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Abstract

The detection of dark matter (DM) by direct detection experi-
ments has great potential to shed light on particle physics beyond
the Standard Model. However, uncertainties in the DM speed distri-
bution fi(v) may lead to biased reconstructions of particle physics
parameters, such as the DM mass and interaction cross sections.
In this work, we aim to determine whether these parameters can
be determined from future direct detection data without any prior
assumptions about fi(v).

We study previous methods for parametrising fi(v) and show
that they may still lead to biased reconstructions of the DM param-
eters. We propose an alternative smooth, general parametrisation,
which involves writing the logarithm of the speed distribution as a
polynomial in v. We test this method using future direct detection
mock data sets and show that it allows an unbiased reconstruction
of the DM mass over a range of particle physics and astrophysics
parameters. However, the unknown fraction of DM particles with
speeds below the energy thresholds of the experiments means that
only a lower bound can be placed on the interaction cross sections.

By introducing data from neutrino telescope experiments, such
as IceCube, this degeneracy in the cross section can be broken, as
these experiments probe the low speed DM population. Combined
with our parametrisation method, this allows a robust reconstruc-
tion of the DM mass and cross sections without relying on any as-
sumptions about the DM speed distribution. The function fi(v)
itself can also be reconstructed, allowing us to probe the distribu-
tion function of the Milky Way.

Finally, we propose a method of extending this parametrisation
to directional data, which should allow even more information to be
extracted from future experiments without the need for astrophysi-

cal assumptions.
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Chapter 1
Introduction

What is dark matter? For a question so central to cosmology and particle
physics, the prospects for finding an answer do not at first glance seem
promising. The interaction of dark matter (DM) particles must be very
weak in order to evade a myriad of bounds set by precision astrophysical
and cosmological tests. Our failure to observe dark matter particles thus
far tells us that their interactions must be even weaker still. The effort to
detect these interactions both on Earth and in the wider Universe is a vast
technological and scientific challenge.

However, such efforts are advancing rapidly. The detection of particle
DM using terrestrial detectors would give strong clues about the nature and
identity of DM. However, the analysis of these so-called ‘direct detection’
experiments is plagued with uncertainties. One such uncertainty is in our
understanding of the astrophysical speed distribution of dark matter, which
influences the typical energies which would be deposited in a detector in
the lab. If these uncertainties can be overcome, direct detection promises
to be a powerful probe of both the particle physics and astrophysics of DM.

Without a detection of a possible particle candidate, then, the question
‘What is dark matter?’ is perhaps best answered by reviewing the current
evidence for its existence. Evidence for DM is found on scales from the
Milky Way up to the cosmological horizon, with a range of observations
which cannot be adequately explained with the observed constituents of the
Universe. Dark matter is an invisible component introduced to reconcile
these observations with the known laws of physics - most importantly,
General Relativity.

Beyond this general definition, there are a wide range of particle physics

candidates which may play the role of dark matter. These typically derive
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from theories of physics beyond the Standard Model (SM), meaning that
the study of the properties of dark matter can shed light on theories of high
energy physics. Many of these proposed dark matter candidates have weak
but non-zero interactions with particles of the Standard Model, leading to
several avenues through which it is hoped the non-gravitational detection
of dark matter may soon be achieved.

In this chapter, we summarise the evidence in support of the DM
paradigm, including constraints from precision cosmology. We discuss some
of the features which particle DM must possess, as well as describing a few
specific candidates in more detail. Finally, we discuss current progress and

constraints from direct and indirect searches for particle dark matter.

1.1 Evidence for dark matter

Dark matter is a key component of the ACDM paradigm of modern cos-
mology. In this framework, the energy density of the Universe today is
dominated by the constant and uniform contribution of the vacuum, A.
This contribution exerts a negative pressure and drives the accelerating
expansion of the Universe which was the subject of the 2011 Nobel Prize
in Physics [I], 2]. However, the formation of structure in the early Universe
is driven by the clustering of a non-interacting, slow moving and as yet un-
detected matter component [3], Cold Dark Matter (CDM). The fact that
DM is non-interacting (or at least, interacts only very weakly) means that
it begins to collapse gravitationally earlier in cosmic time than baryonic
matter. After decoupling, baryons then fall into the gravitational wells
produced by the infalling DM structures. Without DM, the baryonic mat-
ter in the Universe could not have had enough time to collapse to form the
range of gravitationally bound structures we see today [3, 4]

Cosmological experiments sensitive to the expansion and structure for-
mation history of the Universe allow us to precisely determine the contribu-
tions of various different components to the energy density of the Universe
(see e.g. WMAP [5], BOSS [6] and CFHTLenS [7, [§] to name just a few).
For example, Baryon Acoustic Oscillations (BAOs) [9] are a feature im-
printed on the distribution of matter in the Universe by acoustic waves
prior to recombination. BAOs can be measured by using galaxy redshift
surveys (such as SDSS [I0]) to map out the large scale structure of the

Universe and they provide a ‘standard ruler’ for measuring cosmological
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distances. Type-la Supernovae provide ‘standard candles’ which can be
used to measure luminosity distances in the Universe. Redshift surveys of
these supernovae [I1] then allow us to reconstruct these distance scales over
cosmic time. Complementary information from these probes and others al-
low us to constrain the expansion history of the Universe and therefore the
various contributions to the density of the Universe.

A particularly sensitive probe for determining the dark matter contri-
bution to the energy budget of the Universe is the measurement of the
temperature anisotropies of Cosmic Microwave Background (CMB) pho-
tons. These contain an imprint of the acoustic oscillations of the baryon-
photon fluid during the era of recombination. The size of these oscillations
is sensitive to the size of the gravitational potential generated in the early
Universe by dark matter, which does not interact with the photons [3].

The recent Planck experiment [I2] measured the angular power spec-
trum of these CMB temperature anisotropies. Figure shows the results
of these measurements, as well as the best fit 6-parameter ACDM model.
The contributions of the cosmological constant, the total matter compo-
nent, and the separate baryonic and dark matter components to the total
energy density of the Universe are shown in Table These are given
in terms of the density parameter Q; = 87Gp;/3HZ, where G is Newton’s
constant, Hy is the Hubble parameter and p; is the energy density of com-
ponent . These results, constrained with an accuracy of less than 3%,
point to the conclusion that ~84% of the matter content of the Universe
is in fact dark.

However, the evidence for dark matter is not purely cosmological. In
1933, Zwicky measured the velocity dispersion of galaxies in the Coma
cluster [14]. An application of the Virial Theorem indicated a gravitational
mass in the cluster which was several hundred times bigger than that ex-
pected from the luminosity of the member galaxies. It is now known that
some of this mass is in the form of hot (~1 million K), X-ray emitting in-
tracluster gas [I5]. Nonetheless, a discrepancy remains; current estimates
of the mass-to-light ratio of the Coma cluster give a value of roughly 150
times that of the Sun [16, 17]. The Coma cluster does not appear to be
unusual. Measurements of the masses of a large number of galaxy clusters
using gravitational lensing [I8], X-ray observations [19] and dynamical es-

timates [20] indicate that a significant fraction of a cluster’s mass must be
dark.
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Figure 1.1: Angular power spectrum of CMB temperature anisotropies
as a measured bythe Planck satellite. Data are shown as red points with
the best fit ACDM cosmological model shown as a green line. Repro-
duced from Ref. [12].

Parameter 68% limits
Qa 0.686 + 0.020
Q. h? 0.1423 £ 0.0029
Quh? 0.02207 £ 0.00033
Q.h? 0.1196 £+ 0.0031

Table 1.1: Density parameter €2 (defined in the text) of the cosmological
constant (A), total matter (m), and separate baryonic (b) and cold dark
matter (¢) components, as obtained by the Planck Collaboration [13].
The Hubble parameter is defined as Hy = 100 hkm s~ *Mpc ™.

The success of the ACDM paradigm is also borne out in results from

N-body simulations. These simulations track the evolution of structure in

the Universe by modeling the dynamics and gravitational interactions of

a large number of particles starting from some initial conditions. These

may be cosmological simulations, tracing the collapse of the initial density

perturbations after decoupling (such as the the Millenium simulation [21]),

or galaxy-scale simulations, tracing the formation and growth of a small

number of galaxies starting from initial conditions at intermediate redshift

(such as the Via Lactea [22] and Aquarius [23] simulations).
Many N-body simulations are DM-only, simulating only the gravita-
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tional dynamics of collisionless particles. However, an increasing number
are incorporating baryonic physics such as gas dynamics, as well as stel-
lar evolution, chemical enrichment and a variety of feedback processes (see
e.g. [24,25]). Appropriately accounting for these factors is extremely com-
plex and in some cases the strength of these processes is unknown and
must be tuned in the simulations to match observations [26]. Due in part
to these difficulties, the impact of baryonic physics on the formation of
galaxies and the properties of DM haloes is still uncertain (see for example
Refs. [27, 28]). I will revisit this topic - and its consequences for the direct
detection of dark matter - in Chapter [2|

A variety of sophisticated computational techniques (such as smoothed
particle hydrodynamics [29], adaptive mesh refinement [30] and moving
mesh cosmology [31]) have been employed and refined to make such simu-
lations computationally feasible and to allow higher and higher resolutions
to be reached. However, computational limitations mean that the highest
resolution simulations still use ‘particle’ masses of the order of 10° M, [28],
many orders of magnitude more massive than the O(GeV-TeV) particles
expected to make up the Universe’s dark matter.

In spite of this, a consistent picture has emerged from a vast array of
N-body simulations. The distribution of galaxies observed in large scale
structure surveys matches that predicted by N-body simulations over a
range of distance scales [2I]. In addition, simulations have begun to accu-
rately reproduce the observed populations of elliptical and spiral galaxies
[25], as well as obtaining Milky Way-like simulated galaxies [24]. This
ability of simulations containing DM to reproduce structures observed in
the Universe is further evidence in support of the DM paradigm. Such
is the accuracy of N-body simulations that they can be used to generate
mock galaxy catalogues which allow statistical and systematic errors to be
assessed in real galaxy surveys [32].

Further evidence for dark matter comes from observations of the rota-
tion curves of spiral galaxies. In particular, the circular velocity of stars
in these galaxies is observed to be approximately constant out to large
galactocentric distances [33] [34]. In fact, observations of hydrogen 21 cm
emission indicate that the constancy of the circular velocity extends well
beyond the optical edge of galaxies [35] 36].

This is shown schematically in Fig.|[1.2l The majority of the mass of the

luminous disc is concentrated at small radii, suggesting that there should
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be a Keplerian decay of the circular velocity at large radii: v ~ r~1/2.

However, the inclusion of an approximately spherically symmetric, non-
luminous dark matter halo can reconcile this expectation with the observed
flat rotation curves. The density profiles p(r) required to provide a good fit
to rotation curve data may be consistent with those obtained from N-body

simulations, such as the Navarro-Frenk-White profile [37]

_ Po
) = TR R 1)

which is described by a characteristic density py and scale radius R;. How-
ever, as we discuss in Sec. [[.2] there is evidence that better fits may be
obtained in some galaxies by so-called ‘cored’ density profiles.

The rotation curve of the Milky Way itself has also been studied [38-
40] and found to be almost flat. Using a variety of techniques, it is also
possible to measure a non-zero DM density near the Sun’s position. An
understanding of this density has significant implications for the study of

dark matter detection and we defer a detailed discussion to Chapter [2|

Total

L5 C] (o ——
T Disc__
% 10 50 - - )
Radius / kpc

Figure 1.2: Schematic illustration of galaxy rotation curves (circular
velocity as a function of galactocentric distance). The contribution to
the circular velocity from the luminous disc (green dashed line) and dark
matter halo (red dotted line) are shown, as well as the total circular
velocity (solid blue line).

We see that evidence for dark matter appears over a wide range of

distance scales, from the cosmological horizon down to our own Milky
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Way. Dark matter is required to explain the formation and growth of large
scale structure, the dynamics of both galaxies and galaxy clusters and the
anisotropic temperature distribution of the CMB among others. In spite of
this, there remain several problems and unanswered questions within the

dark matter paradigm.

1.2 Problems with dark matter

There have emerged several issues with the dark matter dominated model
of structure formation as studied with N-body simulations. For exam-
ple, DM-only simulations predict the existence of a large number of mas-
sive subhalos around Milky Way-size galaxies [23]. Using semi-analytical
models of galaxy formation Kauffmann et al. [41] predicted that a Milky
Way-size halo should host over 100 subhalos massive enough to support
observable satellite galaxies. However, the known population of dwarf
spheroidal (dSph) satellite galaxies for the Milky Way is on the order of 20
[42], although more ultra-faint satellites are still being discovered (e.g. see
Ref. [43]). This discrepancy between the predicted and observed amount
of substructure in CDM structure formation is often referred to as the
‘missing satellite problem’ [44].

A related issue is the so-called ‘too big to fail’ problem, which concerns
the density of dark matter subhalos. In particular, it is found that the most
massive DM subhalos found in N-body simulations are too massive to host
the brightest of the Milky Way’s dSph satellites [45]. If the observed dSph
galaxies are hosted instead by less massive subhalos, this leaves a large
number of more massive DM halos which have not yet been accounted for
[46].

Finally, there is also a discrepancy between observed and simulated
density profiles for dSphs: the ‘Core-Cusp’ problem (for a review, see
Ref. [47]). N-body simulations indicate that the DM density should be
sharply peaked near the centres of DM halos [37, [4§]. In contrast, observa-
tions of the rotation curves of a large number of galaxies (in particular low
surface brightness and dSph galaxies) suggests the presence of a core - a flat
dark matter density profile near the centre [49, 50]. While these results are
still under contention (for example, Ref. [51] find rotation curves consistent
with cuspy density profiles), they may indicate a discrepancy between the

process of structure formation in the Universe and that implied by ACDM.
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A number of possible solutions to these issues have been suggested.
Baryonic effects such as dynamical friction and stellar and supernova feed-
back (see for example Refs. [52-55]) can lead to the expulsion of DM from
the centres of halos, reducing the total halo mass and leading to a flatter
central density profile. Others have suggested that a warm dark matter
model may be a better fit to the data [56H58], reducing the amount of
structure on small scales, as we will discuss in Sec. Whatever the ulti-
mate resolution of these problems, it is clear that dark matter dominated
structures such as dSph galaxies are a testing ground for an even more
precise understanding of structure formation in the DM paradigm.

There remains one problem which is of a much more theoretical nature.
Dark matter is invoked to account for missing mass in a wide range of
scenarios. However, this missing mass has not yet been observed, indicating
that it must interact only very weakly with photons and other particles of
the standard model. In fact, as we shall see, there is strong evidence
that particles making up the Universe’s dark matter cannot be baryonic
and must originate from beyond the Standard Model of particle physics.
Before investigating what can be inferred about the nature of particle dark
matter, however, we first address an alternative solution to the dark matter

problem.

1.3 Alternatives to dark matter

We have discussed a wide range of evidence for the existence of DM, as well
as some unresolved problems with the ACDM paradigm. Here, we consider
the possibility that these observations can be explained not by a new matter
species but by a modification to gravity. Milgrom [59H61] proposed the idea
of Modified Newtonian Dynamics (MOND): for accelerations smaller than
some characteristic value ay the usual Newtonian dynamics no longer holds.
Specifically, the acceleration a of a particle in a gravitational field &y is

governed by
i(lal/ag)a = —-Voy. (1.2)

The interpolation function i tends to unity for large values (the Newtonian
limit) but tends to |a|/ag for values |a| < a¢ (the MOND limit).

At large distances from the centres of galaxies, the acceleration will
drop below ay and Eq. reduces to a = v2(r)/r = \/agV®y, where v,



1.4. PROPERTIES OF DARK MATTER 9

is the circular velocity. Assuming that there is no dark matter content,
the mass M enclosed within a radius r becomes constant and we obtain
|IV®y| ~ GM/r?. Combining these, we see that

vi(r) ~ GMa,, (1.3)

independent of radius. Thus, a flat rotation curve is obtained without the
need to invoke DM. Moreover, Eq. is the baryonic Tully-Fisher law,
which relates the baryonic mass of a galaxy with the asymptotic rotation
velocity, and which does not have an obvious origin in DM-based models
[62]. The value for the characteristic acceleration obtained from fits to
over 100 galaxies is ag = 1.2 x 1071 m s72 [33], which also reproduces the
measured proportionality constant in the Tully-Fisher law [63].

The phenomological approach of MOND can be recast into a fully co-
variant theory of modified gravity, known as tensor-vector-scalar (TeVeS)
gravity [64]. This theory contains new dynamical vector and scalar degrees
of freedom and contains a free function, analogous to the interpolation
function fi. The formalism for both lensing [65] and cosmological pertur-
bations [66] have both been studied in TeVeS, with perturbations in the
new scalar and vector fields allowing structure to form without the need
for DM.

How then does MOND compare to DM? MOND can generally give
good fits to galaxy rotation curves [33, [67, [68] and can do so with fewer
free parameters than DM halo models. MOND can also reduce the tension
between the visible mass in clusters and the dynamical or lensing masses
[69, [70], but typically only to within a factor 2, still requiring some collision-
less matter to fit data [71]. However, the biggest problem is that relativistic
extensions of MOND have yet to reproduce the features of large scale struc-
ture and the CMB with the same success as ACDM [72-74]. Though the
range of possible extensions is large and the cosmological data may yet be
explained within such a framework, we will focus here on the DM paradigm

for explaining such observations.

1.4 Properties of dark matter

Beyond its gravitational contribution to the Universe, we appear to know

little about the nature of particle dark matter. However, the success of
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modern cosmology and the lack of a confirmed detection so far means that
we do have a grasp on some of the properties of any potential candidate.

For example, DM can have no significant electromagnetic charge, oth-
erwise it would have been seen in a range of searches [75H78]. DM carrying
bare color charge can also be excluded due to the disruption it would cause
to galaxy formation [79] and the formation of the CMB [80]. Any parti-
cle candidate must also be long-lived - otherwise it cannot play the role
of dark matter today. For models in which DM is not indefinitely stable,
this allows us to place stringent limits on the lifetime of the DM particle
[81], 182].

In an effort to summarise what is known about dark matter, Taoso
et al. [83] present a ‘10-point test’ which must be passed by any particle
before it can be considered as a viable dark matter candidate. Several of
these points relate to constraints from direct and indirect searches, which I
discuss in Sec.[1.6] Here, I will briefly discuss three of the remaining points,
namely, that the DM candidate must be produced with the appropriate
relic density, it must be cold and it must be compatible with primordial

nucleosynthesis.

1.4.1 Relic density

In order to account for the dark matter in the Universe, a good candidate
must be produced with sufficient abundance to match the currently ob-
served value 2.h% = 0.1196 + 0.0031 (see Table . If produced with a
smaller abundance, the candidate cannot account for the entirety of the
Universe’s dark matter (though it could still contribute, along with other
candidates, as in Ref. [84]). If on the other hand, it is produced with too
great an abundance, it could threaten to exceed the DM density constraint
set by Planck and other experiments.

The standard scenario for the production of dark matter is referred to as
thermal freeze-out [3]. In this scenario, DM particles remain in kinetic and
chemical equilibrium with SM particles in the very early Universe through
scattering and annihilation processes. Their number density n follows a

Maxwell-Boltzmann distribution

n ~ (mX/T)S/2 exp(—m, /T, (1.4)

for a particle mass m, and temperature 7. As the Universe expands,
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however, the particles become diluted, reducing the interaction rate un-
til eventually the DM particles become decoupled from the SM particles
and are ‘frozen-out’. They are then left with the abundance they had
when they decoupled, which is further diluted by the expansion of the Uni-
verse to become the abundance we see today. The exact relic abundance
depends on (o,,,v), the average annihilation cross section of the DM par-
ticles (weighted by the DM speed). If this is small, DM will decouple early
when the temperature of the Universe is still high, leading to a large relic
abundance. If the annihilation cross section is large, DM will remain in
equilibrium for longer, even as the particles become more and more di-
luted. The DM then freezes out later, with a lower temperature and lower
relic abundance. The resulting relic abundance for GeV-scale DM is given
approximately by [3]:
_3x107* cm® 57!

Q4% ~ . (1.5)

<Uannv>

This leads to a canonical value of around (0,,,v) ~ 3x 10726 cm? s~ for the
annihilation cross section, which corresponds to the measured abundance
of CDM. This coincides well with the value expected for particles with
weak-scale interactions (so-called weakly interacting massive particles, or
WIMPs), leading some to refer to this argument as the WIMP miracle. In
reality, the full differential equations describing the DM number density
must be solved [85], accounting for co-annihilations [86], which may boost
the total cross section. However, the simplicity of this scenario makes such
thermal relics an attractive candidate for DM.

Dark matter may also achieve the correct relic abundance through a
variety of other mechanisms. ‘Freeze-in’ [87] involves particles which in-
teract so weakly (termed feebly interacting massive particles, FIMPs) that
they never reach equilibrium. Instead, a relic population is built up grad-
ually through the production of FIMPs by annihilation of SM particles. In
contrast to the freeze-out scenario, the relic abundance of FIMPs increases
with increasing annihilation cross section. Dark matter may also be pro-
duced gravitationally from vaccuum fluctuations during and after inflation
[88, 89] or from the decays of heavier meta-stable particles (e.g. Ref. [90]).
These possibilities open up the range of candidates which may be consid-
ered to include much lighter or much heavier particles than the freeze-out

scenario alone might allow.
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1.4.2 Coldness

The majority of the dark matter in the universe cannot be hot. That is,
DM must have been travelling non-relativistically when it was produced
in the early Universe. The typical speed of DM particles in the early Uni-
verse defines the so-called free-streaming length. Below this length-scale,
density perturbations are suppressed due to Landau damping [91]. For
non-relativistic species produced by thermal freeze-out, this free-streaming
length scales as m, 2 for thermal relics of mass m,, [92]. For particle can-
didates which are too light - and which therefore travel too quickly after
decoupling - small scale structures cannot form and cannot match the dis-
tribution of structures we see today. Light particles which are produced
via a mechanism other than thermal freeze-out may still account for DM
(e.g. Ref. [03]), though this alternative mechanism must still ensure that it
is not produced with relativistic speeds.

In practise, constraints on the free-streaming length mean that thermally-
produced DM cannot have a mass greater than around 1 keV [94]. It is
typically assumed that dark matter is significantly heavier than this, de-
coupling ultra-non-relativistically in the early Universe, rendering it cold.
Warm dark matter candidates with keV-scale masses have been suggested
to explain the subhalo structures at the scale of dSph galaxies (as has
already been discussed). However, hot dark matter, which decouples at
relativistic speeds, is strongly-constrained and cannot make up more than
around 1% of the total dark matter component [95], 06].

1.4.3 Primordial nucleosynthesis

Primordial nucleosynthesis (or Big Bang Nucleosynthesis, BBN) describes
the production of light nuclei in the first few minutes after the Big Bang.
By solving a set of coupled Boltzmann equations describing the nuclear re-
actions of protons, neutrons and light nuclei, we can obtain the primordial
abundances of these light nuclei and compare with the inferred values [97].
Significantly, these abundances depend strongly on the baryon-photon ra-
tio n and therefore the total baryon density. Fits to data lead to the result
Qph? = 0.017 — 0.024 [98], independent of the value obtained from CMB
measurements (Table [L.1)). Thus, the baryonic matter can make up only
a fraction of the total matter density of the Universe. This provides fur-

ther evidence that particle dark matter must consist of some non-baryonic
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particle.

The results of BBN are also very sensitive to light new species, which
can alter the number of relativistic degrees of freedom in the early Uni-
verse and therefore affect the expansion rate. These include, for example,
gravitinos [99] and right-handed neutrinos [I00]. BBN therefore provides
strong constraints on models in which these particles play the role of DM.
In addition, the decay of dark matter particles into electromagnetic or
hadronic showers during nucleosynthesis can drastically change the pri-
mordial abundances of the light elements. BBN can therefore be used to
constrain models in which dark matter undergoes early decays (or in which

dark matter is produced by the decays of heavier particles) [101].

1.5 Particle dark matter candidates

While valid DM candidates need only satisfy the conditions and constraints
which have already been discussed, well-motivated candidates should de-
rive sensibly from some physical model. In fact, dark matter candidates
can be found in a wide range of models of particle physics beyond the
standard model. As has already been discussed, massive particles with
GeV-scale masses and weak-scale interactions are attractive for obtaining
the correct DM relic density. Such a WIMP candidate may be provided
by the lightest supersymmetric particle (LSP) in supersymmetric theories
[T02]. In supersymmetry, each of the known SM particles has a supersym-
metric partner (or ‘spartner’), with bosons having fermionic partners and
vice versa. This additional symmetry is often invoked to help alleviate the
hierarchy problem [I03]. In models which possess R-parity (which may be
required to protect the proton from decay), particles carry R-parity 1 while
supersymmetric particles (‘sparticles’) carry R-parity -1. This means that
the lightest sparticle cannot decay into SM particles and is therefore stable,
making it a promising DM candidate.

Depending on the parameters of the supersymmetric theory, there are
many possibilities for which sparticle will be the LSP. One popular and
well-studied possibility is the lightest neutralino x [104], which is a linear
combination of the neutral supersymmetric partners of the W and B with
the CP-even higgsinos. The properties of the lightest neutralino can vary
dramatically depending on the mixing between these different components

and the underlying supersymmetric parameters [105]. In other cases, the
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LSP may be the sneutrino [I06], a partner of the standard model neu-
trino. Another alternative is the gravitino, which provides a good cold DM
candidate for masses above around 100 keV [107].

WIMPs also arise in theories of universal extra dimensions, in which the
additional dimensions are compactified, leading to a tower of excited states
of the standard model particles [108]. These ‘Kaluza-Klein’ (KK) particles
also possess a KK-parity, which means that the lightest KK particle (LKP)
is stabilised [109]. One possibility for the LKP is the first excitation of the
B weak hypercharge boson, B!, In this case, the WIMP would be a spin-1
particle with a mass of around 1 TeV (in order to be produced thermally
with the correct relic abundance) [I10]. Tt has also been shown that the
first KK excitations of the photon and neutrino are viable DM candidates
if they also have masses at the TeV scale [IT1I]. In contrast to the LSP, the
LKP is described by a relatively small parameter space and may be more
easily constrained by upcoming experiments [112].

In light of the problems with models of dark matter structure formation
on small scales, there are several candidates which may be attractive for
constituting warm dark matter. While standard neutrinos (with masses
of a few eV [I13]) cannot account for a large fraction of the dark matter,
keV-scale sterile neutrinos may be viable [I14]. Sterile neutrinos interact
with ordinary matter via neutrino mixing rather than via electroweak in-
teractions. While attractive for providing warm dark matter, non-thermal
production [115] or multiple sterile neutrino species [116] may be required
to avoid many astrophysical and cosmological constraints [117), [T18].

Another non-WIMP candidate is the axion. The axion was originally
introduced by Peccei and Quinn [I19] to solve the strong CP problem. It
was observed that this spin-zero particle could be produced in the early
Universe via the ‘misalignment mechanism’ and, for masses in the range
1075 — 1073 eV, can account for the cosmological dark matter [120]. Tt was
recently noted that the axion would thermalise, meaning that the dark
matter would be in the form of a Bose-Einstein condensate [121]. Also of
interest are axion-like particles (ALPs), which emerge naturally in string
theory and are expected to span many orders of magnitude in mass and
coupling strength [122]. Searches for axions are currently underway (such
as ADMX [123] and CAST [124]), aiming to detect the conversion of axions
to photons in a magnetic field.

We mention briefly the possibility that DM could be in the form of pri-
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mordial black holes (PBHs) [125], which form from the collapse of large den-
sity perturbations in the early Universe [126]. PBHs with masses greater
than ~ 1072 M, have a lifetime greater than the age of the universe, mean-
ing that they may be able to account for the Universe’s DM. A range of
cosmological [127], dynamical [I128] and microlensing [129] constraints re-
duce the allowed mass range for PBHs as the dominant dark matter to
3 x 10718 — 2 x 1079M,. Recent constraints from the capture of PBHs
by neutron stars [130] may rule out this remaining window, though PBHs
could still act as a subdominant DM component.

As is clear from this discussion, there are a wide range of well-motivated
candidates for the dark matter in the Universe. Some further examples
include WIMPless dark matter [I31], mirror dark matter [I32] and little
Higgs dark matter [I33], as well as minimal approaches to DM [134]. In
this work, we focus on the WIMP, not only because of its popularity and
generic nature, but because of the large number of experimental searches
which provide sensitivity to WIMP dark matter.

The final condition appearing in the ‘10-point test” of Taoso et al. asks
the question ‘Can it be probed experimentally?’” While it may be possible
that DM interacts only gravitationally, a wide variety of proposed can-
didates can interact (however weakly) with the particles of the standard
model. While the experimental accessibility of a given DM candidate is not
a strict necessity, it allows models to be tested (and either falsified or con-
firmed) beyond the hypothesis stage. In the next section, we explore the

different avenues by which models of particle dark matter may be probed.

1.6 Detection of dark matter

Many of the candidates which have been discussed are expected to interact
weakly with the particles of the Standard Model (SM). We note in partic-
ular that dark matter particles which are produced by thermal freeze-out
in the early Universe must have interactions with SM particles in order
to maintain thermal and kinetic equilibrium. These interactions are medi-
ated by Feynman diagrams which can be represented (schematically) as in
Fig. The existence of production, annihilation and scattering processes
between DM and SM particles provides a window into the possible detec-
tion of particle DM. Each of these processes leads to a distinct detection

strategy, referred to as collider, indirect and direction detection.
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Figure 1.3: Schematic interactions between dark matter particles x and
standard model particles 1.

1.6.1 Collider production

Searches for dark matter at particle colliders such as the LHC rely on
processes such as Fig. in which SM particles interact to produce
dark matter particles. However, the weak interactions of the DM means
that once produced, it will escape the detectors around the interaction point
without being observed. Thus, collider searches for dark matter must look
for other signatures.

One approach is to look for signatures which are characteristic of a par-
ticular theory. For example, looking for evidence of KK states which are
expected in theories of universal extra dimensions [I35] [136], or searching
for particle signatures from decay chains which are expected from super-
symmetry [I37, [138]. While this allows constraints to be placed on specific
models, the range of models may be large, meaning that each must be
constrained separately.

An alternative approach is to look for deviations from the SM expecta-
tion and use this to place limits on the operators of an effective field theory
(see e.g. [139]). One possible signature is to look for the pair production of
DM states, with initial state radiation of a SM particle. It is then possible
to search for this initial state radiation (which may be a single jet or a single
boson or lepton, depending on which particle was radiated) accompanied
by missing energy, which is carried away by the DM. By combining all the
possibilities for the form of the initial state radiation, we can place bounds
on the effective operators which govern SM-DM interactions [140]. Using
such an approach, for example, it is possible to exclude DM with a stan-
dard thermal WIMP freeze-out cross section for masses m, < 15(75) GeV
for vector (axial-vector) couplings to quarks [141].

One advantage of this effective operator approach is that these bounds

can be translated into limits on signals at direct and indirect experiments,
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allowing collider results to be incorporated with other experimental searches
in a complementary fashion [142]. However, it has been noted that caution
must be exercised in naively applying the effective field theory approach at
the LHC as well as in translating this to other search channels [143], [144].

So far, there has been no evidence observed for the production of dark
matter particles at the LHC [145]. The non-observation of supersymmetry
at the LHC has also begun to place some tension on the simplest SUSY
dark matter models [146], though they are not yet excluded [147]. The
proposed International Linear Collider (ILC) [148] and Compact Linear
Collider (CLIC) [149] should be able to explore more of the possible dark
matter parameter space [150, [151]

1.6.2 Indirect detection

The possibility of dark matter annihilation into SM particles (as described
in Fig. means that DM may be detected indirectly, by searching
for these excess annihilation products (and related decay products). Some
searches aim to look for the contribution of these products to signals ob-
tained over large survey areas. The Fermi-LAT collaboration have pub-
lished limits on searches for spectral lines and contributions to the dif-
fuse background of gamma rays [I52]. Cosmic ray experiments such as
PAMELA [I53] have aimed to measure the p* and e* abundances in cos-
mic rays. The AMS experiment [154] has recently confirmed a rise in the
cosmic ray positron fraction at energies above 10 GeV, which was previ-
ously observed by PAMELA [155] and Fermi-LAT [156]. This feature has
been interpreted as tentative evidence for dark matter annihilations (see
e.g. Ref. [157]).

For charged cosmic rays, astrophysical magnetic fields deflect the paths
of particles, making it impossible to resolve individual sources [158]. In
contrast, photon searches allow specific locations to be targeted. Because
the signal rate is proportional to the DM annihilation rate (along the line
of sight), the potential signal scales as the square of the dark matter den-
sity. Thus, searching in areas where the DM density is expected to be
high can boost the signal rate significantly [I59]. As has already been
discussed, dSph galaxies are dark matter dominated objects and thus rep-
resent promising targets for indirect searches. A survey of 25 Milky Way

satellite galaxies by the Fermi-LAT telescope [160] has so far found no
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significant gamma ray excess. However, upper limits on the annihilation
cross section are in some cases close to the thermal freeze-out value of
(Tammv) = 3 x 10725 cm? s7!, depending on the WIMP mass and annihi-
lation channel. By optimising search regions near the centre of the Milky
Way for maximum signal-to-noise, Weniger recently found a bump in the
gamma ray spectrum of Fermi-LAT data around 130 GeV [161]. However,
subsequent analysis has found that this feature may be a systematic effect
in the detector [162] and that it is difficult to reconcile with conventional
models for dark matter [163] 164].

Perhaps more promising is a different gamma ray signal coming from the
inner regions of the Galaxy, peaking at energies around 1-3 GeV [165], 166].
Fits of the data point towards a dark matter particle with a mass of 31-
40 GeV, annihilating predominantly to bb with a cross section of (ov) =
(1.4—2.0) x 10726 cm?® s7!, approximately matching the value required for
a particle created by thermal freeze-out in the early Universe. While it has
been suggested that this signal is actually consistent with known sources
[167] or as yet unresolved astrophysical sources [168], further analysis has
shown that the signal matches the spectrum and morphology expected
from DM annihilation [169]. Confirmation of the signal may have to wait
until it is corroborated by independent observations, for example a DM
annihilation signal from dSph galaxies.

The sensitivity of gamma ray searches can be extended up to TeV-
scale masses with ground-based Imaging Atmospheric Cherenkov Tele-
scopes (IACTs). These work by imaging the Cherenkov radiation from
charged particles produced when high energy gamma rays impinge on the
atmosphere. The current generation of IACTs - HESS [170], MAGIC [I71]
and VERITAS [172] - have been used to conduct searches for line-like
gamma ray spectra as well as searches for signals from dwarf galaxies.
However, these limits are typically around two orders of magnitude above
the thermal cross section. The planned Cherenkov Telescope Array (CTA)
may be able to probe down to this thermal cross section for high WIMP
masses [173].

Another potentially rich source of DM annihilations are the Sun and
Earth. DM particles may scatter with nuclei in these bodies, losing energy
and eventually becoming captured. Eventually, the DM sinks to the centre
of the object and annihilates. The only annihilation products which can

escape are neutrinos, which can then be detected at neutrino telescopes
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such as ANTARES [I74] and IceCube [I75]. Because the neutrino flux
depends on the scattering rate of DM with nuclei, such signals can probe
similar parameter spaces to direct detection experiments. Exploring the
complementarity between neutrino telescopes and direct detection is the

subject of Chapter |5 and we treat this subject in more detail there.

1.6.3 Direct detection

Processes described by the diagram in Fig. lead to the possibility of
scattering between DM and SM particles. The principle of direct detection
is to look for nuclear recoils due to this scattering in a dedicated detector
[176, 177]. WIMPs with GeV-scale masses and speeds v ~ 1073¢ are
expected to produce keV-scale nuclear recoils. In addition, due to the
expected low cross section for such interactions, the predicted rate is less
than around 1 event per year per kg of detector mass. Detecting such
rare, low energy recoils requires not only large ton-scale detectors, but also
sophisticated methods for discriminating signal from background.

Several direct detection experiments have claimed a tentative signal,
such as DAMA/LIBRA [I78], CoGeNT [179, [180] and CRESST-II [I81].
However, these are in tension with null results from other experiments such
as LUX [182]. Due to a range of uncertainties in nuclear physics, particle
physics and astrophysics it may be possible to reconcile these results. In
any case, a firm understanding of these uncertainties will be necessary to
build a coherent picture from future results. The interpretation of direct

detection data will be the main focus of this work and the main subject of

Chapter

1.7 Conclusions

The ACDM paradigm has enjoyed great success in explaining observations
from galactic to cosmological scales. While discrepancies with observations
on smaller scales remain, these are being actively pursued and may prove
to be valuable testing grounds for the process of dark matter structure
formation.

The identity of dark matter is unknown and cannot be accounted for
by any of the known standard model particles. Even so, we know that

it must be neutral, long-lived and cold (or possibly warm) and that it
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must pass a variety of stringent tests coming from BBN and the CMB.
There is no lack of well-motivated CDM candidates, including the lightest
supersymmetric and Kaluza-Klein particles, sterile neutrinos, axions and
many more. We have focused on the search for weakly interacting massive
particles (WIMPs) and described how direct, indirect and collider searches
have been used to place limits on the WIMP parameters, with the aim of

making the first non-gravitational detection of DM.



Chapter 2

Direct detection of dark

matter

The idea that particle dark matter (DM) may be observed in terrestrial
detectors was first proposed by Goodman and Witten in 1985 [I76] and by
Drukier, Freese and Spergel in 1986 [177]. If DM can interact with particles
of the Standard Model, the flux of DM from the halo of the Milky Way
may be large enough to cause measureable scattering from nuclei. If the
subsequent recoils can be detected and their energy spectrum measured, it
should be possible to infer some properties of the DM particles.

However, the expected event rate for keV-scale recoils at such a detector
would be of the order of 1075 events per kg of detector material per day per
keV recoil energy [I183]. With such a low event rate, it is imperative that
backgrounds are reduced as much as possible. In addition, detectors should
be as large as possible and sensitive to as wide a range of recoil energies as
possible, in order to maximise the total number of events observed. Thus,
specialised detectors are required to shield the active detector material from
backgrounds and to discriminate between these backgrounds and signal
events.

There exist at present a wide range of detectors using a variety of dif-
ferent sophisticated techniques for detecting such a weak signal against
ubiquitous backgrounds, each probing a slightly different range of DM pa-
rameter space. Several of these experiments - such as DAMA /LIBRA [17§],
CoGeNT [179, 180] and CRESST-II [181] - claim to have observed a signal
indicative of a WIMP with mass ~ 10 GeV. However, a number of other

experiments have reported null results creating tension for a dark matter

21
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interpretation of these tentative signals. It remains to be seen whether this
discrepancy is an experimental effect or a hint of new physics.

There remain a number of uncertainties in the direct detection of dark
matter. These come from a variety of sources and can be approximately
partitioned into experimental, nuclear, particle and astrophysical uncer-
tainties. Understanding these uncertainties is imperative for properly in-
terpreting the results of direct detection experiments and understanding
whether a coherent picture can emerge from a number of different experi-
mental efforts.

In this chapter, I will review the formalism for direct detection which
was introduced by Goodman & Witten and Drukier, Freese & Spergel in
the 1980s (and subsequently refined). I will then briefly discuss some of the
experimental techniques which are used to achieve the required sensitivity
for DM searches, as well as summarising current experimental constraints
and results. I will also outline some of the uncertainties which afflict the
interpretation of direct detection data.

I will focus on astrophysical uncertainties in direct detection. In par-
ticular, I will discuss how the local density and distribution of dark matter
impacts the direct detection event rate and how well we understand these

different factors.

2.1 Direct detection formalism

We wish to obtain the rate of nuclear recoils per unit detector mass due
to elastic, non-relativistic scattering from a fermionic weakly interacting
massive particle (WIMP). Dark matter is typically assumed to be spin-
1/2, though the analysis here can be generalised to particles of arbitrary

spin [I84]. The differential event rate can be written straightforwardly as

(% - NT<I>de%R , (2.1)
for recoils of energy Er, N target particles, a DM flux @, and a differential
scattering cross section do/dFEg. Per unit detector mass, the number of
target particles is simply Ny = 1/my, for nuclei of mass my. The DM
flux for particles with speed in the range v — v 4 dv in the laboratory
frame is @, = n,vfi(v) dv. Here, n, is the number density of dark matter

particles x and fi(v) is the speed distribution for the dark matter. The
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orbit of the Earth means that its velocity is time-varying, producing an
annual modulation in f;(v) and therefore in the direct detection event rate
[185]. However, this modulation is expected to be a percent-level effect and
we consider here only the time averaged distribution.

We can convert from the number density to the mass density po by
dividing by the DM particle mass m,: n, = po/m,. By integrating over
all DM speeds, we therefore obtain

dR £0 o do
= —d 2.2
1B = e | e, (2.2

where vy, is the minimum speed required to excite a nuclear recoil of

I
Umin = mNQ i . (23)
2luxN

Here, we have written the reduced mass of the WIMP-nucleus system as

VUmin

energy Fg:

fin = mymy [ (my 4+ my).
The differential scattering cross section per solid angle in the zero-

momentum frame (ZMF), Q*, is given by:

do L Proy
= — 2.4
dQ*  64m2s p* M (2:4)

i

where M is the scattering amplitude obtained from the Lagrangian. For
elastic scattering, the final and initial momenta in the ZMF are equal: p} =
p;. The centre-of-mass energy squared, s, can be written s ~ (m,, +my)?,
where we have used the non-relativistic approximation. The recoil energy

can be written in terms of the ZMF scattering angle 6* as [183]

_ v’
mn
Noting that dQ2* = d cos #*d¢, we can write:

Er (1 —cos®"). (2.5)

dER o MiNUQ (2 6)
dQ*  2rmy )
and therefore
d 1
i M2 (2.7)

dER B 32mmym?2v?
The matrix element M is obtained from interaction terms in the la-

grangian between the DM particle and quarks. This will depend on the
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particular DM model under consideration and the full form of these in-
teraction terms is not known. It is typically assumed that these terms
can be adequately described by a contact interaction, an implied assump-
tion that the particles mediating the interaction are much more massive
than the momentum transferred [I86]. The momentum transfer in direct
detection experiments is typically less than ~ 200 MeV, suggesting that
this assumption should be a valid one. However, we will consider briefly
scenarios where this is not the case in Sec. 2.3.21

Because the WIMPs have speeds of order 10~3¢, the scattering occurs in
the non-relativistic limit, leading to some important simplifications. In this
limit, the axial-vector interaction simply couples the spins of the WIMP
and quark. The scalar interaction induces a coupling of the WIMP to the
number of nucleons in the nucleus, with the vector! and tensor interactions
assuming the same form as the scalar in the non-relativistic limit [102]. All
other interactions are typically suppressed by powers of v/c¢ and so will be
subdominant. Generically, then, the cross section is written in terms of

spin-independent (SI) and spin-dependent (SD) interactions [176]

do  dosr | dosp
dEr  dERr dER

(2.8)

We now discuss the form of the SI and SD cross sections in turn.

2.1.1 SI interactions

Spin-independent interactions are generated predominantly by scalar terms

in the effective lagrangian

L2 agxXxay (2.9)

for interactions with a quark species ¢ with coupling af. The operator gq
is simply the quark number operator, which couples to the quark density.
However, we should recall that the quarks are in nucleon bound states. We
consider first the contributions from neutrons |n), so we should evaluate
(n|gqg|n), adding coherently the contributions from both valence and sea

quarks. These matrix elements are obtained from chiral perturbation the-

'For the case of a Majorana fermion, the vector current vanishes and we need not
consider it.
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ory [I87] or Lattice QCD [I88] and can be parametrised in terms of their

contribution to the nucleon mass in the form:

M f1, = (nlmeqqln) . (2.10)
Adding the contributions of the light quarks g, as well as the heavy
quarks @ and gluons g (which contribute through the chiral anomaly [189]),

the following expression is obtained:

n 2 n
(n] > qqln) = ( > Z—fﬁqa%Jrz—?f?Q > Z—a?) = /" (2.11)

Q.9 g=u,d,s Q=cbt 4
The parameters describing the contributions of the different quarks to the
nucleon mass must be determined experimentally. The uncertainties this
produces will be discussed shortly in Sec. [2.3.1]

We now consider the matrix elements of the nucleon operators within a
nuclear state, |Uy): (¥ y|f"nn|¥y). These operators now simply count the
number of nucleons in the nucleus N,,, along with a momentum-dependent
form factor, F'(¢). This depends on the momentum transfer ¢ and corre-
sponds to the Fourier transform of the nucleon density. This takes into
account the loss of coherence for nuclear scattering due to the fact that the

nucleus is not point-like. We therefore obtain:
<\IJN|fnﬁn|\I/N> = <\IIN|\IIN>annFn(Q) = QmenNnFn(Q) ) (2'12)

where we note that we require the wavefunctions to be normalised to 2E =~
2my for a nucleus of mass my. We now add the contribution from protons
to the matrix element, noting that F, ~ F, = F' (see Sec. [2.3.1])

(Un|f"nn+ fppl¥n) = 2mun (f"Nn + f'N,)F(q) , (2.13)

where now N,, and N, are the neutron and proton numbers of the nucleus
respectively.

The corresponding matrix element for the scalar WIMP operator yy is
simple in the non-relativistic limit, evaluating to 2m, [102] [190]. Combin-

ing these, we obtain the scalar matrix element

(Ms|* = 16mimy |f7Z + ["(A— 2)* Fé(q) (2.14)
and the SI cross section
d
01 _ N\ frZ 4 f(A— 2)P F(q), (2.15)

dEr 2mv



26 CHAPTER 2. DIRECT DETECTION OF DARK MATTER

where we have used the atomic number Z and mass number A to describe
the composition of the nucleus. It is conventional to write this in terms of
the WIMP-proton SI cross section, which does not depend on the particu-
lar (A, Z) of the target nucleus and thus allows easy comparison between

experiments. This cross section is given by

oh, “X”<fp> (2.16)

meaning that

dER

+ (f*/fPIA= Z) F*(EpR) . (2.17)

2.1.2 SD interactions

The spin-dependent interaction is typically sourced by axial-vector currents

of the form

LDy (X" 15X)(@0:759) - (2.18)

These result in a coupling of the spins of the WIMP and nucleus. In analogy
with the SI case, we can write the neutron quark matrix elements in the
form [191], [192]

(n|gvuvsqln) = 25,47, (2.19)

where s, is the spin 4-vector and A, parametrises the contribution of quark
q to this total spin. Adding the contributions of the different quarks, we

can define

Qv 2.20
Z \/—GF q ’ ( )

which are the effective proton and neutron spin couplings.

q=u,d,s

Including the contribution from the WIMP axial-vector current, the

nuclear matrix element can then be written [193]

(Tnl Yl (7500 (07:750) P )

q=u,d,s

= 8v2Grm, (VU n|a,S? + a,S2 W) st Fsp(q) (2.21)
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where sf is the WIMP spin, SP" are the total proton and neutron spin
in the nucleus and Fsp(q) is a form factor, as in the SI case, which is
determined by the internal spin structure of the nucleus. From this, the

full SD cross section is [183]

dUSD 16mN 9 J—|— 1
= GF
dER Tv? J

where J is the total nuclear spin and (S, ,) are the expectation values for

|ap(Sp) + an(Su)|” Fip(Er) . (2.22)

the proton and neutron spin in the nucleus.
Again, as in the SI case, it is convenient to rewrite this expression in

terms of the proton cross section o4, which is given by

24G>
Tt = = Li2 (). (2.23)

This leads to the final expression for the SD cross section

dosp B 2mN0§D J+1

dBr ~ 32,2 J () + (an/ap) (S Fép(Er) . (2:24)

2.1.3 The final event rate

It is helpful to collect these various results together to form a coherent
picture of the event rate. Combining the SI and SD rates together, we can

write

do . my
dEr 22 v

2 (OJS)'ICSIFEI(ER) + UgDCSDng(ER)) ) (2~25)

where the proton cross sections o% r.sp were defined in the previous section,
the form factors F§; ¢, will be discussed in more detail in Sec. and

we have defined the enhancement factors as

Cs1 =17+ (") 17)(A - 2)F (2:20
Csp = 37 () + (anfa,(Su) .20

We can now incorporate these into the full event rate:

dR . Lo
dER — 2p2,my

e v
(UgICSIFgl(ER) + UgDCSDFgD(ER)) # dv.
. (2.28)
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The shape of the differential event rate then depends on a number of
factors: the DM and target nuclear masses, the ratios of the proton and
neutron couplings and the shape of the speed distribution fi(v). This
distribution is typically assumed to have a simple form, the so-called Stan-
dard Halo Model (SHM). The SHM describes the velocity distribution in
the Galactic frame as a Maxwell-Boltzmann distribution, truncated at the
Galactic escape speed Vese &~ 544km s} [194, 195]. We discuss the SHM
in more detail in Sec. 2.3.3] We show in Fig. 2.1] the SI differential event
rate for Xenon (solid blue), Germanium (dashed green) and Argon (dot-
dashed red) targets and several WIMP masses, assuming equal couplings
to protons and neutrons.

As we increase the mass of the target nucleus, we see an increase in
the low energy event rate. This is a result of the A% enhancement for SI
interactions, resulting in the Xenon (A & 131) spectrum being a factor
of around 10 higher than the Argon (A ~ 40) spectrum at low energies.
As we consider higher energies, however, we observe that the spectrum for
heavier targets decays more quickly. This is due to a more sharply falling
form factor; the larger size of the nucleus results in a more rapid loss of
coherence as the recoil energy is increased. The minimum in the Xenon
rate observed in the bottom panel of Fig. is also a feature of the Xenon
SI form factor.

As we increase the WIMP mass, the recoil spectrum becomes flatter.
This is primarily due to the dependence of vy, on m, (shown in Eq. .
As we increase m,, the reduced mass p,n increases, meaning that v,
varies more slowly with energy. This means that the integral over the
speed distribution also varies more slowly with energy. Physically, low
mass WIMPs require a larger speed to impart the same recoil energy and
as we increase the recoil energy this required speed grows quickly. The
rapid cut-off in the spectrum observed in the m, = 10 GeV case (top panel
of Fig. occurs when there are no more WIMPs below the Galactic
escape speed which have sufficient speed to produce recoils of the desired
energy.

Finally, in Fig. 2.2, we show the ST and SD rates for a Xenon experiment
and a WIMP mass of m, = 50 GeV. The SD rate gives a comparable
contribution to the SI rate only with a cross section five orders of magnitude
larger. This is due to the strong A% enhancement of the SI rate for heavy

nuclei. For light nuclei such as Fluorine, the SI and SD rates will be closer
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Figure 2.1: Spin-independent differential event rates predicted for the
nuclear targets Xenon (solid blue), Germanium (dashed green) and
Argon (dot-dashed red) and for several WIMP masses m,, assuming
fp = fa. We assume a Standard Halo Model speed distribution, py =
0.3 GeV cm ™2 and a spin-independent cross section agl = 107% cm?.
The Helm form factor [196] is assumed (see Sec. 2.3.1)).
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dR/dEy | events/kg/day/keV
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Figure 2.2: Spin-dependent (dotted) and spin-independent (solid) dif-
ferential event rates predicted for a Xenon nuclear target for a WIMP
mass m, = 50 GeV, assuming f, = f, and a, = a,. We assume a
Standard Halo Model speed distribution, pg = 0.3 GeV cm ™ and cross
sections of; = 107% ¢m? and of, = 107" ¢cm?. The Helm form factor
[196] is assumed for the SI rate, while the SD form factor is taken from
Ref. [197] using the NijmegenlI calculation (see Sec. [2.3.1]).

in magnitude (for a given cross section). Figure also shows that the
SD spectrum is typically flatter. The SD form factor has an approximately
exponential form, while the SI form factor falls more rapidly (see Sec. .

For a real experiment, the detector will be sensitive to recoil energies
only in some range E;, to En.c. The total number of events expected is
obtained by integrating over this range of recoil energies and multiplying
by the exposure time ty,, detector mass mqey and efficiency (which may

also be a function of the recoil energy Er) e(ER):

Emax dR

Ne = mdettexp/ E(ER)dT dER . (229)
Emin R

For the case of a more realistic experiment in which the measurement of

energy has only a finite resolution o(Eg), we convolve the event rate with

a resolution function (which we assume to have a Gaussian form) to obtain

the observed recoil spectrum dR/dEp,

dR 0o o~ (Er—ER)?/20%(Er) (R
(En) = [

— EL)dE, . 2.30
E%:O 27TO'<ER) dER( R) R ( )

dER
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We now turn our attention to the discussion of such ‘realistic experi-

ments’ and the current state of dark matter direct searches.

2.2 Direct detection experiments

In order to measure the event spectrum, a range of obstacles must be over-
come. A number of backgrounds can cause nuclear recoils and therefore
mimic a WIMP signal. Furthermore, electron recoils can also deposit en-
ergy in the detector and must be distinguished from nuclear recoils caused
by WIMP interactions. We now summarise some of these backgrounds and
how they can be mitigated. We then discuss some of the different tech-
nologies which are used to discriminate electron from nuclear recoils and
to measure the recoil energy itself.

One possible source of backgrounds are high energy cosmic rays. For
this reason, direct detection experiments are typically operated under-
ground, such as at the Gran Sasso laboratory in Italy or the Boulby labo-
ratory in the UK, in order to reduce the penetration of these cosmic rays.
However, cosmogenic muons and neutrons can still penetrate the experi-
ments, leading to the need for active shields which can detect these particles
and provide a veto for any nuclear recoils they produce. It is also possible
to veto events which produce multiple-scatters in the detector as WIMPs
are expected to scatter only once. Passive shielding also reduces the neu-
tron flux from surrounding rock and other sources. For a detailed analysis
of neutron sources at dark matter experiments, see Ref. [198] (CRESST-II)
and Ref. [199] (XENON100).

Radioactive decays due to naturally occuring isotopes may cause keV
energy nuclear recoils in the detector, meaning that care must be taken to
reduce their impact. The radiopurity of the target material is therefore of
utmost importance (see for example Ref. [200]), as well as the radiopurity of
detector equipment itself 201}, 202]. In some cases, the naturally occurring
target material is contaminated with a particular radioisotope, such as 3% Ar
contamination in Argon. In these cases, special sources of the material
must be found [203], or the amount of contamination must be carefully
monitored and reduced [204] 205].

Cryogenic experiments, such as CDMS [206-209], CRESST [210], Co-
GeNT [179, 180}, 211H213] and EDELWEISS [214], use cryogenic crystals

of materials such as Germanium or Silicon as target materials. When a
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WIMP recoils from a target nucleus phonons are generated in the crys-
tal along with an ionization signal. By summing the energy collected in
these two channels (and accounting for any which may be incompletely
collected), the total energy of the nuclear recoil can be obtained. The ratio
of the total nuclear recoil energy and the ionization signal is referred to as
the ‘ionisation yield” and can be used to discriminate electron from nuclear
recoils; electron recoils deposit more energy into ionisation. However, care
must be taken to identify so-called ‘surface events’ - events occurring close
to the detector surface which result in an incomplete collection of ionisation
signal and can thus mimic a WIMP signal.

Noble liquid experiments use liquid (or two-phase) noble elements such
as Xenon and Argon as target materials. Completed or operational Xenon
detectors include ZEPLIN [215], XENON [216] and LUX [I82]. In these
detectors, Xenon recoils produce a scintillation signal (S1) which can be
observed directly using photomultiplier tubes. Ionisation electrons are also
produced, which drift in an applied electric field, producing an electrolu-
minescence signal (S2) in the gas phase. The sum of these signals can be
used to reconstruct the total recoil energy, while the ratio S1/S2 is used
to discriminate electron from nuclear recoils. The two signals can also be
used to localise the event within the detectors. A fiducial volume is then
defined within the detector - only events inside this volume are considered
in data analysis. This allows liquid Noble detectors to be self-shielding; the
fiducial volume is shielded by the remaining detector volume. Experiments
utilising Argon [217, 218] and Neon [219] are currently under development,
using either the scintillation to ionisation signal as a discriminant or using
timing of the scintillation signal (pulse shape discrimination).

Superheated liquid detectors such as COUPP [220, 221], SIMPLE [222]
and PICASSO [223] use a detector volume filled with droplets of super-
heated liquid such as C4F1y. The deposition of kinetic energy by a WIMP
will induce the nucleation of a bubble producing an acoustic signal which is
detected by piezoelectric transducers. Energy deposition by other particles
such as muons and - and f-radiation typically occurs over longer length
scales and thus does not register a signal. The temperature and pressure
of the detector can be tuned to specify the threshold energy, the minimum
energy which must be deposited before nucleation occurs. As such, super-
heated liquid detectors cannot measure the energy of specific events but

rather the total event rate above the energy threshold. However, by ramp-
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ing up the energy threshold, the recoil spectrum can effectively be mea-
sured. Due to the light targets such as Fluorine used by these experiments,
they are typically more sensitive to light WIMPs with SD interactions.

Crystal scintillator experiments [224] such as DAMA /LIBRA [I78| 225,
220] and KIMS [227] use crystals such as Thallium-doped Sodium Iodide
(NaI(T1)) as the detector material. When a nuclear recoil occurs with the
nuclei in the crystal, scintillation occurs. The light is collected by photo-
multiplier tubes, with the total recoil energy being related to the amount of
scintillation light produced. In the case of DAMA /LIBRA, electron-nuclear
recoil discrimination is not employed. Instead, the experiment aims to ob-
serve the annual modulation of the signal which is expected due to the
periodic motion of the Earth through the WIMP halo. In other cases, such
as NAIAD [228], pulse shape discrimination has been used to distinguish
nuclear and electronic recoils.

A final class of direct detection experiments are known as ‘directional’
direct detection experiments. These aim to measure not only the energy
deposited by WIMP scattering events but also the direction of the nuclear
recoils. It is hoped that a recoil spectrum peaked in the direction opposite
to the Earth’s motion will provide strong evidence for a DM origin for the
recoils. One possibility for this is the use of specialised gas time projection
chambers (TPCs), which allow measurable track lengths from which the
recoil direction can be determined. The directional detection of dark matter
is the subject of Chapter [6] and we defer a more detailed discussion of

directional experiments until then.

2.2.1 Current limits and results

The first major dark matter detection to be reported was that of DAMA /Nal
[229] and its successor DAMA/LIBRA. The experiments observed an an-
nual modulation over 13 annual cycles, with a phase matching that which
is expected from a dark matter signal. The detection of the annual modu-
lation has been reported at the 8.90 confidence level over an energy range
of 2-6 keV. The modulation signal was only found in single-hit events at
low energies, again suggesting a dark matter origin for the signal. It has
been suggested that the signal may be explained by a dark matter particle
of mass m, ~ 10 GeV and SI cross section og; ~ 107*! ecm? [230] scatter-

ing off Sodium (or a heavier WIMP around 80 GeV scattering off Iodine
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[231]). An annual modulation signal was also observed in the CoGeNT
experiment [I80, 212]. In this case too, the period and phase are consis-
tent with expectations, though, the amplitude of the annual modulation is
approximately 5 times larger than expected.

Excesses above the expected backgrounds have also been observed in
a number of experiments. The CoGeNT experiment observed an expo-
nentially rising excess of events at low energies, down to 0.5 keV (electron-
equivalent). A maximum likelihood analysis [213] pointed towards a 10 GeV
WIMP interpretation, with a cross section of around og; ~ 5 x 107%2 cm?,
though the significance of the ‘signal’ lies at only 2.90. CRESST-II [210]
observe 67 events in the nuclear recoil signal region but expect a back-
ground of only one event due to leakage of electron recoils into this win-
dow. Taking into account other backgrounds, the CRESST-II collabo-
ration estimate that 25-30 of these events may be due to a WIMP sig-
nal. A fit to the data produces two minima in the likelihood function:
one at m, ~ 25 GeV (in which scattering from Tungsten is appreciable)
and another at m, ~ 12 GeV (where Tungsten recoils lie below the en-
ergy threshold). In both cases, the fitted cross section is in the range
ogr ~ 10742 -5x107% cm?. Finally, a recent analysis of the Silicon detector
data from CDMS-II [209] finds 3 events in the signal region. However, the
very low expected backgrounds mean that this small number of events may
be significant. The probability of the known backgrounds producing these
three events has been calculated at 5.4% and a likelihood analysis shows
consistency with a WIMP with m, ~ 9 GeV and og; ~ 2 x 10~ cm?.

While it appears that a reasonably consistent picture of a low mass
WIMP is emerging from several experiments [232], a large number of com-
peting experiments have reported null results. Results from CDMS-II (Ge),
XENON100, LUX, SuperCDMS [233] and others set upper limits on the
standard WIMP cross section several orders of magnitude lower than the
claimed signal. Several explanations for this discrepancy have been offered.
One possibility is background contamination of the experiments claiming to
have observed a signal, which has been suggested in the case of CRESST-II
[202]. A recent analysis of the CoGeNT excess [234] finds evidence for DM
at less than 1o using an improved method for rejecting surface events. In
the case of DAMA/LIBRA, it has been suggested that ion-channeling in
the detector crystals may affect the collected ionisation signal and therefore
alter the signal [235]. It has also been suggested that the DAMA/LIBRA
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signal may be caused by an annually modulated muon signal [236, 237].

An alternative explanation is that the claimed signals are due to a
dark matter particle, but that its properties are not as simple as in the
canonical case, explaining why it has not been observed in all experiments.
One possibility is that the astrophysical distribution of dark matter does
not match the standard assumptions. We will discuss this astrophysical
distribution in more detail shortly in Sec. [2.3.3] However, it appears that
even with this additional freedom, the different results cannot be reconciled
[238-241]. A number of particle physics models have also been considered
to explain the results, including spin-dependent interactions [242], isospin
violating dark matter (for which fP # f™) [243], inelastic dark matter
[244] and mirror dark matter [245]. However, a consistent picture which
reconciles all experimental datasets remains elusive [246].

We summarise some of the completed and current direct detection ex-
periments in Table 2.1 Some of the limits set by these experiments are
shown in Fig. for SI scattering and Fig. for SD scattering. The
most stringent limits on the ST WIMP-proton cross section are set by LUX
[182], who find a limit of o, < 7.6 x 107% cm? at a mass of m, = 33 GeV.
The best limit for the SD WIMP-proton cross section is set by COUPP
[221]: 0%, < 3x 107 cm?. The confirmation or falsification of the signals
which have been claimed thus far may have to wait for the next generation
of dark matter experiments, or for corroboration from collider or indirect

searches.

2.2.2 Future experiments

Experiments which are planned or under construction typically aim to scale
up the size of current detectors and reduce unwanted backgrounds (in order
to increase the sensitivity to lower cross sections) or decrease the energy
threshold (which increases sensitivity to lower masses). There are a number
of ton scale detectors either in operation or planned, including XENONI1T
[250], DEAP-3600 [251], LZ [252], EURECA [253]254] and DARWIN [255].
With this next generation of detectors, the aim is to achieve sensitivity

to the ST WIMP-proton cross section down to o%; = 107%% cm?.

Below
this value, irreducible backgrounds from Solar and atmospheric neutrinos
become important and the identification of a DM signal becomes more

difficult [256, 257].
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Figure 2.3: Current limits on the WIMP-proton spin-independent cross
section. The most stringent 90% limits are set by LUX (solid blue)
[182]. We also show 90% limits from SuperCDMS (dashed black) [233]
and XenonlO0 (dashed red) [247]. The 90% preferred regions from
DAMA/LIBRA [226] (yellow contour), CDMS-Si (purple contour) [209],
CoGeNT (light blue contour) [213] and CRESST-II (green contour) [210]
are also shown. Generated using the DMTools Plotter [248].
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Figure 2.4: Current limits on the WIMP-proton spin-dependent cross
section. The most stringent 90% limits are set by COUPP (solid green)
[221]. We also show 90% limits from Xenonl00 (dashed red) [249], PI-

CASSO (dashed light blue) [223] and SIMPLE (dashed blue) [222]. Gen-
erated using the DMTools Plotter [248].

CHAPTER 2. DIRECT DETECTION OF DARK MATTER



2.3. UNCERTAINTIES 37

Experiment Target Status
CDMS-II (Ge) [206-208] Ge Null result

CDMS-II (Si) [209] Si Excess
SuperCDMS [233] Ge Null result

CoGeNT [179] 180], 211H213] Ge Excess & annual modulation

CRESST-II [210] CaWO, Excess
EDELWEISS-II [214] Ge Null result
ZEPLIN-III [215] Xe Null result
XENON100 [216], 247] Xe Null result
LUX [182] Xe Null result
PICASSO [223] C4F10 Null result
SIMPLE-IT [222] CoCIF5 Null result
COUPP [220], 221] CFsl Null result

DAMA/LIBRA [I78| 225, 226] Nal(T1) Annual modulation

NAIAD [228] Nal(TI) Null result
KIMS [227] CsI(T1) Null result

Table 2.1: Summary of current and completed direct detection experi-
ments.

There have also been a number of proposals for novel methods of di-
rectly detecting dark matter. These include using DNA-based detectors
to provide high spatial resolution [258], using nano-scale explosives [259)
or charged-coupled devices [260] to achieve very low energy thresholds and
using proton-beam experiments as a source of dark matter for direct de-
tection experiments [261]. It has also been suggested the direct detection
experiments could be used to search for DM interactions with electrons,
rather than nuclei (see e.g. Refs. [262], 263]). Clearly, there are a range of
approaches being pursued both in refining current technologies and devel-

oping new ones.

2.3 Uncertainties

Calculation of the DM differential event rate dR/dEg requires not only
a knowledge of the dark matter parameters m, and og;sp but a num-
ber of other factors which also enter into the calculation. It is important
to understand how uncertainties in these different factors and parameters
propagate into the event rate in order to ensure that the conclusions we
draw from direct detection experiments are unbiased. These uncertain-

ties are typically partitioned into three separate classes: nuclear physics,
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particle physics and astrophysics.

2.3.1 Nuclear physics uncertainties

As we have already seen, nuclear physics enters into the calculation of the
nucleon matrix elements my, f7, = (n|mygq|n). The factors fF, must be

determined experimentally, and have values

fB.=0.020 & 0.004; fP, = 0.026 £ 0.005; f&, = 0.118 £0.062, (2.31)

with f7., = fls frqg = fh, and fP. = fir.. The main uncertainties stem
from determinations of the m-nucleon sigma term, determined either exper-
imentally from low energy pion-nucleon scattering [I87, 264, 265] or from
lattice QCD calculations [I88] 266]. Similarly for the spin contributions
A, to the nucleus, values must be obtained experimentally [192], 267-269],

AP =0.77 +0.08; AP = —0.38 +0.08; A? = —0.09£0.08,  (2.32)

although efforts are being made to obtain these values directly via calcula-
tion [270, 271]. It should be noted that these nucleon matrix elements are
only necessary if we wish to deal directly with quark-level couplings and
interactions. If, instead, we consider the nucleon-level effective operators
(and equivalently the WIMP-nucleon cross sections), these values are not
required.

Nuclear physics also enters into the calculation of form factors, describ-
ing the internal nucleon and spin structures of the nuclei. For the SI case,
the form factor is obtained from the Fourier transform of the nucleon dis-

tribution in the nucleus. The form typically used is due to Helm [196]

3j1 (qu) 2 2.2
Fi(Bg)= | ——5—) ¢ ° 2.33
() = ()Y o, 23)
where j;(x) is a spherical bessel function of the first kind,
) sinxz  cosx
Ji(x) = - . (2.34)

2 T
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Nuclear parameters due to Lewin and Smith [272], based on fits to muon

spectroscopy data [273] are typically used:

R, = \/02 + §7r2a2 — 5s?, (2.35)
¢ =1.23AY3 — 0.60fm, (2.36)
a = 0.52fm, (2.37)
s =0.9fm. (2.38)

Muon spectroscopy and electron scattering data [274] are typically used
as a probe of the charge distribution in the nucleus. However, detailed
Hartree-Fock calculations indicate that the charge distribution can be used
as a good proxy for the nucleon distribution (especially in the case f, ~ f,)
and that using the approximate Helm form factor introduces an error of less
than ~5% in the total event rate [275]. Studies also indicate that errors due
to distortions in nuclear shape away from sphericity are negligible [276].
In the SD case, however, the situation is more complicated. In order
to calculate the SD cross section, we require the proton and neutron spin
content (S,,) as well as the form factor F2,. The form factor can be

written in the form

Fip(ER) = S(Er)/S(0), (2.39)

in terms of the response function S(Eg). This response function can in turn

be decomposed into three spin-dependent structure functions (SDSF's)

S(ER) = a3 Soo(Er) + apa1So1(ERr) + a3 S11(ER), (2.40)

where ag = a,+a,, is the isoscalar coupling and a; = a,—a,, is the isovector
coupling. The zero momentum transfer value S(0) is related to the proton
and neutron spin expectation values by [277]

2J+1J+1
- 7 ’ap<5p> + an<Sn>|2 . (2.41)

We can therefore write the SD cross section of Eq. as

S(0)

dosp  2mmyog, 1 S(ER)

dEr 3 p2 % 2J+1 (ay)?
The nuclear physics is now encapsulated in a single response function S(Eg)
(or equivalently two SDSFs Spy and Siq).2

(2.42)

2In Ref. [277], it is noted that the SDSFs are not independent and that the function
So1 can be written in terms of the other two.
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The functional form for S;; can be calculated from shell models for the
nucleus [197]. However, there are a number of competing models (such as
the Odd Group Model [278], Interacting Boson Fermion Model [279] and
Independent Single Particle Shell Model [280] among others). These models
use different methods for accounting for forces between quarks, leading to
different forms for the SDSFs and therefore to significant uncertainty in
the spin-dependent cross section. This issue was explored by Cerdeno et
al. [281], who developed a parametrisation for the spin structure functions
in terms of the parameter u = (¢gb)?/2, where ¢ is the momentum transfer
and b = \/41.467/(45.0A~1/3 — 25.0A~2/3) is the oscillator size parameter.

This parametrisation takes the form

Sij = N((1 = B)e™ ™ + ), (2.43)

where the range of the parameters {V, o, §} is chosen such that S;; spans
the different possible forms presented in the literature. It was shown that
this parametrisation was able to mitigate the uncertainties in the SD cross
section and accurately recover the remaining particle physics parameters

when the true form for the SDSFs was unknown.

2.3.2 Particle physics uncertainties

Apart from the unknown values for the WIMP mass m,, and cross sections
osr1.sp, the ratios of proton to neutron couplings are also a priori unknown.
In the case of SI scattering, the dominant contribution comes from the
coupling to strange quarks frg, which is equal for protons and neutrons.
It is therefore typically assumed that fP = f", though isospin violating
dark matter models have been considered [243] 282, 283]. Similarly, for the
SD interaction, a specific relation is typically assumed between the proton
and neutron couplings, such as a,/a, = £1. While specific models often
predict such a relation [102], it should be noted that this ratio is a priori
unknown and fixing it is a model choice.

Further uncertainty is derived from the form of the interaction terms
themselves. Here, we have considered the dominant contributions to scat-
tering in the case of non-relativistic contact interactions. Extensions in-
cluding mediator particles have been considered [284] 285], as well as mod-
els in which DM can interact electromagnetically with nuclei [286, 287].

There has also been significant effort towards developing a general non-



2.3. UNCERTAINTIES 41

relativistic field theory for the interaction of WIMPs with nuclei [184] [T86],
190], 288]. Current limits can be translated into limits on the couplings
associated with a range of effective operators. While this approach signif-
icantly widens the parameter space of dark matter direct detection, it is
more general and does not rely on (potentially poor) assumptions about

DM interactions.

2.3.3 Astrophysical uncertainties

Astrophysical uncertainties enter into the direct detection event rate through

the local dark matter density py and the speed distribution f;(v).

DM density, pg

The DM mass density sets the overall scale of the scattering rate. As
we shall discuss in Chapter (3| the DM density is degenerate with the in-
teraction cross section, meaning that an accurate determination is impor-
tant. One method of obtaining the value of py is by mass modelling of
the Milky Way (MW). One builds a model for the Galaxy incorporating
various sources of mass, including the stellar bulge and disc, dust and a
dark matter halo [289]. It is then possible to use various data such as
the total MW mass, local surface mass density and the velocities of trac-
ers to fit the parameters of this model and thereby extract py. Estimates
using this method tend to have a wide uncertainty, typically lying in the
range 0.2 — 0.4 GeV cm ™ (e.g. Ref. [289, 290]). A more recent determina-
tion using state-of-the-art data obtains a more precise but higher value of
po = 0.477590% GeV cm ™ [291] (though this depends on the choice of halo
density profile).

An alternative method is to use local stellar kinematic data to con-
strain the gravitational potential near the Sun and thus obtain an esti-
mate of pg. Using kinematic data from roughly 2000 K-dwarfs, Garbari et
al. [292] obtain the value py = 0.857027 GeV em™® while Zhang et al.,
using a larger sample of 9000 K-dwarfs, obtain 0.28 + 0.08 GeV cm >,
Including microlensing data, the range of allowed values at 1o is py =
0.20 — 0.56 GeV cm™® [293]. A further model independent method was
proposed by [294]. The advantage of such approaches is that one does not

need to assume a particular form for the DM halo density profile. However,
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they may be more sensitive to assumptions about local equilibrium near
the Sun’s position.

In 2012, Moni Bidin et al. [295] used the dynamics of thick disk stars to
constrain the DM density, finding a result consistent with no dark matter at
the Sun’s radius. However, a subsequent reanalysis by Bovy and Tremaine
[296] showed that this result derived from a poor assumption about the
velocity of stellar tracers as a function of Galactic radius. Using the same
data with more reasonable assumptions, the value 0.3+0.1 GeV cm ™ was
obtained [296].

In spite of the large number of determinations, no consistent value ap-
pears to be emerging, with values ranging from 0.2—0.85 GeV cm®. There
also remain a number of uncertainties in these determinations, including
the shape of the DM halo and assumptions about the local equilibrium
of the Galaxy (for a recent review, see Ref. [297]). The ‘standard’ value
assumed in the analysis of direct detection experiments is 0.3 GeV cm >,

though the exact origin of this number is unclear [298].

Speed distribution, f;(v)

The speed distribution enters into the direct detection rate in the integral,

N(Vmin) = h Mdv, (2.44)

Umin

which is referred to as the ‘velocity integral’ or the ‘mean inverse speed’.
Direct detection experiments are traditionally analyzed within the frame-
work of the Standard Halo Model (SHM), in which WIMPs are assumed
to have a Maxwell-Boltzmann velocity distribution in the Galactic frame.
In the Earth’s frame, this takes the form

(v — Vlag)2

fsum(v) = N exp (—T> O(Vese — |V — Viagl) , (2.45)

where vi,, specifies the velocity of the Earth frame with respect to the
Galactic rest frame and o, the velocity dispersion. The SHM distribution
is obtained assuming a spherical, isothermal DM halo with density profile
p ~ =2 and results in the relation o, = Ulag/ V2. The distribution is

truncated above the escape speed v in the Galactic frame and the factor
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N is required to satisfy the normalization condition:

/ Fv)dv = 1. (2.46)

By integrating over directions we obtain f(v) and the speed distribution is

then given by

Fi0) = 1w = [ v do,. (2.47)

Within the SHM, there is some uncertainty on the parameters de-
scribing fi(v). The parameter vy, is given by the local circular speed
v, = 218 & 7Tkm s~ [299, 300] plus a contribution from the peculiar mo-
tion of the Sun and the Earth’s orbital motion. This lag speed is typically
assumed to be close to the local circular speed, though more recent de-
terminations of the solar velocity point towards higher values [301], B02] of
240 —250km s~ . There is also uncertainty in the value of o,. The relation
Oy = Ulag/ v/2 is obtained from solving the Jeans equation assuming p ~ 72
[303]. Relaxing this assumption means that this relation no longer holds
and that o, is no longer as well constrained. Finally, the Galactic escape
speed can be estimated from the radial velocities of MW stars; the RAVE
survey obtain the range ves. = 533751 km s at 90% confidence [194) [195].

Even taking into account these uncertainties, the SHM is unlikely to
be an accurate representation of the DM halo. Observations and N-body
simulations indicate that the halo should deviate from a 1/r? profile and
may not be spherically symmetric. As a result alternative models have been
proposed. Speed distributions associated with triaxial halos [304] or with
more realistic density profiles [305] have been suggested, as well as analytic
parametrisations which should provide more realistic behaviour at low and
high speeds [306]. Self-consistent distribution functions reconstructed from
the potential of the Milky Way have also been obtained [307, 30§].

It is also possible to extract the speed distribution from N-body simu-
lations. Such distribution functions tend to peak at lower speeds than the
SHM and have a more populated high speed tail [309H311]. There are also
indications that DM substructure may be significant, causing ‘bumps’ in
the speed distribution, or that DM which has not completely phase-mixed
- so-called ‘debris flows’ - may have a contribution [312].

It should be noted that N-body simulations do not probe down to the

sub-milliparsec scales which are probed by direct detection experiments.
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There may be a concern then that the local dark matter distribution could
be dominated by localised subhalos or streams which are not captured by
these simulations and which may affect the interpretation of direct detec-
tion experiments [313]. However, an analysis of N-body simulations has
found that no individual subhalos should dominate the local distribution
[314]. Vogelsberger et al. [315] study the geodesic deviation of individual
particles in N-body simulations, giving access to information about the
ultra-local DM distribution. They find that the local distribution should
be made up of a large number of streams (~ 10°), meaning that it can
effectively be treated as smooth.

Another result obtained from simulations is the possibility of a dark
disk. When baryons are included in simulations of galaxy formation, this
can result in DM subhalos being preferentially dragged into the disk plane
where they are tidally stripped [316, 317]. The resulting dark disk corotates
with approximately the same speed as the baryonic matter, though with
a smaller velocity dispersion ¢”P ~ 50km s~'. This dark disk is expected
to contribute an additional density 0.2-1.0 times the density of the halo.
However, this value is dependent on the merger history of the Milky Way,
with more massive and numerous mergers leading to an enhanced disk
density. The more recent ERIS results [2§], comparing hydrodynamic and
DM-only simulations, report a relatively quiet merger history for a Milky
Way-like galaxy. The result is a smaller dark disk density of just 10% that
of the DM halo.

In Fig. 2.5 we show some examples of possible dark matter speed dis-
tributions in the Earth frame. We show the directionally averaged velocity
distribution f(v) in the top panel, the speed distribution f;(v) in the mid-
dle panel and the corresponding 7(v) in the bottom panel. The population
of low speed WIMPs in the SHM + dark disk (dashed green) distribution
causes the mean inverse speed (and therefore the event rate) to rise more
rapidly at low speeds than the SHM alone (solid blue). A sharp stream
distribution function (dotted magenta) leads to step-like form for »; for
Umin above the speed of the stream almost no WIMPs can contribution to
the scattering, while for v,,;, below the speed of the stream all WIMPs can.
Each of these possible distributions will produce a distinct event spectrum
in a detector.

The impact of such uncertainties in the WIMP speed distribution has
been much studied (see e.g. Refs. [318-320]) and it has been shown that
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Figure 2.5: Some examples of possible dark matter speed distributions

including the Standard Halo Model (SHM), SHM with a 30% dark disk
overdensity (SHM+DD), and a stream centred around 400km s™!. We

show the directionally averaged velocity distribution f(v) (top panel),
the speed distribution f(v) (middle panel) and mean inverse speed n(v)
(bottom panel).
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poor assumptions about the speed distribution may result in biased recon-
structions of the DM mass and cross sections from future direct detection
data. Peter attempted to reconstruct the WIMP mass and SI cross section
from mock data sets based on future direct detection experiments [319].
In order to generate the data, an SHM distribution function with an addi-
tional contribution from a dark disk was assumed. However, the posterior
distribution for m, and O‘SI was obtained assuming that fi(v) could be
well described by a single Maxwell-Boltzmann (MB) distribution (with av-
erage speed and speed dispersion included as nuisance parameters). The
resulting marginalised 68% and 95% contours for m, and (TIS)I are shown in

Fig. 2.0, with the true parameter values given by the black crosses.
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Figure 2.6: Reconstructed WIMP mass m, and SI cross section agl using
mock data from three future detectors. Data was generated assuming
an SHM distribution with a contribution from a dark disk. However,
the reconstruction was performed assuming that a Maxwell-Boltzmann
speed distribution. Yellow regions show the 68% and 95% marginalised
credible contours for conservative values of the maximum energy of the
experimental search window, while green contours are the results extend-
ing the search window up to Ena.x = 1 MeV. Reprinted with permission
from Ref. [319]. Copyright 2011 by the American Physical Society.

Even including some uncertainties in the shape of the MB speed distri-
bution, there is still a clear bias in the reconstructed WIMP parameters.
The MB speed distribution cannot reproduce the shape of the event spec-
trum closely and the WIMP mass and cross section move to different values

to compensate and improve the fit. Not only is there a bias, but the result-
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ing contours are relatively small. In this case, if we trust the ansatz of an
MB distribution, we would mistakenly believe that we had reconstructed
the WIMP parameters accurately with a high precision.

It is unknown which, if any, of the many distributions discussed here
best describes the true Galactic DM speed distribution. It is therefore
imperative that we model the uncertainties in fi(v) in a general way to
avoid bias in the reconstructed WIMP parameters. Chapter [3| addresses
the various attempts to achieve this in the literature and explores what is

required for such a general approach.

2.4 Conclusions

We have discussed the dark matter direct detection formalism, focusing
on the contribution from scalar and axial-vector contact interactions. The
non-relativistic speeds involved means that the event rate can be divided
into a spin-dependent and spin-independent contribution. A number of
sophisticated experiments have been and continue to be developed which
should allow the rare nuclear recoils produced by these interactions to be
detected. The use of different channels such as scintillation, ionisation and
phonons not only allows the energy of these events to be measured but also
aids discrimination against electronic recoils which can act as a significant
background.

Tentative hints of a signal from the DAMA/LIBRA, CRESST-IT and
CoGeNT experiments have been interpreted as evidence for a WIMP with

mass m, ~ 10 GeV and cross section og; ~ 107 cm?.

However, null
results from XENON, CDMS and other experiments are in tension with
this claimed signal. The origin of this discrepancy may lie in unidentified
backgrounds or in an unconventional model for DM; corroboration from
indirect and collider experiments may be needed before such a signal can
be confirmed.

Finally, there are a number of uncertainties associated with calculating
direct detection event rates and therefore with interpreting data from these
experiments. Nuclear uncertainties are typically more important for the
SD rate than for the SI, though the method of Cerdeno et al. may be able
to reduce the impact of such uncertainties. Particle physics uncertainties
are significant, though the standard contact operator approach should be

a good first approximation and effective field theories extending beyond
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this standard approach are being developed. Uncertainties in the number
of dark matter particles, embodied in the local DM density po, lead to a
factor of roughly 2 uncertainty in the total direct detection rate.

In contrast, uncertainties in the speed distribution of dark matter are
poorly controlled. Theoretical and computational considerations indicate
that the benchmark assumption - the SHM - is not a good description of the
WIMP distribution and while a large number of alternatives are available,
it is unclear which, if any, of these may be correct. The wide range of
possibilities for fi(v), as well as the consequences for misinterpreting future
data, indicate that taking these uncertainties into account in a general way

is essential.



Chapter 3

Parametrising the WIMP

distribution

As we have explored in Chapter [2, there are a number of uncertainties
associated with calculating the direct detection event rate. These trans-
late directly into uncertainties in the analysis of direct detection results,
present and future. If these uncertainties are properly accounted for, they
can provide more realistic estimates of uncertainties on the WIMP cross
sections O’SI and USD and WIMP mass m,.. If, however, our assumptions do
not reflect the underlying nuclear physics, particle physics or astrophysics
of dark matter, this can lead to a bias in the WIMP parameters. Under-
standing these uncertainties and how to mitigate them is therefore of great
importance.

The WIMP speed distribution f;(v) enters into the direct detection
event rate as it influences both the typical flux of dark matter particles
and the typical recoil energy imparted during a scattering event. Unfor-
tunately, the typical flux and recoil energy are also strongly dependent on
the WIMP mass m,. This leads to a strong degeneracy between m, and
fi(v) and, as discussed in Sec. [2.3.3] the possibility of significant bias in
the reconstruction of the WIMP mass.

Because the speed distribution is so poorly constrained, an ideal goal
would be to construct the most general parametrisation for f;(v) which
can accommodate a wide range of possibilities for the true functional form.
In Sec. 3.1} we explore previous attempts in the literature to account for
uncertainties in the speed distribution and consider the properties which

are required of any parametrisation of the speed distribution. A very gen-

49



50 CHAPTER 3. PARAMETRISING THE WIMP DISTRIBUTION

eral approach was explored by Peter [319], who wrote down an empirical
parametrisation for f(v) as a series of constant bins in v. However, this
still resulted in a bias in the reconstructed WIMP parameters. In Sec. [3.2]
we analyse in more detail the performance of this method and attempt to
explain where this bias comes from.

In Sec. 3.3 and Sec. [3.4] we discuss a method analogous to that of Pe-
ter but for parametrising the WIMP momentum distribution in terms of a
series of constant bins. This transformation helps remove some of the de-
generacy between the WIMP mass and distribution function and improves
reconstructions of the mass compared to binning in f(v). We also discuss
how the speed distribution can be extracted from the momentum parame-
ters. Finally, we discuss the weaknesses of this momentum parametrisation,

highlighting where remaining work is needed.

3.1 Attempts to address the uncertainties
in fl(’U>

Direct detection experiments are typically analysed within the framework
of the Standard Halo Model (SHM), described in Chapter [2} A first step
in extending the SHM is to incorporate uncertainties in vi,g, 0, and vese in
reconstructions. Strigari and Trotta [321] introduced a simple model of the
Milky Way mass distribution, from which SHM velocity parameters can
be derived. They then use mock stellar kinematics and direct detection
data to fit both the model parameters and the dark matter properties.
A more direct approach is to directly fit the SHM velocity parameters,
incorporating their uncertainties into the fitting likelihood. This method
has been considered by Peter [322], and is typically used as a simple model
of astrophysical uncertainties (especially in studies which focus on other
aspects of direct detection, e.g. Ref. [323]). These methods allow bias in
the reconstructed WIMP parameters to be eliminated when the underlying
speed distribution is indeed in the SHM form. However, as shown by Peter
[319], these methods fail when the distribution function differs from the
standard Maxwellian case.

There have also been attempts to incorporate and fit more realistic
distribution functions. Pato et al. [324] incorporate astrophysical uncer-

tainties by using the distribution function of Lisanti et al. [306] and fitting
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the various shape parameters associated with it. In a more recent paper,
Pato et al. [325] use mock direct detection data and stellar kinematics data
to fit a model of the Milky Way mass distribution, from which they derive
a self-consistent distribution function (SCDF) using Eddington’s formula.
This means that the resulting speed distribution will be consistent with the
underlying potentials of the galaxy’s bulge, disk and dark matter, incor-
porating a broader range of shapes than the SHM alone. However, as the
authors point out, velocity distributions from cosmological N-body simu-
lations differ significantly from those expected from Eddington’s formula.
As with the Standard Halo Model, fitting such a SCDF is likely to result
in biased reconstructions if the true distribution deviates significantly from
the functional form used for fitting.

Methods which make no assumptions about the functional form of the
speed distribution have had mixed success. Drees and Shan [326, [327] de-
veloped a method for estimating the WIMP mass by calculating moments
of the speed distribution. However, this method still introduces a bias
into the reconstructed WIMP mass and performs more poorly for heavier
WIMPs and when finite energy thresholds are considered. An empirical
ansatz for the speed distribution has also been suggested, specifically di-
viding the WIMP speed into a series of bins, with the distribution being
constant within each bin [319]. However, this still results in a significant
bias in the reconstructed mass and cross section. A recent proposal by
Feldstein and Kahlhoefer [328] is to fit the velocity integral rather than the
speed distribution. This proposal is the most promising so far and appears
to give an unbiased reconstruction of the mass. However, the method has
not been demonstrated for low mass WIMPs and reconstructing the speed
distribution itself remains problematic.

Finally, a method for comparing existing data has been developed by
various authors [240], 247, [329]. At a given mass, a given experiment is sen-
sitive only to speeds in a fixed range, set by vmin (Fmin) and vmin(Fmax). By
considering only the range of speeds where two or more experiments over-
lap, one can ensure that the astrophysical contribution to both experiments
is equal. This method has typically been used to assess the compatibility
of different data sets and to set more robust limits on the WIMP inter-
action cross sections. Recently it has also been extended to accomodate

more general forms for the WIMP interactions [330].
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3.1.1 Considerations in parametrising f;(v)

Given the range of possibilities for the form of the speed distribution, we
want to consider parametrisations which are as general as possible. We
discuss now some of the challenges and considerations which must be taken
into account for such parametrisations. We can write the integral over the

speed distribution as

N(Vmin) = h fliv) dv, (3.1)

Umin

where vy, is given by

/ E
Umin = Umin(ERa my, mN) - T;LNQ i . (32)
Hyn

If we treat fi(v) as a free function (subject to the condition that it be

normalised to unity and everywhere positive), this is equivalent to treating
7(Umin) as a free function (subject to the equivalent condition that 1 be
a monotonically decreasing function of vy,,). This represents an entirely
agnostic approach to fi(v), assuming that we know nothing at all about
its functional form. Unfortunately, if we fix my, any change in m, (and
resulting change in v,;,) can be counteracted by a change in the form of
f1(v), leading to the same spectral shape n(Eg). This means that for a
single experiment, the WIMP mass and f(v) are degenerate and we need
multiple experiments to disentangle the two [327]. We will phrase this in
more concrete terms later in Sec. 3.3

Another consideration when parametrising fi(v) is the range of sensi-
tivity of the experiments. Each experiment will have a window of recoil
energies to which it is sensitive [Eyin, Fmax] (though the recoil detection ef-
ficiency may vary across this window). This means that for a given WIMP
mass, each experiment will be sensitive only to a range of WIMP speeds
[Vmin(Emin)s Vmin(Emax )] WIMPs with speeds smaller than vy, (Fmi,) do
not contribute to the velocity integral defined in Eq. 3.1, WIMPs with
speeds above Vpin(Emax) can contribute to the overall spectrum, but they
contribute only a constant, additive rate; the experiment is not sensitive
to the shape of the speed distribution above this maximum speed. If we
wish to probe the shape of fi(v), the range of speeds probed by each
experiment must have some overlap. Otherwise, fi(v) can be varied in-
dependently across each speed range and the degeneracy between m, and

fi(v) remains.
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In order to get a handle on f;(v) (and simultaneously the WIMP mass
and cross sections) we therefore need several direct detection experiments,
which use different target materials but which probe overlapping WIMP
speeds. However, we must come up with a way of writing our general
function f;(v) which allows us to reconstruct it by fitting to the data. Such
a parametrisation should correspond to a physical distribution function.

This gives two important conditions on the speed distribution:

(i) it should be normalised to unity

/000 filv)dv =1, (3.3)

(ii) and it should be everywhere positive

fi(v) >0 for all v. (3.4)

Subject to these constraints, we should try to write down a parametrisation
which spans a wide range of underlying distribution functions and which
does not introduce any additional bias into attempts to reconstruct the
WIMP parameters. For this reason, it is necessary to carefully test any
proposed parametrisation. We now explore in more detail several proposals

for what such a general parametrisation could look like.

3.2 Binned speed distribution

Peter proposed the use of an empirical speed distribution in the form of
a series of bins in speed v in order to fit to data. Explicitly, we write the
directionally-averaged velocity distribution (in the Earth frame), as a series

of N bins of constant value, with bin edges {?; }:

fv) = Zgi W (v; 9, Av), (3.5)

where the top-hat function, W, is defined as:

1 v e v, v+ Avl,
W(v; 0, Av) = | ] (3.6)
0 otherwise.
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We must choose a maximum speed vy, = NAwv up to which we parametrise.
Beyond this speed, we set f(v) to zero, so we should choose a conservative
value which does not risk truncating the speed distribution prematurely.
Based on the results of the RAVE surveys [194] [195], the Galactic escape
speed is estimated to be v, < 587 km s71 at the 90% confidence level.
Assuming a local circular speed of v, ~ 220km s~ [299, 300], this means
that in the Earth frame, particles with speeds significantly higher than
Ve + Vese ~ 800km s™* should not be gravitationally bound. This is consis-
tent with results for the local escape speed obtained in N-body simulations
[310]. We therefore choose a value vya, = 1000 km s as a conservative
upper limit for the parametrisation.

The form for the distribution function given in Eq.|[3.5|is the directionally-
averaged WIMP velocity distribution, f(v). The WIMP speed distribution
is then given by

fi(0) =) giv® W (v 5, Av) . (3.7)

i=1
Imposing normalisation of the speed distribution, we obtain the following

constraint on the {g;}:

N

> gi [(Bi+ Av)* =57 /3 =1. (3.8)

i=1

For notational convenience, we also define
9 =g; [(0: + Av)® =3} /3, (3.9)

such that the normalisation condition becomes

Zgi =1. (3.10)

We illustrate the form of this binned distribution for f(v) in Fig. [3.1]
We show the Standard Halo Model in the Earth frame (blue line) as well
as the binned approximation to the SHM (red line). This approximation
is obtained by integrating the WIMP speed distribution over each of the
bins:

2

f)i-l-Av
GIPPrOx = / SHM () do . (3.11)

i
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This allows us to examine how closely the binned parametrisation can be
used to approximate the SHM. However, in a realistic scenario, these bin
parameters {g;} would form part of the parameter space, along with m,

and o, which must be explored based on the data.

le—7
1.4

m"b
C‘F
=2
=
2 0.6r
=

0 200 400 600 800 1000

v/km s

Figure 3.1: Binned approximation to the SHM in the Earth frame. The
bin heights are obtained from Eq. We note that shown here is f(v),
the directionally-averaged velocity distribution. We must multiply by v?
to obtain the speed distribution fi(v).

In Ref. [319], Peter found evidence that this method still leads to a bias
in the reconstructed WIMP mass and cross section, despite the apparent
generality of this binned distribution function. Increasing the number of
speed bins did not appear to alleviate this problem. Here, we explore this
method further. In particular, we consider a large number of realisations
of data sets from hypothetical future experiments, assuming some fiducial
benchmark model. We then attempt to reconstruct the WIMP mass for
each realisation, allowing us to determine how the method performs sta-
tistically and whether the bias found by Peter is present in all data sets or

only in a small number of Poissonian realisations.

3.2.1 Experiments and benchmark parameters

We consider three next-generation detectors, modelled on experiments which
are currently in development: XENONIT [331], WArP [332] and Super-
CDMS [333]. Each experiment is characterised by the (suitably averaged)
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Target Detector :
Experiment Masgs, Mass (fid.), Efficiency, gnergy
P e /K ange/keV
Xenon 131 1000 0.17 2-30
Argon 40 1000 1.0 30-130
Germanium | 73 100 0.3 10-100

Table 3.1: Parameter values for the three mock experiments used in this
chapter, chosen to closely match those used in Ref. [319]. The Xenon
experiment is modelled on XenonlT [331], the Argon experiment on
WArP [332] and the Germanium experiment on SuperCDMS [333]. An
exposure of tex, = 1 year is used for all 3 experiments. The meanings of
the experimental parameters are described in Sec. [3.2.1

mass number A of the target nucleus, a fiducial detector mass mge, an ef-
ficiency €, and a pair of energies, Fy,i, and Fp.., which mark the extent of
the signal region. The efficiency of each experiment incorporates informa-
tion about detection efficiency, as well as data cuts and detector down-time.
Table [3.1] shows the experimental parameters used in this chapter, which
are chosen to approximately match those used by Peter [319]. For all three
experiments, we assume an exposure time of Ze, = 1 year.

We assume that the detector efficiency is independent of energy. We
also assume perfect energy resolution and zero backgrounds. For a real
experiment, these assumptions will almost certainly not hold, for example
due to variations in the relative scintillation efficiency of Xenon [334], but
the results presented here should be viewed as a proof of principle in the
ideal case.

Figure [3.2] shows the minimum and maximum accessible WIMP speeds
for each experiment. All three experiments rapidly become insensitive to
WIMPs with speeds less than ~ 1000km s~ as the WIMP mass drops
below m, ~ 10 GeV. This suggests that the experiments considered here
generically have a low sensitivity to such light WIMPs, producing too few
events for accurate parameter reconstruction.

For comparison with later methods, we consider here a single bench-
mark model: m, = 50 GeV, of, = 107* cm? and the SHM (with v, =

220 km s_l).1 We assume that the spin-dependent contribution to the event

LAt the time that Ref. [319] and Ref. [335] were published this value of the cross
section had not yet been probed. However, the value o§; = 10~%* ¢m? has since been
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Figure 3.2: Range of accessible WIMP speeds as a function of WIMP
mass for each of the three mock experiments: XENONI1T-like (solid
blue), SuperCDMS-like (dashed green) and WArP-like (dot-dashed red).
Each pair of lines corresponds to the maximum and minimum accessi-
ble WIMP speeds for a given experiment. The outermost dotted red
lines show the accessible speeds for the adjusted parametrisation range
described in Sec. Reproduced from Paper I [335].

rate is negligible, as the A% enhancement leads the SI rate to dominate for

SI
p

and USD from the astrophysical uncertainties we consider here. We assume
a fixed value for the local DM density po = 0.3 GeV cm™>. As will be
explained in Sec. , the precise values of O'SI and po are not particularly

heavy targets. This also allows us to disentangle degeneracy between o

important due to the degeneracy between these two parameters. The total
number of events from all three detectors combined typically ranges from
around 300 to 600 for the different benchmark parameters which will be

considered in this chapter.

3.2.2 Parameter reconstruction

We generate 250 mock data sets using the experiments described above.

Each realisation of the mock data is generated as follows:

excluded by several experiments [I82 [247].
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1. Calculate the number of expected events N, given {m,,o§, f(v)},
using Eq. 2.29]

2. Pick the number of observed events N, from a Poisson distribution

with mean N,

3. Pick recoil energies {E1, Fs, ..., Ey, }, from the distribution P(ER)

EMgettexp AR

P(ER) = N, dEgp’

(3.12)

4. Repeat for all three experiments.

We then use the Markov Chain Monte Carlo (MCMC) package Cos-
MOMC [336] to make parameter inferences on the parameters m,, ogy, {Gi},
where §; are the bin parameters for a 5 bin speed distribution function.
We sample the WIMP mass and cross-section logarithmically in the ranges
[10,1000] GeV and [10,10000] x 10~4" cm? respectively, with log-flat priors
on both. We sample the g; linearly in the range [0, 1], subject to the nor-
malisation constraint of Eq. [3.10} In order to ensure adequate exploration
of the parameter space, we perform the MCMC at a temperature 7" = 2.
That is, we explore the high temperature likelihood £7 and subsequently
‘cool” the chains back down to 7' = 1 (see Appendix |A| for more details).
We sample using a total of 3 x 10° chain positions, which is then thinned
by a factor of 50.

The likelihood function used to generate the Markov chains is the same
unbinned form used by CDMS [206] and XENON100 [216], which for a

single experiment is:
NNO Ne
£, = e H P(E (3.13)

The full likelihood £ is then the product of the likelihoods for the three
separate experiments.

The distribution of MCMC chain positions gives the posterior prob-
ability distribution P(#) for the parameters 6. In order to obtain 1-
dimensional parameter limits, we consider the marginalised posterior distri-
bution P,, (), which is obtained by integrating P () over all the parameters
other than the parameter of interest. We take the mode of the marginalised
distribution as a best estimate of the underlying parameter. We then con-
struct highest-density credible intervals for the parameter of interest at the

p% level. Further details of this procedure are given in Appendix [Al



3.2. BINNED SPEED DISTRIBUTION 59

70

D
o

€]
o

IN
o

w
o
1

N
o

Number of realisations

=
o

0
10" 10° 10°

m [/ GeV
ec

I

Figure 3.3: WIMP masses reconstructed using the binned speed
parametrisation method from 250 realisations. The benchmark speed
distribution is the SHM. The true mass of 50 GeV is shown as a dashed
vertical line. Reproduced from Paper I [335].

3.2.3 Results

Figure 3.3 shows the fitted values for the WIMP mass, m,., obtained from
250 mock datasets. This distribution shows a peak around 45 GeV, as
well as a significant number of datasets reconstructed at ~ 100 GeV. As
pointed out by Ref. [337], some mock datasets will not be representative
of the underlying benchmark parameters, having more events at high en-
ergies than expected, for example. This can lead to ‘bad’ reconstructions
with a fitted WIMP mass higher than the benchmark value. Thus, the
reconstructions near 100 GeV do not necessarily signify a failure of the
reconstruction method.

However, we can also study the coverage of the p% credible intervals:
the fraction of reconstructions for which the true WIMP mass lies within
the p% interval. That is, for each set of mock data, we construct a con-
fidence interval and determine whether the true WIMP mass lies within
that interval. The coverage of the p% intervals is then the fraction of those
intervals which contain the true value of the WIMP mass. If our reconstruc-
tions are statistically robust, we would expect that the true value will lie
within the p% interval in at least p% of reconstructions. For the 68% and
95% confidence intervals, this method shows significant under-coverage:

36 + 3% coverage and 63 & 3% coverage respectively. This indicates that
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while the mass reconstructions appear to be distributed close to the true
value (within around 5-10 GeV), the corresponding error estimates must be
too small. The bias noted by Peter is therefore a real effect and is sizeable
compared to the statistical uncertainty on m,. We therefore cannot trust
the WIMP mass reconstructed using this parametrisation.

Figure [3.4] shows the reconstructed speed distribution for a typical real-
isation using this method. The reconstructed mass is mye. = 30.2135 GeV,
compared to the benchmark value of 50 GeV. The mean inverse speed is

under-estimated in the range 0 — 200 km s~

and slightly over-estimated
at higher speeds. However, the reduced m,.. increases the minimum ac-
cessible speed of the experiments, meaning that the experiments are less
sensitive to the shape of the speed distribution at low speeds. Moreover,
a reduced value of the reconstructed mass serves to steepen the spectrum,
reconciling the flattened 7(vmi) at high speeds with the data. This is be-

cause varying the mass of the WIMP ‘rescales’ the spectrum, due to the
2

relation Er o< pi2 yvl,-

In Fig. , we plot n/m, as a function of recoil energy, Eg, for the
SuperCDMS-like experiment. We rescale n by 1/m, because this factor
appears in the event rate and we are then able to compare the spectra of
events from different models. The solid line shows the mean inverse speed
in the SHM, using the true WIMP mass of 50 GeV. We also show a binned
approximation to the SHM (dashed line) obtained using the ‘true’ values of
the bin parameters {g;**"**} and the true WIMP mass. Finally, we show the
reconstructed mean inverse speed (dot-dashed line) using the reconstructed
WIMP mass of 30 GeV. We see that the binned approximation to the
SHM, which should represent a ‘good’ reconstruction, actually recovers
the spectrum poorly compared to the reconstructed values. In particular,
we note the energy range of the experiment spans two bins in the binned
approximation to the SHM, but three bins in the MCMC reconstruction,
allowing a closer approximation to the true spectrum.

Thus, the reconstructed mass and speed distribution parameters may
provide a good fit to the data, despite not being close to the underlying
benchmark parameters. As can be seen from Fig. [3.5] for a fixed bin
width in velocity space, the size of bins in energy space can be reduced by
moving to lower masses. This increases the number of energy bins within
the sensitivity range of the experiments. This should allow a closer fit to

the data and may explain why there appears to be a bias towards lower
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Figure 3.4: Reconstructed speed distribution, f(v), and mean inverse
speed, n(v), using the speed parametrisation method. The benchmark
model used was a 50 GeV WIMP with an SHM speed distribution. The
upper panel shows the underlying SHM speed distribution (solid blue)
and the fitted values of the speed bin parameters (red points). The
lower panel shows the mean inverse speed corresponding to these fitted
values (dashed red line) and the true mean inverse speed (solid blue).
Reproduced from Paper I [335].

mass values. In the next section, we explore a possible way to reduce this

bias by attempting to decouple the size of the bins from the value of m,.

3.3 Momentum parametrisation for a

single experiment

When considering the speed distribution of the WIMPs, we see that each
experiment has a different range of sensitivity and that varying the WIMP
mass changes this range. However, we can instead consider a ‘reduced

WIMP-nucleus momentum’,

PN = [NV, (3.14)
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Figure 3.5: The rescaled mean inverse speed, 7/m,, measured in the
SuperCDMS-like experiment as a function of recoil energy, Fr. The
same mock dataset was used as in Fig. [3.4 The underlying Standard
Halo Model distribution (solid blue) uses the true WIMP mass of 50
GeV, as does the binned approximation to the SHM (dashed red). The
reconstructed mean inverse speed (dot-dashed black) uses the recon-
structed value of 30 GeV. Reproduced from Paper I [335].

defined separately for each target nucleus. We now note that the accessible
range in py for each experiment is independent of the WIMP mass:
m NE R

2

We therefore rewrite the differential event rate in terms of the new

pmin(ER) = ;uxNUmin(ER) - (315)

momentum variable:

AR poOS§iHN 42 1o ~
_ A2F2(ER)i(pon) | 3.16
dER 2/1/?(me ( R)T}(p ) ( )

where 77 is the mean inverse momentum associated with the reduced mo-

mentum distribution, f(p):

_ * f(p 1
77(prnin) = / Q dgp = _n(pmin/:uXN)' (317)
Pmin p MXN
The event rate can be rewritten as:
dR p .
m = 30 /<O—§Ia mxva>A2F2<ER)n(pmin) s (318)
where we have defined
P
D/ (08, my, my) = TN (3.19)

Hxp™x
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which encodes all information about the WIMP mass and cross-section and
controls the overall scale of the event rate.

If we consider only a single experiment, is it possible to parametrise
f(p) and therefore reconstruct the value of D'? We can again define a
directionally averaged momentum distribution, f(p) = f(p/uyn)/ 13, and
parametrise this in terms of 5 constant bins, with bin values {h;}. It is
then only necessary to parametrise f (p) over the range of sensitivity of
the experiment: p € [pa,pp], Where pop = DPmin(Eminmax). This means
that we need not make any assumptions about the distribution function
outside the range of sensitivity of the experiment. However, we still wish
to impose some normalisation constraint on the momentum distribution
parameters. Each experiment now probes a well-defined (but unknown)

fraction of WIMPs, ay, given by

ay = /pb f(p)p*dp. (3.20)

The momentum parameters are therefore normalised according to
N
> hi=ay, (3.21)
i=1

where h; is defined analogously to g; in Eq. . We absorb the unknown
ay into D', such that the momentum distribution parameters, {h;/ay},

are normalised to unity and we define

D(O-SpoX’ mN) = aND/(OSpIa mX7mN) =OoaN—— . (322)

Finally, it is necessary to introduce a parameter A which models the

constant contribution to n from WIMPs with momenta greater than py:

A= /: % d’p. (3.23)

Because the precise form of f (p) above the upper energy threshold is un-
determined by the experiment, the contribution of A to the normalisation,
ay, cannot be calculated and is therefore not considered. Instead, we in-
clude conservative constraints on A such that its contribution alone cannot

exceed the normalisation of f(p):

A< (pp) " (3.24)
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We also note that

Dy
FP) g, < O (3.25)
pa P Do

and thus impose the following additional constraint on the parameters:
(3.26)

We therefore perform parameter reconstructions using the parameters
D, {h;/an} and A/ay. Because the fraction of high momentum WIMPs is
expected to be relatively low, we sample the parameter A logarithmically,

with a log-flat prior.

3.3.1 Results

We consider again a single set of benchmark parameters, namely a 50 GeV
WIMP with a SHM speed distribution. We apply the momentum parametri-
sation to mock datasets from the WArP-like Argon experiment. The recon-
structed D values, D, are shown in Fig. in units of 107 cm? kg™2. In
all reconstructions, the posterior distribution is unimodal, having separate
parameters to describe the scale (D) and shape ({h;}) of the event rate.
The number of reconstructions is peaked at the correct value. The average
reconstructed value is log;o(Drec) = 1.865 & 0.004, compared to the input
value of logy(Dirue) = 1.878. This represents a slight bias (of less than
1%) towards smaller values of log,,(D).

However, this is smaller than the typical statistical uncertainty in a
single reconstruction, which is ~ 4%. In addition, this method results
in overcoverage of the true parameter, with values of 76 & 2% and 98 +
1% respectively for the 68% and 95% confidence intervals. This method
therefore allows us to place reliable conservative estimates on the parameter
D.

We show in Fig. the reconstructed momentum distribution and
mean inverse momentum for a typical realisation, for which logyy(Dyec) =
1.817002. The underlying momentum distribution has been rescaled by
1/aa, to allow a comparison to the reconstructed values. We see that the
the momentum distribution is well reconstructed and the mean inverse mo-
mentum is accurately recovered at low and high momenta. In the middle
of the momentum range, however, 7(pmin) exceeds the true value. Be-

cause only a single experiment is being used, the measured spectrum is
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Figure 3.6: Reconstructed values for the scale parameter, Dec, for the
Argon experiment using the momentum parametrisation method from
250 realisations. The benchmark speed distribution is the SHM. The
value of Dirye = 75.6 x 107 cm? kg_2 is shown as a dashed vertical line.
Reproduced from Paper I [335].

particularly susceptible to Poisson fluctuations. The mock dataset used
here has a slight excess of events around Er ~ 60 keV, corresponding to
par = 30 MeV, which may explain the reconstructed excess.

In addition, this may be a consequence of the particular parametri-
sation. The constant-bin parametrisation of f (p) leads to a parametrised
7)(Pmin) Which is concave downwards in each bin, while the underlying func-
tion is strictly convex downwards in this region. Thus, 77(pmin) tends to be
slightly overestimated, leading the scale parameter D to be reduced to
compensate for this. With datasets containing more events, the number of
bins could be increased, in order to reduce this bias on D and maintain it

at below the level of the statistical uncertainty.

3.4 Momentum parametrisation for several

experiments

The reduced momentum method allows us to extract information from a
single experiment, making no assumptions about the underlying velocity

(or momentum) distribution. However, information about the mass and
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Figure 3.7: Reconstructed momentum distribution for a single Argon
experiment using a benchmark of a 50 GeV WIMP and the SHM. The
upper panel shows the SHM momentum distribution (solid blue) and re-
constructed bin values (red points). Because the posterior is unimodal,
we also display vertical errorbars showing the extent of the 68% confi-
dence region for each bin. Note that these errors are strongly correlated.
The lower panel shows the corresponding reconstructed mean inverse
momentum (dashed red) and the mean inverse momentum in the SHM
(solid blue). The underlying distribution has been rescaled by 1/, for
comparison to the reconstructed values. Reproduced from Paper I [335].

cross-section are encoded in the parameter, D, and cannot be extracted
using a single experiment alone. We now extend the method to use data
from several detectors.

Because a different momentum variable py can be defined for each ex-
periment, it is necessary to choose a single experiment and parametrise
the momentum distribution defined with respect to that experiment. It
may be necessary to adjust the lower and upper limits of the parametri-
sation (beyond the values of E;, and Ep.c used in the experiment) to

accommodate as much of the data as possible from all experiments. In
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the single experiment considered in Section [3.3] the WIMP-Ar momentum
was parametrised in the range pa, € [23.6,49.2] MeV, to match the sensi-
tivity of the Argon experiment. However, as can be seen in Fig. [3.2] this
sensitivity window does not match that of the other experiments. If we
extend this interval, and parametrise in the range pa, € [3.6,53.0] MeV,
we can enclose the sensitivity regions of all three experiments as closely as
possible, as shown by the dotted curves in Fig. We again use 5 bins
in momentum space, with an additional parameter to control a constant
offset.

In theory, any of the three experiments could have been chosen to de-
fine the momentum variable. However, some choices of experiment are
less practical. For example, in order to use the XENON1T-like experi-
ment, it would be necessary to parametrise the momentum over the range
pxe € [11,162] MeV. This is because at high WIMP masses the remain-
ing two experiments have maximum accessible speeds of ~ 500km s '.
This corresponds to very high values of the WIMP-Xe reduced momen-
tum because of Xenon’s comparatively higher mass. A large number of
bins would be required to cover this wide momentum range and accurately
model structures in the distribution function. Owing to the Galactic escape
speed, many of these bins would have a value of zero, making parametri-
sation with respect to the XENON1T-like experiment a poor choice.

By comparison, using the WArP-like Argon experiment allows us to
parametrise only as much of the momentum space as required to accom-
modate data from all three experiments. In the speed parametrisation
method, varying the WIMP mass altered the size and number of energy
bins to which the experiments were sensitive. However, for a given range of
reduced WIMP-Argon momenta, the corresponding energy range probed
by each experiment depends less strongly on m, (and is independent of
m,, for the Argon experiment itself). This means that the number of bins
probed by each experiment should not vary significantly as a function of
WIMP mass. For a fixed bin width in momentum space, the bin width in
energy space is also much less sensitive to the WIMP mass. This should
help reduce the bias observed in the binned speed parametrisation.

Unfortunately, this method does not allow the WIMP-nucleon cross-
section to be extracted; because the contributing WIMP fraction, «, is
unknown, we can only obtain a lower bound. This is a fundamental lim-

itation of any method which makes no assumptions about the underlying



68 CHAPTER 3. PARAMETRISING THE WIMP DISTRIBUTION

speed distribution. Without knowing the fraction of WIMPs with speeds
within the signal window of the experiment, we cannot determine the cross-
section. However, the cross-section appears in the event rate only through
the degenerate combination o,py. As discussed in Sec. [2.3.3] estimates of
po typically carry a factor of around 2 uncertainty. Thus, any estimate of
the WIMP-nucleon interaction cross-section would have an inherent uncer-

tainty in any case.

3.4.1 Results

We first compare results for the momentum method to the speed parametri-
sation method described in Section B.2l We use the same mock datasets
generated for the 50 GeV, SHM benchmark presented previously. The re-
sults of both the momentum and speed methods are shown in Fig. 3.8 In
the case of the momentum method, the distribution of realisations is now
more closely peaked around the true mass of 50 GeV. Furthermore, the
momentum method produces substantially improved coverage properties,
as summarised in Table[3.2] It should be noted that compared to the speed
method, the momentum method leads to a larger number of reconstruc-
tions at high WIMP mass. It is not clear whether this signals a failure of
the momentum method in certain cases or whether these are representative
of ‘bad’ reconstructions, as will be discussed shortly.

Figure shows the reconstructed WIMP-Argon momentum distribu-
tion using the same mock dataset as used for Fig. [3.4 The benchmark
distributions have been rescaled by « so that they can be compared to the
reconstructed values. In this case, a = 0.995, so we can reconstruct both
the mass and cross section accurately: log,,(me./ GeV) = 1.62 £+ 0.31
and log;((0,/107*7 cm?) = 2.99 + 0.18, compared to the true values of
10g10(Mirue/ GeV) = 1.699 and log,,(0,/107*7 cm?) = 3.0. While there is
no way to know a priori whether o will be close to unity, the accurate
reconstruction of the mass, cross-section and momentum distribution show
that momentum parametrisation can offer a significant improvement over
the speed parametrisation method.

We now present the results of the momentum method for a wider range
of benchmarks. In order to ensure the robustness of the method, we use two
possible WIMP masses of 50 GeV and 100 GeV, as well as three benchmark

models for the velocity distribution:
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Figure 3.8: WIMP masses reconstructed using the speed and momentum
parametrisation methods from 250 realisation. The benchmark speed
distribution is the SHM. The true mass of 50 GeV is shown as a dashed
vertical line. Reproduced from Paper I [335].

Speed Method Momentum Method
68% Coverage 36 + 3% 71+ 3%
95% Coverage 63 £ 3% 92 + 2%

Table 3.2: Confidence interval coverage results for the speed and momen-
tum parametrisation methods for a 50 GeV SHM benchmark model.

(i) the Standard Halo Model (SHM), with o = 156km s™' and v, =
220km s !

(ii) a 50% Standard Halo Model with a 50% contribution from a dark
disk (SHM+DD);

(ili) rescaled Via Lactea II data (VL-2).

We model the dark disk velocity distribution as a Maxwellian with
o =50km s and Vg = 60 km s~! similar to the typical values obtained
by Ref. [338]. A 50% contribution from the dark disk is at the upper limit
of the range presented by Ref. [317] and we consider this as an extreme

case. The third benchmark is the distribution function as extracted from
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Figure 3.9: Reconstructed momentum distribution from all three mock
experiments using a benchmark of a 50 GeV WIMP and the SHM. The
upper panel shows the SHM momentum distribution (solid blue) and
reconstructed bin values (red points). The lower panel shows the corre-
sponding reconstructed mean inverse momentum (dashed red) and the
mean inverse momentum in the SHM (solid blue). The reconstructed

values have been rescaled by « for comparison to the true distribution.
Reproduced from Paper I [335].

the Via Lactea 2 (VL-2) N-body simulation [339] and presented in Ref.
[B10]. It is averaged over galactic radius in the range 7.5 < R < 9.5 kpc
and measured in bins of width 10 m s=!. VL-2 is a DM-only simulation
and thus leads to a lower peak speed than the SHM. Including the effects
of baryons should deepen the galactic potential and raise this peak speed
closer to that observed in the Milky Way. In order for a fairer comparison,
we therefore rescale the VL-2 data such that f;(v) peaks at the same speed
as in the SHM, allowing us to probe the departures from Maxwellian form
which appear in N-body simulations.

The distributions of reconstructed masses are shown in Fig. for
the 50 GeV WIMP and Fig. for the 100 GeV WIMP. For the 50 GeV

benchmark, the distribution of reconstructions is peaked at the true value,
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Figure 3.10: Distribution of reconstructed masses, Mmyec, using the mo-
mentum method for 250 reconstructions. The true mass of 50 GeV is
shown as a dashed vertical line. Reproduced from Paper I [335].

though in all three cases there are a number of datasets reconstructed at
higher masses. For some of the mock datasets, the posterior distribution
for the WIMP mass is multimodal, with a peak near the true value as well
as a peak above ~ 100 GeV. For reconstructions using a fixed speed (or
momentum) distribution, these may correspond to ‘bad’ reconstructions,
as mentioned previously, in which the spectrum of events is flatter than
expected. When the momentum distribution is allowed to vary, as here, the
event rate can be well fit by more than one region of the mass parameter
space. We also note a larger number of reconstructions at high masses
in the case of the VL-2 benchmark. This is because of the flatter recoil
spectrum in this case, which is more easily mimicked by a higher WIMP
mass.

For the 100 GeV benchmark, the SHM and VL-2 models show similar

structures, with a broad peak of reconstructions at or near the correct
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Figure 3.11: As Fig. but for m, = 100 GeV. Reproduced from
Paper I [335].

values, as well as a smaller tail up to masses of 1000 GeV, the upper limit
of the prior. The 100 GeV datasets contain fewer events than their 50 GeV
counterparts, so we would expect the spread of reconstructed values to be
broader. Also, as the WIMP mass exceeds the mass of the target nucleus,
Umin becomes less sensitive to the value of the m, [319]. The result is that
the shape of the event spectrum becomes roughly independent of the WIMP
mass. The largest nuclear mass used here is Ax, = 131, meaning that for
values of m,.. significantly above m, ~ 131 amu ~ 122 GeV, the posterior
distribution becomes roughly flat. Reconstructions in the high-mass tail
occur when the maximum of the posterior occurs in this approximately flat
region, and we expect the tail to extend up to arbitrarily high masses. In
this case, we can only place a lower bound on the WIMP mass and, when
calculating coverage statistics, we use 1-tailed limits (i.e. a p% confidence
limit encloses £ (1 + p)% of the marginalised posterior).

We report coverage statistics for the various benchmarks in Table [3.3|
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WIMP Mass
50 GeV 100 GeV
71+3% 65+3%

SHM 02 4+ 2% 94+ 1%

61+3% 53+ 3%
SHM+DD g/ 10 91499
_ 724 3% 65+ 3%

90 £2% 94+ 2%

Table 3.3: 68% and 95% confidence interval coverage results for the
momentum parametrisation method using a variety of benchmark pa-
rameters, as defined in Sec. [3.2.1]

For the SHM, there is approximately exact coverage for both 50 and 100
GeV WIMPs, while for the VL-2 benchmark exact coverage is observed
for the 100 GeV WIMP. The remaining benchmark parameters display
some undercoverage, though still much improved over that achieved by the
speed parametrisation method. The poorest coverage is achieved for the
100 GeV SHM+DD benchmark, for which the 68% confidence interval has
a coverage of 58 + 3%. This is to be expected from the poorly distributed
reconstructions shown in Fig. For the 100 GeV dark disk benchmark,
there appears to be a significant bias in the distribution of reconstructed
values, which peaks around 70 GeV. We explore the origin of this bias in
the next section, where we examine the speed distributions reconstructed

using this method.

3.4.2 Recovering the speed distribution

We will now consider how the speed distribution can be reconstructed from
the momentum parametrisation. For a set of constant bins in momentum
space, the positions and widths of bins in velocity space are dependent
on the WIMP mass. It is therefore difficult to extract precise statisti-
cal information on the speed distribution, as the bin values will be very
strongly correlated with the WIMP mass. Instead, we take the recon-
structed WIMP mass as fixed and use this to obtain a speed distribution
from the momentum distribution parameters. Without treating the covari-

ance of the WIMP mass and the bin parameters in full, the reconstructed
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Figure 3.12: Reconstructed speed distribution from all three mock exper-
iments using the momentum parametrisation method. The benchmark
is a 50 GeV WIMP and the SHM distribution function. The upper panel
shows the underlying SHM speed distribution (solid blue) and the fitted
values of the speed bin parameters (red points). The lower panel shows
the mean inverse speed corresponding to these fitted values (dashed red
line) and the true mean inverse speed (solid blue). The underlying distri-
butions have been rescaled by « for comparison to the reconstructions.
Reproduced from Paper I [335].

speed distribution will depend strongly on the reconstructed mass value.
However, this naive approach should give an indication of whether accurate
reconstructions are possible.

First, we consider a 50 GeV WIMP with SHM distribution, as an
archetypal WIMP model with a well-behaved distribution function. We
show a typical reconstructed speed distribution in Fig.[3.12] using the same
mock dataset as Fig. 3.9 In this case, the reconstructed value of mye. is
42 GeV and the speed distribution appears to be accurately reconstructed
within the error estimates.

Next, we consider a reconstruction for a 100 GeV WIMP with SHM+DD

distribution function. One example is shown in the left-hand panels of Fig.
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Figure 3.13: As Fig. for a 100 GeV WIMP with SHM+DD distri-

bution function using 5 momentum bins (left panels) and 7 momentum

bins (right panels). Reproduced from Paper I [335].

[3.13] for a dataset with reconstructed mass log;o(myec/GeV) = 1.83£0.15,
compared to the true value of log,y(m,/GeV) = 2. The speed distribution
appears to be well recovered at all speeds. However, there is a significant
discrepancy in the mean inverse speed below ~ 150km s~*. This is be-
cause the SHM+DD distribution function is very rapidly varying at low
v, meaning that the ansatz of constant bins can no longer be applied. As
observed in the speed parametrisation method, the event spectrum can be
steepened by moving to lower mass values and this may explain why there
is significant bias and poor coverage for this set of benchmark parameters.

In the right-hand panels of Fig. [3.13] we show results from the same
mock dataset reconstructed using 7 bins in momentum space. The recon-
structed mass is now logy(mye./GeV) = 2.214£0.27, with the mean inverse
momentum more closely reconstructed than for the 5 bin case. Figure
shows the distribution of reconstructed masses for a 100 GeV WIMP with
a SHM+DD distribution function using 7 bins in momentum space. The
reconstructed masses are now more broadly distributed around the bench-
mark value, with improved coverage compared to the 5 bin case: 67 4= 3%

and 94 + 1%. We have found that increasing the number of bins for the
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Figure 3.14: Distribution of reconstructed masses using the 7-bin mo-
mentum method for 250 reconstructions for a SHM+DD benchmark
distribution. The true mass of 100 GeV is shown as a dashed vertical
line. Reproduced from Paper I [335].

50 GeV SHM benchmark leaves the coverage properties and distribution of
reconstructions largely unchanged, indicating that increasing the number
of bins can be used to check the robustness of the reconstructions.
Finally, we consider the discriminatory power of the reconstructions.
Returning to the 50 GeV SHM benchmark, we plot a single speed distri-
bution reconstruction in Fig. |3.15] as well as all three benchmark speed
distributions for comparison. The reconstruction is reasonably consistent
with both the SHM and VL-2 models and displays only mild tension with
the SHM+DD model. In addition, the benchmark distributions in Fig.[3.15
have been rescaled by the true value of a for comparison with the recon-
structed values. In a real experiment, the value of « is unknown, further
reducing the potential to discriminate between different models. Only in
the case of more extreme distribution functions, such as a dark disk, might
it be possible to make a distinction between the many possible underlying
models. Thus, while the momentum parametrisation method can provide
good constraints on the mass of the WIMP, it remains difficult to probe

the speed distribution function.
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Figure 3.15: Reconstructed speed distribution from all three mock exper-
iments using a benchmark of a 50 GeV WIMP with SHM distribution.
The reconstructed values have been rescaled by « for comparison to the
true distribution. The three different benchmark speed distributions
defined in Sec. have been overlaid: SHM (solid blue), SHM+DD
(dashed green) and VL-2 (dotted red). Reproduced from Paper I [335].

3.5 Discussion

We have explored the simple, empirical parametrisation proposed by Pe-
ter and showed that it produces a significant bias and underestimates the
errors on m,, even for simple benchmarks. This appears to be due to the
dependence of n(ER) on m,,. For a fixed bin width in v, reducing the WIMP
mass leads to smaller bins in Eg. This means that n(Eg) can provide a
better fit to the observed data, as demonstrated in Fig. [3.5]

As an alternative we have proposed binning the momentum distribu-
tion. For a single experiment, the inverse momentum distribution 7(ER)
is independent of the WIMP mass and the scale (controlled by the param-
eter D of Eq. and shape of the recoil distribution can be effectively
decoupled. This allows D to be reconstructed with minimal bias. The D
values from many different experiments can then potentially be used to
place bounds on the values of the WIMP mass and cross-section.

However, to directly constrain the WIMP mass, it is necessary to com-

bine data from multiple experiments simultaneously. This is done by
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parametrising the reduced momentum distribution of the WIMPs with re-
spect to only one of the experiments. In this work, we choose to parametrise
DPyar- The result is that the shape of the recoil spectrum depends only
weakly on the WIMP mass. This is because the recoil energy can now be

written as

Ep= War (“X—N>2 . (3.27)
my My Ar

For a fixed bin width in p, 4,, the bin width in recoil energy now scales with

143 n /13 > Which has a weaker dependence on m, than when we consider

fixed bins in v. This reduces the bias induced in the reconstructed WIMP

mass.

The momentum method also allows us to probe a more constrained
range of speeds. This is done by parametrising p, 4, only over the range to
which the experiments are sensitive. While this cannot be done exactly for
more than one experiment, it means that as many of the momentum bin
parameters as possible contribute to the rate. Varying the WIMP mass
does not strongly impact the number of bins to which the experiments are
sensitive, again reducing bias in the reconstructed value of m,. This is
similar to the method of Drees and Shan [327], which uses an algorithm to
attempt to match the sensitivity ranges of multiple experiments.

Unfortunately, for low WIMP masses the range of speeds (and there-
fore momenta) probed by each experiment grows rapidly (see Fig. |3.2]).
A significant portion of this range is expected to be significantly higher
than the maximum expected WIMP speed of ~ 800km s™*. If we hope to
parametrise the entire range of sensitivity of the experiments, this means
that only a very small fraction of this range will be non-zero. A very large
number of bins would be required to capture this ‘low’ momentum popu-
lation (as discussed briefly in Sec. for the case of a Xenon experiment).
Thus, the momentum binning method appears not to be feasible for low
mass WIMPs. Even in the case of intermediate mass WIMPs, it may not
always be clear what the optimum range of momenta will be. We have not
proposed a method for determining the range of momenta to parametrise,
given the experimental parameters. Instead, the momentum range must
be chosen ‘by eye’.

In Sec. [3.4.2] we have attempted to reconstruct the WIMP speed dis-

tribution from the corresponding momentum distribution. In doing so,
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we fixed the WIMP mass to its reconstructed value, in order to avoid the
strong correlations between m, and f(p) associated with converting p to
v. However, in order to make robust statistical inferences about the speed
distribution, it is necessary to take these correlations into account. This
will be especially important when distinguishing between similar forms for
f(v), as in Fig. In future, it will be necessary to study these corre-
lations in detail or find a parametrisation with which we can reconstruct
f(v) directly.

Finally, while the momentum bin parametrisation provides significant
improvements in coverage and reduced bias over the speed bin parametri-
sation, it may not work in every scenario. For example, the method still
suffers from some under-coverage for more extreme distribution functions,
such as the dark disk. This can be improved by increasing the number of
bins, at the cost of significantly widening the range of reconstructed masses.
These residual problems mean that the momentum binning method should

be applied with caution.

3.6 Conclusions

We have discussed previous attempts to account for astrophysical uncer-
tainties in the analysis of direct detection data. In particular, we have em-
phasised the need for a general, empirical parametrisation for the WIMP
distribution function and we have studied one such proposal in detail: a
binned parametrisation for f(v), developed by Peter. We show that this
method produces a significant bias in reconstructions of the WIMP mass.
This parametrisation introduces a fixed scale (the bin width) into the dis-
tribution function. Converting from speed bins to energy bins depends
on the WIMP mass, introducing a bias into the analysis. We propose an
alternative method: a binned parametrisation of the WIMP momentum
distribution.

In the case of a single experiment, this method can be applied exactly
and allows one to extract information about the shape of the distribution
function, at the cost of losing access to information about either the WIMP
mass or cross-section separately. For multiple experiments, the range of the
parametrisation must be extended to cover the sensitivity regions of all ex-
periments. For estimation of the WIMP mass, this allows us to achieve

significant improvements in coverage and reduction in bias over previous
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methods. Without making any assumptions about the WIMP speed dis-
tribution, however, we cannot estimate the interaction cross-section due to
its degeneracy with the fraction of WIMPs accessible to the experiments.
This is an unavoidable problem for any method hoping to analyse direct
detection data without astrophysical assumptions.

Reconstruction of the WIMP speed distribution remains difficult. The
finite sensitivity window of direct detection experiments means that infor-
mation on the normalisation of f(v) is lost, making comparison to theoret-
ical models difficult. At the event rates studied here, it does not appear to
be possible to distinguish between different distribution functions. A more
thorough treatment of the correlation between m, and the momentum bin
parameters would be required for robust inferences.

This technique represents a significant step towards developing model-
independent methods for determining the WIMP mass. However, caution
must be exercised, as the method is expected to perform poorly for low
mass WIMPs, where the range of momenta probed by the experiments is
large. There is also evidence that residual bias may remain, especially in

the case of more extreme distribution functions.



Chapter 4

A polynomial parametrisation

of the speed distribution

In an attempt to mitigate astrophysical uncertainties in the analysis of
direct detection experiments, a number of parametrisations for the WIMP
speed distribution have been proposed. In Chapter [3, we explored two
such empirical parametrisation which aim to fit the WIMP distribution
without making any a prior: assumptions about its form. These methods
involved writing the WIMP speed and momentum distributions as a series
of constant bins.

However, the introduction of a fixed scale, in the form of the bin width,
results in a bias in the reconstruction of the WIMP mass. While binning
the momentum rather than speed distribution helps to reduce this problem,
residual bias may remain. Furthermore, the method is expected to fail for
low mass WIMPs and the choice of momentum range to parametrise may
not always be clear.

In this chapter, we propose an alternative parametrisation for the speed
distribution which is smooth and can fit a wide range of possible functional
forms of f(v). This method involves parametrising the logarithm of f(v)
as a polynomial in the WIMP speed v. We describe the parametrisation
in detail in Sec. 4.1l

We test the parametrisation, as in Chapter [3| using mock data sets
from future experiments, generated from a range of particle physics and
astrophysics benchmarks, outlined in Sec. 1.2l We show in Sec. [£.3.2]
that the parametrisation allows an unbiased reconstruction of the WIMP

mass, even when Poisson noise and realistic experimental parameters are

81
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incorporated in the analysis. We show the performance of the method as
a function of WIMP mass and also outline how to determine the optimal
number of basis functions for the polynomial parametrisation.

Finally, in Sec. we show how the speed distribution can be re-
constructed using this parametrisation. A lack of information about the
normalisation of f(v) impairs our ability to reconstruct its absolute value.
However, we propose a method for reconstructing the shape of the mean in-
verse speed 1)(vmin) even when information about the overall normalisation

is not available.

4.1 Parametrising the logarithm of f(v)

We would like to write down a general parametrisation, treating f(v) as a
free function. However, the speed distribution is subject to two constraints

in order to qualify as a physical distribution function:

(i) it must be normalised (or at least should be capable of being nor-

malised), and
(i) it must be everywhere greater than or equal to zero.

Motivated by (ii), we propose parametrising the natural logarithm of the
speed distribution. The properties of the logarithm will ensure that the
speed distribution remains everywhere positive. Moreover, logarithmic de-
pendence on the parameters means that a wide range of shapes for the
speed distribution can be spanned by the parametrisation.

We parametrise In f(v) as a polynomial in v. That is, we wish to write

i

In f(v) = arPr.(v) (4.1)

0

B
Il

leading to the speed distribution

N—-1
f1(v) = v?exp (Z akPk(v)> , (4.2)
k=0
where we use N polynomial basis functions Py(v), multiplied by the co-
efficents a;. Normalisation is imposed by fixing ay once the remaining
parameters have been chosen. By using enough basis functions for the

polynomial parametrisation, we can approximate any smooth, bounded
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function arbitrarily well [340], so this choice provides complete generality.
However, which polynomial basis should be used? We see immediately that

a naive power series of the form

Inf(v) = ag + a1v + av® + asv® + ..., (4.3)

is not practical for the purposes of parameter estimation. Higher powers
of v will have rapidly growing contributions to In f(v), meaning that the
associated coefficients must be rapidly decreasing in order to suppress these
contributions. Fitting to the SHM using just 5 terms, the range of values
for the ay in the case of a simple power series would span around 13 orders
of magnitude. Ideally, we would like to specify an identical prior on each
of the coefficients. However, in this scenario this would result in a highly
inefficient exploration of the parameter space when some of the terms are
so small.

This problem can be significantly improved by rescaling v. We choose
to rescale by a factor of vy = 1000km s~ and cut off the distribution
function at vyac. We should choose vp.x to ensure that fi(v) is negligi-
ble above the cut off. However, too high a choice of vy, will result in
f1(v) being close to zero over a large range of the parametrization, making
fitting more difficult. We use the value v = 1000km s™*, which lies
significantly above the Galactic escape speed, as discussed in Chapter [3]
The basis functions (v/vmax ) are now less than unity by construction and

the coefficients a;, are now dimensionless:

Inf(v) & agp + a1(v/Vmax) + @2(V/Vmax)? + a3(V/Vmax)” + ... (4.4)

We now address the problem of conditioning of the polynomial basis
(see e.g. Refs. [341] B342]). Conditioning is a measure of how much the
value of a polynomial changes, given a small change in the coefficients. For
a well-conditioned polynomial, small changes in the coefficient are expected
to lead to small changes in the value of the polynomial. This is ideal for
parameter estimation as it leads to a more efficient exploration of the pa-
rameter space. Orthogonal polynomial basis functions typically have good
conditioning [341] and we consider two specific choices: the Legendre poly-
nomials and the Chebyshev polynomials. The Legendre polynomials are a

familiar series of orthogonal basis functions. The Chebyshev polynomials
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are used extensively in polynomial approximation theory [343] and are ex-
pected to be well conditioned [341]. We examine both which polynomials
perform best and how many basis functions are required in Sec. [4.3.1]

We plot in Fig. some examples of distribution functions which can
be described by the polynomial In f(v) parametrisation with N = 5 basis
functions. These examples were generated by randomly picking values for
the {a;} values. Clearly this parametrisation can reproduce a wide range
of shapes, peaking at different values of v. However, we wish to determine
how well we can fit these parameters, along with the WIMP mass and cross
section, to data. As in the case of the binned distribution of Chapter [3, we
now define a series of theoretical and experimental benchmarks which we

use to generate mock data sets and test the parametrisation.

0.020

0.015f

0.010¢

fi(v)/km™"s

0.005

O'OOOO 200 400 600 800 1000

Figure 4.1: Examples of speed distributions fi(v) generated using the
polynomial parametrisation for In f(v) with N = 5 Chebyshev basis
functions. The SHM distribution function in the Earth frame is shown
as a black dashed line for comparison.

4.2 Experiments and benchmark

parameters

In order to generate mock data sets, we consider three idealized mock ex-
periments, loosely based on detectors which are currently in development.

The three target materials we consider here are Xenon, Argon and Germa-
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Target Detector .
Experiment | Mass, Mass (fid.), Efficiency, E{;lflrge};ke\f
A Mdet /KG &
Xenon 131 1100 [250] 0.7 [247] 7-45 [344]
Argon 40 1000 0.9 [345] :{3&&}00
Germanium | 73 150 [347] 0.6 [348] 8-100 [34§]

Table 4.1: Summary of experimental parameters used in this work, de-
fined in Sec. An exposure of tey, = 2 years is used for all 3 experi-
ments.

nium. As in Chapter [3| we describe each experiment in terms of the mass
number A of the target nucleus, fiducial detector mass mqe, efficiency € and
energy sensitivity window [Fiin, Emax].- We consider a total exposure time
for all experiments of fe,, = 2 years. The experimental parameter values
used in this chapter are summarized in Tab. 4.1 We note that these values
may be slightly adjusted or updated compared to those used in Chapter
as a result of updated experimental results and projections. We have tried
to indicate the source of the values used in Tab. .1l

As in Chapter [3] we assume that SI interactions dominate and use a

single value of the interaction cross section of = 107% cm?.

However,
we will consider a range of WIMP masses from 10 GeV, below which the
sensitivity of current direct detection experiments decreases dramatically,
up to 500 GeV. Sensitivity to the precise WIMP mass is lost for values
of m, significantly heavier than the target nuclei masses, so we need not
extend the analysis to very high m,,.

We consider several benchmark speed distributions in this chapter, in-
cluding the SHM and the SHM with the addition of a moderate dark disk
which accounts for 23% of the total WIMP density [349]. For the SHM, we
assume a fixed DM density of py = 0.3 GeV cm™>. However, we treat the
dark disk as an overdensity contributing an additional WIMP population,
bringing the local density up to py = 0.39 GeV ecm ™. In addition, we also
use the speed distribution of Lisanti et al. [306], which has the following

form in the Earth’s frame:

2 |V_V0|2

) = Jop (T )—1]k@<vesc—\v—w|>. (45)

We use the parameter values k = 2 and vy = 220km s~ ' in this work,
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Speed distribu- . 1 1
tion benchmark Fraction — vpe/km s o,/ km s
SHM 1 220 156
SHM-DD 0.77 220 156

0.23 50 50
Stream 1 400 20

0.97 220 156
Bump

0.03 500 20

) 200 2

Double-peak 0-5 0 0

0.5 400 20
Lisanti et al. vo=220km st k=2

Table 4.2: Summary of speed distribution benchmarks used in this chap-
ter. Some benchmarks are modelled as mixtures of two gaussian compo-
nents, for which we give the fractional contribution of each component
(labelled ‘Fraction’). The remaining parameters are defined in Sec. m
as well as Eq. and the accompanying text. The ‘bump’ and ‘double-

peak’ distributions are discussed in Sec. For each benchmark dis-

tribution, we fix vesc = 544 km s7L

which provide a good fit to results from N-body simulations [306]. In all

cases, we assume a fixed value of the escape speed ves. = 544 km g7t (see

Chapter [2). We summarize in Tab. the different speed distributions
considered. We also plot several of these in Fig. [4.2] for reference.

4.2.1 Parameter sampling

The parameter space of the polynomial In f(v) parametrisation is much
larger than for the binned method and is poorly explored using conven-
tional MCMC methods. We therefore make parameter inferences using the
publicly available MULTINEST nested sampling package [351H353]. This
allows us to map out both the likelihood £(0) and posterior probability
distribution P(6) for the model parameters . We summarize in Tab.
the MULTINEST sampling parameters used. We also summarize the priors
used in this work in Tab. The MULTINEST algorithm and the other
statistical techniques used in this chapter are described in more detail in
Appendix [A]

In Sec. and Sec. [£.4] we consider many realisations of data, includ-

ing the effects of Poisson noise. We therefore use the unbinned likelihood
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Figure 4.2: Several of the benchmark speed distributions used in this
chapter. They are defined in Eqgs. [2.45] and with parameters from

Tab. These distributions are the SHM (solid blue), SHM+DD
(dashed green), Lisanti et al. (dot-dashed red) and the stream (dot-

ted magenta). Reproduced from Paper IV [350].

Parameter | Value
Niive 10000

efficiency | 0.25
tolerance | 1074

Table 4.3: Summary of the MULTINEST sampling parameters used in

this chapter.

of Eq. in MULTINEST. As in Chapter [3 we make parameter infer-
ences from the marginalised posterior distribution P,,. We take the mode

of the distribution to be the reconstructed parameter value and construct
p% highest-density credible intervals. This method performs well for small
numbers of observations (compared to the number of free parameters in the

fit). It is therefore a sensible choice here, where in some cases the number

of events observed in an experiment is less than 10.

In Sec. and Sec. 4.3.2 we consider the effects of varying the form
of the parametrization and of varying the input WIMP mass. In order to

eliminate the effects of Poisson noise, we use Asimov data [354] for these
sections. This means that we divide the energy window of each experiment

into bins of width 1 keV. We then set the observed number of events N!
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Parameter Prior type Prior range
my/ GeV log-flat [10°,103]
o,/ cm? log-flat  [107%6,107%2]
{ap} linear-flat  [—50, 50]
Rpg/dru log-flat  [1072,107°]

Table 4.4: Summary of the priors on the parameters used in this chapter.
The background rate Rpg is defined in Sec. while the {ay} are the
polynomial coeflicients used in the parametrisation. The differential rate
unit (dru) is defined as events/kg/day/keV.

in bin 7 equal to the expected number of events N! and use the binned
likelihood

(N é —N}

L= 11;[ T (4.6)
for each experiment. In these sections, we have a very large number of
observations, namely the exact (non-integer) event numbers in each energy
bin. We can therefore use the best fit point (i.e. the point which maximises
the likelihood) as the reconstructed value. To obtain confidence intervals
on some subset of the full parameter space, we use the profile likelihood
L,, obtained by maximising £ over the remaining nuisance parameters. We

then construct confidence intervals using the asymptotic x? distribution of
the profile likelihood [355].

4.3 Results

Before we consider in detail the properties of the parametrisation, we show
a single reconstruction of m, and O'EI using as input a WIMP of mass 50
GeV and the SHM distribution function. We generate Asimov data for this
benchmark and fit using N = 5 basis functions and a basis of Chebyshev
polynomials (see Sec. [£.3.1). If the polynomial In f(v) parametrisation
cannot produce an unbiased reconstruction of the WIMP parameters for
the simple and smooth SHM benchmark, it is unlikely to be useful for more
complicated distribution functions.

The results of this reconstruction are shown in Fig. [4.3] There is very
good agreement between the best fit point (green triangle) and the bench-
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Figure 4.3: Reconstruction of the WIMP mass and cross section using
the polynomial In f(v) parametrisation with 5 Chebyshev basis func-
tions. Asimov data was generated for a WIMP with m, = 50 GeV and
of; = 107% cm? (shown as dashed red horizontal and vertical lines)
and the SHM speed distribution. The shaded blue shows the value of
the profile likelihood (with darker values corresponding to higher likeli-
hood), along with the 68% and 95% confidence contours. The best fit
point is shown as a green triangle.

mark values (dashed red lines). The WIMP mass is well reconstructed,
with an uncertainty of about 30% at the 1o level. However, we notice that
there is a significant degeneracy, with the reconstruction for O’SI extend-
ing up to large values. This problem was discussed briefly in Chapter [3]
We have no information about the shape of f(v) below the energy thresh-
olds of the experiments. This means that distributions which have a large
WIMP population at low speeds can be made to fit the data as well as
those which do not, as long as the value of the cross section is adjusted
to compensate. While we can reconstruct m, using this method, we can
only place a lower limit on UIS)I unless we make further assumptions about
the low speed WIMP population. We will now explore in more detail the

properties of this new parametrisation method.
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Figure 4.4: Benchmark speed distributions used in Sec. to test the
performance of the parametrization as a function of the number and
type of basis functions. Reproduced from Paper IV [350].

4.3.1 Testing the parametrisation

We now consider the two questions: (i) how many basis functions are re-
quired and (ii) which polynomial basis should be used? In order to answer
these questions, we use the two benchmark distribution functions illus-
trated in Fig. [4.4. We have chosen these benchmarks not because they are
necessarily realistic distribution functions but because they should be diffi-
cult to fit using standard techniques and fitting functions (e.g. Ref. [300]).
The first distribution (referred to as ‘bump’) is a SHM distribution with
the addition of a small bump, which contributes just 3% of the total WIMP
population and could correspond to a small sub-halo or stream [309]. This
should be difficult to fit because it represents only a very small devia-
tion from the standard scenario. The second distribution (referred to as
‘double-peak’) has a sharp and rapidly varying structure, which we antici-

pate should be difficult to capture using a small number of basis functions.

Varying the number of basis functions

We first investigate how the reconstructed WIMP mass m.. and uncer-

tainty varies with the number of basis functions N. For now, we fix our
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choice of basis to shifted Legendre polynomials':

Pi(v) = Ly (2 ! —1) , (4.7)

Umax

where L;, is the Legendre polynomial of order k.

The lower panel of Fig. shows the best fit mass and 68% confidence
intervals as a function of N, using as input a WIMP of mass 50 GeV and
the ‘bump’ distribution function. The reconstructed mass very rapidly
settles close to the true value, using as few as three basis functions. This

L still leaves the mean

is because adding the bump near v ~ 500km s~
inverse speed relatively smooth, so a large number of basis functions is not
required. The correct mass is reconstructed and we emphasize in the lower
panel of Fig. that the reconstruction is stable with the addition of more
basis functions.

We should also consider how the quality of the fit changes as a function
of N. We would expect that adding fit parameters should always lead
to a better fit. Eventually, the fit should be good enough that adding
additional basis functions will no longer improve it significantly. We can
then be confident that our reconstruction is accurate and not an artifact
of using too few basis functions. In order to investigate this, we utilise the

Bayesian Information Criterion (BIC) [356], which is given by:

BIC = 2N,In(N,,) — In(Loax) (4.8)

where N, is the number of free parameters, NV, is the number of measure-
ments or observations and L.« is the maximum likelihood value obtained
in the reconstruction. For the case of binned data, N,, corresponds simply
to the total number of energy bins across all experiments. This criterion pe-
nalises the inclusion of additional free parameters and in comparing several
models, we should prefer the one which minimises the BIC.

The upper panel of Fig. shows the BIC (in arbitrary units) as a
function of the number of basis functions for the ‘bump’ distribution func-
tion. The BIC is comparable for the cases of N =2 and N = 3, indicating
that the quality of the fit is improved slightly by the addition of another
basis function. However, adding further basis functions does not have a sig-

nificant impact on the maximum likelihood, leading to an increase in the

'We use the shifted argument 2v/vy.x — 1 in order to enforce the orthogonality of
the polynomials over the range v € [0, Vmax]-
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Figure 4.5: Bayesian information criterion (BIC) as a function of the
number of basis functions for an underlying ‘bump’ distribution function,
50 GeV WIMP and using Legendre polynomial basis functions (upper
panel). Also shown (lower panel) are the reconstructed WIMP mass
(dashed blue line), 68% confidence interval (shaded blue region) and
underlying WIMP mass (solid horizontal black line). Reproduced from
Paper IV [350].
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Figure 4.6: As Fig. but for an underlying ‘double-peak’ distribution
function. Reproduced from Paper IV [350].

BIC. This coincides with the stabilization of the reconstructed mass around
the true value and we conclude that only two or three basis functions are

required to provide a good fit to the data.
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Figure shows the corresponding results for the ‘double-peak’ distri-
bution function. Here, we note that the bias induced by using too small
a number of basis functions is larger than for the case of the ‘bump’ dis-
tribution, due to the more complicated structure in this case. The BIC
is minimized for N = 7, indicating that additional basis functions do not
significantly improve the quality of the fit to data. This suggests that the
shape of the speed distribution can be well fit by N > 7 basis functions.
As shown in the lower panel of Fig. [£.6] the reconstruction of the WIMP
mass is stable around the true mass for these values of N.

We propose that such a procedure should be used in the case of real
data should a dark matter signal be observed at multiple detectors. We
have shown that by analyzing the reconstructed mass as a function of N we
can recover the true mass and that by using the BIC we can be confident

that we have obtained an adequate fit to data.

Choice of basis functions

We now consider the second question posed at the start of Sec.[4.3.1} which
polynomial basis should be used? As previously mentioned, we test two
different polynomial bases: Legendre and Chebyshev polynomials. We have
checked that the reconstruction results using Chebyshev polynomials are
largely indistinguishable from the case of Legendre polynomials for both the
‘bump’ and ‘double-peak’ distributions and as a function of N. This leads
us to conclude that the accuracy of the reconstruction is independent of the
specific choice of basis. However, the reconstruction was much faster in the
case of the Chebyshev basis. This is illustrated in Fig. which shows the
time taken for reconstruction of the ‘bump’ benchmark as a function of V.
The time taken grows much more slowly for the Chebyshev basis (roughly
as N?) than for the Legendre basis (roughly as N3). This is consistent
with the common use of the Chebyshev basis in polynomial approximation
problems [343]. We have also checked that this difference is not an artifact
of how we calculate the basis functions. These results indicate that this
choice of basis provides both reliable and efficient reconstruction for the
WIMP mass and we therefore use the Chebyshev basis in the remainder of

this work.
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Figure 4.7: Time taken (using 4 processors in parallel) for the recon-
struction of the ‘bump’ benchmark, as a function of number of basis
functions. The time taken using the Chebyshev basis (blue squares)
grows more slowly with N than for the Legendre basis (red triangles).
Reproduced from Paper IV [350].

4.3.2 Varying m,

We now consider the performance of the parametrisation over a wide range
of WIMP masses. We generate Asimov data for WIMP masses of 10, 20, 30,
40, 50, 75, 100, 200 and 500 GeV and reconstruct the best fit WIMP mass
Myee and 68% and 95% confidence intervals from the profile likelihood. We
use the SHM as a benchmark distribution function and use a fixed number
of N =5 basis functions. The results are shown in Fig. [4.8] along with the
line myec = m, for reference.

For large values of m,, the shape of the event spectrum becomes inde-
pendent of m, [357], which results in a widening of the confidence intervals
as the WIMP mass increases. For low mass WIMPs, fewer events are ob-
served in each bin, again resulting in wider confidence intervals. It should
be noted that for this analysis we have used Asimov data, in which the
exact (non-integer) number of events is recorded in each bin. For low mass
WIMPs, this means that the spectrum (and therefore the correct WIMP
mass) is still well reconstructed using Asimov data, in spite of the small
number of events. The tightest constraints are obtained when the input
WIMP mass is close to the masses of several of the detector nuclei (in the
range 30-80 GeV). There also appears to be no bias in the WIMP mass:
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Figure 4.8: Reconstructed WIMP mass mye. (central dashed blue line)
as a function of input WIMP mass m,, as well as 68% and 95% intervals
(inner and outer blue dashed lines respectively). The line mypec = m,
(solid red line) is also plotted for reference. Reproduced from Paper IV
1350].

the reconstruction matches the true mass across all values considered.

So far, we have only considered idealized direct detection experiments.
We now apply the method to more realistic mock detectors, taking into
account the effects of finite energy resolution, as well as unrejected back-
ground events. We assume here that each experiment has a gaussian energy
resolution with fixed width o = 1 keV (see Sec. for details). We also
assume a constant flat background rate for each experiment Rgg = 1076
events/kg/keV/day (which has been suggested as a possible background
rate for XenonlT [344] and WArP-100L [346]) when generating mock data
sets. However, we allow the flat background rate in each experiment to
vary as free parameters during the fit.

We have chosen relatively generic resolution and background param-
eters in this work, because the precise details of energy resolution and
background shape and rate will depend on the specific experiment under
consideration. Instead, we hope to show that the inclusion of more realis-
tic experimental setups does not introduce an additional bias or otherwise
spoil the good properties of the method presented here.

Figure |4.9|shows the reconstructed mass as a function of input mass in

this more realistic scenario. The 68% and 95% confidence intervals are now
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Figure 4.9: As fig. [£.8|but including the effects of finite energy resolution
and non-zero backgrounds, as described in the text. Reproduced from
Paper IV [350].

wider and the reconstructed mass does not appear to be as accurate. For
input masses above ~100 GeV, the uncertainties become very wide, with
only a lower limit of m,.. > 20 GeV being placed on the WIMP mass. Due
to the poorer energy resolution the shape of the energy spectrum is less
well-determined. In addition, a flat background contribution can mimic
a higher mass WIMP, as it leads to a flatter spectrum. This leads to a
strong degeneracy, as a wide range of mass values can provide a good fit
to the data. For high input masses, the profile likelihood is approximately
constant above my. ~ 20 GeV, indicating that there is no sensitivity to
the underlying WIMP mass.

In spite of this, the true mass values still lie within the 68% and 95%
confidence intervals. In addition, the poor values for the reconstructed
mass for heavy WIMPs are a side effect of the loss of sensitivity. Because
the profile likelihood is approximately flat, the maximum likelihood point is
equally likely to be anywhere within the 68% interval. These effects would
be present even if we had considered a fixed form for the speed distribution.
However, when we allow for a range of possible speed distributions, the
effects become more pronounced. These results show that for more realistic
experimental scenarios, the method presented in this work remains reliable

over a range of masses, though its precision may be significantly reduced.
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Benchmark distribution | Mean bias (b)

SHM 0.002 £ 0.008

SHM+DD 0.005 £ 0.007
Lisanti et al. 0.01 £ 0.01

Table 4.5: Mean bias (b) in the reconstructed log WIMP mass (Eq. [£.9).
This was calculated over 250 realisations using three different benchmark
speed distributions.

4.3.3 Statistical properties

We now consider the impact of statistical fluctuations on the reconstruction
of the WIMP mass. In reality, the number of events observed N, at a
given experiment will be Poisson distributed about the expected value N,
while the observed distribution of recoil energies will not exactly match
that expected from the calculated event rate. The fundamental statistical
limitations of future direct detection experiments have been studied in
detail in Ref. [337]. As in Chapter [3, we generate 250 realisations of data
from the mock experiments described in Tab. [4.1]

For each realisation, we then use the polynomial In f(v) parametrisa-
tion (using N = 5 basis functions) to reconstruct the WIMP mass and 68%
and 95% credible intervals. Figure shows the distribution of recon-
structed masses for an input mass of 50 GeV for three benchmark speed
distributions: SHM, SHM+DD and Lisanti et al., as described in Sec. [4.2]
In all three cases, the reconstructions are peaked close to the true value,
regardless of the underlying distribution.

In order to assess the accuracy of the reconstructed value of the mass

Mrec, We also calculate the bias b for each realisation:

b = In(myec/GeV) — In(mipue/GeV) . (4.9)

We compare the logarithms of the mass values because we have used
logarithmically-flat priors on the WIMP mass. In Tab. we show the
average bias across all 250 realisations for each of the three benchmark
distributions. In all three cases, the average bias is consistent with zero.
Even in the SHM+DD case, which shows larger fluctuations away from the
true value, there is no statistical bias.

We also test the coverage of the credible intervals which have been
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Figure 4.10: Distribution of the reconstructed mass mye. for 250 mock
data sets generate