
The University of
Nottingham

RADIONUCLIDE TRANSPORT AT

THE GEOSPHERE-BIOSPHERE INTERFACE-

A COMBINED MEASUREMENTS AND MODELLING STUDY

by

Talal Waddah Mahayni
B.Sc., M.Sc.

Thesis submitted to the University of Nottingham for

the degree of Doctor of Philosophy in

Environmental Sciences

January 2012



....1 The University of
At- Nottingham

Ethos - Thesis for digitisation

Redactions

Thesis details:

Title: Radionuclide transport at the geosphere-biosphere interface: a combined

measurements and modelling study.

Author: Mahaini, Talal Waddah

(Please note the spelling of Mahaini)

Please exclude the following sections/pages:

Page 12 Fig2.1

Map of soil sampling area at Sutton Bonington



Dedication

Years of hard wor/(

iMoments of desperation and nope

:Jvty beiooedfather, to you



Acknowledgements

I would like to thank my supervisors Dr. Elizabeth Bailey, Prof. George

Shaw and Prof. Neil Crout for their guidance, support and patience throughout

my PhD study and beyond. Thanks are due to Dr. Scott Young for his

academic advice, John Corrie and Darren Hepworth for their technical

assistance, Sue Grainger and Emma Hooley for their administrative assistance.

I would like also to thank my colleagues in the division, in particular Ezzat

Marzouk, who have always helped and supported me during the PhD

hardships. In terms of non-academic support, I would like to thank Osama

Chahrour for his nice companionship and useful advice (at times!). My

gratitude is to my beloved mother for her sincere supplication, boundless

support and encouragement at all times.

I would like to gratefully acknowledge the support of the Atomic Energy

Commission of Syria and Director General Prof. Ibrahim Othman for

providing the financial support during the course of this study.



Contents

Contents

List of Figures v

List of Tables ix

List of Symbols xi

1 Introduction 1

1.1. Radioactive waste legacy

1.1.1. Geological disposal approach

1.1.2. Long-term radiological risks

1.2. Overview of some safety-relevant radionuclides

1.2.1. Iodine

1.2.2. Selenium

1.2.3. Technetium

1.2.4. Uranium

1.3. Modelling radionuclide migration in terrestrial ecosystems

1.3.1. Biosphere models

1.3.2. The Ks parameter

1.4. Project objectives and thesis outline

3

7

11

2 Experimental materials and methods 12



2.1. Study area and soil sampling

2.1.1. Particle size distribution

12

2.1.2. pH

2.1.3. Oxidation-reduction potential (E,J

2.2. Carbon analysis

2.2.1. Total and organic carbon determination

2.2.2. Humic and fulvic acid determination

2.2.3. Total and organic dissolved carbon determination

2.3. Soil digestion

2.4. Total iodine extraction

2.5. Extraction of amorphous oxides

2.6. ICP-MS analysis

2.7. Microcosm designs

2. 7.1. Mini column approach

2. 7.2. Sacrificial approach

15

16

17

17

18

19

3 Trace element mobility under flooded soil conditions 23

23

26

3.1. Introduction

3.2. Methods

3.2.1. Soil characterisation

3.2.2. Soil anaerobic incubation

3.2.3. In-situ soil redox potential (E,J

3.2.4. s,calculations
3.2.5. Statistical analysis

3.3. Results 33

ii



3.3.1. Soil characteristics

3.3.2. Mobility of major and trace elements under anaerobic conditions

3.3.3. Effect of measurement method on soil Eh

3. 3. 4. Effect of experimental design on Kd

3.3.5. Correlations between Kd and soil parameters

3.3.6. Predicting Kifrom soil properties

3.4. Discussion

3.5. Conclusions

56

79

4 Development of the RIGEMA modelling approach 82

82

84

4.1. Introduction

4.2. Alternative hydrological model formulations

4.2.1. A revised empirical water budget model

4.2.2. A physically-based water flow model (Richards equation)

4.3. Comparison of the hydrological models 93

4.4. The Generalised Ecological Modelling Approach 98

4.5. The integrated RIGEMA modelling approach 101

4.5.1. Temporal resolution and seasonal variability

4.5.2. Effect of vertical discretisation on numerical dispersion

4.6. Overview of the RIGEMA approach 113

5 Simulating the migration of radionuclides in soils 116

116

117

5.1. Introduction

5.2. Materials and methods

5.2.1. Site description

iii



5.3. Soil water flow modelling (HYDRUS-I D)

5.4. Sorption modelling

5.4.i. Generic Kd

5.4.2. Parametric Kd approach

5.5. Simulation scenarios

5.5.i. Bare soil

5.5.2. Non-irrigated vegetated soil

5.5.3. irrigated vegetated soil

5.6. Results

5 6 I 798 d 1291 d .. 'f. .. e an rynamlcs In Sal

5.6.2. Vertical distributions of 79Se and 1291 within the soil

79 d 129. h5.6.3. Se an 1In weal

5.7. Discussion

5.8. Conclusions

6 Summary of conclusions, recommendations and future work

6.1. Conclusions

6.2. Recommendations

6.3. Future work

Bibliography

Appendix 1

118

119

121

123

130

139

141

141

145

147

150

170

IV



List of Figures

Fig. 2-1 Map of soil sampling area at Sutton 8onington. 12

Fig. 2-2 A sketch of the design of mini column microcosm used for soil incubation
under anaerobic conditions showing dimensions of the column, the permanently
installed redox (Eh) Pt electrode and the Rhizon moisture sampler. 20

Fig. 2-3 A sketch of the Rhizon moisture sampler used to collect soil solution at
different times during anaerobic incubation experiments. 20

Fig. 2-4 A sketch of the design and different parts of the centrifuge tube used to
separate soil solution from soil slurries incubated in sacrificial microcosms. 22

Fig. 3-1 Changes in pH and Eh (Nernst estimates) of S8 soils incubated in mini
columns under anaerobic conditions as a function of time. 35

Fig. 3-2 Changes in DOC and Fe concentrations in solution of S8 soils incubated in
mini columns under anaerobic conditions as a function of time. 36

Fig. 3-3 Changes in Se, I, Re and U K, determined for S8 soils incubated in mini
columns under anaerobic conditions as a function of time. 37

Fig. 3-4 Changes in Eh of S8 soils determined using in situ Pt electrode and soluble
Fe concentration (Nernst equation) in mini columns and a combination electrode in
sacrificial microcosms as a function of time. 39

Fig. 3-5 Changes in Eh of S8 arable top and subsoils determined using permanently
installed Pt and combined electrodes in sacrificial microcosms as a function of time.

40

Fig. 3-6 Change in the performance of Pt electrodes after a month of incubation. 41

Fig. 3-7 Changes in soluble Fe concentration in S8 soils incubated in sacrificial and
column microcosms under anaerobic conditions as a function of time. 42

Fig. 3-8 Differences between sacrificial and column K, values computed from
porewater 0.1 11mfiltrates 7 days after soil wetting. 44

v



Fig. 3-9 DOC and Fe concentrations in three porewater filtrates measured after 7
days of incubation as a function of soi I type. 45

Fig. 3-10 Differences between sacrificial Kd values computed from porewater 0.1,
0.22 and 0.45 urn filtrates 7 days after soil wetting as a function of soil type. 46

Fig. 3-11 Changes in K, as a function of soil pH for three S8 soils. 48

Fig. 3-12 Changes in K, as a function of DOC concentration in soil solution for
three S8 soils. 49

Fig. 3-13 Changes in K, as a function of soluble Fe in solution for three S8 soils. 50

Fig. 3-14 Goodness of fit of the parametric models that predict K, from soil
characteristics. 54

Fig. 3-15 Change in the performance of Pt electrodes after removal of electrode
sealant. 65

Fig. 3-16 Measured and calculated Se concentration in solution of S8 arable
topsoil, arable subsoil and woodland topsoil incubated in mini columns as a function
of time. 70

Fig. 3-17 Measured and calculated I concentration in solution of S8 arable topsoil,
arable subsoil and woodland topsoil incubated in mini columns as a function of time.

71

Fig. 3-18 Measured and calculated Re concentration in solution of S8 arable
topsoil, arable subsoil andwoodland topsoil incubated in mini columns as a function
of time. 72

Fig. 3-19 Measured and calculated U concentration in solution of S8 arable topsoil,
arable subsoil and woodland topsoil incubated in mini columns as a function of time.

73

Fig. 4-1 A conceptual (compartmental) model of the soil column showing various
water fluxes into and out of individual soil layers. 85

Fig. 4-2 Actual evaporation (Ea) from bare soil surface as a function of time in
response to atmospheric conditions at Xiongxian, China calculated using the
empirical and physical (Richards) hydrological models. 96

vi



Fig. 4-3 Water storage in the bare soil column as a function of time in response to
changes in atmospheric conditions at Xiongxian, China calculated using the
empirical and physical (Richards) hydrological models. 97

Fig. 4-4 Capillary flux through the lower boundary of the bare soil column as a
function of time in response to changes in atmospheric conditions at Xiongxian,
China calculated using the empirical and physical (Richards) hydrological models.

97

Fig. 4-5 A simple GEMA (radiological) model with 2 (solid and liquid)
compartments and 3 soil layers (LJ, L2 and L3). 99

Fig. 4-6 Predictions of 79Se and 1291 accumulation (total activity) within a I m bare
soil column over a 10 years period using (a) daily and (b) annual time steps. Soil
layer thickness was fixed at I cm. 104

Fig. 4-7 Predictions of 79Se and 129,activity concentration - depth profiles (annual
averaged) under bare soil conditions using daily and annual time steps. Soil layer
thickness was fixed at I cm for all calculations. 106

Fig. 4-8 Temporal changes in water flux through the bottom boundary of a I m bare
soil column obtained by solving Richards hydrological equation for three soil layer
thicknesses. 107

Fig. 4-9 A conceptual RIGEMA (integrated hydrological and radiological) model
showing water and radionuclide transfers and phase partitioning between soil layers
and solid and liquid compartments. 110

Fig. 4-10 Predictions of 79Se and 1291accumulation (total activity within a I m bare
soil column) over a 10 years period using I and 10 cm soil layer thicknesses. Model
time step was fixed at 1 day. III

Fig. 4-11 Predictions of 79Se and 1291concentration - depth profiles (annual average)
under bare land conditions using I and 10 cm soil layer thicknesses. Model time step
was fixed at 1 day. 112

Fig. 4-12 A diagram demonstrating the structure of RIGEMA and how it is
implemented. The diagram shows the connections between the model input data,
HYDRUS-ID hydrological simulator and GEMA radiological model.. 113

Fig. 5-1 Predictions of 79Se and 129,accumulation (total activity) within the top (0-
20 cm) and subsoil (80-100 cm) of a soil column cropped with winter wheat. The
graphs show the effect of irrigation with contaminated groundwater. 124

vii



Fig. 5-2 Vertical distribution of I Bq a·1 influx of 79Se and 1291at equilibrium under
different land use scenarios. 125

Fig. 5-3 Vertical distribution of I Bq a·1 influx of 79Se and 1291at equilibrium under
vegetated land (with irrigation) predicted using constant and parametric KdS. 126

Fig. 5-4 Accumulation of 79Se and 1291 activity in wheat biomass (dw) as a function
of time predicted for non-irrigated and irrigated wheat crops. 127

Fig. 5-5 Concentration ratios (Bq kg" biomass dw/Bq kg" soil) of 79Se and 1291for
non-irrigated and irrigated wheat crops at equilibrium. 129

Fig. 5-6 Mean profiles of soil moisture content, percolation and capillary flux under
different land uses predicted by HYDRUS ID for SB site. 133

viii



List of Tables

Table 2-1 Operational modes and settings of the lep-MS used to determine

concentrations of major and trace elements in soil digests and solution samples. 18

Table 3-1 Summary of SB soil properties. 34

Table 3-2 Spearman's correlation coefficients between Kd, pH, DOC and dissolved

Fe concentrations in SB porewater. 51

Table 3-3 Parametric K, models derived from experimental K, data. 53

Table 3-4 Performance descriptors for the parametric Kd models. 55

Table 3-5 Site-specific K, (L kg") determined empirically and calculated from

parametric equations for a suite of trace elements and averaged for six SB soils and

published (non-site specific) data. 59

Table 4-1 Soil hydraulic properties reported in Liu et al. (2006) required by the

empirical and physical hydrological models. 94

Table 4-2 Parameters used to estimate the effective dispersion coefficient described

by Smith and Elder (1999) which sets an upper limit on the numerical dispersion

effect of the compartmental model. 109

ix



Table 5-1 Meteorological data (averages over the period from 2006 to 20 10) used

for the hydrological and radiological simulations. Data was obtained from the local

automatic meteorological station at Sutton Bonington site. 117

Table 5-2 Soil hydraulic data for a generic sandy loam soil obtained from

HYDRUS-I D database for the hydrological simulations. 118

Table 5-3 Kd values used in RIGEMA model for 79Se and 1291 as reported in the

IAEA (2009) compendium for a generic soil type. 120

Table 5-4 Measured (mean of KdS determined from 0.1,0.22 and 0.45~m porewater

filtrates) and calculated (from parametric models of Sheppard et al. (2007» 79Se and

1291 K, (L kg") values for SB arable top and subsoils. 120

Table 6-1 Sensitivity to K, of RIGEMA predictions of steady state activity

concentrations in the topsoi I (0-20) cm under two land use scenarios. 141

Table 6-2 Sensitivity to the soil layer thickness and time step of the bare land model

predictions of steady state activity concentration (Bq m') in the soil column. 144

x



List of Sym bois

a

A

8

Cporcwater

CR

Dnum

s.,

F

Gmax

Suspended solid load in water (kg rn')

Longitudinal dispersivity of the soil (m)

=

van Genuchteri's scaling and curvature parameters

Soil pore size distribution index (rn')

Empirical parameter (-)

Empirical parameter (-)

Dimensionless adjustable parameter (-)

Concentration in pore water (kg m -I)

Total concentration in soil (solid + porewater) (kg kg" soil)

Soil-to-plant concentration ratio

(8q kg" dw plant)/(Bq kg' dw soil»

Molecular difTusion (m2 day' I )

Numerical dispersion (m2 day' I )

Distance from the water table towards surface (m)

Reaction standard enthalpy change (kJ marl)

=

=

=

=
=

=

=

Water use distribution parameter (-)

Redox potential relative to a reference hydrogen electrode (volts)

Total actual evaporation rate (m day' I)

Maximum, actual evaporation rate from the /h layer (m day")

Total potential evaporation rate (m day' I)

Potential evaporation rate from the i'h layer (m day' I)

Porosity of the i'h layer (-)

Faraday constant (kJ volrl mol")

Water flux (liquid phase transport) from the r layer so]" receptor
layer (m day")

Capillary flux in the i'h layer (m day' I)

Maximum capillary flux (m day")

Parameters for Feddes water stress reduction function (m)

=

=

=

=

=
=

XI



h(8) Soil matric potential (m)

Kd,i Solid-liquid distribution coefficient (L kg')

Keg Equilibrium constant

Ks Soil saturated hydraulic conductivity (m day')

KO = Solubility product at T = 298.15 OK
so

Kso Solubility product at T OK

K(8i) Soil hydraulic conductivity as a function of water content (m day')

Kb An extinction coefficient of radiation by the canopy (-)

C Pore connectivity parameter

LAI Leaf area index (-)

AIJ = Transfer rate constant between the /h andr layers (m -,)

t.}. Transfer rate constant between the /h andj" for process k (m')I,)

AN Decay constant of radio nuclide N (day")

m van Genuchten's parameter

MIJ Soil flux from the {h layer to]" layer (kg m-3)

n = van Genuchten's curvature parameter

NI = Activity of radio nuclide N in the i'h soil layer (8q)

ffie = Critical stress index

pe = Electron activity (-)

E Evaporation fraction from the {h layer (-)uf,1

T = Transpiration fraction from the {h layer (-)uf.1

R Gas constant (J °K-' mol")

RI = Retardation factor ofN radionuclide in the /h layer (-)

p = Soil bulk density (kg m-3)

Se Soil effective saturation

SI(t) External source term of radionuclide N into the i1h layer (Bq day")

S(t,z) = Sink term: water removed by roots (rrr' m-3 day")

T Absolute temperature eK)

Ta,1 Maximum transpiration rate from the r layer (m day")

Tp = Total potential transpiration rate (m day")

xii



r, Potential transpiration from the i1h layer (m day')

~e, = Rate of change in moisture content in the r layer (m' m-3 day")
~t

81 Volumetric moisture content in the i1h layer (rn ' m')

Ocnllcal Threshold to initiate capillary flux (m' m')

OFe Soil field capacity (rrr' m")

Or = Soil residual moisture (nr'rn')

Os = Soil saturated moisture (rrr'm")

8sleady Steady moisture assumed at Gmax (rn ' m')

8wp = Soil wilting point (rrr'rn")

V Soil volume (rrr')

~Zj Soil layer thickness (m)

ZI_I,Zj = Depths of the lh layer boundaries from soil surface (m)

Zr = Rooting depth (m)

ZL = Total soil depth (m)

xiii



Abstract

The aim of the present work was to improve the predictive capabilities of current

modelling methods used to assess the long-term biosphere impacts of underground

repositories for radioactive wastes. A number of issues related to parameter and

conceptual uncertainties associated with compartmental biosphere models that

simulate transport and accumulation of radionuclides in soils were addressed.

The structure of compartmental models used for radiological risk assessments

has not evolved noticeably over the past few decades and most of these models rely

on simple assumptions. For example, compartmental models used to predict activity

concentrations of radionuclides released into soils over very long timescales (typical

of the lifetime of underground disposal repositories) assume arbitrary model

specifications such as soil layer thickness (the vertical discretisation of the soil

column) and length of the time step. Moreover, the majority of the available models

assume invariant sorption characteristics of radionuclides with soil depth and hence

employ constant solid-liquid distribution coefficient (Kd) values regardless of soil

characteristics known to affect radionuclide sorption (e.g. pH, redox potential,

moisture content and organic matter). The empirical Kd has a profound effect on

long-term predictions of radionuclide behaviour in soil since it determines the

degree of radionuclide retardation due to interaction with the soil. It is associated

with considerable uncertainty due to differences in experimental conditions and

methods used for its measurement and the variation in soil characteristics.

In this study, three soil types (arable, grassland and woodland) were incubated

under anaerobic conditions and the behaviour of naturally occurring selenium,

iodine, rhenium and uranium, expressed as Kd, was investigated.
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The results indicate that variation in soil characteristics (e.g. moisture content,

pl-l, mineral and organic carbon content) is a significant source of K, variability.

Soils relatively higher in organic matter content (e.g. top soils) have higher sorptive

capacities for trace elements than mineral subsoils and hence higher Kds. Dynamic,

complex behaviour of K, under flooded, anaerobic soil condtions was measured

over a 3 week period in soil microcosms. This dynamic behaviour was driven by the

shift in soil redox potential which was associated with solubilisation of soil organic

and mineral (Fe oxide) phases. Overall, the maximum observed variation in K, over

the entire incubation period did not exceed 2 orders of magnitude.

Biosphere models were constructed which combined a physically-based water

flow model and the compartmental approach and used to simulate the long-term

vertical distribution of radionuclides in the soil as well as radionuclide dynamics

under different environmental conditions. Investigating radionuclide dynamics on a

short timescale could only be achieved using models with a daily time step since

short-term variation was obscured by a longer (annual) time step. Simulation results

give insights into some of the limitations of available biosphere modelling methods

for radiological risk assessment that are often overlooked. For example, soil

radionuclide activity concentrations calculated using compartmental models are

sensitive to the vertical discretisation (i.e. thickness of soil layers into which the soil

column is divided) and time step of the model, hence the structure of the model

should not be set arbitrarily. The discretisation procedure proposed in the present

study may provide a useful framework to select the appropriate structure of

biosphere assessment models. With respect to the effect of uncertainy in K, on

model calculations, the results show that equilibrium timescales and radionuclide

activity concentrations in the soil at equilibrium increase as the K, increases. For

example, the time to reach steady state radionuclide activity concentrations in the

vegetated topsoil increased 14-fold and 7-fold, respectively, when K, was increased

28-fold, which is a small variation compared to the uncertainty of Kd commonly

reported in the literature (e.g. a few orders of magnitude). The Kd also affects short

and long-term radionuclide dynamics in soils; the activity concentration of a

radionuclide with low Kd (weakly sorbing) is more responsive to seasonal

fluctuations in climatic and hydrological conditions than a radionuclide with a large

Kd (strongly sorbing). Radionuclide uptake by plant roots, especially those which

access highly contaminated soil layers adjacent to the contaminated aquifer, could

xv



be an important mechanism that provides a direct pathway between shallow,

contaminated aquifers and the soil surface where elavated contamination poses

greater risks.

xvi



Chapter 1 Introduction

1.1. Radioactive waste legacy

The world has exploited nuclear power for a variety of civil and military

applications; nuclear power plants generating electricity have been in operation over

the last six decades. Although the production of electricity from nuclear fuel does

not involve emission of greenhouse gases such as carbon dioxide to the

environment, this "clean" electricity comes at a price. A legacy of hazardous long-

lived radioactive waste of all forms (low, intermediate and high levels) has

accumulated. According to the latest report of the Nuclear Decommissioning

Authority on radioactive waste in the UK, the total volume of radioactive waste

from all sources is 4,720,000 rrr'. Of this volume, low level waste (LL W),

intermediate level waste (ILW) and high level waste (HL W) make up 93.8%, 6.1%

and less than 0.1%, respectively (NDA, 20 II).

Some of this waste is already in storage. The decommissioning of old power

stations, however, will generate more waste over several decades. A significant part

of this waste will have decayed naturally within a few hundred years. Nevertheless,

it is important to have a long-term approach to the management of long-lived fission

products (e.g. 14C, 79Se, 99Tc, and 1291) given the number of human generations over

which these materials can remain hazardous.



Chapter I Introduction

1.1.1. Geological disposal approach

Nuclear industries and regulatory bodies around the globe have been seeking

solutions to the problem of long-term management of radioactive waste. The desired

solution should provide long-term protection of both the

environment and the public against the risks of any potential releases of radioactivity

into the environment accessible by biota. Many options have been considered and

assessed and deep geological disposal is generally considered the best available

solution to this long-term management problem: many countries have initiated their

national R&D programmes on deep geological disposal of radioactive wastes (SKB,

20 10; Posiva, 20 10).

Site selection is an important aspect of deep geological disposal whereby

candidate sites are assessed to establish their suitability for hosting the repository. A

successful site has to provide sufficient isolation of the waste against natural

transport processes and also any major natural events (including earthquakes and

glacial activity) as well as anthropogenic intrusion.

1.1.2. Long-term radiological risks

Given the long timescales over which deep geological disposal must remain

effective there is potential for some release of fission products from the repository

system. The waste continues to decay naturally and to produce thermal energy

which, combined with the chemical environment of a repository, will induce

degradation of waste canisters. Long-lived fission products are thus expected to

escape the repository system. Escaping radionuclides will be transported by

groundwater through the repository barriers into the surrounding geosphere.

Ultimately, radionuclides may reach biosphere systems, including lakes, rivers,

2



Chapter 1 Introduction

forests and agricultural land. Low lying points on the landscape (e.g. riparian zones)

are the probable discharge points for radionuclides migrating to the earth's surface

(Marklund et al., 2006). Once these radionuclides reach the surface, they will

become accessible to biota including crops, livestock and humans.

1.2. Overview of some safety-relevant radionuclides

It is therefore important to understand the biogeochemistry of long-lived

radionuclides to identify key accumulation, immobilisation and remobilisation

mechanisms. The sub-soil is a heterogeneous environment, with physical and

biogeochemical characteristics that vary spatially as well as temporally. These

characteristics determine to a large extent the behaviour of radionuclides in the sub-

soil. The following three sub-sections provide a brief review of the geochemistry of

three elements that have long-lived radionuclides and that, due to their chemical

characteristics, will contribute significantly to long-term radiological doses from a

geological repository.

1.2.1. Iodine

Iodine (I) is mainly found in nature as stable 1271. Of its several radioactive

isotopes, it is 1291 with a physical half-life of 15.6 million years (Santschi and

Schwehr, 2004) that has received considerable attention as a long-lived radioactive

hazard (Hou et al., 2009; Hu et al., 2008). Most 1291 comes from anthropogenic

sources including nuclear weapons testing, 235U fission in nuclear reactors (with a

yield of I%) and high level waste (spent nuclear fuel), responsible for the majority

of the global inventory of 1291. A small amount of 1291 is produced naturally in the

3



Chapter 1 Introduction

upper atmosphere by cosmic spallation of trace quantities of xenon (John et al.,

2007).

Biogeochemical cycling of I in the subsurface environment is complicated by its

chemical speciation; it can exist in multiple oxidation states (VII, V, I, 0 and -I)

depending on the prevailing physicochemical conditions. Iodate (103), methyl

iodide (CH)I ), elemental iodine (12) and iodide (I") are the main chemical species of

I in soils (Hou et al., 2009; Hou, 2004; Hou et al., 2001; Muramatsu and Yoshida,

1999). Important mechanisms pertinent to the immobilisation of I include sorption

onto iron and aluminum oxides (Whitehead, 1984; Whitehead, 1974; Whitehead,

1973) and association with soil organic matter, which has been shown to be a major

sink for soil I (Ashworth and Shaw. 2006b; Sheppard et al., 1995; Sheppard and

Thibault, 1992). Yamaguchi et al (20 I0) found that I introduced into organic-rich.

moist soils as inorganic 103 and r species was transformed into organic I within 60

days. Mobilisation of I into soil solution is promoted by soil reduction, for example

following soil waterlogging (Maillant et al., 2007; Ashworth and Shaw, 2006b;

Ashworth and Shaw, 2006a; Muramatsu et al., 1996).

1.2.2. Selenium

Selenium (Se) is a non-metallic element that has several stable as well as

radioactive isotopes. Of the radioactive Se isotopes, only 79Se warrants concern from

a radiological risk perspective due to its long physical half-life (3.77 x 105 years)

(Shaw and Ashworth, 2006). 79Se is produced from 235U fission in nuclear reactors

with a yield of about 0.04%, and it is also present in spent nuclear fuel.

4



Chapter I Introduction

Selenium is a multivalent element (VI, IV, 0 and -II) whose behaviour is

strongly influenced by its redox state. In aerobic environments (-Eh = 400 mV) Se is

present predominantly as soluble inorganic oxyanions (selenate SeO~-and selenite

SeO~-) under a wide range of pH values. As soil conditions become more reducing

(Eh $ 200 mV), oxidised Se species are transformed into insoluble elemental Se and

selenide Se-2 (Seby et al., 1998).

Selenium removal from soil pore water is strongly governed by its interactions

with soil components. Sorption, which involves a group of mechanisms that controls

solid-liquid distribution of Se in soils, depends largely on the chemical speciation of

Se. Selenate has a low affinity for soil solids such as metal (Mn, Fe and AI) oxides

compared to SeO;-which can be retained by these minerals by forming inner-sphere

complexes (Dhillon and Dhillon, 2000; Balistrieri and Chao, 1990; Bar- Yosef and

Meek, 1987). Complexation with soil organic matter is another important retention

mechanism for Se in soil (Wang and Gao, 200 I; Gustafsson and Johnsson, 1994).

Selenium oxyanions can be biologically reduced and incorporated into soil organic

matter, especially into the low-molecular-weight fractions of the humic substances

(Gustafsson and Johnsson, 1994). This mechanism, however, is not yet well

understood.

1.2.3. Technetium

As an element with no stable isotopes, technetium (Tc) is considered to be

extinct on earth but can be found in the environment primarily as a fission product

originating in the nuclear fuel cycle. Technetium possesses several radioactive

isotopes but, of these, only 97Tc, 98Tc and 99Tc have sufficiently long half lives to

represent a long-term radiological risk (their physical half-lives are: 2.6 x 106,

5
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4.2 x 106 and 2.1 x 105, years, respectively). However, with a fission yield of 6%

only 'J'JTc is produced in sufficient quantities to be of concern (John et al., 2007).

Technetium has a range of valencies; VII, IV, III, II and 0, with VII and IV

being the most important. Technetium behaviour in the environment is closely

correlated with its redox behaviour. In aerated soils (Eh> 200 mV) speciation is

dominated by Tc VII in the form of TcO~ (pertechnetate anion), which has

physicochemical similarities with the nitrate (N03-) anion. Like nitrate,

pertechnetate does not bind strongly to soil surfaces, thus it has a high mobility

(Brookins, 1988). In anaerobic (reduced) soils, Tc VII is reduced to the sparingly

soluble, tetravalent, TclV which can be strongly sorbed to soil mineral surfaces or

precipitated as hydrous Te02 depending on its concentration (Icenhower et al.,

20 I0; Morris et al., 2008).

As there are no naturally occurring surrogates for all chemical species of Tc,

rhenium (Re) has been proposed as a non-radioactive analogue (Kim et al., 2004;

Kim and Boulegue, 2003). Technetium and Re are similar in many respects; they

have similar oxidation states (e.g. VII and IV) and they both form oxyanions

(TcO~ and ReO~) in their VII oxidation state. However. whether or not Re is an

appropriate non-radioactive surrogate of Tc remains a controversial question (Maset

et al., 2006; Wharton et al., 2000).

1.2.4. Uranium

Uranium (U) exists in nature in the form of several isotopes with different

abundance primarily 238U (99.27%), 235U (0.72%) and a very small amount (by

mass) of 234U (0.0055%). Other U isotopes are not present naturally e36U. mU and

232U) but can be produced by nuclear transformations. The most abundant U isotope,
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mU, has a very long physical half-life of 4.5 billion years (John et al., 2007).

Uranium occurs in nature in various oxidation states, although hexa- and tetravalent

U are the most environmentally significant species. Uranium mobility and sorption

onto soils in the subsurface is very much dependent upon its speciation. In aerated

(Eh < 200 mV), acidic (pH < 5) soils, U(VI)as uranyl ion (UO;+), is the dominant

species that can adsorb onto soil fractions such as clays (Pabalan and Turner, 1996)

and oxides (Vanden hove et al., 2007; Um et al., 2007). At higher pH (:S 7) U

sorption decreases as UO;+ hydrolyses to form soluble hydroxide complexes. Under

alkaline conditions U becomes more mobile as it can be complexed by a number of

inorganic (e.g. OH-, CO;-, PO!-) and organic (humic acids) ligands (Vandenhove et

al., 2009a; Luo and Gu, 2009; Urn et al., 2007; Bednar et al., 2007; Echevarria et al.,

2001; Langmuir, 1978). Under reducing conditions U(VI)can be reduced into the less

mobile U(IV)species that binds strongly to soil surfaces.

1.3. Modelling radionuclide migration in terrestrial ecosystems

1.3.1. Biosphere models

As part of performance assessment calculations, the safe operation of geological

repositories has to be demonstrated over long timescales of several thousand years

(Xu et al., 2008; Avila, 2006a). Scenarios of the potential release of radionuclides

from the repository system have to be identified and associated environmental

contamination and human exposures assessed (radiological risk assessments) to

ensure risks are in compliance with national and/or international standards.
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Conceptual and mathematical modelling are essential parts of the assessment

approach that is used to assess migration and accumulation of radionuclides

following their release into surface and subsurface environments. A staged

conceptual biosphere modelling methodology was developed by the IAEA (2003) as

a frame of reference for biosphere modelers addressing risks from radioactive waste

disposal facilities. The primary objective of this methodology was to provide a

formal and defensible procedure for the development of 'reference' or 'assessment

biospheres' in general. The approach begins with a description of the biosphere to be

modeled; i.e. provision of sufficient detail about the systems to be considered. This

information enables justification of the conceptual models of the biosphere and its

subsystems and includes the important features, events and processes relevant to the

assessment. A conceptual model is then constructed on the basis of the information

collected during the previous stages and dependent upon the media (compartments)

of interest (e.g. soil, sediment, water, plants, etc.) in which radionuclides will

migrate or accumulate. The conceptual model is then translated into a mathematical

model. It should be noted that there may exist many alternative mathematical

models for one conceptual model depending on availability of data to parameterise

the model. Finally, concentrations of radionuclides in the environmental media are

calculated and used to estimate radiological doses. This methodology has been

applied extensively in long-term radiological assessments (Klos, 20 I0; Klos, 2008;

Karlsson et al., 200 I; Bergstrom et al., 1999).

Despite advances in methods used to formulate and solve biosphere models,

there is still considerable uncertainty associated with their results. This partially

originates from the incomplete understanding of the physical and biogeochemical

processes that control the behaviour of many radionuclides in the environment.

8



Chapter 1 Introduction

Sorption is one particular example where research is still ongoing to improve

biosphere assessment results and reduce uncertainty. Sorption has an important

impact on the fate of radionuclides in the biosphere and, therefore, on assessment

results. Elevated sorption resulting from a combination of radionuclide, speciation

and soil type, can retard and accumulate radionuclides advancing with flowing

groundwater. Sorption is, however, a complex process that depends not only on the

mineralogy of the soil but also on a number of (often interacting) biogeochemical

factors (e.g. moisture content, redox potential, speciation, microbial activity, etc.).

Soil properties and processes controlling sorption are expected to change over

the long timescales associated with radiological risk assessments and, therefore, the

scenarios which biosphere modelling must address. Spatial and temporal changes to

soil moisture content, soil oxidation-reduction status and budgets of soil organic

matter are among the processes that may lead to mobilisation or immobilisation of

radionuclides in the biosphere. Although radionuclide sorption strongly correlates

with soil physicochemical variables, it has, however, been represented in biosphere

models in a rather simplistic way that often uses a equilibrium K, (e.g. Klos, 2008;

Aguero et al., 2008).

1.3.2. The Kd parameter

Radionuclide sorption is frequently quantified using an empirical solid-liquid

distribution coefficient (Kj) which is often determined empirically. Physicochemical

variables are usually strictly controlled during a laboratory experiment or, at most,

one variable is adjusted at a time. This is impossible under normal environmental

conditions in which interacting physical and biogeochemical factors collectively

control radionuclide sorption behaviour. For example, empirical determination of Kd
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(e.g. in batch experiments) involves equilibrating tracer-free solid and tracer-spiked

liquid phases for a pre-determined period before calculating Kd as the ratio of

radionuclide activity concentrations in the solid and liquid phases. Often, the ratio of

mass of solid to volume of liquid (solid-liquid ratio, SLR) used in these

experimental protocols is small (-0.1 w/w). This supersaturated soil slurry is not

representative of the unsaturated conditions prevailing within the vadose zone (i.e.

above the water table). The SLR has a known impact on Kd which Sheppard et al.

(2007) demonstrated by incubating soil samples at different SLRs and found that

KdS of a number of trace elements decreased as SLR increased. These authors

attributed this impact to the dilution resulting from using excess water and they

recommended Kd measurements should be made at moisture contents close to the

soil's field capacity since that is when leaching occurs. Chemical speciation of

radionuclides is also affected by artificially low SLR: at low SLRs, soil Eh can be

lowered which affects chemical speciation and consequently K, values.

Differences in experimental conditions have resulted in a great deal of

uncertainty in data bases of empirical Kd available for biosphere modelers (IAEA,

2009). Thus, an alternative statistical approach has been proposed to estimate Kd

based on correlating K, with soil physical and chemical characteristics (Sheppard,

2011; Vanden hove et al., 2007). Soil properties including texture, organic matter

content and pH are proposed as predictors of Kd which can be easily measured. Such

statistical models can be used to predict site-specific Kd values for biosphere

assessment models and, by adjusting predictor variables over realistic ranges, the

evolution of K, can be explored under simulated future biosphere scenarios.
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1.4. Project objectives and thesis outline

The overall purpose of this thesis was to develop a reliable modelling

methodology to improve the prediction of long-term transport and accumulation of

safety-relevant radionuclides in soils. Given the importance of K, as a key parameter

in almost all biosphere models, the thesis also explores the relationship between K,

and soil properties with the intention that the modelling methodology can be readily

applied to different environmental settings using readily available site-specific soil

properties.

The thesis is organised into six chapters. Experimental methods used, such as the

set-up of the anaerobic incubation (microcosms) and the environmental analyses, are

described in Chapter 2. Chapter 3 examines the effect of variation in experimental

design, particularly the microcosm design and the soil solution extraction method,

on in-situ Kd. Soil physicochemical factors that control in-situ ~ are also

investigated and a set of Se, I, Re and U parametric Kd models are developed and

validated using the experimental observations. The development of a modelling

methodology for predicting the transport and accumulation of radionuclides in soils

is presented in Chapter 4. This methodology is then applied to a set of hypothetical

scenarios, the simulation results from which are presented in Chapter 5. The final

chapter summarises the conclusions of the work and makes recommendations for

future research.
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Chapter 2 Experimental materials and methods

This chapter describes materials and experimental methods employed throughout

this work. Standard laboratory procedures for soil and aqueous phase

characterisation, in addition to experimental designs for soil anaerobic incubation,

are presented.

2.1. Study area and soil sampling

Soil samples were collected from Sutton Bonington, Leicestershire, East

Midlands (Fig. 2-1).

Fig. 2-1 Map of Sutton Bonington area (Grid Reference 52049" 49' N_lo 14" 26' W),

Leicestershire showing soil sampling locations (.).
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The site consists of arable land on sandy loam soil, surrounded by a strip of

permanent grassland, adjacent to established woodland. The differing land uses

influence the soil properties e.g. pH and organic matter content. Samples were taken

at a range of depths using a 10 cm diameter auger at 10 cm increments (to minimise

cross contamination between depth samples) and placed in suitably labeled plastic

bags for return to the laboratory.

2.1.1. Particle size distribution

Soil texture (i.e. percentage of clay, silt and sand) was determined using a laser

diffraction analyser (Beckman Coulter"). A sample (0.5 g) of < 2 mm sieved, air

dried soil was added to a 50 ml polycarbonate centrifuge tube, then 25 ml of

hydrogen peroxide (H202) was added and left to react overnight. To ensure all

organic matter had been removed the centrifuge tube was heated at 60°C in a water

bath for 1-1.5 hours and then at 90°C for an additional 1-1.5 hours. De-ionised

water (25 mL) was added to each tube prior to centrifugation at 3500 rpm for

4 minutes. The solution was then decanted before an additional 35 mL of de-ionised

water was added prior to shaking and centrifugation at 3500 rpm for a further four

minutes. The solution was again decanted and 25 mL of 'Calgon' (35 g of sodium

hexametaphosphate, 7 g sodium carbonate in 1 L of de-ionised water) was added

prior to analysis. Samples were kept on a shaker until 30 minutes before analysis

when they were placed in an ultrasonic bath to ensure all soil particles were fully

disaggregated prior to measurement.
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2.1.2. pH

Approx. 5 g of < 2 mm sieved soil was weighed into a 50 mL centrifuge tube to

which 12.5 mL de-ionised water was added (I :2.5 soil/water ratio). Soil slurries

were equilibrated for 30 minutes by shaking on an end-over-end shaker before pH

was measured using a glass electrode and pH meter (Radiometer Copenhagen

ABU 80 Autoburette) calibrated with pH 4.01 and 7.0 buffers.

2.1.3. Oxidation-reduction potential (Eh)

Soil redox potentials characterise the soil system with respect to prevailing

oxidation-reduction conditions and provide ancillary information that assists in the

interpretation of the geochemical behaviour of redox sensitive elements. A practical

method for monitoring redox conditions involves using in-situ platinum electrodes

which can be left in soil for the duration of experiments lasting from days to months.

Platinum electrodes were constructed and calibrated in the laboratory. A I cm length

of platinum wire (99.95%) was connected to a copper wire with a crimp connector

and sealed with epoxy resin. In order to determine the standard potential of a

reference Agi AgCI electrode in combination with the Pt electrode. the system was

calibrated using standard solutions of hydroquinone and pH buffers (4.0 I and 7.0)

with known standard potentials.

Soil redox measurements were made by inserting the Pt and reference electrodes

into the soil and connecting them to a high impedance multi meter. After allowing

time for equilibration (approx 10-15 mins), the voltage was recorded and corrected

to give the redox potential relative to the standard hydrogen electrode (Eh) by adding

the standard potential of the reference electrode (0.22 V).
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An alternative, combination redox electrode was also used to measure soil redox

potential during experiments. The combination electrode (Thermo Scientific ORP

glass/platinum electrode) was connected to a standard pl-l/E, meter and the

electrode/meter system was calibrated following the same procedure described

above.

Soil redox potential was measured by inserting the calibrated combination redox

electrode half-way through the wet soil and leaving it to stabilise for few minutes

before the meter reading was recorded and corrected.

2.2. Carbon analysis

2.2.1. Total and organic carbon determination

Soil total and organic carbon concentrations were determined using a CNS

elemental analyser (FlashEA lID 1112) following standard methods. A known mass

(-15 mg) of finely ground, oven dried soil was added to a tin capsule to which

-5 mg of vanadium pentoxide (V 205) was also added to catalyse combustion.

Total organic carbon was determined by weighing -IS mg of oven dried soil into

a silver capsule and adding a few drops of 50% v/v HCl to remove inorganic carbon.

After heating for 2 hours at 80°C on a hotplate -5 mg of vanadium pentoxide was

added. All samples (for total carbon or total organic carbon) were combusted at

900°C in a pure oxygen environment. Calibration was undertaken using reference

materials (peat soil with 0.4% total inorganic carbon and 15.5% total organic

carbon; sandy soil: 0.1% total inorganic carbon and 0.8% total organic carbon). All

analyses were undertaken in duplicate.
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2.2.2. Humic and fulvic acid determination

Soil fulvic and humic acid concentrations were determined by adding 2 g of

< 2 mm sieved, air dried soil to a polycarbonate centrifuge tube into which 30 mL of

0.1 M NaOH was added to release organic carbon from the solid phase. The

resulting slurry was shaken on an end-over-end shaker for 24 hours before

centrifugation (15 min at 2400 rpm) and recovery of the supernatant. Total organic

acid concentrations (fulvic + humic) were measured in the supernatant using a

combustion catalytic oxidationlNDIR total organic carbon analyser (Shimadzu

TOC- VCPH analyser) after dilution with MQ water.

A subsample of the supernatant was adjusted to pH 2 with 50% HN03 before

being made up into 10 mL using MQ water and left to stand for 24 hours to allow

humic acids, which are insoluble in acidic environments, to precipitate. The sample

was then filtered (0.22 urn) to remove the precipitate and fulvic acid determined.

2.2.3. Total and organic dissolved carbon determination

Total and organic carbon concentrations of soil porewater were determined using a

TOC analyser (Shimadzu TOC-VcPH). A calibration curve in the range 0 - 50 mg L-'

was prepared from stock potassium hydrogen phthalate and sodium hydrogen

carbonate + sodium carbonate standards. Samples with high carbon contents (e.g.

woodland soils) were diluted with MQ water before analysis when necessary.

2.3. Soil digestion

Soil elemental composition was determined by measuring elemental

concentrations on soil digests. Approximately 250 mg of finely ground soil was
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weighed into PFA Teflon vessels; 4 mL of concentrated trace element grade trace

element grade nitric acid (HNO) was added and samples were heated overnight on

a block digester. The heating regime comprised 30 minutes at 30°C, I hour at 50°C,

14 hours at 80°C and then cooling to 30°C. Concentrated hydrofluoric acid (2.5 ml)

plus 2 mL HNO) and ) mL perchloric acid (HCI04) were then added to the vessels

followed by further heating at 80°C for 8 hours, )OO°C for 2 hours, )20°C for I hour

140°C for 3 hours 160°C for 4 hours and 50°C afterwards. Vessel contents were

carefully transferred into 50 mL volumetric flasks and topped up to 50 mL using

MQ water before analysis using ICP-MS (see Section 2.6).

2.4. Total iodine extraction

Soil I was extracted using the method of Watts and Mitchell (2008).

Approximately 250 mg of < 2 mm, air dried soil was weighed into a 50 mL

centrifuge tube, and 5 mL of 10% tetramethyl ammonium hydroxide TMAH (Afla

Aesar, 25 % w/w aqueous solution) added. The tube lid was replaced loosely and its

contents heated for 3 hours at 70°C (with shaking after 1.5 h). After heating, 5 mL

of MQ water were added to the slurry, before being shaken and centrifuged at

2500 rpm for 20 minutes. The supernatant was decanted into a 50 mL universal tube

and topped up with MQ water to achieve a final matrix of 0.5% TMAH.

2.5. Extraction of amorphous oxides

Amorphous iron and manganese oxide pools were determined by ascorbate

extraction (Anschutz et al., 1998). Approximatelyl g of < 2 mm sieved soil was

added to a 50 mL polyethylene centrifuge tube with 20 mL of extraction reagent.
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The extraction reagent which consisted of 0.17 M trisodium citrate and 0.59 M

sodium bicarbonate adjusted to a final pH of 8.0 using ascorbic acid. The resulting

slurries were shaken for 24 hours on an end-over-end shaker before centrifugation

and filtering with 0.22 urn Millipore syringe filters. The filtered supernatant was

diluted (1: I0) with 0.1 M HCI prior to analysis by ICP-MS for Mn and Fe.

2.6. ICP-MS analysis

Concentrations of major (AI, Ca. Fe, K, Mg, Mn, Na) and trace (As, Cd, Cr, Cu,

I, Ni, Pb, Se, Re, Zn, U) elements were determined using Inductively Coupled

Plasma Mass Spectrometry (Thermo-Fisher X Series II ICP-MS) to analyse soil

digests or TMAH extracts (for I only). Most measurements were made in CCTED

mode (collision cell technology incorporating kinetic energy discrimination) to

reduce polyatomic spectral interferences. Iodine was measured in standard mode and

Se in H2 mode (Table 2-1).

Table 2-1 Operational modes and settings of the ICP-MS used to determine concentrations of

major and trace elements in soil digests and solution samples.

ICP-MS Multielements Selenium & Iodine

parameters Rhenium

Operation mode CCTED CCTED Standard

Cell gas 7% H2 in He H2 None
Gas flow rate 3.5 mL min-I 4mLmin-1 None
Int. standard 45Sc, I03Rh, 1931r 69Ga, 1151n,1931r 1151n
Matrix 2%HN03 2% HN03 I%TMAH

4% Methanol
Calibration range 0-100 ug L·' 0.01-10 ug L-' 0-100 ug L·'
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Methanol was added to the internal standard for Se and Re determination to

improve ionisation efficiency in the ICP-MS and hence stability and sensitivity.

Working standards were prepared on the day of analysis from stock solutions (Spex

Certiprep ).

2.7. Microcosm designs

Soil samples were incubated under anaerobic conditions in microcosms designed

to allow for single (sacrificial) and repreated (mini column) sampling of the soil

solution.

2.7.1. Mini column approach

A 'mini column' design (Fig. 2-2) was used to determine Kd'S in-situ (Ashworth

et al., 2008; Ashworth and Shaw, 2006b). Using this method. small volumes of soil

can be incubated at realistic water contents allowing for the in-situ determination of

redox potential Eh and sampling of the soil solution with minimal physical

disturbance of the soil.

Rhizon Soil Moisture Samplers (Rhizon SMS from Eijkelkamp B.V.) were used

for extraction of in-situ porewater samples (Fig. 2-3). Rhizon samplers have been

used extensively for extraction of porewater samples from soils (see e.g. Shotbolt,

2008 and references therein).
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Fig. 2-2 A sketch of the design of mini column microcosm used for soil incubation under

anaerobic conditions showing dimensions of the column, the permanently installed redox (Eh)

Pt electrode and the Rhizon moisture sampler (Ashworth et al., 2008).

hydrophilic porous polymer PVC tubestainless steel wire Luer-Leek connector

Fig. 2-3 A sketch of the Rhizon moisture sampler used to collect soil solution at different

times during anaerobic incubation experiments.
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Before sampling the columns were weighed to correct for any water losses due

to leakage or evaporation. A syringe was then connected to the Rhizon sampler via

the luer connector and the plunger was pulled out and held in place to apply a

negative (suction) pressure. Once a sufficient volume of porewater was extracted

(ca. 15 mL), aliquots of the porewater were preserved in HN03 (2% v/v) or TMAH

(I% v/v) and refrigerated whilst awaiting analysis. The weights of the sample and

the column were recorded after sampling before Ny-purged (deoxygenated) water

was added to columns to replenish the extracted water.

The sampling time required to extract a sufficient volume of porewater varied

depending on the soil type. Soils rich in organic matter (e.g. woodland topsoil) were

more difficult to sample since it took more time to collect a sample from these soils

than soils from less organic soils (e.g. arable subsoil).

2.7.2. Sacrificial approach

An alternative approach to measurement of native element K, is that described

by Sheppard et al. (2009; 2007). Columns are replaced by 60 mL plastic syringes

and soil solution is separated by centrifugation. This approach allows for a greater

flexibility regarding the operational definition of the dissolved phase. It does not,

however, allow for repeat sampling of soil porewater over the course of an

experiment time due to its sacrificial nature.

The contents of a microcosm (syringe) were first transferred into specially

designed polyoxymethylene (Acetal) centrifuge tubes fitted with 20 urn stainless

steel, mesh filters (Fig. 2-4).
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Fig. 2-4 A sketch of the design and different parts of the centrifuge tube used to separate soil

solution from soil slurries incubated in sacrificial microcosms. I - pore water collector cup; 2

- upper soil container; 3 - screw-on acetal top; 4 - screw-on acetal filter and support; 5 -

stainless steel filter (Di Bonito, 2005).

These tubes were specially manufactured to fit a Beckman J2-21 refrigerated-

high speed centrifuge with AJ-J 0 rotor (rmax = 158 mm). The centrifuge buckets

were spun at a relative centrifugal field (RCFxg) value of 600xg for 30 minutes at

4°C. Centrifugal force pushed the liquid through the stainless steel mesh down to the

collection cup. Samples were then removed from the collection cups using a syringe

22
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choice of centrifuge speed and time were decided with reference to earlier work on

porewater extraction methods (Di Bonito, 2005).



Chapter 3 Trace element mobility under flooded soil

conditions

3.1. Introduction

The solid-liquid distribution coefficient (Kj), defined as the ratio of contaminant

concentrations between soil and porewater phases, is an important parameter

frequently encountered in risk assessment models (Xu et al., 2008; Klos, 2008;

Avila, 2006a; Avila, 2006b; Karlsson et al., 2001) in which the K, parameter is used

to quantify contaminant mobility (Sheppard, 2011; Vandenhove et al., 2009b;

Sheppard et al., 2009; Gil-Garcia et al., 2009). Contaminants that are highly retarded

by geological media have high Kd values whereas highly mobile ones have low Kds.

Variation in environmental conditions such as soil characteristics, water content and

redox status affect the partitioning of contaminants, including radionuclides.

between solid and liquid phases (Ashworth et al., 2008; Fevrier et al., 2007;

Ashworth and Shaw, 2006b; Ashworth and Shaw, 2005; Ashworth et al., 2003). Soil

redox conditions are particularly important because they control the chemical

speciation of many redox sensitive radionuclides (e.g. Se, I and U) which affects

their mobility. Changes in soil redox conditions are stimulated by biogeochemical

factors such as water content, organic carbon (OC) and biological activity. Changes

in these biogeochemical factors due to climate
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and/or land use change are very likely to occur over the long time periods

considered by radiological assessments of geological repositories.

Kd is commonly quantified using simple protocols that involve equilibrating a

background electrolyte spiked with a tracer with a geologic material, either a pure

(mineral) or heterogeneous phase (such as soils), and determining partitioning of the

tracer between the two phases (Rovira et al., 2008; Kamei-Ishikawa et al., 2008;

Darcheville et al., 2008; Fevrier et al., 2007; Nakamaru et al., 2005). A wide array of

Kd determination approaches are available that vary in the complexity of the

experimental design (e.g. microcosms and flow through columns) and the chemical

form of the tracer used (e.g. iodate/iodide, selenate/selenite, etc.). Most laboratory

procedures to determine Kd are implemented under controlled conditions for short

equilibration periods (e.g. days). These conditions may not adequately represent real

environmental conditions. Operational definition of the solid and liquid phases has a

significant impact on empirical K, values. Phase separation and filtration are critical

experimental aspects that can be source of large variability in Kd measurements.

Two widespread phase separation techniques that have been used in most K,

experiments for soil solution extraction are centrifugation (Sheppard, 20 II;

Sheppard et al., 2007) and Rhizon samplers (Ashworth et al., 2008; Ashworth and

Shaw, 2006b). Gravitational forces applied to a sample during centrifugation

provide efficient soil solution extraction from a wide range of pore sizes; however,

solution from different pores is mixed and information on spatial variability is lost.

This may not be a problem in e.g. batch tests where small sample volumes are used,

but it can become a problem in experiments designed to obtain information about

e.g. chemical zonation (spatial distribution) of radionuclides in column experiments.

Samples taken using Rhizon samplers may not be representative of the spatial
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distribution of the chemical species in the soil solution given their relatively large

radii of influence (10 mm for coarse soils and 70 mm for those of smaller particle

sizes). Samples can thus be considered to be of a qualitative nature (Di Bonito,

2005). Membrane filters used to filter soil solution would be expected to affect

colloidal phase fractionation depending on the pore size of the filters. The existence

of various sized colloids within the solution phase will therefore vary depending

upon the membrane used. Consequently, the empirical value determined for a K,

will also be affected by the filtration method employed, especially for elements with

a strong tendency to associate with colloids.

In this chapter, experiments that simulate physicochemical changes following

soil flooding on a microcosm scale are described and discussed. The main objectives

of these experiments were to:

I. investigate the effect of experimental methodology, in particular porewater

separation and filtration methods, on KdS•

2. investigate how Kd changed over time in a range of waterlogged soi I types in

response to physicochmeical changes.

3. identify key geochemical controls on K, under dynamic soil conditions.

4. develop empirical models that predict Kd from basic soil properties.
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3.2. Methods

3.2.1. Soil characterisation

Characteristics (texture, pH, QC and elemental composition) of the surface and

subsurface soils used in these experiments were determined using standard methods

(see Chapter 2).

3.2.2. Soil anaerobic incubation

Soils were incubated under anaerobic conditions in mini columns and sacrificial

microcosms (Sheppard, 20 II; Sheppard et al., 2007). Surface (0-20 cm) and

subsurface (30-60 cm) arable soils and surface woodland soil were incubated under

flooded conditions in mini columns for a maximum period of 4 weeks.

Approximately 350 (±25) g of2 mm sieved air-dried soil was packed into individual

columns to a bulk density of -lA g cm -3 (similar to the in-situ bulk density of Sutton

Bonington soils). Soil moisture content was adjusted (50% v/v) gravimetrically

using ultrapure water. A shallow (I mm) standing layer of water persisted which

indicated that the soils were fully saturated. This water content was maintained over

the duration of the experiment by replenishing water sampled from the column with

de-oxygenated ultrapure water through an opening on top of the column. Porewater

was extracted in-situ through permanently fitted Rhizon samplers. The porewater

sample was divided into 4 aliquots which were preserved for multi-element, ultra-

trace level Se and Re, I and carbon analysis. Columns for each soil type were

prepared in triplicate.
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The sacrificial microcosm experiments used involved a greater number of soil

types than the mini column experiments; in addition to the aforementioned soils,

permanent grassland (surface and subsurface) and woodland (subsurface) soils were

also incubated. Duplicate sacrificial microcosms were packed with 60 (±2) g of

2 mm sieved air-dried soil and their moisture content adjusted (50% v/v) with

ultrapure water. The syringes were tightly sealed using Parafilm to minimise

moisture loss. After incubating for one week, soil solution was extracted by

ultracentrifugation and filtered using Rhizon samplers using the procedure described

in Section 2.8.1. Aliquots of the filtrate were preserved for multi-element, ultra-trace

level Se and Re, I and carbon analysis. Concentrations of Se, I, Re and U in 0.1 11m

porewater filtrate was used to calculate Kd values for these elements.

In order to investigate effects of filter pore size on Kd, six sacrificial microcosms

per soil type (36 microcosms in total) were prepared to allow duplicate samples to

be sacrificed at each of three filter sizes. Aliquots of the resulting supernatant were

filtered through 0.1,0.22 and 0.45 11mmembrane filters. These filtrates were used to

calculate Kd values for Se, I, Re and U. All measured concentrations of trace

elements in porewater samples are reported in Appendix 1.

3.2.3. In-situ soil redox potential (Eh)

The Eh of arable top and subsoils incubated in sacrificial microcosms was

monitored over a month using permanently installed Pt and combined electrodes to

check the consistency of readings using both methods (see Section 2.2.4). At the end

of the experiment the Pt electrodes were removed from the soil and tested in buffer

solutions (pH 4 and 7) of known potentials to identify any deterioration in their

performance. In addition to empirically measured Eh values, estimates of Eh were
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also calculated from thermodynamic principles. The Nemst model predicts redox

potentials from the activities of certain redox species (a redox couple) present at

equilibrium in soil solution. Within soils the most important redox couple is

Fe2+/Fe3+. Electron exchange between ferric and ferrous iron species is more

reversible than with other redox sensitive elements such as sulfur, hence the

assumption of equilibrium is better justified if iron is considered to be the principal

redox active element. Activity of Fe2+ in soil solution was estimated from

geochemical modelling using the WHAM code (Tipping, 1998). Although this

method has its own limitations (Stumm and Morgan, 1996) it provides a useful

benchmark against which measured Eh can be compared. Reductive dissolution of

iron hydroxide is an important redox reaction that has been extensively used to

calculate equilibrium Eh values (e.g. Appelo and Postma, 2005):

Fe(OHh +3H+ +e" p Fe2-'- +3H20

pe = log Keq - 3pH -log {Fe2+ } (3-1)

Eh (V) = 2.303 (RT / F) pe

where log Keg = equilibrium constant for reductive dissolution of Fe(OHh, and

equals 17.4 at 298.15 OK (Sposito, 2008), {Fe2+} for is the aqueous free ferrous ion

activity, R = 8.314 J °K-! mar! (the gas constant), F = 96.483 kJ voIr! mar! (Faraday

constant), T OK absolute temperature, Eh = redox potential in volts relative to a

reference hydrogen electrode, and pe = electron activity.

Equation (3-1) assumes that iron solubility is controlled by the Fe(OH)3 phase.

Values of log Keq are reported for standard temperature conditions (i.e. 298.15 OK)
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and this value needs to be temperature-corrected to meet experimental conditions

(i.e. 289.15 OK)by applying van't Hoff s equation:

[K 1 O[ 11 ~2 _~Hr 1 1
n Keql -T 298.15 -T

2
(3-2)

~HO = -89.1 kJ mol" I , ~HO = -823 kJ mol" I
Fe2+ Fe(OH)3

~HO = -123.5 kJ morl
r

where Keq I'Keq I ! and ~H~ are equilibrium constants at T 2 and 298.15 OK and

standard enthalpy change for reaction in (3-1), respectively. Substituting these

values into the van't Hoff's equation (R = 0.008314 kJ °K-! mol"), gives log Keq=

20.96 at 289.15 oK.

Concentrations of individual iron species present In the soil solution were

calculated using the model WHAM-VI (Tipping, 1998). The composition of the

solutions were specified in WHAM input files using experimental data, including

total porewater concentrations for Na, Mg, K, Ca, Cr(lll), Mn, Co, Ni, Cu, ln, Sr,

Cd, Ba, Pb, Cl, pH and temperature (16°C). Since the volume of soil solution was

limited, it was not possible to determine the anion concentrations. Dissolved

inorganic carbon was measured and included in the input file as an indicative

I Values taken from University of Rhode Island website (accessed June 20 I0):

http://bilbo.chm.uri.eduiCHMI12/tables/thermtable.htm
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Chapter 3 Trace element mobility under flooded soil conditions

estimate of the bicarbonate ion (HC03-). Fe(lIl) activity was included as a variable

and calculated from (Di Bonito, 2005):

logFe3+ = 10gKso -3pH

o 0 I IlogKso = logKso + 0.219 ~Hr ( - -) (3-3)
298.15 T2

logK~o = 2.7 and logKso = 3.21

where Kso' K~o are solubility products at T -x and 298.15 oK, respectively.

A limitation of the WHAM-VI code is that the number of binding sites available

for dissolved metal in the aqueous phase is dictated by the concentration of active

DOC, an unknown parameter. Thus, assumptions were made regarding this

parameter: it was assumed that fulvic acids (FA) make up the colloidal phase and

they were the only significant component that plays a role in binding dissolved iron

by providing binding sites. Measured DOC concentrations in soil porewater samples

were assumed to be equivalent to FA concentrations (S. Young, personal

communication, 20 I0). The simulation was run for an open system (carbonate in

equilibrium with atmospheric CO2) and fixed pH.

3.2.4. Kc. calculations2

Throughout this study, K, refers to the ratio between the concentration of an

element in the solid phase and its concentration in the aqueous phase. An adjustment

2 Throughout this thesis. the term Kd will be used synonymously with the "linear isotherm"

sorption model.
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of the solid phase concentration is necessary, particularly for poorly sorbed

contaminants, if the 'total' (effectively the solid plus solution phase) solid phase

concentration is used, to represent the solid phase, to account for the soluble fraction

retained within the solution phase (Sheppard et al., 2009; Ashworth and Shaw,

2006b). Although sampling of soil solution removes a portion of the dissolved

elemental mass from the microcosms this will not induce trace element desorption

from the solid phase because there is no change in the concentration of trace

elements in solution. Even following addition of ultrapure water to the microcosms

to compensate for the loss of solution the resulting desorption is difficult to predict.

Desorption depends on element exchangeability and the size of the labile pool in the

solid phase which control resupply of element mass removed from solution by

sampling. For example, as a result of their investigation of desorption of indigenous

trace metals (Cd, Cu, Ni and Zn ) from riverine and esturine sediments, Millward

and Liu (2003) found that quantity of metal desorbed was not proportional to the

amount on the solid phase, and although estuarine sediments had high total metal

concentrations, these metals were not exchangeable with solution and may have

been irreversibly bound. K, was calculated by dividing the adjusted soil solid phase

concentration (mg kg" dry soil) by soil porewater concentration (mg L-t) at the time

of sampling:

K = (V P Csolid) - (V e Cporewater)

d V P Cporewater
(3-4)
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where V = volume of soil (L), p = soil bulk density (kg L-'), Csoil = total soil

concentration (solid + porewater) (mg kg' soil), C t = dissolved phaseporewa er

concentration (porewater) (mg L-'), and 8= volumetric soil water content (L L-').

3.2.5. Statistical analysis

Correlation between empirical KdS and soil physicochemical properties was

evaluated using non-parametric Spearman's rank correlation testing. Time series of

log K, values, pH, porewater DOC and Fe concentrations were determined and

tested for significant correlations. Since log-transformed KdS are normally

distributed (Sheppard, 2011; Sheppard et aI., 2007), all statistical analyses were

conducted on log transformed K, values. pH, DOC and soluble Fe concentrations

were used as predictor variables given their well established influence on Kd

(Sheppard et aI., 2007; Echevarria et al., 200 I). Regression models were derived

using a classical stepwise linear regression procedure using observations obtained

during column microcosm experiments and SPSS software. The validation dataset,

i.e. the data against which model predictions were compared, consisted of

observations obtained during the sacrificial microcosm experiment. However, this

validation dataset did not have time series of pH measurements; therefore the initial

pH of the soil was used in K, models that required pH data. This assumption is

reasonable given the typical buffering capacity of a soil; the maximum change in

soil pH over the three weeks incubation period did not exceed I unit for the three

soil types. The overall performance of the Kd regression models was tested using the

Nash - Sutcliffe model efficiency criterion (Nash and Sutcliffe, 1970).
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3.3. Results

3.3.1. Soil characteristics

Physical and chemical soil properties known to affect K, were determined

following standard laboratory procedures (see Chapter 2). The properties of soil

samples collected from the Sutton Bonington area are shown in Table 3-1. Sutton

Bonington soils had the same texture regardless of the land use; according to the

NRCS soil texture scheme:' these soils belong to the sandy loam category. All but

the acidic woodland soils had near neutral pH, typical of arable land. Contents of

QC and trace elements decreased with depth; the most rapid decrease was observed

in the woodland. The enrichment of this organic-rich soil with trace and major

elements is due to their affinity for the soil organic phase.

Elemental concentrations in Sutton Bonington soils fall within reported

worldwide ranges: 0.5-20 mg (kg soil)"! for (Whitehead, 1984), 0.01-

2 mg (kg soil)"! for Se (Fernandez-Martinez and Charlet, 2009) and 0.7-

9 mg (kg soil)"! for U (Hooda, 2010). Rhenium concentrations were higher than the

continental average of 0.4 Ilg (kg soil)", but within the range of 0.018-

4.77 ug (kg soil)"! measured in 55 Japanese agricultural soils (Tagami and Uchida,

2008). Rhenium and carbonate were below detection limits in some soils.

) http://soils,usda.gov/technicallaids/investigations/texture/
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Chapter 3 Trace element mobility under flooded soil conditions

3.3.2. Mobility of major and trace elements under anaerobic conditions

Soil flooding resulted in changes in pH, Eh and porewater concentrations of

major (Fe and org C) and trace (Se, I, Re and U) elements. For arable soils pH

fluctuated around pH 7 with a transient increase at day 7 of the incubation (Fig. 3-1).

The pH of the woodland topsoil increased by one unit over the 3-week incubation

period but remained acidic.

All soils exhibited decreasing Eh following soil flooding (Fig. 3-1). The Eh trends

for the two arable soils were similar but distinct from that for the woodland topsoil.

The Eh values of the two arable soils, on average, were lower than those of the

woodland topsoil.

8.0 1.0

0.8
7.0

I
Q.

'0 6.0
en

-0-- S8-AT
-e- S8-AS
-0-- S8-WT

i"0 0.6
Z.

<:
W
'0 0.4
en

5.0 0.2

4.0
o 7 14

Time (day)
21

0.0
o 7 14

Time (day)
21

Fig. 3-1 Changes in pH and Eh (Nernst estimates) of SB soils incubated in mini columns under

anaerobic conditions as a function of time. Error bars represent standard errors of the means of single

measurements from triplicate columns.
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Time series of DOC and dissolved Fe concentrations for the arable and

woodland over the incubation period are shown in Fig. 3-2. The figure shows a

decrease in DOC concentrations over the initial 7 days for all soils. Afterwards,

DOC concentrations for all soils increased and reached steady-states at day 22. DOC

concentrations in the woodland topsoil at steady state were substantially higher than

those of the arable topsoi I and subsoi I.
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160 r------------,
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Cl
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o
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Fig. 3-2 Changes in DOC and Fe concentrations in solution of SB soils incubated in mini columns

under anaerobic conditions as a function of time. Error bars represent standard errors of the means

of single measurements from triplicate columns.
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A rapid increase in porewater Fe concentrations for arable top and subsoils was

observed over the first week of incubation (Fig. 3-2). In contrast, woodland

porewater Fe concentration remained unchanged during the same period. Thereafter,

porewater Fe concentration increased with time and reached a steady state by the

third week of the incubation. By the end of the incubation period, Fe concentration

in arable (top and sub) and woodland porewater had increased by 2 and I order of

magnitude from their initial values, respectively.

500 100
Se -0- SB-AT

400 -e- SB-AS 80-0- S8-WT

~ 300 ~ 60
Cl ~Cl
~ ~
2- 2-
~'Tl 200 " 40~

100 20

0 0
0 7 14 21 0 7 14 21

Time (day) Time (day)

400 10000
Re U

8000300
~ 6000Cl 1"d. 200 ~

2-
~'Tl

'Tl 4000~

100 2000

7 14
Time (day)

21 7 14
Time (day)

21

Fig. 3-3 Changes in Se, I, Re and U K, determined for SB soils incubated in mini columns under

anaerobic conditions as a function of time. Error bars represent standard errors of the means of single

measurements from triplicate columns.
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K, values of Se, I, Re and U determined from soil and porewater concentrations

over the course of the experiment are shown in Fig. 3-3. During the first incubation

week, Kd values increased with time reaching a maximum at day 7. Mean Kd values

for the woodland soil were lowest among soil types except for U. Afterwards, Kd

values decreased with time for all soils, and this decrease was greatest for the

woodland soil. By the end of the incubation period, Se and Re KdS for the arable

soils had increased to, and stabilised at 190 and 240 L kg-I, respectively. For the

woodland soil, the final Se and Re KdS determined at day 22 were considerably

lower (31 and 20 L kg-I, respectively). Iodine K, values for all soil types decreased

with time, and by the end of the incubation period, I Kd values had decreased to

3 L kg-I indicating high mobility.

Uranium had the highest KdS amongst all the elements and for all soil types

investigated. Initially, U K, values for all soils were above 3500 L kg' indicating

high affinity for the soil solid phase. Whilst U Kd values for the arable topsoil

decreased to 1000 L kg" rapidly after flooding, Kd values for the arable subsoil

remained relatively unchanged for longer. By the end of the incubation period, U Kd

values for the arable subsoil had decreased to 2400 L kg-I. A greater decrease in U

K, (to 590 L kg-I) was observed for the woodland soil.

3.3.3. Effect of measurement method on soil Eh

Changes in measured and calculated Eh values of the flooded soils incubated in

sacrificial and column microcosms over time are shown in Fig. 3-4. Initially, Eh of all

soils (measured immediately after soil wetting) was c. 0.55 ± 0.10 V (value not

shown).
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Chapter 3 Trace element mobility under flooded soil conditions

By the third week of the experiment, Eh value differed substantially depending

on the measurement method as well as the soil type. Eh readings obtained using Pt

electrodes for the arable top and subsoils were as low as c. -0.3 V; Eh readings for

the woodland topsoil were higher (c. -0.01 V). In contrast, Eh readings obtained

using the combined electrode for the same soils incubated in sacrificial microcosms

were significantly higher (p < 0.0 I). Considerable divergence between the Pt and the

combined electrodes' readings was observed for the arable subsoil (0.8 V). Eh values

calculated using the Nernst approach fell between the Pt and the combined

electrodes' values. Eh of arable soils incubated in sacrificial microcosms obtained

using the combined and Pt electrodes are shown in Fig. 3-5. The results show that the

combined electrode Eh readings were substantially higher than their Pt counterparts

for arable top and subsoils at all times. The Pt readings were also characterised by

large error bars indicating substantial variability between individual electrodes.

Fig. 3-5 Changes in Eh of SS arable top and subsoils determined using permanently installed Pt and

combined electrodes in sacrificial microcosms as a function of time. Error bars represent standard

errors of the means of single measurements from duplicate microcosms
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The functionality of three Pt electrodes that had been used for one month to

record Eh values of soil slurries in microcosms was tested by measuring the

potentials of two standard solutions (Fig. 3-6). The measurements indicated

substantial electrode-dependent variation between initial and final Eh values of the

standard solutions.

0.4
pH 4 standard

r-r- ~If-

I~

l-

I-

2<::

f- I I Before use

~~ After use

0.2

Pt1 Pt2 Pt3

0.2 ,--------------,
pH 7 standard

u;-
~ ~.2
~
~I~.4

w

~.6

~.8 '--------------
Pt1 Pt2 Pt3

Fig. 3-6 Change in the performance of the Pt electrodes after a month of incubation. The electrodes

were tested using standard solutions with known Eh values at pH 4 (0.463 V) and 7 (0.286 V).

'Before use' bars represent potential values measured using new Pt electrodes while 'After Lise' bars

represent values measured using the same electrodes after one month of use in a soil suspension.

Change in porewater Fe concentrations in microcosms over time is shown in

Fig. 3-7. The concentration of Fe in porewater varied depending on the incubation

method. Porewater Fe concentrations increased with time and higher dissolved Fe

concentrations were observed in the columns compared with the sacrificial

microcosms.
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Chapter 3 Trace element mobility under flooded soil conditions

The increase of porewater Fe concentrations was rapid in the columns relative to

the sacrificial microcosms. Also, changes in porewater Fe concentrations over time

were soil-type specific. The highest porewater concentrations of Fe were measured

in the woodland topsoil (note the difference in the range of the y-axes).

3.3.4. Effect of experimental design on K.t

Fig. 3-8 shows values of Se, I, Re and U KdS for all soils computed from 0.1 urn

filtrates after 7 days' incubation in sacrificial and column microcosms. Selenium and

I KdS determined using the sacrificial design were significantly different (ANOY A

test, p < 0.05) from those determined using the columns for the arable topsoil.

However, the incubation method did not seem to have a significant effect (p > 0.05)

on Se, I and U KdS for the arable subsoil and the woodland topsoil. In contrast, Re

Kd was significantly affected (p < 0.05) by the incubation method regardless of soil

type, with values determined using the sacrificial method being substantially lower

than their column counterparts. Overall, the difference in Kd between the two

experimental designs was less than an order of magnitude for all elements and soil

types. The effect of the pore size of the membrane filters on Kd values was assessed

by comparing KdS computed from trace element concentrations in different

porewater filtrates.
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800 ,-----------------------,
Sacrificial
Column

Se

SB-AT SB-AS SB-WT

400
Re

SB-AT SB-AS SB-WT

SB-AT SB-AS SB-WT

40000
u

SB-AT SB-AS SB-WT

Fig. 3-8 Differences between sacrificial and column K, values computed from porewater 0.1 urn

filtrates 7 days after soil wetting. Error bars represent standard errors of the means of single

measurements from duplicate microcosms.

Concentrations of Fe and DOC in porewater filtrates, in addition to K, values of

Se, T,Re and U computed from 0.1, 0.22 and 0.45 urn filtrates of porewater sampled

from the sacrificial microcosms are presented in Fig. 3-9 and Fig. 3-10.
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For all soils the porewater Fe concentration increased with membrane pore

size. Consequently, Fe Kd was sensitive to the pore size of the membrane filter

used to filter porewater samples. DOC concentration was not, within experimental

error, affected by the membrane pore size. For most soil-trace element

combinations, the variation in K, due to membrane pore size was less than one

order of magnitude. The effect of soil type on KdS, however, was highly

significant (p < 0.05) for all elements.

3.3.5. Correlations between Kd and soil parameters

Changes in Kd values of Se, I, Re and U as a function of pH, DOC and Fe are

shown in Fig. 3-11 to Fig. 3-13. There seems to be no simple relationship between

soil pH and Kd, particularly for the arable soils. In contrast, the association

between these two variables is relatively strong for the woodland soil as the

Spearman's correlation tests show (Table 3-2). Over the first week of incubation

K, of Se, Re and U increased as the woodland soil pH increases, afterwards, it

decreased as pH continued to decrease over time. In contrast, I Kd decreased as

woodland soil pH decreased over the incubation period.

Changes in Ka as a function of soil DOC are presented in Fig. 3-12. Strength

and significance of the association between DOC and K, are summarised in

Table 3-2. Strong and significant inverse correlations between DOC and Kd of Se,

I, Re and U were observed for the woodland topsoil. For the arable soils, however,

this correlation was only significant for Se and Re. For I, two distinct Kd trends

with respect to DOC concentration were observed depending on sampling time.

During the first incubation week, 1 Kd and DOC concentration decreased

simultaneously; then, 1Kd decreased as DOC concentration decreased.
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Fig. 3-11 Changes in K, as a function of soil pH for three SB soils. Labels refer to sampling day.

Error bars represent standard errors of the means of single measurements from triplicate columns.
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Fig. 3-12 Changes in K, as a function of DOC concentration in soil solution for three SB soils.

Labels refer to sampling day. Error bars represent standard errors of the means of single

measurements from triplicate columns.

Changes in Kd as a function of dissolved Fe concentration for all elements and

soil types are presented in Fig. 3-13. The strength and significance of associations

between Fe concentrations and KdS are summarised in Table 3-2. A strong and

significant inverse association between dissolved Fe concentration and K, was

observed for the organic woodland topsoil. However, except for I, this relationship

was insignificant for the arable soils. The relationship between dissolved Fe

concentration and K, was complex and appeared to be time dependent,

particularly for Se and Re in the arable soils. For instance, Se and Re KdS
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increased with dissolved Fe concentrations over the first week of incubation

thereafter, they decreased as dissolved Fe concentrations decreased.
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Fig. 3-13 Changes in K, as a function of soluble Fe in solution for three SB soils. Labels refer to

sampling day. Error bars represent standard errors of the means of single measurements from

triplicate columns.
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Chapter 3 Trace element mobility under flooded soil conditions

3.3.6. Predicting Kd from soil properties

Parametric (empirical) Kd models were derived by stepwise regression between

log Kd as the dependent variable and pH, DOC and dissolved Fe concentrations as

independent variables. The regression analyses were conducted on the column

dataset (DOC, Fe and KdS determined in 0.1 urn filtrates). The empirical K, models

for Se, I, Re and U are summarised in Table 3-3. The most significant Kd predictor

variables were element specific. DOC concentration was of significance except for I;

inclusion of soil pH and dissolved Fe concentration did not improve the fit of Se and

Re models. For all elements but U, more than 70% of the variability in log K, data

was accounted for by the regression model. For the stepping criteria used. none of

the soil parameters tested could account for the variability in U log Kd.

The performance of the parametric Kd models was assessed by comparing their

predictions against sacrificial Kd values for all soil-element combinations. Values of

the intercept, slope and coefficient of determination (R2) of the regression lines

presented in Fig. 3-14 are reported in Table 3-4. Also reported are values of Nash-

Sutcliffe indices (NS). Ideally, a perfect model in terms of performance would have

an intercept of zero, a slope and NS index of one.
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Chapter 3 Trace element mobility under flooded soil conditions

3.4. Discussion

Observed changes in soil pH are typical of flooded soils which have a tendency

towards neutral pH (Kogel-Knabner et al., 20 I0). The decrease in Eh with time

suggests the development of anaerobic conditions in the flooded Sutton Bonington

soils, Such anaerobic conditions result from microbial respiration during which

readily available OC is metabolised and soil oxygen is exhausted, Flooding

drastically limits exchange of gases between soil and the atmosphere and an oxygen-

deprived environment is established. The gradual increase in porewater Fe

concentrations for all soils also confirms the development of anoxic conditions in

these soils. The increase in dissolved Fe concentration results from reductive

dissolution of Fe oxy(hydr)oxides, and subsequent release of reduced Fe2+ into soil

solution (Kogel-Knabner et al., 2010; Ponnamperuma, 1972). The critical Eh (at pH

7) at which this occurs falls between 0.1 V (Sparks, 2003) and -0.1 V (Sposito,

2008). The higher Fe concentrations observed in the woodland soil solution may not

indicate stronger anoxia in this soil compared to the arable soils given its acidic

nature. High acidity enhances dissolution of Fe solid phases. Decreasing Eh and low

pH, particularly for the woodland soil, also induce solubilisation of soil OC. An

initial release of OC was observed for all soils immediately after flooding; initial

DOC concentration in the woodland soil was 4 times higher than that of the arable

soils due to its higher OC content. The decrease in DOC concentrations over the first

week of incubation is probably due to utilisation of DOC by soil microorganisms for

respiration. The increase in DOC concentrations observed after day 7 coincides with

an increase in Fe concentrations, which is probably partially attributable to the

release of OC bound to Fe phases upon the reductive dissolution of these phases. In
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fact, complexation with Fe oxy(hydr)oxides and subsequent precipitation from soil

solution have been shown to be important OC stabilisation mechanisms in soils

(Heckman et al., 2009; Nierop et al., 2002; Kaiser and Guggenberger, 2000). In

addition, the rise in the woodland soil pH during the experiment may have induced

further solubilisation of OC (Kalbitz et al., 2000).

Kd varied during the incubation period; the maximum variation was observed for

I (c. 2 orders of magnitude, Fig. 3-3). This temporal variation in K, is probably due

to physicochemical changes within the columns (e.g. pH, Eh). Because these

changes are controlled by soil characteristics such as mineralogy, organic matter

content and biological activity, Kd variation was also soil-specific. For example. Se

and Re KdS determined for the arable top and subsoils were very similar. whereas

those determined for the woodland topsoil were an order of magnitude lower.

Uranium K, determined for the arable topsoil was on average 3 times lower than that

for the arable subsoil due, perhaps, to the higher carbonate content of this soil which

enhances U mobility.

Overall, Se, I, Re and U KdS determined for Sutton Bonington soils using the

column approach were not dissimilar from those reported in the literature despite

methodological differences. The range of Se KdS for Sutton Bonington soils falls

within the Kd range reported by the IAEA (2009) for a wide range of soil types. The

K, range for Sutton Bonington soils is also within the range reported by Sheppard et

al. (2007) for 51 Canadian agricultural soils and by Sheppard et al. (2009) for 7

Swedish soils. The GM of Se Kd for Sutton Bonington soils is lower than the generic

IAEA (2009) K, value and that of Sheppard et al. (2007) for the Canadian soils but

higher than the value reported for the Swedish soils (Sheppard et al., 2009).

57



Chapter 3 Trace element mobility under flooded soil condition s

The range of I Kd determined for Sutton Bonington soils falls within the range of

values reported by IAEA (2009) and overlaps with the range for the Swedish soils

(Sheppard et al., 2009). The geometric mean (GM) value for Sutton Bonington soils

is higher than the generic IAEA (2009) Kd value but substantially lower than that for

the Swedish soils.

K, data for Re in the literature is scarce. Nevertheless, the range of Re K, for

Sutton Bonington soils falls within the range of values reported for 81 Canadian

agricultural soils (Sheppard et al., 2007), and overlaps with the range reported for 3

Swedish soils (Sheppard et al., 2009). The GM of Sutton Bonington K, is higher

than those for the Canadian and Swedish soils. The range of U Kd for Sutton

Bonington soils falls within the IAEA (2009) range and overlaps with the range for

the Canadian (Sheppard et al., 2007) and the Swedish (Sheppard et al., 2009) soils.

The U GM K, for Sutton Bonington soils is higher than the lAEA (2009) and the

Canadian soils (Sheppard et al., 2007) values but lower than that reported for the

Swedish soils (Sheppard et al., 2009).
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Chapter 3 Trace element mobility under flooded soil condition s

The observations show greater Se and Re mobility in the flooded woodland soil

compared to the arable soils, and greater Se and Re desorption was observed from

the woodland soil compared with the arable soils. This indicates that organic soils

serve not only as a sink for these trace elements but also as a source. Changes in the

environmental conditions, such as those induced by flooding and drying cycles,

would bring about changes in soil physicochemical properties that stimulate

desorption of organically-bound elements into soil porewater.

The observed trends of Se, I, Re and U KdS and their correlations with other soil

parameters imply that partitioning of these elements is a complex, time - dependent

process. The decrease in soil Se mobility upon flooding might be due to its chemical

speciation and the interactions of its chemical species with the solid phase. Aqueous

Se consists of inorganic (selenate seo," and selenite SeO{) as well as organic

species (Tolu et al., 2011; Gerla et al., 2011; Zhang et al., 1999). Selenite has a

greater affinity than selenate to soil minerals (e.g. oxy-hydroxides) (Due et al., 2003;

Balistrieri and Chao, 1990) and Se immobilisation may be attributed to selenite

sorption onto soil surfaces. As soil Eh continues to fall within the microcosms the

aqueous speciation of Se will have shifted towards selenite, and perhaps insoluble

elemental Se (Seby et al., 2001; Massche1eyn et al., 1991). The decrease in Se

mobility observed for the woodland soil was much smaller, probably due to its

higher Eh and its acidic nature. More Se was solubilised from the woodland soil over

time compared with the arable soils, perhaps due to its acidic nature as acidic

extractants (e.g. nitric acid) have been found to be effective in leaching Se from soils

(Tolu et al., 2011). Soluble selenate might have been the most stable Se species

under the relatively higher redox conditions of the woodland soil. The subsequent

increase in Se mobility with time for all soils coincided with solublisation of soil Fe
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and QC. This implies that chemical speciation itself may have less effect on Se

mobility than Fe and QC solubilisation. Selenium is solublilised as part of the QC

solubilisation.

Rhenium behaviour with respect to its mobility trends was similar to that of Se.

The initial decrease in Re mobility following flooding, however, is somewhat

inexplicable. It is unlikely that Re immobilisation was related to its chemical

speciation since insoluble Re species are only stable under very strong reducing

conditions. Dolor et al. (2009) concluded that neither direct nor short-term indirect

microbial processes involving iron and sulfate-reducing bacteria were likely to

explain Re fixation in their sediments. Subsequent Re mobilisation may be attributed

to the release of Fe- and QC-bound Re into soil porewater upon solubilisation of

these phases since the increase in dissolved Re concentrations coincided with the

increase in dissolved Fe and QC concentrations.

In contrast to Se and Re, mobility of I increased with incubation time for all

soils. The continuous I mobilisation observed in the experiments may have been

driven by development of anoxic conditions in microcosms. Such anaerobic

conditions would be expected to result in iodide and organic I desorption from the

soil (Schwehr et al., 2009; Yoshida et al., 2007; Yamaguchi et al., 2006; Sheppard

and Thibault, 1992). In addition to I desorption, solubilisation of Fe and organically

bound I is another important mechanism for I mobilisation from Sutton Bonington

soils.

The rapid increase in U mobility observed for the arable topsoil upon flooding

may be attributed to its carbonate content. The presence of dissolved carbonate in

porewater has been found to increase the efficiency of soil U extraction (Zhou and

Gu, 2005; Kohler et aI., 2003). Zhou and Gu (2005) reported that leaching their U-
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contaminated soils with varying concentrations (0 - I M) ofNaHC03 extracted most

of the U within the first 20 hours of the extraction, and extraction became very slow

thereafter. The initial, rapid increase in U mobility in the arable topsoil conforms to

the findings of Kohler et al. (2003) and Zhou and Gu (2005). The effect of redox

status of the arable topsoil on U mobility appears to have been outweighed by the

effect of complexation with carbonate. Uranium would be expected to form

insoluble species (e.g. uraninite) as Eh fell in microcosms (Takeno, 2005) resulting

in decrease in U mobility. However, presence of carbonate ions may have inhibited

U immobilisation by complexing dissolved U, perhaps as uranyl. and forming

soluble complexes such as U02(C03){ (Barnett et al., 2000; DutT and Amrhein.

1996). In contrast, desorption of U from the arable subsoil and the woodland topsoil

was limited, perhaps, due to the very low (undetectable) carbonate content of these

soils. The increase in U mobility observed for the woodland soil after day 7 of the

incubation was probably due to solubilisation of soil organic matter and Fe phases.

Overall, soil pH did not seem to have a strong effect on the mobility of the trace

elements investigated in this work, probably due to soil butTering capacity. Only Se

and I KdS were strongly correlated with woodland soil pH. Soil pH may have

affected the mobility of these elements indirectly by solubilising soil organic matter.

The rise in soil pH drives solubilisation of soil organic matter (Grybos et al., 2009;

Kalbitz et al., 2000) and the subsequent release of organically-bound trace and major

elements into soil porewater. In fact, this can also be inferred from the significant,

negative correlation between KdS of most elements and the concentration of DOC in

the porewater, which is an indicator of soil organic matter solubilisation. Organic

matter is an important binding phase (i.e. a sink) for Se (Weng et al., 20 I I; Gerla et

aI., 2011), I (Shimamoto et al., 2011; Schwehr et aI., 2009; Whitehead, 1974) and U
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(Vandenhove et aI., 2007) in soils. On the other hand DOe, in particular humic

acids, may enhance the mobility of Se (Weng et aI., 2011), hinder sorption of U

(Bednar et aI., 2007), complex reduced U (Gu et al., 2005) or promote its dissolution

(Luo and Gu, 2009). In contrast, I Kd decreased over time irrespective of the change

in DOC concentrations (fig. 3-12), particularly over the first week of the incubation.

Rather, I Kd was strongly correlated with porewater Fe concentrations, implying that

soil Fe, rather than OC, phases such as hydrous ferric oxides are major binding

phases for I in these soils, particularly in the arable soils which had near neutral pH.

This is consistent with previous findings reported on I sorption by soils (Whitehead.

1984; Whitehead, 1973) and by Fe oxides (Nagata and Fukushi, 20 I0; Nagata et al.,

2009).

Eh is a notoriously difficult parameter to measure empirically and it vanes

spatially and temporally in natural environments such as soils. Throughout the

incubation experiments reported here, the value of soil Eh varied according to the

method of measurement. Values obtained using Pt electrodes permanently installed

in the soil were substantially different from those obtained using the combined

electrode or estimated using Nemst model and porewater Fe concentrations in

column microcosms. There was strong evidence that Pt electrode measurements

made in this study were unreliable. This was supported by the divergence of Pt Eh

readings for the arable top and subsoils from those of the combined electrode

(fig. 3-15). Although Eh readings of both methods were initially identical, Pt Eh

readings fell rapidly over time. On average (over three incubation weeks), Pt Eh

readings were c. 0.3, 0.6 and 0.2 V lower than the combined electrode readings for

arable topsoil, arable subsoil and woodland topsoil, respectively.
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Testing some of the working Pt electrodes after removal from the microcosms

indicated that they were malfunctioning. This deterioration may have been due to

ingress of solution past the epoxy resin seal resulting in loss of insulation. Water

ingress into the platinum-aluminum-copper joint would allow corrosion, resulting in

erratic readings of electrical potentials. Fiedler et at. (2007 and references therein)

reported this problem with permanently installed Pt electrodes during field studies.

In fact, removal of epoxy resin seal from my Pt electrodes in the present study

resulted in a substantial decrease in the measured potential (Emeasured) of the standard

solutions (Fig. 3-15). Nernst Eh estimates should be used with caution since many of

the underlying assumptions rarely hold true in nature. In particular, redox reactions

are often at disequilibrium and irreversible, and electron shuttling may be hindered

by some activation energy barriers (Stumm and Morgan, 1996). Another conceptual

uncertainty is connected with the Fe solubility. Calculations assume that the

solubility of Fe is governed by Fe(OHh, with phases such as goethite (FeOOH).

magnetite (Fe304), siderite (FeC03) and pyrite (FeS2) not considered. Added to the

conceptual uncertainty is uncertainty associated with the thermodynamic database of

the WHAM geochemical code which was used to estimate dissolved Fe activities in

the aqueous phase.

64



Chapter 3 Trace element mobility under flooded soil conditions

0.3
pH 4 standard

0.15

-0.15

c=J Insulated electrode
~ Exposed electrode

-0.3
51 52 53 54 55 56

Pt electrode ID

0.1
pH 7 standard

0.05

-0.05

-0.1
51 52 53 54 55 56

Pt electrode ID

Fig. 3-15 Change in the performance of Pt electrodes after removal of electrode sealant. 'insulated

electrode' bars represent potential values measured using intact Pt electrodes while 'exposed

electrode' bars represent values measured using the same electrodes after removing the sealant.
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The range of Eh values obtained by the Nernst model and the combined electrode

is consistent with the range of redox potentials (0.7 to -0.3 V) in natural soils

(Sparks, 2003). High Eh in the acidic woodland soil after 7, 14 and 21 days

exemplify situations where estimated (Nernst estimates) and measured (the

combined electrode) data differ. One possible explanation for this divergence is the

fact that Nernst Eh values were calculated from Fe concentration in 0.1 urn (Rhizon)

porewater filtrates. As the results of the filtration experiment showed (Fig. 3-7),

porewater Fe concentrations decreased as the pore size of the membrane f Iter

decreased. This would underestimate the calculated Eh values. lt should be

mentioned that none of the Eh (both Nernst-derived and measured) values was pH

adjusted. Although such an adjustment could be implemented using a conversion

factor of -59 mV per unit pH (e.g. Bohn et al., 200 I) to convert Eh to a common pH,

this conversion is, however, invalid for oxidation/reduction reactions where the

electron to proton stoichiometric ratio is different from unity. For the redox reaction

(reductive dissolution of iron hydroxide) assumed to control iron solubility in soil

solution for Nernst-derived Eh this ratio is 1:3.

Despite the limitations of measured and estimated Eh values, the increase of

porewater Fe concentrations over time qualitatively confirmed the progression of

anoxia in the sacrificial and column microcosms. The Eh range 0.1 to 0 V defines Fe

reduction in the redox cascade (Sparks, 2003). It can be inferred from porewater Fe

concentrations that the geochemical conditions within the columns shifted towards

anoxia at a faster rate than they did within sacrificial microcosms. The use of

permeable Parafilm as a sealant and the relatively small size of the sacrificial

microcosms compared to the columns will have allowed diffusion of atmospheric
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oxygen into the soil. As a result, geochemical conditions within the sacrificial

microcosms were less anoxic than in the closed columns.

Overall, the choice of experimental setup (i.e. microcosm design, porewater

separation and filtration methods) did not seem to have a significant effect on KdS of

Se, I, Re and U. However, the fact that column and sacrificial designs differed not

only in porewater separation techniques but also in many other respects

(geochemical conditions within the microcosms, porewater sampling scheme and

filtration methods) rendered the direct comparison between their KdS difficult. For

example, sacrificial microcosms were sacrificed, i.e. sampled once, in order to

extract porewater whereas porewater was frequently sampled from the columns

(daily over the first week). Therefore it was necessary to replenish the solution

removed in order to maintain their moisture content. This procedure might have

diluted the concentrations of the trace elements in solutions in columns. The

apparent increase in K, over time during the first week of the experiment may have

been a consequence of depletion of the limited labile (exchangeable) pool due to

successive sampling of soil solution from the columns and addition of ultrapure

water to maintain the moisture content of the columns and the slow resupply from

the non-labile pool in the solid phase.

To assess the significance of this dilution effect on KdS, changes in the porewater

concentrations of trace elements over the first incubation week were predicted by

applying mass balance principles. It was assumed that the porewater concentrations

were controlled solely by sampling losses. The initial porewater concentrations were

calculated from concentrations measured in the first porewater samples collected 24

hours after soil wetting. Time series of these calculated concentrations were

constructed and compared against time series of measured values. Comparison
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between measured and predicted porewater concentrations shows discrepancies

between the two quantities (Fig. 3-16 to Fig. 3-19) suggesting a dilution effect cannot

entirely explain the higher Kd values for columns compared to those determined

using the sacrificial method. There are clearly other biogeochemical factors

involved, perhaps chemical speciation and sorption onto solid phases. Results also

suggest that desorption of the soil water-soluble Se and Re was relatively rapid. In

contrast, I desorption extended over several days. Steady-state porewater U

concentrations in the carbonate-free soils (arable subsoil and woodland topsoil) were

achieved within few days. These observations are consistent with the findings of

previous research on Se (Tolu et al., 20 II; Zhang and Moore, 1996), Re (Tagami

and Uchida, 2008) I (Ishikawa et al., 20 I0; Hou et al., 2003; Sheppard and Thibault,

1992) and U (Zhou and Gu, 2005). Another respect in which the sacrificial and

column designs differed is the redox conditions which might explain the difference

in their Kjs, especially those of the redox sensitive elements (Se and I). Selenium

speciation in the oxic soil porewater was probably dominated by the soluble selenate

and organic Se species especially in the organic woodland soil (Zhang et al., 1999;

Zhang and Moore, 1997a; Zhang and Moore, I997b). As the Eh in the columns

dropped to values at which selenate is unstable (0.285 to 0.25 V), selenate might

have been reduced to selenite (Zhang et al., 2004) which has a high Ke due to its

affinity to soil solid phases (Ashworth et al., 2008; Ashworth and Shaw, 2006c).

Further soil reduction (-0.01 to -0.04 V) would reduce selenite into colloidal (0.2 to

0.4 urn) Se(O) (Zhang et al., 2004). These processes would result in high columns

Kds. Given their higher Eh, such Se speciation may have been limited in the

sacrificial microcosms, and selenate, which has a low Kd, may have been the

dominant species. Selenium behaviour in the woodland topsoil with respect to its
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mobility did not conform to that in the arable soils. One possible explanation may be

the continuous Se desorption stimulated by Se removal (sampling) from soil

porewater. Also, Se (as selenite) adsorption onto soil phases might have been limited

by the increase in the pH (Rovira et aI., 2008).

Measured porewater I concentrations in the columns increased during the course

of the experiment and it is probable that, in addition to desorption from the solid

phase, porewater organic I transformed into iodide under the redox conditions

encountered in the columns. This process may have been limited in the less anoxic

sacrificial microcosms. Organic I and iodide are the dominant species in the

porewater (Shimamoto et al., 2011; Yamaguchi et al., 20 I0; Sheppard et al., 1995).

Organic I has a much higher Kd than iodide (Shimamoto et al., 20 II; Ashworth and

Shaw, 2006b; Ashworth et aI., 2003); however, dissociation of porewater organic I

can release iodide under anoxic conditions. This mechanism has been recently

reported by Shimamoto et al. (20 II) who also calculated iodide and organic I KdS

for flooded Japanese topsoils and found that organic I Kd was 2 times higher than

that of iodide.
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Chapter 3 Trace element mobility under flooded soil condition s

The systematically higher sacrificial Re KdS compared with the columns KdS

cannot be explained by differences in redox conditions between the two designs.

Porewater Re, as Re04- (Yamashita et al., 2007), can be immobilised by reduction to

insoluble Re species such as Re02 (Yamashita et al., 2007) and ReS2 (Chappaz et

al., 2008). However, Re04- is recalcitrant to chemical reduction even under Fe-

reducing conditions (Maset et aI., 2006). Although Re removal from the aqueous

phase mediated by microbes is a possible pathway, Dolor et al. (2009) found that

neither direct nor short-term indirect microbial processes involving sulfate and Fe-

reducing bacteria were likely to explain Re fixation in sediments in their

experiments.

The only significant difference between the sacrificial and column KdS of U was

observed for the limed arable topsoil. For this particular soil, redox conditions may

have had a secondary role to that of carbonate equilibria in controlling U mobility. It

is well known that dissolved U can form soluble complexes with

carbonate/bicarbonate anions such as U02(C03h-2 (Um et aI., 2007; Zhou and Gu,

2005). In contrast to the sacrificial microcosms, which may have allowed for CO2

exchange with the atmosphere through the permeable Parafilm, diffusion of C02,

which is produced during microbial respiration, out of the columns might have been

limited. As a result, the rise in C02 pressure within the columns would result in

carbonate dissolution and production of bicarbonate. These conditions within the

columns may give rise to lower U KdS compared with the sacrificial values.

The experimental data indicated a strong correlation between porewater Fe and

DOC (Fig. 3-9), which is probably attributed to Fe-humic substances (HS)

complexes (Pedrot et al., 201 1). The pore size of the membrane filters used to fi Iter

the porewater had a significant effect on dissolved Fe concentrations as well as Fe
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Kd. The effect, however, was insignificant for DOC concentrations and OC Kd.

These observations are consistent with the observations of Pokrovsky et al. (2006)

who found a strong decrease in permafrost porewater Fe concentrations during

ultrafiltration (5 urn, 0.22 urn, 0.025 urn, 10 kDa and I kDa) but no change in DOC

concentrations. They concluded that Fe colloidal size was in the large 0.22 urn to 10

kDa while DOC was concentrated in the < 10 kDa fraction.

Overall, no significant variation in KdS with membrane pore size (0.1, 0.22 or

0.45 urn) was observed for the trace elements and soils investigated in this study.

This indicates that colloidal size < 0.1 urn contributed most to porewater trace

element concentrations. This may be attributed to the low content (-6% v/v) of clay

« 2 urn) in Sutton Bonington soils and/or abundance of small-sized organic species

in porewater. Research has shown that aquatic humic substances ranging from 0.1 to

1000 kDa, particularly low molecular weight humics, are effective in binding

dissolved species of Se (Weng et al., 20 11; Yamada et al., 1998), 1 (Shimamoto et

al., 20 II; Radlinger and Heumann, 2000) and U (Graham et al., 2008; Singhal et al.,

2005). The fact that QC, Se, I, and U Kds, unlike Fe, were not affected by the pore

size of the membrane filter suggests that the dissolved species of these trace

elements were probably associated with low molecular weight DOC.

The experimental data suggested a strong and a highly significant (p < 0.0 I)

effect of soil type on Kd (Fig. 3-10), this effect seemed to be more influential in

determining KdS than the choice of experimental design. For example, KdS of Se, I,

Re and OC determined for arable, grassland and woodland topsoils were higher than

those determined for the subsoils by less an order of magnitude. This may be

attributed to the higher organic matter content of these soils. Therefore, much of the

~ uncertainty can be attributed to variation in soil characteristics and mineralogy.
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The slopes of the modelled versus measured K, regression lines (Table 3-4) are

smaller than 1 indicating that the parametric K, models (Table 3-3) under-predicted

K, relative to the empirical values. Nash-Sutcliffe indices were considerably lower

than one indicating poor predictive power of the models. This modest predictive

power of the parametric Kd models may have been partially due to that fact that the

set of predictor variables considered were far from comprehensive. The

environmental variables used as predictor variables characterise the soil aqueous

phase with no reference to the solid phase (due to the limited types of soil

investigated in this work). The empirical models, for instance. did not consider soil

organic matter and mineralogy (e.g. texture, iron and aluminum content) which have

been found to be significant soil parameters that improve the quality of the

parametric K, models (Gil-Garcia et al., 2009; Sheppard et al., 2007). Therefore, the

models derived from the empirical data and described here are perhaps more

valuable when the Kd temporal variability. resulting from time dependent processes

that affect soil solution characteristics, is of special interest. In contrast. most

available parametric K, models (e.g. Sheppard, 2011; Vanden hove et al., 2009b;

Vandenhove et al., 2009a; Sheppard et al., 2009; Vanden hove et al., 2007; Sheppard

et al., 2007) relate radionuclide K, to environmental variables that characterise the

soil solid phase, and hence they are valuable tools. if robust enough. for predicting

radionuclides ~s for different soils. The limited predictive capability of the

parametric Kd models reported here also underlines the fact that Kd variabi Iity

cannot be explained by simple relationships since trace element mobility in soils is

influenced by many inter-correlated biogeochemical factors.

Nevertheless, DOC seemed to be a key K, predictor variable for most of the

trace elements investigated in this work highlighting the importance of soil organic
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carbon as a binding phase. Solubilisation of the soil particulate QC in response to

changes in soil saturation and redox status resulted in an increase in the mobility of

OC-bound trace elements (negative coefficients for log DOC in the models). The

significance of soil organic matter content as a key environmental variable for Kd

prediction has also been reported by Sheppard et at. (2009) and Gil-Garcia et al.

(2009) for I and Vandenhove et at. (2007) for U parametric K,models.

Dissolved Fe concentration became more significant than DOC as a predictor

variable in the case of I suggesting, perhaps, a higher affinity of this element to Fe

minerals of Sutton Bonington soils. The increase in porewater Fe concentration

resulted from reductive dissolution of Fe minerals such as (oxyjhydroxides which

release their trace element contents into the porewater leading to a decrease in Kd

(negative coefficients for log Fe in I model). Correlation between I Kd and the

content of solid phase Fe in soils has also been reported in the literature (Gil-Garcia

et al., 2009). The reported correlation, however, was positive indicating that soils

with higher Fe contents had higher sorption capacities for I whereas the negative

correlation observed for Sutton Bonington soils indicates the concomitant

solubilisation of soil Fe and I which enhanced I mobility.

Soil pH was identified as a significant environmental variable that partially

explained the variability in the empirical I Ka dataset. This contrasts with the

parametric models of Gil-Garcia et al. (2009) who found no significant effect of soil

pH on I. The negative coefficient for soil pH in the model also contradicts the

positive correlation reported by Sheppard (2003) and the model of Sheppard et at.

(2009) which positively correlated log Kd of I to the product of soil pH and clay

content. The linear decrease in U log Kd with soil solution pH reported here is
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consistent with previous studies (Sheppard et al., 2009; Sheppard et al., 2007;

Echevarria et al., 2001)
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3.5. Conclusions

Response of soil physicochemical attributes to an inundation event (e.g, rise of a

water table) was simulated in the laboratory using two designs: (a) sacrificial and (b)

column microcosms. With respect to the practical aspects of the two designs, the

sacrificial microcosms were easy to prepare and handle compared with the columns.

This design was more flexible regarding porewater filtration although porewater

extraction by ultracentrifugation was laborious. The sacrificial design circumvented

the problem of porewater dilution encountered in the columns. Unlike the columns,

the sacrificial design may not be appropriate for kinetic studies designed to obtain

information by repeated sampling at different times during the experiment as this

would require high levels of replication.

Following soil wetting, redox potential (Eh) dropped indicating progression to

anaerobic conditions. Three different methods were used to characterise soil redox

conditions: (a) permanently installed platinum (Pt) electrodes, (b) a combined Pt

electrode, and (c) estimation of Eh using porewater Fe concentrations (Nernst

model). The Eh could not be precisely quantified and its value was very sensitive to

the method used. Prolonged exposure of Pt electrodes to soil affected their

performance such that their readings were systematically lower than those obtained

using the other two methods. Estimates of Eh based on the Nernst model were higher

than the Eh measured with Pt electrodes; however, there are many considerations

that can limit the interpretation of Nernst estimates. For instance, measured

porewater Fe concentration decreased as the pore size of membrane used to filter

porewater samples decreased. As a result, Eh estimated using Fe concentration in

solution samples obtained using the Rhizon samplers may have underestimated its

values in the column microcosms. Whilst the combined Pt electrode circumvented
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the limitations of the in-situ Pt electrodes and the thermodynamically estimated

(Nernst) values, their invasive nature (it had to be inserted half-way into the soil)

may be undesirable. Nevertheless, redox conditions in sacrificial and column

microcosms were characterised qualitatively by monitoring the change in the

concentrations of the redox marker, Fe, in porewater. The data indicated a difference

in redox potential between the two microcosm designs; the sacrificial microcosms

were less anaerobic than the columns and their progression to anaerobic conditions

was slower.

Kd varied depending on experimental design (methodological variability). This

variation may be attributed to geochemical factors; particularly the influence of

redox conditions within the microcosms on trace element speciation and dissolution

of binding Fe and oe phases. For instance, under anaerobic conditions Se became

less mobile while I mobility increased. Differences between sacrificial and column

Kd of these elements conformed to their redox chemistry. The maximum observed

variation between sacrificial and column KdS was less than one order of magnitude.

K, was insensitive to the pore size (0.1, 0.22 and 0.45 urn) of the membrane filter

used to filter porewater. As a result, use of Rhizon samplers (0.1 urn) in this work

may have had little or no effect on Kd• However, only dissolved Fe concentrations

decreased as the filtration membrane filter pore size decreased indicating a strong

size distribution of Fe in the range 0.1 - 0.45 urn. The fact that DOe, Se, I, Re and U

was not affected by the size of membrane pores suggests a potential role of low

molecular weight DOC in mobilising these trace elements in subsurface

environments.

Soil characteristics were identified as another source of variation in K, (spatial

variability). Variation in Kd due to variation in Sutton Bonington soil characteristics,
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however, did not exceed one order of magnitude, In fact, the effect of soil type on

Kd was more significant than that of the methodological variability although a strong

interaction between the experimental design and the soil type was observed. For

example, the highest Se and I sacrificial KdS were measured for the organic arable,

grassland and woodland topsoils, whereas the lowest column KdS were those

measured for the woodland topsoil. Again, this effect of experimental design could

be due to differences in geochemical conditions within both microcosm designs and

their effect on processes such as chemical speciation, sorption and reductive

solubilisation of soil minerals (e.g. Fe oxy-hydroxides) and organic phases. These

processes control K, temporal changes (temporal variability). Solubilisation of soil

OC was associated with mobilisation of Se, I, Re and U particularly in the organic

woodland soil. This underscores the importance of soil organic matter as a source

for trace elements, including radionuclides, in organic soils under flooded

conditions.

Despite the fact that predicting Kd from basic soil properties is desirable for

many practical reasons, the application of such a concept remains fairly challenging.

Development of Kd predictive models from soil pH, DOC and Fe was attempted for

a limited soil set. The predictive power of these models, however, was modest and

highlighted the need for a larger population of soil samples with a range of

characteristics in order for the model to be adequately comprehensive and

predictive. Therefore, in order to investigate the effect of spatial variation of soil

properties on Kd and model predictions, the parametric Kd models developed by

Sheppard et al. (2009) were used in the present work to estimate Kd values at

different soil depths. This is addressed in detail in the next chapter.

81



Chapter 4 Development of the RIGEMA modelling

approach

4.1. Introduction

Compartmental biosphere models have become an essential tool for assessing

the long-term radiological risks associated with potential releases from geological

repositories of radioactive waste. The conception and structure of these models are

straightforward. A compartmental biosphere model is a representation of the

biosphere whose components (e.g. soil, lake, vegetation, humans. etc.) may be

represented by single and/or multiple compartments. Radionuclides are released into

this biosphere system from a source and migrate within and between these

compartments driven by a number of mechanisms which can include water, gas and

biologically-driven material fluxes. Retardation of radionuclide migration and its

accumulation within the soil is primarily controlled by sorption.

The structure of compartmental biosphere models for radiological assessments

has not evolved much over recent years. Furthermore, although a model's structure

has a profound effect on its predictions, the choice of its number of compartments

and the resolution of these compartments are rarely justified. For example. the

review of a number of available models for modelling vertical transport of

radionuclides in soils and sediments shows that a clear and transparent criterion for

the discretisation of a soil column (Le. thickness of the soil layer)
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is lacking. It is a common practice to discretise biosphere compartmental models on

a rather arbitrary basis with little or no justification (Klos, 2010; Klos, 2008;

Karlsson et al., 2001; Bergstrom et al., 1999).

Soil layer thickness adopted by such models influences the residence time and

dispersion of radioactivity within the soil column (Smith and Elder, 1999; Kirchner,

1998; Boone et al., 1985). The residence time of a radionuclide within the system is

proportional to the thickness of the soil layer; i.e. a radionuclide resides longer in a

thicker layer. Consequently, the numerical dispersion effect, which is an artefact of

the modelling process, increases in proportion to layer thickness (Smith and Elder,

1999). It follows that the number of model layers cannot be arbitrari ly chosen

(Kirchner et al., 2009; Smith and Elder, 1999; Kirchner, 1998).

Another source of concern regarding available compartmental biosphere

modelling approaches relates to the characterisation of soil hydrology. Hydrological

fluxes (measured and/or estimated) are a prerequisite for modelling radionuclide

dynamics within the system. Nevertheless, characterisation of soil hydrology as part

of the biosphere modelling has usually been simplistic. Often, biosphere models for

radiological impact assessments (Klos, 2010; Klos, 2008; Avila et al., 2006; Avila,

2006b; Avila, 2006a; Karlsson et al., 200 I; Bergstrom et al., 1999) have employed

the principles of mass balance to calculate the direction and magnitude of soil water

fluxes and the degree of soil saturation. Whilst this is convenient given the long

timescales associated with radiological risk assessments; the mass balance approach

has limitations. For example, Dripps and Bradbury (2007 and references therein)

recommend a daily time step to avoid budget calculation errors in water balance

models; they suggested monthly time steps may lead to as much as 25% errors in

recharge calculations. Furthermore, an annual mass balance approach can cause
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seasonal hydrological variability to be overlooked; one consequence of this is it may

underestimate upward water flow in wet environments where annual precipitation

exceeds evapotranspiration.

This chapter describes the process of developing a physically calibrated

compartmental modelling approach to simulate the vertical migration and

accumulation of radionuclides in soils. The methodology combines the physically-

based flow model of Richards (1931) and the generalised ecological modelling

(GEMA) approach of Klos (2010; 2008). This combined approach is hereafter

referred to as RIGEMA.

4.2. Alternative hydrological model formulations

Two candidate hydrological models were implemented. The first was an

empirical model that could be readily integrated and run simultaneously with the

radiological model. The performance of this hydrological model was then measured

against a second model, the physically-based flow model of (Richards, 1931).

Despite its rigorous foundations, Richards model was not the first choice because

integrating the model into the compartmental radiological model was considered

likely to be cumbersome.

4.2.1. A revised empirical water budget model

Water budget models have been widely used in groundwater recharge modelling

and planning irrigation schedules for arable lands (Dripps and Bradbury, 2007; Liu

et aI., 2006; Kendy et aI., 2003; Doorenbos and Pruitt, 1977). These models have

also been suggested as practical alternatives to the more complex, physically-based
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Richards model (Richards, 1931). However, one shortcoming of this approach has

been the inadequate quantitative representation of the upward capillary flux term of

the mass balance equation (Liu et al., 2006). Most recharge and irrigation models are

concerned with gravity-driven water movement, and they pay less attention to

capillary-induced flow. The migration of the radionuclides from the saturated zone

upwards towards the soil surface is primarily driven by capillary rise, probably

assisted by plant root uptake and translocation of both water (i.e. evapotranspiration)

and radionuclides. Therefore, simulation of upward movement of soil water is

important in the context of risk assessment of geological disposal repositories. A

modelling approach was developed to simulate the upward capillary flow in

response to transient changes in soil water conditions. The model operates on a daily

time step, and includes various hydrological processes.

LJ -+ uptake
IJ

L2 -+ uptake
12

L3 -+ uptake
13

Groundwater
Fig. 4-1 A conceptual (compartmental) model of the soil column showing various water fluxes into

and out of individual soil layers (L): rainfall R (m day"), evapotranspiration ET. (m day'), capillary

rise eR (m day"), infiltration I (m day") and plant uptake (m day"),
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During each daily time-step, surface water inputs (precipitation and/or irrigation)

were added to the uppermost layer. The water in excess of the layer's maximum

capacity (saturated level) was then distributed downward in a simple 'tipping

bucket' fashion (Kendy et al., 2003) until all individual layers were filled to their

maximum or all water had been distributed. Any extra water was then added to the

groundwater (aquifer) as a recharge. The rate of change in water storage in the

individual layers is the net difference between all inputs and outputs of water for that

layer. The generic form of the soil water mass balance equation is given by:

~ei = ( L inputs, - L outputs, ) ~Zi (4-1)
~t all inputs all outputs

where:

rate of change in water content in the /h

soil layer

L
all outputs

precipitation, irrigation, percolation,

capillary rise

(m) soil layer thickness

4.2.1.1. Percolation flow module

Water in excess of a soil layer's field capacity (Le. water that cannot be held in

place against gravity) percolates downward as a function of hydraulic conductivity

and water content within a soil layer. The description of soil hydraulic conductivity

was problematic because there are a variety of water release models of K(6) (e.g.

van Genuchten, 1980; Brooks and Corey, 1964) which require a detailed description
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of the soil hydraulic properties which was not available. An alternative was the

approach of Kendy et al. (2003) and Wegehenkel (2005). This combines the

principle of mass conservation and an exponential decay function:

de K(8)
-'=--'
dt ~Zi (4-2)

(4-3)

where

K and x, hydraulic and saturated hydraulic conductivities,

respectively

soil water content at saturation (soil porosity) and

at wilting point

(-) dimensionless, adjustable parameter with a value

between 13 and 16.

By substituting (4-3) into the mass conservation equation, separating variables and

integrating, the volumetric moisture content 91,i of the ;th layer after infiltration is

obtained:

(8-8wp') ( K. ( 8·-8 A 'J)8
1
,i = e

s
.
i
- S,' " In ~ 5,' + exp ~ 5,1 l-ul,1

~ ~Zi (8S,i -8wpJ 8s,i -8WP,i
(4-4)
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Percolation Prj (m day") from the i'h to /h+ I layer was calculated as follows:

Pr; = (e._".,; - e.,)) Sz; (4-5)

4,2,1,2, Evapotranspiration module

Having distributed precipitation and/or irrigation water inputs through the flow

domain, soil water storage was adjusted by subtracting evapotranspiration losses

(ETa). Potential evapotranspiration ET p (m day") was used directly if available,

otherwise it was calculated using the Penman-Monteith formula (Alien et al.,

1998).

Our model treated evaporation (atmospheric demand) and transpiration

(vegetation demand) separately. The ET p was divided into two components

representing soil evaporation and plant transpiration following Beer's law and

(Kendy et al., 2003):

where E, and Tp (m day") are total potential evaporation and transpiration rates,

respectively, Kb is an extinction coefficient of radiation by the canopy (typically

0.39-0.63) (Feddes et al., 1978) and LA) is the leaf area index.

Distribution of evaporation and transpiration over the soil profile was assumed

to follow an exponential pattern. Evaporation potentially removed water from depth
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below the surface layer (Kendy et al., 2003) whereas transpiration removed water

from all root-accessible layers. Total T, and Ep were distributed between all layers

according to Kendy et al. (2003):

where U;'i' ui.i are evaporation and transpiration fractions, respectively, from the j'h

layer defined by Zj.I, Z, (m) depths from the surface. S is the water use distribution

parameter, an empirical constant, which determines the curvature of the exponential

function. Values of 0 for most crops range from about 0.5 to 5.0 (Kendy et al.,

2003). Because evaporation is usually more localised at the soil surface than

transpiration, 0 was assigned a value of 10 by Kendy et al. (2003), Zi.and Z; (m) are

total soil and rooting depths.

Potential evaporation and transpiration losses from the r layer during each time

step were calculated from:

Ep. =Uf.E. xEp
,I ,1 (4-10)

T, . = U Tf.' x Tp
,I ,I (4-11 )
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In each layer, the potential losses were restricted by water availability:

Ea.; = Ep•l
(l_~)-B

8wp.l
(4-12)

(4-13 )

where B, (m") is the soil pore size distribution index.

4.2. J. 3. Capillary flow module

A refined version of Doorenbos and Pruitt (1977) model was employed to

simulate capillary flux within the flow domain (Liu et al., 2006). The empirical

relationships of the model are applicable to a shallow groundwater table «1.5 m)

and low ETa rates (~4 mm day"). The magnitude of capillary flux G (m day") is a

function of soil hydrological properties, moisture content, ETa, crop development

stage and depth to water table:

e - eFC
critical - Obi

w

(4-14)

(4-15)

Gmax = (1-exp(-O.6x LAI») ETa (4-16)
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8 >8 .. I
I cnuca

G = G (8Critical - 8
i

) 8critical s 8i ~ 8steady
I max 8 critical - 8 steady

(4-17)

The magnitude of the capillary flux into a specific soil layer is controlled by the

moisture content of the layer. Capillary flux is initiated when soil water content falls

below a certain threshold. This threshold is a function of 8F(' (soil field capacity),

Dw (m) (distance from the water table towards surface) and the empirical parameter

bl which takes a value of -0.17 (Liu et al., 2006). The magnitude of the flux is

assumed to be proportional to ETa, (m day"); greater demand for water at the surface

induces a higher flux. The flux, however, would reach a maximum, steady value

Gmaxalmost independent of ETa but highly dependent on groundwater depth. When

Gmax is reached, soil moisture content assumes a steady value 8steadywhich is a

function of 8FC, 8wp,D; and an empirical parameter b2 which is assigned a value of -

0.27 as recommended by Liu et al. (2006).

4.2.2. A physically-based water flow model (Richards equation)

Richards equation simulates variably saturated flow in porous media such as

soils. It has a clear and sound physical basis, and has been used for a wide range of

applications (van Dam and Feddes, 2000; van Dam et al., 1997; Vanclooster et al.,

1996). Richards equation is:
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re a (K (Oh(s) )J Sat = Oz (S) ~+l - (I,z) (4-18)

where K(s) (m day") is the soil hydraulic conductivity, hIs) (m) is the soil matric

potential and S(t,z) (day") is a sink term to account for soil water removal by plant

roots (volume of water removed per volume of soil per unit time).

Soil heterogeneity, non linearity of soil hydraulic constitutive relationships (e.g.

water release and retention curves) and changing boundary conditions are examples

of complicating factors that make it imperative to solve Richards model numerically.

HYDRUS ID (Sirnunek et al., 2009; Slmunek et al., 2008) is a freely available code

designed for this purpose. It provides multiple choices of release and retention

curves for users in the software library. For simulations in the present study, the

frequently used and popular models of van Genuchten (1980) were used:

;h~O

;h<O (4-19)

(4-20)

1
m=l--,n>l

n
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where Se is soil effective saturation, a, m and n are van Genuchten' s model

parameters and -e is a pore connectivity parameter, commonly given a value of 0.5

(Wheater et al., 2007; Mualem, 1976).

The sink term S(t,z) is calculated from potential evapotranspiration (ET p). Roots

are assumed to be exponentially distributed throughout the root zone and response of

root uptake to water stress is simulated following the approach of Feddes et al.

(1978).

4.3. Comparison of the hydrological models

Both the empirical (Liu et aI., 2006; Kendy et al., 2003) and physically-based

(Richards) models were used to simulate temporal changes in soil moisture content

and water fluxes of bare land in North China Plain, 150 km south of Beijing, over a

300 days period. This site was selected for intercomparison of hydrological models

because the empirical relationships of the capillary flux module described by Liu et

al. (2006) were derived and validated using data obtained for the same site. In order

to validate the empirical hydrological model used in their study, Liu et al. (2006)

used observations from field experiments with winter wheat and summer maize

cropped on silty soils in North China Plain. The site is characterised by a monsoon

climate with a cold, dry winter and a hot, wet summer. Rainfall is scarce in winter

but intense in summer. Potential evapotranspiration (ET p) is low during winter (mid

January -5 mm day') and high during summer (-60 mm day" in mid June). The

experiments covered a range of climatic conditions and irrigation schedules. Liu et

al. (2006) used observations of temporal changes (at 5 days interval) in groundwater

table and soil moisture content at different soil depths over the growing season of

winter wheat (9th October 1996 - 14th June 1997) and summer maize (20th June -
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30th September 1997) used to assess the performance of their revised empirical water

balance model. Specifically, 3 months observations (20th March - is" June 1997) of

weather conditions (rainfall and meteorological data for reference evapotranspiration

calculations), soil moisture content and water storage in the root zone (0-1 m) were

used as a basis for model validation.

Validating the hydrological models described in Section 4.2 using data reported

in Liu et al. (2006) was not possible because many of the required parameters (e.g.

meteorological data for calculating ET 0 and crop data such root depth and leaf area

index) were not available from the original publication. Besides, it was decided to

test the model's assumptions (its applicability to bare soil conditions) rather than

evaluating its goodness of fit.

The time series of ET p reported in Liu et al. (2006) was used as estimates of soil

potential evaporation (Ep) to calculate actual daily evaporation (Ea) fluxes. Soil

classification and hydrological properties needed to run the models are given in

Table 4-1.

Table 4-1 Soil hydraulic properties reported in Liu et al. (2006) required by the empirical and

physical hydrological models. Data was used as inputs to the models to predict changes in soil

moisture content, water storage and water fluxes during the model-model comparison

exercise.

Depth

(m)

Soil type 6. 6FC 6wp K.
(m" mol) (m' mol) (m" mol) (m day')

0.48 0.37 0.17 0.13

0.51 0.43 0.28 0.18

0.46 0.32 0.09 0.24

0-0.7

0.7-1

1-2

Silt loam
Clay

Sand loam

The groundwater table is at a depth of c. 100 cm below the surface during April,

dropping to 400 cm below the surface during July (Liu et aI., 2006). For the model

comparison exercise, an average groundwater table depth of 180 em below the
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surface was assumed. The variably saturated zone bounded by the groundwater table

and the soil surface was modelled using 18 layers, each of which had a thickness

(Az) of 10 cm. Since the main objective of this exercise was to compare the two

modelling methodologies, this thickness was judged to be sufficient for this purpose

in order to keep the computational demand manageable. The empirical model was

coded in the MATLAB programming language (MA TLAB® 7.10, The

MathWorks™). Richards flow model was solved using the HYDRUS-l D code. The

hydrological parameters of both models were obtained from site specific data.

As simulation results showed, both modelling approaches could be used to

simulate Ea, soil moisture content and water flux the dynamics. In general, Ea trends

predicted by the two models were in reasonable agreement: both models showed a

decrease in Ea in response to precipitation events and an increase in Ea after

precipitation ceased (Fig. 4-2). Both models predicted increases and decreases in soil

total water storage at similar points in time during the simulation. However, the

empirical model under-estimated Ea relative to Richards model. Daily Ea, averaged

over the entire simulation period (300 days) using the empirical model was 45% less

than the Richards model predictions. Consequently, the empirical model over-

estimated the cumulative water storage (summed over the 300-day period) in the soil

column domain by 12% compared to Richards model (Fig. 4-3).
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Fig. 4-2 Actual evaporation (Ea) from bare soil surface as a function of time in response to

atmospheric conditions at Xiongxian, China calculated using the empirical and physical

(Richards) hydrological models.

The most important difference between the two hydrological models was their

ability to predict reliably the dynamics of soil water fluxes. Unlike the physical

model of Richards, the empirical model, which assumes that capillary flux is

assisted by plant root uptake and translocation of water (i.e. evapotranspiration),

could not predict any capillary flux through the soil profile when no vegetation was

present. Within the constraints of the empirical approach, the capillary flux is mainly

driven by evapotranspiration; therefore, under bare soil conditions, i.e. LA) = 0, the

empirical model failed to predict any capillary flux within the soil (Fig. 4-4).

Obviously, this is a serious shortcoming of the empirical approach because it limited

its applicability to soil with vegetative cover (i.e. LA) > 0).
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Fig. 4-3 Water storage in the bare soil column as a function of time in response to changes in

atmospheric conditions at Xiongxian, China calculated using the empirical and physical

(Richards) hydrological models.
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Fig. 4-4 Capillary flux through the lower boundary of the bare soil column as a function of

time in response to changes in atmospheric conditions at Xiongxian, China calculated using

the empirical and physical (Richards) hydrological models.
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In real situations, capillary flux within soils still occurs even under bare soil

conditions, and this is demonstrated by the results of the physical model. Richards

model proved to be applicable even to bare soil conditions (Fig. 4-4). The integration

of Richards flow model into the RIGEMA approach was expected to be

cumbersome and computationally demanding, hence it was not considered as a first

choice. However, the availability of the HYDRUS-I D code provided the necessary

databases and the solver enabled its use in the modelling in this study. As a result, it

was decided to adopt Richards model given its sound physical basis and proven

reliability for hydrological modelling.

4.4. The Generalised Ecological Modelling Approach

The generalised ecological modelling approach, GEMA, (Klos, 2008) belongs to

a family of compartmental models which are widely used for simulating long-term

dynamics and fate of radionuclides in environmental media (Klos, 2008; Avila,

2006b; Avila, 2006a; Karlsson et al., 2001; Bergstrom et al., 1999). This modelling

methodology has been employed to quantify activity concentrations of long-lived

radionuclides potentially released into the biosphere from geological radioactive

waste repositories (Klos and Wilmot, 2002; Karlsson et al., 200 I). The approach

offers a great deal of flexibility due to its generic structure and its ability to link

terrestrial and aquatic ecosystems. Although the following description is limited to

terrestrial ecosystems, the method is applicable to other types of ecosystems.

In this version of GEMA, the soil column (biosphere) extended from the

groundwater table up to the soil surface and was divided into a number of layers of

equal thickness (Fig. 4-5), although the soil layers could have had different
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thicknesses (the issue of model vertical resolution will be discussed in Section

4.5.2).

LI

d L3

L2

1 Bq a-I

Fig. 4-5 A simple GEMA (radiological) model with 2 (solid and liquid) compartments and 3

soil layers (LI, L2 and L3). Vertical and horizontal arrows indicate water and radionuclide

fluxes between soil layers and partitioning of radionuclides between solid and liquid phase,

respectively.

A constant annual flux of radioactivity, 1 Bq a-I, entered the system through the

soil lower boundary. The use of constant inputs per year is a common practice that

facilitates model-model comparisons and allows calculation of normalised input-

dose conversion factors (Xu et al., 2008). The radioactivity introduced into the base

of soil columns is transported within the soil profile via a number of processes that

transfer both liquid and solid matter between the system layers. The relevance of

these processes depends on the assessment context and endpoints, but any process

which can be expressed in terms of a transfer rate constant can be represented.
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Each model layer was represented by one state variable: total radionuclide

concentration expressed in terms of liquid phase concentration. The state variables,

which vary with time according to rate equations describing transport processes,

represent total radioactivity in the respective layers. The system of inter-connected

layers was translated into a system of ordinary differential equations (ODEs):

where Nij (Bq) is activity of radionuclide N in the lh (donor) and r (receptor)

layers, respectively, Si(t) (Bq day") is the external source term of radio nuclide N into

the r layer (this is applicable to the bottom layer only). A.N (day") is the decay

constant of radionuclide N, A.ij (day") is the transfer rate constant between the i'h and

j'h layers (Klos, 2008):

(4-22)

A .. = ~ Ak,
1.) £..J 1.)

k=process
(4-23 )

where:

~Zi (m) thickness of the i'h layer.

Fij (m day") water flux (liquid phase transport) from the i'h layer to

j'h layer
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Mij (kg m") soil flux from the j'h layer tor layer

Kdi (nr' kg") soillporewater distribution coefficient in the i'h layer

Ci (-) soil water content and porosity of the j'h layer

e (rrr' m") soil water content of the r layerI,

Pi (kg m-3) material density of the r layer

a (kg m") suspended solid load in water

Ri (-) retardation factor in the r layer

A~. (day") transfer rate between j'h and /h over k processes
I,J

Water and solid material fluxes are the driving forces for transport of

radioactivity within the soil (4-23). Dissolved radionuclides are carried with flowing

water while radionuclides attached to very small soil particles can also be

transported in the form of suspended solids in water.

~,i is a key parameter that quantifies radionuclide attachment to the solid phase

and accounts for retardation of radionuclide transport through the soil. GEMA

implicitly assumes instantaneous partitioning of radionuclides between solid and

liquid phases, the magnitude of which is a function of numerous interacting factors

(e.g. soil moisture, organic matter content and redox conditions). These aspects of

K, have been addressed in the experimental section of this study, described in

Chapter 3.

4.5. The integrated RIGEMA modelling approach

Richards (hydrological) and GEMA (radiological) models were integrated into

one modelling framework referred to as RIGEMA. This approach was applied to

101



Chapter 4 Development of the RIGEMA modelling methodology

simulate long-term distribution of some groundwater-borne long-lived radionuclides

hypothetically released into the soil column of the Sutton Bonington site. Details of

the site (climatic and soil data) are given in the site description section in Chapter 5.

As an illustration of this methodology, a simple scenario was simulated with two

different discretisation schemes. The purpose of this simulation exercise was to

illustrate the application of the discretisation protocol and the effect of time step size

and soil layer thickness on radionuclide distribution patterns in the soil column.

First, the discretisation procedure was implemented to identify the optimum

number of soil layers in the model. Having optimised its structure, the RIGEMA

model was used to simulate the dynamics and distribution of 79Se and 1291 in the soil

column. A constant, continuous release of I Bq a·1 of 79Se and 1291 into the base of

the column was assumed. 1291 and 79Se were selected due to their relevance to long-

term risk assessment of geological disposal, and their distinct sorption properties.

According to a recent IAEA report (IAEA, 2009), Se has a K, (200 L kg-I) that is 25

times higher than that of 1(7 L kg').

Transfer rate constants within the RIGEMA model were parameterised using soil

water contents and fluxes, calculated using HYDRUS-I D code, and other physical

and chemical input values (e.g. soil porosity, Kd, diffusion coefficient, etc.). For

simplicity, the transport processes involved were limited to advection and

dispersion. Dispersive transport was parameterised following the method of Xu et al

(2008; 2007):
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I')...=-
I.J t:.z2

I

(4-24 )

adm) and Dm{m2 day") are longitudinal dispersivity of the soil and molecular

diffusion, respectively. All symbols retain their definitions described earlier.

RIGEMA was solved numerically using a 4th order Runge Kutta routine coded

using the MA TLAB language. The solution was verified using Ecolego software

(Ecolego v.5.0.269, Facilia AB), a piece of software that is designed to perform

similar simulations.

4.5.1. Temporal resolution and seasonal variability

RIGEMA operates on a daily time step, and its inputs are provided as daily

values (monthly and annual inputs are also possible if outputs on these timescales

are required). The sensitivity of model predictions to the resolution of input data and

time step was tested. Daily as well as annual time series of moisture contents and

water fluxes were used to quantify the model transfer rate coefficients. and the

model was run with daily and annual time steps. Values of the hydrological

variables were estimated using HYDRUS ID.
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Fig. 4-6 Predictions of 79Se and 1291accumulation (total activity) within a I m bare soil column

over a 10 years period using (a) daily and (b) annual time steps. Soil layer thickness was fixed

at I cm.

Simulation results showed strong interactions between the dynamics of both

hydrology and radioactivity. Fig. 4-6 show changes in total (sorbed and dissolved)

inventories of 79Se and 1291 within the soil column of bare land over 10 years.

Radionuclide inventory varied during the year in response to temporal changes

in local hydrology and climatic conditions (Fig. 4-6 a). During wet seasons, when
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gravity-driven water movement dominated, the poorly sorbing 1291leached from the

soil leading to a decrease in its inventory within the soil. In contrast, during dry

seasons, soil content of 1291 increased in response to the higher evaporation and

capillary flux. At equilibrium, the 1291 inventory during dry seasons of the year

peaked at 0.4 Bq m-2 and dropped to 0.07 Bq m" (c. 440% decrease) during wet

seasons. In contrast, the seasonal variability of the 79Se inventory was less due to its

higher Kd; 79Se peaked at 4.4 Bq m-2 and dropped to 4.0 Bq m-2 (c. 10% decrease).

The high sorption capacity of 79Se rendered it more resistant to leaching from the

soil column, hence the inventory of 79Se accumulated to an approximate mean value

of 3.5 Bq m-2 over 10 years compared to a value of 0.2 Bq m-2 for 1291.In contrast,

the use of an annual time step and input data did not capture the seasonal variation in

radionuclide inventory in the soil (Fig. 4-6 b), and resulted in higher accumulation of

79Se and 1291in the soil column in comparison with the daily predictions. Total 79Se

and 1291in the I m soil column at equilibrium predicted using annual time step and

inputs were 96 Bq m-2 and 3.6 Bq m", respectively. These values are 22 and 18

times the values predicted for 79Se (4.2 Bq m-2) and 1291(0.2 Bq m") using daily

time step and inputs. Furthermore, vertical migration distances away from the

contaminated groundwater reservoir (source) predicted using an annual time step

were greater than those predicted on a daily basis; concentration - depth profiles of

79S d 1291 'I'b . d i F'e an at equi I num are presente In Ig.4-7.
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pronounced effects of short-term variation in atmospheric and hydrological

conditions on radionuclide transport in soils. Since total annual precipitation at

Sutton Bonington exceeds total annual evapotranspiration, simulations of soil

hydrology predicted net downwards infiltration and nil capillary rise throughout the

soil column. Moreover, predictions on an annual basis showed - 100% decrease in

annual percolation in comparison with simulations on a daily basis. This smaller

percolation reduced leaching of radionuclides from the soil and resulted in slow

accumulation and significant vertical diffusion-driven migration through the soil

profile.
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4.5.2. Effect of vertical discretisation on numerical dispersion

Soil hydrological conditions were simulated using HYDRUS ID. Climatic

conditions (4-year average of daily weather data collected between 2006 and 20 10)

and a static water table (pressure head h=O) at a depth of -100 cm were imposed as

top and bottom boundary conditions, respectively. For the initial conditions, the

matric potential profile was equilibrated in a preliminary simulation run for a period

of one year with the soil column under hydrostatic (no-flow) conditions. The matric

potential profile at equilibrium was then used for subsequent runs. Richards equation

was solved repeatedly using three discretisation schemes (I 0, ) and 0.5 cm).

4.0

Soil layer thickness (cm) _- O.Scm
1 cm

- - - 10cm2.0

"I
EE 0.0
e-

-2.0

o 50 100 150 200
Time (day)

250 300 350

Fig. 4-8 Temporal changes in water flux through the bottom boundary of a I m bare soil

column obtained by solving Richards hydrological equation for three soil layer thicknesses

(see legend). Solutions using I and 0.5 cm thick soil layers are almost identical. Positive

values represent capillary flux and negative values represent percolation through the bottom

boundary of the I m soil column.
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Fig. 4-8 shows soil water flux through the bottom boundary of the soil column

over the one-year simulation period. No difference in the direction and magnitude of

soil water flux was observed between the tlz = O.S cm and Sz = I cm schemes.

Thus, it was decided that a soil layer thickness of I cm was sufficiently small

(corresponding to a 100 layer model). This soil layer thickness is consistent with

previously reported studies (Mathias et al., 2008; Butler et al., 1999; Kirchner.

1998).

The numerical dispersion coefficient Dnum of the current model was calculated

according to Smith and Elder (1999):

D = F~axl'lz (1- F~axl'lt) = 7 x 10-6m2 day"
nurn 2 I'lz (4-25)

F' = Fmax
max R (4-26)

where FmaxandF~ are maximum porewater and solute velocities during the year

and throughout the soil column (-1.7Sx 10-3 m day" and -0.38x 10-3 m day")

respectively; R = 4.6 is the retardation factor to quantify sorption of activity to solid

phases calculated using a K, value of 1 L kg-I (this value represents a highly mobile

radionuclide such as 36CI); !:lz = 0.01 m is the thickness of the soil layers and I'lt = I

day is the time step. For the model numerical dispersion to be comparable to a

representative estimate of the physical dispersion, the model numerical dispersion

had to fulfil the following condition (which ensures that the numerical dispersion

compares to a reasonable estimate of the effective dispersion):
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Dnum ~

Fa -+DL E m

R
(4-27)

where aL (m) is the longitudinal dispersivity of the soil and E (-) is soil porosity.

The effective disperion coefficient (_10,5 m2 day') was computed using a value of

0.38x 10,3 m day" I for F' and parameters presented in Table 4-2.

Table 4-2 Parameters used to estimate the effective dispersion coefficient described by Smith and

Elder (1999) which sets an upper limit on the numerical dispersion effect of the compartmental

model.

Parameter Units Value Reference

Molecular diffusion m2day"1 _IO's Assumed
(Om)

Longitudinal dispersivity m 0.01 (Rausch et al., 2005)

(al)

The previous calculations assumed maximum porewater and advection velocities

and a small retardation factor (due to the small Kd value). Consequently. the

calculations represent a conservative assumption since the numerical and

hydrodynamical dispersion coefficients are proportional to the retarded advective

velocity. Therefore. criterion (4-27) is satisfied even for smaller retarded advective

velocities. As a result, it was decided that the model with !1z = I cm was the

optimum version that delivered a satisfactory solution of Richards model and

maintained the numerical dispersion effect in line with effective dispersion.
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n=2 solid

n=3 solid

n=4 solid

n=5 solid

Source

Fig. 4-9 A conceptual RIGEMA (integrated hydrological and radiological) model showing water and

radionuclide transfers and phase partitioning between soil layers and solid and liquid compartments.

The importance of choosing appropriate discretisation to allow for the effect of

numerical dispersion is illustrated in Fig. 4-10 and Fig. 4-11. Increasing the soi I layer

thickness used in the model by tenfold resulted in an increase in the time required to

achieve steady state conditions in the soil with respect to radionuclide inventory due

to the decrease in transfer rates which are inversely proportional to the soil layer

thicknes (4-22) and (4-24). Increasing the thickness also resulted in higher

inventories and greater vertical migration distances of 79Se and 1291 in the soil

column. The steady-state inventories of 79Se and 129, predicted using a layer

thickness of 10 cm were 18 and 26 times, respectively, those predicted using a

thickness of I cm. This can be attributed to the complete, instantaneous mixing

assumed by compartmental models and the numerical dispersion effect which

increases as soil layer thickness is increased.
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Fig. 4-10 Predictions of 79Seand 1291 accumulation (total activity) within a I m bare soil

column over a 10 years period using 1 and 10 cm soil layer thicknesses. Model time step

was fixed at 1 day.
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Fig. 4-11 Predictions of 79Se and 129) concentration - depth profiles at equilibrium (annual average)

under bare land conditions using 1 and 10 cm soil layer thicknesses. Model time step was fixed at 1

day (note the semi-log scale).

112



Chapter 4 Development of the RlGEMA modelling methodology

4.6. Overview of the RIGEMA approach

RIGEMA is a physically-calibrated compartmental modelling approach to assess

vertical migration and accumulation of radionuclides in the soil column and surface

soil. The method was developed by integrating the physically-based Richards model

of water flow in soil and the ecological modelling approach commonly used in

radioecological modelling. This combined approach is generic and capable of

simulating radionuclide migration and distribution within various terrestrial

ecosystems.

Meteorological
data

HYORUS 10
Hydrological
simulations

GEMA
Radiological
simulations

Output-

Time-and depth-
profiles of radlonuclide
activity concentration
In solid and liquid
phases

Time- and depth-
profiles of:
- soil water flux
- soil moisture
content
- plant water uptake

Crop
development

data
Various
environmental
process (sorption,
erosion.
bioturbation, etc.)

Fig. 4-12 A diagram demonstrating the structure of RIGEMA and how it is implemented. The

diagram shows the connections between the model input data, HYDRUS-I D hydrological simulator

and GEMA radiological model.

The RIGEMA approach was used to simulate the migration and vertical

distribution of an annual hypothetical release of 1 Bq of a radionuclide into a

100 cm soil column bounded by the soil surface and the groundwater table. The

variably saturated soil was equally divided into a number of 1 cm thick layers with
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the number of layers being dictated by physical considerations. The I em thickness

is sufficiently small reliably to simulate soil water dynamics, a key driver of

radionuclide migration in the soil, using Richards model. This discretisation scheme

maintained the magnitude of the numerical dispersion component of the model

(Dnum) in accordance with the actual effective dispersion (D).

The RIGEMA approach functions on a daily time step. Hydrological as well as

radiological simulations were run using daily values of the model inputs (e.g.

rainfall, evapotranspiration, water flow, etc.). This short time step ensures the long-

term effects of the intra-annual variability of soil water and radionuclide dynamics

are represented in the model.

The time dependent change of radionuclide inventory within each soil layer was

assumed to be governed by a number of processes including advection, dispersion

and sorption. In part, the layers exchange radioactive materials via bi-directional

movement of water (percolation and capillary flow) that transports dissolved and/or

particle-attached radionuclides between the source (groundwater) and soil. The time-

and depth-dependent hydrological variables, i.e. water fluxes and water contents,

required to calculate the transfer rate constants for each layer were determined using

the HYDRUS-l 0 code. The values of these variables were then used to calculate the

transfer rate constants used in RIGEMA. Effective dispersion was modeled

explicitly following the method of Xu et at. (2007).

RIGEMA incorporates the major processes responsible for the migration and

accumulation of radioactivity in soils. Ecosystem-specific processes such as plant

root uptake and bioturbation can be accounted for by translating their effect into

transfer rate constants which add linearly into the overall transfer rate constant of

each layer. RIGEMA makes use of the solid-liquid distribution coefficient, Kd. as a
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combined measure of instantaneous sorption and desorption. Variants of KJ can be

readily incorporated into the transfer rate constant expression including constant and

parametric Kd models as described in the next chapter.
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Chapter 5 Simulating the migration of radionuclides in

soils

5.1. Introduction

This chapter describes the results of simulations undertaken to investigate the

transport of radioselenium C9Se) and radioiodine (1291) through a soil column. 79Se

and 1291 are fission products encountered in the radioactive wastes and are of a

particular interest in terms of their radio-ecological behaviour (Prohl et al., 2005;

Klos and Albrecht, 2005; BIOPROTA, 2005). Mobility of 79Se is enhanced under

oxic conditions; in contrast, 129, becomes less mobile under these conditions.

Vertical transport and accumulation of 79Se and 1291, within the soil under

different land uses were simulated. The simulations were designed to explore

cycling of 79Se and 1291 in the soil under land management scenarios commonly

considered in the context of geological disposal safety assessments. In particular, the

influence of factors such as variation in atmospheric conditions, presence and

growth of vegetation, irrigation with contaminated groundwater and Kd on the long-

term radionuclide distribution in the soil was evaluated.

The arable land at Sutton Bonington site was assumed to receive an annual input

of 1 Bq of79Se and 129, to the subsoil. The environmental settings, including climatic

conditions and land use in addition to the simulation scenarios, are described in the

following sections.
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5.2. Materials and methods

5.2.1. Site description

Sutton Bonington is characterised by a temperate climate with mild winters and

warm summers Table 5-1. Mean annual precipitation is 622 mm with April and

August being the driest and rainiest months, respectively. The groundwater table at

the site is rather shallow in winter and drops to - I m below surface in summer.

Table 5-1 Meteorological data (averages over the period from 2006 to 20 10) used for the

hydrological and radiological simulations. Data was obtained from the local automatic

meteorological station at Sutton Bonington site.

Month Min Temp DC Max Temp DC Rainfall (mm)

January 2.28 7.24 50

February 1.24 7.38 40

March 2.25 10.31 42

April 4.46 14.11 31

May 7.18 16.47 SO
June 9.90 20.05 64

July 12.29 22.34 70

August 11.95 21.16 73

September 10.26 19.37 42

October 7.91 15.33 48

November 4.07 10.74 59

December 2.46 7.58 55

The land at Sutton Bonington site is primarily under arable cultivation (winter

wheat and barley). The soil types range from sandy loam to alluvial. Details of the

soil properties were given earlier (Chapter 3).
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5.3. Soil water flow modelling (HYDRUS-ID)

Following the approach described in the previous chapter, one-dimensional soil

water flow was simulated using HYDRUS-ID (Simunek et al., 2009), Soil

parameters necessary for the simulation process are summarised in Table 5-2,

Table 5-2 Soil hydraulic data for a generic sandy loam soil obtained from HYDRUS-I D database for

the hydrological simulations,

Parameters Value

van Genuchten-Mualem (1980) model:

saturated soil-water content: 0,.

residual soil-water content: Or
retention curve shape parameters: a and n

saturated hydraulic conductivity: 1(,

tortuosity and pore connectivity parameter: f

Feddes (1978) water stress reduction model:

hi

0.41

0,065

7.5 m" and 1.89

1.061 m day"

0.5

h2
h3

h4
critical stress index: 00/

Om
-5 m
-9 m

-160 m

o

Atmospheric conditions (precipitation and Penman-Monteith ETo) were used as

an upper boundary condition. A constant pressure head (h = 0 m) corresponding to

the depth of the groundwater table (-1 m) was used as a bottom boundary condition.

5 threshold value above which root water is uptake reduced in stressed parts of the root zone is fully

compensated by increased uptake from other parts
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5.4. Sorption modelling

Although regression models were derived from experimental data (Section 3.3.6)

that relate K, of different elements to pH, dissolved organic carbon and iron

concentrations in soil solution, Kd values calculated using these models were not

used to represent the sorption/desorption processes in RIGEMA models. These

models calculate Kct from soil solution characteristics (i.e. pH. dissolved organic

carbon and soluble iron) the measurement of which is not commonly part of site

characterisation procedures for potential sites of underground waste repositories.

Alternatively, parameteric models that relate K, to basic, readily available soil data

(i.e. soil pH, solid phase organic matter and mineral contents) reported in the

literature (Sheppard, 2011; Sheppard et al., 2009; Sheppard et al., 2007) were used

to represent radionuclide sorption/desorption in soils. This also extends the

applicability of RIGEMA to model change in sorption behaviour in response to

environmental change as for example the change in soil characterstics due to land

management change.

5.4.1. Generic Kc!

For this approach, sorption was parameterised and quantified using a constant K,

- i.e. sorption was not affected by the change in physical and chemical properties

between different soil layers. Kd data reported in the recent IAEA (2009)

compendium was used in these simulation runs (Table 5-3).
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Table 5-3 K, values used in RIGEMA model for 79Se and 1291 as reported in the IAEA (2009)

compendium for a generic soil type.

Element

Min

4

GM
200

GSD
3

Max

2100

0.01 7 5 580

5.4.2. Parametric Kd approach

In this case sorption was expressed as a function of soil physicochemical

properties. KdS of 79Se and 1291were estimated using the parametric (empirical)

models of Sheppard et al. (2009) which relate the KdS to soil pH. clay and organic

matter content (OM). KdS of 79Se and 1291for Sutton Bonington arable soils

calculated using Sheppard et al (2009) models are presented in Table 5-4.

Table 5-4 Measured (mean of KdS determined from 0.1, 0.22 and 0.45J.1m pore water filtrates) and

calculated (from parametric models of Sheppard et al. (2007» 79Se7and 12ql8K, (L kg') values for

S8 arable top and subsoils. Only calculated KdS were used in the numerical simulations.

Element Selenium Iodine

Method Measured Calculated Measured Calculated

SB-AT 200 ± 10 440 95 ± 20 166

SB-AS 115 ± 15 390 25 ± 2 160

6 Soil types include: sandy, loamy, clayey and organic

7 Log (Se-Kj) = 1.79 + O.133*pH - 0.00163*c1ay*pH

8 Log(J-Kd) = 2.13 + 0.00297*OM + 0.00181*c1ay.pH
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5.5. Simulation scenarios

The 100 cm soil column was modeled using 2 compartments (solid and liquid

phases) and 100 layers (justification of the choice of soil layer thickness in the

model was discussed in Chapter 4). With respect to modeling timescale and model

time step, preliminary calculations showed that a period of 1000 years was sufficient

c. 79S d 129, • d d h . I' di . id d ilor e an to attam stea y-state un er t e sirnu anon con mons consi ere In

this study, Thus, all simulations were run for 1000 years (I ka) using a daily time

step. The different simulation scenarios are described below.

5.5.1. Bare soil

This is the reference (control) scenario for this study. An annual discharge of I

Bq of79Se and 129, into the base of the soil column was assumed. This assumption is

consistent with the definition of a source term in the context of long-term

radiological assessment of geological disposal adopted by several studies (Klos,

20 I0; Xu et al., 2008; Klos, 2008; AgUero et al., 2008). The primary objective of

this assumption is to facilitate model-model comparisons. The main processes

considered in these simulations were advection, dispersion and sorption. Sorption

was represented using generic KdS (Section 5.4.1).

5.5.2. Non-irrigated vegetated soil

To investigate the effect of root uptake on the dynamics and long-term

distribution of radionuclides within the soil, a vegetation compartment (winter

wheat) was added to the bare soil model. A fraction of the soil radionuclide

inventory was assumed to be taken up by wheat plants via their roots, and hence
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transferred into the vegetation compartment. The activity concentration in the wheat

was calculated by assuming passive uptake from the transpiration stream and a

uniform distribution of radioactivity within wheat biomass.

Winter wheat growing season extends from early September to mid-July; no

irrigation was considered, Crop data necessary for running the model (e.g. root

depth, leaf area index and crop biomass) were calculated using the Sirius wheat

simulation model (Jamieson et aI., 1998), Harvest (assumed to be during late July)

was treated as a discrete (i.e. once only) process, and was simulated following the

approach of Whicker and Kirchner (1987). Residual wheat biomass (roots and

stalks) of 0.1 kg m-2 was assumed. The remnant radionuclide activity in the residual

wheat biomass was homogeneously incorporated into the topsoil (0-20 cm) by

ploughing.

5.5.3. Irrigated vegetated soil

This is an extension of the non-irrigated scenario above. Irrigation was simulated

as a discrete process (i.e. applied as a series of smaller discrete applications between

May and July). A total amount of 0.2 m3 of contaminated irrigation water (with an

activity of 1 8q m") was applied between May and July (25 mm/application). In all

other respects, the scenario was as described in Section 5.5.2.
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5.6. Results

5.6.1. 79Se and 1291dynamics in soil

The annual mean activity concentrations of 79Se and 129)within the uppermost

and lowermost 20 cm of the vegetated, non-irrigated and irrigated soil column over

the entire simulation period (1 ka) are shown in Fig. 5-1. The activity concentration

of 129)attained steady-state in both parts of the soil column more quickly than 79Se.

Activity concentrations of 79Se and 1291attained steady-state earlier, and were,

respectively, two and one order of magnitude higher within the lower part of the soil

column than the upper part. The steady-state activity concentrations of 79Se within

the upper and lower 20 cm of the soil column were higher than their 129)

counterparts by I and 2 orders of magnitude, respectively.

Time trends of 79Se and 129(activity concentrations within upper and lower parts

of the soil column when irrigation was practiced remained similar to the non-

irrigated scenario. Irrigating with contaminated water resulted in an increase in 12'11

activity concentrations in the upper (1.5 orders of magnitude) and the lower (by a

factor of 4) parts of the column. 79Se activity concentration in the upper 20 em of the

soil column also increased by 2 orders of magnitude due to irrigation which seems to

have a counter-effect (slight decrease) on 79Se concentration in the lower 20 cm of

the column.
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Fig. 5-1 Predictions of 79Se and 129] accumulation (total activity) within the top

(0-20 cm) and subsoil (80-100 cm) ofa soil column cropped with winter wheat. The graphs

show the effect of irrigation with contaminated groundwater (note the log-log scale).
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5.6.2. Vertical distributions of 79Seand 1291within the soil

Predicted depth profiles of 79Se and 129)at equilibrium for different land use

scenarios are shown in Fig. 5-2 .

.,-
.,- /

~.1 .,- ~.1 I

"'.I 19Se: Ko = 200 L kg" " '291: x, = 7 L kg"
~.2 ~.2 ".,-

".,-
.,- "~.3 .,- ~.3 .,-

-- ".,-

g -0.4 - ~.4
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~ -0.6 - - - vegetated land (irrigated) ~.6

~.7 ~.7

-0.8 ~.8

~.9 ~.9

-1.0 -1.0
10-5 10-3 10.1 10' 10) 10-5 10') 10" 10' 103

Radlonuclide concentration (Bq m-3) Radlonucllde concentration (Bq m-3)

Fig. 5-2 Vertical distribution of 1 Bq a" influx of 79Se and 1291at equilibrium under different land use

scenarios (note the semi-log scale). The presented profiles represent mean of the daily profiles of the

final year when equilibrium was reached.

For all scenarios considered in this study, 79Se migrated further away from the

contaminated groundwater than 1291. Nevertheless, considerable contamination

levels (~ 10-5 Bq m") were confined to the lowermost 20 em of the bare soil

column. By adding a crop compartment into the model (the vegetated soil scenarios)

79Se (and 1291)contamination levels greater than 10-3 Bq m-3 (and 10-5 Bq m") were

predicted within the uppermost 20 em of the soil column. Furthermore, practicing

irrigation with contaminated water resulted in enrichment of the topsoil with 79Se

125



Chapter 5 Simulating the migration of radionuclides in soils

and 1291 and leaching of these radionuclides from the lowermost part of the soil

column.

The effect of vertical variation of sorption characteristics (the chemical zonation)

on the vertical distribution of 79Se and 1291 was investigated by allowing KdS to vary

as a function of soil pH, clay and organic matter content using Sheppard et al.

(2009) parametric models (see Section 3.3.6). Equilibrium concentration depth

profiles of 79Se and 1291 under non-irrigated and irrigated vegetated soil for constant

and parametric KdS are shown in Fig. 5-3 .

.0.1

subsoil Kd: 390 L kg-'
.0.3

g .0.4

.cl.o·s
~ .0.6

--- constant Kd (200 L kg-')
parametric Kd

.0.7

10'

Radlonucllde concentration (8q m03)

.0.1

subsoil Ka: 160 L kg-'
.0.3

.0.4

.o.S

.0.&

.0.7

-e.s

.0.9

-1.0
10' 10" 10-3 10" 10' 10'

Radlonucllde concentration (8q m03)

Fig. 5-3 Vertical distribution of I Bq a-I influx of 79Se and 1291 at equilibrium under vegetated land

(with irrigation) predicted using constant and parametric KdS (note the semi-log scale). The presented

profiles represent mean of the daily profiles of the final year when equilibrium was reached.
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5.6.3. 79Se and 1291 in wheat

Accumulation of 79Se and 129, activity in wheat biomass under two land uses

over the simulation period is shown in Fig. 5-4.
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Fig. 5-4 Accumulation of79Se and 129, activity in wheat biomass (dw) as a function oftime

predicted for non-irrigated and irrigated wheat crops. Values represent activity

concentration in biomass on the day of harvest (note the log-log scale).
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Under the non-irrigated wheat scenario, the equilibrium concentration of 7l)Se in

the wheat biomass (dry weight) was slightly higher than that of 12'.11.In contrast, the

equilibrium activity concentration of 1291 in wheat biomass exceeded that of 7l)Se

when irrigation was practiced. Overall, irrigation resulted in a slight decrease in 79Se

and a slight increase in 129, activity concentration in the wheat. A significant

difference between 79Se and 129, is the timescale to equilibrium concentrations in

wheat. While 129, attained a steady-state in a few years, 79Se accumulated more

slowly and attained a steady-state in a few decades. This behaviour was common to

both land use scenarios Concentration ratios (CRs) are simple measures to quantify

the degree of soil-to-plant transfer of radionuclides. CRs of 79Se and 1291were

calculated by dividing the activity concentration (Bq kg") incorporated in the crop at

the harvest day of the 999-1000 growing season (at which time the activity has

reached equilibrium in all model compartments) by the activity concentration (Bq

kg") within the 1 m soil column in the same year. All CRs were calculated on a dry

weight basis. The Cks of 79Se and 1291for non-irrigated and irrigated crops are

shown in Fig. 5-5. The Cks of the 79Se are 1 order of magnitude lower than those of

1291 Irri . h . h . d . h I B -J f 79S d 1291. rngating t e crop WIt water contammate WIt q m 0 e an

resulted in a slight increase in eR of 1291whereas that of 79Se remained fairly

constant.
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Non-inigated crop
lnigated crop

Kd = 7 L kg"

1211

Fig. 5-5 Concentration ratios (Bq kg" biomass dw/8q kg" soil) of 79Se and 1~91 for non-

irrigated and irrigated wheat crops at equilibrium (note the log scale).
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5.7. Discussion

Simulation results revealed a strong correlation between local hydrological

diti d th d . f 79S d 1291 .. .. h '1con I IOns an e ynamics 0 e an activity concentration In t e SOl

column. This influence was clearly manifested in temporal patterns of 7'iSe and J2'i1

activity concentrations that followed seasonal variability of soil hydrological

conditions. During wet periods (winter), precipitation exceeded evapotranspiration.

the bulk movement of soil water was downward and leaching became the dominant

transport mechanism. In contrast, high evaporation (for bare soil) and

evapotranspiration (for vegetated soil) rates during summer time resulted in upward

movement (capillary rise) of contaminated groundwater. As a result, 79Se and 1291

activity concentrations in the soil column decreased and increased during wet and

dry seasons, respectively. This climate-driven dynamics of radioactivity would be

expected to have significant implications on long-term redistribution of

radionuclides within the biosphere. A greater migration potential, in particular for

strongly sorbing radionuclides such as 79Se, would be expected in dry environments

(e.g. arid) than under wet ones (e.g. temperate). Aspects of seasonal variation in

radioactivity dynamics in soils are rarely addressed in long-term radiological

assessments (Klos, 2010; Xu et al., 2008; Klos, 2008; Avila, 2006b). The influence

of seasonal variation in soil water flow on the assessment results becomes more

apparent should the source term definition be coupled to local hydrological

conditions. The current representation of the source term assumes a constant input of

1 Bq a' to the base of the soil column. Although this assumption facilitates

comparison of different biosphere model formulations, it overlooks the influence of

seasonal variability of local hydrology on radionuclide influx into the soil column.
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Therefore, unless there is evidence to support such an assumption, e.g. data from

hydrological modeling, coupling the model source term to local hydrological

patterns (e.g. inflowing groundwater by capillary rise) would make a more realistic

assumption.

The concentration - depth profiles of 79Se and 129,at equilibrium indicated that

for non-vegetated soil contamination inventories greater than 10-5 Bq m' were

limited to the bottom 20 cm of the soil column and that the radionuclides remained

close to the source. Activity concentration depth profiles calculated in the context of

this modelling work again highlight the importance of accurate description and

simulation of local hydrological conditions. Klos (20 I0) performed sim ilar

calculations and predicted distribution profiles of a suite of radionuclides in a 5-

meter thick Quaternary deposit (QD) overlying bedrock in Forsmark. Sweden

assuming constant and uniform hydrological conditions (fully saturated QD and

constant water flow throughout the column). The author found that the higher the

water flow (Darcy velocity) the more uniform the depth profile. These constant

hydrological conditions assumed by Klos (20 10) contrast with the assumptions made

here regarding soil water content and through-flow. The activity concentration depth

profiles presented here (Fig. 5-2 and Fig. 5-3) reflect the temporal and depth

variability in local hydrology in response to climatic forcing. Therefore, the non-

uniform 79Se and 129,distributions predicted in this work are not surprising.

Changing land use and growing deeply-rooted crops such as wheat would have

important implications for long-term vertical distribution of 79Se and 1291.As wheat

roots had access to deeper, contaminated soil layers, the contamination could reach

the topsoil. When wheat was harvested, remnant 79Se and 129, in residual biomass

(straw and roots) were deposited and mixed by ploughing within the upper 20 cm of
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the soil. In addition, this "biological pumping" mechanism enhanced the upward

migration of the 79Se and 1291 from deeper parts of the soil column. As the

comparison between the hydrological variables for the various land uses suggests

(Fig. 5-6), root uptake depleted soil moisture and stimulated upward capillary flux

from contaminated groundwater. The comparison shows a maximum capillary flux

for the vegetated, non-irrigated scenario. Contamination levels within the mid-zone

of the soil profile were below 10.5 Bq m" for all scenarios. This mid-zone was

relatively remote from discharge point (i.e. the base of the soil column),

hydrologically isolated and at field capacity for most of the year. Water fluxes

(percolative and capillary) within this zone were relatively small compared to fluxes

near the column boundaries. Consequently, diffusion dominated over advection in

this zone leading to relatively low activity concentrations of79Se and 1291.
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Chapter 5 Simulating the migration of radionuclides in soil.s

As the results suggest, sorption, represented by Kd, was a key parameter

controlling 79Se and 1291dynamics. Temporal variation in activity concentrations of

these nuclides appeared to be responsive to seasonal variation of soil hydrology (i.e.

moisture content and water fluxes). The magnitude of this response, however. was

depended on Kd• Seasonal fluctuation of the local hydrology impacted the dissolved

fraction of the radionuclide total activity concentration. 79Se, which had a high Kd.

was bound (sorbed) to the soil to a greater extent so prevented from leaching and

was less sensitive to seasonal hydrological variation. In contrast. 12<)1was more

mobile (a lower Kd) so was more affected by changes in water fluxes and leaching.

Sorption affected the timescale needed to reach equilibrium activity

concentrations in soil layers. The calculations indicated that equilibrium timescales

for strongly sorbing (high Ka) 79Se in top and deep soil layers were longer (by c. 10

years) than those for poorly sorbing 1291.This trend of increasing equilibrium

timescale with Kd accords with the general trend predicted by AgUero et al. (2008)

who found that mobile radionuclides reach equilibrium in the topsoil layers earlier

than those which exhibit more retention in the soil. Activity concentrations of 7<)Sein

the top and deep soil layers at equilibrium were higher than those of 1Nl. This trend

is consistent with the calculations of other workers which indicate that strongly

sorbing nuclides are retained in soils and sediments more than their weakly sorbing

counterparts (e.g. Xu et al., 2008). Depth profiles of radionuclide activity

concentrations at equilibrium confirmed this trend - 79Se activity concentrations

were higher than 1291.

Depth distributions of soil properties apparently had no marked effect on 79Se

and 1291depth profiles. This is not unexpected since the variation in Kd predictors

(i.e. soil properties) between top and subsoils was not considerable and was reflected
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in a marginal difference in K, between the top and subsoils for both radionuclides.

The abrupt increase in activity concentrations, particularly that of 79SC,within the

topsoil (above the dashed lines) can be attributed to incorporation and mixing of the

radionuclide inventories within the residual wheat biomass remained after

harvesting (roots and straws). The increase in concentration was more noticeable for

79Se, with a higher Kd than 1291,with a low one due to the higher fixation of the

added radionuclide. Using KdS predicted from the models of Sheppard et al. (2009)

models substantially over-predicted the 1291activity depth profile in comparison to

the profile predicted using the generic Kd.

The models of Sheppard et al (2009) do not account for effects such as soil

moisture content and redox status on Kd, in spite of the ample literature evidence of

such effects (Ashworth et al., 2008; Ashworth and Shaw, 2006b). Redox gradients

do exist within the soil, particularly around the groundwater table and affect

chemical speciation of 79Se and 1291and hence their sorption properties. In addition

to the literature, the results of the experiments undertaken in this study have

demonstrated strong interactions between soil moisture content, redox status and Kd

(Chapter 3). Soil flooding resulted in soil redox potential falling over time and the

soil became anoxic. These changes stimulated dissolution of sorbing phases such as

Fe oxyhydroxides and organic matter, releasing sorbed radionuclides and Kd

changed accordingly.

Although not considered here, it should be noted that the sorbed fraction of the

radionuclide is not strictly immobile. Mass fluxes of radionuclides bound to soil

solid materials are still possible via bioturbation (i.e. transport of soil by burrowing

animals). This process has been shown to be an important transport mechanism

(Bunzl, 2002; Bunnenberg and Taeschner, 2000; MUlIer-Lemans and van Dorp,
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1996) and has recently been accounted for in assessment models (Klos, 2008;

Bergstrom et al., 1999).

Radionuclide uptake by vegetation is expected to be a function of activity

distribution within the soil in relation to root distribution. 79Se and 1291 activity

concentrations in the wheat crop at harvest are the integration of uptake over the

entire root depth through the growing season. As the simulation results suggest, 7lJSe

seemed to be less bioavailable to wheat than 1291. Although total activity

concentration (solid + liquid) of 79Se at equilibrium, as depth profiles indicated. was

higher than that of 129(, the calculated eR of 79Se for non-irrigated and irrigated

crops were I order of magnitude smaller than those of 1291.As sorption of 1291was

small it was, on the basis of the current model assumptions, more bioavailable to

wheat roots system. In contrast, 79Se was removed from the soil porewater by

sorption making it less bioavailable for the crop. Dissolved 1291 activity

concentration increased due to irrigation, and so did its uptake by the crop, leading

to higher crop activity concentrations compared to the non-irrigated crop. In

contrast, the crop could not exploit the small inputs of 79Se in the irrigation water

which sorbed onto the soil solid phase.

The current simulation results emphasise the need to distinguish between the

total activity concentration and the bioavailable fraction of radionuclides in the soil.

The results corroborate the findings of Ehlken and Kirchner (2002): it is the

bioavailable fraction that controls biological uptake, not total soil activity

concentration. Uptake is dictated by the radionuclide being in a readily available

form for the plant roots. The results of this study imply that radionuclide mobility is

an indicator of bioavailabilty. This finding is consistent with that reported by
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Sheppard et al. (20 I0) who found a negative correlation between CR and K, for a

group of 40 elements.

In order to keep the complexity of RIGEMA to a manageable level it was

assumed that all plant radionuclide uptake is passive, i.e. flow of radionuclides into

plant roots is associated with flow of water supplying the plant transpiration

demand. Mathematically, plant radionuclide uptake was simulated by multiplying

root water uptake by dissolved radionuclide concentration in soil solution.

Radionuclides were also assumed to be taken up, translocated and uniformly

distributed between different parts of a plant indiscriminately. This representation of

plant radionuclide uptake suffers a number of limitations. It implies that uptake is

controlled by unrestricted convective mass flow of a radionuclide. In practice mass

flow is restricted ifplant nutrient requirement is fulfilled and nutrients (e.g. Ca2• and

Mg2+) tend to accumulate (or even precipitate) at the root surface. A depletion zone

may develop around the absorbing roots if root uptake rate exceeds mass flow rate,

and passive uptake is reduced since diffusion of nutrients from bulk solution into

root surface is slow (Ehlken and Kirchner, 2002). The effect of ion competition

between a radionuclide (e.g. Cs+) and a macronutrient (e.g. K+) could also reduce

radionuclide uptake (e.g. Shaw and Bell, 1991). Active plant uptake which embraces

a wide range of energy-driven processes such as cation channel and element-specific

membrane transport and commonly modelled using Michaelis-Menten kinetics

(Simunek and Hopmans, 2009; Chen et al., 2008) was neglected in the current

RIGEMA formulation. Moreover, Allocation of radionuclides taken up by plants is

radionuclide- and plant-specific, and it has been shown that different radionulicdes

tend to accumulate preferentially in different plant tissues (Hong et al., 2008; Zhu et

aI., 2004). Consequently, it is not surprising that CR predicted by RIGEMA differ
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from empirically determined values. They are a few orders of magnitude higher,

from those determined experimentally for I-wheat system (0.000 I - 0.11)

(Kashparov et al., 2005; Shinonaga et al., 2001). Predicted CRs of 79Se, however,

fall within the range 0.06-11.0 and are similar to the mean value of 5.54 reported by

Bitterli et al. (2010) for wheat (Triticum aestivum) grains.
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S.S. Conclusions

The RIGEMA modelling approach, described in Chapter 4 and implemented in

Chapter 5, was used to simulate the long-term dynamics and vertical distribution of

79Se and 1291, in soil columns under different hydrological and cropping regimes,

The current assessment focused on three issues: (a) long-term dynamics of

radionuclides in soil in relation to seasonal variation in climatic conditions; (b)

influence of vegetation cover, in particular plant uptake, on vertical distribution

patterns of radio nuclides and (c) effects of sorption characteristics on both dynamics

and vertical distribution of radionuclides in the soil. The results have highl ighted the

interactions between weather conditions, soil hydrology, vegetative cover and

radionuc1ide sorption (KdS).

Soil activity concentrations exhibited temporal variability in accordance with the

seasonal variability of soil water flow, clearly driven by changes in precipitation and

" A . . . f 79S d 1291 . d d .evapotranspiration rates. ctivity concentrations 0 e an mcrease urmg

dry periods and decreased during wet periods. This implies that higher radionuclide

migration rates would be expected under drier climatic conditions, particularly for

poorly sorbing nuclides. This conclusion may provide insights into the behaviour of

long-lived radionuclides discharged from a radioactive waste repository into

biospheres where different climatic conditions exist.

The results underscore the importance of vegetation as a component of the

biosphere that contributes to the transfer of 79Se and 1291from the geosphere to the

surface environment. In comparison to advective-dispersive transport, crop uptake

serves as a fast pathway that facilitates transport of radionuclides, particularly of

strongly sorbing ones such as 79Se, from the contaminated deeper zone into the

surface zone. This highlights the importance of properly representing this biological
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pumping effect In radiological risk assessment models. The current approach to

modelling plant uptake and translocation is, however, rather simplistic and does not

account for mechanisms such as active uptake or dependency of radionuclide

translocation and mobility within the plant or their identity. Clearly, further model

refinements with respect to these mechanisms are required.

Sorption, parameterised using the Kd concept, governs many aspects of 79Se and

1291 behaviour in the soil. Kd determines the influence of soil hydrology on

radionuclide dynamics in the soil. The results suggest that soil activity

concentrations of 1291,an example of a mobile radionuclide with low Kd. is more

responsive to seasonal variability of hydrology than 79Se, a less mobile radionuclide

with a high Kd. In contrast to the mobile 1291that is leached out of the soil. 7lJSetends

to accumulate particularly near to discharge points (sources). This implies that

strongly sorbing radionuclides (high Kd) such as 79Se may pose a greater risk to

b· h 1291, h .Iota than their weakly sorbing (low Kd) counterparts sue as given t err

tendency to accumulate over time.
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future work

6.1. Conclusions

Simulations undertaken using the RIGEMA modelling methodology (Section

5.6) illustrate the sensitivity of the long-term vertical distributions of 79Se and 1291 in

soils to variations in KJ, a parameter that quantifies the partitioning of a radionuclide

between solid and liquid phases. Radionuclides with higher Kd will take a longer

time to achieve steady state activity concentrations which will be higher than those

achieved by radionuclides with lower KdS (Table 6-1).

Table 6-1 Sensitivity to K, of RIGEMA predictions of steady state activity concentrations in the
topsoil (0-20) cm under two land use scenarios. Time step size and soil layer thickness were fixed at
Iday and I em, respectively.

Biosphere ~=7 L kg-I ~=200 L kg"

model Cone. at steady state Cone. at steady state

(Bq mol) (Bq mol)

Vegetated land
0.145 3.88

(no irrigation)

Vegetated land
0.148 3.81

(with irrigation)
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Variation in K, may be attributed to differences in determination methods used

to determine Kd values experimentally, spatial variability in soil characteristics and

the dynamic behaviour of radionuclides in soils (time-varying processes),

Differences in some aspects of measurement methods, such as incubation method.

porewater separation and filtration techniques, resulted in a 10-fold variation in K,

(Section 3.3.4). This finding is in agreement with similar studies (Sheppard et al.,

2007). For some elements (e.g. I), the variation in Kd may be up to 4 orders of

magnitude (IAEA, 2009). Therefore, a standard Kd determination procedure seems

appealing since it will reduce measurement-related variation in Kd, However, since

K, is an abstract term that encompasses different concepts, the appropriateness of a

measurement method depends on the specific application. For example, a K,

determined by equilibrating a tracer with a sorbent, such as soil, represents short-

term sorption, and therefore it is therefore applicable when assessing short-term

behaviour of that tracer, or its analogues, in soils. In contrast, a Kd determined from

desorption of naturally occurring elements in soil (i.e. the approach adopted in the

experiments of this thesis) into the solution phase represents long-term fixation, and

is more suitable for assessing long-term behaviour of these elements. As a result, the

latter approach is appropriate for assessing the retardation of radionuclide releases

from underground repositories into surface ecosystems given the long timescales

typical of these assessments.

Overall, the relatively organic Sutton Bonington topsoils had higher sorption

capacities than subsoils. This is manifested in high KdS obtained for topsoils

compared with those for subsoils. The observed variation in K, between six Sutton

Bonington soils was within one order of magnitude (Section 3.3.4, Fig, 3-10). This

variation in K, reflects the variability in the physicochemical characteristics, not
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only between top and subsoils, but also among arable, grassland and woodland soils.

In practice, landscapes considered in the context of post-closure safety assessments

of geological repositories are much larger than the sampling area at Sutton

Bonington; a landscape of -104 m2 (1 hectare) area and a few meters in depth would

be typical (Klos, 2010; Klos, 2008). Such a landscape may encompass a range of

ecosystems; therefore, the spatial variation in Kd may be comparable to that

observed at Sutton Bonington (or even higher) for actual repository sites.

K, changes with time in response to soil flooding and the trend and magnitude of

this change are element specific. The maximum variation was observed for I whose

K, decreased by c. 2 orders of magnitude by the end of a 3 week incubation period

(Section 3.3.2, Fig. 3-3). This variation may be attributed to a number of

biogeochemical processes, the most important of which is solubilisation of soil iron

and organic phases under anaerobic conditions. Therefore, dynamics of iron and

organic carbon can be assumed to be important for predicting the mobility and fate

of contaminants in anoxic, iron and organic matter rich soils.

The thickness of soil layers in compartmental models should be justified and

should represent the physics of transport mechanisms in the system. The long-term

simulation of vertical migration and distribution of 79Se and 1291shows considerable

sensitivity to model predictions to time step size and soil layer thickness of the

model (Section 4.5.2, Fig. 4-8). Reducing the soil layer thickness results in higher

predictions of the migration potentials and the steady state concentrations of 79Se

and 129( in soil profiles (Table 6-2). This behaviour is a direct consequence of the

numerical dispersion effect, an artifact of the compartmental modelling approach. A

dicretisation procedure that relies on the physics of soil water flow should provide a
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useful frame of reference for discretisation of soil compartmental models (Section

4.5).

Table 6-2 Sensitivity to the soil layer thickness and time step of the bare land model predictions of

steady state activity concentration (8q m") in the soil column.

Time step Soil layer thickness

Kc!= 7 L kg" tem

t day 0.2

1year 3.6

K,= 200 L kg" tem

1 day 4.2

1year 96

tOem

3.8

to em

75.6

This procedure requires the soil column (the flow domain) to be vertically

discretised to achieve convergence of the solution to the water flow (Richards)

equation. Application of this dicretisation procedure to environmental conditions

prevailing at Sutton Bonington site resulted in an optimum soil layer thickness of I

cm (Section 4.5.2). This resolution scale is in agreement with previously reported

scales.

Land management has a pronounced effect on long-term fate and distribution of

79Se and 1291 in soil (Section 5.6.2, Fig. 5-2). Absence of vegetation restricts upward

migration to zones adjacent to the contaminated groundwater table. In contrast,

presence of vegetation enhances upward migration via root uptake. Absorption and

subsequent translocation into various parts of the plant (roots, leaves, grains. etc.)

facilitates upward migration of79Se and 1291 and results in enrichment of topsoil with

79Se and 1291.
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6.2. Recommendations

Site-specific KdS are advantageous when field measurements are feasible. Yct.

modelers and risk assessors can still utilise the extensive available K, data available

within the literature provided that reasonably appropriate Kd values are selected for

the assessments. For example, desorption KdS of native, stable elements represent

quasi-equilibrium conditions with respect to radionuclide sorption onto soils and

therefore they are more appropriate for long-term assessments than short-term

sorption KdS obtained in laboratory batch experiments.

Modelers may need to assign different KdS to different soil horizons to account

for variability in sorption characteristics and Kd down the soil profile. For example.

relatively organic topsoils have higher sorptive capacities than subsoils, and hence

would be expected to have higher KdS. Mobility of some radionuclides, such as I and

Se, is redox-sensitive and gradients in redox potential do exist in natural soils (e.g.

near the groundwater table). As a result, modelers should select the appropriate KdS

to represent this relationship between soil redox status and radionuclide mobility.

Modelers may, for example, use different KdS for soil horizons that differ in

moisture contents and, thus, redox status. They also may avoid using KdS determined

from oversaturated batch tests when simulating radionuclide transport in oxic soils.

Vertical discretisation (layer thickness) and temporal resolution (time step size)

of compartmental models of radionuclide transport in soils should be justified and

should reflect the physical characteristics of transport processes. Spatial

convergence studies can be undertaken to identify the proper resolution that

accurately describes the solution to Richards equation with maximum computational

efficiency. In other words, the thickness of the soil layer may be optimised by

iteratively solving the water flow equation for increasingly thinner soil layers untill
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convergence is achieved. The compartmental model is then discretised in

accordance with the optimum layer thickness. Regarding the temporal resolution

scale, using a daily time step enables the model to capture the intra-annual variation

in hydrology and radionuclide dynamics and thus produce more detailed predictions.

Given the long time periods associated with radiological risk assessments of

geological repositories, changes to land management seems a certainty. However.

uncertainty regarding the nature of these changes and the general evolution of the

present-day landscape represents remains one of the challenges to reliable and

accurate long-term radioecological modeling. Therefore, in order to improve

reliability and accuracy of assessment model predictions. available models need to

address the phenomenon of landscape evolution. One approach is to postulate a set

of future biospheres into which the present-day landscape is projected to evolve. The

state of the landscape is changed at certain points in time. and the fate of

radionuclides is simulated accordingly after adjusting the initial conditions to

account for radioactivity present in the previous biosphere.
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6.3. Future work

The models constructed using the RIGEMA approach are meant to be as generic

as possible and they therefore involve a great deal of simplification. Nevertheless,

the simulations presented in this thesis provide valuable information on radionuclide

behaviour in soils under various environmental conditions. The future work wi II

focus on building models that incorporate a wider range of processes. For example,

only mass flow in the liquid phase is considered and radionuclide transport is solely

driven by advection and diffusion. Bioturbation, can also mobilise solid-borne

radionuc1ides by mixing top and subsoils. In fact, this mechanism may be more

important and effective in displacing and redistributing soil radionuclides in some

soils as advection and diffusion mechanisms.

Improving the RIGEMA method to account for preferential flow of

radionuclides in soils is a task set for future work. The standard Richards equation

adopted in the RIGEMA approach is adequate for simulating uniform water and

solute flow in porous media but cannot simulate preferential flows. Preferential

flow, caused by soil heterogeneity and the presence of macropores. leads to

acceleration of water and solute movement as they travel through macropores,

bypassing the soil matrix. Nevertheless, Richards equation can be modified to

simulate preferential flow in soils by using a variety of approaches including dual

porosity and dual permeability models.

Since chemical speciation and mobility of redox-sensitive radionuclides are

dependent on soil redox potentials (Eh) it is important for the RIGEMA approach to

account for these dependencies. Eh, however, is a notoriously difficult variable to

measure and interpret so other variables which are intrinsically linked to Eh and

which may be considered to be 'surrogates' of Eh, such as dissolved oxygen
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concentration and moisture content, may be used. RIGEMA would benefit from an

explicit representation of the relationship between Eh 'surrogates' and species-

dependent KdS (e.g. KdS for iodate and iodide). Mathematical or statistical

representation of these relationships needs more experimental investigations.

The assumption of invariant environmental conditions (climate. depth of

groundwater table, land use, soil characteristics, etc.) during 1000 years cannot be

justified since environmental change is almost a certainty on such timescales which

are typical of safety assessments of geological repositories. Thus, one area identified

for further research is extending the RIGEMA approach to handle environmental

change scenarios. A classical approach has been to build models for the projected

succession of present-day landscape, i.e. radioecological models of ecosystems

projected to occur in the future. This approach has a number of limitations since

assumptions have to be made regarding the characteristics of these ecosystems and

the time of transformation between different ecosystem states. For example, future

ecosystem characteristics are assumed to be invariant for a certain period of time

before abrupt shifts between different ecosystem states occur. Besides, both future

ecosystem characteristics and time of ecosystem transformation are assumed to be

known. Clearly, these assumptions are oversimplifications for many reasons.

Extreme events such as floods that change many ecological attributes compromise

the assumption of invariant environmental conditions. Also, not all changes to

ecosystems are abrupt. especially when the change is natural and not enforced by

human intervention. A very important consideration for future modelling studies

will be the exploration of the relative consequences of gradual environmental

change versus punctuated, possibly catastrophic, natural events on radionuclide
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distribution and impacts in the biosphere. Therefore, much research is needed in this

area.
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Appendix 1 Elemental concentrations in porewater samples

collected from microcosms

Elemental concentrations in porewater samples collected from mini column

microcosms. Sample ID code: sampling day-soil type-replicate No.

Sample ID Fe Se I Re U

Ilg L-t Ilg L-t Ilg L-t ng L-1 Ilg L-1

d I-SB-ATS-I 104.19 1.12 36.85 26.94 0.54

d I-SB-A TS-2 95.95 1.10 36.13 17.73 0.45

d I-SB-ATS-3 no sample 1.04 34.29 27.58 no sample

d2-SB-A TS-I 175.73 1.14 50.73 16.88 0.75

d2-SB-A TS-2 135.93 1.08 53.10 14.51 0.70

d2-SB-A TS-3 181.73 1.09 48.11 16.77 0.20

d3-SB-A TS-I 255.46 0.97 72.12 12.94 0.92

d3-SB-A TS-2 314.56 0.87 85.12 11.43 0.83

d3-SB-A TS-3 291.06 0.88 55.62 13.83 0.89

d4-SB-A TS-I 605.06 0.90 98.18 7.40 1.03

d4-SB-A TS-2 339.76 0.79 111.28 8.15 0.94

d4-SB-A TS-3 378.16 0.70 108.28 6.78 0.82

d5-SB-A TS-I 706.66 0.91 119.18 7.95 1.01

d5-SB-A TS-2 801.96 0.85 165.08 6.51 1.09

d5-SB-A TS-3 619.06 0.83 131.18 7.17 1.05

d6-SB-A TS-I 1346.76 0.87 177.28 6.43 1.10

d6-SB-A TS-2 1312.76 0.79 137.18 6.37 1.14

d6-SB-A TS-3 1307.76 0.81 136.28 6.34 1.04

d7-SB-ATS-I 1945.76 0.81 147.68 6.71 0.98

d7-SB-ATS-2 1761.76 0.77 183.88 5.95 0.94
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Sample ID Fe Se I Re U

,...g L-1 ,...gL-1 ,...g L-1 ng L-1 ,...g L-1

d7-SB-ATS-3 2055.76 0.82 159.18 5.80 1.01

d 1O-SB-ATS-I 5336.00 1.16 337.82 9.47 0.77

d IO-SB-ATS-2 6140.00 0.95 402.52 8.63 1.41

d IO-SB-ATS-3 9566.00 0.99 376.72 7.84 1.32

d 14-SB-ATS-I 13030.00 1.40 538.42 9.60 0.85

d 14-SB-ATS-2 12760.00 1.13 718.62 11.29 1.84

dI4-SB-ATS-3 14950.00 1.05 693.12 7.90 1.20

dI7-SB-ATS-I 20700.00 1.77 711.12 11.30 0.56

d 17-SB-ATS-2 22000.00 1.33 909.02 11.13 1.38

d 17-SB-ATS-3 22730.00 1.20 700.12 8.08 0.83

d22-SB-A TS-l 19129.95 1.30 901.76 7.09 1.04

d22-SB-A TS-2 17089.95 1.34 1097.16 10.31 2.30

d22-SB-A TS-3 19619.95 1.33 1080.16 8.51 0.97

d I-SB-ASS-I 177.59 2.05 55.07 57.58 0.20

d I-SB-ASS-2 179.39 2.04 55.17 61.29 0.21

d I-SB-ASS-3 185.89 2.08 55.49 61.62 0.21

d2-SB-ASS-I 122.33 1.79 52.76 25.10 0.16

d2-SB-ASS-2 128.53 1.91 57.93 32.83 0.20

d2-SB-ASS-3 143.53 1.89 60.30 31.12 0.20

d3-SB-ASS-l 180.86 1.37 72.36 12.50 0.17

d3-SB-ASS-2 145.76 1.44 81.59 14.45 0.20

d3-SB-ASS-3 104.06 1.43 87.98 12.98 0.50

d4-SB-ASS-I 249.56 1.16 75.87 11.02 0.23

d4-SB-ASS-2 412.36 1.23 88.34 10.54 0.20

d4-SB-ASS-3 519.36 1.26 92.38 11.77 0.21

d5-SB-ASS-I 422.56 1.09 70.51 9.90 0.24

d5-SB-ASS-2 511.16 1.13 97.68 10.80 0.22

d5-SB-ASS-3 625.56 0.82 105.38 8.06 0.17

d6-SB-ASS-I 762.16 1.02 90.28 10.76 0.23

d6-SB-ASS-2 514.56 1.05 107.58 9.16 0.20
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Sample ID Fe Se I Re U

Jlg L-t Jlg L-t Jlg L-t ng L-t Jlg L-1

d6-SB-ASS-3 892.16 1.07 117.78 10.10 0.21

d7-SB-ASS-1 1164.76 0.90 100.68 7.59 0.23

d7-SB-ASS-2 1007.76 1.01 117.38 9.22 0.21

d7-SB-ASS-3 1142.76 1.02 122.58 9.59 0.21

d 10-SB-ASS-1 4148.00 1.02 238.62 9.35 0.21

d 10-SB-ASS-2 3148.00 1.10 290.12 10.39 0.24

d 10-SB-ASS-3 4778.00 1.13 262.32 10.64 0.22

d 14-SB-ASS-I 7074.00 1.20 441.52 11.54 0.28

d 14-SB-ASS-2 5339.00 1.19 403.82 11.41 0.29

d 14-SB-ASS-3 6958.00 1.13 380.82 10.51 0.20

d 17-SB-ASS-1 12810.00 1.27 466.72 9.49 0.16

d 17-SB-ASS-2 11540.00 1.28 539.72 10.30 0.28

d 17-SB-ASS-3 12280.00 1.26 557.82 10.46 0.25

d22-SB-ASS-I 11799.95 1.43 841.36 10.24 0.67

d22-SB-ASS-2 11169.95 1.46 799.26 9.67 0.72

d22-SB-ASS-3 11719.95 1.41 700.16 9.22 0.38

d I-SB- WTS-1 6413.69 5.80 73.91 55.10 0.29

dl-SB-WTS-2 6297.69 6.15 75.82 70.13 0.29

dl-SB-WTS-3 6764.69 6.17 72.23 68.11 0.31

d2-S8- WTS-J 5522.73 5.46 69.06 50.84 0.25

d2-S8- WTS-2 6031.73 6.06 74.23 59.57 0.27

d2-SB-WTS-3 5529.73 7.10 71.41 71.24 0.25

d3-SB-WTS-l 4925.76 5.43 78.08 51.80 0.22

d3-S8-WTS-2 6000.76 6.11 70.46 58.16 0.26

d3-S8-WTS-3 5917.76 7.96 75.96 75.80 0.26

d4-SB-WTS-1 5679.76 6.05 83.45 53.48 0.24

d4-SB-WTS-2 6166.76 6.02 84.52 56.92 0.25

d4-SB-WTS-3 6609.76 7.30 82.04 66.15 0.27

d5-SB-WTS-I 5342.76 5.88 92.78 53.56 0.21

d5-SB-WTS-2 5860.76 5.58 107.38 54.68 0.23
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Sample ID Fe Se I Re U

Ilg L-1 Ilg L-1 Ilg L-1 ng L-1 Ilg L-1

d5-SB- WTS-3 5883.76 6.32 276.08 57.45 0.24

d6-SB- WTS-I 6377.76 6.07 110.62 56.12 0.25

d6-SB-WTS-2 6300.76 5.73 88.36 54.28 0.23

d6-SB-WTS-3 6222.76 5.88 87.29 56.38 0.22

d7-SB-WTS-1 7214.76 5.85 107.08 50.84 0.26

d7-SB-WTS-2 6117.76 5.20 94.38 48.21 0.21

d7-SB-WTS-3 no sample 0.00 102.78 0.00 no sample

d1O-SB-WTS-1 21580.00 8.78 201.32 65.17 0.32

d 1O-SB-WTS-2 13770.00 7.63 152.12 61.21 0.28

d 1O-SB-WTS-3 22450.00 10.42 199.02 73.80 0.38

d 14-SB-WTS-l 54530.00 12.95 332.72 95.06 0.44

d 14-SB-WTS-2 40520.00 12.04 285.82 88.42 0.38

d 14-SB-WTS-3 54730.00 14.20 351.12 95.89 0.47

dI7-SB-WTS-1 87420.00 14.59 510.22 127.50 0.52

dI7-SB-WTS-2 68420.00 13.94 466.82 114.40 0.44

dI7-SB-WTS-3 77500.00 15.22 531.02 119.70 0.51

d22-SB-WTS-l 73870 16.98 943.9 181.7 2.07

d22-S8- WTS-2 63250 16.75 797.5 170.3 1.83

d22-SB- WTS-3 65370 17.21 864 153.8 2.04
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Elemental concentrations in porewater samples collected from sacrificial

microcosms. Sample ID code: sampling day-soil type-filter size-replicate No.

Sample ID Fe Se I Re U
I'g L-1 I'g L-1 I'g L-1 ng L·1 I'g L·1

d7-SB-ATS-0.1-1 78.94 1.471 28.01 0.041 0.282

d7-SB-ATS-0.1-2 63.85 1.154 27.73 0.031 0.4

d7-SB-ATS-0.22-1 74.64 0.994 62.54 0.035 0.471

d7-SB-ATS-0.22-2 616.9 1.413 35.81 0.026 0.33

d7-SB-ATS-0.45-1 342.5 1.409 36.66 0.027 0.546

d7-SB-A TS-0.45-2 234.5 1.172 37.95 0.031 0.322

d15-SB-ATS-0.45-1 301.6 2 136.73 0.058 0.677

d15-SB-ATS-0.45-2 213.4 1.064 107.53 0.011 3.527

d21-SB-A TS-0.45-1 5951 2.42 728.12 0.021 10.02

d21-SB-A TS-0.45-2 4033 2.203 591.62 0.018 8.608

d30-SB-A TS-0.45-1 679.7 1.253 55.54 0.009 0.818

d30-SB-A TS-0.45-2 11570 1.874 950.02 0.022 11.19

d7-SB-ASS-O.I-I 90.69 3.881 155.43 0.085 0.285

d7-SB-ASS-0.1-2 58.15 1.701 78.51 0.133 0.04

d7-SB-ASS-0.22-1 405.8 1.928 93.41 0.125 0.146

d7-SB-ASS-0.22-2 252.8 1.858 89.83 0.125 0.081

d7-SB-ASS-0.45-1 520.3 1.914 81.57 0.112 0.104

d7-SB-ASS-0.45-2 570 1.813 99.77 0.133 0.118

d15-SB-ASS-0.45-1 293.8 2.111 158.23 0.057 0.605

d15-SB-ASS-0.45-2 1098 1.368 247.63 0.012 5.841

d21-SB-ASS-0.45-1 252.9 2.484 129.82 0.101 0.173

d21-SB-ASS-0.45-2 424.3 2.401 96.65 0.109 0.07

d30-SB-ASS-O.45-1 688.8 1.455 72.92 0.112 0.095

d30-SB-ASS-O.45-2 425.6 1.358 72.38 0.126 0.133

d7-SB-GTS-0.I-I 184.1 2.04 34.91 0.063 0.155

d7-SB-GTS-0.1-2 189.6 1.348 28.54 0.071 0.077

d7-SB-GTS-0.22-1 383 1.243 37.72 0.063 0.218

d7-SB-GTS-0.22-2 243.7 1.151 47.24 0.079 0.161
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Sample ID Fe Se I Re U
IJg L-1 IJg L-1 IJg L-t ng L-1 IJg L-1

d7-SB-GTS-0.45-1 415.9 1.173 32.61 0.077 0.121

d7-SB-GTS-0.45-2 490.9 1.066 39.48 0.074 0.12

d 15-SB-GTS-0.45-1 1564 1.409 192.43 0.023 1.239

d15-SB-GTS-0.45-2 1609 1.207 105.73 0.017 0.633
d21-SB-GTS-0.45-1 487.3 1.363 30.21 0.026 0.125

d21-SB-GTS-0.45-2 1293 1.371 22.59 0.042 0.129

d30-SB-GTS-0.45-1 1025 0.901 21.39 0.017 0.139

d30-SB-GTS-0.45-2 1287 0.902 20.14 0.014 0.175

d7-SB-GSS-O.I-I 72.62 2.52 70.35 0.16 0.075

d7-SB-GSS-0.1-2 157.8 2.013 79.30 0.146 0.106

d7-SB-GSS-0.22-1 406.1 2.101 195.63 0.139 0.543

d7-SB-GSS-0.45-1 634.5 2.122 69.02 0.156 0.171

d7-SB-GSS-0.45-2 569.5 2.063 64.56 0.139 0.193

d15-SB-GSS-0.45-1 717 1.066 90.46 0.091 0.129

d15-SB-GSS-0.45-2 1526 1.606 58.92 0.112 0.176

d21-SB-GSS-0.45-1 725.8 1.796 74.42 0.15 0.16

d21-SB-GSS-0.45-2 379.3 1.221 51.16 0.168 0.087

d30-SB-GSS-0.45-1 161.6 1.127 48.53 0.157 0.058

d30-SB-GSS-0.45-2 357.4 1.387 46.83 0.139 0.098

d7-SB-WTS-0.I-I 854.7 1.029 16.69 0.143 0.098

d7-SB-WTS-0.1-2 1958 1.782 182.93 0.138 0.215

d7-SB-WTS-O.22-1 732.4 0.773 15.68 0.137 0.114

d7-SB-WTS-0.22-2 11070 3.892 244.93 0.107 1.154

d7-SB-WTS-O.45-1 5298 2.896 88.32 0.11 0.917

d7-SB-WTS-0.45-2 1938 1.315 24.35 0.135 0.257

d15-SB-WTS-0.45-1 11040 5.076 173.23 0.069 1.378

d15-SB-WTS-0.45-2 14150 5.09 281.33 0.046 1.321

d21-SB- WTS-0.45-1 57170 6.768 1165.02 0.121 1.685

d21-SB- WTS-0.45-2 43200 6.648 845.42 0.12 1.735

d30-SB- WTS-0.45-1 21970 4.415 717.12 0.09 1.185
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Sample ID Fe Se I Re U
I'g L-1 I'g L-1 I'g L-1 ng L-1 J.1gL-1

d30-S8- WTS-0.45-2 88830 6.463 808.22 0.112 1.721
d7-S8- WSS-O.I-I 1081 2.119 133.63 0.056 0.287
d7-S8- WSS-0.1-2 998.6 1.981 119.73 0.06 0.28
d7-S8- WSS-0.22-1 1728 2.138 116.23 0.063 0.435
d7-S8- WSS-0.22-2 1371 2.132 119.03 0.067 0.393
d7-S8-WSS-0.45-1 2467 2.213 145.13 0.074 0.666
d7-S8- WSS-0.45-2 2382 2.462 145.53 0.057 0.671
d15-S8- WSS-0.45-1 3357 1.81 113.23 0.044 0.582
d15-S8- WSS-0.45-2 1794 1.833 108.43 0.045 0.45

d21-S8- WSS-0.45-1 1341 1.65 115.02 0.059 0.397

d21-S8- WSS-0.45-2 1599 1.711 133.92 0.071 0.515

d30-S8- WSS-0.45-1 2304 1.971 149.62 0.053 0.467

d30-S8- WSS-0.45-2 1213 1.762 113.42 0.063 0.399

d7-S8- WTS-O.l-l-new Rh 1382 1.273 21.00 0.107 0.156

d7-S8- WTS-O.I-l-new Rh 880.2 0.908 16.06 0.108 0.102
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