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Abstract

The aim of this thesis is to provide a framework for a decision making system to operate

a highway network, to evaluate the impacts of maintenance activities, and to allocate

limited budgets and resources in the highway network. This integrated model is

composed of a network level traffic flow model (NTFM), a pavement deterioration

model, and an optimisation framework.

NTFM is applicable for both motorway and urban road networks. It forecasts the traffic

flow rates during the day, queue propagation at junctions, and travel delays throughout

the network. It uses sub-models associated with different road and junction types which

typically comprise the highway. To cope with the two-way traffic flow in the network,

an iterative algorithm is utilised to generate the evolution of dependent traffic flows and

queues. By introducing a reduced flow rate on links of the network, the effects of

strategies employed to carry out roadworks can be mimicked. In addition, a traffic

rerouting strategy is proposed to model the driver behaviour, i.e. adjusting original

journey plans to reduce journey time when traffic congestion occurs in the road network.

A pavement age gain model was chosen as the pavement deterioration model, which is

used to evaluate the current pavement condition and predict the rate of pavement

deterioration during the planning period. It deploys pavement age gain as the pavement

improvement indicator which is simple and easy to apply. Moreover, the deterministic

pavement age gain model can be transformed to a probabilistic one, using the normal

distribution to describe the stochastic nature of pavement deterioration.

A multi-objective and multi-constraint optimisation model was constructed to achieve

the best pavement maintenance and rehabilitation (M&R) strategy at the network level.

The improved non-dominated sorting genetic algorithm (NSGA-II) is applied to

perform system optimisation. Furthermore, the traffic operations on worksites, i.e. lane



closure options, start time of the maintenance, and traffic controls, are investigated so as

to prevent, or at least to reduce, the congestion that resulted from maintenance and

reconstruction works.

The case studies indicated that NTFM is capable of identifying the relationship between

traffic flows in the network and capturing traffic phenomenon such as queue dynamics.

The maintenance cost is reduced significantly using the developed optimisation

framework. Also, the cost to the road users is minimised by varying the worksite

arrangements. Consequently, the integrated decision making system provides highways

agencies with the capability to better manage traffic and pavements in a highway

network.

Keywords: NTFM, iterative algorithm, traffic rerouting strategy, optimisation, genetic

algorithms, M&R strategy, NSGA-II, worksite arrangements
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1 Introduction

Since the late-1980s, more than 90% of motorised passenger travel and around 65% of

domestic freight in the UK have been delivered on the highway network. The total road

length of highway networks in the UK was estimated to be 245,000 miles in 2010 [1].

Also, the total road length in the UK has increased by about 2,500 miles in the decade

since 2000, approximately 1% per year. It demonstrates that the highways authorities

have shifted its attention from construction of new roads to the maintenance and

rehabilitation of existing ones. According to the Annual Local Authority Road

Maintenance Survey [2], in England, the government has spent heavily on road

maintenance in recent years. £2,24Om was spent in 2006, £937m in 2007 and another

£861m in 2008, an aggregate total of £6,867m from 2002 to 2008, in order to maintain

the serviceability level of pavements. The survey also reports that a further £10.65b is

currently required to bring the UK's roads to the desired standard. In addition to the

expenditure on carrying out the work, the travel delay cost to the road users caused by

maintenance is significant and expected to substantially exceed the Corresponding cost

of maintenance [3].

In this thesis a framework of decision making system is developed. Its purpose is to

assist the highways agencies in operating the highway network, predicting traffic

characteristics in the network, preventing, or at least reducing, traffic congestion,

maintaining the pavement condition at a serviceable level, identifying the maintenance

requirements, and minimising both maintenance and road user costs.
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1.1 Background

1.1.1 Highway Networks

The highway network in the UK is comprised of motorways, 'A' roads, rural minor

roads and urban minor roads. Motorways are usually used by long-distance traffic,

while 'A' roads are used by both medium-distance and long-distance traffic. As for the

short-distance traffic, urban minor roads and rural minors are employed. Motorways and

'A' roads occupied 1% and 12% respectively of the total road length of the highway

network in the UK, while rural minor roads and urban roads accounted for the

remaining 54 % and 33%. Nonetheless, 19.8% of the total transportation volume was

conveyed on motorways and 44.3% on 'A' roads.

1.1.2 Road Classes

To distinguish the purposes and functions of different kind of roads, the road classes

adopted in UK are listed in Table 1-1 [4]:

Table 1-1: COBA Road classes

2 Rural all-purpose dual 2 lane carriageway

Speed limit (mph)Road class Description

Rural single carriageway 70

70

3 Rural all-purpose dual 3 or more lane carriageway 70

4 Motorway (urban or rural), dual2 lanes 70

5 Motorway (urban or rural), dual 3 lanes 70

6 Motorway (urban or rural), dual 4 or more lanes 70

7 Urban road, Non-central, single or dual carriageway 30

8 Urban road, Central, single or dual carriageway 30

9 Small town road, single or dual carriageway 30 or 40
10 Suburban main road, single carriageway 40

11 Suburban main road, dual carriageway 40
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The COBA (COst Benefit Analysis) software can be used to compare the costs of road

projects with benefits derived by road user costs. Classes 1 to 6 are recognised as all-

purpose roads ('A' roads) and motorways that are generally restricted by the maximum

speed, 70 mph. The traffic flow model developed in this thesis works with average

speeds which are not allowed to exceed the specified speed limits. Further, the flow

capacity for each road class as stated in Table 1-1 is depicted in Table 1-2 [5]:

Table 1-2: Default road capacity
Road class Capacity (pcu/hr/standard lane)

1 1400

2 and 3 1800

4, 5 and 6 2000

7,8,9 and 10 1400

11 1800

1. "pcu" stands for passenger car unit, which is used to express highway capacity.

For example, one car is recognised as a single unit, motorcycle is considered as

half unit, heavy vehicles are considered as more than 3 units.

1.1.3 Traffic Related Organisations

In England, the Highways Agency (HA) is responsible for managing motorways and

trunk roads, whereas other roads are run by the local authorities, e.g. Nottingham

County Council. While in Scotland and Wales, roads are operated by Transport

Scotland and the Welsh Assembly Government, respectively. As for Northern Ireland,

roads are the responsibility of Roads Service Northern Ireland.

1.2 Objectives

The aim of this thesis is to develop an integrated decision making system to forecast and

operate traffic flows, evaluate the impacts of different maintenance activities, and

allocate limited budgets and resources in a highway network. This system will be
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utilized to facilitate traffic on the network and to maintain the pavement service level to

ensure optimal performance. To fulfil this aim, the following specific objectives are

considered:

• To construct a macroscopic traffic flow model for identifying the traffic

characteristics in a highway network.

• To develop a traffic rerouting strategy based on the proposed traffic model for

modeling driver behavior when traffic congestion takes place in the highway

network, i.e. divert traffic heading to the congested areas to take alternative

routes and avoid traffic delays.

• To select an appropriate pavement deterioration model to evaluate pavement

condition during the planning period.

• To derive all combinations of maintenance and rehabilitation actions that can be

applied to the network and model their effects.

• To develop a genetic algorithm-based optimization technique for pavement

maintenance management. The optimization technique will be used to achieve

the optimaI pavement maintenance and rehabilitation strategy with the purpose

of minimising maintenance cost and user cost and maximising pavement

condition.

In summary, this thesis provides a framework and the sub-models to improve

network performance, enhance pavement serviceability, and minimise maintenance

cost and road user cost.

1.3 Contributions of this Thesis

The most significant contributions of the research studied in this thesis are:
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• A novel network level traffic flow model (NTFM) is built and the software

developed that is applicable for an integrated motorway and urban road

network, in which two-way traffic flow is predicted using an iterative

simulation method. More junction types are taken into account by NTFM than

the existing integrated traffic flow models.

• A roadwork node sub-model is introduced to NTFM, which is used to evaluate

the traffic conditions in a highway network under normal conditions and

different maintenance scenarios.

• A traffic rerouting strategy is developed to model driver behavior when traffic

congestion takes place in the highway network.

• An optimisation technique is built that allows for the selection and scheduling

of maintenance and rehabilitation operations for road sections on a highway

network.

• NTFM is utilised to optimise maintenance cost and road user cost together with

pavement deterioration models in both long-term and short-term, where

Genetic Algorithms are employed to perform optimisation.

• Overall, the capability of the model is to help highway engineers to make more

effective decisions in terms of the limited annual budgets as well as the

frequencies of maintenance activities.
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2 Literature Review on Traffic Modelling

2.1 Introduction

The modelling of traffic flow in highway networks is of vital importance for pavement

management, providing information for traffic control, traffic flow prediction, traffic

diversion, and the implementation of roadwork. In this chapter, the literature on the

traffic flow models will be discussed first. Since traffic rerouting techniques are for

reducing excessive congestion, and, making more efficient use of the existing roads, the

second part of the literature review will be devoted to that area.

2.2 Traffic Models

Typically, traffic flow models are categorised into two main groups: macroscopic

models and microscopic models. Macroscopic traffic models are used to identify the

aggregate behaviour of sets of vehicles, easy to validate and ensure a good real-time

quality, such as the fluid-dynamic traffic models [6, 7]. Microscopic models are applied

to model the travel behaviour of an"individual vehicle which is recognised as a function

of the traffic conditions in its environment [8, 9]. As drivers' behaviour in real traffic is

difficult to observe and measure, microscopic models are difficult to validate accurately

[10]. In addition, the computational effort required by microscopic models is

significantly higher than that for macroscopic models and the data required by

microscopic models are harder to get. As for macroscopic models, they do not

distinguish their components flows by origins and destinations; therefore when the

traffic stream arrives at junctions, macroscopic models usually assign fixed turning

ratios for the traffic stream [10]. In this thesis, focus is on macroscopic models.
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2.2.1 Macroscopic Traffic Flow Models

During the past decades, a number of macroscopic traffic models have been constructed

to identify traffic behaviour on motorways and urban roads. Lighthill and Whitham [6]

and Richards [7] provided a pioneering flow-dynamic model based on first-order

differential equations, termed the LWR model, which was the first model used to

describe unidirectional traffic flow on highway networks.

As an extension to LWR model, Payne [11] developed a second-order model [12] based

on the car-following model [13] that considered the driver's reaction time. This results

in a dynamic mean speed equation rather than the static one applied in first-order

models, in which the dynamic flow phenomena, i.e. emergent traffic congestion and

stop-and-go traffic, are modelled. Because first-order models and second-order models

are mainly focused on the traffic characteristics on road links, they would only be

sufficient for signalized networks where the traffic interaction among flows from

competing arms is eliminated.

Daganzo [10] developed a cell transmission model (CTM) that adopted a convergent

approximation to the LWR model to evaluate the traffic on a highway network with a

single entrance and exit. Afterwards, Daganzo [14] applied merge cell and diverge cell

in a CTM to generalise the junctions within a highway network. CTM can be used to

reproduce kinematic waves, the formation and dissipation of a queue in an explicit

manner, in both congested and uncongested regimes, and to model the traffic movement

on a simple highway network with three-legged junctions. Lo [15] introduced signal

control to CTM, and Lo et a1. [16] further developed signalized merge and diverge cells

in CTM to broaden its applicability. However, priority junctions, i.e. T-junction and

roundabout, are not considered, so the conflicting requirements of the traffic flows from
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competing directions cannot be captured. Thus it IS only suitable for signalized

networks.

Messmer and Papageorgiou [17] considered the situation of a motorway network based

on the second-order traffic flow model, METANET model. The approach has been

widely applied to simulate traffic flow phenomena on motorway networks of arbitrary

characteristics, including motorway links, on-ramps and off-ramps (slip roads). Other

research has been performed to improve METANET, the adoption of variable speed

limits on motorways is described in Breton, et al. [18] and Hegyi, et al. [19], and the

application of route guidance is depicted in Deflorio [20] and Karimi et al. [21].

Subsequently, Van den Berg et al. [22] developed an integrated traffic control capability

for mixed urban and motorway networks, as motorway traffic is heavily influenced by

the traffic flows on the connected urban roads, and vice versa. This model is composed

of the METANET model that was used to evaluate motorway traffic and a queue length

model based on the Kashani model [23] for urban traffic, coupled via on-ramps and off-

ramps. However, these studies referred to METANET do not identify the traffic

interaction among competing flows, since the inflow and outflow for each node in

METANET is only characterised by turning ratios of traffic flows from each link that is

connected to the node. In Van den Berg et al. [22], the traffic in the major road and the

slip road for an on-ramp are treated separately. They need to be addressed dependently

since traffic from slip road is also restricted by the traffic on the major road. Also, the

updated urban traffic model assigns sub-queues for each turning direction on road link;

however, shared lanes are not taken into account where traffic heading to different

directions might be mixed together.
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2.2.2 Priority Junction Models

Many different approaches for evaluation of traffic at unsignalized intersections have

been presented and investigated, including gap acceptance theory, and queuing theory.

2.2.2.1 Gap Acceptance Theory

In traditional gap acceptance models, it has been assumed that the vehicles in the major

stream have absolute priority over the vehicles in the minor stream. It means that the

major stream is unaffected by the minor stream vehicles. Within unsignalized

intersection theory, it is also assumed that drivers are both consistent and homogenous

[24]. A consistent driver is assumed to act the same way every time in all similar

situations. For a homogeneous traffic stream, all drivers are supposed to behave in the

same way.

In the gap acceptance theory two major parameters are investigated, critical gap and

follow-up time. The critical gap is the minimum gap for drivers in the minor stream to

accept and enter the intersection, any shorter gap will be rejected and any longer gap

accepted. The follow-up time is the headway between two departing minor stream

vehicles in very long gaps. Many techniques have been applied to estimate the critical

gaps at unsignalized intersections. Some of the important methods are examined in [24]

and [25], and a set of quality criteria has been formulated by which the usefulness of

each method is appraised [25]. Furthermore, Brilon et al. [25] found that the maximum

likelihood method [26] and Hewitt's method [27] are superior to other methods for

estimating the critical gap.

In addition, the capacity at the unsignalized intersection is very important. Capacity on

the minor road is determined as the maximum number of minor stream vehicles that can

cross the intersection during a unit time under predefined conditions. In 1973, Siegloch

[28] developed the fundamental capacity equation of the minor road. Based on this
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equation, numerous capacity formulas are computed using different headway models

[24]. The distribution of headway is essential for the calculation of capacity at

unsignalized intersections, including negative exponential distribution (MI), shifted

exponential distribution (M2) and dichotomized distribution (M3) [29]. The M3 model

allows a portion of the vehicles to be bunched and the remaining vehicles are free

vehicles that move without interacting with the front vehicles, where the latter is

characterised by a shifted exponential distribution. A more practical M3 model is

proposed by Cowan [29], which does not attempt to model the bunched vehicles as

their headways are not accepted by minor stream vehicles but rather model the larger

gaps between the free vehicles. Based on Cowan's M3 headway model, Plank and

Catchpole [30] derived the corresponding capacity formula using Siegloch's capacity

equation [28].

Kimber [31] found that the vehicles in the minor stream could also affect the vehicles in

the major steam, especially under high flow circumstances. Thus a new gap acceptance

model based on limited priority for the major stream was proposed by Troutbeck and
. .

Kako [32], in which the major stream vehicles are expected to be slightly delayed so as

to accommodate the merging minor stream vehicles. The limited priority gap acceptance

model has been applied to evaluate the merging behaviours at roundabouts [32] and

freeway on-ramps [33].

2.2.2.2 Queuing Theory

Starting from the capacity at unsignalized intersections, further traffic parameters,

which represent the quality of traffic operations, can be evaluated. Queuing theory is

generally used to evaluate situations which involve average delays, average queue

lengths, distribution of delays and distribution of queue lengths. In 1962, Tanner [34]

established the equations for the average delays for minor stream vehicles at
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unsignalized intersections with only one major stream and one minor stream. This kind

of intersection belongs to the MlG2/1 queuing system [35], M represents the traffic flow

arrival pattern of the minor stream, i.e. exponentially distributed headway; G is service

time, i.e. the time spent in the first position of the queue. Two types of service times are

involved, one is the service time for vehicles entering the empty system and the other is

the service time for vehicles joining the queue when other vehicles are already queuing.

Finally "I" stands for one service facility, i.e. one service lane for the minor stream.

Comparable solutions to the MlG2/1 queuing system have been introduced by Yeo and

Weesakul [36] and Kremser [37, 38], who [37] proposed the formulae for the

expectations of the two service times. Afterwards, Daganzo [39] and Poeschl [40] have

derived new formulae to improve Kremser's approach. Based on queuing theory, Ning

[41] proposed a universal procedure for calculating the capacity for the M/G211 queuing

system under different predefined conditions, extending the method to cope with the

queuing system with more than one major stream.

2.2.2.3 Discussion

One disadvantage for the gap acceptance models is that they have failed to capture

conflicts among the major streams. For instance, the right-turning vehicles (for left-side

driving, i.e. in the UK) in the major stream have to give way to the vehicles going ahead

from the opposing direction, resulting in a queue forming on the major road. It also led

to the variation of the headway distributions on the major road so that the original gap

acceptance criteria no longer applies [42]. As a result, gap acceptance models are only

sufficient for unsignalized intersections under simpler conditions.

In a mixed road network, adjacent signalized intersections can have a significant impact

on capacity and performance ofunsignalized intersections [43]. On one hand, signalized

intersections can group the vehicles into a queue during the red phases, and then result
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in a cyclic recurrence of a set of long headways (between vehicles departing freely

during the green phase) and a set of short headways (between vehicles departing from

the queue), thus it is impractical to model the recurrence of headways with gap

acceptance theory [43]. On the other hand, signalized intersections can cause the

vehicles to arrive at the downstream intersections in platoons, while the gap acceptance

models can be applied only when the platoon does not exist [44]. This is because the

headways among a platoon are supposed to be shorter than the critical gap that led to no

entry for minor stream vehicles. Consequently, the traditional gap acceptance models

are not readily applied in network level analysis.

Moreover, the critical gap is difficult to determine and implement for some special

conditions, including a two-stage gap-acceptance process, downstream queue spill back,

and driver lane preference [26]; and gap acceptance models are not accurate for

modelling directional flow [45].

Compared to gap acceptance theory, queuing theory is a more abstract technique for

describing driver departure patterns, and it can be more easily applied to measure the

delays at more complicated unsignalized intersections [41]. However, it is also

constructed based on headway distribution models, thus it suffers the same drawbacks

of the gap acceptance theory that resulted from the variation of headway distributions.

As gap acceptance theory and queuing theory mainly focused on investigating the traffic

at a single intersection, and not accurate for modelling directional flow [45], they are

not capable of identifying traffic characteristic at the network level.

2.3 Traffic Rerouting Control Approaches

A number of techniques have been developed previously for routing control in

transportation networks: so as to alleviate traffic congestion, which involve user

equilibrium assignments and control strategies that are constructed by combining
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optimal control theory and macroscopic traffic flow models. Messmer and

Papageorgiou [46] applied a nonlinear optimisation approach based on the METANET

model [17] to handle the route guidance problem in motorway networks, a parallel

solution derived in terms of user equilibrium principles [47] has been proposed by Wie

et al. [48]. Another method to this problem of integrated control is the application of a

linear programming approach as described in Papageorgiou [49] where both motorways

and signal-controlled urban roads are considered. Iftar [50], [51] also presented a linear

optimisation approach based on a decentralized routing controller to reduce queue

build-up for congested highways, the deployed routing controller is decentralized in the

manner that the computations for each node on the network are done locally without any

information transfer from any other nodes. Vanden Berg et al. [22] formulated a model

predictive control approach for mixed motorway and urban networks, based on the

METANET model [17], Kashani urban network model [23] and improved on-ramp and

off-ramp models. A practically integrated control model when both a motorway and a

parallel arterial are included in the network was proposed by Chang et al. [52], [53]. On

the basis of the previous studies [52-55], Vue et al. [56] proposed an integrated control

approach for mixed road networks, in which traffic flow evolution on on-ramps, off-

ramps and surface streets, as well as queue propagation, have been explicitly identified.

However, this integrated control is only applicable for motorway and signal-controlled

urban network, as the effect of conflicting flow from competing routes on the traffic

demand of road link is not taken into account.

In addition, some of the existing traffic control strategies are implemented using origin-

destination (O-D) trip matrix, which are exposed to the difficulty of collecting accurate

O-D information. The reliability of the obtained O-D trip matrix and computational

complexity are the two main disadvantages hindering such strategies from being applied
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broadly. Furthermore, the traffic flow models themselves are very complicated, which

makes these control strategies hard to reach the global optimality [57].

2.4 Summary

The literature review showed that there are numerous different techniques for predicting

the traffic condition in the network, but that the following deficiencies exist:

a. A review of the existing traffic flow models indicated that CTM and METANET

are widely adopted in traffic management. However, both the models failed to

capture the traffic movement taking place at the priority junction.

b. Only limited junction types are taken into account by CTM and METANET, it

means that the traffic interaction experienced at some junction types, i.e.

signalized T-junction and roundabout, cannot be identified, especially not

suitable for the integrated motorway and urban road network that composed of

different kinds of junctions.

c. As for priority junctions, the most common methods are gap acceptance theory

and queuing theory. They have been applied to investigate the traffic at different

kinds of priority junctions. Nevertheless, they become inefficient when

modelling directional flow and identifying traffic behaviours at the network

level.

d. Based on the proposed traffic models, numerous traffic rerouting control

measures have been developed. Most of the control measures take advantage of

O-D matrix to describe the modification of journey plans, which require

abundant information on individual journey plans.

Considering the traffic interaction at both signalized and priority junctions, this thesis

describes a macroscopic traffic flow model the purpose of which is to provide a method

for predicting the traffic flow and travel delay for each junction in the network. One
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feature of this model is that both motorway junctions and urban junctions are evaluated

based on the principle of a maximum capacity flow rate at these junctions where flows

compete. Another feature is that this model works with the observed junction turning

ratios rather than O-D matrix. In addition, queue propagation is used to model traffic

congestion through the network.
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3 Network Level Traffic Flow Model

3.1 Introduction

This chapter develops a network level traffic flow model (NTFM) which is applicable

for an integrated motorway and urban road network. It forecasts the traffic flow rates,

queue propagation at the junctions and travel delays through the network. NTFM uses

sub-models associated with all road and junction types which comprise the highway.

The principles involved in the modelling methodology are explained and a detailed

description given for the signalized intersection, T-junction and roundabout sub-models

provided. These are typical of the unit models developed and demonstrate how the

traffic flow and queuing is calculated at the junctions. Where the flow to a junction

exceeds the capacity of the network then a queue forms and the propagation of this

queue back through the network will impact upon the flow achieved at other junctions.

The flow at anyone part of the network is obviously therefore very dependent upon the

flows at all other parts of the network. To predict the two-way traffic flow in NTFM, an

iterative simulation method is executed to generate the evolution of dependent traffic

flows and queues. Moreover, instead of applying an O-D trip matrix this model takes

advantage of the observed traffic flow turning ratios at junctions. It should be noted that

the accuracy of the results of this model will depend critically on the validity of the

monitored turning ratios. But it is considered that this information is more practically

obtained than individual journey plans.

To demonstrate the capability of the model it is applied to a case study network. The

results indicated that NTFM is capable of identifying the relationship between traffic

flows and capturing traffic phenomena such as queue dynamics. One of the features

which represents the capability of a road network is the traffic flow characteristics. By
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introducing a reduced flow rate on links of the network then the effects of strategies

employed to carry out roadworks can be mimicked. Different traffic management

schemes will result in different flow rates past the active work. By comparing the whole

network flow and queue characteristics under alternative maintenance strategies the best

way of managing the highway repairs, minimising the disruption caused to the road

users can be established. Furthermore, a traffic rerouting strategy is incorporated to

model journey behaviour when traffic congestion takes place in the highway network.

3.1.1 Network Representation

The road network studied in NTFM consists of nodes and links. Links are used to

represent roads, i.e. motorway links and urban road links, and nodes are junctions,

including signalized intersections and roundabouts, etc. Moreover, parts of the same

road with different characteristics such as flow capacity are separated by a node (e.g.

when a dual 2 lane carriageway reduces to a single carriageway). Prior to the evaluation

of the road network, the relationships between traffic flows and queue build up at the

network need to be identified. Models for junctions have links which enable the exit

traffic from one junction to enter the second junction; this will work in two directions as

for these two junctions two-way traffic flow is deployed. In this way, all the junctions in

the network are connected to each other.

In terms of the network flow theory a network can have a number of source nodes and

sink nodes, where a source node defines the flow into the network and a sink node

defines the flow out of the network. Source and sink nodes can be used to model the

edges of the network or include the rest of the network in the model of a sub-network.

In addition, the links themselves can have source and sink nodes, which are used to

model cumulative traffic enteringlleaving the link. This can represent significant traffic
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flows to/from the network from such elements as housing estates, airports, railway

stations or places of employment. In this way it is possible to avoid the inclusion of all

minor roads on the network.

3.1.2 Model Data

Data is needed to describe each link by the flow capacity and the link capacitance and

each node, which represents a junction, the flow capacity through the node. Such data

can be derived from the system description or recording flow data at different times

during the day. Data necessary for the modelling is described below:

CiJ - flow capacity on the link between nodes i and j (pcu/hr), where pcu is

passenger car unit

CPiJ - link capacitance, i.e. the maximum number of cars which can queue on

the link from node j (pcu), which is obtained based on the full length

fromjunctionj to junction i

source flow entering the link in time tk, for example, cumulative traffic

joining the main road from an estate (pcu/hr)

sink flow leaving the link in time tk, for example, cumulative traffic

leaving the main road for an estate (pcu/hr)

proportion of flow on the link choosing the outflow direction /, / is

expressed either in direction left, right, ahead or in the ID of the destined

node, Le.j+ 1

proportion of flow leaving the motorway link in time tk

Some data depends on the system structure, for example, the link capacitance, which is

described by the room for the queue on the link, and is time independent. Some data
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depends on time, for example, the proportion of flow travelling to a certain direction,

and can be different throughout the day.

Additional data needed for nodes describing the different types of junction is described

in the separate junction models.

3.1.3 Main Principle ofNTFM

Three main variables are defined in the model:

J;ih) -

qiitk) -

qi (tk) -

flow on the link in time tk (pculhr)

average number of vehicles queuing on the link in time tk (pcu)

average number of vehicles propagating back to the upstream links of

node i in time t« (pcu)

NTFM is constructed based on the principle of the queue model. Firstly, flows from the

network source nodes are passed through the network to all the sink nodes, calculating

the flow on each link, J;itk). Then the flow on each link is compared with the flow

capacity of the link, applying the general equations for the queue on the link and the

models for the different types of junction, and the queue is calculated, qiitk). If the

queue exceeds the link capacitance, effects of the queue are propagated back through

the network, qt (tk). Finally, in the following time steps, different flows from the

network source nodes are propagated through the network, to represent situation such as

the rush hour, and their effects are added to the queues present on the network from the

previous time steps. If the flow through the network improves, for example, traffic flow

rates from the source nodes decrease or traffic lights are adjusted to allow a better flow

through the congested links, the queues can decrease and eventually the links can

become clear of queues. In this manner the traffic characteristic for a given highway
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network throughout a day can be identified by NTFM. Detailed rules for calculating

flows and queues on the link are described in the following section.

3.1. 3.1 Main Equations

Flow on the link i-J in time tk is calculated as a sum of all the flows to node i, the flow

entering the link and the negative flow leaving the link:

J;jtle) = Lds.i.Atle v.»,)+srijtle )-ski.i(tk)
ails

(3-1)

Once the flow on each link in time tie is calculated (for the circumstances that there are

no restrictions), the flow value and the queue value on the link i-J might need to be

updated according to the flow capacity on this link ci.} and the link capacitance CPi.}'

The updated flow is expressed as f/i (tic) and the updated queue is expressed as q:.i(tic)'

M is equal to tic - tic-I'

Three cases are considered:

• Flow on the link is higher than the flow capacity and there is no queue on the

link in time tk:

If t.,(tic) > ci.} , and s., (tic) = 0, then (3-2)

/;'.(tlc}=C .. andI.J I,J

if q: .(tic) > en .. , then q: .(tie) = cp .. , and q.(tlc) = I r..(tic )-c .. ).!J.t - cp .. (3-2')
I.) 'r: I,) I,) I.) , V t.] I.j '.j

• Flow on the link is higher than the flow capacity and there is a queue on the link

(3-3)
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q: .(tk)=q· .(tk)+(J; .(tk)-C .. ).l1t
i.] i.] t .] '.j

• Flow on the link is lower than the flow capacity and there is a queue on the link

in time tk:

(3-4)

In the third case, described above, when the flow is less than the flow capacity and a

queue is present, the link can be cleared of the queue, depending on the size of the

queue and the difference between the flow capacity and the flow. The queue becomes

zero, if the difference between the flow capacity and the flow is not greater than the

queue size. When the size of the queue is smaller than the difference between the flow

capacity and the flow, the flow value is adjusted by the size of the queue, as shown in

Equation 3_4b.

The flow and the queue on the link with a junction are updated according to the

appropriate model of the junction, when the flow capacity for the node is used in the

model. More complexity is introduced in the junction models, when separate lanes are

modelled on the links and the flow capacity and the capacitance on each lane are

considered.
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3.1.3.2 Queue Propagation back through the Network

Once the queue is larger than the link capacitance, as described in the Equations 3_2b or

3_3b, the queue at the end of the link, q;(tk), is passed back to the connecting network,

i.e. to the links that contributed to the build-up of the queue. This is done using the

queue propagation algorithm. The general idea is that a proportion of the queue is

passed to each link that contributed to the build-up of the queue. The proportion of the

queue for each link is calculated as the proportion of the flow from that link

contributing to the overall flow. For example, if a queue builds up on the link from} to

}+1 and it exceeds the capacity of the link by the number of vehicles q)t A: ), it is

proportionally distributed back to all the links that enter node}. This process is going to

increase the size of the queue and decrease the flow on each link that enters node}:

(3-5)

r: .(t ) = I, .(t ) _ h,At A:) • qAt A: )
I,J A: I,J A: f.. (t) At

J,J+I A:

(3-6)

If after this process the size of the increased queue, q:,} (lA: ), exceeds the capacity of the

link, en .. , the effects of the queue are passed back further through the network until a.r i.]

queue can be accommodated and does not exceed the capacity of the link. For example,

q;(tk)is passed to the upstream links that enter node i, etc.
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3.1.3.3 Queue Update in Time

If the queue is present in time tk, i.e. q;)tk) > 0, it is also present at the beginning of

the modelling step tk+I' i.e. qi,j (tk+l) = q;_Atk), which then depends on the flow in time

tk+1.J;)tk + 1), and the relevant equations are applied to update the flow and the queue

on the link as necessary.

3.2 Junction Sub-models

In addition to the basic link model, the sub-models for each junction type are

constructed to express the traffic interaction at junctions. The junction types studied in

this model are listed in Table 3-1.

Table 3-1: Junction types in NTFM

Signalized

Junctions

Signalized

T-junction

Signalized

Intersection

Signalized

Roundabout

Junction groups Junction types

Priority Junctions T-junction Urban Roundabout Motorway

Roundabout

One-way

Junctions

On-ramp and Off- Merge and Diverge Roadwork node

ramp

The traffic flow at a signalized junction is influenced by both the flow capacity of the

entry arm and the green split time of the traffic signals (proportion of times the signals

gives priority to flow in its direction), where the conflictions among competing traffic

flows are eliminated owing to the application of traffic lights. For the group of one-way

junctions where (except for the on-ramp ofmotorways), the entering traffic for the one-

way junction is only characterized by the corresponding flow capacity. The on-ramp is

also evaluated as a priority junction. For priority junctions, the traffic flow is based on
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right-of-way rules, where the entering traffic flow for each ann of the junction is

restricted by the flow capacity and also by the traffic flows from competing arms, The

underlying methodologies for the each junction type stated above are described in detail

to explicitly demonstrate these concepts.

3.2.1 Signalized Intersection Model

In terms of Figure 3-1, each road to the intersection has two lanes, lane 1 is used for

going straight on and turning left and lane 2 for turning right. Assume that the traffic

lights are on green for lane 1 and for lane 2 for different lengths of time, but they tum to

red for both lanes at the same time.

i+l

_jL
i-l _ ----i+1

i-I

Figure 3-1: Signalized Intersection

3.2.1.1 Junction Specific Data

flow capacity for junction i, depending on gaps between vehicles and

vehicle speed (pcu/hr)

Cj-l,i,I - flow capacity for lane I on the link between nodes j-l and i (pcu/hr),

depending on gaps between vehicles and vehicle speed (pcu/hr)

proportion of time on green in lane I from direction)-l
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CPj-l,i,r link capacitance in lane I, i.e. the maximum number of cars which can

queue in lane 1of the link (pcu)

3.2.1.2 Model

Since the intersection is controlled by traffic lights, the node flow capacity in the lane is

described as a product of the time proportion on green in the lane and the node flow

capacity. For example, the flow capacity for node i in lane 1 from direction j-l IS

calculated as:

(3-8)

According to the junction description, flow in the lane is described as the appropriate

proportion of the flow in the lane. For example, the flow in lane 1 and lane 2 from

directionj-l is described as:

fj-I./.I (1k ) = (d j_I./.j+1 (1k ) + d j_I././_1 (1k ) )fj-l,i (I k ) (3-9)

fj-I./.2 (1k ) = d j_I././+1 (1k )fj-I./ (tk )

A queue might build up in lane 1 and/or lane 2, depending on flow capacity in the lane

and lane capacitance. Similarly to the general rules of the queue calculation on the link,

three cases are considered:

• Flow on the link in lane 1 is higher than the flow capacity in lane 1 through the

intersection and there is no queue in the lane in time tt:

If fj-I./,! (Ik ) > Cj_I./,! and q j_I./.1 (t k ) = 0, then f;-I./.I (tk ) = C j_I./.1 and

q ~_I./,I (t k ) = (rj-I./,! (t k ) - C j_I./,I ). At

(3-10)

(3_108)

(3_lOb)if q~_I./.I (tk ) > cp j_I./,!' then q~_I./.1 (tk ) = cp j_I./.1 and

q j_1 (tk ) = (.rJ-tU (tk ) - CJ-I./.I ).111 - cp j_I.I,I
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• Flow on the link in lane I is higher than the flow capacity in lane I through the

intersection and there is a queue in the lane in time tk:

If fj-I,i./ (t k ) > C j-l,i./ and q j_I,;,/ (t k ) > 0, then f;-I,i./ (t k ) = C j_I,;,/ and (3-11)

if q ~_I,;,1 (t k ) > cp j_I,;,1' then q ~_I,;,1 (t k ) = cp j_I,;,,1 and

q j_1 (t k ) = q j-l,i,I (t k ) + (fj-I,;,/ (Ik ) - Cj_I.;./ ). M - cp j-l,i,I

• Flow on the link in lane I is lower than the flow capacity in lane I through the

intersection and there is a queue in the lane in time tk:

If fj-uAt k ) s C j-l,i,I and q j-l,iAt k ) > 0, then f;-l,iAt k ) = Cj-U,l and

q~_I,;,1 (/k) = q j-l,i,l (tk)+ (tj-I,;,1{lk)- cj_I,;,/)· III

(3-12)

Flow from the intersection to some direction is calculated as a sum of all the flows

leaving the link on the appropriate lane. For example, flow from i to direction j+ 1 is

calculated as a sum of the proportion of the flow from i-I turning left in lane 1, the

proportion of the flow from j-l going straight in 'lane 1 and the proportion of the flow

from i+I turning right in lane 2. Also, the flow from the number of cars in the queue in

the previous time steps travelling that direction is also added to the expression:

(t ) = d;_I,i,j+1 (t k ) • I' (t) d j-l,i,j+1 (tie) . f (I)
J;,j+1 k d... (t )+ d. .. (t ) J H,;,I k + d. .. (t )+ d. .. (t) j-l.i.1 k

.-I .r,J+I k .-1.•.•+1 k J-I".J+I k J-I, •••-I k

di+l.i.j+1 (t k ) I' () f( ) f( ) f( ())+ d. .. (t )' J i+I.;.2 t k: + q ;-I.i.I (t k-I) + q j-I.;.I (tk-I) + q ;+1.;.2 tk-l
I+I .r,J+I k

(3-13)

For example, variable f(QH.i.1(tk-I») describes the flow from the queue in the previous

time step between the junctions i-I and i that is going to the direction ofj+ 1.
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Once the queue exceeds the link capacitance, its effects are propagated back through the

network, following the general algorithm.

3.2.2 T-junction Model

i-J i+I

)-1

Figure 3-2: T-junction

This junction, shown in Figure 3-2, is controlled assuming that drivers obey the right-

of-way rules. On the T-junction a vehicle travelling on the major roads has right-of-way

and a vehicle approaching the major road must allow it to pass before joining the flow

of traffic. Some roads to the intersection have a single lane, some have two lanes. Two

lanes are used on the left part of major road, where lane 1 is used for going straight on

and lane 2 is used for turning right and crossing the oncoming traffic on the major road.

Also, two lanes are used on the minor road, lane 1 is used for turning left and lane 2 is

used for turning right. The rest of the roads have a single lane.

The junction specific data applied in this model is:

flow at node i that coming from direction i-I and going in lane I, i.e. 1

represents the left lane, in time tk (pcU/hr)

flow at node i that coming from direction i+1 in time tk (pculhr)

node i flow capacity for the traffic coming from direction i-I and going

in lane I, depending on gaps between vehicles and vehicle speed (pcU/hr)
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CPi-I.i.l- link capacitance in lane I, i.e. the maximum number of cars which can

queue in lane 1 of the link (pcu)

average number of vehicles queuing on lane 1of arm i-I for node i at the

beginning of tk (pcu)

average number of vehicles propagating back to the upstream links of

node i from arm i-I in time tk (pcu)

The T-junction is controlled by right-of-way rules and a priority is set for certain

directions. Therefore, in order to calculate the queue for each direction on the junction,

i.e. the major roads i-I and i+1 and the minor roadj-l, has to be considered separately.

3.2.2.1 The Major Road i-I

For the flow from direction i-I to direction i+l, i.e. in lane 1, no conflicting traffic

restriction on the flow exists. Therefore, a queue can only build up due to the flow

capacity on the link after the junction, following the general rule described in Section

3.1.3.

For the flow from direction i-I to directionj-l, i.e. in lane 2, the conflicting flow is the

flow from direction i+1 to i. A queue builds up if the flow in lane 2 or the conflicting

flow is higher than the flow capacity in lane 2 through the intersection. The updated

flow is expressed as J;~I,i,/(tk) and the updated queue is expressed as q:-I,i.I (tk)·

Five cases are considered:

• Flow on the link in lane 2 is higher than the flow capacity in lane 2 through the

intersection, the conflicting flow from direction i+1 is lower than the flow

capacity in lane 2 through the intersection, and there is no queue in the lane in

time tk:
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(3-14)

(3-14 b)

• The conflicting flow from direction i+1 is higher than the flow capacity in lane 2

through the intersection and there is no queue in the lane in time tk :

(3-15)

q ;-1';,2(t k ) = /;-I,i,2 {tk ).!1t

(3-15~

q i-I (t k ) = /;-I,i.2 (t k ) ·Il.t - CPi-I,i,2

• Flow on the link in lane 2 is higher than the flow capacity in lane 2 through the

intersection, the conflicting flow from direction i+1 is lower than the flow

capacity in lane 2 through the intersection and there is a queue in the lane in time

(3-16)

/;~I . 2 (lA; ) = C'_I' 2 and
, 91• , ~I.

(3-16~
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• The conflicting flow from direction i+1 is higher than the flow capacity in lane 2

through the intersection and there is a queue in the lane in time t k :

(3-17)

if q ;-I,i,2 (t k ) > CPi-l,i,2 ,then q ;-I,i,2 (t k ) = CPi-l,i,2 , and

q.; (t k ) = qi-J,i,2 (t k ) + /;-I,i,2 (t k ). !it - CPi-l.i,2

• Flow on the link in lane 2 is lower than the flow capacity in lane 2 through the

intersection, the conflicting flow from direction i+ 1 is lower than the flow

capacity in lane 2 through the intersection and there is a queue in the lane in time

If /;-I,i.2 (Ik ) s Ci-1,i,2 , and /;+I.i (Ik ) s Ci-1•i•2 and q j-l,i,l (Ik ) > 0, then (3-18)

/;~I.i,2 (Ik) = Ci-l.i,2 and

'f' () th ' () q;-1 i 2 (t k ) '()
1 qi-l i 2 t, < O. en /;-1' 2 Ik = C'_I' 2 + .. and q'_1 . 2 Ik = 0, , I ,l, 1 ,l, !it 1 ,l,

(3-18'j

3.2.2.2 The Major Road i+l

For the flow from direction i+1 to direction i-lor direction j-l no conflicting traffic

requirement is present. Therefore, a queue can only build up due to the flow capacity on

the link after the junction following a general rule described in Section 3.1.3.
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3.2.2.3 The Minor Roadj-l

For the flow from directionj-l to direction i-I, i.e. in lane 1, the conflicting flow is the

flow from direction i+1 to i-I. While for the flow from directionj-I to direction i+1, i.e.

in lane 2, the conflicting flow is the sum of the flow from direction i+1 to i-I and the

flow from direction i-I to i+1. Both flows on minor road j-l are evaluated according to

the same methodology as the flow in lane 2 from direction i-I.

3.2.3 Signalized T-junction Model

The difference between normal T-junction and signalized T-junction is that signal

control is applied to the signalised T-junction so as to leave more entry space for the

traffic flow from the minor road. The advantage of this junction is that the flow capacity

for the traffic flow from the minor road is specified no matter what value of the traffic

flow is on the major road. Typically, there are two phases for the traffic flows through

the T-junction, the green times for the traffic flows on the major road and for the traffic

flow on the minor road. The green times for each entry time can be adjusted according

to the value of traffic flows from each arm, which enables the vehicles to pass through

the junction with fewer disturbances.

In terms of Figure 3-2, the entry flow capacity for each lane is restricted both by the

green time and original flow capacity, for example, the flow capacity for the I st lane of

the major road i-I is determined by:

,
Ci-l•i•1 = gi-I.i X Ci-l•i•1 (3-19)

In addition to flow capacity, conflicting theory is also adopted to restrict entry capacity.

During the green time for major road, there is no conflicting flow for the traffic flows

on major road i+1 and on the 1sI lane of major road i-I; whereas, the traffic flow on the
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2nd lane of major road i-I is dominated by the conflicting flow on major road i+1, the

underlying methodology is explained in Section 3.2.2.1. On the other hand, during the

green time for the minor road, no conflicting flow is presented for both left-turning and

right-turning flows.

3.2.4 Roundabout Model

((j I)

dti-l ) I a J)

Figure 3-3: Roundabout

A roundabout is modeled in effect as a series of priority junctions with priority to traffic

on the roundabout, such as urban roundabout and motorway roundabout. However,

signalized roundabout is operated by signal control without consideration of conflicting

flows.

I 2 4 ~
ct(j- J)

Assume a roundabout with four entry arms a, b, c and d for roundabout i, illustrated in

Figure 3-3, used to represent to upstream links j-I-i, i+I-i, j+ I-i, i-I-i respectively.

The order in which the traffic flow is calculated at the roundabout progresses clockwise

round the roundabout starting at arm a: a-d-c-b. The flow from arm a will be dependent

on the flow from arms b and c, this is because only parts of flows from arms b and c
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have to pass through the entrance of ann a, i.e. lane 1 and lane 2, to leave the

roundabout, while the flow from ann d exits at the back of the entrance, i.e. lane 3 and

lane 4 of arm a. The same for other arms, the inflow depends on preceding circulating

inflows.

3.2.4.1 Urban Roundabout model

Each road to the roundabout is considered to have two lanes; lane 1 is used for turning

left and going straight, and lane 2 for turning right. The urban roundabout model

assumes that vehicles are not allowed to queue on the roundabout. It also assumes that

the vehicles intending to make a u-turn and return in opposite direction along the road in

which they approach the roundabout are sufficiently small that they can be ignored.

Because roundabout is usually symmetrically constructed, only the traffic flow on ann a

is analysed. For the flow from ann a to ann d and c, i.e. in lane 1, the flow includes the

merged flow from arm b that is going straight on and the flow from arm c that is turning

right:

Cia i I (tk) = minCt;, id » Cb " I X db,i,d ) +min(/,c "d' Cc " 2).. '" d +d ....
b,i.a b,i.d

(3-20)

where

conflicting flow for the flow on entry arm n, i.e. a, b, c and d, in lane I.

i.e. I and 2 (pculhr)

fn,i,m- traffic flow from arm n to arm m (pculhr)

c -n,i.1 flow capacity for lane I of ann n (pcu/hr)

d . -n.J.m proportion of the traffic from arm n to arm m

The min formula is used to restrict the inflow from each arm. The first min formula in

Equation 3-20, takes the minimum of: the first parameter which represents the traffic
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flow intending to move from ann b to ann d, and the second parameter which

corresponds to the flow capacity for this traffic flow in lane 1 of arm b. While for the

second min formula in Equation 3-20, it takes the minimum of: the first parameter that

demonstrates the traffic flow intending to move from arm C to arm d, and the second

parameter which indicates the flow capacity for this flow in lane 2 of ann c. A queue

builds up if the flow in lane 1 or the conflicting flow is higher than the flow capacity in

lane 1 through the intersection. For the flow from arm a to arm b, the conflicting flow is

the sum of the flows from arm b to arm d and c and the flow from arm c to arm d. A

queue builds up if the flow in lane 2 or the conflicting flow is higher than the flow

capacity in lane 2 through the intersection. The conflicting flow for lane 2 of arm a is

described as:

.1' (t) . (I' db,i,d ) + . (I' ). (I' )
0a,i,2 k =mm Jb,i,d,Cb,i,1 x d +d mm Jb,i,c,Cb,i,2 +rmn Jc,i,d,cc,i,2

b.i.a b.i.d

(3-21)

The first term and the third term in Equation 3-21 are the same as the two terms in

Equation 3-20, as the conflicting flow for lane 1 of arm a also restricts the flow on lane

2 of arm a. Moreover it is assumed that the traffic on lane 2 of arm a only takes the

inner lane circulating the roundabout, therefore the traffic flow on lane 2 of arm a is

further limited by the traffic moving from arm b to arm C that described as the second

term in Equation 3-21.

The evaluation of the two traffic flow on arm a follows the same rule in Section 3.2.2.1.

Due to the symmetrical structure of roundabout, the inflow from arm a depends on the

inflows from arm b and c, further the flow from arm c is also influenced by the flow

from d and a. Rather than modelling this traffic interaction in detail, the evaluation of

the traffic on each arm is conducted iteratively, the inflow for each arm on current

iteration is derived in terms of the conflicting traffic flow obtained on the current or
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previous iteration. Convergence is considered to be reached when the traffic conditions

for each ann are unchanged by further iterations.

3.2.4.2 Motorway Roundabout Model

The same methodology is applied to motorway roundabout as the urban roundabout.

The extension for this roundabout is that vehicles are allowed to queue on the

roundabout. In addition to the restriction of inflows, outflows are also restricted

according to the flow capacity of the out-going lanes for each arm. The results from

urban roundabout are employed as inputs for the calculation of outflows of the

motorway roundabout. It assumes that cars in the queue on the roundabout will leave

gaps for entering and exiting the roundabout. Another assumption is that the out-going

flow on the outer lane will only take the left lane as exit, while the traffic flow on the

inner lane can take either as exit, e.g. considering Figure 3-3, lane 3 for arm a is the exit

for the traffic flow on the outer lane, and lane 4 is the exit for the traffic flow on the

inner lane. If there is residual exiting flow capacity on lane 3, the traffic on the inner

lane can also leave the roundabout through lane 3. As the roundabout adopted in this

model is assumed to be built symmetrically, the free spaces for each part of the

roundabout are the same.

The general rule is that if queue builds up at an exit, it will propagate back through the

outer lane or the inner lane, and the length of the queue at each part of the roundabout is

derived according to the ratio of mixed inflows through that part of the roundabout. E.g.

for part ab on outer lane, when the exiting traffic flow, i.e. traffic flow from arm b and c

that intending to exit through arm a, exceeds the flow capacity of arm a, portion of this

traffic would be disturbed on part ab, which further resulted in the blockage of traffic

from arm b that exiting at arm d, the amount of this disturbed traffic is obtained in line

with the flow ratios on part ab of outer lane. On the other hand, if the exiting traffic
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flow is less than the flow capacity of the exit ann, the queue formed at previous steps

will dissipate that also based on the ratio of mixed flows on each part of the roundabout.

The additional junction data is employed in motorway roundabout:

CPi,ol - capacitance for outer lane of roundabout i (pcu)

CPi,in - capacitance for inner lane of roundabout i (pcu)

Ca,i.I- flow capacity for lane I of ann a (pcu/hr)

fa,i.I - outflow for lane I of ann a, I includes 3 and 4 (pcu/hr)

h,i,a - inflow from ann b to ann a (pcu/hr), which is calculated as: '

db'r J. d~
Jb,i,a = b,i,l X d +d

b.i.a b,i,d

DJ; -b,i,a outflow of roundabout i from ann b to ann a (pcu/hr)

d -b.i.a
proportion of the traffic flow from ann b to ann a

oqa,b - length of the queue formed in section ab of the outer lane of roundabout

(pcu), as illustrated in Figure 3-4

iqab - length of the queue formed in section ab of the inner lane of roundabout

(pcu), as illustrated in Figure 3-4

queue propagation of queue for section ab of outer lane to other links

(pcu)

queue propagation of queue for section ab of inner lane to other links

(pcu)
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c

d b

a

Figure 3-4: The formation of queue at the roundabout

The traffic flows from each ann will occupy their defined path through the roundabout;

the mixed traffic flow at each component of the roundabout is represented in Table 3-2.

Table 3-2: Composition of traffic flows
Components of roundabout Outer lane Inner lane

cd Id,i,c' c.: c: Ib:i,c' t..:c..

The urban roundabout model is initially deployed as the first part of the motorway

roundabout model. The results of urban roundabout model are then employed as inputs

for the next calculation in the motorway roundabout model. As the roundabout is

assumed to be constructed symmetrically, ann a is analysed to represent the movement

at the roundabout. Lane 3 and lane 4 for ann a (as in Figure 3-3) are analysed separately.

The evaluation of the exiting traffic in lane 3 for ann a is described as follows:

• A queue builds up if flow on the link in lane 3 is higher than the flow capacity of

lane 3 of ann a,
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If "b' + J,. > C . 3' " . 3 = C . 3J J ,I,a C.l,a a.l. J a,l. a,l.

For section ab of outer lane at the roundabout, the disturbed traffic for exiting

traffic at ann a, i.e. h".a and fe,',a in time tk is calculated as

(fb.,.a + fe".a - ca.I.J X Ill, further led to the blockage of flow fb".d derived as

( "b' + J,. - C . 3) x M X __ I._b:....:..i.d__ based on the flow proportions on section
J, ,I,a e.l.a a.l. ". + J: .

J b.i,a e.l.a

ab of outer lane. This is because these three directional traffic flows are mixed

together on section ab of outer lane. As a result, the queue formed on section ab

of outer lane is updated as:

, _ ( " ,,_ C . ) x M X fb,',a + fe,i,a + fb,i,d
oq a.b - oq a.b + J b.i.a +J c.i.a a.I.3 J;. +".

b.i.a J e,l,a
(3-22)

In addition, the variation of queue in ab is represented as:

. ( , CPi,ot)
Il.oqa,b = mm oqa,b'-4- -oqa,b (3-23)

Equation 3-23 is used to restrict the queue increment in section ab. The first term

represents the updated queue length in ab, when it is greater than the capacitance

. b.v tri t d CPi,otof section a ,It ISres c e as -4-'

Due to the traffic disturbance, the traffic flows that passing through section ab of

outer lane are decreased by:

Il." =~ b.i.a
Il.oq a,b X fb,i,a

M fb,i,a + fe,;,a + IbM

Il.f.. = - Il.oq a,b X fe,i,a
e,I,a Il.t fb,i,a + fe,l,a + fb,i,d
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!l.1' -!Ib.Ld -

Soq a b i.b .d--~'~x----~~"'~----
!l.t fb.i.a + fc.i.a + fb.i.d

(3-24)

If queue is less than the queue capacitance, oq~.b ~ ep~.o/ , the queue is restricted

inab.

If oq' b > epi.o/ , part of the queue propagates back to upstream links, described
a. 4

as:

, ePi.o/oqm =oq ---Ya.b a.b 4 (3-25)

and ,. d t d epi.o/oq b IS up a e as --.
a. 4

As this queue propagation is contributed by traffic flows from arms b and e, it

spills back to lane 1 of arm b and section be of outer lane. The first part that

induced by fb.i.a and fb.i.d is added to the queue in lane 1 of arm b, described as:

, _ + oq'P x tb.i.a + tb.i.d
qb.1 - qb.1 a.b I" I"

J b.i,a + J c.i.a + fb.i.d
(3-26)

and the inflow from lane 1 arm b is decreased as:

f:.i.1 = tb.i.1
oqp a.b tb.i.a + fb.i.d---'- x -__:_:..:.:..:.::__:_.::.....::.:~-

!l.t fb.i.a + fc.i.a + fb.i.d
(3-27)

If q~.1 > epb.i.1 , queue propagates back to the source links of arm b,

, d 'qPb.1 = q b.1 - epb.i.1 an qb.1 = ePb.i.1 (3-28)

The rest part spills back to section be of outer lane, and the queue in section

be is updated as:
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oq' = oq +oqp x f._e,i_,a x fe,i,a + fe,i,b + fd,i,b
b.c b,e a,b!., +J: +L; f.

b.i.a e,l,a b.i.d c.i,a
(3-29)

The disturbed traffic of fc,i,a further resulted in the blockage of fe,i,b and fd,i,b'

as they are mixed in section be of outer lane,

Consequently, the amount of traffic that could exit the roundabout at arm a from

arm b is computed as:

db'.r r' x ,I,a + It.. r
OJ b,i,a = j b,i,l d d Ll.j b.i.a

b.i.a + b,i,d
(3-30)

Firstly, the entering traffic at arm a is reduced by queue propagation in lane 1 of

arm b according to Equation 3-27; and then it is further decreased due to traffic

disturbance occurred in part ab of outer lane based on Equation 3-24.

Subsequently, the same methodology is applied to section be, cd and da.

• Flow on the link in lane 3 is lower than the flow capacity of lane 3 through the

roundabout

Iffb,i,a + fc,i,a s Ca,i,3'

a. If qa3 = 0, no queue.

/,'3=J;b' +r,a,l, ,I.a J CtltD (3-31)

b. If 0 < qa3 ::;;CP~'OI , queue located in part ab.

r'3=C'3J a.I. a,J, (3-32)

(3-33)
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a' = + ( r + f. _ ) I!t Ib.i.a + Ic.i.a + fb.i.d
qa.b aqa.b lb.;.a c.i.a Ca.;.3 X x r /.

1 b.i,a + c.i.a

(3-34)

Equation 3-34 is evaluated as Equation 3-22, which is based on the flow ratios

on section ab of outer lane.

Increment of flows due to clearance of queue is evaluated as:

(3-35)

This max formula is used to restrict the clearance of queue; the maximum value

of queue reduction would be the previous queue length. As a result of queue

clearance, the traffic flows that passing through part ab of outer lane are

increased by:

I!!aq a.b X Ib.i.a

I!t fb.i.a + fc.i.a + fb.i,d

I!!lc.i.a =
Soq ab/. .____ ._X c~.I.~a _

I!t rb· +L, + rb'd1j .I.a c.I.a 1j .1.

Soq a b Ib . d
---,'...:. X ----....:....:;.;.I.~--

I!!t rb' +L, + rb'dJ J .I.a c,I.a J J .1,

(3-36)

If aq~.b ~ 0, queue still exists in ab.

If aq~.b < 0

/, +' __ h_b...:..i~.a_+_/'....:c.,...:...·.a__
·3=C·30qbXa.I. a.I. a, r I' r

1 b.i.a + J b.i.d + J c.i.a
(3-37)

Consequently, the traffic flows that passing through ab are updated as:

°hb' = hb' +4/;b .•I.a ,I.a .I.a

alb,l,d = fbM + 4tb.I,d
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or .b = f. .b +8r .b~ C.I. C.I. ~ C.I.
(3-38)

cp. cp.
c. If _____!:!!!_ < q a3 $; _____!:!!!_ , queue located in part ab, be. Queue clears from be to ab.

4 2

The methodology used above will be applied, the first step is to calculate the

variation of queue in part be, if the queue in be is cleared, the queue in ab need

to be evaluated. Then the resulting increments due to queue reduction will be

added to out-going flow.

cp. 3
d. If ~.Ol< qa3 $; 4ep;.ol' queue located in part ab, be, cd. Queue clears from cd to

ab.

The sequence for the evaluation of queue at the roundabout would be cd-be-ab.

e. If! ep;.ol< qa3 $; ep;.ol, queue located in part ab, be, cd, da. Queue clears from da

to ab.

The sequence for the evaluation of queue at the roundabout would be da-ed-be-

ab.

As for the lane 4'of arm a, the exiting traffic flow is computed as:

(3-39)

Equation 3-39 is used to determine the outflow capacity for lane 4 arm a. As flow Id.l.a

can exit the roundabout by either lane 3 or 4, the outflow capacity for Id .I.a is calculated

as the sum of capacity of lane 4 and residual flow capacity of lane 3. The methodology,

used to evaluate the traffic condition in lane 3 for arm a, is also applied to the outflow

through the lane 4 for arm a.
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3.2.5 Signalized Roundabout Model

In order to overcome traffic congestion, signals are introduced to roundabouts.

Typically, all the arms of a signalized roundabout are signal controlled; sometimes one

arm is left uncontrolled to improve flow capacity. In addition, the signals at roundabouts

can be operated full-time or part-time (such as rush hour in the morning or evening).

Signalized roundabouts are now quite popular in many urban areas, as well as at

motorway interchanges.

The conflict among the traffic flows from the same arm and from competing arms at

signalized roundabouts is eliminated by traffic signals. Each traffic flow from one of the

arms to another will be assigned a unique green time period. Thus, the flow capacity for

traffic flow fa,l,b is calculated as:

C ib = C. xg i.ba,I. , a.I, (3-40)

where

the traffic flow from arm a to arm b (pcuJhr)

C -a.ib the traffic flow capacity for the traffic flow fa,l,b (pcuJhr)

C.-
I

the flow capacity for the lane that the traffic flow fa,l,b is located on

(pculhr)

ga,i,b - green period for traffic flow fa,l,b at one time step

After the evaluation of flow capacity for each traffic flow through the roundabout, the

equations in Section 3.2.1 are employed to calculate the outflow, queue and queue

propagation at the roundabout.
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3.2.6 On-ramp and Off-ramp Models

Highway ramp (including on-ramp and off-ramp) or slip road is a short road segment

which allows vehicles to enter or exit a motorway.

3.2.6.1 On-ramp

a

Figure 3-5: On-ramp

Traffic on trunk roads would be divided among lanes I, 2 and 3 with respect to the

observed proportions, and the merging flow from slip road a needs to find a gap on the

left lane of the trunk road is carrying a part of the major traffic. The junction specific

data are shown as follows:

fa - entry flow of slip road a (pcu!hr)

Fon- traffic flow on Motorway (pcu!hr)

d, - proportions of traffic flows in lane i, i.e.l, 2, 3

J, - traffic flow in lane i (pcu/hr)

ca - flow capacity for slip road a (pcu!hr)

cp a - link capacitance for slip road a (pcu)
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As there are more than two lanes for the trunk road, only the traffic on the left lane that

adjacent to the slip road has an impact on the entry flow. The traffic flow on lane I is

recognised as the conflicting flow for the flow from slip road a, which is computed as:

(3-41)

If fa or I, exceeds the flow capacity of the slip road a, ca' a queue will build up on

slip road a. If the queue exceeds the link capacitance on slip road a, CPa' the queue will

propagate back through the network.

3.2.6.2 Off-ramp

Figure 3-6: Off-ramp

The junction specific data for off-ramp include:

Fofj traffic flow on motorway (pcu/hr)

h- traffic flow in lane i (pcu/hr)

fb - exiting flow on off-ramp link b (pcu/hr)

Cb - traffic flow capacity for link b (pculhr)

cp, - link capacitance on lane I for major road (pcu)

For the trunk road, assume that only the traffic leaving the major road would take the

left lane. Then, the outflow from the trunk road is calculated as:
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(3-42)

it represents the entering flow for off-ramp link b; while fb demonstrates the exiting flow for

off-ramp link b. If it exceeds Cb' the queue will be present on lane 1.

3.2.7 Merge and Diverge Models

In addition to on-ramp and off-ramp on motorways, merge and diverge are also

constructed at where two motorways merge together, as well as at the unidirectional

urban roads.

3.2.7.1 Merge

a

c

b

Figure 3-7: Merge

A typical "Y -merge" is illustrated in Figure 3-7, where two streams of traffic from road

a and b merge into one with equal priority.

There are two main steps involved in the evaluation of a ''merge'' junction. Firstly, the

out-going flows from links a and b would be restricted by the corresponding link flow

capacity. The general rule listed in Section 3.1.3 is used to calculate the outflow, queue
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and queue propagation for links a and b. Next, the in-coming flows from link a and b

would be further limited by the flow capacity of link c. Thus, the same rule is employed

to calculate the inflow for link c and the queue blocking back to links a and b. The

propagation of queue for each source link is determined by its proportion in the mixed

traffic flow.

3.2.7.2 Diverge

c

Figure 3-8: Diverge

As for the "diverge" junction, there are usually two lanes for the major road. The exiting

flow for each downstream link is evaluated independently.

The left-turning flow is restricted by both the flow capacity of the left lane on link c and

the flow capacity of link a, while the right-turning flow is restricted by both the flow

capacity of the right lane on link c and the flow capacity of link b. The general rule is

deployed to evaluate the movement of flows at the "diverge" junction.
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3.2.8 Roadwork Node Model

The implementation of maintenance work on a road link can be represented by limiting

the exiting traffic flow capacity of this link. However, the length and location of

worksite, that are used to define the geometry of the worksite, also need to be

considered, as does the link capacitance which changes during maintenance. Therefore

in NTFM a special roadwork node is employed to represent the part of road link under

maintenance, which specifies the location of worksite, the length of the worksite, and

the number oflanes in service. A typical roadwork node is shown as:

x c ml m2
A B

L

~ -- Roadwork

....- -- Traffic flow approaching direction

Figure 3-9: A Dual two lane carriageway road link in maintenance

where,

downstream junctionA-

B-

C-

upstream junction

roadwork node

x- the distance between downstream junction and worksite

mi, mr the length of work site and the rest part oflink without maintenance

L- the length oflink

Two additional parameters nl and n2 are used to define the number of lanes remaining

open at the worksite and the rest of the link. For BA, its flow capacity is mainly
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characterised by its weakest point C. The default capacity associated with the type of

road is shown in Table 1-2.

3.2.8.1 Single Carriageway

On single carriageway roads, the two-way operation of traffic should be maintained.

Therefore shuttle working is applied to assign gaps for the two competing flows. At

worksites with shuttle working each direction suffers intermittent intervals of flow

passing the site, alternating with intervals of zero capacity. The layout of the worksite

with shuttle working is illustrated in Figure 3-10.

Figure 3-10: Single carriageway road with shuttle working

For the worksite with shuttle working, the traffic from both directions has to use the

only lane open, alternately. Thus, traffic lights are applied to assign the gap for each

directional flow, and the cycle time Cy is represented by:

Cy =G+'R+AIIl (3-43)

Where

G- green phase for traffic in the direction with work

R- red phase for traffic in the direction with work

Am- amber phase that represents the time for the vehicles already flowing through the

worksite to exit, which is proportional to the length of worksite

The site capacity for traffic flow in the direction with work is represented by the

formula:
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s·Ge =-
s,l Cy (3-44)

Where Cs,l is the flow capacity and S is the saturation flow (pculhr). The saturation flow

is the discharge rate through the worksite during a green phase when a queue is present

on the approach to the worksite. The default value of saturation flow in QUADRO is

1800 pculhr [58]. Conversely, the site capacity for the other direction is calculated as:

S·RC =-
s.2 ey (3-45)

3.2.8.2 Multi-lane Carriageway

For multi-lane carriageway, i.e. dual carriageway and motorway, more than one lane

can be maintained concurrently when the traffic passing by is not significant in

comparison to the residual flow capacity. If N lanes are in service through the worksite

each with a normal capacity en, then the worksite capacity would be formulated as [58]:

(3-46)

The default value of en is shown in Table 1-2. The evaluation of the traffic flow through

the worksite then follows the general NTFM calculation process in Section 3.1.3.

3.3 Link Model

The link model used in NTFM is formulated based on the store-and-forward modelling

philosophy. The application of store-and-forward modelling approach to traffic

problems was first proposed by Gazis and Potts [59]. It is well suited for queue

management on traffic lane under saturated traffic conditions [49, 60]. In terms of the

store-and-forward approach, it has been assumed that vehicles experience constant

travel times along a road link and are queued at the end of the link if inflow is higher

than the corresponding flow capacity. The outflow from a link is determined in terms of
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the turning ratios and nature of the corresponding junction. In what follows, the

evaluation of travel duration spent on the road link based on store-and-forward

philosophy is explicitly described.

3.3.1 Calculation of Travel Duration

In NTFM, the total travel time in the network is calculated as the sum of the journey

duration for each vehicle spent on each link. For each link on the network, the vehicle

journey time is categorised into three parts depending on if a queue is present. These

parts are: the time spent on queue dissipation, the travel duration for the non-disturbed

traffic that pass through the link without travel delay, and the time spent on queue

formation. The disturbed traffic is defined as the traffic that is stored on the link at the

current time step; whereas the travel delays at junctions is not taken into account, which

is studied in the Section 3.4. One basic assumption is that traffic that is maintained on

the link dissipates at a uniform speed and other traffic moves at a different uniform

speed elsewhere.

3.3.2 Model Formulation

A typical road link, denoted by BA, is illustrated in Figure 3-11, describing the traffic

condition at time I. foul!} (pcu/hr) and Jin(l) (pcu/hr) are used to represent the outflow

and inflow on link BA at time I, and q(t) (pcu) is the queue stored on link BA at time t. It

should be noted that when there is no vehicle stored on link BA, the value of qtt) will be

O.Considering the formation and dissipation of the queue on link BA, the travel duration

spent on this link is calculated in three parts; 1J (hrs) is used to represent the time spent

on queue dissipation, 12 (brs) denotes the travel duration for the traffic without travel

delay, and t3 (hrs) is the time spent on queue formation.
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A B

q(t)

Figure 3-11: Traffic condition for link BA at time t

The evolution of traffic on link BA is formulated as:

q(t + dt) = q(t) - (fout (t) - f;n(t»dt (3-47)

where q(t+dt) is the updated queue on this link at time t+dt. Considering the clearance

of the initial queue on link BA, there are two main traffic conditions involved in

evaluating journey time spent on this link: (l) q(t) is completely cleared at time t+dt,

where q(t) ~/oult)dt, (2) only part of q(t) is cleared at time t+dt, where q(t»/ou,(t)dt.

3.3.2.1 Case 1

InCase 1 q(t) is less than or equal to the outflow on this link,/oult)dt, therefore it can be

cleared at time t+dt. The time spent on queue dissipation is calculated as:

headway x q(t) x (q(t) + 1)tl=----~~~~~--~
2xVd

(3-48)

where headway is defined as 0.007 km in NTFM, including vehicle length and the gap

between two adjacent vehicles; and Vd(kmIhr) represents the speed of queue dissipation;

headway x q(t) x (q(t) + 1).. . .
and (km) IS the travel distance for all the vehicles m the

2

initial queue to exit link BA that follows an arithmetic progression, since the vehicles

stored on the link are assumed to be lined evenly.

As the clearance of the initial queue contributed to the outflow of link BA, the traffic

pass through the link without travel delay is obtained as /ou,{t)dt-q(t), the travel duration

for which is computed as:
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(fout (t)dt - q(t)) x L
t2 = ___,:""'-------

V
(3-49)

where L (km) is the length of link BA and v (km/hr) denotes the average moving speed

on this link.

Moreover, in terms of Equation 3-47 if q(t+dt) is greater than 0, a new queue is built up

on link BA at time t+dt. The time spent on the development of this queue, which is also

the travel duration for the traffic delayed on link BA at time t+dt, is represented by the

following expression:

q(t + dt) x L headway x q(t + dt) x (q(t + dt) + 1)t3 = ----~-~-~~~-~~
v 2xv

(3-50)

The first term in Equation 3-50 gives the travel duration for the disturbed traffic that

pass through link BA at time t+dt. Actually none of them completed its journey, the

second term is provided to rectify this equation by subtracting the extra time spent on

the journey that also follows an arithmetic progression as Equation 3-48. Eventually, the

total travel duration spent on link BA is derived as the sum of 1/, I] and 13.

3.3.2.2 Case 2

In Case 2 qtt) is greater than the outflow on this link,lou,{l)dt, therefore only part of the

initial queue is dissipated. The part dissipated is equal to the amount of outflow, and the

rest part of the initial queue at time t+dt is determined as q(t)-.fou,{t)dt.The journey time

for these two parts of the initial queue is evaluated as:

headway x !out(l)dt x (!oUl(t)dt +1) headway x !oUl(t)dt x (q(t) - foUl(t)dt)
I) = +--~~~~--~--=~---

2xVd Vd

(3-51)

The first term in Equation 3-51 indicates the time spent on queue dissipation that is

evaluated in a similar pattern to Equation 3-48. Owing to the clearance of Iou,{t)dt
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vehicles, the remaining part of the initial queue moves forward to the end of link BA by

headway x foul(t)dt (km). The second term corresponds to the travel time for the rest

part of the initial queue.

As there is no non-disturbed traffic in case 2, tz is determined as O. Furthermore the

inflow on link BA at time t+dt, iin(t)dt, is disturbed and added to the tail of the initial

queue, the travel duration for which is described as:

hn (t)dt x (L - headway x (q(t) - foul(t)dt» headway x hn (t)dt x (hn (t)dt + 1)t3 = - --___::.-----':....::!...-----'-~.::.:....;-...;---....:....

V 2xv

(3-52)

where L-headwayx(q(t)- fou/(t)dt) (km) is the length of link BA in addition to the

portion that occupied by the rest part of initial queue, and

headway x f.. (t)dt x (1: (t)dt +1). .
In In (km) IS the assumed extra Journey for the currently

2

disturbed traffic at time t+dt. As a consequence, the travel duration spent on a link that

has limited transportability is achieved.

3.3.3 Extension for Multi-lane Link

For a multi-lane link, the queue formed on it is assumed to be uniformly distributed in

each service lane. The calculation of the travel duration for the multi-lane link follows

the same rules as the single-lane link. The lengths of queue at time t and t+dt for each

lane are calculated as q(t)ln and q(t+dt)ln, respectively, where n is the number of

service lanes; and the remainder modulus for them are represented by mod(q(t),n) and

mod(q(t+dt),n) that can be ignored because of their small magnitude. For instance,

when 7 vehicles are delayed on a two lane carriageway, the remainder modulus would

be 1. The two cases considered in Section 3.3.2 are investigated.
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3.3.3.1 Case 1

As stated above in this case the initial queue on link BA, q(t), is cleared, the time spent

on queue dissipation is formulated as:

headway x q(t) x (q(t) +1) headway x mod(q(t),n) x(q(t) +1)
n n nt1 = ----_!.!:..-___.:~- x n +---------._!.!....--

2xVd
(3-53)

headway x q(t) x (q(t) + 1)
where n n x n + headway x mod(q(t),n) x (q(t) + 1) (km) is the

2 n

travel distance for all the vehicles in the initial queue. Due to the small amount of the

remainder modulus, the second term could be neglected, but has been included here.

The travel duration for the non-disturbed traffic is evaluated in the same way as

Equation 3-49. Based on Equation 3-47, the queue formed at time t+dt is obtained. The

algorithm used in Equation 3-50 is again applied to compute the time spent on queue

formation for multi-lane link, described as:

q(t + dt) q(t + dt)
headway x x ( + 1)

q(t+dt)xL n n
t = - xn
3 v 2xv

headway x mod(q(t + dt),n) x (q(t + dt) + 1)
n

(3-54)

v

where

q(t + dt) (q(t + dt) 1)
headway x x + (t + dt)

n n xn+headwayxmod(q(t+dt),n)x(q +1)
2 n

(km) is the assumed extra journey for all the disturbed traffic at time t+dt.
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3.3.3.2 Case 2

In Case 2 only a portion of the initial queue is dissipated and the remaining part is

calculated as q(t)-.fou,{t)dt. The time spent on queue dissipation and movement of the

rest part of initial queue is:

h d foul(t)dt (ioul(t)dt 1)ea wayx x +
n ntl =----------~------~----xn
2x Vd

J: (t)dt
headway x mod(f out (t)dt,n) x (out +1)+ ~n _

headway x fOUl(t)dt x (q(t) - fOUl(t)dt)
+ ~n~ __

(3-55)

In comparison to Equation 3-53, the only difference for the first two terms in Equation

3-55 is that the amount of queue clearance for link BA is /ou,{t)dt as a result of limited

transportability of link BA. The last term in Equation 3-55 represents the journey time

for the remaining initial queue, where headway x fout(t)dt (km) is the travel distance
n

for each vehicle in the initial queue.

As mentioned before, the second component for travel duration is o. Also, all the

entering traffic at time t+dt is stored on link BA and joins the initial queue. The time

spent on the formation of this queue is computed as:
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/;" (t)dt x (L _ headway x q(t) - fOlll (t)dt)
nt3 =--------------------~~----

v

headway x /;n (t)dt x (fn (t)dt +1)
__________ n~ ~n~ xn

2xv
f. (t)dt

headway xmod(fn (t)dt, n) x (III + 1)
n

v

(3-56)

Where L - headway x q(t) - f01l1 (t)dt (km) is the length of link in addition to the part
n

that occupied by initial queue; headway x 1;/1(t)dt (km) is the length of the queue
n

caused from the inflow at time t+dt, while headway xmod(fn (t)dt, n) (km) is the

remainder modulus of the new queue divided by the number of service lanes.

3.3.4 Extension for Roadwork

When maintenance is performed the link is decomposed into two parts; the worksite and

the rest of the link, as shown in Figure 3-12. Also, the numbers of lanes in service for

these two parts, i.e. BA and BC, are denoted by nl and n2, respectively; and the lengths

of them are ml and m2.

A m1 B m2 c

L

~ -- Roadwork

+--- -- Traffic flow approaching direction

Figure 3-12: A typical road link in maintenance
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The exiting flow capacity for link CA is affected by the worksite BA, as the service

lanes for road users are decreased by at least one lane in this section. It is recognised

that a queue is present at B which propagates back towards C when the entering flow

exceeds the flow capacity of link BA, this is because there is a sudden reduction of flow

capacity at B. As a result, the evaluation of the journey time for part CB, teB' follows

the same rule as a multi-lane link. Since the queue is not allowed to build up in part BA,

the journey time spent on this section at time t+dt is computed as:

d LBA
tBA = lou/(t) tx-

v",
(3-57)

where foult) (pcu/hr) is the outflow in node B, and Vw (kmIhr) is the average moving

speed on link BA.

The total travel duration spent on link AC is achieved as:

(3-58)

3.4 HighwayNetwork Performance Metrics

The network performance in NTFM is expressed in outflow, queue and queue

propagation for each junction involved in the network. The outflow for a junction is

obtained as the sum of the exiting flows through each arm of the junction. The queue for

a junction is the sum of queues formed in each lane of each of the entry arms for the

junction, which is expressed as queue length. Queue propagation for a junction is

indicated as queues at its upstream junctions. In terms of these parameters, the

performance metrics for each junction can be travel delay or additional travel cost for

road users which is calculated from queue length. In addition, the performance of each

road link is evaluated as the travel time spent by vehicles. As a consequence, the

performance of the whole network is the aggregation of the performance of all the

junctions and links involved, which is demonstrated by the following equations.
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The total travel duration spent in the network at time step tk:

N M

TTD(tk) = LTD.;(tk) +LTr.j(tk)
;=1 j=1

(3-59)

Where

delay time spent by road users at junction i in time tk that expressed as a

function of queue length, which is determined as

qa (I) represents the length of queue on ann a to junction i in time t, and

A is the number of arms at junction i; it is noted that the relationship

between queue and time is linear

N- the number of junctions on the network

journey time spent on link}, which is computed in terms of Section 3.3

M- the number of links on the network

Afterwards, the total road user cost spent on the network is evaluated as:

(3-60)

v- time value of road user, the UK market price value of time for an average

vehicle is £15.38 per hour, 2012 prices and values [61]

Owing to the implementation of roadwork, the transportability of the link must be

reduced, which would influence the overall performance of the highway network to a

certain degree. Thus, the total travel duration and the total road user cost are provided to

indicate the performance of the highway network under normal conditions and

maintenance scenarios.
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3.5 Network Solution Routine

In performing the network level analysis, the inflows at each junction result from the

outflows of its upstream junctions and entries to the network; whereas, its outflows are

functions of the inflows for the junction. Thus the whole system of traffic flows is

interconnected and dependent. It is of vital importance to determine the sequence of

node evaluations for traffic flow. These will start from the original node, progress round

the network and end at the same node. The simulation of these nodes is processed

iteratively until a convergence has been reached when all out profiles are effectively

unchanged by further iterations. As for the first iteration, the unknown inputs for each

junction in the model are supposed to be zero, which will be updated by the outcomes of

its upstream links in the same iteration and applied to the next iteration. Except for the

traffic flows from source nodes, traffic flows for each simulation iteration are updated

as the inputs for the next iteration. It is worth noting that at the beginning of each

iteration queues formed in the network are reset to the condition at the end of previous

time period so as to conserve the amount oftraffic in the network. For instance, queues

are initialized to zero for the simulation iterations at the first time step, since there was

no traffic in the network previously.

3.5.1 Convergence of In Profiles and Out Profiles

The basic parameter that is employed to indentify the convergence of In and Out

profiles for each node, is the average absolute change in individual elements of all In or

Out profiles expressed in pculhr. These are then averaged to derive the "global" change

for the whole network at the end of each iteration. Convergence is assumed to be

reached if the "global" change is sufficiently small, i.e. O.
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As for a highway network, the parameters that are used to determine the convergence of

traffic condition include the exiting flows for the highway network, the number of

vehicles that are stored in the highway network, and the amount of vehicles that

propagated back to their upstream junctions.

3.5.2 Forecast of Traffic Condition

The purpose of this model is to predict the traffic characteristic for a highway network,

including the inflow and outflow for the junctions involved in the network, as well as

the travel delay occurred at junctions. At first, it is fed with the initial traffic states, i.e.

inflows, turning ratios for junctions and signal control inputs, which are detected by

traffic counters on all the links and junctions at each time step. Afterwards, the

evaluation of traffic conditions for a highway network falls into two main steps. The

first step is to calculate the entering flows, exiting flows and queues for each junction

iteratively until those parameters reach a stable state. The next step is to identify the

effect of vehicles that are propagating back to their upstream links, which makes the

traffic condition even more severe. Consequently, the traffic condition for the highway

network at the current time step is obtained, and then this in tum is utilised as the initial

traffic condition at next time step. By this means the traffic condition state for a

highway network over a time period is evaluated. The whole process of the evaluation

of highway network is demonstrated in Figure 3-13, and a more detailed explanation of

the NTFM is included in Appendix A.
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k=O

Traffic movement
p=====~ in the network at

time k

No

Yes

Evaluation of
queue propagation

at time k

No, k=k+1

Yes

End

Figure 3-13: The evaluation of Highway Network
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3.6 Case Study

H

f._j If I t_
G -- B c

,,] er.
F A 0 K

~ rJ If-
E L

Figure 3-14: The case study network

For ease of exposition, a simple network in Figure 3-14 is provided to illustrate the

properties of NTFM. This road network is composed of 4 signalized intersection and 12

dual 2-lane links. The flow capacity for each intersection is defined as 1500 pculhr; the

capacitance for each inner link is 1000 pcu; the turning ratios for each arm of each

junction are defined as 9.3, 0.4 and 0.3 (turning left, going straight, turning right); the

green time split for traffic that are turning left and going straight is set to 0.5, and 0.3 for

right turning traffic. As EA, FA, GB, HB, le, JC, KD and LD are external links, their

capacities are assigned as infinity to avoid queue propagation. In order to illustrate the

formation of queues in the network, relatively high traffic flows are employed. The

inflows for 1; to fs are 1000, 1000, 1200, 1200, 1400, 1400, 1600, 1600 pculhr,

respectively. The modelling horizon in this case study is set to 2 time steps, one time

step is defined as one hour. Additionally, fAB is used to denote the flow from node A to

node B, and qAB represents the queue that formed at node B and extended to node A,

which is recognised as a product of fAB .
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3.6.1 Network Simulation

The sequence for the evaluation of the nodes in this network is defined as A-B-C-D-A.

For each iteration the traffic flows in the network are evolved with respect to the

following rules until convergence is obtained:

• Junction A, 1;, h, fDA and fBA are used to calculate the outflows fAB, fAD'

fAEand fAF

• Junction B, f3' h, fAB and fCB are used to calculate the outflows fBc, fBA'

fBG and fBH

• Junction C, is, h, fBc and f DCare used to calculate the outflows fCD' fCB'

fCJ and fCl

• Junction D, J" fs , fCD and fAD are used to calculate the outflows fDA' fDc,

fDKand fDL

It should be noted that fDA' fBA' fCB and fDc are initialised as 0 on the first iteration.

After the values of these variables remain steady, queue propagation through the

network is evaluated. As a result of this, the traffic condition at the current time step is

obtained. Queues formed at this time step are recorded as the initial traffic condition at

next time step. In this approach, the traffic condition for this network over the planning

span is evaluated.

3.6.2 Evaluation of Traffic Condition

At first, the model is fed with the initial traffic states, Le. inflows, turning ratios for

junctions and signal control inputs. The initial traffic condition for the network is

depicted in Table 3-3:
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Table 3-3: Initial traffic condition in time 1
Junctions Initial traffic condition in time 1

A qAE qAD qAB qAF

0 0 0 0
B qBA qBC qBH qBG

0 0 0 0
C qCD qCJ qCJ qCB

0 0 0 0
D qDL qDK qDC qDA

0 0 0 0

As for each iteration for time 1, the initial traffic condition states for each junction

should be reset according to Table 3-3, so as to keep the balance between traffic inputs

and outputs. In order to obtain a stable traffic condition state, the evaluation of the

network is run iteratively until convergence is reached, the evolution of traffic for each

junction are represented in Table 3-4:

65



Table 3-4: Evolution of the traffic condition for the case study network in time 1

Junction

B

Iteration

A Iteration

Traffic condition states in time I

Entering flow (pcu/hr)

1; fDA fBA 1;

Exiting flow (pcu/hr)

fAE fAD fAB fAF

Queue length (pcu)

o 1000 0 0

1000 1061 789

1000 300

1000 933

700

937

700

1018

300

962

10412 1000 1070 1044 1000 1039 1013 1021

3 1000 1070 1110 1000 1050 1021

4 1000 1070 1110 1000 1050 1021

Iteration f I' I' f I' I'
AB J CB J 4 3 J BA J BC

o 700 0 1200 1200 789 960

1018 849 1200 1200 1044 1055

c Iteration

D

1021 1061

1021 1061

fBH fBG

601 570

983 1005

2

3

4

1021 1170 1200 1200 1110 1056 1081 1095 0

1021 1170 1200 1200 1110 1056 1081 1095 0

1021 1170 1200 1200 1110 1056 1081 1095 0

o
o
o
o
o

o
o

o

400

400

400

400

o
o
o
o
o

o
o
69

69

69

qo

230

230

230

230

230

qDC

o
o
o
o
o

o
o
o
27

27

o
o
o
o
o

o
IDC

o
ICB

849

90

90

90

90

90

90

90

90

90

90

1;, Is
1400 1400

fBC

960

fCD
1038

fo

705

ICI
708

2

3

4

1089 1400 1400 1055 1066 1070 1167 1170 12

1160 1400 1400 1056 1067 1091 1166 1170 62

1183 1400 1400 1056 1067 1099 1166 1170 78

1185 1400 1400 1056 1067 1099 1166 1170 80

h h ~ ~ & & & & ~
1600 1600 1038 700 946 1042 1089 1061 400

1600 1600 1067 937 1029 1145 1160 1070 400

1600 1600 1067 1013 1052 1175 1183 1070 400

1600 1600 1067 1021 1054 1179 1185 1070 400

230

230

230

230

230

qCB

o
o
o
o
o

o
1

2

3

4 1600 1600 1067 1021 1054 1179 1185 1070 400 400

qDA

o
o
o
o
o

Examining Table 3-4, the traffic condition for this network reached a steady state after 5

iterations, as it is quite a small network that only requires a little computational effort.

Actually, the simulation is run by 20 iterations to identify the convergence of traffic

conditions. Also we found that queues formed at all the four junctions, this is because

the entering traffic flow exceeds the corresponding flow capacity. For instance, in terms

of the turning ratios for arm BA of junction a, fBA is divided into two sub-flows for

each lane, i.e. 777 pculhr, turning left and going straight, in lane 1, and 333 pcu/hr,
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turning right, in lane 2. Considering the green splits, the entering flow capacities for

these two lanes are 750 pculhr and 450 pculhr, respectively. As the entering traffic in

lane 1 is higher than its entering flow capacity, the portion of the vehicles that exceeds

the flow capacity, i.e. 27 pcu, is disturbed in lane 1. For other junctions, because they

experienced more traffic than junction A, more serious traffic congestion is suffered.

As for the next time step, the entering flows for the network remains, the only

difference is that there are a few queues presented. The initial traffic condition for the

network in time step 2 is described in Table 3-5, which is received from the traffic

condition at the end of time 1.

Table 3-5: Initial traffic condition in time 2
Junctions Initial traffic condition in time 2

A qAE qAD qAB qAF

0 0 27 0
B qBA qBC qBH qBG

0 69 90 90
C qCD qCJ qCJ qCB

80 230 230 0
D qDL qDK qDC qDA

400 400 0 0

The initial traffic condition on each iteration in time 2 should be reset according to

Table 3-5. The same process is conducted as time 1 and the traffic condition for the

network at the end of time 2 is shown in Table 3-6:
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Table 3-6: Traffic condition for the case study network in time 2
Traffic condition states in time 2

Junction
Entering flow (pcu!hr) Exiting flow (pcu!hr) Queue length (pcu)

A Iteration ~ fDA fBA 1; fAE fAD fAB fAF qAE qAD qAB qAF
3,4 1000 1070 1110 1000 1050 1021 1021 1061 0 0 54 0

B Iteration fAB fCB h h fBA r: fBH fBG qBA qBC qBH qBG

3,4 1021 1170 1200 1200 1110 1056 1081 1095 0 138 180 180
C Iteration fDc h Is fBc fCD fo fo fCB qCD qCJ qo qCB

3,4 1185 1400 1400 1056 1067 1099 1166 1170 160 460 460 0
D Iteration fg f, fCD fAD fDL fDK t.: fDA qDL qDK qDC qDA

3,4 1600 1600 1067 1021 1054 1179 1185 1070 800 800 0 0

In comparison to traffic condition in time 1, the entering traffic flows and exiting traffic

flows are the same, while the length of all queues in the network are doubled. This is

because the traffic inputs for the network remained, which resulted in the weak links

suffering more severe congestion.

3.6.3 Discussion

Based on the results above, the inflow and outflow for each junction and the queue

stored on each link in the case study network are obtained. In the light of these

parameters, the total exiting traffic flow and aggregate queue length in the network can

be derived by summing up the outflows of all the exits of the network and by summing

up the length of queues formed in the network, respectively. The total exiting traffic

flow and aggregate queue length are used to measure the transportability of the network,

the higher the exiting traffic flow, the better the network transportability, while

aggregate queue length is in indirect proportion to the network transportability. Except

for the normal road condition, maintenance actions are implemented in the network.

NTFM will be deployed to calculate the resulting flow rates in the network to compare
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with the original flow rates without maintenance, and additional delay queue length will

be evaluated to obtain the cost to road users. Afterwards, by comparing the effects of

various maintenance actions on the road network and road users, the best option that

resulted in the least maintenance and road user costs will be carried out in the network.

3.7 Traffic Rerouting Strategy

3.7.1 Introduction

Congestion on motorways and urban roads has significantly reduced the efficiency and

transportability of the road network. This has resulted in road users adjusting their pre-

defined journey plans to compensate for travel delays, when they occur, and to prevent

the possibility that journeys may take significantly longer than anticipated. When

excessive traffic congestion exists on a highway network, traffic will take alternative

routes and so traffic rerouting takes place. This feature is introduced to NTFM, which is

triggered by traffic congestion on the pre-defined route. The queuing on alternative

routes is also taken into account. It aims to explore the available flow capacity on

alternative routes for the disturbed traffic, and thus minimise the travel delay to road

users in congested areas. When the queue formed on any link exceeds a specified

threshold, a portion of the incoming traffic will adjust its journey plan if there is

available flow capacity on alternative routes.

3.7.2 Methodology

The traffic rerouting strategy is developed based on the NTFM software capability

which is applicable for both motorway and urban roads. One feature of NTFM is that

both motorway junctions and urban junctions are taken into account so as to model the
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traffic interactions. NTFM forecasts the flow rates and queues formed on any part of a

road network. The input configuration of NTFM comprises network geometries, traffic

demands, and flow ratios at junctions. In NTFM, traffic rerouting is applied to allow

vehicles to circumvent the congested links by detouring on the shortest alternative route.

As NTFM works with the turning ratios at junctions, it is realised by varying the traffic

demands and flow ratios at the junctions on the alternative routes, while the demands

and flow ratios on the rest of the network remain unchanged.

An iterative simulation method is applied to evaluate the rerouted traffic in the network.

The general algorithm is described as follows:

1. NTFM is deployed to simulate traffic movement in the network until the traffic

condition has reached convergence, and then to identify congested links and the

traffic to be rerouted.

2. Then the source nodes of queues are verified so as to identify the shortest

alternative route for each congested link.

3. Determine the amount of the rerouted traffic which should be less than the

available flow capacity on the shortest alternative route. In this manner, there

would be no queue built up on the alternative route.

4. List the exit numbers for each junction on the shortest alternative route for each

congested link.

5. Update flow on first leg of the alternative route.

6. Keeping flow at each junction on the alternative route, realised by updating the

outflow proportions at each junction to direct traffic on the alternative route.

7. Repeat Steps 5 and 6 for each other junction on the alternative route.

8. Stop when the end node of the congested link is reached.

70



9. NTFM is used again to evaluate the traffic in the network on the basis of the

updated flow proportions. If traffic congestion still exists on the network, the

algorithm return to step 2 and the same procedure is applied.

l O, The updated flow proportions should only be temporally and be returned to

their original values to the traffic is fine once the queue has completely

dissipated.

Within the traffic rerouting strategy, the evaluation of the traffic at the junctions on the

pre-defined route and the shortest alternative route is explained below. A typical 4 ann

intersection is represented in Figure 3-15, and the data required for traffic evaluation is

listed as:

3

j<1Ut5,A(t)

1 1
J,11,lA(t)

J,n,4,A(t) !t7Ut2,A(t)

4 -A 2

K\rj MU(t) !in.2A(t)
,,
:

J,11,!.A(t) 1 1 j<1Uti,Mt)

1

Figure 3-15: A typical 4 arm intersection

flow at node A coming from direction i, i.e. 1, 2, 3, 4 (l represents the

northbound arm, while the rest are used to represent the westbound arm,

southbound arm and eastbound arm, respectively), at time t (pcu/hr)
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proportion of flow on arm i for node A choosing the outflow direction},}

is expressed in direction 1 (left), a (ahead) and r (right)

Ci,A.I - node A flow capacity for the traffic coming from direction i and going in

lane I, i.e. I (left lane),2 (right lane), (pcu/hr)

link capacitance in lane I, i.e. the maximum number of cars which can

queue in lane I, of the arm i for node A (pcu)

flow at node A that going to direction i at time t (pcu/hr)

q,i,A,ll)- average number of vehicles queuing in lane 1of arm i for node A at time t

(pcu)

FA(I)- the overall inflow at node A at time 1 (pcu/hr), It IS calculated as

4

FA (I) :::L hn,;,A (I)
;=1

TA(t)- the overall outflow at node A at time t (pculhr), obtained as

4

TA (1) :::L fOUl.i,A (I)
;=1

amount of the vehicles queuing at node A at time t (pcu), evaluated as
4 2

QAt)::: LLq;,Ai/) .
;=1 1=1

proportion of the overall traffic at node A that going to direction i,

I I ed () fOUliA(/)
ca cu at as Pi At::: ..

, TA (t)

Pi,AJ(t)- proportion of the traffic to be rerouted on arm i for node A choosing the

outflow direction I, j is expressed in direction 1 (left), a (ahead) and r

(right). If the traffic is delayed in lane 1, the proportions for each

direction IS evaluated as p. (t)::: Pi,A,,(t)
I,A,I ( ) ( )

Pi,A" t + Pi,A,Q t
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. (I) = Pi,A,Q(/) d () 0P A an Pi,A,r t =
I, ,0 Pi,A'! (I) + Pi,A,Q(I)

otherwise Pi,A'! (I) = 0 ,

The conservation law of traffic flow at any junction, e.g. junction A, on the network is

formulated as:

FA (/)dl +QA (I) = TA (/)dl +QA (I +dl) (3-61)

Noting that when there is no vehicle stored at junction A at time t, the values of QA(t)

and QA(I+dl) will be 0, and then FA(t) is equal to TA(t).

Three cases are considered in evaluation of the rerouted traffic at junction A.

3.7.2.1 Source Node

If junction A is the source node of the rerouted traffic, and the rerouted traffic, rt

(pculhr), is transferred from direction I to 4, the traffic at junction A needs to be

modified:

• As there is no queue stored at junction A, FA (t)=TA(t). The initial outflow

PI,A(t)

P2,it)
proportions for junction A is evaluated as

P3,it)
P4.A(t)

JOUl.I.A(t)

= f'ouI.2.A(t) / FAt), which
f'oUl.3.A(t)

f'oUl.4.A(t)

can be expressed as PA(I) = JA (I) / FA (I)

• After traffic rerouting, outflows on ann 1 and 4 are varied by rt, calculated as

lout"i,A(t)-rt andlout"i,A(t)+rt, respectively.

• The outflow proportions are updated in terms of
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P;.A (t)

P2.A (t)

P3.A (t)

P~.A (t)

fOUI.2.A(t) , ,= I FAt) , also expressed as PA(t) = fAt) I FA (t) .
IOUI.3.A(t)

f~ul.4.A

I~UI.I.A

3.7.2.2 Other Junction on the Alternative Route

If junction A is located on the shortest alternative route, and the traffic to be rerouted

entered it on ann 2 and exited through ann 1, the traffic is evaluated as:

• Calculate the initial outflow proportions PA (t) .

• When traffic rerouting is performed, both the overall inflow and outflow at

junction A are increased to FA (t) + rt .

• The outflow on ann I is raised to 10Ul.l.A (t) + rt .

• The updated outflow proportions are obtained as

p;,At)
P~,A (t)

P;,A (t)

P~,A (t)

f~III,I.A (t)

= foul,2,At) I(FAt) + rt) or P~(I) = f~ (I) I F~ (t)
fOIll,3.A (t)

folll,4,A(t)

3.7.2.3 End Node on the Alternative Node

If junction A is the end node on the alternative route and the initial queue is stored on

ann 3, while ann 4 is on the alternative route.

• Calculate the initial outflow proportions PA(t) .

• After traffic rerouting, the overall outflow is increased to TA (t) + rt .

• Due to traffic rerouting, the outflow on ann 1,2 and 4 are updated as:

f~I.l,A (t) = fout,l,A (t) + rt x P3.A,2

r' (1) = r (t) + rt x PJ OUl,2,A J out,2,A 3,A,l

74



c.; (I) = fout.4,A (I) + rt x P3,A,3

• The updated outflow proportions are represented by

P;,A (I)

P~,A (t)

P;,A (t)

p~,A(/)

f~ut,l,A (t)

= f~ut.2.A (t) /(TA (t) + rl) ,or P~(I) = f~ (I) / T~ (I) .
fout.3.A (t)

f~ut,4,A (t)

As for other junctions on the network, the traffic demands and flow ratios remain

unchanged. By this means the traffic condition state for a highway network in

consideration of traffic rerouting over a time period is evaluated. It is noted that not

only 4-arm intersections, but 2-arm intersections and 3-arm intersections, e.g. merge

and T-junction, are also widely used in transportation, the methodology described above

can be applied to evaluate the traffic at such intersections, where the outflow proportion

for one or more direction is defined as O.

3.7.3 Case Study

For convenience of illustration, a simple road network is provided to investigate the

variation of flow rates and proportions on any part of the network due to traffic

rerouting. In this study the example network is signal controlled, so the traffic

interactions among the flows from different sources are eliminated; and the links on the

network belong to dual 2 lane carriageway.
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Figure 3-16: A simple road network

Data necessary for this network is described below:

Ilt}- inflow at external node i at time t (pcu/hr, pcu stands for passenger car unit)

OltJ- outflow at external node i at time t (pculhr)

fci.cr available flow capacity in lane I of ann i at junction A, calculated as

!Ci,A,1 (t) = CPi,A.I - fll,i,A (t) x (d;,A,I + d;,A,a) and !C;.A.2 (t) = CP;.A.2 - fll,;.A (t) x d;.A.r

(3-62)

The turning ratios on each arm for the junctions on this network are set to 0.3 for

direction I (left), 0.4 for direction a (ahead) and 0.3 for direction r (right). The links CD

and FE are defined as 0.7 km, while the rest links are 0.35 km; and then the capacitance

for the service lane on each link is calculated in terms of the following Equation:

L
cp=---

headway
(3-63)

where headway is defined as 0.007 km.

The flow capacity for junction C is fixed to 2000 pculhr, while the flow capacity for

other junctions is 3000 pcu/hr, and the green splits for the traffic that going straight and
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turning left and the traffic turning right are defined as 0.5 and 0.3. The inflows (pculhr)

for the example network are represented in Table 3-7:

Table 3-7: Inflows (pculhr) for the example network
110

1200 1200 1200 1200 1200 1200 1200 1200 1200 2000

Based on the parameters described above, NTFM is used to evaluate the network

performance during a period of one hour, and the outflow proportions for each junction

are obtained, which are depicted below:

Table 3-8: Traffic condition at each junction without traffic rerouting

Junction A

Ann 1 (GA) 2 (FA) 3 (BA) 4(HA)

fin,i,A 1200 1448 1224 1200

!out,i,A 1285 1207 1274 1306

pu 0.2533 0.238 0.2512 0.2575

qui Lane 1 Lane2 Lane 1 Lane2 Lane 1 Lane2 Lane 1 Lane2

0 0 0 0 0 0 0 0

Junction B

Ann 1 (AB) 2 (CB) 3 (JB) 4(IB)

fin,i,B 1274 1278 1200 1200

!out,i,B 1224 1222 1253 1253

Pi,B 0.2472 0.2468 0.253 0.253

q.i,B,1 Lane 1 Lane2 Lane 1 Lane2 Lane 1 Lane2 Lane 1 Lane2

0 0 0 0 0 0 0 0
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Junction C

Ann 1 (FC) 2 (DC) 3 (KC) 4(8C)

/;n.i.e 1525 1222 1200 1222

!out.i.e 1213 1306 1304 1278

m.c 0.2378 0.256 0.2556 0.2506

q.i.ci Lane 1 Lane2 Lane 1 Lane2 Lane 1 Lane2 Lane 1 Lane2

68 0 0 0 0 0 0 0

Junction D

Ann 1 (ED) 2(MD) 3 (LD) 4(CD)

fu.u: 1274 1200 1200 1306

!out.i.D 1232 1264 1262 1222

Pi.D 0.2474 0.2538 0.2534 0.2454

q.uu Lane 1 Lane2 Lane 1 Lane2 Lane 1 Lane2 Lane 1 Lane2

0 0 0 0 0 0 0 0

Junction E

Ann 1 (OE) 2 (NE) 3 (DE) 4(FE)

ficu: 1200 1200 1232 1447

!out.i.E 1287 1308 1274 1210

pi.E 0.2534 0.2575 0.2509 0.2382

q.cs: Lane 1 Lane2 Lane 1 Lane2 Lane 1 Lane2 Lane 1 Lane2

0 0 0 0 0 0 0 0

Junction F

Ann 1 (PF) 2 (EF) 3 (CF) 4(AF)

J;n.i.F 2000 1210 1213 1207

!out.i.F 1210 1447 1525 1448

Pi.F 0.2149 0.257 0.2709 0.2572

q.i.F.1 Lane 1 Lane2 Lane 1 Lane2 Lane 1 Lane2 Lane 1 Lane2

0 0 0 0 0 0 0 0

78



In the light of the traffic condition at each junction, the inflows and outflows at each

external node on the network are demonstrated in Table 3-9:

Table 3-9: Traffic inputs and outputs (pcu/hr) for the example network
Node G H I J K L M N 0 P Total

Ij 1200 1200 1200 1200 1200 1200 1200 1200 1200 2000 12800
OJ 1285 1306 1253 1253 1304 1262 1264 1308 1287 1210 12732

It was found that a queue formed in lane 1 of ann 1, i.e. link FC, at junction e. Based
on the flow ratios on this ann, the inflows in lane 1 and lane 2 on link Fe are calculated

as 1068 and 457 pcu/hr; where the inflow in lane 1 exceeds the corresponding flow

capacity, 1000 pcu/hr, therefore 68 vehicles are queued on link Fe. In terms of

Equation 3-63,the capacitance for lane 1 on link Fe is calculated as 50 pcu, thus the

disturbed traffic filled the current link and propagated back to upstream links. In order

to avoid the traffic congestion occurred on link FC, road users would seek any other

routes to leave junction e. Two alternative routes are applicable, route F-A-B-C and

route F-E-D-e; as the former is shorter, it is ascertained as the diversion route for link

Fe.

The next step is to determine the amount of the traffic to be rerouted. The alternative

route is composed of lane 2 of link FA, lane 2 of link AB and lane 1 of link BC, and the

available flow capacities on them are obtained as 466,518 and 645 pcu/hr using

Equation 3-62.As the disturbed traffic is less than the least available flow capacity on

the alternative route, all the vehicles in the queue can be diverted.

Junction F is recognised as the source of the rerouted traffic, and the rerouted traffic is

transferred from direction 3 to direction 4. In terms of the equations developed in

Section 3.7.2.1,the traffic conditions at this junction are varied as:
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Table 3-10: Traffic condition at junction F with traffic rerouting

Junction F

Arm 1 (PF) 2 (EF) 3 (CF) 4(AF)

/out.i.F 1210 1447 1525 1448

f'out.i.F 1210 1447 1457 1516

Pi.F 0.2149 0.257 0.2709 0.2572
, 0.2149 0.257 0.2588 0.2693P i.F

The rerouted traffic entered junction A on ann 2 and exited through ann 3.

Consequently, the outflow on ann 3 is increased by 68 pculhr, while the outflows on

other arms are stable. In terms of Section 3.7.2.2, the traffic at junction A is updated as:

Table 3-11: Traffic condition at junction A with traffic rerouting

Junction A

Arm 1 (GA) 2 (FA) 3 (BA) 4(HA)

/out.i.A 1285 1207 1274 1306

}out.i.A 1285 1207 1342 1306

Pi,A 0.2533 0.238 0.2512 0.2575

P'i,A 0.25 0.2348 0.2611 0.2541

Due to the accommodation of the rerouted traffic, the traffic at junction B is evaluated

as:

Table 3-12: Traffic condition at junction B with traffic rerouting

Junction B

Arm 1 (AB) 2 (CB) 3 (JB) 4(IB)

/out.i.B 1224 1222 1253 1253

f'out,i,B 1224 1290 1253 1253

Pi,B 0.2472 0.2468 0.253 0.253

P'j,B 0.2438 0.257 0.2496 0.2496
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As for junction C, the disturbed traffic on ann 1 exited the junction by detouring on the

alternative route. As the queue at junction C is located in lane 1 of arm 1, the destination

for the rerouted traffic would only be junctions B and K. According to the flow

proportions in lane 1 of ann 1, the flows to each direction are calculated as 29 and 39

pculhr, respectively. The updated traffic condition at junction C is represented as:

Table 3-13: Traffic condition at junction C with traffic rerouting

Junction C

Arm 1 (FC) 2 (DC) 3 (KC) 4(8C)

!out.i.e 1213 1306 1304 1278

I'out.i.e 1213 1306 1343 1307

pi.e 0.2378 0.256 0.2556 0.2506

p'i.e 0.2347 0.2527 0.2598 0.2528

After the evaluation of the rerouted traffic, NTFM is applied again to evaluate the traffic

in the network based on the updated outflow proportions for each junction rather than

the flow ratios on each link so as to consume less computational effort. The updated

inflows and outflows for the network are depicted in Table 3-14:

Table 3-14: Traffic inputs and outputs (pcu/hr) for the example network with traffic

rerouting
Node G H I J K L M N 0 P Total

Ij 1200 1200 1200 1200 1200 1200 1200 1200 1200 2000 12800

OJ 1285 1306 1270 1265 1343 1262 1264 1308 1287 1210 12800

The traffic inputs for the network are equal to the outputs. It means that the disturbed

traffic left the network by detouring on the shortest alternative route. Consequently,

traffic rerouting strategy is realised in NTFM by varying the flow rates and ratios on the

alternative routes. It is worth noting that when the traffic condition on the network

improved the outflow proportions should be reset to their original values.
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3.8 Summary

In this chapter, we have proposed a macroscopic network level traffic flow model and

its associated junction models, which are based on a queue model and follow the right

of way rules. The model calculates the flows through the junctions and the queues

which build up and disperse at different points during the day. It has also been

demonstrated how to calculate the journey spent on road links and how to measure

network performance according to the aggregate queue length and additional road user

cost.

The modelling capability developed provides advances on the previously developed

macroscopic traffic flow models in the following features:

a. It accounts for both motorway and urban roads in the same road network

reflecting the interactive nature of the two systems.

b. It copes with two-way traffic flow by employing iterative simulation method to

determine the value of the dependent traffic flows in the network.

c. Entry and exit points in the model are used to model traffic flow along each

urban network section link (road). This simulates traffic exiting/joining the

network at housing estates or work place locations.

d. It deploys shared lane to illustrate the traffic interaction among mixed

directional traffic flows.

e. Traffic rerouting strategy is developed to model the travel behaviour when

traffic congestion is present in the network.

The results showed that this model has the capability to describe the evolution of

dependent traffic flows and forecast the traffic movement and queue dynamics through

a simple case study network, as well as model the traffic diversion taken place in the

network when a queue is presented.
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4 Literature Review on Highway Asset Modelling

4.1 Introduction

As highways agencies have turned their attention from construction of highway

networks to pavement maintenance and rehabilitation (M&R), the need for optimal

M&R strategy is emerging. Any M&R activity aims to improve the pavement condition

and performance, and can have two effects on the pavement: an immediate influence on

the pavement condition and an impact on the future rate of pavement deterioration.

M&R activities for a pavement network can be classified in terms of their frequency and

their impact on the serviceability of the road. Minor maintenance, surface treatments

and major maintenance are the main categories of the pavement maintenance activities.

Minor maintenance activities are defined as localized repairs of pavement surface and

shoulder defects, maintenance of road drainage, side slopes and roadsides. Surface

treatments of the existing pavement are used to restore pavement structural strength and

integrity in order to ensure serviceability of the pavement. Major maintenance actions

are performed to restore or improve the existing pavement strength beyond its original

strength, such as resurfacing, deep overlays, reconstruction and new construction.

At the network level, an M&R strategy is a set of operations applied to a pavement

network or segment during its service life, which involve some of the M&R operations

stated above. M&R operations can be applied individually or in combination each year.

As for the M&R strategy, it should be evaluated by analysing its associated benefits and

costs for the whole pavement system. A typical life cycle of a pavement is presented in

Figure 4-1, which illustrates the effects of different maintenance actions on the

pavement condition.

83



This chapter is organised as follows. Some widely adopted pavement maintenance

actions are explained in Section 4.2. Section 4.3 covers the selection of M&R strategy

for a pavement system. In Section 4.4 we describe the philosophy of Genetic

Algorithms (GAs) and, as well as some advanced GA techniques.

Minor mauuenance surface treatment
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Figure 4-1: Typical pavement life cycle

4.2 M&R Operations for Pavement

In order to maintain the structural and functional performance of the pavement, various

M&R operations are adopted. Those operations are applied to pavements according to

the occurred distress types and corresponding severity levels. The following

maintenance operations are usually conducted in the restoration of pavements [62].

84



4.2.1 Minor Maintenance

4.2.1.1 Potholing Filling

Potholing is recognized as the loss of material from the surface layer of the pavement

because of water freezing and thawing beneath the surface layer, which has been

identified as a severe condition. Until routine maintenance, e.g. patching, is conducted,

potholing filling is used as a temporary repair to remedy the pavement condition.

4.2.1.2 Patching

Patching is usually conducted to replace the flawed materials in the pavement surface.

The first step for patching is to mark the pavement in square or rectangle patterns

beyond the area of potholing, and then to remove the damaged marked asphalt. The next

step is to clean and treat the exposed lower layer, which is followed by the placement of

new asphalt material.

4.2.2 Surface Treatments

4.2.2.1 Crack Treatment

Crack treatment is an effective way to treat the pavement surface using bituminous

materials, including crack sealing and crack filling. Crack sealing is conducted by

injecting bituminous materials into cracks; crack filling is the placement of emulsion

and aggregate or fine graded hot mix asphalt into cracks. Crack sealing is usually

conducted on the relatively good quality pavement where the cracks are less than 20

mm in width. Crack filling is used to deal with the cracks with width more than 20 mm.

Crack filling is regarded as a longer-term treatment than crack filling.
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4.2.2.2 Surface Dressing

Surface dressing is performed by spraying an emulsion bituminous binder to the surface

of the pavement, and aggregate chippings are spread and rolled to make sure chippings

are embedded into the pavement surface [63]. Surface dressing protects the pavement

from infiltration of water and oxidation by sealing the surface and restores pavement

skid resistance.

4.2.2.3 Thin Surfacing

Thin surfacings are manufactured by machine laying a hot bituminous bound mixture

onto an emulsion tack or bond coat, which are typically 15-40 mm thick [64]. They are

used to perform minor regulation of existing pavement surfaces, e.g. remove rutting.

increase pavement texture and improve skid resistance.

4.2.3 Major Maintenance

4.2.3.1 Pavement Overlay

Pavement overlays are usually applied to the pavements in a poor condition that can

improve the strength of pavement [64]. Typically thin overlay or deep overlay is applied.

Thin overlay is defined as the overlay thickness is less than 5Omm. It is usually applied

to relatively sound pavement to provide a new protective surface and improve pavement

serviceability. However, it has no significant influence on the structural strength of the

pavement. As for deep overlay, it aims to improve pavement condition to a large extent,

thus to ensure a better pavement quality, Due to their significant impact on the

pavement condition and performance, pavement overlays are termed major maintenance.

86



4.2.3.2 Resurfacing

Resurfacing can be carried out if the highway engineers determine that an existing

pavement is in reasonably good condition. It is used to increase the strength of

pavement structure, compensate for loss of skid resistance, as well as remove defective

materials and enhance riding quality.

4.2.3.3 Reconstruction

Under the condition that the pavement has exceeded its service life, reconstruction is

provided to renew the existing pavement. Reconstruction is recognised as major

maintenance intervention. It is applied as a full-depth, full-length reconstruction of

existing pavement on its road alignment, including rehabilitation of all drainage systems.

4.2.3.4 New Construction

New construction is also categorised as major maintenance, which involves a full-width,

full length construction of new pavement on a road alignment in parallel to the existing

pavement, updating an existing pavement to a higher standard, and providing additional

lanes to the existing pavement.

4.3 Decision Making Strategies for M&R

An M&R strategy is a set of M&R operations applied to a pavement network or a

segment during its service life, which includes surface treatment, minor and major

treatments. Each M&R strategy is associated with the present value cost and present

value benefit of the pavement network or segment. The benefit can be measured by the

impact of each M&R on the performance of the pavement. Typically, there are two

87



main approaches applied in the evaluation of M&R strategy, the prioritisation model

and the optimisation model.

4.3.1 M&R Prioritisation Model

For the prioritisation model, the first step is to build an inventory of pavement

conditions of all the segments on the network, and then allocate M&R funds to

pavement segments that are in the worst condition or experience an accelerated

deterioration rate. As it will be described in the optimisation model below, it is possible

to postpone the M&R operations of the pavement segment to later years. The benefits

are evaluated making a comparison between the present value of the pavement

condition of the segments maintained without a delay and with a delay.

Prioritisation method is the traditional way applied to the decision making, which is

defined as the "bottom-up" approach because the M&R treatments for each project are

evaluated first and then they are prioritized and conducted according to the needs and

resources of the highways agency [65].

In the pavement management system (PMS), the prioritisation model is used to identify

the corresponding M&R treatments for each pavement segment in the pavement

network individually. Further, with the incorporation of pavement performance

prediction model in the PMS, the prioritisation model is able to estimate when each

segment of the network will reach the threshold of its service level. The selection of

M&R treatments for each segment is usually evaluated according to pavement distress

measures or functional performance indices. After the identification of projects for each

segment in the network, their ranking needs to be estimated based on the agency

decision criterion. The ranking methods of the projects can be categorised into different

general groups in terms of various pavement condition measures [66]. The first group of
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prioritisation methods is mainly based on the present value of the current pavement

condition, which involves [67]:

• Prioritisation based on functional performance indices. In this approach, a

functional performance index is applied to evaluate the pavement condition and

develop a priority index together with other factors. The mostly adopted

functional performance indices include pavement serviceability index (PSI) and

pavement condition index (PCI), which are determined by visual assessment of

the various pavement surface distresses;

• Prioritisation based on pavement distress. The priority in this approach is

determined by the amount that the measured pavement distress exceeds its

relevant intervention level, the larger the exceedance the higher the priority. All

the individual pavement distresses are combined in a functional relationship as

the priority index. The higher value of the priority index represents the higher

priority for the corresponding project;

• Priority based on treatment. The priority for each project is related to the

maintenance treatment programmed in terms of its influence on the pavement

condition, together with road class and its traffic volume considered as the basis

for defining priority. In this case, the heavy traffic roads are given higher

priority.

As for the second group of prioritisation methods, it considers both current and future

pavement condition [67]. The future condition for each pavement segment is achieved

by the pavement performance prediction model and evaluated in terms of its related

costs and benefits. The most commonly adopted approach among this group is the cost-

effective method, which is obtained as the ratio of the area under the pavement
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performance versus time curve to the M&R treatment life-cycle cost [68]. Thus, the

priority for each project is defined by its generated cost effectiveness.

After the implementation of the priority rank of the pavement network, projects can be

conducted according to their ranking under the budget constraint. If the total budget

requirements identified exceed available budget, the projects that cannot be performed

in the current year should be deferred to later years.

The superiority of prioritisation models is that it is simple, easy to understand and can

be implemented quickly. However, there are several inbuilt disadvantages of the models

[69]. Firstly, they do not yield an optimal M&R strategy since the decisions are

determined at the project level, which results in that the final network level decisions

are just the combination of a set of project level decisions [65]. Secondly, decisions are

conducted sequentially according to the priority rank without the consideration of their

overall influence on the pavement network; they are not capable of estimating the

consequences of the pavement network after the implementation of treatments.

Therefore, the prioritisation models are only suitable for short-term decision making

problems.

4.3.2 M&R Optimisation Model

The determination of an optimal M&R strategy is the main objective of the optimisation

model, which is dependent on the decision policy selected, such as maximizing the

proportion of "good" pavements and minimizing the proportion of ''bad'' pavements

subject to budget constraints, or minimizing the total life-cycle cost under the constraint

of pavement quality [70]. Both deterministic and probabilistic pavement performance

prediction models can be incorporated into the optimisation model. The deterministic

models utilize the regression relationships to describe the deterioration of the pavement

condition, which expresses the pavement performance in detailed and quantitative terms,
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with reference to the various pavement surface distresses that characterise the pavement

condition [71]. Probabilistic models employ Markov models to forecast pavement

performance [72]. The latter models are more preferable because they recognise the

stochastic nature of the pavement system with the consideration of the uncertainty in

inspection and prediction of pavement condition.

The optimisation models can be applied at both network level and project level

pavement management system. In PMS, network level decisions are made first,

followed by project level decisions. The network level PMS should consider the

following tasks: (1) identifying the overall pavement network performance in terms of

physical pavement condition and pavement service level over time; (2) developing an

estimate of budget requirements and allocating resources over the entire pavement

network; (3) establishing a set of pavement construction, maintenance and rehabilitation

treatments. The network level decisions only provide the budget allocation and

maintenance strategies for the portions of the pavement network, but lack of a list of

specific treatments for individual pavement segments. The project level analysis is

needed for individual segments based on the network level analysis, which involves: (1)

monitoring and estimating the pavement performance at specific sites; (2) selecting

appropriate remedial actions for pavement segments and evaluating their cost and

impact on pavement performance; (3) establishing maintenance strategies for individual

pavement segments for a finite planning horizon under constraints.

4.3.2.1 Segment-linked Optimisation Model

In the case of network level maintenance optimisation model, there is no description of

pavement condition and performance in detailed and quantitative terms, and the M&R

treatments selected are assigned to portions of the pavement systems. No specific

treatment is applied on individual road segments. Therefore, segment-linked
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optimisation model is employed to overcome such problem [71, 73]. One feature of this

model is that the M&R activities are associated with road segments, and not just with

road categories. The model explicitly recognizes the segments of the pavement network

where the M&R activities should be conducted. It means that pavement segments are

defined as the decision-making units to which the M&R treatments apply. In general,

the size of pavement segment can be various. However, if the segments are too long,

their pavement condition cannot be predicted accurately, which present low

homogeneity than short segments. In contrast, if they are too short, it may result in that

the M&R treatments achieved from the model may make pavement condition vary

excessively within the pavement system. Also, it makes the optimisation model more

intensive.

Due to the decomposition of pavement network into separate segments, the pavement

system becomes much more intensive and complicated. For instance, even for a 20-

segment road network, a 5-year planning horizon and 9-alternative M&R activities

optimisation problem, the number of alternative M&R strategies to be considered is

huge (approximately 2.66x 1095). This model may be very complicated and time-

consuming for the integer linear programming, so GAs and some other soft computing

approaches are usually applied to solve this kind of optimisation problem.

4.3.2.2 Multi-Objective Optimisation Model

In a typical PMS, there is often more than one objective that needs to be achieved, and

those multiple objectives, often conflicting, have significant different effects on the

resulting M&R strategy. Traditionally, researchers and practitioners treat this kind of

problem as a single objective optimisation problem while imposing other competing

objectives as constraints. There are typically two limitations of the single objective

optimisation [74]. Firstly, it is important to select the objective for optimisation among
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the involved objective. Also, the proper ranges for the objectives that are set as

constraints in the formulation need to be defined. Consequently, the solutions achieved

from the single-objective optimisation model are suboptimal compared to the ones

obtained from the multi-objective optimisation model.

The multi-objective optimisation model aims to find a vector of decision variables

which optimizes the involved objective functions and satisfies the constraints [74].

Typically, the parameters that are involved in the pavement maintenance optimisation

problem include budget, time, pavement quality requirement and work delivery, etc.

The constraints of those factors are employed to ensure the feasibility of the final global

optimal solution. However, there is no single global optimal solution for the multi-

objective optimisation model. Therefore, the means to solve this model is to develop

Pareto optimal solutions for all involved competing objectives, and then to identify a

Pareto frontier by the selection of all the non-dominated solutions. Then the acceptable

solution in line to the decision makers' criteria is selected. There are many optimisation

methods applied in the generation of Pareto optimal solutions, such as the multi-
. .

objective simplex method [75], GAs [76], the weighting sum method [77] and the

normal constraint method [78], which are the most commonly adopted ones [74].

However, there is no single optimisation method that is superior to other optimisation

methods. The selection of the optimisation method depends on the preference of users

and information available.

Multi-objective simplex method is applied to solve multi-objective linear problems

subjected to multiple linear constraints, which is not sufficient for non-linear

optimisation problems. The weighting sum method is the simplest multi-criteria

decision making method which has been used extensively to provide Pareto optimal

solutions by varying the weights of the involved objectives; however, the weights for

each objective need to be determined properly [79]. As pavement maintenance problems
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belong to non-linear optimisation problems, GAs are applied to perform optimisation

and the normal constraint method is used to make a balance between the involved

objectives.

4.3.2.3 Maintenance and Rehabilitation Optimisation using Genetic Algorithms

Genetic Algorithms (GAs) can be applied to the M&R optimisation problem because of

their robust search capabilities that overcome the combinatorial explosion of large-size

optimisation problems and are based on the survival-of-the-fittest concept of Darwinian

evolution. The major barrier of the optimisation problem is that the solution space

grows exponentially with the size of the problem, so the conventional optimisation

approach can be inefficient to find the optimal solution. While GAs, which incorporate

a set of initial solutions and generate new and better solutions according to the

probabilistic rules, can be more effective and the likelihood of achieving the optimal

solution is increasing [80].

4.4 Genetic Algorithms

4.4.1 Introduction

Genetic algorithms were proposed by John Holland at the University of Michigan and

applied as a computational technique in 1975 [76]. GAs are developed based on the

survival-of-the-fittest concept of Darwinian evolution. Goldberg [81] constructed the

initial framework for GAs, known as the binary-coded genetic algorithm (BGA), and

exhibited its robustness of optimisation and search. GAs imitate the natural process of

biological evolution, can be more efficient and the probability of reaching the optimal

solution is increasing. During the last two decades GAs have been widely studied and

experimented, and a significant contribution was achieved within pavement

management engineering [71, 80, 82-84]. GAs are attractive to pavement engineers
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because of their robust search capabilities and ease of implementation. Furthermore,

GAs are applicable to resolve multi-objective optimisation problems. During the last

few years multi-objective genetic algorithms (MOGAs) were successfully applied to a

large amount of pavement maintenance scheduling problems [85-87]. Recently, many

different MOGAs have been proposed, among which the non-dominated sorting genetic

algorithm II (NSGA-II) is recognised as one of the most advanced method for solving

multi-objective problems [88, 89].

4.4.2 Simple Genetic Algorithms

In biological terms, natural evolution takes place in chromosomes that build up the

structure of creatures. As for GAs, they involve encoding the decisive parameters of the

optimisation problem as a finite-length string, i.e. chromosome. An individual GA

chromosome is used to represent a solution to the optimisation problem that is known as

a genotype and the value of a gene contributing to the chromosome is called an allele.

4.4.2.1 Coding

Holand [76] introduced binary coding approach for mapping a chromosome to the

parameters of an optimisation problem, in which the value of a gene can only be either 0

or 1. A binary string as an unsigned integer where the string A =ai at.t.. a] a J is decoded

to the parameter value x:
I

x= Ia; ·2;-1
;=1

(4-1)

For example, for a stringA=100l0, it is decoded to:

If upper and lower bounds are applied, denoted by Uo and 10, this binary string is

decoded as:
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(4-2)

When Uo and 10 are defined as 0 and 10, respectively, the string value is decoded to:

18
x = O+-s-x(lO-O) = 5.142 -1

Apart from binary coding, real coding and integer coding are also used to map the

parameter space of an optimisation problem [90, 91].

4.4.2.2 General Operation

GAs begin by the generation of an initial pool of genotypes to represent a set of feasible

solutions, and then each individual within the initial pool is evaluated using the

objective function and ranked in terms of its fitness that obtained as its value of the

objective function. With the aid of genetic operators, i.e. reproduction, crossover and

mutation, each genotype is allowed to create a certain number of offspring depending on

its fitness. With respect to the values of the objective function, relatively better solutions

would be retained, while the rest would be deleted. As a conseq':lence. a new parent pool

is formed by selecting the desired number of offspring. The genetic selection process,

solution-pool selection process, and offspring generation are repeated until the result

reaches convergence or a maximum iteration set by the user is met. The general

framework for GAs is described in Figure 4-2.
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Figure 4-2: General framework for GAs
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4.4.2.3 Genetic Operators

After the generation of the initial solutions, parent pools are selected in accordance with

their fitness using a selection process. The following step is to generate offspring pools

by mating of the parent pools. There are three operators applied, reproduction, crossover

and mutation.

4.4.2.3.1 Reproduction

Once the parent pool is created reproduction is performed, Reproduction is a procedure

in which individuals in the population pool are copied in terms of their fitness values.

The fitness value for each chromosome is obtained by transforming its objective

function value into a measure of relative fitness. Afterwards, selection methods are used

to determine how chromosomes are chosen for reproduction. One of the most popular

and simple method is roulette wheel selection [81]. Each chromosome in the pool is

assigned a roulette wheel slot sized in proportion to its fitness value. The allocated

space on the roulette wheel for each individual is derived in terms of the selection

function, described as:

i; . 12 NP; = -N--,l = , ,...

Ii;
;=1

(4-3)

Where

fi- the fitness value of chromosome i

N- the number of chromosomes in the parent pool

When the generation of offspring is required, a simple spin of the roulette wheel

produces the reproduction participants. Therefore, chromosomes with a higher fitness

value are more likely to be succeeded in the next generation. The selected chromosomes

are then placed into the mating pool for further genetic operator processes.
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For instance, there are five chromosomes in the parent pool, 00011, 00110, 01100,

11000, and 10001. The objective function values of them are calculated using binary

coding method, described in Table 4-1:

Table 4-1: Sample population of chromosomes and fitness values
ID Chromosome Fitness value % of Total

00011 3 4.8

2 00110 6 9.7

3 01100 12 19.4

4 11000 24 38.7

5 10001 17 27.4

Total 62 100

The fitness value of chromosome I (00011) is calculated as 3, which occupies 4.8% of

the total fitness. Therefore, chromosome 1 is allocated 4.8% of the biased roulette wheel

space, and its probability for reproduction is 4.8%.

4.4.2.3.2 Crossover

There are two main steps involved in crossover. On one hand, the newly reproduced

chromosomes in the mating pool are mated at random. On the other hand, each pair of

chromosomes undergoes crossover by selecting a crossing point in the chromosome at

random and then combining the genes form one mate before the crossing point and the

genes from the other mate after the crossing point. For example, consider two binary

parent chromosomes:

~ = 00 110100 ,

~ = 010 11101.

Assuming the randomly selected crossover point IS 3 from the left end of the

chromosomes and the resulting two offspring are:

o, = 00 11110 1,
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02 =01010100.

This method described above is single point crossover, which is the simplest form of

genetic operator. However, it becomes insufficient for the long chromosomes. Thus,

multi-point crossover and uniform crossover are proposed to generate more string

combinations so as to overcome this deficiency [92, 93].

4.4.2.3.3 Mutation

Mutation takes place after crossover, it allows for the genes on the chromosomes in the

mating pool to be altered. It is processed by probabilistically selecting chromosomes

from the mating pool in accordance with their fitness values, and the mutation point at

the selected chromosome is picked randomly and the gene at that point is altered at

random. The mutated chromosome is then entered into the parent pool in the next

generation. For instance, mutating the 3rdbit in a binary stringP, = 01QII00results in

the offspring03 = 0111100.

The mutation operator when only one gene on the chromosome is altered at a time is

termed uniform mutation. In addition, multiple uniform mutation is utilised in GAs,

described as uniform mutation of n randomly selected genes on the selected

chromosome. The value of n is defined at random from 1 to the length of the

chromosome.

4.4.2.4 Genetic Algorithms Parameters

There are some program variables that affect the performance of the GAs need to be

defined, including:

• The population size,

• The maximum number of generations,

• The crossover rate,

• The mutation rate.
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With the increase of population size and maximum number of generations, the search

space is more thorough explored and more feasible solutions might be generated.

However, this increased the computational complexity significantly and a trade-off

between computational effort and space exploration must be made.

As for the crossover rate, given a higher value more of the solution space can be

investigated and the chance of achieving a local optimal solution is reduced.

Nevertheless, when the crossover rate is too high more computation is required.

For mutation rate, if it is too low, some useful genes may never be tried out; on the

contrary, if it is too high, it leads to the fact that the offspring will start losing

resemblance to their parents. It is suggested that mutation rate should be set within the

interval [0.001, 0.01] [94].

4.4.3 Multi-objective Genetic Algorithms

In pavement engineering, there is often more than one objective that needs to be taken

into account, and those multiple objectives, often conflicting, have significant different
. .

impacts on the resulting M&R strategy, such as maximisation of pavement condition

and minimisation of maintenance cost.

The aim of multi-objective optimisation model is to achieve a vector of decision

variables which optimizes the involved objective functions and satisfies the constraints.

Typically, the approach to solve this model is to develop Pareto optimal solutions in

terms of the involved objectives, and then to identify the corresponding Pareto frontier.

Finally, the acceptable solution is selected according to the decision maker's criteria. As

MOGAs are easy to implement, robust, and they need less information about the

problem being resolved, they are particularly suitable to achieve the Pareto optimal set

than other multi-objective optimisation techniques [95].
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4.4.3.1 Problem Formulation and Pareto Optimality

A general multi-objective optimisation problem with m decision variables and n

objectives is expressed as:

Min F(X) = (.I; (X), 12(X), ...J,(X» (4-4)

Where X = (XI ,x2, ... ,Xm) is an n-dimensional variable vector, and

1; (X), J; (X), ...,J" (X) are the n objective functions. The solution space X is generally

restricted by a set of constraints, including both equality and inequality constraints,

stated as:

hj(X) = O,i = 1,2,...,1; (4-5)

gj(X) = O,j = 1,2,...,J. (4-6)

In Pareto based approaches, a solution vector a E X is said to dominate a solution

vector b E X if a is better or equal to b in all attributes, expressed as:

Vi E {1,2,...,n}: J;(a) ~ J;(b) and 3j E {1,2,...,n}: J;(a) < J;(b) (4-7)

A solution vector C E X is said to be Pareto optimal if and only is it is non-dominated

regarding the whole solution space X. If a solution is not within the Pareto optimal set, it

can be improved in terms of any objective without leading to deterioration in other

objectives. The combination of all feasible non-dominated solutions within solution

space X is defined as the Pareto optimal set and the objective function values of Pareto

optimal solutions in the objective space is recognised as the Pareto optimal frontier. For

instance, the Pareto optimal frontier for a typical two-objective minimisation problem is

illustrated in Figure 4-3:

102



_._._.• _.... ._••• - •., A (Rank 3)

!._ ...•....... _ .. _.- ~ _ _._._.,
.•._._.•._._ _ (Ranklll ! C (Rank 4) E (Rank S)
......- -.- -~ _ t·_·..·_·_·_··_·1·_·_·_· ..·_· - ._ _,

.:: l D (~ank 1) 1 :~ -'-'_'-'-'-'-'-r'; I I 1

~ ~ ~ ~ i
~ ~ l I !
':I ... _._._._._._._L.L..._.~._._ F (Rank 11)
~ ! ; i ~
~ ;; i.! G (R;int 2)

·~~~~.'.-~.-~~_'.~I."I.~.~.L~.L-~~_.~.L-~.--.-·_....-.-.T I
• ~ ~! i (RaJ)k 1) i
i : i i ! : ! ! I ~ank 2)::::::~::r:r::r:r:~~r::r=Fr~-;-(;:c

Pareto frontier

Objective Function f1

Figure 4-3: Pareto optimal frontier in two objective spaces

Figure 4-3 is removed from [86]. The solutions B, D, F, Hand J are recognized as non-

dominated solutions, while other solutions are dominated by them. Eventually, the

global optimal solution is defined as the point in the Pareto optimal frontier that has the

minimum Euclidian distance to the origin point along the Pareto Frontier.

4.4.3.2 General Framework for MOGAs

Schaffer [96] proposed the first MOGA, called vector evaluated genetic algorithm

(VEGA). VEGA applies the selection operation of the GAs to generate non-dominated

solutions. Individual objectives are deployed as the selection metrics. It is found that

this method cannot cover the whole Pareto frontier. Later, Goldberg [81] introduced the

non-dominated sorting procedure to MOGAs as the rank-based approach, three main

steps are involved:
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• All the non-dominated individuals in the population pool are identified. They are

assigned the best rank, i.e. rank 1, that considered as the best solutions, and then

are eliminated from the population pool.

• The non-dominated individuals in the residual population pool are captured and

assigned rank 2, they are also deleted from the population pool.

• This process of evaluating non-dominated individuals in the pool continues until

all the individuals in the pool have been ranked.

Figure 4-4 shows the Pareto ranking procedure for the small population with two

minimisation objectives, which is removed from [97] .

.~
.-

1•

Figure 4-4: Population ranking based on non-dominated sorting procedure

Since then many different MOGAs based on various Pareto ranking approaches have

been provided for solving engineering problems [89]. The general framework for these

MOGAs is described in Figure 4-5.

MOGAs start form the generation of an initial pool of chromosomes, and the objective

values for each chromosome are calculated like in the single objective GAs. Then

Goldberg's non-dominated sorting procedure is applied to fmd all the non-dominated
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individuals that have the same reproductive potential, in which the fitness value of each

individual is calculated according to the non-dominated criterion instead of the

objective values themselves. If convergence is not verified, the individuals in the parent

pool are processed by genetic operators, i.e. reproduction, crossover and mutation, to

generate offspring solutions, and the algorithm returns to the fitness evaluation step for

the next generation. This process continues to produce new solutions that would

generate a superior frontier that dominates the existing frontier that achieved in the

previous iterations until a set of globally non-dominated solutions is found or the

maximum iteration is exhausted.
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106



4.4.3.3 The Non-dominated Sorting Genetic Algorithm

4.4.3.3.1 NSGA Overview

The non-dominated sorting genetic algorithm (NSGA) IS developed based on

Goldberg's non-dominated sorting procedure and sharing approach [98]. The only

difference between NSGA and simple GAs is the selection operation, while the

procedure of crossover and mutation are the same. In contrast to the general non-

dominated sorting procedure described in Section 4.4.3.2, the identified non-dominated

individuals in the population are given a large dummy fitness value, and then are

removed from the population. The same dummy fitness value is given to the non-

dominated individuals with an equal reproductive potential. Then sharing method [99]

is used to process the individuals with the same ranking, realised by implementing

selection process using reduced fitness values which are calculated by dividing the

original dummy fitness value of an individual by a quantity proportional to the amount

of points around it. This results in a set of optimal solutions to present in the pool. Next,

the non-dominated individuals in the reduced population are identified and assigned

lower than the minimum value of the previous ranked individuals, and then sharing is

applied to this second set of non-dominated individuals. This process is repeated until

the whole population is ranked.

When assigning fitness value and sharing is complete, the population is reproduced in

terms of the dummy fitness value, and genetic operators are used to process the

individuals in the population. The individuals that have the maximum dummy fitness

value are located in the first front, and they have a higher probability of generating

offspring. This process is intended to explore the Pareto optimal frontier, which leads to

quick convergence of the population towards the Pareto optimal frontier and sharing

method aids in distributing it over this frontier.
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Figure 4-6 shows the general framework for NSGA, which is removed from [98]. As

stated above, NSGA varies from simple GAs only in the classification of non-

dominated frontiers and the sharing procedure. The sharing for each frontier is

evaluated by calculating the share function value between two individuals that belong to

the same frontier, formulated as [98]:

Shed ) _ { 1- (~)2, if dij < (Tshare
i] - (jshare

0, otherwise
(4-8)

where

dij- the phenotypic distance between two individuals i and j in the same Pareto

frontier

Ushare- the maximum phenotypic distance defined between any two individuals in the

same Pareto frontier to become members of a niche

Subsequently, another parameter niche count is provided by summing up the sharing

function values for all the individuals in the current frontier from an individual.

Eventually, the shared fitness value for each individual in the current frontier is obtained

by dividing its dummy fitness value by the corresponding niche count.

The Goldberg's non-dominated sorting procedure is taken into account by NSGA in a

better way. The ranking method is implemented in terms of the non-dominated

individuals in the population and then the distribution of the non-dominated individuals

is filtered using a niche formation method, resulting in that the distinct non-dominated

individuals to be identified in the population.
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4.4.3.3.2 NSGA-II: the improved NSGA

Over the past years, the main weaknesses ofNSGA are depicted as follows [88]:

• High computational complexity of the selection operation of non-dominated

solutions. The computational complexity is O(MN3) (where M is the number of

objective functions and N is the size of the population), which is resulted from

the non-dominated sorting procedure.

• Lack of elitism. It is reported that elitism can improve the performance of GAs

substantially and can help maintaining good individuals once they are identified

[100].

• Requirement for defining the sharing parameter (Jshare. The performance of the

sharing technique in achieving a set of solutions depends significantly upon the

value of (Jshare. In addition, the sharing technique leads to more computational

complexity.

Deb et a1. [88] developed the improved version of NSGA that named NSGA-II, which

alleviates the difficulties stated above.

4.4.3.3.3 Elitist Non-dominated Genetic Algorithm

A fast non-dominated sorting approach is proposed in NSGA-II, which requires O(MN2)

computational complexity. In this approach, two parameters are calculated for each

individual in the population: (a) domination count np, the amount of individuals which

dominate the individual p, and (b) Sp, a series of individuals that the individual p

dominates. All individuals with a domination count of zero are located in the first non-

dominated frontier. Next for each non-dominated individual p with np=O, the members

of its domination set Sp are processed by reducing their domination count by one. Any

member with a current domination count of zero is placed in the second non-dominated

frontier. This process is repeated until the whole population is evaluated. which requires

110



O(MN2) computations that is much less than that of the non-dominated sorting

procedure applied in NSGA. Also, the sharing function method presented in NSGA is

replaced by a crowded-comparison method. This method has no need for specifying the

sharing function value, and gives rise to a better computational complexity. In addition,

a selection operator is proposed that generates a mating pool by mixing the parent and

offspring populations and identifying the best N individuals in terms of their fitness and

spread.

4.4.3.3.4 Constraint Handling

NSGA-II can also be applied to solve constrained multi-objective problems using a

constraint handling approach. This constraint approach deploys the binary tournament

selection, where two individuals are selected from the population and the better one is

chosen. In the presence of constraints, each individual in the population can be either

feasible or infeasible. As a consequence, three cases are taken into account: (a) both

individuals are feasible; (b) one is feasible and the other is not; (c) both individuals are

infeasible. With the consideration of infeasible individuals, the definition of dominance

between two individuals in the population is modified as:

Definition J: An individual a is said to constrained-dominate an individual b, if one of

the following situations is fulfilled.

1. Individual a is feasible and individual b is infeasible.

2. Both are infeasible, but individual a has a smaller overall constraint violation.

3. Both are feasible and individual a dominates individual b.

It is worth noting that the modification in the definition of dominance has no effect on

the computational complexity of NSGA-II.
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4.5 Summary

This Chapter introduces the maintenance actions that widely applied in the UK, which

can be classified into three main groups according to their frequency and their impact on

the serviceability of road, i.e. minor maintenance, surface treatment and major

maintenance.

This chapter provides two major approaches employed in the decision making of M&R

strategy: the prioritisation model and the optimisation model. Both of them can be

applied to the PMS at the network and project levels. The prioritization model is

regarded as the "bottom-up" approach because it is applied to individual segments in the

pavement network firstly and then prioritized according to the needs and resources of

the highways agency. The advantage of such a model is that it is easy to use and it can

be implemented quickly. However, it cannot yield an optimal M&R strategy because of

no consideration of the influence of the whole M&R strategy on the pavement network.

Conversely, the optimisation model utilises the "top-down" methodology, which is

applied at the network level pavement system at first, and then extended to the project

level to make specific decisions for individual segments. It aims to find the optimal

M&R strategy for the pavement system according to its defined objective. Also, it can

solely be applied to pavement system at the project level, such as the segment-linked

optimisation model. Both deterministic and probabilistic pavement performance

prediction models can be incorporated into the optimisation model. The deterministic

models apply the regression equations to describe the deterioration of the pavement

condition, while the probabilistic models utilise the Markov models for the same

purpose.

Traditionally, the optimisation models deploy only one objective while imposing other

competing objectives as constraints. Such models suffer two limitations [74]: how to
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define the objective that deserves the most attention and determine the proper range

values for the other objectives that formulated as constraints. As a result, the solution

obtained is usually suboptimal. Therefore, multi-objective optimisation model can be

used to overcome this problem. Since there is no single global optimal solution for the

multi-objective optimisation model, it is achieved by generating the set of Pareto

optimal solutions. Then, the global optimal solution is selected from the Pareto solution

set, which is a vector of decision variables which optimizes the defined objectives and

satisfies the constraints involved.

The methods that are usually employed as the solution of optimisation model include

linear programming, integer programming and dynamic programming. However, the

solution space obtained in the optimisation model increase exponentially with the

increase of the size of the pavement system, especially for the segment-linked and

multi-objective optimisation models, which are far more intensive and complicated.

Therefore, GAs and some other soft computing applications can be deployed as the

solution for such models, because they can overcome the combinatorial explosion of
. .
large-sized optimisation problem. In the presence of conflicting objectives, multi-

objective genetic algorithms can be applied owing to their robust search capabilities and

ease of implementation. With the adoption of an advanced non-dominated sorting

approach and a simple constraint-handling method, NSGA-II is selected for pavement

maintenance optimisation in this thesis.
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5 Scheduling of Pavement Maintenance

5.1 Introduction

In this chapter we investigate pavement maintenance problem at both the network level

and the project level. The proposed models are used to determine the optimal M&R

strategy with the aim of minimising total cost and maximising pavement condition,

taking into account the budgetary and applicable technical constraints.

For the network level optimisation model two main components are involved: (1) the

pavement deterioration model used to predict pavement performance; and (2) the

technique used to determine the M&R strategy. The pavement deterioration model

employed in this thesis is a deterministic pavement age gain model which requires less

historical data to calibrate than other pavement deterioration models. In order to capture

the uncertainty inherent in the pavement deterioration process, the deterministic model

can be transformed to a probabilistic one by incorporating normal distributions. The

approach used to achieve the optimal M&R strategy is an optimisation model based on

GAs.

At the project level, in addition to the maintenance cost to the highways agency,

pavement maintenance works and constructions on the highway network also disrupt

traffic flow and increase safety hazards to vehicle drivers and road workers, which

further resulted in additional cost to road users. It is expected that the delay cost to road

users may exceed the corresponding maintenance cost. As a consequence, it is greatly

desirable to optimise the worksite arrangements so as to cause less disruption and delay

to the road users.

Subsequently, NTFM is applied to model the delays and disruption caused by

maintenance activities, the resulting road user costs together with maintenance costs can
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be used to optimise maintenance actions for road sections on the network in the long-

term. Afterwards, the maintenance arrangements for road sections can be optimised so

as to minimise road user cost and to make sure that the corresponding maintenance cost

is acceptable to highways agencies, where the single-objective GA is employed to

perform optimisation.

5.2 Scheduling of Pavement Maintenance using NSGA-II at the Network Level

In the presence of aging and deteriorating highway networks and inadequate budgets, it

is of substantial importance for highways agency to operate, preserve and enhance

highway networks in a cost-effective way. This thesis presents a road section based

optimisation model to determine the optimal maintenance and rehabilitation (M&R)

strategy for a highway network in the planning period using GAs. The model is aimed

at minimising the total agency cost and maximising the remaining pavement life of a

highway network over a given planning period. Road sections between junctions are the

decision making units to which maintenance actions apply. This model employs age

gain to indicate the improvement of road sections resulting from M&R actions. In

addition, integer encoding is deployed to define various maintenance action possibilities.

This coding method reduces the length of the chromosome compared to the more

commonly used binary encoding of variables.

5.2.1 Age Gain Maximisation Model

The developed model applies the expected age gain associated with the M&R actions as

the pavement improvement indicator [85]. Five maintenance actions are considered, do

nothing, patching, surface dressing, resurfacing and overlay, which are represented by 0,

1, 2, 3 and 4 using the integer coding method. The maintenance cost and duration

associated with each maintenance action is shown in Table 5-1 [101]:
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Table 5-1: Maintenance duration and cost for each type of maintenance action
Single carriageway Dual 2 lane Dual 3 lane motorway

M&R
(S2) carriageway (D2AP) (D3M)

Type Duration Cost Duration Cost Duration Cost

(days) (£'OOOs) (days) (£'OOOs) (days) (£'OOOs)

Do nothing 0 0 0 0 0 0

Patching 2 50 3 100 4 140

Surface 4 70 5 140 6 170

dressing

Resurfacing 8 200 14 550 20 900

Overlay 16 320 23 820 33 1350

1. Costs and days are for lkm of road, that is, both carriageways.

2. Costs are £'OOOsexpressed in average 2012 price, which are derived in terms of

inflation rate and Off [101].

The age gain for each M&R action is characterised by the remaining pavement life of

the road section, given in Table 5-2 [101]:

Table 5-2: Expected ages associated with pavement maintenance actions versus

remaining pavement life
Pavement Expected age gain (years)

Remaining
condition Do nothing Patching SD Re Ov

pavement

life (years)
(0) (1) (2) (3) (4)

>6 0 0 2 5 7 10

(4,6] 1 0 2 3 7 10

(2,4] 2 0 1 3 6 9

(0,2] 3 0 0 1 6 9

1. (0), (1) ... (4) represent the ID of maintenance actions.
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5.2.2 Classification of Road Sections

When each road section is deployed as the decision making unit, it becomes

computationally inefficient for a highway network that is composed of a large amount

of sections, which is the case of most highway networks. To deal with this problem, the

proposed formulation of the maintenance optimisation problem categorizes road

sections on a highway network into groups with similar properties with regard to some

characterising variables, such as road classes, traffic categories, and climatic regions,

which govern the pavement performance. By this means, all individuals from the same

group are assumed to have the same performance characteristics and should be studied

in a similar manner. In this thesis, climatic condition is not considered, as the road

sections on a relatively small-sized highway network belong to the same climatic region.

The classification of road sections is illustrated in Table 5-3 [101]:

Table 5-3: Road section types
Road section Road class Traffic flow (OOOs) Initial Pavement life (years)

group

1 S2 5-15 10

2 S2 15-20 8

3 D2AP 10-20 10

4 D2AP 20-30 9

5 D2AP 30-40 8

6 D3M 20-30 11

7 D3M 30-40 10

8 D3M 40-80 9

1. Flows are opening year Annual Average Daily Traffic (AADT).

2. The initial pavement life for each road class is assumed, which can be calibrated

according to historical data.
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Considering both road class and traffic category, at least 8 types of road sections are

investigated, including 2 types for S2, 3 types for D2AP and 3 types for D3M.

Moreover, the initial pavement life for each type of new road section is also provided.

In terms of the classification of road sections, the road sections on a constructed

highway network are divided into 8 groups. Also the individuals from the same group

have the same initial pavement life. As a result, maintenance actions are assigned to

each road section group at each year during the planning horizon.

5.2.3 Model Formulation

The two objective functions of this model are formulated as follows:

N T I
Min I, I, I c..

n=1 1=1 (1+d)
n = 1,...N;t = 1,...T (5-1)

N

MaxI,rp/n.T «i,
n=1

n = 1,...N;t = 1,...T (5-2)

Where

Cn.l- maintenance cost for road section group n at year t

rp/n.T - remaining pavement life for road section group n at year T

Ln- the total length of road sections that belong to group n

N- number of road section groups

T- planning horizon

d- discount rate, expressed as a fraction

The discount rate is used to transform costs and benefits arising in different years to

their present value. For example, £100 to be received in n years from now is worth

£1% + d)n in today's money. It is worth noting that this expression ignores the effect
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of inflation and assumes that £100 has the same real value at each year. A discount rate

ofO.035 is adopted in COBA [102].

The evolution of the remaining pavement life for road section i at year t is evaluated as:

Ifrpl, (i) > pl(i), rpl, (i) = pl(i) (5-3)

Where

rpl, (i)- remaining pavement life for road section i at year t

m- pavement condition of road section i at year t, i.e. 0,1,2 and 3, evaluated

based on the remaining pavement life that depicted in Table 5-2

k- maintenance action performed in road section i at year t

ag,Jm][k] - age gain associated with the maintenance action performed m road

section i at year t based on remaining pavement life

pl(i)- initial pavement life for road section i

Equation 5-3 indicates that the remaining pavement life of road section after

maintenance cannot exceed its initial pavement life. The constraints involved are stated

as:

rpl, (i) ~ rplmm (5-4)

~ I C <B
~ (l+d)' n.1 I

(5-5)

Where B, is the budget for year T, £'000.

The first constraint is that the remaining pavement life for each road section group n is

greater than the minimum remaining pavement life. The second constraint is the budget

constraint, where the maintenance cost on the whole network at year t should be less

than the available budget. In addition, the constraint of major M&R actions for the
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whole network can be included; it means that the number of major maintenance actions

applied to the network at each year cannot exceed its threshold.

5.2.4 Case Study

The requirement is to maintain a newly constructed road network during a planning

horizon T, of 20 years. For ease of explanation, an example network that consists of 4

road sections is analysed, which is illustrated in Figure 5-1:

_jl IL
B c

A D

I I Ii
Figure 5-1 : An example road network

The pavement condition of the road sections on the network is depicted in Table 5-4:

Table 5-4: Pavement condition for the example network
Road section Road section group Initial pavement life (years) Length (km)

(Table 5-3)

AB 6 11 1

BC 1 10 1

CD 3 10 1

AD 2 8 1

As there are 4 road sections on the network, 80 decision variables are incurred in this

problem. For instance, the decision variable 1nl represents the maintenance action
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implemented in road section n at year t. The decision string structure for road section n

is represented by:

5.2.4.l Objectives and Constraints

As stated in Section 5.2.3, two objective functions are considered, which are formulated

as:

(5-6)

4

MaxLrp/4,20 x L,
n=1

(5-7)

and the constraints are evaluated as:

rp/tU) ~ 3 (5-8)

~ I C < 2000
~(1+d)t n.t (5-9)

The minimum remaining pavement life is defined as 3 years so as to ensure the

serviceability of pavements, and the available annual budget is £2,000,000. The

solutions that violate the constraints are defined as infeasible solutions. NSGA-II [88]

deploys the constrained-domination principle to rank individual solutions. Firstly, each

feasible solution is assigned a better non-domination rank than any other infeasible

solutions. Secondly, all feasible solutions are ranked in terms of their non-domination

level based on the objective functions values. As for infeasible solutions, the solution

with a smaller constraint violation has a better rank.
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5.2.4.2 GA Parameters

In GAs, there are four main GA parameters: population size (P), maximum simulation

generations (M), crossover rate (Pc), and mutation rate (Pm). As 80 variables need to be

optimised, the population size is set to 500. Based on NSGA-II, an analysis was

conducted to investigate the effect of changing GA parameter values. A limited set of

values for each GA parameter was selected as follows:

pc: 0.6, 0.7, 0.8, 0.9

pm: 0.001, 0.01, 0.1

M: 5000

P: 500

NSGA-II is used to determine the optimal Pareto frontiers using different combinations

of crossover rates and mutation rates. Figure 5-3 is used to analyse the effect of

mutation rates on the optimisation results when specific crossover rates are chosen.
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Figure 5-3: Optimal Pareto frontier for different mutation rates under each crossover rate
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The results show that the mutation rate 0.01 lead to a better performance. This is

because when mutation rate is too high, the offspring solutions cannot maintain some

good genes of their parents. While for lower mutation rate, some helpful genes may

never be explored. Figure 5-4 shows how crossover rates influence the optimisation

process when mutation rate is 0.01.
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Figure 5-4: Optimal Pareto frontier for different crossover rates when Pm=O.Ol

Almost the same optimal Pareto frontiers are obtained for each combination of

crossover and mutation rates. In order to consume less computational effort, the optimal

crossover rate is chosen as 0.6. Consequently, crossover rate, 0.6, and mutation rate,

0.01, are applied.

5.2.4.3 Testing

To perform further testing the specified set of GA parameters values are used and 5

simulation runs are conducted. The maximum generation in a single run of the test is

also set to 5000 generations which takes around 5 minutes to run on a PC.

The average fitness function value in each generation is deployed as the indicating

factor when considering the convergence of the optimisation problem. For instance, the

results obtained at each generation for runs I and 5 are presented in
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Figure 5-5. The results indicate that the average population fitness function value

converges towards the optimal solution. It is identified that the results are scattered in a

relatively narrow range and the convergence to the optimal solution is obtained.
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Figure 5-5: Average fitness function value at each generation

5.2.4.4 Optimal Pareto Solution

Based on the specified GA parameter values, NSGA-II [88] is employed to achieve the

optimal M&R strategy, and the resulting optimal Pareto frontier after different

maximum generations is illustrated in Figure 5-6.
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Figure 5-6: The optimal Pareto frontier
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The optimal Pareto frontier obtained is approaching the real Pareto frontier with

increasing simulation generations. The results demonstrate that the optimal Pareto

frontier is achieved at generation 5000, which were not improved significantly with

further iterations.

The next step is to normalise the obtained optimal Pareto frontier. The normalised

distance for each non-dominated solution is calculated in terms of its objective function

values. A normalised objective function value is achieved over a range of 0-100 for

each objective based on the following mapping rules [86]:

ONU, x) = OU, x) - O(i, min) x l 00
O(i, max) - O(i, min)

(5-10)

Where

0N(i,x)- the normalised parameter value of objective i for solution x

O(i, x) - the actual value of objective i for solution x

O(i, max) - the maximum parameter value of objective i for non-dominated solutions

OU,min) - the minimum parameter value of objective i for non-dominated solutions

For this optimisation problem, O(l,min) = £1,264,076 and ·O(I,max) = £1,707,796 for

the objective of minimising maintenance cost; O(2,min) = 12years and O(2,max) = 35

years for the objective of maximising remaining pavement life. The purpose of this

mapping approach is to describe the two objective parameters on an identical space.

Based on Equation 5-10, the normalised optimal Pareto frontier is illustrated in Figure

5-7:
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Figure 5-7: Normalised optimal Pareto frontier

The final step is to identify the solution that has the smallest Euclidean distance, ds,

from ( ON (1,min), 0 N(2, max) ), represented by:

d , = ~[ON (l,x) - ON (Lrninj]" + [ON (2,x) - ON (2,max)f (5-11)

The optimal solution based on the shortest normalised distance is determined as

maintenance cost of £1,418,291 and total remaining pavement life of 24 years, chosen

from the optimal Pareto solution set within the space of £1,264,076-£1,707,796 for

maintenance cost, and 12-35 years remaining pavement life for the network. The

resulting optimal Pareto solution is described in Table 5-5:

Road

Table 5-5: The optimal M&R strategy
Maintenance scheduling during the planning horizon T (20 years)

section 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

AB 0 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0

BC 0 0 0 0 0 0 0 2 0 0 2 0 0 2 0 0 2 1 2

CD 0 0 0 0 0 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2

AD 00000200200200200211

127



Examining Table 5-5, the maintenance plan for each road section on the network is

provided. For road section AB, three maintenance actions are implemented on it over 20

years; three SD actions at years 5, 9 and 13.

In terms of the M&R strategy provided in Table 5-5, the evolution of remaining

pavement life for each road section during the planning period is illustrated in Figure

5-8:

a Road section _--\B
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20

20

For road section AD, one maintenance action, i.e. 2, is scheduled at year 6. The

(c Road section CD

remaining pavement life at the end of year 5 is 3 years, and then SD is applied to

5 10
TIme (years)

15

prolong the pavement life by 3 years according to Table 5-2, which led to the remaining

pavement life of 6 years at the beginning of year 6. At the end of year 6, the remaining

d Road section AD

pavement life is decreased to 5 years as one year elapsed. There are 7 maintenance

5 10
TIme (years)

15

actions implemented to maintain the serviceability level of road section AD with the

Figure 5-8: Pavement life cycle: (a) Section AB, (b) Section BC,

(c) Section CD, (d) Section AD

remaining pavement life of7 years at the end of the planning period.
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We also found that road sections BC and AD are maintained frequently at the late state

of the planning period; this is because the maximisation of remaining pavement life is

employed as one objective, and road sections BC and AD belong to single carriageway

which requires less maintenance cost than dual carriageway and motorway to restore

pavement condition.

When only the minimisation of maintenance cost is considered, the optimal M&R

strategy is identified as the [0, 0] point at the normalised optimal Pareto frontier shown

in Figure 5-7, which is described in Table 5-6; and the corresponding maintenance cost

and total remaining pavement life are £1,264,076 and 12 years, respectively.

Table 5-6: The optimal M&R strategy with the objective of minimising maintenance
cost
Road Maintenance scheduling during the planning horizon T (20 years)

section 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

AB 0 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0
BC 0 0 0 0 0 0 0 2 0 0 2 1 0 1 0 0 2 0 0 0
CD 0 0 0 0 0 1 0 0 0 2 0 0 2 0 0 2 1 0 0 0
AD 0 0 0 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0

According to Table 5-6, the evolution of remaining pavement life for road sections

during the planning period is illustrated in Figure 5-9:
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Figure 5-9: Pavement life cycle when only the minimisation of maintenance cost
is considered: (a) Section AB, (b) Section BC, (c) Section CD, (d) Section AD

Examining Figure 5-9, we found that the remaining pavement life at the end of planning

(d) Road section AD
9

~
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period for each road section is 3 years; this is because the objective of optimisation
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TIme (years)

15

problem is selected as the minimisation of maintenance cost which led to the minimum

total remaining pavement life, In reality, the selection of the optimal Pareto set is

determined according to the decision making criteria of highways agencies.

l32



5.2.5 Probabilistic Pavement Deterioration Model

As a matter of fact, the expected life for a new pavement will have variability and be

characterised by a distribution rather than a definite value. The normal distribution is

recognised as one of the most widely used probabilistic distributions in engineering

problems. Its probability density function is symmetric about the mean, ~, and shape is

determined by its mean and standard deviation, <J. For instance, the initial life for a

pavement with mean 10 years and standard deviation 0.5 is illustrated as:

Normal, Mean=10, StDev=O.S

0.9

0.8
0.7

0.6

~ 0.5
!
~ 0.4

0.3

0.2

0.1

9.5 10 10.5
Initial pavement life (years)

The probability density function for the normal distribution N(IJ., if) is formulated as:

f(x) = 1 e-<x-p)2/(20"2) - 00 ~ x ~ +00

0-&

Figure 5-10: The distribution of initial pavement life

(5-12)

The cumulative density function can be achieved by integratingf(t). However, Equation

5-12 cannot be integrated to derive a universal formula which is applicable for any

given IJ. and (J. As the integration of cumulative density function is performed using

numerical methods and the results tabulated for different limits of the integration, it is
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very difficult if this required a different probability distribution table for any possible

set of fj and (J. This obstacle is overcame by transforming any normal distribution N(fj,

if) into a normal standard distribution with mean 0 and standard deviation 1, i.e. N(O, 1).

This translation requires a new variable z, defined as:

X-f.Jz=--
a

(5-13)

Consequently, z is normally distributed with mean 0 and standard deviation 1, termed

the standard normal variate.

5.2.5.1 Generation of Normal Variables

In pavement engineering, it is often desirable to generate variables that are normally

distributed. The generation of any normal variate Y(fj, if) can be converted to the

generation of the standard normal variate Z by y = a x z + u . All the approaches for

generating standard normal variate are developed based on the availability of a random

number generator capable of producing uniform random variables over the range 0 to I,

i.e. UfO! 1); some methods widely used are described explicitly as follows.

5.2.5.1.1 Central Limit Theorem

Suppose Xl, X], ... , Xn are independent variables that follow the identical distribution

n
with mean fj and standard deviation (J. Consequently, when Sn = LX; , the random

1=1

variable Sft 7n is characterised by the normal standard distribution.
eT n

For simplicity, the uniformly distributed variables U(O,J) are used to construct Sn. With

the increase of n, the resulting S« will be more approximate to a real normal distribution.

In terms of the mathematical point, n=J2 is usually adopted. As U(O,J) has a mean 0.5

and standard deviation 1112, the resulting SI] is determined as N(6,J).

By this means, a random sample for the normal distribution S12 is produced as:
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(5-14)

In terms of the central limit theorem, X is determined as a normal distribution with

mean 6 and standard deviation 1. Afterwards, the random sample from the normal

distribution Y()J, if) is obtained as:

Y = (X - 6)cr + ,u (5-15)

5.2.5.1.2 The Box-Muller Method

The first step is to generate two independent random variables U and V that are

uniformly distributed on (0, 1). The next step is to compute two random variables X and

Y using U and V:

X = .J - 21n U cos(21l"V)

Y = .J - 21n U sin(21l"V) (5-16)

Both X and Y follow the normal standard distribution, and will be correlated. The final

step is to calculate the random sample from the normal distribution using X and Y.

5.2.5.1.3 Marsaglia Polar Method

Marsaglia polar method is developed based on the Box-Muller method. In this approach,

two variables U and V that uniformly distributed on (-1, 1) are required, and then

s=cJ +V1 is obtained. If S is greater than or equal to one this algorithm starts over,

otherwise two normal standard variates X and Yare calculated as:

X=U~-2:S

r=vt2:S (5-17)

Based on U and V, two normal variables are generated.
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5.2.5.2 Probabilistic Pavement Age Gain Model

Probabilistic pavement models are able to incorporate the uncertainty and predict the

pavement performance as the probability of occurrence of a range of possible outcomes.

On one hand, the deterministic approach is superior to the probabilistic approach if only

limited data of pavement condition is available. On the other hand, the probabilistic

approach presents a probability distribution of pavement states which describes the

stochastic nature of pavement deterioration.

The deterministic pavement age gain model applied in this thesis is transformed to a

probabilistic one using the normal distribution. The pavement condition for each road

section group is depicted in Table 5-7:

Table 5-7: Road section types in probabilistic pavement model
Road section Road class Traffic flow (OOOs) Initial pavement life (years)

group ).l er

1 82 5-15 10 0.5

2 82 20 8 0.5

3 D2AP 10-20 10 0.5

4 D2AP 30 9 0.5

5 D2AP 40 8 0.5

6 D3M 20-30 11 0.5

7 D3M 40 10 0.5

8 D3M 80 9 0.5

and the expected age gain for each maintenance action is evaluated in Table 5-8:
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Table 5-8: Expected ages associated with pavement maintenance actions versus

remaining pavement life in probabilistic pavement model
Pavement Expected age gain (years)

Remaining condition Do nothing Patching SD Re Qv
pavement

life (years)
(0) (1) (2) (3) (4)

fl o fl o fl c fl c fl o

>6 0 0 0 2 0.3 5 0.3 7 0.3 10 0.3

(4,6] 1 0 0 2 0.3 3 0.3 7 0.3 10 0.3

(2,4] 2 0 0 1 0.3 3 0.3 6 0.3 9 0.3

(0,2] 3 0 0 0 0.3 1 0.3 6 0.3 9 0.3

For the pavement described in Figure 5-10, its remaining pavement life after 5 years

would be characterised by a normal distribution with mean 5 and standard deviation 0.5,

described in Figure 5-11:

Normal, Mean=5, StDev=0.5
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Remaining pavement Ire

Figure 5-11: Probabilistic remaining pavement life
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The probability of the remaining pavement life within the scale of [0, 6] is 97.725%.

Afterwards, SD is applied to maintain the pavement. Within this specified scale, SD is

dominated by a normal distribution with mean 3 and standard deviation 0.3. While for

the rest of the whole space, SO is characterised by a normal distribution with mean 5

and standard deviation 0.3.

5.2.5.3 Example

For the road section AB in Figure 5-1, the optimal M&R strategy depicted in Table 5-5

is used to maintain this road in 20 years. To test the performance of section AB based on

probabilistic pavement age gain model, 5 runs are implemented using the central limit

theorem as only one normal variable is generated at each time, described in Figure 5-12:

Road section AB
13

~ !2CUll
b10
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~ 4
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~

-run!
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-runS

5 10 15 20

TIme (years)

Figure 5-12: Probabilistic pavement life cycle

Figure 5-12 shows that the results obtained in each run possess the similar pattern.

However, the variations of remaining pavement life are identified. Especially for run 2,

the remaining pavement life at year 20 is less than 2 years, which indicates an obvious

difference from the deterministic one. Thus the same M&R strategy can result in quite

different pavement conditions. Afterwards, the distribution of the remaining pavement
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life at year 20 is investigated, illustrated in Figure 5-13. It demonstrates that most of the

samples are within the range of [2.2, 4.0]. The mean of distribution is identified as

3.039 years, which is slightly higher than the deterministic remaining pavement life, 3

years.

3.039
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II 15004:
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-3.15 -2.10 -1.05 0.00 1.05 2.10 3.15 4.20

Remainingpavement life (years)

Figure 5-13: Distribution of the remaining pavement life of road section AB

Subsequently, the road network in Section 5.2.4 is investigated; the only difference is

that pavement lives and expected age gain associated with each maintenance action are

characterised by normal distributions rather than definite values. Based on the central

limit theorem, these normal variables are generated randomly. NSGA-II is used to find

the optimal Pareto frontier using probabilistic pavement model and 10 runs are carried

out. The GA parameters are set to:

pm: 0.01

M: 5000

P: 500
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The optimal Pareto frontier obtained in each run is illustrated in Figure 5-14. It shows

that each optimal Pareto frontier follows the same trend with a little variation. Also the

average optimal Pareto frontier is identified, which is slightly above the deterministic

optimal Pareto frontier that was obtained in Section 5.2.4.4. This is because for the

probabilistic model, the remaining pavement life is allowed to exceed the maximum

remaining pavement life. In addition, the GAs aim to find the solutions with less cost

and long remaining pavement life, so the solutions that with the same maintenance cost

and more remaining life would be retained on the optimal Pareto frontier. The varation

of the probabilistic optimal Pareto frontier indicates the stochastic nature of pavement,

and demonstrates that the probabilistic model is more realistic. However, the

probabilistic model requires more computational effort than the deterministic one.
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Figure 5-14: Probabilistic Pareto optimal frontier
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5.3 Scheduling of Pavement Maintenance using the NTFM at the Project Level

M&R activities on highways usually occupy the road, disrupt traffic flow and increase

safety hazards for road users and workers. Therefore, M&R activities are not only

expensive in terms of the agency cost but also from the viewpoint of the user cost. The

user cost due to traffic delays frequently far exceeds the maintenance cost. Efficient

scheduling of M&R through a worksite may greatly reduce the total cost, including

agency and user cost. A ''worksite'' is an area on a two-lane or multi-lane highway,

where one or more lanes are closed, so that the selected M&R activities can be

conducted [103].

Since the scheduling of M&R activities is a major concern of the highways agency and

local authorities, many studies have been performed in this area. Few studies have

focused on the optimisation of worksite length considering the impact of agency cost

and road user cost. A mathematical model was proposed in [104] to optimise the

worksite length and related traffic control on two-lane, two-way highways where one

lane closure is applied. Afterwards, Chien and Schonfeld [105] applied this model to

optimise the worksite length on four-lane, two-way highways where one lane in one

direction at a time is closed. The underlying assumption for these studies is that the

traffic flow heading to the worksite was steady and given.

Some studies have been devoted to the optimisation of the worksite schedule, which

yielded the minimal total cost, i.e. agency cost and road user cost. The mathematical

approach developed in [104] was also used to optimise worksite schedules [103].

Considering lane closure situations, Fwa and Cheu [106] optimised the worksite

schedules to minimise traffic delays subject to constraints of maintenance operational

requirements using GAs. Jiang and Adeli [107] proposed a Boltzmann-simulated

annealing neural network to optimise the worksite arrangements, i.e. worksite length,
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start time of the worksite, when considering lane closure options and working m

darkness.

Considering the significant traffic delays resulting from the implementation of

roadworks, drivers may change their journey behaviour, such as taking alternative

routes to circumvent a congested road section with a maintenance worksite. The

methodology developed in [105] was deployed to jointly optimise worksite length and

diversion fraction considering the traffic condition of the alternative route bypassing the

worksite [108]. Afterwards, an analytical model is constructed to find the optimal

worksite length, maintenance schedule and the traffic diversion fraction, while

considering time-varying traffic demand, variable maintenance cost and the production

rates of maintenance teams. In addition, the capacities and speed controls on worksites

are investigated, as well as the road users and workers' safety [109-112].

However, the techniques provided above mainly focused on the traffic delay occurring

at the worksite, while the traffic conditions in the adjacent links are not considered. As

the traffic flows through the network are dependent on each other, it is more realistic to

optimise the worksite arrangements by considering its impact on the network

performance. In this thesis, NTFM is applied as the platform from which the

maintenance arrangements at the worksites are optimised so as to minimise the

detrimental influence to the road users.

5.3.1 Methodology

The methodology developed in this chapter formulates a total cost objective function

which is used to optimise lane closure options, work schedule, and traffic control

strategies at the worksites. It is based on NTFM considering time-dependent traffic

demand. The total cost function is composed of the agency cost and the road user cost.
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5.3.1.1 Agency Cost

The agency cost is evaluated as the sum of the maintenance costs spent on individual

worksites. The maintenance cost incurred on worksite i is formulated as:

c. = Co + Cl X/.I .r I (5-18)

Where

Co - the fixed cost for setting up a work site, £ 1000

k- the maintenance action implemented on worksite i

r- the road type of worksite t

Cl.r - the cost for maintenance action k associated with the road type r per lane

kilometre, £ 'ODDs

I,- the length of worksite i, lane kilometre

The corresponding maintenance duration spent on worksite i is represented by:

(5-19)

do - the fixed set up time for a worksite, 1 hr

d kr - the time required for maintenance action k associated with the road type r per

lane kilometre, hrs

The unit cost for each combination of maintenance action and road type is described in

Table 5-9 [101], which is obtained based on Table 5-1 by transforming the unit from

days to hours.
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Table 5-9: Maintenance duration and cost for each combination of maintenance action
and road type (per lane kilometre)
M&R Single carriageway Dual 2 lane carriageway Dual 3 lane Motorway

(S2) (D2AP) (D3M)

Type Duration Cost Duration Cost Duration Cost

(hrs) (£ 'OOOs) (hrs) (£ 'OOOs) (hrs) (£ 'OOOs)

Do nothing 0 0 0 0 0 0

Patching 24 15 18 15 16 13.33

Surface 48 20 30 20 24 16.67

dressing

Resurfacing 96 60 84 82.5 80 90

Overlay 192 95 138 122.5 132 135

1. Costs are £'OOOsexpressed in average 2012 price.

5.3.1.2 Road User Cost

Road user cost is determined from the total travel duration spent in the highway

network multiplied by the time value. For instance, the road user cost spent on section}

is computed ~:

(5-20)

t .- total travel duration spent on road section}
J

v- time value of road user, the market price value of time for an average vehicle

is £15.38 per hour, 2012 prices and values [61]

Moreover, the travel duration tj consists of the journey time spent on section} and the

travel delay which takes place at the junction downstream of section j, described as

t, = ti,j + tj,d' The evaluation of the journey time and travel delay on a road section is

described in previous chapters.
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5.3.1.3 Lane Closure Situations

In NTFM, three road types are investigated, i.e. S2, D2AP and D3M; the closure

situation for each road type is described in the following sections.

5.3.1.3.1 Single Carriageway

For a single carriageway road, a shuttle working site is employed to facilitate the traffic

flows from opposing directions. The evaluation of traffic conditions on the shuttle

working site is explained explicitly in Section 3.2.8.1.

As for the average speed through the worksite, it has been assumed that the travel

speeds for light vehicles and heavy vehicles through the worksite are 43.9 kmIhr and

38.2 kmIhr, respectively, with 10% heavy vehicles [113]. In this thesis, the average

speed at the worksite is selected as the travel speed for heavy vehicles.

5.3.1.3.2 Dual2 lane Carriageway

As for a dual 2 lane carriageway, a one lane closure and or a two lane closure can be

used to implement the maintenance actions, which are depicted in Figure 5-15. For a

one lane closure, only one of the service lanes in one direction is closed owing to

maintenance activity, in this case maintenance has no impact on the traffic flow in the

opposite direction. While for a two lane closure, both of the service lanes in one

direction are closed, and the road at the worksite becomes effectively a single

carriageway. At the direction with one service lane, the average speed is reduced to 80

kmIhr from 112 kmIhr.
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(a)
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(b)

Figure 5-15: Dual two lane carriageway road with work: (a) one

lane closure; (b) two lane closure and crossover

5.3.1.3.2.1 One Lane Closure

Provided that one of the service lanes in one direction is closed due to maintenance its

flow capacity is decreased to zero, and the flow capacity on the other lane in this

direction is also affected. According to the delay modelling in QUADRO [58], the

overall worksite capacity would be reduced to:

CD I = 0.85 X CII i, ,
(5-21)

Where

Cn,i- normal capacity for a standard lane that belongs to road class i
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5.3.1.3.2.2 Two Lane Closure

For a two lane closure, the number of service lanes in each direction is reduced to one.

The resulting site capacities for both directions are calculated by Equation 5-21.

5.3.1.3.3 Dual3 Lane Motorway

As for D3M, the lane closure options include a one lane closure, a two lane closure, full

carriageway closure and crossover. For a one lane closure, the average speed through

the worksite remains 112 krnIhr. When a two lane closure is implemented, the average

speed is decreased to 80 krnIhr.

If N lanes are in service through the worksite during maintenance, the worksite capacity

would be formulated as Equation 3-46.

5.3.1.4 Solution Algorithm

The decision variables of the total cost function include the lane closure options,

arrangements of start time, and traffic controls for traffic flows, considering the

variation of flows over time. In this section, the total cost is minimised by optimising

these decision variables.

The application of a worksite is achieved by simply reducing the flow capacity as

defined in Section 5.3.1.3 and reducing the link capacitance. The additional road user

cost is evaluated by subtracting the road user cost incurred in the network under normal

conditions from that spent in the network with the maintenance worksite. In this manner,

the impact of the maintenance activity on the network performance is obtained, and the

worksite arrangement that caused the least additional cost is chosen. One underlying

assumption is that the speed reductions at the worksite due to the enforcement of road

worker safety are not considered. As a result, the speed restriction at worksite is only

influenced by the number of service lanes in this thesis.
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5.3.2 Case Study
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Figure 5-16: A simple road network with maintenance worksites

This road network is signal controlled; therefore the traffic interactions among the flows

from different sources are removed. Road links AB and DE are D2AP, CF is a D3M

road link; while the rest of the links belong to S2, which are used to connect the major

roads. The lengths of links AB, FC and DE are 3.5 km, other links are 7 km. 3.5 km

correspond to the capacitance of 500 pcu per lane. Three worksites are assigned to this

network, i.e. RN}, RN2 and RN3, on which patching is to be implemented to maintain

the pavement surface. The average speed on S2 and other road types are defined as 50

and 112 kmIhr, respectively. The flow capacity for each junction is fixed to 2000 pcu/hr,

the green splits for the traffic that is going straight on and turning left, and the traffic

turning right are defined as 0.5 and OJ respectively, and the junction turning ratios on

each arm are chosen as OJ, 0.4, and OJ. The traffic inputs for each external node, i.e. Il ,

12 ... no, are identical and vary throughout the day, as shown in Table 5-10:
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Table 5-10: Traffic inputs for external nodes
Time 7 8 9-15 16-18 19-21 22 23 0-5 6

200 100 10 100Flow rate (pculhr) 1000 1000 500 1000 500

Based on the parameters described above, NTFM is used to evaluate the performance of

the road network under normal conditions during a day, the results of which are given in

Table 5-11:

Table 5-11: Daily network performance under normal conditions
Inflow Outflow Queue Journey Travel Total Agency Road Total

Time (pculhr) (pculhr) (pcu) time delay travel cost (£) user cost cost (£)

(hrs) (hrs) duration (£)

(hrs)
7-8 10000 10000 0 537.5 0 537.5 8266.75 8266.75

9-15 5000 5000 0 268.75 0 268.75 4133.375 4133.375

16-18 10000 10000 0 537.5 0 537.5 8266.75 8266.75

19-21 5000 5000 0 268.75 0 268.75 4133.375 4133.375

22 2000 2000 0 107.5 0 107.5 1653.35 1653.35

23 1000 1000 0 53.75 0 53.75 826.675 826.675

0-5 100 100 0 5.375 0 5.375 82.6675 82.6675

6 1000 1000 0 53.75 0 53.75 826.675 826.675

Total 0 86470.2 86470.2

Examining Table 5-11, it demonstrates that this road network is sufficient for delivering

the required traffic flow and no traffic delay occurred. Subsequently, the performance of

road network under each maintenance scenario is studied. The underlying assumption is

that all the maintenance activities should be completed in one day, i.e. from 7:00 to 7:00

on the next day.

5.3.2.1 Road Network with RN}

Roadwork node RN 1 is assigned to the centre of link AB where one lane closure is

applied, and the length of worksite is 0.35 km. This maintenance activity is required to

be accomplished in one day, and so the start time of the maintenance can be varied from
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7:00 to 23:00. Using Equations 5-18 and 5-19, the incurred maintenance cost and

maintenance duration are £ 6250 and 8 hrs.

Initially, the start time of the maintenance is set to 9:00; therefore one lane is closed on

RN] for maintenance between 9:00 and 17:00. During this period the flow capacity of

RN] is reduced to 1530 pculhr. The resulting traffic conditions in the network are

described in Table 5-12:

Table 5-12: Daily network performance with RNI
Inflow Outflow Queue Journey Travel Total Agency Road Total

Time (pcu!hr) (pcu!hr) (pcu) time delay travel cost (£) user cost cost (£)

(hrs) (hrs) duration (£)

(hrs)

7-8 10000 10000 0 537.5 0 537.5 8266.75 8266.75

9-15 5000 5000 0 269.375 0 269.375 4142.988 4142.988

16 10000 10000 0 538.75 0 538.75 8285.975 8285.975

17- 10000 10000 0 537.5 0 537.5 8266.75 8266.75

18

19- 5000 5000 0 268.75 0 268.75 4133.375 4133.375

21

22 2000 2000 0 107.5 0 107.5 1653.35 1653.35

23 1000 1000 0 53.75 0 53.75 826.675 826.675

0-5 100 100 0 5.375 0 5.375 82.6675 82.6675

6 1000 1000 0 53.75 0 53.75 826.675 826.675

Total 6250 86556.7 92806.7

According to Table 5-12, there are no traffic delays occurring on the network. This is

because the residual flow capacity on RN] is still higher than the flow entering through

link AB which is 1000 pculhr during the rush hour. Compared to the normal conditions

the only difference is that the journey time during maintenance is slightly higher, since

the average speed through the worksite is decreased to 80 kmIhr from 112 kmIhr so as

to ensure the safety of road users and the maintenance workforce. The impact of RN] on

the network performance is quite limited, whereas the additional road user cost can still
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be minimised by varying the start time of maintenance. The daily network performance

with various start times is compared in Table 5-13:

Table 5-13: Daily network performance with RNI under various maintenance scenarios
Start time of maintenance Agency cost (£) Road user cost (£) Total cost (£)

7 6250 86566.3 92816.3

8 6250 86556.7 92806.7

9 6250 86556.7 92806.7

10 6250 86566.3 92816.3

11 6250 86575.9 92825.9

12 6250 86575.9 92825.9

13 6250 86575.9 92825.9

14 6250 86575.9 92825.9

15 6250 86570.2 92820.2

16 6250 86562.5 92812.5

17 6250 86543.5 92793.5

18 6250 86524.4 92774.4

19 6250 86505.4 92755.4

20 6250 86496.0 92746.0

21 6250 86486.5 92736.5

22 6250 86477.1 92727.1

23 6250 86475.2 92725.2

Table 5-13 shows that the maintenance scenario with a start time of 23 :00 led to the

minimal total cost. This is as expected because the maintenance is conducted at

nighttime during which the least number of vehicles were travelling through the

network.

5.3.2.2 Road Network with RN2

Roadwork node RN2 is located in the center of link Fe and the length of worksite is set

to 0.21875 mile. Using Equations 5-18 and 5-19, the required maintenance cost and
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duration are £5667 and 7 hrs, respectively. As a result, the start time of maintenance is

within 7:00 and 24:00 the next day. For instance, the start time of 9:00 is selected and

one service lane is closed for maintenance. During maintenance the residual flow

capacity of RN2 is obtained as 3400 pcuJhr using Equation 3-46. NTFM is applied to

evaluate the traffic conditions in the road network with RN2, and the same results are

obtained as Table 5-11. This is due to the fact that there are still two lanes on RN2,

where the average speed remains 112 kmIhr and the flow capacity is much greater than

the entry flow. In this case, the start time of maintenance work exerts no influence on

the network performance. When a two lane closure is applied on RN2, its flow capacity

is reduced to 1700 pcuJhr which is still greater than the maximum traffic flow entering

link Fe during a day. However, as there is only one lane open, the average speed

through RN2 is reduced to 50 mile/hr which resulted in additional road user costs. In

this case the incurred additional road cost can be minimised by varying the start time of

maintenance as Section 5.3.2.1.

5.3.2.3 Road Network with RN3

Roadwork node RN3 is assigned to link AF and the geometry of RN3 is identical to RN 1.

The required maintenance cost and duration for RN3 are £6250 and 10 hrs, respectively.

As link AF is single carriageway, signal control is implemented to assign gaps for each

directional flow. The amber phase is set to 10% of the total cycle. Initially, the green

phases for both directions are defined as 45%. In terms of Equations 3-44 and 3-45, the

flow capacity for each direction is 810 pcuJhr. The start time of maintenance is 9:00,

and the resulting traffic conditions in the network are illustrated in Table 5-14:
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Table 5-14: Daily network performance with RN3
Inflow Outflow Queue Journey Travel Total Agency Road Total

Time (pculhr) (pculhr) (pcu) time delay travel cost (£) user cost cost (£)

(hrs) (hrs) duration (£)

(hrs)

7-8 10000 10000 0 537.5 0 537.5 8266.8 8266.8

9-15 5000 5000 0 272.5 0 272.5 4190.7 4190.7

16 10000 9624 377 519.6 188.5 708.1 10890.3 10890.3

17 1000 9412 967 519.3 672.0 1191.3 18321.7 18321.7

18 1000 9355 1614 526.5 1290.5 1817.0 27946.0 27946.0

19 5000 6609 0 384.5 296.7 681.2 10476.4 10476.4

20- 5000 5000 0 268.8 0 268.8 4133.4 4133.4

21

22 2000 2000 0 107.5 0 107.5 1653.4 1653.4

23 1000 1000 0 53.8 0 53.8 826.7 826.7

0-5 100 100 0 5.4 0 5.4 82.7 82.7

6 1000 1000 0 53.8 0 53.8 826.7 826.7

Total 6250 125572 131822

From Table 5-14 it can be seen that the road user cost increased significantly. The delay

cost to the road users is much greater than the corresponding maintenance cost; this is

because the opposing flows have to switch to use the single available lane. As a

consequence, traffic delays occurred on both lanes on link AF. In order to minimise

traffic delay to the road users the effects of varying the start time of maintenance is

investigated. The results are shown in Table 5-15:
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Table 5-15: Daily network performance with RN3 under various maintenance scenarios
Start time of maintenance Agency cost (£) Road user cost (£) Total cost (£)

7 6250 110606.0 116856.0

8 6250 110020.0 116270.0

9 6250 125572.0 131822.0

10 6250 139124.0 145374.0

II 6250 141194.0 147444.0

12 6250 141194.0 147444.0

13 6250 141160.0 147410.0

14 6250 141114.0 147364.0

15 6250 141058.0 147308.0

16 6250 141001.0 147251.0

17 6250 105976.0 112226.0

18 6250 91550.0 97800.0

19 6250 86682.3 92932.3

20 6250 86626.1 92876.1

21 6250 86580.3 92830.3

Table 5-15 indicates that the maintenance scenario with start time of 21:00 led to the

least additional road user cost, as a small number of vehicles enter the network during

the maintenance time. Apart from the start time of maintenance, the green splits for each

direction can be optimized to minimise traffic delay. Given a start time for the

maintenance of 9:00, the green phase for the traffic from junction A is varied from 30%

to 60%, while the amber phase remains at 10%. The resulting network performance

with different green splits on RN3 is illustrated in Figure 5-17:
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Figure 5-17 illustrates that the most optimal green split is located in the [40%, 50%]

180000

range, this is because the opposing flows through RN3 are identical. It is therefore

reasonable to treat the two directional flows equivalently. Moreover, the green split for

170000

each directional flow and start time of maintenance can be optimized jointly to find the
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Figure 5-17: The network performance with various green phases

best traffic control strategy.

In addition to the optimization of the green splits for directional flows, traffic rerouting

strategy, proposed in Section 3.7, can be applied to alleviate the traffic congestion

occurred during rush hour in the network. For instance, the traffic flow from junction A

to junction F can be diverted to the alternative route A-B-C-F when a queue exists on

link AF, and the traffic diversion proportion can be optimised to minimise the travel

delay spent on link AF.

5.3.2.4 Road Network with three Roadwork Nodes

In this section, three roadwork nodes are assigned to the road network concurrently. It

further requires the maintenance activities to be carried out in one day. The start times

of maintenance activities on RN1, RN2 and RN3 are optimized simultaneously so as to
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relieve the effect of maintenance activities on the network performance. The optimal

worksite arrangements are shown in Table 5-16:

Table 5-16: The optimal arrangements of work sites
Roadwork node RNI RN2 RN3

Start time of maintenance 23:00 7:00-24:00 21 :00

As stated above, the maintenance work conducted on RN2 has no influence to the road

users when a one lane closure is applied. While for the other two worksites,

maintenance activities are scheduled during nighttime so as to avoid the excessive

traffic delays and the associated user costs due to heavy traffic volume. The costs under

the optimal maintenance arrangements are summarized in Table 5-17:

Table 5-17: The minimal agency cost and road user cost
Agency cost (£) Road user cost (£) Total cost (£)

18166.7 86580.3 104747

The cost to the road users is slightly higher than that spent in the network under normal

conditions, £86470.2, described in Table 5-11. The results indicate that a better

maintenance schedule can eliminate, or at least reduce, the influence of maintenance

activities to the road users.

5.4 Maintenance Planning using the NTFM in the Long-term

By comparing to the optimisation method proposed in Section 5.2, road user costs are

also taken into account to optimise the M&R strategy for road sections on a highway

network, which is realised by applying NTFM to simulate the traffic characteristics on

the network under both normal and maintenance conditions. In this section, in addition

to the total costs, pavement deterioration is taken into account over the whole life cycle,

for example, 60 years. The aim of this optimisation model is to minimise the total costs

spent on road section k over the pavement life cycle, formulated as:
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(5-22)

Where

life cycle of road section k, years

MTTFk.;- mean time to failure, which represents the time that road section k

deteriorates from the new condition to the serviceable level that required

maintenance action i, years

the number of maintenance action i required through the life cycle. It is

t;noted that ----"-- is rounded to the adjacent larger integer number
MITFk,i

when it is a decimal number

M k.i - the cost of maintenance action i performed on road section k, depends on

the length and type of road section k, £'OOOs

Uk.; - additional cost to road users due to the implementation of maintenance

action i on road section k, £'OOOs

The additional road user cost is evaluated as:

Uk' = Uk' -U.r .r " (5-23)

Un - road user cost spent on the network under normal conditions, £'OOOs

Uk.; - road user cost spent on the network when maintenance action i is

performed on road section k, £'OOOs

The underlying assumptions for this optimisation model are listed as:

1. Only one kind of maintenance action is implemented repeatedly for the

investigated road section.

2. The traffic inputs for the network are constant throughout the life cycle.
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3. Maintenance actions are performed at both daytime and nighttime without

maintenance break, and the maintenance costs for daytime operation and

nighttime operation are the same. It means that maintenance work starts from

7:00 until the end.

4. Worksite arrangements are the same when different maintenance actions are

performed on the investigated road section.

The mean time to failure for each maintenance action associated with each road type is

depicted in Table 5-18:

Table 5-18:Mean time to failure for maintenance actions
Pavement Trigger of Pavement Single Dual21ane 31ane

condition maintenance condition carriageway carriageway Motorway

state action transition (S2) (D2AP) (D3M)

Mean time to failure MTTF (years)

0 Do nothing 0-0

(0)

Patching (1) 0-1 2.5 3 3.5
2 Surface 1-2 1.5 2- 2.5

dressing (2)
3 Resurfacing 2-3 2.5 3 3.5

(3)
4 Overlay (4) 3-4 1.5 2 2.5

Examining Table 5-18, pavement condition state 0 represents the best pavement

condition, which requires no maintenance. For pavement condition state i, the

corresponding maintenance action i can be applied to restore pavement to the initial

condition. However, it also allows the pavement to deteriorate to the worse condition

state i+1, where the remedial action would be maintenance action i+1. The mean time

to failure for pavement condition state i is evaluated as:
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MTFFk•i = MTFFk.O _I +... +MTFFk.H _i (5-24)

Where MTTFk.i_l_i represents the transition time from pavement condition state i-I to

pavement condition state i for road section k. The values of mean time to failure for

each pavement condition state are assumed in this chapter, which can be calibrated

when historical data are available. The proposed optimisation method is applied to

optimise the maintenance actions for road sections on an example network, which is

described in Section 6.4.

s.s Maintenance Planning by Balancing between Maintenance Costs and Road

User Costs

The roadwork performed on the network may result in severe traffic congestion and

travel delays to road users. To minimise the additional road user costs, highways

agencies usually restrict pavement maintenance activities to hours of off-peak traffic

and nighttime. The adoption of nighttime maintenance shift is the best option in terms

of traffic congestion and travel delays resulted in from daytime lane closures. However,

nighttime operations have a greater potential for more severe accidents due to hazards

of working at nighttime, and they cost more to highways agencies. When the additional

road user costs are acceptable, daytime maintenance shift would be more preferable to

highways agencies; as the safety of road workers and the quality of maintenance work

are both enhanced. As a consequence, it is of vital importance to optimise the

maintenance arrangements so as to make a balance between road user costs and

maintenance costs. Several simplifying assumptions made in minimising the total cost

spent on the network are listed below:

1. The same work rates for each maintenance action during both daytime and

nighttime.
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2. The unit maintenance cost at nighttime is twice as that at daytime. The unit

maintenance cost for each maintenance action at daytime is shown in Table 5-9.

3. For a typical day, 7:00-23:00 is defined as daytime, while the rest is nighttime.

4. The minimum maintenance duration is 2 hours, and the maximum maintenance

break is set to 2 hours.

5. The maximum number of maintenance time slots for each working day is

defined as 2.

6. After the implementation of maintenance activity, the road condition returns to

normal.

7. When the maintenance work is not performed consistently, the set up time and

cost for worksite need to be taken into account which are described in Equations

5-18 and 5-19.

In terms of the assumptions listed above, the decision variables for each road section

include start time of maintenance, st, maintenance duration 1, mdi, maintenance break,

mb, and maintenance duration 2, mdi; for each working day. When the investigated road

link belongs to single carriageway, the green splits for the opposing directions during

maintenance are also optimised.

The constraints for these variables are formulated as:

st, S; si S; Si,

mdmin Smd, S mdmax

mdmin S md, Smdmax

mbmin S; mb S; mbmax

The first constraint restricts the start time of maintenance action for each day. The

second and third constraints limit the duration for each maintenance time slot. The
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fourth constraint is the threshold of the maintenance break, which aims to avoid heavy

traffic at peak time. As for single carriageway, more constraints are considered:

gSmin s gS2 s gSmax

These two constraints are used to define the range of green phases for each direction on

the single carriageway during maintenance. gs, represents the green split for one

direction during the maintenance duration i, the green split for the other direction is

evaluated as (lOO-gs;)%-amber phase. Other constraints can be considered according to

the requirements of highways agencies. In this thesis, a single-objective GA is utilised

to optimise the decision variables for road sections on a network.

Based on the variables listed above, the number of working days for each road link

under maintenance is calculated as:

wd = M_V _
md, -1+md2-1

(5-25)

Where MD represents the desired maintenance duration. md r:J is the time devoted to

pavement maintenance by subtracting the maintenance set up time from the

maintenance duration I. wd is rounded to the adjacent integer number when it is a

decimal number. As a result, the total cost spent on the network during the whole

maintenance period is evaluated as:

C; = wdxqst,mdl,mb,md2] (5-26)

Where C[st,mdl,mb,md2] represents the total cost spent at each working day under

the specific maintenance arrangements st, mdJ, mb, and md2. Green splits are taken into

account when single carriageway is studied. The maintenance arrangement with the

least C; is recognised as the optimal one with the objective of minimising road USer

cost. The optimisation of maintenance arrangements for road sections on an example

network is illustrated in Section 6.5.
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5.6 Summary

For the network level pavement optimisation model, pavement age gam model is

deployed to evaluate and forecast pavement condition, and NSGA-II is used to perform

pavement optimisation. Moreover, each road section group is employed as a decision

making unit for the optimisation model, from which the road sections are given the

same treatment. In this manner, less computational effort is required.

The developed pavement optimisation model is applied to a simple road network. A set

of GA parameters are compared to find the optimal combination that led to the best

solution set. With the increase of simulation generations, the optimal Pareto frontier

generated is approaching the real Pareto frontier. Afterwards, the resulting optimal

Pareto frontier is normalised so as to establish the balance between the involved

objectives. As it takes 15 minutes for NSGA-II to reach converge and achieve the

optimal Pareto frontier for the example road network, the processing time for a more

complex road network will be significantly increased.

Considering the stochastic nature of pavement deterioration, the deterministic pavement

age gain model is transformed to a probabilistic one using the normal distribution. Some

existing approaches are provided to generate random normal variables, among which

central limit theorem is employed in the probabilistic model. The example road network

is also investigated using the probabilistic pavement age gain model, the results

indicated that the average probabilistic optimal Pareto frontier follows the same trend as

the deterministic optimal Pareto frontier, whereas a little higher than the deterministic

one.

When the optimal M&R strategy is obtained for a specific network, the total cost, i.e.

maintenance cost and user cost, is minimised. At the project level, the arrangements of

maintenance worksites can be optimised separately and simultaneously at the project
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level, such as lane closure options, start time of the maintenance and traffic control

measures, so as to relieve the traffic congestion occurred in the network. The case study

showed that the disruptions caused to road users by maintenance activities can be

reduced significantly by applying better maintenance arrangements. The optimal

arrangement is to start the work at night in order to minimise the maintenance cost and

user cost.

In addition, NTFM is utilised to evaluate road user costs spent on the network under

different conditions. Afterwards, the resulting road user costs and the corresponding

maintenance costs can be used to optimise the maintenance actions for road sections on

a network in the long-term. Also the maintenance arrangements for road sections can be

optimised using GAs so as to make a trade-off between maintenance costs and road user

costs.
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6 Model Application to the Loughborough-

Nottingham Network

6.1 Loughborough-Nottingham Highway Network

Loughborough-Nottingham highway network consists of trunk roads and certain parts

of the regional rural and urban road network. An overview of the highway network is

shown in Figure 6-1. The central framework of the highway network is composed of

trunk roads, which is recognised as the boundary of the highway network and

highlighted in blue. The MI motorway (H-G-F) serves regional and inter-regional

traffic that is supposed to carry a large amount of traffic. To the south, Loughborough

acts as a source hub for traffic entering and exiting it. The main routes that connect to

Loughborough include the A512 (A-H), A6 (A-J) and A60 (A-B). Nottingham performs

the same functionality as Loughborough with A52 (F-D and C-D) and some other trunk

roads connected. There are three main routes from Loughborough to Nottingham, which

are A60-A52 (A-B-C-D), A6-A453-A52 (A-J-G-K-C-D) and A512-MI-A52 (A-H-G-F-

D).
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Figure 6-1: Loughborough-Nottingham highway network

Except for a few one-way streets, all the other road links in the Loughborough-

Nottingham network were modelled in two directions. The Loughborough-Nottingham

network is simplified as the one in Figure 6-2. The black symbols, e.g. M1 and A52,

denote the road class .and road number of the road links; the green symbols represent the

type and ID of junctions, for instance, the "diverge" junction in Loughborough is named

D2; the red symbols are real local places, i.e. Ruddington. The traffic condition of a

road link is also distinguished by colours: road link in black means no traffic delay

occurred; road link in yellow indicates that only a few vehicles, under the threshold of

100 vehicles, are delayed; when there are more than 100 vehicles queuing on the link is

highlighted in red. The two situations that suffer traffic congestion are termed minor

queues and major queues, respectively.

For simplicity, only trunk roads and the roads that connect to major junctions are

retained in the network, which resulted in a significant reduction of data requirement.

Those rural and urban roads neglected are represented in the traffic model as minor
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traffic inputs and outputs for each corresponding major link. There are 47 junctions

modelled in the network, including 8 roundabouts (R), 3 signalized roundabouts (SR), 5

diverge junctions (D), 3 merge junctions (MG), 12 off-ramps and 12 on-ramps (both

denoted by S), 2 signalized T-junctions (Sn, and 2 signalized intersections (S/). The

nodes on the border of the highway network are recognized as source nodes or buffer

zones, which have the task of both receiving flow from the network and pushing it into

the highway network. Also, they are assigned to infinite flow capacity so as to avoid

queue propagation.
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Figure 6-2: Loughborough-Nottingham modelled highway network
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6.2 Model Calibration

The model calibration procedure enables the whole network to represent the traffic

conditions with sufficient accuracy. There are two main parts involved; the calibration

of the highway network and the application of real traffic data.

6.2.1 Network Calibration

There are 43 links in the modelled highway network, including Motorway, A road, B

road, and some urban and rural roads. The flow capacity for each link and for each arm

of the junctions is determined as defined in [58], and the capacitance for each link is

obtained in terms of Equation 3-63, where the average headway is defined as 0.007 km,

including vehicle length and the gap between two adjacent vehicles.

6.2.2 Available Traffic Flow Data

The available information in this highway network against which the model could be

calibrated was a set of traffic counts which had been collected at various 'locations on

trunk roads and at various junctions over the recent few years. Those traffic data are

obtained from the Highways Agency and Nottingham County Council, and applied to

the traffic flow model in the form of two-way hourly traffic flow. For instance, the

northbound traffic flow data for SR2 in Ruddington is depicted in Table 6-1, the two

rows that are highlighted in red are not the real data obtained from Nottingham County

Council, which is derived by linear extrapolation in terms of the two adjacent sets of

traffic data.
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Table 6-1: Northbound traffic flow data for SI2
traffic flow (pculhr) proportion

Northbound Left Ahead Right Total Left Ahead Right

07:00 82 710 38 830 0.098795 0.855422 0.045783

08:00 116 846 35 997 0.116349 0.848546 0.035105

09:00 102 595 48 745 0.136913 0.798658 0.06443

10:00 92 474 43 609 0.151067 0.778325 0.070608

11:00 82 354 38 474 0.172996 0.746835 0.080169

12:00 133 448 71 652 0.203988 0.687117 0.l08896

13:00 121 401 49 571 0.211909 0.702277 0.085814

14:00 118 410 66 594 0.198653 0.690236 0.111111

15:00 116 419 84 619 0.187399 0.676898 0.135703

16:00 137 763 128 1028 0.133268 0.742218 0.124514

17:00 135 846 156 1137 0.118734 0.744063 0.137203

18:00 76 435 46 557 0.136445 0.780969 0.082585

19:00 47 218 32 297 0.158249 0.734007 0.107744

20:00 28 134 22 184 0.152174 0.728261 0.119565

21:00 24 114 18 156 0.153846 0.730769 0.115385

22:00 12 83 24 119 0.10084 0.697479 0.201681

However, some rural junctions in the network are not monitored, including R4, R5, R6,

R7 and R8; the information for them was estimated. Unfortunately, no information on

the length of queue formed on individual links was available, so the performance of the

simulation in modelling these could not be directly validated. However, the queues

formed in the network were identified at several junctions.

6.2.3 Movement of Traffic Flow

This traffic model is supposed to identify the travel behaviour of two-way traffic flow

through the highway network. The traffic flows analysed in this model are categorised

into two groups; traffic from Loughborough to Nottingham and traffic from Nottingham

to Loughborough. The sequence of the evaluation of the junctions in this network is
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determined as: SRl-SR2-SR3-R6-R 7-R8-R2-R5-MG I-D5-MG3-D6-MG2-R4-Rl -SI2-R3-

S/l-ST2-D2-STI, the on-ramps and off-ramps are evaluated at the same time as the

junctions that they are connected to. After the modelling of traffic flow through the

highway network, queue propagation is introduced to simulate the congestion through

the network.

6.3 The Evaluation of Traffic Condition

6.3.1 Highway Network Performance under Normal Conditions

The focus of this study is to predict the outflow and queue length for each junctionllink

in the highway network under normal conditions, and to identify the weak

links/junctions that experienced severe traffic congestion. There are 16, one hour, time

steps used to model the highway network, which represents the modelling duration from

7:00 am to 11:00 pm per day. On the basis of the results obtained from modelling the

whole network, we found that RI, R6 and R7 suffered traffic congestion during the

morning and afternoon peak periods, while other junctions can accommodate their

entering flows without disturbance. The traffic conditions for the whole network over a

day are explained in the following section and illustrated graphically in

Figure 6-3 to Figure 6-11.

As shown in Figure 6-3, a relatively small amount of traffic presented in the highway

network at the period 7:00-8:00, vehicles thereby could move smoothly without travel

delay.

At the second period 8:00-9:00, there are more commuters in the network heading to

work/school locations, which resulted in heavy traffic congestion at some large

junctions. For instance, R6, recognised as a priority junction, assigns more transition

capacity to the major routes that experienced higher traffic. According to the geometries
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of the routes for R6, the two arms on A52 were identified as major routes, while the arm

on the 85010 contributes the least traffic input for R6. At the 8:00-9:00 am time period,

some vehicles on the 85010, destined for R6, have to queue. This is because the amount

of the traffic passing by this arm exceeds the flow capacity of 85010, as they cannot

find a gap to enter in R6. In addition, traffic congestion occurred in Rl and R7 due to the

same reason as R6.

From 9:00-10:00, though there is less traffic than the last time period, it is still high. The

traffic congestion in R7 dissipated, since the entering traffic flow for R7 is less than the

corresponding exiting flow capacity; whereas, the clearance of the queue in R7 further

increased entering flow for R6, which made the traffic condition in R6 more severe. As

for Rl , there is still a large amount of traffic intending to join and the capacitance on

link SI2-Ri is merely 125 vehicles, so it was filled and led to further queue propagation

to upstream links which are the entry arms for SI2 except for Ri-SI2, since it has no

contribution to the traffic in the reverse direction of the identical link.

From 10:00-11 :00, R6 and Rl still suffered traffic congestion. For R6, the queue on the

85010 is cleared, while a new queue formed on the A6007. This is because there are

stored vehicles in the queue on the 85010 at previous time step, the incoming traffic

flow on the 85010 outweighs the amount of incoming traffic on the A6007. Therefore,

some vehicles on the A6007 are delayed when competing traffic flow exceeds its flow

capacity. The traffic condition in Rl remains since the entering traffic flow for Rl is still

high.

For 11:00-12:00, because entering traffic for each junction is much less than the

corresponding flow capacity, the queues formed at previous steps clear in the shortest

possible time. In the following five hours entering traffic flow for the whole network

keeps a low level, traffic thereby could leave the network without disturbance.
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During the 17:00-20:00 period, recognised as another peak time during a day, the

highway network also suffered severe traffic congestion as that during 8:00-10:00 due

to the same reasons.

At the rest of the simulation steps, the highway network could deliver people and goods

without interference since most of the commuters had arrived at their destinations,

illustrated in Figure 6-11.
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Figure 6-3: Traffic condition at 7:00-8:00
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Figure 6-4: Traffic condition at 8:00-9:00
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Figure 6-5: Traffic condition at 9:00-10:00
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Figure 6-6: Traffic condition at 10:00-11:00
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Figure 6-7: Traffic condition at 11:00-17:00
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Figure 6-8: Traffic condition at 17:00-18:00
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Figure 6-9: Traffic condition at 18:00-19:00
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Figure 6-10: Traffic condition at 19:00-20:00
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Figure 6-11: Traffic condition at 20:00-23:00
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Figure 6-12: Traffic condition throughout a typical day

Additionally, the numerical performance of the network is expressed in Figure 6-12.

The yellow line termed queue is calculated as the sum of all the queues formed in the

network at each time step. It can be seen that the highway network experienced heavy

traffic congestion during 8:00 to 11:00 and 17:00 to 20:00. This is because the rush hour

periods fall into these two time slots. Moreover, at some times during the day, i.e.

10:00-12:00, the exiting traffic flow capacity is higher than the entering traffic flow and

the queues formed at previous time periods clear.

6.3.2 The Implementation of Roadworks

In addition to the normal junctions, roadwork nodes (RN) have been introduced as

appropriate to investigate the influence of maintenance activities to the traffic in the

network. As such road links provided in the network depend on the local road classes,

they need to be addressed differently according to the road class of the link it belongs to.

In this case study three RNs are added to the network, which are RNDl (dual 2 lane

carriageway), RNSl (single carriageway) and RNMl (motorway), as displayed in

Figure 6-2.
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6.3.2.1 Dua12 Lane Carriageway

To investigate the effect of maintenance activities on a dual 2 lane carriageway, RNDl

is assigned to link MG2-R4. There are three cases considered for RNDl in terms of the

parameters defined in Section 3.2.8, as shown in Table 6-2.

Table 6-2: Road geometries for RNDI

RND1 Case 1 (No maintenance) Case 2 Case 3

L (km) 2.8 2.8 2.8

x (km) 0.7 0.7
ml (km) - 0.5 1

m2 (km) - 1.6 1.1

nl 2 1 1

n2 2 2 2

The layout of link MG2-R4 is described in Figure 6-13, one service lane i left at the

work site RNDI for conveying traffic owing to one lane closure.

x RNOl ml m2

R4 MG2

L

WJW)}}}}J -- Roadwork

+-- Traffic flow approaching direction

Figure 6-13: Layout oflink MG2-R4

In Case 1, there is no maintenance implemented in the road link, which represent the

normal road condition. While for Case 2 and Case 3, the locations for the worksite are

the same, the only difference is that the length of the worksite in Case 3 is twice a it is

in Case 2, which represents a choice in the maintenance scheduling. Under each r ad

condition the flow capacity for the lane is assumed to be constant. The traffic
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characteristics of the network through the day in each case are illustrated in Figure 6-14,

the first one refers to the transportability of highway network and the other one presents

the travel delay occurred in the network.
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Figure 6-14: Highway network with RNDl: (a) Exiting traffic flow through the network;

(b) Total queue within the network

As only one lane open for the worksite on link MG2-R4 for Case 2 and Case 3, more

traffic are delayed in queues than in Case 1, especially during the afternoon peak period.

For Cases 2 and 3, the road capacity on RND1 is significantly reduced from 3600 pcu/hr

to 1530 pculhr. As a consequence, the queue that formed on link MG2-R4 exceeded its

corresponding road capacitance and propagated back to its source links, which caused

queues and delays on other directional flows at source junctions resulting in excessive

traffic congestion. Also, it is reasonable that the traffic conditions in Case 2 and Case 3

almost coincide since the difference of the link capacitance for Case 2 and Case 3 is

quite small, the discrepancy in the resulting queue propagation is very slight. As a

consequence, the variation of the length of worksite on a dual 2 lane carriageway

appears to have limited influence to network performance.

6.3.2.2 Single Carriageway

For this type of road, two opposing traffic flows have to share the only lane in service

when maintenance operation is implemented. Road link SR2-R4 is analysed and the
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worksite on it is denoted by RNSl as shown in Figure 6-15, the traffic flows from SR2

and R4 can only pass through the worksite during the corresponding green splits, as for

the rest time traffic flows have to wait at the back of the worksite so as to leave gaps for

the opposing flows.

x RNS1 m1 m2
SR2 R4

L

Wff/B - Roadwork

+-- - Traffic flow approaching direction

Figure 6-15: Layout oflink SR2-R4

Three maintenance scenarios are investigated at RNS1, described in Table 6-3.

Table 6-3: Road geometries for RNS 1

RNSI Casel (No maintenance) Case2 Case 3

L (km) 7 7 7

x (km) 3.2 3.2

ml (km) - 0.6 1.2

m2(km) - 3.2 2.6

nl 1 1 1

n2 1 1 1

G 45% 40%

Am 10% 20%

When RNSl is undergoing repair, signal control is employed to assign gaps for each

directional flow. For Case 2, the green splits for both directions are defined a 45% with

the amber phase taking 10% of the whole cycle. While for Case 3, the length of

worksite is the double of it in Case 2. As amber phase increases with the length of
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worksite, the amber phase in Case 3 is set to 20% while green splits for both directions

are 40%.

The traffic conditions of the whole network under normal conditions and that with the

repair at RNSI are compared in Figure 6-16,
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Figure 6-16: Highway network with RNS 1: (a) Exiting traffic flow through the network;

(b) Total queue within the network

Figure 6-16 reveals that the travel delay occurring in the network during maintenance is

much greater than when the network is operating under normal conditions. This is

contributed to the fact that both the two directional traffic flows are restricted by the

flow capacity of the worksite and signal control. In addition, it shows that the traffic

delay experienced in the network in Case 3 is more than twice of that in Case 2, as the

residual flow capacity for each direction at RNSl in Case 3 is evaluated as 720 pcuJhr

which is much smaller than the residual flow capacity in Case 2, 810 pcu/hr, also the

ling capacitance on link SR2-R4 is further reduced in Case 3, resulting more vehicles

spilled back to source links that led to much severer traffic congestion at upstream

junctions.

6.3.2.3 Motorway

Link S4-S7 is a typical 3 lane motorway, on which maintenance is assumed to be

performed at RNMI. The parameters of this link are defined as: x=4 km, ml=I.12 km,

m2=3.2 km, L=8.32 km. The layout of this link is shown in Figure 6-17,
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Figure 6-17: The layout oflink S4-S7

There are two cases considered for RNM] that are depicted in Table 6-4, Case 1

represents the normal road condition. The performance of overall traffic network under

each condition, illustrated in Figure 6-18, is considered. The two situations investigate

the effects of different number of lane closures for the repair work.

Table 6-4: Road geometries for RNM1
RNM1 Road conditions

Case 1 Case 2
Lanes in service 3 2
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Figure 6-18: Highway network with RNM1: (a) Exiting traffic flow through the network;

(b) Total queue within the network

According to Figure 6-18, travel delays only occurred in rush hour. Due to maintenance

work, the site capacity on RNM] is decreased to 3400 pculhr from 6000 pcufhr.

However, Case 1 and Case 2 possess similar travel behaviour; this is because the
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residual flow capacity of Motorway is relatively large with comparison to entering

traffic flow at most of the time during the day, which could accommodate the loss of

one service lane. During the period 16:00-20:00, the aggregate queue length of the

network with maintenance is slightly higher than that under normal conditions; it means

that additional delay has occurred due to insufficient transportability on RNM 1.

Moreover, when the entering flow through link S4-S7 is much smaller than the

corresponding flow capacity, two service lanes can be repaired simultaneously to

minimise maintenance duration. Nevertheless, in this case the entering flow on link S4-

S7 is greater than the residual flow capacity on the worksite during the afternoon peak,

which would result in severe traffic congestion when a two lane closure is applied; as a

result, two lane closure becomes infeasible for RNM1.

6.3.3 Discussion

Based on the results in Sections 6.3.1 and 6.3.2, it is reasonable that travel delays

experienced on the network during maintenance are more severe than that under normal

conditions since the flow capacity of the link undergoing repair is reduced due to lane

closure. Moreover, it was found that the network with maintenance at RNS1 suffered the

most severe traffic congestion. As the flow capacity on RNS1 is not only affected by the

reduction of service lanes but also restricted by signal control. The delayed traffic filled

link SR2-R4 and spilled back to upstream junctions, i.e. SR2 and R4, which further led

to the blockage of motorway and normal road. For the network with repair work at RN 1,

the flow capacity on RN1is also significantly affected by the maintenance work, and the

amount by which the entry flow exceeded the corresponding flow capacity is relatively

large. As expected it resulted in the formation of queue on the current link which

propagated back to the source links. For the network with maintenance at RNM], owing

to the length and width of link SR2-SR3, the delayed traffic is relatively small and the
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queue only occurred leading up to RNMl. More than one lane can be maintained

concurrently when the entering flow is relatively small in comparison to the residual

flow capacity.

From the above results it confirms that maintenance work has a great impact on the

network performance, especially when the normal flow along a road is very much

higher than the worksite capacity, i.e. at morning and afternoon peaks. Thus, when

scheduling pavement maintenance, the expected flow rates and flow capacities should

be considered to determine how it can be achieved to cause less disruption. Furthermore,

the length of the worksite with shuttle working plays an important role in traffic control,

as it is correlated with the amber phase which influences the flow capacity on the

worksite directly. By comparing the resulting travel delay incurred by maintenance

work, the best maintenance options can be selected.

6.4 Maintenance Planning for Road Sections in the Long-term

In this section, the optimisation method developed in Section 5.4 is used to evaluate

road user costs and maintenance costs over the pavement life cycle, and the assumptions

listed in Section 5.4 are also adopted. To investigate the effect of road user cost on the

selection of maintenance actions, some road links on the network are analysed

separately in the following sections, which are road links MG2-R4, SR2-R4, S4-S7, SIJ-

ST2, and S2-S3. The life cycle for each road link is defined as 60 years.

6.4.1 Dual Carriageway (MG2-R4)

For each maintenance action that conducted on road link MG2-R4, one lane closure is

applied. The length of link MG2-R4 is defined as 1.75 miles, and the duration and cost

for each maintenance action are calculated according to Table 5-9. For instance, the

duration for maintenance action 1 is calculated as:

189



1.75 x 1.6 x 2 x 18 = 101hrs

As road link MG2-R4 is a 2 lane carriageway, both service lanes need to be maintained.

The results for all the maintenance actions are described in Table 6-5:

Table 6-5: Maintenance costs and durations for road link MG2-R4
Road link MG2-R4

Maintenance action 0 1 2 3 4

Length (km) 2.8 2.8 2.8 2.8 2.8

Duration (hrs) 0 101 168 471 773

Cost (£'OOOs) 0 84 112 462 686

Mean time to failure (years) 3 5 8 10

Number of maintenance actions 20 12 8 6

In addition, the mean time to failure and the number of maintenance actions for each

maintenance action are also provided in Table 6-5.

The next step is to calculate the additional road user costs when road link MG2-R4 is

undergoing each maintenance action. For maintenance action 1, the maintenance

duration would be 4 days and 5 hrs, which starts from 7:00 on the first day. Thus,

NTFM is employed to model the traffic conditions on the network over 5 days. The

traffic conditions on road link MG2-R4 through the day under maintenance action 1 are

shown in Table 6-6:
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Table 6-6: Traffic conditions on road link MG2-R4 under maintenance action 1
Time Inflow Flow Outflow Queue (pcu) Queue

(pcu/hr) capacity (pcU/hr) propagation

(pcu/hr) (pcu)

7:00 2033 1530 1530 457 46

8:00 2603 1530 1530 457 1073

9:00 3123 1530 1530 457 1593

10:00 3785 1530 1530 457 2255

11:00 3900 1530 1530 457 2370

12:00 4116 1530 1530 457 2586

13:00 3955 1530 1530 457 2425

14:00 4030 1530 1530 457 2500

15:00 4234 1530 1530 457 2704

16:00 4103 1530 1530 457 2573

17:00 4235 1530 1530 457 2705

18:00 4441 1530 1530 457 2911

19:00 4157 1530 1530 457 2627

20:00 3941 1530 1530 457 2411

2100 3721 1530 1530 457 2191

22:00 3598 1530 1530 457 2068

23:00 2750 1530 1530 457 1220

24:00 1251 1530 1530 178 0

1:00 31 1530 209 0 0

2:00-7:00 31 1530 31 0 0

Table 6-6 indicates that road link MG2-R4 experienced severe traffic congestion at the

daytime. When maintenance action is performed on road link MG2-R4, its flow capacity

is decreased to 1530 pculhr from 3600 pculhr using Equation 3-46. Thus, the inflows at

daytime are greater than the residual flow capacity during maintenance. Also it is

assumed that the link capacitance on link MG2-R4 during maintenance is a definite

value, 457 pcu. When the delayed vehicles filled the link they propagated back to their

source links, which makes the traffic condition even worse. Those vehicles attempted to
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enter into the link at the next time step. The traffic conditions on the network under both

normal and maintenance conditions are compared in Figure 6-14.

According to the simulation results, the travel delay taken place on the network under

normal conditions is obtained as 2,785.5 hrs, which is contributed from the congestion

links on the network throughout the day that are illustrated in Figure 6-3 to Figure 6-11.

The queue length for each congested link through the day is shown in Table 6-7:

Table 6-7: Queue length for the congested links on the network
Link R6 R7 Ri SI2 Total

B5010 A6007 Residential S12- Ruddington R3- Westbound queue

Area RI SI2 arm (peu)

8:00 320 0 264 89 0 0 0 673

9:00 620 0 0 125 17 39 3 804

10:00 0 162 0 125 44 102 8 441

11:00 0 0 0 0 0 0 0 0

17:00 240 0 231 0 0 0 0 471

18:00 540 0 506 0 0 0 0 1046

19:00 0 143 0 0 0 0 0 143

20:00 0 0 O. 0 0 0 0 0

and the travel delays spent on the congested links are calculated in terms of Equation 3-

59, described as:

192



Table 6-8: Travel delay for the congested links on the network
Link R6 R7 Ri SI2 Total

B50l0 A6007 Residential S12- Ruddington R3- Westbound delay

Area RI SI2 ann (hrs)

8:00 160 0 132 44.5 0 0 0 336.5

9:00 470 0 30.1 107 8.5 19.5 1.5 636.6

10:00 165.6 81 0 125 30.5 70.6 5.5 478.2

11:00 0 10.4 0 4.8 0.8 1.14 0.06 17.2

17:00 120 0 115.5 0 0 0 0 235.5

18:00 390 0 368.5 0 0 0 0 758.5

19:00 135 71.5 108.5 0 0 0 0 315.0

20:00 0 8.01 0 0 0 0 0 8.01

Afterwards, it is transformed to road user cost by multiplying time value, £15.38,

obtained as £42,840.8. As for the network under maintenance 1, the travel delay for

each of the first four days is achieved as 89,617.65 hrs, which corresponds to

£1,378,319.5. While for the 5th day, one lane closure is applied during 7:00 and 12:00,

the resulting travel delay is obtained as 15,685.6 hrs that costs £241,244.5. The

additional road user cost is computed as:

UMG2-R4.1 = 1378319.5 x 4 + 241244.5 - 42840.8 x 5 = 5540318.5

In this manner, the additional costs to road users that resulted from the rest maintenance

actions are evaluated, which are depicted in Table 6-9:

Table 6-9: Additional road user costs due to maintenance actions on MG2-R4
Road link MG2-R4

Additional road user

1 2 3 4

4 days and 5 7 days 19 days and 15 32 days and 5

hrs hrs hrs

360,228.75 607,825.12 1,732,744.85 2,791,529.23

Maintenance action

Maintenance duration

Additional travel delay

(hrs)

5,540 9,348 26,650 42,934

cost (£'OOOs)
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By combining Table 6-5 and Table 6-9, the total cost for each maintenance action

throughout the life cycle is described in Table 6-10:

Table 6-10: Total cost spent on the network when road link MG2-R4 is repaired
Road link MG2-R4

Maintenance action 1 2 3 4

Number of maintenance actions 20 12 8 6

Maintenance cost (£'OOOs) 84 112 462 686

Additional road user cost (£'OOOs) 5,540 9,348 26,650 42,934

Total maintenance cost (£'OOOs) 1,680 1,344 3,696 4,116

Total addition road user cost (£'OOOs) 110,800 112,176 213,200 257,604

Total cost (£'OOOs) 112,480 113,520 216,896 261,720

Table 6-10 shows that the additional costs to road users due to maintenance activities

far exceed the corresponding maintenance costs. Thus, it is realistic to take into account

road user costs when optimising M&R strategy for a road network. Also maintenance

action 1 is recognised the most optimal one which led into the least total cost over the

pavement life cycle.

6.4.2 Single Carriageway (SR2-R4)

As road link SR2-R4 is a single carriageway road, one lane closure and shuttle working

is applied to implement maintenance activities. The geometries of link SR2-R4 are

shown in Table 6-11 :
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Table 6-11: Maintenance costs and durations for road link SR2-R4
Road link SR2-R4

Maintenance action 0 I 2 3 4

Length (km) 7 7 7 7 7

G 45% 45% 45% 45%

Am 10% 10% 10% 10%

Duration (hrs) 0 168 336 672 1,344

Cost (£'OOOs) 0 105 140 420 665

Mean time to failure (years) 2.5 4 6.5 8

Number of maintenance actions 24 15 10 8

As the investigated road link is a single carriageway, the maintenance action performed

would influence the traffic flows from both directions. There is no traffic congestion

taken place under normal conditions. However, during maintenance the flow capacity

for each direction on this link would be reduced to 810 pcu/hr using Equation 3-45. The

road user cost spent on the network under normal conditions is also £42,840.8. By using

the method provided in Section 6.4.1, the additional delays and costs to road users that

incurred by each maintenance action are evaluated, which are depicted in Table 6-12:

Table 6-12: Additional road user costs due to maintenance actions on SR2-R4
Road link SR2-R4

Maintenance action I 2 3 4

Maintenance duration 7 days 14 days 28 days 56 days

Additional travel delay (hrs) 159,025.4 318,050.7 636,101.5 1,272,203

Additional road user cost (£'OOOs) 2,446 4,892 9,783 19,566

Based on Table 6-11 and Table 6-12, the total costs resulted from the maintenance

actions that applied on road link SR2-R4 over the life cycle are illustrated in Table 6-13:
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Table 6-13: Total cost spent on the network when road link SR2-R4 is repaired
Road link SR2-R4

Maintenance action 1 2 3 4

Number of maintenance 24 15 10 8

actions

Maintenance cost (£'OOOs) 105 140 420 665

Additional road user cost 2,446 4,892 9,783 19,566

(£'OOOs)

Total maintenance cost 2,520 2,100 4,200 5,320

(£'OOOs)

Total addition road user cost 58,704 73,380 97,830 156,528

(£'OOOs)

Total cost (£'OOOs) 61,224 75,480 102,030 161,848

Table 6-13 also indicates that the road user costs resulted from maintenance actions are

significantly greater than the corresponding maintenance costs. Moreover, maintenance

action 1 is determined as the optimal one as the least travel delay is experienced when

maintenance action 1 is performed on road link SR2-R4.

6.4.3 Motorway (S4-S7)

Road link S4-S7 belongs to 3 lane motorway, both one lane closure and two lane closure

can be used to perform maintenance activities. In this chapter, only one lane closure is

utilised. The geometries of link S4-S7 are shown in Table 6-14:

Table 6-14: Maintenance costs and durations for road link S4-S7
Road link S4-S7

Maintenance action 0 1 2 3 4

Length (km) 8.32 8.32 8.32 8.32 8.32

Duration (hrs) 0 400 600 2,000 3,300

Cost (£'OOOs) 0 333.25 416.75 2,250 3,375

Mean time to failure (years) 3.5 6 9.5 12
Number of maintenance actions 18 10 7 5
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As stated above, the road user cost spent on the network under normal conditions is

calculated as £42,840.8. Based on the method described in Section 6.4.1, the additional

travel delays and road user costs that resulted from each maintenance action are

evaluated, which are depicted in Table 6-15:

Table 6-15: Additional road user costs due to maintenance actions on S4-S7
Road link 84-87

Maintenance action

Maintenance duration

1 2 3 4

16 days and 25 days 83 days and 8 137 days and

16 hrs hrs 12hrs

55,199.51 81,175.75 269,530.49 446995.32

849 1,248 4,145 6,875

Additional travel delay

(hrs)

Additional road user

cost (£'OOOs)

Based on the parameters listed in Table 6-14 and Table 6-15, the total costs spent on the

network due to the maintenance activities on link 84-87 are shown in Table 6-16:

Table 6-16: Total cost spent on the network when road link 84-87 is repaired

Road link 84-87

Maintenance action 1 2 3 4

Number of maintenance actions 18 10 7 5

Maintenance cost (£'OOOs) 333.25 416.75 2,250 3,375

Additional road user cost 849 1248 4,145 6,875

(£'OOOs)

Total maintenance cost (£'OOOs) 5,999 4,168 15,750 16,875

Total addition road user cost 15,282 12,480 29,015 34,375

(£'OOOs)

Total cost (£'OOOs) 21,281 16,648 44,765 51,250

It is identified that maintenance action 2 is the best selection for road link 84-87 with

both the minimum maintenance cost and additional user cost, which is resulted from the
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less frequency of this maintenance action during the life cycle companng to

maintenance action 1.

6.4.4 Dual Carriageway (SIl-ST2)

Road link S/l-ST2 is a 2 lane carriageway, the length of which is 5.25 mile. As

mentioned before, one lane closure is utilised to perform maintenance activities. The

geometries oflink S/l-ST2 are described in Table 6-17:

Table 6-17: Maintenance costs and durations for road link SIl-ST2
Road link S/l-ST2

Maintenance action 0 1 2 3 4

Length (miles) 8.4 8.4 8.4 8.4 8.4

Duration (hrs) 0 303 504 1,412 2,319

Cost (£'OOOs) 0 252 336 1,386 2,058

Mean time to failure (years) 3 5 8· 10

Number of maintenance actions 20 12 8 6

The road user cost spent on the network under normal conditions is determined as

£42840.8. In terms of the method provided in Section 6.4.1, the additional delays and

costs to road users caused by each maintenance action are evaluated, which are depicted

in Table 6-18:

Table 6-18: Additional road user costs due to maintenance actions on SIl-ST2
Road link S/l-ST2

Maintenance action 1 2 3 4

Maintenance duration 12 days and 21 58 days and 96 days and

15 hrs days 20hrs 15 hrs

Additional travel delay 0 0 0 0

(hrs)

Additional road user cost 0 0 0 0

(£'OOOs)
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Based on the results of NTFM, the road user costs spent on the network under

maintenance scenarios are also calculated as £42,840.8. It is due to the fact that the

residual flow capacity on link SIJ-ST2 during maintenance is still larger than the

entering flow. As a consequence, no additional cost incurred to road users. The total

costs spent on the network due to the maintenance actions performed on link SI J -ST2

are illustrated in Table 6-19:

Table 6-19: Total cost spent on the network when road link SIl-ST2 is repaired
Road link SIJ-ST2

Maintenance action 1 2 3 4

Number of maintenance actions 20 12 8 6

Maintenance cost (£' OOOs) 252 336 1,386 2,058

Additional road user cost (£'OOOs) 0 0 0 0

Total maintenance cost (£'OOOs) 5,040 4,032 11,088 12,348

Total addition road user cost 0 ° ° °(£'OOOs)

Total cost (£'OOOs) 5,040 4,032 11,088 12,348

As no additional road user costs resulted from maintenance actions. The optimal

maintenance action is only influenced by the maintenance cost. As a result, maintenance

action 2 is selected as the optimal one.
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6.4.5 Motorway (S2-S3)

Road link S2-S3 is 3 lane motorway on which one lane closure is utilised to perform

maintenance actions. The geometries oflink S2-S3 are shown in Table 6-20:

Table 6-20: Maintenance costs and durations for road link S2-S3
Road link S2-S3

Maintenance action 0 1 2 3 4

Length (km) 3.2 3.2 3.2 3.2 3.2

Duration (hrs) 0 154 231 768 1,268

Cost (£'OOOs) 0 128 160 864 1,296

Mean time to failure (years) 3.5 6 9.5 12

Number of maintenance actions 18 10 7 5

The road user cost spent on the network under normal conditions is calculated as

£42840.8. According to the method described in Section 6.4.1, the additional travel

delays and road user costs spent on the network under various maintenance activities are

achieved, illustrated in Table 6-21 :

Table 6-21: Additional road user costs due to maintenance actions on 82-83
Road link S2-S3

(£'OOOs)

1 2 3 4

6 days and 10 9 days and 15 32 days 52 days and 20

hrs hrs hrs

17,034.14 28,126.8 90,005.75 149,072.04

262 433 1,384 2,293

Maintenance action

Maintenance duration

Additional travel delay

(hrs)

Additional road user cost

Based on the results provided in Table 6-20 and Table 6-21, the total costs spent on the

network under different maintenance actions are compared in Table 6-22:
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Table 6-22: Total cost spent on the network when road link S2-S3 is repaired
Road link S2-S3

Maintenance action 1 2 3 4

Number of maintenance actions 18 10 7 5

Maintenance cost (£'OOOs) 128 160 864 1,296

Additional road user cost (£'OOOs) 262 433 1,384 2,293

Total maintenance cost (£' ODDs) 2,304 1,600 6,048 6,480

Total addition road user cost 4,716 4,330 9,688 11,465

(£'OOOs)

Total cost (£'OOOs) 7,020 5,930 15,736 17,945

In companson to the optimal maintenance action for road link S4-S7, the same

maintenance action is achieved. This is because both two road links are 3 lane

motorway and similar traffic conditions are experienced.

6.4.6 Discussion

The results obtained in this section show that the less extensive maintenance actions, i.e.

patching and surface dressing, are more favourable to pavement engineers. These

maintenance actions result in fewer disruptions to road users as they can be performed

in a relatively short time duration. Also, they require less funding and resources during

the pavement life cycle comparing to major maintenance actions.

We also found that the additional cost to road users is much greater than the

corresponding maintenance cost when the residual flow capacity of the investigated

road link under maintenance is less than the inflow. In this case, the selection of the

optimal maintenance action is dominated by the additional road user cost. There were

situations when maintenance cost plays the main role in optimising maintenance actions,

as shown in Section 6.4.4. Moreover, the mean time to failure for each pavement
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condition state is crucial to the optimisation of M&R strategy, as it is directly

proportional to both maintenance cost and road user cost.

When pavement deterioration is taken into account, a comparison between different

maintenance actions is possible and total costs for the whole life cycle can be calculated.

Total costs are calculated in terms of maintenance cost and road user cost, which are

obtained using the NTFM. As expected, maintenance actions that can be performed

more frequently and need shorter periods of maintenance are cheaper.

6.S Maintenance Planning for the Road Sections in the Short-term

In terms of the results provided in Section 6.4, we found that the additional road user

costs that resulted from maintenance activities can be much greater than the

corresponding maintenance costs. The assumptions proposed in Section 5.5 are applied

to the maintenance planning in this section.

To investigate the impact of maintenance arrangements on road users, a dual

carriageway road, link MG2-R4, is studied on which maintenance action 1, patching, is

implemented. Also, one lane closure is applied to conduct maintenance activities. Three

possible maintenance arrangements are assigned to road link MG2-R4: the first

arrangement is to start the maintenance at 7:00 am until it is finished, which has already

been studied in Section 6.4.1; the second one is to perform maintenance activities at off-

peak time, i.e. 11:00-16:00 and 19:00-23 :00; the third one is to performance

maintenance at nighttime, 23:00-7:00 on the next day.

6.5.1 Possible Maintenance Arrangements on Dual Carriageway (MG2-R4)

Three maintenance arrangements are considered in this section. For maintenance

arrangement 1, the total maintenance duration required by maintenance action I would
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be 101 hours, and the total cost is £84,000. The evaluation of total cost spent on the

network under maintenance arrangement 1 is described in Section 6.4.1.

For maintenance arrangement 2, the maintenance duration for each day is 9 hrs, which

requires 15 working days with the consideration of maintenance set up time according

to Equation 5-19. In the first 14 working days, maintenance activities are performed at

11:00-16:00 and 19:00-23:00. As for the last working day, maintenance slot falls to

11:00-15:00. For each of the first 14 working days, the travel delay and cost to road

users are calculated as 7,768.54 hours and £119,480 by using NTFM. For the 15th

working day, the travel delay and road user cost are obtained as 5,098 hours and

£78,407.6. In terms of the method proposed in Section 6.4.1, the additional travel delay

and cost to road users on the network under maintenance arrangement 2 are evaluated as

72,075 hours and £1,108,516.

For maintenance arrangement 3, nighttime operation is applied. The maintenance work

starts from 23:00 to 7:00 on the next day, which requires 15 days to complete the

project in terms of Equation 5-19. For the first 14 days, the road section is maintained at

23:00-7:00. While for the last day, maintenance work is performed at 23:00-3:00.

Afterwards, NTFM is applied to model the traffic characteristics on the network under

maintenance arrangement 3. The results show that the same traffic conditions are

experienced on road link MG2-R4 as that on the network under normal conditions. This

is because maintenance activities are performed at nighttime when limited traffic

existed on the network.

The results obtained on the network under three maintenance arrangements are

compared in Table 6-23:
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Table 6-23: Maintenance cost and road user cost spent on the network under various
maintenance arrangements when maintenance action 1 is performed
Maintenance arrangement 1 2 3

Additional travel delay (hrs) 360,228.75 72,075

Maintenance cost (£'OOOs) 84 113

Additional road user cost (£'OOOs) 5,540 1,109

Total cost (£'OOOs) 5,624 1,222

o
183

o
183

Examining Table 6-23, we found that maintenance arrangement 1 resulted in the most

additional cost to road users, as maintenance activities are performed at peak time

during the daytime. However, maintenance arrangement I requires the least funding

from highway agencies. As for the maintenance arrangement 2, the road is only

maintained at off-peak time, which caused less disruption to road users. The third

maintenance arrangement is the most costly option for highways agencies which has no

influence to road users. The maintenance cost for maintenance arrangement 2 is

calculated as £ 113,000 owing to the maintenance set up cost in line to Equation 5-18.

Therefore, in this section using the results obtained from NTFM it is indicated how

maintenance work can be arranged in the daytime so as to minimise the additional road

user cost. Different types of road will be considered, in order to demonstrate effective

maintenance planning depending on the road type.

6.5.2 Optimisation of Maintenance Arrangements on Dual Carriageway (MG2-R4)

This section investigates the maintenance arrangements on road link MG2-R4 at

daytime with the aim of minimising road user costs. As in Section 6.5.1, maintenance

action 1 is performed. Another assumption is that the maintenance arrangements for

each day during the whole maintenance period are the same. In terms of the

assumptions listed in Section 5.5, the decision variables for road link MG2-R4 include

start time of maintenance, st, maintenance duration 1, mdi, maintenance break, mb, and
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maintenance duration 2, md-, for each working day. The constraints for these variables

are formulated as:

7 s si s 12

2~mdl ~6

2 smd; s 6

1~mb~ 2

st+md, +mb+md, s 23

The first constraint restricts the start time of the maintenance action from 7:00 to 12:00.

The second and third constraints limit the duration for each maintenance time slot with

the lower bound of 2 hours and upper bound of 6 hours. The fourth constraint is the

threshold of maintenance break. The fourth constraint means that the maintenance work

for each day must be completed by 23:00.

Based on the variables listed above, the number of working days for road link MG2-R4

under maintenance actionl is calculated by Equation 5-25. The desired maintenance

duration for road link MG2-R4 under maintenance action 1 is evaluated as 101 hours.

Afterwards, the total cost under each maintenance arrangement is achieved using

Equation 5-26.

In this section, the involved decision variables are recognised as four strings of genes

that formed a chromosome in the optimisation of maintenance arrangements using a

binary coded single--objective GAs. The whole chromosome is represented as:
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st mb md:

Figure 6-19: A typical genotype of chromosome for road link MG2-R4

Where "*,, represents a binary variable, i.e. 0 or 1.

In the optimisation control, the size of parent pool is selected as 100, and the crossover

rate and mutation rate are adopted as 0.8 and 0.01, the maximum generation is 100. A

the aim of this study is to find the traffic control that incurred the least travel delay, the

objective function is defined as the total road user cost spent during the whole

maintenance period, as shown in Equation 5-26. After the simulation, the best

chromosome for all the generations are is described as 111-101-11-011, and then it is

decoded to integer numbers where the left end of the string is recognised as the first

allele. For example, the fourth string 011 is decoded as:

Ox2° +lxi +lx22 x(6-2)+2=5
23 -1

According to the results obtained from GA, the optimal maintenance arrangements are

listed as:

st 12:00

md, 12:00-16:00

mb 16:00-18:00

md, 18:00-23:00

wd 15 days

Consequently, the additional road user cost spent on the network during maint nanc

under the optimal maintenance arrangements is obtained as £1,009,098 when 15

working days are required, and the corresponding maintenance cost i £ 114,000. By
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comparing to the results for the network under maintenance arrangement 2 that

described in Table 6-23, the additional cost to road users is greatly reduced by

optimising maintenance arrangements, and similar maintenance cost incurred.

6.5.3 Optimisation of Maintenance Arrangements on Single Carriageway (SR2-R4)

For road link SR2-R4, maintenance action 1 is also applied to restore pavement

condition which requires 168 working hours. In addition to the decision variables

studied in Section 6.5.2, the green splits for both directions on the road link during

maintenance can also be optimised so as to convey the opposing traffic flows through

the link. Consequently, six variables are considered in the optimisation of maintenance

arrangements on road link SR2-R4, which are start time of maintenance, st, maintenance

duration 1, mdi, green split for eastbound traffic during maintenance duration 1, gs),

maintenance break, mb, maintenance duration 2, mdi, and green split for eastbound

traffic during maintenance duration 1, gs]. The green split for westbound traffic on road

link SR2-R4 during maintenance duration i is evaluated (JOO-gsJlYo-amber phase.

Amber phase is defined as 10% of the cycle. The constraints for the decision variables

are described as:

7 :Sst :S12

2:S md, :S6

2 :Smd ; :S6

30 :SgSJ :S60

30:S gS2 :S60

1:S mb s: 2

st+md, +mb+mdi s; 23

The fourth and fifth constraints restrict the green split for eastbound traffic on road link

SR2-R4 which varies from 30% to 60% of the total cycle. The rest is the same as the
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constraints provided In Section 6.5.2. The chromosome for road link SR2-R4 IS

formulated as:

ttttI;tl*I*I:1 *1*1jjjjj*1 *1:1*I*J
st mb md

Figure 6-20: A typical genotype of chromosome for road link SR2-R4

The GA parameters are set as follows:

Population 100

Maximum generation 500

Crossover rate 0.8

Mutation rate 0.01

According to the simulation results, the optimal chromosome is evaluated as 011-111-

11110-11-101-11110. Then the chromosome is decoded to integer numbers, described

as:

sf 11:00

md, 11:00-17:00

gS1 44%

mb 17:00-19:00

md, 19:00-23 :00

gS2 44%

wd 21 days

Based on the optimal maintenance arrangements, 21 working days are required and the

resulting additional road user cost is evaluated as £66,177.3, and the corresponding

maintenance cost is £147,000. We found that the additional cost to road users is even

less than the half of the maintenance cost. Thus it is acceptable for highways agencies to
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perform maintenance activities at daytime under the achieved optimal maintenance

arrangement.

6.5.4 Discussion

This section investigates the additional travel delays and costs to road users incurred in

the network under various maintenance arrangements, where start time of maintenance,

the allocation of maintenance time slot, maintenance break, and traffic control measures

are all taken into account. The results indicate that nighttime operation led to the least

disruption to road users, and the travel delays to road users resulted from daytime

operation can be greatly minimised by optimising maintenance arrangements. However,

when the additional road user cost due to daytime maintenance operation is acceptable,

highways agencies would prefer daytime operation in order to guarantee the safety of

road workers and minimise the possibility of the occurrence of more severe accidents.

6.6 Summary

This Chapter presents the network level traffic flow tool, NTFM, to calculate the traffic

flows in an integrated road network. In addition to other junction sub-models, a

roadwork node sub-model has been embedded in NTFM to define the geometry of a

maintenance worksite and to demonstrate the effect of maintenance work on the traffic

conditions in the network. Further, signal control is employed to manage the traffic in

worksites with shuttle working.

A case study has been performed to investigate the traffic conditions in the

Loughborough-Nottingham highway network under different road conditions. Traffic

movement, queue formation and dissipation in the network are identified. The results

demonstrated that the performance of the network is significantly worse when

maintenance is implemented, i.e. more queues and delay times.
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Also the road user costs due to maintenance can be evaluated based on NTFM which is

used to optimise maintenance actions for road sections along with the corresponding

maintenance cost during the pavement life cycle, where pavement deterioration process

is considered. The results show that the maintenance actions that can be performed more

frequently and require shorter maintenance durations are more acceptable to highways

agencies.

Moreover, the maintenance arrangements for the road sections under maintenance can

be optimised using GA to facilitate the traffic through the worksite based on NTFM so

as to cause fewer disturbances to road users, where the trade-off between the

maintenance cost and road user cost must be taken into account.
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7 Conclusions and Future Work

7.1 Summary

Following an extensive literature review on the existing traffic flow models, the need

for the development of a macroscopic traffic model capable of modelling an integrated

network ofmotorway and urban roads was identified. The majority of the traffic models

used for the prediction of traffic movement is only sufficient for signalized road

networks, where the traffic interactions experienced at the priority junctions cannot be

captured. For instance, the traffic on the minor road at a T-junction is not only

characterised by the corresponding flow capacity but also limited by the incoming flow

on the major road. The techniques presented for priority junctions mainly focused on

investigating the traffic on single intersection and are not accurate for modelling

directional flow, therefore they are not capable of identifying traffic characteristic at the

network level. Considering the traffic interaction at both signalized and priority

junctions, this thesis describes a network level traffic flow model (NTFM) the purpose

of which is to provide a method for predicting traffic flows and travel delays through

the road network.

NTFM consists of a larger number of junction types than other existing traffic models,

such as signalized junctions, priority junctions, and maintenance worksite. The model

produces journey times spent on the road links and travel delays spent at the junctions.

To cope with two-way traffic flow in the road network, an iterative simulation method

is utilised to generate the evolution of dependent traffic flows and queues. In addition a

traffic rerouting strategy has been introduced to NTFM to model the real travel

behaviour, i.e. adjusting pre-defined route to compensate travel delay, when traffic

congestion takes place in the network.
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Application examples of NTFM have been investigated. Initially relatively simple road

networks were studied. The first case study demonstrated that NTFM is capable of

identifying the relationship between traffic flows and capturing traffic phenomena such

as queue dynamics and the second one indicated that the traffic congestion experienced

in the network can be decreased or eliminated by taking alternative routes.

The development of an optimisation framework based on NSGA-II was completed so as

to create a technique which identifies the best pavement maintenance scheduling with

the optimal allocation of available budgets and resources, consequently the least

maintenance cost is required. The NSGA-II software has proven its ability on a wide

range of real engineering problems. One advantage of using GAs is the ability to

achieve an optimal or near-optimal solution for any engineering problem considered

rather than developing the optimisation approach in terms of the specified problem. For

the optimisation model maintenance cost and total remaining pavement life have been

selected to indicate the performance of M&R strategy. Limitations of budgets and

resources, restrictions of the number of maintenance actions have been applied as

possible constraints for the optimisation framework.

The developed optimisation framework was applied to allocate maintenance actions for

simple case studies during a planning period of 20 years. This case study demonstrated

the capability of the optimisation model to maintain pavement condition. The results

showed that the optimal M&R strategy can reduce maintenance cost and prolong the

remaining pavement life of individual road section.

In addition to the maintenance costs, the cost to road users can also be minimised by

varying the maintenance arrangements at the worksite. The case study in Section 5.3.2

demonstrated that the start time of maintenance activities and traffic controls at the

worksite have a substantial impact on network performance.
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Moreover, NTFM has been applied to model traffic characteristics on the

Loughborough-Nottingham highway network that is composed of both urban and

motorway roads. Maintenance activities were defined in this network in order to

evaluate effects of alternative maintenance strategies, which is realised by introducing a

reduced flow rate on links of the network. Afterwards, NTFM has been applied to

optimise maintenance actions for road sections on a highway network with the

consideration of pavement degradation process during the pavement life cycle. As for

the maintenance actions performed on the road sections, the maintenance arrangements

can also be optimised using the NTFM in order to improve transportability and cause

fewer disruptions to road users. The results indicated that the network efficiency is

substantially influenced by undertaking maintenance work, especially during the

morning and afternoon rush hour; and the travel delays to road users can be

significantly reduced by optimising maintenance arrangements, where a binary single-

objective GA is utilised to perform maintenance arrangement optimisation.

7.2 Sensitivity of Main Assumptions

7.2.1 Junction model

1. peu (passenger car unit) is used to describe traffic flow and the number of cars

on the network. Therefore, other types of vehicles are transformed to the

corresponding PCl). For example, a truck is defined as 3 peu. If vehicle types

are considered in NTFM, longer headways are assigned to heavy vehicles. For

instance, the headway for cars are 7 m, while for heavy vehicles headway can be

defined as 8 m for each PCl).

2. Two-lane arms are used to model most of the signalised intersections. The left-

hand lane is used for going straight on and turning left and the right-hand lane
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for turning right. For some signalised intersections, three-lane arms are used. In

this case the left-hand lane is occupied by traffic turning left, the middle lane is

used for going straight on and the right-hand lane for turning right. However, the

traffic going straight and turning left experiences the same green phase in the

model with three lanes. Thus the two kinds of models for signalised intersections

give a similar performance under the same traffic controls and the adequacy

between the NTFM and a real-world network is marginally influenced by the

assumption of number of lanes. The similar assumption is applied to some other

types of junctions, for example, signalised T-junction and signalised roundabout.

3. For signalised intersections, the green phases for both lanes in the two-lane

model are defined as 50% and 30% of the total cycle, respectively. These

numbers have been derived while observing a representative junction on the

road network locally. For a better representation such phases could be derived

using traffic data on each junction on the network and the numerical values of

network performance from the model would be different. However, the

conclusions of the overall performance would, most likely, stay the same, since

the different between default green phases and the values from the real life is

very small, for example, the same link would be identified as the most congested

one.

4. For an urban roundabout, it is assumed that vehicles are not allowed to queue on

the roundabout, while on a motorway roundabout vehicles can be delayed

directly on the roundabout due to the larger size of the motorway roundabout

than the urban one. Such traffic behaviour is commonly observed on the

roundabouts close to a busy motorway.

5. In the on-ramp model, the conflicting flow for traffic from the slip road is

determined as the flow on the left-hand lane on the major road, which is the case
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in reality. In the off-ramp model, it is assumed that only the traffic leaving the

major road takes the left-hand lane, since most vehicles that are carrying on

other lanes on the major road. In the merge and diverge models, the traffic flows

on slip roads are given the same priority as these junctions are symmetrically

constructed and do not create conflicting flows on the main road. All the models

described in this section model the traffic on motorways, as commonly observed

on the highway networks.

6. Flow rates and turning ratios at junctions are defined at each arm of the junction

and they vary with each time step, i.e. each hour, as generally observed on the

network. The model is very sensitive to the flow rates and turning ratios, and

such data influences the network performance directly. For example, due to

different flow rates a network without any queue can turn into a heavily

congested network. Therefore, the validity of this input data is very important, as

discussed in validation section.

7.2.2 Queue model

7. A queue can occur at every node on the network, i.e. at junctions and worksites,

since at these points there is a change in traffic conditions in terms of

disturbance on the link. The headway is defined as 0.007 km when a queue is

present, i.e. cars leave 0.002 km gap between them in a queue if the average car

length is 0.005 km. With the increase of the headway the length of queue

increases slightly. For example, the length of a queue with 10 vehicles is

increased to 0.08 km from 0.07 km when headway is defined as O.OO8krn.Also,

the capacitance on each link is determined in terms of the headway in the queue.

As before, the effect of the length of headway is limited. For instance, the
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capacitance on a link with the length of 0.56 km is decreased to 70 pcu from 80

pcu when headway is defined as 0.008 km.

7.2.3 Pavement deterioration model

8. For the probabilistic pavement deterioration model, normal distribution is

applied to characterise the expected life for new pavement and the age gain

resulting from maintenance actions. This distribution was chosen as it is one of

the most commonly used probability distributions in engineering problems.

Other lifetime distributions, such as polygon distribution and Weibull

distribution, can also be used to describe the stochastic nature of pavements.

However, the same optimal M&R strategy, i.e. the one with the objectives of

maximizing pavement condition and minimizing maintenance cost studied in

Section 5.2.5, will be achieved as the majority of the samples generated from a

different distribution would fall into a narrow interval approaching the mean

value.

7.2.4 Road user cost

9. The road user cost is defined as the time cost, including the journey time cost

and the delay time cost, whereas the vehicle operating cost is not taken into

account. For the normal condition, i.e. when there are no congestions, vehicle

operating cost is proportional to the journey time cost and it can be neglected,

since in this case the selection of maintenance actions is dominated by

maintenance cost. While at peak hours and at road works, with the increase of

congestions, the vehicle operating cost also increases significantly. As a

consequence, vehicle operating cost should be included as part of the road user

cost in the future.
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7.2.5 Maintenance implementation

10. The maintenance set-up costs and removal costs are not considered when the

road link:needs to be repaired, since they are very small and most likely would

not affect the optimal solution. Such costs need to be taken into account when

the maintenance works on a link:are performed with maintenance breaks, and

they are relatively larger in comparison to the maintenance cost.

11. For the optimisation framework, the traffic inputs for the network during the

planning period, i.e. 10 years, are assumed to be constant. For the illustration

such assumption is important in order to obtain results reasonably quickly, 30

minutes. In reality, the traffic flow rates on the network would increase slightly

and it would have some effect on the traffic conditions on the network.

7.3 Conclusions

The developed NTFM provides a modelling framework which enables any road

network to be modelled by constructing the network topology using the embedded

junctions connected by road sections. The traffic inputs for NTFM include the entry

flows and turning ratios at the involved junctions, and the geometries of junctions and

road sections. NTFM is developed to be applicable for any road network under

consideration.

A roadwork node sub-model has been introduced in the NTFM to study the effect of

maintenance work on network performance, which specifies the location of worksite,

the length of the worksite, and lane closure options.

Traffic rerouting strategy enables NTFM to model the driver behaviour, i.e. when

excessive traffic congestion exists on a highway network, traffic will take alternative

routes and therefore traffic rerouting takes place.
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Pavement age gain model is applied to evaluate and predict the evolution of pavement

condition during the planning period, in which pavement age gain is deployed as the

pavement improvement indicator. Moreover, in order to capture the uncertainty inherent

in pavement deterioration process, the deterministic pavement age gain model can be

transformed to a probabilistic one by using a normal distribution for the pavement age

gam.

NSGA-II is utilized in the optimisation framework to achieve the global optimal M&R

strategy subject to the specified objectives and constraints. Application of the NSGA-II

provided a number of good solutions which are critical in the scheduling of pavement

maintenance.

Road user cost and maintenance cost are taken into account concurrently so as to

achieve the optimal maintenance actions for the road sections during maintenance.

Maintenance arrangements, i.e. start time of maintenance, maintenance duration,

maintenance break, and traffic control measures, can be optimised based on NTFM

according to the network performance under various maintenance scenarios. In

comparison to other worksite optimisation techniques, not only the traffic delays at the

worksites are taken into account by NTFM, but the traffic flows through the adjacent

links are also considered.

7.4 Future Model Validation

In order to apply the NTFM to model a highway network and obtain a close to reality

representative of the network, the following steps need to be fulfilled:

1. The different types of junctions and links on the network need to be identified.

2. The flow capacity at each junction, and the length, flow capacity and

capacitance of each link need to be identified.
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3. Traffic flow rates, turning ratios and traffic signals at each entry ann of the

junctions need to be derived and calibrated according to traffic data throughout a

typical day.

4. The average travel speed and the speed of queue dissipation for vehicles on each

type of road need to be defined.

5. The headway between delayed vehicles needs to be specified.

6. The expected lives of pavement for each type of maintenance actions associated

with road classes need to be verified.

7.5 Future Work

Future work would involve an application of the developed decision making system to a

variety of highway networks. It is anticipated that the analysis of more complex

problems would require more computational effort in terms of the size of road network

and the complexity of objective functions, which may result in a processing time issue.

Therefore, future work should be devoted to improving the efficiency of the analysis to

minimise CPU processing time.

Only the maintenance activities on road links are taken into account by NTFM, thus the

impact of maintenance activities at the junctions should be investigated in the future.

More regulations and rules, such as speed reductions due to the enforcement of worker

safety at worksites and the evaluation of vehicle operating cost, could be applied to

NTFM. Further sub-models for the junction can be derived e.g. a three-lane signalised

intersection and a three-lane roundabout.

GAs were identified as very robust and flexible techniques for the optimisation of

pavement maintenance arrangements. In this thesis, NSGA-U is applied as the

optimisation method which has proven itself to be sufficient enough for constrained

multi-objective problems. However, more constraints can be added to the optimisation
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model, such as limitation of the use of surface dressing on motorways, and forcing

structural maintenance on heavily trafficked roads (at least once during the life cycle).

Therefore, other advanced GAs and hybrid heuristic techniques can be implemented, as

they have the feature of retaining the advantages of GAs but prominently improve their

searching ability and computational efficiency in achieving the global optimal.

Pavement age gain model is a very useful technique for evaluating pavement condition,

whereas the pavement surface defects, usually recognised as the trigger of pavement

actions, are not investigated. In addition, the maintenance actions provided by

ADEPTIRSTA [63] can be applied to the pavement age gain model. Deploying other

existing pavement deterioration models, i.e. HDM-4 and ARRB, and individual

pavement distress models, such as cracking model and rutting model, can provide an

alternative solution for the problem in terms of the decision making criteria. When an

alternative pavement deterioration model is used, it is still possible to take advantage of

NTFMmodei.
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Appendix A: Flow Diagram of NTFM
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The NTFM, programmed in Visual C++ and presented in the flow chart, is processed as

follows:

Part I: Definition of highway network

I. The first step for the NTFM is to define the geometries of junctions and links on

the network. A class is constructed for each junction studied in the NTFM to

describe its type and flow capacity, and to store its inflows, outflows and

queues. Links are specified in terms of the road type, the number of lanes, and

their length. The relationship between junctions needs to be specified according

to the topology of the highway network. As junctions are connected by two-way

links, the two-way traffic flows are investigated in the NTFM by using iterative

algorithm.

2. The junctions are defined with the initialisation of traffic flow rates, turning

ratios at each entry arm, the measured traffic controls, and the traffic conditions

at the beginning of each time step, k, i.e. the length of the queue.

Part 2: Traffic evaluation

3. NTFM is used to model the network at time step k iteratively until the

convergence has been achieved. The inflows for each junction are updated at

each iteration according to the outflows on the corresponding upstream links at

the previous iteration. The traffic characteristics at each junction are evaluated

based on the geometry, the initial traffic condition and the inflows at each

iteration; the outputs include the outflows and the queues for each junction, and

the components of queue are identified, i.e. the number of vehicles for each

potential direction.

4. The convergence is reached when the traffic outputs for each junction on the

network are identical at the last 6 iterations of the process.
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5. The queue propagation is performed when some links on the network are

completely filled with vehicles, and a number of the delayed vehicles that

exceed the corresponding link capacitance spill back to upstream links.

6. After the evaluation of the traffic condition on the network at time k, the

inflows, the outflows and the queues for each junction and link on the network

are kept in vectors and are used in the next time step.

7. As for the next time step k+1, the traffic conditions at the end of time k are

transferred as the initial traffic conditions at the beginning of time k+ 1. Steps 3-

7 are repeated until the end of the planning horizon.

232



Appendix B: Practical Implementation and

Computational Time of the Decision Making System

For a simple road network, i.e. the case study network provided in Section 3.6 (4 nodes

and 12 links), it takes about 1 second for NTFM to model the traffic on the network for

an Intel Core 2 PC. As for a medium-sized network, i.e. Loughborough-Nottingham

highway network (47 nodes and 51 links), it takes around 10 seconds to model the

traffic through the network during a typical day. Consequently, it is expected that it may

take about 30 minutes for the NTFM to simulate the traffic on a large-sized network

during a relatively longer period, i.e. a network composed of more than 100 nodes and

100 links, and the planning period is defined as I month.

As for the optimisation framework, it takes about 15 minutes to optimise the M&R

strategy for a simple road network, i.e. the example road network that was investigated

in Section 5.2.4 (4 links), when the maximum generation is defined as 5000. The total

optimisation time is increased to 2 hours when 20000 generations are required, which

indicates that the computational effort increases exponentially with the increase of the

number of GA parameters. As a result, it would take a couple of months to optimise the

M&R strategy for Loughborough-Nottingham highway network (51 links) in a longer

term, i.e. 20 years.
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