnover occur, or is the process more akin to a life cycle for the family, with elements proliferating rapidly before deactivation at a later date?

We answer this question by tracing back to the most recent common ancestor of each modern transposon family, using two different methods. The first method identifies the most recent common ancestor of the species in which a family of transposon fossils can still be found, which we assume will have existed soon after the true origin date of the transposon family. The second method uses molecular dating techniques to predict the age of the most recent common ancestor element from which all elements found in a modern genome are descended. Independent data from five pairs of species are used in the molecular dating analysis: Human- Chimpanzee, Human-Orangutan, Dog-Panda, Dog-Cat and Cow-Pig. Orthologous pairs of elements from host species pairs are included, and the divergence dates of these species are used to constrain the analysis.

We discover that, in general, the times to element common ancestry, for a given family, are the same for the different species pairs, suggesting that there has been no order-specific process of turnover. Furthermore, for most families, the ages of the common ancestor of the host species and of that of the elements are similar, suggesting a life cycle model for the proliferation of transposons. Where these two ages differ, in families found only in Primates and Rodentia, for example, we find that the host species date is later than that of the common ancestor of the elements, implying that there may be large deletions of elements from host species, examples of which were found in their ancestors.

Item Type: Article
Keywords: Transposons, Class II, Molecular dating, Evolution
Schools/Departments: University of Nottingham UK Campus > Faculty of Medicine and Health Sciences > School of Life Sciences > School of Biology
Depositing User: Wahid, Ms. Haleema
Date Deposited: 16 Apr 2014 09:55
Last Modified: 16 Sep 2016 15:12
URI: http://eprints.nottingham.ac.uk/id/eprint/2380

Actions (Archive Staff Only)

Edit View Edit View