
Artificial Intelligence Methods
in Process Plant Layout

by Andrew MClJrien, BSc

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy, April, 1994

Table of Contents

Abstract .. IV

Acknowledgements V

1 Introduction. .. 1
1.1 The Original Work .. 4
1.2 The Structure of the Work 6

2 literature Review .. 9
2.1 The Observed Technique .. 10

2.1.1 Information Assimilation 11
2.1.2 Preliminary Equipment Design. 12
2.1.3 Analyzing Process Flow .. 13
2.1.4 Deriving Elevation 14
2.1.5 Identifying Other Factors 15
2.1.6 Plan Positioning .. 17
2.1. 7 Review and amendment 20
2.1.8 Disseminating The Layout. .. 21
Relationship To Design Studies 22
Visualisation Tools .. 23
2.3.1 Physical Analogues .. 24
2.3.2 Commercial CAD Packages .. 25
Systematic Techniques .. 27
2.4.1 The Relationship Chart 27
2.4.2 The Correlation Chart . .. 28

30
31
34
37
37
40
41
45
47
50
52
53

2.2
2.3

2.4

2.4.3 The Travel Chart .
2.5
2.6
2.7

Layout Visualisation Packages .
Automating Process Plant layout .
Automating Space Planning .
2.7.1 The Quadratic Assignment Problem .
2.7.2 Simulated Annealing .
2.7.3 The Dual Graph Formulation .
2.7.4 The Transformation Grid. .
2.7.5 Symbolic Constraint Representations .
2.7.6 Increasing Sophistication .
2.7.7 Least Commitment Problem Solving .

2.8 Current Work .

i

3 Experimentation and Results .. 54
3.1 How PLS Was Developed 55
3.2 The Test Process .. 58

3.2.1 Process Description .. 58
3.2.2 Discussion of the Process .. 67

3.3 Results .. 69

4 The Principles of PLS 82
4.1 The Role Of Constraints 82
4.2 Constraint Propagation in Layout .. 88
4.3 Decomposing Layout into Phases 92

4.3.1 The Pre-Processing Phase .. 92
4.3.2 Determining Elevations 94
4.3.3 Forming Groups .. 95
4.3.4 Plan Layout 101

5 Representational Issues 104
5.1 Representing the Data .. 105
5.2 Reasoning in PLS 115
5.3 Values that Vary with Time 131

(; Constraints in Conceptual Layout 133
6.1 Constraints as Diadic Relationships 133
6.2 A Taxonomy of Constraints 134

6.2.1 Physical FRs .. 135
6.2.2 Segregation FRs 136
6.2.3 Logical FRs 137

6.3 Representing Constraints 140
6.4 Representing Relative PR Importance 145

6.4.1 Indeterminate Comparisons 152
6.4.2 Segregation FRs. .. 152

7 Calculating Elevation .. 154
7.1 Propagating Process Constraints .. 157
7.2 Positioning Floors 160

8 Group Fonnation .. 169
8.1 Representing Groups .. 172
8.2 Forming Preliminary Groups .. 173

8.2.1 Forming Preliminary Physical Groups 174
8.2.2 Forming Preliminary Logical Groups 177
8.2.3 Forming Preliminary Segregation Groups 184

8.3 Developing Final Groups .. 186

ii

9 Plan Positioning .. 194
9.1 The Plan Tree .. 200
9.2 Positioning The Group Members 204
9.3 Deriving Absolute Positions 206
9.4 Detailed Treatment of Plan Positioning 206

10 Discussion................................··· 212
10.1 The Value of PLS 212
10.2 PLS as a General Tool 219
10.3 Problem Size 219
10.4 Sufficiency of Knowledge. .. 220
10.S Generality of Approach .. 221
10.6 Further Work .. 222

10.6.1 Quality Assured Implementation 222
10.6.2 The User Interface 222
10.6.3 Expanding the Knowledge Base • 223
10.6.4 Refined Handling of Site Topography. 224
10.6.S Refmed Back-Tracking and Multiple Solutions 22S

11 Summary and Conclusions 227

References 232

Appendix A: Notation for Example Frames 247

iii

Abstract

The thesis describes "Plant Layout System" or PLS, an Expert System which

automates all aspects of conceptual layout of chemical process plant, from sizing

equipment using process data to deriving the equipment items' elevation and plan

positions. PLS has been applied to a test process of typical size and complexity

and which encompasses a wide range of layout issues and problems. The thesis

presents the results of the tests to show that PLS generates layouts that are

entirely satisfactory and conventional from an engineering viewpoint.

The major advance made during this work is the approach to layout by Expert

System of any kind of process plant. The thesis describes the approach in full,

together with the engineering principles which it acknowledges.

Plant layout problems are computationally complex. PLS decomposes layout into

a sequence of formalised steps and uses a powerful and sophisticated technique

to reduce plant complexity. PLS uses constraint propagation for spatial synthesis

and includes propagation algorithms developed specifically for this domain. PLS

includes a novel qualitative technique to select constraints to be relaxed. A

conventional frame based representation was found to be appropriate, but with

procedural knowledge recorded in complex forward chaining rules with novel

features. Numerous examples of the layout engineer's knowledge are included

to elucidate the epistemology of the domain.

lV

Acknowledgements

This thesis marks the culmination of my formal education throughout which my

parents, Donald and Margaret, have supported and encouraged me. They instilled

the desire to learn in me which ultimately led to this research. This is an

excellent time to thank them for all they have done for me throughout the years.

I commenced this work while an Associate of a Teaching Company between the

University of Nottingham and Zyqad Limited, and completed it while an

employee of Zyqad. I would like to thank the Chairman of Zyqad, Mr Jim

Madden, who made it possible for me to explore this fascinating subject and who

granted permission for me to report the work.

I would also like to thank Dr Carl Pulford, my supervisor for the majority of this

work. His advice on the direction and structure of the work has been invaluable,

his proof-reading has been meticulous and swift and his comments have always

been thoughtful and thought-provoking.

I would particularly like to thank my wife, Angela, who has accepted her status

as a "thesis widow" with such good grace. Without her constant great patience

and understanding, I could not have completed this thesis.

The untimely death of my original supervisor, Dr John Mecklenburgh, left the

discipline of Process Plant Layout without one of its key authorities. My frequent

references to his classic book reflect the contribution he made to the field.

v

Chapter 1: Introduction

Traditionally, a chemical process plant is designed by two almost independent

functions, often referred to as the "process design" and "plant design" functions.

The process design function designs and enumerates a specification of the process

to be operated in the plant. This specification includes the type of equipment

needed to perform each stage; the service conditions within the items, such as

temperatures, pressures and compositions; the characteristics of the items which

define how they are to achieve their function, such as the number of trays in a

column, or the heat transfer area in a heat exchanger; the streams of process

media flowing between the items and the means by which the process will be

controlled.

The plant design function derives a physical design for the plant. This conforms

to the requirements imposed by the functional specification of the process and its

components. Plant design includes the selection of equipment types to perform

the required process duty, such as the type of pump to perform a stated pumping

duty; the detailed mechanical design of non-standard items of equipment; the

selection of piping components and the routing of pipes to carry the streams; civil

design and structural design.

The task of determining the spatial arrangement of the items within the plant is

often referred to as "conceptual" or "preliminary" layout. It is the first step in

converting the functional specification of the process into the three dimensional,

physical plant design. Taken together, process design and conceptual layout

constitute the so-called "front-end" design phase.

1

Front-end design is characterised by being highly creative and offers the designer

significant degrees of freedom. Thereafter, design becomes increasingly

deterministic. Many of the requirements that the plant designers must meet arise

directly from the front-end solutions. Similarly, the options available to the plant

designers are heavily constrained by features of the front-end design.

Accordingly, although only a small percentage of the total project budget has been

spent once front-end design is complete, the majority of the budget is committed.

One study showed that typically, 20% is spent and 80% committed [Craft 1985].

Clearly, the quality of the front-end design is instrumental in the commercial

success of a project. Layout is an important element in this and Mecldenburgh

[1985] states that a good layout provides

"a plant that is safe and efficient to construct, operate and maintain,

whilst making effective use of the land available"

and adds

"a well thought-out layout also contributes to the successful planning

of both engineering design and construction."

However, he warns that

"a bad layout will probably lead to an unsuccessful and unsafe

venture. "

The process industry operates in an increasingly stringent commercial and

legislative environment. More sophisticated products are manufactured to gain

market differentiation. These are made by processes which are likely to be based

on complex chemistry conducted using aggressive conditions and involving

hazardous compounds. This has made process and plant engineering more

difficult. At the same time, the general public and regulatory bodies such as the

British Health and Safety Executive are demanding higher standards of safety and

reduced environmental impact in plant design and operation. Additionally,

pressure has increased to reduce capital and operating costs.

Nonetheless, the layout engineer still relies on individual experience and flair.

Until very recently, his only tools were simple physical analogues used to

2

visualise the layout as it emerged. This contrasts with other design disciplines
which have adopted sophisticated computerised systems. These systems support

increased optimisation of the process by simulation and modelling and implement
elaborate data recording and change control systems. They have improved design
consistency and quality and made design data more accessible to review and
validation.

These positive experiences of computerisation provide compelling arguments that
conceptual layout should be furnished with similarly sophisticated computer

support. Certainly, the almost archaic current approach employed by the
conceptual layout engineer is hardly commensurate either with the computer
systems employed by the other disciplines or with the importance of high quality

layout designs.

The problem is exacerbated further. It is a paradox that the process designers
require three-dimensional physical data to develop their functional model of the
process from which the layout will ultimately be derived. Detailed data are

required to support specific calculations. For example, elevation differences are
required to calculate pump hydraulics and thermosyphon reboiler boil-up rates.
It is also likely that a number of alternative processes will be developed and
compared before one is chosen for design to completion. Rose [1978] argues that
approximate layouts should be developed to support these comparisons. The

technical feasibility and suitability of each process option for the intended site may
be assessed more fully and the precision of cost estimation and hazard assessments

increased.

Even though the potential benefits may be great, it is difficult to justify the

significant investment in time required to develop provisional layouts at the early
stages of a project. The process engineers compensate by including significant

factors of safety in the process design. In many cases, this leads to over-design

which reduces efficiency and economy throughout the plant's life cycle. The lack

3

of precision in the technical, economic and safety assessments introduces

uncertainty and risk into perhaps major investment decisions.

1.1 The OriginalWork
Many computer systems have been constructed which attempted to automate

layout of both process plant and other facilities. Many of these embodied

computing techniques at the forefront of development at the time they were

constructed. Even so, none was practicable for conceptual process plant layout.

Many were designed for other applications with few features in common with

conceptual layout. These were inappropriate for process plant layout although

many succeeded in their intended uses. Others were designed specifically for

conceptual layout. These were probably the least successful because the

computing technology available at the time could not match the needs of the

domain.

Since then, Artificial Intelligence techniques have matured and can now be used

to solve problems of the large scale and complexity of the conceptual layout task.

In particular, Expert Systems are now in common use solving real problems

including various design tasks. Brachman et al [1983] present the features that

distinguish Expert Systems both from Artificial Intelligence in general and from

conventional procedural programming. There are compelling arguments that we

are much more likely to succeed in building a computer system to automate

conceptual layout if we use Expert System technology than previous computing

techniques.

The overall brief for the original work was to progress as far as possible towards

an Expert System that might be used commercially to generate automatically three

dimensional conceptual layouts from process data. A system such as this would

require two major components. It would require a generic structure which

implemented the system's problem solving approach. No precedent existed for

this structure so original research would be required to develop it from first

principles. The system would also require a knowledge base which embodied a

4

wide range of the knowledge and practices of layout engineers would also have

to be elicited and encoded. A knowledge base that would be sufficiently broad

to be used in practice would require many man-years of elicitation and coding to

catalogue the knowledge of practising layout engineers. A large team funded

commercially would be required to build a knowledge base such as this. It was

decided at the outset of this work that it was most appropriate for the author to

concentrate on the intellectually challenging research required to develop the

generic problem solving structure. Thus, the following three specific objectives,

which were actually intimately linked in practice, were set for the original work

reported in this thesis:

Objective 1

To construct a prototype for an Expert System which substantially automates

process plant layout. The techniques that engineers currently use and the

information that they manipulate and derive were to be considered.

Representations for the data and knowledge, and techniques for reasoning were

to be selected or developed, combining a number of each if necessary. The

priority was to develop the underlying problem-solving techniques of the system.

Objective 2

To use the prototype to layout a test case plant to demonstrate the efficacy of the

approach adopted. The test plant was to be similar in size and complexity to a

typical conceptual layout task. The plant was to encompass a wide range of

layout issues and problems to ensure the generality of the prototype.

Objective 3

To establish a general approach to automating process plant layout which can be

embodied in any Expert System, reflecting the design of the prototype, and to

identify the features and constraints of the domain which any Expert System must

recognise.

5

The work was directed toward developing a generic Expert System to support

conceptual layout in the broadest sense. An alternative strategy might have been

to construct a "point application" to support a very specific layout task, such as

the repeat design of packaged systems such as air separation units. However, a

system dedicated to one type of plant would only benefit engineers directly

engaged in laying out examples of that type. Furthermore, other software

developers could learn little from work of that type.

1.2 The Structure of the Work
When the approach that an experienced engineer uses to layout a process plant

is studied, it is apparent that it would be difficult to emulate it in a computer

program, whether procedural or knowledge based. A fundamental approach to

laying out process plant by Expert System was therefore developed from first

principles during this work. The development of this approach ultimately

comprised a major part of the original work. The working prototype was

constructed in parallel with the development of the underlying approach. This

prototype was called Plant Layout System or PLS. As the approach took shape,

its raw concepts were converted into algorithms which were built into PLS. PLS

catalysed and guided further development of the approach and served as a test bed

for the approach as it developed. Thereby, the development of PLS and the

underlying approach became intimately linked.

A knowledge base was constructed during the experimental work specifically to

support the testing of PLS. This knowledge base includes knowledge that a layout

engineer might use to derive preliminary designs and estimate sizes of items of

process equipment. This knowledge was elicited from standard chemical

engineering texts such as Perry [1984] and the very useful "Equipment Design

Handbook" [Evans 1979]. The knowledge base also includes knowledge specific

to plant layout, such as knowledge to identify the constraints on an item's

position. In the main, this was elicited from practising layout engineers and from

the standard texts on plant layout by Mecklenburgh [1985] and Kern [1977].

Numerous examples of PLS's knowledge will be provided to convey an

6

understanding of the types of knowledge that are required in this domain. The

knowledge base is not presented in detail within the thesis because it mainly

records well documented and understood engineering principles. It is important

to note, nonetheless, that engineers design a layout by recalling solution fragments

which they have learned over many years. They no longer consider the

underlying principles directly and rarely reason about the fundamental factors that

govern the position of an item of equipment. The layout texts mainly record these

solution fragments. PLS is designed to reason from the fundamental factors to

a solution. This brings many benefits to the user and allows an appropriate and

efficient implementation. These factors had to be teased out of the solution

fragments during knowledge elicitation - the published information could not be

encoded directly. Thus, building the knowledge base was a substantial task of

itself.

When the work commenced, no shell or programming environment existed that

offered the functionality that was required by PLS. Reynolds, in consultation ,.

with the author, constructed a knowledge representation language called "IRIS",

designed specifically as the implementation vehicle for this work. IRIS itself is

not reported in this thesis because it is neither the work of the author nor an

essential element of PLS. The ways in which IRIS was used to represent layout

knowledge and data in PLS are described in Chapter S. The demands that the

domain places on a knowledge representation language are highlighted.

PLS was applied to a test process of the size and complexity of a typical

conceptual layout task and generated an entirely satisfactory layout. This test

constitutes the formal results of the experimental work and is reported in full in

Chapter 3. However, the major intellectual content, and benefits, in this work lie

in the principles of PLS's operation. These can be employed in any Expert

System for the same domain. The majority of the thesis concentrates on these

principles to show the design requirements that the domain places on an Expert

System and to describe the fundamental approach which meets these requirements

very effectively. The prototype of PLS is discussed throughout the thesis to

7

elucidate the requirements; to expand on the description of the approach; to

substantiate the approach as implementable and efficacious and to indicate

particular difficulties that arise.

IRIS has been developed into a proprietary system since the completion of this

work.

8

Chapter 2: Literature Review

One technique is observed almost universally for layout development. It is

entirely manual. The engineer employs simple tools to visualise the layout as it

emerges. Traditionally, these have been either two-dimensional cardboard

cut-outs or crude three-dimensional physical block models. Very recently, the use

of three-dimensional computer models has been reported. The first three sections

of this review chapter discuss the current technique for conceptual layout, relate

it to general models of design as a procedure and describe why such apparently

crude tools are still highly favoured.

Systematic methods have been developed for factory and other layout work. The

methods are historically important in their own right. They also provide the

concepts embodied in a number of computer programs developed to assist the

layout engineer by maintaining a record of the evolution of the design, providing

some level of feedback and presenting the layout. The methods are described in

the fourth section of this chapter, the programs which embody them in the fifth.

The latter have never been successfully employed but collectively demonstrate a

need if not a means of meeting it.

An enormous range of computer systems have been developed to support or even

automate specific tasks which may be considered to be examples of design or

configuration. These are well reviewed elsewhere [Coyne 1991]. It is

unnecessary to replicate this review in this thesis. Specific techniques and results

from these other systems will be referred to as appropriate within the description

of the original work in the following chapters. The central element of PLS is its

automated space planning capability. It is appropriate therefore to include a

discussion of the wide range of programs developed for this. Some of these

9

systems were developed specifically for application to process plant layout, others

to general space planning tasks. The programming techniques range from

numerical optimisation used in the seminal programs of the early 1960s through

to advanced symbolic processing used today. Automation of process plant layout

then of general automated space planning is reviewed in the last two sections of

this chapter.

2.1 The Observed Technique
No practical systematic procedure is known that may be used to derive directly

an optimal layout of a process plant. Certain essential tasks must be conducted

to complete a layout from the essentially fixed start point. These tasks are

conducted in substantially the same order by all designers, and all designers

appear to approach each in a like manner. Effectively, an ad hoc technique has

evolved. Within each task however, the actions are performed with little

procedural structure. In some, even the means by which the actions are

performed are poorly understood.

The tasks are presented here as a linear procedure. In practice, the steps are not

as clearly delimited as this somewhat pedagogical description implies. Separate

sections of the plant may be considered concurrently. The design may be

progressed to a different stage in each section at any time. The designer may blur

the distinctions between the steps, attempting more than one simultaneously.

The description of the technique presented here encompasses all steps likely to be

observed. In certain circumstances, some steps may be unnecessary and be

omitted. In extreme cases, the designer may do little more than identify a closely

similar plant or plant section previously laid out and reiterate the previous design

with a few, appropriate modifications. This approach is widely observed for

example in the design of standardised modular or packaged systems [Bredbury

1986].

10

This section is presented to contextualise the original work of this research. It is

not intended as a detailed exposition of the engineering issues facing the layout

designer or the accepted solutions that have developed over time. Readers

interested in these details are referred to the excellent books by Mecklenburgh

[1985] and Kern [1977] which have achieved the status of classics in this field.

The recent book by Bausbacher and Hunt [1993] which reflects more current

practice is also highly recommended. These books comprise effectively all of the

reasonably current publicly published material on process plant layout and the

majority of this section is elicited from them. The author's personal experiences

as a practitioner in the field and (perforce general) remarks on three major

contractors' design standards for layout viewed by the author [Standards 1989a,

1989b, 1989c] are also incorporated.

2.1.1Information Assimilation
The flowsheet and its attendant data represent the primary data input to conceptual

layout. The flowsheet presents a description of the process, defining the

equipment types and their interconnections. The equipment is described in terms

of its functional specifications, such as the number of trays in a column, the heat

transfer area of a heat exchanger, or the residence time of a vessel. At this stage,

it is unlikely that physical designs of equipment will be available. The attendant

data also includes process data, such as stream flow rates, compositions and

service conditions. Generic data are also accumulated. These include the

physical properties of the process media at the process service conditions and

flammability and toxicity data.

Data describing the site (or sites) on which the plant is to be (or may be) built

form a secondary input, if known. These data may include the space available,

ground contour, soil loading and drainage, the positions at which service and

process pipework may be connected to existing pipe tracks, and the positions of

installations and off-site features susceptible to damage in the event of an on-plant

incident.

11

The process and site data are assimilated from their diverse sources by the layout

engineer as the first step in devising the layout.

2.1.2 Preliminary Equipment Design
The process data define functional specifications of the equipment to comprise the
plant. They rarely prescribe either how the function of an equipment item is to
be achieved or a physical design for that item. The PFn may show, for example,
one pump. This represents a statement that pumping is required, rather than that
one physical pump is to be incorporated into the plant. In the physical realisation,

additional standby pumps may be added. In particular, the process data does not
define the physical space requirements of the items, or the types and positions of
fittings and scantlings. These must be inferred.

The procedure is best elucidated by an example. Consider a storage vessel with
a bayonet heater. The operating volume may be specified in the process data, but
not the dimensions. The bayonet heater will be shown on the flowsheet, but not

nozzles and manholes. The preliminary design of the vessel proceeds through a

number of steps:
1. Allowances for ullage and volume occupied by the heater are added to the

operating volume to calculate the total volume of the vessel.
2. The dimensions of the vessel are determined from the total volume by rule

of thumb, such as the typical length being three times diameter, or from

tables of standard preferred vessel sizes. Note that these dimensions are
provisional. They may be changed during layout so that the vessel may

better fit available space or during detailed mechanical design.
3. The fittings of the vessel, such as its nozzles and manhole, are identified

and sized. For example, the flowsheet will show streams connected to the
vessel. Each connection must be implemented by one or more nozzles, and

the layout engineer infers their existence. The bore of each nozzle can then

be calculated from the stream flow rate and density and a knowledge of

standard nozzle sizes. Similarly, the need for a manhole may be inferred

12

by assessing the potential for fouling of the heater tube bundle and thereby,

the need for access to the tubes for cleaning.

4. The ancillaries and fittings are positioned on the vessel. Again, these

positions are provisional.

5. The enclosing volume of the vessel is determined by adding the dimensions

by which the ancillaries and fittings stand proud from its surface.

6. The free space required around the vessel to allow access to it and the

ancillaries is determined. Note that this free space may be shared with

other items in the final layout. Note also that the vessel has different free

space needs for different operations conducted on it. The layout must allow

for these space needs at the time they may be required. For example, the

space allowed for withdrawal of the heater tube bundle for maintenance may

be filled by the service pipework which must be removed to allow the

withdrawal.

The space required by the vessel is derived specifically for the purpose of

conceptual layout. The preliminary design of the vessel and the position of its

fittings and ancillaries constitutes both a design assumption for the layout engineer

and design requirement for detailed engineering.

2.1.3 Analyzing Process Flow
In a process plant, the cost of the pipework connecting the equipment contributes

a significant proportion of the total capital cost. The pipework also occupies a

significant proportion of the total volume of the plant. The flowsheet represents

connectivity as streams. The stream implies the need for a physical connection

in the plant. The length of pipe runs is reduced if the equipment positions in the

layout emulate the topology of the major flows on the flowsheet. The engineer

identifies these major flows to generate an overall form for the layout prior to

attempting to position any items within this form.

The engineer must consider the properties of the stream to determine the relative

cost of implementing the associated pipe run and hence the relative influence of

13

the stream on the layout. Streams with high volumetric flow rate imply

intrinsically more expensive large bore pipework. These streams are readily

apparent from the flowsheet.

Other factors suggesting the importance of the flow are identified only after

consideration of more fundamental data. The nature of the stream or even of the

connected equipment may render a relatively low flow rate stream important in

influencing the layout. Particulates entrained in a liquid stream may be

susceptible to deposition in the pipework and corrosive streams imply expensive

corrosion resistant pipework for example. The flow between a vessel and its

discharge pump may also require proximity to minimise pressure drop to ensure

sufficient head at the pump's inlet.

The major flows need not be those that follow the progress of the process media

from raw material to finished state. For example, the recycle stream around a

low yield reactor will exceed the product flow from the reactor loop and may

dominate the layout.

It is likely that the designer will mark the principal flows on a copy of the

flowsheet. This serves purely as a personal aide memoire to be discarded once the

layout is complete.

2.1.4 Deriving Elevation
It is almost universal practice to derive equipment positions in two separate phases

- the almost entirely deterministic calculation of equipment elevation, and the

highly creative and unstructured derivation of plan position.

Elevation differences between equipment items may be imposed by the process

design. A necessary pressure differential defines the height of a barometric leg,

for example. The differences may also be imposed by hydraulics. A vessel may

be elevated to meet the NPSH requirement of the pump it feeds. Almost

14

universally, the minimum elevation differences can be calculated, and from these,

the minimum absolute elevation of each item.

Where two items have a known elevation difference, the minimum absolute

elevation assigned to the upper is taken to be the sum of the elevation of the lower

and the difference. An item may have elevation difference requirements above

more than one other. The sum of the elevation and difference is calculated for

each lower object. The maximum of the sums is assigned to the upper. This

procedure is started by assigning grade elevation to those which need not be

elevated.

Support for an elevated item may be provided either by a major item (such as a

column) or by floors. In the latter case, the elevation of the item is increased so

that it is above the preferred elevation of the next higher floor.

In general, equipment items elevated above grade require support structures,

elevated access platforms and walkways and more substantial foundations. This

increases plant construction costs. Recognising this, it is common practice to

accept the minimum absolute elevation of an item as being its actual elevation.

Infrequently, the engineer may decide that an item should be raised to an

elevation above its minimum. It may then be supported on a major item or on a

structure required by other items, perhaps. Other economies (particularly in

piping runs) may be achieved. Similarly, floor elevations may be manipulated to

maximise the number of items that they may support.

2.1.5 Identifying Other Factors
The relative positions of items may also be constrained by factors which do not

arise from their connectivity. For example, heat exchangers are often placed

together rather than within the units they serve. This permits their tube

withdrawal facilities to be shared. The positions of equipment items relative to

site or off-site features may also be constrained. For example, items subject to

15

severe wind loading may be attracted to an area of good load-bearing soil to

minimise piling requirements.

Other issues require the segregation rather than proximity of the related equipment

items or equipment items and site features. For example, a rued heater

constitutes a potential cause of ignition. A potential source of a release of

flammable vapour is constrained to be at least a calculable separation distance

away from such a heater.

These constraints impose preferred positions and orientations on the plant as a

whole as well as influencing its internal layout. Both Kern and the design

standards viewed suggest a second inspection of the flowsheet to identify such

constraints.

The features of the equipment and site features giving rise to the constraints may

not be explicit or even readily apparent in these process data. The layout

engineer must infer the causes of constraints from the available data then identify

the constraints that arise from these causes.

It is worthy of note that the effects of many of these constraints are implicitly

recognised in design standards. The configurations that have been found in the

past to satisfy them are prescribed as approved or even requisite elements of a

layout. Such configurations have almost acquired the status of idiom.

The author [1989a] recommends a unified and homogeneous treatment of flow and
other issues in the form of constraints. As a lecturer on a professional

development course on plant layout, he has observed approximately 100engineers

attempt layout exercises and has collected significant informal evidence of the

efficacy of this. Those participants who specialise in conceptual layout are rarely

willing to apply the strategy during exercises. Those participants who are

required to perform conceptual layout as only a small part of their work often

adopt it fully. The specialists usually achieve a solution to the exercises quicker

16

than the other participants. The latter, however, are found to be less likely to

overlook perhaps subtle issues, achieve solutions in which the impact of design

considerations more accurately reflects their true relative importance and are more
able to discuss and justify their solution once they reach it.

2.1.6 Plan Positioning
Even a simple plant will comprise forty to sixty items of process equipment. The
simultaneous positioning of this many items far exceeds the capacity of the
engineer. He adopts a number of abstract views of the plant. These abstractions
represent differing levels of detail and different physical areas of the plant, often

considered concurrently.

Each process unit may be considered initially as a single problem element. The
major flows between the units suggest an approximate overall topology of the
plant's pipe racks. The positions of the units are readily derived from this
topology. To facilitate both construction and escape in the event of an incident,

it is desirable to layout the pipe racks with bends and comers minimised.

Positioning the units is almost simplified to ordering them along relatively straight

racks. The general linearity has removed many of the degrees of freedom. The
engineer assumes sizes for the unit operations and groups and positions them as

single elements.

This layout may be distorted to incorporate the effects of the attraction or
repulsion of certain units to or from specific site features. For example, tall
columns requiring extensive foundations may be positioned together on areas of

good load-bearing ground, or fired heaters may be positioned far from

administrative buildings to minimise casualties in the event of an explosion.

The engineer also mentally decomposes the equipment inventory into natural

groups. Again, these may be manipulated initially as a macroscopic entity. The

group may represent an aggregation of items positioned within a tangible physical

feature of the plant, such as a compressor house or pump bay. Alternatively,

17

engineering standards or good practice (perhaps even idiom) may suggest its

members. Grouping exchangers and positioning them with their heads aligned

makes possible the use of a common gantry crane to remove their tube bundles.

This practice is frequently observed. A module or packaged unit is arguably a

physical manifestation of a group - its members are manipulated collectively on

site, as well as during design.

The positions of the units and natural groups in the outline of the layout provide

approximate reference points around which the members of each may be laid out.

Each section is considered separately, although probably none laid out to

completion prior to others being considered. While working on one unit, the

engineer readily shifts or enlarges his focus to incorporate equipment from others

where these influence its internal layout. This integrates the layout of each group

into that of the plant as a whole. Conversely, the engineer may minimize the

number of items under consideration at any time if their relative positions are

either particularly difficult to derive or their correct relative positioning is crucial

to the success of the layout as a whole. The procedure is both ad hoc and

opportunistic - as the engineer gains an increased understanding of the

requirements of the solution and gathers information on the possible solutions,

more precise and committing decisions become possible.

The engineer will constantly review the initial assumption of the outline of the

layout while positioning individual items. In particular, the assumed size of

groups and units will be checked as their internal layout emerges. Where the

assumption proves invalid, the outline layout is modified. Of course,

modifications may also arise spontaneously. In particular, the engineer may

develop a layout fragment to satisfy one constraint then recognise a configuration

that may be extended to incorporate the satisfaction of another. This has been

identified as an important behaviour in design, and given the amusing name of

"Aha!" design [Kant 1982].

18

In some cases, the sizes assumed for the groups will be found to be widely

inaccurate. The modifications to the outline layout will then be extensive,

effectively invalidating the layout at the level of the individual items of

equipment. This can be obviated substantially by forming groups in a separate

step prior to positioning. The groups may be formed either to represent a unit

operation, an aggregation of equipment required by design standards or a physical

feature. Each group is laid out internally in isolation to derive its approximate

size. This technique significantly increases the likelihood of the assumed size

remaining valid [McBrien 1989a].

The positions of the equipment within these preliminary groups are likely to be

sub-optimal, of course. No account is taken of the "boundary conditions"

imposed by relationships with members of other groups. Items of equipment

within each often need to be re-positioned to integrate the isolated layouts of each

group into a global optimum once the groups have been relatively positioned.

The discussion so far has emphasised the fairly deterministic approach of the

designer of probably external plant whose layout is dominated by relatively simple

patterns of high volume flow. This is typical of major petrochemical plants, for

example. More creativity is required to layout plant where other constraints

approach flow in importance, or where the flow patterns are convoluted.

The procedure followed by the designer in these cases is much less clear, although

the techniques already described are applied to some extent. Protocol analyses

in the related domain of architectural design and building layout suggest that the

designer addresses highly localised problems and generates almost independent

solutions. Two models of the derivation of these partial solutions have been

proposed.

The designer may apply rules similar to the production rules of an expert system

which specify the action taken to satisfy a particular constraint [Freeman 1971].

An example of such a rule in plant layout might be

19

"If flow between two vessels is driven by gravity then position the

vessels such that the outlet of the feeding vessel is above the inlet of

the fed vessel."

The rule specifies a solution procedure to be applied locally to satisfy one or very

few constraints.

The alternative model [Foz 1973] suggests that the designer recognises specific

configurations of constraints and recalls partial solutions previously developed for

that configuration. The partial solutions state directly the positions for the

elements involved. The author believes that this is widespread in process plant

layout. It would account in part for the ability of the experienced engineer to

achieve acceptable designs quickly. Furthermore, both Kern and Mecklenburgh

present many solution fragments and elucidate the circumstance in which each is

applicable, collated from the experience of the authors. The ready acceptance of

these works implies a naturalness of this presentation to practising engineers.

Evidence now suggests that both approaches are employed and that these models

are complementary but only partial descriptions [Akin 1978].

The positions of major structural elements are also derived at this time. Note

however, that these positions represent the design requirements passed on to the

civil discipline rather than a formal structural design.

2.1. 7 Review and amendment
Many thousands of constraints will exist between the items of equipment

comprising a typical process flowsheet. The layout designer lacks the mental

capacity rigorously and exhaustively to consider this number. He must

concentrate on those constraints that he considers most important. Perhaps

inevitably, a designer will be more mindful of the constraints arising from the

issues most pertinent to his discipline.

20

When the layout is complete, many constraints may remain unsatisfied simply

because they have been overlooked. It is quite feasible that the designer will have

omitted to consider constraints of importance but alien to his own speciality.

Other constraints may have been satisfied, but serendipitously. We can assume

that the layout proposal will be sub-optimal.

To mitigate this, a multi-disciplinary panel assesses the proposal. Each member

considers those constraints specific to his discipline. The panel identifies

deficiencies in the layout which is then refined. The iteration proceeds until the

solution is acceptable to all parties.

Typically, a number of candidate layouts will be designed initially. Each may

conform to a specific design philosophy or consider specific aspects of the layout,

such as operability, economy or safety. The most promising candidates are

selected, refined further, subjected to further selection, and so on. In one

particularly difficult case, a total of thirty two proposals were generated

[Thompson 1989].

2.1.8 Disseminating The Layout
Once accepted, the layout design is disseminated to those plant design disciplines

dependent upon it. Traditionally, the layout is presented on a general

arrangement drawing often referred to as the "Plot Plan". This shows all major

equipment items, major structures and buildings, although in outline only. The

battery limits of the plot area are indicated together with roadways, access ways,

extent of paving, pipe entry and exit points, maintenance areas, stairways and

ladders. Elevation drawings and sections, in both plan and elevation, are also

drawn. Other forms of presentation may also be used, such as physical or

computer three-dimensional models. All convey much the same information as

the Plot Plan and elevation drawings which they replace or augment.

21

2.2 Relationship To Design Studies
Numerous models of design as a process have been proposed. Those due to

Asimow [1962], Luckman [1967] and Markus et al [1972] are both important and

representative. There is widespread agreement that design occurs in three phases

- analysis, synthesis and evaluation. In the analysis phase, the designer seeks to

understand the problem and produce an explicit statement of goals. Plausible

solutions are synthesized during the second phase. The solutions are compared

against the identified goals in the third stage and preferred alternatives selected.

The models all imply a cycle in which the solution is revised and improved by

re-examining the analysis.

It is interesting to note that these phases are readily apparent in the technique for

conceptual layout. A more detailed protocol analysis of architectural design [Akin

1978] distributes the three phases amongst six steps, outlined below.

1. Information AcQ.uisition - the designer reads the problem specification and

clarifies specification requirements.

2. Problem InterPretation - the designer transforms the problem requirements

into a consistent format suitable to drive generation of the solution,

conceptually identical to the designer identifying "constraints" [Eastman

1970], "criteria" [Archer 1968], "goals" [Simon 1973] or "requirements"

[Alexander 1968].

3. Problem Re,presentation - the designer adds new parameters to the design

to represent those data which must be considered to allow the manipulation

of the problem requirements or to allow new, more detailed design

requirements to be postulated.

4. Solution Generation - the designer generates partial solutions which

represent either localised complete solutions or solutions to the problem as

a whole but considering only a subset of the design requirements.

5. Solution Inte&ration - the designer integrates the partial solutions to form

larger or more complete solution fragments.

22

6. Solution ASsessment - the designer assesses the solutions against their

satisfaction of the design requirements and the feasibility of integrating their

component partial solutions.

Akin observed that steps 4 to 6 are actually conducted iteratively. The partial

solutions are integrated with others and assessed as they are developed. The

partial solutions are modified if necessary prior to the designer moving on to

address other aspects of the design.

The technique for conceptual layout presented above was identified by informal

observation and introspection. Nonetheless, it conforms very closely to the results

of Akin's rigorous study in a closely related field.

2.3 Visualisation Tools
The layout designer reasons about three-dimensional configurations of the plant

equipment in developing a layout proposal. He augments his powerful abstract

spatial reasoning faculties with physical or computer representations of the design.

The representations allow him to "play" with the "equipment" in space and apply

the visual spatial reasoning skills learnt from childhood. Furthermore, as the

engineer moves his focus of attention through different sections of his design, it

is imperative that he may recall the solution developed for anyone section when

he returns to it. Similarly, he must remain aware of the design as a whole at all

times so that he may achieve a unified and integrated solution. The capacity of

the designer's memory is unlikely to be sufficient to allow this without aid. The

visual representation of the evolving layout serves as a record and aide memoir.

If the layout is being developed by a team, a visual presentation of the design is

obviously essential to allow communication between the members. It also serves

as an aid to discussion of the finished proposal prior to formal drawings being

prepared.

23

The representations range from simple two-dimensional shapes representing the

"footprint" of the equipment to applications of powerful commercial CAD

packages. The alternatives are reviewed in this section.

2.3.1 Physical Analogues

The traditional visualisation tool comprises cardboard shapes cut out to scale to

represent the "footprint" of the equipment items. These are positioned on a piece

of squared paper which may have site features drawn onto it. While crude in

appearance, this tool is actually of enormous benefit to the user. The designer

may manipulate the shapes as he develops the design in his mind, effectively

"trying out" partial solutions for the layout. The cost is negligible, the scale

shapes may be made very quickly once the equipment sizes are known and the

user obviously requires no specific training.

Cardboard shapes are very widely used, particularly to layout plant

predominantly constructed on a single level. Indeed, this technique is also

employed by architects to layout floors of a building. In this case, each floor is

effectively an independent, two-dimensional problem. Multi-floor plant must

often be treated as a single three-dimensional problem. Many equipment items,

such as columns, pierce the floors. The layout of each floor influences

significantly that of others through these tall items. Multi-floor plant and plant

where elevation constraints significantly influence the layout require a tool that

adequately represents the third dimension. Very simple three-dimensional models

may be constructed using simple blocks, often now of expanded polystyrene. The

volume occupied by each item of equipment is represented by either a cylinder or

cuboid, whichever is more appropriate. These blocks may be elevated on wires

forced into them or floors may be added to the model on which the blocks may

be stood. These block models are again very cheap and easy to use. The detail

is very limited, particularly in comparison with the piping models which may be

constructed late in the project. Nonetheless, it is commensurate with the precision

at which the conceptual layout designer works.

24

Both tools are highly effective but both suffer from the same deficiency. As

physical analogues manipulated manually, neither may be integrated into the

increasingly computerised design environment employed by the process industry.

Design consistency and quality has improved markedly as a result of this

increased computerisation, principally because of the data integrity management

and change control it offers. Conceptual layout is critical to the success of the

project as a whole. At this critical step, data are extracted from the computerised

design environment, manipulated manually then the results re-entered into the

system. There is significant risk of transcription error and no data integrity or

change management may be implemented.

2.3.2 Commercial CAD Packages
The uptake of computer packages in conceptual layout has lagged far behind their

enthusiastic application in almost all other aspects of both process and plant

design. Recent publications describe two contractors performing project

engineering almost exclusively with CAD [Briggs 1987, Taffe 1990] while

explicitly stating that it is not employed for conceptual layout.

Two-dimensional CAD packages require a great deal more setting up than the

cardboard cutouts and are difficult to use to "sketch" a design. They are rarely

used in conceptual layout other than to prepare the Plot Plan and other drawings

once the layout is complete.

The principal requirement of the layout designer is ease of manipulation and

visualisation of the model. The physical analogues described above are

ergonomically very close to the ideal. Until recently, the technology of

commercial three-dimensional CAD systems and the computer hardware on which

they run was insufficiently advanced to provide similar functionality. The user

positioned elements in the model by entering coordinates and translations via the

keyboard. A view of the emerging model could only be generated by switching

the system into a graphical output mode. Three-dimensional CAD systems have

25

long been considered inappropriate for conceptual layout by its practitioners

[Taffe 1990].

Latterly, computer graphics power has reached the level where it is feasible to use

CAD as the tool with which the layout is developed rather than just represented

as previously. Two alternative approaches have been reported in the literature.

ICI have used three-dimensional CAD for all layout development during a project

from the initial rough tlowsheet to the final issued design [Atkinson 1987]. They

used their own (but commercially available) system "Provue-3D" which was

developed principally for piping design and detailed layout engineering. Models

of each equipment item are constructed in Provue-3D from a number of primitives

such as cylinders and cuboids. Initially, the full power of the system was not

employed. The process engineers estimated the size of the major vessels and

represented them using a single primitive of the estimated size. These were

positioned on screen graphically, almost "sketching" the layout. Modifications

were made simply by pulling the primitives around the model. The lack of detail

in the model initially allowed very rapid setup and system response. As the

project progressed and more information became available, the models of the

equipment were refined, nozzles were added from the piping component

catalogues, major pipe runs sketched in, etc. The system was used very

informally by intent and the final layout design was achieved solely using the

computer model.

In an alternative approach, Foster Wheeler have used their three-dimensional

modelling system (Intergraph's "PDS") to bring great detail into the conceptual

layout quickly [Russo 1992]. Their PDS installation has been enhanced by

numerous libraries of parametric three-dimensional equipment models. The user

starts by drawing the major features of the plot as a two-dimensional "base

board" for the model and marks the plan view with the positions of the equipment

items. The positions are actually derived prior to this using the conventional

technique. The user then commences to construct a detailed model of the plant.

26

The parametric routines prompt the user for those process data required and

construct fully detailed models of the equipment items, including scantlings. The

dialogues may take between two minutes and one hour for each item of

equipment, depending on its complexity. The equipment models are added at the

positions previously marked for them.

The finished model may be passed directly to the piping and structural engineers,
In this approach, conceptual layout has been closely integrated with the project

phase and one potentially error prone transcription of data has been eliminated.

The parametric equipment models employed in this approach replace manual

equipment sizing. This task is both highly deterministic and time consuming,

suggesting it to be ideal for computerisation. The designer is freed to concentrate

on the more creative aspects of his work. Indeed, this implementation may be

viewed as an embryonic knowledge based system for conceptual layout.

2.4 Systematic Techniques
Systematic techniques for design in general have been a long-standing goal. For

example, Mostow [1985] argues that design pervades our society and probably

costs billions of dollars annually. Moreover, the cost of design errors in lives and

property is untold. He concludes that scientific study and formalization of design

is easily justified by its potential for improving cost or reliability of design.

A systematic method for conceptual layout offers the potential for obviating many

of the deficiencies of the current technique. In particular, it may mitigate the

current difficulty of verifying and validating a proposal. Many systematic general

design techniques have been devised. Three are designed specifically for layout

problems and are discussed here. It will be shown unfortunately that none are

practically applicable to conceptual layout.

2.4.1 The Relationship Chart
Muther [1961] recognised the concept of relationships between objects governing

their relative positions. He proposed the "Relationship Chart" to record their

27

existence and relative importance as they are discovered manually. A triangular

matrix is constructed. One row and one column is ascribed to each item of

equipment. For every relationship discovered between a pair of items, an entry

is made at the intersection of one's row with the other's column. This entry may

be simply a tick, or better, a rough quantification of the importance of the

relationship. A completed chart should contain all constraints on the positions of

any item of equipment.

Muther proposed a technique whereby a layout may be derived directly from the

chart. Even the simplified procedure he proposed later [Muther 1962] is too time

consuming for practical application. For example, three man-days were required

in one case to manually convert a 45 department chart with approximately 1000

pairs of inter-departmental relationships to a block plan layout [Lee 1967]. The

smallest process plant one would expect to layout will typically contain

approximately this number of equipment items and relationships.

Nonetheless, the Relationship Chart has been used effectively to marshal data for

entry into automated layout computer packages, specifically, CORELAP [Lee

1967] and the system constructed by Shuquair [1978]. Its potential value is

greatest when used as an aide memoir to reduce the likelihood of a relationship

being accidentally neglected.

2.4.2 The Correlation Chart
The well-known Correlation Chart is a diagrammatic method of recording the

effects of constraints and the layouts that they allow. A worked example is

presented elsewhere [Mecklenburgh 1985, p 478]. A grid is drawn with the rows

representing possible positions of one plant item - such as floors in a building or

numbered positions in an area - and the columns possible positions of another.

The flowsheet is inspected and constraints on the relative positions of pairs of

items are identified and assigned a reference label. If any constraint prohibits a

particular position for an item, the row corresponding to that position is "struck

28

out" with the reference label for that constraint. Vacant squares thus show

permitted combinations.

The set of lines of the grid can be extended and crossed by rows and columns

representing other items, and further prohibitions or preferences applied.

Ultimately, the only feasible combinations are those that can be traced through the

rectangular network of squares.

The possible positions of each item may also be represented symbolically, for

example, Al -representing item A in position 1. The relative positions are

represented by effectively algebraic expressions in which the addition operator is

taken to mean alternative positions and the multiplication operator taken to mean

co-existence. Thus Al (BI + B2) means item A in position I with item Bin

either position I or 2. Any impermissible relative positioning is represented by

such an expression set to O. The expressions are multiplied out and the remaining

terms represent permutations which are acceptable.

The effects of constraints is immediately visible when presented on the chart,

although comprehension is rapidly lost as the number of items increases. Larger

problems may be represented more effectively using the algebraic representation,

especially where a number of permutations is permissible for a layout. The layout

is difficult to visualize from the algebraic representation, however, even for

simple designs.

This technique may only be applied if the possible positions may be quantised.

It may only be used to assign equipment to floors of a building or to derive plan

positions for items which are all roughly a similar size and in similar restricted

cases. Where applicable, it can give powerful guidance on the relative positions

of albeit relatively few items of equipment.

29

2.4.3 The Travel Chart

Travel Charts [Wild 1972] were originally used for finding the optimal ordering

of machines in jobbing shops, but it is claimed that a process unit layout can be

derived using this technique. A chart is set up in squares. Both horizontally and

vertically, the number of squares used is equal to the number of items to be

positioned. The items are listed across the top and down one side in the same,

initially arbitrary, order. A diagonal line is drawn across the chart.

The total magnitude per unit distance of the relationships between any pair of

objects is entered in the square that is the meeting point of the row representing

one object and the column representing the other. Wild suggested the use of the

total cost of material transport between the objects as defining the relationships'

magnitude. Mecldenburgh [1985] suggested that this could be extended to include

subjective weightings of other constraints.

The position of the square in the chart holding the relationship reflects the

proximity of the related items if a layout were constructed from it. In the case

of neighbouring items, the relationship lies next to the leading diagonal, for items

which are separated, the relationship lies far from it. The "cost" of a separation

of two items in the layout is found by multiplying the value in the square by its

distance from the diagonal. Thus, a lower total "cost" for the layout is achieved

by permuting the columns to concentrate those relationships with high magnitude

per unit distance close to the diagonal. Inspection of the table shows which

permutations may be beneficial. The process is repeated until no further

reduction in cost can be achieved. The order of the columns then defines the

optimal linear solution for the layout, this technique being incapable of deriving

non-linear solutions.

The method can be modified, in part, to compensate for different object sizes.

In addition, groups of items which must be close can be treated as a single item.

30

Mecldenburgh [1985] states that the technique manifests the relative importance

of having different pairs of items close to each other, a useful first step in the

two- or three-dimensional problem. Nonetheless, he generally dismisses the

technique, arguing that a one-dimensional arrangement of equipment items is

rarely desired in process plant layout.

2.S Layout Visualisation Packages
The unsuitability of early CAD systems to conceptual layout motivated the

development of dedicated computer systems. The interactive graphical interface

absent from the contemporary commercial CAD packages were central features

of these systems.

The first system constructed to meet the specific needs of the layout engineer

[Fine 1965] exhibited another feature typical of these dedicated systems -

provision of constant feedback to the user on the "quality" of his design. Each

item of equipment of the plant is approximated by a line, whose end-points are

user defined. Nozzles are assumed to lie along this line, a stated distance from

one end (the "reference end"). Tees, reducers, etc are assumed to be points,

although with nozzles on them. Objects, including pipe fittings, are positioned

manually on a VDU representation of the plot, allowing the absolute nozzle

positions to be calculated. The length of a pipe is approximated by the sum of

the moduli of the differences of the X, Y and Z coordinates of the nozzles at each

end unless the pipe runs outside a box enclosing both. In this case, the pipe is

assumed to be run via a pipe rack and its length is increased by twice the length

from the rack to the box.

The system was extended to allow comparison of a number of layouts, and to

incorporate interference detection. It allows the production of piping cost

estimates much sooner than by manual means.

String may be used to represent pipework in conjunction with physical layout

analogues. This has been observed to improve the resulting design. This was

31

emulated in an interactive computer package [Bush 1972]. A central pipe rack

is displayed on the screen, about which the plant or section thereof is laid out.

The user selects a symbol representing the plan view of an item of equipment, and

positions it. He then selects another item, positions it, and so on. As soon as

both objects at the ends of a pipe are positioned, the pipe is automatically drawn

in, and its cost added to the current total. It was intended that this cost data be

used in selecting the initial positions of equipment, and to guide redesign and

tuning of the layout. To allow this, the user is free to re-position equipment and

re-route pipes at any time. Each item is surrounded by an access area. The

program will not permit the infringement of this. The program ultimately outputs

the absolute coordinates of all items.

A similar system [Leesley 1972] builds a model of the plant within a hierarchical

database, although without the piping cost estimator. Pipe runs can be sketched

in, and clash checked against both equipment and other pipes. Many of the

concepts developed during this seminal work were later employed in "PDMS",

an industry standard commercial piping design package. The sketching facility

was not required for the intended role of PDMS and this major attraction of its

precursor to the layout designer was omitted.

Shuquair constructed an advanced system intended originally to be a component

of PDMS to redress this omission [Shuquair 1978]. The system was also intended

to extend PDMS until it met many of the needs of conceptual layout designers.

His objectives were

"to construct a software package which would provide an easy way

of discovering and analyzing the relationships existing between plant

items to determine their relative closeness, to provide a rational way

of conducting the plant layout task, and provide the user with

quantitative feedback on the quality of the layout produced".

In actuality, he was forced to write a separate system, interfaced to PDMS, due

to the inability of the PDMS data description language to represent those attributes

of relevance to the plant layout task.

32

Relationships between plant items are identified manually, and the code number

of the class to which the most important relationship between any pair is entered

into the system on an activity chart, after Muther [1961]. These code numbers

range from 1, for a relationship which must be satisfied if the plant is to operate,

to 5, for an environmental constraint. Items which would pose a hazard if

grouped are ascribed a relationship of code -1.

Activity groups are formed by the system from all objects which are related,

irrespective of the magnitude of the relationship. All activity groups are checked

to ensure that they contain no pairs of objects which have a repelling safety

relationship between them. If any are found, an error message is output and the

program stops. The activity groups may then be manually modified if they are

either too large or trivially small, or if the relationships between their members

are such that it is not meaningful for them to occupy the same group. For

example, if a unit operation contains a heat exchanger, all other heat exchangers

in the plant will also be added, as they have a relationship to the heat exchanger

which should be present. The plant blocks formed by this manual intervention are

then input to the plan layout programs. Each block is laid out in tum. The

temporal sequence in which the members of the block should be positioned is

determined by the system. A reference item is chosen for the block. Typically,

this is the item most strongly attracted to the central pipe rack, defined by the

user. The item most strongly related to it is next in the sequence, and so on.

The actual plan positions are decided manually. A utility is provided that allows

the user to define the position of an object in terms of a vector from the

previously located item to specify the clearance required between the two items.

This frees the user from the tedium of calculating absolute coordinates. The

resulting layout is then automatically checked for clashes. The completed plant

blocks are then ordered along the pipe rack by a permutation algorithm.

The system is a very powerful aid to the layout engineer. It functions as a

sophisticated data recording and manipulation tool. It imposes rigorous structure

on the design process, increasing the reliability of the results and frees the user

33

from many mundane tasks, improving productivity. While the program does have

limitations, some severe (eg it cannot manipulate elevation data), it is capable of

producing results which are limited only by the skill of the user.

These systems represented state of the art computing at the time of their

construction (1965 to 1978) and they successfully met their designers' objectives.

At the time of their development, the principal benefit of CAD was perceived to

be its scope for increasing productivity. This tended to focus its application into

the project engineering disciplines. These consume the majority of project

man-hours and by implication, present the most scope for significant savings.

The conceptual layout systems were intended for the front-end engineers, not then

considered valid users of CAD technology. I believe that this explains why none

was commercialised in its original form.

As we have seen above, commercial general purpose CAD packages have now

developed to a level where they can be employed in conceptual layout. It is

unlikely in my opinion that new dedicated systems for visualisation alone will be

developed.

2.6 AutomatingProcess Plant layout
The computer systems described above perform useful functions for the

conceptual layout designer. They assist the designer by presenting a visual

representation of the layout as it evolves. Parametric equipment models may

perform the mundane tasks, freeing the designer to concentrate on the creative

aspects of his work. The dedicated conceptual layout packages generally provide

feedback to assist the designer to assess a layout proposal.

Systems capable of automatically generating a layout are the natural progression.

Such a system could provide a three-dimensional realisation of a process proposal.

The process engineer could then gauge its feasibility or derive more accurate

estimates without increased work load. The system could also be employed to

generate rapidly candidate final layouts. These could be used by the layout

34

designer as starting points in the iteration or to explore rapidly alternative

solutions. During the period in which the visualisation tools were constructed,

parallel work addressed this goal.

Gavett and Plyter [1966] suggested "branch and bound" optimisation may be

suitable for automating space planning. This technique proceeds in a cycle. Two

or more partial solutions are generated from the existing solution state,

"branching" the solution. A "bounding function" is evaluated on each partial

solution thus generated. This is a function that yields either an upper or lower

bound to the objective function for any solution following from that partial

solution. One knows that, in pursuing a given branch, the optimal solution for

that branch will score at least a minimum or at most a maximum (depending on

whether the bounding function evaluates minima or maxima). The branch which

offers the lowest minimum or highest maximum as appropriate is selected and the

procedure is repeated.

The branch and bound technique has been applied to the layout of chemical

process plant [Mustacchi 1974]. This system orders the equipment comprising a

process unit in a single line along a pipe rack. The branching at any point is

generated by constructing two new partial solutions, one in which the object under

consideration is to the left of another specified object, and one in which it is to

the right. The bounding function determines the minimum cost of the pipework

that may possibly be achieved in that branch. If the relative positioning of objects

A and B is currently being considered, and placing object A to the left of object

B yields a lower value of possible pipework cost than placing object A to the right

of object B, the branch in which A is to the left of B is chosen for further

analysis.

This system is of little practical application because it considers only one variable

in the objective function and is limited to developing single line solutions, rarely

desired.

35

A later system [AI-Asadi and Gunn 1980] was constructed to layout plant

within buildings, using a more realistic objective function. The impression is

gained that this system is intended to produce better layouts than can be manually

achieved, rather than to speed the design process.

The plant is manually decomposed into modules, each comprising one or more

items of equipment which form a natural group. Each module is laid out

manually, and then fully enclosed within a cuboid, together with any required

access and maintenance space. Where a single cuboid represents a module

wastefully, cuboidal sub-modules are assembled with their positions fixed relative

to one another. The dimensions of each module or sub-module are entered as

initial data. The positions of the starting and finishing nozzles of those pipes

running between modules, and the cost per unit length of such pipes, are also

defined in the input data.

The initial positions of each module is chosen manually and input. Gunn [1970]

previously suggested applying Rosenbrock's search method to layout problems.

This is employed in this system to manoeuvre the modules within the basic

arrangement to achieve an optimal layout. The objective function is plant cost,

comprising the sum of inter-module piping costs and the building cost (volume

multiplied by cost per unit volume, or area multiplied by cost per unit area). A

number of basic arrangements are input and optimised to yield the overall

optimum layout.

Auxiliary modules representing control rooms, electrical switch rooms, etc may

be included for their nuisance effect in occupying volume. Piping modules may

be used to represent pipe racks to find their optimal positions.

The system was demonstrated laying out two polymer plants and produced

ostensibly good results in both cases. Indeed, the system appears to be an

effective tool to support the experienced layout engineer seeking to highly

optimise a layout proposal. The extensive manual pre-processing and the

36

unnatural work style required to use this system probably discourages its wide

acceptance, however.

2.7 Automating Space Planning
Two systems intended specifically for process plant layout have been described.

A wide range of systems have been constructed for application to other layout

tasks. These are reviewed in this section.

2.7.1 The Quadratic Assignment Problem
The Quadratic Assignment Problem or QAP [Hillier 1966] is a numerical

formulation widely employed in automated space planning systems. The QAP

may be defined as follows.

Each entity to be positioned is referred to as a "facility". If the facilities occupy

different areas, each is divided into a number of "sub-facilities" all with equal

area. The planar site is then divided into a rectangular grid of elemental areas

called "locations". The QAP assigns the sub-facilities to locations guaranteeing

that all sub-facilities of a facility are adjacent in a convenient configuration and

that materials handling costs are minimised.

A large number of systems implementing the QAP have been constructed. These

differ only in detail from the seminal systems. The review papers of Moore

[1974] and Foulds [1983] discuss over thirty examples between them. QAP

programs use a simple grid of squares in which the detection of overlap is easy

but resolution is limited by the grid size. Facilities of different sizes are

represented by an integral number of sub-facilities. These can be forced to be

adjacent but no shape can be imposed for the facility. The programs tend to

generate solutions in which each facility has an awkward shape and which need

extensive manual improvement. The shape of the solution as a whole is also

difficult to control and the solution tends to sprawl. This behaviour is at odds to

that required of a system for automating conceptual process plant layout. Here,

37

the individual elements are (effectively) fixed in size and shape and the overall

layout is highly structured around pipe racks, on-plant roads, etc.

It is instructive, nonetheless, to consider the algorithms adopted to solve the QAP

as they embody some features pertinent to any space planning system. The

programs can be divided into two broad categories - "additive" and

"permutational" systems. In an additive system, a sub-facility is assigned a

position based on attractions to others already positioned. Thereafter, its position

remains fixed. In a permutational system, sub-facilities are initially randomly

positioned. Their positions are then permuted until no further improvement can

be made with reasonable computational effort.

Important examples of additive systems include CORELAP [Lee 1967], STUN!

[Willoughby 1975] and the system of Whitehead and Eldars [1964]. The former

is intended to generate factory layouts and optimizes on minimum transport of

goods. The latter generate building layouts and attempt to minimise the travelling

time of people and land usage. CRAFf [Armour 1964] is one of the most

successful of the permutational systems. It has been enhanced [Lew 1968] and

also modified to generate three-dimensional layouts in CUFf-3D [Cinar 1968].

It has been demonstrated that permutational systems can approach the lower

theoretical bounds of minimum cost [Francis 1974]. No additive system has yet

been demonstrated performing as well as a human designer. In an additive

system, the choice of position for a sub-facility can only be influenced by its

relationships to the others already added to the plan. A sub-facility with relatively

minor constraints on its position will be placed late in the procedure. These

minor constraints should be allowed to distort the overall plan, but are neglected

until after it is possible to satisfy them opportunistically.

In STUNI, elements with relationships to fixed site features are added first. The

others are then added in descending order of attraction to those already positioned.

Ifno position can be found for an element satisfying its relationships, the program

38

will fail. The program is then re-run with that element at the head of the addition
sequence. STUN! generates better layouts than the single-pass additive systems.

This shows that space planners must either hold decision-making in abeyance until
sufficient information becomes available to guarantee correctness or embody a
back-tracking mechanism to allow them to revise early, perhaps premature,
decisions. These are two important problem solving techniques in Artificial
Intelligence. The former is often referred to as "least commitment reasoning"
and the latter is typical of systems that achieve a solution by search.

The space planners based on the QAP also demonstrate the efficacy of heuristics
in algorithms to solve complex problems. It has been shown that the number of
elementary computational steps required by any QAP algorithm will be an
exponent of problem size - the QAP is so-called "NP-complete" [Sahni 1976].
All practical permutational systems constructed to date embody heuristics. This
is of no relevance to additive systems which do not search for a solution.
Alternatively, it could be said that additive systems do not consider significant

sections of the search space because of their inability to back-track.

ALDEP [Seehof 1967] is a permutational system constructed to compare three

heuristics. Layouts were randomly generated in a single pass then scored, with

the best being used as the solution. In the best interchange strategy, every
possible pairwise interchange of entities is generated and the interchange which
most improves the layout is retained as the starting point for the next iteration.

This strategy is also employed in CRAFT. In natural selection, the best

interchange is selected, but only made if this improves the overall score. Natural

selection is found to be both slightly faster and capable of generating slightly

better solutions than best interchange. Unsurprisingly , random generation is
found to be almost two orders of magnitude faster, but even its best layouts are

of very low quality.

39

Liggett employed an alternative approach to construct a system with the speed of

an additive system but the quality of results of the permutational system [Liggett

1972]. Her additive algorithm incorporates a probabilistic look-ahead mechanism

which attempts to predict where allowance should be made for elements to be

added later. The resulting layout is then polished up by permutation. This

system generates solutions that are marginally superior to those produced

manually by a skilled practitioner. (The machine generated layout satisfied 23 out

of 48 desired adjacencies, as compared with 21 satisfied in the manual solution).

2.7.2 Simulated Annealing
Recent work uses an analogue of the annealing process as a space planning

technique [Sharpe 1985]. As with the QAP formulations, control of the overall

shape and structure of the solution is difficult to impose and each facility tends to

be awkwardly shaped. Nonetheless, simulated annealing has become fashionable

amongst AI workers for solving other problems so its application to layout is

worthy of discussion.

In the annealing process, a bulk of material is heated to high temperature then

slowly cooled to remove flaws in its lattice structure. The atoms vibrate and

move to positions in the lattice where they have lower energy states. The

amplitude of the vibrations fall with falling temperature, reducing the distance the

atoms may move. Ordered crystals condense from the initially disordered atomic

structure.

This is simulated by an algorithm devised by Metropolis et al [1953]. In each

step, a pair of atoms is chosen based on their separation exceeding a set

minimum. The positions of the atoms are interchanged and the change in total

system energy is calculated. If the energy remains equal or falls, the interchange

is accepted. The next interchange is applied to the new configuration. If the total

energy increases, the energy change arising from the interchange of a "typical"

pair of atoms of the specified separation is calculated. If the observed increase

is less this average, then the interchange is still accepted.

40

When a specified number of consecutive interchanges do not cause the total

energy to fall sufficiently, it is assumed that all pairs of atoms which may be

interchanged to reduce energy have been identified. The set minimum separation

of atoms is reduced and the procedure repeated. This emulates the effect of

falling temperature in the physical process.

This algorithm is applied to building layout by simply replacing the energy by

cost and atoms by activity modules. The modules are positioned in the building

initially either at random or as specified by the designer. The modules migrate

large distances initially while the "temperature" is high. They find the region of

space in which their optimum position is likely to be found. As the

"temperature" decreases, they cannot jump out of the optimum region but search

locally for the optimum position. Nonetheless, at any temperature, they can

escape from local optima which are globally sub-optimal because the algorithm

allows increase in cost in a controlled manner.

2.7.3 The Dual Graph Formulation
Levin [1964] argued that a representation must simultaneously and homogeneously

represent both the requirements and the solution to be useful in the solution of

design problems. That is, the representation may contain information about the

design requirements only in terms of the forms that are to satisfy them. Levin

propounded the "dual graph" approach to floor plan layout, which meets this

requirement.

In this context, "graph" means a node and arc diagram rather than a pictorial

representation of a numerical relationship. It is customary to refer to the arcs as

"edges" and the areas enclosed by edges as "regions". Assume one node is

placed in each region of a graph and an edge is added to connect any of these

additional nodes that lie in adjacent regions of the original graph. A second graph

is formed by this process. This is the "dual" of the original.

41

Levin was inspired by a philosophical argument but he and other workers

developed a successful practical technique from this basis. The technique is

designed to be used to develop internal layouts of buildings for human occupancy.

It is principally concerned with satisfying the space requirements of the rooms of

the building by apportioning the available space between them. Constraints may

be imposed on the relative positions of the rooms although this is practically

restricted to requirements of adjacency and direct communication (for example,

specifying that a door must exist between two adjacent rooms). Physical

dimensions of the elements may also be controlled to some extent by specifying

the length of the interface between them.

The technique is of limited applicability in conceptual process plant layout because

of its inability to consider positional relationships other than adjacency. In plant

layout, it is often sufficient to position two elements in reasonable proximity (for

example, to reduce the length of piping between them). Requirements for

proximity cannot be interpreted as demanding adjacency and genuine adjacency

requirements comprise a small proportion of the total relationships that should be

considered. The technique is quite simply unnatural for plant layout.

Nonetheless, some description of the technique is called for given its success in

solving other layout problems. Graph duality is reflexive. That is, if graph A is

formed as the dual of graph B, then given graph A, graph B could be formed as

its dual. The objective in this technique is to form a graph representing a floor

plan. The nodes of the graph represent comers of walls, the edges represent wall

segments, and the regions represent spaces. A pair of contiguous spaces will be

represented on this graph as a pair of contiguous regions, separated by an edge.

Clearly, the edges of the dual of the floor plan graph represent adjacencies

between the rooms. Because graph duality is reflexive, we can construct the

adjacency graph from the floor plan graph, or vice versa. The latter is the more

useful practically as the adjacency relationships are explicitly available at the

outset of space planning. We construct a graph in which the nodes represent

42

spaces which are required to be adjacent and the edges represent the adjacency

constraints themselves. By exhaustively enumerating all possible floor plan

graphs from this adjacency graph, all configurations that satisfy the constraints are

generated.

In practice, exhaustive enumeration is not feasible in problems which include a

realistic number of elements and relationships. Once again, it is seen that a

theoretically attractive concept may only be implemented if heuristics are applied

to control the combinatorial explosion. Indeed, the dual graph technique amply

demonstrates that improving the heuristics employed increases the efficiency of

the solution process.

Grason [1968] states the theoretical necessary conditions for it to be possible to

generate a floor plan graph from a constraint graph. The constraint graph must

be planar, that is, it must be possible to draw it without any edges crossing. Each

node in the constraint graph may have a maximum of four edges connected to it

and each edge must be directed along a different orthogonal axis. This is a

necessary condition for the sub-spaces to be rectangular, a precondition of this

technique being applicable. Grason also states certain topologies of chains and

circuits which must be absent from the constraint graph.

"GRAMPA" [Grason 1971] employs these necessary conditions as its heuristics.

All adjacencies required in the layout are entered. An adjacency is selected to be

added to the adjacency graph as an edge. The edge is added in all positions to

construct all possible expansions of the graph. Each new graph is checked for

feasibility according to the conditions stated above. If feasible, it is retained and

developed further by the addition of a new edge, and so on. If infeasible, it is

abandoned. Once all adjacencies have been added, each surviving constraint

graph represents a potential solution and is converted into a floor plan. A similar

technique was implemented (independently) by Yessios [1972].

43

Pereira [1978] incorporated more sophisticated heuristics into his system. These

include conditions that determine whether the graph wi11lead to a solution that

will fit into a rectangular contour. The resulting layouts are more likely to be

useful to an architect, the system's intended user. Note that these heuristics

embody much higher level knowledge than the graph theoretic heuristics employed

in GRAMP A. They discount far more alternatives without rejecting any that may

lead to an acceptable solution. Because far more alternatives are rejected, this

system produces layouts more efficiently than GRAMPA.
l

Grason [1971] also suggested that the problem be decomposed into more but

simpler sub-problems by representing groups of entities as single nodes as

abstractions of the problem. These abstracted nodes would be relatively

positioned, then each replaced by nodes representing its constituent elements. The

technique would be applied recursively until the nodes representing the individual

elements were positioned. This concept offers an alternative (perhaps

complementary) to problem reduction by heuristics. The concept was never

incorporated into GRAMPA but was adopted successfully by Gilleard [1978].

The space planning systems based around the QAP inherently optimise the layout

against an objective function, usually the minimisation of material or personnel

movement. Krejcirik [1969] constructed a system based on the dual graph

technique to position departments in a manufacturing plant capable of designing

the optimal solution. The edges of the constraint graph represented material

transfer between the departments. Weights were assigned to the edges according

to the effort needed to transfer materials. These values are then used to extract

a planar graph of maximum edge weight. Note that constraints were either fully

satisfied or neglected in this approach. This definition of optimal implied by this

is at least consistent with the dual graph formulation focusing on adjacency

relationships.

44

2.7.4 The Transformation Grid.
The "transformation grid" [Steadman 1970] offers an alternative technique for

dissecting the space. It is also intended to position orthogonal elements, although

the restriction that they be rectangular does not hold. Notionally, horizontal and

vertical lines are drawn across the representation of each element such that all of

its vertices lie on an intersection and each line of the grid passes through at least

one vertex. The separation of the lines in this minimum grating are adjusted so

that each cell becomes a square. This yields a dimensionless generic

representation of any entity of the same topology.

The fully developed form of the technique to manipulate these representations

[Mitchell 1976] is described here briefly. The total area to be filled is represented

by an array. All topologically distinct dissections of the space are generated by

rules of three forms. A new row of cells may be added to the array. An existing

sub-space may be dissected into two spaces, providing it occupies more than one

cell of the array. The third and more complex rule may be applied when two or

more rectangles border an outside edge of the space. A new row of cells is added

to the outside of the array parallel to the edge. If there are R rectangles

bordering the edge initially, the first R-l rectangles bordering the edge are
extended upwards into the new row. The remainder of the row is filled with a

new rectangle.

Rules of each form are applied to all existing partial solutions to generate a range

of more developed partial solutions. Each of these is retained except those

isomorphic with a previous dissection which are discounted. The rules have been

shown empirically to exhaustively generate all distinct dissections for up to six

component elements.

Until this time, the solution generated is an abstraction. Once all distinct

dissections are generated, each is checked to determine whether it represents a

physically feasible solution. A graph of required adjacencies is superimposed on

the dissected space. Each node in the graph represents one element and is

45

positioned over one sub-space. If the graph can be mapped onto the dissection

topologically, the dimensions of each component of an element are used to

dimension the squares of the sub-space beneath the node. If the dimensions

assigned to the array elements are consistent with those of neighbouring elements,

a feasible solution is indicated. Constraints may also be considered in this

assignment process, such as certain entities requiring external walls.

A similar system [Earl 1980] represents the incidence relations between line

segments and faces by using complex rules which replace existing walls by

hypothesizing the position of wall junctions on the grid. This is the most general

of the dissection systems, and probably represents the ultimate limit of the

paradigm.

A given dissection may be transformed into the subsequent dissection by a single

recursive re-write rule [Flemming 1978]. This generates triplets which represent

one wall each. The first element of the triplet records whether the wall runs

horizontally or vertically. The second element lists the sub-spaces above (or to

the left of) the wall. The third lists the sub-spaces below (or to the right ot) it.

The rule inserts new triplets into the existing set, maintaining the order of

unaffected spaces. The system's builder concludes, however, that the single

dissection rule is too limited and that his approach is the weakest of the three.

Perhaps the most widely cited example of this formulation [Coyne 1985, Gero

1987] was most limited in both scope and effectiveness! The designers' intention

was to demonstrate knowledge-based planning as an effective model of design

activity. Space planning is only one of a number of domains in which they built

exemplars.

It is important to note that these dissection formulations exhaustively form all

topologically feasible dissections then assess each to determine whether it

represents a physically feasible solution. Flemming [1978] states that

46

"it appears difficult, if not impossible, to determine both the geometry
of a solution and the dimensions of the spaces ... in one integrated
process. "

All results from workers applying the dissection formulation concur with this
view.

The transformation grid may manipulate elements which are not rectangular. This
removes a significant disadvantage of the dual graph technique. Nonetheless, the
transformation grid remains unattractive for process plant layout for effectively
the same reasons - the elements must fill the area, no credit may be gained for
their reasonable proximity and again, the un-naturalness.

2.7.5 Symbolic Constraint Representations
All systems discussed so far divide a space into regions of known area but fluid
in shape and dimensions. Far fewer systems have been constructed which solve
the problem germane to conceptual process plant layout and directly determine the
optimal position of items of fixed dimensions. It is noteworthy that all extant
systems of this latter type use symbolic rather than numerical representations and
fairly loosely structured algorithms.

General Space Planner or GSP [Eastman 1972, Eastman 1973] recorded the

constraints on the position of an entity as binary spatial relations of the form "is

adjacent to", "is in sight of", and so on. Design Problem Solver or DPS
[pfefferkorn 1975] recognises these and other relationships. These may specify

distance between elements (either upper or lower bounds), absolute position (such

as, the element should be in the left half of the room) orientation, access area

requirements, sight lines and paths to be taken to reach any element.

The benefit of the symbolic representation of the relationships is readily apparent

from these examples. They express a much greater richness and wider range of

relationship than any of the techniques discussed previously can handle. This
expressiveness allows the symbolic representation to match the sophistication of

47

"real-world" layout problems. The symbolic systems are epistemologically

appropriate to the problems to which they are applied, the numerical systems are

not.

Both GSP and DPS develop their solutions using a "generate and test"

architecture. In this, a new partial solution is generated from an existing partial

solution. The new partial solution is then tested for compliance with imposed

constraints and retained or abandoned as appropriate. In a space planning

context, a partial solution constitutes a layout in which some but not all elements

have been positioned. Both of these systems employ heuristics to direct the

generator into creating an alternative most likely to succeed if it could generate

more than one new partial solution. This feature is common to many of the

systems described so far.

DPS also attempts to decompose the problem into independent sub-problems. The

system examines the constraints and identifies those that will be easily satisfied.

This breaks the constraint network into a number of fragments. These fragments

are laid out separately as macro objects. This heuristic reduced the layout of a

large computer from 9 objects and 49 constraints to 4 objects and 17 constraints,

for example. The reader is reminded that this approach was also successful in

Gilleard's dual graph system described above.

In GSP, the elements are sequentially positioned by so-called "location

operators". A location operator may position an element by projecting the edges

of a space and aligning the element with an edge; an operator may position an

element at a location along the boundary of another or an operator may position

an element such that a point on that element lies a fixed distance from a point on

another. In DPS, an element may only be added located at a corner of the

available space. This may be either a room corner or a corner created by other

objects. Pfefferkorn admits that this is overly restrictive in many circumstances,

such as problems requiring small objects to be placed in the centre of a room.

48

Note that neither system chooses locations using the information embodied in the

constraints. The generator chooses a position almost arbitrarily. The tester uses

the constraints to assess the suitability of the chosen position. The generator

absorbs time creating partial solutions for the tester to absorb time rejecting them

immediately. This inefficiency is rectified in the more recent IMAGE [Johnson

1970] and MAS [Masanori 1976] described below.

In GSP, relationships may only be considered if they relate an element being

added to those already positioned. GSP is forced to assume that the existing

elements are correctly positioned. Eastman acknowledges that this is a deficiency

and concludes that the space planning process must involve iterative search

procedures with back-tracking [Eastman 1973]. Note that this concurs with the

results observed with additive QAP systems. The problem can now be

categorically stated to arise not from the use of an inappropriate numerical

technique but from the lack of back-tracking.

DPS incorporates not only back-tracking but a sophisticated diagnostic

implementation. The design progresses using the depth-first method until a major

difficulty is encountered. Then, rather than backing up the tree of partial

solutions, the system attempts to diagnose the cause of the difficulty. The

diagnostic process is simple - the constraints that were broken when the last set

of alternatives were generated are identified. This information is then used to

select a remedial action.

Four simple remedial actions are implemented in DPS. A macro object can be

created from the objects related by the broken constraint. DPS builds macro

objects by positioning their component objects relative to one another so as to

satisfy their inter-relationships. The macro objects are then represented

identically to any other object in the problem. DPS may modify an existing

macro object comprising the objects causing the difficulties if one has been

created in an earlier alternative. The object causing the problem can be entered

earlier in the solution. The system identifies the cause of the difficulty and

49

positions the object while sufficient freedom still exists. As a last resort, DPS

reverts to depth-first search in a systematic examination of all possible

alternatives.

The combination of diagnosis and remedial action also greatly reduces the search.

In a particular example problem, this approach examined 125 partial solutions

before finding the solution. In comparison, the depth-first approach (implemented

for comparison) examined 687. It should be noted that the implementation of

diagnostic search is supported by records of all partial solutions generated.

CADOO [Marcoussis 1986] is a commercial system structured similarly to GSP

and DPS. This is indicative of the efficacy and appropriateness of the techniques

described above. CADOO lays out the units comprising a ship's propulsion

system. It applies a knowledge base of generic constraints to a description of the

propulsion system and ascribes a severity degree to any non-imperative constraint.

The constraints represent requirements of proximity, segregation, similarity of

orientation, similarity of axis and contact between the units. The system then

enters a cycle of planning and placement. A unit is chosen to be positioned by

production rules expressing criteria such as "biggest unit first". Potential sites

for the unit are then identified for the unit by further rules. A technique similar

to that in DPS is employed to handle difficulties in placing later units. The

possible sites for the unit are evaluated and sorted into an order of increasing

compromise amongst constraints. The best site is selected and the unit is placed.

The better alternatives are also noted. In case of failure, a selective back-tracking

system assesses whether a unit may be re-positioned at one of its alternative sites.

The system positions elements in two dimensions, and is intended to produce a

preliminary design for manual refinement using traditional CAD tools.

2.7.6 Increasing Sophistication
The IMAGE system [Iohnson 1970] and its descendant, MAS [Masanori 1976]

are constraint driven permutational systems. In these systems, the constraints may

specify both a separation distance and a numerical weighting. An initial arbitrary

50

arrangement of the elements is made. Each element is tested for unsatisfied

relationships. Elements with unsatisfied relationships are re-positioned.

Each relationship carries the predicate by which its satisfaction is assessed upon

it. Similarly, the operators to select the new positions for elements are also

linked to the instances of the relationships. A very rich description of the

relationships may thereby be expressed to these systems. This allows them to

consider realistically sophisticated relationships in their problem solving. As

such, these systems are major advances on those described in the previous section.

Unfortunately, both systems were found to usually require significant assistance

from their operator. The richness of the constraints exceeded the solution

capacity of a permutational algorithm.

Previous workers had already constructed systems which considered highly

sophisticated constraints. They circumvented the lack of a suitable algorithm by

dispensing with automatic layout generation. SEARCH [Bryant 1977]

concentrated entirely on the evaluation of layouts designed by a human. PACEt

[Maver 1971], URBAN5 [Negroponte 1968] and Newman's experimental system

[Newman 1966] also acted in interactive mode only, with no solution algorithm.

In IMAGE and MAS, if no satisfactory location could be found for an element,

all relationships acting on it were partially satisfied by placing it at a least squares

weighted average location. This approach breaks down where the relative

positions of elements that satisfy one relationship do not intersect with those

required by another relationship. In these cases, the more important relationship

must be satisfied fully at the expense of the less important relationship. The dual

graph system constructed by Krejcirik [1969] described above worked in exactly

this manner. It was incapable, however, of partially satisfying all constraints

when this would give rise to the globally optimal solution. Some constraints

encountered in plant layout must be satisfied fully to gain any benefit, others can

51

be partially relaxed. It is unacceptable to adopt one strategy for resolving conflict

at the expense of the other.

2.7.7 Least Commitment Problem Solving
The protocol analysis of space planning presented in Section 2.2 shows that the

human designer adopts a markedly different strategy to the algorithms employed

in the automated space planning systems described so far. The human progresses

by generating partial solutions then integrating them. The automated systems

attempt to solve the problem as a whole.

The partial solutions generated by the human may be either complete solutions to

localised problems or solutions to the problem as a whole which lack detail. The

designer focuses attention on the area of the problem where most is currently

known while avoiding drawing inferences based on partial information if possible.

The behaviour of making highly constrained decisions first may be referred to as

"opportunistic" problem solving. It has been employed in the speech

understanding system HEARSAY-IT [Hayes-Roth 1977] for example. In

HEARSAY, constraints on possible meanings are scheduled to generate solutions

efficiently by applying the constraints with the least uncertainty associated first.

This forces the search for the solution through areas of certainty in the search

space. Seminal examples of systems that avoid inferences based on partial

information are MOLGEN [Stefik 1981a, 1981b] and ARS [Stallman 1977]. This

technique is referred to as "least commitment" problem solving and increases

efficiency of search by avoiding the increased work of deriving detail when the

general structure of the solution is still fluid and uncertain.

The WRIGHT system [Baykan 1986] employs both opportunistic and least

commitment problem solving in space planning. The published example of its

application is in the domain of kitchen layout. In general the location of work

areas (such as a preparation area) is selected first and the positions of the

appliances (perhaps a food mixer) may only be selected from within the area.

52

This is conventional top-down design. However, if the position of an appliance

is highly constrained, (a sink is limited to being under a window) the appliance

is positioned and the work area (in this case, a washing area) is designed around

it. It is claimed that this opportunistic problem solving "efficiently eliminates

many dead ends and leads search towards the better solutions".

WRIGHT employs least commitment reasoning by identifying the relative

positions of problem elements, expressed symbolically, before calculating the

absolute positions. In the current version of WRIGHT, the former task is

completed before the latter computationally very expensive task is attempted. A

forthcoming version will integrate the reasoning at the two levels of abstraction

into one overall opportunistic control structure.

2.8 Current Work
No significant work to develop computer systems either to support the conceptual

layout engineer or to automate space planning is known to have been reported

more recently than the cited references. Nonetheless, knowledge based design

support remains an active research area. Recent examples of process industry

applications include knowledge based process synthesis leg Banares-Alcantara

1994, Sileti 1993] and piping design leg lain et aI1992].

S3

Chapter 3: Experimentation and Results

There are compelling arguments that the best computer tool for the conceptual

layout engineer is one which pro-actively participates in the design work. For

example, the system developed during this work, called "Plant Layout System"

or "PLS", generates three dimensional layouts from process data without its user

needing to intervene or assist. An example of this is shown below. Many of the

benefits that the results of this work offer only arise from a fully automated

system. These benefits are discussed later in Section 10.1.

A computer system will only be able to generate layouts automatically if it

embodies substantial quantities of the knowledge of expert layout engineers. In

principle, this knowledge could have been elicited and encoded into a conventional

procedural program. However, there is a powerful practical argument that

success is most likely if a system to automate layout is implemented as an Expert

System.

The control structure or "inference engine" is separated from the domain

knowledge in any Expert System. The domain expert from whom the knowledge

is elicited need only concern himself with domain facts and procedures which

remain explicit in the knowledge base. In particular, the knowledge in an Expert

System can be inspected and amended readily during its lifetime. This is crucial

for a computer system intended for use in conceptual layout.

Firstly, the knowledge base of an Expert System can be constructed

incrementally. Initially, limited but realistic functionality can be incorporated.

It can then be expanded to meet new and more ambitious targets. At any time,

the system can be run and compared against a standard to highlight omissions and

54

inconsistencies. The full scope of the knowledge and procedures used in layout

cannot be established in a single pass. Such a task would be simply too ambitious

to be economically feasible and would be likely to fail in any case simply due to

oversight. Incremental construction would seem essential in this domain.

Secondly, once a knowledge base is "complete", it may be maintained and kept

current. It may be kept in line with changes in the types of problems being set

to the system or advances and changes in the knowledge to be applied. Plant

layout is continuously evolving. New process and plant technologies evolve, the

commercial importance of products change and new legislation is enacted. This

causes changes in the plants to be laid out, the techniques appropriate in laying

them out, and the criteria by which the layouts are judged. The knowledge within

an automated layout system must be changed commensurately. This on-going task

could prove very costly within a procedural program as the whole program might

need to be rebuilt. The structure inherent in an Expert System facilitates this

maintenance task.

The conclusions presented in the previous paragraphs were intuitively apparent

when this work was started. The results presented in this thesis substantiate these

intuitions post hoc. They confirm the overall brief and the three specific

objectives for the work stated in Section 1.1.

3.1 How PLS Was Developed
The nature of the objectives required that a solution be synthesized rather than,

for example, identified by analyzing measured data. The review of related

literature in Chapter 2 shows that the techniques for automating conceptual

layout are based on unsound principles. The majority for automating space

planning in general are inappropriate for process plant layout even though some

were successful in their intended application area. The systems which used a

symbolic constraint representation (see Sections 2.7.5 and onwards) offer concepts

that might be of limited relevance to this work for deriving the plan layout. Of

course, this only amounts to a limited aspect of a broad and diverse problem.

55

Thus, a fundamental strategy for laying out process plant by Expert System had

to be formulated from first principles then a system had to be developed to

implement this strategy.

The nature of conceptual layout was studied and the major steps in the task as

currently practised were identified. These steps suggested the macroscopic

components of PLS. This offered a useful starting point for the design. The
components were considered individually and techniques that might be used to

implement each were considered. An overall integrating philosophy and approach

was also considered in parallel with the individual components. It rapidly became

apparent that the manual approach is so unstructured that it could not be emulated

directly. In particular, an engineer relies heavily on spatial reasoning abilities that

would be considered to be unremarkable common sense in a human. It was

thought that these were likely to be very difficult to implement efficiently in a

computer program. Thus, the design of PLS diverged from manual practice

although remaining sufficiently similar so that the users of PLS would understand

the basic principles. Procedures that an engineer carries out that would be

difficult if not intractable to compute in a single step were distributed amongst

several abstract steps. The procedures were replaced by these abstract steps

rather than just divided amongst them. These abstract steps were then re-

assembled into the components that had been postulated by observing manual

practice. Thus, PLS came to embody an approach to plant layout that was

developed specifically for it at the detailed level and the designs of the

components became tightly interwoven and mutually reliant. This procedure

suggested a provisional generic problem solving approach for PLS and this

approach was implemented in code. That is, the core of PLS was developed

independently of any specific plant. Great care was taken to develop a problem

solving procedure that would be capable of laying out any process set to the

system.

56

Thereafter, one process was chosen as the test case for all trial runs of PLS1
•

This process is described in Section 3.2 and was carefully chosen to be

representative of conceptual layout problems in general. Repeated use of one test

process allowed the author to devote maximum time to developing PLS' s problem

solving procedure commensurate with the objectives for the original work. An

initial knowledge base was constructed which contained knowledge about how to

estimate equipment sizes, how to identify constraints on the positions of

equipment and similar layout issues for the equipment types represented in the test

process. Even though the knowledge base was built in response to the needs of

this process, the knowledge was not specific to the process. Knowledge not

relevant to the test process was not encoded. Nonetheless, the developed work

has all the functionality of a fully expanded system and the knowledge that was

encoded can be re-used for many other plants.

PLS was developed iteratively as follows. PLS was applied to the test process.

Sometimes, PLS crashed or failed to terminate. If PLS completed a run, the

layout was inspected for discrepancies from what would be considered reasonable

from an engineering viewpoint. The fundamental cause of any fault or

discrepancy was either a coding error, a deficiency in the problem solving

procedure or a lack of engineering knowledge. Each problem was tracked to its

fundamental cause and the error was rectified. This ensured that the problem

solving procedure and the knowledge base were only modified when a fault could

be defmitely traced to them. In particular, great care was taken to ensure that the

procedure was not modified to compensate for deficiencies in the knowledge base

so the procedure remained applicable to process plant layout in general. Once the

faults that were identified during a run had been rectified, the cycle was repeated.

1. This thesis frequently describes the way in which PLS responded to specific
features of the test process. This does not contradict the previous statement of
generality in any way. The examples show how the general features of PLS
related to a specific instance of a layout problem.

57

PLS was developed entirely in Common LISP [Steele 1985] on a MicroV AX IT

computer with 16 MB of memory and 64 MB of swap space. VAXLisp was used

as the development environment running under the VMS operating system.

3.2 The Test Process
A process that produces 4000 tonnes per annum of a polymer (notionally poly

Vinylidene Chloride) from monomer was selected as the test case for all trial runs

of PLS. Itwas loosely based on a process operated by a major manufacturer. The

PFD for the process is shown in Figure 1.

3.2.1 Process Description
The reaction is conducted in a solution of acetone in water in the stirred tanks,

RI04, RI08 and RI12. Each batch takes eight hours to complete. The reactors are

charged in tum every three hours from weighing tanks TI0I (water), T102

(monomer) and TI03 (make-up acetone). The reaction is highly exothermic and

is cooled by the reflux condensers HI05, HI09 and HII3. These are single pass ~
on both sides and horizontal to increase efficiency and reduce their size.

Initiator solution is made freshly for each batch in the stirred tanks TI06, TIIO

and TIl4. The initiator is metered into each vessel by pumps PI07, PUI and

PIIS at a rate to control the reaction rate.

The reactors discharge via the progressing cavity pump PIl6 to the filter feed

tank TIl7. The slurry contains 10% of both polymer and monomer and is re-

circulated through the feed trough of the rotary vacuum filter F119. The level in

Fl19 is controlled by a weir and the excess is returned to T117.

Filtrate and entrained air are separated in T120. Air is withdrawn by the ejector

Pl21 to maintain the vacuum in the filter. The filtrate contains unused monomer,

solvent and wash water. It is distilled in column Cl24 and the acetone and unused

monomer are returned to T103. The water is discharged to drain.

58

>-~
~.....u
s
"-
Cl....~~
~

~ IQa

~
....

~
0:::~
VI....

I-
II) u

~....
VI

~I
~ 0:::....~

J :
VIz
i

~

~
..

0~ l-

e ~a:
&, ..:.~

~
II)

S s

The filter cake is dried in the rotary co-current drum drier D129. This operates

at reduced pressure to minimise dust losses. The air for the drier is heated by

steam in HI34 and is pulled through the drier by the blower PI33. The cyclone

XI32 protects the blower from entrained polymer.

The dried polymer is held in hopper V130 until fed to the bagger/palletiser Xl3l.

The palletised product is transferred to the warehouse by forklift truck.

The data supplied to PLS are tabulated in Tables 1 and 2. These data were

deliberately restricted to process parameters. Although Table 1 shows physical

sizes for the equipment, these were not input. PLS derived these by applying

encoded knowledge in the same way as a layout engineer often conducts some

preliminary equipment design. The initial data also included the positions of a

bulk tank farm from where the acetone and monomer would be taken (North of

the plot) and the product warehouse (South of the plot).

The reader should note that a proprietary monomer, rather than the notional

Vinylidene Chloride, is used in the process on which the test process is based.

The mass balance is consistent with the physical properties of the real monomer.

60

e e
~

In 00- C'f")

.11
.... jl i.i jl ~E'

0- ~fo ~tsl ~
~.§ ~ 5 - '0 e 0 eE'.;; '5 - .8135'0 :0 e 'Oe 'Oe e e C'f")N ~ 0

~~
eln er-- eln Eil e e 01 ·N

~~ e e 0-- ~-: IQ ~-r-- . r-- . ~ . ~~ ·N .- •N • C'f") ~~ .0 e- - - N 0 e
In -- ~ 0'\-d .-

* ~ ~ ~8:S-
;] geQ ~ ;Q> 8 ~~

~ ~ ~ ~ j ~.~ 6
~ ~~

bO ~~ ~z ie . ~ ;§
~~ ~fIl ~!8 ~o ~

e ~ ~ 5IE 5 5 5 t.,) o 5 olSI 0 0 0-e -e -e ~ ~ -e -e 0
~ u < < < < < C'f")

~

() () () ()

bOe
'C: '5 ·c 'C:

] ~ .8 '8. .8 !] .8] !.... ~ ~ ~ ~ ~
~J: ~

~
~ - - § - N

< < <

bO j bO bO bO

5 ~Q> ~Q> ~Q> j~ ~ Q>
~ .~ =~ '::I

~~
.~j. _,g.~ ~ ~ § ~ § ~ e ~ §it Ne ~ ;::.~ ... bO

"'e~ - ~
... '0

~~
"'e ~ e~ "'e 8~ e > :~In r-- 0'\ ~ In~ C'f")fIl . . . 0~ C'f") In -

In-~ ~~ 0 -00 ~.... 0 -e~ -N -C'f") -~ ..- g a - IQ0 ~N 0::_ ~- - -~ =' - - - ..- ..- ~-- -~ ~ ~ !~:go:: ~~ ~ ~z - - - s~ 0:: ~ -~

a e e
00 00

1.1 ialC'f"I 00 C'f"IJ~d .
11-s .Iid I~:f- -8i ..c ..c ..c J! .

';3 '5 j SE' e .3 if aE' ,8'0 j ,8'05'0 e ~ 0 00 '0- '0- !nO EiS :.oe EiS
~~

dt:!,
. a e a a C"!t:!, ei!eC'f"l - aii e~

C'f"IC"! ..c t"-~ ~~
0..c oe o· ~ e~ r-iC'f"l e dC'f"l ..c .-e d e '~ -- ,N

0 - . C'f"I"10\ 0- r-i ~ -, --

t! i ~

118 D D t ~'E ~ £ ~ e- I rI)

~
rI) I j

~ ~ ~~ ~ ~ 8~ o

Ei -- -..... ~.8 !5 5 5 5 o 5 o0 -B.... - 0....8. -e -e -e -e ~ -e :>u o t"-~e < < < < - < 0 0 ~
~ ~~ ~

Co) e I -jE~ ·s £ ! ::a
~ ! ! -siB ! !.... GI'l ! C'f"I - --~J: ~

N N ! N .!.! - -C'f"I d
< N ~ ~Nd

5
CD e
~ u

....
~

.... jg !n jgGI'la.
GI'l ::;:I

GI'la.GI'l '::1 ~,g. ""!CDJi ~ § ::::::;..c= c:3 g ::::::;..c::
0]~J I aCD I,ObO N N

~
Ne ~e - ::;:I

e~ ~ it e~...
~~ :! GI'le \0 N-s

~~rI) ~ 0\ 00- ,
\0

.8 r-- oo 0\ 0 - N C'f"I
~ ~~ e - - - N N N N- - - - - - - - --z E- ~ ~ E- ~ ~ = u =

e e 'is' e e eiOj 00
~~ ~ In ~ 0~-s if 0 ... N .11

,- N £ ' N N§l J! - ~ ~ u.~ ~ ~ ~.... ~ .8'0 eE' e Ji e e e
~

S73 In° ~ ~ 'Oe ~ 0eln e"5 ~c:!- N e I] N e. N NQ~ 00'\-: lrIe ~ 0- ~ o· ~ ~&. ON ~ e Ne e .~ e el"_ e -'. 0 :g 0 ~ 0
~ .- ~ 0\ ~,

N ~- ~

.~ j ... ~ ~ I jI ~ ~ I

~
I

~
m

~ ~ e m
~ ~

~

5 ...II u o u o I] u u u0 0 0 0 0 0 0

r-- s ~ 8 ~ ~ ~ ~ 8~e • - < < -~

(,,) o (,,)
bO~ '5 ·c ·c! ~ ! ! u] ~ ~ ! ! -a

~~£ .rJ
00 ~ § 00 000

~
- - N 0 5 0 d-e < <

t:I. e bOs i jg 0 ~u .i.a ~= ~ ... ~=~ 'D ~ r--= ~.m; ;;;..6- ~.m;~ ~ ~ e ~ § efb~i N ~ ~ 2 ~~e e~ - - rf'!~
~~ ~~ ~~~~ - e'O "'e ~~ 0 0

00_m ,
N- -

i~ ID r" 00 0'\ ~ - N ~ •N N N N ~ ~ ~ ~- - - - - - - - --Z E-c 0:: ~ Q > >< >< ~ 0::

~

"0 "0 "0 ::s "0 "0 "0 "0.... §~50 50 50 50 50 50 50;.:s ;.:s ;.:s ;.:s ;.:s ;.:s> ~

~~ § 00 § §.~ e - II")

~ ~! ~
N ~ -- - 00 - -

! ~ ~ ~ ~ ~ ~ ~ ~

~
- - - II") II") II") II") II")

~
.5 .5 .5 .5 .5 .5 .5 .5- ~ ~ ~ ~ ~ ~ &6 ia: "lit "lit "lit "lit "lit

e
~ ~ ~::s r--

~ ~ 0 s-;;- e "'l - § -0\ 00 ~ ~- 'a N d -.d -.d -.d
~

.. "'l > II")

~ - -! e
~ ~

~ ~ "'l r-- N 0 0 - i -0\ 0\ 00 00

~ - ~
~

N d ..,.j. -.d -.d -.d
~ ('f")

~ 0 0 0 0 0 0 0 0 0

~
0 0 0 0 0 0 0 0 8>.

i' -e
~
~

R- ~5 J 0 8 . 0 0 0 0 0 0':;1 - II").... -'"
~
0 ~o ~ 8 8 8 8~

0 0 . 0 0;;t - - - -<
B 8 * *
~

0 0 0 0 8 0 0 8- - -
~ooN ~OON ~ooN a ! s S ! 00

~
0- 0_ 0- 0--- --- --- - - - - - -~~~ ~~~ ~~~ = ~ ~ = ~ ~

e - s a ~ ~ ~ ! ~ 0e 0 -- - - - - - - - -~ ~ ~ ~ ~ = ~ ~ = ~

i ~~
'0 '0 '0 '0 '0 '0 '0 '0 = '0..... ~·s

~
·s ·s

~~ ·sg. g. g. g. g. o! tr e- e-> ~ ~ ~ ~ ~ ~ ~ > ~

~~
§ l"'- I"'-~ £ ~ ~ ~ s ('t") 0\ 0\ 01- - - ('t")00 00 - ~

('t") 00- 01

u
~ ~ ~ i

m 8 m m 8 m m m13 5 § 5 g 5 5~ - In In.S - = =' =' .~ = =
£ g .S .S .S .S 'B ·13 'B 'B ·13 'B ·13i i i ~ ~

8
~ ~

8 8 8 8.. U U U U U

S
~e i i ('t") 0 00 ;Z N N N ('t") ('t")--;;- ~ ('t") 00 ('t") N 01 01

~ ~
'l:i 'l:i 00 . . 0 N N N NIn N - N-

Is 'be i i ('t") 0 00 ;Z N N N ('t") ('t")- ('t") 00 ~ N 01 01ti:
'l:i ~ 00 N 0 N

~
IoC - N N N N

('t")

~ 0 0 0 0 0 0 In
~ 0 0 0 0r-:

~
~ 0 0 0 0 0 0 0 0 0 0 0 0i' b - - -e

~
~ S-8 0 0 0 N rt rt ('t") ('t")g 0 0 0 . .0 .

('t") ('t")- - - In . .'D
~

In In 00 00'1
0 8

~
u 8 8 N

~ l"'- I"'-fi 0 0 0 0 ('t") 0 I,() I,()In In In I,() - r-: r-:- - - -< ("II ("II ("II

B * et ~ ~0 8 0 0 ~ 0 0 0
~

0 ('t") ('t')

~ ~ ~-
('t") ("II ("II I"'- 01 I"'- 0 - ('t")

~ In IoC{:. - - - - - - N ("II ("II ("II ("II- - - - - - - - - - - -:= ~ ~ f-4 ~ f-4 f-4 ~ := u := f-4

~
("II ('t") "'It 2!;~~ I"'- 01 01

~ ~
('t")

~ ~- - - - - - ("II- - - --- - - - - - - - -~ ~ := f-4 ~~~ f-4 ~ ~ f-4 f-4 := U :=

I 'Q 'Q
:g~ 'Q 'Q~ 'Q 'Q 'Q·s

~ ~ ~
s. s. s. ;.:::::I~ ;.:::::I ;.:::::I ;.:::::IeT

~~ ~ ~ ~;.:s ;.:s ;.:s~-
.~ ~ 0\

~ - 0\ § § § ~ §
~
- ("') ~ ("') - -~

00 00 - - - - -
~ fIJ fIJ fIJ fIJ fIJ fIJ fIJ fIJ fIJ fIJ- g 5

~
5 g g g 5 = g~ I = = ~ = 8(,)

'B 'B ·s 'B ·s 'B ~ 'B 'B 'B£ ',c- 8
~ ~ ~ ~

8 8 - ~ ~ ~t.,) o t.,)

e
~ 0 ~ 0 ~

It') 0 N - ("') - --;;- N C"! ("') It') - ~ e-- 0 e--
~ ~

N . d d r-: d d r-: d r-:N N

I e
~ 0 0 0 ~

It') 0 N ("') ("') - -- N N C"! ("') It') - - l""- 0 l""-~

~
N N N d d r-: d d r-: d r-:

~ 0 0 0 0 0 8 0 0 ~
0 8. .- ~ ~

~e
~ 8 8 10 8>. 0 0 0 0 0 N 0i' - - - d -£-~

~ I-8 ("') - - ("'). ~ ~ 0 0 0 0 0 0 0("') ("')'J:1 00 d d 00
._
fIJ

~
~
8 g

l""- - - ~
~

~ ~ ~ 10 0 0 0 0 0 0 0- N N -<

!i l""- l""-
~ 80

It') It')
0 S 0 0 0 0

~
r-: r-: ~ .
0\ 0\ It')

~ l""- ~ ("') 0\ 0\ 0 - N ~ ("')

~
N N N 0 N N ("') ("') ("') ("')- - - - - - - - - - -t.,) ::r:: t.,) ~ Q Q > >< >< > ~

e 10 ~ l""- 10 0\ ~ 0\ 0 0\ N NN N N N - N ("') N ('f"I ('f"Ie - - - - - - - - - - -~ ~ t.,) ::r:: ~ ~ ::r:: Q > Q >< ><

*

3.2.2 Discussion of the Process
The test process comprises 42 equipment items. This is typical of a chemical

plant that would be laid out as a single job. A process larger than this would be

broken into plots which would be laid out effectively as separate tasks. Thus, the

test process is the size of a typical practical layout problem.

The process includes five widely different unit operations: batch reaction (three

separate units of RI04 etc, RI08 etc and R112 etc), vacuum filtration (F1l9 etc),

continuous distillation (C124 etc), rotary drying (0129 etc) and bagging (V130

and X131). This is representative of the diversity of unit operations across the

process industry as a whole and tests the generality of PLS (albeit not rigorously

as the range is a representative sample). The importance of this is perhaps easiest

to see from a counter-example. A series of distillation units could have been set

as the test case. This is a realistic process after all, widely used in oil refining.

However, a special purpose distillation train layout system would produce results

equally as good as if not better than a generally applicable system in this case.

Even if the system were supposedly general, the generality would serve no

purpose on this process and would not be put to the test.

The wide range of unit operations allows diverse equipment types to be introduced

realistically. PLS includes a number of techniques for reasoning about the

equipment items. Particular techniques are most appropriate for particular

equipment types and vice versa. For example, while inheritance of default values

might be used for the majority of reasoning about pumps (because pumps are

highly standardised), inheritance would be of limited use for a column or dryer

because these are designed as bespoke items. The reasoning techniques in PLS

and how each is used are discussed in Chapter 5. The range of equipment types

in the process provides real needs for each technique.

Furthermore, the diverse equipment types includes some which present specific

layout problems. The difference in elevation between the column C124 and the

67

thermo syphon reboiler Hl27 has to be calculated precisely for Hl27 to function

as a thermosyphon. This layout constraint is unique to thermosyphons. Other

examples include the barometric leg between the tilter F 119 and the filtrate vessel

T120 and the need to minimise transport lag between the reactors Rl04, RlOS and

Rl12 and their respective condensers HI05, HI09 and H113.

Streams of all phases and all two-phase combinations flow within the process. In

addition to the many single phase streams, the reboiler return (H127 to C124) is

vapour dispersed in liquid; the filtrate barometric leg (F119 to T120) is liquid

dispersed in vapour; the reactors discharge a slurry of solid in liquid (eg Rl04 to

P116); the filter discharges this as a paste (F119 to D129); and solid is entrained

in the air discharged from the dryer (D129 to X132). Each combination of phases

impacts on the layout by imposing specitic constraints. For example, PLS knows

that pipework carrying a slurry has to include large radius bends rather than

elbows so that solid will not be disentrained and deposited. PLS left additional

space around the reactors to accommodate the large bends in the discharge

pipework.

The process includes some batch processing (the reactor units) while the

remainder operates continuously. In a batch process, even normal operating

conditions vary with time. PLS represents a number of values for each of many

attributes and then selects the governing value for each. For example, the reactor

discharge streams variously have no flow and full flow. PLS identities the flow

rate at full flow as the governing case before sizing the pipework.

The batch processing sections are important to test PLS' s ability to layout plant

operated in either mode. Furthermore, governing cases have to be identitied

while laying out all plant, whether batch or continuous. For example, the size of

relief header piping must be calculated from assumed relief flowrates. There

should be no flow in the header during normal operation. The batch sections of

the test process also serve as a general test of this aspect of PLS.

68

3.3 Results
PLS was applied to the test process described above and designed a three-

dimensional layout for the plant with no manual intervention. At the end of each

successful run, PLS produced a data file which could be read into the widely used

process plant modelling system "PDMS" to generate a model. PDMS was then

used to view and plot the results. An industrial user of PDMS generated colour

shaded perspective illustrations of the layout to be used for project publicity using

PDMS's "REVIEW" facility. In principle, any modeller could have been used.

PDMS was adopted because it was easily available to the author. Normally,

PDMS's standard viewing and plotting functions were used to assess the results

of a run. The REVIEW facility was not normally available to the author. These

illustrations are shown in Figures 2 to 7.

This layout is entirely conventional and might have been produced by an engineer.

It contains no anomalies and would not excite argument in most design offices.

Madden [1990] wrote of it:

"The very ordinariness of [the layout] is the real vindication of [PLS]

as a workable engineering tool"

and added:

"[PLS] produces results as good quality, coherent layouts"

The layout is assessed and critiqued from an engineer's perspective in this section.

Madden's view is based on a similar assessment. The description of its features

also indicates the decisions that PLS had to make to design it. The assessment

of the layout is by proxy an assessment of the capabilities of PLS itself.

The plant has been laid out to be constructed in a building, commensurate with

the need to protect the process operators, certain machinery (the bagger and

palletiser) and the dry powder product from the weather. The overall form of the

layout is one which is frequently used for plants in buildings. The process

equipment are arranged in two rows on either side of a central access way with

piping run down the outside of the rows. Process material flows around the

layout efficiently. The weighing tanks TIOl, TI02 and TI03 are positioned in

69

Dlustrations of Test Process Layout
Generated by PLS

Figure 2
General View Looking North East

Figure 3
General View Looking South West

Figure 4
Plan View, North is Up

Figure 5
Side Elevation Looking South

Figure 6
Side Elevation Lookin North

Figure 7
End Elevation Looking East

70

A T101 Water weighing tank
B T102 Monomer weighing tank
C T103 Acetone weighing tank
D ROl4 Reactor
E RIOS Reflux condenser
F TI06 Catalyst make-up tank
G PI07 Catalyst metering pump
H RI08 Reactor
J RI09 Reflux condenser
K TUO Catalyst make-up tank
L PUI Catalyst metering pump
M RU2 Reactor
N RII3 Reflux condenser
0 T1l4 Catalyst make-up tank
P PUS Catalyst metering pump
R P1l6 Reactor discharge pump
S TIl7 Filter feed tank
T PU8 Filter circulation pump
U FU9 Rotary vacuum filter
W T120 Air disengament vessel
X P121 Vacuum ejector
y Pl22 Filtrate return pump
Z Hl23 Column feed pre-heater
a Cl24 Acetone separation column
b HI2S Column condenser
c TI26 Column reflux drum
d HI27 Column reb oiler
e Pl28 Column bottoms return pump
f Dl29 Polymer dryer
g V130 Dry polymer hooper
h X131 Bagger/palletiser

J Xl32 Cyclone
k Pl33 Blower
I H134 Dryer air heater

A TIOI Water weighing tank
B T102 Monomer weighing tank
C TI03 Acetone weighing tank
D ROl4 Reactor
E HI05 Reflux condenser
F TI06 Catalyst make-up tank
G PlO7 Catalyst metering pump
H RlOS Reactor
J HI09 Reflux condenser
K T110 Catalyst make-up tank
L PIll Catalyst metering pump
M R112 Reactor
N H113 Reflux condenser
0 T114 Catalyst make-up tank
P P115 Catalyst metering pump
R P116 Reactor discharge pump
S T117 Filter feed tank
T Pl1S Filter circulation pump
U Fl19 Rotary vacuum filter
W Tl20 Air disengament vessel
X Pl21 Vacuum ejector
y Pl22 Filtrate return pump
Z Hl23 Column feed pre-heater
a Cl24 Acetone separation column
b Hl25 Column condenser
c Tl26 Column reflux drum
d H127 Column reboiler
e P128 Column bottoms return pump
f Dl29 Polymer dryer
g V130 Dry polymer hooper

h X131 Bagger/palletiser

J X132 Cyclone

k P133 Blower

1 H134 Dryer air heater

the North Eastern comer, closest to the tank farm. Raw materials flow into the

weighing tanks and are distributed to each of the three reactors RI04, RI08 and

Rl12. Reaction products are pumped to the holding tank Tl17 from each reactor.

Note that R112 might appear to be distant from T117 but a convoluted

configuration with an unacceptably tortuous central access way would be needed

to avoid this. PLS' s solution is as good as can be achieved where flow splits and

reconverges like this. From the holding tank Tu7, flow continues through the

filter Fl19 where it splits into two. The liquid stream continues through the

column unit and returns to the acetone weighing tank TI03, flowing round the

Western end of the plant. TI03 is positioned most Westerly of the weighing tanks

because of the acetone recycle flow. The solids stream flows through the dryer,

hopper and bagger and out to the warehouse situated South of the plant. The

section of the plant handling solids is positioned closer to Fl19 than the column

unit because solids are far more difficult to transport over significant distances

than liquids.

The layout is uncluttered and provides adequate access to the equipment via a

central access way which PLS determined was needed. All equipment can be

reached directly from the access way. Personnel need not risk injury climbing

through equipment and pipework to carry out any operational or maintenance task

and can return to the access way quickly to escape if an incident occurs. The

access way itself is straight which also greatly facilitates escape. The equipment

items are highly visible so operators can observe them easily in passing and

therefore quickly become aware of any problem as it arises.

The layout also meets the different access needs of major maintenance tasks. Any
equipment can be removed without disturbing other equipment. For example, all

exchanger tube bundles can be withdrawn without fouling other equipment, in the

main by pulling the bundles into the access way following typical practice. The

reflux condensers are offset from their respective reactor vessels so that the vessel

heads and agitators can be removed. The weighing tank TIOI is positioned on

the same centre line as reactor RI04 to fit the pitch of the structural members.

78

However, TI0l is sufficiently far above RI04 to allow this while leaving
sufficient space for removal of the head from RI04. Similarly, the tubes of the
vertical reboiler H127 can be withdrawn without fouling the drum T126 even
though H127 is directly below T126. Similarly, the layout is sufficiently spacious
to be operated and maintained safely and economically but it does not occupy
excessive space or extend piping runs un-necessarily.

In plant layout, a number of positions are almost equally acceptable for some
items of equipment. For example, the ejector P121 is positioned under the dryer

D129. This is the only one of a number of otherwise equally acceptable positions
chosen because it does not force other items out of their ideal positions.
Importantly, PLS has successfully selected a good position for the ejector even
though the constraints on the ejector alone do not suggest any position.

PLS does not attempt to route piping or design the plant structure. Nonetheless,

allowance has been made for the pipework and structural steelwork in positioning
the equipment. The layout is designed so that it is sympathetic to the constraints
facing the project engineers. Sufficient space has been left for pipe runs between
equipment. For example, the pipe run from reactor RI04 to its condenser H105
requires two elbows because of the horizontal offset. Each elbow adds a distance

equivalent to 1.5 times the pipe diameter to the minimum vertical offset. PLS has
provided for this and for other pipe fittings such as nipples between the elbows
and flanges when calculating the elevation of HI05.

The span between major vertical structural members in any plant cannot exceed

6 m because this is the maximum practical length of the horizontal members.

Equipment that requires support from all sides is positioned in the centre of the
6 m squares that result. In this layout, the reactor vessels RI04, RI08 and R112

are hung from the first floor and are laid out on a 6 m pitch in the bays of the

steelwork. Other equipment requires support at specific points. The dryer D129

is supported at the ends and thus, it is positioned so that its ends align as far as

possible with the stanchions.

79

The plant is laid out on three floors at 4.2 m, 7.2 m and 11.2 m elevation

respectively. These elevations balance the needs for access and support. Fork

lift trucks and machinery used during maintenance can manoeuvre beneath the

first floor. The headroom below the second and third floors leaves sufficient

clearance for the operational and maintenance activities needed on those floors.

However, the floors are sufficiently close to one another to provide support at

most elevations at which an equipment item needs it.

The relative elevations of the equipment items are all sufficient to satisfy flow and

other process requirements. The elevation of each vessel that feeds a pump is

calculated to ensure sufficient hydrostatic head at the pump's suction nozzle to

meet its required NPSH. The reflux drum T126 is sufficiently far above the

reflux return nozzle on column C124 to maintain an adequate pressure on the

control valve. The elevation difference between the reboiler Hl27 and column

C 124 is calculated to provide the pressure differential to drive the thermosyphon.

The barometric leg in the filtrate withdrawal line between filter F119 and the

drum T120 is satisfied. Note that some equipment items are subject to more than

one "chain" of elevation requirements. For example, the filter F119 has to be

sufficiently far above the dryer D 129 for sufficient slope in the paste chute and

also sufficiently far above the filtrate drum T120 to satisfy the barometric leg.

The actual elevation of the filter is the greater of the two.

The layout has avoided undesirable local support structures for more than a few

items to achieve the elevations set by process requirements. The weighing tanks

TI0l, TI02 and TI03 do not sit directly on the second floor. The elevation of

the second floor is set to suit the dryer D129. This elevation is too low for the

weighing tanks. If the second floor were set to suit the tanks, the dryer would be

lifted un-necessarily or would need a local structure to support it above the first

floor. This would be unsatisfactory given the size and weight of D129. Local

support for the weighing tanks is the less un-satisfactory solution.

80

Access is provided at all levels where operators and maintenance staff work

frequently. For example, the reactor vessels RI04, R108 and RIl2 are mounted

on the first floor so that their heads are approximately 0.6 m above the floor

level. PLS specified this to place the access manhole at what is considered to be

the ideal distance above a floor for safe access. The catalyst make-up tanks

TI06, Tlll and T114 are positioned on small structures so their open tops are at

chest height so the catalyst can be added in small amounts without the operator

either bending or stretching. All frequent access requirements are met by the

main floors rather than platforms or ladders for personnel safety.

PLS has laid out a plant which is representative of typical process plant layout

problems and has generated, fully automatically, a layout that is entirely

satisfactory and conventional from an engineering viewpoint. This result shows

that a successful approach to automating all aspects of process plant layout by

Expert System has been developed. The approach has been implemented

successfully in PLS. All objectives of this work have been achieved fully. The

remainder of this thesis elucidates the approach used in PLS which could equally

be employed in any other Expert System for this application.

81

Chapter 4: The Principles of PLS

PLS is a working Expert System that performs the valuable function of generating

automatically three-dimensional plant layouts from process data. PLS implements

an approach to automated layout that was developed as an essential element of this

work. This approach can be used in any Expert System for this application and

the approach is perhaps a more important deliverable than PLS itself. The

remainder of this thesis describes this approach.

The approach is presented in the context of how it is implemented in PLS. This

is deliberate to stress that the abstract approach can be implemented in working

software which can then solve real world problems. However, descriptions of the

approach and of PLS are synonymous. PLS is a full implementation of the

approach and does not embody any techniques other than those prescribed by the

approach. This Chapter highlights the key principles that pervade the approach

developed during this work and the overall structure of PLS. This Chapter is

intended as an introductory summary to unify and integrate the presentation of the

more detailed descriptions of the elements of PLS in subsequent Chapters. The

reader should bear this in mind and recognise that detail is limited in this Chapter

of necessity.

4.1 The Role or Constraints
In plant layout, design constraints suggest positions for items of equipment

relative to other items rather than absolute positions of each item. The design

constraints can be viewed as relationships between the positions of the items.

Some constraints demand the proximity of the related objects (such as a pair of

items connected by a large-bore pipe made of an exotic alloy) or the separation

of the related entities (such as a fired heater and a tank storing flammable liquid

82

in bulk). Some items of equipment are related to entities other than other

equipment. These entities include elements of the structure or building in which

the plant is built; ancillary elements such as control rooms; and site features

which might be involved in the operation of the plant such as a warehouse or

might be unconnected neighbours such as a population concentration. PLS

reflects the central role of relationships in conceptual layout and adopts them as

a unified expression of the spatial requirements implicit in the process data and

of the relative positions of the equipment items chosen to satisfy these

requirements.

The relationships explicate the spatial significance of the process conditions and

features of the equipment items. They express the spatial requirements in a

manner that is meaningful and appropriate for the task in hand. Effectively, they

distil the factors that are germane to layout from the bulk of the process data.

Shuquair [1978] also adopted relationships as the input data to his system, arguing

similarly that this would

"concentrate attention on the main key to the solution, that is,

understanding the process"

Relationships are also highly important in the conceptual model of the layout

domain. However, this importance must be suppressed in manual methods

because of the volume of data needed to allow a proper treatment.

While the relationships impose requirements on the relative position of equipment

items, they cannot be used directly to dictate an absolute position. Until the

absolute position of one equipment item is known, the absolute positions of all

others related to it cannot be determined. However, the positions of these other

items will also be subject to constraints from further items. The position chosen

for the first item must be chosen to satisfy the constraints acting upon its

"neighbours" from elsewhere. In effect, the whole layout must be generated

simultaneously.

83

The technique of "constraint propagation" is ideally suited to solving problems

like this in which many sub-problems interact. A constraint propagation system

does not choose a particular solution to a sub-problem (in layout, the position of

one item). Instead, constraints on the solutions of the sub-problems are identified.

The problem-solver progresses by reducing the degrees of freedom in the problem

until a solution emerges. The problem-solver moves between the sub-problems

opportunistically, making the best use of its then current knowledge of the

solution. This meets the needs of the spatial reasoning technique for the

conceptual layout domain. Accordingly, constraint propagation was selected as

the spatial reasoning component of the methodology developed in this work. The

success of the methodology establishes the principle that constraint propagation

is an efficacious technique for this domain. Furthermore, relationships can be

represented directly as constraints. Thus, the model of the domain embodied in

PLS matches the engineer's conceptual model. This facilitates knowledge

elicitation and the user's understanding of a system and hopefully, engenders the

user's confidence in the system's results.

Davis has enumerated six techniques for constraint propagation [Davis 1987].

The techniques fall into two broad categories. Those in the first category, often

referred to as "constraint satisfaction", use the constraints to control the values

that may be assigned to attributes in a consistent solution. The problem-solving

mechanism might search for an assignment of values that are consistent with the

constraints imposed. Alternatively, the constraints might be used actively to

propagate a known value to derive a value for an unknown. The seminal use of

this style of reasoning is often taken to be the work by Waltz on understanding

pictures by identifying the features within them [Waltz 1975]. The techniques in

the other broad category work by reasoning about extant constraints to infer new

constraints and thereby increase the problem-solver's knowledge of the solution.

Davis refers to these as "constraint inference" systems, although the generic term

"constraint propagation" has become somewhat ambiguous because many authors

use it specifically to mean this technique. Well known examples of systems using

84

these techniques include MOLGEN [Stefik 1981a, 1981b], ENV [Kuipers 1984]

and the Quantity Lattice [Simmons 1986].

Constraint inference was also selected as the constraint propagation technique for

conceptual layout in this work. The constraints implicit in the process data

specify an under-constrained problem in one sense in that they do not convey

enough information to lead directly to a solution. In another sense, the problem

is over-constrained in that constraints are often encountered which are mutually

inconsistent; this is discussed below. Rather, a solution has to be synthesised,

albeit to maximally satisfy these constraints. This precludes reasoning by

constraint satisfaction alone because the constraints will allow broad ranges of

values to be assigned to many of the attributes rather than restricting the attribute

to a single value that constitutes the solution. The constraint inference technique

in PLS embodies the idea that new constraints should be created to record

intermediate information about the relative positions of the objects, initially

qualitatively then with an increasing content of quantitative information. These

new constraints must be consistent with the constraints expressing the spatial

requirements, of course. For example, a constraint might require two heat

exchangers to be adjacent to share service piping. This constraint does not

contain any indication of the form the solution should take. Increasingly specific

constraints are created defining the relative positions of the exchangers until a

highly specific constraint is recorded that states, for example, that one of the

exchangers is 3 m North of the other. This relative position satisfies the design

requirement that the exchangers should be adjacent.

Constraint propagation readily admits so-called "least commitment" reasoning.

In this, commitment to a solution or partial solution is delayed if possible until

sufficient information has become available to make a decision with certainty.

Blind alleys are avoided while searching for the solution. They are not explored,

only to be discounted during back-tracking, wasting a large amount of computing

time. PLS has been engineered to employ least commitment reasoning widely.

This greatly increases problem solving efficiency and is an important principle of

85

PLS. In an extreme example, it is doubtful whether blind search to form groups

of entities (used to simplify plan layout) would even terminate. However, when

PLS was applied to the test process, least commitment reasoning was found to

eliminate completely back-tracking during group formation.

This work also establishes the principle that the instances of the design constraints

can be identified by applying knowledge from a system knowledge base to the

process data in a database. This principle sets this work apart from all systems

built previously to automate layout. In the former systems, including Shuquair's,

the user identified the constraints and stated them in the input data. This limited

the use of these systems to skilled layout engineers who possess sufficient

knowledge to do this. These are the very engineers who are most able to derive

a layout using their traditional manual technique! The user was also forced to

invest significant effort in his design. This made these systems unsatisfactory

tools to develop provisional layouts, for example to support the evaluation of

process options.

In PLS, the constraints are inferred by the knowledge base to great benefit.

Further benefit accrues if each constraint identified by the knowledge base is

represented persistently by a separate object in the database. This has also been

adopted in this work. The constraints can be inspected at any time during the

solution process and even after the design is complete. The objects representing

the constraints provide a formal audit of a solution and a trace of how the solution

was achieved. A process engineer might observe which constraints arise from a

feature of the process design to assess the ramifications of the decisions that led

to that feature. A plant engineer might inspect the constraints during a layout

review to assess whether issues of interest to his discipline have been emphasised

sufficiently. The layout might be validated against the constraints considered.

Layout engineers cannot record sufficient information to allow their layouts to be

audited when using the current manual technique. Conversely, the audit

information is an intrinsic feature of PLS. The provision of an audit for the

86

layout confers very important benefits to the system's potential users which will

be discussed in Section 10.1.

Furthermore, the persistent representation of the constraints greatly increases the

efficiency with which constraint propagation can be implemented. During

constraint propagation, each constraint instance is referred to repeatedly.

However, there is no need to re-infer the existence of each constraint each time

because it is explicitly and persistently represented. This saving is important

because the knowledge that infers the constraints is typically complex, reasoning

simultaneously about three or four entities describing plant items and streams.

For example, approximately one quarter of the time that PLS took to layout the

test process was spent in inferring constraints. Clearly, it would be prohibitive

to repeatedly re-infer the constraints. The saving gained by re-inferring the

constraints far outweighs the disadvantage of the resulting larger database. This

approach is at odds with many other constraint reasoning systems, particularly

those based on logic programming. In these, constraints are represented as

generic data objects which are matched against the problem description as needed

to support a specific inference.

A layout problem is invariably over-constrained and no solution can be generated

in which all design constraints are satisfied. Thus, it is inevitable that some of

the constraints that are identified from the process data are mutually inconsistent.

InPLS, the inconsistencies amongst the spatial requirements are identified during

the spatial synthesis phases and constraints are selected to be left unsatisfied.

Every inconsistency between constraints is recorded when it is detected. These

records are retained in the database and, like the constraints, can be inspected.

Adopting this approach significantly enhances the value of the audit information

for the layout in which these records are as important as the constraints

themselves. They highlight where decisions are made which the user might

choose to reverse to generate alternative solutions. More importantly, they

manifest the compromises that are embodied in the layout. These compromises

might suggest modifications to the process to enhance the layout. For example,

87

PLS was forced to elevate the dryer D 129 in the test process so that the solid

could be discharged by gravity into the hopper V130. This forced PLS to leave

unsatisfied the constraint requiring the dryer to be placed at grade because of its

weight. Inspection of the records of inconsistencies would show this and might

suggest to the process engineer that a bucket conveyor should be installed to

remove the gravity flow constraint between the dryer and hopper. In an extreme

case, the engineer might judge that some constraints which are left unsatisfied are

critical to the operation of the plant. This would demonstrate that the process

were technically infeasible because it could not be laid out.

4.2 Constraint Propagation in Layout
Constraint propagation is used in PLS to calculate the elevation of the equipment

items and to derive their plan positions. One objective in constraint propagation

in this domain is to identify the set of constraints that can be satisfied together and

relax all others. Clearly, a globally consistent set of design constraints cannot be

achieved unless all constraints are locally consistent That is, all constraints that

relate a pair of items are consistent. Local consistency is relatively easy to assess

and inconsistencies are relatively easy to redress. Thus, it is beneficial to

construct locally consistent sets of constraints using a computationally cheap

algorithm before invoking an algorithm to construct the globally consistent set.

The latter is, of necessity, complex and computationally expensive. This principle

reduces the number of "pointless" inconsistencies that the global consistency

algorithm will identify and reduces the frequency with which it wastefully back-

tracks. Thus, PLS adopts this principle and constructs locally consistent sets of

constraints first then constructs one globally consistent set.

The ultimate objective of constraint propagation is to derive the positions of the

equipment items. In PLS, the positions are recorded as relative positions of pairs

of entities rather than as absolute positions of each. The relative positions are

also expressed as constraints inferred during constraint propagation. Initially,

these constraints are inferred from the constraints which record the spatial

requirements implicit in the process data. As constraints are created which record

88

some positional information, additional constraints are also inferred from these.
It is clear that two categories of constraint are significant in this procedure.
Constraints inone category express spatial requirements. These have been termed
"Functional Relationships" or "FRs" during this work and this term will be used
hereafter. The constraints in the second category express the relative positions
of the entities. These are termed "Spatial Relationships" or "SRs".

Typical constraint-based systems do not enforce any dichotomy between
constraints expressing solution requirements and constraints derived as part of the
solution. However, the distinction is highly natural in this domain and is an
important principle of this work. FRs and SRs play substantially different roles
in the procedure for developing the layout and possess markedly different
properties. FRs are formal statements of the spatial requirements intrinsic in the
process data and it is inevitable that some of FRs are mutually inconsistent. SRs
express the form of the solution or partial solution. Therefore all extant SRs must
be consistent, by definition. Each FR can be in one of two states, it can be
satisfied or unsatisfied. Each SR can only be in one state during problem solving,
it either exists or it is completely absent from the database. If a set of SRs are
found to be inconsistent, this is a manifestation of a more fundamental
inconsistency amongst the FRs. The inconsistency can only be resolved by
selecting FRs that must be changed to an unsatisfied state so that the SRs involved

in the inconsistency can be deleted from the database completely.

The distinction between FRs and SRs is also important in determining which FRs
are to be relaxed when an inconsistency is detected. Satisfying an FR implies that

the requirement that it expresses is met in the layout. It is meaningful therefore

to accredit a benefit to satisfying an FR. Conversely, SRs define the form of the
solution so there is no benefit in a particular SR existing. Thus, only FRs should

be considered when constraints are compared against one another to select the

more important for satisfaction. The SRs should be neglected completely.

89

There are also significant implementational benefits from recording the positions

of the items as relative positions expressed as SRs rather than as absolute

positions written onto the representations of the items themselves. These are

presented below.

1. An SR is a composite constraint which stands in lieu of potentially many

FRs. Furthermore, only a proportion of the many FRs which relate any

pair of items typically govern its position. The remainder impose looser

constraints and are effectively subsumed by the governing FRs. Thus, SRs

reduce the number of constraints that the propagation algorithms must

handle, both directly, because they replace many FRs and indirectly,

because the redundant FRs effectively disappear from the problem once the

SRs have been formed.

2. SRs localise the effects of back-tracking because they define relative rather

than absolute positions. This benefit is best seen from an example.

Assume that an SR records the fact that object A is 3 m above object B and

a second records the fact that object B is 2 m above object C. Assume that

the elevation difference between objects B and C is re-assessed, perhaps

because one of the FRs between them has to be relaxed. The SR between

them must be updated accordingly. However, the SR between objects A

and B still stands. The elevation difference between objects A and B has

not changed even though their implicit absolute elevations have increased.

This would not be the case if elevations were recorded absolutely. Note

that this simple example does not show the full benefit of this feature. In

many cases, the absolute positions of many items are influenced by the

absolute position of a particularly "key" item. However, the relative

positions of many pairs of these items are likely to remain the same even

though the absolute position of the key item might change. The majority

of the impact of this change is localised to the SRs which actually relate the

key item.

3. The SRs embody the chains of FRs that govern the position of each item.

If an item is found to be subject to inconsistent FRs, an FR must be selected

to be relaxed. This FR must be one of those that influence the position of

90

the item in question. There is no benefit in relaxing any other FR. These

FRs can be identified very quickly by looking at the SRs in the chain and

considering the FRs that are recorded as governing each. In this context,

the SRs are acting as the dependency records in a dependency directed back-

tracker undergoing truth maintenance.

These benefits only accrue because constraints are created to record relative

positions. This provides further evidence that constraint propagation is a highly

apposite technique for this domain.

PLS's approach of achieving local then global consistency is similar in intent to

the so-called "Arc Consistency" algorithms [Mackworth 1977] and "Path

Consistency" algorithms [Montanari 1974, Mackworth 1977]. These algorithms

transform a constraint network into simpler versions which still have the same

solution so that this solution can be achieved without traversing all constraints in

the network. The important examples of these algorithms are well reviewed by

Nadel [1989]. All of these algorithms are intended to simplify constraint

networks in which any pair of variables is related by very few constraints but in

which the complexity arises because the network can be traversed by many paths.

Any pair of variables in PLS is likely to be related by many constraints; much of

the complexity of the network arises from this. PLS' s procedures to form SRs

are simple compared to the Arc and Path Consistency algorithms, some of which

are highly complex. Nonetheless, PLS's approach suffices for this domain.

During this work, it has been found that the SRs can be propagated by

mechanisms that are very simple compared to those used in more typical systems.

PLS capitalises on this as a design feature, essential because of the intrinsic

complexity of the constraint network in a layout problem. This has been possible

because the generic constraints that are important in this domain can and have

been identified. For example, PLS need only propagate constraints which record

relative elevation to calculate the elevation of equipment items. This is analogous

to Allan [1984] identifying the set of 12 relationships which are important in

temporal reasoning. Thereby, it has been possible to identify all operators that

91

are germane to these constraints and restrict the operators that are applied to the

constraint instances to a very small set. Because only very few operators are

needed, and because these can be predicted in advance given the task in hand, the

constraints are propagated by dedicated algorithms for maximum speed. The

operators are hard-coded into the algorithms during their implementation. This

strategy has proved highly satisfactory in PLS and argues that a generalised

constraint interpreter should not be employed in this domain.

4.3 Decomposing Layout into Phases
The FRs exhaustively define the spatial requirements that have to be met in a

solution. However, they do not provide any explicit information as to the form

of the solution nor do they even constrain it sufficiently to make it "obvious".

A solution must be synthesised, a complex task. This work establishes a series

of complementary but separate phases into which the task can be decomposed to

render the problem tractable. PLS embodies this decomposition and progresses

through the phases, representing the problem in appropriate abstractions, until the

equipment items' spatial positions are generated.

4.3.1 The Pre-Processing Phase
Prior to the spatial synthesis phases, a pre-processing phase is required. The

input data must be cheeked, the physical sizes of the equipment items must be

calculated from the specification of their process duties and the FRs must be

identified and recorded.

In the prototype of PLS, the process to be laid out is defined in a formatted file,

much like a simulator input file, for example. PLS reads the file and builds a

model of the process in its database. Before PLS attempts to generate a layout

for the process, it validates these initial data. It does so using rules which search

for both logical and engineering inconsistencies in the model. For example, rules

are used to cheek the mass and heat balances around each item of equipment. It

was found that incorreet specifications of conneetivity accounted for nearly all

errors in the input data. Cheeks on the mass and heat balances test the

92

connectivity model fairly rigorously as well as validating many of the process data

themselves. If errors are detected, PLS directs the user towards the likely cause

in the input data. If PLS were re-engineered for use in a commercial design

environment, it would be beneficial to interface it to a process database or

intelligent schematics system to eliminate this data preparation step. This might

obviate the need for the data to be checked.

Two of the benefits of using an Expert System for conceptual layout are only

realised if the system estimates the physical sizes of the equipment from their

process duties. This task is time-consuming for the layout engineer working

manually and can actually absorb more time that the design of the layout itself.

The task is routine and therefore, highly amenable to computerisation. Unless

this task is automated in the Expert System (as it is in PLS), the time taken to

carry it out manually before the system is invoked would preclude the use of the

system to support preliminary cost estimates and feasibility studies. Itwould be

simply impractical to invest significant man hours in this work while there is risk

that the process option being studied might not be adopted. Furthermore,

automating this routine task frees the engineer to spend more time optimising the

layout itself, a more beneficial use of his time. This task is automated readily in

PLS by applying relatively simple generic domain knowledge from the system

knowledge base to the statement of the particular layout problem.

Similarly, the design constraints are rarely stated in the process data. They are,

however, implied by these data. For example, in the test process, no design

constraints were explicitly defined in the data input to PLS. Again, generic

domain knowledge is applied to these data to identify the FRs and make them

explicit. The constraints are inferred during this pre-processing phase.

Effectively all of the generic knowledge needed for conceptual layout is repeatedly

applicable to plant after plant if coded appropriately. To be most widely usable,

it must consider the generic properties of types of process equipment and process

media. Thus, for example, generic knowledge in PLS' s knowledge base asserts

93

that streams with large volumetric flowrates must be carried by large bore pipes,

that large bore pipes are expensive per unit length and that the length of expensive

pipes should be minimised. These completely general assertions may be applied

to any process to be laid out to identify all streams within the process with a large

volumetric flowrate and infer that these require a large bore pipe whose length

should be minimised. From this, it is inferred that the items connected by each

of these streams should be close and an FR is created in the database. It is an

important principle of this work that knowledge should not be expressed at the

level of specific items or the juxtaposition of particular pairs or sets of items.

PLS's knowledge base does not contain an assertion that a condenser and the

column that it serves are related by a constraint requiring proximity, for example.

Thereby, the knowledge can cover a wide range of situations and be applied to

a wide range of processes. In the test process, the knowledge just exemplified

applies equally to identify FRs relating the condensers and the batch reactors, the

vacuum filter and its ejector and the dryer and its air heater. The knowledge is

predicated on a particular combination of fundamental conditions. These

conditions recur from plant to plant. Many plants contain large bore pipes for

example. The knowledge that understands the significance of large bore pipes

applies to each of these plants. Therefore, it should be widely applicable and

reusable. It is for this reason that the knowledge base built to support testing of

PLS is not specific to the test process, even though it contains no knowledge that

was not required to layout that plant.

4.3.2 Determining Elevations
Strictly speaking, layout should be thought of as a three-dimensional problem with

elevation and plan layout tackled simultaneously. It is standard practice when

working manually to establish the elevations of the equipment first then attempt

the plan layout. This is necessary to reduce the complexity of the problem and

actually has little impact on the quality of the layout. It is uncommon that the

plan layout can be improved by changing elevation. For example, the layout of

the test process cannot be improved at all by adjusting the elevations of any items

of equipment. When this is possible, it is usually at the expense of increased

94

structural costs. This strategy is adopted in PLS as a powerful simplifying

assumption. The elevations of the items of equipment are calculated

independently of developing the plan layout.

It is significant that elevations are calculated before the plan layout is derived in

this methodology. All FRs which govern the elevation of an object have to be

considered wherever the related object might be in the plant. Thus, the

calculation of elevation cannot be localised within a physical area of the plant.

Furthermore, some FRs which govern the plan positions of items arise because

of the items' elevations. For example, the weighing tanks TI0l, T102 and TI03

are incorporated into a group so they can share the support structure needed to

elevate them above the reactors. These FRs only come to light once the elevation

of the weighing tanks have been calculated. Thus, there is no benefit in

attempting plan positioning prior to calculating elevations and a strong argument

against. This should be taken as a general principle of this domain to be adopted

in any system to automate layout. A related principle dictates that the knowledge

that identifies FRs representing constraints arising from the elevations of the items

should be applied at this time.

4.3.3 Forming Groups
In conceptual layout, the constraint network might comprise many thousands of

instances for one plant. In the test process, PLS identified 1200 constraints for

example. This whole network must be considered simultaneously during plan

layout. In PLS, the plan layout task is decomposed into two separate but

complementary sub-tasks. In the first, sets of entities which must be close in the

final layout are collected into groups. These groups are then collected into

increasingly more expansive groups and this procedure repeated iteratively. In

the test process for example, PLS formed three groups which correspond to the

reactor units. It then collected these three groups and the group of weighing tanks

to form a larger reaction group. In the second sub-task, the members of each

group are positioned relative to one another, only considering the FRs which

relate the members either to other members of the same group or to other entities.

95

Thereby, the number of entities that must be positioned simultaneously is
markedly reduced. Therefore, the number of constraints that must be propagated

simultaneously is also reduced. Without this or some similar approach, it is likely
that even the smallest of plants would prove intractable for any practical
algorithm.

This approach accurately reflects a phenomenon that is widely observed in layouts
produced manually. Groups of equipment are observed within any properly laid
out process plant. The group might be a concentration of items with a common
requirement, such as for support or a service, or might be the items comprising
a process unit, such as the column, heat exchangers and pumps comprising a
distillation unit. The group might exist as an entity in its own right, such as a
compressor house. Groups themselves might also be collected into larger scale
groups, such as distillation units being collected to share a high structure or load
bearing ground.

In some cases, the FRs that relate the members of a group represent a need to
share a facility or service. However, it is important that a group is not thought
of as being a set of entities with a common need such as this. Entities are
collected into a group solely because they need to be close to the other members,
even though the need for closeness arises from the need to share a facility or

service.

The approach has been discussed so far as a means to reduce the scale of the task
that the plan layout algorithm must undertake at any time. This is indeed one of

its purposes. However, the approach actually allows four very powerful

simplifications to be made. It is important to note that superficially, these
simplifications might seem to be designed to mitigate deficiencies in the plan .

layout procedure. However, the intention is to distribute a computationally

difficult task (plan layout) between two simpler abstract steps (grouping and then

simplified plan layout).

96

It is highly important nonetheless to note that FRs must be able to influence a

layout even though the equipment items that they relate are not members of the

same group. This establishes three principles that must be adhered to within this

approach. Firstly, these FRs must still cause the groups that include the entities

to be collected into more expansive groups. This might leave the entities

reasonably local to one another in any case. Secondly, the FRs must be

considered while deciding the relative positions of the groups which contain the

entities during plan layout. Finally, the FRs that relate a group member to a

member of another group must be allowed to influence the intemallayout of the

group. This ensures that the groups are not laid out to be locally optimal but

rather, to fit together in the overall layout.

A Problem Reduction Strategy

The whole constraint network which might comprise many of thousands of

instances must be considered simultaneously during plan layout. It is unlikely that

an algorithm could be devised that could manipulate this many constraints and

yield a solution in a realistic time. However, the majority of constraints act over

relatively short distances and exist within concentrations of entities. Plan layout

can be considered to be a series of localised sub-problems integrated into a single

overall solution.

The process of forming groups establishes coarse scale plan layout information.

The groups define which proximity relationships will be satisfied in the solution.

The task of the plan layout phase which follows is then simplified to specifying

the detailed juxtaposition of entities that are known by then to be local. Thus, the

process of forming groups divides the difficult task of developing a layout into a

series of easier complementary sub-tasks.

The groups themselves are also powerful as abstract entities. They reduce the

size of problem that the plan layout algorithm has to solve concurrently. The plan

positions of the members of a group are derived relative to other group members.

That is, the groups focus attention on determining the correct relative positions

97

of a small number of entities and only a small number of constraints have to be

considered. The constraints that relate the members of the group are important

to the task in hand and are considered duly. The constraints relating entities that

are not members of the group are not relevant to the task and are neglected.

Furthermore, each group stands in lieu of its members while the groups are

relatively positioned to develop the overall structure of the plan layout. The

members have no individual identity and "inherit" an approximate position from

their parent group. This approximate position is then refined when the members

are positioned relative to one another. Thus, at any time, many fewer entities

than the total number of items of equipment in the plant are being positioned.

This use of groups is similar to the technique suggested but not adopted by

Grason [1971] but later adopted by Gilleard [1978].

Partial Satisfaction of FRs

The trade-off between increased separation of entities and the level of satisfaction

of the constraints that relate them can be treated very simply in conceptual layout.

A constraint that requires proximity can be in one of three states of satisfaction.

The constraint is fully satisfied if the related entities are as close as possible,

partially satisfied if the related entities are reasonably close and unsatisfied

otherwise. Effectively, any reasonable degree of proximity is equally as

beneficial, but adjacency is significantly better. This accurately models the

domain. For example, consider two items of equipment connected by a pipe. If

the two items are very close, the pipe can be run directly from nozzle to nozzle.

However, if the items are further apart, the pipe will most likely be run via a pipe

rack. Tubing is consumed in the runs from each nozzle to the rack. The run

along the rack also consumes tubing but this contributes a surprisingly small

proportion to the overall length unless the items are very widely spaced. Thus,

the relationship between the total cost of the pipe and separation of the items can

be approximated well as a stepwise relationship which correspond to adjacent,

reasonably close and distant. The importance of proximity is, of course, the

inverse of the relationship between cost and separation.

98

Clearly, a constraint that requires the entities that it relates to be adjacent cannot

be partially satisfied. If the entities are adjacent, the constraint is satisfied fully.

However, it is not the nature of constraints in this domain to demand adjacency,

even though colloquially, it is widely held that pairs of items of certain types must

be adjacent. For example, many engineers would state that a thermosyphon

reboiler must be adjacent to the column that it serves to minimise pressure drop

in the pipework. However, the perceived need for adjacency is false. There is

no harm in a small item being positioned between the column and reboiler

provided that they remain as close as possible (probably dictated by the space

needed to remove the reboiler tube bundle).

In PLS, the principle has been adopted that all FRs that require proximity are

guaranteed to be at least partially satisfied if the entities that they relate are

members of the same group. This arises directly from the definition of a group

stated above. Effectively, FRs are satisfied in two steps. If the FR is sufficiently

important to warrant at least partial satisfaction, the entities that it relates are

collected into a group. If the PR is to be fully satisfied, the entities are

juxtaposed appropriately during the plan layout phase. Even if the constraint does

not receive explicit attention during the plan layout phase, it is already partially

satisfied because the entities that it relates are members of the same group. Thus,

no explicit action need be taken to partially satisfy an FR during plan layout.

This is important because it simplifies the implementation of the plan layout

algorithm. More importantly, this yields a meaning or criterion for partial

satisfaction and a means to achieve it which actually models the domain. The

distance that the entities can be separated before the FR cannot be considered to

be satisfied differs from one type of PR to the next. This issue is discussed in

Section 8.2.1.

This is extended to provide a treatment for constraints which only impose coarse

spatial requirements. In plant layout, some constraints that require closeness and

all constraints requiring the entities to be distant only impose coarse spatial

requirements on the related entities. The former are satisfied fully if the entities

99

are within the same general area, the latter if the entities are not in the same

general area. No additional benefit arises by placing the related entities

particularly close to or far from each other.

For example, a process might include two vessels with large motors fitted to their

agitators. If the majority of the process area were classified electrically as

Zone 1, it would be beneficial to position the vessels together in a well-ventilated

bay. Standard motors could then be fitted rather than expensive flame proof

alternatives. Once the vessels are placed in a bay, the constraint is fully satisfied

and their exact juxtaposition does not affect the benefit of it being so.

Groups provide a very natural treatment for constraints that impose these coarse

spatial requirements. Once the entities related by such FRs have been collected

into the same group, the FRs expressing coarse spatial requirements will be

satisfied. These FRs can be neglected during the plan layout phase. Similarly,

if a constraint requires the related entities to be distant, each of the entities is

placed into a separate group. Thereby, the task of positioning the two entities far

from one another is separated from the task of positioning each entity relative to

the other entities to which it has to be close.

Groups as Macroscopic Entities

In some cases, it is inappropriate to place an entity in the "best" position to

maximally satisfy the FRs acting on it alone. Rather, a number of entities must

be positioned so that the FRs relating them all are equally satisfied. For example,

consider a pump and its standby pumping the bottoms stream from a column.

Constraints require the pump and the standby to be close to the column to

minimise pressure loss in the suction pipework. A further constraint requires the

pump and the standby to be adjacent to share a plinth. In this case, the optimal

configuration is one in which the pumps are placed alongside each other to share

the plinth. Thereafter, the pair of pumps should be positioned with the centre-line

of the pair aligned with the centre-line of the column. Thereby, neither of the

lOO

FRs which relate the pumps to the columns are fully satisfied but both are

satisfied as much as possible.

This configuration is achieved if both pumps are collected into a group. This

group then acts as a macroscopic entity. The two constraints that originally

related the pumps to the column now relate the pump group as a whole to the

column. These define the position of the pump group relative to the column and

the pump group is therefore positioned correctly.

Plan Meta-Knowledge

Layout engineers appear to rely heavily on stereotypical solution fragments which

they have acquired over many projects to develop plan layouts. Each stereotype

captures a typical configuration of a limited area of a plant. The methodology

developed during this work relies heavily on meta-knowledge that captures the

principles of these stereotypes. "Meta-knowledge" is knowledge that directs an

Expert System to use its other knowledge more efficiently or powerfully. Groups

provide a local context which corresponds to the areas over which this meta-

knowledge can be applied satisfactorily. For example, one stereotype enforces

a linear arrangement on the group members to align them with a pipe rack or

access way. The meta-knowledge that corresponds to this stereotype might be

used to position all equipment items in a plant. Even so, it would be unacceptable

to layout the whole plant by applying the meta-knowledge to all of it. The

optimal layout at a macroscopic scale might be topologically distinct from a single

line of equipment alongside a pipe rack. For example, if flow were to diverge,

an overall layout that was Tee-shaped would be desired. Thus, although the

stereotype might be entirely satisfactory if applied repeatedly to small areas of the

plant, it would break down if applied globally.

4.3.4 Plan Layout
The derivation of the plan layout of the plant is the most creative task for the

engineer, and proved to be the most difficult to automate. Progress was made by

employing meta-knowledge that captures the principles of stereotypical solution

101

fragments which experienced layout engineers acquire over many projects. The

topology of FRs within the group is analyzed to determine which meta-knowledge

should be applied to layout its members.

During plan positioning in PLS, the members of one group are positioned relative

to one another at a time. The effect of FRs that relate a group member to

members of other groups are also considered. Thereby, the intemallayout of the

group reflects all FRs imposed from throughout the plant so the groups fit one

another when assembled to create the overall layout. However, this approach

greatly reduces the number of equipment items are positioned simultaneously.

For example, the test process comprises 42 items of equipment. The group with

the most members is formed around the vacuum filter F119. This has 6

members, the filter F119 itself, the feed vessel T117, the suction vessel T120, the

ejector Pl21 and two groups. These groups comprise the pump PIIS and its

standby and pump P122 and its standby respectively. This approach also reduces

the number of FRs that PLS has to consider simultaneously. Approximately 1200

constraints were identified from the test process. However, only approximately

50 constraints relate the members of a group to one another and to other entities

external to the group.

This approach can only be employed satisfactorily if the boundary of the group

crossed by each FR that relates a member to a member of another group is

known. This can only be known from the relative positions of the related groups.

However, the space occupied by each group has to be known before their relative

positions can be determined. Thus, the sizes of the groups are estimated, then the

groups are relatively positioned, before the equipment within them is laid out.

The size of groups whose members are equipment items can be estimated with

greatest confidence. The equipment has known and fixed size. Thus, the

dimensions of these groups are estimated first. The effects of FRs on members

of other groups can be neglected for these estimates and each group can be laid

out in isolation. Examples worked by hand by the author showed that a

102

group's size is effectively the same whether the external FRs are considered when

it is laid out or not. The major effect of the external FRs on the internal layout

of the group is to change the order of the members along the group. This might

add or remove scope for small items to be tucked into a small gap in a position

where the FRs acting upon them are also satisfied. However, it is only the small

items that can be positioned to make use of otherwise empty space and their

position has little effect on the overall size of the group. This procedure is

repeated to estimate the size of the increasingly expansive groups.

Once the sizes of all groups are known, their relative positions are derived. The

largest scale groups are positioned first since they are constrained by fixed site

features such as the position of the warehouse and tank farm in the example

process. The members of each of these groups are positioned within them and

so on until the individual items of equipment have been positioned within their

groups. The positions of the members of each group are expressed relative to the

local origins of their groups at this time. Once every group has been laid out

intemally, the positions of their members are translated to coordinates relative to

a global origin.

103

Chapter 5: Representational Issues

Brachman et al [1979] suggested that the representation of the knowledge and data

representations used in an AI application should be described from four somewhat

independent viewpoints. Each viewpoint represents a different level of abstraction

and the names "epistemological", "conceptual", "logical" and "implementational"

levels were suggested.

The specific domain knowledge and entities represented in the application are

considered at the epistemological level. Issues considered at this level include the

types of object (eg vessels and pumps); their relationships (eg connectivity); their

specific attributes (eg flowrate and temperature); the knowledge applied (eg

equipment connected by a high temperature stream should be close to minimise

heat loss); and the partitioning and control of knowledge.

The conceptual level viewpoint considers the generic forms and structures which

are used to represent the specific domain knowledge elements and entities. The

more abstract issues that are considered include the generic representation of the

domain objects (eg are they represented as single entities with many attributes or

described by a number of isolated and independent facts); the types of the

underlying relationships between the entities (eg similarity between instances,

instances as aggregations of others and entities as generic exemplars of instances);

the general form in which knowledge is expressed (eg rules, inheritance

hierarchies and equations); and the general control of the application of knowledge

(eg whether rules chain forward or backward, whether inheritance searches

breadth- or depth-first and whether inference is monotonic or non-monotonic).

104

The logical level focuses on the logical completeness and correctness of the

inference mechanism. Issues such as speed of the system, memory usage and

robustness are addressed at the implementationallevel.

PLS's structure is typical of an Expert System. The knowledge that layout

engineers use is recorded in the knowledge base. The database records the data

that describe the specific process that PLS is to layout. Any intermediate

information that PLS derives is also recorded in the database. This Chapter

describes the forms in which the knowledge and data are represented in PLS, and

the mechanisms that PLS uses to reason with its knowledge, from the viewpoint

of the epistemological and conceptual levels. Note however that PLS formalises

some entities that the engineer only loosely acknowledges, such as FRs and

groups. These entities are described in depth in later Chapters wherein their

representation is included.

5.1 Representing the Data
Many facts are required to adequately describe each of the equipment items

comprising the process that was laid out by PLS. For example, 35 facts are

required to describe C124, the distillation column in the test process. Some facts

record symbolic concepts, for example stating that a column is oriented vertically,

others record numeric values, such as a specific internal temperature for the

column. Similarly, PLS has to record many facts to describe each stream of

process medium flowing between the equipment, such as the stream's temperature

and flowrate.

Equipment items have a physical realisation and it is not surprising therefore that

engineers perceive each as an entity. They also perceive streams in this way,

even though streams are actually abstract concepts (they are distinct from the

physical pipes that carry them). Streams are given identifying numbers, each has

a graphical representation on the flowsheet and so on. Engineers perceive the

facts germane to an entity as being an aggregation of attributes rather than a series

of effectively disconnected descriptive statements. This argument is supported by

105

the format in which a process design is formally documented, for example. Each

of the principal entities comprising the process is described on a separate pro
forma process data sheet. Engineers are entirely comfortable with this format

which is used universally.

A "frame based" representation was selected for PLS to match the engineers'

perception. The basic concepts of a frame based representation are due to Minsky

[1975]. He argued that the apparent speed and power of mental processes

suggested that fragments of knowledge in a human's memory must have more

structure than exists in sets of disconnected facts. He introduced the concept of

the "frame", a data structure that represents a stereotypical situation, formed on

the basis of previous experience. The brain retrieves frames whenever a new

situation is encountered to represent expectations about the situation. Minsky's

concepts were implemented as a representational technique for use in Expert

Systems. The frames are data structures that aggregate the factual descriptions

of situations or entities with the procedural knowledge needed to supplement the

factual descriptions. Winograd [1975] discussed the relative merits of declarative

and procedural representations. He concluded that the former have many

advantages but particular types of knowledge are better implemented in a

procedural way. For example, PLS collects together the 35 facts about column

C124 in a frame that represent the column. These comprise the declarative.

aspects of its representation. PLS also includes procedural knowledge about

columns, such as how to calculate an estimate of their height from the number of

trays in them. This procedural calculation is tightly integrated into the frame as

an essential element of PLS's overall model of a column.

Some of the frames in PLS's database describe the entities that comprise the

process and site such as the equipment items, streams and site features. PLS also

derives facts about the entities, such as the physical sizes or coordinates of the

equipment items. It adds slots to the frames to record these additional facts. PLS

also creates new frames as it reasons. Some of these represent concrete entities

such as access ways and structural steelwork members that PLS determines must

106

exist in the plant. Others represent abstract entities such as groups or constraints.

PLS uses frames as the representational structures for all data. The starting

database for the test process occupied 203kB. This grew to 860kB by the time

the solution had been achieved.

PLS holds the whole database of frames in memory while it works. It writes the

frames to a formatted Ascn file at the end of a session then parses this file at the

beginning of the next session to re-construct the database. PLS parses a textual

description of the process to establish the database initially.

The features of PLS' s frames are described below. A data model of the process

and the layout was developed. Two particular aspects of the model are

noteworthy - the representation of parts of entities and the representation of

connectivity. These are highlighted in the description. The representations of the

entities which PLS creates to record the results of the various phases of spatial

synthesis, such as groups and constraints, are described in later Chapters.

PLS's frames are typical. Each frame represents a separate entity. The example

below shows the frames for the reactor, RI04, its agitator and the agitator's

motor. The notation used in these examples is defined in Appendix A.

107

{S-l [is-a vessel]
[name Rl04]
[geometry cylinder]
[operating-volume 14.03]
[weight 17000]

[top-agitator
{S-2 [is-a agitator]

[head anchor]
[shaft-power 100]
[drive

{S-3 [is-a motor]
[required-power 100]
[voltage 440]}

]}
]}

The frame S-1 represents the vessel itself. Each fact about an entity is recorded

in a "slot", each of which has a slot name and slot value. This frame is typical

in that it has a number of slots. The slots with names "name" and "geometry"

have symbolic values. The slots named "operating-volume" and "weight" have

numeric values. These slots record the facts that the vessel's name is RI04, that
it has cylindrical geometry, contains 14.03 m3 of reactants and weighs 17000 kg

when full. The slots have no fundamental significance to PLS. Their semantics

are defined entirely by the context in which they are retrieved and the subsequent

use of their contents. The semantics are not explicit in the frame itself. Thus,

dimensional units are not recorded explicitly by the numeric values because units

are part of the slot's semantic. The only exception to this are the slots named "is-

a" . These record the cross-reference between the instance frames and their

respective class frames. Thus for example, frame S-1 is an instance of the

"vessel" class. The is-a slots are significant to the inheritance mechanism in

PLS.

PLS does not differentiate between integer and real numbers. The underlying

language in which the frames are implemented is LISP. It has a very flexible

type system so it is not necessary to specify the data types for implementational

108

reasons. The semantic difference between an integer and a real number might be

significant but is not explicated.

Parts of an equipment item are often as real physically as the equipment items

themselves. Typically, the parts exist independently of the entity of which they

are a part. The agitator in this example is as tangible as the vessel on which it

is mounted and has an existence of its own, for example. Thus, it is appropriate

for PLS to represent the parts as frames that are distinct from, but related to, the

frames that represent the items themselves. This also allows PLS to ascribe

generic properties to classes of parts. PLS can reason about the parts separate

from the objects of which they are parts when appropriate. For example, the

generic properties of motors are identical irrespective of what they are driving.

In the test process, PLS reasoned about the motors on pump P1l6 and on the

agitator of reactor RI04 to identify them as potential ignition sources without any

need to consider what type of equipment each was driving. PLS could apply

knowledge that matched the real world situation to the appropriate entities. This

would not have been possible if the facts that described the motors were recorded

in slots on the frames for Pl16 and RI04 themselves. Thus, in this example, the

"top-agitator" slot contains a frame rather than an atomic numeric or symbolic

value. The frame, S-2, records the facts that describe the agitator. The "drive"

slot on frame S-2 has a frame as its value. This frame, S-3, describes the

agitator's motor but as an object in its own right rather than as a set of slots on

the agitator.

PLS expresses the relationship between a part and the object of which it is a part

in the name of the slot of which the part's frame is the value. The name "top-

agitator" given to the slot on the vessel frame S-1 expresses the relationship that

the frame S-2 represents an agitator mounted on the top of the vessel. This

technique was conceived during this work so that complex relationships between

the part and the object of which it was a part could be expressed succinctly. This

differs from other frame languages in which frames are indirectly referenced via

"owner" and "part-of" slots. PLS can draw inferences about the parts of entities

109

as easily as it can about the properties of entities. For example, a vessel might

have a number of agitators, mounted on its top and sides. PLS differentiates

between these by placing agitator frames in either of two slots on frames for

vessels. These slots could be called "top-agitator" and "side-agitator". PLS can

recognise that the agitator on the vessel shown above is top mounted directly from

the name of the slot which contains the agitator frame. Thereby, for example,

PLS can easily infer the constraint on the vessel's position that arises because free

space must be left above vessels with top agitators so the agitator can be removed.

It is essential that PLS represents the streams within a process to be laid out in

as much detail as the equipment items. It is also essential that PLS represents the

connectivity of the streams accurately and unambiguously. The descriptions of

the topology, chemical composition and physical conditions of the streams are key

to defining the operation of the process and the conditions in the equipment items

themselves. In layout, many constraints on the positions of connected objects

arise from the properties of the streams that connect them. PLS represents each

stream as a frame which records the physical conditions of the stream. For

example, each stream frame has slots to record facts such as its stream number,

temperature, pressure and continuous phase. While connectivity might have been

recorded as a property of the connected items, recorded on their frames,

connectivity can only be fully understood if the properties of the stream itself are

also recorded. Many texts on object oriented database design, such as Rumbaugh

et al [1991], state that relationships that are qualified by attributes of their own

must be reified" if their representation is to be unambiguous. Much of the

knowledge in PLS about streams makes little more than passing reference to the

equipment items to which the stream connects. For example, one rule states that

two equipment items should be close if connected by a stream which contains

particulate solids in suspension. This rule considers the properties of the stream

in detail but makes no reference to any property of the connected equipment

items. As well as being the correct solution from a computing viewpoint, this

2. "Reify" means to consider or make an abstract concept real or concrete.

110

particular choice of data model for streams matches engineers' long standing

perception of streams as entities separate from the equipment that they connect.

The frames for streams are fundamentally similar to those for equipment items.

The example below shows the frame for the stream connecting the weighing tank

TIOI to the reactors RI04, RI08 and Rl12.

l11

{S-4 [is-a stream]
[stream-number 1]
[temperature 293]
[continuous-phase liquid]

[contents
{S-5 [is-a component]

[substance-name acetone]
[proportion lOO]}

]
[branches

{S-6 [is-a branch]
[connects-to

{S-1 [name TIOI]

}
]

[direction in]
[flow-period 60]
[flow-cycle 180]
[flow-proportion I.OOn

{S-7 [is-a branch]
[connects-to

{S-I [name RI04]

..
}

]
[direction out]
[flow-period 60]
[flow-cycle 540]
[flow-proportion 1.OOn

n
In general, a stream can flow from and to one or more equipment items. In PLS,

the stream frames themselves do not contain any record of the items connected by

the stream. Rather, each has a slot named "branches" with frames which are

instances of the "branch" class as its value, S-6 and S-7 in this example. Each

of these "branch" frames has a slot with name "connects-to" which has the frame

representing the connected equipment item as its value. Thus, S-6 records the

112

connection to the weighing tank T101 and S-7 records the connection to the

reactor RI04. This also exemplifies a slot with more than one frame as its value,

and indeed the slot actually contained two more branch frames for the other two

reactors. The "direction" slot on the branch frames records the direction of flow

with respect to the stream. Thus, fluid flows from TIOI to RI04 (and the other

reactors). The other three slots named "flow-period", "flow-cycle" and "flow-

proportion" respectively record the time during which fluid flows through this

branch, how frequently this occurs and how much of the total stream flow passes

through the branch. Thus, fluid flows from TI0l for 30 minutes in every 180

minutes and all flow passes through this branch. Conversely, fluid flows into

RI04 for 60 minutes in every 540 minutes although again, all flow passes through

this branch. This structure can represent streams in which a continuous flow

diverges or converges and also streams in which flow is switched between the

parallel branches. This would not have been possible if the frames representing

the items themselves were placed in the slots of the stream frame.

The composition of the stream is also recorded by using one frame to represent

each component. In this example S-S represents the acetone component of the

stream. This representation allows the frames to represent the "one to many"

relationship between streams and components - one stream has potentially many

components. The number of components that PLS can record for a stream is not

restricted to an arbitrary upper limit. Additional "component" frames may be

created and added to the contents slot until every component of the stream is

recorded. This would not have been the case if slots had been included in the

stream frame to record component names and proportions (eg "componentl-

name", "componentl-proportion", "component2-name", "component2-

proportion", and so on). The representation of one to many relationships used

in PLS is similar in concept to that widely used in relational databases. The

approaches differ in detail however because of the difference in underlying

technologies. In a relational database, each type of entity is recorded on a

separate table rather than represented by a class of frame. The cross-references

between the entities are implied by recording the unique key of the entity of

113

which there is one against the entries in the tables for the entities of which there

are many. The relationship is actually made explicit in the queries that retrieve

data from the database. The approach used in PlS is more natural and direct than

the approach use in a relational database.

The most important and innovative feature of PLSts frame language is this use of

slots with frames as their values to establish arbitrary relationships between

frames. This feature was named "recursive embedding" in PLS and had no

published precedent at the time it was conceived. Recursive embedding allows

the plant to be modelled in PlS ts database in a way that is both practical and

intuitive. The builders of many frame systems have judged that the relationship

between a part and the object of which it is a part is highly important and must

be recorded frequently. Therefore, they have provided a specific construct in

their language that is used to represent the relationship wherever it occurs. By

building the construct into the underlying language, these workers have provided

it as a resource to the knowledge engineers who might use the language.

However t the construct records a general relationship and the subtleties of a

specific relationship between two frames might well be lost. Recursive

embedding is a radically different philosophy, capable of expressing any

relationship required by a builder of a knowledge base with all of its semantic

content. It offers the knowledge engineer total freedom to set up relationships at

will. PLS makes three specific uses of recursive embedding. These are

enumerated below to abstract the principles and explicate "design rules" which

suggest when the technique would be of benefit.

• Recursive embedding is used to represent the parts of objects. The parts

are represented as separate frames to the objects of which they are a part.

The function or purpose of the part is expressed in the name of the slot

which holds the frame on the frame which represents the object of which it

is a part. Recursive embedding is beneficial if a part must be described by

a number of facts, if there is a need to reason about a part independently of

the object of which it is a part or if there is a need to distinguish between

parts which are intrinsically similar but serve a different purpose.

114

• Recursive embedding is used to represent the specific relationships between

streams and objects to construct a sufficiently rich model of the connectivity

and topology of the process. An intermediate "branch" frame is used to

carry the reference from a stream frame to one equipment item frame to

expand the description of the stream with respect to the particular equipment

item. Recunive embedding is beneficial if an entity has properties that only

apply with respect to one of many entities referenced from it. Intermediate

frames can qualify the reference and state the properties that are unique with

respect to the referenced entity.

• Recursive embedding is used to represent one to many relationships between

entities. It is beneficial if an entity is best modelled with some of its

properties represented by an aggregation of an arbitrary number of other

entities.

5.2 Reasoning in PLS
PLS progresses through two distinct phases of reasoning while it develops a

layout. In the first, PLS reasons about the equipment items and streams

comprising the process to estimate values for unspecified process data; to estimate

equipment sizes and develop coarse physical models of the items and then to infer

the constraints on their positions. In the second phase, PLS reasons about the

constraints to postulate the groups of equipment items; determine their elevations

and finally to position them in the plan layout. Clearly, knowledge of a different

nature is used in each phase. The knowledge in the first phase embodies the

general principles of plant layout elicited from engineers and layout texts. In the

second phase, the knowledge encompasses spatial reasoning and the

implementation of the layout approach devised for PLS. Nonetheless, the

knowledge used in both phases is represented using a common underlying

representation language.

Early frame systems emphasised the process of "matching" an instance frame

against all class frames to establish its class as a central part of their inference

procedure. "KRL" [Bobrow 1977] is probably the best known example of this.

115

These systems were designed to accept a loose description of a situation or entity .

They made sense of the description by identifying the stereotypical frame in their

knowledge base with which it corresponded. This was very much in the spirit of

Minsky's original concept. In contrast, PIS is typical of modem frame systems

which have almost universally discounted matching. In PIS, the user specifies

the class of each instance frame as part of the description of the entity in the

initial process data. PIS then applies generic knowledge from its knowledge base

to the frames to derive new facts about the process and the layout. The majority

of the knowledge in the conceptual layout domain is procedural in form. PIS

includes two representations for procedural knowledge in its language to reflect

this emphasis. These are so-called "procedural attachments" which are invoked

in goal directed reasoning and highly complex data driven rules. Note that the

latter are markedly different in concept to traditional examples of this approach.

PLS's knowledge representation language is the subject of this Section.

PLS does not include a mechanism by which an instance frame inherits declarative

knowledge from its class frame. This contrasts with effectively all other frame

based systems which embody this as a key feature. In these systems, some

frames represent particular instances of problem elements while others represent

classes of these problem elements. The class frames record facts that could apply

to all instances of their class'. The description of an instance is complemented

by the instance frame "inheriting" the generic facts from its class frame. These

facts then become available as though they were part of the instance. For

example, a class might be defined to represent ANSI "4 in x 3 in x 10 in" pumps.

This would record the bore of the suction nozzle as 4 in and the bore of the

discharge nozzle as 3 in. Assume that an instance frame were created to represent

a particular pump on a flowsheet and that this instance frame is stated to be a

member of the ANSI "4 in x 3 in xl0 in" pump class. The instance frame would

inherit the values of the suction and discharge nozzle bores from its class frame

3. Class frames represent values that must be true for all instances of the class in
some frame languages. In others, the class frames record default values for use
on the instance frames if a value is not specified.

116

if they were not stated when the instance frame were created. However, it was

found that it is rare that values can be inherited usefully in the layout domain.

Very few types of process equipment are sufficiently standardised for the classes

to be anything more than broadly generic. In the main, an item of process

equipment is designed for its specific duty. For many types of equipment, the

only standards that are published do no more than prescribe accepted design

procedures and calculation methods. The designs of some types of equipment are

constrained by standards that either specify preferred values for key attributes or

prescribe a number of configurations for key features that can be combined

effectively at will. The Tubular Exchanger Manufactures Association [1978] or

TEMA standard for tubular heat exchangers actually exemplifies both aspects.

It specifies preferred shell diameters and lengths and the number of tubes that can

be fitted into a shell of a given diameter. It also lists allowed configurations of

tubes and heads, shell types, and flow patterns. The TEMA standard divides the

configurations into meaningful classes. It does not specify classes for complete

exchangers and the configurations can be combined in many ways. The layout

engineer is interested in the exchanger as a whole, needing only to know its

approximate size. In particular, the TEMA standard offers no "off the shelf"

solutions for given heat duties, for example. This situation applies to most

equipment types.

There are two exceptions to the preceding argument. Centrifugal pumps are often

selected from ANSI [1984a, 1984b] or American Petroleum Institute [1986]

standards. Each entry in either of these standards almost completely specifies the

performance and physical design of a pump for a given duty. That is, if the

required flowrate through a pump is known, its detailed design can in effect be

read from these standards. The other exception is more general. All instances

of each of a number of classes share a characteristic that impacts upon how they

should be treated in a layout. Some knowledge is predicated on this

characteristic, irrespective of the class of the instance to which it is being applied.

For example, all pumps and all thermosyphon heat exchangers share the

characteristic of pumping liquids, potentially to an increased elevation. The

117

knowledge that identifies streams in gravity flow is predicated on the item from

which the stream flows not having a pumping effect. In principle, every instance

that has a pumping effect could inherit a flag value to indicate this. However,

other techniques are essential in PLS to meet ~or needs of the conceptual layout

domain that inheritance of values could not. These techniques, specifically the

use of lookup tables and "procedural attachments" are as effective as inheritance

in these special cases. These are described below. The only argument for

including a conventional inheritance mechanism would be tradition. Clearly, this

does not offer any justification in practice! Accordingly, inheritance of values is

omitted from PLS. It would be highly recommended that the approach taken in

PLS should be adopted in any Expert System for this domain.

Because it is inappropriate for frames to inherit values which are not specified in

the input data, PLS has to derive them. It is for this reason that the initial

database is very small compared to the size of the knowledge base, which

occupies 1.3MB. The database is not expanded by large class frames recording

inheritable values. Rather, the knowledge, which is mainly procedural in

conceptual layout in any case, is concentrated in the knowledge base.

Goal directed reasoning is highly appropriate to expand the process data and

estimate the sizes of the equipment items. In PLS, goal directed reasoning is

implemented using procedures which instance frames can inherit from their class

frames to derive values for their attributes. These so-called "procedural

attachments" are fairly commonplace in frame systems, although sometimes

referred to as "if-needed demons". In PLS, they are invoked if the slot that

should record the fact is absent from the instance frame. Slots are only added to

the instance frame when a value is to be recorded. The procedural attachments

retrieve their antecedent values from the instance frame and calculate a consequent

value that is then written into the previously missing slot. The following typical

example of a procedural attachment is written in the syntax of PLS's language.

This procedural attachment calculates the shaft power required by a pump.

118

[procedure shaft-power pump
(pattern

[=self
[required-head =head]
[mass-flowrate = flow]
[hydraulic-efficiency =efficiency]]]

[assign =power [=head • =flow • 9.81] I =efficiency))
[=self

[insert [shaft-power =power])]
[return =power))

[action

The procedure is introduced by the keyword "procedure" which is followed by

the name of the slot to which the procedure is attached (or stands in lieu ot) and

the name of the class it is to be used with. Thus, this procedure is invoked when

an attempt is made to read a missing "shaft-power" slot from a pump instance

frame. The body of the procedure comprises two parts, the "pattern" and

"action" , introduced by the respective keywords. The pattern defines from where

antecedent data are to be retrieved. The action specifies the calculation and the

value to be returned.

All words preceded by an "=" symbol, such as "= self" or "= head", are

variables. Variables can have either an instance frame or a slot's value assigned

to them as appropriate. The variable "= self" is special in that PLS assigns the

instance frame on which the procedure is running to be its value.

The form "[= self]" is a prototype for a frame for which PLS searches in its

database and on which the enclosed forms are executed. In this case, the " = self"

variable specifies the instance frame that the procedure should act upon and PLS

need not search for it. Each of the enclosed forms represent one slot of the

frame. PLS inspects these in tum. The order in which the slots are searched is

independent of their position in the instance frame itself as the slot names provide

indexed access. PLS inspects the "required-head" slot of the pump frame and

retrieves its value (if it exists) and assigns this value to the variable" =head".

If this slot has a value (or a procedural attachment is triggered which derives the

value), PLS continues in tum to the "mass-flowrate" slot then the "hydraulic-

119

efficiency" slot. If PLS fails to find any of the slots, it halts execution of the

procedural attachment and no value is returned. This shows how the pattern is

used as a means to specify what data should be retrieved from the database.

If PLS finds all of the required slots on the pump instance frame, the pattern is

said to match and the procedural attachment continues into the action section.

This commences with the "[assign ...]" form which calculates the value of the

power using the values assigned to the variables in the pattern. The result of this

calculation is assigned to the "=power" variable. In this example, the value of

the required power is recorded in the database by the form:

[=self
[insert [shaft-power =power]]

The "[insert ...]" form creates a "shaft-power" slot and writes the value assigned

to the "=power" variable into it. The slot is created on the frame assigned to the

variable" =self". Finally, the "[return =power]" form instructs the procedural

attachment to return the value assigned to the "=power" variable. It is not

strictly necessary for a procedural attachment to create a slot and record the value

that it derives. It is the value that it returns that is used in lieu of a value read

from the slot. However, the value remains available for subsequent use if it is

recorded and repeated invocation of the procedural attachment is avoided.

Procedural attachments ensure that all values needed by the rules invoked to infer

constraints are available. They also ensure that PLS only derives values if they

are actually needed by these rules. For example, PLS includes a rule that infers

constraints relating equipment items that require a high voltage supply so that

these items can be grouped to minimise the length of high voltage cables. This

rule reads the value of the voltage required by a motor from the motor frame.

A procedural attachment is defined for motors that derives the most appropriate

voltage given the electrical power. A second procedural attachment for motors

derives the required electrical power from the shaft power required by the object

driven by the motor. The procedural attachment exemplified above derives the

shaft power for a pump, and so on. Now, assume that the rule that identifies

120

equipment items that are related because they require a high voltage supply

attempts to read the voltage from a frame representing a motor driving a pump.

If this value is not recorded on the motor's frame, the procedural attachment is

invoked. The procedural attachment attempts to read the value of the electrical

power from the motor frame. If this second value is absent, the procedural

attachment that derives it would be invoked, reading the value of the shaft power

from the pump frame. Similarly, this might cause the procedural attachment that

derives the shaft power for the pump to be invoked. This is a form of goal

directed or "backward chaining" inference. PLS only invokes a procedural

attachment if doing so helps it to achieve its goal at the time of providing a

particular value to the constraint finding knowledge. This goal is set by the

constraint finding knowledge attempting to read an absent value. This is a typical

example of a situation where this style of reasoning would be widely considered

to be entirely appropriate.

The example above hints at the value of tying a procedural attachment to a

particular class. The procedural attachment for motors that derive the required

electrical power reads the required shaft power from the frame representing the

object driven by the motor. This procedural attachment is appropriate whatever

type of equipment a motor drives. However, the procedural attachment to

calculate the required shaft power differs markedly depending on the type of the

driven item. For a pump, the power is calculated from values of mass flow rate

and liquid density. For an agitator, the power is calculated as a function of the

speed and diameter of the agitator. Both the pump and agitator classes have a

"shaft-power" attribute and both classes have procedural attachments defined that

derive a value for this attribute. The procedural attachment is different for each

class however. Thus, rules can look in the same place for a value of the required

shaft power on an instance of either class. If the procedural attachment is needed,

the inheritance mechanism of PLS decides which form of it should be invoked.

The class of the frame is used to control exactly how an inference is drawn. This

is known as "polymorphism" in Object Oriented programming (see [Stefik 1986]),

and indeed, this aspect of PLS owes as much to the Object Oriented approach as

121

it does to frame reasoning. The distinction between the two approaches is

somewhat blurred and of theoretical interest in any case.

Although frames cannot inherit values in PLS, it includes a mechanism for

looking up values in tables. The entries in these tables can comprise a number

of related values. Three tables were required for use with the test process,

although anyone of these amply demonstrates the principles of the technique.

Each entry in the first table records a tube bundle length, shell diameter, tube

pitch and heat transfer area per shell for a tubular exchanger of a standard size,

taken from the TEMA standards. Entries in the second correlate a preferred

combination of diameter and tangential length for a vessel with the vessel volume,

taken from the DIN standard [DIN 1979]. The third table correlates the physical

dimensions of centrifugal pumps and their throughputs, taken from the API

standard. These tables allow flexible access to the data they contain. An entry

can be retrieved by applying a predicate to any of the values or combination of

values that it might contain. The predicates themselves can include relational

operators to specify complex criteria of the entry to be returned. For example,

a predicate might be defmed to search the table of heat exchanger sizes to find the

smallest diameter shell for a heat exchanger with 1 in OD tubes on a square pitch,

a heat transfer area greater than 54 m2 but a tube bundle length less than or equal

to 2.44 m or 8 feet. (The answer is 686 mm or 27 in). Procedural attachments

including predicates like this example read these tables and retrieve the entry that

is most appropriate. This mechanism provides PLS with an elegant representation

for these standardised values. The tables store the information in a very compact

and easily accessible and maintainable form compared to coding it directly into

the procedures. Because the retrieved values are copied from the tables into the

slots of frames, the values can be accessed very quickly when read subsequently.

The table mechanism was highly successful in PLS and certainly proved to be a

very effective alternative to inheritance.

Procedural attachments provide PLS with a goal directed reasoning capability.

PLS also reasons using rules which are applied in a data driven manner. In any

122

data driven rule system, including PLS, rules are invoked and take their action if

specific data are present in the database. The system draws as many conclusions

from available data as possible. This is exactly the behaviour that PLS needs

while inferring and manipulating constraints. It is essential in PLS that all

constraints are inferred so that the spatial synthesis algorithms can determine

which are to be satisfied. This is an intrinsic feature of the constraint propagation

techniques used in PLS. Furthermore, even the information that a constraint

exists but cannot be satisfied is valuable to the user.

Data driven reasoning is widely used in Expert Systems. Each of PLS' s rules

have the general form that is universal in this approach:

if precondition then conclusion
The rules in PLS record individual fragments of generically applicable knowledge.

The rules do not refer explicitly to particular items of equipment or streams, but

rather, to generic types. For example, PLS applies a rule containing knowledge

about pumps to every instance of pump in its database.

The following example of a rule is also written in PLS's syntax. The example is

designed specifically to illustrate the principles of PLS' s rule language. It

performs the somewhat contrived function of printing the names of equipment

items connected by a liquid stream carried in a large bore pipe. Practical rules

in PLS were substantially more complex but the complexity would impede the

clarity demanded of an introductory example.

123

[rule print-largebore
[pattern

[=stream
[class stream]
[continuous-phase liquid]
[pipe-bore =bore > 300]
[branches

[=in-branch
[direction in]
[connects-to

[=in-object
[name =in]]]]

[=out-branch
[direction out]
[connects-to

[=out-object
[name =out]]]]]

]
]

[action
[print "Pipe from " =in " to " =out " is large bore"]
[print "Its bore is " = bore " mm"]]

]

The rule follows similar principles to the procedural attachment shown above.

The rule is introduced by the keyword "rule" which is followed by its name,

"print-largebore". Again, the body of the rule comprises a pattern section and

an action section. These define the precondition and the conclusion of the rule

respectively.

PLS generally attempts to match each rule against every instance frame in the

database. This introduces a loop into the execution of the rule which allows it to

consider every frame. In this rule, the variable "= stream" is assigned as its

value the frame being considered at any time.

The "[class stream]" form in the pattern specifies that the rule should only be

applied to instances of the stream class. The "class" keyword is widely used in

PLS's rules. It speeds the matching process because it directs a rule to the frames

to which the knowledge is intended to be applied. PLS makes no attempt to

match the rule against the other frames. A rule might only consider a small

124

proportion of the total number of frames in the database thereby. For example,

consider a rule containing knowledge that might apply to each of the 60 streams

in the test process. Even if this rule were run when nearly all of the

approximately 1200 frames representing constraints had been added to the

database, the rule would only attempt to match against 60 frames. The saving is

obvious. The "class" keyword also adds expressiveness to the language by

offering the rule writer a means to clarify to which types of entity the encoded

knowledge is germane.

The next two forms in the pattern are similar to those in the pattern of the

procedural attachment, and inspect slots of the stream. However, in this case,

they specify conditions that must be met for the rule to match. The "[continuous-

phase liquid]" form inspects the "continuous-phase" slot on the frame under

consideration. The rule will reject this frame unless the slot contains the value

"liquid". In this example, 300 mm is considered to be the minimum pipe size

that constitutes a large bore. The construct "[pipe-bore = bore > 300]" specifies

the requirement that the "pipe-bore" slot must contains a value greater than 300

for the rule to consider this frame further. The value of the slot is retrieved and

assigned to the "=bore" variable. Sophisticated constructs such as this are

essential in PLS to express the typically complex and subtle engineering

knowledge. The patterns of procedural attachments can also express conditions

and this is used in many real examples.

Stream frames have a slot called "branches" which contains "branch" frames.

This rule retrieves the frames from the slot to gain access to the frames that

represent the equipment items that the stream connects. The following section of

the rule searches the "branches" slot for each branch with inward flow.

[branches
[=in-branch

[direction in]
[connects-to

[=in-object
[name =in]]]]

125

This section of the code introduces a second loop as it assigns each frame in the

"branches" slot to the "=in-branch" variable in tum. If the frame's "direction"

slot has value "in" , it is a branch with inward flow. The rule retrieves the frame

that represents a connected equipment item from the "connects-to" slot of the

branch frame. In principle, another loop is introduced here but the semantic of

the database calls for this slot to contain one frame only. The value of the

"name" slot is retrieved from the equipment item's frame and assigned to the

variable" =in".

A similar process loops through the branches with outward flow in the next

section of code. Note that the rule compiler nests the code to loop through the

outgoing branches inside the loop introduced for the incoming branches. Thus,

the action section is reached once for every combination of incoming and outgoing

branch.

The action section in this example is very simple. It contains two "print"

statements. The first prints a message such as:

"Pipe from TIOI to RI04 is large bore"

The second might print:

"Its bore is 300 mm"

Once the action section has been executed for every combination of the branches

on the first stream frame, the outermost loop of the rule steps it onto the next.

Thus, the rule traverse the database and prints messages for every stream that

meets the conditions expressed in the pattern.

The rule language in PLS has two noteworthy features. One noteworthy feature,

exhibited clearly in the example above, is that the rules search the instance frames

in the database for their preconditions. It is somewhat atypical, although certainly

not unique, to apply rules to complex data objects such as frames. More often,

each fact in the database is recorded as a separate datum. However, frames are

used in PLS to represent the problem elements and therefore, the slots of the

126

frames constitute the facts to be reasoned about. Similarly, if a rule concludes a

new fact about an existing object, a new slot is added to the object's frame. If

the rule concludes that an entity should exist, a new frame is created. Inpractice,

most of the entities inferred by rules are constraints.

The preconditions for many of the rules in PLS are complex and usually require

a number of facts to be considered about an entity. It is not uncommon for PLS

to need to examine 10 facts about an entity while matching a rule to it. PLS

applies its rules very efficiently because the frames "package" all of the facts

about an entity together. Once PLS retrieves a frame while attempting to match

a rule, each fact can be retrieved directly by inspecting the appropriate slot of the

frame. The slot names can be thought of as indices directing PLS straight to the
facts.

To exemplify the complexity of knowledge needed in conceptual layout, consider

the rule that infers that one object should be above another because a liquid

stream flows from the first to the second under gravity. This rule searches for

combinations of three entities that meet the following conditions. Two of the

entities have to be equipment items, the third has to be a stream. The stream has

to connect the two items. The bulk phase of the stream has to be liquid and the

pressure differential between its ends has to be insufficient to drive flow upwards.

The item from which the stream flowed cannot have a pumping effect, because

this makes gravity irrelevant as the driver of the flow. Once the rule identifies

a combination of two items and a stream that meet these conditions, it draws its

conclusion. In this case, the rule creates a frame in the database for the FR

representing the constraint that the source object must be above the sink object.

The above example can also be extended to show how rules and procedural

attachments work synergistically. The rule in the example retrieves the pressure

differential from the stream's frame. This pressure differential is calculated by

retrieving the pressures from the frames representing the connected items. The

calculation is encoded as a procedural attachment for streams. The procedural

127

attachment reads values of pressure from the connected items' frames and writes
the pressure differential onto the stream's frame. However, it only does this if
the rule attempts to retrieve the value of pressure differential from the stream
frame. If the stream or items have already failed to meet another criterion, the
rule does not need this information and the procedural attachment is not invoked.
Similarly, the rule determines whether an item has a pumping effect by attempting
to retrieve the value of a "pumping-effect" slot from the item. A generic
procedural attachment is defined for equipment items in general which returns
FALSE for this. That is, in general, objects are considered not to have a
pumping action. However, more specific procedural attachments are defined for
classes whose instances might have a pumping effect. These more specific
procedural attachments over-write the generic version and are invoked in
preference. These procedural attachments return TRUE if appropriate. For
example, a heat exchanger would not normally function as a pump unless it were
being used as a thermosyphon reboiler. The procedural attachment for heat
exchangers considers evidence such as whether the flow through the exchanger

is being partially vaporised to determine whether the exchanger is a thermosyphon

and returns TRUE or FALSE as appropriate.

The other noteworthy feature of the rules in PLS is the mechanism by which they
are invoked. Unlike a standard rule language, the rules encoded in PLS are not
invoked or controlled by any complex control regime or rule interpreter. Rules
are invoked explicitly in PLS by other rules. When a rule is invoked, it attempts
to match against every instance in the database unless it is restricted by the
"class" keyword. Once the rule has traversed the database, its action is complete

and PLS calls the next rule, or recalls the last one. This architecture is well

suited to fast matching and data generation and also well suited to the purposes
of the two reasoning tasks for which the rules are used.

The rules that infer constraints are independent of one another. No rule used for

this task requires data as its antecedent that another rule derives as its consequent.
Although the rules are data driven, they do not "forward chain" in the classical

128

sense. Once every rule that infers constraints has traversed the database once,

this task is complete. If a rule fails to match a particular frame when it is

applied, the conclusions of subsequent rules will not affect this. Thus, there is

no need to re-run the rule in case it has been enabled subsequently after failing

to draw a conclusion. Note that the assumption that all antecedent data is

available is safe because of the backward chaining action of the procedural

attachments.

Rules are also used to implement the later phases of PLS such as group

formation, calculation of elevation and plan layout. These tasks are carried out

by algorithms devised specifically for each task. These algorithms are

implemented in suites of rules which explicitly call one another and thereby

exercise tight control over the reasoning process. In this role, the rule language

is used as much as a high level procedural programming language as a knowledge

representation language. The algorithm is implemented explicitly using the

intrinsic control of the rule language. The rule language is ideal for this purpose

because the programmer can express the interactions of the code with the database

in rule preconditions and conclusions. These give the programmer access to the

low level database query and update functions at an appropriate level of

abstraction.

In a conventional rule language, the rule source is treated as data that are matched

against the database by a rule interpreter. In PLS, the rules are invoked

explicitly, and a conventional rule interpreter is not required. Thus, each rule is

compiled into a LISP function. When a rule is invoked, the corresponding LISP

function is called. A rule compiler reads the rule source code and generates LISP

as its output. The output is then compiled by the LISP compiler to binary code.

The compilation takes place outside PLS. The binary code is found to run at least

two orders of magnitude faster than the rule source loaded directly and interpreted

into LISP at run-time. The compiler was built by Reynolds in consultation with

the author. Note that the compiler in PLS is a compiler in the classical sense.

The term is often used in the context of rule languages to mean a fast matching

129

algorithm such as RETE [Forgy 1982]. These look for changes in the facts in a

system's memory to avoid matching every fact against every rule repeatedly.

Some operations in PLS's approach to layout are intrinsically "non-monotonic",

that is, adding a new fact can cause an existing fact to become invalid. For

example, the fact that an entity is 3 m above another no longer holds if a new fact

that the entity is 4 m above the other is asserted. Although PLS follows a "least

commitment" reasoning strategy which substantially eliminates back-tracking, it

must draw assumptions to progress in some situations. For example, PLS must

assume elevations of items while iterating to adjust the elevations of the

equipment items and floors with respect to each other. Thus, PLS must operate

non-monotonically at times and uses two strategies to handle this. The first

strategy is exemplified by PLS' s handling of the change of elevation offset. The

code that calculates elevation is programmed to explicitly replace a previous offset

with a new offset. That is, a new fact is not actually asserted but rather, the

existing fact is modified. This is a solution to one aspect of the so-called "Frame

Problem", identified by Mccarthy [1969]. The Frame Problem has a number of

manifestations, in this situation the problem of predicting all effects of an action

or event. The solution used in PLS is similar to that used by Mccarthy in his

"Situation Calculus". This also included explicit knowledge to specify of the

ramifications of a change to the database. The Situation Calculus exhibits the

principal potential difficulty with this solution. The number of axioms needed to

maintain consistency in the database far exceeds the number needed to represent

the actual knowledge being reasoned about. This difficulty does not arise in PLS.

InPLS, very few types of change to the database have ramifications which might

need to be propagated. Thus, it is easy to specify exhaustively the knowledge that

might be required to manage the ramifications.

PLS uses conventional back-tracking as its other strategy to handle non-

monotonicity. In the prototype, PLS back-tracks chronologically because this is

by far the simplest mechanism to implement. That is, PLS retracts all facts

derived since it made the decision that it now wishes to reverse. PLS invokes

130

back-tracking sufficiently infrequently for this grossly inefficient approach to be

acceptable in a prototype. However, it is clear that a properly constituted Truth
Maintenance System should be included if PLS is re-engineered for full-scale
commercial use. This requirement is discussed further in Section 10.6.5.

S.3 Values that Vary with Time
In a batch process, the values of many parameters vary with time in normal
operating conditions. The rate of a reaction will usually decrease as the reaction
continues, for example. The values of some parameters of any process, whether
batch or continuous, also vary with the operational state of the process. For
example, there should be no flow in a relief header during normal operation but
one would expect the flow rate to be substantial during a release. The positions
of the equipment cannot change with time to suit the prevailing conditions, of
course. One layout must be designed using the governing values of each
parameter although the governing values of all parameters need not be taken from

one consistent operating state. For example, the elevation of a vessel above its
discharge pump is calculated using the liquid level when the vessel is nearly
empty while the area of the vessel's wall that is wetted for heat transfer is
calculated using the liquid level when the vessel is filled to its normal level.

A governing value need not be the value that has the largest impact on the layout.
The governing value is the value that is used to derive a particular constraint.
Indeed, values of the same attribute at different states may actually give rise to
constraints that have contradictory effects on the layout. In extreme cases, it
might not be possible to generate a layout that satisfies all of the critical

constraints. Nonetheless, PLS records every inconsistency between constraints.

The records of the inconsistencies show if critical constraints are being left
unsatisfied and therefore, that the process design is infeasible.

PLS represents values that differ with time or operating state very simply. It

records the values at each potentially significant state in separate slots with names
that imply both the basic attribute and the state. For example, the vessel's liquid

131

levels at the normal operating and empty states are recorded in slots called

"normal-level" and "emptied-level". Although simple, this technique ideally suits

PLS's needs and would be equally appropriate in an Expert System for

commercial use in this domain. The governing value of an attribute depends on

what the attribute is and importantly, what inference is being drawn. PLS selects

the governing state for an inference by applying domain knowledge (albeit

implicit). Slot names, which include the name of the state, coded into the rule

manifest this knowledge explicitly. In the example of vessel liquid level, the rule

to calculate the wetted area for heat transfer implies the domain knowledge that

the value of liquid level at normal operating conditions is governing. The rule

manifests this knowledge by retrieving the value for the liquid level from the

"normal-level" slot.

132

Chapter 6: Constraints in Conceptual Layout

The central role of constraints in PLS has already been introduced earlier in

Section 4.1. This Chapter expands on these principles. We have already seen

that two conceptually different categories of constraint are significant within PLS.

"Functional Relationships" (FRs) record the spatial requirements and "Spatial

Relationships" (SRs) record the relative positions of entities while the layout is

developed. However, FRs can be further sub-divided into more specific

categories that are meaningful within the domain. These categories are discussed

in this Chapter. The persistent representation of the constraints is important and

this has been done. Finally, a layout is invariably over-constrained in that

mutually inconsistent spatial requirements act on the equipment items.

Accordingly, FRs must be relaxed to allow a solution to be achieved. In PLS,

the FRs to be relaxed are selected using a unique qualitative technique which is

explained in this Chapter.

6.1 Constraints as Diadic Relationships
Many objects might be subject to a common design constraint. For example, a

number of heat exchangers might all share a need for the same tube pulling

facilities. This common constraint could be represented as a single polyadic FR.

However, it was found during this work to be more convenient to form a set of

diadic FRs, one for each pair of related objects. In particular, a polyadic FR

would require a complex data structure to allow it to record separately whether

the relationship between one pair is satisfied. Conversely, each diadic FR in a

set refers to one pair of entities and therefore, it is clear which one relationship

of the many in the set is represented by the FR.

133

Similarly, the position of an entity might be defined relative to two or more other

entities. For example, one might wish to record that item A is 3 m North of item

Band 2 m South of item C. Again, this relative position could be recorded in a

single polyadic FR. However, much of the benefit of using SRs to record relative

positions is lost unless the SRs are also diadic. In particular, each SR stands in
lieu of a locally consistent set of FRs and records the relative position of a pair

of entities so that minimal work is required if the relative position of one with

respect to a third is changed. Clearly, these benefits are only consistent with SRs

recording diadic relationships.

It is not essential to limit FRs and SRs to recording diadic relationships within the

methodology developed during this work. However, the practical benefits are

considerable and this has been adopted throughout PLS.

Note that a relationship can be postulated in principle that is intrinsically polyadic.

This relationship records that an entity is between two others. However, in

practice this relationship is not important in PLS. It has not been found to be

useful as a precursor to inferring more precise relative positions at any time

during this work. While the relationship could be inferred from other existing

SRs, this would not increase the information available and therefore, would serve

no purpose. Thus, the existence of this relationship in principle does not

contravene in practice the principle expounded above.

6.2 A Taxonomyof Constraints
The important conceptual difference between FRs and SRs has been discussed in

Section 4.2. Itwas found during this work that FRs should be further sub-divided

into more specific categories. Within the conceptual layout domain, each design

constraint expresses one of two spatial requirements. It may require the related

entities to be close or demand their segregation. The properties and behaviour of

a constraint differs markedly depending on the spatial requirement it expresses.

This distinction is also important to define the way in which the constraints are

manipulated by a computer system. It is an important principle of this work that

134

FRs are categorised to reflect this distinction. Instance of one category represent

relationships which constrain entities to be close and might actually constrain their

relative positions. These shall be referred to as "physical FRs" hereafter.

Conversely, "segregation FRs" represent relationships which constrain entities to

be distant from one another because they are mutually repelled. A third category

of FR is also used extensively in this work. "Logical PRs" are not an intrinsic

feature of the domain and do not record any spatial requirement directly.

However, they are a powerful device to record relationships which are used to

simplify the procedure of identifying clusters of strongly related entities.

Conversely, all SRs record the same information at a conceptual level and do not

influence the layout of themselves because they record partial solutions rather than

impose design constraints. The partial solutions are recorded as relative positions

of the entities. These relative positions might be expressed initially as a direction,

perhaps to record that "item A is North of item B". As constraint propagation

progresses, additional detail becomes available and a distance might also be

recorded, perhaps stating that "item A is 3 m North of item B". However, it is

important to note that this additional information is recorded on the same SRs that

record the directions. That is, there is no value in distinguishing between SRs

which record direction only and those which record direction and distance. To

do so would complicate the representation un-necessarily. Therefore, SRs are not

sub-divided further.

The three categories of PR are reviewed below to describe their properties and

features and the mechanisms used to infer the existence of their instances. The

practical details of how FRs and SRs are represented are described later.

6.2.1 Physical FRs
An PR classified as "physical" represents an instance of a relationship which

arises from a constraint that requires the related entities to be close or perhaps

even imposes more precise spatial requirements. The constraint might represent

a common need, for example relating two items which require frequent attention

135

from the process operators. Alternatively, the constraint might represent a need

for proximity for physical reasons, such as the constraint that requires two objects

connected to a high voltage supply to be close to minimise the length of high

voltage cable in the plant.

Instances of physical FRs are inferred readily by applying generic domain

knowledge to the process data. It is appropriate to record this generic knowledge

in forward chaining rules. Each of these rules recognise the causal factors of one

type of physical FR and create instances of that type as their conclusion. PLS

includes 42 rules to identify instances of physical FRs amongst the equipment

comprising the test process. This set is not exhaustive, but presents a

representative sample of the categories of physical FR and includes examples with

a wide range of properties. Examples of these rules include:

..If two heat exchangers require the same service, then a physical FR

requires them to be close to minimise service pipework for economy. "

or

"If a stream contains a vapour close to its dew point, then a physical

FR requires the connected equipment items to be close to prevent

condensation in the pipework. "

Clearly, these rules exemplify the general principle as well as specific knowledge

embodied in PLS's knowledge base.

6.2.2 Segregation FRs
"Segregation FRs" represent constraints that require the related objects to be

positioned apart from one another. Almost all segregation FRs that can be

envisaged appear to arise to enhance safety. Certainly, all examples in the test

process do. As with physical FRs, segregation FRs are also readily identified by

applying generic domain knowledge to the process data. Again, it is appropriate

to express this knowledge in forward chaining rules. An example of one of these

is:

136

"If an object is a potential ignition source and another object contains

flammable material in bulk, then a segregation FR requires the objects

to be distant to prevent ignition of a leak. "

6.2.3 Logical FRs
"Logical FRs" are a very powerful abstraction that can be used to identify

clusters of strongly related entities within a constraint network. In this work, they

are used as an essential element of the procedure to form "logical groups", that

is, groups that correspond to process units or similar. Indeed, it may be

beneficial to read the description of the principles and requirements of logical

group formation in Section 8.2.2 in parallel with this Section.

Logical FRs do not record a constraint that is significant directly in the terms of

the domain. In layout, the constraints that are directly significant require either

proximity or segregation. Rather, they are derived from the more fundamental

constraints, in this case expressed in physical and segregation FRs. Logical FRs

act as meta-knowledge to simplify the satisfaction of the fundamental constraints.

It is meaningless to consider any direct benefit that accrues when a logical FR is

satisfied. The logical FR merely re-expresses the requirements that more

fundamental constraints impose. That is, benefit accrues if a logical FRs is

satisfied because the fundamental constraints that it reflects are also satisfied as

a side effect. These properties are clearly markedly different to those of the

fundamental constraints. Therefore, it is essential that logical FRs are classified

separately from these fundamental constraints, in this work the physical or

segregation FRs.

The following formal definition of a cluster of entities has been adopted in this

work. This can also be read as a formal expression of the principle underlying

logical groups. Each cluster of strong constraints is circumscribed by a local

minimum in the strengths of the physical FRs. A key item in each cluster is

positioned at a local maximum and the strength of the FRs declines with distance

from the key item. Effectively, the gradient of the strength of the FRs is positive

137

from any member towards the key item. The increase in strength of the FRs

towards the key item pulls each member into the cluster.

Logical FRs record in which direction from any entity the gradient of the strength

of the FRs is greatest. The direction is expressed in the form of a relationship

between the entity and an adjacent entity in the constraint network towards which

the gradient is greatest. This establishes the principle that logical FRs are

notionally directed.

Logical FRs are such a powerful abstraction because they allow very simple

algorithms for finding the members of the clusters of constraints. While simple,

these algorithms embody all the control and sophistication required to identify

complex combinations of clusters, such as autonomous clusters within other, more

expansive clusters. That is, logical FRs re-express the problem in a manner that

is highly amenable to computation. However, logical FRs are very easy to

identify and therefore, the cost of this simplification is low. Indeed, it was

discovered during this work that logical FRs relating individual items of

equipment can be identified using "compiled" knowledge embodied in relatively

simple rules. Compiled knowledge captures the expected outcome of a potentially

complex chain of reasoning and executes it in a single step. The details of the

chain of reasoning are lost or might even be unknown. For example, one of the

rules that identifies logical FRs states:

"A transfer pump should be grouped with the item from which it

draws its feed. "

This rule does not explicate any notion of why this should be so but forms logical

FRs where they would be expected nonetheless. A set of fifteen such rules was

developed and encoded in PLS. This set is sufficiently broad to identify every

instance of logical FR relating equipment items in each of three diverse plants,

the test process and two others which were analyzed as paper exercises.

A general analytical rule can also be used to identify logical FRs. This rule arises

directly from the underlying principle of logical FRs. It states that an object

138

should be grouped with a second object selected from amongst all those to which

the object under consideration is connected to which it is most strongly attracted

by physical FRs. The strength of attraction is measured by comparing the

physical FRs running parallel to the streams upstream and downstream of the

object being assessed. However, the logical FR is only created if the second

object is more strongly attracted to a third object to which it is connected. This

condition is not met in two situations. The first arises if the second object is an

ancillary of the object under consideration. In this case, the logical FR will be

created when the pair are considered the other way round. The second arises if

separate groups should be formed around each object. In this case, no logical FR

should be formed at all.

It is important to note that this analytical rule is markedly simpler than a

procedure to identify clusters of entities working directly from an analysis of the

constraint network as a whole. Furthennore, the analytical rule is used almost

exclusively to identify logical FRs between groups as they are fonned. No

compiled knowledge could be elicited that would identify these logical FRs. In

the main, groups tend to have many connections. Typically, more than one of

these exhibits properties that would suggest that a logical FR might be formed.

The analytical rule distinguishes between these candidates. However, the rules

embodying compiled knowledge can identify the majority of logical FRs even

though the set of rules is restricted to finding FRs relating equipment items.

Equipment items are far more numerous and more inter-connected than groups.

Thus, this set of rules covers all of the by far most frequent situations in which

logical FRs must be identified.

More than one process stream flows through some objects. For example, a heat

exchanger might transfer heat between two process streams. The principle is

adopted that one logical FR should be fonned for each flow. Thus, for example,

two logical FRs are formed for a heat exchanger.

139

6.3 RepresentingConstraints
The persistent representation of constraints is an important principle of PLS. It

allows FRs to be inspected to provide an audit of the layout, an important benefit

to a system user. It also greatly enhances efficiency compared to re-inferring the

constraints each time they are referred to during spatial synthesis.

Much like streams, each constraint has properties and attributes of its own. Thus,

like streams, a structured representation is clearly appropriate. The structured

representation is provided in PLS by representing constraints as frames because

frames are particularly convenient. The constraints are reasoned about extensively

during the spatial synthesis phases of generating a layout. The rule language is

designed to work in conjunction with frames. Therefore, it can be applied

directly to the frames representing the constraints and therefore, can be used

unmodified to encode the spatial synthesis knowledge.

In practice, each category of PR has a corresponding class of frame defined for

it. A further class is defined for all SR frames. The classes are used passively

to partition the PR instances in the database. Thereby, the spatial synthesis

algorithms can then retrieve just the instances in the categories that are

appropriate to the task in hand. An example of an instance frame for a physical

FR which constrains the reactors RI04 and RI08 to be close to reduce the length

of high voltage cable required to connect their motors follows.

140

{F-l [is-a physical-PR]
[type economic]
[name cable-length]
[criterion 4kV]
[min-distance 2]
[max-distance 10]
[branches

{F-2 [is-a fr-branch]
[object

{S-1 [name RI04]
··}]

[feature
{S-1 [name RI04-Ml]

··}]
[groups

{S-1 [name G8]
··}]

[elevation-end top]}
{F-3 [is-a fr-branch]

[object
{S-1 [name R108]

··}]
[feature

{S-1 [name RI08-Ml]

}]
[groups

{S-1 [name 09]

}]
[elevation-end bottom]}

n

This frame is identical in principle to those presented previously. It comprises

slots which record atomic values, some numeric and others symbolic, and other

slots which have frames as their values. Instance frames for the other categories

of constraint are very similar and will not be exemplified separately.

141

All instances of each type of physical and segregation FRs have specific properties

which arise from its nature and causal factors. Some properties are generic to

broad categories of relationship, others to a very specific set. The example FR

relates two objects driven by high power motors, expressing their mutual

attraction to minimise high voltage cabling. The relationship has the general

property of increasing plant economy if satisfied, a more specific property of

minimising the length of cable, and the very specific property of minimising the

length of 4 kV cable. These properties are important because they determine the

phases of spatial synthesis an FR should influence, determine an FR' s need for

satisfaction and identify objects with similar needs which can be met by

positioning them close to one another. The causal factors of an FR are recorded

in three slots, written onto it when it is created, called "type", "name" and

"criterion". These slots express the causal factors increasingly specifically. In

this example, the "type" slot of an FR instance has "economy" as its value, the

"name" slot has "cable-length" as its value and the "criterion" slot has "4kV" as

its value. Three slots are used so that generic properties can be explicitly

recorded on the FR as well as very specific properties. When PLS needs to

consider the generic properties of an FR instance, it can read the information

directly from the frame. If the FR frames only recorded the most specific

information, PLS would be forced to infer the implicit generic properties from the

explicit specific properties. The explicit records of the more generic information

also indicate clearly which FRs are thought to be similar in general by the system

builder. This conveys important information to someone inspecting the

knowledge base.

On a logical FR, all three of these slots are given the value "logical". The causes

and properties of all logical FRs are identical so there is no meaning in any

distinction between "types" of logical FR.

Within the domain, some FRs record more precise spatial constraints than

proximity or separation. In this example, it is assumed that the reactors are

constrained to be at least 2 m apart and at most 10 m apart. These values are

142

recorded in the "min-distance" and "max-distance" slots. It is doubtful whether

this PR would impose such a precise constraint but the slots have been included

to exemplify this feature. Other FRs constrain the elevation offset between the

related items. This is recorded in the "min-elevation" and "max-elevation"

slots. In some cases, FRs constrain both the horizontal and vertical separation of

the items. The frames for these FRs include whatever combination of these four

slots is appropriate. Similarly, the minimum and maximum separations of the

entities related by an SR must be recorded upon it at some time during constraint

propagation. Thus, frames for SRs also include these slots. They might also

include a "direction" slot which takes as its value the name of one of the cardinal

directions of the compass to record the direction of the SR relative to the local

coordinate system of the group of which the related entities are members. Some

segregation FR frames record a minimum separation of the entities considered

adequate to eliminate the hazard if this can be calculated or read from standard

Tables leg Mecldenburgh 1985, Appendix C). Other segregation FRs only

express coarse spatial requirements and this is inappropriate. No segregation FR

imposes a maximum separation - any separation greater than the minimum, if

specified, satisfies the FR. Logical FR frames never record any precise spatial

information because this would be meaningless.

The frames for constraints include two "branch" frames in PLS - similar to those

for streams. Each branch frame holds one of the entities that the constraint

relates. Because constraints are always diadic, each constraint frame holds two

branch frames. In this example, the FR instance holds the branch frames F-2 and

F-3, which hold the frames for RI04 and RIOS respectively. Slots are written

into the branch frames to record information germane to each of the related

entities. In this example, the branch frames include slots called "elevation-end"

which take the values "top" and "bottom" respectively. This is typical of an FR

or SR that relates to elevation, although it is included in the example above purely

to demonstrate the principle. The branch frames of logical FRs include a slot

called "logical-end". This slot is given the value "master" on the branch frame

that records the object towards which the gradient of the strength of attraction is

143

positive. The slot is given the value "ancillary" on the branch frame that records

the object from which the gradient is positive. These terms are mnemonic and

reflect the frequent situation in which the gradient slopes upwards from an

ancillary towards the "master" that it serves.

Different names are used for these slots so that the spatial synthesis algorithms

can identify the axis in which the constraint acts. For example, while the branch

frames on an elevation SR include slots called "elevation-end", the branch frames

on SRs formed during plan layout include slots called "plan-end". These take

"to" and "from" as their values to specify relative to which entity the direction

is measured. Thereby, each spatial synthesis algorithm can readily identify the

constraints that it must consider.

Even though all constraints are diadic in PLS, FRs influence the positions of the

groups of which the entities are members. Thus, in practice, when PLS collects

an entity, whether an equipment item or previously formed group, into a more

expansive group, PLS updates the appropriate branch frames of FRs to show that

they also relate the more expansive group. In this example, the FR relates RI04

and RIOS which are members of groups OS and 09 respectively. These groups

are recorded in the "groups" slots of the respective branch frames.

Some physical FRs arise from the properties of specific physical components of

objects. In this example, the constraint arises from the need to minimise the

length of the cable length between the motors fitted to each reactor. This

constrains the positions of the reactors and also their orientation so that the motors

are as close as possible. Thus, it is essential that physical FRs can record the

component that gives rise to the constraint alongside its parent object to model

adequately the domain. The component is written into the "feature" slot of the

branch frame alongside the object in the "object" slot. In this example, both

branch frames have "feature" slots which have the instance frames for the motors

as their values. The branch frames of SRs can also include a "feature" slot.

144

Segregation FRs do not impose constraints of enough precision to warrant this

level of detail.

6.4 RepresentingRelative FR Importance
Previously it has been stated that a layout is invariably over-constrained. The set

of all FRs that impose spatial requirements invariably contains mutual

inconsistencies. Accordingly, some FRs must be selected to be relaxed to leave

a set of FRs which are all consistent. This selection can only be made if the

importance of satisfying the PR instances can be compared. In practice, the

importance of FRs varies widely in conceptual layout. Some must be satisfied if

the plant is to function a. all. Some FRs are of such little importance that they

are satisfied in a design only if it is opportune to do so. The plant might be more

economical or easier to operate if others are satisfied. Value judgements are

required to select which FRs should be satisfied.

In some domains, it is appropriate to generate the solution by optimising a single

parameter against an objective function. In these domains, it is then appropriate

to represent and manipulate the importance of constraints numerically. For

example, ISIS [Fox 1983, 1986] and later CONSYST [Silverstein 1990], were

constructed to plan and schedule production processes. Some constraints

represent dependencies between processes where one process must be completed

before another may start. These cannot be relaxed and therefore their importance

need not be represented. The need to satisfy them may be taken as read. All

other constraints effectively represent the financial impact of scheduling decisions

and trade-offs. The importance of these may be accurately quantified against a

single coherent metric, in this case effectively financial. Numerical values are

assigned to classes of constraint to represent their importance. These values are

inherited by their instances. The solution is generated by searching to maximise

these values, treating problem solving as single parameter optimisation. This

matches the objective in scheduling of maximising profitability of a facility.

145

In conceptual layout, the benefit accrued from satisfying many FRs might also be

directly quantified. For example, an engineer might estimate the additional

financial cost incurred if an FR were left unsatisfied. In many cases, this would

be very natural and accurate. If this were true of all FRs, PLS could determine

numerically which FR instances are to be satisfied. This is feasible even given

the large number of FRs to be considered. For example, an algorithm has been

developed which determines the optimal number and positions of members in

bridge structures [Mistree 1981]. This problem involves literally many thousands

of variables and very complex relationships between them. However, it is not

possible to quantify the benefit of satisfying many other FRs. Some may be

quantified in principle but the data are lacking. Others have no natural

quantification.

The decision to stack heat exchangers exemplifies a lack of data. It is widely held

that there is an economic benefit in this. However, analysis of the readily

apparent economic factors shows that they nullify each other [Bush 1972]. It

appears that a real but "hidden" factor exists which the engineer takes into

consideration but which could be missed by an optimisation approach.

The effect of transport lag caused by long piping runs on the control of the

process exemplifies a constraint that is highly important and yet not amenable to

quantification. A domain expert would have to estimate a value to incorporate

into the optimisation. However, estimated values of importance are likely to be

imprecise and unreliable. Generally, if a subject is asked to order stimuli

according to the magnitude of a given stimulus dimension, the subject will only

be able to use five to nine ranks effectively [Rink 1987]. This is too imprecise

for input data to an optimisation function given that the FRs vary so widely in

importance. The bands are too broad.

The accuracy of subjective values of importance should also be questioned. The

value is in effect the probability of the FR proving to be more important than

another in a comparison. Studies show that subjects over-estimate low objective

146

probabilities and under-estimate high objective probabilities [Lichtenstein 1977].

The bias tends to decrease in easy tasks and experts tend to show less bias than

non-experts [Lichtenstein 1982]. However, weighting FRs in layout would not

seem to be an easy task and even experienced layout engineers would not be

expert in this. It is not the way they work.

The principle has been adopted in this work that it is unsatisfactory to record the

relative importance of constraints numerically in this domain. The previous

argument shows that it is difficult to ascribe accurately absolute numeric values

of importance to FRs. However, it is relatively easy for a domain expert to state

which of two different FRs is more important. For example, layout engineers

would agree that an FR relating two objects connected by a large bore pipe should

be satisfied at the expense of an FR relating two objects connected by a small

bore pipe. This ability is exploited to support this principle and provide a non-

numeric technique to determine which FRs should be satisfied in preference to

others. This technique is introduced in a simplified form here. Layout engineers

were asked during knowledge elicitation to compare a pair of FRs and state which

of the FRs is more important. The relative importance was tabulated in PLS's

knowledge base. The procedure was repeated for many other pairs of FRs. In

practice, no relative importance could be decided for some pairs of FRs. Thus,

a partial ordering was achieved. The table which recorded the engineers'

preferences is therefore named the Partial Ordering Table or PO Table.

When an inconsistency between FRs is identified, the relative positions of the FRs

on the PO Table shows which to satisfy. Ifno preference is recorded directly for

a specific pair of FRs, it is assumed that relative importance is transitive and a

series of FRs which can be compared is established between the entries for the

FRs. While it has never been proved that qualitative relationships are transitive,

intuitively the assumption seems completely reasonable.

The technique used in PLS is more sophisticated than the simplified form

described above. Inconsistent FRs may occur in sets for two reasons. Firstly,

147

it is likely that any pair of entities will be related by more than one FR. This was

found to be universally true in the test process. Thus, whenever an entity is

involved in an inconsistency, typically more than one FR will need to be relaxed.

Secondly, it is often the case that an inconsistency can only be resolved by

relaxing FRs that relate a number of entities. For example, during group

formation, an entity is assigned to the group to whose members as a whole it is

most strongly attracted. All the members might contribute FRs to the set which

attracts the entity. In a further example, while elevation is calculated or plan

layout derived, an inconsistency might need to be resolved by moving more than
one entity. For example, assume that item A is constrained to be 4 m North of

item B and 3 m South of both items C and D. For the sake of this example,

assume that items B, C and D are all fixed. Thus, the inconsistency can only be

resolved by relaxing either the FRs between item A and B or the FRs relating

item A to both items C and D.

The methodology developed during this work adopts the principle that each set of

FRs that can be satisfied concurrently are collected into a so-called "link set".

It is these link sets that are actually compared on the PO table. No other system

that arbitrates contradictions between constraints non-numerically is known that

employs an analogous technique or even a technique that attempts to meet similar

objectives. The most usual technique is that due to Marcus [1986], exemplified

more recently in PLAKON [Syska 1988].

PLAKON implements two strategies for arbitrating contradictions amongst

constraints. "Relaxibility factors" (sic) are assigned to all classes of constraints.

In global relaxation mode, when a contradiction is identified, PLAKON

successively disables constraints with the highest value of relaxibility from the

problem until a consistent solution can be achieved. Once PLAKON, in global

relaxation mode, has identified one constraint that cannot be satisfied, it modifies

the constraint network globally until a solution is possible. Constraints might be

disabled that do not contribute to the contradiction. PLAKON does not continue

to develop the solution in the majority of the problem space once further progress

148

becomes impossible at one point. That is, PLAKON cannot trade off constraints

to achieve the best global solution. PLAKON can also operate in its local

relaxation mode. In this, constraints are organised into so-called "constraint

bundles" . These are sets of constraints that all represent the same domain

dependency but restrict values more or less severely. In the case of a conflict,

the conflicting constraint is swapped for a less restrictive alternative from the

same bundle. This leads PLAKON to develop a solution which comprises many

local optima rather than one global optimum.

It is important to note that even a numeric technique would be likely to encounter

difficulties in the conceptual layout domain. Consider, for example, the FRs

attracting pumps toward one another into a pump bay. It is common practice to

install perhaps eight or ten pumps together in a pump bay. Smaller pump bays

are observed much less frequently and it is most unlikely that two pumps would

be installed in a bay. It appears that a "critical mass" must be reached before the

decision to collect the pumps together is taken. The relationship between number

of pumps and likelihood of their being collected appears to be highly non-linear.

By implication, the relationship by which the importance of satisfying the FRs

relating the pumps is derived from the number of FRs is also highly non-linear.

A relationship like this is likely to prove difficult to derive accurately and also

difficult to compute. This difficulty is circumvented entirely by the link set

technique.

The link set concept is used in PLS as follows. When the PO Table was elicited,

pairs of prototypical sets of FRs were compared. These prototype sets specify

either a number of instances of the same type of FR or a specific combination of

instances of a number of types. The PO Table includes a number of prototype

sets comprising the same type of FR but in differing numbers. These express the

(usually increasing) importance of satisfying increasing numbers of instances of

the same FR. Sets of one PR are also considered so that solitary FRs can still be

compared. When an inconsistency is detected between FRs, those FRs involved

in the inconsistency are formed into link sets. These link sets are then compared

149

with the prototype sets on the PO Table. The relative importance of satisfying

each link set is retrieved from the PO Table exactly as described above for single

FRs. Thereby, importance of satisfying link sets of various combinations of FR

can be compared directly because this is defined explicitly by the position of the

prototype link set on the PO Table. Furthermore, there is no need to derive a

relationship between the composition of a link set and the importance of satisfying

it.

The criteria by which FRs are selected for inclusion in a link set depend on the

problem solving phase in which the inconsistency is detected and the detailed

nature of the inconsistency. These criteria are essential adjuncts to the technique

and are discussed in the appropriate following Chapters. However, the underlying

principle is that the algorithm active at the time is responsible for applying

appropriate domain knowledge which records these criteria.

The need to satisfy an FR depends on its causal factors which are recorded on

each PR instance in its "type", "name" and "criterion" slots in PLS. The

prototype link sets on the PO Table are defined in terms of these values also. A

link set is considered to match a prototype set when the three values for one

element of the prototype set correspond to the values read from an FR instance

in the link set. Wild card values can also be specified in the entries for the

prototype link sets. These match any value read from an PR instance. For

example, an entry in a prototype set might require an FR instance to have

"economic" as the value of its "type" slot for it to match but wild card values for

the "name" and "criterion" slots allow any values of these to match. Any FR

instance of type "economic" matches the entry in the prototype set. Wild card

values can be specified for the "criterion" slot only or the "name" and "criterion"

slots together. PLS attempts to match FR instances in a link set against fully

specified entries in the prototype sets, then attempts to match FRs against

prototypes containing a wild card for the "criterion" slot, and finally against

prototypes with wild cards for both the "name" and "criterion" slots. This allows

generic prototype link sets to be specified on the PO Table to match any FRs

150

which arises from similar considerations but which differ in detail. For example,

the heat loss per unit length of two pipes could be the same if one is small bore

and at very high temperature and the other larger bore but cooler. The FRs that

relate objects connected by either type of pipe would have the same values for

their "type" and "name" slots but a different value for their "criterion" slots. A

generic prototype link set with a wild card for the value of the "criterion" slot

would match either FR and show that they are equally important to satisfy.

Generic prototype sets which specify the value of the FR's "type" slot but include

wild cards for the values of the other slots are used in the PO Table built for the

• experimental work. These prototype sets establish default levels of importance

for broad categories of FR. Additional prototype sets which specify more closely

the FRs that they match are added to the PO Table to indicate that specific FRs

of this general type are considered to be more important than the default.

In-.principle, a link set might arise which is important to satisfy but which

comprised an unforseen combination of FRs. No prototype set would exist on the

PO Table which adequately represents the importance of this combination so the

importance would be under-estimated. In practice, a feature of the domain

mitigates this difficulty. It is found that the prototype sets that are most important

to satisfy contain a few important FRs rather than a large number or particularly

synergistic combination of individually unimportant FRs. That is, it appears that

a link set has to contain important FRs for the link set as a whole to be important.

Therefore, the individual importance of the members of an important link set

"protect" it from being left unsatisfied because its obscure combination cannot be

matched against the PO Table.

InPLS, a separate frame is created to represent each inconsistency between FRs.

These frames record the two link sets formed from the inconsistent FRs and the

link set chosen as more important after their comparison on the PO Table. These

frames are retained in the database to provide the audit records of the

inconsistencies. The PO Table implies the design assumptions which lead to the

151

particular choices of which FRs should be satisfied. Thus, it forms an essential

element of any audit for validating a layout produced by PLS. Therefore, the PO

Table is copied into the database to be retained for the database's lifetime. This

ensures that all information needed to validate the design remains available.

6.4.1 Indeterminate Comparisons
The PO Table might not record which of two link sets should be satisfied. When

some pairs of link sets are compared during elicitation of the PO Table, the

engineer might express no preference as to which should be satisfied. Sometimes,

the link sets might be genuinely equal in importance, other times it might not be

meaningful to compare them as they express disparate and incomparable factors.

The PO Table is constructed with the prototypes sets corresponding to these link

sets positioned "in parallel". When link sets that correspond to these prototype

sets are compared on the PO Table, it is not possible to draw a conclusion. In

the methodology, one link set is selected arbitrarily as the more important. In

principle, each of the link sets could be selected in tum and a layout generated for

each. As a simplification to speed development ofPLS, it only develops the first

solution to completion. This issue is discussed further in Section 10.6.S. The

frame that is created to record the inconsistency is marked with the fact that the

inconsistency was resolved arbitrarily so it can be identified easily if the audit is

reported. The methodology requires that the PO Table is modified dynamically

to reflect the preference implied by the arbitrary selection. This ensures that the

same choice is made should similar link sets be compared later. This maintains

consistency throughout the solution. In PLS, the modifications are applied to the

copy of the PO Table loaded into the database for this layout and hence, are not

transmitted to other users. Design then continues until a solution is reached.

6.4.2 Segregation FRs

Segregation FRs are satisfied when the related objects are positioned sufficiently

far from one another. A pair of objects might be related by a segregation FR and

also by physical FRs which demand their proximity. Thus, it is a feature of the

domain that FRs relating a pair of objects can be inconsistent with themselves

IS2

rather than with FRs relating one of the pair of objects to a third. For example,

consider a distillation unit separating crude oil. The reboiler in this unit might

well be fired to vaporise the very involatile column bottoms. A number of

physical FRs demand the proximity of the column and reboiler, for example to

minimise heat loss from the vapour return line and to minimise pressure drop in

the line. A distillation column contains a large volume of flammable vapour

which would be ignited by the fired reboiler were it to leak. A segregation FR

demands that the column and reboiler should be distant to minimise the risk of a

major fire. The physical FRs are clearly inconsistent with the segregation FR

even though all of the FRs relate the same objects. In a situation such as this,

either all of the physical FRs or the segregation FR should be satisfied.

In these cases, two link sets are formed from sub-sets of the FRs which relate the

pairs of entities. The physical FRs are collected into one, the segregation FR (or

FRs if there is more than one) into the other. The two link sets are then

compared on the PO Table to determine which is more important to satisfy.

Prototype sets comprising segregation FRs are added to the PO Table in exactly

the same way as those comprising physical FRs. There is no concept of

"inverse" importance for the segregation FR prototype sets. The segregation FRs

act in what might be termed loosely an inverse of the action of physical FRs.

However, the PO Table records which link set will be allowed to act, not the

action itself. Thus, if the segregation FR link set is more important than the

physical FR link set, the former is placed higher in the PO Table. In the example

above, PLS would form one link set comprising all of the physical FRs and a

second with the segregation PR as its member. Itwould match the two link sets

against the PO Table. For the sake of the example, assume that the prototype link

set for the segregation FR was placed above the prototype link set for the physical

FRs on the PO Table during elicitation. This implies that the segregation FR is

more important to satisfy than the physical FRs, and the segregation FR would

be selected for satisfaction. Having made this decision, PLS would then, and

only then, acknowledge the spatial significance of the segregation FR and position

the column and reboiler apart from one another.

IS3

Chapter 7: Calculating Elevation

In a process plant, the elevations of the equipment items are set principally to

satisfy the minimum and maximum height differences that must be allowed

between the items if they are to function. The engineer performs complex but

routine calculations to establish the allowable minimum and maximum elevation

differences. This is one of the major time-consuming elements of the manual

procedure for layout. The calculations require information from the process

design, physical property data and preliminary mechanical designs of some of the

items, especially the positions of their nozzles. The engineer spends as much time

marshalling these data as performing the calculations themselves. PLS automates

this time-consuming task and calculates the elevation of each item of equipment

in the plant and positions floors at the appropriate elevation.

Two factors dominate the engineer's perception of calculating equipment

elevation. Process flow causes constraints on the relative elevations of equipment

items. Many of these constraints arise to take advantage of gravity flow. These

constrain the discharge point of the feeding item to be above the inlet of the fed

item. That is, these constraints do not require any precise elevation offsets.

Some constraints demand relative elevations of the items to ensure the pressure

at a point is sufficient. For example, the pressure at a pump's inlet must be

sufficient to meet its NPSH requirements and the pressure at a control valve in

a gravity reflux line must be sufficient so that the valve operates in its linear

region. Other constraints demand relative elevations to maintain a differential

head between two items, such as between a distillation column and a

thermosyphon reboiler. In general, the relationships which arise from process

flow push items upwards from the items below. However, constraints which

specify a narrow band of elevation offsets will "pull" the lower item upwards to

154

achieve the permitted maximum offset if the upper item cannot be lowered. For

example, the minimum elevation of the column above the reboiler is calculated

to provide sufficient differential head so the thermosyphon effect will drive

circulation. However, if the column is raised to satisfy other elevation

requirements, the reboiler must also be raised so that the pressure drop in the

pipework of the reboiler loop does not become excessive.

The second dominant factor is the desire to minimise the elevation of every item

of equipment. The cost of a structure to support a plant increases rapidly with its

height. However, the constraints which arise from process factors generally drive

items upwards. An engineer adopts the strategy of positioning all items at the

minimum elevation at which the process requirements are satisfied to minimise

structural costs. PLS also adopts this strategy.

The notion of grade itself is as important as the other two factors in a rigorous

treatment of elevation calculation, although it is taken for granted by engineers.

Grade is important for two reasons. Firstly, the elevation calculation is under-

constrained unless grade is acknowledged. Without grade, relative elevations can

be calculated correctly but there is no datum against which absolute elevations can

be calculated. Secondly, the process elevation constraints typically break into a

number of separate chains. In the test process, the reactor units and weighing

tanks formed one chain, the filtration and drying units a second and the distillation

unit a third. All chains include grade, however, which unifies them.

Accordingly, PLS explicitly represents "grade" as a frame. The elevation code

can act upon the "grade" frame without distinction between it and the frames for

equipment items. The constraints which relate the "grade" frame anchor the

constraint network to a fixed point. PLS creates an FR to relate every equipment

item to grade when it infers the FRs during its pre-processing phase. PLS does

not assume that the origin of an equipment item is on its base. It is convenient

to permit the knowledge engineer to choose the origin for each type of equipment.

In some cases, the bottom of an equipment item must be raised above ground

155

level. For example, pumps are invariably installed on low plinths and columns

are mounted on skirts to leave space for pipework. In effect, these items require

support below their lowest perimeter rather than flush with it. The minimum

elevations of the origins of these items above ground level are set so that

appropriate space is left below the item. These FRs also serve to balance the

effect of other FRs which might cause an item to be lifted. Because of these FRs,

PLS lifts an otherwise unsupported or inaccessible item onto a higher floor after

comparing the cost and the benefit rather than as an easy solution. The values

written into the "type", "name" and "criterion" slots of the FRs to grade reflect

the cost of lifting the item above the minimum so that the comparison can be

made on the PO Table.

Any item which is not at grade must be supported by the plant's floors or by local

structures built upon the floors. Access must also be provided to the items for

their operation and maintenance from either a floor or a local platform. In

general, floors are preferred for both support and access. Local structures

complicate the structural steelwork of the plant and therefore cause the plant's

capital cost to increase. They also clutter the plant. This impedes removal of

equipment for maintenance and convolutes escape routes in the event of an

emergency. Platforms are only positively encouraged as access to tall items

which protrude above the top of the structure. For example, manholes in the side

of tall columns are often reached from platforms suspended from the columns

themselves. Accordingly, floors are positioned at a height were they can support

and provide access to the most items. As a consequence of this, floors cannot be

positioned until the approximate heights of the items are known. The provisional

elevations of the items constrain the elevations of the floors more than vice versa
and as few floors are created as necessary. Once the floors have been created,

the elevations of some items are adjusted to make best use of the floors. During

this adjustment, some items might need to be lifted to maintain process

relationships. This procedure is standard practice for the layout engineer. PLS

also embodies it and calculates elevations in two phases. Initially, it calculates

elevations for the items to satisfy process flow constraints. Thereafter, PLS

156

assesses the heights at which support and access is required, introduces floors at

these heights and makes any necessary adjustments.

InPLS, FRs record the required elevation offsets between specific features of the

equipment, such as manholes or nozzles, rather than between the origins of the

equipment items. The FRs record the features in the "feature" slots of their

branch frames. Other FRs record the elevation offsets of the features of the

equipment items. Many features can be adjusted with respect to their item to best

suit the layout. For example, column side manholes should be spaced regularly,

but it is not critical exactly which tray is aa:essed by each. The manholes can be

adjusted somewhat so that they align with floors provided for other purposes.

PLS t s representation reflects the freedom enjoyed by the layout engineer and

allows sufficient flexibility so that PLS can assign an elevation to each feature

independently. This principle applies more to those features which are significant

when PLS determines the heights at which floors are to be positioned. However,

it is carried through to those FRs which record process constraints to give a

unified and consistent model.

7.1 Propagating ProcessConstraints
All constraints which arise from process flows cause items to be elevated. The

effects of these constraints are intrinsically undesirable because they can only

cause structural costs to increase. The cheapest elevation configuration arises

when the fewest of these constraints are imposed. In general, a layout engineer

only considers elevation constraints arising from process flows if they must be

satisfied for the process to function. No benefit can accrue from satisfying any

others so they are neglected. This philosophy is adopted in PLS. FRs are only

formed to record process elevation constraints that impose critical elevation

offsets. A ramification of this is that elevation FRs cannot be relaxed if PLS

detects an inconsistency when the constraints are propagated. This occurs if the

FRs governing the offset of a pair of objects are incompatible or the height of an

item is defined by two or more chains of SRs which do not converge at a

consistent height. It shows that the process cannot be laid out. This gives rise

157

to PLS' s very simple procedure to propagate elevation constraints that arise from

process flow.

PLS propagates the elevation constraints in two steps. The first establishes the
minimum and maximum elevation differences between pairs of features to meet
the most stringent FRs that relate them. An SR is created to record the minimum
and maximum elevation differences allowed by the FRs. During this step, PLS
checks that the elevation FRs relating the features are locally consistent. In the
second step, PLS propagates the locally consistent SRs. It infers new SRs that
record the elevation differences between pairs of features that are not directly
related by elevation FRs. PLS first propagates the SRs that record the elevation
of features related to grade. This fixes the elevations of these features against a
known point. PLS then propagates the SRs from these newly fixed features, and
so on. It continues until an SR has been created to record explicitly the elevation

difference between each combination of items which are indirectly related by
existing SRs. Davis [1987] cautions us that constraint systems that reason about
differences can spend a lot of time deriving information that has no practical
value. In temporal reasoning, for example, there is no point maintaining the
value of the difference between the date of a contemporary conference and the
date of Julius Caesar's death then reducing this difference by one week when we
receive more precise information about the date of the conference! However,

PLS is likely to make use at some time of a high proportion of the elevation SRs
that it infers. Whenever PLS considers adjusting the elevation of an item to suit
a floor, it needs to identify all items which must be moved as a consequence.

The elevations of many items depend on that of a key item, which is typically one

of those which is lower in the plant. It is likely that PLS will consider moving

each of these key items at some time while positioning floors. Thus, this
indiscriminate approach to propagating the SRs is appropriate in this domain.

The Algorithm for Local Consistency of Elevation FRs
1. PLS searches for a physical FR in its database that imposes an elevation

offset of a pair of features of equipment items.

158

2. PLS retrieves the SR that records the elevation offset of this pair of

features. PLS updates the SR's "min-e1evation" and "max-e1evation" slots

if the values specified on the PR are more restrictive than those recorded

on the SR. If the SR has not yet been formed, then PLS creates it and sets

its "min-e1evation", "max-elevation" or both slots to the values read from
the FR.

3. PLS iterates around steps 1 and 2 until it has considered every physical PR
in its database.

The Algorithm for Global Consistency of Elevation SRs

1. PLS searches for a feature with an elevation offset specified relative to

grade. This feature will be referred to as the "base feature". PLS sets

accumulators of the minimum and maximum absolute elevations of features

to the values read from the SR's "min-e1evation"and "max-elevation" slots.

2. PLS searches for an SR which records the elevation offset of another feature

above the base feature. This will be referred to as the "current feature".

PLS updates the accumulators by adding the values read from the "min-

elevation" and "max-e1evation" slots of this new SR.

3. PLS searches for an SR that records the elevation difference between the

base feature and the current feature. PLS updates this SR's "min-elevation"

or "max-elevation" slots with the values of the accumulators if these are

more restrictive than the current values. If the SR has not yet been formed,

then PLS creates it and sets its "min-elevation", "max-elevation" or both

slots to the values of the accumulators.

4. PLS recursively invokes step 2 with the same base feature as in step 1 but

with other current features which are progressively further up the chain of

SRs.

5. PLS iteratively invokes step 2 for each SR that records elevation offsets of

features above the current base feature. The recursion inside the iteration

creates an SR between grade and every feature which is above the original

base feature.

159

6. PLS resets the base feature to a feature above the original base feature,

resets the accumulators and repeats step 2. PLS creates SRs between every

pair of features in the chain by repeating step 6.

7. PLS repeats step 1 for a new base feature.

If the local consistency algorithm encounters an PR which specifies a minimum

offset which exceeds the maximum offset written onto the SR or an FR which

specifies a maximum offset less than the minimum recorded of the SR, PLS has

detected a local inconsistency amongst the FRs. Similarly, if the global

consistency algorithm calculates a minimum elevation difference between two

features that exceeds the maximum difference recorded on the SR or calculates

a maximum difference that is less than the recorded minimum, PLS has detected

a global inconsistency. In either case, no consistent solution exists. PLS is

programmed to stop and report this to the user. The user must then modify the

process design to eliminate the cause of the inconsistency.

7.2 Positioning Floors
The floors in a process plant support the equipment items, provide access to the

items but can also foul parts of the equipment or its pipework during operation

or maintenance. The elevation with respect to an equipment item at which a floor

must be positioned to provide access or support, or at which a floor must not be

positioned because it fouls a feature of the item, impose design constraints on the

heights of the floors themselves. These constraints nearly always specify bands

of elevation differences. Some of these bands specify fairly specific distances.

For example, the centre-line of a manhole in the side of a column should be

0.75 m to 1.2 m above the access platform. This enables a fitter to step through

the manhole rather than crawl or climb into the column. Similarly, if a vessel is

supported from below, the bottom of the vessel should be a sufficient distance

above the floor so that the pipework connected to its bottom nozzle does not foul

the floor. However, the distance should not be increased above this because the

vessel would require a more substantial support skirt if it were. Other bands are

wider. For example, it should be possible to reach any part of the tube bundle

160

of a shell and tube heat exchanger from a floor when the tube bundle is

withdrawn for maintenance. Similarly, lugs can be positioned anywhere on the

side of a vessel to support it. The support constraint for this vessel is met if a

floor is positioned anywhere between its top and bottom. The lugs are positioned

once the relative elevation of the vessel and floor is known.

Any floor will satisfy these design constraints. The constraints demand that an

entity provides the function of a floor at a particular height rather than defining

a relationship between an item and a particular instance of a floor. PLS reflects

this and forms FRs which record the height difference between a notional or

generic floor and the equipment items. PLS selects the most appropriate real

floor to replace the generic floor in each FR once the real floors have been

introduced. In the analysis, "grade" is treated as a floor, albeit with some special

properties that reflect the domain.

Every item of equipment in the process imposes at least one constraint on the

position of the floors, because every item must be supported. Many items

actually impose a number of constraints. For example, each reactor in the test

process required support somewhere up its height, access to the manhole in its

upper end, access to the agitator motor mounted on its top and clearance below

for the discharge pipework. Thus, many bands of elevation in which floors are

required are distributed throughout the height of the plant. Because these bands

are numerous, it is likely that at least one constraint will require a floor at any

elevation. Clearly, a floor cannot be introduced to meet every constraint. The

heights at which floors are needed have to be rationalised so that only a

reasonable number of floors have to be introduced. It is inevitable that the floors

will not satisfy all constraints, wherever they are positioned. The elevations of

items and the positions of features on the items have to be adjusted to make best

use of the floors. Neither an engineer nor PLS can inspect the constraints and

identify the optimal heights for the floors directly. Rather, the side effects of

deciding on a particular floor height must also be considered. In particular, the

height of a floor might be increased slightly. This would also lift the items that

161

have constraints satisfied by the floor at its original height. Then, the floor might

also satisfy constraints imposed by items that are currently just "out of reach".

The alternative to lifting the floor is to introduce another floor and lift these items

so that the next floor satisfies their constraints.

PLS formalises this approach in its procedure for positioning floors. It postulates

the height of a floor by applying plant layout knowledge that the first floor is at

least 4 m above grade and subsequent floors are separated by 3 m. These

separations are recorded in the knowledge base and can, therefore, be changed to

suit the practice in a branch of the industry which does not adopt these typical

figures. PLS determines which FRs are satisfied by a floor at a particular height.

While doing so, PLS adjusts the positions of features of equipment items to make

best use of a floor at this height. PLS then identifies the additional FRs which

would be satisfied if the floor were lifted slightly; in practice to the height at

which it just falls within the band of elevation offsets of the first FR that is

unsatisfied. PLS also identifies items which would need to be lifted with the

floor, either because the floor would no longer satisfy a constraint on an item or

to maintain process constraints. PLS compares the benefit of lifting the floor with

the benefit of leaving it at its current height, making the comparison by forming

appropriate link sets. If the benefit of lifting the floor is greater, PLS repeats the

procedure to determine whether it should be lifted yet higher. If the benefit of

leaving the floor at its current height is greater, PLS sets the final height of the

floor to its current height and introduces the next floor. By this approach, PLS

compares the incremental benefit of lifting a floor. Thus, it can neglect the

common influence of FRs that are not satisfied at either floor height. When PLS

applied this procedure to the test process, for example, it postulated a height for

the first floor of 4 m. This met the support requirements of the reactor vessels,

RI04, RIOS and R112 and of the holding tank TIl7. When PLS considered the

floor at 4.2 m, it found that the floor would still support these vessels which

would not need to be lifted. It also found that the floor would also support the

reactor reflux condensers, HIOS, HI09 and HIl3 and provide access to the

manholes on the reactors, the tube bundles on the condensers and the catalyst

162

make-up tanks, TI06, TUO and TU4. However, if the floor were lifted further,

it would not provide access or support to additional items. Consequently, PLS

positioned the first floor at 4.2 m.

Features need only be lifted to maintain process constraints if the distance that the

lower item is being lifted exceeds the slack in the elevation difference between

them so that the minimum difference cannot be maintained. In PLS, the

minimum and maximum differences are recorded on the SRs. Thus, PLS can

readily calculate the slack and identify whether it is sufficient. This demonstrates

the value of SRs in general as a record of relative positions, and in particular, the

value of creating SRs between every pair of items which are related by process

constraints. If the lower feature is lifted, PLS reduces the maximum difference

on the SR to account for the slack that has been used.

Strictly, the procedure to determine the height of a floor positions it to achieve

a local maximum in the number and importance of the FRs satisfied. For

example, assume that PLS finds that the current height of a floor is more

attractive than a slightly increased height. It will position the floor at its current

height. However, if the height of the floor had been increased slightly more, it

is possible that PLS might have found this to be far better, but this possibility is

not explored. However, the procedure is entirely appropriate because it exploits

an intrinsic feature of the constraints. The constraints that are most important to

satisfy are those which arise from a need for support, and in particular, support

for major equipment items. These constraints are almost invariably satisfied by

a range of floor elevations that are almost as wide as the typical spacing between

floors. Thus, if one floor does not fall into the range, it is likely that the next

floor will do so and therefore, the constraint will be satisfied.

Different criteria determine whether constraints which arise from access, support

and clearance requirements are satisfied. PLS distinguishes between the

requirement expressed in an FR by defining three generic floor entities called

"access-floor", "support-floor" and "fouling-floor" respectively. An PR created

163

to relate a feature of an equipment item to a generic floor actually relates the

feature to one of these entities. If a floor falls within the elevation band of an PR

which relates "access-floor" or "support-floor", the PR is considered to be

satisfied. If the PR is not satisfied, PLS can either move the feature with respect

to its item or move the item itself so that the elevation band aligns with a floor.

Conversely, if a floor falls within the band of an PR which relates "fouling-

floor", the PR is considered to be unsatisfied. PLS must either move the feature

or the item until the floor is outside the elevation band.

The AIaorithm to Position Floors
1. PLS creates a frame to represent the first floor of the plant and assigns it

the standard elevation of a first floor.

2. PLS forms a link set which represents the benefit of leaving the floor at its

current height.

3. PLS searches for the PR which is not currently satisfied but which would

need the floor to be lifted the smallest distance to be satisfied. PLS takes

the bottom of the range of elevations which would satisfy this PR to be the

next provisional elevation for the floor. PLS forms a link set which

represents the benefit of lifting the floor to the next elevation.

4. PLS compares the link sets.

S. If the link set which represents the benefit of leaving the floor at its current

height is more important, then PLS records the current elevation on the

frame for the floor, creates a new floor and assigns it an elevation of the

height of the current floor plus the standard height difference between

floors. PLS iterates to step 2.

6. If the link set which represents the benefit of lifting the floor is more

important, then PLS sets the current elevation to the next elevation and

adjusts the elevation of appropriate items. PLS iterates to step 2.

7. PLS continues to iterate until all items of equipment are supported.

Once PLS has determined the heights of the floors in the plant, it can then

identify the requirements for access and clearance which are not met by these

164

elevations. PLS forms frames to represent platforms which provide access to the

features that cannot be accessed from floors. It identifies these features by

searching for FRs to "access-floor" which do not align with real floors.

Similarly, PLS forms frames to represent gaps that must be left in the floors to

clear features. It identifies these features by searching for FRs to "fouling-floor"

which do align with real floors. PLS forms these frames to convey to the

structural engineers the important information that platforms and gaps are

required. This information would otherwise be implicit in the layout solution.

Thereafter, PLS has completed the calculation of the elevation of the equipment
and floors.

Engineering principles dictate whether the position of a feature can be adjusted

relative to its item to make best use of a floor and when an item must be lifted if

the height of a floor does not satisfy constraints. These principles are important

domain knowledge. They give rise to the criteria which PLS adopts to determine

which items it should consider to be amongst those which need to be lifted. They

also give rise to the criteria by which PLS determines the membership of the link

sets which it uses to compare the benefits of lifting a floor to the benefit of

leaving the floor where it is.

Support

An item of process equipment is supported either by a skirt or legs standing on

a floor or by lugs mounted on the side of the item which is then hung through a

floor. Clearly, the mountings must align exactly with the floor. The layout

engineer sets the position of the mountings relative to the item. Thus, PLS

records an identical minimum and maximum offset between the mounting feature

and "support-floor". The latitude to move the mountings is left in the FR

between the mounting feature and the item's origin. This model is the most

accurate reflection of the engineer's perception and also provides maximum

information for the mechanical engineer who needs to know the exact position of

the mountings to calculate the stress in the item's shell during detailed design.

This position is recorded on the SR between the mounting feature and the origin

165

of the item. Every item of equipment must be supported, but the support points

for each are always in one plane. That is, if an item stands on one floor, it will

not also be hung from the floor above. Once a floor is aligned with the support

features, the floor meets all support needs of the item. If a floor is lifted

incrementally above its current height, it will support additional items which

would otherwise need to be lifted onto the next floor. PLS includes the FRs

between each of these additional items and grade in the link set which represents

the benefit of lifting the floor. PLS also includes the FRs between grade and

other items, related to this item by process constraints, in the link set. Once PLS

has aligned a real floor with a support feature, it must maintain this alignment

because there is no other way to support the item. Initially, PLS adjusts the

position of the support feature with respect to its item while it tries the floor

higher in the plant. There is no particular benefit in leaving the floor at its

current height because the item is not yet being lifted. However, once all latitude

to move the feature has been absorbed, benefit does accrue if the floor is left at

its current height. Thereafter, PLS includes the FRs between this item, and the

other items related to it by process constraints, and grade in the link set which

represents the benefit of leaving the floor at its current height. The FRs between

the items and grade are excluded from the link set which represents the benefit

of lifting the floor further.

Access
An item is often designed so that access is provided to one of its features by the

same floor which supports the item. For example, vessels with a top manhole are

typically specified to be supported hung from a floor with the support lugs

mounted near the top of the vessel. Thus, the floor that supports the vessel also

provides access to its manhole. In some cases, the feature to which access is

required cannot be moved relative to the item - the manhole must be mounted on

the vessel's top. In other cases, the feature can be positioned with some latitude

relative to the item. For example, a temperature probe can be mounted anywhere

below the liquid level on a vessel. If a floor at its current height does not provide

access to a feature, the engineer will attempt to move the feature relative to its

166

item so that the floor falls within the required height offset of the feature. While

so doing, the engineer might also exploit any latitude to adjust the height of the

item itself OD its mountings. However, the engineer would never leave an item

unsupported to satisfy a need for access. When PLS assesses whether a floor

satisfies FRs to "access-floor", it reflects this practice. Itwill adjust the position

of the feature OIl the item as far as the PR between the feature and the item's

origin allows, and also adjust the height of the item on its supports if the FR

between the item and the support feature allows. If the feature is successfully

aligned with a floor, PLS records the position of the feature with respect to the

item. When a floor is lifted incrementally, benefit accrues from this increment

for each feature which requires access which PLS can align with the floor. The

PR between each feature and "access-floor" is added to the link set which

represents the benefit of lifting the floor. However, if PLS continues to lift the

floor, it might be unable to align the floor with the feature. Benefit accrues if the

floor is left at its current height once this occurs. Therefore, the PR between the

feature and "access-floor" is added to the link set which represents this benefit.

Clearance
Clearance between an item and floors is mainly required above and below the

item for pipework and above the item so that components of the item can be

removed. For example, in the test process, PLS left clearance above the filter

Fl19 so that its drum can be lifted off for maintenance and left clearance below

the reactors RI04, RI08 and Rl12 for the product discharge pipework. The

space left for clearance is often provided intrinsically by the item's support. For

example, a horizontal shell and tube heat exchanger is usually supported above

the floor on legs which intrinsically leave sufficient space for the pipework from

the nozzles on the bottom of its shell. However, it is not unusual for clearance

to be required elsewhere. For example, clearance must be left for the discharge

pipework of the reactor vessels in the test process between the vessels and the

floor below the floor from which the vessels are hung. It is rare that the feature

that requires clearance can be moved relative to the item - a bottom discharge

nozzle of a vessel must be mounted on the vessel's bottom! The minimum and

167

maximum elevation offsets recorded on the PR between the feature and "fouling-

floor" record the exclusion band in which the floor will foul the feature. Note

that PLS does not form FRs that record an exclusion band which covers the full

height of a tall item such as a vessel or column. It is common for tall items to

penetrate a number of floon in a process plant. If a floor at its current height

fouls a feature, the engineer will attempt to move the feature relative to its item

10 that the floor falls outside the excluded height band in the rare cases that this

is possible. The engineer might also exploit any latitude to adjust the height of

the item itself on its mountings. However, the engineer would never leave an

item unsupported to provide clearance for a feature. When PLS assesses whether

a floor satisfies FRs to "fouling-floor", it will adjust the position of the feature

on the item if the PR between the feature and the item's origin allows, and also

adjust the height of the item on its supports if the PR between the item and the

support feature allows. If the feature can be successfully moved clear of the

floor, PLS records the position of the feature with respect to the item. Benefit

accrues from leaving a floor at its current height if lifting it incrementally would

cause the floor to foul a feature. Therefore, if the floor would fall into the height

range excluded by an FR between a feature and "fouling-floor" if the floor were

lifted, the PR is added to the link set which represents the benefit of leaving the

floor at its current height. If a feature does fall into an excluded band, the floor

may be moved clear of it if PLS continues to lift the floor. In this case, the FR

between the feature and "fouling-floor" is added to the link set which represents

the benefit of lifting the floor. If a feature is fouled by "grade", PLS lifts the

item. This corresponds to accepted good practice in plant layout of elevating

items to clear the ground rather than digging pits to gain the clearance.

168

Chapter 8: Group Formation

An important tenet of this work is the principle that sets of entities which must

be close are collected into groups to permit four very powerful simplifications

during plan layout. These simplifications have been discussed previously.

Groups are used within other automated plant layout systems. InAl-Asadi's work

[1980], the groups are formed manually whereas Shuquair's system [1978] forms

groups automatically. However, these must then be refined extensively by the

user before they can be passed to the plan layout routines. The principles which

have been developed during this work allow a totally automated technique. This

is far more sophisticated in both the data structures and method than Shuquair's

approach and is thought to be unique in its efficacy to simplify plan layout

generation.

Three types of group have been identified during this work which will be referred

to hereafter as "physical", "logical" and "segregation" groups. The distinction

is important because each type of group corresponds to a markedly different

reason why the members should be positioned close to one another. All three

types of group have the same spatial significance during plan layout, an

aggregation of entities that must be close in the final layout. Thus, once the

groups have been formed, they can be handled during plan layout without any

distinction between their types. The three types are discussed below.

Physical Groups

The members of a physical group should be local because they share a need for

the same service or facility. If these items are concentrated together, the service

need only be provided at one place in the plant. In some cases, the "service" is

provided by a site feature, such as an area of ground capable of bearing heavy

169

loads. In these cases, physical groups are formed to concentrate the entities that

must be positioned at this site feature. An engineer working manually explicitly

forms groups that are analogous to PLS's physical groups. Indeed, groups of this

type are likely to be demanded by engineering standards.

Loalcal Groups

It is very common for equipment items that comprise a process unit to be

positioned close together in well designed layouts. Numerous constraints attract

the equipment items which comprise a process unit to one another and many of

the FRs which inter-relate the unit's members express strong requirements for

proximity. Effectively, a cluster of constraints inter-relate the memben of each

process unit in the plant. The members of a process unit gravitate towards one

another because of this concentration of strong, attractive constraints between

them. However, the engineer does not set out to form groups of this type

explicitly. Rather, they would appear to emerge in the final layout as a result of

an almost tacit design objective of keeping all members of a unit operation local

to one another. It appears that the engineer forms these groups by recognising

the roles that the specific items of equipment are playing and thereby identifying

them as members of the unit. For example, the engineer might reason that "that

heat exchanger is a reboiler so it must be part of that distillation unit". Logical

groups formalise this tacit objective.

Segregation Groups

Certain entities are collected together so that they may be segregated from the rest

of the process to eliminate a hazard. Some of the entities that are collected might

be hazardous themselves. These can be positioned close to one another if they are

compatible. Other entities might be individually innocuous but might have to be

positioned with one of the hazardous entities for one or both to function. Groups

grow as the hazardous items are concentrated and their ancillaries are positioned

with them. In the manual technique, this occurs almost as a side effect of the

engineer attempting to segregate the hazardous entities. This behaviour is

formalised in segregation groups.

170

Many entities are potential members of a number of groups. However, the

simplifications that groups admit can only be made if every entity is made a

member of one group at most. Entities are assigned to the group to which they

are most strongly attracted. This guarantees that the strongest FRs acting on each

entity will be satisfied, at least partially. In practice, a number of entities might

be members of one group but might also be potential members of others. Which

entities should be allowed to attract other entities into the group cannot be known

with certainty until the ultimate membership of the group has been decided. A

"least commitment strategy" is well suited to solving problems such as this and

heuristics have been developed during this work to determine when sufficient

information is available to decide an assignment with reasonable confidence. PLS

uses least committment reasoning and does not make decisions before the germane

information is available and therefore, it is not forced to draw assumptions that

it might have to withdraw subsequently.

The least commitment strategy is implemented in PLS by forming groups in two

stages during each iteration. In the first stage, PLS assigns every entity to every

"preliminary group" of which it might be a member. Many of these preliminary

groups have members in common. In the second stage, PLS finds each entity

which is a member of more than one preliminary group. These shall be referred

to as "disputed entities" hereafter. Each disputed entity is assigned to the final

group to whose other members it is most strongly attracted. The attraction of the

entity to the groups of which it might be a member is evaluated by comparing link

sets on the PO Table. The second stage is knowledge-based to implement the

heuristics and to allow other heuristics to be added at a later date. This two-stage

approach is more efficient than attempting to identify which group an entity

should be made a member of while the group is being created in the first instance.

As a consequence of the definition of a group - a set of entities which will be

close in the final layout - it is unacceptable to impose an arbitrary minimum or

maximum number of members for a group. Thus, every entity that belongs

amongst the members of a group for engineering reasons should be collected into

171

it. Nonetheless, three processes have been studied, the test process and two

others worked as paper exercises. It has been observed that groups have between

four and seven members in these plants. This appears to be an intrinsic feature

of the domain. Groups of these sizes are ideal to simplify the plan layout task.

Their members are sufficiently numerous that relatively few groups are formed

in each iteration. However, their members are sufficiently few to simplify their

positioning relative to one another within the group. The exceptions to this are

the groups which comprise an equipment item and its standby (or standbies),

which typically have two members. To some extent, these groups are a special

case in that they effectively represent an almost indivisible single entity.

The groups formed by PLS while laying out the test process are tabulated in Table

3 at the end of this Chapter. This Table is presented to illustrate the operation

of the generic procedure employed to form groups. Frequent reference will be

made to this Table throughout this Chapter to demonstrate how the procedure

copes with the practical difficulties of a "real world" problem. Conversely, these

references can also be read as explanations of how PLS arrived at these groups

in this instance. The groups that PLS had formed after the second iteration are

also displayed by the false colours in Figures 2 to 7. PLS actually creates groups

in the same order as the PR instances that cause members to be collected are

created. The entries in the Table have been rationalised into an order that is

clearer to the reader. The identifiers of the groups have been changed to reflect

this order. The Table shows the states of the groups after both stages of each

iteration.

8.1 Representing Groups
Groups simplify the plan layout procedure because they are independent entities

which stand in lieu of their members. They are not just aggregations of other

entities but have their own existence and properties, such as size and position.

This feature is realised in PLS by each group being represented explicitly by a

separate frame in the database. The only distinctive feature of a frame for a

group is its slot named "members". The frames that represent the entities

172

collected into the group are written into this slot. This provides yet another

example of the use of a slot with frames as its value to represent a relationship.

The frames written into the "members" slot are restricted to those for the

immediate members of the group. If a group is a member of another, the

members of the former are not listed explicitly amongst the members of the latter.

This is consistent with the role of groups as surrogates for their members. That

is, the members of a group are restricted to the entities which PLS will act upon

directly while it is positioning them relative to one another.

Except for the "members" slot, the frames for groups have an identical general

structure to those for equipment items. Thus, PLS can act upon frames which

represent groups and equipment items without distinction. The iterative procedure

for group formation starts by collecting frames that represent equipment items.

As groups are formed, PLS collects frames that represent groups. During the

early iterations, PLS collects a mixture of frames that represent equipment items

and others that represent groups. For example, a pump and its standby might be

formed into a group in the first iteration. During the second iteration, this group

may be collected into a group along with the feed vessel and its ancillaries.

Because PLS represents equipment items and groups similarly, the same code can

be applied to either. A similar benefit accrues to the code for plan positioning.

PLS iterates to position relatively the most expansive groups, then increasingly

local groups and finally individual equipment items. At times during the iteration,

PLS must position combinations of groups and equipment items. Groups were

originally represented by markedly dissimilar frames to equipment items. The

intention was to stress the difference between the two types of entity. However,

this was found to be very inconvenient and no practical use for the distinction was

found. Accordingly, the frame structures were unified.

8.2 Forming Preliminary Groups
Different principles underlie preliminary physical, logical and segregation groups.

This reflects the markedly different properties and topologies of the design

constraints that cause members to be added to each type. The engineer's

173

approach to forming physical groups clearly acknowledges constraints as their

cause. PLS's procedure for forming physical groups is very similar to the

engineer's. However, the principles which guide engineers to form logical and

segregation groups are not obvious from the manual technique. The engineer

does not perform these tasks explicitly. Indeed, these principles were

unexplicated prior to this work.

8.2.1 Forming Preliminary Physical Groups
Physical groups are formed by collecting entities that share a similar need.

Entities can be identified as sharing a need if they are related by physical FRs that

arise from equivalent causal factors. Effectively, the causal factors are the needs

that the related entities pose. The FRs are merely records of these needs. Thus,

if the FRs are equivalent, the needs must also be equivalent. If an entity shares

a number of needs with other entities, it is made a member of one group for each

need. These groups do not merge even though they share a common member.

For example, a vessel might be made a preliminary member of the group of

equipment items that are local to minimise the length of cooling water pipework.

The vessel might also be made a preliminary member of the group of items that

are local to minimise the length of high voltage power cable required for its

agitator. The two groups are not merged despite both containing the vessel. This

obviates one of the problems with Shuquair's approach. In this, the two groups

would be merged even though the majority of the members of one had no need

to be close to the majority of the members of the other. Forming groups of

entities related by equivalent constraints is unique to PLS. PLS can form groups

which correspond to features which are important and widely seen in layout, such

as heat exchanger banks or pump bays, only because it embodies this principle.

The Algorithm to Form Physical Groups

1. PLS's knowledge base contains rules which each identify sets of physical

FR instances which arise from the same causal factors by inspecting one of

the "type", "name" or "criterion" slots of all physical FR instances. PLS

applies the first of these rules to the database.

174

2. If the rule finds an FR instance that it matches, PLS forms a frame to

represent the physical group. Both entities related by the FR are recorded

in the "members" slot on the group's frame.

3. The rule continues to traverse the database and inspects all physical FRs.

Whenever the rule matches an FR instance frame, PLS adds the entities that

the FR relates to the "members" slot of the group's frame.

4. PLS invokes the next rule and the procedure is repeated until all rules have

been applied.

It is well known in the conceptual layout domain that some constraints which

demand proximity are more easy to satisfy than others. It is important that PLS

reflects this reality. In the test process, the weighing tanks TIOI, TI02 and TI03

and the condenser HI25 are all elevated above the rest of the plant and therefore,

could be supported by a localised structure. FRs are formed to represent this

attraction. However, the weighing tanks are also attracted to the reactors RI04,

R108 and R112 and the condenser to the column C124. In the configuration that

an engineer would strive for, the weighing tanks are positioned with the reactors

and the condenser with the column. The reactors and weighing tanks are then

positioned with the column unit. This is because the constraints between the

weighing tanks and the reactors and between the condenser and the column are

only satisfied if the distances between the related items are short. Conversely, the

constraints between the elevated items are satisfied provided that the items are

positioned in the same general area of the plant. This does not imply that the

constraints between the tanks and the reactors and the condenser and column are

either more or less important than those between the elevated items. There is no

correlation between the ease with which an FR is satisfied and the importance of

satisfying it.

The relative ease with which different types of FR can be satisfied is important

domain knowledge. It is sensible to satisfy the difficult FRs first. Thus, FRs that

are easily satisfied should be held in abeyance for a certain number of iterations.

A group formed in an earlier iteration occupies a smaller area than a group into

175

which it is collected later. To continue with the example above, the FRs

attracting the elevated items should be held in abeyance until a later iteration.

Thus, PLS collects the reactors and the weighing tanks into one group and the

column and condenser into another during an early iteration. It then forms a

more expansive group in a subsequent iteration, collecting the reactors and
column groups.

The converse of the above also applies. Some FRs are difficult to satisfy. These

FRs should be neglected after a certain number of iterations if they are not

already satisfied. If an FR is sufficiently relatively important to warrant the

entities that it relates being collected into a group, this will occur during an early

iteration. If the entities are not collected at the time that is appropriate, this

implies that the FR which relates them is considered to be unimportant.

The knowledge engineer reflects this important domain knowledge by recording

it as an ordered pair of numeric values on the FR's frame. The first value

records the number of iterations which must be complete before the FR should be

considered. The second records the number of iterations after which the FR is

no longer considered. In PLS, this ordered pair is written into a slot called

"activity-level". If the maximum is not specified, the PR is considered in every

iteration after the minimum has been reached until the group formation procedure

halts. The minimum must always be specified because the values are an ordered

pair, but a value of 0 effectively imposes no lower limit. In the test process, FRs

that represent the attraction of elevated items were marked as becoming active in

the third iteration. Referring to Table 3, a group of elevated items (Group G29)

is first seen amongst those formed in the third iteration.

The control is most needed during the early iterations. Each of these correlates

closely with a recognisable "scale" of group. Thus, the significance of early

iterations is clear and the knowledge engineer can control the behaviour of the

FRs accordingly. The procedure starts with the assignment of each equipment

item to its own group. The early iterations form groups as follows:

176

I" Groups of equipment items and their standbies or all machines on the same

shaft;

2" Members of unit operations into groups and groups which correspond to

widely observed idioms such as heat exchanger banks or pump bays;

3"'4· Serial or parallel unit operations and unit operations or physical groups with

a strong attractive relationship to one another such as the column units

discussed in the example above.

The significance of later iterations is less clear. However, this does not cause a

problem because only FRs which act over long distances are considered in the

later iterations in any case. Thus, it is meaningless to specify exact cut-off points

at which any of these FRs become or cease to be significant. Thus, the

knowledge engineer can safely assume that an FR that should be active during any

of these later iterations can be specified as being active during them all or vice

versa.

As a consequence of this control, all constraints acting on an entity might be

inactive during a particular iteration. Thus, PLS does not impose the restriction

that an entity must be collected into any group during a particular iteration.

Rather, in PLS, entities may remain uncollected or "visible" after an iteration if

no FR expresses a reason to collect them.

8.2.2 Forming Preliminary Logical Groups
Mainly, logical groups correspond to process units or sets of units. Each process

unit includes one equipment item which actually performs the function of the unit.

The unit also includes the ancillaries of this item. These ancillaries do not

perform the function of the unit per se, but rather, support the main item in its

function. Within the unit, it is likely that the items will be highly inter-connected,

probably by streams that have higher flowrates and are at more extreme

conditions than those flowing between the units. Accordingly, the members of

the unit are related by both many and strong FRs which arise from the process

connections between them. The members might also be strongly related to

members of other units, either by other FRs which arise from the process

177

connections or because of other factors such as common service requirements.

However, these FRs will not be either as strong or as numerous as those which

form a dense cluster of FRs amongst the members of the unit. It is for this

reason that the members of a process unit gravitate towards one another, even

though the layout engineer rarely explicitly forms groups which correspond to the

units. It is also for this reason that it is important that logical groups are formed

given the central role of groups in this work in satisfying the constraints that

influence the plan layout. The logical groups ensure that the many and strong

FRs are satisfied, at least partially. Without logical groups, no explicit attempt

would be made to satisfy the constraints in these clusters and therefore, many

important FRs would be likely to be left unsatisfied.

For example, consider the reactor units in the test process. Each unit comprises

a reactor vessel, a condenser, a catalyst make-up tank and a catalyst pump. The

members of each reactor unit are related by many physical FRs which express

requirements that the members should be close. The reactor is attracted to the

condenser to minimise the length of the pipework, both to reduce the cost of the

large bore vapour pipes and to prevent transfer lag in the control of the reactor

unit as a whole. The reactor is attracted to the catalyst feed pump to minimise

the length of the catalyst feed line, again to improve control of the reaction. A

number of FRs also relate each member of each reactor unit to the corresponding

member of the other reactor units. For example, all of the condensers and

reactors are related because they all use cooling water; the reactors are also

related because their agitators are connected to high power cables; and the catalyst

make-up tanks are related because they all receive frequent manual attention and

should be close. However, the FRs which relate the members of each reactor unit

to the corresponding items in the other units are either less strong than those that

relate the entities to the other members of their unit or are not synergistically

strengthened by being members of a concentration of FRs. The reactor units do

not coalesce because the FRs that relate corresponding members of the groups are

relatively weaker. The units retain their natural autonomy and can be considered

178

to be single macroscopic entities. The strength of the FRs within them make

them almost indivisible.

This could be considered commonsense to those skilled in the art. In practice,

this behaviour is difficult to formalise sufficiently to implement in a computer

system. It is also difficult for a layout engineer to elucidate the procedure

underlying the behaviour during knowledge elicitation or perhaps when training

a neophyte. It would appear that the layout engineer determines the members of

a process unit by applying compiled knowledge. The engineer "knows" the

make-up of any process unit. However, this approach was rejected for use in

PLS. It is difficult to define whether a particular process unit is sufficiently close

to the typical configuration of a unit of its generic type. For example, we cannot

even be certain of the members of a distillation unit, a very common process unit.

Ingeneral, a distillation unit will include one condenser. However, if the supply

of cooling water is restricted on a particular site, an air cooled exchanger might

be used as the main condenser and a water cooled exchanger used as a final

condenser. Thus, a distillation unit designed for this site will deviate from the

norm. The compiled knowledge will break down in this situation unless a very

large range is included in the system knowledge base. The technique developed

during this work can determine the members of a process unit which does

conform to a norm entirely satisfactorily. However, the technique works equally

as well to determine the members of an atypical unit.

Two other configurations are widely seen in layouts designed manually. When

flow diverges, runs in parallel through a number of units and then reconverges,

the parallel units are positioned close to one another together with the entities at

which flow diverges and converges. However, the parallel units are usually

observed to be autonomous within this larger set of entities. The entities at which

flow diverges and converges are not incorporated into anyone of the parallel units

but rather, are close to them all. In this configuration, each of the parallel units

embodies a very strong cluster of constraints. Another, slightly weaker, cluster

inter-relates the parallel units and the entities at which flow diverges and

179

converges. This cluster of constraints is still stronger, perhaps because of the

density of constraints rather than their individual strength, than the constraints that

relate the entities at which flow diverges and converges to the units that precede

and follow them. Thus, the parallel units and the strongly related entities are

attracted to one another to form a more expansive set of entities.

The other configuration is observed when process flow progresses through a

number of units in sequence, in which the first unit radically changes the process

conditions so that they impose stringent engineering requirements on the

subsequent units and inter-connecting pipework then finally, the last unit in the

series renders the conditions fairly innocuous once more. High pressure reaction

loops in which gas is compressed in a compressor unit, reacted in a high pressure

reactor then let down through a turbine exemplify this. It is likely that the units

will be observed to be adjacent to one another in a spatial sequence. Other units

to which they are connected by streams at less stringent conditions are likely to

be excluded from this sequence. Again, the individual units are likely to be

observed to be autonomous within this sequence of units, for the same reason as

the parallel units remain autonomous. The constraints that arise from the process

connections between the units are stronger than those which relate the first or the

last in the sequence to the units that precede or follow the series. Thus, the units

are again attracted to one another and act as an indivisible set of entities.

The situation in which flow diverges then converges is the most complex. The

following procedure suffices. The members of each process unit are collected

into separate groups to maintain the autonomy of the unit. The entities at which

flow diverges and reconverges, hereafter referred to as "shared entities", are not

collected into any of these groups so as to not compromise this autonomy. Each

shared entity is collected into a separate, independent group. If a shared entity

has ancillaries of its own, these are collected into the independent group. This

independent group can then be positioned as a single entity optimally with respect

to all of the parallel groups. The shared entities are made members of a logical

group even if they have no ancillaries of their own. This important

180

implementational device forces these shared entities to be considered as disputed
entities if they might also be members of a physical group. Thereby, they will
not be assigned to the physical groups as a "bye". In the subsequent iteration,
the parallel groups and the groups including the shared entities are collected into
the more expansive group. This must occur in a subsequent iteration to leave an
opportunity for any of these newly formed groups to be considered as potential
members of other groups, particularly physical groups. This opportunity would
be lost if the more expansive groups were formed "on the fly" in the same
iteration as the autonomous groups. Colloquially, the logical groups would gain

an "unfair advantage" .

The weighing tanks in the test process exemplify this procedure. These are not
collected into any of the logical groups formed around the reactor units (groups
08, G9 and 010) because each weighing tank feeds each group. However, a
group is formed for each of the weighing tanks (groups G11, Gl2 and 013).
These "protect" the weighing tanks from being made members of the group of

entities that require a support structure (group G29).

Logical FRs record the direction from any entity in which the gradient of the
strength of the FRs is greatest. Each logical FR relates an entity to the other
entity to which it is most strongly attracted. This is the central criterion to
determine to which logical group an entity should be added. The directionality

of the logical FRs is exploited to ensure that entities are added to the appropriate
group and also to identify entities that should be made members of independent

groups.

PLS employs two separate but complementary algorithms to form logical groups.
Both correspond to the procedure described above. The first identifies the

members of an autonomous unit and collects them into a preliminary logical
group. The second identifies parallel units through which process flow diverges

and converges and collects them into a more expansive group. The second
algorithm does not consider autonomous logical groups that the first has formed

181

during the current iteration. Rather, the second collects logical groups which

were formed in the previous iteration. The first algorithm is invoked during

every iteration to collect groups formed during the previous iteration. It cannot

be held in abeyance during an iteration merely because the second algorithm has

been invoked. If it were not invoked, groups formed during the previous iteration

might be collected into physical groups during the subsequent iteration without

PLS considering that they might also be members of a logical group. Parallel

logical groups might be formed in any iteration. If they were, the second

algorithm is invoked to collect them into the more expansive logical groups. In

practice, the first algorithm sets a flag if it detects groups which might run in

parallel. The second algorithm is invoked in any iteration in which this flag is

set. The flag is cleared at the end of each iteration. In the following description

of these algorithms, the entity recorded in a logical PR's branch frame in which

the "logical-end" slot has the value "master" will be referred to as the "master".

The other entity related by the logical FR will be referred to as the "ancillary".

The Algorithm to FOnD Autonomous Groups
1. PlS searches for entities that are the master of all other entities that they

are related to by logical FRs. PLS forms a frame to represent the logical

group corresponding to the process unit around each entity. The entity is

recorded in the "members" slot on the group's frame.

2. PLS adds entities to the logical groups of which their masters are members.

This acknowledges the significance of the direction of the logical FRs.

However, PLS only adds an entity to a logical group if all of its masters are

members of the same group. This ensures that PLS does not collect a

shared entity into more than one logical group. The entities that PLS

discounts might be added subsequently if all of their masters are made

members of the same group. PLS continues this procedure until no more

entities can be added.

3. PLS searches for entities whose masters are members of more than one

logical group. PLS forms a frame to represent the logical group

corresponding to the segment of the process unit around each entity. The

182

entity is recorded in the "members" slot on the group's frame. It is at this

stage that PLS forms the independent groups with shared entities as their

members.

4. PLS iterates around steps 2 and 3 until all entities related by logical FRs

have been added to logical groups.

The Alaorithm to Collect Parallel Groups

1. PLS searches for a logical group whose master is an entity at which flow

converges or diverges. PLS inspects the logical FRs which relate the

master of this group to its masters to identify the groups to which the latter

belong. Note however, that PLS has not yet determined that these latter

groups are definitely parallel.

2. If the latter groups have been collected into a logical group created in the

current iteration, then PLS has decided that they are parallel when

considering another group containing a common ancillary. PLS adds the

group under consideration to the newly created group.

3. If the latter groups have not been collected into a logical group created in

the current iteration, then PLS must determine whether they are in parallel.

PLS compares the physical FRs that run parallel to each logical FR between

the group under consideration and the potentially parallel groups. If

identical physical FRs run parallel to each logical FR, then PLS concludes

that the latter groups are parallel. PLS forms a new group and adds the

group under consideration and the parallel groups.

4. PLS iterates until it has checked every logical group formed during the

previous iteration.

No specific algorithm is required to collect serial unit operations into logical

groups. Rather, new logical FRs are formed between groups at the end of each

iteration. These new logical FRs reflect the strongest FRs acting on the units now

that the previously strongest FRs acting on their members have been totally

subsumed within the groups just formed. However, parallel groups, and the

independent groups of which the shared entities are members, are neglected when

183

these new FRs are formed. These groups are left to be collected into the more

expansive groups during the next iteration.

8.2.3 Forming Preliminary Segregation Groups
Entities might pose a hazard either in their own right because a hazardous event

can occur within them, or in combination with another entity, such as an entity

that might act as an ignition source in combination with an entity from which a

flammable vapour might be released. In either case, the hazard is eliminated if

the entity is placed away from the main area of the plant. If the entity is not to

be placed within the main area, it is entirely acceptable to position other entities

that pose the same hazard with it. These other entities do not increase the risk

of the hazard occurring or the scale of the likely consequences if it does. For

example, if a furnace is positioned away from the main area of the plant because

it is an ignition source, any other furnace can be positioned with it without

increasing the likelihood that a flammable vapour which drifts to the one or many

furnaces will be ignited. Thus, entities that pose a similar or compatible hazard

are collected into a segregation group because they cannot be left in the main area

of the plant. The segregation group is the best destination for them. Crudely,

segregation groups are not formed because positive benefit accrues. Rather, they

are formed because they offer the "least worst" solution.

Entities can be identified as posing the same hazard if they are related by

segregation FRs that arise from equivalent causal factors. This is analogous to

physical groups. Similarly, if an entity poses a number of hazards, it is made a

member of one segregation group for each hazard. These groups do not merge

even though they share a common member. In practice, this is a highly unlikely

occurrence.

An entity is segregated from the main area of the plant to protect the majority of

the process equipment from its potentially hazardous effects. In practice, the

decision as to which entity to segregate is somewhat arbitrary, especially if the

hazard only arises between a combination of entities. In many cases, a few

184

entities will be repelled from many entities. In these cases, the few entities

should be distinguished as the entities to be ejected from the main area of the

plant. This is particularly important if the equipment within a plant poses a

number of potential hazards. The set of entities that will occupy the main area

of the plant must be clearly defined so that the entities to be ejected from the main

area can be distinguished consistently. This distinction is important domain

knowledge, If the innocuous entities could not be distinguished, there would be

no way to identify which of the entities related by a segregation FR should be

made the member of the segregation group. There would be a risk that both

hazardous and innocuous entities would be made members of the group, thereby

defeating its purpose. Thus, segregation FRs are notionally directed in PLS to

record which entity should be ejected from the main area. Their branch frames

include a slot called "segregation". This slot is given the value "source" on the

branch frame that records the object that must be segregated. The slot is given

the value "target" on the branch frame that records the object that must be

protected.

PLS uses a two-phase procedure to form preliminary segregation groups. In the

first phase, PLS forms a segregation group to receive all entities that pose the

same potential hazard if they are not segregated from the rest of the plant. In the

second phase, PLS adds their innocuous ancillaries to the group, using the core

of the algorithm for forming autonomous logical groups.

The Al&orlthm to Collect Intrinsically Hazardous Entities

1. PLS's knowledge base contains rules which each identify sets of segregation

FR instances which arise from the same causal factors by inspecting one of

the "type", "name" or "criterion" slots of all segregation FR instances.

PLS applies the first of these rules to the database.

2. If the rule finds an FR instance that it matches, PLS forms a frame to

represent the segregation group. The entity that must be segregated is

recorded in the "members" slot on the group's frame.

185

3. The rule continues to traverse the database and inspects all segregation FRs.

Whenever the rule matches an FR instance frame, PLS also adds this entity

to the "members" slot of the group's frame.

4. PLS invokes the next rule and the procedure is repeated until all rules have

been applied.

Major divisions of a plant are likely to be sufficiently physically large for

segregation to occur naturally. No explicit action need be taken to segregate the

hazardous entities. This important domain knowledge is recorded in the "activity-

level" slot of the segregation FR instance frames, exactly as for physical FRs.

8.3 Developing Final Groups
Although the membership of preliminary groups is often a reasonable

approximation to that of the final groups, a procedure is required to develop the

final groups. An iterative procedure applies heuristics which seek entities which

can be assigned to their final group with certainty. This reduces the level of

uncertainty for the next pass as the number of disputed entities which are

members of a group decreases and the number of entities that are known to

definitely contribute FRs to the link sets increases. Thus, the estimated and actual

strengths of the link sets converge and more pairs of link sets can be compared

unequivocally in subsequent passes through the loop. The loop is terminated

when all disputed entities have been assigned to one group. The heuristics are

implemented in rules to allow additional heuristics to be added if they are

discovered. These rules form appropriate link sets and compare them on the PO

Table. No back-tracking was observed when PLS was applied to the test process.

This demonstrates that a least commitment strategy is highly efficacious for this

purpose.

Once all entities have been assigned to their final groups, some of the preliminary

groups will become redundant and can be deleted. Three rules were adopted in

PLS to identify the groups that should be deleted. The first is that any group that

finishes with no members should be deleted. Empty groups serve no purpose.

186

They do not stand in lieu of any entities so there is no value in assigning a

position to them. Groups finish with no members when all their original members

are disputed entities. This does occur in practice, mainly with physical groups.

For example, the condensers and reactor vessels in the test process are all

members of both a logical group and the physical group into which all equipment

which require cooling water are collected. All members of this preliminary

physical group are disputed entities. Alternatively, a group might be found to

subsume completely another once all disputed entities have been assigned to their

final group. This might occur if all entities that require a particular service

happen to be members of the same process unit, for example. The second rule

is that the subsumed group is deleted. The subsuming group equally guarantees

that its members will be close in the final layout and thus, the subsumed group

does not increase the information about the solution. The third rule is that either

of the groups can be selected arbitrarily for deletion. An arbitrary selection is

satisfactory because the properties of the group during subsequent group formation

and plan positioning are defined by the set of FRs that relate its members to

members of other groups. Clearly, this set has the same members whichever

group is retained. Similarly, two groups might be found to have identical

members once all disputed entities have been assigned to their final group. In

practice, PLS's last operation in each overall iteration of the group formation

procedure is to tidy up the groups formed during the iteration by applying these

rules.

"Least commitment deadlock" was only observed in one particular case which

arises from a feature of the domain. Consider the three identical reactor units in

the test process. All are equally attracted to each weighing tank. Deadlock

occurred when the reactor units and the weighing tanks were being laid out with

respect to one another. PLS handles this unusual case by making an arbitrary

choice of which to satisfy. Clearly, all configurations are equally as satisfactory

in this case because equal benefit accrues from satisfying each of the identical link

sets. The device employed in PLS is recommended as generally useful.

187

There are two complex cases in assigning disputed entities to their final groups.

The procedures to manage these cases are correspondingly sophisticated. When

a disputed entity might be a member of either a logical or a physical group, the

disputed entity and its ancillaries should be considered to be a single composite

entity. If the composite entity is found to be more strongly attracted to the

physical group, its members should be removed from both of the groups and a

new group should be formed with the members of the composite as its members.

The ancillaries of the disputed entity should be included in the composite entity

because they no longer have a reason to be members of the logical group once the

disputed entity is removed. Rather, they should remain with the disputed entity

so they can continue to serve it. A new group is formed because the ancillaries

of the disputed entity should not occupy space in the physical group to spread the

area over which the shared service or facility must be provided given that they do

not require this service themselves. The new group is independent and can be

positioned close to the physical group if appropriate. Strictly, the new group can

be collected into a group with the physical group in a subsequent iteration. The

outcome is the same. PLS considers the attraction of all members of the

composite to the logical group when it decides whether the composite should be

removed. The ancillaries of the disputed entity should not be removed from the

logical group if they are also ancillaries of another member. Rather, they should

remain in the logical group to serve their other master. Thus, the attraction of

the disputed entity to all members of the logical group, including its own

ancillaries, should be considered in this case.

This procedure is also applied when the disputed entity is a member of an

independent logical group formed because its master is an ancillary of members

of a number of other logical groups. The independent group might be collected

into a more expansive group with the other logical groups in a subsequent

iteration. Thus, all FRs that relate the disputed entity and its ancillaries to

members of all of these other logical groups should be considered to attract the

composite entity to its logical group.

188

The second case establishes the procedure used to decide whether an entity should

remain a member of a segregation group. It is inevitable that all members of a

preliminary segregation group will also be members of a logical group. The

logical FRs that cause the ancillaries of the hazardous entity to be made members

of the segregation group will also cause them to be made members of the logical

group. Similarly, one or more members of the segregation group might also be

members of physical groups. However, entities are not made members of a

segregation group because they are particularly attracted to it. Rather, the entities

are repelled from the bulk of the process and the segregation group is formed to

act as a repository for its members. Accordingly, the effect of the assignment of

the entities on the layout as a whole should be considered rather than only on the

groups to which they might be assigned. That is, the strength with which the

entities are repelled from all entities in the body of the process should be

compared with the strength by which they are attracted. Furthermore, the

attraction of the disputed entities to the other members of the segregation group

should not be considered. Entities should not be "pulled in" to a segregation

group. Rather, they must be "pushed out" from the rest of the process. This is

because benefit accrues if the members of the segregation group are separate from

the bulk of the process but a substantial cost is also always incurred. This

procedure embodies a philosophy that entities should only be allowed to remain

members of a segregation group if there is no alternative.

The procedure is complex and therefore worthy of discussion. PLS forms and

compares up to six link sets to determine whether the hazardous entity, the

hazardous entity and its ancillaries or neither should be assigned to the segregation

group. In practice, PLS forms the minimum number of these link sets as

necessary to make a decision. These link sets include FRs as follows:

1. All segregation FRs which relate the hazardous entity to all entities other

than those which are currently members of any segregation group.

2. All physical FRs which relate the hazardous entity and its ancillaries to all

entities other than those which are currently members of any segregation

group.

189

3. All physical FRs which relate the hazardous entity to its ancillaries.

4. All segregation FRs that relate any hazardous entities in this segregation

group to the ancillaries of the hazardous entity being considered.

5. All physical FRs that relate the ancillaries of the hazardous entity being

considered to all entities other than those which are currently members of

any segregation group.

6. All physical FRs which relate the hazardous entity to all entities other than

those which are currently members of any segregation group.

PLS assigns the hazardous entity and its ancillaries to the segregation group if it

is unacceptable to place the hazardous entity within the body of the process and

the hazardous entity's ancillaries must be placed with it. This segregates the

hazardous item and allows its ancillaries to serve it. PLS selects this combination

if link set 1 is stronger than link set 2 and link set 3 is stronger than link set 4.

PLS assigns the hazardous entity to the segregation group but returns the

innocuous entities to the body of the process if the ancillaries are particularly

vulnerable to the hazard or if it is unacceptable to place the hazardous entity

within the body of the process but desirable to place the hazardous entity's

ancillaries there. PLS selects this combination if link set 1 is stronger than link

set 2 and either link set 4 is stronger than link set 3 or link set 5 is stronger than

link set 3.

PLS removes the hazardous item and its ancillaries from the segregation group

either if the hazardous item is more strongly attracted to the remainder of the

process than repelled from it or if its ancillaries are more strongly attracted to the

remainder of the process and it is more strongly attracted to its ancillaries than

the strength of its repulsion from the rest of the process. PLS selects this

combination if link set 6 is stronger than link set 1 or link set 5 is stronger than

link set 1 or link set 3 is stronger than link set 1.

190

- s CB0

~ = fa = = == ~ 0- It"I 00 ~ 00 - -- - - - N - - -- - - - - - - foot foot foot S a
~

~ ~ ~ ~ ~ ~ -~ 0g <.. .(..
i a s (f") - - -s ~ ~ - foot foot foot- - -- It"I

== == ==- - - - N N- - - - - - -~ ~ ~ ~ ~ ~ ~ ! ! N-- - -j t:w: t:w: t:w:

~ - S (f")

0 0

~ = = fa = = = ~ .. Q .;-

.r - It"I 00 N 00 - -- - - - N N - - -- - - - - - - foot foot foot S a~ ~ ~ ~ ~ ~ ~ -.. 0

i .(<.. i i ~

..
~ s (f") - - -;.=

~ - foot foot foot- - -J: - It"I

== == ==
0 - - - - N- - - - - - -~ ~ ~ ~ ~ ~ ~ 3 I N........ ;~ ~

~

.[.[.[.[.[.[.[
~ >. >. ~ ~ >. >.

I I I I.rJ 1 .rJ .rJ I I

If j j j j j j
C".f) C".f) C".f) C".f) C".f) C".f) C".f)

~

a a a a a a a a a a a a a._ ._ ._ ._ ._ .~ ._
! '6'0 ! !

._
.s])1;12 1;12 1;12 1;12 1;12 1;12

5~ >. f >. >. f >. :3 :3~ s: s: s: f

~tt: - S 8 C5 ~
\0 S 00

~
0 - N (f")'::1 - - - -

~
0 0 0 0 0 0 0

..
~-

-0\-

.. ~ N-N N ('f")- - -Q,. ~ >< r--

i f f f - -
~

..
~~) 0~s] ~C3 -- ~

~
= .. ><= ~ :s 13 ~ -8 1~rJ .. r"" s~ ~N ~~

.......
N- 8 8

~
8 Cl)- -= --

~
~ o >Q,. :z :z z -§..
r"" ('f")

~ ell- N- - -j ~ = Q

~ ... ~ N ...
~

...- s N
N N ('f") ('f")- - - =~ - ... -Q,. ~ >< = ~ N ><- -0 ..

~~
...- ... - -('f")

~~.(~s != - ~ ~EC3 N ~('f")-- - ... - 0 ..- - --
~

= ...><= ~~ Q,. - !Q,. Q ><=
~rJ ..~ g~ ...- ... - - ...

.. g~'":.:= ~- :9= ~ ~ ~~ 01

£ -~ u= -- - ... -- - -->Q,. =~ = 8 !>< ~ >Q,.... ...
~

...- .. - -e-- ('f") !~ ('f") ~ ~ ~- N N- - ~ - - ~~ = = ~ = =
8 .~

B I.~ 8
~ 5

~
ell '(;j

~ , § u .9I fb .d a-I I I I j ~

._
QI)

.d :a Cl)

'> 1;;:§ ell I ~ ~
~

In

~ - ~~

1! 1! 1! 1! 1! 1! 1! 1! 1! 5
~

'g...._
'{;j '{;j_ ._

gS S S S
{Il {Il {Il

l l l ~ ~
f f

~

~
t::::: ~ In 1.0 r"" 00 01 § - N ('f")
',::1 - - - - - - S S N

J 0 0 0 0 0 0 0

~

..- N-"It f' i f - f f - ('I")0- - 1 1 0..0 0 It") ~
] 0 .. 'Ii :8 :8 S ,J:J-('I") -8 ! -8 !0- - 1..0 0 - - """ """ g~ B I B 8 I 8~N ..

It") ~- -"0 0 z ~ z z -8
~ ~

I
~ ..

1,0 e-- 1,0- --"It e-- - - 00- - 0 0.(00 0 0\ 0 ('I") f' S It")
0 .. 'Ii - - - S-('I") - 0 - 0 0 f'0- - 0 .. 0 .. -0 .. 0 g g:.= ..0 S 00 S N It")

£ ~N - - -.,.; 0 0 0-
000 e

00 00 -0 0 0 -0
~

~
8

~

.a.... 8 J g
I t ~ 6~ j B iii)

~
~ I s !~ I I

~

fo fo "5.
I

6: ~ :a :a ~
iii)

~ >..
~

t;;~ ..
~

..
:.=

~
It")

~ ~8 - "It
U "It

~
~
iil

a a a B a] B 6 B B
~

'i.... ';1 ';1 ';1
~

iii) iii) j
.... iii)! f f f f ~ ! ~

~ at

~ "It It") 1,0 r-- 00 0\ 8 - N ('I")
'.;:1 s S N S S N 8 ('I") ('I")

5 0 0 0 0
"t:I-

l! ~('I")

Chapter 9: Plan Positioning

The most difficult and creative task in process plant layout is to determine the

positions of the equipment in the plan, although it is interesting to observe that

this task typically consumes less time than the more routine tasks of sizing the

equipment and calculating elevations. This is because an engineer exploits innate

human spatial reasoning skills, the ability to visualise or imagine the solution as

it emerges and the extreme flexibility of thought. It is likely that these faculties

would prove highly difficult to emulate in a computer program. Even with these

faculties, the engineer must rely heavily on stereotypical solutions acquired over

many projects. These stereotypes capture typical configurations of sections of

plant. PLS uses an approach to plan positioning that has many similarities with

the engineer's. Like the engineer, PLS decomposes the plant into groups before

attempting to position the equipment items. However, PLS does this using a

highly formalised approach as the first of two complementary but separate tasks

which comprise PLS' s overall technique for plan layout. The second task is to

position the members of each group relative to each other and relative to members

of the other groups until the plan layout emerges. This Chapter describes the

techniques used in PLS to conduct this second task.

Substantial information about the plan layout has been derived once groups have

been formed. Many of the more difficult layout decisions have been made. Once

PLS has formed the groups, it has determined:

• Which items will be close to one another, however PLS positions the

members of each group in detail.

• Which attractive FRs can be considered when PLS selects those which are

to be satisfied fully.

194

• Which attractive FRs will be partially satisfied even if PIS does not
consider them explicitly when positioning entities.

• Whether it is possible to separate items which, for preference, would be

distant from one another.

• Which repelling FRs will be fully satisfied and which unsatisfied, so that

PLS can neglect the latter when positioning entities.

• That all FRs within a group demand a similar degree of proximity to be

fully satisfied, so PLS can treat all FRs within a group identically.

This simplifies PLS's plan positioning task to selecting the FRs which it will

guarantee to satisfy fully, positioning the members of each group relative to one

another to satisfy the selected FRs and any others which can be satisfied

serendipitously, then mapping the relative positions into absolute positions. This

applies equally to groups of any expansiveness. Thus, PLS employs a near

identical approach to laying out the members of any group. It is important to note

that this approach was developed during this work specifically to layout chemical

process plant and specifically to be used in conjunction with the preceding group

formation phase.

PLS determines the relative positions of the members of a group to satisfy the

FRs which impose the stronger demands for proximity or separation, in

preference to the other FRs if necessary, to develop an optimal plan layout. If

physical FRs demand different degrees of proximity, they influence the

membership of more or less expansive groups. Within a group, all physical FRs

demand a similar degree of proximity. There is no scope to satisfy fully

relatively unimportant FRs, while holding in abeyance other FRs that are more

important but also more easily satisfied. It follows from this that, for any

physical FR individually, the best relative position of the entities that it relates is

adjacent. Thus, in an optimal plant layout, the entities that are related by the

most important physical FRs should be adjacent. Similarly, any segregation FRs ...

between members of a group demand a degree of separation that is comparable

to the degree of proximity that the physical FRs between the members demand.

Thus, segregation FRs can be introduced directly into the analysis. The

195

difference between a segregation FR and a physical FR is only manifested when

PLS specifies distance between the related members. If members of a group are

related by a segregation FR which is more important than the physical FRs which

relate them, these members are positioned far from one another in an optimal

solution.

However, some factors do not constrain the relative position of items directly.

Rather, the relative positions must be set to ensure that looser design objectives

are met. One of the most important of these design objectives is the need to

provide routes by which personnel can reach the spaces where operation and

maintenance tasks are carried out and through which equipment items can be

removed for repair. These routes are not the same as the spaces for operation or

maintenance themselves. For example, space must be left around both ends of

a shell and tube heat exchanger so that the head and channel can be removed for

tube cleaning. There is no intrinsic need for space along the majority of the

length of the shell. However, if the layout is designed so that the routes to both

the head and channel access spaces approach the exchanger from the same end,

space must be left alongside the exchanger through which one of the routes can

pass. The minor routes to the equipment access spaces lead off from a major

access way. The minor routes provide short and direct paths from the access way

to the points where personnel will work, to facilitate escape in the event of an

emergency. The major access way runs either through or alongside the plant and

is typically 3 to 4 m wide. It is imperative that the major access way is straight

and entirely clear of process equipment and pipework. This allows maintenance

machinery such as cranes and fork lift trucks to be driven through the plant, and

provides the primary escape route from the plant. Another important design

objective is the need to provide routes for piping in, through and out of the group.

These routes are often provided by pipe racks. Pipes will enter the group along

the rack, leave the rack to connect to individual items of equipment, return to the

rack and leave the group. Pipework connecting members of the group will also

run via the pipe rack unless the items are adjacent. Pipes are routed via the rack

196

because the layout would quicldy become cluttered by pipes run direct from

nozzle to nozzle. Effectively, access to equipment would be prevented.

In any localised section of a plant, the configuration of access way, process

equipment and pipe rack will match one of very few alternatives. These

configurations can be assembled into an unlimited number of layouts, of course.

They have arisen over many years as engineers have considered the fundamental

constraints on layout and have responded to feedback from plant operation and

maintenance personnel. These configurations form the basic building blocks of

a plan layout. An engineer selects a configuration to suit a section of plant then

lays out the equipment to achieve the configuration. It would be somewhat

artificial for an engineer to neglect this accumulated knowledge. If the engineer

were to do so, he would recreate one of the configurations in most cases, because

the known configurations cover all acceptable layouts for a typical plant. Thus,

it is extremely rare that a layout engineer devises a plan layout from first

principles. Once the engineer knows the configuration of the access ways for a

section of the plant, they impose a localised skeletal structure into which the

equipment is arranged. In a few cases, plan layout is reduced to a one-

dimensional problem of ordering the equipment items along the access way.

PLS echoes the engineer's underlying philosophy when deriving the plan layout

of a group but implements the philosophy in a very abstract approach. PLS

decides directions, and later distances, between the members of the group by

applying rules which inspect the topology of the FRs between them. These rules

consider to which other members any member is most strongly attracted and

consider which members have the strongest claim to any particular space. They

postulate possible directions or distances and record them on SRs as their

conclusions. Each of these rules is predicated on the access configuration for the

group, although many of the rules apply to more than one configuration. PLS

selects the access configuration for the group before starting to position its

members. It considers factors such as whether the plant is enclosed in a structure

or a building; the number of group members which require access; how much of

197

this access must be provided from the main access way; whether the major flows

into the group enter at the same end as the major flows out leave and the relative

importance of flows through the group, the recycle flows and forward going flows

between the group members.

PLS retains total flexibility in how it achieves the selected access configuration

because it follows a procedure and selects the positions of each member to best

satisfy the FRs that act upon it. It does not layout the group by applying a

stereotypical solution, unlike an engineer. That is, PLS relies on meta-knowledge

to layout the groups. The engineer would appear to use "scripts" which

correspond to the concept of Schank and Abelson [1977] of prototypical sequences

of events which can be stepped through to produce a solution.

This approach was selected for PLS partly because it corresponds reasonably

closely to manual practice. Therefore, it is comprehensible to the user. It

facilitates knowledge elicitation, increases user confidence in PLS' s results and

will allow audit information to be expressed in terms that relate to the domain.

It was also clear from the literature that layouts generated by computer systems,

whether for process plant or other facilities, only include adequate provision for

access if the approach that the system embodies explicitly recognises this factor.

A recurring theme throughout the review of computer systems for automated

layout in Chapter 2 is that many produce layouts in which access ways are at best

tortuous and are frequently fragmented and disconnected. This is explained by

the following example. In one typical configuration for process plant layout, the

process equipment is aligned, one or two rows deep, alongside the access way.

This configuration increases the distances between the equipment items, whereas

the constraints between the items tend to attract them towards one another. The

constraints between the equipment items alone force a dense layout through which

passage is difficult or impossible. A layout which satisfies the design objectives

of straight and clear access ways will not emerge unless this objective is imposed

as a constraint. It appears that the access ways must be deliberately designed into

the layout, and the pattern of the access ways must be decided before layout

198

commences. PLS's approach does this. Furthermore, many entities require

access at a number of positions. A previous example has shown that a shell and

tube heat exchanger requires access at both ends. A computer system would need

to try a huge number of orientations and positions of the entities before

satisfactory access routes would emerge from the individual access spaces around

the entities aligning and coinciding. This approach could be combinatorially

explosive.

A total of 8 configurations for group layout were elicited during this work. These

cover the layout of all sections of the test process and two other plants. PLS

selected two of these to layout the test process. It used the same configuration

for all of the groups which comprised equipment items as their members. This

configuration is perhaps the most common in process plant in general. A major

access way runs across the front of the group and a pipe rack with a minor

secondary access way beneath it runs along the back of the group. Members of

the group are placed alongside the major access way if they require attention

frequently, if a lot of space is required around them for operation or maintenance

or if physically large components might be removed from them during

maintenance. Small items which can be removed complete for maintenance are

positioned at the back of the group where they can be reached from the secondary

access way. Items which need attention very infrequently are also placed towards

the back of the group. A second configuration was used to lay the groups out

relative to one another. In this, a major access way runs through the centre of

the group on its major axis. Members of the group are oriented so that their sides

at which substantial access is required face the major access way. Two minor

access ways run along the sides of the group, parallel to the major access way,

with pipe racks above. This configuration is appropriate if the pipe racks contain

relatively few, relatively small bore, pipes. A central pipe rack, which must be

constructed before the process equipment is installed, is more appropriate

otherwise.

199

Both of these configurations can be used to layout groups whose members are
either predominantly equipment items or predominantly groups. This is true of

the majority of the configurations. Clearly, PLS must select a configuration for
the more expansive group that is compatible with the configuration of the less
expansive groups being positioned within it. The configurations used in the test
process fit together. The major access ways of each less expansive group would

merge along the central access way running through the plant. The secondary
access ways would merge to form passages between the process equipment and
walls of the building. The pipe racks designed into each less expansive group
would also join together along these spaces to form an integrated piping system
for the plant as a whole.

In PLS, the FRs and SRs manipulated during plan layout run between features of
the entities, much like elevation constraints. Thereby, the orientation of an entity

can be selected to best satisfy the constraints. The constraints on the components
of an equipment item impose "moments" on the item to rotate it to fit the layout
of its group, the constraints on the individual members of a group impose

moments on the group as a whole. Furthermore, if an entity is physically large,

it is important that other entities are positioned relative to the appropriate point

on the entity. For example, the air heater H134 in the test process is positioned
relative to the air inlet nozzle of the dryer 0129.

9.1 The Plan Tree
Generally, the FRs between the members of a group form a network of adjacency
requirements. PLS imposes an arrangement of the equipment which is effectively
linear and thus, does not correspond to the topology of the network. PLS

determines the relative positions of the equipment in the linear arrangement by

identifying the member of the group which has the strongest claim to any physical
position in the line. Notionally, PLS compares the strength of attraction of the
item being considered to sets of items either side of each of its potential positions.

For example, to determine whether item A should be North or South of item B,
PLS would compare the attraction of item A to all other items North of B to its

200

attraction to all other items South of B. There is an obvious contradiction in this.

In principle, until PLS has positioned all other items, it cannot know which items

should be allowed to attract the item being positioned in each direction.

PLS circumvents this difficulty by forming an approximate structure of the layout

of the group called the "Plan Tree". The Plan Tree is a tree of the strongest link

sets between the group members, extracted from the network of FRs. In physical

terms, the Plan Tree contains the most important proximity and separation

requirements amongst the group members. One SR is created to correspond to

each of these important positional requirements and one node in the Plan Tree

corresponds to each member of the group. PLS forms link sets of all FRs

relating each pair of entities in the group and orders these link sets by decreasing

importance via the PO table. The maximal spanning tree is extracted from this

network automatically by PLS, using Prim's algorithm [Aho et al 1983]. The

group is easiest to integrate into the overall layout if the member to which the

most important positional relationships enter the group is at one end of the group.

PLS identifies this member and uses it as the root of the Plan Tree when it is

being formed.

The number of branches in the Plan Tree and the relative length of these branches

depends on the topology of the constraint network within the group. This

topology defines the optimal layout and appropriate access configuration for the

group. The structure of the Plan Tree and the criteria by which the access

configuration is chosen arise from the same fundamental factors. Thus, the Plan

Tree maps to a physical layout easily. PLS uses the structure of the Plan Tree

as an indicator of which access configuration should be used for a group, although

some topologies suggest a number of configurations and other factors must be

considered. For example, a Plan Tree might split into two branches. The group

would be laid out with both branches progressing in the same direction if the

members at the end of both are attracted to the same entity. Thereby, both

branches would terminate close to that entity. A configuration in which the group

is laid out down both sides of a pipe rack would be appropriate. If however, the

201

members at the end of the branches are attracted to different entities, it would be

appropriate to adopt a Tee configuration. The two branches would be laid out

along pipe racks which diverge from the branching node. The criterion by which

PLS selects which member to position at an end of a group will depend on the

access configuration it has selected for the group. Consider, for example, the

configuration in which a group is laid out in a single linear arrangement along one

side of a major access way. PLS chooses this configuration when process media

flow through the group, in at one end from one group and out at the other end to

another. PLS selects the member from which the most important outgoing flows

leave the group as the most "Northerly". It is important to note that PLS can

apply these criteria before the relative positions of the groups are known.

PLS treats the members of the group in a main branch like beads on an abacus

wire when it lays them out. This leads to a layout which is most efficient and

requires least doubling back. This corresponds to the axiom, widely held amongst

layout engineers, that a plant should be laid out to follow process flow. Flow is

one of the major factors that constrains the detailed juxtaposition of the process

equipment.

Typically, most members of the group are members of a main branch. Consider

the Plan Tree for the group which contains the column C124 in the test process,

shown in Figure 8. This group has one main branch which progresses through

H123, C124, H125, T126 and P128. The other member, H127, is in a separate

side branch. This Plan Tree branches to a degree that is typical of those in the

test process and in two other processes. This example shows how closely the

Plan Tree corresponds to the satisfactory final layout of the group. The

assumption that the Plan Tree is a sound basis for a good layout is validated.

The Plan Tree for the group which contains the filter Fl19 in the test process is

unusual. It is shown in Figure 9. The side branches include more members of

the group than the main branch. However, this group exhibits another important

property of the Plan Tree which makes it useful even in this unusual case. The

202

Hl25

T126 ~,----._

Cl24

Main branch SRI
Side branch SRI ~

(G24)'_ --Q
Pl28

I"J __ ~'__ - - (GIS)
Hl23

Figure 8: Plan Tree for Column Group

members of the side branches are physically smaller than the members of the

main branch in this group because the flows through the members of the side

branches are relatively low. The main flow through a group progresses through

the members of the main branch. This is often observed. The smaller items are

relatively easy to position - they can be tucked into gaps amongst the larger

members of the group to make good use of available space. Furthermore, the

members of a side branch often connect to members of other groups or even to

service streams - they are often supporting ancillaries of the main items in the

group. These items can be positioned more flexibly because they are only subject

to one major constraint within the group. Thus, they can be positioned to

whichever side of the major items that they serve to make best use of space. It

is important to note, however, that the members of a side branch cannot be

assumed to be less strongly constrained to the item they serve than members of

the main branch are constrained to one another. In some cases, the strongest

constraint on the major item will run between it and an ancillary on a side branch.

The thermosyphon reboiler, H127, is a good example.

203

F119 T1l7
(019)+-------10 I._--Q- - (024)

1
TI20 I I

I \
p~ ~

P121

Q
P118

Figure 9: Plan Tree for Filter Group

Sometimes, the position of a group member is set by criteria other than its

position in the Tree. For example, in some configurations, some members will

be positioned to one side of the majority of the other members, away from the

access way and close to the pipe rack. Nonetheless, the basic structure of the

group's layout, expressed in the Plan Tree, is important when deciding the

position of every member, even if their positions are ultimately modified by other

criteria.

9.2 Positioning The Group Members

The process equipment occupies a very small proportion of the total volume of

a typical process plant. The surprising figure of 5% is widely stated. The

remainder of the volume is occupied by access ways, structural members,

. instrumentation and control equipment and pipework. The layout engineer does

not usually layout the plant with the objective of packing the process equipment

as closely as possible. He recognises that "empty" space between the equipment

items will be put to good use by the engineers performing the detailed design of

the plant. Rather, the layout engineer positions the equipment items to best

204

satisfy the constraints on their relative positions. This time-honoured practice has

been found to produce layouts that are economical and practical. The engineer

positions two items adjacent to one another if they are strongly attracted to one

another. He will introduce an item between two others if the former is more

strongly attracted to the space between the latter items than the latter items are

attracted to each other. The item might be attracted to the space because it is

attracted to the items which it is forcing apart on either side. Alternatively, the

items which are being forced apart might be the least strongly attracted of all

those alongside an access way or pipe rack. If the item being pushed in is

strongly attracted to this feature, this is the least disadvantageous position for it.

Although the engineer does not attempt to pack the members of the group as

closely as possible, he still attempts to use space economically and minimise the

overall size of the group. He will position items above others if there is sufficient

clearance, particularly to reduce the horizontal distance between strongly attracted

items. He will position items in otherwise empty space if this does not

compromise the constraints on their positions. Finally, a high proportion of the

members of the group must be positioned alongside the access way. The space

alongside the access way is at a premium. Every item positioned there increases

the length of the group. Thus, if the engineer decides that it is essential that an

item is alongside the access way, he will position it there. Otherwise, he will

exclude it, even though it might have a limited need for access. For example, a

pump in a large bore line carrying cooling water will be generally reliable but

also heavy. The ideal position for the pump would be alongside the major access

way, to facilitate its removal if it were to fail. However, because the pump is

generally reliable, it would be acceptable to design the layout so that the pump

would have to be lifted out on slings occasionally. PLS shares the engineer's

philosophy. It places items in the "best" position if they have a strong claim to

that position, as defined by the FRs acting upon them. However, PLS will also

place an item in the "least worst" position if there is no obvious best position for

it.

205

In configurations with either one main branch or two which run in parallel, PLS

develops the layout "Northwards" away from the root member. If the group has

two parallel main branches, PLS synchronises the distance from the root to which

it extends each branch to allow for cross links between the two branches that the

configuration requires. PLS deals with these links as it encounters the linked

entities and adjusts the length of the shorter branch to suit. In a group in the

form of a Tee, PLS adopts the convention that one main branch runs "North"

from the root and one "South". When PLS has laid out each group individually,

it assembles them to layout their surrounding group. It reflects and rotates the

groups to fit the more expansive group. In the test process, PLS reflected the

groups containing the filter and the dryer along their major axes.

9.3 Derivin&Absolute Positions
PLS produces an approximate layout for each group from which it estimates the

space each group occupies. Then, starting with the most expansive group, PLS

lays out its members and determines accurately their relative positions. PLS

continues to layout progressively less expansive groups, considering this time the

effect of FRs to other parts of the plant.

PLS then translates the relative positions of the groups within the most expansive

group into absolute positions and recursively descends the heirarchy of groups,

translating the relative positions of increasingly less expansive groups into the

same coordinate system. Once this has been done for all groups, PLS knows the

absolute positions of every equipment item in the plant. PLS has completed the

layout.

9.4 Detailed Treatment of Plan Positionin&

The preceding Sections have developed the principles of PLS' s procedure for plan

positioning. This Section presents the minutiae.

PLS selects one of the eight configurations to use for the group and identifies the

one or two members that will be positioned at the end of each main branch. PLS

206

traverses the Plan Tree, marking the frames of all of the SRs in each main

branch. Thereby, PLS can identify readily group members that are on the main

branch. This is important because PLS has less flexibility to position these

entities. The same token is used to mark SRs in Plan Trees with one or two main

branches so that positioning rules can be used for either without distinction.

PLS then traverses the Plan Tree again, this time to determine the orientation of

each member and the directions and separations between the group members. It

creates SRs to record this information. When PLS encounters a localised branch

in the Plan Tree, it follows the SR on the main branch, if possible. This exploits

the property of the Plan Tree of highlighting the group members which are likely

to be more awkward to position. This reduces the probability of PLS having to

adjust the layout to accomodate the side branches, but can't eliminate reworking

entirely because side branches can contain large or otherwise difficult entities.

As PLS encounters each entity, it determines the provisional orientation of the

entity before its position. The orientations are checked and adjusted once the

group has been laid out. PLS contains a suite of rules which encode domain

knowledge about the appropriate orientation of an entity. These rules are invoked

by control rules, or "meta-rules" which are predicated on the group's

configuration. Examples of this knowledge and where it was applied in the test

process follow:

• If a feature on one side of an entity is attracted to a feature on another

member of the group, the entity is oriented with the feature towards the

other member. Typically, the feature will be a nozzle and the attraction

will arise from process flow. The filter F 119 was oriented with its

discharge chute towards the dryer for this reason.

• Streams that flow between members of two groups or carry a service fluid

will almost invariably be routed via the pipe rack. If the flow is large, then

the nozzle through which the stream flows is oriented towards the pipe rack.

This simplifies the pipework. For this reason, PLS arranged the condensers

with their cooling water nozzles towards the pipe rack.

207

• If frequent or unencumbered access is required to any feature of the

member, then the member is oriented with this feature towards the major

access way. This is illustrated by the reactor vessels being oriented with

their manholes towards the major access way.

• Long items are oriented across the group if no other factors suggest a

different orientation. This uses space economically because the equipment

is not strung out unnecessarily. The vacuum separator T120 was oriented

across the group for this reason.

PLS then determines the position of the entity. The position is expressed in SRs

which record the direction and distance of this entity from other members of the

group which have been positioned already. PLS uses rules which identify

possible positions for an entity, determine whether these positions are still

available, and select the preferred position from amongst them, given the

constraints acting upon the entity. They are predicated on the access

configuration selected for the group and therefore, only make recommendations

that can be implemented within that configuration. The rules are widely

applicable, covering many situations in any plant and suitable for use from plant

to plant. They do not express knowledge such as "a pump should be positioned

under a pipe rack". The rules are invoked explicitly from other rules in what

amounts to tightly controlled backward chaining. Some rules establish

generalities, such as that the entity should be positioned alongside an access way

because it requires access. Others consider detailed juxtapositions. Each of the

general rules invokes more specific rules, selected to be compatible with the

general rule's conclusions. A small set of these rules is presented below to

illustrate the philosophy of the approach. The rules are simplified slightly for

clarity:

1. If frequent access to an entity is required, then the entity must be positioned

alongside the access way. Create an SR from the feature that requires

access to the access way, with direction "East" and distance 0, and invoke

rules 2 and 4.

208

Interpretation: This rule determines that the entity should be positioned alongside

the access way. This is recorded by an SR from a feature of the entity to the

access way of 0 length, that is, the feature is aligned with the access way.

Thereafter, the rule invokes other rules to determine where the entity should be

positioned amongst the group members.

2. If an entity is in a main branch of the group and if it fits above or below the

most "Northerly" entity alongside the access way, then create an SR with

direction "North" and distance 0 from the previous entity to this entity else

invoke rule 3.

Interpretation: If the entity is in a main branch of the group, it must be

positioned at the "Northernmost" end so that the group continues to grow

"Northwards". If the entity will fit above or below the entity which is currently

at the end, this is the most economical position. Otherwise, the entity must be

positioned "North" of the last entity. Note the control of subsequent actions that

this rule exercises.

3. Retrieve the distance between the origins of two entities in the "North" to

"South" direction. Create an SR between the first and second entities with

direction "North" and with this distance recorded on it.

Interpretation: This rule retrieves the minimum spacing of entities which are

next to one another, in this case, "North" and "South", and creates an SR to

record the spacing and direction.

4. If an entity is not on the main branch of the group and if it fits above or

below the entity "South" of the entity from which the side branch grows,

then create an SR with direction "South" and distance 0 from the previous

entity to this entity, else invoke the rule 5.

Interpretation: This rule is similar to rule 2. However, the preferred position

for an entity on a side branch is "South" of the entity to which it is most strongly

attracted. PLS reserves the space to the "North" of the entity for members of

side branches which it has yet to treat - these subsequent side branches will be

209

more "Northerly" than the current side branch because they grow from more

"Northerly" entities in the main branch. This rule expresses heuristic knowledge

which makes good use of the assumptions that the Plan Tree supports. The

position of the entity is chosen from a number of otherwise equally good positions

to minimise interference with the rest of the layout. The ejector in the test

process was positioned by a rule such as this.

5. If an entity fits above or below the entity "North" of the entity from which

the side branch grows, then create an SR with direction "South" and

distance 0 from the next entity to this entity else invoke rule 6.

Interpretation: If the entity does not fit to the "South" of the entity from which

the side branch grows, then try to the "North".

6. Select the entity to be positioned then find the pair of entities alongside the

access way that are least strongly attracted to one another. Delete the SR

between these entities. Invoke rule 3 on the more "Southerly" of the pair

and the entity being positioned. Invoke rule 3 on the entity being positioned

and the more "Northerly" of the pair.

Interpretation: In this situation, PLS cannot find a suitable position for the entity

either immediately to the "South" or "North" of the entity from which the side

branch grows. The entity must be positioned alongside the access way - PLS

adopts the engineer's philosophy and only specifies that access is required if it is

essential. PLS invokes this fall-back rule which searches for the pair of entities

alongside the access way which are least strongly attracted. These can be forced

apart to admit the new entity with least disadvantage to the layout as a whole.

Note once again how PLS benefits from recording relative positions on SRs rather

than recording absolute positions. Usually, the SRs either side of the entities

being forced apart remain valid and no recomputation of position is required.

In process plant layout, different minimum distances between two entities will be

required depending on the types and function of each entity. For example,

generally, it should be possible to disassemble an item of equipment without

210

removing pipework from any other, so that the plant may continue to be operated.

However, if a reactor vessel's head needs to be removed for maintenance, the

condenser for the reactor is temporarily redundant. There is no benefit in leaving

sufficient clearance between the vessel and the condenser so that the pipe work

can be left in situ. The space required between two entities also depends on their

relative orientation. For example, more space is required between a vessel with

a bayonet coil and another equipment item if the other item is positioned in the

direction inwhich the coil will be withdrawn. Space must be left above a vertical

tubular exchanger for the tubes to be withdrawn, whereas it must be left in front

of a horizontal exchanger. In either case, the space can be used for maintenance

of other equipment, but equipment cannot be positioned within it. Clearly, there

is adequate clearance between a horizontal exchanger above a vessel with a top

mounted agitator if the space needed to withdraw the tubes and agitator shaft

coincide. There is inadequate clearance if the exchanger is immediately above the

agitator. Thus, PLS infers the distance required between two entities specifically

for that pair. It does so using Procedural Attachments which derive the distance

from the origin of one entity to the origin of another. Procedural Attachments are

used so that the distances will be re-calculated as PLS adjusts the layout and

queries different space needs. Each Procedural Attachment calculates and returns

the distance in one cardinal direction. These Procedural Attachments can refer

to tables of typical separation distances, elicited from published tables [eg

Mecklenburgh 1985, pp 555-577] and those in engineering standards.

211

Chapter 10: Discussion

During this work, an approach to automating process plant layout by Expert

System has been developed. This approach has been implemented successfully
in PLS which can generate process plant layouts from chemical process data,

automating each aspect of the task. Thus, the first and third objectives of the work

have been achieved. PLS has been applied to a test process which is

representative of typical process plant layout problems. It generated a layout that

is entirely satisfactory and conventional from an engineering viewpoint. The

second objective has also been achieved.

10.1 The Value of PLS
PLS has the potential to improve the quality of process plant design generally.

It should produce better layouts more cheaply and timely than is currently

practical. This should result in technically better plant by improving the intrinsic

quality of a critical design element and by indirect benefits on other design

disciplines. PLS also offers organisational benefits including Quality Assurance,

increased confidence in design proposals and better deployment of skilled and

expensive designers.

Some of the key benefits that PLS offers are described below. These benefits are

closely linked in practice and could be argued to be a number of manifestations

of the same basic effect. They are presented separately for clarity nonetheless.

Layout Quality Improved

There is significant informal evidence that layouts designed manually are likely

to be sub-optimal. The positions of the 42 items of equipment in the test process

were governed by 1200 constraints. This number would prevent a layout engineer

212

considering all the constraints in a practical time. The engineer is limited to

identifying the most significant constraints and manipulating these. This

behaviour is actually common in design activities [Simon 1969]. This can lead

to important constraints being left unsatisfied, not because they are inconsistent

with others but because they have been overlooked. For example, a senior

engineer in a major process industry contracting company once confided to the

author that the piping engineers in his company often encountered great

difficulties routing pipes through supposedly satisfactory layouts [Thompson

1989]. PLS's knowledge base can identify many more constraints than an

engineer would notice. PLS then has the capacity to manipulate all of these

constraints. It will not be overwhelmed by their large number. PLS will leave

constraints unsatisfied if and only if it explicitly determines that it must do so.

Inmanual layout, the problem is exacerbated because the layout engineer is likely

to show bias in which constraints do catch his attention. It is probably inevitable

that the constraints that arise from issues germane to the engineer's discipline,

usually piping design, are more likely to be uppermost in the designer's thinking.

To ameliorate this, it is common practice for a number of layouts to be designed

then reviewed and compared by a multi-disciplinary panel. This increases the

likelihood that a design will arise that is either satisfactory to all disciplines or can

at least form the basis of an acceptable solution. In an extreme case known to the

author, albeit a particularly difficult design, engineers from a range of

specialisations produced thirty two layouts before they achieved a generally

acceptable solution [Thompson 1989]. PLS offers the opportunity to avoid this

bias. Knowledge can be elicited from a range of experts and pooled in the

knowledge base. During elicitation, contention can be identified. PLS will then

consider all this knowledge equally, irrespective of its source. Nonetheless, PLS

can be deliberately configured to devise a solution which emphasises a specific

issue.

213

Quality Assurance Implemented

Quality Assurance schemes require an approved procedure for a task to be

established. The procedures as laid down must then be applied rigorously and

exhaustively whenever the task is carried out. PLS offers a formal means to

implement Quality Assurance in layout design. PLS follows a structured and

formalised procedure which it can apply to plant after plant. PLS also applies all

knowledge in its knowledge base that is salient to a particular layout design

correctly and exhaustively. All design requirements that should be met will be

identified in the form of constraints and given due consideration. Furthermore,

as it works, PLS records sufficient information in its database to demonstrate that
this has been done. This audit of the layout is an equally important aspect of

Quality Assurance. Clearly, PLS cannot apply knowledge that is absent from its

knowledge base. However, the knowledge base can be inspected, verified and

amended if necessary. Conversely, it is not possible to verify the knowledge and

procedures that a layout engineer uses. It is unrealistic to assume that an engineer

will apply all his voluminous knowledge. It is not practical to expect the engineer

to provide an audit of the layout. The book-keeping overhead would stifle his

progress.

Layout Integrated With Computerised Desian

Conceptual layout has been described as an "island of man-power in a sea of

automation" [Madden 1990]. It remains essentially a manual task due to the

current lack of appropriate computer systems. As such, it integrates poorly with

the computerised design and data recording systems widely adopted by the other

design disciplines. The layout designer must extract his precursor process data

from this integrated environment, manipulate these data manually, and then re-

enter his results into the software environment. Conceptual layout links the

process and plant design, but lies outside the data management mechanisms of the

integrated software environment used by the preceding and subsequent disciplines.

This compromises the Quality Assurance of the design as a whole. The data

transfers are also error-prone and time-consuming.

214

Any computer system used in conceptual layout clearly has the potential to bridge

this gap. The interface from PLS into one three-dimensional modeller and piping

design system, CADCentre's "PDMS", demonstrates that PLS has the potential

to meet this need. Interfaces to a number of other similar modellers would be

needed if PLS were to be used in commercial design offices. Similarly, interfaces

from process design databases and other data sources would also be beneficial,

although it is much less common for process designers to use these databases than

for plant engineers to use modellers.

Substantial Time Savinas

PLS took approximately 8 hours to generate a layout for the test process from the

initial data. Typically, an experienced layout engineer would require at least 3

days to attempt a layout of similar complexity [Woodland 1989]. Clearly, PLS

has the potential to reduce the time that highly skilled and expensive specialist

engineers must spend developing a layout. This is intrinsically beneficial,

especially because PLS does not compromise the quality of the layout to achieve

these savings. However, computer systems which automate other process design

tasks can also produce their results significantly faster than an unaided engineer.

It is widespread, if not universal, practice to use these systems to explore more

options and develop a design further in the time available rather than use them to

save manhours. Process simulators are a notable example of this. These are used

to explore perhaps ten process alternatives in the time that a process engineer

would need to design the first. It is thought likely that PLS would be used

similarly to enhance the quality of layouts.

Two factors must be considered when comparing the speed of PLS and an unaided

layout engineer. Firstly, the times quoted for both PLS and the engineer do not

include the time taken to collate the initial process data. The time quoted for PLS

does not include the time taken to enter the data either. If PLS were interfaced

to a process design database, no collation would be required and minimal time

would be required to transfer the data into its database. Thus, PLS's speed

advantage would be increased. Secondly, the MicroVAX hardware and VAXLisp

215

software were chosen to develop PLS because they could be made available to the
author at no cost. Neither the hardware nor software could be considered to be

appropriate to this work. Current workstations are at least one order of

magnitude faster than a MicroV AX. The latter was not a recommended platform

for LISP even when it was competitive. VAXLisp exacerbates this difference

because it is very inefficient in comparison to other vendor's LISP products.

Indeed, VAXLisp has now been withdrawn. Thus, it is reasonable to assume that

PLS would layout the test process in under an hour if running on appropriate

hardware and supporting software.

Enaineer's TIme Used Better
Much of the layout engineer's time is spent conducting tasks which are routine

and highly structured. Examples include the initial physical sizing of equipment

and the calculation of sufficient elevation to provide a required NPSH for a pump.

PLS encodes these routine tasks and applies the knowledge automatically. The

engineer is freed to concentrate on the creative and more ambitious components

of layout design. This makes better use of the valuable and limited time of

highly-skilled specialists.

Rational Review and Amendment Supported

A completed layout design is subject to discussion and critical assessment from

within the design team as part of its optimisation. The plant design engineers

whose work is dependent on the layout also review and criticise it. Typically, a

plot plan or crude three-dimensional model is the only product of the layout

engineer's work. In particular, there is no record of which layout constraints

were considered by the engineer, let alone which constraints conflicted with one

another and what compromises had to be made. This would not be feasible in the

technique currently used by the layout engineer.

Generally, in design, a structured history is regarded as important to show how

changes at one point might impact on the design as a whole [Kelly 1984, Singh

1983]. Similarly, any design decision points provide scope for exploring

216

alternative solutions. Records of the decisions made will suggest how potentially

fruitful alternatives might be generated [Balzer 1984]. Changes in the design and

the generation of alternatives forms the basis of design optimisation. The highly

informal technique for conceptual layout cannot provide the records to support

this. This hampers the review and amendment of proposals.

Furthermore, a design history will serve to verify a solution. It will demonstrate

that all significant constraints have been considered and will expose value

judgements made while comparing their importance [Lam 1983, Barrow 1984].

A completed layout is likely to be inspected and analyzed by regulatory bodies

concerned with safety and environmental aspects of the design. The lack of a

design history for a layout precludes formal verification. In the extreme, this

might conceal serious flaws in the design. It will certainly slow the acceptance

of the proposal.

PLS records all constraints that it identifies and retains them in its database for

subsequent inspection. It also records inconsistencies amongst constraints and

which of the constraints PLS chooses to satisfy. Together, the records of the

constraints and the inconsistencies effectively constitute a design history for the

layout, something which the manual technique cannot provide.

Data Provided To Process Designers

Approximately 60% of the cost of a general process plant is directly dependent

on the layout (eg piping, structural and building costs). The proportion is higher

in certain branches of the industry. At present, factorial techniques are used early

in the project to approximate the effects of the layout on cost estimates. Factorial

techniques are generally accepted to produce estimates with a precision of ±25%

and only represent typical or average circumstances. For example, process

equipment containing highly flammable reagents or solvents is often more widely
spaced than otherwise. This allows releases to disperse to prevent ignition or to

minimize the impact of an ignition should one occur. Selecting such highly

flammable process media may improve process performance. Factorial estimates

217

will not reflect the impact of the increased spacing requirement on piping and land

costs. This limits the resolution with which alternative processes can be

compared and introduces economic risk into the project.

Process alternatives are also evaluated against other criteria such as macroscopic

safety issues, the plant's space requirement if space is at a premium as in offshore

plant, and so on. The choice of a flammable solvent may be precluded by the

likelihood of a release drifting to a potential source of ignition before it has

dispersed sufficiently to be non-flammable. Unit operations requiring physically

large, but relatively cheap items of equipment are likely to be specified in

preference to the converse if space allows. For example, a gravity settler is likely

to be orders of magnitude larger than a centrifuge performing the same duty, but

markedly cheaper. Similarly, process conditions may force the use of larger

equipment types. Tubular heat exchangers are generally larger than compact plate

heat exchangers for the same heat load, but plate exchangers are limited to low

pressure operation. Limitations on the space available might enforce the selection

of one process. Accurate technical assessments of process alternatives are

impeded by the lack of a layout. This introduces technical risk into the design.

The process engineer is forced to make imprecise evaluations because it is not

economically practical to generate a layout manually early in the project. If a

process alternative being studied is rejected, the layout will be discarded and the

effort invested in designing it will be lost. Process engineers could base economic

and technical evaluations on a layout generated by PLS earlier in the project than

currently feasible. Approximate layouts are entirely satisfactory for this,

commensurate with the quality of process data on which they are based and the

purpose for which they are intended. The time invested in a layout generated by

PLS is minimal so it is inexpensive to discard the layout after the evaluation.

PLS's knowledge base also makes the skills of layout engineers available to

process engineers to remove the need for specialist support for these tentative

designs.

218

Once a process alternative has been selected and design has progressed, the

process engineers commence detailed design of the equipment items. This

requires three-dimensional data in some cases. For example, a pump is sized to

deliver sufficient head into its discharge vessel. The elevation of the vessel and

length of discharge pipework are required for the calculation of the required head.

It is common practice to commence the detailed design of the equipment before

a layout has been designed. The process engineer must assume values for the

three-dimensional data. To minimise rework of the design, factors of safety are

incorporated into these assumed values. This inevitably leads to over-design and

a plant that is less economical than the optimum. The process engineer might use

PLS to generate provisional layouts quicldy and read the three-dimensional data

that he needs from these. Although these data are approximate, they should be

more precise than assumed values. The process engineer can design the

equipment with more precision and thereby reduce the factors of safety.

Widespread Use of PLS
It is now important to consider whether the philosophy embodied in PLS will

allow it to have widespread use.

10.2 PLS as a General Tool
Great care was taken to avoid building features into PLS that were specific to the

test process. The benefits listed above are only worthwhile if PLS can be used

to design layouts for a wide range of processes, even from different branches of

the process industry with their own requirements and practices. PLS was

deliberately designed to do this. However, the test process includes a diverse

range of layout issues and problems which are representative of the range that

would be expected across processes and industry sectors. This provides powerful

pragmatic evidence of the generality that was designed into PLS.

219

10.3 Problem Size
The test process is a reasonably complex process that typically would occupy one

plot. Larger than this, a process would be broken into plots which would be laid

out effectively separately. Thus, the test process showed PLS undertaking a

layout that was as large as or larger than the majority of practical layout

problems.

PLS would still reach a solution if it were required to layout a process that is

larger than the typical. The increased problem size would not cause it to break

down. This is because PLS reaches its solution by solving a series of localised

and almost independent sub-problems. PLS considers a small number of entities

concurrently. The size of each sub-problem is independent of the overall size of

the process. Thus, PLS has to solve more problems of the same size rather than

larger problems when laying out a larger process. The total time taken by PLS

varies a little more than linearly with the number of independent problems. Note

that the "nuisance effect" of an increased number of entities occupying more of

the computer's memory even when they are not being reasoned about is actually

insignificant. The procedure to form groups will divide a process into plots

automatically.

Performance might degrade as the complexity of a problem increases. The test

process was deliberately analogous in complexity to the problems that PLS might

solve in a practical working environment so no extrapolation is needed. The

complexity depends on the average number of constraints that relate any pair of

entities. The knowledge base used during the trials identified all the frequently

encountered constraints. The knowledge base would have to be extended to a

level of completeness where it would also identify those constraints that arise

infrequently if PLS were to be used commercially. However, this would not

introduce significantly more constraints than PLS reasoned about in the test runs

and would not significantly increase the complexity of the problem.

220

10.4 Sufficiency of Knowledge
Itwould be unrealistic to expect PLS's knowledge base to exhaustively cover any

arbitrarily chosen process given the widely disparate practices, issues and even

idioms observed across the domain as a whole. Each sector of the process

industry has its own distinctive layout constraints. Indeed, companies adopt styles

of layout that emphasise the practices and factors that they consider to be

important. Thus, although PIS does not currently contain sufficient knowledge

to allow it to layout a wide range of plants, this does not indicate a lack of

generality of the approach.

To extend the knowledge base, a user must be able to add knowledge efficiently

and easily. PLS provides appropriate representations and reasoning strategies for

any knowledge that a user might wish to add. PLS provides sufficient constructs

to represent layout knowledge and reasoning techniques to apply it. These were

certainly sufficient to represent all of the diverse knowledge elicited for the test

process in forms that were appropriate and elegant.

10.5 Generality of Approach

PLS uses rules to identify FRs and create frames to record them in its database.

The FRs re-express the constraints implicit in a process in terms of the

fundamental epistemology of plant layout, such as proximity, adjacency or

alignment. Thereafter, PIS reasons almost exclusively about the FRs to generate

its solution. Effectively, the FRs present the spatial synthesis algorithms with a

totally generic restatement of the layout problem. The algorithms are independent

of any specific problem that might be set to it.

This is crucially important. The FRs effectively comprise an interface between

the fairly specific rules that identify them and the spatial synthesis algorithms of

PLS. Users can extend the knowledge base readily to configure PLS to the style

of layout appropriate to their needs. They need only add knowledge about items

of equipment and constraints that are peculiar to their needs. The spatial

221

synthesis algorithms of PLS provide a constant and sufficient underlying

environment to support these extensions.

10.6 Further Work
The author concentrated on the research required to develop a generic problem

solving structure for PLS. Effectively, this was the first phase in developing an

Expert System to be used commercially to generate layouts from process data.

This research phase was the author's original work and is reported in this thesis.

The specific objectives for this work, stated in Section 1.1, were achieved in full

and the research phase of this work is now complete.

Further work is needed before PLS can be made available for use widely in

practice. This work would reflect the differences between basic research and

commercial software implementation. The principles established in the research

phase would be incorporated in a formally engineered version of PLS. No

additional concepts need be developed. If sufficient professional software

engineering skills were brought to bear, PLS would develop into a commercial

system. This Section highlights the major tasks that must be carried out.

10.6.1 Quality Assured Implementation
The prototype of PLS is principled, rational and self-consistent. In particular,

PLS has the potential to generate Quality Assured layouts but it can only realise

this potential if it is re-implemented subject to Quality Assurance itself. Quality

Assurance must be adopted from the outset of the implementation of any software.

It cannot be grafted on to a completed program.

10.6.2 The User Interface
The user interacts with the prototype of PLS while it is running by setting and

inspecting LISP forms via the LISP listener and debugger. The initial process

data are specified in a text file that is loaded into PLS. The knowledge base and

PO Tables are defined elsewhere then compiled and loaded. The results of a run

222

are assessed by inspecting printed listings or by viewing three dimensional PDMS

models constructed from PDMS input files written by PLS.

Clearly, a user requires intimate knowledge of the detailed implementation of PLS

to interact with it. This is entirely satisfactory in a prototype. However, PLS

requires a properly engineered user interface, probably predominantly graphical,

before it can be used practically.

10.6.3 Expanding the Knowledge Base
The knowledge base constructed during the experimental work comprises a

representative sample of the knowledge employed by layout engineers. It is

intended specifically to support testing of PLS. This is consistent with the

orientation of the work to date towards researching the basic principles of the

system. However, PLS requires a much broader knowledge base before it can be

released commercially.

The majority of layout issues and constraints are common across all sectors of the

process industry. A liquid will always flow downward under gravity whether it

is a sterile medium in a pharmaceutical plant or the heavy ends of a crude oil

distillation. Each user should then be able to invest their effort in true

customisation and would not have to replicate the efforts of other users capturing

the same common issues.

The side effects of a knowledge elicitation exercise such as this could also be

highly beneficial. The last major review of layout practice was carried out by the

Institution of Chemical Engineers Working Party between 1978 and 1983

[Mecldenburgh 1985]. The process of building a knowledge base for PLS would

expose current practices to review and allow best practices to be identified. The

knowledge base itself would be a highly apposite medium to record and

communicate these practices.

223

It is highly recommended that formal methods, or preferably a computerised

knowledge elicitation tool reg Shadbolt 1993], should be used to support a major

knowledge elicitation exercise such as this if it were carried out.

10.6.4 Refined Handling of Site Topography
The topography of the imaginary site for the test plant imposed two constraints

on the layout which PLS correctly reflected in its layout design. The initial data

included the positions of a bulk tank farm from where the acetone and monomer

would be taken (North of the plot) and the product warehouse (South of the plot).

PLS then oriented the layout to minimise the distances that the raw materials and

finished products would need to be transported.

PLS must be able to generate a layout that responds to the topography of the site

and the environs of a real plant. The examples included in the test process only

impose fairly loose constraints on the layout. However, more restrictive

constraints could also be imposed. For example, if PLS were used to generate

a layout for a plant revamp, it is likely that the positions of certain items of

equipment would be fixed. If PLS were laying out an extension to an existing

plant, the positions of the existing equipment would constrain the positions of the

new items. Similarly, PLS might be forced to develop a layout that is internally

sub-optimal but that fits into a restricted space, perhaps if it were laying out a

plant to be built within an existing facility.

At present, PLS cannot respond to more specific constraints imposed by site

topography such as those exemplified. Minor refinements are required in the plan

layout algorithm itself and the plan layout scripts.

The plan layout algorithm must be refined to allow PLS to reflect the impact of

external positional constraints. PLS must identify the entities that are constrained

in their position by site topography. It should then consider whether it is

appropriate to make these entities roots of plan trees. Thereby, PLS will be able

to develop the layout around these fixed points.

224

Both the plan layout algorithm and the plan meta-knowledge must be refined to

allow PLS to design layouts that fit into restricted space. When PLS identifies

that an overall space constraint has been violated, it must identify the groups that

can be shortened along the critical axis, apportioning space saving amongst more

than one group if necessary. The plan layout scripts must then position the

members of these groups sub-optimally from a local perspective to reduce the

length of the group. This might be at the expense of increased length on the other

axis or by elevating entities above the minimum set by process needs.

It is important to note that the basic principles of PLS's approach to plan layout

would be retained. The modifications described above are no more than

refinements to the existing approach.

10.6.5 Refined Back-Tracking and Multiple Solutions
When PLS cannot decide which of a number of contradicting constraints should

be satisfied, it makes an arbitrary selection. In principle, PLS could generate

solutions in which each of the constraints are satisfied in tum and generate

alternative designs. At present, only the first solution is developed to completion.

This simplification was made purely to speed development of the PLS prototype.

It is widely held that there is rarely a single "best" solution to a layout problem.

A number of solutions with particular strengths but also weaknesses are likely to

be approximately as good. Each solution will satisfy a different sub-set of the

constraints but all sub-sets will be comparable in overall satisfaction. However,

one solution will satisfy a sub-set that best fits the emphasis specific to the job and

this solution will be considered the "best" in this case. PLS must be able to

generate alternative designs to emulate this behaviour if it is to be used

practically.

Assumption Based Truth Maintenance Systems or ATMSs [de Kleer 1986a,

1986b, 1986c] allow Expert Systems to hold simultaneously a number of data sets

which are individually consistent but mutually contradictory. ATMSs are

225

frequently used to manage concurrent development of multiple solutions. For

example, "KBOS" [Banares-Alcantara 1994] develops process flowsheets using

an ATMS to hold a number of process options in its database. An ATMS could

be incorporated into PLS to allow it to generate all of the best designs. An

ATMS is not the only mechanism that can achieve this. Indeed, an ATMS is

large and complex in its own right and generates voluminous "house keeping"

data. Nonetheless, an ATMS is a good choice in this case because PLS also

requires some form of Truth Maintenance System to increase its efficiency. An

ATMS would clearly perform well as PLS's truth maintenance system because

this is its intended purpose!

226

Chapter 11: Summary and Conclusions

An approach to automatic conceptual process plant layout by Expert System has

been developed. This approach is generic and supports plant layout in breadth ..

The approach is applicable to a wide range of processes from a wide range of

process industry sectors. The approach also covers all aspects of conceptual .

layout, from estimating the size of the process equipment from minimal process

data through to calculating their elevations and deriving their plan positions.

The approach has been implemented successfully as "Plant Layout System" or

"PLS". It includes a supporting knowledge base which was elicited and encoded

during this work. The generic approach and the implementation are both designed

so that knowledge that is specific to a sector of the process industry, or even a

company, can be readily added.

PLS has been applied to a test process of typical size and complexity, and which

encompasses a representative range of layout issues and problems. It generated

a layout that is entirely satisfactory and conventional from an engineering

viewpoint. The approach to automated plant layout and its implementation in PLS

is considered to be generally applicable.

All three objectives of this work, stated in Chapter 1, have been achieved. The

work shows that it is practical to use an Expert System to generate conceptual

process plant layouts in a commercial design environment. The work also

indicates an approach by which such an Expert System can be implemented. Such

an Expert System would bring substantial benefits to its users which include:

• Improved quality of layouts,

• Quality Assured layout,

227

• Layout integrated with computerised design systems,
• Layout data provided to process engineers,

• Potential for substantial time savings,
• Rational review and amendment of layout proposals
• Better use of layout engineers' time.

The approach developed during this work adopts the same philosophy and
assumptions as a layout engineer. The approach places the same importance as
does the engineer on the various design objectives for the layout. Both attempt
to design the same features into the layout. This is why the approach succeeds
and a highly important aspect of the research work was to elicit and understand
these engineering principles. However, the approach to layout by Expert System
and the engineer's approach differ markedly in all but the overall structure, even
though both achieve the same results. It was found during this work that the
engineer uses an approach that would be difficult to emulate in a computer
program, even an Expert System. The engineer's approach is highly fluid, almost
unstructured, and relies heavily on human spatial reasoning and visualisation
faculties. An important opportunity to enhance plant layout practice would have
been missed had the engineer's approach been emulated in any case. The

approach to layout by Expert System imposes a formal procedure on a currently
ad hoc task and allows the layout to be audited and inspected. This introduces
Quality Assurance to plant layout, never feasible before.

The approach to layout by Expert System is perhaps the most important result of
this work. It is appropriate, therefore, to summarise the approach, as follows.

• Design constraints in plant layout dictate relative positions of entities. The

standard AI technique of constraint propagation represents the design
constraints very naturally. This technique is highly efficient and appropriate

for laying out process plant. The design constraints are inferred by generic

knowledge, elicited from layout engineers. This ensures that this key step

is rigorous and exhaustive, critical for layout quality and Quality Assurance.

228

• Constraints are divided into two categories, each with markedly different

properties. These are called "Functional Relationships" or "FRs" and

"Spatial Relationships" or "SRs". FRs record design constraints and drive

the spatial synthesis. They form an interface between the layout knowledge

and the generic spatial synthesis algorithms. The spatial synthesis

algorithms propagate the FRs to form SRs, which record relative positions

of the entities within the layout. The constraints are propagated by

algorithms which are specific to their task for efficiency.

• All FRs are recorded in the database persistently, even those which cannot

be satisfied. They can be inspected to ensure that all important constraints

imposed by a process can be satisfied in a layout. All contradictions

between constraints are also recorded explicitly. These records provide a

design history and highlight possible design alternatives. Together, the

records of the FRs and contradictions provide an audit for the layout

solution, essential for Quality Assurance. An Expert System has the

capacity to consider all germane constraints whereas an engineer is

restricted to those which are key.

• Process plant layout is invariably over-constrained. Constraints are selected

to be relaxed using a qualitative approach which is unique. This technique

expresses the highly non-linear relationship between the number of

constraints contradicted and the importance of satisfying them.

• The layout is synthesised in a series of separate but complementary phases

into which the task is decomposed. The first phase is a pre-processing

phase in which the input data are checked, the physical sizes of the

equipment are estimated and the FRs are inferred and recorded. The

elevations of the equipment items are calculated in the second phase,

equipment items are collected into groups in the third and the plan positions

are derived in the fourth. This decomposition extends the range of

229

applicability by allowing PLS to layout larger or more complex plants and

does not compromise the quality of the layout.

• Process equipment items which have an affinity with one another are

collected into groups. These groups are then collected to form increasingly

more expansive groups using three separate algorithms. The first collects

entities which can share a service or facility. The second uses a powerful

abstract relationship which collects the members of a process unit or process

stage. The third collects entities which demand segregation and which are

mutually compatible. The techniques developed to form groups during this

work are unique in their efficacy and sophistication.

• The groups greatly simplify plan positioning by reducing the number of

constraints and entities which must be manipulated simultaneously. They

allow some constraints to be neglected during plan positioning because

group membership ensures that they are already fully satisfied. They

provide an effective treatment of coarse spatial requirements and partial

satisfaction of constraints and they divide the plant into sections in which

powerful meta-knowledge can be applied to assist reasoning during plan

positioning.

• A very typical frame based representation is used for all entities, including

those derived during problem solving, such as constraints and groups.

Effectively all process plant layout knowledge is procedural, so the frame

language dispenses with inheritance of default values. Domain knowledge

is expressed in data driven rules, which are invoked explicitly from meta-

rules for efficiency. The rule language is also used to implement the

constraint propagation algorithms, for which the explicit control is essential.

Procedural Attachments are also provided because some layout knowledge

is better applied in goal directed reasoning.

230

PLS is the prototype of an Expert System which has the potential to yield

substantial benefits to the process industry. If a formally engineered version of

PLS were constructed incorporating the principles established in this work, it

would develop into a commercially usable system. This only requires sufficient

professional software engineering skills to be brought to bear - no additional

concepts or principles need be developed.

231

References

Aho, AV, Hopcroft, IE and Ullman, ID (1983) Data Structures and Algorithms,
Addison-Wesley, Massachussetts.

Akin, 0 (1978) How Do Architects Design? In Artificiai Ituelligence And
Pattern Recognition In Computer Aided Design, Latombe, IC (ed), North-Holland

Publishing Company.

Al-Asadi, HD (1980) Computer Aided Layout Of Chemical Plant, PhD Thesis,

University of Wales.

Alexander, C (1968) Major Changes In Environmental Form Required By Social

And Psychological Demands. In Proceedings Of The Second International
Symposium on Regional Development.

Allan, J (1984) Towards a General Theory of Action and Time. Artificial
Intelligence, 23, no 2, 123-154.

ANSI! ASME (1984) Specification For Horizontal End Suction Centrifugal Pumps
For Chemical Process, B73.1M-1984.

ANSI! ASME (1984) Specification For Vertical In-line Centrifugal Pumps For
Chemical Process, B73.2M-1984.

API (1986) Centrifugal Pumps For General Refinery Service, API Standard 610.

232

A.tcnet, L'R (,.\96%) The Structure Of The Design Process, 'Ro'fal Co\\e,&e~\ ~,
London.

Asimow, W (1962) Introduction To Design, Prentice-Hall, New Jersey.

Atkinson, N (1987) Taking 3D Modelling Into Conceptual Design. Process
Engineering, November, 53-55.

Balzer, R (1984) Capturing The Design Process In The Machine. In Proceedings

of Rutgers Workshop on Knowledge-Based Design Aids: Models Of The Design

Process.

Banares-Alcantara, R (1994) Applications of Knowledge Based Agents in the

Support of Process Design. In Proceedings of Applications of Knowledge Based
Systems in the Process Industry, Institution of Chemical Engineers, Manchester.

Barrow, HG (1984) Proving The Correctness Of Digital Hardware Designs. In

Proceedings of AAAI-B3.

Bausbacher E and Hunt R (1993) Process Plant Layout and Piping Design,
Prentice Hall, New Iersey.

Baykan, CA and Fox, MS (1986) An Investigation of Opportunistic Constraint

Satisfaction In Space Planning. In Proceedings of AAAI-86.

Bobrow, D and Winograd, T (1977) An Overview of KRL: A Knowledge

Representation Language. Cognitive Science, 1, 3-46.

Brachman, R (1978) A Structural Paradigm For Representing Knowledge, Report

Number 3605, Bolt Beranek and Newman, Cambridge, Massachussetts.

233

Brachman, R (1979) On The Epistemolgical Status Of Semantic Networks. In

Readings In Knowledge Representation, Brachman, R and Levesque, H (eds),

Morgan Kaufmann, California.

Brachman, RI, Amarel, S, Engelman, C, Engelmore, RS, Feigenbaum, EA and

Wilkins, DE (1983) What Are Expert Systems? In Building Expert Systems,
Hayes-Roth, F, Waterman, DA and Lenat, DB (eds), Addison-Wesley,

Massachusetts.

Bredbury, I (1986) Personal Communication.

Briggs R (1987) Approaching The Paperless Office For Project Engineering.

Process Engineering, July, 44-46.

Bryant, DA and Dains, RB (1977) Models Of Buildings In Computers: Three

Useful Abstractions. Industrialization Forum, 8, Number 2.

Bush, MJ and Wells, GL (1972) The Computer Generation Of Unit Plot Plans

For Chemical Plant. In Institution of Chemical Engineers Symposium Series
Number 35.

Chamiak, E (1978) With Spoon in Hand This Must be the Eating Frame. In

Proceedings of TlNLAP-2.

Chieng, W-H and Hoeltzel, DA (1987) A Generic Planning Model For Large

Scale Integrated Engineering Design. In Knowledge Based Expert Systems In
Engineering: Planning And Design, Sriram, D and Adey, RA (eds),

Computational Mechanics Publications, Southampton.

Cinar, U (1968) Facilities Planning: A Systems Analysis And Space Allocation

Approach. In Spatial Synthesis In Computer Aided Building Design, Wiley, New

York.

234

Coyne, RD and Gero, IS (1985) Knowledge And Sequential Plans. Environment
And Planning B, No 12,401-418.

Coyne, RD, Rosenman, MA, Radford, AD, Balachandran, M and Gero, IS

(1991) Knowledge-based Design Systems, Addison Wesley, Massachussetts.

Craft, I (1985) Designing a Database for the Process Engineer. Process
Engineering, May, 47-51.

Davis, E (1987) Constraint Propagation With Interval Labels. Artificial
Intelligence, 32, 281-331.

DIN (1979) Oiemische Apparate: Volumen und Gewichie, Begriffe,

Nannvolumenstuffen, DIB 28100.

Earl, CF (1980) Rectangular Shapes. Environment And Planning B, No 7,

311-342.

Eastman, CM (1970) The Analysis Of Intuitive Design Processes. In Emerging
Methods In Environmental Design And Planning, Moore, GT (ed), MIT Press,

Cambridge, Massachusetts.

Eastman, CM (1972) Heuristic Algoritms For Automated Space Planning. In

Proceedings of The Second International Conference On Artificial Intelligence.

Eastman, CM (1973) Automated Space Planning. Artificial Intelligence, No 4,

41-46.

Evans, FL (1979) Equipment Design Handbook For Refineries and Chemical
Plant, 2D1iedn, Volumes 1 and 2, Gulf Publishing Company, Houston, Texas.

235

Fahlman, SE (1975) A PLanning System For Robot Construction Tasks.

Artificial Intelligence, S, 1-49.

Fine, B (1965) Piping Design In Chemical Plant. In Institution of Chemical
Engineers Symposium Series, No 4.

Flemming U (1978) Wall Representations Of Rectangular Dissections And Their

Use In Automated Space Planning. Environment And Planning B, No 5,215-232.

Forgy CL (1982) Rete: A Fast Algorithm for the Many Pattern/Many Object

Pattern Match Problem. Artificial Intelligence, 19, 17-37.

Foulds LR (1983) Techniques For Facilities Layout: Deciding Which Pairs Of

Activities Should Be Adjacent. Management Science, 29, No 12, 1414-1426.

Foz, A (1973) Observations On Design Behaviour In The Parti. In Proceedings
of The Design Activity Conference.

Francis RL and White JA (1974) Facility Location And Layout: An Analytical

Approach, Prentice-Hall, New Jersey.

Frayman, F and Mittal, S (1987) COSSACK: A Constraint-Based Expert System

for Configuration Tasks. In Knowledge Based Expert Systems In Engineering:
Planning And Design, Sriram, D and Adey, RA (eds), Computational Mechanics

Publications, Southampton.

Freeman, P and Newell, A (1971) A Model For Functional Reasoning In Design.

In Proceedings of The International Joint Conference on Artificial Intelligence.

Fox, MS (1983) Constraint Directed Search: A Case Study Of Job Shop
Scheduling, Pitman, London and Morgan Kaufman, California.

236

Fox, MS (1986) Observations On The Role Of Constraints In Problem Solving.

In Proceedings of Sixth Canadian Conference on Artificial Intelligence.

Gavett, IW and Plyter, NY (1966) The Optimal Assignment Of Facilities To

Locations By Branch And Bound. Operations Research, 14, 210-232.

Gero JS and Coyne RD (1987) Knowledge Based Planning As A Design

Paradigm. In Proceedings of IFIP Working Group Working Conference On
Design Theory For CW.

Gilleard J (1978) LAYOUT - A Heirarchical Computer Model For The

Production Of Architectural Floor Plans. Environment And Planning B, No 5,

233-241.

Grason J (1968) A Dual Linear Graph Representation For Space Filling Location

Problems Of The Floor Plan Type. In Emerging Methods In Environmental
Design And Planning, Moore, GT (ed), MIT Press, Massachusetts.

Grason J (1971) Approach To Computerized Space Planning Using Graph

Theory. In Proceedings Of The Eight Design Automation Conference.

Gunn, DJ (1970) The Optimised Layout Of A Chemical Plant By Digital

Computer. Computer Aided Design, 11, Spring.

Gunn, DJ and AI-Asadi, HD (1980) Computer Aided Layout Of Chemical Plant:

A Computational Method And Case Study. Computer Aided Design, 19, No 3,

April.

Hayes-Roth, F and Lesser, VR (1977) Focus Of Attention In The HEARSAY-II

Speech Understanding System. In Proceedings of Fifth International Joint
Conference on Artificial Intelligence.

237

Hillier, FS and Connors, MM (1966) Quadratic Assignment Problem Algorithm

And The Location Of Indivisible Facilities. Management Science, 13, 42-57.

Hink, RF and Woods, DL (1987) How Humans Process Uncertain Knowledge.

AI Magazine, Fall, 41-53.

Jain, D, Chatterjee, M, Unemori, A and Thangam, N (1992) A Knowledge-

Based Automatic Pipe Routing System. In Proceedings of 1992 ASME
International Computers in Engineering Conference and Exposition.

Johnson, TE and Weinzapfel, G (1970) IMAGE: An Interactive Graphics-Based
Computer System For Multi-Constrained Synthesis, Report of Department Of

Architecture, MIT, Massachussets.

Kant, E and Newell, A (1982) Naive Algorithm Design Techniques: A Case

Study. In Proceedings of The European Conference on Artlficial Imelligence.

Kelly, Van E (1984) The CRITTER System - Automating Critiquing Of Digital

Circuit Designs. In Proceedings of 21st Design Automation Conference.

Kern, R (1977) Plant Layout, McGraw-Hill, New York.

de KIeer, J (1986a) An Assumption-based TMS. Antficial ltuelligence, 28, 127-

162.

de KIeer, J (1986b) Extending the ATMS. Artlficial Intelligence, 28, 163-196.

de KIeer, I (1986c) Problem Solving with the ATMS. Anijiciallntelligence,28,

197-224.

Kletz, TA (1976) The Application Of Hazard Analysis To Risks To The Public At
Large, Elsevier, Amsterdam.

238

K.rejcirik,M (1969) Computer-Aided Plant Layout. Computer Aided Design, 2,
No 1, Autumn, 7-19.

Kuipers, B (1975) A Frame For Frames: Representing Knowledge for
Recognition. In Representations and Understanding: Studies in Cognitive Science,
Bobrow, D and Collins, A (eds), Academic Press, New York.

Kuipers, B (1984) Commonsense Reasoning About Causality: Deriving
Behaviour From Structure. Anificial Imelligence, 24, 169-203.

Lam, M and Mostow, I (1983) A Transformational Model Of VLSI Systolic
Design. In Proceeedings of IFIP Working Group JO.2 Sixth International
Conference on Computer Hardware Description Languages And Their
Applications •

Lee, RC and Moore, JM (1967) CORELAP - Computerised Relationship Layout
Planning. In Journal of Industrial Engineering, xvm, 3, 195-200.

Leestey, ME and Newell, RG (1972) The Determination Of Plant Layout By
Interactive Computer Methods. In Institution of Chemical Engineers Symposium

Series, No 35.

Levin, PH (1964) Use Of Graphs To Decide The Optimum Layout Of Buildings.

The Architect's Journal, 7, No 10.

Lew, JP and Brown, PH (1968) Evaluation And Modification Of CRAFT For An

Architectural Methodology. In Emerging Methods In Environmental Design And
Planning, Moore GT (ed), MIT Press, Massachusetts.

Lichtenstein, Sand Fischoff, B (1977) Do Those Who Know Also Know More
About HowMuch They Know'? Organizational Behaviour And Performance, 20,
159-183.

239

Lichtenstein, S, Fischoff, B and Phillips, LD (1982) Calibration Of Probabilities:
The State Of The Art To 1980. In Judgement Under Uncertainty: Heuristics And
Biases, Kahneman, D, Slovic, P and Tversky, A (eds), Cambridge University
Press, New York.

Liggett, RS (19n) Floor Plan Layout By Implicit Enumeration. In Proceedings
of Third EDRA. Conference.

Luckman, 1(1967) An Approach To The Management Of Design. Operational
Research Qualerly, 18, No 4, 345-358.

Mackworth, AK (1977) Consistency in Networks of Relations. Artificial
Intelligence, 8, 99-118.

Madden, 1, Pulford, Cl and Shadbolt, NR (1990) Plant Layout - Untouched By
Human Hand? The Chemical Engineer, 24thMay, 32-36.

Maher, ML and Fenves SI (1985) Hi-Rise: An Expert System For The
Preliminary Structural Design of High-Rise Buildings. In Knowledge Engineering
in Compurer-Aided Design, North-Holland Publishing Company.

Laboratoires de Marcoussis (1986) CADDO: A Knowledge Based System For
Space Allocation, Laboratoires de Marcoussis, Marcoussis, France.

Marcus, RI (1986) Multi-level Constraint Based Configuration. Hewlett Packard

Journal, November, 54-56.

Markus, TA, Whyman, P, Morgan, 1, Whitton, D, Mavert, I, Carter, D and
Fleming,I (19n) Building Performance, Applied Science, London.

Masanori, N (1976) Development Of A Computer System For 3-D Space
Allocation, Masters Thesis, Department Of Architecture, MIT, Massachusetts.

240

Maver, TW (1971) PACE1: Computer Aided Building Appraisal. Architect's
JOUT1UJ1, July 28.

McBrien, A (1989a) Layout Execution. Presented at Process Plant Layout,
University of Nottingham, 20th to 25th September.

McBrien, A, Madden, I and Shadbolt, NR (1989b) Artificial Intelligence

Methods in Process Plant Layout. In Proceedings of Second International
Conference, IEAIAIE-89, Tullahoma, USA.

McCarthy, J and Hayes, PJ (1969) Some Philosophical Problems From the

Standpoint of Artificial Intelligence. In Machine Intelligence 4, Michie, D and

Meltzer, B (eds), Edinburgh University Press, Edinburgh.

Mecklenburgh, JC (1985) Process Plant Layout (ed), 2Medn, George Godwin,

Harlow and Halstead Press, New York.

Metropolis, N, Rosenbluth, AW, Rosenbluth, MN, Teller, AH and Teller, E
(1953) Equation Of State Calculations By Fast Computing Machines. JOUT1UJ1

Of Chemical Physics, 21, 1087-1092.

Minksy, M (1975) A Framework For Representing Knowledge. In The

Psychology Of Computer Vision, Winston, P (ed), McGraw-Hill, New York.

Mistree, F, Hughes, OF and Phuoc, HB (1981) An Optimization Algorithm For

The Design Of Large, Highly Constrained Complex Systems. Engineering

Optimization, S, 179-197.

Mitchell, WI, Steadman, JP and Liggett, RS (1976) Synthesis And Optimisation

Of Small Rectangular Floor Plans. Environment And Planning B, No 1, 37-70.

241

Montanari, U (1974) Networks of Constraints: Fundamental Properties and

Applications to Picture Processing. lnformasion Sciences, 7, 95-132.

Moore, 1M (1974) Computer Aided Facilities Design: An International Survey.

Iniemational Journal Of Production Research, No 12, 21-44.

Mostow, 1 (1985) Toward Better Models Of The Design Process. 1he AI

Magazine, Spring, 44-56.

Mustacchi, C (1974) Optimal Process Layout By A Branch And Bound

Technique. lng. Chim. Ital., 10, No 12, December.

Muther, R (1961) Systematic Layout Planning, Industrial Education Institute,

Boston, Mass.

Muther, R (1962) Systematic Layout Planning. Factory, August, September and

October.

Nadel, BA (1989) Constraint Satisfaction Algorithms. Computational
Intelligence, S, 188-224.

Negroponte, Nand Grossier, L (1968) URBAN5: A Machine That Discusses

Urban Design. In Emerging Methods In Environmental Design And Planning,
Moore, GT (ed), MIT Press, Massachusetts.

Newman, WM (1966) An Experimental Program For Architectural Design.

Computer Journal, 9, June, 21-26.

Pereira, LM (1978) Artificial Intelligence Techniques In Automatic Layout

Design. In AT1ijiciaJIntelligence And Pattern Recognition In Computer Aided
Design, Latombe, IC (ed), IFIP North-Holland Publishing Co.

242

Perry, RH and Green, DW (1984) Perry's Chemical Engineers' Handbook, Sixth

Edition, McGraw-Hill, New York.

Pfefferkorn, CE (1975) A Heuristic Problem solving Design System For

Equipment Or Furniture Layouts. Communications Of The Association Of

Computing Machinery, 18, No 5, 286-297.

Rose, JC, Wells, GL and Yeats, BH (1978) A Guide To Project Procedure,
Institution of Chemical Engineers.

Rumbaugh, J, Blaha, M, Premerlani, W, Eddy, F and Lorensen, W (1991)

Object-Oriented Modeling And Design, Prentice-Hall, New Jersey.

Russo, TJ and Tortorella, AI (1992) Plant Layout - The Contribution Of CAD.

Chemical Engineering, April.

Ryan, K and Harty N (1990) Supporting Choice and Evaluation in Preliminary

Design. In Proceedings of the Third International Conference AIEIAEI.

Sahni, S and Gonzalez, T (1976) P-Complete Approximation Problems. Journal
of Association Of Computing Machinery, 23,478-485.

Simon, HA (1969) The Sciences of the Artificial, MIT Press, Massachussets.

Seehof, JM and Evans, WO (1967) Automated Layout Design Program. Journal
Of Industrial Engineering, xvrn, No 12, 690-695.

Schank, RC and Abelson, RP (1977) Scripts, Plans, Goals and Understanding,
Lawrence Erlbaum, New Jersey.

Shadbolt, NR, Motta, E and Rouge, A (1993) Constructing Knowledge-Based

Systems. IEEE Software, 10, No 6, 34-38.

243

Sharpe, R and Marksjo, BS (1985) Facility Layout Optimisation Using The

Metropolis Algorithm. Environment And Planning B, No 12, 443-453.

Shuquair, MM (1978) Studies on Plant Layout, PhD Thesis, University of

Sheffield.

Sileti, Cl (1993) Design of Protein Purification Processes By Heuristic Search.

In Artificial Intelligence in Process Engineering, Mavrovounotis, ML (ed),

Academic Press, San Diego, California.

Simon, HA (1973) Structure Of Ill-Structured Problems. Artificial Intelligence,

4, 181-201.

Silverstein, EE and Sun, P (1990) A Constraint Management Tool For

Concurrent Engineering. In Proceedings of the Third International Conference
AIE/AEI.

Simmons, R (1986) Commonsense Arithmetic Reasoning. In Proceedings of
MAI-86.

Singh, N (1983) MARS: A Multiple Abstraction Rule-Based Simulator Stanford

Heuristic Programming Project Report HPP-83-85.

Stallman, RM and Sussman, GJ (1977) Forward Reasoning And

Dependency-Directed Backtracking in a System for Computer-Aided Circuit

Analysis. Artificial Intelligence, 9, 135-196.

Standard (1989a) Personal Communication.

Standard (1989b) Personal Communication.

Standard (1989c) Personal Communication.

244

Steadman, JP (1970) The Automatic Generation Of Minimum-Standard House

Plans. In Proceedings of Second Annual Conference of Environmental Design
Research Association.

Steele, GL, Jr (1985) Common LISP: The Language, Digital Press,

Massachusetts.

Stefik, M (1981a) Planning With Constraints (MOLGEN: Part 1). Artificial

Intelligence, 16, 111-140.

Stefik, M (1981) Planning And Meta-Planning (MOLGEN: Part 2). Artificlal

Intelligence, 16, 141-170.

Stefik, M and Bobrow, D (1986) Object Oriented Programming: Themes and

Variations. Al Magazine, 6, No 4, 40-62.

Syska, I, Cunis, R, Gunter, A, Peters, H and Bode H (1988) Solving

Construction Tasks With A Cooperating Constraint System. In Research and
Development in Expert Systems V, Kelly, B (ed), Cambridge University Press.

Taffe, P (1990) The Inside View To Offshore Design. Processing, March,

22-25.

Tubular Exchangers Manufacturers Association (1978) Standards of the Tubular
Exchangers Manufacturers Association, Sixth Edition.

Thompson, I (1989) Personal Communication.

Waltz D (1975) Understanding Line Drawings of Scenes With Shadows. In The

Psychology of Computer Vision, Winston PH, (ed), McGraw-Hill, New York.

245

Whitehead, Band E1dars, MZ (1964) An Approach To The Optimum Layout Of

Single-Story Buildings. The Architects Journal, 139, 1373-1380.

Wild, B (1972) Mass Production Management, John Wiley, London.

Willoughby, TM (1975) Building Forms And Circulation. Environment And
Planning B, 2, No 1, June.

Winograd, T (1975) Frame Representations and the Declarative/Procedural

Controversy. In Representations and Understanding: Studies in Cognitive
Science, Bobrow, D and Collins, A (eds), Academic Press, New York.

Yessios, Cl (1972) FOSPLAN: A Formal Space Planning Language. In

Proceedings Of The Fourth Environmental Design Research Conference, Mitchell,

W (ed), UCLA, California.

Armour, GC and Buffa ES (1964) A Heuristic Algorithm and Simulation

Approach to R~lative Location of Facilities. Management Science, January, 294-
309.

Woodland J (1989) Personal Communication.

246

Appendix A: Notation for Example Frames

The following notational conventions were adopted for the example frames

presented throughout this thesis.

A frame is delimited by braces "{... }". The first element within the braces, for

example S-l, represents the unique number that PLS assigned to each frame in the

database. PLS uses this number internally to index and cross-reference frames.

For these examples, the numbers have been rationalised to be sequential for

clarity. Thus,

{S-I

}

represents a frame with the unique number S-l.

A slot of a frame is delimited by square brackets "[...]". The slot name appears

first then the slot value second. Thus,

[name RI04]

represents a slot with name "name" and value "RI04".

Where the value of a slot is a frame, the frame is written in the same position as

an atomic numeric or symbolic value. The slots of the frame are displayed inside

its delimiting braces. Thus,

[drive
{S-3 [required-power lOO]

[voltage 440n
]

represents a slot with name "drive" and the frame S-3 as its value. The frame S-3

has two slots with names "required-power" and "voltage" respectively.

247

