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Abstract

The detection of dark matter (DM) by direct detection experi-

ments has great potential to shed light on particle physics beyond

the Standard Model. However, uncertainties in the DM speed distri-

bution f1(v) may lead to biased reconstructions of particle physics

parameters, such as the DM mass and interaction cross sections.

In this work, we aim to determine whether these parameters can

be determined from future direct detection data without any prior

assumptions about f1(v).

We study previous methods for parametrising f1(v) and show

that they may still lead to biased reconstructions of the DM param-

eters. We propose an alternative smooth, general parametrisation,

which involves writing the logarithm of the speed distribution as a

polynomial in v. We test this method using future direct detection

mock data sets and show that it allows an unbiased reconstruction

of the DM mass over a range of particle physics and astrophysics

parameters. However, the unknown fraction of DM particles with

speeds below the energy thresholds of the experiments means that

only a lower bound can be placed on the interaction cross sections.

By introducing data from neutrino telescope experiments, such

as IceCube, this degeneracy in the cross section can be broken, as

these experiments probe the low speed DM population. Combined

with our parametrisation method, this allows a robust reconstruc-

tion of the DM mass and cross sections without relying on any as-

sumptions about the DM speed distribution. The function f1(v)

itself can also be reconstructed, allowing us to probe the distribu-

tion function of the Milky Way.

Finally, we propose a method of extending this parametrisation

to directional data, which should allow even more information to be

extracted from future experiments without the need for astrophysi-

cal assumptions.
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Chapter 1

Introduction

What is dark matter? For a question so central to cosmology and particle

physics, the prospects for finding an answer do not at first glance seem

promising. The interaction of dark matter (DM) particles must be very

weak in order to evade a myriad of bounds set by precision astrophysical

and cosmological tests. Our failure to observe dark matter particles thus

far tells us that their interactions must be even weaker still. The effort to

detect these interactions both on Earth and in the wider Universe is a vast

technological and scientific challenge.

However, such efforts are advancing rapidly. The detection of particle

DM using terrestrial detectors would give strong clues about the nature and

identity of DM. However, the analysis of these so-called ‘direct detection’

experiments is plagued with uncertainties. One such uncertainty is in our

understanding of the astrophysical speed distribution of dark matter, which

influences the typical energies which would be deposited in a detector in

the lab. If these uncertainties can be overcome, direct detection promises

to be a powerful probe of both the particle physics and astrophysics of DM.

Without a detection of a possible particle candidate, then, the question

‘What is dark matter?’ is perhaps best answered by reviewing the current

evidence for its existence. Evidence for DM is found on scales from the

Milky Way up to the cosmological horizon, with a range of observations

which cannot be adequately explained with the observed constituents of the

Universe. Dark matter is an invisible component introduced to reconcile

these observations with the known laws of physics - most importantly,

General Relativity.

Beyond this general definition, there are a wide range of particle physics

candidates which may play the role of dark matter. These typically derive

1



2 CHAPTER 1. INTRODUCTION

from theories of physics beyond the Standard Model (SM), meaning that

the study of the properties of dark matter can shed light on theories of high

energy physics. Many of these proposed dark matter candidates have weak

but non-zero interactions with particles of the Standard Model, leading to

several avenues through which it is hoped the non-gravitational detection

of dark matter may soon be achieved.

In this chapter, we summarise the evidence in support of the DM

paradigm, including constraints from precision cosmology. We discuss some

of the features which particle DM must possess, as well as describing a few

specific candidates in more detail. Finally, we discuss current progress and

constraints from direct and indirect searches for particle dark matter.

1.1 Evidence for dark matter

Dark matter is a key component of the ΛCDM paradigm of modern cos-

mology. In this framework, the energy density of the Universe today is

dominated by the constant and uniform contribution of the vacuum, Λ.

This contribution exerts a negative pressure and drives the accelerating

expansion of the Universe which was the subject of the 2011 Nobel Prize

in Physics [1, 2]. However, the formation of structure in the early Universe

is driven by the clustering of a non-interacting, slow moving and as yet un-

detected matter component [3], Cold Dark Matter (CDM). The fact that

DM is non-interacting (or at least, interacts only very weakly) means that

it begins to collapse gravitationally earlier in cosmic time than baryonic

matter. After decoupling, baryons then fall into the gravitational wells

produced by the infalling DM structures. Without DM, the baryonic mat-

ter in the Universe could not have had enough time to collapse to form the

range of gravitationally bound structures we see today [3, 4]

Cosmological experiments sensitive to the expansion and structure for-

mation history of the Universe allow us to precisely determine the contribu-

tions of various different components to the energy density of the Universe

(see e.g. WMAP [5], BOSS [6] and CFHTLenS [7, 8] to name just a few).

For example, Baryon Acoustic Oscillations (BAOs) [9] are a feature im-

printed on the distribution of matter in the Universe by acoustic waves

prior to recombination. BAOs can be measured by using galaxy redshift

surveys (such as SDSS [10]) to map out the large scale structure of the

Universe and they provide a ‘standard ruler’ for measuring cosmological
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distances. Type-Ia Supernovae provide ‘standard candles’ which can be

used to measure luminosity distances in the Universe. Redshift surveys of

these supernovae [11] then allow us to reconstruct these distance scales over

cosmic time. Complementary information from these probes and others al-

low us to constrain the expansion history of the Universe and therefore the

various contributions to the density of the Universe.

A particularly sensitive probe for determining the dark matter contri-

bution to the energy budget of the Universe is the measurement of the

temperature anisotropies of Cosmic Microwave Background (CMB) pho-

tons. These contain an imprint of the acoustic oscillations of the baryon-

photon fluid during the era of recombination. The size of these oscillations

is sensitive to the size of the gravitational potential generated in the early

Universe by dark matter, which does not interact with the photons [3].

The recent Planck experiment [12] measured the angular power spec-

trum of these CMB temperature anisotropies. Figure 1.1 shows the results

of these measurements, as well as the best fit 6-parameter ΛCDM model.

The contributions of the cosmological constant, the total matter compo-

nent, and the separate baryonic and dark matter components to the total

energy density of the Universe are shown in Table 1.1. These are given

in terms of the density parameter Ωi = 8πGρi/3H
2
0 , where G is Newton’s

constant, H0 is the Hubble parameter and ρi is the energy density of com-

ponent i. These results, constrained with an accuracy of less than 3%,

point to the conclusion that ∼84% of the matter content of the Universe

is in fact dark.

However, the evidence for dark matter is not purely cosmological. In

1933, Zwicky measured the velocity dispersion of galaxies in the Coma

cluster [14]. An application of the Virial Theorem indicated a gravitational

mass in the cluster which was several hundred times bigger than that ex-

pected from the luminosity of the member galaxies. It is now known that

some of this mass is in the form of hot (∼1 million K), X-ray emitting in-

tracluster gas [15]. Nonetheless, a discrepancy remains; current estimates

of the mass-to-light ratio of the Coma cluster give a value of roughly 150

times that of the Sun [16, 17]. The Coma cluster does not appear to be

unusual. Measurements of the masses of a large number of galaxy clusters

using gravitational lensing [18], X-ray observations [19] and dynamical es-

timates [20] indicate that a significant fraction of a cluster’s mass must be

dark.



4 CHAPTER 1. INTRODUCTION

Figure 1.1: Angular power spectrum of CMB temperature anisotropies
as a measured bythe Planck satellite. Data are shown as red points with
the best fit ΛCDM cosmological model shown as a green line. Repro-
duced from Ref. [12].

Parameter 68% limits
ΩΛ 0.686 ± 0.020

Ωmh
2 0.1423 ± 0.0029

Ωbh
2 0.02207 ± 0.00033

Ωch
2 0.1196 ± 0.0031

Table 1.1: Density parameter Ω (defined in the text) of the cosmological
constant (Λ), total matter (m), and separate baryonic (b) and cold dark
matter (c) components, as obtained by the Planck Collaboration [13].
The Hubble parameter is defined as H0 = 100 h km s−1Mpc−1.

The success of the ΛCDM paradigm is also borne out in results from

N-body simulations. These simulations track the evolution of structure in

the Universe by modeling the dynamics and gravitational interactions of

a large number of particles starting from some initial conditions. These

may be cosmological simulations, tracing the collapse of the initial density

perturbations after decoupling (such as the the Millenium simulation [21]),

or galaxy-scale simulations, tracing the formation and growth of a small

number of galaxies starting from initial conditions at intermediate redshift

(such as the Via Lactea [22] and Aquarius [23] simulations).

Many N-body simulations are DM-only, simulating only the gravita-
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tional dynamics of collisionless particles. However, an increasing number

are incorporating baryonic physics such as gas dynamics, as well as stel-

lar evolution, chemical enrichment and a variety of feedback processes (see

e.g. [24, 25]). Appropriately accounting for these factors is extremely com-

plex and in some cases the strength of these processes is unknown and

must be tuned in the simulations to match observations [26]. Due in part

to these difficulties, the impact of baryonic physics on the formation of

galaxies and the properties of DM haloes is still uncertain (see for example

Refs. [27, 28]). I will revisit this topic - and its consequences for the direct

detection of dark matter - in Chapter 2.

A variety of sophisticated computational techniques (such as smoothed

particle hydrodynamics [29], adaptive mesh refinement [30] and moving

mesh cosmology [31]) have been employed and refined to make such simu-

lations computationally feasible and to allow higher and higher resolutions

to be reached. However, computational limitations mean that the highest

resolution simulations still use ‘particle’ masses of the order of 105M� [28],

many orders of magnitude more massive than the O(GeV-TeV) particles

expected to make up the Universe’s dark matter.

In spite of this, a consistent picture has emerged from a vast array of

N-body simulations. The distribution of galaxies observed in large scale

structure surveys matches that predicted by N-body simulations over a

range of distance scales [21]. In addition, simulations have begun to accu-

rately reproduce the observed populations of elliptical and spiral galaxies

[25], as well as obtaining Milky Way-like simulated galaxies [24]. This

ability of simulations containing DM to reproduce structures observed in

the Universe is further evidence in support of the DM paradigm. Such

is the accuracy of N-body simulations that they can be used to generate

mock galaxy catalogues which allow statistical and systematic errors to be

assessed in real galaxy surveys [32].

Further evidence for dark matter comes from observations of the rota-

tion curves of spiral galaxies. In particular, the circular velocity of stars

in these galaxies is observed to be approximately constant out to large

galactocentric distances [33, 34]. In fact, observations of hydrogen 21 cm

emission indicate that the constancy of the circular velocity extends well

beyond the optical edge of galaxies [35, 36].

This is shown schematically in Fig. 1.2. The majority of the mass of the

luminous disc is concentrated at small radii, suggesting that there should
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be a Keplerian decay of the circular velocity at large radii: v ∼ r−1/2.

However, the inclusion of an approximately spherically symmetric, non-

luminous dark matter halo can reconcile this expectation with the observed

flat rotation curves. The density profiles ρ(r) required to provide a good fit

to rotation curve data may be consistent with those obtained from N-body

simulations, such as the Navarro-Frenk-White profile [37]

ρ(r) =
ρ0

r/Rs(1 + r/Rs)2
, (1.1)

which is described by a characteristic density ρ0 and scale radius Rs. How-

ever, as we discuss in Sec. 1.2, there is evidence that better fits may be

obtained in some galaxies by so-called ‘cored’ density profiles.

The rotation curve of the Milky Way itself has also been studied [38–

40] and found to be almost flat. Using a variety of techniques, it is also

possible to measure a non-zero DM density near the Sun’s position. An

understanding of this density has significant implications for the study of

dark matter detection and we defer a detailed discussion to Chapter 2.
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Figure 1.2: Schematic illustration of galaxy rotation curves (circular
velocity as a function of galactocentric distance). The contribution to
the circular velocity from the luminous disc (green dashed line) and dark
matter halo (red dotted line) are shown, as well as the total circular
velocity (solid blue line).

We see that evidence for dark matter appears over a wide range of

distance scales, from the cosmological horizon down to our own Milky
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Way. Dark matter is required to explain the formation and growth of large

scale structure, the dynamics of both galaxies and galaxy clusters and the

anisotropic temperature distribution of the CMB among others. In spite of

this, there remain several problems and unanswered questions within the

dark matter paradigm.

1.2 Problems with dark matter

There have emerged several issues with the dark matter dominated model

of structure formation as studied with N-body simulations. For exam-

ple, DM-only simulations predict the existence of a large number of mas-

sive subhalos around Milky Way-size galaxies [23]. Using semi-analytical

models of galaxy formation Kauffmann et al. [41] predicted that a Milky

Way-size halo should host over 100 subhalos massive enough to support

observable satellite galaxies. However, the known population of dwarf

spheroidal (dSph) satellite galaxies for the Milky Way is on the order of 20

[42], although more ultra-faint satellites are still being discovered (e.g. see

Ref. [43]). This discrepancy between the predicted and observed amount

of substructure in CDM structure formation is often referred to as the

‘missing satellite problem’ [44].

A related issue is the so-called ‘too big to fail’ problem, which concerns

the density of dark matter subhalos. In particular, it is found that the most

massive DM subhalos found in N-body simulations are too massive to host

the brightest of the Milky Way’s dSph satellites [45]. If the observed dSph

galaxies are hosted instead by less massive subhalos, this leaves a large

number of more massive DM halos which have not yet been accounted for

[46].

Finally, there is also a discrepancy between observed and simulated

density profiles for dSphs: the ‘Core-Cusp’ problem (for a review, see

Ref. [47]). N-body simulations indicate that the DM density should be

sharply peaked near the centres of DM halos [37, 48]. In contrast, observa-

tions of the rotation curves of a large number of galaxies (in particular low

surface brightness and dSph galaxies) suggests the presence of a core - a flat

dark matter density profile near the centre [49, 50]. While these results are

still under contention (for example, Ref. [51] find rotation curves consistent

with cuspy density profiles), they may indicate a discrepancy between the

process of structure formation in the Universe and that implied by ΛCDM.
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A number of possible solutions to these issues have been suggested.

Baryonic effects such as dynamical friction and stellar and supernova feed-

back (see for example Refs. [52–55]) can lead to the expulsion of DM from

the centres of halos, reducing the total halo mass and leading to a flatter

central density profile. Others have suggested that a warm dark matter

model may be a better fit to the data [56–58], reducing the amount of

structure on small scales, as we will discuss in Sec. 1.4. Whatever the ulti-

mate resolution of these problems, it is clear that dark matter dominated

structures such as dSph galaxies are a testing ground for an even more

precise understanding of structure formation in the DM paradigm.

There remains one problem which is of a much more theoretical nature.

Dark matter is invoked to account for missing mass in a wide range of

scenarios. However, this missing mass has not yet been observed, indicating

that it must interact only very weakly with photons and other particles of

the standard model. In fact, as we shall see, there is strong evidence

that particles making up the Universe’s dark matter cannot be baryonic

and must originate from beyond the Standard Model of particle physics.

Before investigating what can be inferred about the nature of particle dark

matter, however, we first address an alternative solution to the dark matter

problem.

1.3 Alternatives to dark matter

We have discussed a wide range of evidence for the existence of DM, as well

as some unresolved problems with the ΛCDM paradigm. Here, we consider

the possibility that these observations can be explained not by a new matter

species but by a modification to gravity. Milgrom [59–61] proposed the idea

of Modified Newtonian Dynamics (MOND): for accelerations smaller than

some characteristic value a0 the usual Newtonian dynamics no longer holds.

Specifically, the acceleration a of a particle in a gravitational field ΦN is

governed by

µ̃(|a|/a0)a = −∇ΦN . (1.2)

The interpolation function µ̃ tends to unity for large values (the Newtonian

limit) but tends to |a|/a0 for values |a| � a0 (the MOND limit).

At large distances from the centres of galaxies, the acceleration will

drop below a0 and Eq. 1.2 reduces to a = v2
c (r)/r =

√
a0∇ΦN , where vc
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is the circular velocity. Assuming that there is no dark matter content,

the mass M enclosed within a radius r becomes constant and we obtain

|∇ΦN | ≈ GM/r2. Combining these, we see that

v4
c (r) ≈ GMao , (1.3)

independent of radius. Thus, a flat rotation curve is obtained without the

need to invoke DM. Moreover, Eq. 1.3 is the baryonic Tully-Fisher law,

which relates the baryonic mass of a galaxy with the asymptotic rotation

velocity, and which does not have an obvious origin in DM-based models

[62]. The value for the characteristic acceleration obtained from fits to

over 100 galaxies is a0 = 1.2× 10−10 m s−2 [33], which also reproduces the

measured proportionality constant in the Tully-Fisher law [63].

The phenomological approach of MOND can be recast into a fully co-

variant theory of modified gravity, known as tensor-vector-scalar (TeVeS)

gravity [64]. This theory contains new dynamical vector and scalar degrees

of freedom and contains a free function, analogous to the interpolation

function µ̃. The formalism for both lensing [65] and cosmological pertur-

bations [66] have both been studied in TeVeS, with perturbations in the

new scalar and vector fields allowing structure to form without the need

for DM.

How then does MOND compare to DM? MOND can generally give

good fits to galaxy rotation curves [33, 67, 68] and can do so with fewer

free parameters than DM halo models. MOND can also reduce the tension

between the visible mass in clusters and the dynamical or lensing masses

[69, 70], but typically only to within a factor 2, still requiring some collision-

less matter to fit data [71]. However, the biggest problem is that relativistic

extensions of MOND have yet to reproduce the features of large scale struc-

ture and the CMB with the same success as ΛCDM [72–74]. Though the

range of possible extensions is large and the cosmological data may yet be

explained within such a framework, we will focus here on the DM paradigm

for explaining such observations.

1.4 Properties of dark matter

Beyond its gravitational contribution to the Universe, we appear to know

little about the nature of particle dark matter. However, the success of
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modern cosmology and the lack of a confirmed detection so far means that

we do have a grasp on some of the properties of any potential candidate.

For example, DM can have no significant electromagnetic charge, oth-

erwise it would have been seen in a range of searches [75–78]. DM carrying

bare color charge can also be excluded due to the disruption it would cause

to galaxy formation [79] and the formation of the CMB [80]. Any parti-

cle candidate must also be long-lived - otherwise it cannot play the role

of dark matter today. For models in which DM is not indefinitely stable,

this allows us to place stringent limits on the lifetime of the DM particle

[81, 82].

In an effort to summarise what is known about dark matter, Taoso

et al. [83] present a ‘10-point test’ which must be passed by any particle

before it can be considered as a viable dark matter candidate. Several of

these points relate to constraints from direct and indirect searches, which I

discuss in Sec. 1.6. Here, I will briefly discuss three of the remaining points,

namely, that the DM candidate must be produced with the appropriate

relic density, it must be cold and it must be compatible with primordial

nucleosynthesis.

1.4.1 Relic density

In order to account for the dark matter in the Universe, a good candidate

must be produced with sufficient abundance to match the currently ob-

served value Ωch
2 = 0.1196 ± 0.0031 (see Table 1.1). If produced with a

smaller abundance, the candidate cannot account for the entirety of the

Universe’s dark matter (though it could still contribute, along with other

candidates, as in Ref. [84]). If on the other hand, it is produced with too

great an abundance, it could threaten to exceed the DM density constraint

set by Planck and other experiments.

The standard scenario for the production of dark matter is referred to as

thermal freeze-out [3]. In this scenario, DM particles remain in kinetic and

chemical equilibrium with SM particles in the very early Universe through

scattering and annihilation processes. Their number density n follows a

Maxwell-Boltzmann distribution

n ∼ (mχ/T )3/2 exp(−mχ/T ) , (1.4)

for a particle mass mχ and temperature T . As the Universe expands,
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however, the particles become diluted, reducing the interaction rate un-

til eventually the DM particles become decoupled from the SM particles

and are ‘frozen-out’. They are then left with the abundance they had

when they decoupled, which is further diluted by the expansion of the Uni-

verse to become the abundance we see today. The exact relic abundance

depends on 〈σannv〉, the average annihilation cross section of the DM par-

ticles (weighted by the DM speed). If this is small, DM will decouple early

when the temperature of the Universe is still high, leading to a large relic

abundance. If the annihilation cross section is large, DM will remain in

equilibrium for longer, even as the particles become more and more di-

luted. The DM then freezes out later, with a lower temperature and lower

relic abundance. The resulting relic abundance for GeV-scale DM is given

approximately by [3]:

Ωch
2 ≈ 3× 10−27 cm3 s−1

〈σannv〉
. (1.5)

This leads to a canonical value of around 〈σannv〉 ≈ 3×10−26 cm3 s−1 for the

annihilation cross section, which corresponds to the measured abundance

of CDM. This coincides well with the value expected for particles with

weak-scale interactions (so-called weakly interacting massive particles, or

WIMPs), leading some to refer to this argument as the WIMP miracle. In

reality, the full differential equations describing the DM number density

must be solved [85], accounting for co-annihilations [86], which may boost

the total cross section. However, the simplicity of this scenario makes such

thermal relics an attractive candidate for DM.

Dark matter may also achieve the correct relic abundance through a

variety of other mechanisms. ‘Freeze-in’ [87] involves particles which in-

teract so weakly (termed feebly interacting massive particles, FIMPs) that

they never reach equilibrium. Instead, a relic population is built up grad-

ually through the production of FIMPs by annihilation of SM particles. In

contrast to the freeze-out scenario, the relic abundance of FIMPs increases

with increasing annihilation cross section. Dark matter may also be pro-

duced gravitationally from vaccuum fluctuations during and after inflation

[88, 89] or from the decays of heavier meta-stable particles (e.g. Ref. [90]).

These possibilities open up the range of candidates which may be consid-

ered to include much lighter or much heavier particles than the freeze-out

scenario alone might allow.
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1.4.2 Coldness

The majority of the dark matter in the universe cannot be hot. That is,

DM must have been travelling non-relativistically when it was produced

in the early Universe. The typical speed of DM particles in the early Uni-

verse defines the so-called free-streaming length. Below this length-scale,

density perturbations are suppressed due to Landau damping [91]. For

non-relativistic species produced by thermal freeze-out, this free-streaming

length scales as m
−1/2
χ for thermal relics of mass mχ [92]. For particle can-

didates which are too light - and which therefore travel too quickly after

decoupling - small scale structures cannot form and cannot match the dis-

tribution of structures we see today. Light particles which are produced

via a mechanism other than thermal freeze-out may still account for DM

(e.g. Ref. [93]), though this alternative mechanism must still ensure that it

is not produced with relativistic speeds.

In practise, constraints on the free-streaming length mean that thermally-

produced DM cannot have a mass greater than around 1 keV [94]. It is

typically assumed that dark matter is significantly heavier than this, de-

coupling ultra-non-relativistically in the early Universe, rendering it cold.

Warm dark matter candidates with keV-scale masses have been suggested

to explain the subhalo structures at the scale of dSph galaxies (as has

already been discussed). However, hot dark matter, which decouples at

relativistic speeds, is strongly-constrained and cannot make up more than

around 1% of the total dark matter component [95, 96].

1.4.3 Primordial nucleosynthesis

Primordial nucleosynthesis (or Big Bang Nucleosynthesis, BBN) describes

the production of light nuclei in the first few minutes after the Big Bang.

By solving a set of coupled Boltzmann equations describing the nuclear re-

actions of protons, neutrons and light nuclei, we can obtain the primordial

abundances of these light nuclei and compare with the inferred values [97].

Significantly, these abundances depend strongly on the baryon-photon ra-

tio η and therefore the total baryon density. Fits to data lead to the result

Ωbh
2 = 0.017 − 0.024 [98], independent of the value obtained from CMB

measurements (Table 1.1). Thus, the baryonic matter can make up only

a fraction of the total matter density of the Universe. This provides fur-

ther evidence that particle dark matter must consist of some non-baryonic
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particle.

The results of BBN are also very sensitive to light new species, which

can alter the number of relativistic degrees of freedom in the early Uni-

verse and therefore affect the expansion rate. These include, for example,

gravitinos [99] and right-handed neutrinos [100]. BBN therefore provides

strong constraints on models in which these particles play the role of DM.

In addition, the decay of dark matter particles into electromagnetic or

hadronic showers during nucleosynthesis can drastically change the pri-

mordial abundances of the light elements. BBN can therefore be used to

constrain models in which dark matter undergoes early decays (or in which

dark matter is produced by the decays of heavier particles) [101].

1.5 Particle dark matter candidates

While valid DM candidates need only satisfy the conditions and constraints

which have already been discussed, well-motivated candidates should de-

rive sensibly from some physical model. In fact, dark matter candidates

can be found in a wide range of models of particle physics beyond the

standard model. As has already been discussed, massive particles with

GeV-scale masses and weak-scale interactions are attractive for obtaining

the correct DM relic density. Such a WIMP candidate may be provided

by the lightest supersymmetric particle (LSP) in supersymmetric theories

[102]. In supersymmetry, each of the known SM particles has a supersym-

metric partner (or ‘spartner’), with bosons having fermionic partners and

vice versa. This additional symmetry is often invoked to help alleviate the

hierarchy problem [103]. In models which possess R-parity (which may be

required to protect the proton from decay), particles carry R-parity 1 while

supersymmetric particles (‘sparticles’) carry R-parity -1. This means that

the lightest sparticle cannot decay into SM particles and is therefore stable,

making it a promising DM candidate.

Depending on the parameters of the supersymmetric theory, there are

many possibilities for which sparticle will be the LSP. One popular and

well-studied possibility is the lightest neutralino χ [104], which is a linear

combination of the neutral supersymmetric partners of the W and B with

the CP-even higgsinos. The properties of the lightest neutralino can vary

dramatically depending on the mixing between these different components

and the underlying supersymmetric parameters [105]. In other cases, the



14 CHAPTER 1. INTRODUCTION

LSP may be the sneutrino [106], a partner of the standard model neu-

trino. Another alternative is the gravitino, which provides a good cold DM

candidate for masses above around 100 keV [107].

WIMPs also arise in theories of universal extra dimensions, in which the

additional dimensions are compactified, leading to a tower of excited states

of the standard model particles [108]. These ‘Kaluza-Klein’ (KK) particles

also possess a KK-parity, which means that the lightest KK particle (LKP)

is stabilised [109]. One possibility for the LKP is the first excitation of the

B weak hypercharge boson, B(1). In this case, the WIMP would be a spin-1

particle with a mass of around 1 TeV (in order to be produced thermally

with the correct relic abundance) [110]. It has also been shown that the

first KK excitations of the photon and neutrino are viable DM candidates

if they also have masses at the TeV scale [111]. In contrast to the LSP, the

LKP is described by a relatively small parameter space and may be more

easily constrained by upcoming experiments [112].

In light of the problems with models of dark matter structure formation

on small scales, there are several candidates which may be attractive for

constituting warm dark matter. While standard neutrinos (with masses

of a few eV [113]) cannot account for a large fraction of the dark matter,

keV-scale sterile neutrinos may be viable [114]. Sterile neutrinos interact

with ordinary matter via neutrino mixing rather than via electroweak in-

teractions. While attractive for providing warm dark matter, non-thermal

production [115] or multiple sterile neutrino species [116] may be required

to avoid many astrophysical and cosmological constraints [117, 118].

Another non-WIMP candidate is the axion. The axion was originally

introduced by Peccei and Quinn [119] to solve the strong CP problem. It

was observed that this spin-zero particle could be produced in the early

Universe via the ‘misalignment mechanism’ and, for masses in the range

10−5−10−3 eV, can account for the cosmological dark matter [120]. It was

recently noted that the axion would thermalise, meaning that the dark

matter would be in the form of a Bose-Einstein condensate [121]. Also of

interest are axion-like particles (ALPs), which emerge naturally in string

theory and are expected to span many orders of magnitude in mass and

coupling strength [122]. Searches for axions are currently underway (such

as ADMX [123] and CAST [124]), aiming to detect the conversion of axions

to photons in a magnetic field.

We mention briefly the possibility that DM could be in the form of pri-
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mordial black holes (PBHs) [125], which form from the collapse of large den-

sity perturbations in the early Universe [126]. PBHs with masses greater

than ∼ 10−20M� have a lifetime greater than the age of the universe, mean-

ing that they may be able to account for the Universe’s DM. A range of

cosmological [127], dynamical [128] and microlensing [129] constraints re-

duce the allowed mass range for PBHs as the dominant dark matter to

3 × 10−13 − 2 × 10−9M�. Recent constraints from the capture of PBHs

by neutron stars [130] may rule out this remaining window, though PBHs

could still act as a subdominant DM component.

As is clear from this discussion, there are a wide range of well-motivated

candidates for the dark matter in the Universe. Some further examples

include WIMPless dark matter [131], mirror dark matter [132] and little

Higgs dark matter [133], as well as minimal approaches to DM [134]. In

this work, we focus on the WIMP, not only because of its popularity and

generic nature, but because of the large number of experimental searches

which provide sensitivity to WIMP dark matter.

The final condition appearing in the ‘10-point test’ of Taoso et al. asks

the question ‘Can it be probed experimentally?’ While it may be possible

that DM interacts only gravitationally, a wide variety of proposed can-

didates can interact (however weakly) with the particles of the standard

model. While the experimental accessibility of a given DM candidate is not

a strict necessity, it allows models to be tested (and either falsified or con-

firmed) beyond the hypothesis stage. In the next section, we explore the

different avenues by which models of particle dark matter may be probed.

1.6 Detection of dark matter

Many of the candidates which have been discussed are expected to interact

weakly with the particles of the Standard Model (SM). We note in partic-

ular that dark matter particles which are produced by thermal freeze-out

in the early Universe must have interactions with SM particles in order

to maintain thermal and kinetic equilibrium. These interactions are medi-

ated by Feynman diagrams which can be represented (schematically) as in

Fig. 1.3. The existence of production, annihilation and scattering processes

between DM and SM particles provides a window into the possible detec-

tion of particle DM. Each of these processes leads to a distinct detection

strategy, referred to as collider, indirect and direction detection.
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Figure 1.3: Schematic interactions between dark matter particles χ and
standard model particles ψ.

1.6.1 Collider production

Searches for dark matter at particle colliders such as the LHC rely on

processes such as Fig. 1.3(a), in which SM particles interact to produce

dark matter particles. However, the weak interactions of the DM means

that once produced, it will escape the detectors around the interaction point

without being observed. Thus, collider searches for dark matter must look

for other signatures.

One approach is to look for signatures which are characteristic of a par-

ticular theory. For example, looking for evidence of KK states which are

expected in theories of universal extra dimensions [135, 136], or searching

for particle signatures from decay chains which are expected from super-

symmetry [137, 138]. While this allows constraints to be placed on specific

models, the range of models may be large, meaning that each must be

constrained separately.

An alternative approach is to look for deviations from the SM expecta-

tion and use this to place limits on the operators of an effective field theory

(see e.g. [139]). One possible signature is to look for the pair production of

DM states, with initial state radiation of a SM particle. It is then possible

to search for this initial state radiation (which may be a single jet or a single

boson or lepton, depending on which particle was radiated) accompanied

by missing energy, which is carried away by the DM. By combining all the

possibilities for the form of the initial state radiation, we can place bounds

on the effective operators which govern SM-DM interactions [140]. Using

such an approach, for example, it is possible to exclude DM with a stan-

dard thermal WIMP freeze-out cross section for masses mχ < 15 (75) GeV

for vector (axial-vector) couplings to quarks [141].

One advantage of this effective operator approach is that these bounds

can be translated into limits on signals at direct and indirect experiments,
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allowing collider results to be incorporated with other experimental searches

in a complementary fashion [142]. However, it has been noted that caution

must be exercised in naively applying the effective field theory approach at

the LHC as well as in translating this to other search channels [143, 144].

So far, there has been no evidence observed for the production of dark

matter particles at the LHC [145]. The non-observation of supersymmetry

at the LHC has also begun to place some tension on the simplest SUSY

dark matter models [146], though they are not yet excluded [147]. The

proposed International Linear Collider (ILC) [148] and Compact Linear

Collider (CLIC) [149] should be able to explore more of the possible dark

matter parameter space [150, 151]

1.6.2 Indirect detection

The possibility of dark matter annihilation into SM particles (as described

in Fig. 1.3(b)) means that DM may be detected indirectly, by searching

for these excess annihilation products (and related decay products). Some

searches aim to look for the contribution of these products to signals ob-

tained over large survey areas. The Fermi-LAT collaboration have pub-

lished limits on searches for spectral lines and contributions to the dif-

fuse background of gamma rays [152]. Cosmic ray experiments such as

PAMELA [153] have aimed to measure the p± and e± abundances in cos-

mic rays. The AMS experiment [154] has recently confirmed a rise in the

cosmic ray positron fraction at energies above 10 GeV, which was previ-

ously observed by PAMELA [155] and Fermi-LAT [156]. This feature has

been interpreted as tentative evidence for dark matter annihilations (see

e.g. Ref. [157]).

For charged cosmic rays, astrophysical magnetic fields deflect the paths

of particles, making it impossible to resolve individual sources [158]. In

contrast, photon searches allow specific locations to be targeted. Because

the signal rate is proportional to the DM annihilation rate (along the line

of sight), the potential signal scales as the square of the dark matter den-

sity. Thus, searching in areas where the DM density is expected to be

high can boost the signal rate significantly [159]. As has already been

discussed, dSph galaxies are dark matter dominated objects and thus rep-

resent promising targets for indirect searches. A survey of 25 Milky Way

satellite galaxies by the Fermi-LAT telescope [160] has so far found no
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significant gamma ray excess. However, upper limits on the annihilation

cross section are in some cases close to the thermal freeze-out value of

〈σannv〉 ≈ 3 × 10−26 cm3 s−1, depending on the WIMP mass and annihi-

lation channel. By optimising search regions near the centre of the Milky

Way for maximum signal-to-noise, Weniger recently found a bump in the

gamma ray spectrum of Fermi-LAT data around 130 GeV [161]. However,

subsequent analysis has found that this feature may be a systematic effect

in the detector [162] and that it is difficult to reconcile with conventional

models for dark matter [163, 164].

Perhaps more promising is a different gamma ray signal coming from the

inner regions of the Galaxy, peaking at energies around 1-3 GeV [165, 166].

Fits of the data point towards a dark matter particle with a mass of 31-

40 GeV, annihilating predominantly to bb̄ with a cross section of 〈σv〉 =

(1.4− 2.0)× 10−26 cm3 s−1, approximately matching the value required for

a particle created by thermal freeze-out in the early Universe. While it has

been suggested that this signal is actually consistent with known sources

[167] or as yet unresolved astrophysical sources [168], further analysis has

shown that the signal matches the spectrum and morphology expected

from DM annihilation [169]. Confirmation of the signal may have to wait

until it is corroborated by independent observations, for example a DM

annihilation signal from dSph galaxies.

The sensitivity of gamma ray searches can be extended up to TeV-

scale masses with ground-based Imaging Atmospheric Cherenkov Tele-

scopes (IACTs). These work by imaging the Cherenkov radiation from

charged particles produced when high energy gamma rays impinge on the

atmosphere. The current generation of IACTs - HESS [170], MAGIC [171]

and VERITAS [172] - have been used to conduct searches for line-like

gamma ray spectra as well as searches for signals from dwarf galaxies.

However, these limits are typically around two orders of magnitude above

the thermal cross section. The planned Cherenkov Telescope Array (CTA)

may be able to probe down to this thermal cross section for high WIMP

masses [173].

Another potentially rich source of DM annihilations are the Sun and

Earth. DM particles may scatter with nuclei in these bodies, losing energy

and eventually becoming captured. Eventually, the DM sinks to the centre

of the object and annihilates. The only annihilation products which can

escape are neutrinos, which can then be detected at neutrino telescopes
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such as ANTARES [174] and IceCube [175]. Because the neutrino flux

depends on the scattering rate of DM with nuclei, such signals can probe

similar parameter spaces to direct detection experiments. Exploring the

complementarity between neutrino telescopes and direct detection is the

subject of Chapter 5 and we treat this subject in more detail there.

1.6.3 Direct detection

Processes described by the diagram in Fig. 1.3(c) lead to the possibility of

scattering between DM and SM particles. The principle of direct detection

is to look for nuclear recoils due to this scattering in a dedicated detector

[176, 177]. WIMPs with GeV-scale masses and speeds v ∼ 10−3c are

expected to produce keV-scale nuclear recoils. In addition, due to the

expected low cross section for such interactions, the predicted rate is less

than around 1 event per year per kg of detector mass. Detecting such

rare, low energy recoils requires not only large ton-scale detectors, but also

sophisticated methods for discriminating signal from background.

Several direct detection experiments have claimed a tentative signal,

such as DAMA/LIBRA [178], CoGeNT [179, 180] and CRESST-II [181].

However, these are in tension with null results from other experiments such

as LUX [182]. Due to a range of uncertainties in nuclear physics, particle

physics and astrophysics it may be possible to reconcile these results. In

any case, a firm understanding of these uncertainties will be necessary to

build a coherent picture from future results. The interpretation of direct

detection data will be the main focus of this work and the main subject of

Chapter 2.

1.7 Conclusions

The ΛCDM paradigm has enjoyed great success in explaining observations

from galactic to cosmological scales. While discrepancies with observations

on smaller scales remain, these are being actively pursued and may prove

to be valuable testing grounds for the process of dark matter structure

formation.

The identity of dark matter is unknown and cannot be accounted for

by any of the known standard model particles. Even so, we know that

it must be neutral, long-lived and cold (or possibly warm) and that it
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must pass a variety of stringent tests coming from BBN and the CMB.

There is no lack of well-motivated CDM candidates, including the lightest

supersymmetric and Kaluza-Klein particles, sterile neutrinos, axions and

many more. We have focused on the search for weakly interacting massive

particles (WIMPs) and described how direct, indirect and collider searches

have been used to place limits on the WIMP parameters, with the aim of

making the first non-gravitational detection of DM.



Chapter 2

Direct detection of dark

matter

The idea that particle dark matter (DM) may be observed in terrestrial

detectors was first proposed by Goodman and Witten in 1985 [176] and by

Drukier, Freese and Spergel in 1986 [177]. If DM can interact with particles

of the Standard Model, the flux of DM from the halo of the Milky Way

may be large enough to cause measureable scattering from nuclei. If the

subsequent recoils can be detected and their energy spectrum measured, it

should be possible to infer some properties of the DM particles.

However, the expected event rate for keV-scale recoils at such a detector

would be of the order of 10−5 events per kg of detector material per day per

keV recoil energy [183]. With such a low event rate, it is imperative that

backgrounds are reduced as much as possible. In addition, detectors should

be as large as possible and sensitive to as wide a range of recoil energies as

possible, in order to maximise the total number of events observed. Thus,

specialised detectors are required to shield the active detector material from

backgrounds and to discriminate between these backgrounds and signal

events.

There exist at present a wide range of detectors using a variety of dif-

ferent sophisticated techniques for detecting such a weak signal against

ubiquitous backgrounds, each probing a slightly different range of DM pa-

rameter space. Several of these experiments - such as DAMA/LIBRA [178],

CoGeNT [179, 180] and CRESST-II [181] - claim to have observed a signal

indicative of a WIMP with mass ∼ 10 GeV. However, a number of other

experiments have reported null results creating tension for a dark matter

21
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interpretation of these tentative signals. It remains to be seen whether this

discrepancy is an experimental effect or a hint of new physics.

There remain a number of uncertainties in the direct detection of dark

matter. These come from a variety of sources and can be approximately

partitioned into experimental, nuclear, particle and astrophysical uncer-

tainties. Understanding these uncertainties is imperative for properly in-

terpreting the results of direct detection experiments and understanding

whether a coherent picture can emerge from a number of different experi-

mental efforts.

In this chapter, I will review the formalism for direct detection which

was introduced by Goodman & Witten and Drukier, Freese & Spergel in

the 1980s (and subsequently refined). I will then briefly discuss some of the

experimental techniques which are used to achieve the required sensitivity

for DM searches, as well as summarising current experimental constraints

and results. I will also outline some of the uncertainties which afflict the

interpretation of direct detection data.

I will focus on astrophysical uncertainties in direct detection. In par-

ticular, I will discuss how the local density and distribution of dark matter

impacts the direct detection event rate and how well we understand these

different factors.

2.1 Direct detection formalism

We wish to obtain the rate of nuclear recoils per unit detector mass due

to elastic, non-relativistic scattering from a fermionic weakly interacting

massive particle (WIMP). Dark matter is typically assumed to be spin-

1/2, though the analysis here can be generalised to particles of arbitrary

spin [184]. The differential event rate can be written straightforwardly as

dR

dER
= NTΦχ

dσ

dER
, (2.1)

for recoils of energy ER, NT target particles, a DM flux Φχ and a differential

scattering cross section dσ/dER. Per unit detector mass, the number of

target particles is simply NT = 1/mN , for nuclei of mass mN . The DM

flux for particles with speed in the range v → v + dv in the laboratory

frame is Φχ = nχvf1(v) dv. Here, nχ is the number density of dark matter

particles χ and f1(v) is the speed distribution for the dark matter. The
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orbit of the Earth means that its velocity is time-varying, producing an

annual modulation in f1(v) and therefore in the direct detection event rate

[185]. However, this modulation is expected to be a percent-level effect and

we consider here only the time averaged distribution.

We can convert from the number density to the mass density ρ0 by

dividing by the DM particle mass mχ: nχ = ρ0/mχ. By integrating over

all DM speeds, we therefore obtain

dR

dER
=

ρ0

mNmχ

∫ ∞
vmin

vf1(v)
dσ

dER
dv , (2.2)

where vmin is the minimum speed required to excite a nuclear recoil of

energy ER:

vmin =

√
mNER
2µ2

χN

. (2.3)

Here, we have written the reduced mass of the WIMP-nucleus system as

µχN = mχmN/(mχ +mN).

The differential scattering cross section per solid angle in the zero-

momentum frame (ZMF), Ω∗, is given by:

dσ

dΩ∗
=

1

64π2s

p∗f
p∗i
|M|2 , (2.4)

where M is the scattering amplitude obtained from the Lagrangian. For

elastic scattering, the final and initial momenta in the ZMF are equal: p∗f =

p∗i . The centre-of-mass energy squared, s, can be written s ≈ (mχ +mN)2,

where we have used the non-relativistic approximation. The recoil energy

can be written in terms of the ZMF scattering angle θ∗ as [183]

ER =
µ2
χNv

2

mN

(1− cos θ∗) . (2.5)

Noting that dΩ∗ = d cos θ∗dφ, we can write:

dER
dΩ∗

=
µ2
χNv

2

2πmN

, (2.6)

and therefore

dσ

dER
=

1

32πmNm2
χv

2
|M|2 . (2.7)

The matrix element M is obtained from interaction terms in the la-

grangian between the DM particle and quarks. This will depend on the
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particular DM model under consideration and the full form of these in-

teraction terms is not known. It is typically assumed that these terms

can be adequately described by a contact interaction, an implied assump-

tion that the particles mediating the interaction are much more massive

than the momentum transferred [186]. The momentum transfer in direct

detection experiments is typically less than ∼ 200 MeV, suggesting that

this assumption should be a valid one. However, we will consider briefly

scenarios where this is not the case in Sec. 2.3.2.

Because the WIMPs have speeds of order 10−3c, the scattering occurs in

the non-relativistic limit, leading to some important simplifications. In this

limit, the axial-vector interaction simply couples the spins of the WIMP

and quark. The scalar interaction induces a coupling of the WIMP to the

number of nucleons in the nucleus, with the vector1 and tensor interactions

assuming the same form as the scalar in the non-relativistic limit [102]. All

other interactions are typically suppressed by powers of v/c and so will be

subdominant. Generically, then, the cross section is written in terms of

spin-independent (SI) and spin-dependent (SD) interactions [176]

dσ

dER
=

dσSI
dER

+
dσSD
dER

. (2.8)

We now discuss the form of the SI and SD cross sections in turn.

2.1.1 SI interactions

Spin-independent interactions are generated predominantly by scalar terms

in the effective lagrangian

L ⊃ αqSχ̄χq̄q , (2.9)

for interactions with a quark species q with coupling αqS. The operator q̄q

is simply the quark number operator, which couples to the quark density.

However, we should recall that the quarks are in nucleon bound states. We

consider first the contributions from neutrons |n〉, so we should evaluate

〈n|q̄q|n〉, adding coherently the contributions from both valence and sea

quarks. These matrix elements are obtained from chiral perturbation the-

1For the case of a Majorana fermion, the vector current vanishes and we need not
consider it.
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ory [187] or Lattice QCD [188] and can be parametrised in terms of their

contribution to the nucleon mass in the form:

mnf
n
Tq ≡ 〈n|mq q̄q|n〉 . (2.10)

Adding the contributions of the light quarks q, as well as the heavy

quarks Q and gluons g (which contribute through the chiral anomaly [189]),

the following expression is obtained:

〈n|
∑
q,Q,g

q̄q|n〉 =

( ∑
q=u,d,s

mn

mq

fnTqα
q
S +

2

27
fnTQ

∑
Q=c,b,t

mn

mq

αQS

)
≡ fn . (2.11)

The parameters describing the contributions of the different quarks to the

nucleon mass must be determined experimentally. The uncertainties this

produces will be discussed shortly in Sec. 2.3.1.

We now consider the matrix elements of the nucleon operators within a

nuclear state, |ΨN〉: 〈ΨN |fnn̄n|ΨN〉. These operators now simply count the

number of nucleons in the nucleus Nn, along with a momentum-dependent

form factor, F (q). This depends on the momentum transfer q and corre-

sponds to the Fourier transform of the nucleon density. This takes into

account the loss of coherence for nuclear scattering due to the fact that the

nucleus is not point-like. We therefore obtain:

〈ΨN |fnn̄n|ΨN〉 = 〈ΨN |ΨN〉fnNnFn(q) = 2mNf
nNnFn(q) , (2.12)

where we note that we require the wavefunctions to be normalised to 2E ≈
2mN for a nucleus of mass mN . We now add the contribution from protons

to the matrix element, noting that Fn ≈ Fp = F (see Sec. 2.3.1)

〈ΨN |fnn̄n+ fpp̄p|ΨN〉 = 2mN(fnNn + fpNp)F (q) , (2.13)

where now Nn and Np are the neutron and proton numbers of the nucleus

respectively.

The corresponding matrix element for the scalar WIMP operator χ̄χ is

simple in the non-relativistic limit, evaluating to 2mχ [102, 190]. Combin-

ing these, we obtain the scalar matrix element

|MS|2 = 16m2
χm

2
N |fpZ + fn(A− Z)|2 F 2

SI(q) , (2.14)

and the SI cross section

dσSI
dER

=
mN

2πv2
|fpZ + fn(A− Z)|2 F 2(q) , (2.15)
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where we have used the atomic number Z and mass number A to describe

the composition of the nucleus. It is conventional to write this in terms of

the WIMP-proton SI cross section, which does not depend on the particu-

lar (A,Z) of the target nucleus and thus allows easy comparison between

experiments. This cross section is given by

σpSI =
µ2
χp

π
(fp)2 , (2.16)

meaning that

dσSI
dER

=
mNσ

p
SI

2µ2
χpv

2
|Z + (fn/fp)(A− Z)|2 F 2(ER) . (2.17)

2.1.2 SD interactions

The spin-dependent interaction is typically sourced by axial-vector currents

of the form

L ⊃ αqAV (χ̄γµγ5χ)(q̄γµγ5q) . (2.18)

These result in a coupling of the spins of the WIMP and nucleus. In analogy

with the SI case, we can write the neutron quark matrix elements in the

form [191, 192]

〈n|q̄γµγ5q|n〉 = 2snµ∆n
q , (2.19)

where sµ is the spin 4-vector and ∆q parametrises the contribution of quark

q to this total spin. Adding the contributions of the different quarks, we

can define

ap,n =
∑

q=u,d,s

αqAV√
2GF

∆p,n
q , (2.20)

which are the effective proton and neutron spin couplings.

Including the contribution from the WIMP axial-vector current, the

nuclear matrix element can then be written [193]

〈ΨN |
∑

q=u,d,s

aqAV (χ̄γµγ5χ)(q̄γµγ5q)|ΨN〉

= 8
√

2GFmχ〈ΨN |apSpµ + anS
n
µ |ΨN〉sµχFSD(q) , (2.21)
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where sµχ is the WIMP spin, Sp,n are the total proton and neutron spin

in the nucleus and FSD(q) is a form factor, as in the SI case, which is

determined by the internal spin structure of the nucleus. From this, the

full SD cross section is [183]

dσSD
dER

=
16mN

πv2
G2
F

J + 1

J
|ap〈Sp〉+ an〈Sn〉|2 F 2

SD(ER) , (2.22)

where J is the total nuclear spin and 〈Sp,n〉 are the expectation values for

the proton and neutron spin in the nucleus.

Again, as in the SI case, it is convenient to rewrite this expression in

terms of the proton cross section σpSD, which is given by

σpSD =
24G2

F

π
µ2
χp(ap)

2 . (2.23)

This leads to the final expression for the SD cross section

dσSD
dER

=
2mNσ

p
SD

3µ2
χpv

2

J + 1

J
|〈Sp〉+ (an/ap)〈Sn〉|2 F 2

SD(ER) . (2.24)

2.1.3 The final event rate

It is helpful to collect these various results together to form a coherent

picture of the event rate. Combining the SI and SD rates together, we can

write

dσ

dER
=

mN

2µ2
χpv

2

(
σpSICSIF

2
SI(ER) + σpSDCSDF

2
SD(ER)

)
, (2.25)

where the proton cross sections σpSI,SD were defined in the previous section,

the form factors F 2
SI,SD will be discussed in more detail in Sec. 2.3.1 and

we have defined the enhancement factors as

CSI = |Z + (fn/fp)(A− Z)|2 (2.26)

CSD =
4

3

J + 1

J
|〈Sp〉+ (an/ap)〈Sn〉|2 . (2.27)

We can now incorporate these into the full event rate:

dR

dER
=

ρ0

2µ2
χpmχ

(
σpSICSIF

2
SI(ER) + σpSDCSDF

2
SD(ER)

) ∫ ∞
vmin

f1(v)

v
dv .

(2.28)
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The shape of the differential event rate then depends on a number of

factors: the DM and target nuclear masses, the ratios of the proton and

neutron couplings and the shape of the speed distribution f1(v). This

distribution is typically assumed to have a simple form, the so-called Stan-

dard Halo Model (SHM). The SHM describes the velocity distribution in

the Galactic frame as a Maxwell-Boltzmann distribution, truncated at the

Galactic escape speed vesc ≈ 544 km s−1 [194, 195]. We discuss the SHM

in more detail in Sec. 2.3.3. We show in Fig. 2.1 the SI differential event

rate for Xenon (solid blue), Germanium (dashed green) and Argon (dot-

dashed red) targets and several WIMP masses, assuming equal couplings

to protons and neutrons.

As we increase the mass of the target nucleus, we see an increase in

the low energy event rate. This is a result of the A2 enhancement for SI

interactions, resulting in the Xenon (A ≈ 131) spectrum being a factor

of around 10 higher than the Argon (A ≈ 40) spectrum at low energies.

As we consider higher energies, however, we observe that the spectrum for

heavier targets decays more quickly. This is due to a more sharply falling

form factor; the larger size of the nucleus results in a more rapid loss of

coherence as the recoil energy is increased. The minimum in the Xenon

rate observed in the bottom panel of Fig. 2.1 is also a feature of the Xenon

SI form factor.

As we increase the WIMP mass, the recoil spectrum becomes flatter.

This is primarily due to the dependence of vmin on mχ (shown in Eq. 2.3).

As we increase mχ, the reduced mass µχN increases, meaning that vmin

varies more slowly with energy. This means that the integral over the

speed distribution also varies more slowly with energy. Physically, low

mass WIMPs require a larger speed to impart the same recoil energy and

as we increase the recoil energy this required speed grows quickly. The

rapid cut-off in the spectrum observed in the mχ = 10 GeV case (top panel

of Fig. 2.1) occurs when there are no more WIMPs below the Galactic

escape speed which have sufficient speed to produce recoils of the desired

energy.

Finally, in Fig. 2.2, we show the SI and SD rates for a Xenon experiment

and a WIMP mass of mχ = 50 GeV. The SD rate gives a comparable

contribution to the SI rate only with a cross section five orders of magnitude

larger. This is due to the strong A2 enhancement of the SI rate for heavy

nuclei. For light nuclei such as Fluorine, the SI and SD rates will be closer
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Figure 2.1: Spin-independent differential event rates predicted for the
nuclear targets Xenon (solid blue), Germanium (dashed green) and
Argon (dot-dashed red) and for several WIMP masses mχ, assuming
fp = fn. We assume a Standard Halo Model speed distribution, ρ0 =
0.3 GeV cm−3 and a spin-independent cross section σp

SI = 10−45 cm2.
The Helm form factor [196] is assumed (see Sec. 2.3.1).
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Figure 2.2: Spin-dependent (dotted) and spin-independent (solid) dif-
ferential event rates predicted for a Xenon nuclear target for a WIMP
mass mχ = 50 GeV, assuming fp = fn and ap = an. We assume a
Standard Halo Model speed distribution, ρ0 = 0.3 GeV cm−3 and cross
sections σp

SI = 10−45 cm2 and σp
SD = 10−40 cm2. The Helm form factor

[196] is assumed for the SI rate, while the SD form factor is taken from
Ref. [197] using the NijmegenII calculation (see Sec. 2.3.1).

in magnitude (for a given cross section). Figure 2.2 also shows that the

SD spectrum is typically flatter. The SD form factor has an approximately

exponential form, while the SI form factor falls more rapidly (see Sec. 2.3.1).

For a real experiment, the detector will be sensitive to recoil energies

only in some range Emin to Emax. The total number of events expected is

obtained by integrating over this range of recoil energies and multiplying

by the exposure time texp, detector mass mdet and efficiency (which may

also be a function of the recoil energy ER) ε(ER):

Ne = mdettexp

∫ Emax

Emin

ε(ER)
dR

dER
dER . (2.29)

For the case of a more realistic experiment in which the measurement of

energy has only a finite resolution σ(ER), we convolve the event rate with

a resolution function (which we assume to have a Gaussian form) to obtain

the observed recoil spectrum dR̃/dER,

dR̃

dER
(ER) =

∫ ∞
E′R=0

e−(ER−E′R)2/2σ2(ER)

√
2πσ(ER)

dR

dER
(E ′R) dE ′R . (2.30)
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We now turn our attention to the discussion of such ‘realistic experi-

ments’ and the current state of dark matter direct searches.

2.2 Direct detection experiments

In order to measure the event spectrum, a range of obstacles must be over-

come. A number of backgrounds can cause nuclear recoils and therefore

mimic a WIMP signal. Furthermore, electron recoils can also deposit en-

ergy in the detector and must be distinguished from nuclear recoils caused

by WIMP interactions. We now summarise some of these backgrounds and

how they can be mitigated. We then discuss some of the different tech-

nologies which are used to discriminate electron from nuclear recoils and

to measure the recoil energy itself.

One possible source of backgrounds are high energy cosmic rays. For

this reason, direct detection experiments are typically operated under-

ground, such as at the Gran Sasso laboratory in Italy or the Boulby labo-

ratory in the UK, in order to reduce the penetration of these cosmic rays.

However, cosmogenic muons and neutrons can still penetrate the experi-

ments, leading to the need for active shields which can detect these particles

and provide a veto for any nuclear recoils they produce. It is also possible

to veto events which produce multiple-scatters in the detector as WIMPs

are expected to scatter only once. Passive shielding also reduces the neu-

tron flux from surrounding rock and other sources. For a detailed analysis

of neutron sources at dark matter experiments, see Ref. [198] (CRESST-II)

and Ref. [199] (XENON100).

Radioactive decays due to naturally occuring isotopes may cause keV

energy nuclear recoils in the detector, meaning that care must be taken to

reduce their impact. The radiopurity of the target material is therefore of

utmost importance (see for example Ref. [200]), as well as the radiopurity of

detector equipment itself [201, 202]. In some cases, the naturally occurring

target material is contaminated with a particular radioisotope, such as 39Ar

contamination in Argon. In these cases, special sources of the material

must be found [203], or the amount of contamination must be carefully

monitored and reduced [204, 205].

Cryogenic experiments, such as CDMS [206–209], CRESST [210], Co-

GeNT [179, 180, 211–213] and EDELWEISS [214], use cryogenic crystals

of materials such as Germanium or Silicon as target materials. When a
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WIMP recoils from a target nucleus phonons are generated in the crys-

tal along with an ionization signal. By summing the energy collected in

these two channels (and accounting for any which may be incompletely

collected), the total energy of the nuclear recoil can be obtained. The ratio

of the total nuclear recoil energy and the ionization signal is referred to as

the ‘ionisation yield’ and can be used to discriminate electron from nuclear

recoils; electron recoils deposit more energy into ionisation. However, care

must be taken to identify so-called ‘surface events’ - events occurring close

to the detector surface which result in an incomplete collection of ionisation

signal and can thus mimic a WIMP signal.

Noble liquid experiments use liquid (or two-phase) noble elements such

as Xenon and Argon as target materials. Completed or operational Xenon

detectors include ZEPLIN [215], XENON [216] and LUX [182]. In these

detectors, Xenon recoils produce a scintillation signal (S1) which can be

observed directly using photomultiplier tubes. Ionisation electrons are also

produced, which drift in an applied electric field, producing an electrolu-

minescence signal (S2) in the gas phase. The sum of these signals can be

used to reconstruct the total recoil energy, while the ratio S1/S2 is used

to discriminate electron from nuclear recoils. The two signals can also be

used to localise the event within the detectors. A fiducial volume is then

defined within the detector - only events inside this volume are considered

in data analysis. This allows liquid Noble detectors to be self-shielding; the

fiducial volume is shielded by the remaining detector volume. Experiments

utilising Argon [217, 218] and Neon [219] are currently under development,

using either the scintillation to ionisation signal as a discriminant or using

timing of the scintillation signal (pulse shape discrimination).

Superheated liquid detectors such as COUPP [220, 221], SIMPLE [222]

and PICASSO [223] use a detector volume filled with droplets of super-

heated liquid such as C4F10. The deposition of kinetic energy by a WIMP

will induce the nucleation of a bubble producing an acoustic signal which is

detected by piezoelectric transducers. Energy deposition by other particles

such as muons and γ- and β-radiation typically occurs over longer length

scales and thus does not register a signal. The temperature and pressure

of the detector can be tuned to specify the threshold energy, the minimum

energy which must be deposited before nucleation occurs. As such, super-

heated liquid detectors cannot measure the energy of specific events but

rather the total event rate above the energy threshold. However, by ramp-
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ing up the energy threshold, the recoil spectrum can effectively be mea-

sured. Due to the light targets such as Fluorine used by these experiments,

they are typically more sensitive to light WIMPs with SD interactions.

Crystal scintillator experiments [224] such as DAMA/LIBRA [178, 225,

226] and KIMS [227] use crystals such as Thallium-doped Sodium Iodide

(NaI(Tl)) as the detector material. When a nuclear recoil occurs with the

nuclei in the crystal, scintillation occurs. The light is collected by photo-

multiplier tubes, with the total recoil energy being related to the amount of

scintillation light produced. In the case of DAMA/LIBRA, electron-nuclear

recoil discrimination is not employed. Instead, the experiment aims to ob-

serve the annual modulation of the signal which is expected due to the

periodic motion of the Earth through the WIMP halo. In other cases, such

as NAIAD [228], pulse shape discrimination has been used to distinguish

nuclear and electronic recoils.

A final class of direct detection experiments are known as ‘directional’

direct detection experiments. These aim to measure not only the energy

deposited by WIMP scattering events but also the direction of the nuclear

recoils. It is hoped that a recoil spectrum peaked in the direction opposite

to the Earth’s motion will provide strong evidence for a DM origin for the

recoils. One possibility for this is the use of specialised gas time projection

chambers (TPCs), which allow measurable track lengths from which the

recoil direction can be determined. The directional detection of dark matter

is the subject of Chapter 6 and we defer a more detailed discussion of

directional experiments until then.

2.2.1 Current limits and results

The first major dark matter detection to be reported was that of DAMA/NaI

[229] and its successor DAMA/LIBRA. The experiments observed an an-

nual modulation over 13 annual cycles, with a phase matching that which

is expected from a dark matter signal. The detection of the annual modu-

lation has been reported at the 8.9σ confidence level over an energy range

of 2-6 keV. The modulation signal was only found in single-hit events at

low energies, again suggesting a dark matter origin for the signal. It has

been suggested that the signal may be explained by a dark matter particle

of mass mχ ∼ 10 GeV and SI cross section σSI ∼ 10−41 cm2 [230] scatter-

ing off Sodium (or a heavier WIMP around 80 GeV scattering off Iodine
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[231]). An annual modulation signal was also observed in the CoGeNT

experiment [180, 212]. In this case too, the period and phase are consis-

tent with expectations, though, the amplitude of the annual modulation is

approximately 5 times larger than expected.

Excesses above the expected backgrounds have also been observed in

a number of experiments. The CoGeNT experiment observed an expo-

nentially rising excess of events at low energies, down to 0.5 keV (electron-

equivalent). A maximum likelihood analysis [213] pointed towards a 10 GeV

WIMP interpretation, with a cross section of around σSI ∼ 5× 10−42 cm2,

though the significance of the ‘signal’ lies at only 2.9σ. CRESST-II [210]

observe 67 events in the nuclear recoil signal region but expect a back-

ground of only one event due to leakage of electron recoils into this win-

dow. Taking into account other backgrounds, the CRESST-II collabo-

ration estimate that 25-30 of these events may be due to a WIMP sig-

nal. A fit to the data produces two minima in the likelihood function:

one at mχ ≈ 25 GeV (in which scattering from Tungsten is appreciable)

and another at mχ ≈ 12 GeV (where Tungsten recoils lie below the en-

ergy threshold). In both cases, the fitted cross section is in the range

σSI ≈ 10−42−5×10−41 cm2. Finally, a recent analysis of the Silicon detector

data from CDMS-II [209] finds 3 events in the signal region. However, the

very low expected backgrounds mean that this small number of events may

be significant. The probability of the known backgrounds producing these

three events has been calculated at 5.4% and a likelihood analysis shows

consistency with a WIMP with mχ ≈ 9 GeV and σSI ≈ 2× 10−41 cm2.

While it appears that a reasonably consistent picture of a low mass

WIMP is emerging from several experiments [232], a large number of com-

peting experiments have reported null results. Results from CDMS-II (Ge),

XENON100, LUX, SuperCDMS [233] and others set upper limits on the

standard WIMP cross section several orders of magnitude lower than the

claimed signal. Several explanations for this discrepancy have been offered.

One possibility is background contamination of the experiments claiming to

have observed a signal, which has been suggested in the case of CRESST-II

[202]. A recent analysis of the CoGeNT excess [234] finds evidence for DM

at less than 1σ using an improved method for rejecting surface events. In

the case of DAMA/LIBRA, it has been suggested that ion-channeling in

the detector crystals may affect the collected ionisation signal and therefore

alter the signal [235]. It has also been suggested that the DAMA/LIBRA
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signal may be caused by an annually modulated muon signal [236, 237].

An alternative explanation is that the claimed signals are due to a

dark matter particle, but that its properties are not as simple as in the

canonical case, explaining why it has not been observed in all experiments.

One possibility is that the astrophysical distribution of dark matter does

not match the standard assumptions. We will discuss this astrophysical

distribution in more detail shortly in Sec. 2.3.3. However, it appears that

even with this additional freedom, the different results cannot be reconciled

[238–241]. A number of particle physics models have also been considered

to explain the results, including spin-dependent interactions [242], isospin

violating dark matter (for which fp 6= fn) [243], inelastic dark matter

[244] and mirror dark matter [245]. However, a consistent picture which

reconciles all experimental datasets remains elusive [246].

We summarise some of the completed and current direct detection ex-

periments in Table 2.1. Some of the limits set by these experiments are

shown in Fig. 2.3 for SI scattering and Fig. 2.4 for SD scattering. The

most stringent limits on the SI WIMP-proton cross section are set by LUX

[182], who find a limit of σpSI ≤ 7.6×10−46 cm2 at a mass of mχ = 33 GeV.

The best limit for the SD WIMP-proton cross section is set by COUPP

[221]: σpSD ≤ 3×10−39 cm2. The confirmation or falsification of the signals

which have been claimed thus far may have to wait for the next generation

of dark matter experiments, or for corroboration from collider or indirect

searches.

2.2.2 Future experiments

Experiments which are planned or under construction typically aim to scale

up the size of current detectors and reduce unwanted backgrounds (in order

to increase the sensitivity to lower cross sections) or decrease the energy

threshold (which increases sensitivity to lower masses). There are a number

of ton scale detectors either in operation or planned, including XENON1T

[250], DEAP-3600 [251], LZ [252], EURECA [253, 254] and DARWIN [255].

With this next generation of detectors, the aim is to achieve sensitivity

to the SI WIMP-proton cross section down to σpSI = 10−48 cm2. Below

this value, irreducible backgrounds from Solar and atmospheric neutrinos

become important and the identification of a DM signal becomes more

difficult [256, 257].
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Figure 2.3: Current limits on the WIMP-proton spin-independent cross
section. The most stringent 90% limits are set by LUX (solid blue)
[182]. We also show 90% limits from SuperCDMS (dashed black) [233]
and Xenon100 (dashed red) [247]. The 90% preferred regions from
DAMA/LIBRA [226] (yellow contour), CDMS-Si (purple contour) [209],
CoGeNT (light blue contour) [213] and CRESST-II (green contour) [210]
are also shown. Generated using the DMTools Plotter [248].
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Figure 2.4: Current limits on the WIMP-proton spin-dependent cross
section. The most stringent 90% limits are set by COUPP (solid green)
[221]. We also show 90% limits from Xenon100 (dashed red) [249], PI-
CASSO (dashed light blue) [223] and SIMPLE (dashed blue) [222]. Gen-
erated using the DMTools Plotter [248].
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Experiment Target Status
CDMS-II (Ge) [206–208] Ge Null result

CDMS-II (Si) [209] Si Excess
SuperCDMS [233] Ge Null result

CoGeNT [179, 180, 211–213] Ge Excess & annual modulation
CRESST-II [210] CaWO4 Excess

EDELWEISS-II [214] Ge Null result
ZEPLIN-III [215] Xe Null result

XENON100 [216, 247] Xe Null result
LUX [182] Xe Null result

PICASSO [223] C4F10 Null result
SIMPLE-II [222] C2ClF5 Null result

COUPP [220, 221] CF3I Null result
DAMA/LIBRA [178, 225, 226] NaI(Tl) Annual modulation

NAIAD [228] NaI(Tl) Null result
KIMS [227] CsI(Tl) Null result

Table 2.1: Summary of current and completed direct detection experi-
ments.

There have also been a number of proposals for novel methods of di-

rectly detecting dark matter. These include using DNA-based detectors

to provide high spatial resolution [258], using nano-scale explosives [259]

or charged-coupled devices [260] to achieve very low energy thresholds and

using proton-beam experiments as a source of dark matter for direct de-

tection experiments [261]. It has also been suggested the direct detection

experiments could be used to search for DM interactions with electrons,

rather than nuclei (see e.g. Refs. [262, 263]). Clearly, there are a range of

approaches being pursued both in refining current technologies and devel-

oping new ones.

2.3 Uncertainties

Calculation of the DM differential event rate dR/dER requires not only

a knowledge of the dark matter parameters mχ and σSI,SD but a num-

ber of other factors which also enter into the calculation. It is important

to understand how uncertainties in these different factors and parameters

propagate into the event rate in order to ensure that the conclusions we

draw from direct detection experiments are unbiased. These uncertain-

ties are typically partitioned into three separate classes: nuclear physics,
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particle physics and astrophysics.

2.3.1 Nuclear physics uncertainties

As we have already seen, nuclear physics enters into the calculation of the

nucleon matrix elements mnf
n
Tq ≡ 〈n|mq q̄q|n〉. The factors fnTq must be

determined experimentally, and have values

fpTu = 0.020± 0.004; fpTd = 0.026± 0.005; fpTs = 0.118± 0.062 , (2.31)

with fpTu = fnTd, f
p
Td = fnTu and fpTs = fnTs. The main uncertainties stem

from determinations of the π-nucleon sigma term, determined either exper-

imentally from low energy pion-nucleon scattering [187, 264, 265] or from

lattice QCD calculations [188, 266]. Similarly for the spin contributions

∆q to the nucleus, values must be obtained experimentally [192, 267–269],

∆p
u = 0.77± 0.08; ∆p

d = −0.38± 0.08; ∆p
s = −0.09± 0.08 , (2.32)

although efforts are being made to obtain these values directly via calcula-

tion [270, 271]. It should be noted that these nucleon matrix elements are

only necessary if we wish to deal directly with quark-level couplings and

interactions. If, instead, we consider the nucleon-level effective operators

(and equivalently the WIMP-nucleon cross sections), these values are not

required.

Nuclear physics also enters into the calculation of form factors, describ-

ing the internal nucleon and spin structures of the nuclei. For the SI case,

the form factor is obtained from the Fourier transform of the nucleon dis-

tribution in the nucleus. The form typically used is due to Helm [196]

F 2
SI(ER) =

(
3j1(qR1)

qR1

)2

e−q
2s2 , (2.33)

where j1(x) is a spherical bessel function of the first kind,

j1(x) =
sinx

x2
− cosx

x
. (2.34)
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Nuclear parameters due to Lewin and Smith [272], based on fits to muon

spectroscopy data [273] are typically used:

R1 =

√
c2 +

7

3
π2a2 − 5s2, (2.35)

c = 1.23A1/3 − 0.60fm, (2.36)

a = 0.52fm, (2.37)

s = 0.9fm . (2.38)

Muon spectroscopy and electron scattering data [274] are typically used

as a probe of the charge distribution in the nucleus. However, detailed

Hartree-Fock calculations indicate that the charge distribution can be used

as a good proxy for the nucleon distribution (especially in the case fp ≈ fn)

and that using the approximate Helm form factor introduces an error of less

than ∼5% in the total event rate [275]. Studies also indicate that errors due

to distortions in nuclear shape away from sphericity are negligible [276].

In the SD case, however, the situation is more complicated. In order

to calculate the SD cross section, we require the proton and neutron spin

content 〈Sp,n〉 as well as the form factor F 2
SD. The form factor can be

written in the form

F 2
SD(ER) = S(ER)/S(0) , (2.39)

in terms of the response function S(ER). This response function can in turn

be decomposed into three spin-dependent structure functions (SDSFs)

S(ER) = a2
0S00(ER) + a0a1S01(ER) + a2

1S11(ER) , (2.40)

where a0 = ap+an is the isoscalar coupling and a1 = ap−an is the isovector

coupling. The zero momentum transfer value S(0) is related to the proton

and neutron spin expectation values by [277]

S(0) =
2J + 1

π

J + 1

J
|ap〈Sp〉+ an〈Sn〉|2 . (2.41)

We can therefore write the SD cross section of Eq. 2.24 as

dσSD
dER

=
2π

3

mNσ
p
SD

µ2
χpv

2

1

2J + 1

S(ER)

(ap)2
. (2.42)

The nuclear physics is now encapsulated in a single response function S(ER)

(or equivalently two SDSFs S00 and S11).2

2In Ref. [277], it is noted that the SDSFs are not independent and that the function
S01 can be written in terms of the other two.
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The functional form for Sij can be calculated from shell models for the

nucleus [197]. However, there are a number of competing models (such as

the Odd Group Model [278], Interacting Boson Fermion Model [279] and

Independent Single Particle Shell Model [280] among others). These models

use different methods for accounting for forces between quarks, leading to

different forms for the SDSFs and therefore to significant uncertainty in

the spin-dependent cross section. This issue was explored by Cerdeño et

al. [281], who developed a parametrisation for the spin structure functions

in terms of the parameter u = (qb)2/2, where q is the momentum transfer

and b =
√

41.467/(45.0A−1/3 − 25.0A−2/3) is the oscillator size parameter.

This parametrisation takes the form

Sij = N((1− β)e−αu + β) , (2.43)

where the range of the parameters {N,α, β} is chosen such that Sij spans

the different possible forms presented in the literature. It was shown that

this parametrisation was able to mitigate the uncertainties in the SD cross

section and accurately recover the remaining particle physics parameters

when the true form for the SDSFs was unknown.

2.3.2 Particle physics uncertainties

Apart from the unknown values for the WIMP mass mχ and cross sections

σSI,SD, the ratios of proton to neutron couplings are also a priori unknown.

In the case of SI scattering, the dominant contribution comes from the

coupling to strange quarks fTs, which is equal for protons and neutrons.

It is therefore typically assumed that fp = fn, though isospin violating

dark matter models have been considered [243, 282, 283]. Similarly, for the

SD interaction, a specific relation is typically assumed between the proton

and neutron couplings, such as ap/an = ±1. While specific models often

predict such a relation [102], it should be noted that this ratio is a priori

unknown and fixing it is a model choice.

Further uncertainty is derived from the form of the interaction terms

themselves. Here, we have considered the dominant contributions to scat-

tering in the case of non-relativistic contact interactions. Extensions in-

cluding mediator particles have been considered [284, 285], as well as mod-

els in which DM can interact electromagnetically with nuclei [286, 287].

There has also been significant effort towards developing a general non-
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relativistic field theory for the interaction of WIMPs with nuclei [184, 186,

190, 288]. Current limits can be translated into limits on the couplings

associated with a range of effective operators. While this approach signif-

icantly widens the parameter space of dark matter direct detection, it is

more general and does not rely on (potentially poor) assumptions about

DM interactions.

2.3.3 Astrophysical uncertainties

Astrophysical uncertainties enter into the direct detection event rate through

the local dark matter density ρ0 and the speed distribution f1(v).

DM density, ρ0

The DM mass density sets the overall scale of the scattering rate. As

we shall discuss in Chapter 3, the DM density is degenerate with the in-

teraction cross section, meaning that an accurate determination is impor-

tant. One method of obtaining the value of ρ0 is by mass modelling of

the Milky Way (MW). One builds a model for the Galaxy incorporating

various sources of mass, including the stellar bulge and disc, dust and a

dark matter halo [289]. It is then possible to use various data such as

the total MW mass, local surface mass density and the velocities of trac-

ers to fit the parameters of this model and thereby extract ρ0. Estimates

using this method tend to have a wide uncertainty, typically lying in the

range 0.2− 0.4 GeV cm−3 (e.g. Ref. [289, 290]). A more recent determina-

tion using state-of-the-art data obtains a more precise but higher value of

ρ0 = 0.47+0.05
−0.06 GeV cm−3 [291] (though this depends on the choice of halo

density profile).

An alternative method is to use local stellar kinematic data to con-

strain the gravitational potential near the Sun and thus obtain an esti-

mate of ρ0. Using kinematic data from roughly 2000 K-dwarfs, Garbari et

al. [292] obtain the value ρ0 = 0.85+0.57
−0.50 GeV cm−3 while Zhang et al.,

using a larger sample of 9000 K-dwarfs, obtain 0.28 ± 0.08 GeV cm−3.

Including microlensing data, the range of allowed values at 1σ is ρ0 =

0.20 − 0.56 GeV cm−3 [293]. A further model independent method was

proposed by [294]. The advantage of such approaches is that one does not

need to assume a particular form for the DM halo density profile. However,
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they may be more sensitive to assumptions about local equilibrium near

the Sun’s position.

In 2012, Moni Bidin et al. [295] used the dynamics of thick disk stars to

constrain the DM density, finding a result consistent with no dark matter at

the Sun’s radius. However, a subsequent reanalysis by Bovy and Tremaine

[296] showed that this result derived from a poor assumption about the

velocity of stellar tracers as a function of Galactic radius. Using the same

data with more reasonable assumptions, the value 0.3±0.1 GeV cm−3 was

obtained [296].

In spite of the large number of determinations, no consistent value ap-

pears to be emerging, with values ranging from 0.2−0.85 GeV cm−3. There

also remain a number of uncertainties in these determinations, including

the shape of the DM halo and assumptions about the local equilibrium

of the Galaxy (for a recent review, see Ref. [297]). The ‘standard’ value

assumed in the analysis of direct detection experiments is 0.3 GeV cm−3,

though the exact origin of this number is unclear [298].

Speed distribution, f1(v)

The speed distribution enters into the direct detection rate in the integral,

η(vmin) ≡
∫ ∞
vmin

f1(v)

v
dv , (2.44)

which is referred to as the ‘velocity integral’ or the ‘mean inverse speed’.

Direct detection experiments are traditionally analyzed within the frame-

work of the Standard Halo Model (SHM), in which WIMPs are assumed

to have a Maxwell-Boltzmann velocity distribution in the Galactic frame.

In the Earth’s frame, this takes the form

fSHM(v) = N exp

(
−(v− vlag)2

2σ2
v

)
Θ(vesc − |v− vlag|) , (2.45)

where vlag specifies the velocity of the Earth frame with respect to the

Galactic rest frame and σv the velocity dispersion. The SHM distribution

is obtained assuming a spherical, isothermal DM halo with density profile

ρ ∼ r−2 and results in the relation σv = vlag/
√

2. The distribution is

truncated above the escape speed vesc in the Galactic frame and the factor



2.3. UNCERTAINTIES 43

N is required to satisfy the normalization condition:∫
f(v) d3v = 1 . (2.46)

By integrating over directions we obtain f(v) and the speed distribution is

then given by

f1(v) = f(v)v2 =

∫
f(v)v2 dΩv . (2.47)

Within the SHM, there is some uncertainty on the parameters de-

scribing f1(v). The parameter vlag is given by the local circular speed

vc = 218 ± 7 km s−1 [299, 300] plus a contribution from the peculiar mo-

tion of the Sun and the Earth’s orbital motion. This lag speed is typically

assumed to be close to the local circular speed, though more recent de-

terminations of the solar velocity point towards higher values [301, 302] of

240−250 km s−1. There is also uncertainty in the value of σv. The relation

σv = vlag/
√

2 is obtained from solving the Jeans equation assuming ρ ∼ r−2

[303]. Relaxing this assumption means that this relation no longer holds

and that σv is no longer as well constrained. Finally, the Galactic escape

speed can be estimated from the radial velocities of MW stars; the RAVE

survey obtain the range vesc = 533+54
−41 km s−1 at 90% confidence [194, 195].

Even taking into account these uncertainties, the SHM is unlikely to

be an accurate representation of the DM halo. Observations and N-body

simulations indicate that the halo should deviate from a 1/r2 profile and

may not be spherically symmetric. As a result alternative models have been

proposed. Speed distributions associated with triaxial halos [304] or with

more realistic density profiles [305] have been suggested, as well as analytic

parametrisations which should provide more realistic behaviour at low and

high speeds [306]. Self-consistent distribution functions reconstructed from

the potential of the Milky Way have also been obtained [307, 308].

It is also possible to extract the speed distribution from N-body simu-

lations. Such distribution functions tend to peak at lower speeds than the

SHM and have a more populated high speed tail [309–311]. There are also

indications that DM substructure may be significant, causing ‘bumps’ in

the speed distribution, or that DM which has not completely phase-mixed

- so-called ‘debris flows’ - may have a contribution [312].

It should be noted that N-body simulations do not probe down to the

sub-milliparsec scales which are probed by direct detection experiments.
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There may be a concern then that the local dark matter distribution could

be dominated by localised subhalos or streams which are not captured by

these simulations and which may affect the interpretation of direct detec-

tion experiments [313]. However, an analysis of N-body simulations has

found that no individual subhalos should dominate the local distribution

[314]. Vogelsberger et al. [315] study the geodesic deviation of individual

particles in N-body simulations, giving access to information about the

ultra-local DM distribution. They find that the local distribution should

be made up of a large number of streams (∼ 105), meaning that it can

effectively be treated as smooth.

Another result obtained from simulations is the possibility of a dark

disk. When baryons are included in simulations of galaxy formation, this

can result in DM subhalos being preferentially dragged into the disk plane

where they are tidally stripped [316, 317]. The resulting dark disk corotates

with approximately the same speed as the baryonic matter, though with

a smaller velocity dispersion σDDv ∼ 50 km s−1. This dark disk is expected

to contribute an additional density 0.2-1.0 times the density of the halo.

However, this value is dependent on the merger history of the Milky Way,

with more massive and numerous mergers leading to an enhanced disk

density. The more recent ERIS results [28], comparing hydrodynamic and

DM-only simulations, report a relatively quiet merger history for a Milky

Way-like galaxy. The result is a smaller dark disk density of just 10% that

of the DM halo.

In Fig. 2.5, we show some examples of possible dark matter speed dis-

tributions in the Earth frame. We show the directionally averaged velocity

distribution f(v) in the top panel, the speed distribution f1(v) in the mid-

dle panel and the corresponding η(v) in the bottom panel. The population

of low speed WIMPs in the SHM + dark disk (dashed green) distribution

causes the mean inverse speed (and therefore the event rate) to rise more

rapidly at low speeds than the SHM alone (solid blue). A sharp stream

distribution function (dotted magenta) leads to step-like form for η; for

vmin above the speed of the stream almost no WIMPs can contribution to

the scattering, while for vmin below the speed of the stream all WIMPs can.

Each of these possible distributions will produce a distinct event spectrum

in a detector.

The impact of such uncertainties in the WIMP speed distribution has

been much studied (see e.g. Refs. [318–320]) and it has been shown that
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Figure 2.5: Some examples of possible dark matter speed distributions
including the Standard Halo Model (SHM), SHM with a 30% dark disk
overdensity (SHM+DD), and a stream centred around 400 km s−1. We
show the directionally averaged velocity distribution f(v) (top panel),
the speed distribution f1(v) (middle panel) and mean inverse speed η(v)
(bottom panel).
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poor assumptions about the speed distribution may result in biased recon-

structions of the DM mass and cross sections from future direct detection

data. Peter attempted to reconstruct the WIMP mass and SI cross section

from mock data sets based on future direct detection experiments [319].

In order to generate the data, an SHM distribution function with an addi-

tional contribution from a dark disk was assumed. However, the posterior

distribution for mχ and σSI
p was obtained assuming that f1(v) could be

well described by a single Maxwell-Boltzmann (MB) distribution (with av-

erage speed and speed dispersion included as nuisance parameters). The

resulting marginalised 68% and 95% contours for mχ and σSI
p are shown in

Fig. 2.6, with the true parameter values given by the black crosses.

Figure 2.6: Reconstructed WIMP mass mχ and SI cross section σp
SI using

mock data from three future detectors. Data was generated assuming
an SHM distribution with a contribution from a dark disk. However,
the reconstruction was performed assuming that a Maxwell-Boltzmann
speed distribution. Yellow regions show the 68% and 95% marginalised
credible contours for conservative values of the maximum energy of the
experimental search window, while green contours are the results extend-
ing the search window up to Emax = 1 MeV. Reprinted with permission
from Ref. [319]. Copyright 2011 by the American Physical Society.

Even including some uncertainties in the shape of the MB speed distri-

bution, there is still a clear bias in the reconstructed WIMP parameters.

The MB speed distribution cannot reproduce the shape of the event spec-

trum closely and the WIMP mass and cross section move to different values

to compensate and improve the fit. Not only is there a bias, but the result-
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ing contours are relatively small. In this case, if we trust the ansatz of an

MB distribution, we would mistakenly believe that we had reconstructed

the WIMP parameters accurately with a high precision.

It is unknown which, if any, of the many distributions discussed here

best describes the true Galactic DM speed distribution. It is therefore

imperative that we model the uncertainties in f1(v) in a general way to

avoid bias in the reconstructed WIMP parameters. Chapter 3 addresses

the various attempts to achieve this in the literature and explores what is

required for such a general approach.

2.4 Conclusions

We have discussed the dark matter direct detection formalism, focusing

on the contribution from scalar and axial-vector contact interactions. The

non-relativistic speeds involved means that the event rate can be divided

into a spin-dependent and spin-independent contribution. A number of

sophisticated experiments have been and continue to be developed which

should allow the rare nuclear recoils produced by these interactions to be

detected. The use of different channels such as scintillation, ionisation and

phonons not only allows the energy of these events to be measured but also

aids discrimination against electronic recoils which can act as a significant

background.

Tentative hints of a signal from the DAMA/LIBRA, CRESST-II and

CoGeNT experiments have been interpreted as evidence for a WIMP with

mass mχ ∼ 10 GeV and cross section σSI ∼ 10−41 cm2. However, null

results from XENON, CDMS and other experiments are in tension with

this claimed signal. The origin of this discrepancy may lie in unidentified

backgrounds or in an unconventional model for DM; corroboration from

indirect and collider experiments may be needed before such a signal can

be confirmed.

Finally, there are a number of uncertainties associated with calculating

direct detection event rates and therefore with interpreting data from these

experiments. Nuclear uncertainties are typically more important for the

SD rate than for the SI, though the method of Cerdeño et al. may be able

to reduce the impact of such uncertainties. Particle physics uncertainties

are significant, though the standard contact operator approach should be

a good first approximation and effective field theories extending beyond
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this standard approach are being developed. Uncertainties in the number

of dark matter particles, embodied in the local DM density ρ0, lead to a

factor of roughly 2 uncertainty in the total direct detection rate.

In contrast, uncertainties in the speed distribution of dark matter are

poorly controlled. Theoretical and computational considerations indicate

that the benchmark assumption - the SHM - is not a good description of the

WIMP distribution and while a large number of alternatives are available,

it is unclear which, if any, of these may be correct. The wide range of

possibilities for f1(v), as well as the consequences for misinterpreting future

data, indicate that taking these uncertainties into account in a general way

is essential.



Chapter 3

Parametrising the WIMP

distribution

As we have explored in Chapter 2, there are a number of uncertainties

associated with calculating the direct detection event rate. These trans-

late directly into uncertainties in the analysis of direct detection results,

present and future. If these uncertainties are properly accounted for, they

can provide more realistic estimates of uncertainties on the WIMP cross

sections σSI
p and σSD

p and WIMP mass mχ. If, however, our assumptions do

not reflect the underlying nuclear physics, particle physics or astrophysics

of dark matter, this can lead to a bias in the WIMP parameters. Under-

standing these uncertainties and how to mitigate them is therefore of great

importance.

The WIMP speed distribution f1(v) enters into the direct detection

event rate as it influences both the typical flux of dark matter particles

and the typical recoil energy imparted during a scattering event. Unfor-

tunately, the typical flux and recoil energy are also strongly dependent on

the WIMP mass mχ. This leads to a strong degeneracy between mχ and

f1(v) and, as discussed in Sec. 2.3.3, the possibility of significant bias in

the reconstruction of the WIMP mass.

Because the speed distribution is so poorly constrained, an ideal goal

would be to construct the most general parametrisation for f1(v) which

can accommodate a wide range of possibilities for the true functional form.

In Sec. 3.1, we explore previous attempts in the literature to account for

uncertainties in the speed distribution and consider the properties which

are required of any parametrisation of the speed distribution. A very gen-

49
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eral approach was explored by Peter [319], who wrote down an empirical

parametrisation for f(v) as a series of constant bins in v. However, this

still resulted in a bias in the reconstructed WIMP parameters. In Sec. 3.2,

we analyse in more detail the performance of this method and attempt to

explain where this bias comes from.

In Sec. 3.3 and Sec. 3.4, we discuss a method analogous to that of Pe-

ter but for parametrising the WIMP momentum distribution in terms of a

series of constant bins. This transformation helps remove some of the de-

generacy between the WIMP mass and distribution function and improves

reconstructions of the mass compared to binning in f(v). We also discuss

how the speed distribution can be extracted from the momentum parame-

ters. Finally, we discuss the weaknesses of this momentum parametrisation,

highlighting where remaining work is needed.

3.1 Attempts to address the uncertainties

in f1(v)

Direct detection experiments are typically analysed within the framework

of the Standard Halo Model (SHM), described in Chapter 2. A first step

in extending the SHM is to incorporate uncertainties in vlag, σv and vesc in

reconstructions. Strigari and Trotta [321] introduced a simple model of the

Milky Way mass distribution, from which SHM velocity parameters can

be derived. They then use mock stellar kinematics and direct detection

data to fit both the model parameters and the dark matter properties.

A more direct approach is to directly fit the SHM velocity parameters,

incorporating their uncertainties into the fitting likelihood. This method

has been considered by Peter [322], and is typically used as a simple model

of astrophysical uncertainties (especially in studies which focus on other

aspects of direct detection, e.g. Ref. [323]). These methods allow bias in

the reconstructed WIMP parameters to be eliminated when the underlying

speed distribution is indeed in the SHM form. However, as shown by Peter

[319], these methods fail when the distribution function differs from the

standard Maxwellian case.

There have also been attempts to incorporate and fit more realistic

distribution functions. Pato et al. [324] incorporate astrophysical uncer-

tainties by using the distribution function of Lisanti et al. [306] and fitting
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the various shape parameters associated with it. In a more recent paper,

Pato et al. [325] use mock direct detection data and stellar kinematics data

to fit a model of the Milky Way mass distribution, from which they derive

a self-consistent distribution function (SCDF) using Eddington’s formula.

This means that the resulting speed distribution will be consistent with the

underlying potentials of the galaxy’s bulge, disk and dark matter, incor-

porating a broader range of shapes than the SHM alone. However, as the

authors point out, velocity distributions from cosmological N-body simu-

lations differ significantly from those expected from Eddington’s formula.

As with the Standard Halo Model, fitting such a SCDF is likely to result

in biased reconstructions if the true distribution deviates significantly from

the functional form used for fitting.

Methods which make no assumptions about the functional form of the

speed distribution have had mixed success. Drees and Shan [326, 327] de-

veloped a method for estimating the WIMP mass by calculating moments

of the speed distribution. However, this method still introduces a bias

into the reconstructed WIMP mass and performs more poorly for heavier

WIMPs and when finite energy thresholds are considered. An empirical

ansatz for the speed distribution has also been suggested, specifically di-

viding the WIMP speed into a series of bins, with the distribution being

constant within each bin [319]. However, this still results in a significant

bias in the reconstructed mass and cross section. A recent proposal by

Feldstein and Kahlhoefer [328] is to fit the velocity integral rather than the

speed distribution. This proposal is the most promising so far and appears

to give an unbiased reconstruction of the mass. However, the method has

not been demonstrated for low mass WIMPs and reconstructing the speed

distribution itself remains problematic.

Finally, a method for comparing existing data has been developed by

various authors [240, 241, 329]. At a given mass, a given experiment is sen-

sitive only to speeds in a fixed range, set by vmin(Emin) and vmin(Emax). By

considering only the range of speeds where two or more experiments over-

lap, one can ensure that the astrophysical contribution to both experiments

is equal. This method has typically been used to assess the compatibility

of different data sets and to set more robust limits on the WIMP inter-

action cross sections. Recently it has also been extended to accomodate

more general forms for the WIMP interactions [330].
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3.1.1 Considerations in parametrising f1(v)

Given the range of possibilities for the form of the speed distribution, we

want to consider parametrisations which are as general as possible. We

discuss now some of the challenges and considerations which must be taken

into account for such parametrisations. We can write the integral over the

speed distribution as

η(vmin) ≡
∫ ∞
vmin

f1(v)

v
dv , (3.1)

where vmin is given by

vmin = vmin(ER,mχ,mN) =

√
mNER
2µ2

χN

. (3.2)

If we treat f1(v) as a free function (subject to the condition that it be

normalised to unity and everywhere positive), this is equivalent to treating

η(vmin) as a free function (subject to the equivalent condition that η be

a monotonically decreasing function of vmin). This represents an entirely

agnostic approach to f1(v), assuming that we know nothing at all about

its functional form. Unfortunately, if we fix mN , any change in mχ (and

resulting change in vmin) can be counteracted by a change in the form of

f1(v), leading to the same spectral shape η(ER). This means that for a

single experiment, the WIMP mass and f(v) are degenerate and we need

multiple experiments to disentangle the two [327]. We will phrase this in

more concrete terms later in Sec. 3.3.

Another consideration when parametrising f1(v) is the range of sensi-

tivity of the experiments. Each experiment will have a window of recoil

energies to which it is sensitive [Emin, Emax] (though the recoil detection ef-

ficiency may vary across this window). This means that for a given WIMP

mass, each experiment will be sensitive only to a range of WIMP speeds

[vmin(Emin), vmin(Emax)]. WIMPs with speeds smaller than vmin(Emin) do

not contribute to the velocity integral defined in Eq. 3.1. WIMPs with

speeds above vmin(Emax) can contribute to the overall spectrum, but they

contribute only a constant, additive rate; the experiment is not sensitive

to the shape of the speed distribution above this maximum speed. If we

wish to probe the shape of f1(v), the range of speeds probed by each

experiment must have some overlap. Otherwise, f1(v) can be varied in-

dependently across each speed range and the degeneracy between mχ and

f1(v) remains.
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In order to get a handle on f1(v) (and simultaneously the WIMP mass

and cross sections) we therefore need several direct detection experiments,

which use different target materials but which probe overlapping WIMP

speeds. However, we must come up with a way of writing our general

function f1(v) which allows us to reconstruct it by fitting to the data. Such

a parametrisation should correspond to a physical distribution function.

This gives two important conditions on the speed distribution:

(i) it should be normalised to unity

∫ ∞
0

f1(v) dv = 1 , (3.3)

(ii) and it should be everywhere positive

f1(v) ≥ 0 for all v . (3.4)

Subject to these constraints, we should try to write down a parametrisation

which spans a wide range of underlying distribution functions and which

does not introduce any additional bias into attempts to reconstruct the

WIMP parameters. For this reason, it is necessary to carefully test any

proposed parametrisation. We now explore in more detail several proposals

for what such a general parametrisation could look like.

3.2 Binned speed distribution

Peter proposed the use of an empirical speed distribution in the form of

a series of bins in speed v in order to fit to data. Explicitly, we write the

directionally-averaged velocity distribution (in the Earth frame), as a series

of N bins of constant value, with bin edges {ṽi}:

f(v) =
N∑
i=1

giW (v; ṽi,∆v) , (3.5)

where the top-hat function, W, is defined as:

W (v; ṽi,∆v) =

1 v ∈ [ṽi, ṽi + ∆v] ,

0 otherwise .
(3.6)
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We must choose a maximum speed vmax = N∆v up to which we parametrise.

Beyond this speed, we set f(v) to zero, so we should choose a conservative

value which does not risk truncating the speed distribution prematurely.

Based on the results of the RAVE surveys [194, 195], the Galactic escape

speed is estimated to be vesc < 587 km s−1 at the 90% confidence level.

Assuming a local circular speed of vc ∼ 220 km s−1 [299, 300], this means

that in the Earth frame, particles with speeds significantly higher than

vc + vesc ∼ 800 km s−1 should not be gravitationally bound. This is consis-

tent with results for the local escape speed obtained in N-body simulations

[310]. We therefore choose a value vmax = 1000 km s−1 as a conservative

upper limit for the parametrisation.

The form for the distribution function given in Eq. 3.5 is the directionally-

averaged WIMP velocity distribution, f(v). The WIMP speed distribution

is then given by

f1(v) =
N∑
i=1

giv
2W (v; ṽi,∆v) . (3.7)

Imposing normalisation of the speed distribution, we obtain the following

constraint on the {gi}:

N∑
i=1

gi
[
(ṽi + ∆v)3 − ṽ3

i

]
/3 = 1 . (3.8)

For notational convenience, we also define

ĝi = gi
[
(ṽi + ∆v)3 − ṽ3

i

]
/3 , (3.9)

such that the normalisation condition becomes

N∑
i=1

ĝi = 1. (3.10)

We illustrate the form of this binned distribution for f(v) in Fig. 3.1.

We show the Standard Halo Model in the Earth frame (blue line) as well

as the binned approximation to the SHM (red line). This approximation

is obtained by integrating the WIMP speed distribution over each of the

bins:

ĝapprox
i =

∫ ṽi+∆v

ṽi

fSHM
1 (v) dv . (3.11)
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This allows us to examine how closely the binned parametrisation can be

used to approximate the SHM. However, in a realistic scenario, these bin

parameters {ĝi} would form part of the parameter space, along with mχ

and σp, which must be explored based on the data.
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Figure 3.1: Binned approximation to the SHM in the Earth frame. The
bin heights are obtained from Eq. 3.11. We note that shown here is f(v),
the directionally-averaged velocity distribution. We must multiply by v2

to obtain the speed distribution f1(v).

In Ref. [319], Peter found evidence that this method still leads to a bias

in the reconstructed WIMP mass and cross section, despite the apparent

generality of this binned distribution function. Increasing the number of

speed bins did not appear to alleviate this problem. Here, we explore this

method further. In particular, we consider a large number of realisations

of data sets from hypothetical future experiments, assuming some fiducial

benchmark model. We then attempt to reconstruct the WIMP mass for

each realisation, allowing us to determine how the method performs sta-

tistically and whether the bias found by Peter is present in all data sets or

only in a small number of Poissonian realisations.

3.2.1 Experiments and benchmark parameters

We consider three next-generation detectors, modelled on experiments which

are currently in development: XENON1T [331], WArP [332] and Super-

CDMS [333]. Each experiment is characterised by the (suitably averaged)
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Experiment
Target
Mass,
A

Detector
Mass (fid.),
mdet/kg

Efficiency,
ε

Energy
Range/keV

Xenon 131 1000 0.17 2-30

Argon 40 1000 1.0 30-130

Germanium 73 100 0.3 10-100

Table 3.1: Parameter values for the three mock experiments used in this
chapter, chosen to closely match those used in Ref. [319]. The Xenon
experiment is modelled on Xenon1T [331], the Argon experiment on
WArP [332] and the Germanium experiment on SuperCDMS [333]. An
exposure of texp = 1 year is used for all 3 experiments. The meanings of
the experimental parameters are described in Sec. 3.2.1.

mass number A of the target nucleus, a fiducial detector mass mdet, an ef-

ficiency ε, and a pair of energies, Emin and Emax, which mark the extent of

the signal region. The efficiency of each experiment incorporates informa-

tion about detection efficiency, as well as data cuts and detector down-time.

Table 3.1 shows the experimental parameters used in this chapter, which

are chosen to approximately match those used by Peter [319]. For all three

experiments, we assume an exposure time of texp = 1 year.

We assume that the detector efficiency is independent of energy. We

also assume perfect energy resolution and zero backgrounds. For a real

experiment, these assumptions will almost certainly not hold, for example

due to variations in the relative scintillation efficiency of Xenon [334], but

the results presented here should be viewed as a proof of principle in the

ideal case.

Figure 3.2 shows the minimum and maximum accessible WIMP speeds

for each experiment. All three experiments rapidly become insensitive to

WIMPs with speeds less than ∼ 1000 km s−1 as the WIMP mass drops

below mχ ∼ 10 GeV. This suggests that the experiments considered here

generically have a low sensitivity to such light WIMPs, producing too few

events for accurate parameter reconstruction.

For comparison with later methods, we consider here a single bench-

mark model: mχ = 50 GeV, σp
SI = 10−44 cm2 and the SHM (with vlag =

220 km s−1).1 We assume that the spin-dependent contribution to the event

1At the time that Ref. [319] and Ref. [335] were published this value of the cross
section had not yet been probed. However, the value σp

SI = 10−44 cm2 has since been
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Figure 3.2: Range of accessible WIMP speeds as a function of WIMP
mass for each of the three mock experiments: XENON1T-like (solid
blue), SuperCDMS-like (dashed green) and WArP-like (dot-dashed red).
Each pair of lines corresponds to the maximum and minimum accessi-
ble WIMP speeds for a given experiment. The outermost dotted red
lines show the accessible speeds for the adjusted parametrisation range
described in Sec. 3.4. Reproduced from Paper I [335].

rate is negligible, as the A2 enhancement leads the SI rate to dominate for

heavy targets. This also allows us to disentangle degeneracy between σSI
p

and σSD
p from the astrophysical uncertainties we consider here. We assume

a fixed value for the local DM density ρ0 = 0.3 GeV cm−3. As will be

explained in Sec. 3.4, the precise values of σSI
p and ρ0 are not particularly

important due to the degeneracy between these two parameters. The total

number of events from all three detectors combined typically ranges from

around 300 to 600 for the different benchmark parameters which will be

considered in this chapter.

3.2.2 Parameter reconstruction

We generate 250 mock data sets using the experiments described above.

Each realisation of the mock data is generated as follows:

excluded by several experiments [182, 247].
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1. Calculate the number of expected events Ne, given {mχ, σ
p
SI, f(v)},

using Eq. 2.29,

2. Pick the number of observed events No from a Poisson distribution

with mean Ne,

3. Pick recoil energies {E1, E2, ..., ENo}, from the distribution P (ER)

P (ER) =
εmdettexp

Ne

dR

dER
, (3.12)

4. Repeat for all three experiments.

We then use the Markov Chain Monte Carlo (MCMC) package Cos-

moMC [336] to make parameter inferences on the parameters mχ, σ
p
SI, {ĝi},

where ĝi are the bin parameters for a 5 bin speed distribution function.

We sample the WIMP mass and cross-section logarithmically in the ranges

[10, 1000] GeV and [10, 10000]×10−47 cm2 respectively, with log-flat priors

on both. We sample the ĝi linearly in the range [0, 1], subject to the nor-

malisation constraint of Eq. 3.10. In order to ensure adequate exploration

of the parameter space, we perform the MCMC at a temperature T = 2.

That is, we explore the high temperature likelihood L1/T and subsequently

‘cool’ the chains back down to T = 1 (see Appendix A for more details).

We sample using a total of 3× 105 chain positions, which is then thinned

by a factor of 50.

The likelihood function used to generate the Markov chains is the same

unbinned form used by CDMS [206] and XENON100 [216], which for a

single experiment is:

L1 =
NNo

e e−Ne

No!

No∏
j

P (Ej). (3.13)

The full likelihood L is then the product of the likelihoods for the three

separate experiments.

The distribution of MCMC chain positions gives the posterior prob-

ability distribution P(θ) for the parameters θ. In order to obtain 1-

dimensional parameter limits, we consider the marginalised posterior distri-

bution Pm(θ), which is obtained by integrating P(θ) over all the parameters

other than the parameter of interest. We take the mode of the marginalised

distribution as a best estimate of the underlying parameter. We then con-

struct highest-density credible intervals for the parameter of interest at the

p% level. Further details of this procedure are given in Appendix A.
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Figure 3.3: WIMP masses reconstructed using the binned speed
parametrisation method from 250 realisations. The benchmark speed
distribution is the SHM. The true mass of 50 GeV is shown as a dashed
vertical line. Reproduced from Paper I [335].

3.2.3 Results

Figure 3.3 shows the fitted values for the WIMP mass, mrec, obtained from

250 mock datasets. This distribution shows a peak around 45 GeV, as

well as a significant number of datasets reconstructed at ∼ 100 GeV. As

pointed out by Ref. [337], some mock datasets will not be representative

of the underlying benchmark parameters, having more events at high en-

ergies than expected, for example. This can lead to ‘bad’ reconstructions

with a fitted WIMP mass higher than the benchmark value. Thus, the

reconstructions near 100 GeV do not necessarily signify a failure of the

reconstruction method.

However, we can also study the coverage of the p% credible intervals:

the fraction of reconstructions for which the true WIMP mass lies within

the p% interval. That is, for each set of mock data, we construct a con-

fidence interval and determine whether the true WIMP mass lies within

that interval. The coverage of the p% intervals is then the fraction of those

intervals which contain the true value of the WIMP mass. If our reconstruc-

tions are statistically robust, we would expect that the true value will lie

within the p% interval in at least p% of reconstructions. For the 68% and

95% confidence intervals, this method shows significant under-coverage:

36 ± 3% coverage and 63 ± 3% coverage respectively. This indicates that
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while the mass reconstructions appear to be distributed close to the true

value (within around 5-10 GeV), the corresponding error estimates must be

too small. The bias noted by Peter is therefore a real effect and is sizeable

compared to the statistical uncertainty on mχ. We therefore cannot trust

the WIMP mass reconstructed using this parametrisation.

Figure 3.4 shows the reconstructed speed distribution for a typical real-

isation using this method. The reconstructed mass is mrec = 30.2+4.5
−3.9 GeV,

compared to the benchmark value of 50 GeV. The mean inverse speed is

under-estimated in the range 0 − 200 km s−1 and slightly over-estimated

at higher speeds. However, the reduced mrec increases the minimum ac-

cessible speed of the experiments, meaning that the experiments are less

sensitive to the shape of the speed distribution at low speeds. Moreover,

a reduced value of the reconstructed mass serves to steepen the spectrum,

reconciling the flattened η(vmin) at high speeds with the data. This is be-

cause varying the mass of the WIMP ‘rescales’ the spectrum, due to the

relation ER ∝ µ2
χNv

2
min.

In Fig. 3.5, we plot η/mχ as a function of recoil energy, ER, for the

SuperCDMS-like experiment. We rescale η by 1/mχ because this factor

appears in the event rate and we are then able to compare the spectra of

events from different models. The solid line shows the mean inverse speed

in the SHM, using the true WIMP mass of 50 GeV. We also show a binned

approximation to the SHM (dashed line) obtained using the ‘true’ values of

the bin parameters {gapprox
i } and the true WIMP mass. Finally, we show the

reconstructed mean inverse speed (dot-dashed line) using the reconstructed

WIMP mass of 30 GeV. We see that the binned approximation to the

SHM, which should represent a ‘good’ reconstruction, actually recovers

the spectrum poorly compared to the reconstructed values. In particular,

we note the energy range of the experiment spans two bins in the binned

approximation to the SHM, but three bins in the MCMC reconstruction,

allowing a closer approximation to the true spectrum.

Thus, the reconstructed mass and speed distribution parameters may

provide a good fit to the data, despite not being close to the underlying

benchmark parameters. As can be seen from Fig. 3.5, for a fixed bin

width in velocity space, the size of bins in energy space can be reduced by

moving to lower masses. This increases the number of energy bins within

the sensitivity range of the experiments. This should allow a closer fit to

the data and may explain why there appears to be a bias towards lower
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Figure 3.4: Reconstructed speed distribution, f(v), and mean inverse
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upper panel shows the underlying SHM speed distribution (solid blue)
and the fitted values of the speed bin parameters (red points). The
lower panel shows the mean inverse speed corresponding to these fitted
values (dashed red line) and the true mean inverse speed (solid blue).
Reproduced from Paper I [335].

mass values. In the next section, we explore a possible way to reduce this

bias by attempting to decouple the size of the bins from the value of mχ.

3.3 Momentum parametrisation for a

single experiment

When considering the speed distribution of the WIMPs, we see that each

experiment has a different range of sensitivity and that varying the WIMP

mass changes this range. However, we can instead consider a ‘reduced

WIMP-nucleus momentum’,

pN = µχNv , (3.14)
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Figure 3.5: The rescaled mean inverse speed, η/mχ, measured in the
SuperCDMS-like experiment as a function of recoil energy, ER. The
same mock dataset was used as in Fig. 3.4. The underlying Standard
Halo Model distribution (solid blue) uses the true WIMP mass of 50
GeV, as does the binned approximation to the SHM (dashed red). The
reconstructed mean inverse speed (dot-dashed black) uses the recon-
structed value of 30 GeV. Reproduced from Paper I [335].

defined separately for each target nucleus. We now note that the accessible

range in pN for each experiment is independent of the WIMP mass:

pmin(ER) = µχNvmin(ER) =

√
mNER

2
. (3.15)

We therefore rewrite the differential event rate in terms of the new

momentum variable:

dR

dER
=
ρ0σ

p
SIµχN

2µ2
χpmχ

A2F 2(ER)η̃(pmin) , (3.16)

where η̃ is the mean inverse momentum associated with the reduced mo-

mentum distribution, f̃(p):

η̃(pmin) =

∫ ∞
pmin

f̃(p)

p
d3p =

1

µχN
η(pmin/µχN). (3.17)

The event rate can be rewritten as:

dR

dER
=
ρ0

2
D′(σp

SI,mχ,mN)A2F 2(ER)η̃(pmin) , (3.18)

where we have defined

D′(σp
SI,mχ,mN) =

σp
SIµχN
µ2
χpmχ

, (3.19)
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which encodes all information about the WIMP mass and cross-section and

controls the overall scale of the event rate.

If we consider only a single experiment, is it possible to parametrise

f̃(p) and therefore reconstruct the value of D′? We can again define a

directionally averaged momentum distribution, f̃(p) = f(p/µχN)/µ3
χN , and

parametrise this in terms of 5 constant bins, with bin values {hi}. It is

then only necessary to parametrise f̃(p) over the range of sensitivity of

the experiment: p ∈ [pa, pb], where pa,b = pmin(Emin,max). This means

that we need not make any assumptions about the distribution function

outside the range of sensitivity of the experiment. However, we still wish

to impose some normalisation constraint on the momentum distribution

parameters. Each experiment now probes a well-defined (but unknown)

fraction of WIMPs, αN , given by

αN =

∫ pb

pa

f(p) p2dp . (3.20)

The momentum parameters are therefore normalised according to

N∑
i=1

ĥi = αN , (3.21)

where ĥi is defined analogously to ĝi in Eq. 3.10. We absorb the unknown

αN into D′, such that the momentum distribution parameters, {ĥi/αN},
are normalised to unity and we define

D(σp
SI,mχ,mN) = αND

′(σp
SI,mχ,mN) = αN

σp
SIµχN
µ2
χpmχ

. (3.22)

Finally, it is necessary to introduce a parameter A which models the

constant contribution to η from WIMPs with momenta greater than pb:

A =

∫ ∞
pb

f̃(p)

p
d3p . (3.23)

Because the precise form of f̃(p) above the upper energy threshold is un-

determined by the experiment, the contribution of A to the normalisation,

αN , cannot be calculated and is therefore not considered. Instead, we in-

clude conservative constraints on A such that its contribution alone cannot

exceed the normalisation of f̃(p):

A < (pb)
−1. (3.24)
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We also note that ∫ pb

pa

f̃(p)

p
d3p ≤ αN

pb
, (3.25)

and thus impose the following additional constraint on the parameters:

1

αN
[η(pa)− η(pb)] ≤

1

pb
. (3.26)

We therefore perform parameter reconstructions using the parameters

D, {hi/αN} and A/αN . Because the fraction of high momentum WIMPs is

expected to be relatively low, we sample the parameter A logarithmically,

with a log-flat prior.

3.3.1 Results

We consider again a single set of benchmark parameters, namely a 50 GeV

WIMP with a SHM speed distribution. We apply the momentum parametri-

sation to mock datasets from the WArP-like Argon experiment. The recon-

structed D values, Drec, are shown in Fig. 3.6 in units of 107 cm2 kg−2. In

all reconstructions, the posterior distribution is unimodal, having separate

parameters to describe the scale (D) and shape ({hi}) of the event rate.

The number of reconstructions is peaked at the correct value. The average

reconstructed value is log10(Drec) = 1.865 ± 0.004, compared to the input

value of log10(Dtrue) = 1.878. This represents a slight bias (of less than

1%) towards smaller values of log10(D).

However, this is smaller than the typical statistical uncertainty in a

single reconstruction, which is ∼ 4%. In addition, this method results

in overcoverage of the true parameter, with values of 76 ± 2% and 98 ±
1% respectively for the 68% and 95% confidence intervals. This method

therefore allows us to place reliable conservative estimates on the parameter

D.

We show in Fig. 3.7 the reconstructed momentum distribution and

mean inverse momentum for a typical realisation, for which log10(Drec) =

1.81+0.09
−0.05. The underlying momentum distribution has been rescaled by

1/αAr to allow a comparison to the reconstructed values. We see that the

the momentum distribution is well reconstructed and the mean inverse mo-

mentum is accurately recovered at low and high momenta. In the middle

of the momentum range, however, η̃(pmin) exceeds the true value. Be-

cause only a single experiment is being used, the measured spectrum is
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Figure 3.6: Reconstructed values for the scale parameter, Drec, for the
Argon experiment using the momentum parametrisation method from
250 realisations. The benchmark speed distribution is the SHM. The
value of Dtrue = 75.6× 107 cm2 kg−2 is shown as a dashed vertical line.
Reproduced from Paper I [335].

particularly susceptible to Poisson fluctuations. The mock dataset used

here has a slight excess of events around ER ≈ 60 keV, corresponding to

pAr ≈ 30 MeV, which may explain the reconstructed excess.

In addition, this may be a consequence of the particular parametri-

sation. The constant-bin parametrisation of f̃(p) leads to a parametrised

η̃(pmin) which is concave downwards in each bin, while the underlying func-

tion is strictly convex downwards in this region. Thus, η̃(pmin) tends to be

slightly overestimated, leading the scale parameter D to be reduced to

compensate for this. With datasets containing more events, the number of

bins could be increased, in order to reduce this bias on D and maintain it

at below the level of the statistical uncertainty.

3.4 Momentum parametrisation for several

experiments

The reduced momentum method allows us to extract information from a

single experiment, making no assumptions about the underlying velocity

(or momentum) distribution. However, information about the mass and
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Figure 3.7: Reconstructed momentum distribution for a single Argon
experiment using a benchmark of a 50 GeV WIMP and the SHM. The
upper panel shows the SHM momentum distribution (solid blue) and re-
constructed bin values (red points). Because the posterior is unimodal,
we also display vertical errorbars showing the extent of the 68% confi-
dence region for each bin. Note that these errors are strongly correlated.
The lower panel shows the corresponding reconstructed mean inverse
momentum (dashed red) and the mean inverse momentum in the SHM
(solid blue). The underlying distribution has been rescaled by 1/αAr for
comparison to the reconstructed values. Reproduced from Paper I [335].

cross-section are encoded in the parameter, D, and cannot be extracted

using a single experiment alone. We now extend the method to use data

from several detectors.

Because a different momentum variable pN can be defined for each ex-

periment, it is necessary to choose a single experiment and parametrise

the momentum distribution defined with respect to that experiment. It

may be necessary to adjust the lower and upper limits of the parametri-

sation (beyond the values of Emin and Emax used in the experiment) to

accommodate as much of the data as possible from all experiments. In
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the single experiment considered in Section 3.3, the WIMP-Ar momentum

was parametrised in the range pAr ∈ [23.6, 49.2] MeV, to match the sensi-

tivity of the Argon experiment. However, as can be seen in Fig. 3.2, this

sensitivity window does not match that of the other experiments. If we

extend this interval, and parametrise in the range pAr ∈ [3.6, 53.0] MeV,

we can enclose the sensitivity regions of all three experiments as closely as

possible, as shown by the dotted curves in Fig. 3.2. We again use 5 bins

in momentum space, with an additional parameter to control a constant

offset.

In theory, any of the three experiments could have been chosen to de-

fine the momentum variable. However, some choices of experiment are

less practical. For example, in order to use the XENON1T-like experi-

ment, it would be necessary to parametrise the momentum over the range

pXe ∈ [11, 162] MeV. This is because at high WIMP masses the remain-

ing two experiments have maximum accessible speeds of ∼ 500 km s−1.

This corresponds to very high values of the WIMP-Xe reduced momen-

tum because of Xenon’s comparatively higher mass. A large number of

bins would be required to cover this wide momentum range and accurately

model structures in the distribution function. Owing to the Galactic escape

speed, many of these bins would have a value of zero, making parametri-

sation with respect to the XENON1T-like experiment a poor choice.

By comparison, using the WArP-like Argon experiment allows us to

parametrise only as much of the momentum space as required to accom-

modate data from all three experiments. In the speed parametrisation

method, varying the WIMP mass altered the size and number of energy

bins to which the experiments were sensitive. However, for a given range of

reduced WIMP-Argon momenta, the corresponding energy range probed

by each experiment depends less strongly on mχ (and is independent of

mχ for the Argon experiment itself). This means that the number of bins

probed by each experiment should not vary significantly as a function of

WIMP mass. For a fixed bin width in momentum space, the bin width in

energy space is also much less sensitive to the WIMP mass. This should

help reduce the bias observed in the binned speed parametrisation.

Unfortunately, this method does not allow the WIMP-nucleon cross-

section to be extracted; because the contributing WIMP fraction, α, is

unknown, we can only obtain a lower bound. This is a fundamental lim-

itation of any method which makes no assumptions about the underlying
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speed distribution. Without knowing the fraction of WIMPs with speeds

within the signal window of the experiment, we cannot determine the cross-

section. However, the cross-section appears in the event rate only through

the degenerate combination σpρ0. As discussed in Sec. 2.3.3, estimates of

ρ0 typically carry a factor of around 2 uncertainty. Thus, any estimate of

the WIMP-nucleon interaction cross-section would have an inherent uncer-

tainty in any case.

3.4.1 Results

We first compare results for the momentum method to the speed parametri-

sation method described in Section 3.2. We use the same mock datasets

generated for the 50 GeV, SHM benchmark presented previously. The re-

sults of both the momentum and speed methods are shown in Fig. 3.8. In

the case of the momentum method, the distribution of realisations is now

more closely peaked around the true mass of 50 GeV. Furthermore, the

momentum method produces substantially improved coverage properties,

as summarised in Table 3.2. It should be noted that compared to the speed

method, the momentum method leads to a larger number of reconstruc-

tions at high WIMP mass. It is not clear whether this signals a failure of

the momentum method in certain cases or whether these are representative

of ‘bad’ reconstructions, as will be discussed shortly.

Figure 3.9 shows the reconstructed WIMP-Argon momentum distribu-

tion using the same mock dataset as used for Fig. 3.4. The benchmark

distributions have been rescaled by α so that they can be compared to the

reconstructed values. In this case, α = 0.995, so we can reconstruct both

the mass and cross section accurately: log10(mrec/ GeV) = 1.62 ± 0.31

and log10(σp/10−47 cm2) = 2.99 ± 0.18, compared to the true values of

log10(mtrue/ GeV) = 1.699 and log10(σp/10−47 cm2) = 3.0. While there is

no way to know a priori whether α will be close to unity, the accurate

reconstruction of the mass, cross-section and momentum distribution show

that momentum parametrisation can offer a significant improvement over

the speed parametrisation method.

We now present the results of the momentum method for a wider range

of benchmarks. In order to ensure the robustness of the method, we use two

possible WIMP masses of 50 GeV and 100 GeV, as well as three benchmark

models for the velocity distribution:
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Figure 3.8: WIMP masses reconstructed using the speed and momentum
parametrisation methods from 250 realisation. The benchmark speed
distribution is the SHM. The true mass of 50 GeV is shown as a dashed
vertical line. Reproduced from Paper I [335].

Speed Method Momentum Method
68% Coverage 36± 3% 71± 3%
95% Coverage 63± 3% 92± 2%

Table 3.2: Confidence interval coverage results for the speed and momen-
tum parametrisation methods for a 50 GeV SHM benchmark model.

(i) the Standard Halo Model (SHM), with σ = 156 km s−1 and vlag =

220 km s−1;

(ii) a 50% Standard Halo Model with a 50% contribution from a dark

disk (SHM+DD);

(iii) rescaled Via Lactea II data (VL-2).

We model the dark disk velocity distribution as a Maxwellian with

σ = 50 km s−1 and vlag = 60 km s−1, similar to the typical values obtained

by Ref. [338]. A 50% contribution from the dark disk is at the upper limit

of the range presented by Ref. [317] and we consider this as an extreme

case. The third benchmark is the distribution function as extracted from
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Figure 3.9: Reconstructed momentum distribution from all three mock
experiments using a benchmark of a 50 GeV WIMP and the SHM. The
upper panel shows the SHM momentum distribution (solid blue) and
reconstructed bin values (red points). The lower panel shows the corre-
sponding reconstructed mean inverse momentum (dashed red) and the
mean inverse momentum in the SHM (solid blue). The reconstructed
values have been rescaled by α for comparison to the true distribution.
Reproduced from Paper I [335].

the Via Lactea 2 (VL-2) N-body simulation [339] and presented in Ref.

[310]. It is averaged over galactic radius in the range 7.5 < R < 9.5 kpc

and measured in bins of width 10 m s−1. VL-2 is a DM-only simulation

and thus leads to a lower peak speed than the SHM. Including the effects

of baryons should deepen the galactic potential and raise this peak speed

closer to that observed in the Milky Way. In order for a fairer comparison,

we therefore rescale the VL-2 data such that f1(v) peaks at the same speed

as in the SHM, allowing us to probe the departures from Maxwellian form

which appear in N-body simulations.

The distributions of reconstructed masses are shown in Fig. 3.10 for

the 50 GeV WIMP and Fig. 3.11 for the 100 GeV WIMP. For the 50 GeV

benchmark, the distribution of reconstructions is peaked at the true value,
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Figure 3.10: Distribution of reconstructed masses, mrec, using the mo-
mentum method for 250 reconstructions. The true mass of 50 GeV is
shown as a dashed vertical line. Reproduced from Paper I [335].

though in all three cases there are a number of datasets reconstructed at

higher masses. For some of the mock datasets, the posterior distribution

for the WIMP mass is multimodal, with a peak near the true value as well

as a peak above ∼ 100 GeV. For reconstructions using a fixed speed (or

momentum) distribution, these may correspond to ‘bad’ reconstructions,

as mentioned previously, in which the spectrum of events is flatter than

expected. When the momentum distribution is allowed to vary, as here, the

event rate can be well fit by more than one region of the mass parameter

space. We also note a larger number of reconstructions at high masses

in the case of the VL-2 benchmark. This is because of the flatter recoil

spectrum in this case, which is more easily mimicked by a higher WIMP

mass.

For the 100 GeV benchmark, the SHM and VL-2 models show similar

structures, with a broad peak of reconstructions at or near the correct
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Figure 3.11: As Fig. 3.10, but for mχ = 100 GeV. Reproduced from
Paper I [335].

values, as well as a smaller tail up to masses of 1000 GeV, the upper limit

of the prior. The 100 GeV datasets contain fewer events than their 50 GeV

counterparts, so we would expect the spread of reconstructed values to be

broader. Also, as the WIMP mass exceeds the mass of the target nucleus,

vmin becomes less sensitive to the value of the mχ [319]. The result is that

the shape of the event spectrum becomes roughly independent of the WIMP

mass. The largest nuclear mass used here is AXe = 131, meaning that for

values of mrec significantly above mχ ≈ 131 amu ≈ 122 GeV, the posterior

distribution becomes roughly flat. Reconstructions in the high-mass tail

occur when the maximum of the posterior occurs in this approximately flat

region, and we expect the tail to extend up to arbitrarily high masses. In

this case, we can only place a lower bound on the WIMP mass and, when

calculating coverage statistics, we use 1-tailed limits (i.e. a p% confidence

limit encloses 1
2
(1 + p)% of the marginalised posterior).

We report coverage statistics for the various benchmarks in Table 3.3.
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WIMP Mass
50 GeV 100 GeV

SHM
71± 3% 65± 3%
92± 2% 94± 1%

SHM+DD
61± 3% 58± 3%
94± 1% 91± 2%

VL-2
72± 3% 65± 3%
90± 2% 94± 2%

Table 3.3: 68% and 95% confidence interval coverage results for the
momentum parametrisation method using a variety of benchmark pa-
rameters, as defined in Sec. 3.2.1.

For the SHM, there is approximately exact coverage for both 50 and 100

GeV WIMPs, while for the VL-2 benchmark exact coverage is observed

for the 100 GeV WIMP. The remaining benchmark parameters display

some undercoverage, though still much improved over that achieved by the

speed parametrisation method. The poorest coverage is achieved for the

100 GeV SHM+DD benchmark, for which the 68% confidence interval has

a coverage of 58± 3%. This is to be expected from the poorly distributed

reconstructions shown in Fig. 3.11. For the 100 GeV dark disk benchmark,

there appears to be a significant bias in the distribution of reconstructed

values, which peaks around 70 GeV. We explore the origin of this bias in

the next section, where we examine the speed distributions reconstructed

using this method.

3.4.2 Recovering the speed distribution

We will now consider how the speed distribution can be reconstructed from

the momentum parametrisation. For a set of constant bins in momentum

space, the positions and widths of bins in velocity space are dependent

on the WIMP mass. It is therefore difficult to extract precise statisti-

cal information on the speed distribution, as the bin values will be very

strongly correlated with the WIMP mass. Instead, we take the recon-

structed WIMP mass as fixed and use this to obtain a speed distribution

from the momentum distribution parameters. Without treating the covari-

ance of the WIMP mass and the bin parameters in full, the reconstructed
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Figure 3.12: Reconstructed speed distribution from all three mock exper-
iments using the momentum parametrisation method. The benchmark
is a 50 GeV WIMP and the SHM distribution function. The upper panel
shows the underlying SHM speed distribution (solid blue) and the fitted
values of the speed bin parameters (red points). The lower panel shows
the mean inverse speed corresponding to these fitted values (dashed red
line) and the true mean inverse speed (solid blue). The underlying distri-
butions have been rescaled by α for comparison to the reconstructions.
Reproduced from Paper I [335].

speed distribution will depend strongly on the reconstructed mass value.

However, this naive approach should give an indication of whether accurate

reconstructions are possible.

First, we consider a 50 GeV WIMP with SHM distribution, as an

archetypal WIMP model with a well-behaved distribution function. We

show a typical reconstructed speed distribution in Fig. 3.12, using the same

mock dataset as Fig. 3.9. In this case, the reconstructed value of mrec is

42 GeV and the speed distribution appears to be accurately reconstructed

within the error estimates.

Next, we consider a reconstruction for a 100 GeV WIMP with SHM+DD

distribution function. One example is shown in the left-hand panels of Fig.
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Figure 3.13: As Fig. 3.12 for a 100 GeV WIMP with SHM+DD distri-
bution function using 5 momentum bins (left panels) and 7 momentum
bins (right panels). Reproduced from Paper I [335].

3.13, for a dataset with reconstructed mass log10(mrec/GeV) = 1.83±0.15,

compared to the true value of log10(mχ/GeV) = 2. The speed distribution

appears to be well recovered at all speeds. However, there is a significant

discrepancy in the mean inverse speed below ∼ 150 km s−1. This is be-

cause the SHM+DD distribution function is very rapidly varying at low

v, meaning that the ansatz of constant bins can no longer be applied. As

observed in the speed parametrisation method, the event spectrum can be

steepened by moving to lower mass values and this may explain why there

is significant bias and poor coverage for this set of benchmark parameters.

In the right-hand panels of Fig. 3.13, we show results from the same

mock dataset reconstructed using 7 bins in momentum space. The recon-

structed mass is now log10(mrec/GeV) = 2.21±0.27, with the mean inverse

momentum more closely reconstructed than for the 5 bin case. Figure 3.14

shows the distribution of reconstructed masses for a 100 GeV WIMP with

a SHM+DD distribution function using 7 bins in momentum space. The

reconstructed masses are now more broadly distributed around the bench-

mark value, with improved coverage compared to the 5 bin case: 67± 3%

and 94 ± 1%. We have found that increasing the number of bins for the
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Figure 3.14: Distribution of reconstructed masses using the 7-bin mo-
mentum method for 250 reconstructions for a SHM+DD benchmark
distribution. The true mass of 100 GeV is shown as a dashed vertical
line. Reproduced from Paper I [335].

50 GeV SHM benchmark leaves the coverage properties and distribution of

reconstructions largely unchanged, indicating that increasing the number

of bins can be used to check the robustness of the reconstructions.

Finally, we consider the discriminatory power of the reconstructions.

Returning to the 50 GeV SHM benchmark, we plot a single speed distri-

bution reconstruction in Fig. 3.15, as well as all three benchmark speed

distributions for comparison. The reconstruction is reasonably consistent

with both the SHM and VL-2 models and displays only mild tension with

the SHM+DD model. In addition, the benchmark distributions in Fig. 3.15

have been rescaled by the true value of α for comparison with the recon-

structed values. In a real experiment, the value of α is unknown, further

reducing the potential to discriminate between different models. Only in

the case of more extreme distribution functions, such as a dark disk, might

it be possible to make a distinction between the many possible underlying

models. Thus, while the momentum parametrisation method can provide

good constraints on the mass of the WIMP, it remains difficult to probe

the speed distribution function.
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Figure 3.15: Reconstructed speed distribution from all three mock exper-
iments using a benchmark of a 50 GeV WIMP with SHM distribution.
The reconstructed values have been rescaled by α for comparison to the
true distribution. The three different benchmark speed distributions
defined in Sec. 3.2.1 have been overlaid: SHM (solid blue), SHM+DD
(dashed green) and VL-2 (dotted red). Reproduced from Paper I [335].

3.5 Discussion

We have explored the simple, empirical parametrisation proposed by Pe-

ter and showed that it produces a significant bias and underestimates the

errors on mχ, even for simple benchmarks. This appears to be due to the

dependence of η(ER) on mχ. For a fixed bin width in v, reducing the WIMP

mass leads to smaller bins in ER. This means that η(ER) can provide a

better fit to the observed data, as demonstrated in Fig. 3.5.

As an alternative we have proposed binning the momentum distribu-

tion. For a single experiment, the inverse momentum distribution η̃(ER)

is independent of the WIMP mass and the scale (controlled by the param-

eter D of Eq. 3.22) and shape of the recoil distribution can be effectively

decoupled. This allows D to be reconstructed with minimal bias. The D

values from many different experiments can then potentially be used to

place bounds on the values of the WIMP mass and cross-section.

However, to directly constrain the WIMP mass, it is necessary to com-

bine data from multiple experiments simultaneously. This is done by
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parametrising the reduced momentum distribution of the WIMPs with re-

spect to only one of the experiments. In this work, we choose to parametrise

pχAr. The result is that the shape of the recoil spectrum depends only

weakly on the WIMP mass. This is because the recoil energy can now be

written as

ER =
2p2

χAr

mN

(
µχN
µχAr

)2

. (3.27)

For a fixed bin width in pχAr, the bin width in recoil energy now scales with

µ2
χN/µ

2
χAr, which has a weaker dependence on mχ than when we consider

fixed bins in v. This reduces the bias induced in the reconstructed WIMP

mass.

The momentum method also allows us to probe a more constrained

range of speeds. This is done by parametrising pχAr only over the range to

which the experiments are sensitive. While this cannot be done exactly for

more than one experiment, it means that as many of the momentum bin

parameters as possible contribute to the rate. Varying the WIMP mass

does not strongly impact the number of bins to which the experiments are

sensitive, again reducing bias in the reconstructed value of mχ. This is

similar to the method of Drees and Shan [327], which uses an algorithm to

attempt to match the sensitivity ranges of multiple experiments.

Unfortunately, for low WIMP masses the range of speeds (and there-

fore momenta) probed by each experiment grows rapidly (see Fig. 3.2).

A significant portion of this range is expected to be significantly higher

than the maximum expected WIMP speed of ∼ 800 km s−1. If we hope to

parametrise the entire range of sensitivity of the experiments, this means

that only a very small fraction of this range will be non-zero. A very large

number of bins would be required to capture this ‘low’ momentum popu-

lation (as discussed briefly in Sec. 3.4 for the case of a Xenon experiment).

Thus, the momentum binning method appears not to be feasible for low

mass WIMPs. Even in the case of intermediate mass WIMPs, it may not

always be clear what the optimum range of momenta will be. We have not

proposed a method for determining the range of momenta to parametrise,

given the experimental parameters. Instead, the momentum range must

be chosen ‘by eye’.

In Sec. 3.4.2, we have attempted to reconstruct the WIMP speed dis-

tribution from the corresponding momentum distribution. In doing so,
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we fixed the WIMP mass to its reconstructed value, in order to avoid the

strong correlations between mχ and f̃(p) associated with converting p to

v. However, in order to make robust statistical inferences about the speed

distribution, it is necessary to take these correlations into account. This

will be especially important when distinguishing between similar forms for

f(v), as in Fig. 3.15. In future, it will be necessary to study these corre-

lations in detail or find a parametrisation with which we can reconstruct

f(v) directly.

Finally, while the momentum bin parametrisation provides significant

improvements in coverage and reduced bias over the speed bin parametri-

sation, it may not work in every scenario. For example, the method still

suffers from some under-coverage for more extreme distribution functions,

such as the dark disk. This can be improved by increasing the number of

bins, at the cost of significantly widening the range of reconstructed masses.

These residual problems mean that the momentum binning method should

be applied with caution.

3.6 Conclusions

We have discussed previous attempts to account for astrophysical uncer-

tainties in the analysis of direct detection data. In particular, we have em-

phasised the need for a general, empirical parametrisation for the WIMP

distribution function and we have studied one such proposal in detail: a

binned parametrisation for f(v), developed by Peter. We show that this

method produces a significant bias in reconstructions of the WIMP mass.

This parametrisation introduces a fixed scale (the bin width) into the dis-

tribution function. Converting from speed bins to energy bins depends

on the WIMP mass, introducing a bias into the analysis. We propose an

alternative method: a binned parametrisation of the WIMP momentum

distribution.

In the case of a single experiment, this method can be applied exactly

and allows one to extract information about the shape of the distribution

function, at the cost of losing access to information about either the WIMP

mass or cross-section separately. For multiple experiments, the range of the

parametrisation must be extended to cover the sensitivity regions of all ex-

periments. For estimation of the WIMP mass, this allows us to achieve

significant improvements in coverage and reduction in bias over previous
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methods. Without making any assumptions about the WIMP speed dis-

tribution, however, we cannot estimate the interaction cross-section due to

its degeneracy with the fraction of WIMPs accessible to the experiments.

This is an unavoidable problem for any method hoping to analyse direct

detection data without astrophysical assumptions.

Reconstruction of the WIMP speed distribution remains difficult. The

finite sensitivity window of direct detection experiments means that infor-

mation on the normalisation of f(v) is lost, making comparison to theoret-

ical models difficult. At the event rates studied here, it does not appear to

be possible to distinguish between different distribution functions. A more

thorough treatment of the correlation between mχ and the momentum bin

parameters would be required for robust inferences.

This technique represents a significant step towards developing model-

independent methods for determining the WIMP mass. However, caution

must be exercised, as the method is expected to perform poorly for low

mass WIMPs, where the range of momenta probed by the experiments is

large. There is also evidence that residual bias may remain, especially in

the case of more extreme distribution functions.



Chapter 4

A polynomial parametrisation

of the speed distribution

In an attempt to mitigate astrophysical uncertainties in the analysis of

direct detection experiments, a number of parametrisations for the WIMP

speed distribution have been proposed. In Chapter 3, we explored two

such empirical parametrisation which aim to fit the WIMP distribution

without making any a priori assumptions about its form. These methods

involved writing the WIMP speed and momentum distributions as a series

of constant bins.

However, the introduction of a fixed scale, in the form of the bin width,

results in a bias in the reconstruction of the WIMP mass. While binning

the momentum rather than speed distribution helps to reduce this problem,

residual bias may remain. Furthermore, the method is expected to fail for

low mass WIMPs and the choice of momentum range to parametrise may

not always be clear.

In this chapter, we propose an alternative parametrisation for the speed

distribution which is smooth and can fit a wide range of possible functional

forms of f(v). This method involves parametrising the logarithm of f(v)

as a polynomial in the WIMP speed v. We describe the parametrisation

in detail in Sec. 4.1.

We test the parametrisation, as in Chapter 3, using mock data sets

from future experiments, generated from a range of particle physics and

astrophysics benchmarks, outlined in Sec. 4.2. We show in Sec. 4.3.2,

that the parametrisation allows an unbiased reconstruction of the WIMP

mass, even when Poisson noise and realistic experimental parameters are

81
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incorporated in the analysis. We show the performance of the method as

a function of WIMP mass and also outline how to determine the optimal

number of basis functions for the polynomial parametrisation.

Finally, in Sec. 4.4, we show how the speed distribution can be re-

constructed using this parametrisation. A lack of information about the

normalisation of f(v) impairs our ability to reconstruct its absolute value.

However, we propose a method for reconstructing the shape of the mean in-

verse speed η(vmin) even when information about the overall normalisation

is not available.

4.1 Parametrising the logarithm of f (v)

We would like to write down a general parametrisation, treating f(v) as a

free function. However, the speed distribution is subject to two constraints

in order to qualify as a physical distribution function:

(i) it must be normalised (or at least should be capable of being nor-

malised), and

(ii) it must be everywhere greater than or equal to zero.

Motivated by (ii), we propose parametrising the natural logarithm of the

speed distribution. The properties of the logarithm will ensure that the

speed distribution remains everywhere positive. Moreover, logarithmic de-

pendence on the parameters means that a wide range of shapes for the

speed distribution can be spanned by the parametrisation.

We parametrise ln f(v) as a polynomial in v. That is, we wish to write

ln f(v) =
N−1∑
k=0

akPk(v) , (4.1)

leading to the speed distribution

f1(v) = v2 exp

(
N−1∑
k=0

akPk(v)

)
, (4.2)

where we use N polynomial basis functions Pk(v), multiplied by the co-

efficents ak. Normalisation is imposed by fixing a0 once the remaining

parameters have been chosen. By using enough basis functions for the

polynomial parametrisation, we can approximate any smooth, bounded
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function arbitrarily well [340], so this choice provides complete generality.

However, which polynomial basis should be used? We see immediately that

a naive power series of the form

lnf(v) ≈ a0 + a1v + a2v
2 + a3v

3 + ... , (4.3)

is not practical for the purposes of parameter estimation. Higher powers

of v will have rapidly growing contributions to ln f(v), meaning that the

associated coefficients must be rapidly decreasing in order to suppress these

contributions. Fitting to the SHM using just 5 terms, the range of values

for the ak in the case of a simple power series would span around 13 orders

of magnitude. Ideally, we would like to specify an identical prior on each

of the coefficients. However, in this scenario this would result in a highly

inefficient exploration of the parameter space when some of the terms are

so small.

This problem can be significantly improved by rescaling v. We choose

to rescale by a factor of vmax = 1000 km s−1 and cut off the distribution

function at vmax. We should choose vmax to ensure that f1(v) is negligi-

ble above the cut off. However, too high a choice of vmax will result in

f1(v) being close to zero over a large range of the parametrization, making

fitting more difficult. We use the value vmax = 1000 km s−1, which lies

significantly above the Galactic escape speed, as discussed in Chapter 3.

The basis functions (v/vmax)k are now less than unity by construction and

the coefficients ak are now dimensionless:

lnf(v) ≈ a0 + a1(v/vmax) + a2(v/vmax)2 + a3(v/vmax)3 + ... . (4.4)

We now address the problem of conditioning of the polynomial basis

(see e.g. Refs. [341, 342]). Conditioning is a measure of how much the

value of a polynomial changes, given a small change in the coefficients. For

a well-conditioned polynomial, small changes in the coefficient are expected

to lead to small changes in the value of the polynomial. This is ideal for

parameter estimation as it leads to a more efficient exploration of the pa-

rameter space. Orthogonal polynomial basis functions typically have good

conditioning [341] and we consider two specific choices: the Legendre poly-

nomials and the Chebyshev polynomials. The Legendre polynomials are a

familiar series of orthogonal basis functions. The Chebyshev polynomials
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are used extensively in polynomial approximation theory [343] and are ex-

pected to be well conditioned [341]. We examine both which polynomials

perform best and how many basis functions are required in Sec. 4.3.1.

We plot in Fig. 4.1 some examples of distribution functions which can

be described by the polynomial ln f(v) parametrisation with N = 5 basis

functions. These examples were generated by randomly picking values for

the {ai} values. Clearly this parametrisation can reproduce a wide range

of shapes, peaking at different values of v. However, we wish to determine

how well we can fit these parameters, along with the WIMP mass and cross

section, to data. As in the case of the binned distribution of Chapter 3, we

now define a series of theoretical and experimental benchmarks which we

use to generate mock data sets and test the parametrisation.
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Figure 4.1: Examples of speed distributions f1(v) generated using the
polynomial parametrisation for ln f(v) with N = 5 Chebyshev basis
functions. The SHM distribution function in the Earth frame is shown
as a black dashed line for comparison.

4.2 Experiments and benchmark

parameters

In order to generate mock data sets, we consider three idealized mock ex-

periments, loosely based on detectors which are currently in development.

The three target materials we consider here are Xenon, Argon and Germa-
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Experiment
Target
Mass,
A

Detector
Mass (fid.),
mdet/kg

Efficiency,
ε

Energy
Range/keV

Xenon 131 1100 [250] 0.7 [247] 7-45 [344]

Argon 40 1000 0.9 [345]
30-100
[346]

Germanium 73 150 [347] 0.6 [348] 8-100 [348]

Table 4.1: Summary of experimental parameters used in this work, de-
fined in Sec. 4.2. An exposure of texp = 2 years is used for all 3 experi-
ments.

nium. As in Chapter 3, we describe each experiment in terms of the mass

number A of the target nucleus, fiducial detector mass mdet, efficiency ε and

energy sensitivity window [Emin, Emax]. We consider a total exposure time

for all experiments of texp = 2 years. The experimental parameter values

used in this chapter are summarized in Tab. 4.1. We note that these values

may be slightly adjusted or updated compared to those used in Chapter 3

as a result of updated experimental results and projections. We have tried

to indicate the source of the values used in Tab. 4.1.

As in Chapter 3, we assume that SI interactions dominate and use a

single value of the interaction cross section σp
SI = 10−45 cm2. However,

we will consider a range of WIMP masses from 10 GeV, below which the

sensitivity of current direct detection experiments decreases dramatically,

up to 500 GeV. Sensitivity to the precise WIMP mass is lost for values

of mχ significantly heavier than the target nuclei masses, so we need not

extend the analysis to very high mχ.

We consider several benchmark speed distributions in this chapter, in-

cluding the SHM and the SHM with the addition of a moderate dark disk

which accounts for 23% of the total WIMP density [349]. For the SHM, we

assume a fixed DM density of ρ0 = 0.3 GeV cm−3. However, we treat the

dark disk as an overdensity contributing an additional WIMP population,

bringing the local density up to ρ0 = 0.39 GeV cm−3. In addition, we also

use the speed distribution of Lisanti et al. [306], which has the following

form in the Earth’s frame:

f(v) = N

[
exp

(
v2

esc − |v− v0|2

kv2
0

)
− 1

]k
Θ(vesc − |v− v0|) . (4.5)

We use the parameter values k = 2 and v0 = 220 km s−1 in this work,
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Speed distribu-
tion benchmark

Fraction vlag/ km s−1 σv/ km s−1

SHM 1 220 156

SHM+DD
0.77 220 156

0.23 50 50

Stream 1 400 20

Bump
0.97 220 156

0.03 500 20

Double-peak
0.5 200 20

0.5 400 20

Lisanti et al. v0 = 220 km s−1 k = 2

Table 4.2: Summary of speed distribution benchmarks used in this chap-
ter. Some benchmarks are modelled as mixtures of two gaussian compo-
nents, for which we give the fractional contribution of each component
(labelled ‘Fraction’). The remaining parameters are defined in Sec. 2.3.3,
as well as Eq. 4.5 and the accompanying text. The ‘bump’ and ‘double-
peak’ distributions are discussed in Sec. 4.3.1. For each benchmark dis-
tribution, we fix vesc = 544 km s−1.

which provide a good fit to results from N-body simulations [306]. In all

cases, we assume a fixed value of the escape speed vesc = 544 km s−1 (see

Chapter 2). We summarize in Tab. 4.2 the different speed distributions

considered. We also plot several of these in Fig. 4.2 for reference.

4.2.1 Parameter sampling

The parameter space of the polynomial ln f(v) parametrisation is much

larger than for the binned method and is poorly explored using conven-

tional MCMC methods. We therefore make parameter inferences using the

publicly available MultiNest nested sampling package [351–353]. This

allows us to map out both the likelihood L(θ) and posterior probability

distribution P(θ) for the model parameters θ. We summarize in Tab. 4.3

the MultiNest sampling parameters used. We also summarize the priors

used in this work in Tab. 4.4. The MultiNest algorithm and the other

statistical techniques used in this chapter are described in more detail in

Appendix A.

In Sec. 4.3.3 and Sec. 4.4, we consider many realisations of data, includ-

ing the effects of Poisson noise. We therefore use the unbinned likelihood
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Figure 4.2: Several of the benchmark speed distributions used in this
chapter. They are defined in Eqs. 2.45 and 4.5 with parameters from
Tab. 4.2. These distributions are the SHM (solid blue), SHM+DD
(dashed green), Lisanti et al. (dot-dashed red) and the stream (dot-
ted magenta). Reproduced from Paper IV [350].

Parameter Value

Nlive 10000

efficiency 0.25

tolerance 10−4

Table 4.3: Summary of the MultiNest sampling parameters used in
this chapter.

of Eq. 3.13 in MultiNest. As in Chapter 3, we make parameter infer-

ences from the marginalised posterior distribution Pm. We take the mode

of the distribution to be the reconstructed parameter value and construct

p% highest-density credible intervals. This method performs well for small

numbers of observations (compared to the number of free parameters in the

fit). It is therefore a sensible choice here, where in some cases the number

of events observed in an experiment is less than 10.

In Sec. 4.3.1 and Sec. 4.3.2, we consider the effects of varying the form

of the parametrization and of varying the input WIMP mass. In order to

eliminate the effects of Poisson noise, we use Asimov data [354] for these

sections. This means that we divide the energy window of each experiment

into bins of width 1 keV. We then set the observed number of events N i
o
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Parameter Prior type Prior range

mχ/ GeV log-flat [100, 103]

σp/ cm2 log-flat [10−46, 10−42]

{ak} linear-flat [−50, 50]

RBG/dru log-flat [10−12, 10−5]

Table 4.4: Summary of the priors on the parameters used in this chapter.
The background rate RBG is defined in Sec. 4.3.2 while the {ak} are the
polynomial coefficients used in the parametrisation. The differential rate
unit (dru) is defined as events/kg/day/keV.

in bin i equal to the expected number of events N i
e and use the binned

likelihood

L =
∏

i=1,Nbins

(N i
e)
N i

o

(N i
o)!

e−N
i
e , (4.6)

for each experiment. In these sections, we have a very large number of

observations, namely the exact (non-integer) event numbers in each energy

bin. We can therefore use the best fit point (i.e. the point which maximises

the likelihood) as the reconstructed value. To obtain confidence intervals

on some subset of the full parameter space, we use the profile likelihood

Lp, obtained by maximising L over the remaining nuisance parameters. We

then construct confidence intervals using the asymptotic χ2 distribution of

the profile likelihood [355].

4.3 Results

Before we consider in detail the properties of the parametrisation, we show

a single reconstruction of mχ and σSI
p using as input a WIMP of mass 50

GeV and the SHM distribution function. We generate Asimov data for this

benchmark and fit using N = 5 basis functions and a basis of Chebyshev

polynomials (see Sec. 4.3.1). If the polynomial ln f(v) parametrisation

cannot produce an unbiased reconstruction of the WIMP parameters for

the simple and smooth SHM benchmark, it is unlikely to be useful for more

complicated distribution functions.

The results of this reconstruction are shown in Fig. 4.3. There is very

good agreement between the best fit point (green triangle) and the bench-
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Figure 4.3: Reconstruction of the WIMP mass and cross section using
the polynomial ln f(v) parametrisation with 5 Chebyshev basis func-
tions. Asimov data was generated for a WIMP with mχ = 50 GeV and
σp

SI = 10−45 cm2 (shown as dashed red horizontal and vertical lines)
and the SHM speed distribution. The shaded blue shows the value of
the profile likelihood (with darker values corresponding to higher likeli-
hood), along with the 68% and 95% confidence contours. The best fit
point is shown as a green triangle.

mark values (dashed red lines). The WIMP mass is well reconstructed,

with an uncertainty of about 30% at the 1σ level. However, we notice that

there is a significant degeneracy, with the reconstruction for σSI
p extend-

ing up to large values. This problem was discussed briefly in Chapter 3.

We have no information about the shape of f(v) below the energy thresh-

olds of the experiments. This means that distributions which have a large

WIMP population at low speeds can be made to fit the data as well as

those which do not, as long as the value of the cross section is adjusted

to compensate. While we can reconstruct mχ using this method, we can

only place a lower limit on σSI
p unless we make further assumptions about

the low speed WIMP population. We will now explore in more detail the

properties of this new parametrisation method.
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Figure 4.4: Benchmark speed distributions used in Sec. 4.3.1 to test the
performance of the parametrization as a function of the number and
type of basis functions. Reproduced from Paper IV [350].

4.3.1 Testing the parametrisation

We now consider the two questions: (i) how many basis functions are re-

quired and (ii) which polynomial basis should be used? In order to answer

these questions, we use the two benchmark distribution functions illus-

trated in Fig. 4.4. We have chosen these benchmarks not because they are

necessarily realistic distribution functions but because they should be diffi-

cult to fit using standard techniques and fitting functions (e.g. Ref. [306]).

The first distribution (referred to as ‘bump’) is a SHM distribution with

the addition of a small bump, which contributes just 3% of the total WIMP

population and could correspond to a small sub-halo or stream [309]. This

should be difficult to fit because it represents only a very small devia-

tion from the standard scenario. The second distribution (referred to as

‘double-peak’) has a sharp and rapidly varying structure, which we antici-

pate should be difficult to capture using a small number of basis functions.

Varying the number of basis functions

We first investigate how the reconstructed WIMP mass mrec and uncer-

tainty varies with the number of basis functions N . For now, we fix our
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choice of basis to shifted Legendre polynomials1:

Pk(v) = Lk

(
2
v

vmax

− 1

)
, (4.7)

where Lk is the Legendre polynomial of order k.

The lower panel of Fig. 4.5 shows the best fit mass and 68% confidence

intervals as a function of N , using as input a WIMP of mass 50 GeV and

the ‘bump’ distribution function. The reconstructed mass very rapidly

settles close to the true value, using as few as three basis functions. This

is because adding the bump near v ∼ 500 km s−1 still leaves the mean

inverse speed relatively smooth, so a large number of basis functions is not

required. The correct mass is reconstructed and we emphasize in the lower

panel of Fig. 4.5 that the reconstruction is stable with the addition of more

basis functions.

We should also consider how the quality of the fit changes as a function

of N . We would expect that adding fit parameters should always lead

to a better fit. Eventually, the fit should be good enough that adding

additional basis functions will no longer improve it significantly. We can

then be confident that our reconstruction is accurate and not an artifact

of using too few basis functions. In order to investigate this, we utilise the

Bayesian Information Criterion (BIC) [356], which is given by:

BIC = 2Npln(Nm)− ln(Lmax) , (4.8)

where Np is the number of free parameters, Nm is the number of measure-

ments or observations and Lmax is the maximum likelihood value obtained

in the reconstruction. For the case of binned data, Nm corresponds simply

to the total number of energy bins across all experiments. This criterion pe-

nalises the inclusion of additional free parameters and in comparing several

models, we should prefer the one which minimises the BIC.

The upper panel of Fig. 4.5 shows the BIC (in arbitrary units) as a

function of the number of basis functions for the ‘bump’ distribution func-

tion. The BIC is comparable for the cases of N = 2 and N = 3, indicating

that the quality of the fit is improved slightly by the addition of another

basis function. However, adding further basis functions does not have a sig-

nificant impact on the maximum likelihood, leading to an increase in the

1We use the shifted argument 2v/vmax − 1 in order to enforce the orthogonality of
the polynomials over the range v ∈ [0, vmax].



92 CHAPTER 4. A POLYNOMIAL PARAMETRISATION

B
IC

 /
 a

rb
.

2 3 4 5 6 7 8 9 10
Number of basis functions, N

20

40

60

80

100

m
re
c 
/ 

G
e
V

Figure 4.5: Bayesian information criterion (BIC) as a function of the
number of basis functions for an underlying ‘bump’ distribution function,
50 GeV WIMP and using Legendre polynomial basis functions (upper
panel). Also shown (lower panel) are the reconstructed WIMP mass
(dashed blue line), 68% confidence interval (shaded blue region) and
underlying WIMP mass (solid horizontal black line). Reproduced from
Paper IV [350].

B
IC

 /
 a

rb
.

2 3 4 5 6 7 8 9 10
Number of basis functions, N

20

40

60

80

100

m
re
c 
/ 

G
e
V

Figure 4.6: As Fig. 4.5 but for an underlying ‘double-peak’ distribution
function. Reproduced from Paper IV [350].

BIC. This coincides with the stabilization of the reconstructed mass around

the true value and we conclude that only two or three basis functions are

required to provide a good fit to the data.
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Figure 4.6 shows the corresponding results for the ‘double-peak’ distri-

bution function. Here, we note that the bias induced by using too small

a number of basis functions is larger than for the case of the ‘bump’ dis-

tribution, due to the more complicated structure in this case. The BIC

is minimized for N = 7, indicating that additional basis functions do not

significantly improve the quality of the fit to data. This suggests that the

shape of the speed distribution can be well fit by N ≥ 7 basis functions.

As shown in the lower panel of Fig. 4.6, the reconstruction of the WIMP

mass is stable around the true mass for these values of N .

We propose that such a procedure should be used in the case of real

data should a dark matter signal be observed at multiple detectors. We

have shown that by analyzing the reconstructed mass as a function of N we

can recover the true mass and that by using the BIC we can be confident

that we have obtained an adequate fit to data.

Choice of basis functions

We now consider the second question posed at the start of Sec. 4.3.1: which

polynomial basis should be used? As previously mentioned, we test two

different polynomial bases: Legendre and Chebyshev polynomials. We have

checked that the reconstruction results using Chebyshev polynomials are

largely indistinguishable from the case of Legendre polynomials for both the

‘bump’ and ‘double-peak’ distributions and as a function of N . This leads

us to conclude that the accuracy of the reconstruction is independent of the

specific choice of basis. However, the reconstruction was much faster in the

case of the Chebyshev basis. This is illustrated in Fig. 4.7, which shows the

time taken for reconstruction of the ‘bump’ benchmark as a function of N .

The time taken grows much more slowly for the Chebyshev basis (roughly

as N2) than for the Legendre basis (roughly as N3). This is consistent

with the common use of the Chebyshev basis in polynomial approximation

problems [343]. We have also checked that this difference is not an artifact

of how we calculate the basis functions. These results indicate that this

choice of basis provides both reliable and efficient reconstruction for the

WIMP mass and we therefore use the Chebyshev basis in the remainder of

this work.
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Figure 4.7: Time taken (using 4 processors in parallel) for the recon-
struction of the ‘bump’ benchmark, as a function of number of basis
functions. The time taken using the Chebyshev basis (blue squares)
grows more slowly with N than for the Legendre basis (red triangles).
Reproduced from Paper IV [350].

4.3.2 Varying mχ

We now consider the performance of the parametrisation over a wide range

of WIMP masses. We generate Asimov data for WIMP masses of 10, 20, 30,

40, 50, 75, 100, 200 and 500 GeV and reconstruct the best fit WIMP mass

mrec and 68% and 95% confidence intervals from the profile likelihood. We

use the SHM as a benchmark distribution function and use a fixed number

of N = 5 basis functions. The results are shown in Fig. 4.8, along with the

line mrec = mχ for reference.

For large values of mχ, the shape of the event spectrum becomes inde-

pendent of mχ [357], which results in a widening of the confidence intervals

as the WIMP mass increases. For low mass WIMPs, fewer events are ob-

served in each bin, again resulting in wider confidence intervals. It should

be noted that for this analysis we have used Asimov data, in which the

exact (non-integer) number of events is recorded in each bin. For low mass

WIMPs, this means that the spectrum (and therefore the correct WIMP

mass) is still well reconstructed using Asimov data, in spite of the small

number of events. The tightest constraints are obtained when the input

WIMP mass is close to the masses of several of the detector nuclei (in the

range 30-80 GeV). There also appears to be no bias in the WIMP mass:
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Figure 4.8: Reconstructed WIMP mass mrec (central dashed blue line)
as a function of input WIMP mass mχ as well as 68% and 95% intervals
(inner and outer blue dashed lines respectively). The line mrec = mχ

(solid red line) is also plotted for reference. Reproduced from Paper IV
[350].

the reconstruction matches the true mass across all values considered.

So far, we have only considered idealized direct detection experiments.

We now apply the method to more realistic mock detectors, taking into

account the effects of finite energy resolution, as well as unrejected back-

ground events. We assume here that each experiment has a gaussian energy

resolution with fixed width σE = 1 keV (see Sec. 2.1.3 for details). We also

assume a constant flat background rate for each experiment RBG = 10−6

events/kg/keV/day (which has been suggested as a possible background

rate for Xenon1T [344] and WArP-100L [346]) when generating mock data

sets. However, we allow the flat background rate in each experiment to

vary as free parameters during the fit.

We have chosen relatively generic resolution and background param-

eters in this work, because the precise details of energy resolution and

background shape and rate will depend on the specific experiment under

consideration. Instead, we hope to show that the inclusion of more realis-

tic experimental setups does not introduce an additional bias or otherwise

spoil the good properties of the method presented here.

Figure 4.9 shows the reconstructed mass as a function of input mass in

this more realistic scenario. The 68% and 95% confidence intervals are now
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Figure 4.9: As fig. 4.8 but including the effects of finite energy resolution
and non-zero backgrounds, as described in the text. Reproduced from
Paper IV [350].

wider and the reconstructed mass does not appear to be as accurate. For

input masses above ∼100 GeV, the uncertainties become very wide, with

only a lower limit of mrec > 20 GeV being placed on the WIMP mass. Due

to the poorer energy resolution the shape of the energy spectrum is less

well-determined. In addition, a flat background contribution can mimic

a higher mass WIMP, as it leads to a flatter spectrum. This leads to a

strong degeneracy, as a wide range of mass values can provide a good fit

to the data. For high input masses, the profile likelihood is approximately

constant above mrec ∼ 20 GeV, indicating that there is no sensitivity to

the underlying WIMP mass.

In spite of this, the true mass values still lie within the 68% and 95%

confidence intervals. In addition, the poor values for the reconstructed

mass for heavy WIMPs are a side effect of the loss of sensitivity. Because

the profile likelihood is approximately flat, the maximum likelihood point is

equally likely to be anywhere within the 68% interval. These effects would

be present even if we had considered a fixed form for the speed distribution.

However, when we allow for a range of possible speed distributions, the

effects become more pronounced. These results show that for more realistic

experimental scenarios, the method presented in this work remains reliable

over a range of masses, though its precision may be significantly reduced.
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Benchmark distribution Mean bias 〈b〉
SHM 0.002 ± 0.008

SHM+DD 0.005 ± 0.007

Lisanti et al. 0.01 ± 0.01

Table 4.5: Mean bias 〈b〉 in the reconstructed log WIMP mass (Eq. 4.9).
This was calculated over 250 realisations using three different benchmark
speed distributions.

4.3.3 Statistical properties

We now consider the impact of statistical fluctuations on the reconstruction

of the WIMP mass. In reality, the number of events observed No at a

given experiment will be Poisson distributed about the expected value Ne,

while the observed distribution of recoil energies will not exactly match

that expected from the calculated event rate. The fundamental statistical

limitations of future direct detection experiments have been studied in

detail in Ref. [337]. As in Chapter 3, we generate 250 realisations of data

from the mock experiments described in Tab. 4.1.

For each realisation, we then use the polynomial ln f(v) parametrisa-

tion (using N = 5 basis functions) to reconstruct the WIMP mass and 68%

and 95% credible intervals. Figure 4.10 shows the distribution of recon-

structed masses for an input mass of 50 GeV for three benchmark speed

distributions: SHM, SHM+DD and Lisanti et al., as described in Sec. 4.2.

In all three cases, the reconstructions are peaked close to the true value,

regardless of the underlying distribution.

In order to assess the accuracy of the reconstructed value of the mass

mrec, we also calculate the bias b for each realisation:

b = ln(mrec/GeV)− ln(mtrue/GeV) . (4.9)

We compare the logarithms of the mass values because we have used

logarithmically-flat priors on the WIMP mass. In Tab. 4.5 we show the

average bias across all 250 realisations for each of the three benchmark

distributions. In all three cases, the average bias is consistent with zero.

Even in the SHM+DD case, which shows larger fluctuations away from the

true value, there is no statistical bias.

We also test the coverage of the credible intervals which have been
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Figure 4.10: Distribution of the reconstructed mass mrec for 250 mock
data sets generated using several benchmark speed distributions, defined
in Sec. 4.2. These are the SHM (top), SHM+DD (middle) and Lisanti
et al. (bottom) distributions. The input WIMP mass of mχ = 50 GeV
is shown as a vertical dashed red line. Reproduced from Paper IV [350].
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Benchmark
speed distri-
bution

68% coverage 95% coverage

SHM 71 ± 3 % 94 ± 3 %

SHM+DD 68 ± 3 % 91 ± 4 %

Lisanti et al. 70 ± 3 % 95 ± 3 %

Table 4.6: Coverage of 68% and 95% credible intervals calculated from
250 data realisations each for three benchmark speed distributions. The
concept of coverage is described in the text of Sec. 4.3.3.

constructed. Table 4.6 shows the coverage values for the 68% and 95%

intervals obtained in this section. In each case, there is very close to exact

coverage. We have also checked that these intervals only provide exact

coverage for the true WIMP mass of 50 GeV. Other values of mrec are

contained within the intervals less frequently than the true value, again

indicating that this parametrization allows for unbiased and statistically

robust reconstructions of the WIMP mass.

4.4 Reconstructing f1(v)

Using the method described in this chapter, we can obtain the posterior

probability distribution for the coefficients {a1, ..., aN−1} given the data,

which we refer to as P (a). We would like to be able to present this infor-

mation in terms of the distribution function f1(v) in order to compare with

some known distribution or look for particular features in the distribution.

However, due to the fact that the distribution function is normalized, the

values of f1 at different speeds will be strongly correlated. We illustrate

here how robust comparisons with benchmark distributions can be made.

As a first step, we can attempt to sample from P (a), in order to ob-

tain P (f1(v)). This is the probability distribution for the value of f1 at a

particular speed v, marginalizing over the values of f1 at all other speeds.

We can repeat for a range of speeds to obtain 68% and 95% credible in-

tervals for the whole of f1(v). The result of this procedure is presented

in Fig. 4.11, for a randomly selected realisation from the SHM ensemble

of Sec. 4.3.3. The underlying SHM distribution is shown as a solid line,

while the 68% and 95% marginalized intervals are shown as dark and light
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Figure 4.11: Reconstructed speed distribution for a single realisation of
data, generated for a 50 GeV WIMP. 68% and 95% credible intervals are
shown as dark and light shaded regions respectively, while the underlying
SHM distribution function is shown as a solid blue line. Reproduced
from Paper IV [350].

shaded regions respectively. In this naive approach, we see that there is

little shape information which can be recovered from the reconstruction,

with only upper limits being placed on the speed distribution.

This method performs poorly because, as initially mentioned in Sec. 4.3,

we have no information about the fraction of dark matter particles below

the energy threshold of our experiments. Varying f1(v) will change this

fraction. There is thus a degeneracy between the shape of the speed distri-

bution and the cross-section, meaning that we can only probe the shape of

f1(v), rather than its overall normalization. This degeneracy has not been

accounted for in Fig. 4.11. We can attempt to correct for this by adjusting

the normalization of f1(v). If we fix f1(v) to be normalized to unity above

va (where va ≈ 171 km s−1 is the lowest speed probed by the experiments

for a WIMP of mass 50 GeV), we can compare the shapes of the underlying

and reconstructed distribution functions. This is illustrated in Fig. 4.12,

which shows that we now broadly reconstruct the correct shape of f1(v).

Below va, the value of f1(v) is poorly constrained, because the experiments

provide no information about the shape of the distribution below theshold.

There remain several issues with this approach. In order to utilize this

method, we must know the approximate value of the lowest speed probed
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Figure 4.12: Reconstructed speed distribution for the same realisation
of data as Fig. 4.11. In this case, we have also normalized f1(v) to
unity above va ≈ 171 km s−1 (vertical dashed line). This is the lowest
speed accessible to the experiments for a WIMP of mass 50 GeV. 68%
and 95% credible intervals are shown as dark and light shaded regions
respectively, while the underlying SHM distribution function is shown
as a solid blue line. Reproduced from Paper IV [350].

by the experiments. However, this value is set by the WIMP mass. We

could determine va using the reconstructed WIMP mass, but this would

be subject to significant uncertainty. In addition, direct reconstructions of

the speed distribution may be easily biased. The upper limit of the energy

windows of the experiments corresponds to a particular WIMP speed (for

a given WIMP mass). WIMPs above this speed still contribute to the

total event rate, but contribute no spectral information. The reconstructed

shape of the high speed tail of the distribution is therefore not constrained

by the data, but may affect the reconstructed value of f1 at lower speeds.

An alternative approach is to reconstruct the mean inverse speed η(v)

(defined in Eq. 2.44) at some speed v. Because η(v) is an integral function

of f1, it is less prone to bias as it takes into account the full shape of

the distribution at speeds greater than v. However, we do not know the

normalization of f1 and so we must normalize η appropriately. For each

point sampled from P (a), we calculate η. We then divide by α(v), the

fraction of WIMPs above speed v, calculated using the same parameter
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point:

α(v) =

∫ ∞
v

f1(v′) dv′ . (4.10)

We will write this rescaled mean inverse speed as η∗(v) = η(v)/α(v).

The value of η∗(v) is a measure of the shape of the distribution function

above v. However, some information about the normalization of the dis-

tribution has been factored out by dividing by α(v). We no longer need

to know the value of va in order to obtain information about the shape of

the distribution at higher speeds. We may still need to decide the speed

down to which we trust our reconstruction, but this no longer relies on an

arbitrary choice of va to normalize the reconstructions at all speeds.

In Fig. 4.13, we plot the mean reconstructed value of η∗ at several

values of v, using 250 realisations of the 50 GeV SHM benchmark. We

also show the mean upper and lower limits of the 68% credible intervals

as errorbars. The form of η∗ for the SHM is shown as a solid blue line. In

all cases except for v = 100 km s−1, the mean reconstructed value is close

to the true value, indicating that η∗ can be reconstructed without bias

using this method. At low speeds, the reconstructed value deviates from

the true value. In addition, the credible intervals lead to undercoverage in
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Figure 4.13: Mean reconstructed values of the rescaled mean inverse
speed η(v)/α(v) at several values of v, calculated over 250 realisations of
data using a 50 GeV WIMP and underlying SHM distribution function.
Errorbars indicate the mean upper and lower limits of the 68% credible
intervals. The underlying form of η(v)/α(v) obtained from the SHM is
shown as a solid blue line. Reproduced from Paper IV [350].
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Figure 4.14: Rescaled mean inverse speed η(v)/α(v), reconstructed from
a single realisation of data using a 50 GeV WIMP and underlying SHM
distribution function. At each value of v we calculate 68%, 95% and
99% credible intervals (shown as shaded intervals). We also show the
calculated values of η(v)/α(v) for several possible benchmark speed dis-
tributions: SHM (solid blue), SHM+DD (dashed green), Lisanti et al.
(dot-dashed red) and stream (dotted magenta). The benchmark curves
are truncated when the underlying distribution function goes to zero.
Reproduced from Paper IV [350].

the v = 100 km s−1 case. However, this point lies below the lowest speed

to which the experiments are sensitive and therefore we cannot trust the

reconstruction at this low speed. We have checked that for the remaining

values of v the method provides exact or overcoverage, indicating that at

higher speeds we can use η∗ as a reliable and statistically robust measure

of the shape of the distribution.

In the case of a single realisation of data, we would like to compare

the probability distribution for η∗(v) (obtained from P (a)) to the value

calculated from some test distribution. We note that several distributions

may produce the same value of η∗(v) at a given value of v. Thus, we

may fail to reject a distribution function which is not the true distribution.

However, if the calculated value of η∗(v) does lie outside the p% interval,

we can reject it at the p% level.

We can increase the discriminating power of this method by repeating

this reconstruction over all speeds and checking to see if the benchmark

value of η∗ is rejected at any value of v. The result of this procedure is
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shown in Fig. 4.14 for a single realisation of data generated using an SHM

distribution (the same data as in Figs. 4.11 and 4.12). We plot the 68%,

95% and 99% credible intervals as shaded regions, as well as the values of

η∗(v) calculated from several benchmark speed distribution. We will focus

on the intermediate speed range (v & 200 km s−1), as we do not know a

priori the lowest speed to which the experiments are sensitive.

The reconstructed intervals are consistent with a range of possible dis-

tribution functions. The SHM and SHM+DD distributions are identical

over a wide range of speeds. This is because above ∼ 200 km s−1, the two

distributions differ in normalization but not in shape. Differences appear

between the two at low speeds where their shapes diverge. The Lisanti et

al. distribution results in a larger deviation from the SHM, but not suffi-

ciently large to differentiate between the two distributions given the size of

the uncertainties. Finally, the stream distribution results in a significantly

different form for η∗(v). At approximately 400 km s−1, the curve for the

stream distribution lies outside the reconstructed 99% credible interval.

We can therefore use this method to reject the stream distribution at the

99% confidence level.

Figure 4.15 shows the results of a reconstruction using a larger exposure.

In this case, we generate data using the Lisanti et al. distribution and an

exposure increased by a factor of 2.5, resulting in approximately 1000 events

across the three detectors. As expected, the resulting credible intervals are

now substantially narrower. The stream distribution now lies significantly

outside the 99% interval. In Fig. 4.16, we show the same results, but

focusing in on the region around v ∼ 400 km s−1. At certain points, the

SHM and SHM+DD distributions now lie outside the 95% credible interval,

suggesting that with a number of events of the order of 1000, we may be

able to reject these benchmarks.

While the method displayed in Fig. 4.12 allows the approximate shape

of the speed distribution to be reconstructed, reconstructions of η∗(v) allow

more statistically robust statements to be made about the underlying speed

distribution. In particular, Fig. 4.16 illustrates that with larger exposures

deviations from Maxwellian speed distributions can be detected in a model-

independent fashion.
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Figure 4.15: As Fig. 4.14, but using as input a Lisanti et al. speed
distribution and an exposure time which is 2.5 times longer. Reproduced
from Paper IV [350].

300 350 400 450 500 550
v/km s−1

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

(η
(v

)/
α
(v

))
/ 

km
−

1
 s

1e 3
SHM
SHM+DD
Lisanti et al.
Stream

Figure 4.16: As Fig. 4.15, but focusing on the region around v ∼
400 km s−1. Notice that in the range 400 − 550 km s−1, both the SHM
and SHM+DD curves lie at or below the lower limit of the 95% credible
interval. Reproduced from Paper IV [350].
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4.5 Comparison with previous methods

In this section, we will briefly compare the polynomial ln f(v) parametri-

sation with some of the methods discussed previously. We use a 50 GeV

WIMP with a stream distribution function (defined in Table 4.2) and, us-

ing a single realisation of data, attempt to reconstruct the WIMP mass

using several methods. As well as the logarithm parametrisation described

in this chapter, we also use the binned speed and momentum parametri-

sations of Chapter 3. For all three methods we use the same number of

distribution parameters (5 polynomial coefficients or bins). The results are

shown in Table 4.7.

The binned speed distribution results in a significant bias, with the un-

certainties on mχ being underestimated. The momentum binning method

reduces this bias and gives slightly larger errors. However, the true WIMP

mass still lies several σ away from the reconstructed value. The polynomial

ln f(v) method shows a clear improvement over the other two methods,

with the true mass reconstructed to within 1σ. Not only is the polynomial

ln f(v) distribution smooth, removing the need for any fixed length scales,

but it is also better able to capture the rapidly varying form of the stream

distribution function, which is poorly reproduced by binned parametrisa-

tions.

In addition, we have shown in Fig. 4.8 that the polynomial ln f(v)

parametrisation performs well down to WIMP masses of 10 GeV, approx-

imately the limit of sensitivity of the direct detection experiments. By

contrast, the momentum binning method is expected to fail for low mass

Parametrisation Reconstructed mass (GeV)

Binned f(v) 29.3+0.4
−1.0

Binned f̃(p) 38.2+1.6
−2.3

Polynomial ln f(v) 44.7+6.9
−3.6

Table 4.7: Reconstructed mass from a single realisation of data using
the parametrisation presented in this chapter, as well as the the speed
binning and momentum binning methods of Chapter 3 for comparison.
The benchmark used is a stream distribution function described in Ta-
ble 4.2 and a 50 GeV WIMP. In all cases, 5 speed distribution parameters
(either bins or basis coefficients) are used.
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WIMPs, where the range of momenta which must be parametrised is large.

Furthermore, for the parametrisation described in this chapter, we do not

need to specify (a potentially arbitrary) range of momenta over which to

parametrise. Instead, the properties of the parametrisation are fixed, with

the number of basis functions determined as in Sec. 4.3.1.

4.6 Conclusions

We have studied in detail a new parametrization for the local dark matter

speed distribution. This method involves writing the logarithm of the

speed distribution as a polynomial in speed v and fitting the polynomial

coefficients (along with the WIMP mass and cross section) to the data. We

have attempted to disentangle the influence of different benchmark speed

distributions, different benchmark WIMP masses and different forms for

the parametrization.

We have shown how the number of basis functions in the parametrisa-

tion can be chosen in a systematic way by minimising the Bayesian Infor-

mation Criterion. We have also shown that the results are insensitive to

the precise choice of basis functions, but that the Chebyshev polynomials

can be used to efficiently explore the parameter space and result in a faster

reconstruction than other choices.

We have demonstrated that the WIMP mass can be reconstructed with-

out bias in this method, using values in the range 10-500 GeV to test this.

The inclusion of more realistic experimental uncertainties reduces the pre-

cision of the reconstructions, but does not introduce any bias. We have

further tested the statistical properties of the WIMP mass reconstructions

and have shown them to be robust over a range of possible speed distribu-

tions.

We have presented several ways of displaying the reconstructed WIMP

speed distribution using this method. In order to make robust statistical

inferences about the speed distribution, we calculate the probability distri-

bution of η(v)/α(v). This is the mean inverse speed η(v), rescaled by the

fraction of WIMPs α(v) above speed v. This can be used as a measure of

the shape of the distribution function, from which the unknown normal-

ization has been factored out. We can then compare to the expected value

of η(v)/α(v) from a given benchmark speed distribution, allowing us to

distinguish between different underlying models.
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Unfortunately, due to the finite threshold energies of direct detection

experiments, we cannot probe the low speed population of WIMPs. If we

make no assumptions, we have no information about the form of f(v) below

threshold and therefore little information about the overall normalisation of

f(v). This translates to an unavoidable degeneracy in the WIMP interac-

tion cross section σSI
p . In spite of this, the completely general parametrisa-

tion presented in this chapter can be used both to reconstruct the WIMP

mass and probe the shape of the speed distribution in an unbiased and

robust way.



Chapter 5

Breaking the cross section

degeneracy: neutrino

telescopes

The presence of dark matter (DM) in the Solar neighbourhood provides

us with the opportunity to directly detect its scattering in terrestrial de-

tectors. As we have investigated in Chapter 4, this may give us a handle

on both the DM mass and speed distribution, providing we use a range

of detector materials. However, the finite energy thresholds of direct de-

tection experiments means that we cannot probe the entire range of DM

speeds. With no sensitivity to low speed WIMPs, we also cannot know

what fraction of WIMPs are probed by the experiments, resulting in a loss

of sensitivity to the DM interaction cross section.

The local DM population may also scatter with nuclei in the Sun, be-

coming gravitationally captured if enough energy is lost in the interaction

[358–362]. These can then annihilate and produce neutrinos, which may

be observed at neutrino telescope (NT) experiments such as IceCube. Im-

portantly, capture occurs preferentially for WIMPs with low energy or,

equivalently, low speed. Such a signal at an NT experiment would provide

complementary sensitivity to the low speed WIMP population, hopefully

breaking the degeneracy in the DM interaction cross section.

In this chapter, we discuss the formalism for calculating the solar cap-

ture rate, as well as the processes of neutrino production, propagation and

detection. We focus on calculating the event rate at the IceCube detector

[175]. We then test the polynomial ln f(v) parametrisation presented in

109
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Chapter 4 using both direct detection and IceCube mock data. In partic-

ular, we test the ability of these data sets to constrain the DM interaction

cross sections and the DM mass, without making assumptions about the

WIMP speed distribution. We note that due to the high abundance of

spin-1/2 hydrogen in the Sun, we must consider both spin-independent

(SI) and spin-dependent (SD) couplings in the analysis.

In Sec. 5.1, we describe the IceCube event rate formalism. We then

describe several particle physics and astrophysical benchmarks for the dark

matter population in Sec. 5.3, along with the experimental parameters used

in the analysis. We explore the complementarity between NT and direct

detection experiments in Sec. 5.2. In the remaining sections, we consider

reconstructions of particle physics parameters first without IceCube data

(Sec. 5.4) and then with IceCube data (Sec. 5.5), before discussing the

prospects for reconstructing f(v) itself (Sec. 5.6).

5.1 Neutrino telescope formalism

Calculation of the expected spectrum of neutrinos at an NT experiment

can be broadly decomposed into 3 contributions. The first is the rate

at which WIMPs scatter and are captured in the Sun. The second is

the subsequent thermalisation of the solar WIMP population and their

eventual annihilation into neutrinos. Third, we must model the detection

of neutrinos at the IceCube detector. We now consider each of these in

turn, focusing on the first, as this is where the WIMP cross sections and

speed distribution enter into the calculation.

5.1.1 Solar capture

In calculating the solar capture rate, we follow closely the treatment of

Gould [363, 364]. WIMPs are captured by the Sun when they elasti-

cally scatter off one of its constituent nuclei and end up with a speed

lower than the solar escape velocity (which at the surface is equal to

v�esc = 617.5 km s−1 [365]). These WIMPs then enter bound orbits in-

tersecting the Sun, ensuring further scatters with solar nuclei during sub-

sequent passes. WIMPs may become unbound in subsequent scatters (this

possibility will be discussed later) but typically lose energy until they col-

lect and thermalise around the Sun’s core.
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R

Figure 5.1: Illustration of the geometry of WIMPs impinging on the Sun

In order to calculate this ‘first-scatter’ probability, we consider a spher-

ical surface of radius R, large enough that the gravitational field at R is

negligible. This geometry is illustrated schematically in Fig. 5.1. The num-

ber density of WIMPs with speed v is nχf1(v) dv. Because of the spherical

symmetry of the problem, we can assume that the WIMP velocity distri-

bution is isotropic without loss of generality. The fraction of WIMPs with

direction cos θ → cos θ + d cos θ relative to the perpendicular direction is
1
2
d cos θ (normalised over all values of cos θ). The WIMP speed perpendic-

ular to the surface is given by v cos θ, meaning that the WIMP flux inward

through the surface (per unit area) can be written:

nχ
2
f1(v)v cos θ dv d cos θ =

nχ
4
f1(v)v dv d cos2 θ , θ ∈ [0,

π

2
] . (5.1)

We change variables to angular momentum per unit mass, J = Rv sin θ,

and integrate over all area elements on the surface of the shell to obtain

the inward WIMP flux per unit time

Φχ = 4πR2 ρ0

mχ

1

4
f1(v)v dv

dJ2

R2v2
. (5.2)

We now consider an inner shell of radius r and thickness dr. If the

escape velocity at the shell is vesc(r), then a WIMP with speed v at infinity

will have speed w =
√
v2 + v2

esc(r) at this inner shell. The length dl of the

WIMP’s path through the shell is given by

dl =
2

cos θ
Θ(1− sin θ) dr = 2

[
1−

(
J

rw

)2
]−1/2

Θ(rw − J) dr , (5.3)
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where the Heaviside step function Θ appears because the WIMP crosses

the shell either twice or not at all. The time spent in the shell is then

dt = dl/w. If the rate at which a single WIMP travelling at velocity w

is scattered down to a speed less than the escape speed vesc is given by

Ω−vesc,i(w), then we can write the WIMP capture rate per unit time as

2π dr
ρ0

mχ

f1(v)

v
dv

Ω−vesc,i(w)

w

∫ (rw)2

0

[
1−

(
J

rw

)2
]−1/2

d(J2)

= 4πr2 dr
ρ0

mχ

f1(v)

v
dvwΩ−vesc,i(w) . (5.4)

The ‘first scatter’ rate C� is then obtained by integrating over the radius

of the Sun:

C� =
ρ0

mχ

∫ R�

0

dr
∑
i

dCi
dV

4πr2, (5.5)

where the capture rate per unit shell volume is

dCi
dV

=

∫ vmax

0

dv
f1(v)

v
wΩ−vesc,i(w) . (5.6)

The index i labels the various nuclei in the Sun. The integration limit is

vmax =

√
4mχmNi

mχ −mNi

vesc(r) . (5.7)

WIMPs above this speed cannot lose enough energy in a recoil to drop

below the escape speed.

We now calculate the factor Ω−vesc,i(w), which gives the rate at which

a single WIMP travelling at velocity w is scattered down to a speed less

than the escape speed vesc. This rate can be written as:

Ω−vesc,i(w) = ΦχNTσvesc (5.8)

where ΦχNT is the WIMP flux multiplied by the number of target nu-

clei. For a single WIMP and a number density of nuclei nN , this becomes

ΦχNT = wnN . The cross-section for the process σvesc is given by:

σvesc =

∫ Emax

Evesc

dσ

dER
dER (5.9)

where ER = ∆E is the energy lost by the scattering WIMP. The limits

of integration run from the minimum energy loss required to reduce the

WIMP speed below vesc,

Evesc =
mχ

2
(w2 − v2

esc) =
mχ

2
v2 , (5.10)
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to the maximum possible energy loss in the collision,

Emax =
2µ2

χN

mN

w2 . (5.11)

As in the direct detection case, we can decompose the differential cross

section into SI and SD components. While all of the constituent elements

of the Sun are sensitive to the SI interaction, only spin-1/2 Hydrogen is

sensitive to SD scattering. The differential cross section is therefore given

by

dσ

dER
=

mNi

2µ2
χpv

2

σ
p
SI + σp

SD for A = 1 ,

σp
SIA

2
iF

2
i (ER) for A > 1 .

(5.12)

No form factor is needed for Hydrogen (A = 1), which consists of only a

single nucleon. For the remaining nuclei, we approximate the form factor

as [363]

F 2
i (ER) = exp(−ER/Ei); Ei =

3

2mNi
R2
i

, (5.13)

where Ri is the nuclear radius (see Sec. 2.3.1). These expressions allow

Eq. 5.9 to be calculated analytically and introduce an error in the total

capture rate of at most a few percent. In addition to the effects which have

already been described, we can also consider a number of other factors

which may impact the WIMP capture rate. The fact that nuclei in the

Sun have a finite temperature has been neglected so far. However, detailed

calculation [358, 363] shows that this gives a correction to the capture

rate of only around 1% for WIMP masses above around 10 GeV. The

gravitational influence of other bodies in the Solar system may also have

an impact [366]. For example, Peter [367] found that WIMPs whose bound

orbits reach out as far as Jupiter can be perturbed by the planet and

become unbound. This leads to so-called Jupiter depletion for WIMPs

heavier than around 1 TeV. However, a recent study by Sivertsson and

Edsjö [368] showed using Liouville’s theorem that such depletion processes

must be accompanied by an inverse diffusion process. The net result is

that for Solar capture we can treat the WIMP population as being free.

5.1.2 Evolution of the WIMP population

Once a WIMP has scattered to below the escape speed at a given solar po-

sition, it will be in a bound orbit and will enter the population of WIMPs
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captured by the Sun. Subsequent scatters with the nuclei in the Sun should

lead to an approximately thermal distribution. There are then two pro-

cesses which will tend to deplete this population: WIMP evaporation and

annihilation.

Evaporation occurs when WIMPs scatter into the high speed tail of the

thermal distribution, above the Solar escape velocity, and become unbound.

It has been shown that for a WIMP mass of around 4 GeV, the evaporation

timescale is approximately equal to the lifetime of the Sun (∼ 4.7 billion

years) [369]. For WIMPs significantly heavier than this, the evaporation

rate is negligible compared to the capture rate. For WIMPs lighter than

this, the tail of the Maxwell-Boltzmann distribution lying above the escape

velocity becomes significant and evaporation can no longer be neglected

[370, 371]. As we will see, the IceCube detector is sensitive to WIMPs

with masses above around mχ > 20 GeV, meaning that we can safely

ignore the effects of evaporation.

The population of WIMPs will also undergo annihilation. The evolution

of the total number N(t) of WIMPs in the Sun can then be written as [362]:

dN

dt
= Cc −

1

2
CaN

2 − CeN . (5.14)

The parameter Cc is the total capture rate and the parameters Ca and Ce

determine the annihilation and evaporation rates. As we have discussed,

we can safely neglect evaporation, so we set Ce to zero. The parameter Ca

and therefore the annihilation rate will depend on the velocity-averaged

annihilation cross section 〈σv〉 which is a priori unknown. Over a long

period of time, equilibrium between the capture and annihilation will be

achieved and a steady state scenario for the WIMP population will be

reached. This timescale is set by the equilibration time τ = 1/
√
CcCa. If

this is sufficiently short compared to the lifetime of the Sun, the WIMP

population will currently be in equilibrium with the annihilation rate Γa

set by the capture rate as

Γa =
1

2
Ca . (5.15)

Crucially, in this case, the annihilation rate no longer depends on the

unknown annihilation cross section, but is related only to the WIMP-

nucleus scattering cross sections. While the validity of the equilibrium

assumption does depend on the precise value of Ca, Ref. [367] has esti-
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mated that for a 100 GeV WIMP, equilibrium will have been reached as

long as σp
SI & 10−45 cm2 or σp

SD & 10−43 cm2. For the cross sections we

consider here (given in Sec. 5.3.1), this constraint is satisfied. We will

therefore assume in the rest of this chapter that the annihilation and cap-

ture cross sections are sufficiently high that the equilibrium assumption is

valid. However, we should bear in mind that for significantly lower capture

and annihilation rates, equilibrium may not have been achieved.

Standard Model (SM) particles are produced in the annihilations of the

captured WIMPs, the majority of which cannot escape the Sun. However,

some of these particles may decay to neutrinos or neutrinos may be pro-

duced directly in the WIMP annihilation. These neutrinos can escape the

Sun and may be detected at NT experiments on Earth. It is important

to account for the production and propagation of neutrinos in the dense

medium of the Sun, as well as the propagation of these neutrinos from the

Sun to the Earth [372]. The spectrum of neutrinos reaching Earth can be

written as

dNν

dEν
=

Γa
4πD2

∑
f

Bf
dN f

ν

dEν
, (5.16)

where D is the Earth-Sun distance, dN f
ν /dEν is the neutrino spectrum

produced in the Sun for a particular final state f and Bf is the branching

ratio into that final state. The branching ratios will depend on the specific

form of the dark matter interactions with baryons. Following Ref. [323],

we consider annihilation into only one channel at a time, assuming Bf =

1 for that particular channel during the analysis. Finally, the neutrino

spectrum produced in the annihilation dN f
ν /dEν can be obtained using

particle physics event generators (such as Pythia [373]) and propagated

to Earth using neutrino Monte Carlo simulations (such as WimpSim [372]).

We perform these calculations (and the capture rate calculation) using a

modified version of the publicly available DarkSUSY package [374, 375].

5.1.3 Detection

Neutrinos which escape the Sun can be detected at terrestrial NT ex-

periments [175, 376]. We focus in this work on the IceCube experiment

[175, 377], which can detect the Cherenkov radiation produced by high en-

ergy particles traveling through ice. Muon neutrinos interact via charged-
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current interactions in the ice to produce relativistic muons. These in

turn produce Cherenkov light, which is collected by digital optical mod-

ules (DOMs) mounted on strings in the ice. The amount and pattern of

lit DOMs allows the energy and direction of the incoming neutrino to be

reconstructed.

In addition to the main IceCube array, a small region of the detec-

tor is instrumented with additional strings. This region has a DOM den-

sity roughly 5 times greater than the rest of the detector and is known

as DeepCore [378]. The increased Cherenkov light collection means that

DeepCore lowers the threshold energy of the detector down to roughly 10

GeV. This gives the detector sensitivity to DM particles with mass down

to around 20 GeV. Data from the 79-string IceCube experiment including

DeepCore have been able to set upper limits of σp
SI < 1.45×10−43 cm2 and

σp
SD < 1.34 × 10−40 at the 90% confidence level, for masses in the range

200-500 GeV and annihilation to W+W− [379].

5.2 Complementarity with direct detection

The complementarity between direct detection and NT data has been stud-

ied in the past [323]. In particular, the high abundance of hydrogen can

help to constrain the spin-dependent cross section and, even in cases where

no signal is observed at IceCube, limits from NT experiments can help to

reduce the size of the allowed parameter space. Here, we explore further

this complementarity by looking at the range of speeds which are probed

by NT experiments.

As can be seen from Eq. 5.6, WIMPs with speeds from v = 0 up to

v = vmax have the possibility of being captured by the Sun. In particular,

with increasing WIMP speed the capture probability decreases, further

suppressed by the loss of coherence in the SI case. As pointed out in

Ref. [380], direct detection experiments probe a complementary range of

the WIMP speed distribution, defined by the energy range of the WIMP

search window. If the ranges of speeds probed by direct detection and NT

experiments overlaps, this means that the entire WIMP speed distribution

can be probed.

In Fig. 5.2, we show the WIMP speeds to which two experiments are

sensitive as a function of WIMP mass. As a blue band, we show the region

probed by a Xenon direction detection experiment. The lower and upper
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Figure 5.2: Sensitivity ranges of solar capture and direct detection ex-
periments. We show as a blue band the range of speeds to which a
Xenon detector with an energy window of [5, 45] keV is sensitive. The
maximum speed to which solar WIMP capture is sensitive is shown as
a solid (dashed) red line for SI (SD) interactions (see the text for more
details).

limits of the band are set by vmin(Emin) and vmin(Emax), where Emin and

Emax define the extent of the WIMP signal window. In this chapter, we

consider a window of [5, 45] keV for a Xenon experiment, extending down

to slightly lower energies than in Chapter 4. This is in light of the low

threshold energy achieved by the LUX experiment [182]. WIMPs with

speeds above the blue band still contribute to the overall event rate (so

there is still some sensitivity to them). However, there is no information

on the shape of the distribution at higher speeds, as we are not sensitive

to the event spectrum above Emax.

Also shown in Fig. 5.2 are the values of vmax involved in the Solar

capture rate for SI and SD interactions. In the SD case, the maximum

speed is set by the hydrogen mass mH :

vmax =

√
4mχmH

mχ −mH

vesc . (5.17)

The escape speed vesc depends on radius within the Sun so we use an

average value, weighted by the hydrogen density as a function of radius.

In the SI case, the situation is more complex, as more than one nucleus

contributes to the capture rate. We therefore consider the average value of
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vmax weighted by the mass fraction fi of each species

〈vmax〉 =
∑
i

fi

√
4mχmNi

mχ −mNi

vesc , (5.18)

where again vesc is evaluated at the average radius of each species i. This

gives an indication of the typical value of vmax experienced by WIMPs in

the Sun.

In the SD case, the decreasing value of vmax with mχ reflects the kine-

matics of the χ−H interaction. As the WIMP mass increases, scattering

with hydrogen becomes less efficient at transferring energy. In the SI case,

the value of vmax is typically higher because the WIMP is closer in mass

to the heavier nuclei in the Sun. However, there is still a significant SI

interaction with hydrogen and the same fall off with mχ is observed as in

the SD case. In addition, there are resonances in vmax, corresponding to

perfect mass matching between the WIMP and one of the nuclei in the

Sun. In these cases, energy transfer is highly efficient and WIMPs of any

speed can scatter into bound orbits.

The key point of Fig. 5.2 is that in both the SI and SD dominated cases,

vmax never falls below the lower limit of the blue band. This means that

the combination of NT and direct detection data should provide sensitiv-

ity to the full range of WIMP speeds over a range of masses. The level of

sensitivity may vary with WIMP speed, due for example to a falling cap-

ture contribution from higher speeds or form factor suppression in direct

detection experiments. However, in principle, we can probe the full WIMP

speed distribution and hopefully break the degeneracy in the cross section

described in Chapter 4. The inclusion of data sets from additional direct

detection experiments should only improve this sensitivity.

5.3 Experiments and benchmark

parameters

In order to test this complementarity and determine how well the WIMP

parameters can be recovered, we generate mock data sets for a set of hypo-

thetical direct detection experiments as well as for IceCube. In Table 5.1,

we show the parameters used in this chapter for three direct detection

experiments chosen to mimic next-generation detectors currently in de-
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velopment. Each experiment is described by the range of nuclear recoil

energies it is sensitive to and the total exposure (the product of the fidu-

cial detector mass, the exposure time and the experimental and operating

efficiencies). We also include a gaussian energy resolution of σE = 1 keV

and a flat background rate of 10−7 events/kg/day/keV. This results in 1-2

background events in each detector.

We use an exposure time texp = 2 years for all 3 experiments and a

constant 50% efficiency. The methods presented here would be used af-

ter a dark matter signal has been confirmed in multiple channels, once a

sufficient number of events has been detected. We therefore choose not to

model the energy resolution, background rates and efficiencies too closely

on current experiments. Instead, we consider what may be possible with

several somewhat-idealised future detectors.

For the spin-dependent scattering in Xenon and Germanium, we assume

natural abundances of each of the isotopes and use the parametrisation of

Cerdeño et al. [281] for the spin-dependent structure functions,

Sij = N((1− β)e−αu + β) , (5.19)

which is described in more detail in Sec. 2.3.1. The values we use for the

parameters (N,α, β) for the S00 spin structure functions are (0.0595, 3.75,

0.0096) for 129Xe, (0.035, 3.925, 0.12) for 131Xe and (0.195, 4.25, 0.07) for
73Ge. These were chosen to approximately reproduce the median values

obtained from a range of spin structure function calculations [193, 197, 381,

382]. We focus in this work on understanding the impact of astrophysical

uncertainties, so we keep the SD nuclear parameters fixed at these median

values during the reconstructions.

We divide the energy range of each experiment into bins of width 2 keV

and generate Asimov data [354] by setting the observed number of events

in each bin equal to the expected number of events. While this cannot

correspond to a physical realisation of data as the observed number of

events will be non-integer, it allows us to disentangle the effects of Poisson

fluctuations from the properties of the parametrisation under study.

To generate neutrino telescope data, we consider the IceCube 86-string

configuration. We use an exposure time of 900 days (corresponding to

five 180 day austral winter observing seasons, as in Ref. [323]). We use

an angular cut around the solar position φcut = 3 ◦ [323]. This results

in approximately 217 background events over the full exposure, due to
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Experiment
Target
Mass,
A

Detector
Mass (fid.),
mdet/kg

Efficiency,
ε

Energy
Range/keV

Xenon 131 1000 0.5 5-45

Argon 40 1000 0.5 30-100

Germanium 73 300 0.5 10-100

Table 5.1: Summary of parameters for mock direct detection experi-
ments. All experiments have a constant energy resolution of σE = 1 keV
and a flat background rate of 10−7 events/kg/day/keV. An exposure of
texp = 2 years is used for all 3 experiments.

neutrinos and muons created in the atmosphere by cosmic ray interactions.

As with the direct detection experiments, we set the observed number of

events equal to the expected number of signal plus background events.

We use only the observed number of events as data and not the energies

of the individual events. Event-level likelihood methods have previously

been developed [383] for use with IceCube 22-string data [377]. However,

a similar analysis has not been performed for IceCube-86. In particular,

the probability distributions for the number of lit digital optical modules

(DOMs) as a function of neutrino energy are not yet available for IceCube-

86. While event-level data would allow more information to be extracted

from future IceCube results, the current analysis (using only the event

numbers) is a conservative first step towards using neutrino telescope data

to help constrain the WIMP speed distribution.

5.3.1 Benchmarks

We use four benchmark models to generate mock data sets, which are

summarised in Table 5.2, along with the number of events expected for

each model. In all cases, we use an SI WIMP-proton cross section of

σp
SI = 10−45 cm2 and SD cross-section of σp

SD = 2 × 10−40 cm2, both of

which are close to the current best exclusion limits [182, 221, 249, 379]. For

simplicity, we assume that the WIMP-proton and WIMP-neutron couplings

are equal in both the SI and SD cases. We could allow the ratio of these

couplings to vary as free parameters, but this would introduce additional

degeneracies into the analysis. Here we focus on the degeneracy associated

with the WIMP speed distribution.
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Benchmark A represents an intermediate mass WIMP which annihilates

to W+W−, which is similar to benchmark B used by Ref. [323]. As we will

see, even with this intermediate mass there is already a strong degeneracy

in the reconstructed WIMP mass. We therefore choose not to consider a

benchmark model with higher mass, which would result in an even poorer

sensitivity to the reconstructed WIMP mass. We do, however, consider a

lighter WIMP in benchmark C, which annihilates to νµν̄µ. The IceCube

detector (with DeepCore) is sensitive to WIMPs with masses down to about

20 GeV. We therefore use a 30 GeV WIMP mass, as WIMPs much lighter

than this cannot feasibly be detected by IceCube.

Benchmarks A and C assume an SHM speed distribution described by

vlag = 230 km s−1 and σv = 163 km s−1. Benchmarks B and D assume the

same particle physics parameters as A and C respectively, but assuming an

SHM distribution with a moderate dark disk overdensity (SHM+DD). We

model the dark disk as contributing an additional 30% dark matter density

to the SHM, with parameters vlag = 50 km s−1 and σv = 50 km s−1. As

shown in Ref. [106], the capture rate in the Sun is not strongly depen-

dent on variations in the shape of f(v) (such as the differences between

distribution functions extracted from different N-body simulations). How-

ever, significant enhancement of the capture rate can be achieved with the

presence of a low speed dark disk, which we investigate using these two

astrophysical benchmarks.

5.3.2 Parameter sampling

We perform parameter scans using a modified version of the publicly avail-

able MultiNest 3.6 package [351–353]. This allows us to map out the

likelihood L(θ) for the model parameters θ. We use Nlive = 20000 live

points in the scans and a tolerance of 10−4. We show in Table 5.3.2 the

priors on the various model parameters used in this work.

In the polynomial ln f(v) parametrisation, we use 6 basis polynomials

(5 free coefficients, with one fixed by normalisation). This is because,

with the addition of SD interactions, the parameter space is significantly

larger than in the SI-only case. This means that a large number of live

points are required to explore the parameter space effectively, with the

number required increasing with the number of polynomial coefficients.

As we will see, using 6 basis functions still allows a wide range of speed
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Table 5.2: Summary of benchmarks. In all cases, we consider only isospin
conserving interactions (i.e. fp = fn and ap = an). Also listed are the
number of events observed in each detector. For direct detection targets
we distinguish between recoils induced by SI and SD interactions.
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Parameter Prior range Prior type

mχ (GeV) 10-1000 log-flat

σpSI (cm2) 10−48 − 10−42 log-flat

σpSD (cm2) 10−43 − 10−37 log-flat

Polynomial coefficients {ak} −20− 20 linear-flat

Table 5.3: Summary of MultiNest priors used in this chapter.

distributions to be explored and can provide a good fit to the data. With

increasing numbers of events, it would be feasible to increase the number

of basis functions and more precisely parametrise the form of the speed

distribution.

The likelihood function we use for each experiment is:

L(θ) =

( ∏
i=1,Nbins

(N i
e)
N i

o

(N i
o)!

e−N
i
e

)w

, (5.20)

where the signal region is divided into Nbins bins with N i
e events expected

and N i
o events observed in the ith bin. We weight the likelihood by a

factor w = Ntot/(NexptNbins), where Ntot is the total number of bins across

all experiments. This means that the direct detection experiments (for

which there are a large number of bins in energy) receive the same weight

as the IceCube experiment (for which Nbins = 1). More details are given in

Appendix A. The total likelihood is then the product over all experiments

under consideration.

5.4 Reconstructions without IceCube

In Fig. 5.3, we show the 2-dimensional profile likelihood plots for the param-

eters (mχ, σ
p
SI), (mχ, σ

p
SD) and (σp

SI, σ
p
SD) reconstructed using the polynomial

ln f(v) parametrisation. We use data from the three direct detection ex-

periments described in Sec. 5.3 without any additional information from

IceCube. Each row corresponds to a different benchmark and the solid

blue contours enclose the 68% and 95% confidence regions. The bench-

mark parameter values are shown as dashed red lines, while the best fit is

indicated as a green triangle. These results are distinct from the results

of Chapter 4 in that we are also including a contribution to the rate from
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spin-dependent interactions.

For Benchmark A (top row), there is a strong degeneracy in the WIMP

mass. The benchmark value mχ = 100 GeV is larger than the target

masses for Argon and Germanium, leading to a loss in sensitivity to the

reconstructed WIMP mass. This is exacerbated by the degeneracy between

mχ and the shape of f(v). In spite of this, the best fit value is close to this

benchmark value, indicating that the inclusion of SD scattering does not

introduce any bias in the reconstruction of mχ.

The inclusion of σp
SD in the scan, however, does introduce an additional

degeneracy in the overall event rate. At large masses the contours for

σSD
p extend down to low values and we do not obtain a closed contour.

The complementarity of different experiments has previously been studied

in Ref. [384]. Because each target nucleus has a different response to SI

and SD interactions, we should be able to determine the values of σSI
p

and σSD
p separately. However, this depends on the uncertainties on the

number of events at each experiment. For large mχ, the range of speeds

probed by each experiment has less overlap (see e.g. Fig. 3.2). Because

the experiments do not all probe the same range of speeds, there is more

freedom, in varying f(v), to reproduce the observed event numbers in each

experiment. This means that a large σp
SI and a small σp

SD can account for

the observed data. The same is not true for small values of σp
SI and large

values of σp
SD. This is because σp

SI is constrained by the (small) number of

events in the Argon experiment which couples only via SI interactions. A

direct detection target such as Fluorine which is sensitive predominantly

to SD scattering would allow the bounds on σp
SD to be improved.

The results for benchmark B (second row of Fig. 5.3) share many fea-

tures with those of benchmark A. This is because the majority of the dark

disk population (which is present in benchmark B) lies at speeds below the

energy thresholds of the experiments. However, a major difference is the

extension of the contours up to large values of both σp
SI and σp

SD. This is

particularly evident in the top right corner of the right-most plot. This is

an illustration of the problem described in both Chapter 3 and Chapter 4:

the shape of f(v) is unconstrained at low v, which means that the fraction

of WIMPs above the experimental thresholds is unconstrained.

Why does this degeneracy not appear in benchmark A? This is because

for a finite number N of basis functions, the parametrisation we use for

f(v) cannot approximate all functional forms arbitrarily well. For large
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Figure 5.3: 2-dimensional profile likelihood for (mχ, σSI
p ) (left column),

(mχ, σSD
p ) (central column) and (σSI

p , σSD
p ) (right column), obtained

using the polynomial ln f(v) parametrisation with direct detection data
only. The shaded area gives the value of the profile likelihood, while the
blue contours define the 68% and 95% confidence regions for the particle
physics parameters. The 4 rows (from top to bottom) correspond to the
4 benchmarks A, B, C and D. The dashed red lines show the position of
the benchmark values from Tab. 5.2 while the green triangle gives the
best fit values.
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mχ, the lowest WIMP speed probed by the experiments is relatively small,

with the Xenon experiment probing down to v ≈ 100 km s−1. Distributions

which fit the data down to this low speed and then rise rapidly below it may

not necessarily be well explored by the parametrisation. In benchmark B,

the dark disk population causes a rise in f(v) above v ≈ 100 km s−1, which

leads to an excess in the data above the SHM-only case. For benchmark B,

then, the parametrisation explores speed distributions which rise at low v

in order to reproduce the data. The unconstrained WIMP fraction below

the threshold then leads to the observed cross section degeneracy.

We note that the cross section degeneracy is a real effect in the case of

benchmark A, meaning that the reconstructed cross sections which appear

in the top row of Fig. 5.3 must be taken as lower limits. The fact that this

degeneracy does not appear in the profile likelihood is a consequence of

the high WIMP mass and the finite number of basis functions used in the

parametrisation. The degeneracy should become apparent with increasing

N , but this would not improve the fit with the data, as it would simply

explore a wider range of shapes for f(v) below the experimental thresholds.

In benchmarks C and D (bottom two rows of Fig. 5.3), the cross section

degeneracy is pronounced, as the experiments now only probe down to

v ∼ 200 km s−1 as a result of the lighter WIMP mass. The lighter WIMP

mass also means that the rate is more sensitive to the reconstructed mχ

value. Thus, there is now a closed confidence interval in mχ, though we

can only constrain mχ to within a factor of ∼ 4 at the 68% level. As in

the case of heavier WIMP masses, σSD
p is not bounded from below due to

the degeneracy between σSI
p and σSD

p .

5.5 Reconstructions with IceCube

In Fig. 5.4, we show the profile likelihood reconstructed using the poly-

nomial ln f(v) parametrisation (as in Fig. 5.3) but now using both direct

detection and IceCube mock data. For comparison, we also show the con-

tours obtained in Fig. 5.3 for the direct detection-only case. These are

overlaid as dashed black contours.

The results for benchmark A (top row) show that the best fit point

is very close to the benchmark parameter values. One of the modes of

the likelihood is peaked at the true WIMP mass and allows mχ to be

constrained to within a factor of 2 at the 1σ level. This is because the
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Figure 5.4: As Fig. 5.3, but including IceCube mock data. For compari-
son, we also show the contours obtained in the direct detection-only case
(dashed black contours).
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IceCube rate depends on mχ in a different way to the direct detection

experiments, leading to complementarity between the two experiments and

allowing mχ to be recovered more precisely.

However, there is also a second mode in the likelihood, at large values

of mχ and low values of σp
SD. This is evident in the bottom right corner of

the central panel on the top row. We have already discussed this scenario

in the case of direct detection-only data. In addition, large WIMP masses

result in higher energy neutrinos being produced in WIMP annihilations

and therefore an increased number of events above the IceCube threshold

[323]. This means that the lower value of σSD
p can also reproduce the

observed IceCube data. Furthermore, distributions which rise rapidly at

low v can boost the capture rate further and therefore widen the allowed

range of σSD
p to lower values.

The results for benchmark B (second row of Fig. 5.4) are almost indis-

tinguishable from the results of benchmark A. This indicates that the un-

certainties in f(v) are being well accounted for in each case. For benchmark

B, the most striking difference when compared with the direct detection-

only reconstructions is that the degeneracy of the cross sections up to large

values has now been broken. Upper limits can now be placed on σSI
p and

σSD
p at the 95% level. Those points with large cross sections and a large

WIMP population below the direct detection threshold would now over-

produce events at IceCube, which is sensitive to this low speed WIMP

population.

For the light benchmarks (C and D, bottom two rows of Fig. 5.4), the

results are again largely indistinguishable, indicating good control over the

astrophysical uncertainties. In both cases, the reconstruction of the mass is

improved compared to the direct detection-only case, especially at low mχ.

Due to the energy threshold at IceCube, the detector is only sensitive to

the annihilation of WIMPs with masses above ∼ 25 GeV. WIMPs lighter

than this cannot explain the number of excess events observed at IceCube.

As in benchmarks A and B, we cannot place lower limits on σSD
p due

to the remaining freedom in f(v) at low speeds, which can boost NIC .

However, also as in the heavier benchmarks, the degeneracy in the cross

sections up to high values is broken. We would like to determine the effect

of IceCube data on the determination of the cross section. Due to the

degeneracy between σSI
p and σSD

p , we will define an effective cross section

σeff, which incorporates both cross sections and controls the overall event
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rate. Due to the different response of each detector to SI and SD couplings,

we can define a different σeff for each experiment (including IceCube). Here,

we look at the effective cross section as seen by Germanium:

σeff =
∑
i

fiA
2
iσ

p
SI + f73

16π

3

σp
SD

2J + 1
S00(0) , (5.21)

where fi is the mass fraction of isotope i. In Fig. 5.5, we show the profile

likelihood for σeff with and without IceCube data (as solid and dashed

lines respectively) for benchmark C. Without IceCube data, the profile

likelihood of σeff is almost entirely flat, with roughly 3 orders of magnitude

uncertainty in the total WIMP interaction strength. Including IceCube

data, the profile likelihood becomes sharply peaked, with the value of σeff

constrained to within a factor of 4 at the 68% level. Clearly, the inclusion

of IceCube data means that we can now reconstruct the value of the cross

sections, rather than simply placing a lower limit.
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Figure 5.5: Profile likelihood for the effective cross section σeff of Germa-
nium (defined in Eq. 5.21) with and without IceCube data for benchmark
C. The vertical red dashed line corresponds to the benchmark value while
the the vertical dotted black lines correspond to the limits of the 68%
and 95% confidence intervals for the case with IceCube data.

5.6 Reconstructing f (v)

We show in Fig. 5.6 the 68% and 95% confidence intervals (as grey bands)

for the values of f(v) using only direct detection data in benchmark B. At
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each speed v, we determine the confidence intervals from the 1-dimensional

profile likelihood for the value of f(v) at that speed. This means that the

intervals obtained at different speeds will be correlated, as in Chapter 4.

Figure 5.6 shows the same qualitative result for direct detection-only data

as that shown in Fig. 4.11, though plotted in terms of f(v) rather than

f1(v). The confidence intervals extend down to zero across almost the

entire range of speeds, meaning that we cannot place any lower limit on

f(v). The degeneracy in the cross sections up to high values corresponds

to a degeneracy in f(v) down to low values. The results for the remaining

benchmarks suffer from the same problem.
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Figure 5.6: Reconstructed 68% and 95% confidence intervals (grey
bands) for the directionally-averaged speed distribution f(v) using only
direct detection data. We show the SHM distribution (solid blue) and
SHM+DD distributions (dashed green). Also shown in dashed red is
the best fit form for f(v). We note that for benchmark B, the true
distribution is the SHM+DD.

Including data from IceCube, however, we are sensitive to the full range

of WIMP speeds and can now probe not only the shape of the speed dis-

tribution, as in Chapter 4, but the absolute value of f(v). The results

including IceCube data are shown in Fig. 5.7 for all 4 benchmarks. These

result in significantly improved constraints on f(v). For the case of A and

B, the tightest constraints are obtained around v ∼ 100 km s−1. This is

because for mχ = 100 GeV and the energy thresholds considered here, this

is approximately the minimum speed probed by the experiments. This is

where the most spectral information is available, as the rate decays with

increasing energy. For the lower mass benchmarks (C and D), the best

constraints are obtained for higher values of v, with a maximum sensitivity

in the range v = 200− 400 km s−1.
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Figure 5.7: As Fig. 5.6, but for all 4 benchmarks, including data from
both direct detection and IceCube experiments. We show the SHM
distribution (solid blue) and SHM+DD distributions (dashed green).
Also shown in dashed red is the best fit form for f(v). We note that
for benchmarks A and C, the true distribution is the SHM, while for
benchmarks B and D, the true distribution is the SHM+DD.
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The shape of f(v) is less well constrained at low speeds because the

IceCube data contains no spectral information. The capture rate is a single

number, but depends on a combination of mχ, σSI
p , σSD

p and a series of

integrals over f(v). Thus, the precise shape of f(v) at low speeds cannot

be extracted, but the approximate magnitude of f(v) can be inferred when

IceCube and direct detection data are combined.

For benchmarks B and D, which have a SHM+DD distribution function,

the best fit traces the benchmark distribution closely. In particular, the rise

in the best fit f(v) at low speeds indicates that we have achieved sensitivity

to this low speed WIMP population. In the regions of maximum sensitivity,

the value of f(v) can be constrained to within a factor of around 4 at the

68% level. We see that this uncertainty in the value of f(v) is the source of

the remaining uncertainty in the effective WIMP cross section σeff described

in the previous section, which can also be determined to within a factor of

∼ 4. In spite of this remaining uncertainty, it may be possible to distinguish

between different distribution functions.

5.7 Discussion

We have demonstrated that for the benchmarks considered here, the WIMP

mass can be better constrained with the inclusion of IceCube data and that

the degeneracy in the cross sections up to high values (which is inherent in

any astrophysics-independent analysis of data) can be broken.

The benchmarks we have considered in this chapter all result in a signal

at IceCube. However, in benchmark C, the number of signal events is just

13, which is consistent with the observed background at just over 1σ. Even

with a signal of such low significance, we can still break the degeneracy

between the cross section and f(v). If we consider lighter WIMPs, which

lie below the IceCube detection threshold, these would produce no events at

IceCube regardless of the scattering cross sections and speed distribution.

Thus, while we can use information from IceCube even with no significant

signal, this would only give an improvement in constraints if the WIMP is

heavy enough to potentially give a signal at IceCube.

Assuming that a signal is observed at IceCube, there is more informa-

tion which can be extracted beyond simply the number of events. With

the future release of information about energy reconstruction using the

IceCube 86-string configuration, it should be possible to include spectral
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information in the analysis. This should significantly improve constraints

on the mass and annihilation channel of the WIMPs, consequently im-

proving constraints on the remaining parameters. However, because the

capture rate depends only on an integral over the speed distribution, this

additional spectral information will not allow us to significantly improve

the shape reconstruction of f(v) at low speeds.

We note that we have made several assumptions in this work. We

have neglected uncertainties in spin-dependent form factors, which may

result in wider uncertainties on the particle physics parameters. Using

the parametrisation of Cerdeño et al. [281] will allow us to take this into

account, as well as to compare the relative importance of nuclear and as-

trophysical uncertainties. Further simplifications we have used include the

assumptions of equilibrium between the capture and annihilation rates in

the Sun, and the approximation that annihilations occur into a single chan-

nel. These uncertainties could be relaxed and incorporated as additional

fitting parameters. However, we have shown here what may be possible in

an ideal case.

The success of the method we have used here opens up the question

of whether the inclusion of IceCube data can improve the performance of

other speed distribution parametrisation methods. We could consider, for

example, the case of the binned speed distribution introduced by Peter [319]

and studied in detail in Chapter 3. In that case, it was observed that the

number and size of bins to which the experiments were sensitive depends in

a specific way on the WIMP mass. The IceCube rate not only probes the

low speed bins which are not accessible to direct detection experiments,

but also depends on mχ in a different way. This complementarity may

therefore allow the bias caused by using the binned speed distribution to

be reduced; lowering the WIMP mass will have a significant impact on the

IceCube rate which may not result in a good fit to data. This perhaps opens

up the possibility of using several different parametrisations to constrain

the particle physics parameters as a consistency check.

Finally, the prospects for reconstructing the speed distribution seem

good. In Fig. 5.7, for benchmark A, the SHM+DD distribution function

falls outside the 68% band. Similarly, for benchmark B, the SHM distri-

bution lies outside the 68% band at several different speeds. The bands in

Fig. 5.7 are calculated from the 1-dimensional profile likelihood separately

at each value of v. However, the uncertainties at different values of v are
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strongly correlated due to the normalisation of f(v). This means that not

all shapes falling within the 68% band are consistent with the data at the

68% level. However, if a speed distribution falls outside the 68% band at

some value of v, it can be rejected at at least the 68% level.

It is possible, however, to determine whether a particular distribution

function provides a good fit to the data. For example, in benchmark D

(which has an underlying SHM+DD distribution), we could compare the

relative log-likelihoods of the best fit point using the polynomial ln f(v)

parametrisation with the best fit assuming a fixed SHM distribution. We

decompose ln f(v) for the SHM into Chebyshev polynomials (which pro-

vides a fit to the SHM speed distribution which is accurate to better than

0.1%). We then fix the polynomial coefficients to these values obtained

from the SHM and perform a parameter scan over the remaining particle

physics parameters. The best fit for the full ln f(v) parametrisation has a

higher log-likelihood value than the best fit when the coefficients are fixed

to the SHM values. The relative log-likelihood between the two models

leads to a value of ∆χ2 = 20.74 (see Appendix A). For 5 degrees of free-

dom (the 5 free polynomial coefficients in the full parametrisation), this

allows us to reject the SHM distribution at the 99.9% (or approximately

3σ) level.

In Chapter 4, where only the shape of f(v) could be reconstructed, the

SHM and SHM+DD distributions were almost indistinguishable. Including

IceCube data we probe the low speed distribution, presenting the possibility

of discriminating between the two astrophysical models and testing the

existence of a dark disk in the Milky Way.

5.8 Conclusions

We have explored the possibility of combining neutrino telescope and di-

rect detection data to probe a wider range of WIMP speeds. Neutrino

telescopes, such as IceCube, are sensitive to the annihilations of WIMPs

captured in the Sun. WIMPs with lower speeds are preferentially captured,

meaning that IceCube probes a range of speeds complementary to those

probed in direct detection experiments. In particular, this should allow the

absolute value of f(v) to be constrained, as well as breaking the degeneracy

between the WIMP cross sections and the fraction of WIMPs above the

detection threshold.



5.8. CONCLUSIONS 135

The inclusion of this data means that an upper limit can now be placed

on the WIMP interaction cross sections, reducing the uncertainty on the

total cross section by 2-3 orders of magnitude. However, the necessary in-

clusion of spin-dependent interactions opens up a new degeneracy direction.

For the experiments considered here, it may not be possible to constrain

the spin-dependent cross section from below. An increased exposure or a

different choice of targets may improve this situation. However, this is not

a problem associated with unknown astrophysics and has been previously

observed even when no astrophysical uncertainties are taken into account

[384].

Because we now probe the entire range of speeds of interest, we see im-

proved constraints on the absolute value of f(v). The maximum sensitivity

is achieved near the threshold speeds of the direct detection experiments,

where the most spectral information is available. This allows us to recon-

struct f(v) to within a factor of 4, opening up the possibility to distinguish

the SHM from the SHM with an additional dark disk contribution, which

was not previously feasible using direct detection-only data.

Constraints on the WIMP mass are also improved, with the comple-

mentarity between IceCube and direct detection experiments allowing us

to break the high mass degeneracy and begin to constrain mχ to within

a factor of 2 even for WIMP masses around 100 GeV. This is even pos-

sible with no significant signal observed at IceCube, although IceCube is

insensitive to very low mass WIMPs and would therefore not improve con-

straints if the WIMP is lighter than around 20 GeV. The PINGU upgrade

to IceCube [385] should lower the IceCube threshold and therefore allow a

wider range of the parameter space to be explored and constrained. The

planned KM3NeT experiment [386], with its larger volume and better an-

gular resolution than IceCube, should also allow smaller interaction cross

sections to be probed.

We have demonstrated that combining direct detection data with Ice-

Cube, we can probe the entire range of WIMP speeds and reconstruct

without bias the WIMP mass, SI and SD cross sections and the values

of the speed distribution itself, without making any astrophysical assump-

tions.





Chapter 6

Velocity parametrisation for

directional experiments

While many direct detection experiments seek to measure the recoil ener-

gies deposited by weakly interacting massive particles (WIMPs) scattering

off detector nuclei, directional experiments aim to measure both the en-

ergy and direction of the recoil. While the recoil distribution of typical

backgrounds is expected to be roughly isotropic, the WIMP-induced re-

coil distribution is expected to be highly directional [387]. The motion of

the Sun through the Galactic dark matter (DM) halo generates a so-called

‘WIMP wind’, leading to an event rate peaked in the opposing direction,

the direction of the constellation Cygnus.1

The ability of directional detection to distinguish background from sig-

nal and to provide a model independent confirmation of the dark matter

origin of the signal make it a promising search strategy. The directional

signature of the WIMP signal may also allow it to be distinguished from

neutrino scattering, allowing directional detectors to probe below the neu-

trino floor [389]. However, measuring the direction of rare, low energy re-

coils remains challenging. A number of directional detectors are currently

in development and a number of novel methods for directional detection

have also been proposed.

Measuring the directional recoil spectrum allows us to probe not just the

energy distribution of WIMPs in the Galactic halo (embodied in the speed

distribution f1(v)), but the full 3-dimensional velocity distribution f(v).

This may allow us to gain new insight into the phase space distribution of

1In fact, for high mass WIMPs and low energy recoils, the event rate may be peaked
in a ring around the direction of Cygnus [388].
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the Milky Way’s DM halo. This should in turn allow us to test the results

of N-body simulations and to probe the process of structure formation on

galactic scales. However, directionality also introduces new uncertainties

into calculating the event rate. While non-directional detection leaves us

with a single free function in the form of f1(v), the directional case relies

upon the a priori unknown function of a 3-dimensional vector, f(v).

In this chapter, we will first introduce the formalism by which the di-

rectional rate is calculated. Specifically, we introduce the Radon transform

which relates the WIMP velocity distribution to the corresponding nuclear

recoil distribution. We then discuss the current state of directional detec-

tion technology and the progress of several directional experiments. We

then summarise previous approaches to mitigating the uncertainties asso-

ciated with the velocity distribution. Finally, we consider a new method for

parametrising f(v), which allows it to be written in terms of a finite number

of one-dimensional functions, and how to calculate the Radon transform of

this new, discretised distribution function.

6.1 Directional event rate

We wish to calculate the directional event spectrum in a dark matter de-

tector. We follow the treatment of Gondolo [390], noting that similar cal-

culations were performed previously by Copi, Heo and Krauss [391] and

later by Copi and Krauss [392]. The scattering of a WIMP with a nucleus

is illustrated in Fig. 6.1.

Figure 6.1: Illustration of the scattering of a DM particle of mass mχ

from a nucleus of mass mN .

We consider a DM particle of mass mχ impinging with velocity v =

v (1, 0) on a stationary target nucleus of mass mN , where we have sup-
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pressed the azimuthal dimension. The dark matter scatters with velocity

v′ = v′ (cos θ′, sin θ′) and the nucleus has final momentum q = q (cos θ, sin θ).

From conservation of linear momentum we obtain:

mχv
′ cos θ′ = mχv − q cos θ , (6.1)

mχv
′ sin θ′ = q sin θ . (6.2)

We can eliminate θ′ by summing the squares of Eqs. 6.1 and 6.2, to obtain:

v′2 = v2 − 2vq cos θ

mχ

+
q2

m2
χ

. (6.3)

From energy conservation, we obtain:

v′2 = v2 − q2

mχmN

. (6.4)

Combining these, we see that the recoil momentum of the target nucleus

is given by

q = 2µχNv cos θ , (6.5)

where µχN = mχmN/(mχ +mN) is the DM-nucleus reduced mass.

For a WIMP-nucleus interaction cross section which is independent of

velocity, we can write the differential cross section as

dσ

dER
=

mNσp
2µ2

χpv
2
CF 2(ER) , (6.6)

where ER is the nuclear recoil energy, σp is the WIMP-proton interaction

cross section (which may be spin-dependent (SD) or spin-independent (SI))

and C and F 2 are the corresponding enhancement factor and nuclear form

factor (see Eq. 2.25). We then require a Dirac δ-function to impose the

condition in Eq. 6.5:

dσ

dERd cos θ
=

mNσp
2µ2

χpv
2
CF 2(ER)δ (cos θ − q/2µχNv) . (6.7)

The collision is azimuthally symmetric, so that dΩq = 2π d cos θ. Rewriting

the δ-function as

δ (cos θ − q/2µχNv) = vδ (v cos θ − q/2µχN) , (6.8)
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we obtain the double differential cross-section dσ/dERdΩq:

dσ

dERdΩq

=
mNσp
4πµ2

χpv
CF 2(ER)δ (v cos θ − vmin) , (6.9)

where vmin is the minimum WIMP speed required to excite a recoil of

momentum q or, equivalently, energy ER:

vmin =
q

2µχN
=

√
mNER
2µ2

χN

. (6.10)

To obtain the differential rate per unit detector mass, we divide by the

mass of the target nucleus and multiply by the WIMP flux at velocity v,

ρ0

mχ

vf(v) d3v , (6.11)

where ρ0 is the local dark matter mass density, before integrating over all

velocities. Combining these, we obtain:

dR

dERdΩq

=
ρ0σp

4πµ2
χpmχ

CF 2(ER)f̂ (vmin, q̂) , (6.12)

where f̂ (vmin, q̂) is the Radon Transform of the velocity distribution, de-

fined as:

f̂ (vmin, q̂) =

∫
δ (vmin − v · q̂) f(v) d3v . (6.13)

Geometrically, this is the integral of f(v) over a plane perpendicular to q̂

at a distance vmin from the origin. In physical terms, for a given recoil angle

and energy, we integrate over all WIMP velocities satisfying the kinematic

constraint given by Eq. 6.5.

6.1.1 Examples

We consider several examples of velocity distributions and their correspond-

ing Radon transforms. For an isotropic Maxwell-Boltzmann distribution

with dispersion σv,

f(v) =
1

(2πσ2
v)

3
2

exp

[
− v2

2σ2
v

]
, (6.14)

the Radon transform is also isotropic,

f̂(vmin, q̂) =
1

(2πσ2
v)

1
2

exp

[
−v

2
min

2σ2
v

]
. (6.15)
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If we take this form to describe the DM velocity distribution in the Galactic

frame, we must transform to the laboratory frame using the relation [390]

f̂lab(vmin, q̂) = f̂gal(vmin − vlag · q̂, q̂) , (6.16)

where vlag is the velocity of the peak of the Galactic distribution with

respect to the laboratory. We therefore obtain the Radon transform of the

Standard Halo Model (SHM):

f̂(vmin, q̂) =
1

(2πσ2
v)

1
2

exp

[
−(vmin − vlag · q̂)2

2σ2
v

]
. (6.17)

This can be extended to incorporate a cut off at the Galactic escape speed,

or to more general anisotropic velocity distributions [390].

Another interesting velocity distribution is that of a stream

f(v) = δ(v− vs) , (6.18)

which has Radon transform

f̂(vmin, q̂) = δ(vmin − vlag · q̂) . (6.19)

This results in a highly directional signal, producing a spherical recoil spec-

trum centred on v = vs/2.

In Fig. 6.2, we illustrate the Radon transform of the SHM (top), the

SHM with a 23% contribution from a dark disk (middle), and a stream

(bottom) with vlag = 400 km s−1. In each case, we have integrated over

the φ direction and show f̂(v, cos θ). In the case of the SHM and the

stream, there is a clear anisotropy and the two scenarios should be easily

distinguishable. This highlights the discriminatory power of directional

detection. It has previously been demonstrated that only of order 10

events would be required to distinguish a directional WIMP signal from

an isotropic background. Furthermore, with of order 100 events, it should

be possible to detect a deviation in peak recoil direction due to a stream

[393] (though this depends on the density and velocity of the stream). In

the case of the SHM with a dark disk contribution, the spectrum is more

isotropic. This is because the Radon transform is dominated by the dark

disk contribution, which has a lower value of vlag = 50 km s−1 and therefore

appears more isotropic in the Earth frame.
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Figure 6.2: Radon transform f̂(vmin, cos θ) of the SHM (top), SHM with
a dark disk contribution (middle) and stream (bottom) distribution func-
tions. We have integrated over the φ angle. In each case vlag is aligned
along θ = 0. Note the different scale in each plot.
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6.2 Directional experiments

Directional experiments are still in the prototype stage. A number of ex-

periments use time projection chamber (TPC) technology to achieve direc-

tional sensitivity. These include DRIFT [394, 395], NEWAGE [396, 397],

MIMAC [398, 399], DMTPC [400, 401] and D3 [402]. These detectors are

less than 1 m3 in size, with hopes for a scale up to larger experiments

(possibly up to ton-scale) in the future.

In order to have directional sensitivity, a detector must image the tracks

produced by the recoiling nucleus in the detector. The typical range of a

WIMP-nucleus recoil is only ∼100 nm, however, which makes track recon-

struction difficult. The above directional experiments therefore operate in

the low pressure gas phase (around 0.05 atm [395]) in order to maximise the

distance travelled by a recoiling nucleus. The detector is filled with a tar-

get gas (such as CF4 in the case of the DRIFT experiment) which provides

sensitivity predominantly to spin-dependent interactions. Nuclear recoils

in the detector ionize the target gas. The freed electrons are drifted under

an electric field to an anode at one face of the detector where the charge

is collected. An electron transport gas (CS2 in the DRIFT experiment)

may also be added, which attracts the free electrons forming ions which

are then collected.

The energy of the recoil can be recovered from the total amount of ion-

isation in the event. The three dimensional track (which is only a few mm

long) can be reconstructed from the distribution of charge detected at the

anode, with information about the z-direction obtained from the timing

of the charges arriving at the anode. This method allows an angular res-

olution of 20 ◦-80 ◦ using current prototypes [403], with higher resolution

at higher recoil energies. However, the sense of the recoil is much more

difficult to determine, requiring sensitivity to tiny asymmetries between

the start and end of the track. While sense discrimination has previously

been demonstrated [404], it cannot be achieved with 100% efficiency. Even

for high energy (100 keV) recoils, studies suggest that only partial sense

recognition may be possible (with only a 65% probability of correctly de-

termining the sense) [403]. Without sense discrimination the anisotropy

of the WIMP signal is reduced and roughly 3 times more events are re-

quired to establish the directionality of the signal and distinguish from an

anisotropic background [357, 393].
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A number of other directional technologies have also been suggested.

Nuclear emulsion experiments use as a target silver halide crystals sus-

pended in gelatin [405]. The emulsion required must be composed of very

fine grains in order to image dark matter recoil tracks smaller than 1 µm.

However, angular resolutions below 20 ◦ may be achievable. DNA based

experiments [258] have also been proposed which may be able to achieve

directional sensitivity. The collaborations running the main TPC-based ex-

periments have proposed a joint project to construct a ton-scale ‘CYGNUS’

detector [406] in the future.

6.3 Reconstructing the velocity

distribution

With promising developments in directional detector technology, it is in-

teresting to ask what information about the velocity distribution we could,

in principle, extract from a directional signal. Alves, Hendri and Wacker

[407] investigated the possibility of describing f(v) in terms of a series of

special functions of integrals of motion (energy and angular momentum).

These can then be fit to data, with around 1000 events required to distin-

guish between the SHM and a Via Lactea II distribution function [408].

However, the special, separable form of the velocity distribution requires

that the dark matter halo is in equilibrium. Moreover, this method requires

prior knowledge of the DM mass (for example from earlier non-directional

detectors or from collider experiments).

A more general parametrisation for the velocity distribution was re-

cently proposed by Lee [409]. In this approach, the velocity distribution

is decomposed into products of Fourier-Bessel functions and spherical har-

monics. This is completely general and does not require assumptions about

the halo being in equilibrium. Lee also gives an analytic expression for the

Radon transform of the Fourier-Bessel basis, making this approach com-

putationally efficient. However, this basis does not guarantee that the

resulting f(v) is everywhere positive and therefore not all combinations of

coefficients correspond to physical distribution functions.

In fact, any decomposition in terms of spherical harmonics leads to

this problem, because the spherical harmonic basis functions can have

negative values. It is unclear how this issue will affect parameter recon-
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struction. Without some criteria which determines which coefficients of

the spherical harmonics lead to strictly positive distribution functions, it

may be necessary to numerically test each parametrised distribution func-

tion for negative values. However, for a real function of three parameters

f(v) = f(vx, vy, vz) this would require a very large number of evaluations,

which may not be computationally feasible. In addition, it is not clear

how this property would affect an exploration of the parameter space us-

ing, for example, Markov Chain Monte Carlo or Nested Sampling (see Ap-

pendix A). Physical distribution functions may occupy only a small fraction

of the total space of parameters or may be distributed over a large number

of irregular regions in the parameter space, making sampling from them

difficult.

In order to fit to data, it is necessary to decompose f(v) into a series

of angular components Ai:

f(v) = f 1(v)A1(θ′, φ′) + f 2(v)A2(θ′, φ′) + f 3(v)A3(θ′, φ′) + ... . (6.20)

We then truncate the series at some order, leaving only a finite number

of 1-dimensional functions f i(v) which are unknown. This reduces the

problem of attempting to fit a function of the 3-dimensional variable v to

the problem of parametrising a series of 1-dimensional functions, which is

much more tractable. Of course, we should be careful that this truncation

preserves enough angular information to still provide a good approximation

to f(v). However, as more data becomes available, we can add more terms

to the series to capture more angular features in the distribution.

As we have discussed, the spherical harmonic basis may not be an ap-

propriate choice for this decomposition. In the next section, I will present

an alternative decomposition which can guarantee that the velocity dis-

tribution is everywhere positive and therefore represents a promising and

general method for extracting information from directional experiments.

6.4 Discretising the velocity distribution

In order to ensure that the velocity distribution is everywhere positive,

we propose that the velocity distribution be discretised into N angular
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components:

f(v) = f(v, cos θ′, φ′) =



f 1(v) for θ′ ∈ [0, π/N ] ,

f 2(v) for θ′ ∈ [π/N, 2π/N ] ,
...

fk(v) for θ′ ∈ [(k − 1)π/N, kπ/N ] ,
...

fN(v) for θ′ ∈ [(N − 1)π/N, π] .

(6.21)

Over each bin in θ′, f(v) has no angular dependence and depends only

on a single function of the WIMP speed. We consider for simplicity only

a discretisation in cos θ′, though this can be extended to an additional

discretisation in φ′ if required.

We show in Fig. 6.3 an example of this discretised velocity distribution.

We show the full SHM velocity distribution (top), as well as the N = 2

(middle) and N = 3 (bottom) discretised approximations. These approxi-

mations are obtained by averaging the full velocity distribution over each

bin in θ′.

The motivation for this description is that the simplest signal (beyond

an isotropic N = 1 signal) which can be observed with a directional de-

tector is an asymmetry between the event rates in, say, the forward and

backward directions. Shortly after the confirmation of a dark matter signal

at a directional detector, the number of events may still be quite small (for

example, the roughly 10 events required to distinguish from an isotropic

background). In this small statistics scenario, constraining a large num-

ber of free functions is not feasible. However, if we discretise f(v) into

N = 2 angular components, it should be possible to extract some mean-

ingful directional information with only a small number of events. With

larger numbers of events, N can be increased to allow more directional

information to be extracted.

Because angular information is being lost from the velocity distribu-

tion, the full Radon transform of this discretised distribution is unlikely

to provide a good fit to the data on an event by event basis. Instead, we

should consider integrated Radon transforms of the form:

f̂k(vmin) =

∫ 2π

φ=0

∫ kπ/N

(k−1)π/N

f̂(vmin, q̂) d cos θdφ, (6.22)



6.4. DISCRETISING THE VELOCITY DISTRIBUTION 147

0°

45°

90°

135°

180°

225°

270°

315°

200
400

600
800

SHM

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

f(v,co
sθ ′) / km

−
3 s

3

1e 8

0°

45°

90°

135°

180°

225°

270°

315°

200
400

600
800

N=2

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

f(v,co
sθ ′) / km

−
3 s

3

1e 8

0°

45°

90°

135°

180°

225°

270°

315°

200
400

600
800

N=3

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

f(v,cosθ ′) / km
−

3 s
3

1e 8

Figure 6.3: The SHM velocity distribution (top) as well as N = 2 (mid-
dle) and N = 3 (bottom) discretised approximations. In each case, we
have integrated over the φ′ direction and only show f(v, cos θ′). The
vector vlag is aligned along θ′ = 0. The same colour scale is used in each
plot.
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where q̂ = (cos θ, φ). Thus, we will be using a discretised version of the

Radon transform (or equivalently, the event rate and, ultimately, data)

in order to constrain the functional form of the discretised velocity distri-

bution. While binning the data in this way results in a loss of angular

information, it should reduce the error which is introduced by using a

binned approximation to the velocity distribution. This in turn allows us

to parametrise the v-dependence of each angular bin and mitigate uncer-

tainties in the velocity distribution.

What form should be used for the free functions fk(v)? This dis-

cretisation scheme does not depend on choosing a particular form for the

v-dependence of the velocity distribution. We can therefore choose any

parametrisation for fk(v) - such as the polynomial parametrisation de-

scribed in Chapter 4 - as long as it is everywhere positive and we are

convinced that it introduces no bias into the fitting procedure. The ques-

tion we will now address is what errors are introduced by this angular

discretisation. We will now demonstrate for the cases of N = 1, 2, 3 how

the corresponding Radon transform is calculated and how it compares to

the true Radon transform for some benchmark cases.

6.4.1 N = 1 discretisation

The N = 1 case corresponds to the assumption that f(v) is isotropic. That

is, we could consider setting f(v) equal to its angular average:

f(v) = f̄(v) ≡ 1

4π

∫
f(v) dΩv . (6.23)

The Radon transform then reduces to

f̂ (vmin, q̂) =

∫
δ (vmin − v · q̂) f̄(v) d3v . (6.24)

We can rewrite the delta function as

δ (vmin − v · q̂) =
1

v
δ(vmin/v − v̂ · q̂) , (6.25)

which means that Eq. 6.24 becomes

f̂ (vmin, q̂) =

∫ ∞
v=0

v2f̄(v)

v

∮
δ (vmin/v − v̂ · q̂) dΩvdv . (6.26)

The angular integral evaluates to unity as long as vmin/v = v̂ · q̂ for some

value of v̂ in the domain of integration. Because we integrate over all
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directions v̂, this is guaranteed to be satisfied for some value, as long as

v > vmin (because v̂ · q̂ cannot exceed 1). Thus,

∮
δ (vmin/v − v̂ · q̂) dΩv = Θ(v − vmin) , (6.27)

and

f̂ (vmin, q̂) =

∫ ∞
v=vmin

v2f̄(v)

v
dv . (6.28)

Finally, to obtain the directionally averaged Radon transform f̂(vmin),

we integrate over all directions q̂. As the Radon transform is isotropic in

this case, this gives a contribution of 4π. Replacing the expression for f̄(v)

from Eq. 6.23, we therefore obtain

f̂ (vmin) =

∫ ∞
v=vmin

f(v)

v
d3v . (6.29)

This matches the expression for the total non-directional scattering rate.

We therefore see that in the N = 1 case, the angular-discretised ‘approx-

imation’ is in fact exact and leads to the correct angular-averaged Radon

transform.

6.4.2 N = 2 discretisation

For the N = 2 case, we are considering a forward-backward asymmetry in

the velocity distribution:

f(v) =

f 1(v) for θ′ ∈ [0, π/2] ,

f 2(v) for θ′ ∈ [π/2, π] .
(6.30)

From these, we wish to obtain the integrated Radon transforms for the

forward and backward directions. Specifically:

f̂ 1(vmin) =

∫ 1

0

f̂(vmin, cos θ) d cos θ , (6.31)

f̂ 2(vmin) =

∫ 0

−1

f̂(vmin, cos θ) d cos θ . (6.32)

Full details of the calculation are given in Appendix B. However, the result

takes the relatively straightforward form:
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f̂ 1 = 4π

∫ ∞
vmin

v

{
πf 1(v) + tan−1

(√
1− β2

β

)[
f 2(v)− f 1(v)

]}
dv ,

(6.33)

f̂ 2 = 4π

∫ ∞
vmin

v

{
πf 2(v) + tan−1

(√
1− β2

β

)[
f 1(v)− f 2(v)

]}
dv ,

(6.34)

where β = vmin/v. We have also checked using Monte Carlo calculations

that these are the correct forms of the forward and backward integrated

Radon transforms in the case of a discretised velocity distribution.

We now wish to compare these approximate Radon transforms with the

Radon transforms obtained from the full (non-discretised) velocity distri-

bution. To do this, we select a benchmark velocity distribution (such as

the SHM) and calculate the f 1,2 of Eq. 6.30 by averaging over cos θ′ in the

forward and backward directions as in Fig. 6.3. We then insert these into

Eq. 6.33 to obtain the forward and backward Radon transforms. We refer

to these as the approximate forward and backward Radon transforms. For

comparison, we use the full Radon transform of Eq. 6.17 to obtain the exact

forward and backward Radon transforms by integrating over cos θ.

The results of this comparison for an SHM model with vlag = 220 km s−1

and σv = 156 km s−1 are shown in Fig. 6.4. While the general features are

reproduced, there are some discrepancies. In particular, the forward Radon

transform obtained using the approximate method is roughly 80% of the

correct result, while the backward Radon transform is up to 100% larger

using the approximate method (though only when the absolute value be-

comes small). The reason for this is clear from Fig. 6.3, which shows that

the discretised velocity distribution has a greater fraction of WIMPs with

velocities at right angles to the forward direction (θ′ = 0). Thus, the dis-

cretised velocity distribution has a greater chance of producing scatters in

the backward direction. Overall, the discretised distribution is less focused

in the forward direction, resulting in a reduced asymmetry between the

forward and backward scattering rates.

We show in Fig. 6.5 the forward and backward Radon transforms for a

stream distribution function, with vlag = 400 km s−1 and σv = 20 km s−1.

The discrepancy between the approximate and exact results is significantly

worse in this case. This is because the stream is highly directional and a
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Figure 6.4: Exact and approximate forward and backward Radon trans-
forms, f̂1 and f̂2, for the SHM. The approximate Radon transforms are
obtained by discretising the full velocity distribution into N = 2 angular
bins. The vector vlag is aligned along θ′ = 0.

simple N = 2 discretisation of the velocity distribution is not sufficient to

capture the angular features of the stream
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Figure 6.5: As Fig. 6.4, but for a stream distribution with vlag =
400 km s−1 and σv = 20 km s−1.

6.4.3 N = 3 discretisation

Given the discrepancies in the N = 2 case, we will now consider the N = 3

discretisation, which should improve the fit between the true and approxi-
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mate transforms. In addition, N = 3 will allow us to employ this methodol-

ogy to the case where sense discrimination of recoils is not possible. With-

out sense discrimination, the forward and backward directions cannot be

distinguished and the N = 2 discretisation provides no directional sensitiv-

ity. As we shall see shortly, directional sensitivity is possible in the N = 3

case.

We write the velocity distribution in discretised form as

f(v) =


f 1(v) for θ′ ∈ [0, π/3]

f 2(v) for θ′ ∈ [π/3, 2π/3]

f 3(v) for θ′ ∈ [2π/3, π] .

(6.35)

If we interpret this discretisation as an averaging of the underlying

velocity distribution, as before, we obtain the distribution in the bottom

panel of Fig. 6.3 for the SHM. Following the same procedure as for the N =

2 case, we can obtain the corresponding forward, backward and transverse

integrated Radon transforms. The exact form of these is complicated (and

not particularly instructive), so we do not include it in full here. However,

as in the N = 2 case, we can test these approximate transforms against

the exact forms.

The results for the SHM are shown in Fig. 6.6. Compared to the N = 2

case, the Radon transforms are reproduced much more closely, with a dis-

crepancy of at most 15% between the true and approximate distributions.

As can be seen in the bottom panel of Fig. 6.3, the N = 3 discretised veloc-

ity distribution is more focused in the forward direction and fewer particles

have velocities perpendicular vlag. In Fig. 6.7, we show the correspond-

ing results for the stream distribution. These show a slight improvement

over the N = 2 case (particularly in the backward rate). However, there

are still significant differences between the exact and approximate Radon

transforms.

The folded distribution

As discussed in Sec. 6.2, sense discrimination between forward and backward-

going recoils may not be possible with near-future detectors. In this case

then, all that can be measured is the so called ‘folded’ recoil spectrum

dR

dERd| cos θ|
=

dR

dERd cos θ
+

dR

dERd(− cos θ)
. (6.36)
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Figure 6.6: Exact and approximate forward, transverse and backward
Radon transforms, f̂1, f̂2 and f̂3, for the SHM. The approximate Radon
transforms are obtained by discretising the full velocity distribution into
N = 3 angular bins. The vector vlag is aligned along θ′ = 0.

As a result, we are concerned not with the full Radon transform of f(v),

but the folded Radon transform f̂(vmin, | cos θ|). In the case of N = 2

discretisation, this folded Radon transform would have no directional in-

formation (because the forward and backward scattering rates differ only

in the sign of cos θ). However, in the N = 3 case, the transverse Radon

transform, given by

f̂T (vmin) = f̂ 2(vmin) =

∫ 1/2

−1/2

f̂(vmin, cos θ) d cos θ , (6.37)
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Figure 6.7: As Fig. 6.6, but for a stream distribution with vlag =
400 km s−1 and σv = 20 km s−1.

is invariant under f̂(vmin, cos θ)→ f̂(vmin,− cos θ). That is, the transverse

event rate ‘folds’ back onto itself. Thus, even without sense discrimination,

directional experiments will still be sensitive to this transverse scattering

rate. By comparison, if the forward and backward directions cannot be dis-

tinguished, the remaining two integrated Radon transforms (the top left

and bottom panels in Fig. 6.6) are folded together, to obtain the longitu-

dinal rate

f̂L(vmin) =

∫ −1/2

−1

f̂(vmin, cos θ) d cos θ +

∫ 1

1/2

f̂(vmin, cos θ) d cos θ . (6.38)

We plot the transverse and longitudinal integrated Radon transforms

in Fig. 6.8 for the SHM. As expected, the two rates are now more similar
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Figure 6.8: Exact and approximate folded transforms when the full SHM
velocity distribution is discretised into N = 3 directional pieces. In the
‘longitudinal’ case (f̂L) | cos θ| ∈ [1/2, 1] while in the ‘transverse case’
(f̂T ) | cos θ| ∈ [0, 1/2]. The vector vlag is aligned along θ′ = 0.

in shape as we have lost some directional information. The approximate

Radon transforms, obtained from the discretisation, match the true trans-

forms closely for speeds above vmin ≈ 200 km s−1. For a Fluorine target

with a 20 keV energy threshold [394], speeds lower than this will be be-

low the threshold energy for all WIMP masses and the bias introduced by

discrepancies at low speeds should be minimal.

We note that in this folded case, we would fit to two data sets, cor-

responding to the longitudinal and transverse event rates. However, our

original discretisation required 3 free functions of v: f 1,2,3(v). However,

due to the properties of the Radon transform, the longitudinal rate is not

a function of f 1(v) and f 3(v) but of the sum f 1(v) + f 3(v) ≡ fL(v). Thus,

we have only two free functions fL,T (v) to fit.

6.5 Discussion

We have demonstrated that for smooth SHM-like distributions, the dis-

cretised velocity distribution allows us to obtain a good approximation to

the discretised Radon transform. This means that we should be able to

parametrise the speed distributions in each angular bin fk(v) and account

for astrophysical uncertainties without introducing a large error in the re-

coil spectrum. An additional dark disk contribution would further reduce
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the error between the exact and approximate Radon transforms, as the

dark disk is expected to approximately corotate with the Earth and would

thus appear more isotropic than the SHM. However, strongly peaked ve-

locity distributions, such as the stream studied in the previous sections,

would introduce a much larger error in the Radon transform. While such

distributions are not considered likely (see Sec. 2.3.3), we should bear in

mind that a larger value of N may be required for these more extreme

distributions.

The decomposition we have presented in this chapter is coordinate de-

pendent (as is a spherical harmonic decomposition). That is, we must

specify which direction corresponds to θ′ = 0. In a real experiment, we

would want to choose this direction to maximise the directional signal, in

order to obtain the most information from the data. Therefore, we would

ideally like to choose θ′ = 0 along the direction of the mean WIMP velocity.

In the SHM, this is parallel to vlag, which corresponds to the direction of

the Earth’s motion in the Galactic frame, which has been calculated [410].

It might also be possible to use the median recoil direction to determine

the mean WIMP velocity and thereby fix θ′. We note that for the results

presented in this chapter we have fixed θ′ = 0 parallel to vlag. If we instead

choose a different direction for θ′ = 0, this would decrease the forward-

backward asymmetry of the discretised velocity distribution, reducing the

error between the exact and approximate Radon transforms. Thus, the

results presented would not be spoiled by a different choice of θ′.

Another consideration we have not yet addressed is the fact that in

an experiment, we measure the directional recoil spectrum, not the Radon

transform. Thus, we must multiply by the appropriate form factor and

apply realistic thresholds in order to apply the methods presented here

to directional data. Perhaps more important, however, is finite angular

resolution. As discussed in Sec. 6.2, directional detectors have angular

resolutions of 20 ◦-80 ◦. In future work, this should be taken into account to

determine the true directional recoil spectrum measured in an experiment.

This angular smoothing will make the measured spectrum less anisotropic

which again should reduce the error induced by considering a discretised

velocity distribution.

Finally, in order to accommodate more strongly peaked distribution

functions (or to obtain more directional information as the amount of data

increases), it will be necessary to considered discretised distributions with
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N > 3. In future, we must develop an algorithm for generating the discrete

Radon transforms from discrete velocity distributions of arbitrary N . As

outlined in Appendix B, the angular integrals can be performed explicitly

for any value of N , leaving only a series of 1-dimensional integrals over

elementary functions of the WIMP speed v. Thus, it should be possible to

extend this framework to arbitrary N without requiring any (potentially

slow) numerical integration over the angular variables.

6.6 Conclusions

Directional direct detection experiments should allow us to probe the full

WIMP velocity distribution. However, as in the non-directional case, this

introduces significant uncertainties into the analysis of data. Parametris-

ing the velocity distribution and therefore reconstructing its structure re-

quires a very large number of parameters, as f(v) is a function of the

3-dimensional vector v. It is therefore necessary to decompose f(v) into

some angular basis and parametrise the corresponding coefficients. Previ-

ous attempts in this direction have required equilibrium assumptions about

the Galactic halo, or have made use of a spherical harmonic basis. An ex-

pansion in this basis does not necessarily lead to a physical distribution

function, as it does not ensure that f(v) is everywhere positive.

We have presented an alternative decomposition of f(v) into angular

bins. Over each bin, the velocity distribution has no angular dependence.

As long as the parametrisation for the radial part of f(v) is everywhere

positive, so too will be full velocity distribution. We have demonstrated

how the corresponding binned Radon transforms can be calculated for the

case of N = 1, 2, 3 and compared these with the exact Radon transforms

obtained from the full distribution.

In the N = 2 case, the discretised approximation underestimates the

forward rate and overestimates the backward rate. However, this is im-

proved in going to the N = 3 case, for which the exact and approximate

Radon transforms agree to within 10-15%. For N = 3, it should also be

possible to extract directional information even when sense recognition is

not possible. For a more sharply peaked distribution, such as a stream, the

error induced by using the discretised velocity distribution is significant.

It would therefore be necessary to go to higher values of N in order to

capture the strongly anisotropic features of such a distribution.
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We have presented here a framework for parametrising the directional

part of the velocity distribution. In future, it will be necessary to test this

method using mock data from directional detectors in order to determine

how well the WIMP parameters and the distribution itself can be recon-

structed. This will require us to determine the mean WIMP direction, as

well as to include realistic experimental effects, such as angular resolution.

However, we have argued that the good agreement between the exact and

approximate rates for the case of smooth distributions should not be spoiled

by these effects. Finally, it will be necessary to extend this framework to

higher values of N to capture more angular information if larger numbers

of events are observed at directional detectors.



Chapter 7

Conclusions

The presence of dark matter (DM) in the Universe has been postulated to

explain a range of observations. The anisotropies of the Cosmic Microwave

Background, the growth of large scale structure and the dynamics of galax-

ies and clusters all point towards a dark universe, with roughly 5 times as

much dark matter as baryonic matter. So far, however, the detection of

dark matter has only been through its gravitational influence. A number

of experiments - so called direct detection experiments - are underway or

in development which hope to detect weakly interacting massive particles

(WIMPs) through their non-gravitational interactions in terrestrial detec-

tors.

Once such a detection is confirmed, the next stage will be to try and

measure the properties of the DM particles, such as their mass and interac-

tion cross sections. This should help us to unravel the identity of the DM

and begin to probe the structure of physics beyond the Standard Model of

particle physics. However, the analysis of direct detection data is fraught

with uncertainties. In this work, we have focused on astrophysical uncer-

tainties, particularly those coming from the local speed distribution of dark

matter f1(v). This distribution is a priori unknown and a wide range of

proposals having been put forward for its correct form. We cannot hope

to accurately reconstruct the DM properties without first addressing these

uncertainties.

Previous attempts to parametrise the DM speed distribution have been

unsatisfactory. As we discuss in Chapter 3, these methods typically as-

sume some specific functional form for the speed distribution, motivated

by N-body simulations or assumptions of equilibrium. However, if the true

shape of the speed distribution is poorly fit by the functional form assumed

159
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in the parametrisation, the particle physics parameters we are aiming to

reconstruct will be biased. The aim then should be to develop a general,

empirical parametrisation for the speed distribution which can be fit ac-

cording to the data and which allows the DM mass and interaction cross

sections to be reconstructed without bias. Such a parametrisation was

first proposed by Peter [319], in the form of a binned approximation to

the speed distribution. However, this was shown to result in a bias in the

reconstructed WIMP mass.

In Chapter 3, we demonstrated that this bias stems from the interplay

between the WIMP mass and the size of the bins in energy. For a fixed

bin width in speed, varying the WIMP mass affects not only the size of

the corresponding bins in energy but also the number of bins to which an

experiment is sensitive. The result is that the best fit to the data may not

be provided by the true underlying WIMP mass.

This problem can be alleviated by using a binned parametrisation of

the DM momentum distribution. The range of momenta probed by a given

experiment is independent of the WIMP mass, meaning that the overall

shape and normalisation of the event spectrum can be probed separately.

To pin down the WIMP mass, multiple experiments are required. In this

case, the size and number of bins probed by each experiment depend only

weakly on the WIMP mass, significantly reducing the bias seen in the

binned speed parametrisation. We have also seen that the values of the

momentum bin parameters may allow us to reconstruct the WIMP speed

distribution itself. However, going from the reconstructed momentum dis-

tribution to the speed distribution is non-trivial. Moreover, the momentum

binning method is expected to fail at low WIMP masses, where the range

of momenta to parametrise is large. Even for intermediate mass WIMPs

the choice of this momentum range may not always be obvious.

So, what properties do we require of a more general parametrisation

of the WIMP distribution? It must be a physical distribution function,

meaning that it must be everywhere non-negative and must be normalised.

From our study of binned parametrisations, we are also lead to conclude

that it should not have any fixed length scales, as these may result in a

biased WIMP mass reconstruction. In light of this, we propose that the

logarithm of the directionally-averaged velocity distribution f(v) should be

written as a polynomial in the speed v in the Earth frame. The resulting
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speed distribution takes the form

f1(v) = v2 exp

(
N−1∑
k=0

akPk(v)

)
. (7.1)

This ensures that f1(v) is not only strictly positive, but also a smooth

function of v. The shape of the speed distribution is controlled by the

parameters ak and the N basis functions Pk. Logarithmic dependence on

the parameters also means that a wide range of functional forms can be

approximated.

In Chapter 4, we have demonstrated that using this parametrisation the

WIMP mass can be reconstructed without bias over a range of benchmark

masses from 10 to 500 GeV. We have also demonstrated the method using a

number of possible underlying distribution functions and shown that it has

the correct statistical properties when Poisson fluctuations are included.

We have also set out how best to choose the basis polynomials Pk and the

number of basis functions.

However, direct detection experiments have finite energy thresholds,

which correspond to minimum WIMP speeds to which they are sensitive.

Without information about the speed distribution below this threshold, it

remains unconstrained by the experiments. This means that we do not

know what fraction of WIMPs can contribute to scattering events in the

detector. If we observe a small number of events at a detector, we cannot

know whether they were caused by WIMPs with a low cross section or by

WIMPs with a larger cross section but whose population is concentrated

at low speeds. This results in a degeneracy between the cross section and

the shape of the speed distribution. This degeneracy is a generic conse-

quence of any general parametrisation of the WIMP speed distribution and

means that we can only use direct detection experiments to place a lower

bound on the interaction strengths of DM particles. As a consequence of

this, we can only probe the shape but not the normalisation of the WIMP

speed distribution. In spite of this, it may still be possible to distinguish

the Standard Halo Model from N-body-derived speed distributions using

around 1000 events.

In Chapter 5, we explore a method for breaking the speed distribution-

cross section degeneracy. The capture of DM particles in the Sun is de-

scribed by the same interaction cross sections which control the scattering

rate in direct detection experiments. However, in the case of DM cap-
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ture, it is those WIMPs with the lowest speeds which are more easily

captured. Captured WIMPs then annihilate in the Sun and produce neu-

trinos, which can be detected at neutrino telescope experiments, such as

IceCube. By combining future neutrino telescope and direct detection data,

we can probe the entire range of the WIMP speed distribution. This allows

us to constrain the fraction of low speed WIMPs and therefore break the

degeneracy in the cross section.

We have also been able to reconstruct the WIMP speed distribution

over the entire range of speeds. Maximum sensitivity is obtained at speeds

close to the threshold speeds for the direct detection experiments, where

the most spectral information is available. For cross sections just below

current limits, we have demonstrated that using next generation direct

detection data, along with a signal from IceCube, it should be possible to

detect evidence of a moderate density dark disk in the Milky Way at the

3σ level.

Finally, in Chapter 6, we began to explore how such a parametrisa-

tion method could be extended to directional experiments. The signal at

such experiments depends on the full 3-dimensional velocity distribution

f(v). Parametrising such a function is unfeasible and would require a huge

number of parameters. It is therefore necessary to decompose f(v) into

a smaller number of basis functions. A spherical harmonic decomposition

has been suggested previously. However, the spherical harmonic basis is

not strictly positive, meaning that we cannot ensure that the velocity dis-

tribution is physical at every point in parameter space.

As an alternative, we propose an angular discretisation of the velocity

distribution. As a first approximation, we have considered the forward- and

backward-going distributions. However, with increasing amounts of data, it

would be possible to increase the number of discretised pieces in f(v). This

method allows us to constrain a small number of 1-dimensional functions

fk(v), rather than a much larger space of 3-dimensional functions. We

have laid out the framework for calculating the directional event rate from

such a discrete parametrisation and have shown that with as few as N = 3

discrete pieces, the event spectrum can be well fit by this approximation.

Further work is needed to understand how this discrete approximation

behaves when confronted with mock data sets. In particular, we must

combine this angular discretisation with the polynomial parametrisation we

have developed for the speed distribution. This will allow us to determine
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how many discrete pieces are required for real data sets to ensure a close

enough approximation to the true recoil spectrum. Though this method

remains to be tested, we have established a framework which should allow

the velocity distribution to be parametrised in a tractable way.

We have focused on astrophysical uncertainties in this work. However,

many uncertainties remain in the analysis of direct detection data. Nuclear

uncertainties associated with form factors and the spin and mass contribu-

tions of different quarks may also lead to biased inference if not properly

accounted for. In addition, the standard contact interactions which lead to

the spin-independent and spin-dependent scattering framework may not be

correct. Higher order corrections or long-range interactions may have sig-

nificant contributions to the scattering rate. It will be necessary in future

to investigate the interplay between these different nuclear, particle and as-

trophysical uncertainties. In particular, understanding which combinations

of experiments can best be used to disentangle these various uncertainties

will allow us to extract the maximum information from future searches.

In this work, we have demonstrated for the first time that uncertain-

ties in the WIMP speed distribution can be confronted and overcome in a

completely general way. The polynomial ln f(v) parametrisation which we

have proposed allows the WIMP mass to be reconstructed without bias,

which we have demonstrated with a wide range of particle physics and as-

trophysics benchmarks. The introduction of neutrino telescope data allows

us to probe the low speed population of WIMPs and therefore constrain

not only the WIMP mass but also the WIMP interaction cross sections.

We have also outlined how such a framework can be extended to incor-

porate directional data. This work is the first demonstration that both

particle physics parameters and the form of the speed distribution can be

extracted from data from DM search experiments. It is hoped that using

these techniques, future direct detection experiments will not only be used

to reliably probe physics beyond the Standard Model, but will also be used

as promising tools for WIMP astronomy.





Appendix A

Parameter Reconstruction

In this appendix, we address the problem of parameter reconstruction.

Given a set of data D, we would like to make some statement about the

values of a set of model parameters θ. Due to statistical and systematic

uncertainties, this will be a probabilistic statement about which values of

θ are more likely. Here, we consider what is meant by ‘more likely’. We

then demonstrate how parameter estimates and uncertainty intervals are

constructed and how the parameter space of θ can be explored to obtain

these estimates.

In general, there are two approaches to parameter estimation. In fre-

quentist inference, there is only a single, fixed set of true values for the

model parameters θ. We imagine that the experiment (which produced

the data D) can be repeated a large number of times, giving independent

results each time. The ‘probability’ associated with each set of parame-

ters θ is a measure of how frequently our experiment would produce data

which looked similar to D if θ are the true parameter values. In a frequen-

tist framework, the true model parameters are fixed but unknown and we

make statements about how confident we are that these true parameters

lie in a particular range.

An alternative approach is Bayesian inference. The true parameter

value is treated as a random variable and we use Bayes’ theorem to deter-

mine its probability distribution from the data:

P (θ|D) = P (θ)
P (D|θ)

P (D)
. (A.1)

In doing so, we need to know P (θ), known as the prior on the model

parameters. This is a measure of our beliefs about the true value of θ

and may be motivated by theoretical considerations or information from
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other experiments. In a Bayesian framework, we combine the data with

information about our prior expectations to make statements about the

probability of θ having a particular value.

A.1 Frequentist statistics

In frequentist statistics, the most important quantity to consider is the like-

lihood of a given point in parameter space, L(θ), defined as the probability

of obtaining the data D, assuming that θ is the true parameter value. The

likelihood often takes a very small value (because the probability of obtain-

ing a particular data set out of all possible data sets is typically very small),

and so it is convenient to work with the log-likelihood l(θ) = ln(L(θ)). The

absolute value of L(θ) carries no significance. However, the likelihood value

of a particular point, relative to another, can be interpreted as a measure

of the relative goodness of fit of the points. While the likelihood is not

a probability distribution, in the limit of a large number of samples l(θ)

follows a χ2 distribution (as we shall discuss shortly) and therefore can

have a probabilistic interpretation.

Often, we may not be interested in all of the parameters of θ. For ex-

ample, we may partition the parameters into parameters of interests ψ and

so-called nuisance parameters φ: θ = (ψ,φ). These nuisance parameters

may be parameters which we are not directly interested in, but which must

be included in the analysis to account for all the relevant uncertainties.

We often want to reduce the dimensionality of θ to consider only how the

likelihood varies as a function of ψ.

One method of doing this is by maximizing the full likelihood function

over the nuisance parameters:

Lp(ψ) = max
φ
L(ψ,φ) . (A.2)

That is, for each value of ψ, we select the maximum value of L obtained

from all possible values of φ. This projection onto the subset of parameters

ψ is referred to as the profile likelihood.

An alternative method of reducing the dimensionality of the full pa-

rameter space is to calculate the mean likelihood:

Lm(ψ) =

∫
L(ψ,φ) dφ∫

dφ
. (A.3)
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The mean likelihood allows us to take into account the structure of the

likelihood function in the nuisance directions. The profile likelihood simply

selects the largest likelihood value at each value of ψ, even if this value is

only realised over a small range of values in φ. By comparison, the mean

likelihood receives a greater contribution from wide ranges of φ which have

a moderate likelihood value. The profile likelihood is more typically used

in the literature.

A.1.1 Parameter estimates

In frequentist statistics, the point estimate of a parameter is relatively un-

ambiguous. This point estimate is given by the best fit point, or maximum

likelihood estimate (MLE), θ̂, such that:

maxL(θ) = L(θ̂) . (A.4)

This estimate is the same whether we use the full likelihood or the profile

likelihood, while using the mean likelihood may lead to a different value.

In parameter inference, it is useful to consider the relative log-likelihood

lr:

lr(θ) = ln

(
L(θ)

L(θ̂)

)
. (A.5)

The logarithm is a monotonically increasing function and therefore the

maximum of the likelihood and the relative log-likelihood are obtained for

the same parameter values θ̂. According to Wilks’ theorem [355], lr is

asympototically χ2-distributed as the number of samples N in the data

tends to infinity,

−2lr ∼ χ2
k , (A.6)

where the number of degrees of freedom k is equal to the dimensionality

of the space ψ = (ψ1, ..., ψk). This asymptotic behaviour applies equally

well for the full likelihood and the profile likelihood [411] and allows us to

construct confidence intervals.

We construct a p% interval from all values of ψ for which

lr(ψ) ≤ −1

2
γ(p%; k) , (A.7)

where γ(p%; k) satisfies ∫ γ(p%;k)

0

P (χ2
k) dχ2

k = p% , (A.8)
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Figure A.1: Illustration of likelihood-based parameter inference. The
point estimate for the parameter ψ is given by the best fit point ψ̂. The
68% confidence interval is given by ψ ∈ [ψ̂ − σ−, ψ̂ + σ+].

and P (χ2
k) is the χ2

k probability distributon function. This is essentially a

relative goodness-of-fit test. Values of ψ outside this interval are unlikely

to produce data similar to D and would be rejected at the p% level in

favour of the hypothesis ψ = ψ̂. Equivalently, in terms of the likelihood,

we include values of ψ for which

L(ψ) ≥ exp

(
−1

2
γ(p%; k)

)
L(ψ̂) . (A.9)

This is illustrated in Fig. A.1 for the case of a single parameter of interest.

A.2 Bayesian statistics

In Bayesian statistics, we wish to obtain the posterior probability distri-

bution P(θ) = P (θ|D). This is obtained from Bayes’ theorem:

P(θ) = P (θ|D) = P (θ)
P (D|θ)

P (D)
. (A.10)

Here P (D) is the probability of obtaining the data D. However, this does

not depend on the theoretical parameters θ and we can therefore take

it as an overall normalising factor for the probability distribution. The

likelihood enters into the Bayesian framework as the probability of the
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data given the model parameters P (D|θ) = L(θ). Finally, the prior P (θ)

encodes our a priori knowledge about the true value of θ. If the value of

a parameter, say θ1, is known to be approximately θ1 = θ̂1 ± σθ, we may

choose a Gaussian prior to reflect this:

P (θ1) ∝ exp

(
−(θ1 − θ̂1)2

2σ2
θ

)
. (A.11)

Alternatively, we may have a very limited knowledge of θ1 and may choose

a linear-flat or log-flat prior over some range of values: P (θ1) ∝ 1 or

P (log(θ1)) ∝ 1. In the case of a linear-flat prior, P(θ) = L(θ) and the

Bayesian and frequentist frameworks coincide. In contrast to the likelihood,

the posterior distribution is considered a probability distribution, even in

the case of small numbers of samples.

As in the frequentist case, we may wish to reduce the dimensionality of

the parameter space to include only those parameters of interest ψ. When

dealing with the posterior probability, this is typically done by marginali-

sation. The marginalised posterior Pm is obtained by integrating over the

nuisance parameters:

Pm(ψ) =

∫
P(ψ,φ) dφ . (A.12)

Just as P is a probability distribution function for the parameters θ, Pm
is a probability distribution function for the parameters of interest ψ -

specifically, the marginalised probability distribution.

A.2.1 Parameter estimates

In contrast to the frequentist case, there are several possibilities for a point

parameter estimate. Because P and Pm are probability distributions, they

can be described by several location parameters:

Mode - the mode of the probability distribution is the value of θ which

maximises P . This is also known as the maximum a posteriori (MAP)

estimate and can be viewed as analogous to the maximum likelihood

estimator.

Median - the median value of the parameter θ satisfies∫ θmedian

−∞
P(θ) dθ =

1

2
. (A.13)
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This means that there is as much probability density below θmedian

as above.

Mean - the mean value 〈θ〉 is given by

〈θ〉 =

∫
θP(θ) dθ . (A.14)

Each of these will behave differently for different posterior probability dis-

tributions. The MAP estimate indicates where the greatest probability

density is and may be useful when the posterior is sharpy peaked. The

mean and median better reflect the global properties of the posterior prob-

ability, but may be misleading if the distribution is multimodal.

We also wish to make statements about the possible range of values for

parameters. In a Bayesian framework, we define the p% credible interval

Cp such that it encloses p% of the probability distribution. Again, there

are several possibilities for how to define Cp = [Cmin
p , Cmax

p ], such as:

Central interval - the interval which has the mean as its central value,

Equal tails interval - the total probability below the interval is the same

as above the interval,

∫ Cmin
p

−∞
P(θ) dθ =

∫ ∞
Cmax

p

P(θ) dθ , (A.15)

Highest density interval - the interval defined by all values P(θ) ≥ γ,

where γ is defined by ∫
P(θ≥γ)

P(θ) dθ = p% . (A.16)

Highest density intervals are useful when P(θ) is multimodal and disjoint

intervals may be required. Again, when we specify a credible interval, we

must specify which definition we are using. These definitions can also be

extended simply to the case where the parameter space of interest has a

higher dimension. In Fig. A.2, we illustrate the MAP estimate and mean

for a hypothetical posterior distribution. We also show the 95% credible

interval obtained using the equal tails method.
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Figure A.2: Illustration of posterior-based parameter inference. We show
the difference between the MAP and mean parameter estimates. We also
show one possible 95% credible interval - the probability in the shaded
tails is equal.

A.3 Exploring the parameter space

So far we have considered how, given L(θ) or P(θ), we can make parameter

inferences about θ. However, we have not so far considered how we can

evaluate these functions. We do not typically know a priori where L(θ)

or P(θ) are maximised or what shape they have. In this section, we will

briefly discuss two methodologies for mapping out these functions: Markov

Chain Monte Carlo and Nested Sampling.

A.3.1 Markov chain monte carlo

In the Markov chain monte carlo (MCMC) method [412], we generate a

chain of points in the parameter space {θi}. A new point θj+1 in the

chain is generated from the current point θj by picking from some proposal

distribution q(θj+1;θj). Under the Metropolis-Hastings algorithm [413],

the new point is accepted with probability

min

{
1,
P(θj+1)q(θj+1;θj)

P(θj)q(θj;θj+1)

}
. (A.17)

Over a large number of points, the chain positions should converge to a

stationary distribution. Eventually the number density of chain positions
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will be proportional to the posterior n(θ) ∝ P(θ) (assuming that the

proposal distribution is symmetric). In addition, we will also have the

value of the likelihood L(θ) evaluated at all of the points in the chain.

Care must be taken to ensure that the chain has converged before the

results can be interpreted. Typically some initial set of points is discarded

as ‘burn-in’, after which the chain is deemed to have converged. However, it

is often unclear when convergence has been reached. Moreover, each chain

position will depend slighly on the previous position. However, we want to

obtain independent samples from the posterior distribution. Therefore, the

chain is typically thinned (by some factor of order 25-50) [336], with only

some of the positions being retained. Finally, we must select how many

positions we want to obtain in the chain before we stop the random walk,

in the hope that the chain has adequately explored the parameter space.

When P(θ) is multimodal, sharply peaked or has strong degeneracies

among the parameters, exploration by the chain can be slow. It can be

unclear whether convergence has been achieved, especially if the chain be-

comes trapped in one of the modes of the distribution. One way to improve

the rate of convergence is to use high temperature MCMC [412, 414]. We

employ a ‘heated’ chain with temperature T = 2, meaning that we accept

new points with probability

min

{
1,

(
P(θj+1)q(θj+1)

P(θj)q(θj)

)1/T
}
. (A.18)

We are now effectively sampling from a flatter posterior distribution, which

allows a more rapid mixing and convergence of the chain. However, to

achieve the same precision as in the T = 1 case, we require a larger number

of samples. The distribution of chain positions obtained at the higher

temperature is then nT(θ) ∝ P1/T (θ). We recover the distribution of

positions at T = 1 by ‘cooling’ the chain:

n(θ) = nT(θ) (P(θ))1−1/T . (A.19)

One popular, publicly available MCMC code is CosmoMC [336]. This

was developed in the context of cosmological parameter estimation, but

can be used as a generic MCMC sampler. When the parameter space is of

a high dimension or has a number of modes, MCMC methods may prove

slow. Such methods also rely on a suitable choice of burn-in and thinning

factors, as well as a determination of whether convergence has occurred.
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Next, we explore an alternative method for efficiently obtaining samples

from the posterior distribution.

A.3.2 Nested sampling

The nested sampling method [415] was originally proposed as a method of

calculating the overall normalising factor which appears in Bayes’ theorem,

P (D). However, it produces as a by-product samples from the posterior

distribution and values of the likelihood function. In nested sampling, we

take an initial sample of points (so-called ‘live’ points) from the parameter

space and evaluate the likelihood at each point. At each subsequent step,

the live point with the lowest likelihood L0 is removed from the sample

and replaced with another point sampled from the parameter space with

Li > L0. Thus, the algorithm explores the prior in concentric shells of L.

Each new live point can be assigned a weight wi, obtained from an estimate

of the change in the prior volume between concentric shells. Finally, each

point can then be assigned a posterior density

pi =
wiLi
Z

. (A.20)

The Bayesian evidence Z ≡ P (D) is obtained by summing
∑

iwiLi and

the algorithm continues until this is determined to some desired precision.

In order to continue, we must be able to select points from the prior

subject to the hard constraint Li > L0. As the algorithm moves to higher

values of L0, points with a higher likelihood than this tend to become lo-

calised in very small regions of the parameter space. In addition, if the

likelihood is multimodal or has pronounced degeneracies, the sampling of

points subject to this constraint becomes highly inefficient. The Multi-

Nest algorithm [351–353] uses multimodal, ellipsoidal nested sampling to

improve performance. As L0 increases during the calculation, MultiNest

uses the current live points to approximate the isolikelihood contour by a

series of ellipsoidal surfaces. New points are drawn only from within these

ellipsoids, increasing the efficiency of the sampling but still ensuring that

the constraint Li > L0 is satisfied. The algorithm can also accommodate

multiple modes in the posterior which can be explored independently.

In utilising the MultiNest algorithm, we must decide how many live

point to use Nlive. This determines how closely the isolikelihood contours

can be followed, how dense the posterior samples will be and, in the case
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where there are highly localised modes, how well explored the prior will be.

We must also decide the tolerance of the algorithm, tol. This determines

the precision with which Z should be determined and therefore how high

up the likelihood surface the algorithm should explore. Finally, we can

introduce an efficiency eff, which is the desired sampling efficiency. In

order to (attempt to) achieve this, the algorithm rescales the volume of

the bounding ellipsoids to incorporate more or less of the prior volume, as

desired.

A.4 Likelihood examples

We have discussed how, given the likelihood and posterior, we can make

parameter inferences. We have also explored methods by which these func-

tions can be efficiently explored. Finally, we look at how to evaluate the

likelihood for a given data set.

The simplest signal which can be observed is a number of events No. We

can calculate from the model parameters θ the expected number of events

Ne. The probability of obtaining the data given the model parameters is

then given by the Poisson likelihood:

L(No|Ne) =
NN0
e

N0!
e−Ne . (A.21)

We can extend this definition to incorporate data which has been divided

into bins with N i
e events expected and N i

o observed in the ith bin:

L({N i
o}|{N i

e}) =
∏

i=1,Nbins

(N i
e)
N i

o

(N i
o)!

e−N
i
e . (A.22)

We can also consider the unbinned likelihood by taking the limit as the bin

width tends to zero,

L(D|θ) =
NN0
e

N0!
e−Ne

∏
i=1,Ne

P (Ei) , (A.23)

where Ne and No are the number of events expected and observed across

the whole experiment. We have assumed here that each event has an

associated measurement, the energy Ei, and we take the product over the

normalised differential event rates:

P (E) =
dR

dER
(E)

[∫ ∞
0

dR

dER
(E ′) dE ′

]−1

. (A.24)
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Finally, we may wish to include the effects of backgrounds in the analy-

sis. Then, we must take into account the fact that we do not know whether

a given event is due to the signal or background. It will come from the

signal with probability

fS =
Nsignal

Nsignal +Nbackground

, (A.25)

and from the background with probability fBG = 1− fS. Thus, we obtain

the full likelihood

L(D|θ) =
NN0
e

N0!
e−Ne

∏
i=1,Ne

(fSPS(Ei) + fBGPBG(Ei)) . (A.26)

Here, Ne and No are the total number of expected events including both

signal and background. We must also take into account the normalised

spectra of the signal PS(E) and the background PBG(E) seperately, mul-

tiplying the contributions of both.

For multiple experiments, the total likelihood is then the product of the

individual likelihoods for each experiment. When using the binned likeli-

hood, experiments with more bins receive a greater weight in the likelihood.

Therefore, we may want to reweight the bins such that each experiment

receives equal weight. We write the likelihood contribution of the ith bin

in experiment n as (Lin)wn , where wn is the weight for bins in experiment

n. This weight is calculated as

wn =
Ntotal

NexptNn

(A.27)

where Nn and Ntotal are, respectively, the number of bins in experiment

n and the total number across all experiments. Nexpt is the number of

experiments. This weighting increases the contribution of experiments with

fewer bins than average and decreases the contribution of those with more

bins than average. This form also ensures that in the cases of a single

experiment and of multiple experiments with the same numbers of bins

the weighted likelihood will be identical to the unweighted likelihood.





Appendix B

Calculating the discrete Radon

transform

In this appendix, we demonstrate how the Radon transform is calculated

for a discretised velocity distribution, as described in Chapter 6. We first

consider calculating the azimuthally averaged Radon transform of a general

velocity distribution f(v):

f̂(vmin, cos θ) =

∫ 2π

0

f̂(vmin, cos θ, φ) dφ

=

∫ 2π

0

(∫
R3

f(v)δ (v · q̂− vmin) d3v

)
dφ (B.1)

=

∫ 2π

φ=0

∫ ∞
v=0

∮
1

v
f(v)δ (vmin/v − v̂ · q̂) dΩvdvdφ .

We recall that primed angles (θ′, φ′) are associated with the direction of v,

while unprimed angles (θ, φ) are associated with the direction of q̂. Thus,

the φ integral in Eq. B.1 applies only to the δ-function. Expanding the dot

product into angular coordinates, we write the φ integral as

I(vmin, cos θ,v) =

∫ 2π

0

δ (sin θ sin θ′ cos(φ− φ′) + cos θ cos θ′ − vmin/v) dφ

≡
∫ 2π

0

δ (g(φ)) dφ . (B.2)

We then rewrite the delta function as a function of φ:

δ (g(φ)) =
∑
i

δ(φ− φi)
|g′(φi)|

. (B.3)

177
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Here, we sum over those values of φi satisfying g(φi) = 0,

g(φi) = 0

⇒ cos(φi − φ′) =
β − cos θ cos θ′

sin θ sin θ′
≡ γ , (B.4)

where we have also defined β = vmin/v. The solutions for φ ∈ [0, 2π] are:

φ1 = φ′ + cos−1 γ, for φ′ ∈
[
0, 2π − cos−1 γ

]
φ2 = φ′ + 2π − cos−1 γ, for φ′ ∈

[
0, cos−1 γ

]
φ3 = φ′ + cos−1 γ − 2π, for φ′ ∈

[
2π − cos−1 γ, 2π

]
φ4 = φ′ − cos−1 γ, for φ′ ∈

[
cos−1 γ, 2π

]
. (B.5)

We note that these solutions exist only for β ∈ [0, 1] (or equivalently v >

vmin) and for γ ∈ [−1, 1], otherwise Eq. B.4 cannot be satisfied. If these

constraints are satisfied, there exist exactly 2 solutions for a given value of

φ′ and therefore 2 δ-functions in Eq. B.3.

For the derivative of g(φ) we obtain

g′(φ) = − sin θ sin θ′ sin(φ− φ′) . (B.6)

Substituting the values of φ1,2,3,4, we see that

|g′(φ1,2,3,4)| =
√

(sin θ sin θ′)2 − (β − cos θ cos θ′)2 . (B.7)

Each of the two δ-functions therefore contributes the same amount to the

integral, regardless of the value of φ′. Performing the integral, we obtain

I(vmin, cos θ,v) =
2C(γ)√

(sin θ sin θ′)2 − (β − cos θ cos θ′)2
Θ(v − vmin) , (B.8)

where C(γ) = 1 for γ ∈ [−1, 1] and vanishes otherwise.

We therefore obtain

f̂(vmin, cos θ) =

∫ 1

−1

∫ ∞
vmin

f(v, cos θ′)I(vmin, cos θ, v, cos θ′) vdv d cos θ′ ,

(B.9)

where we have performed the φ′ integral over the velocity distribution,

f(v, cos θ′) =

∫ 2π

0

f(v, cos θ′, φ′) dφ′ , (B.10)

because I(vmin, cos θ,v) does not depend on φ′. In order to make further

progress, we need an explicit form for f(v, cos θ′). We now consider the

discretised velocity distributions discussed in Chapter 6.
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B.1 N = 2 discretisation

For the N = 2 case, we are considering a forward-backward asymmetry in

the velocity distribution:

f(v) =

f 1(v) for θ′ ∈ [0, π/2]

f 2(v) for θ′ ∈ [π/2, π] .
(B.11)

From these, we wish to obtain the integrated Radon transforms for the

forward and backward directions. Specifically:

f̂ 1 =

∫ 1

0

f̂(vq, cos θ) d cos θ (B.12)

f̂ 2 =

∫ 0

−1

f̂(vq, cos θ) d cos θ . (B.13)

We will focus on the first of these, f̂ 1, as the other can be obtained simply

by exchanging which directions are forward and backward (that is, by in-

terchanging f 1 and f 2). From now on, we will therefore be working under

the assumption that cos θ ∈ [0, 1].

We start with the cos θ′ integral:

J ≡
∫ 1

−1

f(v, cos θ′)I(vmin, cos θ, v, cos θ′) d cos θ′

= 2π

∫ 1

0

f 1(v)I(cos θ′) d cos θ′ + 2π

∫ 0

−1

f 2(v)I(cos θ′) d cos θ′ .

(B.14)

The factor C(γ) in the expression for I requires that |γ| < 1. We can show

that this is equivalent to requiring that cos θ′ ∈ [x−, x+], where

x± = β cos θ ±
√

1− β2 sin θ . (B.15)

We show x± as a function of cos θ in Fig. B.1. Focusing on cos θ ∈ [0, 1],

we note that there are two distinct regimes. For cos θ ∈ [0,
√

1− β2], x+ is

positive, while x− is negative. For cos θ ∈ [
√

1− β2, 1], however, both x+

and x− are positive. We therefore need to treat these two cases separately.

Equation B.14 then becomes
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J =

∫ 0

x−

4πf 2(v) d cos θ′√
(sin θ sin θ′)2 − (β − cos θ cos θ′)2

(B.16)

+

∫ x+

0

4πf 1(v) d cos θ′√
(sin θ sin θ′)2 − (β − cos θ cos θ′)2

, for cos θ ∈ [0,
√

1− β2]

J =

∫ x+

x−

4πf 1(v) d cos θ′√
(sin θ sin θ′)2 − (β − cos θ cos θ′)2

, for cos θ ∈ [
√

1− β2, 1] .

(B.17)
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Figure B.1: Integration limits for Eq. B.14 as a function of cos θ, for
a fixed value of β. The value cos θ′ = 0 is denoted with a horizontal
dashed line, while cos θ = 0 is shown with a vertical dashed line.

We note that

∫ x2

x1

d cos θ′√
(sin θ sin θ′)2 − (β − cos θ cos θ′)2

=

[
sin−1

(
x− β cos θ√
1− β2 sin θ

)]x2

x1

,

(B.18)

so that J takes the form:
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J = 4πf 1(v)

(
π

2
+ sin−1

{
β cos θ√

1− β2 sin θ

})

+ 4πf 2(v)

(
π

2
− sin−1

{
β cos θ√

1− β2 sin θ

})
for cos θ ∈ [0,

√
1− β2]

J = 4π2f 1(v), for cos θ ∈ [
√

1− β2, 1] .

(B.19)

We finally perform the cos θ integral:

f̂ 1 =

∫ 1

0

∫ ∞
vmin

J vdvd cos θ . (B.20)

Noting that∫ x2

x1

sin−1

(
β cos θ√

1− β2 sin θ

)
d cos θ

=

[
x sin−1

(
βx√

1− β2
√

1− x2

)
+ tan−1

(
1

β

√
1− β2 − x2

)]x2

x1

, (B.21)

we obtain

f̂ 1 = 4π

∫ ∞
vmin

v

(
πf 1(v) + tan−1

(√
1− β2

β

)[
f 2(v)− f 1(v)

])
dv

(B.22)

f̂ 2 = 4π

∫ ∞
vmin

v

(
πf 2(v) + tan−1

(√
1− β2

β

)[
f 1(v)− f 2(v)

])
dv ,

(B.23)

where f̂ 2 is obtained by exchanging f 1(v) and f 2(v).

B.2 N = 3 discretisation

The calculation of the forward, backward and transverse Radon transforms

for N = 3 discretisation proceeds as in the N = 2 case. However, we must

divide the integration regions of Fig. B.1 into 3 regions rather than into 2

regions. In addition, in the N = 3 case, x± lie in different ranges of cos θ′

depending on the value of β. Thus, we must also take care to divide the
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range of v into distinct regions depending on which angular bin x± fall

into. We will not present the result of the calculation here, as its form

is not particularly instructive. However, we will note that we require a

generalised version of Eq. B.21 in order to perform the calculation:

∫
sin−1

(
y − β cos θ√
1− β2 sin θ

)
d cos θ

= x sin−1

(
y − βx

√
1− x2

√
1− β2

)

+ y tan−1

(
x− yβ√

t

)
+

1

2
tan−1

(
1− y2 − β2 − x+ yβ(1 + x)

(y − β)
√
t

)
− 1

2
tan−1

(
1− y2 − β2 + x− yβ(1− x)

(y + β)
√
t

)
+ C

≡ K(x; y) + C , (B.24)

where it is understood that K(x; y) is a function of β and where

t = (1− x2)(1− β2)− (y − βx)2 . (B.25)

The full results are then in the form of 1-dimensional integrals over these

sums of elementary functions. The fact that an analytic integral can be

performed for any value of y means that we can calculate the Radon trans-

form for any values of the θ′ bin edges and therefore extend the method up

to any value of N .
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