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Abstract

Computer simulation models are increasingly necessary as a design tool for modern

vehicles, for which a subcategory relates to motorcycles. Simulation models can be

employed for a variety of applications, an important area of which relates to the

motorcycle's dynamic responses. The response of a motorcycle is heavily dependent

on the rider's control actions, and consequently a means of replicating the rider's

actions provides an important extension to this area.

The application of mathematical control techniques for replicating the motorcycle

rider's control actions is presented in this thesis, detailing specifically the techniques

of optimal control and model predictive control. The work begins with modelling the

dynamics of the motorcycle using standard procedures. The application of optimal

control to a motorcycle rider is not new, but the available results have been extended

significantly over those previously available, allowing further insights into the be-

haviour and therefore applicability of this strategy to modelling a motorcycle rider.

Use of the model predictive control approach is new in the field of motorcycle rider

modelling, and a similarly extensive parametric study is conducted to evaluate the

suitability of this approach, and to highlight the similarities and differences between

this and the optimal control approach.

Both controller models were simulated over a standard single lane-change manoeuvre.

Comparison of the relative performances of the two control approaches confirmed

strong similarities between the techniques, particularly when the modelled rider is

permitted an extensive knowledge of the approaching road path to follow. When

this knowledge is restricted, differences were apparent between the two, suggesting

the predictive control approach is capable of better performance here, and therefore

represents a more robust control strategy. An option of the predictive control ap-

proach allows more elaborate target paths for the rider to follow to be set. However,



ii

defining the target path for the rider model to follow as the road centreline, and then

permitting the controller itself to select the most appropriate course to take, has also

been shown to be the more suitable option.

The predictive control technique for motorcycle rider modelling is shown to be a

theoretically suitable application. Further work is suggested to validate the results

presented here. If it can be confirmed that the model accurately captures a motorcycle

rider's actions, this will prove a very useful tool for the understanding of a motorcycle

rider's control actions, with potential benefits towards rider safety and furthermore

as a design tool for the motorcycle industry.
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Discrete number of preview points

Discrete number of control points

Prediction model state space outputs matrix relating to system

inputs for a generic system

Number of iterations of full simulation

Algebraic Riccati equation solution

Partitioned components of P

Cost function output weighting matrix

Cost function input weighting matrix

Rolling radius; generic, front, rear tyre

Rotation matrix, yaw

Rotation matrix, roll

Rotation matrix, steer

Rotation matrix, front fork inclination

Square root of Q

Square root of R

System kinetic energy

Preview horizon time

Control horizon time
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Tw Dead-time horizon time

T System modal matrix

Tij Partitioned components of T

T* Inverse of T

Ttj Partitioned components of T*

U Potential energy

W Virtual power of external forcing

YJ, Y,. Dynamic lateral tyre force; front, rear tyre

a Tyre sideslip angle

"Y Tyre camber angle

8, 8(t) Motorcycle steer angle

1-, 81JPu Motorcycle steer rate

feq Ratio of camber stiffness to cornering stiffness, advanced tyre

e Error vector, reference path to predicted uncontrolled output,

complete preview

T/

()

PjI Pr

</>, </>(t)
/p, 8t}/)
1/1, 1/1(t)
. ,(t)1/1, t

1/1J
1/19
1/11,

1/1n

Front fork inclination angle

Function of final states and inputs in controller cost function

Predictive controller gains matrix

Lagrangian multiplier

Friction coefficient; generic, front, rear tyre

Toroidal tyre radius; front, rear tyre

Relaxation length; front, rear tyre

Motorcycle roll angle

Motorcycle roll rate

Motorcycle yaw angle

Motorcycle yaw rate

Reference path yaw angle

Motorcycle yaw angle, global coordinates

Road point yaw angle in local coordinates, ith preview point

New motorcycle yaw angle, local coordinates
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1/Jr Road point yaw angle in global coordinates

w Angular velocity, single rotation

w Angular velocity vector

X Vector of predicted future state vectors

<p Vector of predicted future output vectors

A Small step change in a variable

e Function of states and inputs in controller cost function

Y Vector of predicted future input vectors

Abbreviations:

OC

MPC

ARE
DOF

ISO

SAE

VRML

Optimal Control

Model Predictive Control

Algebraic Riccati Equation

Degree(s) of Freedom

International Standardizations Organization

Society of Automotive Engineers

Virtual Reality Modelling Language

General Notations

• A above a scalar, vector or matrix indicates a predicted value

• subscript v after a scalar, vector or matrix indicates specific reference to the

motorcycle model



Chapter 1

Introduction

With increasing frustration due to road traffic congestion and growing concerns over

environmental issues, transport remains an area in which alternatives are constantly

being sought and questions raised about the viability of large multi-seat motor ve-

hicles, often with only a driver aboard, travelling on the roads everyday. Prototype

vehicles using advanced power sources, or employing expensive high-grade materials

have been proposed, yet amongst all this concern, there exists already a form of mo-

torised transport which seems much more suitable to single-occupant journeys and

could therefore help to alleviate some of the current concerns.

The popularity of motorcycles has seen a steady increase in recent years, with annual

sales rising from 93,289 in 1997 to 133,938 at the end of 2004 [55]. In recognition

of the increasing relevance of motorcycles as a viable transport option, the Govern-

ment launched the UK's first National Motorcycle Strategy in 2005, covering topics

including environmental issues, infrastructure, and safety. The European Agenda for

Motorcycle Safety [301had covered similar areas a year previously.

The motorcycle as a form of transport has a much smaller impact, both on the

road due to dimensional size, and on the environment, due to smaller engines and

physical mass. A recent DEFRA (Department for Environment, Food and Rural

Affairs) report [22] provided some useful statistics on vehicle C02 emissions (Table

1.1), confirming the lower environmental impacts of motorcycles compared with other

forms of motorised transport.

Furthermore, the greater manoeuvrability of motorcycles, particularly in traffic, means

1
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less time spent static in queues with the engine still running, and thus a more efficient

journey. The vast majority of commuting journeys are made with minimal luggage,

and therefore the limited storage space associated with motorcycles should not, in

the main, be a hindrance. Despite some impracticalities, the use of motorcycles and

scooters is more widespread in mainland Europe (Figure 1.1), quite possibly on ac-

count of more conducive weather, though the numbers are still relatively low.

A more important issue that may influence the use of motorcycles concerns safety.

Relatively speaking, motorcycles are not a safe form of transport. In the years 1994-

2005, they accounted for between 13% and 21% of deaths and serious injuries on UK

roads (Table 1.2), despite making up only around 2% of the total traffic by numbers.

This is in main due to the fact that when an accident occurs a motorcycle rider lacks

the protective structures and safety features afforded to car drivers. Furthermore,

the more complicated rider strategy required to control a motorcycle, the relatively

greater instabilities, and the smaller visual impact of motorcycles relative to cars

mean that motorcycle riders, and in particular inexperienced riders, are, in general,

at greater risk of accidents in the first place. Collectively, these have prompted Gov-

ernment action [23], with the safety strategy document setting a target to reduce the

number of people killed or seriously injured by 40 % by 2010. A greater understanding

of the riding strategy and requirements of motorcycle riders could therefore provide

useful information both for rider training, road infrastructure, and also potentially in

the development of electronic rider aids that could assist the rider's control.

A range of motivations for computer simulation methods were outlined in [87]. From

a more commercial perspective, motorcycle manufacturers, as with any industry, con-

stantly strive to make their product more appealing to the customer, whose decision

will be influenced by a number of factors. Some of these will be objective, such as cost

or comfort of riding, a greater number may be more subjective, for instance visual

styling or riding qualities. In order to develop a better product, it is useful to have

some understanding of the more subjective elements, and if possible develop means

of quantifying these in a more defined, mathematical way.

Historically, these subjective qualities could only be assessed by the development of

physical prototypes which would be extensively assessed by test riders, who would

give feedback to the design departments. The development of such prototypes and the

necessary testing is both financially and time intensive. Customers will always desire
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more for less, and consequently manufacturers must find ways to achieve this if they

are to remain in business. Thus, the product must be better, yet the customer does

not always expect to pay a premium for this. Furthermore, manufacturers are aiming

always to reduce their time-to-market, such that they can respond more readily to

either the market needs or potential threats from products offered by their rivals.

The widening use of computer simulation methods has enabled these requirements to

be met; modern computer systems are now relatively cheap, can be run all day and

every day if needed, negate the need for expensive and time-consuming prototype

development, and can generate vast quantities of data in a relatively short time.

There is therefore an increasing need for accurate simulation tools to aid in the mo-

torcycle design process, and indeed these can and have been employed for modelling

various aspects of the motorcycle's design. Of the constituent elements of the whole

process, the most difficult element to model concerns the rider, and the simulation of

his or her control actions.

Compared with a twin-track vehicle such as a car, a motorcycle requires a greater

degree of involvement from the rider, requiring control both to guide the motorcycle

and to remain upright at low speeds while riding. Furthermore, the control process

of the rider involves control via both the steering system and through the influence of

body weight movement on the machine. Consequently, this makes the modelling of

motorcycle riders a less straight-forward problem. Because the riding process is a more

demanding task, it therefore becomes more important to consider the implication of

design changes on the ability of a rider to control the machine, and to assess how the

rider may need to adjust his control actions in light of the motorcycle's characteristics.

Advanced simulation tools will facilitate this process and therefore have also potential

commercial benefits.

1.1 Motivation

As a result of the statistics and information provided, the suitability of motorcycles

has and will for some time to come be debated by those either in favour or against

them, and the aim here is not to fuel the debate further. Rather, the objective here

is to consider how engineering research work can be applied to the greater good of
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motorcycle knowledge, understanding and design.

The motivation for this research work is to develop motorcycle rider simulation tools.

These will enable a simulated motorcycle to be manoeuvred along a set course, that

could therefore be employed as a design tool for future motorcycles, or to assist in the

modifications of existing machines. Furthermore, development of rider models may

provide a useful insight into the control strategies employed by motorcycle riders,

which could find use in improving road safety for motorcycle riders.

The last two decades in particular have seen the development of a number of vehicle

handling control systems, including anti-lock braking systems, electronic stability

control and active suspensions. Almost universally, these systems apply to twin-track

vehicles. It is suggested that this, in the most part, is as a result of the relatively

simpler control strategy for twin-track vehicles and thus the relatively more simple

procedures for developing the necessary computer code to define the strategies of

these systems. It is therefore also proposed that the development of motorcycle rider

control models may find use in the subsequent development of electronic motorcycle

chassis enhancement systems.
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1.2 Tables

I Vehicle Type I Size Label I gC02/km I
Small 159.2

Petrol Car Medium 188.0

Large 257.7

Hybrid Medium 109.7

petrol-electric Large 194.7

Small 72.9

Motorcycle Medium 93.9

Large 128.6

Table 1.1: Average C02 emissions by vehicle type, [22]

Killed Killed and Seriously Injured

1994-98 2003 2004 2005 1994-98 2003 2004 2005

Car Occupants 49.25 50.43 51.88 52.33 48.80 46.46 47.00 45.46

Motorcyclists 13.05 19.75 18.16 17.78 13.59 20.56 19.35 20.24

Cyclists 5.20 3.25 4.16 4.62 7.83 6.48 6.72 7.34

Pedestrians 28.17 22.06 20.83 20.96 24.49 21.32 21.77 22.17

Others 4.33 4.50 4.97 4.31 5.30 5.18 5.16 4.79

All Road Users 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 1.2: Accident statistics, percentages by road user type, [23]



CHAPTER 1: INTRODUCTION 6

1.3 Figure

Sweden
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Belgium

United Kingdom
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% of passenger-km by powered two-wheeled vehicles

Figure 1.1: Comparative use of motorcycles in the major European countries, [27]



Chapter 2

Literature Review

2.1 Introduction

Chapter 1 discussed some of the motivations and needs for the development of sim-

ulation and analysis methods with reference to motorcycles. The ability to replicate

realistically a number of physical features, characteristics and phenomena associated

with dynamic systems can have significant bearings upon their design, manufacture

and understanding to ultimately improve the effectiveness of the modelled system.

With specific reference to a motorcycle and rider, in order to generate a realistic

simulation model, the process must be formed by the combination of a number of

systems. Broadly, these systems comprise the modelling of the dynamic response of

the motorcycle, the correct modelling of the tyre behaviour and the manner in which

the rider operates in order to control the motorcycle. These systems themselves

consist of a number of smaller subsystems, and thus in total a combined motorcycle-

rider simulation model may have a vast array of variables that ultimately affect the

performance of the model.

The dynamic response is clearly heavily influenced by the structural properties of

the motorcycle. These structural properties include both the geometric dimensions

of the motorcycle'S construction, and the physical stiffness and damping properties

of the motorcycle'S components. Additionally a number of other factors may also be

relevant, for example the addition of external mass in the form of luggage or a pillion

passenger.

7
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The forces acting on the motorcycle will have a significant influence upon the vehicle

behaviour, and come from a number of sources. These can include aerodynamic forces,

the forces exerted by the rider, but perhaps most fundamentally the forces exerted

by the interaction of the tyres with the ground. These forces primarily influence the

direction of the motorcycle's motion, but also play a significant role in the stability

characteristics of the motorcycle. Additionally, a number of other sources of forcing,

such as acceleration or braking forces, will have an impact upon the condition of the

vehicle.

Finally the influence that the rider has upon the motorcycle, assuming that limit

conditions for tyre forces or stability conditions are not exceeded, ultimately dictates

the response of the motorcycle. The rider has influences on the motorcycle due not

only to the direct forces that are applied to the motorcycle controls, but also indirectly

as a consequence of the structural influence his body mass and body movements have

upon the stability and response of the motorcycle. This final influence is far more

prevalent for a motorcycle than with a car, for example, where the driver's body mass

is virtually static with regard to the vehicle.

The combination and interaction of all these factors determine the stability and han-

dling characteristics of the motorcycle and how the motorcycle may respond to a

rider's control actions. As a consequence, a vast array of research work has been

conducted in the fields of motorcycle stability, tyre modelling, rider analysis and the

combination of all to form advanced motorcycle-rider simulation models, which can

ultimately be used to improve the performance of a real motorcycle and rider through

better design, manufacture and understanding of the physical characteristics.

This chapter will therefore outline the significant research work conducted in and

around these areas, exploring the opportunities that exist for novel research work in

the field of motorcycle-rider control. Section 2.2 gives an outline of the historical

research into motorcycle behaviour, focusing primarily on the modes of motion and

the instabilities of motorcycles, considering both the detailed modelling of motorcycle

as a physical structure and how the identified modes of motion are influenced by design

features of the motorcycle. Tyre modelling will be covered in Section 2.3, as this has a

significant influence upon the motorcycle responses and modes that will be covered in

the first section. These two sections provide important background knowledge to the

main review in Section 2.4, which will focus on the rider's control of the motorcycle,
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and the work that has been conducted previously for both the understanding of a

motorcycle rider's control process and subsequently in the modelling of these control

actions to form simulation models of motorcycle riders.

2.2 Motorcycle Stability Analysis

The analysis of a motorcycle's response characteristics has been investigated by a

number of authors, with ever more complex multi-body dynamics models appearing

regularly. The earliest studies considered bicycle models, being simplified motorcycle

models without, for example, the inclusion of suspension characteristics.

Whipple was one of the earliest authors to produce stability analysis models of a

bicycle [106]. His work resulted in the equations of motion for a bicycle, including

rider control inputs, and also identified some of the classic instability modes of bicycles

and motorcycles, subsequently to be coined as the weave and capsize modes. Other

early authors on the subject, with similar objectives and results, included Bower [8]

and Dohring [24]

With more specific reference to motorcycles, being the subject of this thesis, it was

not until the early 1970's that the area begin to receive significant attention with the

emergence of greater research work. Of these, Sharp was one of the first, producing

work of a similar nature to the work of Whipple many years earlier, but focused more

specifically on motorcycle research.

Sharp [80] generated the linearised equations of motion for a bicycle model repre-

sentation of a motorcycle, also exploring the fundamental modes of motion for a

motorcycle, which were identified as wobble, weave and capsize modes, terms since

adopted almost universally. His inclusion of a tyre model, not a feature in [106], also

resulted in the identification of a new mode, termed weave.

Capsize was identified as a non-oscillatory instability related to the tendency of the

motorcycle to fall onto its side like an inverted pendulum. Wobble was defined as

the high frequency oscillation of the front steering system in a shimmy motion, often

compared with that of a shopping trolley wheel. Finally, the weave mode was identi-

fied as a combined oscillation involving simultaneous roll and yaw of the motorcycle,

such that the motorcycle followed a high-frequency slalom-like trajectory.
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A parameter study was conducted using the model as a means of identifying the

qualities required to produce stable motorcycles. Sensing the possibilities of the

approach as a potential design tool, several research works aimed to develop the

techniques used for more advanced motorcycle models, exploring further aspects of

motorcycle design and their respective influences upon the motorcycle's behaviour.

Related works by Kane [42] and Sharp [81] investigated the influence of frame flex-

ibility on the stability characteristics, with each author modelling the flexibility in

subtly different ways. Both research works found significant influence of frame flex-

ibility upon the stability characteristics of the motorcycle, while Kane also included

the influence of mass distribution and front fork trail.

In a similar vein, the effects of front fork flexibilities upon motorcycle behaviour were

assessed by Roe [75], leading to the proposal of a new front fork design idea which,

following extensive testing, was found to provide superior stability characteristics.

Over subsequent years a number of researchers continued to investigate the influences

of various structural elements of the motorcycle, leading to increasingly complex

structural models of a motorcycle. Notable authors included Sharp [83, 84, 85],

Cossalter and his co-workers [16, 17,21] and Nishimi [66].

In parallel with research work to investigate further structural aspects of the frame

stiffness, it was natural that the most compliant structural element of the motorcycle,

namely the suspension, should also be included in the models. Jennings [40] was one

of the first to explore this avenue, followed soon after with further work by Sharp

[82].

Other aspects influential upon the motorcycle's stability characteristics were also wor-

thy of investigation. The effects of aerodynamic forces on moving bodies were already

well appreciated as a result of aerospace research work and physical experiences. FUn-

damental effects on motorcycles were suspected, but not fully understood, and so at

around the same time that structural influences on motorcycle behaviour were being

explored, the influence of aerodynamic properties upon the stability modes of mo-

torcycles was investigated by Cooper [12], also later covered in Foale [31] and Hucho

[36].

Earlier works had hinted towards the importance of mass distribution with regard to
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the stability modes, and the inclusion of accessories such as luggage racks on the rear

of a motorcycle could clearly have a significant impact upon this. Research of this

area was addressed by Otto [67].

Cornering, acceleration and deceleration were known by experience to change a mo-

torcycle's dynamic characteristics. Koenen [45] completed research work into the

dynamic behaviour of motorcycles, for both straight running and cornering condi-

tions. While resonant vibrations of the motorcycle and, in particular the steering

system, are undesirable, the impact of vibrational modes is somewhat less dangerous

in a straight running situation than in a cornering condition; the steer torques and

frequencies associated with such vibrational modes make it very difficult for a rider

to overcome them, and in a cornering situation this severely impacts upon a rider's

ability to apply any necessary steer control with potentially disastrous consequences.

Since mass distribution was known to have an effect upon the stability of the mo-

torcycle, it seemed logical that acceleration and deceleration would cause a dynamic

weight shift and therefore have some impact upon the motorcycle's response. During

cornering the tyre contact patch moves significantly around the tyre's cross-section,

additional external forces are introduced, and the geometry of the motorcycle is af-

fected due to relative movements of the front and rear frames by the steer angle.

Limebeer et al. [48] investigated the acceleration/deceleration case, extending the

earlier stability models of Sharp to include these effects, finding theoretical results

consistent with riding experiences. The results were also presented in [28].

The braking case was also considered in detail by Meijaard and Popov in [56], and

later extended to include suspension deflection, aerodynamic drag and stabilising

rider control in [59]. Extensive studies considered the implications on motorcycle

stability for varying proportions of front and rear brake force distribution, and the

cases of a locked front or rear wheel.

It was already well known that the rider could have a significant influence on the

motorcycle by the movement of his body weight on the machine. Early research

work had simplified the analysis by considering the rider as a rigidly attached body,

but with greater understanding of a motorcycle'S principal stability characteristics,

it became apparent that this factor ought to be considered in some detail.

A considerably more advanced model was therefore developed by Nishimi et al. [66],
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extending earlier models to include flexibilities of the motorcycle rider upon the mo-

torcycle, specifically a lateral freedom of the rider's lower body to move his position

on the seat, and a rotation of the upper body relative to the lower body about a

longitudinal axis, representative of the rider leaning on the motorcycle.

The influence of the rider's upper body mass upon the stability of the motorcycle was

considered further by Sharp and Limebeer [93]. The rider was allowed a roll freedom

relative to the rear frame and also a yaw freedom. Roll freedom had already been

considered by Katayama et al. [43]. However, it was postulated that when a rider

senses excessive levels of steering oscillation, such as the onset of a wobble or weave

instability, there is a tendency for the rider's upper body to tense in an attempt to

control the oscillations, leading to a yaw motion of the riders upper body fed by

the steering oscillations. The responses to initial steer disturbances were modelled,

analysing the stability modes that resulted.

The ever-developing capabilities of computer simulations extended the range of pos-

sibilities for parameteric investigations further. Consolidating his earlier stability

analysis work, Sharp [85] revisited the problem, modelling the motorcycle dynamics

through the use of symbolic software programs. The results from these new investi-

gations agreed with findings in earlier work, and reconfirmed that amongst the most

important parameters in motorcycle design were the mass centre location of the rear

frame and its distance to the front and rear wheels, and the tyre relaxation length.

An eleven degree-of-freedom model was developed by Cossalter and Lot [18], with

the model described through the use of direct mathematical modelling as opposed to

the use of commercial dynamics analysis software. Reasons for this choice included

the ability to more realistically model the complexities unique to motorcycles such as

tyre forces at high wheel camber angles. The modelling incorporated a detailed tyre

model including a complex shape definition and the consideration of tyre deformation

under loads.

Earlier work in motorcycle analysis had been used to study the straight running

.stability of motorcycles, and the classic instability modes of capsize, wobble and

weave considered. Apart from [45], previous works had not included the investigation

of cornering modes, with particular difficulties surrounding mainly the question of

correctly modelling the tyre characteristics in a cornering condition. Cossalter et al.



CHAPTER 2: LITERATURE REVIEW 13

[20] therefore also developed his earlier work and used modal analysis to model the

stability of the motorcycle for both straight running and cornering behaviour. The

modal analysis consisted of calculation of the steady-state conditions, linearisation of

the equations, finally the solution of the eigenvalue problem.

While the vast majority of motorcycle simulation work was conducted with regard to

road-going machines, James [39] also presented the stability behaviour of an off-road

motorcycle through the use of experimentations on an instrumented motorcycle and

an analytical simulation model.

Finally, an extensive benchmarking of Whipple's [106] bicycle model was conducted

by Meijaard et al. [62], providing both an extensive review of the bicycle stability

literature, and the linearised equations of motion of Whipple'S model.

This literature review, covering here published work on motorcycle stability charac-

teristics, is by no means exhaustive. The great wealth of work already covered should

be apparent, and the extent to which the level of motorcycle stability modelling has

now advanced. This review has intended to cover only some of the more relevant

findings in this area in order to provide the necessary background information, and

to guide the reader toward sources of greater detail in this area.

2.3 Tyre Modelling

Since the tyre forces represent the primary external forcing on the motorcycle-rider

system, and therefore play such a fundamental role in the stability characteristics of

the motorcycle, a realistic representation of the tyre's characteristics is an essential

component of the complete modelling.

Experimental studies of vehicle tyres have highlighted the non-linearity of the forces

generated as a function of slip and camber, although within the range of moderate slip

ratios, linear models can be used without significant loss of accuracy for the modelling

of motorcycle dynamic response. However, with increased complexity of motorcycle

models, and with increasing demands to understand the absolute performance char-

acteristics, more realistic non-linear tyre models have been sought.

De Vries and Pacejka [100] considered the impact of tyre modelling upon the stability
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of a motorcycle, employing both a relatively simple first-order relaxation model based

on lateral velocity and tyre sideslip, and a more complex rigid ring tyre model. Both

models were compared against a dynamic tyre test on a rotating drum, and both

subsequently applied to a simple bicycle model. For moderate speeds and manoeuvres,

the simpler tyre model was seen to give acceptable performance, showing any weakness

only at high speeds by not accounting for the gyroscopic effects of the mass of the

tyre belt.

Cossalter and his collaborators have presented a number of papers on the detailed

modelling of motorcycle tyre geometries and the resulting forces [16, 17, 18]. These

led to more detailed definitions of tyre contact patch locations for a cambered tyre,

and the forces and moments that are generated as a result, allowing a move away

from disc-model tyres that had been used previously.

The significant influence of tyre characteristics in respect of scooter and motorcycle

handling was the subject of further investigations by Cossalter et al. [19], comparing

the characteristics for a range of different tyre types. The lateral force due to wheel

camber was seen to be a more significant lateral force provider than pure sideslip,

with the most interesting point to arise from the tests conducted being the obser-

vation of the importance of twisting (steer) torques resulting from the cambering

of, in particular, the front wheel, and of the effects that this steer torque can have

upon the handling characteristics of the motorcycle. This was a factor that had not

been considered in previous studies, for example [104], in attempting to assess the

requirements of a motorcycle with good handling qualities as perceived by the rider.

An area of particular difficulty yet of great importance concerns the consideration of

the tyre forces generated by the parallel processes of lean and side-slip. The "Magic

Formula" method [68] had been shown to produce very good analytical representa-

tions of the non-linear tyre forces, and so the inclusion of this method into a more

complete motorcycle analysis was desirable. However, the complexity of the calcula-

tions involved, and the task of determining the formula's parameter values through

experimentation, made this task computationally very demanding. Sharp and Bet-

tella [91] therefore looked at a normalisation of parameters approach as a means of

reducing the complexity of the task and hence making the integration of the "Magic

Formula" method into a complete model more feasible.
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The "Magic Formula" tyre model was implemented on a motorcycle simulation model

and compared against both a more simple tyre model and experimental data by

Tezuka et al. [97]. The simple tyre model comprised a carpet plot model, generat-

ing the necessary tyre forces and moments from the interpolation of a data set of

experimental tyre test results. The two tyre models were applied to a eight-bodied

motorcycle model, simulated in a steady turn. An instrumented motorcycle and rider

was tasked with the same manoeuvre, and the results compared. For straight run-

ning, the 'Magic Formula' method showed superior correlation to the experimental

results, while cornering produced similar results from both methods.

Sharp et al. [92] also combined tyre geometry models by Cossalter and his co-workers

[16, 17, 18] with the application of the "Magic Formula" tyre model [68]. The tyre

model that resulted was extensively validated against available test data for mod-

ern high performance front and rear motorcycle tyres. Furthermore, a monoshock

rear suspension arrangement and rider upper body lean freedom was included in the

motorcycle dynamics model, resulting in an advanced motorcycle dynamics model.

Meijaard and Popov produced a number of research papers developing advanced tyre

simulation models. [58] developed a string model of a motorcycle tyre, allowing for

deflections of the string elements both laterally and longitudinally to develop lateral

and longitudinal tyre forces with lateral and longitudinal slip and with camber of

the tyre. Later tyre models by the same authors [61] defined the tyre contact as

a deflected point of the tyre carcass and developed the tyre forces via a simplified

representation of the full "Magic Formula", seen to capture the response of the full

"Magic Formula" with some accuracy.

A number of research papers have considered the modelling of twin-track vehicle

tyres, a good deal fewer consider the greater complexity of a motorcycle tyre with

its far more extensive use of camber thrust as a lateral force generator. For a more

general understanding of tyre force generation, [31] and [13] also provide an excellent

introduction.
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2.4 Rider Control

The previous research areas considered were largely concerned with understanding the

dynamic response of the motorcycle alone. The aim of this thesis will be focused more

towards an understanding and representation of the rider as a controller. However, the

rider's control actions will clearly be influenced by the way in which the motorcycle

will respond to his control inputs, and so the preceding references all provide vital

background knowledge.

The task at hand, however, is the understanding of the rider's control characteristics.

This will concern the rider's active control characteristics and the use made of sensory

information in selecting a control input, which is clearly a fundamental requirement

in the development of a realistic motorcycle-rider model.

2.4.1 Visual Perception

The inputs that a rider applies to the steer controls of a motorcycle are based upon

his interpretation of the approaching road that he is tasked with following, and his

knowledge and understanding of the motorcycle's response. Clearly the visual per-

ception part is a fundamental requirement in order to accomplish the task, and so a

relevant branch of research work concerns the understanding of a motorcycle rider's

interpretation of his visual horizon. Observations made by Miyamaru et al. [65] had

hinted at the effects that correct modelling of a rider's visual road perception could

have upon the ability of a rider control simulation. Identifying the link between visual

input and control decision is not an easy task to do; primarily, determining exactly

what the rider is looking at, and what proportion of the observed road information

is stored and how much is discarded, is not readily obtained.

Donges [25] attempted to address this question, investigating the manner in which

the driver perceives the road ahead and uses this information in the control task. The

presented theoretical model consisted of a two-mode control strategy, with the future

direction of the vehicle influenced by the distant preview (guidance) information

and the more immediate preview information, termed stabilisation information, used

to stabilise the vehicle motions resulting from the guidance control. Both control

strategies were considered to act in parallel.
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An experimental simulation was set up, in which drivers were tasked with following a

randomly curving track using a driving simulator. A mathematical control strategy

to replicate the driver's road perceptions and control actions was compared with the

experimental results, comprising an anticipatory open-loop control and a compen-

satory closed-loop control element. The former represented the guidance information

as a feedforward controller, while the latter represented the stabilisation information

as a multiple input, single output feedback controller.

Comparisons between the actual drivers and the mathematical control strategy showed

similar results, with the control strategy able to anticipate forthcoming changes in

roadway curvature and to begin to alter the steering input in advance of that cur-

vature, as would a real driver. The pertinent findings of this research were that a

driver's visually-influenced control actions are based on both distant and near preview

observations to control fully the heading and attitude of a vehicle.

In a similar study, Land and Horwood [47] also used a simulated road preview, with

defined road edges, for experimental drivers to attempt to follow. By varying the

extent of the approaching road visible by the test driver, the effect on the driver's

control task of the previewed road information suggested, in agreement with [25],

that the distant preview was used to determine the curvature of the road, while the

near preview information was primarily used for controlling the position-in-lane of

the vehicle.

The accuracy of the modelling of a human vehicle controller clearly relies upon the

appropriate selection of information input to the driver, and so MacAdam [51] inves-

tigated the relative importance of sensory stimuli to the driver to understand which

are the more important for the task of driving. The physical attributes of drivers,

including the use of visual preview, adaptive control and the presence of an internal

vehicle model concept, were also discussed. A control model, combining a number of

sensory and physical driver control elements coupled with a vehicle dynamics model,

was presented. This model was used to simulate a tyre blow-out while negotiating

a double lane-change manoeuvre as an example of the model's ability to represent a

human drivers' ability to conduct both planned manoeuvres and also to react to un-

expected changes to the task. As a result of such modelling, a number of key features

necessary for a realistic representation of a human driver were identified.
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2.4.2 Rider Analysis and Modelling

With an appreciation of the complex processes that occur between information input

and control output, a far greater quantity of research work has been involved with

trying to understand the control procedures of a motorcycle rider and to replicate

them effectively. Broadly, the work in this area can be broken into the specifically

experimental work, where instrumented equipment was used to gain an insight into

the control actions, and the theoretical side, in which some effort is made to replicate

the rider's control actions in some computational way. Naturally, a cross-over between

the two exists, in which theoretical models are compared with experimental results.

Unlike a twin track vehicle driver who relies primarily on control of the steering

system, a motorcycle rider can apply control action to influence the heading direction

of the motorcycle either by direct control to the steering system or to the motorcycle

itself via forces and torques applied by the body to the seat, footpegs, or by body

movement in order to influence the lean condition and hence heading direction of the

motorcycle. A number of research works have aimed to understand the use made of

these options in the control process applied by a motorcycle rider.

Weir [102] was one of the first authors to study in some detail the control procedures

of a motorcycle, investigating the relationships between a number of the motorcycle's

states and the principal control inputs available to the rider. The analyses suggested,

for a single-loop controller, that roll control was the primary objective of the rider and

was best achieved through the steer torque control input. Other good input-output

relationships included heading angular rate via rider lean and roll angle via rider

body lean. Control of the lateral position, as a means of stabilising the motorcycle,

was poor for all control options. The results of the single-loop control strategies were

extended to the multiple-loop case, where steer torque to roll angle and upper body

lean to heading angle and lateral position was considered to be the most representative

control strategy of a motorcycle rider. The influence of the task upon these findings

was assessed by parametric variation of the motorcycle model and of the forward

speed. By understanding the link between system states and control inputs, and

the influence of the design parameters upon this link, the approach had potential

application as a design tool to affect the perceived handling of a motorcycle.

In separate studies, Rice [74] and Weir and Zellner [103, 104] also produced useful
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research findings in the attempt to understand a rider's control process. Rice exper-

imentally measured a number of motorcycle and rider parameters for four different

riders performing a lane change manoeuvre, each having identical equipment but var-

ied levels of riding experience and physical stature. Measured parameters included

yaw, roll and steer angles, steer torque and rider lean angle relative to the motorcycle.

Weir and Zellner [103] meanwhile modelled the control task theoretically, allowing in

a rider model both steer torque and upper body lean torque as control inputs, and

using three key control strategies, comparing their theoretical findings with instru-

mented machines performing similar lane change manoeuvres. Like Rice, they also

sought to investigate the specific requirements of a good-handling motorcycle [104],

performing experimental results of a similar nature to those of Rice and again taking

measurements of motorcycle states and rider control inputs.

The experimental findings of Rice suggested that rider upper body lean was a sig-

nificant element of the control process, though the author was not able to define to

what extent this featured. It was noted that different riders displayed different riding

styles; this style included the severity of countersteer to initiate a turn, and the rel-

ative amounts of body lean, body lateral movement and steer torque control inputs.

It was suggested that the relative use that the rider makes of these control options

could be based either on a personal preference or as a consequence of varying levels

of riding experience.

These results were mildly contradictory to the findings of Weir and Zellner [104].

As with the work by Rice, the method employed an instrumented motorcycle, here

performing a constant radius cornering test and a single lane change manoeuvre, but

with subtly different dimensions. Interesting observations made in these experiments

suggested that for some riders the upper body lean angles relative to the motorcycle

were near zero, implying that the rider remains upright relative to the motorcycle,

consequently needing to apply greater levels of steer torque. This goes against the

findings of Rice, though it is possible that the length of the lane change manoeuvre

and the relative experiences of the rider's may have had some influence upon this.

It is reasonable to assume that to complete the manoeuvre over a shorter distance

a more severe turn is required, and by leaning the upper body such as to keep the

upper body vertical, as Rice found, there will be a force applied to the machine that

will tend to help to lean the motorcycle into the turn. It is possible that for the
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more gentle manoeuvre such a control input is not required, or in the case of a less

experienced rider, may not be a control technique that the rider has developed fully.

Weir and Zellner [103] modelled the theory that a complete manoeuvre consists of

three distinct phases, identified previously in [102]. In order to initiate manoeuvres

the rider model operated in a precognitive control strategy, whereby the rider executed

a manoeuvre using previous experience, instinctively countersteering to initiate a turn

for example. A compensatory control was found to be the dominant method for steady

state riding, be it in a straight line or negotiating a curve, with the rider establishing

the manoeuvre and then reacting to any deviations to this path. Finally, a pursuit

control method was suggested, whereby knowledge of the system inputs allowed the

rider to apply a feedforward control to the benefit of the motorcycle's performance,

including use of either the throttle or brakes for example. At track-racing level,

control of the throttle on the exit of turns can be used to increase the rear tyre slip

angle and thus help to yaw the motorcycle, in addition to providing accelerative drive

out of the corners.

A series of control systems to replicate these features was presented and assessed.

Using this model, variations in speed, tyre response and front wheel trail were made,

and it was concluded that the resulting equations of motion for the motorcycle-rider

system could allow a fuller understanding of what are the criteria for a motorcycle

with good handling qualities, and how these may be achieved through parameter

variation. The method, it was suggested, may also find use in a rider training role.

The question of controllability of motorcycles and bicycles was considered by Seffen

et al. [79]. The concept of controllability is a common descriptor of dynamic systems

which determines the ability of the control inputs to exercise control over the system

states [38]. Seffen et al. obtained a numerical coefficient, based on the control problem

Grammian matrix, which gave an indication of the degree of controllability over the

system, and applied this to both a motorcycle model and a bicycle model, conducting

a parameter study on both to investigate the effects of design variables upon the ease

of control.

Yokomori et al. [108] investigated the ability of a rider to maintain the stability of a

motorcycle at low speed with no hands on the handlebars, and thus using only body

lean and forces on the footpegs to affect the stability of the motorcycle, comparing
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these results with some experimental tests.

Other works of interest to the field of rider control include the work of Miyamaru et a1.

[65], with the objective of constructing an appropriate real-world motorcycle-riding

simulator. The long-term aim was to develop a physical, rather than computer based,

simulator for a motorcycle, such that riders can practice the control and riding of a

motorcycle without needing to venture on to the highways, with a view to improving

rider training and hence safety. The results offer interesting observations into the

difficulties that exist in simulating the control tasks applied by a rider on a moving

motorcycle.

In studying the control actions required to ride a motorcycle,it was observed that

at low speeds the rider actively controls the steer angle, being the primary method

of directional control. At higher speeds some steer effort is required to initiate a

turn, but thereafter the steer angle is essentially set depending on the roll angle,

as it is the balancing of centripetal and weight forces and hence roll angle which

governs the turn radius. The distribution of control through steering and roll control

then varies accordingly through the speed range from low to high speeds. Further

pertinent observations included that in assessing the road ahead of the motorcycle

while turning, a rider will tend to look to the inside of that turn, rather than straight

ahead. A parameter study was conducted with regard to the rider's head position

compared to the motorcycle yaw angle during a slalom manoeuvre, finding that by

adding a coefficient of 0.3 multiplied by the yaw rate to the motorcycle yaw angle

gave a suitable head angle, leading to improved simulation results.

Detailed works were conducted by Prem and Good [70] and by Katayama et al. [43].

Both groups developed rider control strategies that were tasked with a particular

manoeuvre that was later compared with experimental observations. Prem and Good

[70]modelled the rider allowing for steer torque and upper body lean; the steer torque

inputs were taken to be developed directly as a result of the upper body lean, with

the resulting torques developed due to stiffness in the rider's arms. Katayama et al.

[43] allowed independent control of steer torque, lower body control torque and upper

body control torque.

Prem and Good [70] modelled their proposed system based on previous work by Weir

[102]. In this earlier modelling, the rider steer torque was used as the primary means
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for stabilising the roll angle of the motorcycle while the rider's upper body roll angle

and lower body lateral position were used as the primary means for affecting the yaw

angle and lateral position of the motorcycle. The proposal being made and tested by

Prem and Good, contradicting with [102], was that the rider's upper body lean angle

is the primary control method, and that steer torque is linked to the roll angle; as

the upper body is rolled, the stiffness of the arms will naturally apply a steer torque

without the rider needing to control the arms independently.

The simple rider control model from [102]was adapted such that the rider steer torque

was linked to the rider upper body lean angle. This model would allow roll stabilisa-

tion of the motorcycle but not control the path following or yaw of the motorcycle.

A more complicated model, based on Weir's multiple loop path control method [102],

fed back the lateral position, yaw angle and roll angle outputs in order to control the

rider upper body lean and linked steer torque.

Experimental tests were conducted with several riders of varying experience attempt-

ing an obstacle avoidance manoeuvre on an instrumented motorcycle. From the

tests, key observations made were that a skilled rider will use noticeably more severe

amounts of counter-steer to initiate a turn independently of upper body lean angle.

However, once the initial counter-steer, turn-in phase of the turn is completed, for

both riders the upper body lean angle and steer angle were seen to be closely coupled,

supporting the proposed theory of linked body roll and steer torque.

Doth of the theoretical control models were found to yield broadly similar responses,

with appropriate control gains applied. However the key conclusions drawn were that

the unskilled rider can be represented by the simpler single feedback loop controlling

the upper body lean, whereas to replicate the skilled rider required the multiple loop

feedback model to correctly replicate the rider's actions. This implies that a skilled

rider is able to control steer torque and upper body lean angle independently, whereas

the less skilled rider cannot achieve this so readily.

By contrast, Katayama et al. [43], considered the rider as a two mass system rep-

resented as an upper body and the lower body, treated as upside-down connected

pendula; the lower mass pivoted about the longitudinal axis of the motorcycle at

ground level with the upper mass then pivoting about the longitudinal axis of the

lower body mass. The model itself was an extension of Sharp's model [80] with the
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addition of the two rider degrees of freedom. Rider control covered three inputs;

steer torque, lower body control torque and upper body control torque, calculated by

means of proportionality to motorcycle roll angle and a calculated heading error of

the motorcycle based on a simple preview method.

A lane-change manoeuvre at fixed speed was studied with the three control methods

considered separately. It was found that steer torque was the most important param-

eter, the lower body influence was found to be b of the steer with the upper-body

control influence at -la of the steer effect for the particular lane-change manoeuvre con-

sidered, suggesting that upper body movement is primarily to maintain rider comfort

and of limited influence upon the control of the motorcycle attitude. The lower-body

movement is considered to assist the steer torque as a means of control.

The modelling method was compared with experiment by using 12 riders on instru-

mented machines. Different riders were found to employ varying control strategies

(riding styles) with regard to magnitudes of initial steer torques for instance, and

as such the simulation required the control coefficients to be adjusted appropriately.

However, assuming this was done the simulation was capable of replicating the mea-

sured motorcycle-rider behaviour with good accuracy. This suggests, however, that a

generic motorcycle-rider simulation can have only limited accuracy due to the heavy

influence of rider style upon the motorcycles behaviour.

Previous research works, including [lO4], had sought to provide some means by which

to determine the qualities required for a good handling motorcycle. With a similar

aim, Cossalter et al. [16] calculated the steer torques necessary to complete a given

manoeuvre using an appropriate mathematical model. The model itself was a generic

four-body bicycle model, with the influence of suspension movement neglected, as

the consideration of a steady turn should result in fixed wheel positions relative

to the motorcycle frames. Changes to the physical attributes of both tyres and

the motorcycle influence these torques, and so analysis of this type may enable a

motorcycle to be designed that exhibits particular characteristics with regard to steer

torque felt by the rider, and hence influence the rider's perception of its handling.
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2.4.3 Optimised Rider Models

A number of research works have involved analysing the rider's control actions and

seeking to replicate these via the use of a mathematical control strategy. Another

branch is concerned with the development of rider models that attempt to optimise

the mathematically defined riding task and hence replicate the rider's control actions

accordingly.

Considering first the approach taken to optimise the vehicle performance based on

system dynamics, Cossalter et al. [14] developed a technique termed the Optimal

Manoeuvre Method. This approach essentially employed an optimisation strategy

with several performance criteria forming the cost function. These elements included

maximising the distance travelled over a manoeuvre, trajectory constraints to keep

the motorcycle within the road width, costs to ensure the ratio of lateral front wheel

force to longitudinal thrust/braking forces were not excessive, and other less sig-

nificant performance factors. Experimental performance evaluation with respect to

handling and manoeuvre capabilities would always be heavily influenced by rider

ability and control strategies, and in limit cornering conditions rider style and han-

dling preferences may adversely affect experimental results. The Optimal Manoeuvre

Method was therefore developed that would use an optimal preview approach in order

to simulate the manoeuvre of a motorcycle, having the advantage of applying, within

reason, whatever input controls were necessary, through steer torque, throttle and

braking actions, such that the motorcycle performed the required manoeuvre in the

most efficient manner specific to that motorcycle. This would therefore give a more

appropriate measure of ultimate machine performance, on the assumption that a rider

would be able to apply the necessary control strategy to achieve this, reasoning that

a highly skilled rider would be able to adapt himself to the particular motorcycle and

therefore maximise its performance. Simulations were compared with telemetric data

for a motorcycle negotiating an S-bend on a race track, and found to agree well. The

findings were also presented by Cossalter in [15].

Cossalter's co-authors Biral and Da Lio applied the Optimal Manoeuvre Method to

the modelling of a vehicle driver [6]. The principles of the approach were the same

as for the motorcycle case, with similar simulations and results.

A review of driver control models was made by Guo and Guan [33] before presenting
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the development of their own optimal preview driver control models. In particular, the

broad areas of compensatory and preview tracking models were compared, suggesting

that the latter provides a far superior path tracking ability. The optimal preview

control model of MacAdam [50] was reviewed, and the concept extended to produce

more intricate driver control models considering the lateral accelerations of previewed

road position and orientation information. Initially based on a global coordinate

system, the model was adapted to local coordinates, displaying good performance.

The control of forward speed was discussed, as was the concept of a reference path,

being a path that the driver may desire to follow, rather than necessarily the centreline

of some constrained road path.

Di Puccio et al. [73] compared three types of driver control model for path tracking

of a four-wheeled vehicle; a simple preview tracking model using single point preview,

the second a simple fuzzy-logic controller, the third a more detailed fuzzy controller

aimed at capturing the driver's behavioural characteristics. The single point preview

model represented a very simple prediction model, determining the future position

of the vehicle based on the current vehicle states. The fuzzy control models however

proved unable to realistically reproduce human behaviour.

A very similar preview-tracking approach was taken by Sharp et al. [86]. Again with

application to a twin-track vehicle, Sharp and his co-authors successfully generated

a driver control model capable of steering a vehicle model along a road path. The

road information was presented to the driver model as a series of discrete road points,

and the controller generated a steer control input using PIn theory to minimise the

lateral errors between the previewed road and a preview arm projected directly ahead

of the vehicle, this time using a multiple preview point approach. The theory was

later applied to the case of a motorcycle [76], but the application was seen to be

inappropriate to the task. The requirement to countersteer a motorcycle was not well

catered for by this approach, leading to ineffective path following.

The possibility of a control system to assist in motorcycle stabilisation as an aid

to safety was investigated by Kamata and Nishimura [41]. This control system was

evaluated through implementation of such a device on a computer simulation of a

motorcycle. Use of such a control device was shown to be beneficial in reducing the

roll angle of the motorcycle following a disturbance over a range of vehicle speeds.

Though the paper covered only theoretical work, it was indicated that subsequent in-
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vestigations by the authors would look at adapting such a system to a real motorcycle

and evaluating the effects experimentally.

The use of computer-aided methods for motorbike handling and stability analysis was

further investigated by Styles [96]. Particular emphasis was placed on the steer torque,

and to identification of the important contributors to this torque. Important design

parameters for the motorcycle were varied and the effects upon the steer torques re-

examined. The important contributors were found to be the moment arising from the

normal tyre force, the gyroscopic torque in roll and the aligning moment resulting

from the lateral force through mechanical trail.

A method of optimal preview was also investigated, with the aim of assisting future

motorcycle development. Manoeuvre simulations were again run and parameter vari-

ations made. The stability was analysed by observing the eigenvalues resulting from

the state space matrices used in the modelling.

A driver control strategy was also proposed by Antos and Ambr6sio [1] for a twin-

track vehicle. The vehicle model, with some simplifications made, was combined with

a multivariable bilinear control methodology presented elsewhere. The controller used

an optimal control strategy, without preview, to force the vehicle to follow a prede-

termined 'ideal' path, with information on this path input by means of coordinates,

section lengths and section curvatures. Essentially, current vehicle position and states

relative to the ideal path were combined with an optimal controller that applied a

steering control to the vehicle front wheels and rotational torques to all four wheels.

The weightings for the controller cost function were user-defined and close path fol-

lowing was achieved, although the lack of any form of visual preview would seem to

be in contradiction with the driving tasks employed by a human driver.

Modelling of the control strategies for riding a motorcycle was investigated by Huyge

et al. [37] with the use of a multibody motorcycle model coupled with a separate

model to replicate the rider's control actions, in this case an applied handlebar torque.

The biomechanical information for the rider was included in the multibody motorcycle

model, though the movement of the rider's body mass was not used as a direct control

input to the motorcycle as had been done by other authors previously. The strategy

adopted in regard of the rider's control used a target roll angle to be input to the

model, which corresponded to a particular turn radius for a specific motorcycle at a
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given speed. The controller of the motorcycle applied a steer torque to the handlebars

in order to generate the required roll angle and to correct if the target roll angle

was not being met. The presented example of an S-bend manoeuvre showed good

path following results. However, it is known that a rider will countersteer prior to

commencing a turn, and so will necessarily need to employ some form of preview to

initiate the turn. While countersteer is shown in the model, it was not in the form of a

preview control to initiate the turn, but appears instead to be applied in a regulatory

manner to adopt the target roll angle only once the turn has begun.

Building on earlier works on driver preview control [98], Sharp [94] adapted the op-

timal control technique to the application of a motorcycle rider's control actions. As

with the driver model, the optimal control element related to a visual preview of the

road, for which the controller calculated a series of gain values in order to minimise a

combined cost of lateral path position error and steer torque input. The control input

parameters available to the rider were steer torque applied to the handlebars and an

upper body lean torque. The path following performance was seen to be very success-

ful, and with the results suggesting, in agreement with earlier work by Katayama [43]

in particular, that the primary control method was through steer torque and with

the influence of rider lean torque an order of magnitude less important than the steer

torque. By calculating a series of gain values against the previewed road path, this

effectively allowed the relative importance of the previewed road to the task of path

following to be assessed. In agreement with Land and Horwood [47], the near preview

information was seen to be more important in regard of maintaining the position of

the motorcycle relative to the road.

Other interesting areas of research into rider control that have recently appeared

include the use of predictive control. The mechanics of the method are not dissimilar

to an optimal control technique, which has been applied in a number of ways to assess

both motorcycle performance [4, 15] and driver/rider performance [51,94]. However,

unlike optimal control, predictive control generates a set of anticipated future states,

and by the comparison of predicted future states with target future states, a control

input is generated that attempts to find a balance between minimising the state errors

and the control input required.

Prokop and Cole, the latter with his co-workers, separately developed predictive con-

trol driver models. Prokop [72] developed an extensive application of this technique
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in modelling the control actions of a twin-track vehicle driver, allowing control of

steer angle, throttle and braking inputs. Using the plant of the vehicle dynamics, the

output several seconds ahead of the vehicle could be predicted and coupled with a

PID controller in order to guide the system to the targets set by the nature of the

road. A number of simulated manoeuvres were compared with experimental manoeu-

vres, concluding that the method was conceptually capable of replicating a driver's

control actions.

The controller developed by Cole et al. [11] was a more representative application of

the complete model predictive control technique. As with Prokop's model, a predic-

tion of future output states was made, but in this case the control input determined by

minimisation of a quadratic cost function, in a similar manner to the optimal control

approaches. The investigations showed encouraging similarity to the conceptually

accurate optimal control method, but limited path-tracking results were available

against which to judge its applicability to the task of modelling vehicular control.

2.5 Summary

The literature review has covered the wide range of research areas with relevance to

motorcycles and motorcycle riders. These have been broadly defined as the areas of

motorcycle stability characteristics, tyre modelling and rider control modelling.

The first of these, motorcycle stability analysis, has been extensively studied by a

number of researchers over many years. A great deal of the early simulation models

have been incorporated into commercial software packages, such that results can be

achieved relatively easily via these programs. Extensive work has been conducted into

developing ever more complex models to represent further structural characteristics

of a motorcycle, to the point where there is limited scope to establish any novel yet

constructive avenues of research.

Tyre modelling continues to be an important area for research. The tyre is the prin-

cipal provider of external forcing to the motorcycle and hence primarily affects its

behaviour. The "Magic Formula" is widely regarded as being capable of success-

fully generating realistic tyre forces and moments, and without access to tyre testing

apparatus, the scope for research work into motorcycle tyre behaviour is restricted.
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Since high quality dynamic representations of motorcycles are now widely understood

and available, and the rider plays such a significant part in this response, the modelling

of the dynamic behaviour of the combined motorcycle-rider becomes the next goal.

In recent years a number of control strategies have been employed as a means of

replicating the control actions of the rider. While some of these proved successful in

being capable of applying suitable control to a dynamic model of a motorcycle, the

question should be asked whether the goal is to generate an appropriate control input

or to replicate the control strategy employed by a human rider. In the latter case,

this must include the consideration of how the rider interprets information available

to him, and how this information is used in performing his control task.

To date, there are few controller models that have been applied specifically to repli-

cating the control actions of a motorcycle rider, and those that have been demon-

strated appear worthy of more detailed investigations. The objective of this thesis

will therefore be to replicate the contemporary rider control models and conduct more

extensive parameter studies to establish particular strengths or weaknesses of these

methods. In particular, the principles of model predictive control strategies, hitherto

not applied to the modelling of a motorcycle rider, appear to provide the necessary

elements for replicating the complex actions of a motorcycle rider between problem

interpretation and control solution.

2.5.1 Objectives and Thesis Outline

In light of the findings outlined in the literature, the goal of this thesis will be to

developed the concept of model predictive control for the specific application of a

producing a motorcycle rider control model. The motivations for this work are covered

in Chapter 1.

The starting point will be the generation of an appropriate basis upon which to assess

the control techniques. Chapters 3 and 4 will therefore detail the specifics of modelling

the motorcycle dynamics and the rider's preview respectively. Combined, these two

elements will form the motorcycle-rider model that will form the basis of the more

detailed rider control modelling.

The rider modelling will consider the application of two specific control theories.

Chapter 5 will cover the use of optimal control for replicating the rider's control
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actions. Both the theory and application will be covered, with an extensive parameter

study conducted to evaluate the performance. Subsequently, Chapter 6 will consider

the application of predictive control techniques for the same aim, again with detailed

theory and parameter studies conducted.

A cautionary note to the reader is needed here. Both optimal control and model

predictive control techniques can be considered 'optimal' approaches, since they both

aim to minimise a cost function to provide the theoretically best possible control

input. However, the distinction in this thesis is made between optimal control and

predictive control techniques, which will be more clearly defined by the theory in the

relevant chapters (Chapters 5, 6).

For both control techniques, extensive parameter studies, to understand to a suitable

extent the behaviour of the control system, will be conducted to assess the applica-

bility of the approaches to the task. The aim is that this will result in a suitable

control strategy for replicating the actions of the rider, with good potential for future

development and application. A feature of predictive control that is considered to

be suitable for the application here is the ability to include constraints on the mod-

elling, which can therefore be used to represent limits in the available road width, the

physical limits of steering lock, and any other limitations pertinent to the task.

The two techniques will then be compared and contrasted in Chapter 7, with final

conclusions drawn in Chapter 8.



Chapter 3

Motorcycle Modelling

3.1 Introduction

In order to generate a motorcycle-rider simulation tool, an appropriate dynamic

model of the motorcycle is required, enabling the response of the motorcycle to inter-

nal and external forces to be determined. The response of the dynamic model must

correctly replicate the response of the real motorcycle to these forces if the combined

controller model is to be assessed correctly. Without a correct dynamic model, any

conclusions drawn about the performance of the controller model may be meaningless.

A motorcycle is a complicated piece of machinery, consisting of many thousands of

parts, each with its own physical properties. Many of these parts are not completely

constrained within the motorcycle as a whole, having freedoms to rotate, translate

or a combination of both. The dynamics of the engine and driveline are a complex

system, and every structural component on the motorcycle has associated with it

some mass, damping and stiffness properties.

In order to develop a simulation tool for the dynamics of a modern motorcycle, the

system must be simplified considerably in order to capture the fundamental physical

characteristics of the motorcycle with sufficient computational efficiency. The purpose

of the research work presented in this thesis is to develop a controller representative

of a human rider, and so provided that the dynamic motorcycle model employed

replicates the fundamental responses of a motorcycle to forcing, then detailed dynamic

models to capture intricate dynamic characteristics are not considered necessary, and

31
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the use of a simplified model can therefore be justified. Computer software can

be employed to generate the appropriate equations of motion, which provides the

dynamic response of a generic motorcycle model to the dominant internal and external

forces.

This chapter will therefore detail the processes and techniques used in order to gen-

erate the dynamic response of a simplified motorcycle model. The model itself was

generated through direct mathematical methods and based on the much-cited model

in [80j. The mathematical procedure will initially be presented, and the resulting

model subsequently validated against [80j. A more detailed tyre model than in [80j

will be presented, validated and implemented to the motorcycle model, resulting in

a model more capable of accurately replicating the motorcycle responses at high tyre

slip and camber angles. This model will be used as the motorcycle model to which the

rider control strategy will be applied, to enable a path following task to be simulated.

The combined motorcycle-rider simulation model using a novel control strategy will

form the goal of this thesis, and so this dynamic response model will form the plat-

form on which the control model will be evaluated. The novelty of the work is largely

restricted to the control modelling of the rider; the modelling of the motorcycle's

dynamics is a tool on which the control model will be applied.

3.2 Coordinate System

Before performing any type of dynamic modelling, it is essential to define a clear

coordinate system that is to be used, and ensure that all dimensions, forces and

velocities conform to those coordinates. The choice of coordinate system can be

arbitrary, provided that this coordinate system remains consistent throughout the

modelling.

There are, however, conventions that are commonly used, and for vehicle modelling

the typical coordinate systems used are the SAE (Society of Automotive Engineers) or

ISO (International Standardization Organization) systems. Both coordinate systems

consist of a set of three orthogonal axes, where, with respect to a vehicle, the z-

axis is aligned with the direction of travel. The SAE coordinate system has the

y-axis aligned positive right and the z-axis positive down (Figure 3.1), while the ISO

coordinate system aligns the axes positive left and positive upwards (Figure 3.2).
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In both coordinate systems the roll, pitch and yaw rotation directions are right-hand-

rule rotations about the z-, y- and z-axes respectively.

For a global coordinate system, the axes remain fixed at the origin of the simulation,

while for a moving coordinate system simulation the coordinate system remains fixed

to and moves with the vehicle. In a general moving coordinate system the axes

translate longitudinally and laterally and yaw, roll etc. with the motorcycle. For

ground-based vehicle modelling, the coordinate system rotates only with the yaw

rotation of the vehicle such that the z- and y-axes remain constrained to the ground

plane, even when the vehicle itself adopts a roll angle.

For the motorcycle model employed here, the SAE coordinate system is used. The

motorcycle's origin is defined by the position of the rear frame centre of mass projected

vertically down to the ground plane with the motorcycle upright. The z-, y- and z-

axes form an orthogonal set of axes, with the z- and y- axes in the ground plane

and the z-axis perpendicular to the ground plane projecting vertically down. The

z-axis projects ahead of the motorcycle, and the y-axis projects to the right of the

motorcycle. A yaw rotation 1jJ constitutes a rotation of the entire motorcycle about

the vertical z-axis to define the yaw frame. A pitch angle 6 defines a rotation of the

motorcycle about it's y-axis, i.e. in the yaw frame, to define the pitch frame. A roll

angle ,p constitutes a rotation of the motorcycle about the z-axis of the motorcycle

in the pitch frame to define the roll frame. Finally, a rotation 8 of the front frame

about the steer axis of the motorcycle in the roll frame constitutes the steer, and

hence defines the steer frame. The motorcycle model used is described in detail in

Section 3.4.

Positive lateral tyre forces are in the positive lateral direction for the motorcycle

model used here. Hence, positive slip is in the negative lateral direction. Thus,

positive tyre camber results in positive lateral forces.

3.3 Tyre Model

Initial modelling work employed a simple linear tyre model,

(3.1)
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where lateral forces were the sum of the product of sideslip angle a with tyre sideslip

stiffness Co, and the product of camber angle 'Y with camber stiffness C'Y' The

detailed definitions of sideslip, camber angles and other useful definitions can be

found in Appendix 1 of [68]. This simple tyre model was used to establish the early

motorcycle dynamic models, before a more advanced tyre model was introduced.

The lateral tyre forces generated by this simple tyre model for a range of slip ratios

and wheel camber angles of a front tyre are shown in Figure 3.3, for which the tyre

parameter values can be found in Appendix A.

The advanced tyre model that has been employed here is based on work by Meijaard

and Popov [60], where a non-linear model was developed to capture the behaviour of

the lateral and longitudinal forces and moments about the vertical axis of a motorcycle

tyre. The work was conducted using a commercial multibody simulation program [3].

Here, the approach is modelled using symbolic mathematical coding [53]. For small

angles of sideslip, the response of a tyre can be represented quite well by a linear

model, but to capture the response for larger slip angles typically experienced at

higher speeds, a more advanced model is required. The tyre model itself is obtained

by a simplification of the "Magic Formula" by Pacejka [68]. This section will outline

the fundamental steps applied to obtain the tyre model, and the validation of this

model against the original work by Meijaard and Popov.

3.3.1 Tyre Force Equations

Full details of the tyre model used can be found in [60]. Here, an overview of the

technique will be presented.

Tyre forces are generated by the combination of deformation of the tyre in the contact

patch and slip of the tyre's contact patch relative to the ground surface. Both result

in slip velocities between the wheel and the ground surface, and therefore the initial

steps are concerned with calculating the slip velocities of the wheel and tyre as a rigid

body in the lateral and longitudinal directions. This is achieved through vectorial

definitions of the wheel centre and contact patch location, and knowledge of the

wheel spin velocity and wheel forward speed.

The vector corresponding to the wheel spin axis is obtained by rotating a unit vector in
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the positive lateral direction by the yaw, roll and, for the front wheel, fork inclination

and steer angle. The component of this vector in the z-direction is equivalent to the

sine of the camber angle, and thus the camber angle of the wheel is obtained by taking

the arcsine of this component.

The axial spin rate of the wheel is obtained by the division of the forward speed

with the nominal undeflected tyre radius. The motorcycle will be assumed to run at

a constant forward speed, and thus the axial spin rate is not required as a variable

here. This spin rate, being about an axis perpendicular to the wheel plane, is then

translated via the rotations of yaw, roll and, if appropriate, fork inclination and steer

to define the spin velocity of the wheel in the motorcycle's reference frame.

The tyre contact patch is defined by a single point in the contact patch area, the

exact position being the combination of several vectors. The starting point for the

definition of a generic tyre can be an arbitrary point in the ground plane. For the

more specific application here, the origin will be taken as the origin of the motorcycle

coordinate system. This origin is located at the intersection of a projection vertically

down from the rear frame's centre of mass with the ground plane when the motorcycle

is upright (Figure 3.4). First, the position of the wheel centre in this reference frame

is defined. A vector in the plane of the wheel projected down towards the contact

patch then defines the centre of the toriodal profile of the tyre, and finally, a vector

projection vertically down, with length equal to the toroidal radius of the tyre, defines

the undeflected tyre contact point.

The intersection of a vertical line through this undeflected contact point with the road

surface is used to define the deflected, actual contact point of the tyre with the road

surface. The division of the tyre's vertical stiffness with the vertical displacement of

the deflected contact point relative to the undeflected point can provide the vertical

force acting on the tyre. For the application here, the tyre forces were calculated

from statics.

Tyre forces result from deformation of the tyre carcass as the tyre moves into the

contact patch area, coupled with the tyre's stiffness properties. This distortion of

the tyre effectively results in a higher axial spin rate for a given forward wheel speed

than would be experienced for a solid wheel with the same rolling radius. The wheel

in the contact patch area can therefore appear to move relative to the road surface,
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leading to the definition of a tyre slip velocity.

This slip velocity can be obtained numerically by considering an increased effective

wheel radius, with the wheel rotating at the same angular velocity as for a solid wheel

with the actual tyre rolling radius. A new effective radius is therefore defined, being

part way between the undeflected and deflected tyre contact points.

The angular velocity of the wheel is obtained from the forward speed of the wheel

and the actual rolling radius of the tyre. Thus, use of this angular velocity with the

increased effective rolling radius leads to an increased effective contact patch speed

relative to the wheel centre. The summation of this contact patch speed with the

speed of the wheel centre results in the effective slip velocity in the contact patch.

This process is done independently for the longitudinal and lateral tyre contact patch

velocities to independently control the behaviour of the tyre's lateral and longitudinal

force properties with slip. Dimensionless slip quantities are then obtained by the

division of the tyre contact point slip velocities with the velocity of the wheel centre

in the plane parallel to the ground plane.

The lateral and longitudinal tyre forces and tyre moment about the vertical axis are

obtained by a simplified version of the "Magic Formula". Specifically, the expressions

are [60]

(3.2a)

(3.2b)

(3.2c)

where C, is the ratio of the cornering stiffness to normal force, J.Lw is the generic

tyre friction coefficient, feq is equivalent to the ratio of camber stiffness to cornering

stiffness, Fn is the normal force, Slat and Slang are the dimensionless lateral and

longitudinal slip quantities, Stot is the dimensionless uni-directional slip quantity, Sn

is the normal wheel spin, and finally Rw is the nominal wheel radius.

In this application, the longitudinal tyre force is not required, since the motorcycle

modelling will be conducted at a constant forward speed.
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3.3.2 Validation of Tyre Model

The tyre model, described in the preceding section, was coded using Maple symbolic

software [53] and validated against the original tyre model in [60], itself validated

against the full Magic Tyre Formula in [68]. The original validation of the model

considered the lateral tyre forces generated for a representative range of tyre camber

angles and sideslip ratios. All parameters for the motorcycle tyre in this application

were as in [60], allowing a direct comparison of the results to ensure the correct

implementation of the approach, and can be found in Appendix A.

First, however, a reminder about sign conventions is required. The referenced paper

considers positive lateral slip to be in the positive lateral direction. The lateral force

generated by slip is directed so as to oppose the slip direction, and thus positive

lateral tyre force is in a direction opposite to positive slip, and hence in a direction

opposite to positive lateral displacement. This convention is adopted temporarily to

validate the tyre model against the original paper.

The lateral tyre forces were obtained for a range of tyre camber angles from 0° to 50°,

typical of the operating range of a road-going motorcycle tyre, with the lateral slip

ratio in the range -0.3 to +0.3, and for the tyre parameter values in Appendix A.

The lateral tyre forces and moments are presented in Figure 3.5, where the non-linear

response, characteristic of pneumatic rubber tyre, is clearly apparent.

Considering first the tyre operating at zero camber angle, i.e. in the upright position,

it is seen that in the slip ninge -0.05 to +0.05 the response of the tyre lateral force

is close to linear. Models that employed a linear tyre model would therefore show

reasonable accuracy within these operating ranges. Outside this range, the ratio of

lateral tyre force to lateral slip diminishes as tyre force saturation begins, at which

point a linear model would give rise to incorrect results, and at slips approaching

+/ - 0.3 for zero tyre camber angle the tyre is close to fully saturated with the

maximum lateral force obtained. The tyre moments about the vertical axis show

similar responses, with a small linear operating range about zero slip, in the range

approximately -0.05 to +0.05. The tyre moments peak somewhat earlier than for

the lateral forces, at lateral slips of approximately +/ - 0.08, with the moments then

decaying away as tyre saturation sets in with increasing lateral slip.
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As a motorcycle tyre is cambered, a lateral force is generated in the direction of the

tyre's lean, a characteristic known as camber thrust. The camber thrust force acts in

the direction in which the tyre is cambered such that a positive camber angle, in which

the top of the tyre is deflected in the positive lateral direction relative to the contact

patch, results in a lateral tyre force in the positive lateral direction. It was noted

previously that positive slip is considered to be in the positive lateral displacement

direction, and thus positive lateral tyre force is in the negative lateral displacement

direction. Thus, a positive tyre camber should result in a negative lateral tyre force.

The effect of camber on the lateral forces generated by the tyre are again apparent

in Figure 3.5. Considering first the case for zero lateral sideslip, it is seen that

as the camber of the tyre is increased, the tyre lateral forces become increasingly

negative, as expected, i.e the effect of camber is to generate a lateral tyre force in the

direction of the lean of the tyre. As the tyre camber increases, the cumulative gains in

lateral force with each additionallO° of camber diminish. Expected lateral tyre force

properties can be found from experimental studies of tyres, carried out by both tyre

manufacturers and by research institutions. Results from the former are well-guarded.

However, detailed information on typical tyre behaviour can be found in [68], while

other references of a broader nature include [13, 31]. Further combinations of sideslip

and camber give results that would be expected of a motorcycle tyre, showing the

combined effects of lateral force generation through sideslip and camber thrust that

have been outlined previously.

As a final point of interest, and to give justification for the use of this advanced

tyre model, the lateral force generated by the simple and linear tyre models are

compared, here for the 00 camber angle condition of the front tyre (Figure 3.6) and

the 500 camber condition of the rear tyre (Figure 3.7). The responses of the linear

tyre model are seen to be a good approximation to more realistic tyre forces over

only a narrow range of sideslip ratios, and outside this narrow range the tyre forces

generated by the linear tyre would not be representative of a real motorcycle tyre.

This advanced tyre model, coded using Maple symbolic software [53] has therefore

been validated against the original model in [60], itself originally validated against

[68], giving confidence that the advanced tyre model employed here gives a realistic

representation of a motorcycle tyre across a broad range of operating conditions for

lateral slip and tyre camber angle. This advanced tyre model was therefore employed
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in modelling the dynamic response of the motorcycle to control inputs subsequently

used in the motorcycle-rider simulations.

3.4 Motorcycle Model

The modelling of the motorcycle itself is considered here. A motorcycle is a ma-

chine formed from many smaller subassemblies and parts, each of which has its own

characteristic dynamic behaviour, and when combined, the response of the whole mo-

torcycle is influenced by the interaction of all subcomponents with each other. For

ultimate accuracy of the dynamic behaviour of the motorcycle, it would be neces-

sary to consider the individual contributions of all such subassemblies. To perform

such a calculation would, however, require extensive numerical calculation, and thus

a simplified motorcycle model was employed here.

The fundamental characteristic response of the motorcycle is dictated by the inter-

action of the principal bodies of the motorcycle and their movement relative to each

other, and so in the interests of computational efficiency, the motorcycle has been

modelled as a simplified four-bodied bicycle. This implies that the motorcycle is rep-

resented to consist of front frame, rear frame, front wheel and rear wheel, without

the inclusion of suspension freedoms. The front frame refers to the front forks, brake

calipers, handlebars and any fixtures that move with the steering, such as lighting as-

semblies or mudguards. The rear frame is taken to represent the combined structural

and geometric properties of the rear chassis structure, engine and drivetrain assem-

bly, seat structure, fuel tank and any other rigidly attached fittings to this combined

structure. The front and rear wheel bodies consist of all rotating wheel parts, namely

the wheel itself, the tyre and all rotating brake components.

This simplified motorcycle model is depicted in Figure 3.4, with a coordinate system as

described in Section 3.2. The front frame attaches to the rear frame via a revolute joint

inclined through the steering inclination angle 'T}, with rotational velocity restrained

by the use of a steering damper. The wheels similarly attach via revolute joints along

their spin axes. Suspension deflections are not accounted for in the model used here,

and hence motions of pitch and heave are not included. In principle, some pitch

motion will result from the geometry of the tyres and steer system whenever the

steer angle is non-zero, and also through deformation of the tyres. In practice, the
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effects of this on the pitch angle of the motorcycle are small, and considered to have

a negligible impact upon the dynamic behaviour of the motorcycle. The wheels are

axi-symmetric, and thus it is not necessary to include the rotation angles of the wheels

as specific system states. The actual rotational angles of the wheels are unimportant;

only the angular velocities are required which can be readily obtained with knowledge

of the forward speed and rolling radius of the tyres. The non-linear characteristics of

the tyre's lateral forces are obtained using the simplified "Magic Formula" approach

presented in [60], and described in Section 3.3.

The geometric and physical properties of the motorcycle are taken from [80]. The

values used for the motorcycle were typical for a contemporary motorcycle at the time

of publication of the referenced paper. The fundamental designs of motorcycles have

not changed dramatically since the publication of the cited paper, and hence use of the

data is still considered valid in modelling the response of a typical motorcycle, and the

model used here is therefore essentially an extension of the original motorcycle model

presented in [80]. Many more advanced motorcycle models have been developed in

the literature [81], consisting of additional flexures of the motorcycle's structure in

particular. However, the object of the work presented in this thesis is concerned with

the modelling of the rider, and so the exact details of the motorcycle model used for

the simulation process are not a primary consideration, provided that the fundamental

response and primary modes of the motorcycle are captured. The motorcycle model

developed in [80] has been used extensively for both academic and non-academic

applications, and can therefore justifiably be used as a reference model on which to

base the development of a rider control strategy that is the goal of this thesis.

3.4.1 Motorcycle Equations of Motion

This section will outline the basic theory that was used to obtain the simplified

motorcycle model's equations of motion.

An array of commercial computer programs are available that are capable of modelling

the dynamic response of physical systems. Popular codes include generic dynamics

programs such as MD Solutions [63] or Virtual.Lab [99], and more specific programs,

for example CarSim [10] and BikeSim [5]. Such programs typically require the def-

inition of the principal structural characteristics of the bodies of the systems and
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information regarding the coupling between the bodies. The programs build up the

complete structure from knowledge of the sub-bodies and their interactions to obtain

the dynamic response of the entire combined assembly.

The approach taken here develops the dynamic response of the motorcycle from funda-

mental mathematical principles. The equations of motion are developed symbolically,

using a symbolic software code Maple [53], and derived using Lagrange's theory. Fun-

damentally, the positions, motions and physical properties of the system's bodies are

defined, and then by consideration of the energy of the system as a function of the

system's degrees of freedom, the equations of motion are obtained.

These equations of motion are initially obtained symbolically, and are then exported

to Matlab [54] where the numerical responses and motion simulation of the motorcycle

are performed. The reasons why the equations are initially developed symbolically

will become clear in subsequent sections of this thesis.

The theory of Lagrange can be broken down into a few fundamental steps. The

first step involves the definition of the physical properties of the motorcycle's main

bodies and the definition of the principal degrees of freedom allowing the energy of

the system, both kinetic and potential, to be obtained. The external forces acting

on the system are then defined, and the instantaneous virtual power of these forces

obtained. The combination of internal energies and the external energies as a result of

external forces are then used to obtain the dynamic response of the entire motorcycle

assembly.

Theory

The Lagrangian method for deriving the equations of motion can be found in many

dynamics textbooks [64, 101]. The method involves calculating the kinetic and poten-

tial energy of a system and using these functions to generate the equations of motion.

Explicitly, for an unforced system the Lagrange's equations are defined by:

(3.3a)

where T is the kinetic energy of the system, U is the potential energy, and q is the

vector containing the degrees of freedom. Extending this to include the influence of
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external forcing on the system, the Lagrange's equations become

(3.3b)

where W is the sum of the virtual powers of any external forcing on the system.

Specifically, these powers can include aerodynamic forces and tyre contact patch

forces.

The kinetic and potential energies of the motorcycle system are broken down into

the individual contributions made by the front and rear frames and the front and

rear wheels. The kinetic energy comes from two sources: a translational component

resulting from linear velocities and a rotational component from angular velocities of

the bodies. The generic linear and angular kinetic energies of an object can be defined

by !mbv2 in a single direction, where mb is the body mass and v is the velocity of

the body, and !Jw2 for a single rotation direction, where I is the object's moment

of inertia and w is the angular velocity of the body. For the more general case of

translation and rotations in a six degrees of freedom system (3 linear, 3 angular),

these expressions extend to !vTmbv, where v is the vector of linear velocities of a

body, and the rotational kinetic energy is defined by !wTlw where w is the vector of

angular velocities of a body and I is the inertia matrix of the body in three dimensions.

Since the body is moving in three-dimensional space, the energy terms should account

for motion in all three dimensions.

The derivatives of the energy terms with respect to the degrees of freedom of the

motorcycle are obtained from the Jacobian matrix of the energies of the motorcycle in

all six directions (3 orthogonal linear directions and 3 orthogonal angular directions)

with the degrees of freedom of the motorcycle system.

In a similar way, the first term in the Lagrange's equations (3.3b) is obtained from

the time derivative of the Jacobian of the kinetic energy terms with respect to the

time derivatives of the motorcycle degrees of freedom.

The virtual powers result from the product of the magnitudes of the forces and

moments, taken in the 3 principal orthogonal directions and the 3 principal orthogonal

rotations, with the velocities of the corresponding points of application of forces and

moments, again in the 3 principal directions and rotations. In this application, these
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are the tyre contact forces, acting at the tyre contact patches.

The motorcycle model considered here has five degrees of freedom, detailed in Section

3.4; longitudinal and lateral displacement of the motorcycle, yaw and roll rotations

of the motorcycle and steer rotation of the front frame relative to the rear frame.

Consequently, the application of Lagrange's equations results in five second-order

equations of motion.

Implementation in Maple

The fundamental principle of the Lagrange's equation has been outlined. Further

details, if required, can readily be obtained from the referenced texts [64, 101]. Here,

the application of the theory using Maple symbolic software [53]will be outlined. To

fully detail every line of code would be both tedious to the reader and an uneconomical

use of space within this thesis, and so only the key inputs and steps required to obtain

the desired equations of motion are presented. While automatic modelling codes are

readily available, the equations of motion were developed in Maple using Lagrange's

theory explicitly in order to retain more complete control of the modelling detail.

This does not therefore represent any significant novelty to the literature; the model

developed will provide a tool for the subsequent work on rider control.

Fundamentally, the coding of Lagrange's theory can be broken down into several

broad processes:

1. Define preliminary vectors and matrices necessary for the calculations.

2. Define the body positions and rotations, and hence linear and angular

velocities.

3. Calculate the total kinetic and potential energies.

4. Calculate all applied forces and velocities of points of application to obtain

total virtual power.

5. Form the Lagrange's equation.

6. Manipulate into the state space format and export to Matlab.
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The preliminary vectors and matrices included the definition of the state vector and

the definition of rotation matrices corresponding to the yaw, roll, steer and front

frame inclination angles. The vector q of the system degrees of freedom, consisting

of global longitudinal x and lateral position y, global yaw angle 1jJ, roll angle <p and

steer angle 0, together with their first and second derivatives were input as

q :- <x, y, psi, phi, delta>;
q_dot :- <dxdt, dydt, dpsidt, dphidt, ddeltadt>;

q_dot_dot :. <d2xdt2, d2ydt2, d2psidt2, d2phidt2, d2del tadt2>;
(3.4)

It should be noted in this instance that the degrees of freedom are not specifically

defined as functions of time, even though they are taken to be so. Similarly, the

derivatives are not expressed as functions of time as far as the computer code is

concerned. During the coding, it was at times necessary to take derivatives with

respect to time t, and sometimes with respect to the states, which are functions of

time themselves. Maple cannot perform differentiation with respect to functions,

only with respect to variables, and so it became necessary during coding to change

definitions of variables between explicit functions of time and independent variables,

for instance substituting a~t) with dxdt and vice versa, so that the derivative of an

expression with respect to the time derivative of x(t), i.e. dxdt, could be taken.

Definitions of the rotation matrices concerning the yaw angle 1jJ, roll angle <p, front

frame inclination angle TJ and steer angle 0 are required. These matrices were used

to orientate the coordinate system as necessary to define the positions of the bodies. .
and positions of key features of the motorcycle in the arbitrary displaced state. Using

as an example the matrix RI, corresponding to a yaw rotation, the matrix and its

transpose are input as

Ri :- «cos(psi(t» I -sin(psi(t» I 0 >,
< sin(psi(t» I cos(psi(t» I 0 >,
< 0 I 0 I 1 »;

trJRi :- transpose(Ri);

(3.5)
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leading to

[

COS(1P(t» -sin(1P(t» 0 1
R1 = sin(1P(t» cOS(1P(t» 0

o 0 1

[

cOS(1P(t» sin(1P(t» 0 1
tr_R1 - -sin(1P(t» cOS(1P(t» 0

001

(3.6)

With the degrees of freedom of the motorcycle and the corresponding rotation matri-

ces defined, the physical dimensions and orientations of the motorcycle assembly can

be fully defined in space. To define the position of a body within a moving coordinate

system it is necessary to fix a rotation convention. By changing the order of rotations

and translations, the final position of a body is changed significantly, as demonstrated

in Figure 3.8, and so a single convention must be used consistently. The convention

used here, in common with the general practice of vehicle dynamics, is yaw rotation

first, followed by pitch rotation then roll rotation. The front frame is then defined by

a rotation for the steer axis inclination followed by the steer rotation itself. For the

application here, suspension deflection of the motorcycle is not permitted, the small

influence of the steering geometry on the pitch of the motorcycle has been neglected,

and hence no pitching motion of the motorcycle is considered.

The following code example defines the location of the front frame mass centre. The

starting point is the origin of the global coordinate system. In the displaced coordinate

system the location of the front frame mass centre can be defined by [32]:

G1 :- <x(t), y(t), 0>

+ R1.«O, rt*tan(phi(t», -rt>

+ R2.«c1, 0, -(h1-rt»

+ (Reta.R3.<e, 0, 0»»;

(3.7)

In this expression the first vector defines the position of the motorcycle's origin within

the global coordinate system (Point a, Figure 3.9). In the second expression, the coor-

dinate system is rotated by the yaw angle using the vector R1, and in this intermediate

coordinate system the intermediate origin is displaced to the centre of the toroidal
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tyre profile (Point b, Figure 3.9). The third expression rotates the coordinate system

by the roll angle (matrix R2), in which a translation moves the coordinate system

to the front frame steering joint (Point c, Figure 3.9). Finally, the last expression

rotates by the front frame inclination angle (matrix Reta), then by the steer angle of

the front frame (matrix R3), followed finally by the location of the front frame mass

centre relative to the front frame steering joint (Point d, Figure 3.9).

In order to calculate the kinetic energy of the motorcycle, it is necessary to know

the velocities of the centres of mass. Having defined the locations in space of these

points, defined now as specific functions of time, it is a simple procedure to obtain the

velocities of the points. These are simply the time-derivatives of the position vectors,

and can be readily obtained using the derivative function diff in Maple:

Gl_dot :- map(diff,Gl.t); (3.8)

In a similar manner, the angular velocities of the bodies are calculated. The individual

angular velocities resulting from yaw, roll and steer were defined earlier, and so the

angular velocity of the bodies is simply the combined effect of all these rotations,

paying specific attention to the order in which the rotations are applied. Using again

the front frame as an example, the angular velocity may be defined as:

omega_l := evalm( Steer...Rate

+ ( tr...R3. tr...Reta.Roll...Rate

+ ( tr...R3.tr-Reta.tr-R2.Yaw..Rate»)

(3.9)

Similar expressions for the rear frame and the wheels are derived. It should be noted

here that the angular velocities of the wheels will be the combination of rotations due

to yaw and roll, plus the contribution of their spin velocities about their spin axes.

The energy expressions necessary in the derivation of the Lagrange's equation can now

be obtained. The kinetic energies of the bodies are comprised of the individual bodies

translational and rotational energies, calculated by !vT mbv and !wTIw respectively.
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For the front frame, this is coded with

T1_Linear := evalm«1/2)*(m1*transpose(G1_dot).G1_dot»;
T1JRotational :- evalm«1/2)*(transpose(omega_1).I1.omega_1»;

(3.10)

where m1 is the mass of the front frame. Similar terms express the kinetic energies of

the rear frame, and the rotational kinetic energy of the wheels.

With regard to the angular velocities of the front and rear wheels, as explained in [80],

the kinetic energy of the wheels needs to be included since they form a substantial

part of the overall vehicle mass. The masses of the front and rear frames includes the

wheels, and so their contribution to the energies of the system by their linear motion

and rotation with the frames is accounted for. However, the wheels have additional

energy due to rotations about their spin axes, and so this must also be accounted for.

Thus, the rotational kinetic energy for the wheels alone, assuming no spin relative to

the frames, is calculated. The rotational kinetic energy with the spin included was

then calculated and subtraction of the former from the later leaves only the rotational

kinetic energy contribution from the wheel spin speed, which is then added to the

rotational kinetic energy of the appropriate frame.

The potential energy of the motorcycle is calculated next, and is simply the sum-

mation of the front and rear energies, with the wheel masses included in the frame

masses. This is obtained from the mass multiplied by gravitational constant 9 and by

the height above ground, which is simply the z-axis component of the body position

vector in three dimensional space:

Potential :- < m1*g*<O I 0 I -1>.G1 + m2*g*<O I 0 I -1>.G2 >;
(3.11)

To form the necessary components of the Lagrange's equations (3.3b), the energy

terms must be differentiated with respect to the state vector q. Again this can be

achieved by taking the Jacobian matrix which can be readily implemented in Maple.

At this point it is necessary to remove any specific definition of variables as functions

of time, such that the energy expressions can be differentiated with respect to the
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states. Applying the jacobian command, the necessary derivative expression of the

kinetic energy is obtained:

dT_dq :-jacobian(Kinetic. q); (3.12)

where q is the vector of the degrees of freedom, as seen earlier. The third term

in (3.3b) is similarly obtained by taking the Jacobian matrix of the potential energy

expression with respect to the state vector.

The first term in (3.3b) requires subtle manipulation of the expressions. As before,

the Jacobian matrix of the kinetic energy term, with specific references to functions of

time replaced, is taken with respect now to the time-derivative of the state vector. To

complete the first term, the time derivative of this new expression must be obtained.

However, at this point the terms in the expression are not specific functions of time,

and so the time derivative of this expression would result in a zero matrix. Thus, the

specific time-dependencies of the terms must first be reinstated, and once done the

time derivative of this new expression can then be sought.

There is also one additional term which is included at this point concerning the

Rayleigh dissipation energy of the steering damper. This energy is calculated from

~Co(a~t))2 where Co is the steer damping coefficient, and again the jacobian func-

tion is used to evaluate the derivatives of this energy with respect to the system

degrees of freedom:

dR_dqdot :- jacobian(Rayleigh.Dissipation. q_dot); (3.13)

The Rayleigh dissipation term is added to the left hand side of equation (3.3b) to

obtain the unforced system dynamic response. To complete the modelling, the effects

of external forcing on the motorcycle must be accounted for. The virtual power is

calculated by the multiplication of the forces by the virtual velocities of the points of

application of the force, both linearly and rotationally as appropriate. The positions

of the points of application are therefore calculated first, in a process very similar to

that used to establish the mass centres of the bodies of the motorcycle (3.7). The

variables within these expressions are given as functions of time, enabling the linear

velocities of the points to be once again obtained by simply taking the derivative of
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the expression with respect to time. The rotations of the points and hence the angular

velocities are obtained in a similar process, and combined with the linear velocities to

form 6 x 1 velocity vectors of the linear and angular velocities, where the order of the

elements is the X-, y- and a-lateral velocities, and X-, y- and z-axis angular velocities.

The last step in calculating the virtual power is to create a vector of the actual

forces and moments acting at the point, with the order of these forces and moments

corresponding to the order of the velocities in the 6 x 1 velocity vector. In the case

of the model used here, this refers only to the external tyre contact patch forces.

The virtual power is then simply the product of the force and moment vector with

the linear and angular velocity vector. By multiplying the velocity vector with the

transpose of the force and moment vector, each velocity element is multiplied by the

corresponding force/moment element to obtain the single total virtual power for that

point. If this point corresponded to the front tyre contact patch, for instance, the

same process would also be required for the velocities, forces, moments and resulting

virtual power of the rear contact patch.

Summating all the virtual power terms relating to the external forces then allows their

inclusion in (3.3b) and hence the formation of the equations of motion for the forced

dynamic response of the motorcycle. This equation will be in terms of all degrees of

freedom and the associated derivatives.

State Space formulation

Thus far, the equations of motion for the motorcycle are expressed as a 5 x 1 vec-

tor of second-order symbolic equations where each element corresponds to each of

the degrees of freedom, and also as a 2 x 1 vector consisting of two first-order equa-

tions relating to the dynamic forces of the front and rear tyres. For the subsequent

numerical operations to model the response of the motorcycle, these equations will

be formed into a combined state space representation. The five second-order equa-

tions will therefore be formed into ten first-order equations, combined with the two

first-order tyre equations to result in twelve first-order equations of motion.
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Fundamentally, the form of a second-order equation of motion for a generic single

degree of freedom system is

(3.14)

which, when extended to the multiple degrees of freedom case, becomes

(3.15)

where the matrices Mb, Cb and Kb are the mass, damping and stiffness matrices of

the dynamic system response, the vector q is the vector of generalised coordinates,

and matrix Ju is the matrix relating the system inputs vector u to the generalised

coordinates of the system.

The first-order state space model is obtained by defining a new state vector, consisting

of the states and their first derivatives:

x= [: 1 (3.16)

Making this substitution, the second order system (3.15) is converted to a first-order

system by forming the standard state space model:

(3.17)

For the problem here, rather than forming individually the matrices Mb, Cb and Kb,

the Jacobian matrix approach can be taken to obtain the equivalent of these more

readily. Thus the Jacobian matrix of the 4 x 1 vector of the equations of motion with

respect to the states vector [qT i{lT is taken, resulting in a Jacobian matrix, termed

Ja, equivalent in form to [Kb Cbl. Similarly, the Jacobian matrix of the equations of

motion with respect to the input vector u can be taken, to give Ju•

To complete the formation of the state space matrix form, the matrix M, is required.

This is again readily obtained by taking the Jacobian matrix of the 5 x 1 equations
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of motion with respect to the second-order terms of the generalised coordinates, q.
Multiplying the negative inverse of this matrix with the previous Jacobian results in

_M;lJ8, a matrix form equivalent to [_M;lKb -M;lCb]. The complete state space

model can then be formed as

(3.18)

For the case here, the complete problem consists of the five second-order equations of

motion and two first-order equations relating to the tyre lateral force responses, and

these equations must be solved jointly.

The two additional states relate to the front and rear dynamic lateral tyre forces, and

are given as

f= [~]
(3.19)

Thus, when combined with the previous zero- and first-order terms of the generalised

coordinates, the extended state space vector of the motorcycle becomes

(3.20)

The state space model of the combined first- and second-order equations of motion

can be solved in the same manner as previously. The Jacobian matrix JII of the

second-order equations of motion is taken with respect to the now extended state

vector Xv, and similarly the Jacobian matrix of the first-order tyre forces equations

of motion is taken with respect to Xv to give JI
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Thus, the complete state space representation of the motorcycle model is achieved

with

[~]=
05x7 I5x5

[ s, ]
[ M;lJs ]

(3.21)

which is then equivalent to the continuous-time dynamic response model of the mo-

torcycle,

(3.22)

where Xv is the vector of vehicle states, Av is the state space dynamic response matrix,

B, is the state space input response vector and u is the actual vehicle control input,

all in continuous-time.

By modelling the process in this symbolic way, the non-linearity of the equations

of motion is retained. The linearisation only occurs once the numerical values of

the motorcycle's states are input, which, in subsequent motion simulation, will be

conducted at each discrete step of the simulation. Thus, at each simulation step, a

new valid linear state space model will be obtained.

Obtaining the symbolic model using the steps outlined above was not entirely straight-

forward however. For the mass matrix Ms, the inverse is required, and due to the

complexity of the equations of motion, the expressions contains many thousands of

terms. To find the symbolic inverse of the mass matrix is therefore an incredibly

demanding problem from a computational perspective. Consequently, it was found

necessary to apply some simplification procedures to assist with this problem.

Specifically, before forming the mass matrix Mb, a vector of the second order terms

from the equations of motion vector was extracted. The expand operation in Maple

was used first, in order to expand any compound or embedded expressions. The

combine operation was used next, with the trigonometric extension trig used, to

combine together the trigonometric expressions and thus simplify the number of terms

within each element of the vector. The final operation consisted of a Taylor series

expansion, to the fourth-order, to further reduce the size of the second-order ex-
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pressions, before the Jacobian operation was used on this new vector to obtain the

simplified mass matrix Mb. With the reduced size of the elements in the mass matrix,

obtaining the inverse of the matrix as required became a task that was achievable

within the computational abilities of the software [53] and personal computer used.

Finally, the necessary expressions are exported to Matlab [54], where the numerical

operations were conducted to calculate the system's response and hence validate the

model generated. Within Matlab, the numerical values for the states, which vary

during the simulation, were substituted. As the values would be constantly changing,

then obtaining the state space equations symbolically meant that the complicated

operation of solving the Lagrange's equations was only required once. The numerical

forms could then readily be obtained by substitution of the appropriate state values.

The differential equations resulting from the Lagrange's equations are of a contin-

uous nature, having the form of (3.22). While a motorcycle rider would almost

certainly operate in a continuous-time manner, for the purpose of modelling what

could be a random road path a discrete-time approach brings useful simplification to

the modelling process. Thus, the symbolic continuous-time state space matrices were

exported to Matlab [54], the numeric values substituted, and the state space model

then converted to discrete-time using the function command c2dm built in to Matlab

to convert the state space model from continuous- to discrete-time, thus adopting the

form

(3.23)

where x,(k) is the vector of vehicle states, A, (k) is the state space dynamic response

matrix, Bv(k) is the state space input response vector and u(k) is the actual vehicle

control input, all at the kth step. The time-step set for this discretisation was to
5, therefore able to capture oscillations with frequencies up to 25 Hz. The objective

of the work was not to investigate the vibrational characteristics of the motorcy-

cle, but to develop a model on which to apply a control strategy. The omission of

higher-frequency modes brought about by this frequency threshold was not therefore

considered important in the context of the work.
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3.4.2 Validation of the Equations of Motion

The model generated was based on a simplified motorcycle model using the applica-

tion of well-proven principles of Lagrange's theory. However, the execution of these

principles, using symbolic software programming, leaves open the potential for errors

to creep in, both in the way that the computer code may deal with the mathemat-

ical procedures required, and from the possibility for programming errors to have

arisen during the model generation. Thus it becomes necessary to ensure that the

behaviour of these mathematical models is consistent with expectations, and that

any subsequent modelling work conducted will have an accurate base from which to

build.

The simplified motorcycle model used (Figure 3.4) was taken from [801. This work

identified the principal vibrational modes of the motorcycle, showing both the fre-

quency and damping of these modes across the typical speed range of the motorcycle.

The starting point for the modelling was therefore to replicate the model in [80], em-

ploying initially the simple linear tyre model, as in the original work. To compare the

model here with the original model by Sharp, the stability modes of the motorcycle

were assessed by obtaining the damping and, where appropriate, the frequencies of

the principal vibration modes, namely for the wobble, weave and capsize modes orig-

inally identified by Sharp. These damping ratios and frequencies are obtained from

the eigenvalues of Av in the state space equations of motion of the motorcycle.

The real parts of the eigenvalues, representing the damping ratios of the modes, are

presented in Figure 3.10. With the advances in computing power since the original

work of Sharp, the analysis of the modes over the full speed range with a high reso-

lution can readily be obtained quickly using even a modest personal computer. The

results in Figure 3.10 therefore cover the speed range from 2 m/s up to 50 m/s at a

resolution of 0.1 m/s, enabling the behaviour of the results to be examined in detail.

The response closely resembles the original results in [80], with the capsize, weave

and wobble modes readily identified. The root locus plot of the eigenvalues is shown

in Figure 3.11. This also replicates the results of Sharp's model, presented in [28].

The capsize mode appears mildly stable at low speeds; the real part of the eigenvalue

at 2 m/s is approximately -3.5 and is non-oscillatory. As the speed increases the

mode becomes marginally unstable at a speed of approximately 10 m/s and above,
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remaining of the order of 0.08 for speeds from 10 m/s and upwards, but is easily

stabilised by the rider's control.

The weave mode is mildly unstable at low speed, with real part 2.6 and imaginary

part of 1.3 rad/s, The imaginary parts of the modes, indicative of the oscillation

frequencies, are shown in Figure 3.11. The weave mode becomes stable at approxi-

mately 6 mis, with increasing stability reaching a maximum at just over 15 m/s of

-6.6 with frequency of approximately 11.6 rad/s, before decaying gradually as the

speed increases, but remaining still stable.

The wobble mode is stable over the full speed range considered. At 2 m/s the real

part of the eigenvalue corresponding to this mode is -5.0 and with frequency of

56.0 rad/s. As the speed increases, the real part reaches a minimum of -6.9 with

corresponding frequency of approximately 55.2 rad/s at 13 m/so The stability of the

mode decreases almost linearly as the speed increases further, with a stability margin

of -0.8 and frequency 57.9 rad/s at 50 m/so

Confirmation of these principal modes is obtained by components of the modal plots.

Figures 3.12, 3.13 and 3.14 show the magnitudes of the eigenvectors corresponding

to the three key modes of capsize, wobble and weave at a forward speed of 25 m/s

respectively.

At the forward speed of 25 mis, the capsize mode (Figure 3.12) is marginally stable

and non-oscillatory. The mode results in small angles of roll and steer, and greater

levels of yaw angle as the motorcycle gradually veers off to one side from the straight

running as a result of this stability mode. Lateral tyre forces and lateral accelerations

are low.

The wobble mode (Figure 3.13) is associated with significant oscillation of the front

frame relative to the rear frame, while the rear frame remains relatively unaffected,

and the motorcycle continues along a straight path, resulting in significant front tyre

forces, steer angles and steer rates. Any changes to the yaw and roll angles are

therefore small and with rear tyre forces low, features which are all apparent in the

modal plot.

The weave mode (Figure 3.14) consists of oscillations of both the front and rear

frames in anti-phase, leading to significant variation of both roll and yaw states as
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the motorcycle performs a slalom-like progress along a straight path, and significant

lateral forces from both the front and rear tyres. The rear tyre force is naturally

larger due to the rear weight bias of the motorcycle. The variations in the motorcycle

states expected from this mode are apparent in the modal plot.

The results here all correspond very closely to the original results in [80], giving

confidence in the correct modelling of the motorcycle when employing the simple tyre

model. Having confirmed the correct behaviour of the motorcycle model with the

simple tyre, the model was extended by the application of the advanced tyre model.

3.4.3 Validation of the Advanced Tyre Motorcycle Model

With confidence in the programming of the motorcycle model using the simple tyre

model and of the coding of the advanced tyre model, the two elements were combined

together.

Again, the stability of the model in the speed range 2 to 50 m/s was analysed by

considering the eigenvalues of the state space model of the motorcycle's equations of

motion, presented in Figure 3.15. The frequency response of the motorcycle model is

shown by the root locus plot (Figure 3.16). The identified modes are again confirmed

by modal analysis (Figures 3.17, 3.18, 3.19). It is apparent that the results of the

eigenvalue analysis differ from the results when the simple tyre model was employed,

however the basic traits of the modes are still identifiable and are not dissimilar.

The capsize mode is relatively unchanged with the introduction of the advanced tyre

model. The mode shows greater stability at lower speed, with an eigenvalue real part

of -4.4 at 2 mis, compared with -3.5 when employing the simple tyre model. Again,

the mode becomes mildly unstable at approximately 10 m/so

The wobble mode can again be identified, showing a similar trend to the simple tyre

model, but with notable differences. This mode was seen to be stable over the full

speed range when the simple tyre model was employed, but with the introduction

of the advanced tyre model it is unstable at low speeds, rapidly becoming stable as

the speed is increased, crossing into the stable range at approximately 6 mis, then

becoming unstable again at approximately 39 m/so Although the simple tyre model

wobble mode did not become unstable again over the speed range considered, it is
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apparent from the stability plot (Figure 3.10) that this seems likely to happen at

speeds not significantly greater than 50 m/so The frequency of this oscillatory mode

with the advanced tyre model ranges from 50.6 rad/s at 2 mis, to 49.9 rad/s at the

peak stability at 15 mis, to 54.0 rad/s at 50 m/so

The behaviour of the weave mode is not dissimilar when the advanced tyre model is

employed, though the changes to the stability of the mode are more dramatic over

the speed range than with the simple tyre model. The mode is again unstable at

low speed, with eigenvalue real part 2.6 and frequency 1.6 rad/s at 2 m/so The

mode becomes stable at just over 5 mis, with peak stability of the mode at 12 mis,

with corresponding frequency of 12.7 rad/s, The stability of the mode decreases

again to reach a stable value of approximately -0.7 with a corresponding frequency

of approximately 22.0 rad/s.

Comparing the capsize mode for the simple and advanced tyre models, it is seen that

the advanced tyre model shows slightly greater magnitude of the lateral state and

slightly lower roll angle state, suggesting slightly larger lateral tyre force generation

with roll.

Although the model now presented cannot directly be validated against previous lit-

erature, both the original motorcycle model with the simple tyre and the independent

advanced tyre model have been separately validated against expected behaviour. The

combination of the two would therefore also be expected to show correct representa-

tion of the real behaviour of a motorcycle.

3.5 Motorcycle Model Conclusions

This chapter has presented the mathematical model of the motorcycle dynamics that

will subsequently be combined with the rider control model. The simplified motorcy-

cle model and the theory used to generate the equations of motion has been presented.

The theory for both a simple and an advanced tyre model have also been shown, with

the motivation for the advanced model discussed.

Validation of the advanced tyre model was carried out against the original source of

the model [60) to confirm the correct implementation of the procedure.
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The much-cited model from [80], employing the simple tyre model, was reproduced

and validated to ensure initially that the mathematical procedure used was correct.

With confidence of the correct response, the validated advanced tyre model was in-

corporated into the motorcycle model, and the response of the new hybrid model

analysed. The net effect of this analysis suggested that, while the dynamic response

of the motorcycle model was changed by the introduction of the advanced tyre model,

the response is fundamentally changed only subtly from the simple tyre model ver-

sion. Thus, the motorcycle model generated here utilising the advanced tyre method

can justifiably be employed with confidence that the response of the model is suitably

representative of a real motorcycle.

Subsequent chapters will present the theory of the rider model and the control strate-

gies that will be employed for this task. The suitability of the control strategies will

be assessed by their ability to guide and control a motorcycle model, which will be

the model presented here. The results shown in this chapter give confidence of the

correct dynamic response of the model, and so the control actions to be generated

will therefore be based upon an accurate model of the motorcycle's behaviour, and

this control can be applied to the model in the knowledge that the subsequent re-

sponse will be consistent with what may be expected for a real motorcycle and rider

combination.
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3.6 Figures
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Figure 3.1: SAE coordinate system, motorcycle image from [34]
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x

Figure 3.2: ISO coordinate system, motorcycle image from [34]
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Figure 3.3: Normalised lateral tyre forces with slip ratio and wheel camber, simple

tyre model, parameter values as in Appendix A

Figure 3.4: Simplified 'bicycle' model of the motorcycle
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Figure 3.5: Normalised lateral tyre forces with slip ratio and wheel camber, advanced

tyre model, parameter values as in Appendix A
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Figure 3.6: Normalised lateral tyre forces comparison, 0° wheel camber, front tyre,

where for small slip angles Slat and a are approximately equal
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Figure 3.7: Normalised lateral tyre forces comparison, 500 wheel camber, rear tyre,

where for small slip angles Slat and a are approximately equal

Figure 3.8: Difference in final orientation followingtranslation, translation, rotation

(left), and translation, rotation, translation (right)
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Figure 3.9: Vectorial definition of front frame mass centre in displaced coordinates
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Figure 3.10: Real parts of the system matrix eigenvalues, simple tyre motorcycle

model
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Figure 3.11: Root locus plot of the system matrix eigenvalues, simple tyre motorcycle

model
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Figure 3.12: Capsize mode, simple tyre. Eigenvalue = 0.079733
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Figure 3.13: Wobble mode, simple tyre. Eigenvalue = -5.2281 ± 54.061i
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Figure 3.14: Weave mode, simple tyre. Eigenvalue = -2.8095 ± 18.067i
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Figure 3.15: Real parts of the system matrix eigenvalues, advanced tyre motorcycle

model
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Figure 3.16: Root locus plot of the system matrix eigenvalues, advanced tyre motor-

cycle model
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Figure 3.17: Capsize mode, advanced tyre. Eigenvalue = 0.060997
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Figure 3.18: Wobble mode, advanced tyre. Eigenvalue = -2.6314 ± 49.419i
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Figure 3.19: Weave mode, advanced tyre. Eigenvalue = -1.0804 ± 19.934i



Chapter 4

Rider Preview

4.1 Introduction

A human rider operates by observing the road ahead and taking in information about

the motorcycle's condition. Knowledge of the road information gives him a path to

follow, and knowledge of the motorcycle's condition then informs him of his position

relative to the intended path, the lean angle, steer angle, yaw angle and associated

rates. This information is used to decide what control input to apply in order to

achieve the task of following the intended path and control the motorcycle.

It is therefore logical that a simulation controller should replicate this process and

thus take in information pertaining to both the road information and the motorcycle

states. Thus, the combined motorcycle-rider simulation model is formed to combine

the dynamic response model of the motorcycle to internal and external forcing with

knowledge of the approaching road path, updated with progress along the road.

A fundamental consideration when undertaking the modelling of any dynamic system

of bodies is the selection of an appropriate coordinate system. In principle, the choice

of coordinate system should have no effect on the outcome of a system response,

provided that dimensions, forces and motions of the bodies are modelled correctly

and consistently within the selected coordinate system. With careful selection of

a coordinate system, however, the dynamic modelling can, in some cases, be made

simpler and more appropriate to the system being represented.

69
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For the case of modelling vehicle drivers, the choice of coordinate system is an inter-

esting question. On the one hand, the task being undertaken by a simulated driver is

to follow a chosen road path. The road path is a fixed, global feature, and so it may

seem appropriate to model the motorcycle and road preview using global coordinates.

This will make the definition of the road path simple and straightforward, and at any

time during a simulation the position of the vehicle relative to the globally fixed road

path, and thus the performance of the driver control model, can be determined easily.

On the other hand, the task is to simulate the driver's actions. The driver moves

within the global coordinates, without necessarily having knowledge of the layout

of the road path in global coordinates. It may therefore seem more appropriate to

consider the task from the driver's moving perspective and thus consider the motor-

cycle states and road preview path relative to the driver at all times. This becomes

a more complicated approach, since throughout the simulation the road information

interpreted by the driver must be continuously redefined into the moving coordinate

system, and in addition the global position of the vehicle must be obtained in order

to assess the performance of the controller in achieving the overall global path follow-

ing task. Although the latter approach appears the more complicated, it intuitively

seems the more correct method of modelling a vehicle driver.

This chapter will outline the steps necessary to generate a discrete-time state space

vehicle model with road preview operating in both a fixed, global coordinate system,

and a moving, vehicle-fixed local coordinate system. It will be seen in subsequent

analysis of controller methods that the local approach can, in certain circumstances,

be necessary for correct performance of the controller.

4.2 Road Preview Shift Register

4.2.1 Global Coordinates Preview

Initially, the rider model operating in global coordinates is considered. This method

is the relatively more simple approach and will outline the fundamental principles

of the shift-register process used to update the rider's preview information, initially

presented in [98] and also later employed in [94].
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In driving a vehicle or riding a motorcycle, a driver will base his control actions on

knowledge of the vehicle conditions and the requirements of the task, in this case

following the road path he can see. It is therefore logical that the system state vector

z(k) should comprise information pertaining to both the vehicle states and the road

states. The vehicle state vector xv(k) is therefore augmented by the addition of the

vector of road preview information, yr(k). [98] and [94] included only the lateral

deviation of the road path, calculating the yaw angles trigonometrically. Here, the

road preview consists of both the lateral position and yaw angle of previewed discrete

road information points in global coordinates, such that

z(k) = [ xv(k) 1
Yr(k)

(4.1a)

with

(4.1b)

where Yr, (k) and 1/Jr,(k) are the lateral positions and yaw angles of the ith road preview

point at the kth simulation iteration step (Figure 4.1). The states in the vehicle state

vector Xv are here defined in global coordinates.

The rider's road information is therefore stored as lateral positions of the road and

the yaw angle of the road at discrete points along the path, and at the start of the

simulation the first Np road information points are loaded, where Np is the number

of preview points selected.

As the motorcycle progresses along the road in the simulated motion, the road infor-

mation must be updated in light of the rider's new viewpoint relative to the road,

and the new information that has come into his limited preview horizon at the for-

ward limit of this horizon. The spacing of the discrete road points in the initial road

preview vector Yr is such that following one iteration step the road information point

Yrl is the road information point Yrl at the previous iteration step, and likewise the

previous 1/Jrl becomes the new v«. as depicted in Figure 4.2. Here, the dots represent

the discrete points of the road path. Filled dots imply that these road points are

stored in the rider model's road preview information vector Yr' At each step, as the

road preview is updated the 'old' values of Yrl and 1/Jrl are discarded, such that at

any simulation iteration step k the rider model has only the preview information for
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the Np road points ahead of him at that step.

A simple shift-register matrix can therefore be used that will perform this change in

the vector Yr, such that all the road information is moved up by one position in the

vector Yr with each successive discrete iteration step of the motorcycle simulation. At

each step, the previous road information Yrl and v-. are discarded, and the new road

information point YrNp and 1/JrNp must be introduced to the vector Yr' The process is

represented by a discrete-time state space expression, formed as

Yr(k + 1) = ApYr(k) +BpYrn(k) (4.2a)

where
0 1m 0 0 0

0 0 1m 0 0

0 0 0 1m 0

Ap= 0 0 0 0 0 (4.2b)

0 0 0 0 1m
0 0 0 0 0

(NpmxN"m)

0

0

0
Bp= (4.2c)

0

(Npmxm)

Yrn = [
YrNP+l(k)"]

1/JrNp+l (k)
(4.2d)

and m is the number of parameters in each discrete road preview point, in this case 2.

The updating of the road preview points in a global coordinate system is a relatively

straight-forward process, since the numerical values of the global coordinates do not

change with the motion of the motorcycle, only their location within the road preview

information vector will need changing.
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Thus, both the motorcycle dynamics model (3.23) and the rider's road preview in-

formation (4.2) are now represented by simple discrete-time state space models. In

line with the aim to form a single combined motorcycle-preview representation of the

riding task, these can now be readily formed into a simple combined rider-preview

state space model having the following structure:

[
xv(k + 1) 1= [AV(k) 0 1 [XV(k) 1 + [ Bv(k) 1 u(k) + [ 0 1Yrn(k)
yr(k + 1) 0 Ap Yr(k) 0 Bp

(4.3)

The states of a combined motorcycle-rider model should include both the information

the rider has of the vehicle conditions and also of the road conditions, and the com-

bination therefore of both the vehicle state space model and the road preview state

space model is a logical and justified approach. The control that the rider applies

will be based on both vehicle and road information, and so a control strategy will

be developed in order to achieve this condition. This was the approach presented in

Sharp [94].

Controller gains will subsequently be calculated that are applied to the states of both

vehicle and road preview, thus developing a realistic representation of the control

actions of a motorcycle rider.

4.2.2 Local Coordinates Preview

The modelling of the rider's preview in global coordinates, taken from [94], is an

elegant and simple way of updating the rider's visual preview. However, it will be

seen that it can at times be advantageous to represent the rider's preview in a local

coordinate system, and thus the combined rider-preview model will now be converted

to operate in a vehicle-fixed coordinate system. It is suggested that this representation

of the combined motorcycle-rider system is a more accurate assessment of the manner

in which a rider would operate. A similar observation was made by Cole et al.

[11], and necessary modelling modifications to a driver preview model were made to

accomplish the task. The goal here is the same, though the details of the process are

subtly different. Fundamentally, the processes required to achieve the rider-preview

model in vehicle-fixed coordinates are not dissimilar to the globally fixed coordinates,
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though the details of the process differ.

It should be noted here that the following theory and subsequent simulations relate to

a path which is close to straight running, such that small angle theories are assumed

without significant loss of accuracy. To extend to a more general model, the x-

coordinate of the motorcycle would also be required as a generalised coordinate in

the road preview information.

Previously, the motorcycle state vector was combined with the vector of previewed

road information to generate the combined motorcycle-preview vector (4.1a). If the

motorcycle is set to start from the global origin, then the initial local road preview

information is the same as the initial global road preview information. For subsequent

iterations, the values Yri(k) and 'lfJri(k) for i = 1 ... Np in the road preview vector and

the motorcycle's state vector xv(k) will be replaced by the equivalent information in

local coordinates, Le.

z(k) = [ xl(k) 1
Yl(k)

(4.4a)

with

(4.4b)

The order of the elements in the state vector Xl (k) is unchanged compared with xv(k).

However, the states in Xl are now defined relative to the moving coordinate system.

The state space model remains essentially the same, but now at each step of the

simulation the lateral position and yaw angle states are reset to zero when the new

local coordinate system is defined with each iteration step. The steer and roll angles

are unchanged.

In the global coordinates system, the road preview information was updated by a

simple shift register process (4.2). It is desirable if possible to retain this simple

structure, but modify it in such a way that the state vector gives the road preview

information in local rather than global coordinates and updates it accordingly.

At the kth step, the rider has preview of Np points ahead of him, defined in his local

coordinate frame at step k. As the motorcycle advances one step to k + 1, the road

preview information must be updated to account for his motion and defined in the
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new local coordinate frame at k + 1.

From step k to step k + 1, the local coordinates frame will move both laterally and as

a rotation due to yaw of the motorcycle. There is also longitudinal motion, accounted

for by the shifting of the road preview information in the preview vector. Thus, the

shift-register process must move the road preview information in the preview vector

as before, but also take account of the change in the preview information on account

of the lateral and yaw shifts of the coordinate system with each successive simulation

step.

Figure 4.3 shows a diagrammatic representation of the road preview information

being updated from step k to k + 1. When the motorcycle is at the origin of the

local coordinates system for step k, both the yaw angle and lateral position are zero

in the local coordinates. In the coordinate system of step k, the new lateral position

and yaw angle over the step k to k + 1 are defined as Yn(k) and 'l/Jn(k). When the

motorcycle has moved to step k + 1, the motorcycle lateral position and yaw angle

will be reset to zero, being then at the origin of the local coordinate frame at k + 1.

Thus, the preview information of the ith preview point for the (k + 1)th step (which

was the (i + 1)th point at the step k) can be calculated as

YI. (k + 1) = YlH1 (k) - Yn(k) - 'l/Jn(k)di

'l/Jl;(k + 1) = 'l/JIHl (k) - 'l/Jn{k)
(4.5)

where di = (i - 1)vt, where v is the forward speed, assumed constant, t is the discrete

time step, and hence (vt) is the distance travelled in one iteration step.

The equivalent expressions for the global coordinate system were

Yr; (k + 1) = Yr;+1 (k)

'l/Jr;{k+ 1) = 'l/JrHl{k)
(4.6)

Thus, the aim is to modify the state space representation of the combined motorcycle-

preview model to perform this calculation for all the previewed road information

points and thus modify the shift-register to operate in local coordinates.

The vehicle state vector already includes both the lateral displacement and yaw angles

of the motorcycle, and so the obvious way in which to achieve this would be a simple
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modification to the lower part of the state space matrix A to use these values and

hence modify the road preview. This could be achieved with

[
Xl (k + 1) ] [ s; (k) 0] [Xl (k) ]
YI(k + 1) = Al(k) Ap YI(k)

The states Yn(k) and tPn(k) are calculated by the discrete-time state space model over

(4.7a)

the iteration step from k to k + 1. Strictly, they should perhaps be defined as terms

at k + 1, but defining them as terms at k avoids the confusion as to which reference

frame they are in. For confirmation, Yn(k) and tPn(k) are the lateral displacement

and yaw angle of the motorcycle achieved over the step k to k +1, but in the reference

frame of step k, before the states are reset to local values (zero) in the new local frame

at k + 1. The matrix Al (k) that will update the local road preview in accordance

with (4.5) and for j = 1, ..,n, where n is the number of vehicle states, is

AI(k) =

-Av(k)(1,j)

-Av(k)(2,j)

-Av(k)(I,j) - vtAv(k)(2,j)

-Av(k)(2,j)

-Av(k)(I,j) - (Np - 2)vtAv(k)(2,j)

-Av(k)(2,j)

-Av(k)(I,j) - (Np - 1)vtAv(k)(2,j)

-Av(k)(2,j)

(4.7b)

Thus Av(k)(I,j) and Av(k)(2,j) refer to the rows in the Av(k) matrix calculating

the lateral position (row 1) and yaw angle (row 2) respectively. The matrix Ap

is unchanged. This then correctly updates the road preview information in local

coordinates following one iterative vehicle step to achieve the structure of (4.5).

Following the iteration step, the vehicle states relating to the vehicle position must

then be reset in local coordinates, and are therefore set to zero. This refers only

to the lateral position and yaw angle states of the motorcycle; all other states (roll

angle, steer angle, tyre forces and velocities) must not be reset. This does not imply

that the corresponding rows of the state space matrices are also zero: the elements

in these rows consists of terms relating to all the generalised coordinates, not all of
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which are set to zero.

To complete the iteration step, the new road information point as a result of the

rider's forward motion must be included at the forward limit of his preview horizon.

In the same manner that the information in the combined vehicle-state vector is

modified, the new information point must also be converted to the new coordinate

system.

The preview points within the rider's preview are, with each successive iteration step,

converted from one set of local coordinates to the new coordinate system and need

only be adjusted to account for the changes in lateral position and yaw angle over

that iteration step. The new preview information fed into the rider's preview at the

limit of the horizon must however be converted from the global coordinates to the

new local coordinate system. This requires a similar calculation to that employed on

the rest of the preview information, but making use of the global lateral position and

global yaw angle of the motorcycle in the adjustment made to the road information.

Assuming that the trajectory is close to straight running such that small angle theory

can be assumed without significant loss of accuracy, the new global lateral position

Yg and yaw angle 1/Jg of the motorcycle at the step k + 1 can be achieved from the

values at k, i.e. Yg{k), plus the change in the local values over the iteration step k to

k + 1 which, as before, are termed Yl{k) and 1/J1{k). Strictly, they are the state values

when the motorcycle is at the position k + 1, but in the reference frame of k, before

they are reset to zero again in the new local coordinate frame at step k + 1 (Figure

4.4), such that

Yg{k + 1) = Yl{k) + Yg{k) + 1/Jg{k)vt

1/Jg{k + 1) = 1/J1{k) + 1/Jg{k)
(4.8)

Thus, the new preview information point fed in to the rider's preview at the limit of

the horizon at the step k + 1 must be transferred from the global coordinates to the

local coordinates at the step k + 1 (Figure 4.5), achieved with

= [ YrNp (k + 1) - Yg{k + 1) - vTp1/Jg{k + 1) 1
1/JrNp (k + 1) -1/Jg{k + 1)

(4.9a)



CHAPTER 4: RIDER PREVIEW 78

which, by substitution of (4.8), results in

[
YINp(k+1) 1 = [YrNP(k+1)-{Yh(k+1)+yg(k)}-Npvt{1/Jh(k+1)+1/Jg(k)} 1
1/JZNp(k + 1) 1/JrNp(k + 1) - {1/Jh(k + 1) + 1/Jg(k)}

(4.9b)

The global position and yaw angles are appended onto the end of the rider-preview

state vector, such that

[

xv(k) ]
yz(k) = [Y(k) 1/J(k) Yl1 (k) 1/Jh(k) ... YINp(k) 1/JINp(k) Yg(k)

yik)
(4.9c)

and thus the complete discrete-time matrix structure for operating in local coordinates

is achieved with

o ] [xv (k)] [BV (k) ] [ 0 ]
An Yl(k) + 0 u(k)+ Bn Yrn(k)

1m yy(k) 0 0
(4.10a)

where Av(k) is the vehicle discrete-time dynamics matrix, Bv(k) is the discrete-time

dynamics input vector. Matrices Al(k) and Ap(k) are as defined previously, and,

with j = 1, .. , n as before,

0 0

0 0

0 0

0 0

An= (4.10b)

0 0

0 0

-1 -vNpt

0 -1
(Npmxm)
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Ag(k) = [ Av(k)(l,j) + NpvtAv(k)(2,j) ]
Av(k)(2,j) ()mxn

(4.10c)

o 0 0 0
o 0 0 0

000 1
o 0 1 0

(4.10d)

4.3 Rider Preview Conclusions

This chapter has covered the detail regarding the rider's road preview, and the manner

in which it is formulated into a discrete-time state space model in line with the

motorcycle dynamics (Chapter 3). The theory of this shift-register process and the

combination with a vehicle dynamics model was detailed in [98] and considered the

global coordinates system. The inputs to the combined motorcycle-rider system

considered here consist of the road information and the rider's steer torque control

input.

The steer torque control input will be determined by the use of a control strategy,

representing the control process of the motorcycle rider. Two control theories will be

analysed; optimal control, covered in Chapter 5, and predictive control, detailed in

Chapter 6. Thus, the combined motorcycle-preview model presented in this chap-

ter will be the platform on which the two control strategies will be modelled and

evaluated.

The rider's road preview has also been presented in a local coordinates form. A similar

local-coordinates approach was taken in [11], where the road preview information

was retained in a global coordinates system, but converted to local coordinates when

being used to calculate the control inputs. Thus, the approach used here, for which

the road information itself is in local coordinates, represents a departure from the

previous literature.

The majority of the modelling will be conducted in a global coordinates system, as
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this represents the simpler of the two approaches. In principle the choice of coordi-

nate system should have no effect on the performance of the system, provided that

any measurements or calculations made are consistent with the choice of coordinate

system. However, it will be seen in Chapter 5 that the use of a local coordinates

road preview system can have significant benefits to the path following accuracy of a

limited-preview optimal control strategy due to assumptions made in the modelling

of the controller, and so the inclusion of a local coordinates model is included here

for subsequent use.
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4.4 Figures

i=1

road path

y -motorcycle

Figure 4.1: Road preview information in discrete steps for Np = 6

step 1

road path

.. motorcycle

step 2

..
step 3

..
Figure 4.2: Update of road preview information in discrete steps for Np = 6
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i+1 in frame (k),
iin frame (k+1)

~---------------------------------------~
Figure 4.3: Update of road preview in local coordinates

- _.

~----------~----------------------------------------~~
Figure 4.4: Update of motorcycle global position when moving one step ahead in

reference frame of step k using a local coordinates approach
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~~:-~------.
~----------------~--------------------------~~

~(k+l)

Figure 4.5: Conversion of new preview point information from global to local coordi-

nates



Chapter 5

Optimal Control Rider Model

5.1 Introduction

The application of optimal control techniques is widespread in the field of control

engineering and for good reason. Optimal control is a control strategy capable of

balancing a number of performance requirements in order to generate a system input

that will strike the best balance between the often conflicting requirements of the

controlled system.

Typically, an optimal control technique can be used to balance the requirements of sys-

tem accuracy against control effort required. These two factors commonly act against

each other, with more accurate control requiring a greater control force. Weighting

parameters are applied to the output and input variables to permit tuning of the

control system, enabling the controller to be biased towards high performance ac-

curacy or conversely to minimise the control inputs. Furthermore, if a number of

performance parameters are present, the relative importance of these can be tuned

using the weighting factors, and likewise for multiple control inputs.

These features make optimal control a suitable approach for the modelling of a vehicle

driver. A vehicle driver has broadly two choices. On the one hand, he can follow

the road path very accurately, though this may be at a high cost with regard to

his steer control inputs. Conversely, he may elect to cut corners of the road path,

simplifying his control inputs but at a cost to the accuracy of his path following. Thus,

the optimal control strategy for this application will aim to balance path following

84
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accuracy against steer effort input.

The chapter will begin by introducing the theory of the optimal control approach,

including both the generation of the cost function and associated relevance to the con-

trol problem, and how the optimal controller gains are calculated in order to provide

the theoretically optimal control input. An extensive parameter study is conducted

to extend the work of Sharp [94] and to obtain a fuller insight into the behaviour

and suitability of the optimal control approach for a range of situations, including

variations of the preview horizon length, the forward speed and the cost function

error weighting parameters. The results that are presented will form a benchmark

against which the predictive control approach, to be covered in Chapter 6, can be

compared. At the time of writing the predictive control approach has not specifically

been applied to the modelling of a motorcycle rider, and will therefore form the main

area of interest in this thesis. The direct comparisons between the optimal control

approach presented in this chapter, and the predictive control approach, detailed in

Chapter 6, will be drawn in Chapter 1, and will ultimately aim to determine the more

effective control strategy for modelling a motorcycle rider.

5.2 Optimal Control Theory

An optimal controller is a mathematical means of generating a controlling input to a

system that will balance the requirements of system accuracy against control effort

input. This balance is achieved by generating a cost function, consisting of accuracy

and input effort components, which is to be minimised by the controller. Weighting

factors applied to both the output and input variables allow the contribution in

the cost function of the individual elements to be varied, thus affecting the relative

contribution of output and input variables to the overall cost. Consequently, a greater

bias can be applied to inputs or outputs with appropriate selection of weighting

parameters.

This chapter begins by presenting the optimal control theory for an arbitrary dynamic

system. The specific application to the motorcycle riding task will be detailed in

Section 5.2.3.

For a general discrete-time system at the kth iteration step with states x(k) and
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control input u(k), the calculated system outputs y(k) and system states x(k + 1)

following one iteration step can be expressed as [95]

x(k + 1) = J[x(k), u(k), k]

y(k) = ~[x(k), u(k), k]
(5.1)

The equations of motion can be represented by a linearised state space expression

which will capture the system dynamics and provide the required system outputs,

having the form

x(k + 1) = A(k)x(k) + B(k)u(k)

y(k) = C(k)x(k) +D(k)u(k)

(5.2a)

(5.2b)

where the matrices A(k), B(k), C(k) and D(k) represent the discrete-time state space

matrices at the kth step as shown in Chapter 3.

In general control terms, accurate system performance is usually achieved with a

high control cost; accurate control of a robot arm, for instance, would require large

actuator forces if rapid but accurate movement is required. Similarly, in following a

curving road path significant steer inputs may be required if the path is to be followed

accurately. In the case of twin-track vehicles, the steering is achieved by control of the

steer angle, whereas for the case of a motorcycle the directional control is achieved via

the control of the steer torque applied to the handlebars. These torque inputs however

can be reduced if some element of corner-cutting is made in order to reduce the com-

plexity of the path to be followed, and the optimal control technique therefore seeks

to calculate an appropriate system input u(k) that will provide a suitable compromise

between the conflicts of system accuracy and control effort, based on weighting values

to define the relative importance of system performance characteristics.

The standard approach used, taken from [95], is to define a cost function incorporating

the sum of the weighted squares of calculated system outputs and measured system

inputs, expressed as

(5.3)
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where J(k) is the cost function, y(k) is the vector of measured system outputs, u(k)

is the vector of system inputs, and Q(k) and R(k) are the weighting matrices on y(k)

and u(k) respectively, all at the kth iteration step. In the general case, both Q(k)

and R(k) are symmetric positive semi-definite matrices. In the applications that will

follow, they are diagonal matrices with the elements on the diagonal corresponding

to the weightings on the states and control inputs, ql, q2 ... qm and TI, T2 ... Tp

respectively, with m the number of controlled outputs and p the number of control

inputs in the cost function.

With D(k) = 0, since the required output information is contained solely within the

system states, and making the substitution y(k) = C(k)x(k), the cost function can

be expressed as

The output matrix C(k) and weighting matrices Q(k) and R(k) remain constant in

this application, and so the identifier (k) can be omitted for clarity. Over a predeter-

mined number of iterations, the optimum performance is sought that minimises the

cost over the sum of all the iterations, and so the cost function becomes

N-I

J = ~L (xT(k){CTQC}x(k) + uT(k)Ru(k))
k=O

(5.5)

which can be expressed as

N-I

J =L 8[x(k), u(k), k]
k=O

(5.6)

In the general case, a cost can be placed on the final system states after a predeter-

mined number N of iterations, such that the cost function is extended to

N-I

J =O[x(N), u(N), N] +L 8[x(k), u(k), k]
k=O

(5.7)

Due to constraints within a system, the minimum cost and therefore the theoretical

optimal solution may not be a feasible option for that system, and therefore some



CHAPTER 5: OPTIMAL CONTROL RIDER MODEL 88

constraint must be placed upon the calculation of the optimal gains to account for

these. The main physical constraints on a system are the equations of motion; the

response of a system cannot violate the equations of motion, and thus the optimal

control solution must therefore take account of these constraints. These are included

by appending the equations of motion into the cost function, multiplied by an ap-

propriate factor, the Lagrangian multiplier vector ..x(k) . The complete cost function,

combining costs on system states, system input and the dynamics of the system, is

thus given by the extension of (5.7):

N-l

J = O[x(N), u(N),N]+ L (8[x(k), u(k), k]_..xT(k + I)[x(k + 1) - f(x(k}, u(k), k}])
k=O

(5.8)

This then represents a cost function consisting of final system states cost, control

input cost and measured system output. For the purpose of modelling a motorcycle

rider, the simulation is continuous and the final system states x(N) are not achieved,

and so this element can be omitted from the cost function in this application, leading

to

N-l

J =L (8[x(k), u(k}, k] - ..xT(k + I)[x(k + 1) - f(x(k), u(k), k)]) (5.9)
k=O

At this stage, we introduce the concept of the Hamiltonian, which is defined by

H(k) = 8[x(k), u(k), k] + ..xT(k + I)f[x(k), u(k), k] (5.10)

This therefore simplifies (5.9) to

N-l

J= L (H(k)-..xT(k+ I)x(k+ I))
k=O

(5.11)
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This expression still represents the constrained cost function, and so the optimum

solution is obtained by minimisation of this function. Applying the method of per-

turbations using the concept of small variations in the state and input vectors. The

theory presented here is taken from [95].

x(k) = x(k) + Do8(k)

u(k) = ii(k) + A1](k)

(5.12a)

(5.12b)

where Do represents a small change of the variable. These expressions are substituted

into the cost function (5.11). Since the optimal solution is sought, then the aim is to

minimise the cost function, and, to find the minimum of the function, the following

two conditions must be satisfied:

[)J [)2J
lim - = 0 and lim [) A2 > 0a .....o[)Do a ....o L.l.

(5.13)

These requirements lead to the Euler equations, defined as

~~~} = CT(k)Q(k)C(k)x(k) + AT(k)>'(k + 1) = >'(k)

~~g]= R(k)u(k) + BT(k)>'(k + 1) = 0

(5.14a)

(5.14b)

In order to obtain >.(k+ 1) and hence u(k) from (5.14b), the solution to (5.14a) must

be sought. >'(k) is unknown at this stage, and so an initial estimate of its solution is

made, setting

>'(k) = P(k)x(k) (5.15)

Where P(k) is an unknown matrix that could be viewed as systems of coupled

quadratic equations [107]. Making use of (5.15) and (5.2a), (5.14b) can be rearranged

to give

u(k) = -[BT(k)P(k + l)B(k) +R(k)t1BT(k)P(k + l)A(k)x(k) (5.16)
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To obtain the optimal control input u(k) therefore requires P(k+1) to be calculated.

Assuming the weighting matrices Q(k) and R(k) to be invariant as before, the iter-

ation step identifier k can be omitted for clarity. Combining (5.14a), (5.15), (5.16)

with (5.2a) leads to

P(k)x(k) = CT(k)QC(k)x(k) + AT(k)P(k + 1)(A(k)x(k)
- B(k)[BT(k)P(k + l)B(k) +Rj-lBT(k)P(k + l)A(k)x(k))

(5.17)

The term x(k) in (5.17) can be cancelled to simplify the expression to the Algebraic

Riccati Equation:

P(k)=AT (k)P(k+1)A(k)

_AT (k)P(k+l)B(k) [BT(k)P(k+ l)B(k)+RJ-l BT (k)P(k+1)A(k)+cT (k)QC(k)

(5.18)

If P(k + 1) can be obtained, then from (5.16) the optimal input u(k) can be found.

This can be re-expressed as u(k) = -Kx(k), where the optimal control gain K is

given by

K = [BT(k)P(k + l)B(k) +Rj-1BT(k)P(k + l)A(k) (5.19)

5.2.1 Algebraic Riccati Equation Solution: Numerical Method

Two techniques exist for the solution of the Algebraic Riccati Equation (ARE) for

P (k + 1), being the numerical or analytical. The simpler method is the numerical

iterative method. For this approach, an initial value for P(k + 1) is selected and,

using equation (5.18), a value for P(k) can be obtained. This, however, will not be

the correct result, as an initial estimate for P(k + 1) was made. Thus, a new value of

P(k+ 1), equal to the value of P(k) just obtained, is taken as the new initial estimate

and the process repeated. With each successive iteration, the estimate of P(k + 1)

will become closer to the real value of P(k + 1). When the estimated value P(k + 1)

and the value of P(k) that results from (5.18) become equal within a desired accuracy

level, then the matrix P(k + 1) Can be used to obtain the optimal controller gain and
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hence input.

The choice of initial value for P(k+ 1) at the start of the iterative process is arbitrary;

the closer the initial estimate is to the final solution, then the sooner the iterative

process will obtain the result, but by the very nature of the process the final solution

will gradually and eventually be obtained. Typically however, the initial value P(k+1)

is chosen as the eigenvalues of the matrix A(k).

Convergence of the Riccati equation via numerical methods, and hence the solution,

is not always guaranteed however. More details of the theory can be found in [38,

46], where it is shown that convergence is guaranteed provided that the system is

controllable and observable, or is exponentially stable.

Although this iterative process is fundamentally straight-forward, one notable disad-

vantage is the potentially high processing time required to solve a problem in this

way. This factor will depend to some extent on the accuracy of the initial estimate

to the final solution, and the accuracy tolerances that are applied to the iterative

process. Depending on the application, this potentially high processing time may be

considered important.

5.2.2 Algebraic Riccati Equation Solution: Analytical Method

The alternative approach is the analytical method. Mathematically this is a more

complex process, but can have the advantage of being computationally more efficient,

calculating the solution to P(k) in a single calculation.

Calculating u(k) from (5.14b) and substituting into (5.2a) gives

x(k + 1) = A(k)x(k) - B(k)R-IB(k)T'x(k + 1) (5.20)

and rearrangement of (5.14a) results in

>'(k + 1)= -A-T(k)Qx(k) +A -T(k)>'(k) (5.21)
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The combination of (5.20) and (5.21) therefore results in

x(k + 1) = (A(k) +B(k)R-IBT(k)A -T(k)Q)x(k) - B(k)R-IBT(k)A -T(k)'>"(k)

(5.22)

The matrices A(k) and B(k) will change with each iteration step, but with the

iteration identifiers k omitted for clarity, the expressions (5.21) and (5.22) can be

written as a single discrete-step matrix expression:

[
x(k + 1) 1 = [ A +BR-1BT A-TQ -BR-1BT A-T 1 [X(k) 1 (5.23)
'>"(k+ I} -A -TQ A-T '>"(k)

This relationship can be represented by introducing the augmented vector p(k) =
[x(k),'>"(k)]T, and defining the Euler Matrix EM, such that

p(k + 1) = EMP(k) (5.24)

The general solution to (5.24) can be represented by

(5.25)

where JEM is the Jordan matrix of the Euler matrix (5.23) and T the modal matrix

of the system, whose columns are the eigenvectors of the Euler matrix, arranged with

the matrices partitioned into the n stable and n unstable eigenvalues and eigenvectors

[95] such that

[
Jll 0]JEM=
o J22

(5.26a)

(5.26b)

(5.26c)
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where the components Til, Th etc. represent the partitioned components of the

inverse of the matrix T, and are not equal to TIl, TIl etc.

The first n columns are the eigenvectors of the stable roots, and the second n columns

refer to the eigenvectors of the unstable roots. Using this partitioned structure of the

matrices, (5.25) can be formed into a vector-matrix expression:

[
x(k) ] = [TU Tl2] [J~l
'x(k) T2l T22 0

(5.27)

which can be expanded to give

x(k) = (TuJ~l Til + Tl2J~2T:h)x(O) + (Tl1J~l Ti2 + Tl2J~2T22)>'(0) (5.28a)

>'(k) = (T2lJ~lTh + T22J~2T2l)X(O)+ (T2lJ~lTi2 + T22J~2T22)>'(0) (5.28b)

Since a stable solution is required, we must therefore eliminate from (5.28) any in-

stance of the unstable matrix J~2' Thus, it must be the case that for both (5.28a)

and (5.28b),

(5.29)

and therefore

(5.30a)

(5.30b)

By elimination of the unstable terms matrix J~2' the expressions (5.28a) and (5.28b)

simplify to

x(k) = TuJ~lTilx(O) +Tl1J~lTi2>'(O)

>'(k) = T21J~lTilX(O)+ T21J~lTi2>'(O)

(5.3Ia)

(5.3Ib)
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The substitution of (5.30b) into (5.31a) and (5.31b) results in

x(k) = TUJ~l[Til - Th(T22)-lT21]X(O)

..\(k) = T21J~1[Th - Ti2(T22)-lT21]X(O)

(5.32a)

(5.32b)

Making the temporary substitution J~dTh - Ti2(T22)-lT21]x(O) = (3, expressions

(5.32a) and (5.32b) can be simplified to

x(k) = Tn{3

..\(k) = T21{3

(5.33a)

(5.33b)

Referring back to (5.15), we can therefore now express the Riccati equation solution

as

(5.34)

Recall that the columns of the matrix T consist of the eigenvectors of the Euler

matrix EM, arranged such that the leftmost columns contain the stable eigenvectors.

The upper half of these, i.e. the quadrant Tu, corresponds to the stable roots of the

system, while the lower half, the element T21, consists of the eigenvectors associated

with the eigenvalues of the Lagrangian multiplier.

The eigenvectors can be sorted based on the magnitudes of the eigenvalues [98],

such that the n stable eigenvalues, associated with magnitudes less than unity, are

selected, forming the elements [TE TT2]T. Thus, T21 and TIl can be obtained, and

(5.34) solved to obtain the Riccati equation solution and hence generate the optimal

controller gains.

Therefore, via this approach the Riccati equation solution can be obtained simply

from the eigenvalues of the Euler matrix in a single step, assuming that the eigenvalues

of the Euler matrix are symmetrically distributed with respect to the imaginary axis

in the complex z-plane, with half stable and half unstable, and with no eigenvalues

equal to zero.
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The eigenvalue-eigenvector method was found to be a suitable approach for the mod-

elling of a car driver using a similar optimal control strategy [98], and so was initially

adopted here due to the relatively lower computational demand with respect to pro-

cessing time of the method compared with the numerical approach.

However, as is often the case with iterative processes, small errors can quickly develop

into much larger errors. While the eigenvalue-eigenvector method proved acceptable

for relatively gentle manoeuvres for which state values such as roll angle and state

accelerations were low, more severe manoeuvres led to numerical errors in the code

which ultimately caused the program to fail. While this problem was not explored

in great detail, it is suspected that this is a result of the numerical limitations in

computing. The method requires the inverse of the matrix element Tu to be obtained,

and if the elements in this matrix become such that the problem is ill-conditioned,

then this would result in the computational problems experienced.

If the solution were obtained by using the numerical iterative method to solve the

lliccati equation then this problem could be avoided, and so the code was therefore

adapted to use the iterative solution method instead where necessary.

5.2.3 Application to the Riding Task

The theory for obtaining optimal controller gains for a generic dynamic system has

been covered in the preceding sections. The specific application to the motorcycle

rider modelling task is now outlined here.

Chapter 4 detailed the shift-register procedure that is used to provide the road preview

information element, leading to the combined motorcycle-preview model, having the

form

[
xv(k + 1) 1 = [ Av(k)
Yr(k+1) 0

o 1 [xv(k) 1+ [ Bv(k) 1u(k) + [ 0 1Yrn(k)
Ap Yr(k) 0 Bp

(5.35)

In principle therefore, the solution method for the optimal control input follows the

theory outlined for a generic dynamic system outlined in preceding sections, replacing

the matrices for the generic system with the matrix forms given in (5.35).



CHAPTER 5: OPTIMAL CONTROL RIDER MODEL 96

Since the objective of the model is to follow the previewed road path, the output

element of the cost function (5.4) can be set to provide the errors between the lateral

path following and the path heading angle by appropriate selection of the output

matrix C(k):

C(k) = [0 1 0 -1
o 0 1 0

o
-1

... 01

...0
mxn+Npm

(5.36)

where the road preview information consists of both lateral positions and heading

angles of the road path in global coordinates. The lateral motorcycle position and yaw

angle are the 2nd and 3rd elements in the motorcycle state vector, thus multiplying by

1, while the lateral position and heading angle of the target path at the first preview

point (corresponding to the motorcycle's target position on the path) are the elements

at n + 1 and n + 2 in the combined motorcycle-preview vector z(k), multiplied by

-1. When only the lateral position information is known, the target heading angle

can still be deduced by simple trigonometry [98].

The corresponding matrix Q(k) is

Q(k) = [ql 0 1
o q2

(5.37)

where the elements ql and q2 respectively weight the lateral path following error and

heading angle error of the motorcycle relative to the target road path.

The vector of control inputs u(k) consists only of a steer torque input, and is therefore

represented as u(k}. The corresponding weighting matrix R(k} consists therefore only

of a single element, r, weighting the steer torque control input.

The number Np of preview points in the road information vector is determined by

the length (in time) of the preview horizon Tp and the discrete sampling time t, i.e

Np = Tp/t
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5.2.4 Optimal Gains

A necessary condition for the analytical method presented previously is for the system

state matrix A(k) to be non-singular, and for the case of the motorcycle dynamics

alone (Av(k», this condition is satisfied. However, when the road preview is appended

to the state space representation of the motorcycle-rider as in (5.35), the augmented

system state matrix then becomes singular. The problem is still solvable, finding the

solution to the Riccati equation and subsequently the optimal gains, but requires a

manipulation process developed in [71] and also later for a car-driver application in

[98].

Essentially, this requires that the state space representation of the combined motorcycle-

preview model is partitioned into smaller sub-matrices that represent the motorcycle

dynamics and the road preview separately, i.e

(5.38)

where the subscript 1 relates to the motorcycle dynamics and the subscript 2 to the

road preview. Thus, Kl(k) would be the element of the gain vector K(k) applied to

the motorcycle states, and K2(k), the elements corresponding to the preview element.

The matrix Av{k) in (4.3) is non-singular, and so for the case with no preview included

(i.e. K(k) = Kl(k) and P(k) = PuCk» the analytical method can be used to solve

the optimal control problem without difficulty. Manipulation of the ARE, shown in

detail in [98], shows that by solving first the non-preview case to obtain KI(k) and

Pll(k) the matrix P12(k) can be obtained, and that with these matrices it is then

possible to obtain K2{k), the element of the optimal preview gain relating to the

previewed road path. Forthwith therefore, the matrices KI{k) and K2(k) will be

referred to as Ks, the state gains, and Kp, the preview gains, respectively.

Thus the controller gains for the combined rider-preview model were obtained which

then enabled the simulated model to perform the path following task. The simulation

itself was run as a discrete time iterative model, and thus at each step of the discrete

time simulation the control problem using the preceding theory was solved to generate

the required steer input and hence follow the target path.



CHAPTER 5: OPTIMAL CONTROL RIDER MODEL 98

5.3 Optimal Control Rider Model Results

The work covered here and the model developed aim to replicate and extend the

work conducted by Sharp [94]. There, the model employed the same optimal control

strategy and was applied to a broadly similar motorcycle model. However, the model

used here has what is believed to represent a more advanced and realistic tyre model,

and additionally with the non-linearity of the motorcycle dynamics accounted for by

continuously re-evaluated linearisations of the motorcycle state space equations of

motion during the simulated motion. The results presented in [94] appeared to rep-

resent well the actions of a motorcycle rider, and the technique will therefore be used

as a benchmark against which to assess the performance of a model predictive control

technique that was subsequently applied to the rider model. Direct comparisons and

conclusions of the two techniques are drawn in Chapter 7.

The optimally-controlled motorcycle rider model is tasked with a simple path follow-

ing exercise, involving a simple single lane change consisting of a lateral shift of 3.5 m

over a forwards distance of 20 m (Figure 5.1). This is an ISO standard manoeuvre

commonly used in the assessment of vehicle manoeuvre performance.

The optimal control strategy has several variables that are set to define the operating

characteristics of the controller, including weighting factors on the system outputs,

weighting factors on the system inputs, the preview horizon and more fundamental

parameters such as the sampling time of the discrete model.

The specific application of the optimal control theory and the relevant terms were

covered in Section 5.2.3. The weighting parameters in the cost function will provide

the primary means of varying the system's performance; the weighting factor ql

applied to the lateral path error, q2 weighting the yaw angle error, and r on the

steer torque control input. In addition, the preview horizon time Tp will be varied to

change the distance to which the rider is able to see ahead. Division of the preview

horizon Tp by the discrete time interval t will then give the number of discrete preview

points.

Details relating to the nature of the manoeuvre task itself can be varied. This can

include both the nature of the road path and the forward velocity v at which the

rider attempts the manoeuvre. In order to maintain some consistency and thus allow
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the characteristics of the controller alone to be assessed, the road path will remain

fixed for the purpose of these investigations, remaining as a 3.5 m lateral shift over a

forward distance of 20 m. The speed v at which the rider attempts this manoeuvre

however will be changed, to account for low and high speed conditions.

The presented results will consider the implications on the control task of variation of

the principal variables outlined above, independently of each other. This will permit

clear observations to be drawn on the effects of parameter variation on the control

task. Furthermore, these observations will permit conclusions to be made regarding

the applicability of the control strategy to the modelling of a human motorcycle rider.

5.3.1 LowSpeed Optimal Control Model

Initially, a baseline model will be evaluated that will provide a model against which

changes to the controller settings can be assessed. This baseline model will aim to

provide a system with a moderate performance and balance between accuracy and

effort, with sufficient but not excessive preview, and the speed will be relatively low.

Subsequently, parameters will be varied individually to assess the implications that

they have upon the performance characteristics of the controller. The full range of

parameter sets for low speed are presented in Table 5.1.

Baseline Parameter Set

The ability of the model to track the path is assessed first. Figure 5.2 presents the

path followed by the model using the initial baseline parameters (Set 1), where it is

observed that the model is able to successfully negotiate the manoeuvre and tracks

the path well after the manoeuvre phase is complete. Additionally, the countersteer

associated with riding a motorcycle is evidenced by a slight deviation away from the

turn direction before the lane change begins.

The controller's gains are considered next, where the magnitudes of the gains may

be thought of as representative of the importance placed the state elements by the

rider for the control task. Due to variation of the state space model on account of the

model's non-linearity, some variation of the gains occurs over the manoeuvre. The

gain values that will be presented are for the motorcycle approximately one quarter
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of the way through the lane-change, at the point where the roll angle on the initial

left turn is the greatest.

The controller state gains that give rise to the control are presented in Figure 5.3,

appearing to suggest that the highest gain value is associated with the yaw angle

state. The gain in the roll angle state is the next largest, with all other state gains

of significantly lower magnitude.

However, the significance of the magnitudes of the state gains needs to be clarified due

to the different units and magnitudes of the states. The gains are therefore compared

by the contributions that they individually make to the complete control input, the

steer torque. The total steer torque, overlaid with the motorcycle's roll angle, is

presented in Figure 5.4, showing the expected pattern of a main (negative torque)

countersteer to initiate the manoeuvre, increasing to a positive peak to stabilise the

resulting roll and eventually reduce this roll, decaying as the roll angle then reduces

followed by a negative torque to stabilise the motorcycle once it is upright again.

The contribution made to this total torque by each state is the sum of the state gain

value and the state value itself, and therefore it is more representative to consider the

controller in these terms. The use of global coordinates here complicates the analysis

somewhat, as the significant torque contribution from the lateral position is offset

by the significant but opposite contribution made by the road preview. These are

therefore removed from the analysis, together with a number of additional states that

have a much more insignificant contribution to the overall steer torque, to leave only

the contributions made by the yaw angle, roll angle and their respective velocities,

and the lateral velocity of the motorcycle. Figure 5.5 shows the contributions to the

total steer torque of the states and state gains over the path following simulation.

From this plot, it is apparent that the contribution to the steer torque resulting from

the yaw angle gain is still the most significant, followed by that resulting from the

roll angle.

The same analysis was also made for the motorcycle operating in a local coordinate

manner. In local coordinates, the situation where the motorcycle lateral position

and road preview information contribute equal and opposite non-zero steer torque

contributions in straight running does not arise, and thus the steer torque contri-

butions made by the individual states are much more easily understood. Figure 5.6

shows again the steer torque contributions arising from the yaw angle, roll angle and
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their respective velocities, and the lateral velocity of the motorcycle. The pattern is

similar, however the roll angle and road preview information now provide the largest

contributions to the overall steer torque, while the contribution made by the yaw

angle component is virtually nil and is therefore not shown in the figure.

These findings suggest two things. Firstly, the local coordinates approach would

appear to suggest that roll angle control is the primary objective, followed by control

of the lateral position of the motorcycle. These statements are in strong agreement

with Weir [102], who suggested that roll control was the primary objective of the

steer torque control, and lateral position and yaw angle control were slightly weaker

objectives met by movement of the rider's upper body. Secondly, the observation

that, in local coordinates, the locally observed yaw angle of the motorcycle has a

much smaller significance on the future path of the motorcycle is in strong agreement

with the observations of Cole et al. [11]. In a local coordinate system, the yaw angle

will, in general, always be relatively small, and so this result may not be surprising.

Considering now the preview gains (Figure 5.7), these also show fundamental charac-

teristics. The gains are initially zero, rising to a peak in the middle preview distance

before decaying gradually towards zero, implying minimal influence on the control

task of the road information at this distance ahead. Thus, it appears that the rider

model places no importance on the road observed directly in front of the motorcycle,

with the road in the middle preview being of most influence to the control task, and

with the distant previewed information being of reducing importance as the preview

distance increases much beyond 20 m ahead.

In attempting to optimise the path following exercise, the controller steers the mo-

torcycle in order to stay on course. For road errors perceived directly in front of

the motorcycle, there is nothing that can be done about these errors; the motorcycle

would need to stop and be physically moved in order to correct any errors here. A

short distance ahead of the motorcycle, the rider will have some opportunity to correct

any path errors by steering, but may not be completely successful due to the limited

forward distance available and limited steering capabilities (Figure 5.8). As the dis-

tance ahead of the motorcycle at which lateral deviations are observed increases, so

the rider begins to have sufficient opportunity to correct any path following errors

that are detected in the visual preview, and this may explain the increase in the pre-

view gains as the preview distance increases. At greater preview distances, the rider
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has an excess of time available to take any necessary control actions. The correction

of these potential path-tracking errors are of lower importance than those for which

the available time is limited and, consequently, as the preview distance increases fur-

ther, the preview gains begin to diminish away towards zero. By considering the

capabilities of a motorcycle rider in this manner, then the preview gains achieved by

the controller would appear to offer a good representation of the process.

The steer torque that results from the controller gains and that leads to the path fol-

lowing performance seen is shown in Figure 5.9. The steer torque shows the expected

characteristics, with a countersteer in advance of the turn to initiate the manoeuvre,

leading to a peak torque as the rider begins to bring the motorcycle back upright

to change the turn direction, reducing again and finishing with another countersteer

torque to arrest the roll movement as the motorcycle is brought back upright.

These initial observations on the performance of the optimal control strategy appear

encouraging; the path following task is successfully accomplished, achieved with real-

istic steer torques and with controller gains that would appear to fit well intuitively

with the expected control characteristics of a motorcycle rider. These results were

also originally found by Sharp [94]. This therefore gives some confidence in extending

the parameter set to further investigate the performance of the control strategy.

Cost Function Weighting Influence

The weighting parameter associated with the lateral path error ql is now varied. The

initial value for ql was 5000 m-2, and additionally, 1000 m-2 and 10000 m-2 are

now used. The lower value should lead to a less accurate path following performance,

the higher value a closer following of the path due to their influence on the optimal

control cost function.

The path following errors for the three weighting parameters are presented in Figure

5.lD. In line with expectations, the increase and decrease in the values for ql have a

direct influence on the path-tracking accuracy achieved, with the controller displaying

less accurate path following and therefore greater path errors termed 'loose' control,

with the more accurate path following performance resulting from higher values of ql

referred to as 'tight' control [94].
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The changes in the path following performance stem from the change in steer torques

generated by the controller model. It is seen (Figure 5.11) that the loose control is

associated with early initiation of the manoeuvre, leading ultimately to lower peak

torque values, and in this manner, the rider model is sacrificing path-tracking accu-

racy in order to reduce the magnitude of the steer torques he must apply. This is to be

expected, since the optimal control cost function comprises elements relating to both

the output performance and the control input effort. An increased bias to either per-

formance or effort optimisation, achieved via increased weighting parameters, would

naturally be expected to reduce the emphasis on the other cost function element, and

vice versa. So it is then that a decrease in the output performance bias appears to

result in an increase in the control effort bias. Similarly, tight control, indicative of

low path errors, leads to correspondingly higher peak steer torques applied over a

much shorter duration.

These steer torques arise from the controller gains, with variation of the controller

settings naturally affecting the controller gains. Figures 5.12 and 5.13 show the

state and preview gains for all three error weighting values. Increases in ql are seen

to produce increases in all the state gains; the ratios between them however remain

constant. The effect on the preview gains is also to increase them, but more interesting

is the shift that is observed in the distribution of the gain values. With increased

qI, indicative of tighter control, the bias in the preview gains moves closer to the

motorcycle. In other words, the distance ahead of the rider corresponding to his

most important road information point moves closer to him. This implies that the

rider is focusing on the road closer to him, which would seem like an expected result.

Loose control is associated with minimisation of control effort, and to achieve this a

rider may be expected to select the most efficient path from an initial point 'A' to a

final point 'B', travelling as directly as possible to minimise the control effort required

(Figure 5.14). In order to select the most efficient path, a complete knowledge of the

road path is desirable, and so the rider would be expected to be looking further down

the road and considering a distant target as being more important in deciding his

control strategy. Consequently it might be expected that the preview gains would be

more evenly distributed, and extending to a greater distance ahead.

Conversely, tight control is associated with accurate path tracking, where the rider

will attempt to position his motorcycle on the target path at all times during the
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motion, irrespective of the path some distance ahead. The focus is on ensuring that

throughout the simulation, where the motorcycle is immediately about to move to still

accurately follows the path, regardless of the path some greater distance ahead. Thus

the rider would be expected to focus more attention on the near-preview information,

and less on the far-preview distance (Figure 5.14).

Thus, the expected actions of a human rider with a change in path following strategy

appear to be represented well by the optimal control technique. The changes in the

preview gains observed with the change in ql appear to be an acceptable representa-

tion of a human rider's control actions, adding credibility to the applicability of the

approach.

Preview Horizon Effects

The preview horizon time Tp available to the rider is now varied to assess the impact

that this parameter has upon the control performance of the optimal control strategy.

The preview horizon is set to 4.5 s and 1.5 s to represent excessive and limited preview

respectively (Sets 4 & 5, Table 5.1).

The rider model was initially allowed 3.0 s of visual road preview. At a forward speed

of 10 mis, this was seen to be sufficient to allow the preview gains to diminish to zero

(Figure 5.7), suggesting that the rider had enough preview information to make the

necessary control actions for complete control. It might therefore be expected that

further additional preview information would have minimal impact upon his control

actions.

The controller gains and resulting steer torques and path following error (Figures

5.15,5.16,5.17,5.18) largely seem to support this view. There is seen to be minimal

difference between the plots as the allowable preview is increased from 3.0 s to 4.5 s,

suggesting minimal impact on the controller performance as a result of the increased

preview horizon.

A rider generates a control action based on the knowledge that he has of the road

and of the motorcycle. If the rider were presented with new road information which

had minimal impact upon his required control actions, it is reasonable that no at-

tention would be paid to this new information, and therefore the attention paid to
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the original information would not change. Hence, if the rider's preview knowledge

is already sufficient to determine an appropriate control strategy, then the preview

gain distribution would be expected to show minimal difference.

However, if the rider were presented with new information that would influence his

control problem, it seems likely that the rider's control would be expected to adjust

in light of this; some of the rider's attention would additionally be focused on this

new information, and consequently the level of attention paid to the rest of the road

information reduced slightly, modifying the preview gains. By a similar token, it

would seem equally likely that the reverse would be true, and that if relevant road

information regarding the control task were removed, then the attention paid to the

remaining road information would be changed.

The state gains (Figure 5.15) show identical gains for all three preview horizon lengths

considered.

The reduction in the available preview information available to the rider appears to

have minimal effect on the distribution of the preview gains (Figure 5.16), at least for

the 10 mls forward speed case. Irrespective of the horizon length, the preview gains

are identical; the only change resulting from a reduction of the horizon is that the

preview gains are simply truncated, and thus the preview gain curves overlap each

other when plotted together.

The steer torque control input that results from a change in the preview horizon is

shown in Figure 5.17. For preview horizons of 3.0 sand 4.5 s, the control inputs are

virtually identical. For the reduced horizon of 1.5 s, the resulting torque is seen to

be modified slightly, which may appear to agree with the expected modification of

control resulting from the change in road information available.

However, the effect of this preview limitation and modified steer torque input on

the path following performance of the motorcycle is seen to be detrimental. The

broad characteristic is unchanged, with initial countersteer leading the motorcycle to

follow the lane change before straightening up after the turn to follow the straight-

running road section. Figure 5.18 shows the path errors that result from the change in

allowable preview horizon, with the cases for Tp = 3.0 s and 4.5 s being so similar that

the traces follow each other almost identically. Whereas previously the motorcycle

accurately tracked the straight section, it is noted that the limited preview case
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now results in a path tracking error, essentially a steady-state error in pure control

terms, following the manoeuvre. The controller gains, notably the preview gains, have

not been recalculated to account for the reduction in available preview information,

but have merely been truncated, and evidently this can lead to poor path tracking

performance if the gains are reduced too far.

An initial thought, in order to in some way compensate for these lost gains terms, may

be to introduce some form of scale factor to compensate for the lost terms. However,

without knowledge of the full set of gains, it is not possible to determine what the

scaling factor should be in order to obtain equivalency of the sums of the gains, and

so any scaling factor chosen could not be accurately determined.

It is not unreasonable to expect a human motorcycle rider to still be able to track

a path, even with limited preview. The transient performance may well suffer, but

if given only, say, 1.0 m of visual preview, the rider would still have knowledge of

whether his final steady state road position were on the path that he should be

following or offset from it, and would therefore, given sufficient time, be able to track

back across the road to recover the target path.

This control characteristic would appear to be a limitation of the optimal control

technique in modelling a human motorcycle rider operating in a global coordinate

system. The limitation is worthy of further investigation, and is therefore considered

mathematically.

The control input u(k), in this case the steer torque, that ultimately dictates the

trajectory of the motorcycle is generated by the combination of torques resulting

from the multiplication of states and state gains, and of road lateral preview and

preview gains:

(5.39a)

where K" is the vector of state gains, xv(k) is the state vector, Kp the vector of

preview gains and Yr(k) is the vector of the previewed road path. At the exit of the

turn and return to straight running, the vehicle states xv(k) all tend to zero, apart

from the state representing the vehicle lateral position, y, and thus at the exit of a

turn,
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(5.39b)

where ks,y is the state gain corresponding to the lateral position y(k) of the motorcycle

In the steady state following the manoeuvre, u(k) is zero, and thus

ks,yy(k) = -KpYr(k)
Np

::} ks,yy(k) = - LKp,Yr,(k)
i=l

(5.39c)

(5.39d)

With sufficient preview horizon Np -+ 00, this condition is achieved with y(k) =
Yrl (k), and the motorcycle accurately tracks the path. Similar observations were in

[90] for the case where the preview horizon is sufficiently long such that the controllers

gains tend to zero, in which case the controller's performance is independent of the

coordinate system. The case is now explored for the condition of limited preview,

such that the gains have not necessarily reached minimal values.

With limited preview, in steady state the steer torque still becomes zero, and the

above condition given in (5.39d) will still hold. Although the preview gain values

remain the same in magnitude, the gain vector itself becomes truncated as a conse-

quence of the limited horizon, and hence

Np 00

LKpi '" LKp,
i=l i=l

(5.3ge)

The vector Yr(k) and state gain K, are unchanged, and thus it must be the case that

(5.39f)

and hence,

(5.39g)

Thus for any finite preview distance, there will be a steady-state error in the path-

tracking performance when the rider is modelled in this way. An infinite preview
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horizon is not a practical option, so the significance of the reduction must be analysed.

The significance of this error effect can be assessed by the value of (L:~1 KPi -

L:~1 Kpi)i the smaller this difference, the smaller will be the steady state error in

the controller. Thus, provided that the controller gains omitted are insignificantly

small, the reduction in preview horizon should have an insignificant impact upon the

accuracy of the controller model. If the preview horizon is so short that the preview

gains have not reached close to zero values at the limit of the preview horizon, then the

value of (L:~1 KPi - L:~ KpJ will not be insignificantly small and thus significant

steady-state path following errors are likely to result.

Thus it would appear that reductions in the preview distance available to the rider

model can have detrimental effects on the performance of the controller, and this

needs to be considered when such a control technique is applied to control tasks of

this nature.

Low Speed Modelling Conclusions

Optimal control appears to be a useful technique for the representation of a human

motorcycle rider, with the ability to replicate realistic control actions in order to com-

plete a path following task. The nature of the controller gains, which are indicative

of the use made of available information in generating the control actions, appear

realistic of the human rider.

The effects of control variables, namely related to the path following accuracy vari-

ables, are capable of influencing the balance that a rider makes between accuracy and

control effort. However, the technique is not without limitations as seen when the

preview horizon is reduced.

5.3.2 High Speed Baseline Parameter Set

The speed of the motorcycle model is now increased to 40 m/s. This will enable

any changes in the control task as a result of forward speed to be analysed. The

parameter sets are as for the lower speed case, but with v = 40 mls (Table 5.2).

The performance of the controller at higher speed is fundamentally similar to that

seen at the lower speed, with the path following performance (Figure 5.19) displaying
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similar traits but with greater levels of corner cutting. The nature of the gains that

lead to these control inputs are similar to those seen at lower speed, but notably have

higher magnitudes. Steer torques are also significantly increased with the increase in

forward speed (Figure 5.20).

Fundamentally, it is believed that the increase in forward speed leads to increases

in the gyroscopic torques provided by the rotating wheels. The increased gyroscopic

torques mean that, for a given steer input, a greater steer torque is required to over-

come these gyroscopics, and the result of this is seen in all aspects of the controller's

performance.

At higher speeds, the ratio of the steer torque to the steer angle increases. In order

to minimise the combined cost function of path following (dictated by steer angle)

and steer torque, then as speeds increase the emphasis shifts in favour of minimising

steer torque rather than steer angle. Consequently, the path chosen by the rider tends

towards a greater level of corner-cutting as speeds increase.

It has been seen before that a looser control strategy, involving greater levels of corner

cutting, is associated with an increased use of the full preview information, where peak

preview gains may be reduced, but the distribution of gains is extended to a greater

preview distance. The increase in speed shows this characteristic (Figure 5.21), a

characteristic which is not unlike the switch from tight to loose control strategies

(Figure 5.13). In other words, at higher speeds but with identical controller parameter

settings, the corner cutting characteristics of the motorcycle rider's control actions are

seen to be greater than for the lower speed case. Figure 5.21 also shows a significant

oscillatory pattern in the preview gains. This arises due to the minimal damping of

the wobble mode at this forward speed (see also Figure 3.15).

5.3.3 Local Coordinate Preview

The initial motivation for modifying the controller to operate in local coordinates was

partly because this is arguably the way that a motorcycle rider would operate, but

more importantly in an attempt to eliminate the steady-state tracking errors that can

occur using global coordinates with a limited preview horizon. In principle, a change

of coordinates should not have an impact upon the results of a robust control strategy.

However, the path-following errors that result are a consequence of using theory that
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assumes an infinite horizon. When the horizon is long, terms that are lost from the

preview gains are zero and therefore not significant. When the preview horizon is

much shorter, more significant terms are lost, leading to errors in the controllers'

performance. It is now investigated whether these errors are overcome through the

use of a local coordinate system.

The controller strategy remains essentially unchanged, with the controller operating

on a preview road in his local coordinate frame. This, in principle, is no different

to the motorcycle beginning from the origin of a global coordinates frame. However,

with each iterative step the road preview is updated as local coordinates information

(4.9c). The final two points on the preview vector track the global position and yaw

one step ahead of the preview horizon and are not included in the control problem.

As before, the steady-state is achieved when the steer torque is reduced to zero,

arising when

(5.40a)

which, when the all states bar the lateral position settle to zero, simplifies to

(5.40b)

In global coordinates the left hand side was not equal to zero following a manoeuvre,

and thus the right hand side would be required to be equal and opposite. Limited

Kp meant that this was achieved when y( k) '" Yrl (k) in the global case, and thus a

steady state error arose in the straight-path path-tracking following the manoeuvre

part of the task.

By using local coordinates, the target Yrl (k) is zero when the rider regains the target

path. The right hand side will tend to zero, as will the left hand side and thus y(k).

Although the reduction in Kp will affect the transient performance of the controller,

the steady state local lateral position of the motorcycle should not be affected by the

limited vector Kp, thus forming a more robust optimal control rider model.

This is confirmed by comparison of two simulations run to identical parameters. One

simulation is set to operate using the original global coordinate system, the other in
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local coordinates. The model is intentionally run with limited preview horizon, such

that the effect of the modified coordinate system is more clearly seen.

The vehicle parameters are: v = 10 mis, ql = 5000 m-2, q2 = 0 rad-2, r = 1,

Tp = 1.0 s. The path following results, shown in Figure 5.22, clearly demonstrates

the beneficial effect of modelling the road using local coordinates.

Although the transient response of the global coordinates model appears better, the

large steady state error in the path tracking ability of the model is both undesirable

and unrealistic of the actions of a human rider. If a rider had only limited forward

vision, due possibly to weather conditions, night-time riding or obstructions from

other vehicles ahead of him, the transient response may justifiably be compromised,

but the rider would still be able to see sufficient road path to know whether he

is on target (position-in-lane control), or displaced to one side or the other, and

consequently would eventually be able to track back onto the target path if needed.

This represents a notable and important weakness of the optimal control approach for

more general rider-control modelling. While it has been shown that these limitations

can be corrected through the use of a local coordinate system, the local approach,

covered in Section 4.2.2, is a more complex approach than global coordinates. Re-

gardless of the coordinate system used, the rider still has a knowledge of both the

motorcycle's position and heading, and the position and heading of the road. He can

therefore deduce the relative difference between the two to determine whether he is

off the target path and therefore is required to exercise some control in order to regain

the target path.

Thus, a controller that is capable of accurate performance regardless of the coordinate

system used would provide a more robust and representative control strategy, and

therefore be more suitable for the task at hand. For the optimal control approach,

this appears to be achieved only when a local coordinates approach is employed.

5.4 Optimal Control Conclusions

The application of optimal control theory has been made to the modelling of a mo-

torcycle rider, initially developed by Sharp [94]. The work here has aimed to generate

a more extensive set of results to gain further insight into the characteristics of the
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method, and to highlight any strengths or weaknesses that may transpire from the

more extensive analysis.

The findings of the work here agree well with those in [94], giving confidence that

the results here are correct. As before, the characteristics of the controller appear to

provide a good representation of a motorcycle rider, showing strong suitability of the

application. State gain results were not presented in [94], and thus no conclusions

could be drawn on the relevance of the control of the motorcycle's states. The findings

presented here have shown that for all cases the pattern of the state gains remains

consistent, with the yaw angle and roll angle gains having the largest magnitudes.

The more relevant question of how these relate to the physical control applied to

the motorcycle show subtly different results. For the global coordinate system, the

contribution arising from the yaw gain is again the largest, followed by the roll angle

contribution. However when the coordinate system is switched to local, the results are

notably changed, with the roll angle contribution being the most significant, followed

by the lateral position contribution, and with the yaw angle providing a much smaller

overall contribution.

Since the local coordinate system is arguably more representative of the way that

a human rider operates and interprets information, this would tend to suggest that

roll angle and lateral position control are the more important considerations for a

motorcycle rider. Encouragingly, these findings are in strong agreement with Weir

[102], where the links between a number of information inputs and possible control

outputs found the roll angle to steer torque contribution to be the most important,

followed by lateral position control, which was best controlled by movement of the

rider's body mass.

The analysis of the preview gains again shows agreement with the results of Sharp

[94], and also to the wider results provided by Donges [251 and by Land and Horwood

[47],where the important aspects of a car driver's preview were discussed. The results

had suggested the distinction between guidance control, biasing the distant preview,

and the position-in-lane control provided by the near preview information. Changing

the riding strategy required through the cost function weighting parameters was seen

to change the influence of the near and far preview information in accordance with

either guidance or position-in-lane riding approaches, thus agreeing with the theories

of the referenced papers.



CHAPTER 5: OPTIMAL CONTROL RIDER MODEL 113

The technique is not, however, without its limitations. Notably, the use of a global

coordinate system, particularly when combined with limited road preview, appears

to result in a poor representation of the rider's actions. Although it was found that

this problem could be overcome if the simulations were conducted in a moving coor-

dinate system, it remains a fact that for anything other than an infinite horizon there

will be some steady-state errors resulting, though provided that sufficient preview is

permitted, these errors can be reduced to insignificant values.

Useful analysis relating to the global versus local coordinates problem was made by

Cole et al. [11], who noted, in agreement with earlier results by Sharp and Valtetsiotis

[90] and the results here, that the question of global versus lateral coordinates has

no impact upon the path following abilities of the controller when sufficient preview

is allowed. The sufficiency of the preview is defined as the preview gains reaching

zero as before. This is because the change in the previewed lateral displacements

brought about by a change of reference origin and multiplied by the preview gains

is compensated for by the change in the corresponding state multiplied by its state

gain, the two effectively being equal and opposite. As the theory assumes an infinite

horizon, then this change of reference frame will work provided that the preview gains

diminish to zero such that no significant terms are omitted.

In the case where the preview gains are reduced significantly, the theoretical calcu-

lation is still based on the assumption of an infinite horizon, and consequently there

appears no reason why the calculated gain values should differ, as is the case. How-

ever, with the loss of significant terms from the preview gains, the contributions from

the state gain multiplied by the state and the preview gains multiplied by the states

are no longer equal and opposite when the vehicle is on the target path, and conse-

quently the steady state errors that were observed result when a non-local reference

frame is used. For a local coordinates approach and accurate path following, both

the state contribution and the preview contribution should, strictly, still be equal and

opposite for correct path following. However, this occurs now with both contributions

equal to zero, since the local lateral and yaw displacements are zero for steady run-

ning and the local road preview for a steady path, when on that target path, is also

zero. The loss of zero terms in the preview resulting from a short preview horizon

therefore has no effect on the numerical result and hence the performance of the local

coordinates controller.
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Cole et al.'s results suggested that, even with the road path in the state vector defined

by global coordinates, the truncation of the preview horizon could be compensated

for by a change in the state gains that would correspond to the 'lost' contribution

from the shortened preview and therefore still result in accurate path following. Their

model employed a conversion matrix that would effectively recalculate the global road

information into a local picture as observed in the moving vehicle, and in this way the

controller was effectively set to operate in a local coordinates manner, even though

the road path in the state vector was still defined in a global reference frame. Thus,

the control problem was effectively being solved for a local coordinates problem, but

using global road information.

To retain accurate path following for a shortened preview horizon, the loss of signifi-

cant road preview terms in the control problem can be overcome in two ways. Either

the controller gains are calculated in such a way as to compensate for these, as was

the case in [11], where the road preview was global but the controller modified to

operate in a local manner, or the road preview information converted directly into

the local coordinates and the controller structure kept the same, as was the case here.

Either way, both controllers effectively operate using a local picture of the road, and

should therefore generate comparable path-following performances.

Thus the statement is again made that for accurate path following using this approach,

the problem must be solved for a local coordinates approach for accurate results with

short horizons. Whether this is achieved by conversion of the preview gains or by

conversion of the road information may be a question of preference, however both

should produce the same results.

The results presented here using optimal control methodology have extended the un-

derstanding of the technique for this application. Chapter 6 will present the predictive

control technique for modelling the rider, an approach which has some significant sim-

ilarities to the optimal approach presented in this chapter, but also some notable and

possibly significant differences. The predictive control rider model will be presented

with the same tasks as for the optimal approach here, and so the optimal control

results shown here will be used as a measure against which the performance of a

model predictive control rider model can be compared. Some weaknesses of the op-

timal control approach have been highlighted here, and so the goal the predictive

control method will be to replicate the positive features while also aiming to correct
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the limitations found. Finally, the direct comparisons of the optimal control results

and the predictive control results will then be drawn in Chapter 7.
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5.5 Tables

Set 1 Set 2 Set 3 Set 4 Set 5

Parameter Baseline Loose Control Tight Control Long Preview Short Preview

v [ms-l] 10 10 10 10 10

Tp [SI 3 3 3 4.5 1.5

ql [m-2] 5000 1000 10000 5000 5000

q2 [rad-2j 0 0 0 0 0

r [(Nm)-2] 1 1 1 1 1

Table 5.1: Low speed controller parameter sets, optimal control

Set 6 Set 7 Set 8 Set 9 Set 10

Parameter Baseline Loose Control Tight Control Long Preview Short Preview

v [ms="] 40 40 40 40 40

Tp [sI 3 3 3 4.5 1.5

ql [m-2] 5000 1000 10000 5000 5000

q2 [rad-2] 0 0 0 0 0

r [(Nm)-2] 1 1 1 1 1

Table 5.2: High speed controller parameter sets, optimal control
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5.6 Figures

Road Path
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Figure 5.1: Single lane change path, not to scale
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Figure 5.2: Path following, v = 10 mis, Tp = 3.0 S, ql = 5000 m-2
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Figure 5.4: Steer torque and roll angle, v = 10 mis, Tp = 3.0 S, ql = 5000 m-2

Figure 5.3: State gains, v = 10 mis, Tp = 3.0 S, ql = 5000 m-2
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Figure 5.5: Principal individual state torque contributors, v = 10 mis, Tp = 3.0 s,

ql = 5000 m-2, global coordinates
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ql = 5000 m-2, local coordinates
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Figure 5.12: State gains, v = 10 mis, Tp = 3.0 S, ql = 1000, 5000 & 10000 m-2
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Chapter 6

Model Predictive Control Rider

Model

6.1 Introduction

As the name suggests, Model Predictive Control (MPC) is a technique in which a

prediction of a system's behaviour is made in order to generate some form of optimised

control input. The prediction is based on knowledge of the system's dynamic response

characteristics and the calculation of a set of future control inputs. The predicted

future system states can be compared against a set of future target states, with the

set of future control inputs continuously re-evaluated, if necessary, in an attempt to

ensure that the predicted future states match the target future states [35].

Widespread use of predictive control has been applied to the chemical engineering

industry, where the need to predict the future behaviour of chemical reactors and other

similar delayed-response systems was answered through the use of predictive control

techniques. In recent years use has been made of MPC techniques in numerous other

areas, including the modelling of human controllers for the task of driving [11, 72].

The application of predictive control methods to the simulation of a vehicle driver

seems an entirely appropriate choice. In driving/riding a vehicle, the pilot has pre-

viewed information of the approaching road path to follow and knowledge of the

vehicle's condition. A motorcycle rider will also have knowledge of how the machine

is likely to respond to certain control inputs as a result of previous riding experience,

128
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and can therefore subconsciously plan his future control actions in order to follow the

road path he sees ahead of him. This process of evaluating the road and vehicle and

forming the necessary future control strategy is evaluated in a continuous manner

throughout the riding task.

With riding experience, for instance, a motorcycle rider will know that to change

his path heading to, say, the left, he will be required to countersteer to the right at

some distance prior to the point at which he wishes to start the left turn. While

this may not be a conscious process, the rider has to some extent predicted the

future response of the motorcycle to his initial countersteer to the right based on his

knowledge of typical system response. Similarly, if he were wanting to stop, he would

know that a certain braking distance is required to achieve this, and therefore makes

a subconscious prediction for how long it will take to slow down in choosing the point

at which he will start to brake, and balances this knowledge against the severity of

braking that he is prepared to tolerate.

The riding task that the rider is presented with will change continuously due to

changes in both the road path as he progresses along a path, and due to the changing

vehicle states during motion of the motorcycle. The predicted future control actions

that the rider has will therefore also be continually updated in light of the ever-

changing task. The changes in the task may be gradual, such as the changing direction

of the approaching road path, or quite sudden, such as a sudden loss of road traction

as a result of water, debris or oil on the road, causing the vehicle to respond in an

unexpected manner.

Breaking the riding task into small discrete time-steps, although at an instant the

rider may have control predictions for the full picture of his riding task, he will only

ever make use of and apply his first control prediction, before re-evaluating the control

problem and at the next instant using the next first control prediction in a continuous

process.

This chapter covers the theory of MPC techniques and the application to the mod-

elling of a motorcycle rider. The chapter begins with the detailed theory of the

prediction model, for both a linear prediction model and the more realistic non-linear

prediction model that will account for changes to the motorcycle states over the

course of the prediction horizon. The opportunities available for the definition of
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a reference path for the motorcycle to attempt to follow are considered, presenting

the theory for the application of different reference path definitions. The theory for

predictive controller gains is outlined before the strategy is applied to the motorcycle

model attempting a lane change manoeuvre. A wide range of controller parame-

ters is considered, including preview and control horizons, forward speed and cost

function weighting parameters, together with the effects of different reference path

definitions. Hence the applicability of the technique in replicating the actions of a

motorcycle rider and the detailed characteristics of the controller will be ascertained.

Subsequently, in Chapter 7, the comparisons between this approach and the previous

optimal control approach detailed in Chapter 5 will be made, in order to present the

potential advantages that may be found when using the predictive control approach.

6.2 MPC Theory

The MPC approach [52] consists of two fundamental parameters that differentiate it

from other similar techniques such as optimal control, namely the prediction model

and the reference path definition that the controller attempts to follow.

Model predictive control, as suggested by the name, forms a prediction model to

anticipate the future response of the system using a known set of future control

inputs, and by making use of the known system response to controlling inputs. A

motorcycle rider, for example, will have a reasonably accurate knowledge of how the

motorcycle will respond to his controlling inputs, and therefore it can be said that

he has knowledge of the system response to control inputs. In riding a motorcycle,

the rider will be looking ahead at the road and subconsciously will have anticipated

his future control inputs in response to the road path he sees ahead of him, and

consequently he may have anticipated a set of predicted future control inputs. This

is the primary difference between an MPC approach and an optimal control approach

(Chapter 5), where a control input is generated only for the motorcycle's current

position and based on the current motorcycle states only.

The second fundamental difference concerns the system output that the rider is aiming

to follow. The MPC technique is defined with two output paths, known as the set

path and the reference path. The set path is the absolute target of the system which

it ultimately aims to follow, in this case the road centreline. It is unlikely that the
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system will follow exactly the set path. In the case of the motorcycle, as seen with

the optimal control approach in Chapter 5, there is always some element of corner

cutting. The reference path is therefore a newly defined path that takes the system

from some position displaced from the set path, and that returns to the set path over

some time and distance. This condition is depicted in Figure 6.1.

The reference path itself can be defined in any manner chosen. It can be a simple

step, such that the reference path is the set path, it can be defined by a linear path

from the current system states to target system states over a finite time, or indeed

can be an exponential, quadratic or any other chosen path definition. The reference

path, as its name suggests, is simply a reference which the system aims to follow.

It is accepted that the motorcycle will not follow the road path exactly, with some '"""?

corner-cutting likely. A motorcycle is not capable of correcting a lateral path error

instantaneously; the rider must steer, and with forward motion the lateral position of

the motorcycle on the road can be changed, and thus any lateral path errors resolved.

A rider will therefore aim to follow a path that will take him from his current, possibly

displaced, position to his target path position at some point in his future.

131

Another feature of predictive control, which is of less use for the application here~

includes the capacity to deal with system response lag. Such control is widely used in! ~dl~

the chemical engineering industry, where the response to control is often not realised I)..d;J'~'~
until some time in the future, and is in general known as the dead-time or dead-zone.

Thus, the prediction element of the control strategy can take account of the delay

that will exist between control input and output response and can therefore predict

the need to apply the necessary control in advance. The ability to replicate this lag ~

in the control strategy can, for some applications, be a vital component.

These features of MPC make the application to modelling a motorcycle rider poten-

tially more suitable than the optimal control technique. For simplicity, the system is

initially defined with the reference path and set path equal, such that the effects of

the prediction model can be more closely compared with the results of the optimal

control technique. Subsequently, some analysis is made into the effects of different

reference path definitions on the performance of a rider model simulated using MPC

techniques.

It is necessary, at this point, to clarify some of the terminology that will subsequently
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be used, primarily concerning the distinction between the simulation and the predic-

tion.

The goal here is to create a model that replicates a motorcycle rider negotiating a

path manoeuvre. The complete representation of the motorcycle following the path

is the simulation model. Thus, the simulation is the actual path that the motorcycle

model follows as a result of the rider model's control actions. The simulation model,

using optimal control techniques, was also presented in Chapter 5.

In addition to thi~L~he M_:p_Q__!l.pproacll_~~_~J>,!~_9.ict_i_()I1JI19del.The simulation model

used here is a discrete sample simulation. .At each discrete step of the simulation,

the control strategy forms a prediction model, itself formed as series of discrete step,

which will predict the future path of the motorcycle up to a finite horizon, from that

particular discrete simulation step .. The prediction model for that simulation step will

be used to calculate the required control input for that one simulation step. Once the

control has been applied, and the motorcycle simulation moves to the next discrete

step, a new prediction model will be formed up to the finite horizon from the new

discrete simulation step, the new control input calculated, and the simulation model

moved to the next simulation step.

The principles of the simulation and prediction models are, in fact, almost identical,

however the distinction between the simulation and the prediction model is important

to be aware of.

~.1 Linear Prediction Model

MPC techniques develop a prediction model that aims to anticipate the future re- )J~w.~
sponse of the controlled system based on a set of future control inputs. Comparison ~ '1
between the predicted future outputs and the required future outputs defined by the

reference path result in a set of errors. ~he controller forms a cost function combining,r
these errors with the control input cost and, in a similar manner to the optimal con-

trol approach (Chapter 5), determines the best set of future control inputs to balance

output error minimisation against control input effort.

As with the optimal control approach, the starting point in the analysis of MPC

techniques is with the equations of motion for the dynamic system response, formed
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into the convenient linearised discrete-time state space system model, as presented in

Section 3.4.1. For a generic system at the kth step, this takes the form

. x(k + 1) = A(k)x(k) +B(k)u(k)

y(k) = C(k)x(k) +D(k)u(k)

(6.1a)

(6.1b)

where the vectors x(k), y(k) and u(k) represent respectively the system states, system

output and system input, and the matrices A(k), B(k), C(k) and D(k) are the

discrete-time state space matrices, all at the kth step.

The distinction between the prediction and the simulation is emphasised again here.

The expression given in (6.1), when used with the actual state values and control

inputs, generates the actual system output and the states of the system at the next

step. This therefore represents a discrete step in the simulation. Here, we use the

dynamic response model of the system (based on the predicted states x(k» given by

this expression to determine a predicted future set of states and a predicted future

system output using predicted future states and control input:

x(k + 1) = A(k)x(k) +B(k)u(k) (6.2a)

y(k + 1) = C(k + l)x(k + 1)+D(k + l)u(k + 1) (6.2b)

Since the state space matrices A(k), B(k), C(k) and D(k) are dependent on the

system states x(k), they too will be predicted when x(k) is used, and hence are given

here as A(k), B(k), C(k) and D(k).

At step k, the state vector x(k + 1) is not available directly in (6.2b), but can be

obtained by substitution of (6.2a):

x(k + 1) = A(k)x(k) + B(k)u(k) (6.3a)

y(k + 1) = C(k + l)[A(k)x(k) +B(k)u(k)] +D(k + l)u(k + 1) (6.3b)
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The distinction here is drawn between the optimal control output, where the system

output relates to the system's current states, and predictive control where in effect the

output is the predicted future path. The error that the controller aims to minimise

is between the states of the system at the current kth step, and the target states at

the kth step. For the optimal control approach, the first preview point is the system

information relative to the system's current position i.e. the road information for

the motorcycle's current discrete simulation point. The rider preview element and

corresponding state space formualtion for this condition was given in Chapter 4.

For the predictive control approach, the output considered is the future predicted') 011
output y(k + 1), and the subsequent minimisation of this predicted future outpu.:)

against a future target. The preview horizon is therefore subtly different. The preview

" e/vj
~}~p

horizon for the predictive controller will begin at the first prediction point in the

rider's horizon, in other words one step ahead of the motorcycle's current position,

i.e. at k + 1. The theory for the state space modelling of this predictive control

rider preview is no different from the approach given in Chapter 4. Provided that

the initial information fed into the rider's road preview vector corresponds to the

information one step ahead, and the new information fed into the preview vecto

similarly accounts for the correct new information point, the shift-register mat .

form is no different.

~ discrete-time state space representation of the system dynamics given in (6.3)

can be used to predict the output of the. system to some predetermined number of

iteration steps in the future [11]. The prediction begins from the current simulation

point, for which the vector x(k), and the matrices A(k), B(k), C(k) and D(k) are ~~

known, and are x(k), A(k), B(k), C(k) and D(k). The input vector u(k) is, at this

point, a predicted input still, but will subsequently be recalculated as u(k), which

will be used for the simulation step. Thus, the system information at step k is used
...----__.----.~ ..--"~-"'---'-'-' .

to predict the first output in the rider's preview horizon, y(k + 1)
"- ..----.,.--~..- , ,,-, ~~-.-..-.-.,. .

With knowledge or prediction of the second control input u(k + 1), a similar process

can be applied to determine the system output after the second iteration:

x(k + 2) = A(k + l)x(k + 1)+B(k + l)u(k + 1)

y(k + 2) = C(k +2)x(k +2) +D(k +2)u(k +2)

(6.4a)

(6.4b)
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Only the current states x(k) and state space matrices A(k), B(k), C(k) and D(k),

for the current step, are exactly known, and therefore the solution to (6.4) cannot be

solved directly. Howeverthe result from (6.3) can be employed here, and, substituted

appropriately in (6.4), will result in the predicted system response at k + 2 as:

x(k + 2) = A(k + I)[A(k)x(k) +B(k)u(k)) +B(k + I)u(k + 1) (6.5a)

y(k + 2) = C(k + 2){A(k + I)[A(k)x(k) +B(k)u(k)) +B(k + I)u(k + I)}

+D(k + 2)u(k + 2)
(6.5b)

For a linear prediction model, it is assumed that the state space matrices A(k + ip),

B(k + ip), C(k)(k + ip) and D(k)(k + ip), where ip is the number of the prediction

step, are invariant over the full prediction, defining them now simply as A, B, C and

D. That is to say that at the kth iteration step, the linear state space matrices are

obtained and it is assumed that these matrices are valid over the full prediction at the

kth step. However,when the controller gains are calculated and the simulation moved

to the next step, the state space matrices are re-evaluated, and these new matrices

used for the full prediction horizon at that next simulation step.

Furthermore, the system output is assumed to be based solely on the system states,

and not the control input. Thus, the matrix D is set to zero and can therefore be

removed from the expressions.
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With the simplifications of the predicted state space matrices made, the expressions

(6.2) and (6.4) can be redefined as

x(k + I} = Ax(k} + BU(k}

y(k + 1) = Cx(k+ 1)

= C[Ax(k) + BU(k}]

= CAx(k) + CBu(k)

x(k + 2} = Ax(k + I} + Bu(k + I} (6.6)

= A[Ax{k} + BU(k)] + Bu{k + 1)

= A2x{k} + ABu(k} + Bu(k + 1)

y(k + 2} = Cx(k +2}

= C[Ax(k + 1) + Bu(k + 1)]

= CAx{k + 1) + CBu(k + I}

~ is seen from the above expressions that a pattern is starting to emerge for the

prediction of the future states and outputs using the initial vehicle states x(k) and

the predicted future control inputs u(k), u(k + I}.... This pattern can readily be

formed into a state space expression, calculating all future system states and system

outputs using the initial states x(k) and vector of predicted future control inputs

u(k), u(k + I}, etc.:

A

i(k+2}

i(k+3}

i(k+1}

u(k+(Np-l})

(6.7a)

B o o liCk}

u(k+l}

li(k+2}

AB B o

AB o

B
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and similarly for the system output

y(k+Np) CANp
(6.7b)

CB 0 0 u(k)

CAB CB 0 u(k+1)

+ CA2B CAB 0 u(k+2)

CANp-1B CANp-2B CB u(k+(Np-l»

which can be represented by

y(k+1)

y(k+2)

y(k+3)

CA

CA3 x(k)

X(k) = F(k)x(k) + G(k)Y(k) (6.8a)

~(k) = M(k)x(k) +N(k)Y(k) (6.8b)

where X(k), Cf!(k) and Y{k) represent the full vectors of all predicted future states

vectors, the vectors of predicted future outputs and the vectors of predicted future

inputs at the kth step respectively.

The matrices F(k), G(k), M(k) and N(k) have been defined here specifically for

a particular iteration step k, while the constitutive elements given in (6.7b) do not

show such time-dependency. A reminder is made to the elements of the matrices

F(k), G(k), M(k) and N(k): at the simulation step k for a linear prediction model,

the system state space matrices A(k), B(k), C(k) and D(k) are used to form all of

the elements in (6.7), assumed invariant over the prediction horizon, and, only for

clarity, are defined as A, B, C and D in (6.7).

To this point, the assumption has been made that the preview horizon and the control

horizon are equal, and that there are consequently an equal number Np of future road
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preview points and future control inputs. Details relating to the discrete preview

horizon can be found in Chapter 4.

This condition is not strictly necessary, and it is possible that the control horizon can

be set shorter than the preview horizon. Defining the number of control inputs in the

control horizon as Nu, where Nu is the control horizon time Tu divided by the discrete

time step interval t, the control inputs can be held constant from the control horizon

up to the prediction horizon, such that the future control input vector is defined as

Y(k) = [uT(k) uT(k + 1) ... uT(k + (Nu -1)) ... uT(k + (Nu -1)) r
(6.9)

In this case, columns Nu to Np of the matrices G(k) and N(k) are all multiplied by

the control input u(k+ (Nu -1)), and thus these columns can be summed such that

the expressions (6.7a) and (6.7b) become

i:(k+1) A

x(k+2) A'l

x(k+2) A3 x(k)

x(k+Np) AN"
(6.lOa)

B 0 0 u(k)

AB B 0 u(k+1)

+ A2B AB 0 u(k+2)

AN,,-lB ANp-2B EN,,-NuAiB u(k+(Nu-l»,=0
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and again for the system output

y(k+1) CA

y(k+2) CA2

y(k+3) CA3 x(k)

y(k+Np) CANp

CB 0 0 u(k)

CAB CB 0 u(k+1)

+ CA2B CAB 0 u(k+2)

u(k+(Nu-1))

(6.10b)

and the matrices F(k), G(k), M(k), and N(k) are now redefined using the modified

expressions (6.10a) and (6.10b).

~erefore results in a state space representation of the predicted future states

and future outputs of a modelled system allowing for different control and prediction

horizons. Replacing the generic state space matrices A, Band C with the motorcy-

cle state space matrices Av(k), Bv(k) and Cv(k), the prediction model can be used

in defining a control strategy to control the motorcycle and accomplish the path

following task.

6.2.2 Non-Linear Prediction Model

The theory of MPC and the prediction model, used to anticipate the system output /
I
I

at some point in the future, is the characteristic feature of MPC that differentiates it I

from optimal control techniques. The controller attempts to control the system such

that the anticipated future states match the target future states. It should therefore

be apparent that a fundamental requirement of an MPC controller is to have an

accurate prediction model if useful controller performance is to be obtained.

For the case of time-invariant systems, the theory has already been discussed through
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the derivation of equations (6.1) through to (6.10). The time-invariant nature of the

state space model presented eased the analysis considerably, as at each iteration step

k of the model simulation, the sub-matrix elements of the generic prediction model

matrices were multiples of only three fixed matrices, A(k}, B(k} and C(k}.

Non-linear state space models will have matrices that will vary linearly with changes

in the system state vector, and thus may be time-variant. In such cases, it is necessary

to linearise the equations of motion for a specific set of states. The model can then

be used as a linear model within small variations only of the individual states, before

system accuracy degrades excessively. Typically, the model state space matrices will

be linearised for a set of system states at each iteration step, and with each subsequent

iteration step the model state space matrices will then be re-linearised for the new

system states (Figure 6.2). For a system such as a motorcycle, whose states change

significantly over time, it is necessary to re-linearise repeatedly the state space model

to retain some accuracy of the linearised state space model.

The prediction model described in Section 6.2.1 makes use of the system state space

matrices A(k}, B(k} and C(k) over the preview horizon, yet the predicted system

states may change significantly from the actual model states to the states at another

point in the predicted future horizon. Therefore use of a fixed state space representa-

tion of the system, applied over the whole prediction horizon, may not be accurate.

For technical accuracy, it would be necessary to evaluate and line arise the prediction

model at the first step of the prediction horizon, before moving forward to predict

the next system response in the predicted horizon, re-evaluating and re-linearising

the model, and repeating up to the limit of the prediction horizon.

Specifically, the prediction of the vehicle states one step ahead of the motorcycle will,

as before, be given by

x(k + I} = A(k}x(k) +B(k)u(k}

y(k + 1) = C(k + l}x(k + I} +D(k + l}u(k + 1)

(6.11a)

(6.11b)

The predicted state space equations A(k), B(k}, C(k) and D(k), linearised at k, are

valid over the step k to k + 1, and therefore the prediction over this iteration step is

also valid.
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At the prediction point k + 1, the system states will be different from at the kth point.

The system state space matrices are calculated based on the values of the states, and

therefore A(k) ::;.A(k + 1), B(k) ::;.B(k + 1) etc. Again, the output will be assumed

to have no dependency on the input, and therefore D(k) is set to zero. Over the

prediction iteration k + 1 to k + 2, the correct prediction is therefore given by

x(k + 2) = A(k + l)x(k + 1) + B(k + l)u(k + 1)

y(k + 2) = C(k + 2)x(k + 2)

(6.12a)

(6.12b)

Extending this sequence up to the prediction horizon, the appropriate prediction

matrices again take the form

X(k) = F(k)x(k) + G(k)Y(k)

cp(k)= M(k)x(k) + N(k)Y(k)

(6.13)

(6.14)

except that this time the appropriate matrices are given by

.A(k)

.A(k+l).A(k)

F(k)= .A(k+2).A(k+l).A(k) (6.15)

(Npxn)

B(k) 0 0

.A(k+l)B(k) B(k+l) 0

G(k)=
.A(k+2).A(k+1)B(k) .A(k+2)B(k+l) 0

Np-l Np-l

IIA(k + i):8(k) IIA(k + i)B(k + 1) B(k+Np-l)
i=l i=2 (NpnxNpn)

(6.16)
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C(k+l)A(k)

C(k+2)A(k+l)A(k)

M(k)= C(k+3)A(k+2)A(k+l)A(k) (6.17)

(Npmxn)

O~+~AW 0

O(k+2)A(k+l)A(k) C(k+2)A(k+l)

N(k)= C(k+3)A(k+2)A(k+l)A(k+l)B(k) C(k+3)A(k+l)B(k+l)

o

o

o

(NpmxNpn)

(6.18)

This approach is technically more correct than the method outlined by equations

(6.1) to (6.10), although from a computational perspective it is considerably more

demanding.

For the simplified approach, at each simulation iteration step, the state space matrices

are calculated, and from this the prediction model matrices F(k), G(k), M(k) and

N(k) are calculated once. These are then used to predict the future system output

and consequently generate the controller gains and input.

Using the more technically correct approach outlined here, at each iteration step

of the simulation model, the prediction of the system states at (k + 1), i.e. one

step ahead of the motorcycle, are calculated. To achieve this, the predicted state

vector x(k + 1) is calculated using matrices A(k), B(k) and C(k). Using x(k +
1), matrices A(k + 1), B(k + 1) and C(k + 1) are then calculated, allowing the

prediction of x(k + 2), subsequently A(k + 2), B(k + 2) and C(k + 2), x(k + 2), etc.,

gradually populating the matrices F(k), G(k), M(k) and N(k), with the necessary

terms and thus eventually allowing the necessary controller gains and system input

to be obtained for one iteration step of the simulated model's motion (Figure 6.3).

The value of u; can be large, typically in excess of 100, and consequently, this makesl V, I~Ir
the simulation process using a full non-linear prediction model a considerably m~
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computationally demanding task. The implications of this will be assessed in the

results, to determine how critical it is to the performance of the controller to model

the prediction in this way, or whether acceptable performance can be achieved with

the relatively more simple prediction model.

6.2.3 Reference Path Definition

manner over a defined time step. In the case of a motorcyclemodel; ~hi!,!..~oIl!lt_i_t1J.tes-t-__

a path that a rider would follow to take him from a position off the1deal;1riferided

road path to regain the target path over a certain forward distance.

A key feature of the MPC technique that differentiates it from optimal control is the

use of a reference path. This is a path that the system output attempts to follow

in order to take the system from a displaced state to the target state in a defined..__ .

The definition of how the system is tasked to get from the displaced state to the target

state is open to interpretation and is another control variable that can be introduced

into the MPC system. Typically, the system might be tasked with regaining the

target path by a linear, exponential or sinusoidal return path, for example. These

three conditions are depicted in Figure 6.4.

»>
VTwo specific definitions are made here relating to the terminology that will be used.

For the path information, a subscript 'r' will relate to the actual road, the set path,

and the subscript' f' will relate to the reference path.

The applicability of the various options for defining the reference path is discussed in

the results sections. For now, the theory required to define a typical reference path

is outlined.

Linear Reference Path

A linear reference path is considered first, and can be achieved with relative ease.

With knowledge of the current system state and the final, target state, the interme-

diate points are simply interpolated linearly based on the difference between the two

points (Figure 6.5).
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Assuming the current system state to be at zero, the ith reference path point at the

kth iteration step YJ. (k), for i = 1, ... ,Np, is achieved with

(6.19)

Extending this to the general case of non-zero current motorcycle position Yv(k),

results in

(6.20)

which simplifies to

(6.21)

Writing the expression explicitly for all discrete points in the preview horizon, this

becomes

vt. (k) ~YrNp + (NN:1)Yv(k)
Yh(k) -#;YrNp + (NN:2)Yv(k)
Yh(k) ~YrNp + (NN:3)Yv(k)

(6.22)=

YfNp-l (k) NN:1YrNp + ~Yv(k)

YfNp(k) YrNp

The required form for the definition of the reference path is as a discrete-time state

space model such that it can be combined with the motorcycle model as defined

previously (4.2). In the discrete-time state space representation of the system, the

system states, which includes the path information, are required to be calculated for

the system at the (k + 1)th step, not at the kth step as given by (6.22). Thus, in

calculating the new reference path for the (k + 1)th step, this path should take the

motorcycle from the position of the motorcycle at (k + 1) to the target road point at

(k + 1).
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The ith reference path point for the iteration step (k + 1) that should be generated

by the state space model, from (6.21), is therefore given by

i Np-i
YJ.(k + 1) = N YrN (k + 1) + N Yv(k + 1)

p I' P
(6.23)

where the position of the motorcycle Yv(k + 1) is given by

yv(k + 1) = Av(k)(2,j):XV(k) + Bv(k)(2,j)u(k) (6.24)

and where the selection of the second rows of the matrices Av(k) and Bv(k) corre-

spond to the location of the lateral position state in the motorcycle state vector and

j is the index 1, ... ,n, indicating that the whole of the second row is selected.

Using the result from (6.23), the discrete-time state space representation (6.22) be-

comes

YI1 (k + 1)

Yh(k + 1)

Y/3(k+l)
=

.J.-YrN (k + 1) + (Nk-l)Yv(k + 1)
Hp I' I'

J-YrN (k + 1) + (Nk-2)Yv(k + 1)
JVp I' I'

J-YrN (k + 1) + (Nk-3)Yv(k + 1)
Hp I' I'

YJNp-l (k + 1)

YIN (k + 1)
I'

(6.25)

(Npxl)

If the road preview vector Yr(k) is extended to include (Np + 1) road information

points, then the first terms in the right-hand-side of (6.25) can be readily obtained

from ApYr(k), where

0 0 1
N;

0 0 2
N;

0 0 3
N;

Ap= (6.26)

0 0 NN~l

0 0 1

0 . 0 0 (Np+1xn)
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The matrix Ap is time-invariant, and therefore does not require the time-step identi-

fier (k).

The second element terms in the right-hand-side of (6.25) are obtained from

(N~- i) yv(k + 1)= (N~- i) (Av(k)(2,j)Xv(k) + Bv(k)(2,j)u(k)) (6.27)
p p

Thus, the second terms in the right-hand-side of (6.25) can be obtained with

where

and

NN:1Av(k)(l,j)

NN:2Av(k)(l,j)

NN:3Av(k)(l,j)

kAv(k)(l,j}
p

o
o

(6.28)

(6.29)

NN:1Bv(k)(1,j)

NN:2Bv(k)(1,j)

NN:3Bv(k)(1,j)

kBv(k)(l,j)
p

o
o

(6.30)

The preceding theory has considered the reference path defined only by the lateral

position of the road path, but can be extended to include the yaw angle using a

similar approach.
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Extending the previous definition of the discrete-time state space system model (6.1)

to include (Np + 1) preview points for a linear reference path, the whole process can,

using the matrices defined above, be re-expressed again in the simple state space form

using the matrices defined above:

o ] [xv(k) 1 [ Bv(k) 1 () [0 1+ uk + Yrn(k)
Ap y,(k) B,(k) Bp

(6.31)

where Yrn (k) represents again the new preview point fed into the system, correspond-

ing here to a point Np + 2 steps ahead of the current motorcycle position, and Bp

is the corresponding matrix to input this new information into the rider's preview

as given in Chapter 4, (4.2). This matrix form therefore generates the future road

path that the rider attempts to follow as a linear path between the motorcycle's cur-

rent position and the actual road path information at the limit of the rider's preview

horizon.

Linear Error Reduction Path

The previous reference path definition was for a linear reference path, going directly

from the motorcycle's position to some target position at the limit of the rider's

preview, taking no account of the path direction in between. Here, the definition

is subtly different, with the linearity being in the reduction of the error between

the set path and the reference path. Thus, if the set path curves, so too will the

reference path, but the error between the two will be a linear function that will see

the reference path gradually track back onto the set path by the limit of the preview

horizon (Figure 6.6).

To achieve this, the reference path is taken as the set path less some multiple of the

difference between the motorcycle and the relative set path position. This multiple

is a linear function from one to zero, such that the error between the set path and

reference path gradually and linearly reduces to zero also.

The preview horizon includes Np preview points, where the first preview point is one

step ahead of the motorcycle (Figure 6.6). Thus, there are Np discrete steps between
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the motorcycle and the limit of the preview.

The function that therefore gives the linear function from zero at the motorcycle to

one at the limit of the preview horizon is, for the ith preview point, given by 1-NIt.
p

Numerically then, the ith point on the reference path is given by

(6.32)

which can be simplified to

(6.33)

It is seen from this definition that, unlike the direct linear reference path, in this case

the full set path information, i.e. Yr;(k) for i = 1, ... ,Np, is required. This naturally

makes this approach more complicated, as the complete system state vector must

now therefore include the motorcycle states, the set path road information and the

reference path road information in the rider's preview horizon. Since the required

format for the modelling is the state space representation, (6.33) must also be written

in a discrete-time state space form, such that Y!; (k + 1) can be obtained.

The set path information is updated by the simple shift-register matrix. Thus, Yr, (k+

1) = Yri+l (k) as before.

The motorcycle lateral position Yv(k + 1) is also readily obtained by using the ap-

propriate elements of the state space matrices for the motorcycle dynamics as seen

previously, i.e. Yv(k + 1) = Av(k)(2,j)xv(k) + Bv(k)(2,j)u(k). Thus, the necessary

complete system state space model can be achieved with

where the matrices Av(k) and Bv(k) are as defined in 3.23, Ap and Bp are as in 4.2,

and additionally,
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ilv(k)(2,j)lfJV:l
ilv(k)(2,j)lfJV:2

il8(k) = ilv(k)(2,j)lfJV:3 (6.35)

ilv(k)(2,j)#,;

0 (If,,xn)

0 (1-~) 0 0 0 0

0 0 (1-~) 0 0 0

0 0 0 0 0 0
ilr= (6.36)

0 0 0 0 0 (1-#,;)
0 0 0 0 0 0 (If,,xlf,,)

Bv(k)(2, j) lfJV:1
Bv(k)(2, j) lfJV:2
Bv(k)(2,jlfJV:3
Bv(k)(2,j)#,;

o

(6.37)

(N"xp)

Exponential Reference Path

The definition of the reference path as an exponential curve from the current vehicle

state to the target vehicle state follows from the theory outlined for the linear error

reduction case. To define an exponential path using the linear reference path theory

would be incorrect, as highlighted by Figure 6.7. Rather than gradually recovering

the set path, the reference path could potentially overshoot the set path and return

to it non-tangentially.

Although the path is indeed an exponential path, no account is taken for the trajectory

of the path, only the final target point. The proposed form is therefore to reduce

exponentially the error between the motorcycle and the reference path, using the
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method outlined for the linear error reduction approach above. This would lead to a

path that may typically look something like the situation presented in Figure 6.8.

Specifically,an exponential growth from zero to one can be defined by

f(x) = 1- exp(-xJ1r) (6.38)

where lr is a value that defines the relaxation length of the exponential growth. Thus,

modifying (6.33) to account for an exponential reduction results in

(6.39)

Comparing (6.39) with (6.33), it can be seen that by using the same approach as for

the linear error reduction reference path, the state space matrices As(k), Ar, Bf(k)

and Bfn(k) for the exponential error reduction reference path will be the same as

those for the linear error reduction case, modified only such that the terms NJri are
p

replaced by exp(l- i)J1r).

6.2.4 MPC Optimal Gains

¥Ptimal control approach formulated a cost function consisting of elements relat-

ing to the system's output accuracy and control effort input. Weighting parameters

were included in the cost function, such that the relative contributions of each to the

overall cost could be varied, and as such the controller's bias towards accuracy or

control efficiencycould be adjusted.

The MPC approach is very similar; the notable difference between the two is that

for MPC, the output error penalised in the cost function is the error between the

predicted future controlled system output and the reference path. The theory for the

generation of the model predictive controller gains is as follows [U, 52].

Considering the lateral positions of the motorcycle and the path, the error function

of an individual preview point is defined as

(6.40)
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where 11i(k) the predicted output of the ith preview point and YJ;(k) is the reference

output at the kth iteration step. Extending to the full system preview, the vector of

all errors in the preview horizon is therefore defined by

e(k) = cp(k) -YJ(k) = (M(k)x(k)+N(k)l'(k)) -YJ(k) = N(k)l'(k) -e(k) (6.41)

As with the optimal control cost function, the MPC cost function is formed by the

weighted sum of squares of the path followingerrors and the control input costs, such

that

N-l

J =L (eT(k)Qe(k) + l'T(k)Rl'(k))
k=O

(6.42)

where Q and R are again invariant weighting matrices on the system outputs and

control inputs. Here, they take the form of diagonal matrices, where the elements on

the diagonal correspond to the weightings on the outputs [ql, qz, ... ], repeating Np

times, and the weightings on the inputs [Tb T2, ••• ] repeating Nu times.

The weighting vectors on the output and inputs are decomposed as

Q = S~SQ

R=S~SR
(6.43)

in which case the cost function (6.42) can alternatively be expressed as

J = [SQ(N(k)l'(k) - e(k))] 2

SRl'(k)
(6.44)

where SQ and SR are the square symmetric roots of the matrices Q and R. In this case

they are symmetric, diagonal matrices and the square root can readily be obtained

as the squares of the individual terms on the diagonals. For more elaborate matrices,

other methods such as single value decomposition or Choleski decomposition may be

required.

Thus, the control input l'(k) that minimises the cost function J is obtained from the

least-squares solution [52]of the equation
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[
SQ(N(k)l'(k) - e(k)) 1 = 0

SRY(k)
(6.45)

The optimal gains for the controller can be obtained by making the substitution

l'(k) = K(k)e(k)

(6.46)

and using QR decomposition, such that

,,(k) = [ SQ:(k) ] \ [ SoQ 1
This then gives a full matrix of dimension (Nup) x (Npm) where p and m are respec- (

tively the numbers of control inputs and controlled outputs. Each row of the matrix I ~
K(k) corresponds to the optimum gain multipliers for each of the Nu future control ! ~h r I

I _6tA.
inputs. The optimum future inputs are obtained by multiplying each row of this \

matrix K(k) with the vector of future errors, s, i.e. using the previous substitution

(6.47)

Y(k) = K(k)e(k). At each iteration step of the program, it is only the first element

u(k) in the future control input vector l'(k) that is used, and hence it is only the first

row that is required to calculate the next control input. At the next iteration step,

the problem is re-evaluated, a new matrix K(k) calculated and hence the next new

control input u(k) calculated. Thus, the optimal MPC input applied to the system

can be defined as

u(k) = k(k)e(k) = k(k)[y,(k) - M(k)x(k)] (6.48)

where k(k) refers to the first column of the gains matrix K(k).

6.2.5 Application to Motorcycle Rider Modelling

The preceding section outlined the fundamental mathematical principles of the MPC

theory, using generic states vector x(k) and generic input vector u(k). The specific

application of the MPC technique to the motorcycle rider model is now explored.
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In defining the theory of MPC, the discrete-time state space model of the system

dynamics was given as

x(k + 1) = A(k)x(k) + B(k)u(k)

y(k) = C(k)x(k) +D(k)u(k)

(6.49a)

(6.49b)

Equation (4.3) showed how the motorcycle dynamic response model was combined

with a state space representation of the rider's road preview to develop the combined

motorcycle-preview model given as

[
Xv(k + 1) 1= [ Av(k)
Yr(k+1) 0

o 1 [Xv(k) 1+ [ Bv(k) 1 u(k) + [ 0 1Yrn(k)
Ap Yr(k) 0 Bp

(6.50)

where all terms have the same meanings as before; xv(k) is the vector of the motor-

cycle states, Yr(k) the vector of the road preview information, Yrn(k) is the vector

of the new road preview point information, and Av(k) and Bv(k) are the state space

matrices of the motorcycle dynamics, all at the kth step. The matrices Ap and Bp

are time-invariant state space matrices for the road preview shift-register algorithm.

u(k) is the system input vector. Here, only a single input, steer torque, is present,

and so u(k) can simplify to u(k).

The control input has no effect on the approaching road path, it is a defined feature,

and therefore to generate a prediction model for the road path would be unnecessary.

Omitting the (k) for simplicity of presentation, the predicted future states that are

generated in the MPC technique are therefore related to the motorcycle dynamics

alone, and are given as
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x,,(k+Np) Ar:p
(6.51a)

B" 0 0 u(k)

A"B" B" 0 u(k+l)

+ A~B" A"Bv 0 u(k+2)

Ar:p-1B" Ar:p-2B" Bv u(k+Np-l)

Similarly, for the system output

Xv (k+l)

x,,(k+2)

x,,(k+3)

Av

A~ x,,(k)

y,,(k+l) C"A"
y,,(k+2) CvA~
Y,,(k+3) C"A~ x(k)

y,,(k+Np) CvAr:P

(6.51b)
C"B" 0 0 u(k)

C"A"B" C"B" 0 u(k+l)

+ CvA~Bv CvAvBv 0 u(k+2)

C"Ar:p-1B" c"Ar:p-2B" C"B" u(k+Np-l)

The prediction model for the motorcycle dynamics can be represented by

Xv{k + 1) = Fv{k)xv{k) + Gv{k)'l'{k) (6.52)

(6.53)

If necessary, the rightmost (Np - Nu) columns of the matrix Gv{k) can be summed

as shown for the generic controlled system (6.10). The control inputs from the limit

of the control horizon (Nu) up to the limit of the preview horizon (Np) are considered
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invariant as the value u(Nu) at the limit of the control horizon. Thus, all the rightmost

columns of the matrix Gv(k) multiply by the same input u(Nu), which can be achieved

by summating the rightmost Np - Nu columns and multiplying singularly by u(Nu).

The solution for the optimal steer torque input control followsthe theory defined by

equations (6.40) to (6.48).

If the reference path y,(k) is defined as the actual road path Yr(k) that is stored in

the combined motorcycle-preview state vector, then, from (6.48), the control input

can be defined as

(6.54)

As both vectors xv(k) and Yr(k) are combined in the motorcycle-preview state vector

z(k), then equation (6.54) can be neatly written in the vector form

u(k) = - [kv(k)Mv(k) -kv(k)] [xv(k) ] = - [kv(k)Mv(k) -kv(k)] [ z(k) ]
Yr(k)

(6.55)

Thus, by solving (6.47) as before for the motorcycle dynamics model to obtain kv(k),

the optimal control for the motorcycle followingthe road path can be readily obtained.

Noting the structure of (6.55), it can be seen that the controller gain elements ap-

plied to the motorcycle states and to the road states can be identified readily. The

gains element kv(k)Mv(k) multiplies by the motorcycle states, while the element

-kv(k) multiplies by the road preview information. Consequently, kv(k)Mv(k) and

- kv (k) will henceforth be referred to as the state gains K, and the preview gains Kp

respectively.

6.2.6 MPC Theory Conclusions

The theory for the solution of a model predictive controller has been presented in

some detail, including the freedom to select different reference paths, and with both

linear and non-linear prediction models. Where appropriate, the theory has been

compared and contrasted to the optimal control approach.
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Based on the theory presented in this chapter, it is believed that the model predic-

tive control approach may be a more realistic representation of a motorcycle rider's

actions. A rider would certainly have some anticipation of how the motorcycle would

respond to control actions, and would therefore have some subconscious planning of

control actions based on knowledge of the approaching road path and likely system

behaviour. Furthermore, the freedom to define a reference path that takes the rider

from the motorcycle'S instantaneous state to some target state in the future intu-

itively seems representative of the manner in which the motorcycle would move from

one position, quite possibly off the target path, in a direction that will aim to regain

the target path.

These observations on the theory of model predictive control and the requirements

of a suitable model to replicate the actions of a motorcycle rider would appear to

suggest that the former will adequately meet the requirements of the latter. The

results of the application of model predictive control to the rider model will aim to

answer this question more definitively.

6.3 Model Predictive Control Rider Model Results

The motorcycle-rider model is tasked with a simple single lane-change path to follow,

comprising a lateral shift of the road path of 3.5 m over a forward distance of 20 m

(Figure 6.9). Analysis of the controller's performance in attempting this task will

be used to assess the appropriateness of using such a control strategy in modelling

a human motorcycle rider and to discuss any rider control requirements that may

transpire from the analysis.

Several parameters regarding the performance of both the motorcycle and the rider

model can be varied, and their effect on the control task assessed. Concerning the

motorcycle, the inherent physical properties of the motorcycle, such as geometric

details or inertial properties, can be altered. Almost certainly these will influence

the control task and hence the path following performance of the motorcycle-rider

model. The scope for adjustment of the physical parameters is vast, ranging from

the major influences such as steering geometry, to the more minor such as individual

component inertias. The task here is to study and evaluate primarily the controller,

and as such the motorcycle model remains fixed throughout all of the path following
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simulations. Details of the motorcycle model used can be found in Chapter 3 and

Appendix A.

Detailed analysis will therefore be limited to variation of the controller parameters

alone, yet even here there remains still plenty of scope for adjustment. The trajectory-

following performance of an MPC controller is primarily affected by the cost function

(6.42) composed of accuracy and effort components with weightings applied to the

individual components of each part. The controller then attempts to minimise this

cost function, effectively a mathematical compromise between contributions made by

the two components.

In this application the cost function penalises the lateral path and the yaw angle errors

against the handlebar steer torque input. From a rider's perspective, the requirement

to apply large steer torques is undesirable, so penalising this parameter is intended to

keep steer torques to acceptable levels. Weighting factors are applied to all measured

(simulation) values in the cost function, and so there exist m weighting parameters

relating to the output accuracy and p weighting parameters applied to the control

inputs.

The cost function weighting parameters therefore form the initial modelling variable,

and secondly the horizons available to the rider model can also be varied. In the case

of an MPC strategy, three horizons exist; the preview horizon Tp, the control horizon

Tu, and the dead-zone horizon Tw. The dead-zone horizon was mentioned briefly in

Section 6.2. The horizon represents a system lag between control input and system

response. For systems with large response lags, particularly chemical processes for

example, this can be a very useful feature. For the motorcycle, the effect of control

input on the system's response is assumed instantaneous. Any response lag that may

be experienced is assumed to be accounted for by the relaxation length property of

the tyre's lateral force response (Chapter 3). The dead-zone horizon is not required

here and is therefore always zero. The remaining horizons Tp and Tu can be varied

independently with the proviso that the control horizon cannot exceed the preview

horizon.

Finally, details of the simulation itself can be varied. The nature of the path to be

followed in terms of both the geometric path and of the road surface can be varied, and

the speed at which the motorcycle-rider attempts the manoeuvre changed. Variation
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of the road geometry to be followed will naturally influence the control applied by

the rider, however, the task here is to study the controller, and the fundamental

influence of the controller settings upon the path following performance. These would

be expected to remain broadly fixed regardless of the road geometry. Changes to

the road surface, such as elevation and surface roughness, both factors in real-world

riding scenarios, would similarly be expected to have minimal influence on the broad

performance of the control strategy, and thus opening up the simulation parameters to

include factors relating to changes in the road geometry and surface would complicate

the analysis unnecessarily. The road path and surface will therefore be maintained

constant throughout all parameter studies.

The parameter studies will therefore focus on four key variables; the lateral path

error cost weighting ql, the preview horizon Tp, the control horizon Tu and the forward

speed v. In addition, the effect of non-linear prediction models will be evaluated. The

results will be discussed in specific parts, with initially the controller performance

analysed for a single set of controller parameters, such that the generic behaviour

and characteristics of the MPC controller can be assessed and compared with the

performance of an optimal control strategy using the same controller parameters.

Following this, parameter studies will be made by progressively varying the four

controller variables to draw further conclusions about the behaviour and suitability

of MPC techniques to the task of motorcycle rider modelling.

6.3.1 Low Speed Baseline Prediction Model

This part of the results section is concerned with results generated using a linear

prediction model, discussed in Section 6.2.1. The linear prediction model is a consid-

erably more computationally efficient process, and therefore allows for a large range

of results to be generated readily. This model is used to study the effects of the

controller parameters for a range of settings, enabling the effects of individual pa-

rameters alone to be studied. The implications of the using the linear prediction

model compared to the technically more accurate non-linear prediction model will be

investigated later in the results, to determine how critical this aspect is in the overall

performance of the model predictive control rider model.

In considering the performance of the controller with reference to the task, several
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output variables will be analysed. Primarily, the path followingperformance of the

controller is observed in attempting to followthe path, since this is the fundamental

task for the controller. Additionally, the state and preview gains, and the steer

torque generated, will be examined, with the results discussed both qualitatively and

quantitatively.

Baseline Parameter Set

The initial simulation parameters, set to act as a baseline giving a simulation with

moderate accuracy and preview levels at a lowspeed, are presented in Table 6.1 Set 1.

This set of valueswill subsequently be extended to provide variation in all parameters,

with the influence upon the controller's characteristics as a result of these changes

analysed.

Figure 6.10 shows the path followingperformance of the controller with the initial

baseline parameters. It is seen that the path following performance is good, with

the model being able to track the target path with acceptable accuracy. There is

an initial deviation away from the path where the motorcycle rider model initiates

the manoeuvre with countersteer and there is a small overshoot at the end of the

manoeuvre phase, after which the controller recovers the path and followsthe straight-

running section of the path exactly.

The controller gains are considered next. The state gains are presented in Figure

6.11, and are seen to be not dissimilar from those achieved using optimal control

methods. As before, the largest state gain corresponds to the yaw angle, followedby

the roll angle gain, and with all other gains of considerably lower significance. The

yaw angle directly influences the errors between the predicted path heading for the

rider and the target path, and so it is perhaps unsurprising that, as with the optimal

control approach, this state is associated with the largest gains. With fixed rider,

the cornering radius of a motorcycle is directly influenced by the roll angle of the

motorcycle. The roll angle therefore has a direct bearing on the future path of the

motorcycle, at least over the immediate preview distance, and thus the errors between

predicted future path and target future path. It is therefore unsurprising that the

roll angle of the motorcycle should also figure significantly in the rider's control task.

The preview gains are presented in Figure 6.12. As with the state gains, these show
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considerable similarity to gains achieved using optimal control strategies, with the

significant characteristics of a peak gain in the middle preview distance, decaying

towards zero values at the limit of the available preview.

The steer torque that results using this controller is presented in Figure 6.13. It

shows smooth development of the steer torque as might be expected of a real rider,

and includes the necessary countersteer torque needed to initiate the manoeuvre.

The path following of the motorcycle is also overlaid on this plot, allowing the path

following that results from the steer torque to be seen.

Consideration of the gains and resulting control inputs suggests that the baseline

parameters can represent a controller that appears to have sufficient knowledge of the

approaching road path to make good judgement of control required to accomplish the

task. The preview gains tend to zero, indicating that the information at the limit of

the rider's preview has minimal significance, the steer inputs resulting are smooth,

progressive and representative of the approach that may be expected of a real rider,

and ultimately the path following ability of the controller is judged to be acceptable.

The behaviour is not unlike the results achieved using optimal control methods, a

technique that has previously been judged to represent well the control strategies of

a motorcycle rider [94].

Cost Function Weighting

The baseline parameter set is extended to consider first three different values of lateral

error cost function weighting, ql. The initial value of ql was set at 5000 m -2 which

gave rise to moderately close path following performance. Additionally values of

1,000 m-2 and 10,000 m-2 are now considered, which will aim to represent looser

and tighter control respectively (Table 6.1, Sets 2 & 3).

The results of this are presented graphically. The path following is shown in Figure

6.14, and as may be expected, the higher weighting results in closer following of the

path, showing reduced corner-cutting. Both controller weightings display qualita-

tively similar characteristics, and for both controller settings the motorcycle follows

the path accurately after the manoeuvre has been completed (not explicitly shown).

The difference in the path following performance results from changes in the controller
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gains that are generated. Figures 6.15 and 6.16 show the state gains and the preview

gains respectively for all the path error weightings considered, with ql = 1000, 5000

and 10,000 m-2•

It is seen that the state gains are increased as a result of an increase in the path-

error weighting. All states are influenced, though the ratio of the magnitudes of the

individual state gains remains constant for all values of ql. The rate of change of the

state gains is seen to reduce with the increase in the path error weighting.

In considering the preview gains, tight control implies that the rider is concerned with

accurately following the path. Thus, during the simulation, the rider may be expected

to place greater emphasis on the road immediately ahead of him, and ensuring that

his trajectory will keep him on this path regardless of the control cost (Figure 6.17,

left). The road some distance ahead of him is of less concern; he must ensure he

tracks the path accurately, irrespective of whether this path is the most direct route

between the start and finish points. Similar observations were made for the optimal

control approach.

Conversely, lower values of ql result in the control input cost becoming more dominant

in the overall cost function. Thus, a loose controller is concerned with minimising

the control input effort, achieved by attempting to make the complete path easier to

follow. The rider might therefore be expected to consider the whole road that he can

see to evaluate the easiest path from his current position to his ultimate target at

the limit of his visual preview. The rider is less concerned with the road immediately

ahead of him, but is aiming instead to follow the road that can be seen ahead of

him efficiently. As a result, a loose controller would be expected to cut corners more

readily, in order to track the path globally yet efficiently.

If a controller is to model a human rider realistically, the controller must also reflect

these characteristics. The preview gains achieved for the tight and loose control

strategies are therefore considered.

It was expected, based on the literature, that the emphasis of a tight control strategy

would be placed on road information in the rider's near preview, with less emphasis

given to the road seen in the distance. Figure 6.16 showed the preview gains for all

three path error weightings considered. The changes in the gains reflect the expected

effects; higher error weighting ql resulting in tighter control stems from a shift of
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emphasis towards the near preview distance. Conversely, loose control considers the

observed path more broadly, with lower peak gain value and more evenly distributed

gains over the entire preview distance.

Confirmation of the correct performance of the controller model is made by consid-

ering the steer torque that the rider applies to the motorcycle'S handlebars. A loose

controller would be expected to begin to steer well in advance of the turn, in or-

der to make the turn progressive and minimise the control effort he is required to

input, ultimately making the manoeuvre more efficient with regard to his control

input. Conversely, tight control might be characterised by later steer control inputs,

beginning closer to the turn, and correspondingly having to be larger in magnitude.

The steer torques for all three path error weightings are presented in Figure 6.18. The

loose control displays the required early turn initiation, lower ultimate steer torques

and a more gentle turn. Notable again is the countersteer applied at the beginning

of the manoeuvre.

Thus far, the task of assessing the controller's performance has considered several

aspects. These aspects have all suggested that the use of an MPC control strategy

replicates well the behaviour that may be expected of a real rider. 3.0 s of visual road

preview appears sufficient at this speed, showing good path following performance

and with the preview gains diminishing to zero for all path error weighting values

considered, with variations in the lateral path followingerror resulting from changes

to the controller's behaviour in a manner that appear consistent with the behaviour

expected of a human rider.

Preview Horizon

The influenceof the controller cost function weighting parameters on the performance

of the controller as a whole has been investigated. The fundamental input to the

controller comes from the road information that the rider sees, and so logically the

preview and control horizons would be expected to have a significant impact upon the

controller's performance. The effects of both an increase and decrease in the available

preview information afforded to the rider model therefore require investigation.

Considered first is the case for an increased preview horizon (Table 6.1, Set 4). As
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the rider initially appeared to have sufficient preview information available to him at

the forward speed of 10 mis, it may be expected that additional preview information

would have minimal significant impact on the controller's performance. Tp is increased

from 3.0 s to 4.5 s, representing what is believed to provide excessive visual preview.

The limited preview horizon case is also considered (Table 6.1, Set 5), for a reduction

in the preview horizon from 3.0 s to 1.5 s. For both controller sets, the results will be

analysed in the same manner as before, looking at path following performance, gain

distributions and resulting control inputs.

For all three horizon lengths considered, the path following accuracy shows little dif-

ference (Figure 6.19); only when examining the data in detail for the loosest controller

(ql = 1000) is there a discernable difference. In analysing the influence of the path

error weighting function, it was seen that loose control was associated with fuller use

of the available preview information, such that the extra preview information enabled

the rider to improve the input-effort efficiency of his manoeuvre, consequently lead-

ing to the rider cutting the corner to a greater degree than previously. Conversely,

tight control placed the emphasis on the road information close to the motorcycle'S

position. It may therefore be expected that for tighter control additional preview in-

formation in the far preview region would not significantly affect the control strategy

applied during the manoeuvre.

The state gains for both Tp = 1.5 s and 4.5 s are compared with the baseline parameter

set (Figure 6.20). Minimal difference is observed for the two horizon values considered

compared to the baseline set. For the 4.5 s case, it appears that the increase in

the amount of road information available to the rider model has, as predicted, had

minimal influence upon the state gains. Likewise, the reduction in preview shows

barely perceptible differences.

The preview gains show similar findings, with minimal differences between the gain

values achieved with Tp = 3.0 s compared with Tp = 4.5 8 (Figure 6.21). Again,

this suggests that for the current level of path following accuracy a preview time of

3.0 S is sufficient, and any additional preview information would be of little use to

the rider. The reduction in preview to 1.5 S again brings only subtle changes to the

pattern of the gains, suggesting that the reduction has had only a minor effect on the

rider's control.
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As neither the state gains nor the preview gains are significantly affected by the

increase in the preview distance available to the rider, the consequential effect on the

steer torque is minimal (Figure 6.22).

It appears therefore that for the speed and path error weighting functions considered

here, additional preview information has not affected the rider's control strategy

significantly. For riding with these path following parameters, greater than 3.0 s

of visual preview appears to have minimal benefit to the rider. Similarly, with a

reduction in the preview horizon to 1.5 s, the effects on the controller and the path

following performance appear to be of minor significance.

Control Horizon

The predictive control strategy also permits the control horizon to be set indepen-

dently of the preview horizon. For restricted control horizons, the control input is

assumed to be invariant from the limit of the control horizon up to the limit of the

preview horizon, such that a control input for the full preview horizon is still avail-

able (Section 6.2.1). This is a standard practice when employing predictive control

techniques [9, 35] A loose control strategy has been shown to favour a longer preview

horizon, and so this limited control horizon case is tested against a loose control strat-

egy in order to provide a more challenging test, comparing three cases; the preview

horizon is fixed at 3.0 s, with initially a 3.0 s control horizon, then restricted to 1.5 s,

and the last case with the control horizon reduced further to 0.5 s (Table 6.1, Set 6).

As may be expected, some change in the controller's performance is observed. Figure

6.23 shows the path errors between the three controller settings. The shortest control

horizon case (0.5 s) displays the largest errors. Over approximately the first 40 m of

the manoeuvre, the 1.5 s control horizon case displays the best performance. In the

middle phase the 1.5 s and 3.0 s cases are very similar, while over the last phase of

the manoeuvre, from approximately 55 m to 65 m, the 3.0 s case proves superior to

the 1.5 s control horizon case.

The corresponding state and preview gains are given in Figures 6.24 and 6.25.
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Low Speed Modelling Conclusions

Having conducting a parameter study for the motorcycle running at low speed, some

conclusions can be made regarding the performance and characteristics of the control

strategy for this application.

In line with what may intuitively be expected, changes to the required path follow-

ing accuracy affect the way in which the modelled rider uses the road information

available to him. A loose control strategy implies that the concern is biased towards

minimisation of control effort, with accurate path following being less important.

Consequently, the rider makes more use of the full picture of the road ahead, thereby

allowing the most efficient route to be taken over the road that he can see. Con-

versely, tight control requires accurate path following, so regardless of where the road

may go some distance in the future, the prime consideration is the immediate path

that the rider is about to encounter, and ensuring that his motion tracks this road

accurately. These characteristics for tight and loose control are thus reflected in the

preview gains that represent the use that the rider makes of the observed road path.

If sufficient visual road preview is available in order to make the suitable compromise

between path accuracy and control effort, then any additional road preview at the

limit of the rider's preview appears to have no effect on the controller gains and hence

the control actions of the rider model. Again, this characteristic would appear to be

representative of the manner in which a human rider would operate.

Initial results for the application of the model predictive control strategy to motorcycle

rider modelling therefore appear encouraging, and the analysis is extended for the

motorcycle running at increased forward speeds.

6.3.2 High Speed Linear Prediction Model

Results presented thus far have been for one forward speed alone, v = 10 mis, where

it was observed that the controller produced good results for preview times Tp in

excess of 1.5 s. Variation of the control parameters produced acceptable changes in

the controller's gains and consequently control actions.

The forward speed was therefore increased in order to assess the implications that
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forward speed has upon the controller's ability to guide the motorcycle along the

target path.

Baseline Parameter Set

As for the model running at v = 10 mis, the model has been run with a set of

baseline parameters, but now at a forward speed of v = 40 m/s (Table 6.2, Set 7).

The modelling parameters were varied as at the lower speed, with the results analysed

and compared with the lower speed condition.

Examining first the path following capabilities of the controller (Figure 6.26), the

motorcycle continues to follow the intended path, negotiating the manoeuvre section

successfully, returning to follow the path accurately along the subsequent straight-

running section. Compared with the lower speed case (Figure 6.10), the motorcycle

was seen to overshoot at the turn exit to a greater degree than for the lower speed

case, cut the corner much more significantly, but ultimately achieved the manoeuvre.

The controller gains essentially represent a mathematical balance between the cost

associated with the output (path following) accuracy and the control effort (steer

torque) input. Higher speeds lead to an increase in gyroscopic forces associated with

the rotating wheels, and hence require a greater steer torque input effort to achieve

similar steer angles and thus path following performance. Like for like, higher speeds

lead to an increase of the contribution to the cost function made by the control

input effort. The path following error becomes relatively less of a priority at higher

speeds, and consequently the path following accuracy suffers. In this manner, the

behaviour with increased speeds is not unlike setting the controller to operate in a

looser manner, where the relative contribution to the cost function is reduced, and

indeed this is reflected in the path following performance of the controller.

The state gains provide some interesting observations (Figure 6.27). The bulk of the

states gains are not changed significantly with the increase in forward speed, except

for the gain corresponding to the yaw angle, which sees an increase of nearly 250%.

A yaw angle error implies that the motorcycle is heading away from the intended

path. As the forward speed is increased, for a given iteration time step it is seen that

doubling the forward speed will double the lateral path error that is generated over

one iteration step (Figure 6.28). Perhaps then it is unsurprising that a 300% increase
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in the forward speed and therefore the preview distance should result in a similar

increase to the gain applied to the yaw angle of the motorcycle.

Comparing the preview gains (Figure 6.29), it appears that with Tp = 3.0 s the gains

again come close to diminishing to zero, though perhaps not quite as completely as

seen at the lower speed. Also of note is the oscillatory response of the gains for the

higher speed. This condition is due to the minimal damping of the wobble mode at

this forward speed (Figure 3.15), seen also for the optimal control approach (Figure

5.21). Although the gains at the higher speed are clearly tending to zero it appears

that they have not yet reached a steady value, implying that a small increase in the

preview horizon may be required to achieve this. At the increased speed, the peak

gains obtained are smaller than had been seen for v = 10 mis, with peak gains of less

than 1.5 comparing with over 2.0 for the lower speed. This is an interesting result,

since the higher speeds are seen to increase the magnitudes of the state gains, while

seemingly reducing the magnitude of the preview gains. Considering again Figure

6.29, the trend seen here is again not dissimilar to that shown when the controller

running at v = 10 m/s was set to operate in a loose manner; the peak gains are lower

but the rider apparently is required to look further down the road to apply complete

control.

The increased gyroscopic forces are in part suspected to account for this; at the raised

speeds, the steer torques required to overcome the gyroscopics will increase, leading

to an increase in the relative contribution to the cost function relating to the control

effort. Consequently, since the ratio between the cost function's components is fixed,

the cost contribution associated with the system output also increases. Thus, the

errors associated with the path following also increase, and so the path following

performance appears to deteriorate.

To confirm that the deterioration in path following accuracy is largely as a result

of increased gyroscopics and hence increased cost function contribution due to the

system inputs, the inertias of the wheels were reduced, thus decreasing the gyroscopic

forces from the wheels that form a significant contribution to the stability and ma-

noeuvrability of the motorcycle. If the hypothesis is correct, then the reduction in

wheel gyroscopics should lead to an improvement in the path following performance

achieved. The wheel moments of inertias were therefore halved, and the path follow-

ing as a result is presented in Figure 6.30. Here, it is clearly seen that this reduction in
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wheel inertia has had a significant impact on the path following accuracy. The path

following errors are not halved, since the gyroscopic forces are not the only forces

contributing to the steer torque required to steer the motorcycle, but it is apparent

that the contribution is nonetheless a notable element.

As anticipated, at higher speeds the steer torques applied by the controller are seen to

be significantly greater than had been seen at the lower speeds (Figure 6.31). Given,

in part, the relationship between forward speed and wheel gyroscopic forces this result

is perhaps not unexpected. The magnitudes of the steer torques generated in this

simulation are likely to be greater than a rider would be capable of applying. The

results here are a mathematical solution, and this result adds weight to the need for

some form of limits or constraints that formed one of the motivations for using model

predictive control techniques. In spite of the increased steer torques, the steer angles

obtained are reduced compared with those achieved at lower speeds (Figure 6.32).

The comparisons drawn between the behaviour of the controller operating with the

higher speed baseline set indicate that, for all other parameters fixed, the control

behaviour resulting appears to exhibit a more loose manner than at the the lower

speed. This agrees with the observation that increased speeds lead to higher control

contribution to the cost function, and hence the controller must compromise path

accuracy at high speeds in an attempt to contain the control input effort required.

Cost Function Weighting

The influence of the output error cost function weighting parameter is again analysed

for the higher speed case (Table 6.2, Sets 8 & 9). It was observed that the influ-

ence upon the state gains, preview gains, steer torques and steer angles all showed

comparable behaviour to the lower speed case.

Reducing the cost weighting results in lower state gains, while increased cost weighting

results in higher state gains (Figure 6.33). For the looser control, the preview gains

are lower in magnitude but biased further forwards and more evenly distributed over

the visual preview horizon, comparable to a looser control strategy. However, it is

noted that for the preview gains to diminish to zero, as had been achieved at the

lower speed with Tp = 3.0 s, it becomes necessary to increase the preview horizon

to achieve the same results. Figure 6.34 plots the preview gains against preview
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distance allowing 4.5 s of visual preview, where the preview gain pattern with regard

to the complete preview horizon is then comparable with Figure 6.16. Tighter control

was seen to result in higher peak preview gain values, biased more towards the near

preview.

The effects on the steer torques and hence steer angles are qualitatively similar to

the effects seen at lower speed (Figure 6.35), and are consistent with the observations

made regarding rider control for the lower speed case.

Preview Horizon

The influence of the preview horizon on the controller performance is again analysed,

now at the higher speed (Table 6.2, Sets 10 & 11). As noted previously, to achieve

comparable preview gain distribution at the higher speed it is seen to be necessary

to increase the length of the preview horizon, with the increased preview horizon

taken as 4.5 s. At the higher speed, comparison of the preview gains for the three

preview horizon times (Figure 6.36) shows minimal difference between Tp = 3.0 sand

Tp = 4.5 s. However, the lower preview horizon, Tp = 1.5 s, shows more notable

difference to the other two settings. In contrast, at the lower speed (Figure 6.21), all

three horizons gave very similar gain patterns.

These results appear to show that as the speed is increased an increased preview

time is ideally necessary to maintain the control performance of the motorcycle, and

as before, it is suggested that this is again the result of the increase in gyroscopic

forces experienced as the speed increases (Figure 6.30). Consequently, and in order to

maintain control torque effort, the rider must begin manoeuvres further in advance of

the turn as the speed is increased, which therefore requires a greater preview horizon

in order to facilitate this.

In spite of the apparent deterioration of the controller gains for higher speeds with

short preview horizon, the model is still capable of negotiating the path competently.

What this result would appear to suggest is that the rider model's control may be

compromised by the limited preview, but this does not necessarily prevent successful

riding, as may be expected of a real rider.
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Control Horizon

Thus far, the control problem has dealt with the situation for which the rider's visual

preview horizon and his control horizon are the same. In other words, the rider plans

a control strategy for the full road picture that he has available. The MPC strategy

enables the two horizons to be set independently, thus allowing the control horizon

to be set shorter than the preview horizon. Relating this to a rider, this would imply

that the rider has knowledge of the road a long way ahead, but plans his control for

only a shorter time ahead of him.

It has been seen previously that for the low speed baseline parameter set (Table 6.1),

the controller's performance was good, and a reduction in the preview and control

horizon to 1.58did not adversely affect the overall ability of the controller to complete

the task.

Ai; the speed was increased, it was noted that the reduction in preview horizon from

3.0 s to 1.5 s did appear to have an effect on the preview gains. While the ultimate

performance of the controller was not significantly degraded, the effect of the reduced

preview horizon was apparent.

An appropriate point to begin to investigate the effect of a reduced control horizon

is therefore with the higher speed baseline parameter set. The simulation is therefore

run with a preview horizon Tp = 3.0 s, but with also a limited control horizons of

Tu = 1.58 and 0.5 s (Set 12). Selecting these values will allow the performance to be

compared with earlier results with equal preview and control horizons.

The path followingperformance of all three control horizon settings was seen to result

in very similar results which were difficult to discern from one another. The path

errors, being the differencebetween the target path and the actual path achieved, are

therefore plotted in Figure 6.37, where it is seen that overall the performances of the

three controllers are similar. Only in the initial countersteer phase and at turn exit

are there any notable differences.

The maximum error during the initial phase is seen for the shortest control horizon,

as may be expected, but, interestingly, the best performance in this part is for the

1.5 8 control horizon. The 3.0 s control horizon falls midway between the two. At

turn exit, the roles are reversed; the shortest control horizon Tu = 0.5 s shows the
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best performance, the 1.5 s case the worst, with again the 3.0 s case in between.

Both the state gains (Figure 6.38) and preview gains (Figure 6.39) show this similar

interesting pattern, whereby the values of the 3.0 s control horizon case fall midway

between the values of the 1.5 s and 0.5 s values.

High Speed Linear Prediction Model Conclusions

The analysis for the two different forward speeds considered has generated some

interesting conclusions, indicating the requirement for greater preview information

for complete control as the speed is increased.

A human rider is constrained by physical limits of strength which ultimately limit

the magnitudes of steer torque that can be applied to the motorcycle. Higher speeds

require higher steer torques due to the increase in gyroscopic forces (Figure 6.30), and

so as the rider's physical limits become more heavily used, he must instead find ways

to reduce this torque requirement. This is most readily achieved by commencing the

turn earlier and more progressively, and essentially the rider may be forced to operate

with a looser control strategy by limitations of physical strength.

In a real riding situation, there are additional steps that a rider can take in order

to reduce the steer torque requirement in order to overcome the gyroscopic forces.

Typical techniques include more emphasised countersteer to force the bike into the

lean and movement of body weight, in order either to force the bike to lean into the

turn or to reduce the angle to which the motorcycle itself must lean, by moving his

own bodyweight to achieve the necessary balance between overturning moments and

moments due to centripetal forces.

In performing a manoeuvre, a car is not required to lean into a turn in the manner

that a motorcycle must. As such, the increased gyroscopic forces that result from

higher speeds are inconsequential to a car driver. It may therefore be suspected

that as speeds are increased a car driver has less requirement to increase his preview

horizon for complete control in the manner that a motorcycle rider, it appears, would

need to. It is widely regarded that motorcycle riders exercise much greater visual

preview, examining the road ahead to a greater distance than a car driver might, and

indeed the findings here would appear to support those beliefs and offer some feasible
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explanation of why this needs to be so.

6.3.3 Non-Linear Prediction Model

The analysis conducted so far used a prediction model that employed a fixed state

space model of the motorcycle for the entire prediction horizon, as discussed in Section

6.2.1. If a technically more correct prediction model were to be used, the technique

to obtain the prediction element is essentially the same, albeit computationally more

demanding. The theory of this approach was presented in Section 6.2.2. In regard

of the additional computational load of the non-linear model, a typical simulation

conducted here required several hours for the non-linear prediction as opposed to

several minutes for the linear prediction. For off-line model simulation, this does not

technically pose a problem. However for the processing of a significant number of

modelling conditions, as considered within this thesis, the additional computational

time becomes a more relevant consideration.

In order to assess how critical the choice of a technically more correct non-linear

prediction model is to the modelling of the motorcycle rider, the full non-linear pre-

diction model has been run for the set of low-speed baseline parameters presented in

Section 6.3.1.

For the linear prediction model running at moderately low speeds, the path following

performance was seen to be quite acceptable, with the motorcycle tracking the path

well and with smooth progress during the manoeuvre (Figure 6.10) The control gains

generated (Figures 6.11, 6.12) seemed consistent with what might logically be ex-

pected and the steer torque (Figure 6.13), while not completely smooth, also seemed

consistent with the actions that may be expected of a human rider.

The full non-linear model was run using the same modelling parameters and over

the same path. The path following performance of the model was examined first,

and compared with the linear prediction model results obtained previously. The

differences between the linear and non-linear prediction models are hard to discern;

both models follow broadly the same path, and it is only when the performance is

examined in detail that the differences become apparent. Figure 6.40 presents the

final phase of the manoeuvre, as the motorcycle is exiting the turn phase and returning

to straight running. By examination of this phase, it is apparent that the non-linear
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model performs better, tracking the target path more closely, both during the turn

and as the motorcycle begins to straighten its path.

The steer torques generated by the controller are also examined, and once again com-

pared with the linear prediction model results obtained previously. For the linear

prediction model, the steer torques appeared acceptable (Figure 6.13), albeit not en-

tirely progressive over the course of the manoeuvre. Figure 6.41 presents the steer

torques for both the linear and non-linear prediction models, and from this the su-

perior performance of the non-linear prediction model is apparent, the steer torques

generated using the full non-linear prediction model showing much smoother torque

inputs without the transient oscillatory behaviour apparent with the linear prediction

model.

The results of this are significant for two reasons. Primarily, it is apparent that the

performance of the controller is superior when a more realistic prediction model is

used. This result is not surprising, since the controller bases the control decision on

the predicted output, and if the predicted output and the actual system output to

a given control input differ, then clearly the system behaviour will suffer from less

accurate performance.

Secondly, although the full non-linear prediction model is seen to provide superior

performance, the difference in the resulting outputs are not so different as to call

into question the validity of the results and observations made in assessing the MPC

controller using the linear prediction model.

It is likely that for the higher speed case, the difference between the linear and non-

linear models will be more distinct. At higher speeds, the lean angles required to

negotiate turns are greater, and as such the change in lean angle over the manoeuvre

in the prediction horizon could be expected to increase. Consequently, the dynamics

of the motorcyclewill change to a greater extent over the preview horizon, making the

difference between the linear prediction model and the non-linear prediction model

more marked. Additionally, at the higher speed the preview distance increases, mean-

ing that a greater distance of road is seen in the rider's preview horizon, and therefore

the manoeuvre planned for a greater length of the road path. The greater the length

of the road path, the greater the potential changes in the road path that the rider

will see. Correspondingly, the potential changes in the motorcycle's predicted future
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trajectory may be greater, adding further to the differences between the linear and

non-linear prediction models at the higher speed.

6.3.4 Reference Path Definition

The application of a reference path, often used in predictive control methods, concerns

the definition of a target path to follow, different to the set path, that the system

output will attempt to track. With this method, the intention is to take the system

output from a position away from the ideal and guide it back onto track in some

defined way.

The results presented so far have been for the case where the set path and reference

path were equal. If the motorcycle were displaced from the target path, this would

effectivelyresult in a step path that the rider would attempt to follow. However, it

was postulated that this may not be entirely realistic of a human rider, and that once

displaced from the ideal path of the road, a rider may not attempt immediately to

recover the road centreline, but will aim instead to gradually guide himself back onto

the road path.

The manner in which the set path regains the target path can be defined in different

ways. Here, three methods were considered: linear path, linear error reduction path,

and exponential error reduction path. The performance of the controller using these

modified path definitions will be compared with the original definitions using only

the set path, to determine whether improved controller performance can be achieved.

Linear Set Path

The theory of the linear set path was covered in Section 6.2.3. Essentially, the linear

set path definesa path that takes the system output state from the current position to

the target position at the limit of the preview horizon. Making use of the motorcycle's

current position and a target position given as the set path at the limit of the rider's

preview horizon, the intermediate linear reference path is calculated. The theory of

a linear prediction model is applied to the motorcycle model, and the controller then

attempts to followthe single lane change manoeuvre as before.

The path followingability of the controller is assessed first. From the trace of the path
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output (Figure 6.42), it is immediately apparent that this is not an entirely suitable

manner in which to model the controller's actions. Essentially, by modelling the set

path as a linear path from current position to final position, at each point during

the simulation the rider is ignoring the road path in his preview horizon, focusing

only on his distant target. For very gentle manoeuvres, this may be an acceptable

approach, but realistically it is not suitable for the application here. Throughout the

manoeuvre the rider is always attempting to cut the corner by the maximum amount,

and hence the resulting performance is poor and unrealistic of the control actions of

a motorcycle rider.

If a target point other than the final preview horizon point were chosen, say a point

half way along the rider's preview horizon, then the path following performance of

the rider would be expected to improve. However, the rider would still be aiming to

follow a path that heavily cuts corners (Figure 6.43), and would therefore give inferior

performance to the use of the set path. No further analysis was therefore conducted

for this definition of reference path.

Linear Error Reduction Path

The definition of the reference path here is subtly different to the full linear refer-

ence path. There, the path was taken as a straight path between current position

and a target position some way in the distance, with no consideration of the path

information in between in the rider's preview horizon.

The reference path defined here is such that the error between the set path and the

reference path is reduced linearly over the full preview horizon, from the current

lateral error to zero at the horizon limit. This does not imply that the set path itself

is linear, as was the case for the linear set path defined previously; if the road curves,

so too will the set path, but it is the error between the two paths that will reduce

linearly over the forward distance.

The theory of this model was discussed in Section 6.2.3. The performance of the

controller using this strategy is again analysed by considering the path following

performance and the controller's input actions. Displayed in Figure 6.44, the result

is notably different to the linear reference path definition assessed previously. In this

case, the rider model does not begin to cut the corner well in advance, and begins
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the manoeuvre phase as the actual manoeuvre of the road set path begins.

However, beyond this point, the path following is again inferior to the performance

when the set path and reference path were equal. Essentially, by defining the set

path as a linear error reduction between current position and a target in the future,

a weaker path following target is being set for the rider model to attempt to follow,

and consequently the actual path following accuracy of the motorcycle, relative to

the actual road defined by the set path, is reduced.

Exponential Error Reduction Path

The reference path is now defined in such a manner that the path error diminishes

exponentially to the target path. The basic theory of this approach is similar to the

linear error reduction path, except that now the reduction of the path error over the

full horizon is an exponential decay.

The theory of this approach (Section 6.2.3) was not dissimilar to the theory for the

linear error reduction case. Therefore, it is not surprising that the resulting perfor-

mance shows similar characteristics to those of the linear error reduction method.

ABwith that method, the motorcycle does not begin the manoeuvre until the actual

road path begins to deviate. However, once the path does begin to deviate, the path

followed by the motorcycle does not track this path particularly closely, as before

taking a more direct route towards the road path at the limit of the preview (Figure

6.45).

The magnitude of the path error is not as great as for the linear error reduction case,

though this magnitude is dependent on the value of lr, the exponential path relaxation

length, set here at values of 20 m and 50 m. The smaller this value, the closer the

exponential path comes to a step function, essentially the case when the set path

and reference path are set equal. The shorter the value, the more the reference path

tends towards the linear error reduction case. Here, the value of lr is such that the

exponential rise time is quite short, and consequently the path following appears to

be quite promising. However, if a longer rise-time were used, then the results would

tend more towards those seen for the linear error reduction case.

The conclusion for the use of an exponential error path reduction therefore must be
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that, in line with the previous two approaches considered, an inferior path following

results is produced compared with the use of the set path as the target path to follow.

6.4 Model Predictive Control Conclusions

This chapter has considered the modelling of the control actions of a motorcycle rider

using the theory of model predictive control. Through the generation of a suitable cost

function, a control input is generated that aims to theoretically minimise the combined

costs associated with system output accuracy and system input effort required.

The method has been shown to be highly effective in replicating the control actions

of a rider. The controller was tasked with a lane-change manoeuvre, for a variety of

controller and task-dependent conditions. Variations in forward speed, rider preview

allowances and cost function weighting parameters were all considered. Additionally,

the possibility to define a reference path that the system may attempt to track instead

of the actual road (set path) was explored.

On the whole, variations to the modelling conditions gave encouraging results. In-

creased weightings on path errors were seen to reduce the errors in the resulting path

following of the motorcycle, sufficient rider preview was seen to result in the best

path following performance, and increases to the forward speed of the motorcycle

produced the sort of results that may be expected of a real motorcycle and rider.

Not all investigations were entirely successful. A distinct feature of predictive con-

trol concerns the ability to define a reference path, distinct from the set path. For

some controlled systems, this feature may be able to provide an improvement in the

required system response. However, when applied to the road path that the con-

trolled motorcycle attempts to follow, the resulting performance was inferior. Such

an approach would be worthy of further consideration only if the manner in which a

rider may recover a target path can proved experimentally to be of a specific nature

such as presented here. It is. likely that riders would have subconscious strategies

by which path errors would be corrected, but a firm answer as to what this strategy

may be would not be easy to obtain. It may be the case that the choice of recovery

strategy employed by the rider is dependent on a number of factors that may include

the forward speed of the motorcycle, the nature of the road path and severity of his
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departure from the target path, all of which would be very difficult to model. Further

workmay be able to address this area, though for now the availability of the reference

path feature is considered superfluous.

Additionally, a full non-linear prediction model has been compared with the more

computationally efficient linear prediction model. It was expected that this would

provide superior path followingperformance, and the results confirmed this. Ideally

then, modellingwork of this nature should employ a full non-linear prediction model,

though the comparison of the two approaches showed that for moderately severe

manoeuvres the differences between the two were not so great as to consider the

simpler, linear prediction model wrong.

The apparent suitability of the predictive control strategy with regard to replicating

the control process of a motorcycle rider and the prediction element that his riding

task may include was cited as a strong reason for exploring this control strategy. The

aim was therefore to replicate the positive features of the optimal control approach

and the apparent suitability to the application, while also correcting some of the

limitations found. Both these goals appear to have been achieved, with the generic

characteristics of the optimal control approach retained. Due to the strong similarity

of the two methods, in order to provide a more detailed comparison of the two ap-

proaches Chapter 7 directly compares the two approaches resulting in more defined

conclusions about the relative performances of the two approaches.
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6.5 Tables

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Parameter Baseline Loose Tight Long Short Short

Control Control Preview Preview Control

v [ms-I] 10 10 10 10 10 10
T" [sI 3 3 3 4.5 1.5 3.0
Tu [sI 3 3 3 4.5 1.5 3.0,1.5,0.5
Tw [sI 0 0 0 0 0 0

ql [m-2] 5000 1000 10000 5000 5000 1000
q2 [rad-2] 0 0 0 0 0 0
r [(Nm)-2] 1 1 1 1 1 1

Table 6.1: Low speed controller parameter sets, model predictive control

Set 7 Set 8 Set 9 Set 10 Set 11 Set 12
Parameter Baseline Loose Tight Long Short Short

Control Control Preview Preview Control

v [m/s] 40 40 40 40 40 40
T" lsI 3 3 3 4.5 1.5 3.0
Tu [sI 3 3 3 4.5 1.5 3.0,1.5,0.5
Tw [sI 0 0 0 0 0 0

ql [m-2) 5000 1000 10000 5000 5000 5000
Q2 [rad-2] 0 0 0 0 0 0
r [(Nm)-2) 1 1 1 1 1 1

Table 6.2: High speed controller parameter sets, model predictive control
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6.6 Figures

t

Figure 6.1: Path definition in Model Predictive Control, [9]

x

x(t)

~----~------------------------------~~t
Figure 6.2: Linearisation of a non-linear system at two points
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Figure 6.4: Typical reference path definitions in MPC systems
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Figure 6.6: Definiton of a linear error reference path, Np = 6
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Figure 6.7: Exponential reference path definitions
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Figure 6.8: Exponential error reduction reference path definitions
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Figure 6.17: Contrasting road information requirements of tight (left) and loose

(right) control strategies, showing typical path aim (dashed line)
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Figure 6.18: Steer torque, v = 10 mis, Tp = 3.0 S, ql = 1000, 5000& 10000m-2
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Chapter 7

Performance Comparisons of

Control Techniques

7.1 Introduction

Two principal control strategies, optimal control and model predictive control, have

been assessed for modelling the control actions of a human motorcycle rider. Both

techniques have their roots in the solution of a quadratic cost function, but the

formulation of the elements of the cost function, notably of the cost associated with

the system output, varies.

Essentially, the mathematical difference between the two methods centres on the way

in which the rider model determines the errors from the path that he is attempting

to follow and the definition of the optimisation horizon. Additionally, predictive con-

trol offers further controller tuning options compared with optimal control, allowing

the preview and control horizons to be set independently and with the option of a

reference path that the system attempts to follow.

The results obtained in the preceding two chapters (Chapters 5 & 6) have shown

that, on the whole, both techniques are capable of applying appropriate control to

a motorcycle model when attempting a single lane change manoeuvre. Controller

gains, indicative of the importance placed on the available system information by the

controller, were seen to be similar for the two methods considered. The differences

between the methods therefore lie in the details, and so this chapter will aim to

203
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identify and explore the fundamental differences between the performances of the

two approaches and the potential advantages that may be gained through the use of

predictive control techniques.

The characteristics of the optimal control approach [94] were generally regarded to

provide a good representation of the control actions of a motorcycle rider. For the

model predictive control approach to be considered a more suitable alternative, the

characteristics of the controller must therefore be similar, while also providing some

useful advantage over the optimal control approach and correcting any identified

weaknesses.

This chapter will therefore draw together the results of the optimal control (Chapter

5) and the predictive control (Chapter 6) approaches. Specific controller conditions,

for example the short preview horizon case, will be examined and the direct com-

parisons of the two approaches compared. The results of these direct comparisons

will enable the final conclusions of this research work, regarding the suitability of the

model predictive control approach to the motorcycle rider task, to be made. These

final conclusions are subsequently given in Chapter 8.

7.2 Comparison Results

Both control techniques have been applied to the motorcycle model, detailed in Chap-

ter 3, combined with the road preview information, as shown in Chapter 4, for a range

of controller parameters. For each control approach a number of elements of the con-

troller's behaviour were analysed. A select range of these parameter sets will be

directly compared, presented in Table 7.1.

7.2.1 Comparison 1 - Baseline Parameters, Low Speed

Both control techniques were applied to the motorcycle model using a baseline pa-

rameter set that permitted a moderate balance between path following accuracy and

control cost. The low speed baseline parameter set is therefore used initially to com-

pare the performances of the two techniques.

The paths of the two control approaches when using this baseline set are considered
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first (Figure 7.1). The paths are very similar, with both approaches following the

target path well. No obvious differences are initially apparent, and so to consider the

performances in greater detail, the path errors for the two approaches are analysed,

defined as the difference between the target (set) path and the actual path achieved

by the motorcycle model. The results are presented in Figure 7.2 and again the

results for the two approaches are not too dissimilar. Both show similar errors at

similar points along the path, and in this example the optimal control model actually

produces marginally lower total errors over the lane change phase. However, for the

model predictive control case, the path error returns to zero after the manoeuvre,

whereas for the optimal controller this is not the case, with a small steady error of

-0.002 m resulting after the lane change.

The broad controller characteristics for the predictive control approach should be

largely similar to those of the optimal control approach. The state gains and preview

gains are compared in Figures 7.3 and 7.4, being almost identical and therefore sug-

gesting that, if the controller gains for the optimal control approach were considered

representative of a human rider's actions, then so too can the gains produced by the

predictive controller.

1.2.2 Comparison 2 - Baseline Parameters, High Speed

The same comparison is drawn for the higher speed case, again using the baseline

parameters, and again analysing the path differences that result for the optimal con-

troller and the model predictive controller (Figure 7.5). At the higher speed, the

relative performances of the two methods are again very similar to those seen at the

lower speed. However, at the increased forward speed the steady state error of the

optimal control model after the manoeuvre phase is more apparent.

The optimal controller has peak path following errors of 1.067 m and -1.509 m, and a

steady state final error of -0.166 m. By contrast, the predictive controller has peaks

of 1.357 m and -1.152 m, and a final error of zero.
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7.2.3 Comparison 3 - High Speed, Loose Control

The previous analysis in Chapters 5 and 6 indicated that the both high speed and loose

control conditions require greater levels of preview for good control. The combined

case for high speed running with loose control is therefore considered. In line with the

results of the previous two comparisons, the optimal controller again shows significant

steady state errors (Figure 7.6). The point of note now is that the steady state path

error of the optimal controller is positive, indicating that the lane change has fallen

short of the 3.5 m lateral shift. For ql = 5000 (Figure 7.5), the error was negative,

indicating that the motorcycle had overshot the lane change, and had settled to a

steady state at a lateral path value greater than the target 3.5 m. This suggests the

possibility for some value of ql which, although not resulting in preview gains that

diminish to zero, may result in zero steady state errors and erroneously suggest a

sufficiently long preview horizon that the gains to diminish to zero.

7.2.4 Comparison 4 - Limited Preview, Loose Control

The case for limited preview is a situation that should be considered important when

assessing the applicability of the approach to the modelling of a human rider. It seems

logical that a rider can still exercise accurate path following even given limited visual

preview. If a rider were, for instance, following a large vehicle such as a lorry, due to

restricted knowledge of the road some way in advance, it may be expected that his

transient control behaviour would be compromised. However, for a steady, straight

section of road, despite limited forward vision, the rider would still be expected to

be able to adopt the correct position on the road. In essence, limited preview should

not restrict the rider from eventually achieving the correct position-in-lane,

It has been seen in the earlier analysis of the control methods (Chapters 5 and 6)

that a loose control strategy is in general associated with a greater emphasis on the

distant road preview information. From a control perspective then, the worst case

scenario would be a loose control strategy coupled with limited preview horizon.

The results would be expected to be similar to the high speed, loose control approach,

since increased speed in general requires greater preview. Increasing the speed without

increasing the preview horizon is therefore similar to keeping the speed the same but



CHAPTER 7: PERFORMANCE COMPARISONS OF CONTROL TECHNIQUES 207

reducing the preview horizon.

The two control methods are therefore analysed for the limited preview, loose control

situation, with a preview horizon Tp of 1.5 s and a path error weighting ql of 1000 m-2•

The path error comparison is drawn in Figure 7.7, highlighting, in common with the

previous analysis, the errors that can occur when the optimal control approach is

employed with less than ideal levels of preview allowed. During the manoeuvre phase,

the path errors for the predictive control approach peak at 0.25 m, decaying to zero
c.

after the manoeuvre section of the path. By contrast, the errors for the optimal

control approach peak at 1.41 m, before settling to 1.17 m after the manoeuvre.

In such a situation, the knowledge that the rider has of the motorcycle does not

change. A rider would still have full knowledge of the yaw angle, roll angle, steer

angle and so on, and therefore it may be expected that the state gains would, quali-

tatively, not change significantly with a reduction in the preview horizon (Figure 7.8).

However, the rider's knowledge of the approaching road, which is also used by the

rider to determine his control inputs, does change significantly with a reduction in the

preview horizon, and so it may be expected that the rider would need to re-evaluate

the use that is made of this limited information. Figure 7.9 compares the preview

gains for the limited horizon, loose control situation, and here a significant difference

is seen between the two control approaches. The superior path following performance

of the predictive controller has already been seen (lower path errors, Figure 7.7), and

so the change in the preview gain is suggested to be representative of the change in

emphasis that the rider places on the limited road path information available.

7.2.5 Comparison 5 - Yaw Error Minimisation

The vast majority of results presented in this thesis have concerned the rider model

operating to minimise the lateral path error of his position relative to the target path.

The capability to minimise the yaw angle of the motorcycle relative to the path also

exists, and the comparison of the two control strategies operating in this manner are

drawn.

In a similar way to the lateral path error minimisation analysis, the optimal control

strategy results in a steady state error, this time between the heading of the target

path and the heading of the motorcycle. Consequently, with forward motion the
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motorcycle's lateral error progressively increases (Figure 7.10). Although yaw angle

error minimisation is not considered as the primary way in which a motorcycle rider

would assess his path following performance, it is nonetheless a strategy which could

be adopted in conjunction with lateral error minimisation, and is therefore worthy of

some consideration.

7.2.6 Comparison 6 - Short Control Horizon

One of the main features of model predictive control that distinguishes it from opti-

mal control concerns the ability to set the control horizon shorter than the preview

horizon. In the case of a limited control horizon, the model predictive control strat-

egy assumes the control to be invariant from the control horizon up to the preview

horizon, therefore providing the controller with a full control input up to the pre-

view horizon. This strategy of control is therefore compared with the optimal control

model, for which the preview and control horizons are intrinsically equal.

Figure 7.11 presents the path errors resulting from the path following task using the

low speed baseline parameters, with the control horizon reduced to both 1.5 s and

0.5 s for the predictive controller. Even with limited control horizon, the predictive

controller is still capable of generating appropriate controller gains, and hence the

performance comparison between the limited control horizon predictive controller and

the optimal controller is very close to the comparison with equal preview and control

horizons (Comparison 1). The predictive controller with limited control horizon is

still capable of completing the manoeuvre and returning to a zero steady state lateral

path error condition despite the restricted control horizon. Although in some respects

the reduced control horizon appears to deteriorate the controller's performance, the

differences are not severe.

7.2.7 Comparison 7 - Very Low Speed

Above a. forward speed of 10 mis, the stability characteristics of the motorcycle are

relatively invariant (Chapter 3, Figures 3.10, 3.15), but below this speed is notably

different: the weave mode is an unstable low frequency oscillatory mode at low speeds,

while the capsize mode is more stable at low speeds. As a consequence, the control

required to stabilise and guide the motorcycle may change, and so the performance
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of the two control approaches under such conditions is compared.

Miyamaru et al. [65] suggested that at moderate speeds and above, the rider's di-

rectional control is achieved by control of the roll angle of the motorcycle, while at

low speed the primary control technique to influence the motorcycle's trajectory is

through control of the steer angle of the motorcycle. Doth the optimal and predictive

control strategies were therefore tasked with the same path following task, but this

time at a forward speed of only 4 mis, with both strategies reflecting the change in

the control technique suggested by Miyamaru et al. The state gains distribution is

seen to change such that now the peak controller state gains are for the steer angle

state (Figure 7.12).

Also of some significance in this figure is the state gains relating to the tyre lateral

forces. For the optimal controller, these are minimal, while for the predictive con-

troller they are not, with the front tyre gain being the more significant of the two by

some margin.

These observations are worthy of some thought, and are believed to be due to the

change in stabilities of the capsize and weave modes at low speeds. At low speed,

as the motorcycle begins to capsize, the geometry of the steering system is such that

a significant steer angle is generated, correcting the lean of the motorcycle [29]; it

is this characteristic which gives the low speed capsize stability. However, this may

then result in a lean to the opposite side, where the same effect results, consequently

resulting in a low speed, low frequency weave behaviour. A number of movie clips

are available in [26] and [78] that more clearly demonstrate this combined low speed

capsize and weave. At low speeds, significant steer angles will therefore be expected,

and consequently relatively large tyre forces. furthermore, the weakness of the gyro-

scopic forces at low speeds also increases the relative contribution that the tyre lateral

forces must provide in order to stabilise the capsize mode of the motorcycle.

For a low speed weave, the change in lateral position may be small, but the change in

heading angle is relatively much larger, and will therefore have a significant impact

on the predicted future path.

The optimal control strategy, for lateral path error control, bases the control decision

on the motorcycle's current position relative to the target path alone. This, it is

suggested, will not change significantly.
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Predictive control bases the control decision on the predicted future path. Although

the lateral deviation may be small, the heading angle change will not be, leading to

a significant change in the motorcycle's trajectory and hence predicted future path.

The tyre forces influence the stability and the heading of the motorcycle. As the pre-

dictive controller would be expected to place more emphasis on reducing the change

in heading angle (and consequently future predicted path) during a low speed weave,

and the primary means of doing this is through the tyre lateral forces, then an in-

crease in controller gains relating to the tyre forces may not be unsurprising. As the

changes in the tyre lateral forces are dictated by the steer angle, itself dictated by

the steer rate, it is also perhaps unsurprising to see that the gains on the steer rate

for the predictive controller is larger in magnitude at these low speeds compared with

the optimal controller.

7.3 Performance Comparison Conclusions

This chapter has brought together a detailed comparison of the two control strategies

of optimal and predictive control. The results have largely confirmed the strong

similarities of the two approaches for the majority of conditions, but importantly has

drawn out the significant differences.

The inability of the optimal control approach to result in truly zero steady state er-

rors following a manoeuvre was highlighted in Chapter 5, Section 5.3.1. Indeed, the

steady state errors will only truly reach zero when the preview horizon distance is

infinite. Cole et al. [l1J, with specific reference to a car steering task, investigated

and presented the fundamental reasons behind these observations, and the potential

benefits that predictive control could give for such a preview-limited case. Fundamen-

tally, the optimal control theory employed here is based on the theory of an infinite

horizon, whereas the predictive controller calculates gains based on a horizon only up

to the preview horizon of the controller. Thus, provided that the optimal controller's

gains have reached zero, then the numerical loss of information that results from

this infinite horizon assumption is insignificant to the numerical result, and the two

controllers essentially give the same results. When the preview horizon is shortened

significantly, the predictive controller calculates a new set of gains based on this new

limited horizon, while the optimal approach employs still an infinite horizon assump-
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tion, with correspondingly inferior results in such a case. The results presented in

this chapter have deliberately aimed to highlight this feature in a significant way, and

the result that a predictive controller will, by contrast and regardless of the horizon

length, result in a zero steady state error. Analysis in Chapter 5 showed how this

path following error with limited horizon could be overcome with the use of a local

coordinates approach. Similar observations were made by Cole et al. [11], though the

two approaches differed subtly.

These results have been emphasised by the use of higher speed, tighter control weight-

ings and limited preview horizons. With less than a finite preview horizon, the optimal

control approach is not, in fact, able to seemingly apply an optimum control, as some

steady state error will always result. However, it was shown in Chapter 5 that while

a local coordinates approach does not, in theory, make a difference to the problem,

in practice the steady state path errors are seen to be reduced to zero.

For the optimal control approach, variation of the speed and the cost function error

weightings dictate the accuracy of the path following that results. Although the

steady state values will never truly reach zero, sufficient preview length can result

in steady state errors which are minimal, and so the speed, error weightings and

preview horizon length are intrinsically linked in determining the magnitude of the

final steady state errors.

The predictive controller's path following performance is also affected by the speed,

error weightings and horizon lengths in a similar way to the optimal control method.

However, the steady state error has no dependency on these, and thus the error will,

given sufficient distance to reach the steady value, always be zero.

Important differences are also seen for the very low speed running condition of the two

controllers. At low speed, the distribution of the state gains show some significant

differences between the two approaches. For the low speed case, a human rider

will sense the capsize of the motorcycle and apply a steering action to correct it.

During a capsize, the heading angle of the motorcycle is also changed significantly,

leading to a deviation from the target path. With low forward speed the lateral

deviation that results from the heading angle change is small, and therefore does not

significantly affect the optimal controller, which will aim mainly to stabilise the roll

of the motorcycle. However, the predictive controller anticipates that, although the
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current lateral deviation may be small, the resulting heading angle change has more

significant consequences for the predicted future path, resulting in notably different

state gains for the predictive controller.
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7.4 Table
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Chapter 8

Conclusions

The applicability of both model predictive control and optimal control techniques

to the task of modelling a motorcycle rider have been demonstrated. The latter is

not a new concept, having originally been presented by Sharp [94]. However, further

parameter studies have been conducted to obtain more insight into the characteristics

of the controller to assess some of the strengths and weaknesses of the approach.

Building on previous related work by MacAdam [51], Sharp [94], and Cole et al. '1
[11] amongst others, the application of model predictive control to the modelling

of a motorcycle rider presented in this thesis is a novel application. The work has

demonstrated strong similarities to the optimal control approach, but importantly

has shown some significant and advantageous differences. For the broadest task of

rider modelling, the findings therefore suggested that the model predictive control

approach is the more suitable approach.

Specific features that differentiate the predictive control approach from the optimal

control approach have been assessed to determine the advantages that they mayor

may not offer. The availability of a reference path definition to the control problem

has been investigated and the mathematical manner in which it can be implemented

shown, concluding that the opportunities that this may offer are not considered ad-

vantageous to the application at this time.

Additionally, the implementation of a non-linear prediction model as opposed to the

more common linearised prediction has been made. As may be expected the extra

computational burden was shown to result in performance advantages as may be

221
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expected for a non-linear plant model.

8.1 Model Analysis

The effectiveness of the model control strategy in replicating the control actions of

a motorcycle rider can be assessed by consideration of a number of factors relevant t~ll
to the controller, notably the controller gains, the performance of the controller in

completing the task and the way in which the controller's behaviour changes with

changes to the modelled riding task.

8.1.1 State Gains

The analysis of controllers of this nature usually focus primarily on the controller's

gains, since these essentially determine the way in which control is applied to the

system. The gains achieved here for both the optimal controller and the model pre-

dictive controller show good agreement to both experimental and anecdotal evidence

of the motorcycle riding task achieved by previous authors.

A number of research works, some of which are covered in the literature review

(Chapter 2), have sought to understand the important criteria that a vehicle driver

or rider attempts to control. For motorcycle riding, Weir [102]identified the control

link between roll angle and steer torque as the primary stabilising control loop, with

a slightly weaker reliance on the heading angle and lateral position of the motorcycle.

Miyamaru et al. [65]also concluded that for anything other than very lowspeed riding

the control task was concerned with roll angle stabilisation, and that this would then

dictate the trajectory, rather than the steer angle. This forms a distinct difference

between single and twin vehicle track controllers.

A correct rider control model should therefore reflect this trend, placing the greater

importance on controlling the roll angle of the motorcycle (which ultimately dictates

the trajectory), followedby heading angle and lateral position. The results of both

the optimal control and the model predictive control approaches have been shown to

display these trends.

Although the state gains associated with the roll angle were not numerically the
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largest, when the contribution of the roll angle gain to the total steer torque was

assessed, it was shown that the roll angle provided the largest contribution, therefore

appearing to have the most significant influence upon the rider's control as required.

The yaw angle contribution formed the second largest contribution, again agreeing

with Weir [102].The contribution from the lateral position was low. The contribution

made by the steer angle of the motorcycle was found to be significantly smaller, which

is seen to be in agreement with the findings of Miyamaru et al. [65].However,when

both controller models were run at low speeds, the steer angle gains were seen to be

notably greater, again in agreement with [65].

For the broad case of generous preview horizons and moderate path following task,

both the optimal controller and the model predictive controller produced near iden-

tical state gains. In this sense, both control approaches appear equally capable of

reflecting the control actions of the rider with reference to the motorcycle's states.

Only when the preview horizon is notably restricted do any differencesemerge, with

the state gains of the predictive controller reduced compared with the optimal con-

troller. We consider nowwhy this may be and how it may reflect a motorcycle rider's

control process.

Manoeuvrability and stability are generally regarded as conflicting goals. When op-

erating in a limited preview condition, the rider will have only limited time to react

to the road information presented to him that he is aiming to follow, and therefore

it seems reasonable that in such a situation the rider may favour a manoeuvrable

motorcycle. The motorcycle states are generally regarded as the meters by which the

rider stabilises the motorcycle [102],while the preview is used for guidance control.

A reduction in the gains applied to these states may suggest that the rider is oper-

ating in a manner in which the stabilisation of the motorcycle is of less concern, as

may be the case for restricted preview when manoeuvrability is the more pressing

requirement. In this sense, the predictive controller appears to be able to represent

this shift in the rider's priorities, while the optimal controller does not.

8.1.2 Preview Gains

A number of publications have sought to determine the control actions of a road user

with regard to the visual perception of the road available, with results obtained both
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experimentally and theoretically [25, 47]. Both control strategies considered here

were modelled for a wide range of controller parameters, with the results obtained

here again giving good agreement with the previous literature. The model predic-

tive control approach gives good agreement with the optimal control approach with

regard to the preview gains when sufficient preview is permitted. With restricted pre-

view, the gains pattern changes notably for the model predictive controller, leading

subsequently to better controller performance.

In assessing a driver's use of preview information, Donges [25] observed the paral-

lel features of guidance control based on the distant preview and position-in-lane

control via the near preview, observations later agreed with by Land and Horwood

[47]. These characteristics are reflected in the preview gains produced by both the

optimal control and model predictive control strategies. The controllers were run for

both tight and loose control strategies, the former defining accurate path following

and hence accurate position-in-lane control, the latter defining efficient following of

a more distant target, hence guidance control. The tight control resulted in a bias of

the preview gains to the near preview distance, therefore operating with the required

bias towards position-in-lane control, while loose control placed greater emphasis to-

wards the more distant preview, hence biasing towards a guidance control strategy.

MacAdam [51] also observed that a vehicle driver would have a natural tendency to

utilise shorter preview times under manoeuvre-demanding conditions. Tight control

can arguably be classed as a demanding manoeuvre when compared with a looser

strategy. The agreement between the experimentally observed patterns concerning

the use of road preview information covered by previous literature, and the results

obtained when using both the optimal control and model predictive controllers, high-

lights the suitability of both approaches for this task.

In the main, both control approaches show similar preview gains. Crucially, as the

preview horizon is reduced the gains for the predictive controller are modified, whereas

for the optimal controller they are not. When the preview information available is

reduced, it seems intuitive that the limited information remaining is more highly

regarded; a driver or rider would realistically be expected to concentrate harder on

the road far ahead when driving in thick fog compared with clear air, due largely to

the restricted reaction time available. Thus it is expected that the preview gain values

relating to the limited road information available would increase in recognition of the
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higher attention placed on this limited road preview information. This characteristic

is observed with the predictive controller, but not the optimal controller.

8.1.3 ReferencePath

One of the features that differentiates the predictive controller from the optimal con- a
troller concerns the capability to identify a reference path, distinct from the set path.

Previous authors have suggested the separate definition of a distinct reference path,

including Guo and Guan [33], as potentially offering modelling advantages. The def-

inition of a reference path distinct from the set path has therefore been investigated,

specifically with the definitions of linear, linear error reduction and exponential error -

reduction reference paths for the model predictive control approach.

Universally, the results demonstrated that defining the target road path in this way

was detrimental to the overall performance of the rider control model. While the

fundamental behaviour of the controller was unaffected, the performance certainly

was. The control model forms a measured balance between corner cutting, relative

to the set path, and the control input effort required. By defining a reference path, a

weaker trajectory, already accounting for a corner-cutting allowance, is presented to

the controller. The controller then makes the same balance between path accuracy,

this time against the weaker reference path, and the control inputs. This results in

an actual trajectory which attempts to follow, to a tighter or looser extent depending

on the controller settings, an already weaker target path.

Therefore, unless a more elaborate reference path definition can clearly be demon-

strated to produce superior controller performance compared with common reference

and set paths, then the recommendation is made that the concept of a separately de-

fined reference path is not applied for the modelling of riding or driving tasks, instead

leaving the controller strategy to make its own judgement with regard to the level of

path simplification that it is prepared to tolerate. Ideally, future research work will

investigate the manner in which a rider aims to regain a target path, such that the

concept of the reference path can be employed more usefully.
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8.2 Coordinate System

The modelling work conducted in this thesis has mostly been done using a global

coordinate system. This approach employs a simple shift-register algorithm for the

road preview [98], which is simple to employ, easy to understand and computationally

relatively simple.

A local coordinates approach has also been presented here. Arguably, the rider oper-

ates in a local coordinates manner, and so if the task is to model the rider's control

then it seems appropriate to consider the problem from the rider's perspective.

For the optimal control approach, the use of a local coordinate system showed clear

advantages, especially when limited visual preview horizons were available. If an

optimal control approach is to be used, the recommendation is therefore to employ a

local coordinates approach.

Chapter 5 showed how the limitations of the infinite horizon optimal controller when

using a short preview horizon were overcome if the problem were modelled using

a local coordinates approach. The method shown here converted the shift-register

algorithm to update the preview information of the road path in local coordinates,

which corrected the errors seen when using a global coordinate system. Cole et al.

[11] performed the similar process, but in their case modifying the controller's gains

multiplied by the global road picture to achieve the same results.

For the model predictive control case, limited preview horizons did not result in

any steady state errors of the kind seen for optimal control, and so the question of

local or global coordinates is not as important. For simplicity, the global coordinates

approach is preferable, though the use of local coordinates more intuitively captures

the process from the rider's perspective. The selection of coordinate system may

therefore be based on the relative importance of these merits as appropriate to the

application.

8.3 Non-LinearPrediction

The majority of the results presented in this thesis have been obtained using a linear

prediction model. The dynamics model of the motorcycle vaxy non-linearly with each
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step of the motion simulation, but over the prediction horizon at each simulation step

were assumed invariant. Use of this approach simplifies the procedure markedly and

reduces computational requirements. The theory for a non-linear prediction model

was covered (Chapter 6, Section 6.2.2).

The results showed that, when using a full non-linear prediction, the resulting control

led to superior performance, suggesting that, ideally, this non-linear approach should

be adopted for the best controller performance. However, the performance when

using the linear prediction model also showed that the controller was still capable of

applying a suitable control input to achieve the required lane change task.

The question of the importance of the linear or non-linear prediction model therefore

depends upon the degree to which the model dynamic behaviour changes over the

length of the prediction horizon. For relatively gentle manoeuvres of the motorcycle,

the changes to the dynamics are not severe, and consequently the differences resulting

from the use of a linear prediction model compared with a non-linear prediction are

also not severe.

The suitability of the linear prediction model will therefore depend on the anticipated

change in system behaviour of the prediction horizon, the accuracy of results required,

and the computational processing capacity available.

8.4 SimulationResults

The performance of the controller, with regard to the controller's gains, suggests that J
both optimal control and model predictive control operate in a manner consistent tl~'r·with what may be expected of a real rider. The actual performance of the motorcycle

that results from the riders control actions further confirms this.

The path following ability of both control models appear to accomplish the task,

displaying the qualities of a human rider such as a countersteer manoeuvre in antic-

ipation of the turn. Donges [25] identified the anticipatory element of a car driver's

control strategy. The path tracking can be replicated by monitoring the lateral po-

sition of the motorcycle with regard to the intended path or by the yaw angle of

the motorcycle relative to the path. The original optimal control work by Sharp [94]

considered only lateral path error weightings, as the yaw angle error was considered
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secondary to the control problem.

When the preview horizon is sufficient such that the preview gains settle towards zero,

the performance of both approaches produce similar results. However, for limited

preview horizons the model predictive control approach was shown to demonstrate

clear advantages.

In the case of the optimal controller, mathematical analysis of a reduction of the

preview horizon to any value below infinite was suggested to result in a steady state

error between the target path and the actual path achieved; the magnitude of this er-

ror however only became significant as the preview horizon was significantly reduced,

below the point at which the preview gains become close to zero.

For the case of the 10 m/s baseline modelling parameters considered in the analysis,

following the manoeuvre the optimal control model tracked the path with a small

steady lateral position error of 0.002 m. At the higher speed of 40 mis, the lateral

steady path tracking error increased to 0.165 m. As the preview distances were halved,

these errors increased further, to 0.383 m and 1.813 m respectively.

By contrast, the preview horizon of the model predictive controller could safely be

reduced without the introduction of steady state errors. Although the transient be-

haviour was deteriorated as a result of the limited preview, the steady state path of

the motorcycle would still eventually return to the target path. For all modelling

conditions considered for the model predictive controller, all lateral position errors

would return to a steady zero. The behaviour of the model predictive controller

would appear much more suitable and representative of a motorcycle rider in such a

situation.

This feature of steady state errors is also notable when the controller is set to operate

by minimisation of yaw angle errors. This aspect of control was considered in [94],

but results were not presented as it was not considered representative of a motorcycle

rider's actions. This case is, however, considered here for completeness. In the same

way that steady state errors were observed for lateral position control of the optimal

control approach, the same result is found for yaw angle control, except that in this

case a steady state error is between the final yaw angle of the motorcycle and the path.

Consequently the motorcycle follows a straight path but heading on a different angle

to the intended path. For the 10 m/s baseline parameters, this resulted in a heading
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error of 0.028 rad, and for the higher speed case a heading error of 0.074 rad. As with

the lateral position control case, the model predictive controller results in zero steady

state errors, and thus the actual and intended paths are parallel. Although the path

does not exactly follow the intended path, the performance of the model predictive

controller in this situation is clearly superior to that of the optimal controller.

8.5 Final Conclusions and Further Work

Thus far, the conclusions have been made that both optimal control and model pre-

dictive control appear to provide a control strategy that represents the rider's control

actions well. Both approaches aim to minimise a cost function that includes the road

path, and therefore both aim to provide the best, or optimal, control input to achieve

this. 'While both approaches can therefore be considered as some form of 'optimal'

control, the distinction is made between the mathematical approaches of optim

control and model predictive control, as given in Chapters 5 and 6.

While both approaches appear capable of generating appropriate control inputs to

follow a target path, in specific cases, notably the case ofrestricted visual preview, the

results that have been shown here demonstrate that the predictive control approach

has clear advantages. Mathematically, the characteristic that a steady state error for

the optimal controller is in fact always present has been shown. However, provided

that sufficient preview is allowed such that the preview gains reach close to zero, this

error becomes insignificant. Previous work [90] indicated the requirements for zero

steady state errors by allowing sufficient preview, the analysis has been extended to

show how those steady state errors arise, and how they can be overcome with a local

coordinates controller definition.

A local coordinates approach was presented which was shown to be theoretically

capable of correcting the steady state path following errors of a short preview horizon

optimal controller. Similar findings had been made by Cole et al. [11]. Although the

overall controller's strategies were comparable, the methods differed mathematically.

In the method presented here, the road preview element of the state vector contains

the road information explicitly in the rider's local preview, while the method of Cole et

al. retains a global definition and essentially converts the preview to local coordinates

implicitly.

229
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Model predictive control also offers other advantages that have yet to be explored.

One of the motivations for the use of model predictive control regarded the relative

ease with which hard constraints can be included into the modeL The reference

texts provide greater detail on the possibilities available and the processes required

[9,52]. The modelling work revealed that, without constraints, the theory produces

mathematical answers which may not represent physically achievable values, with the

steer torques generated for the high speed running cases being a good example of such

a case. In addition to limits on the steer torques, these hard constraints could be

used to account for physical restrictions such as road boundaries, steer angle limits

and acceleration and braking constraints if the modelling were extended to include

forward speed control.

The controller gains for the optimal and predictive control approaches were seen to be

close to identical whenlong preview horizons were permitted, but became significantly

different as the horizon was reduced. The gains for the predictive controller were seen

to change as the preview horizon was reduced, allowing the motorcycle to still follow

the path correctly. This suggests that a motorcycle rider must modify his perception

of the available road information in such limited preview conditions.

While the results presented here have included extensive parametric studies, they

remain only theoretical. The rider's control strategy with regard to the use of road

preview has been compared with experimental studies for twin-track vehicle driving

[25,47], and the experimental results for rider input control [74, 104]. Experimental

evaluation of a motorcycle rider's use of road preview would provide a useful addition

to enable validation of the results presented here, and to broaden the knowledge in

the wider field of motorcycle rider control.

More specifically, the theoretical results that have been presented in this thesis have

suggested that a non-linear prediction model is capable of superior path tracking

abilities, and certainly strictly the more correct form of prediction. However, the

ability of the rider to account for these non-linearities in the motorcycle's response is

another unanswered question. It may be that a highly skilled and experienced rider

is able to account for the non-linearities of the motorcycle's response in his output

prediction, and can therefore optimise the performance of the motorcycle to a greater

extent than a less skilled rider. This may somehow reflect the differences between,

say, professional motorcycle racers and a more average rider. While this is only a
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conjecture, it would be an interesting, although challenging, task to quantify more

firmly to what extent a rider may be able to predict the non-linear behaviour of the

motorcycle.

Overall, the applicability of model predictive control has been demonstrated using a

somewhat simplified problem. The model was considered to run at a constant forward

speed, and the motorcycle model itself was a relatively simple model. The initial

implementation of a non-linear tyre model was hoped to provide the ability to model

more complicated manoeuvre strategies to further investigate the characteristics and

advantages of using predictive control for motorcycle rider modelling. It is hoped

that the results found here will provide encouragement to develop more elaborate

rider control models employing these techniques, ultimately leading to both a broader

understanding of the rider's control strategies and also potentially as an advantageous

tool for motorcycle design and analysis.
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Appendix A

Motorcycle Data

This Appendix section details the specific values for all necessary parameters of the

motorcycle used to generate the results in this thesis. The motorcycle model is based

on the simplified motorcycle model first presented by Sharp in [Al]. Additional

parameter values, specifically for the more advanced tyre model introduced, were

drawn from work by Meijaard and Popov [A2].

A.1 Motorcycle Data

b

Figure A.l: Definitions of bicycle model dimensions

242
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A.2 Geometric Details

a = 0.9347 m

b = 0.4798 m

c = 0.0226 m

A.3 Inertial Properties

e = 0.0244 m

hr = 0.6157 m

hI = 0.4561 m

'fJ = 0.4714 rad

II,z = 1.2338 m4 Ir,z = 21.0694 m4 Irw,1J = 1.0508 m4

II,y = 0 m4 Ir,xz = -1.7354 m4 Irw,z = 0 m4

II,z = 0.4420 m4 Ilw,x = 0.7 m4 ml = 30.6472 kg

II,zz = 0 m4 Ilw,1J = 0.7186 m4 m2 = 217.492 kg

Ir,z = 31.1838 m4 Ilw,z = 0 m4

Ir,y = 0 m4 Irw,z = 0 m4

A.4 Tyre Properties

Simple tyre model:

Ca,1 = 11174.38 N/rad

C'Y,I = 938.6124 N/rad

Ca,r = 15831.8556 N/rad

Advanced tyre model:

Cr,1 = 0.2448 m

Cr,r = 0.2448 m

C',I = 11.096

cc- = 11.096

x; = 100672.07 N/m

C'Y,r = 1326.6232 N/rad

Tt = 0 m

R,. = 0.3048 m

(JI = 0.24 m

a; = 0.24384 mR, = 0.3048 m

Kn,r = 142627 N/m

ILl = 1.0

J.Lr = 1.0

PI = 0.07 m

Pr = 0.07 m

(JI = 0.24 m

(Jr = 0.24384 m

ROI = 0.3048 m

ROr = 0.3048 m

Tt = 0 m
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Appendix B

VRML Simulation Model

B.l Introduction

As an aid to the simulation work, and to obtain a clearer understanding of how the

motorcycle was behaving during the simulated manoeuvre, a Virtual Reality Mod-

elling Language (VRML) animation was generated, with the aim to produce a simple

representation of the motorcycle such that the system output could be conveyed eas-

ily. VRML is a low-level code that allows simple shapes and forms to be drawn in

three dimensions and, with suitable input data, freedoms and constraints placed upon

the objects, motion to be simulated.

The intention of this Appendix is not to form a detailed guide for the programming

of an animation using VRMLj suitable texts on the subject can readily be found [Bl],
The aim here is to provide a brief outline of the animation model generated to aid

the understanding of the motorcycle and controller performance during this research

work.

B.2 Coding

The code to draw and animate the motorcycle was written as a Matlab m-file, using

a conversion program to convert the Matlab code to VRML code. This program was

obtained from Schwab [B2].
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B.2.l Motorcycle Body

The preliminary task was to draw a simple motorcycle model in VRML. This did

, not require a intricately detailed model; in fact, the simpler the model the easier

the behaviour would be to analyse. The model was therefore intended only as a

representation of the simplified motorcycle model that was used to determine the

motorcycle's dynamic response. This VRML model is shown in Figure Bd.

The VRML code allows simple three-dimensional objects to be drawn with relative

ease. The frame was drawn as a series of cylinders, for which the two end points, the

cylinder diameter and colour are defined. The rider's frame was drawn via a similar

approach, with a simple sphere to represent the rider's head, defined by position,

diameter and colour. Spheres were also used at the ends of the frame cylinders to

provide a more aesthetically pleasing appearance. Specifically, spheres and cylinders

are defined by entries of the following nature:

sphere (B.Dia.FrameColour)
cylinder(B.E.Dia.FrameColour)

(A-I)

where, here, B represents the centre of the sphere and is a 3 x I vector giving x-, y-

and z-coordinates of the position, Dia is the diameter of the sphere and FrameColour
is again a 3 x 1 vector giving the RGB ratios of the colour required. Additionally for

the cylinder, a second x-y-z 3 x 1 vector E is defined; the two position vectors then

define the centres of the ends of the cylinder.

The wheels were drawn as two-dimensional circles, extruded through a 3600 sweep

about the centre of the tyre cross-section to obtain the toroidal shape of the front

and rear wheels.

Shape {
geometry Extrusion {

crossSection [define cross - section shape ]

spine [define extrusion spine ]
(A-2)

}

}
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The objects in the motorcycle model were constructed in a parent-child tree structure,

such that, for instance, the front frame is a child of the rear frame, since any motion

of the rear frame will influence the front frame, but a steer rotation of the front frame

will not influence directly the rear frame.

A series of frames were defined, in which objects can be drawn. Any movement of

these defined frames will move any objects drawn within and therefore attached to

these frames. The structure of the frames was defined in such a way as to reflect the

hierarchy of movement as defined by the coordinate system used. Thus, the first frame

drawn was the global reference frame, in which the motorcycle frame was drawn, in

which was drawn the yaw frame, then the roll frame, then the steer frame (Chapter

3).

Thus, the MOTORCYCLE frame is defined, which has the YAWFRAME as a child,

which subsequently has the ROLLFRAME as a child, and so on:

DEF MOTORCYCLE Transform {
children [

DEF YAWFRAME Transform {
children [ (A-3)

J}

l}

Thus, the order was: MOTORCYCLE -+ YAWFRAME -+ ROLLFRAME -+ STEER-

FRAME.

The rear frame and the rider were drawn in the ROLLFRAME and the front frame

structure drawn in the STEERFRAME.

B.2.2 Animation

The results from the Matlab lane change simulations were exported to the VRML

code, defining individually the lateral positions of the motorcycle frame, and the

rotations of the yaw, roll and steer angles.

Each rotation was defined as a four-column vector, where each row entry corresponds
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to one step of the iterative motorcycle simulation. The first three columns define the

X-, y- and z-coordinates of the end of a vector from the origin. This vector forms

the axis about which the rotation will occur. The fourth column defines the angle of

the rotation. Thus, a rotation of 0.1 rad about the z-axis (roll) would be defined by

[1 0 0 0.1]' for example.

To fully simulate the motion, the individual frames defined when drawing the mo-

torcycle (YAWFRAME, ROLLFRAME, STEERFRAME) are rotated by using the

appropriate four-column rotation matrices. As the structure of the motorcycle is

drawn in the ROLLFRAME and STEERFRAME, then as these frames are rotated

the objects drawn within them also rotate, and hence the animation of the motion is

obtained.

Further options exist for defining, for example, the cycle time of the simulation and

the positions and orientations of camera angles. For the reader wishing to gain

further insight into the possibilities offered by Virtual Reality Modelling Language,

many suitable texts can be found than will provide a more detailed and specific

introduction to the topic [Bl].

Figures

Figure B.1: VRML Motorcycle Model
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Figure B.2: VRML Animation snapshots
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