Proof Methods for Structured Corecursive Programs

Gibbons, Jeremy and Hutton, Graham (1999) Proof Methods for Structured Corecursive Programs. In: Proceedings of the 1st Scottish Functional Programming Workshop, Stirling, Scotland.

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
94Kb

Abstract

Corecursive programs produce values of greatest fixpoint types, in contrast to recursive programs, which consume values of least fixpoint types. There are a number of widely used methods for proving properties of corecursive programs, including fixpoint induction, the take lemma, and coinduction. However, these methods are all rather low level, in that they do not exploit the common structure that is often present in corecursive definitions. We argue for a more structured approach to proving properties of corecursive programs. In particular, we show that by writing corecursive programs using a simple operator that encapsulates a common pattern of corecursive definition, we can then use high-level algebraic properties of this operator to conduct proofs in a purely calculational style that avoids the use of inductive or coinductive methods.

Item Type:Conference or Workshop Item (Paper)
Schools/Departments:Faculty of Science > School of Computer Science and Information Technology
ID Code:236
Deposited By:Hutton, Graham
Deposited On:26 Oct 2005
Last Modified:09 Oct 2007 16:50

Repository Staff Only: item control page