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Abstract This work investigates the linear and non-linear viscoelastic melt rheology of four grades of 

polycarbonate melt-compounded with 3 wt% Nanocyl NC7000 multi-walled carbon nanotubes and of the 

matching matrix polymers. Amplitude sweeps reveal an earlier onset of non-linearity and a strain overshoot in 

the nanocomposites. Mastercurves are constructed from isothermal frequency sweeps using vertical and 

horizontal shifting. Although all nanocomposites exhibit a second plateau at ~105 Pa, the relaxation times 

estimated from the peak in loss tangent are not statistically different from those of pure melts estimated from 

cross-over frequencies: all relaxation times scale with molar mass in the same way, evidence that relaxation of 

the polymer network is the dominant mechanism in both filled and unfilled materials. Non-linear rheology is 

also measured in large amplitude oscillatory shear. A comparison of the responses from frequency and 

amplitude sweep experiments reveals the importance of strain and temperature history on the response of such 

nanocomposites.  
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Introduction  

The addition of multi-walled carbon nanotubes (MWCNT) to polymeric matrices has 

stimulated significant interest within the research and industrial communities. The attraction 

of such nanocomposites arises because of the potential to benefit from the outstanding 

properties of MWCNTs whilst retaining the ease of processing of polymeric matrices. By 

doing so, it has been possible to generate new families of materials that are melt processable 

with standard equipment, but that outperform commodity plastics in terms of material 

properties. These properties include higher mechanical strength (Cadek et al. 2002; Eitan et 

al. 2006; Fornes et al. 2006) and substantially higher electrical conductivities (Curran et al. 

2009). The benefit of employing MWCNTs over conventional fillers in thermoplastics is that 

they have very high aspect ratios, enabling the nanocomposites to exhibit noticeable property 

improvements even at relatively low filler content. This is essential for retaining the desirable 

processing attributes of the polymeric matrix.  

At present, polycarbonate (PC) nanocomposites are used in electronic static discharge 

protection applications. The material’s increased abrasion resistance, and consequently low 

shedding of particles, minimises contamination, making it an ideal candidate for components 

in clean room manufacturing, such as trays for the handling of integrated circuits and 

semiconductors. The electrical conductivity imparted on the nanocomposites by the 

MWCNTs allows the build-up of static charges that can damage the delicate electronic 

components to be safely dissipated. This is achieved by enabling the flow of electrical charge 

through a percolating network of nanotubes embedded in the polymer matrix. Such a network 

is formed by appropriate dispersion of the MWCNTs in the matrix during processing. 

There are a multitude of factors that influence the performance of a nanocomposite, but filler 

dispersion is generally acknowledged to be among the most significant. One of the most 

interesting aspects of dispersion is the role it plays in optimising different properties – for 

instance, optimal mechanical performance is generally associated with homogeneous and 

uniform filler dispersion, whereas high degrees of electrical conductivity arise through an 

appropriate degree of clustering and network  formation (Alig et al. 2012).  
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Other important factors identified as playing a role in the performance of 

nanocomposite products can be split into carbon nanotube (CNT) related factors and polymer 

processing related factors. CNT factors include surface defects (Yamamoto et al. 2010), 

surface modification (Spitalsky et al. 2010), waviness (Fisher et al. 2002), and orientation 

(Pötschke et al. 2005; Dijkstra et al. 2010). Processing related factors include the rheology of 

the polymer matrix (Cadek et al. 2002) and the inter-related compounding process conditions 

(Lew et al. 2009; Lew et al. 2011). The large number of variables renders direct comparison 

of different studies challenging.  

Several authors have specifically studied properties of PC-MWCNT composites, 

focusing on the melt rheology (Pötschke et al. 2002; Du et al. 2004; Abdel-Goad and 

Pötschke 2005; Sung et al. 2005; Alig et al. 2008), the mechanical response (Eitan et al. 

2006; Fornes et al. 2006; Satapathy et al. 2007), and the electrical properties (Du et al. 2004; 

Sung et al. 2006; Alig et al. 2008; Saphiannikova et al. 2012). Some authors have employed a 

combination of characterisation methods, such as the simultaneous electrical and rheological 

measurements of Alig et al. (2008) and Zeiler et al. (2010). These authors observed a 

reversible formation of the filler network, evident from the time-dependent recovery of both 

electrical and mechanical properties after applying shear deformation to PC-MWCNT melts. 

They employed percolation theory and agglomeration kinetics to explain their observations, 

and attributed the changes in electrical conductivity and storage modulus to the destruction 

and reformation of CNT agglomerates. Alig and co-workers thus concluded that the process 

of agglomeration of CNTs plays a crucial role in determining both of these physical 

properties of the nanocomposite (Alig et al. 2008). Zeiler et al. (2010) used a similar 

investigation method to study the influence of polymer viscosity and of polymer-nanotube 

interactions on network formation, by exploring both the linear and the non-linear 

viscoelastic regions. They observed that the formation of both rheological and electrical 

networks were faster at higher temperatures, as well as in nanocomposites with a matrix of 

lower molar mass, and hence lower viscosity. They measured a higher storage modulus in 

nanocomposites with matrices of lower molar mass, and suggested that the shorter polymer 

chains facilitated CNT-CNT contacts, giving rise to a stiffer nanotube network. They 

concluded that the breakup of CNT clusters and the diffusion-controlled clustering of CNTs 

are two opposite processes which superpose, and that the timescale of the diffusion-

controlled clustering is not influenced by oscillatory shear flow. Thus, it is apparent that the 

polymer matrix can have a strong influence on the rheological properties following breakup 

of CNT clusters. In order to reconcile their observations, Zeiler and co-workers (2010) 
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proposed an extension to the models of Alig et al. (2008) and Pötschke et al. (2004) in which 

the CNT network consists of weakly bonded clusters that breakup and re-aggregate. More 

recently, Handge et al. (2011) applied a fractional Zener model for predictions of linear 

viscoelastic properties of PC-MWCNT melts to the experimental data of Zeiler et al. (2010), 

and were successful in describing the storage modulus over a wide frequency range, but less 

so for the loss modulus.    

Time-temperature superposition (TTS) is a methodology integral to most modelling 

efforts that combines the effects of time and temperature and that relies on the principle of 

thermorheological simplicity. Materials are considered thermorheologically simple when all 

relaxation mechanisms present have the same temperature dependence (Dealy and Plazek 

2009). In polymer melts, the temperature dependence of relaxation times allows frequency-

dependent or time-dependent viscoelastic data to be shifted to any reference temperature 

through an appropriate shift factor. This process is normally referred to as horizontal shifting. 

The viscoelastic modulus of polymer melts is also weakly dependent on temperature because 

of its effect on density. When a temperature correction is applied to the modulus, it is known 

as vertical shifting (Rubinstein and Colby 2003). 

There have been mixed conclusions on the application of TTS to nanocomposites. 

Handge and Pötschke (2007) attempted to shift the frequency dependence of viscoelastic 

moduli of PC-MWCNTs (2 wt%) measured at 190 °C and 210 °C, and observed  that the data 

superposed unsatisfactorily. They suggested that the failure of TTS implied that the 

relaxation processes of the pure polymer and of the filler network had different temperature 

dependence, and attributed the influence of interactions between polymer and filler more to 

the entropy elasticity of the melt than to the temperature. Solomon et al. (2001) successfully 

applied TTS to melt-compounded polypropylene filled with organophilic nanoclay in the 

presence of a compatibilizer. They observed a similar temperature dependence of shift factors 

in the nanocomposites as in the base polymer. Reichert et al. (2001) found that the 

application of TTS was possible with extruded and injection-moulded polypropylene filled 

with organophilic layered silicates that were annealed, but interestingly that TTS was not 

possible without the annealing step. They used the shifting procedure as a tool for the 

investigation of clay platelet network formation, and observed that the annealing process 

improves exfoliation and facilitates the formation of a thermodynamically stable structure. 

Wu et al. (2007) observed that TTS was possible in poly(butylene terephthalate) - MWCNT 

nanocomposites in a narrow temperature window of 230 °C to 240 °C, but not at higher 

temperatures up to 260 °C. They attributed the successful superposition at higher reduced 
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frequencies to dominant local chain dynamics, and the failure of superposition at lower 

reduced frequencies to the different temperature dependence of the percolated network. None 

of the reported studies attempted any application of vertical shifting. 

This work investigates the linear and non-linear viscoelastic melt rheology of a range 

of PC-MWCNT nanocomposites of constant filler content but varying matrix viscosity and of 

the matching pure melts. The aim is to elucidate the roles played by nanotubes and by the 

matrix polymer on several aspects of the viscoelastic response: time-temperature 

superposition and vertical shifting, dynamic strain amplitude, relaxation processes, and strain 

and temperature history.  

 

Experimental 

Materials  

Four grades of PC ranging from low viscosity to high viscosity were supplied as granules by 

Bayer MaterialScience AG.  Nanocyl NC7000 MWCNTs were manufactured by Nanocyl 

S.A., Belgium, via a catalytic chemical vapour deposition process. Castillo and co-workers 

reported measurements of the average diameter and length of Nanocyl NC7000 nanotubes 

prior to processing as 10 nm and 1341 nm respectively (Castillo et al. 2011). The molar mass 

of each of the supplied PC grades was measured in tetrahydrofuran relative to polystyrene 

standards using an Agilent Technologies PC-GPC 120, and measurements of the number-

average and weight-average molar masses are reported in Table 1. 

Table 1 Measurements of molar mass obtained via GPC for the PC materials used in this study 

Materials Mn (g mol-1) Mw (g mol-1) Polydispersity index (PDI) 

Makrolon PC 2205 13900 33600 2.46 

Makrolon PC 2405 14200 38700 2.73 

Makrolon PC 2805 18000 45700 2.59 

Makrolon PC 3105 21400 50500 2.40 

 

Nanocomposite preparation 

Nanocomposites were melt-compounded by Nanocyl using an Industrial Leistritz ZSK-

MAXX co-rotating twin screw extruder with a screw length to diameter ratio of 48:1. The 

MWCNTs were gravimetrically fed into each PC melt through a side feeder, with the 
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nanotubes making up a mass fraction of 3.0 wt% (volume fraction of 2.1 %)2 for all PC 

grades. The screw speed was fixed at 300 rpm and the barrel temperature was fixed at 280 °C 

for all materials. The extrudate was pelletised into granules for later moulding. Soxhlet 

extraction of PC resin from the nanocomposite after processing demonstrated that no 

degradation of the polymer matrix took place during compounding.  

 

Thermal characterisation 

Differential scanning calorimetry (DSC) measurements were performed with a TA 

Instruments DSC Q10 at a scan rate of 10 °C min-1 from 25 °C to 250 °C in a nitrogen 

atmosphere on both filled and unfilled PC. The glass transition temperatures, Tg, were 

identified as the average temperatures at the peaks of the derivatives of heat flow with respect 

to temperature from three separate measurements during the second heating cycle. Values 

reported in Table 2 are averages and standard errors obtained from three independent 

measurements on each material. 

Table 2 Glass transition temperatures determined by DSC of all materials  

Materials Tg (°C) 

Unfilled  

Makrolon PC 2205 146.0 ± 0.2 

Makrolon PC 2405 147.4 ± 0.2 

Makrolon PC 2805 146.5 ± 0.4 

Makrolon PC 3105 147.6 ± 0.4 

MWCNT–filled (3 wt%)  

Makrolon PC 2205 146.0 ± 0.5 

Makrolon PC 2405 146.5 ± 0.2 

Makrolon PC 2805 145.2 ± 0.7 

Makrolon PC 3105 147.0 ± 0.8 

 

Thermogravimetric analysis of PC and PC-MWCNTs was performed with a SDT Q600 TA 

under both air and nitrogen atmospheres. The onset of degradation, defined by 5 % of weight 

loss, was observed to occur above 440 °C for all the materials in both atmospheres. 

Rheological measurements 

Circular discs 30 mm in diameter and 0.5mm in thickness were compression moulded using 

an in-house heated press. Prior to moulding, granules of PC and nanocomposite were dried in 

                                                 
2 Calculated using  PCρ = 1.19 g cm-3 from Bayer MaterialScience (2009) datasheet and CNTρ  = 1.75 g cm-3 

(Shaffer and Windle 1999) 
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an air-circulating oven at 80 °C for a minimum of 8 hours. Moulding was carried out at 

250 °C, including a 10 minute warm-up period, a 5 minute stage in which the pressure was 

applied and released repeatedly in order to dislodge trapped air, and a further 5 minutes at the 

moulding temperature under light pressure to allow for consistent relaxation of the polymer. 

After this time, cold water was flushed through channels in the heated platens, cooling the 

mould at a repeatable rate of ∼10 ‒ 15 °C min-1. The mould was removed from the press once 

the temperature was sufficiently below Tg of the polymer. 

Dynamic rheometry was performed using a Bohlin C-VOR Instruments rheometer 

fitted with environmental chamber. Measurements were performed in stress-controlled 

oscillatory shear using a 25 mm parallel plate geometry with a 0.5 mm gap size in an air 

atmosphere. Each moulded disc was allowed to acclimatise at the highest temperature of 

testing for a period of 5 minutes and trimmed to size with a sharp blade prior to commencing 

the test. The auto-tension option was enabled during the tests to compensate for thermal 

expansion of the sample. A thermal equilibration time of 5 minutes followed by a 30 s buffer 

delay was imposed before beginning each isothermal test run. 

Isothermal amplitude sweeps at logarithmically increasing shear strains between 

0.01% and 100% were performed at a fixed frequency of 2π rad s-1 on pure and MWCNT-

filled PC 2205. Isothermal frequency sweeps were carried out in decreasing 20 °C steps 

between 260 °C and 160 °C for all grades of pure PC, and between 300 °C and 160 °C for all 

nanocomposite grades, at logarithmically increasing frequencies from 0.2π rad s-1 to  

80π rad s-1, at a fixed strain amplitude of 0.5%. Isothermal frequency sweeps were also 

performed at strain amplitudes of 0.05%, 5% and 50% for MWCNT-filled PC 2205 only. 

Limited experiments were performed in increasing 20 °C steps, although no significant 

differences were observed in the measured data as a result of the change of direction of the 

temperature step. 

 

Results and discussion  

Amplitude sweeps 

Fig. 1 reports the storage modulus 'G and the loss modulus "G , both normalised with respect 

to their measured values at 0.5% strain, '
0.5%G  and ''

0.5%G  respectively for both unfilled and 

filled PC 2205, as a function of strain amplitude, measured at 2π rad s-1 for all temperatures 
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investigated. The normalisation is intended to facilitate the determination of a strain 

amplitude for which both filled and unfilled PC are within the linear viscoelastic (LVE) 

region. 
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Fig. 1 Amplitude sweeps of normalised storage modulus ' '
0.5%G G  and loss modulus '' ''

0.5%G G  measured at 

2π rad s-1 of a unfilled PC 2205 at temperatures 160 °C – 260 °C and of b PC-MWCNT (3 wt%) 2205 at 

temperatures 160 °C – 300 °C. The vertical dashed line indicates the linear viscoelastic limit 

Very small strain amplitudes, < 0.1%, result in noisier measured signals, as the 

torques and angular velocities approached the limits of the resolution of the instrument. A 

region where moduli are independent of strain amplitude then appears with increasing 

amplitude, extending to strains beyond 10% strain for the unfilled PC, but only to 0.5% strain 

for the filled PC. The earlier onset of nonlinearity has been previously attributed to the effect 

of strain amplification: the matrix experiences a higher local strain than the macroscopic 

strain due to the presence of the stiff nanotubes (Richter et al. 2009; Costa et al. 2008). This 

effect is generally enhanced by confinement of polymer chains located near the surface of a 

nanotube (Stöckelhuber et al. 2011; Vilgis 2005). Since no specific surface modification of 

MWCNTs was performed in our materials, chemical interactions between matrix and CNTs 

are likely to be weak. Nevertheless, the confined or adsorbed layer should be detectable by its 

reduction to the mobility of chains, leading to a rise in Tg. Measurements obtained from DSC 

reported in Table 2 indicate a small but discernible reduction in Tg with the addition of 

MWCNTs. Although the presence of MWCNTs causes an increase in Tg for most polymers, 

Castillo and co-workers (2011) also observed a reduction in Tg in a wide range of PC 

nanocomposites similar to those of this study, and attributed its presence either to matrix 

degradation (not present in this study) or to particularly favourable interactions between PC 

and MWCNTs leading to a reduction in the degree of entanglement of chains near the CNT 

surfaces. 

At larger strain amplitudes, the most striking difference in the response arising from 

the presence of filler is a strain overshoot in loss modulus. This overshoot reaches a 

maximum at shear strains of 5 ‒ 10%, and is followed by shear thinning behaviour at even 

larger strains. Similar overshoots were previously observed in polyamide-6 clay 

nanocomposites (Wan et al. 2005) and have been attributed to and can be modelled by the 

different amplitude dependence of the rate of cluster formation relative to that of cluster 

destruction (Hyun et al. 2011). A cluster in this context can be thought of as a region of 

material in which there is increased CNT connectivity. The overshoot is greater at higher 

temperatures. This is consistent with the rate of cluster formation being a temperature-

dependent process. The destruction of CNT clusters with increasing strain amplitude also 

provides an explanation for the earlier onset of non-linearity in storage modulus in the filled 

materials. 
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In subsequent experiments, linear viscoelasticity was explored through isothermal 

frequency sweeps performed at a strain amplitude of 0.5%, indicated in Fig. 1, where both 

filled and unfilled PC is within the LVE at all temperatures of interest. It is noted that while 

the LVE limit was explored using a fixed frequency of 2π rad s-1, the applicability across a 

wide temperature range suggests that it will be equally appropriate across a wide frequency 

range.  

 

Construction of mastercurves 

Vertical shifting  

Dealy and Plazek (2009) recommended the use of the van Gurp-Palmen (VGP) plot of loss 

angle δ  vs complex modulus *G  to ascertain thermorheological simplicity of a material. The 

VGP plot does not require a shift in frequency to a reference temperature to produce 

overlapping curves, but only a shift in modulus with temperature (van Gurp and Palmen 

1998). Fig. 2a illustrates unshifted isothermal frequency sweeps at 0.5% strain for both filled 

and unfilled PC 2205 as a VGP plot. 
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Fig. 2 a Van Gurp-Palmen plot of phase angle vs complex modulus over a temperature range of 160 – 260 °C 

for unfilled PC 2205 and of 160 – 300 °C for PC-MWCNT 2205 (3 wt%); b same plot vs reduced complex 

modulus at Tref = 200 °C  

 

The measurements on unfilled PC exhibit a reasonably good but not perfect overlap 

across the temperature range; the measurements on PC-MWCNT show a distinct lack of 

overlap. A common method for accounting for changes in modulus with temperature T  in 

pure polymer melts is to apply a density ρ  correction to the modulus such that the 

relationship 

 
( ) ( )* *

ref

ref ref

G T G T

T Tρ ρ
=   (0) 
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is satisfied, where refT  is the reference temperature and refρ  is the density at this reference 

temperature. The ratio ref ref T/T T bρ ρ =  is the vertical shift factor (noting that in practice it 

results in a horizontal shift in a VGP plot). A convenient expression for the density of PC 

PCρ  was obtained by Zoller (1982) from isothermal dilatometry experiments as 

 ( )3/25
PC exp 0.307 1.859 10 273Tρ − = − × +

 
  (0) 

Variations in density with molar mass are small and neglected here. The computed value of 

Tb  is shown in Fig. 3. 

 

Fig. 3 Vertical shift factors at reference temperature Tref  = 200 ºC determined for unfilled PC based on a 

density correction using Eqs. 1 and 2 (thick solid line), and for PC-MWCNT using Eqs. 1 and 3 (thick dashed 

line). Vertical shift factors obtained by manual shifting using the VGP plots for filled PC grades (symbols). The 

thin lines a guide to the eye  

 

Using Eqs. 1 and 2, a reduced modulus ( )*
Tb G  VGP plot for unfilled PC 2205 at  

Tref = 200 ºC is produced and shown in Fig. 2b. An improvement to the overlap between 

temperatures can be observed relative to the unshifted data in Fig. 2a. 

 A similar approach was attempted with the nanocomposite. To the authors’ 

knowledge, there are no reports in the literature of variation in density with temperature of 

MWCNTs. Hence a constant density of CNTρ  = 1.75 g cm-3 (Shaffer and Windle 1999) was 

used across the temperature range. The density of filled PC was determined from the mass 

fraction of nanotubes x  as  
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 PC CNT

PC CNT(1 )x x

ρ ρρ
ρ ρ

=
+ −

 (0) 

The computed value of Tb  based on density is also shown in Fig. 3 for the PC-MWCNTs. It 

is virtually indistinguishable from that of the pure PC due to the small fraction of CNTs in 

these nanocomposites. 

A reduced modulus VGP plot for filled PC 2205 at a reference temperature of 200 ºC 

using the density correction is shown in Fig. 2b. The correction is actually detrimental to the 

quality of the superposition, suggesting that there may be a different reason for the change in 

modulus with temperature in the filled systems. As a step towards understanding this process, 

the vertical or modulus shift factors, Tb are obtained by determining the (horizontal) shift in 

complex modulus required to superpose the measurements in the VGP plot. 

Tb was obtained manually, from a visual assessment of the overlap for measurements on 

all filled grades, as shown in Fig. 3. Although it is possible to achieve overlap in the low 

frequency region of the measurements, it is challenging to achieve overlap in the high 

frequency range in all temperatures except for 160 °C. One example of a manually shifted 

VGP plot is shown in Fig. 4 for filled PC 2205. There are no significant differences in either 

Tb or the quality of fit between matrix grades at temperatures above 200 °C; at temperatures 

below 200 °C there appears to be some effect of molar mass, although the reason for this is 

unclear. 

 
Fig. 4 Shifted van Gurp-Palmen plot for PC-MWCNT 2205 (3 wt%) at a reference temperature of  

Tref = 200 °C used to determine the vertical shift factor. Lines are a guide to the eye 
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Horizontal shifting 

A numerical procedure was employed to determine the optimal amount of horizontal shift in 

the frequency domain of the reduced moduli required to attempt the production of a 

mastercurve. For every measurement temperature T, a horizontal shift factorTa was identified 

relative to a fixed reference temperature Tref that minimises the error in the overlap of the 

shifted moduli measurements relative to the adjacent measured temperature. The method is 

based on that suggested by Gergesova et al. (2010), and full details are provided in Appendix 

A. Horizontal shift factors obtained using this procedure are shown in Fig. 5a for unfilled 

grades, and in Fig. 5b for filled grades. 

 

Fig. 5 Shift factors determined using an automated technique at Tref = 200 °C; a unfilled PC (hollow symbols) 

and b PC-MWCNT (3 wt%) (dotted, grey symbols). Lines are a guide to the eye 

 

Horizontal shift factors are relatively independent of both matrix polymer and of the 

presence of nanotubes. For sufficiently entangled unfilled polymer melts this is expected. The 

similarity of shift factors between the filled and pure materials is evidence that the relaxation 

processes probed in this temperature range all have the same temperature dependence (even 

though the moduli do not).       
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Mastercurves   

The shift factors shown in Figs. 3 and 5a are used to produce reduced frequency – 

modulus mastercurves for the different grades of unfilled PC used in this study. These are 

illustrated in Fig. 6. As is well known in the literature on polymer melts, the width of the 

rubbery plateau increases with increasing molar mass and flow occurs at a lower reduced 

frequency. In unfilled PC, at low reduced frequencies, loss modulus is always higher than 

storage modulus (as can be seen for PC 2205 in the inset of Fig. 6, and the materials exhibits 

liquid-like properties typical of polymer melts with the characteristic gradients in the terminal 

zone of ' 2G ω∝  and "G ω∝ .  

 
Fig. 6 Reduced frequency mastercurves of a storage modulus and b loss modulus of unfilled PC of varying 

molar mass (Mw = 33600 – 50500 g mol-1) at a strain amplitude of 0.5%. Inset shows the cross-over frequency 

for PC 2205 used to determine the characteristic relaxation time, and a polynomial fit employed in the two-

phase model (Song and Zheng 2010) (thick solid line) 

  

The shift factors shown in Figs. 3 and 5b are used to produce reduced frequency – 

modulus mastercurves for the range of nanocomposites. These are illustrated in Fig. 7. These 

mastercurves exhibit two important differences relative to those of the equivalent matrix 

polymers: (1) the presence of a second plateau instead of a zone of terminal flow; (2) a loss 
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tangent that is less than unity throughout the extended frequency range. At low reduced 

frequencies the second plateau has a modulus of ~105 Pa. This behaviour was first observed 

by Pötschke et al. (2002) for PC-MWCNT nanocomposites with more than 2 wt% filler 

content, sufficient to form a percolated network within the matrix system.  Similar 

observations of network percolation for PC-MWCNT were reported in the works of Alig et 

al.(2008) and Skipa et al.(2009). This second plateau has a modulus of ~105 Pa, 

approximately 1.5 orders of magnitude smaller than the rubbery plateau arising from the 

entanglement network, and suggests the presence of an interconnected network of nanotubes, 

and hence of rheological percolation.  

The two-phase model of Song and Zheng (2010) was applied to the viscoelastic 

mastercurves of all matrix polymers and nanocomposites in order to clarify the nature of the 

changes in structure arising between polymer and nanocomposite. This model is 

parameterised through a strain amplification factor parameter fA , storage '
CNTG  and loss 

CNT

"G  moduli parameters representing the filler network, and an exponent α  related to the 

frequency dependence of this filler network. Optimisation of the parameters was carried out 

following Song and Zheng’s procedure, and fitted results are shown in the insets of Figs. 6 

and 7 for filled and unfilled PC 2205. It was found that in all PC grades fA  did not exceed 

1.35. The stiffness of the nanotube network '
CNTG  ~ 105 Pa for all grades, and "CNTG ~ 104 Pa. 

The frequency dependence of the network was negligible, with α ~ 10-2. Thus, the model is 

consistent with the view that the present systems do not exhibit pronounced strain 

amplification, and that the nanotubes agglomerate into a mostly elastic network with stiffness 

~105 Pa. The stiffness of this network is probably connected to nanotube bending modes 

(Rubinstein and Colby 2003). 

The confinement of PC chains, if any, must therefore be localised to the surface of 

CNTs or CNT-agglomerates. This is consistent with the Tg measurements of Table 2, and 

suggests that the earlier onset of deviation from linearity observed during the amplitude 

sweeps in Fig. 1 for PC-MWCNT are caused by a destruction of the CNT network. Such a 

percolation network is known to exhibit gradual build-up with time in flocculation 

experiments (Richter et al. 2009), arising from diffusion-controlled agglomeration of 

MWCNTs (Zeiler et al. 2010). 
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Fig. 7 Reduced frequency mastercurves of a storage modulus and b loss modulus of PC-MWCNT (3 wt%) 

with varying matrix molar mass (Mw = 33600 – 50500 g mol-1) at a strain amplitude of 0.5%. Inset shows the 

absence of a cross-over frequency for PC-MWCNT 2205 only, and the frequency at the peak in loss tangent 

used to determine the characteristic relaxation time, and the two-phase model (Song and Zheng 2010) fitted to 

the data (thick solid line) 

 

Fig. 8 illustrates the ratios of viscoelastic moduli of filled materials to those of pure 

materials as a function of reduced frequency. A ratio that deviates from unity is a signature 

that the nanotubes are influencing the viscoelastic response. The influence is greatest at the 

lowest reduced frequencies, where the pure polymer undergoes flow but the filled system 

exhibits the second plateau. Here the ratio of storage moduli exceeds 103 and the ratio of loss 

moduli exceeds 10.  At higher reduced frequencies the ratio is close to unity. A noteworthy 

feature is that the onset of the deviation from unity occurs at a lower reduced frequency (and 

hence longer timescale) with increasing molar mass of the matrix polymer. Due to the 

substantial differences in size between polymer chains and CNTs, it is not unreasonable to 

assume that polymer mobility is the main driver for any rearrangement of the filler network, 

and hence that the dominant relaxation mechanism observed is that of the polymer matrix.  
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Fig. 8 Ratios of storage modulus (solid line) and loss modulus (dashed line) of filled PC-MWCNT (3 wt%) to 

unfilled PC of matching matrix molar mass (Mw = 33600 – 50500 g mol-1) as a function of reduced frequency, 

determined at a strain amplitude of 0.5%   

 

Relaxation timescales 

In the pure PC melts, a characteristic relaxation time τ  was estimated from the inverse of the 

cross-over frequency for each grade, as shown in the inset of Fig. 6 for PC 2205.  Linear 

regression was employed to identify the coefficient n of a power-law relationship of the form 

w
nMτ ∝ , as shown in Fig. 9. n was identified as 5.66 ± 0.22 (where ± refers to the standard 

deviation). This value is somewhat higher than the generally reported literature values of 3.4 

‒ 3.75 for PC (Jordan and Richards 2000), and it is probable that the difference originates 

from the polydispersity of the commercial resins. 

 

Fig. 9 Characteristic relaxation times obtained from the cross-over frequency in unfilled PC (hollow symbols) 

and from the peak in tan δ in the PC-MWCNT (3 wt%) (dotted, grey symbols), as a function of molar mass. 

Dashed lines represent linear regressions through the data sets 
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 In the filled PC melts, it is not possible to obtain a characteristic relaxation time from 

the crossover frequency since no cross-over occurs, as shown in the inset of Fig. 7. 

Nevertheless, the change in molar mass of the matrix polymer influences the mastercurves by 

shifting the frequency at which the reduction in the moduli takes place. Instead, a timescale 

'τ  is determined corresponding to the inverse of the frequency at which the peak in tan δ 

occurs. The frequency is obtained for all grades on unshifted experimental data at 200 °C 

using a peak fitting algorithm. Linear regression was employed to identify the coefficient n of 

a power-law relationship of the form w' nMτ ∝ , and n was identified as 5.25 ± 0.62 (where ± 

refers to the standard deviation), as shown in Fig. 9. 

The two power-law coefficients are remarkably similar. In fact, by carrying out a 

paired Student’s t-test on the differences in relaxation times between filled and unfilled 

materials of equal matrix molar mass, we could not reject the hypothesis that the relaxation 

times are unaffected by the presence of nanotubes at a 90% confidence level (two-tailed 

t-test, t = 0.48, n = 4). This supports the view that the same relaxation mechanism applies to 

both pure PC melts and to nanocomposites. This implies that the molar mass of the matrix 

polymer affects the timescale of the relaxation process observed in the nanocomposites in the 

same way as it affects the pure polymers. The relaxation mechanism normally associated with 

polymer melts is reptation, although this generally scales with a lower power of molar mass 

than that recorded here.  

Three types of interactions can be expected in a polymer nanocomposite: polymer-

polymer interactions (dominated by the relaxation of the entanglement network), 

nanoparticle-nanoparticle interactions, and polymer-nanoparticle interactions (Pötschke et al. 

2004). Only one type (polymer-polymer) is present in the unfilled polymers. The similarity in 

the scaling with molar mass of the relaxation processes observed is perhaps unsurprising 

evidence of the key role played by polymer-polymer interactions in these filled systems. 

Although no conclusive evidence can be presented, it is reasonable to assume that nanotube-

nanotube interactions are slow (given their size relative to polymer molecules) and limited in 

extent (by the small volume fraction), and that polymer-nanotube interactions are probably 

dominated by the faster relaxation of the polymer chains, and hence that they also scale with 

molar mass in the same way as the polymer-polymer interactions. Further evidence to support 

this is also available in the work of Zeiler et al. (2010), who observed an influence of molar 

mass of the matrix on the dynamics of network formation in nanocomposites. 
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Although no estimate of relaxation time of a nanotube-nanotube network can be 

made, the fact that these materials can be melt-compounded and extruded is clear evidence 

that they will flow if sufficient shear stress is applied. Another interpretation of this is that the 

applied stress reduces the relaxation time of the nanotube network to the timescale of the 

experiment (Costa et al. 2008; Richter et al. 2009). 

 

Large amplitude viscoelastic response  

In order to probe the material response in the non-linear regime, mastercurves were 

constructed from isothermal frequency sweeps conducted at strain amplitudes of 0.05%, 5% 

and 50%, by appropriate vertical and horizontal shifting. Vertical shifting was performed 

manually using VGP plots, and the vertical shift factors are illustrated in Fig. 10a as a 

function of strain amplitude. Horizontal shift factors were subsequently determined for each 

strain amplitude using the automated technique3, and are shown in Fig. 10b.  

The effect of increasing the strain amplitude is much greater on the vertical shift 

factors than on the horizontal shift factors. The small effect on the horizontal shift factors 

suggests that strain amplitude is not significantly affecting the relaxation mechanisms and 

their temperature dependence. This is consistent with the view that polymer matrix relaxation 

is the dominant mechanism, and with the small amplitude dependence observed on moduli 

from the amplitude sweeps on pure PC in Fig. 1. 

The vertical shift factors are most affected by amplitude at the highest test 

temperature, where shifting to a lower reference temperature requires a reduction of modulus. 

This can be understood by considering a nanotube network that is affected by two processes: 

strain amplitude (setting the degree of network disruption), and temperature (affecting the 

kinetics of network formation). Thus, the higher the test temperatures (where the network 

will approach an equilibrium state more quickly), the stiffer the equilibrium state of the 

nanotube network for a given strain amplitude. At lower test temperatures the state of the 

nanotube network will be further from equilibrium, and hence more history dependent. 

 

                                                 
3 For the highest test temperatures only (T ≥ 280 ºC), the horizontal shift factors could not be obtained 
automatically due to the reduced dependence of modulus on frequency. Instead they were determined manually 
from a visual assessment. 
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Fig. 10 a Vertical shift factors and b horizontal shift factors obtained from isothermal frequency sweeps at 

strain amplitudes of 0.05, 0.5, 5, 50% at Tref = 200 °C. Lines are a guide to the eye 

 

Mastercurves constructed from shifted isothermal frequency sweeps performed across 

the range of strain amplitudes on PC 2205 shifted to a reference temperature of 200 °C are 

shown in Fig. 11. There is little difference between the 0.05% and 0.5% strain amplitudes 

other than the increased noise at 0.05% because of smaller torque and angular velocity 

signals. When the amplitude increases to 5%, it is still possible to construct a mastercurve 

with good overlap between the test temperatures. There is evidence of shear thinning, with 

moduli reducing by almost one order of magnitude across the extended reduced frequency. At 

50% strain amplitude the procedure of constructing the mastercurve is more challenging as 

there is less overlap between temperatures. The moduli are as much as two orders of 

magnitude smaller at 50% strain amplitude than at 0.5%.  
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Fig. 11 Mastercurves for filled PC-MWCNT 2205 (3 wt%) ('G : large dotted grey circles; 
"G : small dotted 

grey circles) for strain amplitudes of a 0.05%, b 0.5%, c 5% and d 50%, at Tref = 200 °C. Corresponding 

measurements obtained from amplitude sweeps ('G : up triangles; 
"G : down triangles) measured at 2π rad s-1. 

Solid and dashed lines are a guide to the eye  

 

The reduction in moduli across the reduced frequency range indicates that the strain 

amplitude is affecting both the nanotube network and the entanglement network. For a given 

strain amplitude, however, the effect is larger at the low reduced frequency end of the 
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spectrum, where the nanotube network dominates, than at the high reduced frequency end 

where the entanglement network dominates. 

 

Roles of strain and temperature history 

The strain and temperature history experienced by a nanocomposite plays an 

important role in defining the extent to which the nanotube network is developed, and hence 

the extent to which it contributes to the response. This build-up is readily observable through 

flocculation experiments such as those of Richter and co-workers (2009). The effect is also 

observable in the present experiments by comparing the responses measured at identical 

reduced frequencies and strain amplitudes obtained from frequency sweeps and from 

amplitude sweeps.    

Moduli obtained during the amplitude sweeps at a range of temperatures shown in 

Fig. 1 measured at strain amplitudes closest to 0.05%, 0.5%, 5% and 50%4 at fixed frequency 

2π rad s-1 were first shifted vertically according to the shift factors shown in Fig. 10a. Then, 

TTS was employed to shift the frequency to a reference temperature of 200 ºC, to allow a 

direct comparison with the large amplitude frequency sweeps. These measurements are also 

shown in Fig. 11. 

Differences in strain and temperature history are responsible for the differences in 

moduli between the mastercurves based on frequency sweeps and those extracted from 

amplitude sweeps. It is worth restating that the amplitude sweeps were performed on a single 

specimen across a reducing temperature range from 300 ºC through to 160 ºC, with each 

temperature experiencing increasing strain levels through to 100% prior to cooling and 

acclimatising at the next temperature. This means that the history of every amplitude sweep 

measurement except the first (at 300 ºC) is of a nanotube structure that has been disrupted by 

the brief application of 100% strain at the previous temperature, and that has re-formed to a 

certain degree during the allowed acclimatisation time of 5 minutes. Frequency sweeps were 

instead performed across the same reducing temperature range from 300 ºC through to 

160 ºC, but each specimen experienced a fixed strain amplitude (of 0.05%, 0.5%, 5% and 

50%) at all temperatures. 

By comparing the mastercurves obtained from the two methods, it is apparent that 

only the moduli measured at 5% strain are almost identical whereas the moduli obtained at 

                                                 
4 The actual strain amplitudes were 0.043% ± 0.001%, 0.49% ± 0.002%, 5.4% ± 0.1% and 57% ± 11%. 
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0.05%, 0.5% and 50% strain are not so. The implication of the nearly identical moduli at 5% 

strain is that the structure of the nanotube network must be comparable. In the case of the 

frequency sweep, it has experienced a 5% strain amplitude throughout the frequency range at 

each temperature, followed by a recovery period whilst changing temperature. In the case of 

the amplitude sweep, it has experienced up to 100% strain amplitude at the previous 

measurement temperature, followed by a recovery period whilst changing temperature, and a 

rising amplitude through to 5%. Thus, we can speculate that the level of network disruption 

and build-up obtained following a constant 5% strain amplitude is similar to that obtained 

following a brief 100% disruption, a recovery period of 5.5 minutes in which the temperature 

is reducing and settling, and a rising amplitude through to 5% strain. 

The same moduli are not obtained following the two histories through to the other 

strains. For the smaller strain amplitudes 0.05% and 0.5%, the disruption caused during the 

amplitude sweeps at 100% strain at the previous test temperature results in a lower modulus. 

For the larger strain amplitude 50%, there is greater disruption to the network during the 

constant 50% amplitude frequency sweep than during the rising amplitude sweep. 

 This comparison between amplitude sweep and frequency sweep measurements 

serves as a reminder of the particular challenges of characterising a material whose properties 

are very sensitive to strain and temperature history, and highlights the need for detailed 

methodologies of characterisation to enable reproducible results and thorough understanding 

to be achieved.  

 

Conclusions 

This paper has investigated the linear and non-linear viscoelastic response of four grades of 

PC melt-compounded with 3 wt% MWCNTs, and of the matching matrix polymers.  

Isothermal amplitude sweeps performed over a wide temperature range indicated that 

the nanocomposites deviate from linear viscoelasticity at much smaller strains relative to the 

pure polymers. Although this has been attributed to strain amplification, where the matrix 

polymer experiences a higher local strain than the macroscopic strain due to the presence of 

the stiff nanotubes network, evidence suggests that disruption of the nanotube network at 

increasing strain amplitudes is responsible. This is consistent with a lack of change of 

mobility interpreted from Tg measurements. Filled materials also exhibit a strain overshoot in 

loss modulus not seen in the pure polymer.  
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Isothermal frequency sweeps were carried out on both MWCNT-filled and pure 

materials. The effect of temperature on modulus was accounted for by employing a density 

correction to the modulus in pure materials, and a shift obtained from van Gurp-Palmen plots 

in the filled materials. Mastercurves were then constructed by employing an automated 

shifting procedure to identify horizontal shift factors for time-temperature superposition. The 

horizontal shift factors were found to be relatively independent of both matrix polymer and 

the presence of nanotubes, suggesting that relaxation processes have the same temperature 

dependence in filled and pure materials. The filled mastercurves exhibit two distinct 

differences from the pure polymer: a second plateau at low reduced frequency with a 

modulus of ~105 Pa, associated with a percolated nanotube network, and a loss tangent less 

than unity across the extended frequency range. Evidence of the filler network’s contribution 

to the modulus was observed through application of Song and Zheng’s  two-phase model. 

Relaxation timescales of both unfilled and filled materials were approximated from the 

inverse of the cross-over frequency and the frequency at the peak in the loss tangent 

respectively. All these timescales scale with molar mass through a power-law with very 

similar coefficients, further evidence that the dominant relaxation mechanism in the 

nanocomposites is associated with the polymer network itself.  

Isothermal frequency sweeps were carried out at varying strain amplitudes from 

0.05% to 50%, and horizontal and vertical shift factors obtained to produce mastercurves. 

There was a considerable effect of strain amplitude on the vertical shifting, arising from the 

different levels of disruption to the nanotube network from the strain amplitudes. The effect 

of strain amplitude on horizontal shifting was small, even at 50% strain. A comparison of 

moduli obtained at the same reduced frequency and amplitude from two different 

experiments was carried out to illustrate how strain and temperature history can affect the 

magnitude of the viscoelastic response of nanocomposite materials. 

 

Appendix A: Automated technique for the identificat ion of horizontal shift 

factors  

The technique employed in this work to identify horizontal shift factors for TTS is broadly 

based on that suggested by Gergesova et al. (2010). It is aimed at removing the ambiguity 

normally present in manual shifting of viscoelastic experimental data. The method is based 

on an optimisation technique seeking to identify the shift factor that minimises the area 

enclosed by overlapping moduli between viscoelastic data measured at adjacent temperatures.  
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The first step in the procedure is the definition of a reference temperature Tref. A 

Matlab optimisation subroutine is then used to identify the coefficients of a set of 

polynomials T T' "(log )   and   (log )
i i

b G b G
T Tf fω ω  that best fit each set of measured values of 

reduced log 'G  and log "G  as a function of log frequency, for each measured temperature. In 

the present data, a third order polynomial was found to be satisfactory.  Fig. 12 illustrates the 

polynomial fitting of experimental data of viscoelastic moduli for pure PC 2205 measured at 

T = 160 ‒ 260 °C. The polynomials are used in the subsequent shift factor optimisation 

instead of the measured experimental data in order to minimise the consequences of 

experimental scatter. 

For each pair of temperatures Ti and Ti+1, an overlap region is identified for both storage 

and loss moduli. Each region is enclosed by the two polynomials obtained from the data at 

the two temperatures of interest on the left and right boundaries.  The lower boundary is 

defined by the value of the polynomial functions 

 T T' ''(min(log ))   and   (min(log ))
i i

b G b G
T Tf fω ω  (0) 

where min(log )ω  is the log of the smallest frequency recorded experimentally for Ti. The 

upper boundary is defined similarly by the values of the polynomial functions 

 T T

1 1

' ''(max(log ))   and   (max(log ))
i i

b G b G
T Tf fω ω

+ +
 (0) 

where max(log )ω  is the log of the highest frequency recorded experimentally at Ti+1. 

An optimisation routine is scripted in Matlab to identify the value of the shift factor, 

Ta  such that when the shifting is applied to the polynomials, giving '
1(log )

i

G
T Tf a ω+  and

"
1(log )

i

G
T Tf a ω+ , the sum of the magnitudes of the overlap regions obtained simultaneously 

from storage and loss moduli data is a minimum.  

The construction of a single such bound area is illustrated on real experimental data 

for pure PC 2205 in Fig. 12, with Ti = 200 °C and Ti+1 = 220 °C. Each area was computed 

numerically using the trapezium rule. A shift factor was obtained between each pair of 

neighbouring temperatures, and the values reported are relative to the reference temperature.  
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Fig. 12 Illustration of the construction of the area (shaded) minimised to determine the optimum shift factor. 

Solid lines are polynomial functions. Dashed lines represent the upper and lower boundaries of the overlapping 

area 

Acknowledgements The authors gratefully acknowledge the contribution of Dr Andy C.Y. Lew from 

Nanocyl S.A. for the supply and compounding of the nanocomposites; of Dr Jaouad El Harfi from the 

University of Nottingham for assistance with the Soxhlet extraction process; and of Dr Jaouad El Harfi and Dr 

Natasha Birkin from the University of Nottingham for assistance with the GPC measurements. 

 

References 

Abdel-Goad M, Pötschke P (2005) Rheological characterization of melt processed polycarbonate-

multiwalled carbon nanotube composites. J Non-Newton Fluid 128 (1):2-6. 

doi:10.1016/j.jnnfm.2005.01.008 

AG BM (2009) Makrolon 2205 and 2207 Polycarbonate Resins. Bayer MaterialScience AG,, vol Edition 

2009-05-11. Bayer MaterialScience AG, Leverkusen, Germany 

Alig I, Pötschke P, Lellinger D, Skipa T, Pegel S, Kasaliwal GR, Villmow T (2012) Establishment, 

morphology and properties of carbon nanotube networks in polymer melts. Polymer 53 

(1):4-28. doi:10.1016/j.polymer.2011.10.063 

Alig I, Skipa T, Lellinger D, Pötschke P (2008) Destruction and formation of a carbon nanotube 

network in polymer melts: Rheology and conductivity spectroscopy. Polymer 49 (16):3524-

3532. doi:10.1016/j.polymer.2008.05.037 

Cadek M, Coleman JN, Barron V, Hedicke K, Blau WJ (2002) Morphological and mechanical 

properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer 

composites. Appl Phys Lett 81 (27):5123-5125. doi:10.1063/1.1533118 

Castillo FY, Socher R, Krause B, Headrick R, Grady BP, Prada-Silvy R, Pötschke P (2011) Electrical, 

mechanical, and glass transition behavior of polycarbonate-based nanocomposites with 

different multi-walled carbon nanotubes. Polymer 52 (17):3835-3845. 

doi:10.1016/j.polymer.2011.06.018 

Costa F, Saphiannikova M, Wagenknecht U, Heinrich G (2008) Layered Double Hydroxide Based 

Polymer Nanocomposites. Adv Polym Sci 210:101 - 168. doi:10.1007/12_2007_123 

Curran SA, Talla J, Dias S, Zhang D, Carroll D, Birx D (2009) Electrical transport measurements of 

highly conductive carbon nanotube/poly(bisphenol A carbonate) composite. J Appl Phys 105 

(7):073711-073715. doi:10.1063/1.3073938 



28 

 

Dealy J, Plazek D (2009) Time-Temperature Superposition - A Users Guide. Rheol Bull 78 (2):16-32 

Dijkstra D, Cirstea M, Nakamura N (2010) The orientational behavior of multiwall carbon nanotubes 

in polycarbonate in simple shear flow. Rheol Acta 49 (7):769-780. doi:10.1007/s00397-010-

0457-6 

Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube Networks in Polymer 

Nanocomposites: Rheology and Electrical Conductivity. Macromolecules 37 (24):9048-9055. 

doi:10.1021/ma049164g 

Eitan A, Fisher FT, Andrews R, Brinson LC, Schadler LS (2006) Reinforcement mechanisms in MWCNT-

filled polycarbonate. Compos Sci Technol 66 (9):1162-1173. 

doi:10.1016/j.compscitech.2005.10.004 

Fisher FT, Bradshaw RD, Brinson LC (2002) Effects of nanotube waviness on the modulus of 

nanotube-reinforced polymers. Appl Phys Lett 80 (24):4647-4649. doi:10.1063/1.1487900 

Fornes TD, Baur JW, Sabba Y, Thomas EL (2006) Morphology and properties of melt-spun 

polycarbonate fibers containing single- and multi-wall carbon nanotubes. Polymer 47 

(5):1704-1714. doi:10.1016/j.polymer.2006.01.003 

Gergesova M, Zupančič B, Saprunov I, Emri I (2010) The closed form t-T-P shifting (CFS) algorithm. J 

Rheol 55 (1):1-16. doi:10.1122/1.3503529 

Handge U, Pötschke P (2007) Deformation and orientation during shear and elongation of a 

polycarbonate/carbon nanotubes composite in the melt. Rheol Acta 46 (6):889-898. 

doi:10.1007/s00397-007-0179-6 

Handge U, Zeiler R, Dijkstra D, Meyer H, Altstädt V (2011) On the determination of elastic properties 

of composites of polycarbonate and multi-wall carbon nanotubes in the melt. Rheol Acta 50 

(5):503-518. doi:10.1007/s00397-011-0558-x 

Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH (2011) A 

review of nonlinear oscillatory shear tests: Analysis and application of large amplitude 

oscillatory shear (LAOS). Prog Polym Sci 36 (12):1697-1753. 

doi:10.1016/j.progpolymsci.2011.02.002 

Jordan TC, Richards WD (2000) Polycarbonate melt rheology. In: Legrand DG, Bendler JT (eds) 

Handbook of polycarbonate science and technology. Marcel Dekker, New York, pp 179 -224 

Lew CY, Dewaghe C, Claes M (2011) Injection moulding of polymer-carbon nanotubes. In: McNally T, 

Pοtschke P (eds) Polymer - carbon nanotube composites: preparation, properties and 

applications. Woolhead publishings Cambridge, pp 155-192 

Lew CY, Xia H, McNally T, Fei G, Vargas J, Millar B, Douglas P, Claes M, Luizi F A Unified Strategy To 

Incorporating Nanotube In Twinscrew Extrusion Processing In: Polymer Processing Society 

Europe/ Africa Regional Meeting, Larcana, Cyprus, 2009.  

Pötschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Rheological and dielectrical 

characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. 

Polymer 45 (26):8863-8870. doi:10.1016/j.polymer.2004.10.040 

Pötschke P, Brünig H, Janke A, Fischer D, Jehnichen D (2005) Orientation of multiwalled carbon 

nanotubes in composites with polycarbonate by melt spinning. Polymer 46 (23):10355-

10363. doi:10.1016/j.polymer.2005.07.106 

Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon 

nanotube/polycarbonate composites. Polymer 43 (11):3247-3255. doi:10.1016/S0032-

3861(02)00151-9 

Reichert P, Hoffmann B, Bock T, Thomann R, Mülhaupt R, Friedrich C (2001) Morphological Stability 

of Poly(propylene) Nanocomposites. Macromol Rapid Commun 22 (7):519-523. 

doi:10.1002/1521-3927(20010401)22:7<519::aid-marc519>3.0.co;2-w 

Richter S, Saphiannikova M, Jehnichen D, Bierdel M, Heinrich G (2009) Experimental and theoretical 

studies of agglomeration effects in multi-walled carbon nanotube-polycarbonate melts. 

Express Polym Lett 3 (12):753 - 768. doi:10.3144/expresspolymlett.2009.94 

Rubinstein M, Colby RH (2003) Polymer Physics, vol 1. Oxford University Press, Oxford, UK 



29 

 

Saphiannikova M, Skipa T, Lellinger D, Alig I, Heinrich G (2012) Superposition approach for 

description of electrical conductivity in sheared MWNT/polycarbonate melts. Express Polym 

Lett 6 (6):438 - 453. doi:10.3144/expresspolymlett.2012.47 

Satapathy BK, Weidisch R, Pötschke P, Janke A (2007) Tough-to-brittle transition in multiwalled 

carbon nanotube (MWNT)/polycarbonate nanocomposites. Compos Sci Technol 67 (5):867-

879. doi:10.1016/j.compscitech.2006.01.036 

Shaffer MSP, Windle AH (1999) Fabrication and Characterization of Carbon Nanotube/Poly(vinyl 

alcohol) Composites. Adv Mater 11 (11):937-941. doi:10.1002/(sici)1521-

4095(199908)11:11<937::aid-adma937>3.0.co;2-9 

Skipa T, Lellinger D, Böhm W, Saphiannikova M, Alig I (2009) Influence of shear deformation on 

carbon nanotube networks in polycarbonate melts: Interplay between build-up and 

destruction of agglomerates. Polymer 51 (1):201-210. doi:10.1016/j.polymer.2009.11.047 

Solomon MJ, Almusallam AS, Seefeldt KF, Somwangthanaroj A, Varadan P (2001) Rheology of 

Polypropylene/Clay Hybrid Materials. Macromolecules 34 (6):1864-1872. 

doi:10.1021/ma001122e 

Song Y, Zheng Q (2010) Linear viscoelasticity of polymer melts filled with nano-sized fillers. Polymer 

51 (14):3262-3268. doi:10.1016/j.polymer.2010.05.018 

Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: Chemistry, 

processing, mechanical and electrical properties. Prog Polym Sci 35 (3):357-401. 

doi:10.1016/j.progpolymsci.2009.09.003 

Stöckelhuber KW, Svistkov AS, Pelevin AG, Heinrich G (2011) Impact of Filler Surface Modification on 

Large Scale Mechanics of Styrene Butadiene/Silica Rubber Composites. Macromolecules 44 

(11):4366-4381. doi:10.1021/ma1026077 

Sung YT, Han MS, Song KH, Jung JW, Lee HS, Kum CK, Joo J, Kim WN (2006) Rheological and electrical 

properties of polycarbonate/multi-walled carbon nanotube composites. Polymer 47 

(12):4434-4439. doi:10.1016/j.polymer.2006.04.008 

Sung YT, Kum CK, Lee HS, Byon NS, Yoon HG, Kim WN (2005) Dynamic mechanical and morphological 

properties of polycarbonate/multi-walled carbon nanotube composites. Polymer 46 

(15):5656-5661. doi:10.1016/j.polymer.2005.04.075 

van Gurp M, Palmen J (1998) Time-Temperature Superposition For Polymeric Blends. Rheol Bull 

67:1-5 

Vilgis TA (2005) Time scales in the reinforcement of elastomers. Polymer 46 (12):4223-4229. 

doi:10.1016/j.polymer.2005.02.060 

Wan T, Clifford MJ, Gao F, Bailey AS, Gregory DH, Somsunan R (2005) Strain amplitude response and 

the microstructure of PA/clay nanocomposites. Polymer 46 (17):6429-6436. 

doi:10.1016/j.polymer.2005.04.105 

Wu D, Wu L, Zhang M (2007) Rheology of multi-walled carbon nanotube/poly(butylene 

terephthalate) composites. J Polym Sci, Part B: Polym Phys 45 (16):2239-2251. 

doi:10.1002/polb.21233 

Yamamoto G, Suk JW, An J, Piner RD, Hashida T, Takagi T, Ruoff RS (2010) The influence of nanoscale 

defects on the fracture of multi-walled carbon nanotubes under tensile loading. Diamond 

Relat Mater 19 (7-9):748-751. doi:10.1016/j.diamond.2010.01.045 

Zeiler R, Handge UA, Dijkstra DJ, Meyer H, Altstädt V (2010) Influence of molar mass and 

temperature on the dynamics of network formation in polycarbonate/carbon nanotubes 

composites in oscillatory shear flows. Polymer 52 (2):430-442. 

doi:10.1016/j.polymer.2010.11.037 

Zoller P (1982) A study of the pressure-volume-temperature relationships of four related amorphous 

polymers: Polycarbonate, polyarylate, phenoxy, and polysulfone. J Polym Sci: Polym Phys Ed 

20 (8):1453-1464. doi:10.1002/pol.1982.180200811 

 

 


