hp-Version composite discontinuous Galerkin methods for elliptic problems on complicated domains

Antonietti, Paola F., Giani, Stefano and Houston, Paul (2013) hp-Version composite discontinuous Galerkin methods for elliptic problems on complicated domains. SIAM Journal on Scientific Computing, 35 (3). A1417-A1439. ISSN 1064-8275

Full text not available from this repository.

Abstract

In this paper we introduce the hp-version discontinuous Galerkin composite finite element method for the discretization of second-order elliptic partial differential equations. This class of methods allows for the approximation of problems posed on computational domains which may contain a huge number of local geometrical features, or micro-structures. While standard numerical methods can be devised for such problems, the computational effort may be extremely high, as the minimal number of elements needed to represent the underlying domain can be very large. In contrast, the minimal dimension of the underlying composite finite element space is independent of the number of geometric features. The key idea in the construction of this latter class of methods is that the computational domain Ω is no longer resolved by the mesh; instead, the finite element basis (or shape) functions are adapted to the geometric details present in Ω. In this article, we extend these ideas to the discontinuous Galerkin setting, based on employing the hp-version of the finite element method. Numerical experiments highlighting the practical application of the proposed numerical scheme will be presented.

Item Type: Article
RIS ID: https://nottingham-repository.worktribe.com/output/714815
Schools/Departments: University of Nottingham, UK > Faculty of Science > School of Mathematical Sciences
Identification Number: https://doi.org/10.1137/120877246
Depositing User: Houston, Paul
Date Deposited: 15 May 2012 14:45
Last Modified: 04 May 2020 16:36
URI: https://eprints.nottingham.ac.uk/id/eprint/1618

Actions (Archive Staff Only)

Edit View Edit View