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Abstract

Wave-bearing surfaces and compressible fluids are often adjacent, the subsequent interactions are
of substantial interest in structural acoustics, acoustic microscopy, seismology and many other
fields. Here we take a broad view and discuss a variety of problems, both time harmonic and
transient, which are amenable to exact solution. These in turn highlight physical effects and can
additionally form the basis of asymptotic solutions.

In structural acoustics the interaction of plate waves with defects is Cl major source of UII-

derwater noise. A model problem of two semi-infinite elastic plates (made of different material)
joined in a variety of ways is considered for obliquely incident flexural plate waves. Asymptotic
results for 'light' and 'heavy' fluid loading are extracted. In addition reciprocity and power flow
relations, besides being of independent interest, provide a useful check on the results.

There are many closely related problems involving a fluid loaded elastic solid. The situation
here is somewhat similar, but often more complicated, due to the number of waves that an elastic
solid supports, mode conversion at interfaces, and interfacial waves.

We first address the scattering effects of low frequency waves by very small interfacial defects,
that is, small relative to a typical wavelength. In this limit, and in related water wave or acoustic
work, matched asymptotic expansions are used. An important aspect, that has not been noticed
before, is the natural separation that occurs in the inner problem into fluid and solid pieces. A
matching argument may now be used to give a useful physical interpretation of these defects and
far field directivity patterns show the distinctive beaming that occurs along the Rayleigh angles
in the light fluid loading limit.

In many areas of interest embedded defects are imaged by pulses and we therefore require a
transient analysis. In this case our problem involves a combination of compressional and shear
source loadings beneath a fluid-solid interface. The exact solution is found and a full asymptotic
analysis of this solution is performed with an emphasis upon wavefront expansions and leaky
waves, and in particular, for 'light' and 'moderate' fluid loading. In some situations, when the
sources are near the interface, a pseudo-compressional wavefront is generated and the limit as
the loading approaches the interface is investigated. These non-geometric wave arrivals may be
important in seismology and elastic wave studies related to the non-destructive evaluation of
structures.

This study is generalised to investigate the dynamic stress loading of subsurface cracks in either
homogeneous or non-homogeneous media. An iterative method of solution based on physical
considerations is developed and quantities of interest such as the scattered displacement fields
and the stress intensity factors are determined.

The problems considered here are ideally suited to analysis by transform methods and the
Wiener-Hopf and Cagniard-de Hoop techniques.
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Chapter One

Introduction and overview

1.1. Introduction

Wave-bearing surfaces are often in contact with neighbouring compressible fluids, and the
resulting fluid-solid wave interactions are of interest in many practical situations. These
include structural acoustics, acoustic microscopy, seismology, and many other branches
of geophysics and engineering. In these applications, many solutions exist in the absence
of the fluid; fewer exist with the addition of a fluid, which is a complicating feature. The
aim of this thesis is to examine the detailed mathematics and physics that emerges for
fluid loaded elastic solids, or elastic plates. That is, to investigate several problems that
are amenable to exact and asymptotic solutions. Along the way, we place an increasing
emphasis on surface and 'leaky' waves and analogous plate waves. Previous problems,
with or without the fluid coupling, have not exhausted the interest in fluid loading because

the effects are often markedly different in each case.

Several of the problems considered in this thesis are motivated, in part, by an interest
in non-destructive testing and seismology. Aspects of interest in seismology are discussed
in Ewing et al. (1957), Cagniard (1939) and others. However these authors, and also

more recent authors (e.g. de Hoop & van der Hijden, 1985) have paid less attention to
'leaky' waves than we do here. These waves are particularly important in non-destructive
testing techniques, where there is recurrent interest. One such technique is the acoustic
microscope which involves imaging an elastic solid with waves incident from an overlying
fluid; the experimental technique associated with the acoustic microscope is described
in Briggs (1985, 1992). The device is particularly adept at imaging surface breaking

(or subsurface) cracks, the book by Briggs (1992) contains several experimental results.
In this field, there is particular interest in scattering by very small defects and cracks,
see Briggs et al. (1990) as these can act as stress concentrators and lead to potentially
catastrophic failure of specimens. There has been some recent developments of this
technique in medical imaging; Hildebrand & Rugar (1984) is an early example in this

blossoming area.

We are also motivated by related problems in structural acoustics. Here, the fluid
loading of vibrating structures is important in many other technological or engineering

applications. For instance, in marine engineering, mechanical and nuclear engineering,
and in physiological process; these areas and many others are described in Crighton

(1989). In many contexts it is the diffraction of acoustic and structure-borne waves at



1. Introduction and overview 2

plate junctions that is important; it is this behaviour that is responsible for the sound
that is generated in the fluid. Mathematically the fluid loaded elastic solid and elastic
plates are naturally similar, and we can investigate potentially important physical results
by dealing with the latter as the technical details are easier to deal with. In this vein we

investigate obliquely incident waves and material changes for fluid loaded elastic plates.

The fluid loading effects in the above fields are profoundly important. A key aspect,
that is often also remarkably subtle, is the emergence of leaky waves. It is this aspect
that we aim to illustrate in this thesis in a wide variety of problems.

1.1.1. Surface and leaky waves

Elastic solids and plates, in the absence of fluid loading, with planar surfaces support
surfaces waves in the form of Rayleigh and flexural plate waves respectively. These
unattenuated waves propagate along the surface of material; for an elastic solid there is

exponential decay with depth into the elastic material. Leaky waves are perturbations
away from these in vacuo surface waves. The reason for their name is that, provided
the in vacuo surface wavespeed is greater than the acoustic wavespeed in the fluid, then
the introduction of light fluid loading causes the in vacuo wave to be perturbed such
that energy is shed into the fluid along a critical angle (Crighton, 1979). This leads to
distinctive beaming in the fluid along this angle, together with a response in the angular
directivity associated with scattered cylindrical waves, and in the wavefield. We shall
see later (Chapter 6) that there are subtleties in this beaming behaviour for plate waves

obliquely incident upon defects.

In brief, in a fluid-elastic solid interaction, an unattenuated interfacial wave, the Scholte
wave (a Stoneley wave), propagates along the interface; the wave decays exponentially
with depth in both materials, it is subsonic relative to the surrounding fluid, and in the
light fluid loading limit (where the fluid-solid coupling is weak) the decay is rapid in the
solid and weak in the fluid. In the absence of the fluid the corresponding unattenuated
surface wave is a Rayleigh wave. Perhaps surprisingly, in the limit as the fluid coupling
tends to zero the Scholte wavespeed does not limit to the Rayleigh wavespeed, rather it
tends to the compressional fluid wavespeed. Thus if we take an in vacuo material and
add fluid, the natural question is: Where has the Rayleigh wave gone? In this light fluid
loading limit, the Rayleigh wave becomes a leaky wave; it is a perturbation of the usual
Rayleigh wave, that is, it is no longer unattenuated, it now decays exponentially with
distance along the interface, and energy flows into the fluid along a critical angle.

Similarly for a fluid-elastic plate scenario there is, in the absence of the fluid, an in
vacuo flexural plate wave that plays the role of the Rayleigh wave. The only difference
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is that this wave may, depending upon the frequency, have a wavespeed greater than
or less than the acoustic wave speed; that is, it can be either supersonic or subsonic

relative to the fluid. In the first case leaky waves emerge. The addition of the fluid leads,
analogously to the Scholte wave, to an unattenuated flexural plate wave that is again

subsonic relative to the acoustic wavespeed.

Leaky (Rayleigh) waves playa vital role in the acoustic microscope, it is the excitation
of the leaky waves caused by a defect that is being observed by the microscope. The wave
carries with it detailed information about the elastic properties of the flawed material
that leads to an overall picture. The main application of leaky waves has (historically)
been in structural acoustics, see for instance Crighton (1989), where the flexural plate
waves are perturbed by an overlying fluid. The crucial difference, that the flexural plate
wave is frequency dependent however, leads to some mathematical differences.

1.1.2. Basic concepts

It is now often suggested in cases when analytical ideas are used that it would be simpler
to compute the results using an existing package. In answer, there is firstly, the question
of accuracy, but more importantly, careful analysis is essential to delineate the physical
processes at hand and to help check and interpret numerical results. The problems de-
scribed in this thesis are ideally suited to analysis by transform methods and, sometimes,
the Wiener-Hopf technique. Some problems are also amenable to the Cagniard-de Hoop

inversion method.

The Wiener-Hopf technique is a widely used and valuable mathematical tool. For a

detailed description of the method, with an emphasis on some acoustic and electromag-
netic applications, see Noble (1958). Often, mixed boundary value problems (examples
arising from a semi-infinite geometry are contained in this thesis) are necessarily tackled
using Fourier transforms and the Wiener-Hopf technique. The technique is not restricted
to being used with Fourier transforms, it can also be used in conjunction with the Mellin
transform, see Chapter 2.

The Cagniard-de Hoop method (Cagniard, 1939; de Hoop, 1960) is an excellent
method for solving elastic wave interaction problems; it is also referred to as the Lamb-
Pekeris method (Lamb, 1904; Pekeris, 1940). The underlying ideas are comprehensively
discussed by Miklowitz (1978), Hudson (1980) and others. In essence, the method consists
of an elegant transformation that reduces a double transform inversion to an explicit
result using a particular time dependence. Along the way, an inversion path is constructed
that indirectly captures much of the physical structure of the solution.
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1.2. Overview to the thesis

In this thesis we cover various topics in elastic wave propagation in which mathematical
analysis may be successfully used to distinguish dominant effects, and in other cases used
to aid numerical methods. The plan of the thesis is as follows.

In Chapter 2, the scattering of incident plane elastic waves by a variety of different
defects that lie upon a fluid-solid interface is considered in a low frequency limit using
matched asymptotic expansions. There are complications due to the interfacial coupling
that have apparently dissuaded others from using this route. However, following through
the usual philosophy of 'inner' and 'outer' expansions and carefully matching the solutions
together progress can be made. This really hinges on one useful aspect, that has not
previously been observed: in the limit as f. « 1 then for the inner problems the fluid and
solid pieces uncouple in a particularly convenient manner allowing analytical solutions to
be deduced. These inner solutions are then matched with the appropriate outer solutions.
An expansion scheme is developed in terms of a parameter f., the ratio of a typical defect
length scale to a typical wavelength of the incident field, taken to be small.

Three different canonical situations occur, and these are illustrated via the three spe-
cific examples treated here: a rigid strut, an edge crack, and a rigid strip. In each case
the leading order matching is performed to identify the leading order contribution of the
defect to the acoustic field in the far field. In particular, each defect is identified with
a source or dipole response in interfacial stress or displacement; we aim to identify how
different defects appear when viewed from afar. Potentially, we are then in a position to

model them in a simple manner.

Many practical imaging techniques use pulses to insonify materials. Specifically, cracks
and other defects and obstacles are often imaged by pulses (Briggs, 1992) and thus we

require a transient analysis; there are also related applications in seismology. Hence to
complement the work using time harmonic vibrations, the following three chapters focus
on transient wave propagation.

Transient line loadings are first considered in Chapter 3. The loadings are located in an
elastic half space that is coupled to an overlying fluid half space. The resulting fluid and
solid responses are found exactly in a simple closed form using the Cagniard-de Hoop
technique and transform methods. These exact solutions are analysed in detail both
for responses upon the interface, and within the fluid. Along the way, we require the
numerical identification of the Cagniard paths. A perturbation method is developed when
the loading is near the surface to complement these numerical approaches of identifying

the Cagniard paths.
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There are then three items on our agenda in this chapter. First, a full asymptotic
analysis of the solution is performed with an emphasis upon wavefront expansions and
leaky waves. These results are used as Green's functions for more complicated spatial
and time dependent loadings. Second, we abstract useful information from the exact
solution, and the physical structure of the wave responses is revealed. Thirdly, for 'light'
and 'moderate' fluid loading, we identify a definite response associated with the leaky
Rayleigh pole, and demonstrate how the leaky response emerges.

The asymptotic analysis of the solution is performed via a direct analysis of the trans-
form solution using steepest descents and residue calculus. The forms of the initial
wavefronts generated are given exactly, and a wavefront expansion for the disturbance
generated by the leaky Rayleigh wave is identified. Close to the interface, Scholte waves
contribute to the solution and these too are evaluated. For these waves a residue cal-
culation from the transform solutions is shown to be consistent with the exact analysis.
In the limit as the loading approaches the interface, a pseudo-compressional wavefront is

generated; this limiting process is also investigated.

All the asymptotic expansions are utilised with the convolution theorem to give asymp-
totic results valid near the wavefronts for quite general time dependent loadings. This
gives quick, and relatively simple, expressions for the full response, thus avoiding time

consuming numerical evaluations.

To illustrate the relative importance of 'light' and 'moderate' fluid loading we consider
two material combinations, these are typical of metal-water and rock-wat.er combinations.

In Chapter 4 we focus, in more detail, on the near surface fields encountered in the
third chapter. These so-called non-geometric wave arrivals are often important in seis-
mology and elastic wave studies related to the non-destructive evaluation of structures.
In particular tunnelling signals caused by significant differences in the material parame-
ters, and wavespeeds at interfaces, generate large responses that may often be dominant.
This is common in elastic wave propagation, for instance, when a source is close to the
interface of a faster medium with a slower medium, the response in the slower medium is
dominated by a signal that has 'tunnelled' through the faster medium. Other instances
of tunnelling occur when a compressional source is close to a free surface. In this case
the compressional to shear wave conversion at the surface, and the mismatch between
compressional and shear wavespeeds, leads to a sharp non-geometric shear wave arrival.
Equally, thin high velocity layers demonstrate tunnelling effects that are perturbations
of the response brought about by a source in a surrounding slower medium. In the above
'close' refers to the viewpoint of an observer some distance away. In all of the instances
there is a common feature, namely, each problem contains a ratio of length scales, »[h,
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with h either the source depth or layer thickness and x the observer distance; this ratio
of length scales characterises the non-geometric responses. Typically, the non-geometric
response arises when the current problem is a perturbation away from one where the
associated arrival has a direct geometric interpretation.

Such problems are again ideally suited to analysis by the Cagniard-de Hoop technique.
Our pitch in this chapter, is that each tunnelling response is identified as a perturbation
away from an exact solution; this leads to highly accurate and relatively simple explicit
asymptotic solutions. The perturbation scheme is demonstrated here via the solution of
two problems: a compressional source placed beneath a fluid-solid interface and placed
beneath a thin high velocity layer. The first problem has separate non-geometric re-
sponses due to both the material mismatch and the wave conversion at the interface.
The thin high velocity layer perturbs the field generated by a compressional source in
a slower surrounding medium. In both cases the non-geometric arrivals are analysed in
detail.

What seems to be needed now is to give some shape and size to the subsurface defects of
the last two chapters. Given the complexity of most fluid-solid problems we first consider
non-finite, buried, plates and cracks. In Chapter 5 some complementary techniques are
used to investigate the dynamic loading of subsurface cracks in either homogeneous or
inhomogeneous media; the quantities of interest such as the scattered fields and the stress
intensity factors are determined. For homogeneous media these involve exact solutions
utilising transform methods and the Wiener-Hopf technique. In some cases this approach
is neither feasible, due to the matrix nature of the problem, nor physically revealing. To
ease interpretation an iterative method based on physical considerations is developed.
For special loadings invariant integrals are utilised to provide non-trivial extensions of
the analysis to inhomogeneous media, at least insofar as the stress intensity factors are

concerned.

We firstly illustrate the efficiency and scope of the techniques upon anti-plane subsur-
face scattering problems. Then we proceed to treat the more complicated and relevant
in-plane scattering problems. In both cases we consider a crack that lies in an elastic half
space that is coupled to an overlying fluid half space (effectively a vacuum in the first
instance). The crack is subjected to a prescribed stress loading on the crack faces. The
resulting fluid and solid responses are found exactly by means of an iterative scheme in
which successively the Cagniard-de Hoop and Wiener-Hopf techniques are applied.

It is the aim of Chapter 5 to extract the stress and displacement fields, and in addition,
the form of the near crack tip fields. These solutions are useful in determining specific
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wavefront arrivals that are associated with waves interacting with the crack and interface,
and can be used as the basis of asymptotic studies.

Finally, in Chapters 6 and 7, we leave the transient fluid-elastic solid problems of the
last three chapters, and return to time-harmonic analysis, but now for fluid-loaded elastic
plates. Much of the analysis for fluid-elastic solid problems involves complicated algebra,
whereas the fluid-loaded plates are slightly easier and yet physically related. Some prob-
lems are not easily amenable to study in the fluid-elastic case, but are approachable for
plates. In particular we want to assess how a subsonic (relative to the fluid) surface wave
scatters when obliquely incident upon a surface breaking crack, or defect, or change in
material properties. This is loosely analogous to flexural plate waves incident obliquely
at the junction of two dissimilar, co-planar elastic, fluid-loaded plates, these are the sub-
ject of Chapter 6. In particular we want to see if there exists a situation whereby all
the wave energy is trapped in a finite region, then this could potentially lead to resonant

behaviour.

The oblique aspect of plate wave diffraction has remained relatively unexplored. In this
problem, the explicit solution is constructed using Fourier transforms and, the champion
of this thesis, the Wiener-Hopf technique for a variety of edge conditions applied at the
junction. These solutions illustrate several effects that are specifically associated with
oblique incidence, such as cut-off frequencies below which power transmission to infinity
in one plate is zero. The solution is presented in a form that neatly connects with limiting
cases where one plate is rigid, acoustically soft, or where the two plates have identical
material properties. The 'light' and 'heavy' fluid loading limits are briefly examined, and
a power flow theorem provides a useful check on the results and information about the
distribution of scattered power.

Power-flow, and also reciprocity, relations are often of value in numerical studies in-

volving obstacles and defects in acoustics; they provide a useful check on the results.
These reciprocity relations can emerge in many different ways and as a starting point, in
Chapter 7, a reciprocity relation between the far-field behaviour of the scattered fields
generated by incident waves, either flexural, or acoustic upon rigid defects is derived.
These defects are embedded in a thin, elastic, fluid-loaded plate. The reciprocity result
is then illustrated upon two model problems for which the explicit solution can be deter-
mined and the relation demonstrated. These problems are closely related to those found

in Chapter 6.

Finally some concluding remarks are compiled in Chapter 8 together with some dis-
cussion of further applications and extensions of this work and our next port of call.
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1.3. How to read this thesis

The major thesis chapters (2-7) are presented as completely self contained papers each

having its own introduction, discussion and references, and are designed to be read as

individual units. Some of the chapters have appeared, or are submitted, in various

journals co-authored with R. V. Craster and with R. V. Craster & N . .1. Balmforth (6).

Chapter 2 as Scattering by small defects in the neighbourhood of a fluid-solid interface.

1998. IMA J. Appl. Math. 61, 155-177.

Chapter 4 as Cagniard-de Hoop path perturbations with applications to non-geometric
wave arrivals. 1999. To appear in J. Engng. Math.

Chapter 5 as Pulse scattering by a subsurface semi-infinite crack. 1999. Under consider-

ation in Int. J. Solids Structures

Chapter 6 as Diffraction at plate junctions. 1999. Under consideration in Quart. .1.
Mech. Appl. Math.

Chapter 7 as A reciprocity relation for structural acoustics. 1999. Under consideration

in J. Sound Vib.

References

Briggs, G. A. D., 1985. An introduction to scanning acoustic microcopy. Oxford University Press:
Royal Microscopical Society.

Briggs, G. A. D., 1992. Acoustic microscopy. Monographs on the physics and chemistry of
materials: 47, Oxford University Press.

Briggs, G. A. D., Jenkins, P. J. & Hoppe, M., 1990. How fine a surface crack can you see in a
scanning acoustic microscope? J. Microsc. 159, 15-32.

Cagniard, L., 1939. Reflection et refraction des ondes seismique progressives. Gauthiers-Villars,
Paris. Trans. and rev. by E. A. Flinn and C. H. Dix, 1962. Reflection and refraction of
progressive seismic waves. McGraw-Hill, New York.

Crighton, D. G., 1979. The free and forced waves on a fluid-loaded elastic plate. J. Sound Vib.
63, 225-235.

Crighton, D. G., 1989. The 1988 Rayleigh Medal lecture: fluid loading - the interaction between
sound and vibration. J. Sound Vib. 133, 1-27.

de Hoop, A. T., 1960. A modification of Cagniard's method for solving seismic pulse problems.
Appl. sci. Res. B 8, 349-356.

de Hoop, A. T. & van der Hijden, J. H. M. T., 1985. Seismic waves generated by an impulsive
point source in a fluid/solid configuration with a plane boundary. Geophysics 50, 1083-1090.

Ewing, W. M., Jardetzky, W. S. & Press, F., 1957. Elastic waves in layered media. McGraw-Hill,
New York.



1. Introduction and overview

Hildebrand, .J. A. & Rugar, D., 1984. Measurement of cellular elastic properties by acoustic
microscopy. J. Microsc. 134, 245-260.

Hudson, .1. A., 1980. The excitation and propagation of elastic waves. Cambridge University

Press.

Lamb, H., 1904. On the propagation of tremors over the surface of an elastic solid. Phil. Trans.
R. Soc. Lond. A 203, 1~42.

Miklowitz, J., 1978. The theoru of elastic waves and waveguides. North-Holland.

Noble, E., 1958. Methods based on the Wiener-Hop] technique. Pergamon Press.

Pekeris, C. L., 1940. A pathological case in the numerical solution for integral equations. Proc.
Nat. Acad. Sci. USA 26, 433~437,



10

Chapter Two

Scattering by small defects in the neighbourhood
of a fluid-solid interface

2.1. Introduction

Scattering effects by small defects at a fluid-solid interface are important in non de-
structive testing devices such as the acoustic microscope, Briggs (1992). It is therefore
useful to have analytical results for scattering by model defects. Unfortunately, due to
the complexity of the boundary conditions there are few closed form solutions available
even in the case when the fluid is absent. This is due to the inherent mode coupling
of compressive, shear, and surface waves at the interface (free surface in the absence of

fluid).

There is particular interest in scattering by very small defects, for instance, for very
small cracks see Briggs et al. (1990). To model these defects we consider the limit
when the characteristic length of the defect relative to a typical wavelength is small,
and matched asymptotic expansions are used. This approach has been successful in
scattering problems in acoustics, Crighton & Leppington (1973), short surface water
waves, Leppington (1972), and elastodynamics, Sabina & Willis (1977); a useful review
is given by Datta & Sabina (1986). Recent applications of the method have been in
water waves-acoustics, Mciver & Rawlins (1993), and in elastodynamics, Abrahams &
Wickham (1992a, 1992b). There has been no attempt to utilise the technique for coupled
media and it is, perhaps, not clear a priori that such an approach will simplify matters
substantially due to the coupling of the fluid and solid half spaces. However, given the
success of the technique elsewhere, it is natural to attempt to extend the analyses above
to the coupled fluid-solid situation, with the aim of providing relatively simple analytical

results and physical interpretations.

Alternative approaches utilised by Howe (1990), Wickham (1977), and others is to
approach problems in this limit using integral equation formulations or an approximate
form of a Green's function; this approach is, perhaps, less transparent than the matching

procedure.

In essence for each of the problems considered here the outer solutions valid far from
the defect will be seen to take the form of a source or dipole response whose strength
is determined by considering an appropriate inner problem. These outer solutions take

the form of interfacial discontinuities in either the normal stress, shear stress, or normal
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displacement. There are effectively three different types of surface discontinuity that can
arise; the examples chosen here illustrate the occurrence of each type of discontinuity.
In each case an inner problem is formulated and the inner solution is valid in the near
neighbourhood of the defect. These solutions are found from a static analysis. In this
inner limit a natural separation into fluid and solid problems emerges. Each is then
solved independently.

Due to the complexity of identifying the inner limit of the outer solution only leading
order matching is performed here. To deduce higher order terms, even in the absence
of the fluid, proves to be an arduous task, for instance, in the ease of the inner limit
of a line source near a traction free surface see Brind & Wickham (1991), Datta & EI-
Akily (1978); whereas identifying the leading order terms can be done directly utilising
generalised functions and the evaluation of contour integrals.

2.2. Formulation

In the region y > 0 is an isotropic linear elastic material and in y < 0 is a compressible
fluid. The responses of the two materials are coupled together through continuity condi-
tions along the interface y = O. Time harmonic vibrations of frequency ware considered,
that is, all physical variables are considered to have an exp{ -iwt} time dependence; this
time dependence is considered understood and is suppressed henceforth. A Cartesian
coordinate system is adopted with Xl, X2 corresponding to x, y.

The elastic material has Lame constants A, /-L, and density p. The stresses aij in the
material are related to the displacements Ui by

1
aij = Afkk8ij + 2/-Lfij where fij = 2(Ui,j + Uj,i), (2.2.1)

the comma denoting differentiation with respect to Xi. Here it is useful to recognise that
the dilatation e, used later, is given by fkk. The compressible fluid in y < 0 is effectively
an elastic material supporting no shear stresses. Thus

(2.2.2)

where the fluid has density PI and compressional modulus Af.

A convenient representation is to adopt the displacement potentials <jJ(x, V), 'ljJ(x, V),
and X(x, y) where the displacement u is

u = '\l<jJ + '\l x 'ljJz, for y > 0, (2.2.3)

where z is the unit vector in the z direction, and

u = '\lx, for y < O. (2.2.4)
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These potentials satisfy the following Helmholtz equations

(2.2.5)

where the wavenumbers are defined as kd = W/Cd, ks = w/cs, and ko = w/co· The
subscripts d, s, and 0 denote the variables associated with the dilatational and shear
wavespeeds in the solid and the compressional wavespeeds in the fluid, respectively. The

wavespeeds Cd, cs, and Co are defined as

2 A + 2J.L 2 J.L
Cd = , Cs = -,

P P
2 Ajc =-
o Pj

(2.2.6)

The assumption that the compressional wavespeed of the fluid is less than the shear
wavespeed of the solid implies that ko > k, > kdj this is a reasonable assumption for
most solid and fluid combinations. The analysis presented here does not rely on this
assumption and can easily be generalised to allow ks > ko > kd' say.

A coupling parameter £, occurs in the analysis; it is defined as £, = Pfkd/ pk; and
provides a measure of the fluid loading. The light fluid loading limit is when E « l ; this

limit is not taken here unless explicitly stated.

Typically we expect the scattered wavefields to consist of body waves in the solid and
fluid and interfacial waves. For scattering by a point defect the dominant responses that
are generated in the solid are cylindrical shear and compressional body waves together
with a leaky Rayleigh wave. The leaky Rayleigh wave is only identified in the light
fluid loading limit where it is a perturbation of the Rayleigh wave that would propagate
unattenuated along the surface of the elastic solid when in contact with a vacuum. The
presence of the fluid causes the wave to leak energy into the fluid. Here the leaky Rayleigh
wave decays exponentially with distance along the interface from the source of the waves.
In addition an interfacial Stoneley wave, commonly called a Scholte wave is generated.
This is an unattenuated wave that decays exponentially with depth in both the fluid and
solid materials.

The fluid supports a cylindrical compressional body wave and an exponentially decay-
ing surface wave generated by the leaky Rayleigh wave. There are head waves generated
in both the fluid and solid; they decay faster than the cylindrical body waves, and are gen-
erated by the cylindrical body waves that cannot satisfy the surface boundary conditions
without this correction. If the wavespeed of the fluid is less than the shear wavespeed
of the solid then the head waves generated by the acoustic cylindrical wave in the solid
are evanescent. A schematic showing the radiated wavefronts for the waves generated
by a point defect at a fluid-solid interface with an exp{ -iwt} dependence suppressed is

Figure 2.1. In this figure it is assumed that ko > k, > kd.
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Figure 2.1. A schematic showing the radiated wavefronts for the waves generated by a point
defect at a fluid-solid interface with an exp{ -iwt} dependence suppress d.

Each problem will be expressed in two coordinate systems based on the length scales
1Iks and a in the problem and solved asymptotically by matching. We could have chosen
to normalise using either I/ko or I/kd, but utilise Ilks for convenience. Each problem
has a characteristic length a associated with it. It is assumed that ksa = e« 1.

Use is made of outer and inner coordinate systems. The outer system (x, 'f)), and the
inner system (X, Y), are defined as

1
(x, j)) = ks(x, y), (X, Y) = -(x, y).

a

It can be seen that the inner and outer systems are related by (x, j)) = €(X, Y).

For purposes of matching we take the stresses to be invariant, namely O"xy = (jiy = ~xy

etc. This results in the following rescalings for the potentials and displacements:

in the outer system, and

1
(Ux,Uy) = -(ux,uy),a

(2.2.7)

(2.2.8)

(2.2.9)



2. Scatteritiq by small defects 14

in the inner system.

There are three types of surface discontinuity that may arise, and each is associated
with a specific type of defect. This is demonstrated in the following sections.

2.3. A rigid strut

The first problem we consider can be stated as follows. A plane compressional wave is
incident at an angle ()i from the fluid on the defect at the fluid-solid interface. A rigid
strut, length a, is considered normal to the interface; the geometry of the problem is
shown in Figure 2.2. The boundary conditions

axy = 0, [ayy] = 0, [uy] = 0 (2.3.1 )

are taken on the interface y = 0, where the braces [] denote the jump in a quantity across
the interface; both the stresses "v» and the normal displacement uy are continuous across

y = O. The fluid supports no shear stresses and so axy = 0 on y = O. The boundary
condition taken on the strut x = 0, -a < y < 0 is Ux = O. The incident field in the fluid

is
xinc(x, y) = a2 exp [iko(x cos (Ii + y sin (Ji)] ,

where the amplitude a2 is taken for convenience.

In the fluid we take the total wave field to be given by X = Xinc + XTe/ + xsc, where
the superscripts ref and se denote the reflected and scattered waves respectively, and
formulate a boundary value problem for the scattered field; we take similar expressions
for the stresses. The reflected and transmitted fields at a perfect interface are given by
Brekhovskikh (1980); in the fluid the reflected field is determined to be

(2.3.2)

(2.3.3)

where Rff is the reflection coefficient

S-(k) R(k) - E(k)
S+(k) = R(k) + E(k)'

(2.3.4)

In these formulae k = ko cos (Ji, R(k) is the standard Rayleigh function, R(k) = (2k2 -

k;)2 - 4k2rs(k)'yd(k), and E(k) = fk!kord(k)!ro(k)kd. The functions rd(k), rs(k), and
ro(k) that appear are defined as rq(k) = (k2 - k~)~ with q = d, s, o.

We construct the problem for the scattered potential XSc, dropping the superscript se
for convenience. To achieve this we subtract the solutions for the incident and reflected

fields from the total field; the remaining problem is due to any surface defects.
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Figure 2.2. The incident wave field: a rigid strut.

2.3.1. The inner problem

In the inner coordinate system the Helmholtz equations (2.2.5) become

(2.3.5)

where \72 = 82/ 8X2 + 82/ 8y2, and we recall that € « 1, with the boundary conditions
now applicable on Y = 0 and X = 0, -1< Y < O.

To analyse the inner problem, and in particular the continuity conditions across Y = 0

in this limit, let us consider the stress L;yy in the fluid, and take suitable expansions
in the stresses and displacement, in the form Uv = Uy 0 + €Uy 1 + o( €2), say. Clearly
Eyy = Af\72X and from (2.3.5) \72X = O(€2)X. This implies that the stress induced
by the defect is O(€2)X in the fluid and this has important consequences due to the
continuity conditions (2.3.1). It suggests that the stress Eyy at the interface is also
O(€2)x. Thus to leading order this implies that the solid has traction-free boundary
conditions upon the surface and since it is stress-free that we can take Uy = 0 on Y = O.
The fluid-solid problems therefore uncouple, and for the leading order problems we are

able to treat the fluid and solid half space responses separately. This does not rely upon

any light fluid loading limit or similar simplification and is a general property of the

equations; this separation allows considerable progress to be made.
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By considering the inner limit of the incident and reflected waves we find Xo t.o be
zero, and construct the order t problem for Xl, dropping the subscript for convenience.
The governing equation is now just Laplace's equation \72 X = 0, with the boundary
conditions

ax
- =Oon y=oay ,

ax 2ikoR(k)
ax = - ksS+(k) COSei on -1 < Y < 0, X = 0, (2.3.6)

which can be rewritten in polar coordinates with X = RCOH(), Y = -RHinO to give

ax
ae = 0 on e = 0, rr,

ax 2ikoR(k) 1
ae = kS+(k)RcoS()ione=-1r.

s 2 (2.3.7)

The problem is solved using Mellin transforms together with the Wiener- Hopf tech-
ruque. The Mellin transform in R, and its inverse, are defined as

1 lc
+iooF{R) = -2 . (F(s))R-Sds,

1r~ c-ioo
(2.3.8)

where s is the transform variable. Here c is chosen from the appropriate analytical
properties of the Mellin transform. The solution is now deduced, see for instance Datta

(1979), for 0 s e s ~,° < Re(c) < 1 as

koR(k) r=r (~)r (~- ~) -8

X{R,O) = - 1rksS+(k) ie-ioo .Jrr{s2 -1) cosOicossOR ds, (2.3.9)

with X(R, 1r - 0) = -X{R, 0). The outer limit of X{R, 0) is found by closing in the right
half plane and is, to leading order,

(2.3.10)

this is required to match with the inner limit of the outer problem.

2.3.2. The outer problem

In the outer coordinate system the strut reduces to -t < y < 0, that is, effectively to a
point defect. The Helmholtz equations (2.2.5) become

(2.3.11)

where \72 = a2 / ax2 + a2 / ay2. The boundary conditions for the scattered field,

(Jxy = 0, [(Jyy] = 0, [11y] = Q8'(x), (2.3.12)
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are taken on the interface y = 0, where r5(x) is the generalised function, the prime I

denotes differentiation with respect to the argument, and Q is to be determined.

The boundary conditions can, in general, be simulated in the outer field by expansions
of the form (Ti;y = a1r5(x) + a2J'(x) + .. " see for instance Sabina & Willis (1977), with
similar expressions for the other boundary conditions. In this example only the jump
in the normal displacement term contributes at this order, similar expansions could be
used in later sections. A slightly different approach is adopted by Abrahams & Wickham
(1992a, 1992b) and could be used to generate higher order terms.

The Fourier transform in ii, and its inverse, are defined as

(2.3.13)

where ~ is the transform variable. The inversion path C runs along the real axis from
-00 to 00 and is indented to lie below any singularities on the positive real axis and
above any that lie on the negative real axis. We now take the Fourier transforms of the
governing equations in the scattered potentials and the boundary conditions to give

and a~y = 0, [a~y] = 0, [uv] = -i~Q, on y = 0. The appropriate expressions for ¢*, ;jJ*,
and x* are

_ {( k2) t }q/{~, y) = 0(0 exp - e - k~ y, (2.3.15)

;jJ*{~, y) = {3{O exp { - (e - 1) ~ y} , (2.3.16)

{I} . k2 2'
X*(~,y)=({Oexp (e-k~) y , (2.3.17)

where the coefficients a, {3, and ( are to be determined by the boundary conditions.

The representations for the Fourier transformed stresses and displacements are given
in Appendix 2.A, and the inverse Fourier transform now yields the following expressions
for the scattered potentials

(2.3.18)

(2.3.19)
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(2.3.20)

The limit as l~l -+ 00 in the transform space corresponds to the limit as :/; -+ 0 in the
physical domain, thus taking this inner limit, and evaluating the resulting transform.

gives

(2.3.21)

to within an arbitrary constant.

This is now matched to the outer limit of the inner solution (2.3.10), writing both
limits in the original coordinate system, this gives

2 2. R(k}
Q = E a 7rlkoks S+{k} cos ()i.

Note that we have retained the amplitude a2 we introduced in (2.3.3) in the expression
{2.3.22}.

(2.3.22)

2.3.3. Discussion

Thus to order E2, we have the total wave field

x(x, y) = Xinc(x, y) + Xre/ (x, y)

2 2 i; 100 ~R(k)R(O () -i~X+1'o(OYdc
- E a 2k; -00 ,o(OS+(k)S+(~) cos i

e ,-,

where Xinc and Xre/ are given by (2.3.2) and (2.3.3) respectively, and we have the following

(2.3.23)

expression for the jump in the normal displacement uY'

[]
2 2 . t; R{ k) () £1 ( )

uy = E a 7rlk; S+(k) cos iU x .

It is at first sight unclear that by matching the fields in the fluid that we have automati-
cally matched in the solid as well. Thus as a consistency check upon our analysis we use
the solution found within the fluid to drive the solid response. Here it is useful to repose
the problem and match the dilatation in the solid. The dilatation e is defined to be Ui i,
and in the outer problem the dilatation reduces to e = '\721> = -kJ/k~1>. Thus from our
transform analysis and by a similar argument to the previous section the inner limit as

l~l-+ 00, is

(2.3.24)

kdko --1
e '" 7r{kJ_ k;) cor cos (), (2.3.25)

to within an arbitrary constant, where we have utilised the limit. R(ksO -+ 2{kJ-k~)k;e.

In the inner problem, the dilatation can be written as the stress combination

Enn + EBB = 2(A + J..L)e. (2.3.26)
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We now form the complex stress combination R"l.(ERf) + iEoo) and take the Mellin trans-
form, Rein & Erdogan (1971), to obtain

(2.3.27)

in terms of the transformed Airy stress function, (Ai) = AeisO + Ae-i"o + Bei(s+2)O +
Be-i(s+2)o. The stress boundary conditions on the surface are taken to be those forced
by the inner solution (2.3.9) deduced in the fluid. The boundary conditions are

ERO + iEoo = ±iO"R-1 on 0 = 0, 11", respectively for R > 1, (2.3.28)

where 0" = -w2iJ.Lk~R(k)£ cosOdkskdS+(k). As we are interested in the outer limit of
the inner problem we have simply taken the stress to be zero for R < 1 on 0 = 0, 11".

We can determine Ai to yield the inverse Mellin transform

2(A + p.)e = ~ r= 20". 1 sin [(8 + 2)0 - !811"] R-(s+2)d8
211"1Jc-ioo (8 + 1) sin 2811" 2

where the outer limit is to leading order,

(2.3.29)

2(A + p.)e""" 20"R-1 cosO (2.3.30)

found by closing in the left half plane. This expression for the dilatation e matches with
(2.3.25) when Q is written explicitly. This suggests that both the uncoupling of the inner
problems is correct and that it is sufficient, to this order, to match within the fluid (or
in later sections in the solid); further verification follows from evaluating the inner limit
of O"yy in the solid, found as O"yy= -i2f.3p.£k~R(k) cos 0i cosO/kdk.,S+(k)R, that is, it is
dearly 0(f.2) times (2.3.10).

The far-field scattered cylindrical wave structure is extracted from (2.3.23) using the
saddle point method,

( 0) '2 2k~( 11" )tcoSOR(k)R(koCOSO) 0 ikr-li7r
X T, ,....,If. a k~ 2kor S+(k)S+(kocosO) cos ie 0 4 (2.3.31)

for koT » 1. This potential may be written as D(O)eikor /(koT)1/2 where D(O) is the
directivity associated with the wave. For comparative purposes the angular dependence
of a typical directivity shape given by I cosOR(kocosO)/S+(kocosO)1 is shown for two
sets of material parameters, in Figures 2.3a, 2.3b.

The first set of material parameters taken, kd = ~ks = iko, is typical of metal-water
combinations; solids with relatively high densities and wavespeeds relative to the fluid.
The Rayleigh wavespeed is k; = 1.07236ks, and the Scholte wavespeed, with E = 0.08,
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Figure 2.3. A typical directivity shape for scattering by a rigid strut. (a) [ = 0.08. (b)
[= 0.32.

is ksch = 1.00075ko' The second set of material parameters taken, kd = ~ks = ~ko, with
E = 0.32, is more typical of rock-water combinations. Here the Poisson's ratio is small,
that is, v = 0.1.

In the following discussion the critical angles Od, Os, and 01' are defined as eq
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cos-1(kq/ko) with q = d, s, r; k; is the wavenumber associated with the Rayleigh
wave that would exist in the absence of fluid. The assumption that the compres-
sional wavespeed of the fluid is less than the shear wavespeed of the solid implies that

Od > Os > Or. The critical angles Od and Os are where the head waves meet the cylin-
drical wave, and Or is the angle along which the leaky Rayleigh wave sheds energy into
the fluid; these are important to the dominant features of the directivity patterns. The
angles are shown in Figures 2.3a, 2.3b by the dashed lines. The limiting case E = 0 that
corresponds to a rigid strut on a rigid plate and an acoustic: dipole response is shown by
the dotted-dashed line.

The beam formations along Od and Os are generated by interaction with shear and
compressional waves in the solid. This response becomes more evident for low Poisson's
ratio, Figure 2.3b. In contrast to the cases we consider in the next two sections, the
directivity vanishes along the Rayleigh angle Or. This brings about the distinctive lobes
in 0 ~ ° ~ Or in Figures 2.3a, 2.3b. The lobes are shortened as Or decreases; this
corresponds to k; approaching ko, Figure 2.3b.

2.4. An edge crack

Surface breaking cracks are of particular importance with regard to acoustic microscopy
and that device has been particularly adept at imaging cracks in a variety of situations,
the book by Briggs (1992) contains several examples. The problem we now consider can
be stated as follows. A plane compressional wave is incident normally from the fluid on
the defect at the fluid-solid interface. An edge crack, length a, is considered normal to
the interface as shown in Figure 2.4.

The continuity conditions (2.3.1) are taken on the interface y = O. The boundary

conditions taken on the crack x = 0, 0 < y < a, are f7xx = 0, f7yx = 0; the crack is
stress free. The crack faces are assumed not to interact with each other; this is a viable
assumption if we are modelling an open crack of finite width. The incident field in the
fluid is taken in the form

(2.4.1)

and the transmitted field at a perfect interface (Brekhovsklkh, 1980) is determined to be

q/r (x, y) = 2a2:: 1!£ exp (ikdY), 1j;tr (x, y) = O.

In contrast to the incident field (2.3.2) in Section 2.3, the normally incident wave has no

(2.4.2)

x dependence.

These fields are subtracted out to leave a boundary value problem for the scattered
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Figure 2.4. The incident wave field: an edge crack.

field. Taking a suitable expansion in the stresses and displacement, and by a similar
argument to the above, it can be seen that the fluid-solid problems uncouple in the

inner problem and we treat the fluid and solid half space responses separately. Here
it is convenient to match the dilatation in the solid. The boundary .onditions for th
scattered field in this inner region become

ER{) + iE{)1?= 0 on 1) = ~7T' -~7T' (2.4.3)

ER"!? + iE"!?"!?= -ia on 1) = 0, for R < 1,

where 1) = f) +!7T and a '"" -2a2>"kokd£/(1 + E).

Symmetry is used to break this into a problem defined in the quadrant 0 :s 1) :s ~7T

and is formulated in terms of the Mellin transform. This can then be solved using th
Wiener-Hopf technique as in Stallybrass (1970). The outer limit of the dilatation given

(2.4.4)

by this solution is deduced as

(2.4.5)

where the functions

1 1000 ( fJ2) dlogh_(-2) = 10gh+(0) = -- log 1- . 2 1 ~ rv 0.114687
7T 0 smh 27TfJ fJ + 1

(2.4.6)
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are deduced from the Wiener-Hopf analysis.

Following the construction of the problem in the outer coordinate system of the rigid
strut we have the same governing equations together with the boundary conditions for
the scattered field,

(2.4,7)

taken on the interface iJ = 0, where Q is to be determined. This choice proves to be
sufficient for the matching procedure. Now taking the Fourier transform gives a;y =

-i~Q, [agy] = 0, [Ug] = 0, on fj = 0, and Fourier transforms yield an expression for the
scattered potential as

(2.4,8)

with similar expressions for 1jJ and X.

It can be seen as in (2.3.25) that taking the inner limit as I~I~ 00 the dilatation
reduces to

k2
e '" (2 d k2) Q1'-2 cos 2()

tt kd - s J.l
to leading order. Matching now gives Q explicitly as

(2.4,9)

(2.4.10)

Thus to order £.2, we have the following expression for the shear stresses a xy on the
interface,

(2.4.11)

The inner limit of f7yy in the fluid is consistent with our results, and this suggests that
our separation argument in the inner problem is correct.

The far field scattered cylindrical wave structure is extracted from an inverse Fourier
transform representation for the fluid potential X(x, y), see for instance (2.3.23), using
the saddle point method,

((}) .k~ Q cos2(}[2k~cos2B-k;-2,s(kocosBhd(kocos(})] ikor-.!.i1l'

X T, '" lk; J.l(27rkoT)~ S+(kocos(}) e 4

(2.4.12)
for koT » 1, where Q is given by (2.4.1O). The angular dependence of a typical directivity
shape given by Icos2B[2k~cos2(} -k; - 2,s(kocos(}hd(kocos(})]/S+(kocosB)1 is shown

for the material parameters and critical angles described above, in Figures 2.5a, 2.5b.

Note the strong beam formation along BTl in Figure 2.5a, consistent with the leaky
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Figure 2.5. A typical directivity shape for scattering by an edge crack. (a) E = 0.08. (b)
£ = 0.32.

Rayleigh wave that occurs in this light fluid loading limit. The response becomes less
evident as E increases. The lesser peaks in Figure 2.5a form along Od where the angu-
lar dependence of the directivity reduces to Ika/k~(2ka - k;)I. Thus for low Poisson's
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ratio, such as the material parameters chosen in Figure 2.5b; this response can become
dominant.

2.5. ~ rigid strip
Perhaps surprisingly the representation of a defect by a jump in the normal stress has not,
thus far, arisen; particularly as this is sometimes taken to be a model for surface breaking
cracks. To illustrate how this representation occurs we consider a plane compressional
wave, harmonic in time with frequency w, incident at an angle fh from the fluid on the
defect at the fluid-solid interface. A rigid strip, length 2a, is considered lying along the
interface as shown in Figure 2.6.

Incident wave

Figure 2.6. The incident wave field: a rigid strip.

The continuity conditions (2.3.1) are taken on the interface y = 0, [z] > a. The

boundary conditions taken on the strip y = 0, Ixl < a, are (Jxy = 0, uy = 0; for
simplicity the rigid strip is smoothly bonded to the solid. The incident field in the fluid
IS

(2.5.1 )

The introduction of the imaginary amplitude is to accommodate the complex variable

method of Muskhelishvili (1953); this assumes that the stresses and displacements are
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real. The reflected field at a perfect interface (Brekhovskikh, 1980) is

Xref(x,y) = ia2RfJ exp [iko(:I:cosOi - ysinOi)]. (2.5.2)

These fields are subtracted out to leave a boundary value problem for the scattered
fields and this is now solved using matched asymptotic expansions on the interface y = O.
The fluid-solid problems uncouple once again in the inner problem and we treat the fluid
and solid half space responses separately. In this section it is required that the normal
displacements in the solid are matched; matching the dilatation is no longer sufficient.
As an aside this example demonstrates that it is not, as suggested by Abrahams &
Wickham (1992b), always sufficient in elastodynamic half space problems to just match
the dilatation.

Without loss of generality matching is performed in this example on the plane Y = o.
Treating the leading order boundary value problem that occurs in the solid we find that
in the inner coordinate system the boundary conditions for the scattered field are

Uv = q, l::XY = 0 on Y = 0, for IXI < 1, (2.5.3)

(2.5.4)l::yy - il::xy = 0 on Y = 0, for IXI > 1,

where q '" 2akoE(k) sin (h/S+(k).

The problem is solved by formulating it in terms of a harmonic function O(z) where
z = X + iY; the representations for the stresses and displacements in terms of O(z) are
given in Appendix 2.B (Muskhelishvili, 1953). The solution is deduced, England (1971),
as

k2 1
Uy(X,O) = (k2 s k2) Flog [IXI + (X2 -1)2] +q, for IXI > 1,

27r d - s It
(2.5.5)

where F is the unknown resultant force and q is the known displacement. The outer
limit of Uy(X, 0) is

k2
Uy(X,O) = 27r(kJ ~ k;)1t Flog 21XI + q. (2.5.6)

To match with this outer limit we take the boundary conditions for the outer problem
as

Gxy = 0, [Gyy] = Q6(x), [Uy] = 0, (2.5.7)

on the interface y = 0, where Q is to be determined. Taking the Fourier transform
gives Giy = 0, [G~y] = Q, [ug] = 0, on y = 0, and after solving the transformed field
equation and taking the inverse Fourier transform, yields an expression for the normal
displacement as

(2.5.8)
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The inner limit is found by taking the limit as I~I-t 00,

(2.5.9)

where a is a constant to be determined from the integral (2.5.8) by a numerical method.
The representation for the integral, in terms of the integration variable k8~' is given in
Appendix 2.C. This limit (2.5.9) is matched with (2.5.6) above to give

Q = -u: (2.5.10)

To determine F we need to match the terms like fO, namely F is determined from

(2.5.11)

Here we have adopted the matching procedure described in Crighton & Leppington
(1973), that is, the log f terms are grouped with the constant terms; terms are ordered
algebraically only.

Thus the rigid strip is approximated by the following expression for the jump in the
normal stresses a yy ,

2 E(k).
2a /-Lko S+ (k) sin (Ii

2 8(x).
ks I f-

a + 2n{k; _ k~) og 4"

Similarly consistency checks to those performed in the previous sections can be utilised

(2.5.12)

to validate the separation approach.

The boundary value problem can alternatively be formulated in terms of integral equa-
tions; in the absence of the fluid see Wickham {1977}. The displacement boundary con-
dition q is used to reduce the problem to an integral equation of the first kind,

la o (x O)
q(p,O) = yy, C{lx - pl}dx, for Ipi :S a

-a /-L
(2.5.13)

where the kernel is the inverse Fourier transform

(2.5.14)

This equation can be shown to be equivalent to a certain integral equation of the second
kind with a kernel which is small in the low frequency limit. In the absence of the fluid
the iterative solution of the integral equation of the second kind is given by Wickham
(1977) who gives an explicit asymptotic formula for the normal stresses in terms of the
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prescribed displacement, Poisson's ratio, and the parameter f. To leading order this

agrees with the results here.

Once again the far field scattered cylindrical wave structure is extracted from an inverse
Fourier transform representation for the fluid potential X(x, y},

( O) . k2 F ,d(ko cos O} ik r-!i7rXT ,....,w· ('°4
, s p,(21rkoT)~ S+(kocosO}'

(2.5.15 )

for koT » 1, where F is given by (2.5.11). The angular dependence of a typical directivity
shape given by l,d(kocosO} /S+(kocosO}1 is shown in Figures 2.7a, 2.7h. The dominant
features driven by the leaky Rayleigh wave have already been discussed ill Section 2.4,
in this example it is important to note that the directivity vanishes along Od and the
associated peaks form in the neighbourhood of Od only.

There are also interesting non-uniformities for £ « 1 in the acoustic far field behaviour
given by the evaluation of integrals like (2.5.8). The far field directivities in the fluid

such as (2.5.15) are strictly valid for koT » 1/£2. On an intermediate length scale
1/ £2 » koT » 1 there is detailed structure associated with the beaming along the
Rayleigh angles. Integrals of this type have been much studied by for instance Crighton
(1979) in structural acoustics and Tew (1992) in the fluid-solid context.

2.6. Conclusion

Matched asymptotic expansions have been used to examine three model scattering prob-

lems. In each case, we have identified the defect with a specific interfacial discontinuity
and have obtained explicit leading order expressions for the jump in interfacial stress
or displacement. A particularly useful aspect, that has not been noticed before, is the

natural separation that occurs in the inner problem into fluid and solid responses. This
enables elastostatic analysis to be utilised for the inner problems. In the text this is
shown to be consistent with our outer problems by checking that in the inner limit we
do recover the separation.

Given the complexity of the full fluid-solid problems it is useful to have physical in-
terpretations such as those exposed by the matching arguments for these model defects.
The results will also be useful as analytic checks upon numerical work.

This chapter demonstrates that matched asymptotic expansions may now be applied
in a routine manner to coupled fluid-solid media. The technique may be extended to
examine, say, defects within the solid, for instance for subsurface inclusions and cavities

in the absence of the fluid see Datta & El-Akily {1978}. Further extensions could take

advantage of the light fluid loading limit. The solutions found by Sabina & Willis (1977)
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Figure 2.7. A typical directivity shape for scattering by a rigid strip. (a) [= 0.08. (b) [= 0.32.

and Abrahams & Wickham (1992a, 1992b) for R.ayleigh wave incidence on defects at a
traction free surface may be adapted for use in the analysis here if required, and could be

directly utilised in the light fluid loading limit where a further separation occurs, Craster
(1997).

Typical far field directivity patterns are shown demonstrating, for small E the dis-
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tinctive beaming that occurs along the Rayleigh angles. This is to be expected and is
the dominant response usually detected experimentally. However it is interesting to note
that for one class of obstacles, namely the rigid strut, there is no response along that.
angle. The dominant features that form along the critical angles associated with the

head waves are distinctive in each case and are affected by particular combinations of
the material parameters. In particular as the fluid coupling increases the beaming along
the Rayleigh angles decreases, and for relatively low values of Poisson's ratio then large
responses may occur along the critical angles associated with the head waves.
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Appendix 2.A. Fourier transformed variables

In y > 0, the material is elastic and the Fourier transformed displacements and stresses are

(2.A 1)

(2.A2)

(2.A 3)

(2.A4)

and in the fluid region fJ < 0, the relevant Fourier transformed variables are

(2.A 5)

(2.A 6)

where the coefficients 0:, {3, and ( are to be determined by the boundary conditions.
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Appendix 2.B. Elastic solutions

Following the complex variable notation of Muskhelishvili (1953) and England (1971), for a static
elastic material with Poisson ratio 1/, the field variables can, utilising a stress continuation across
Y = 0, be written in terms of one harmonic function O(z) where z = X + iY and /'i, = 3 - 41/

2Il(UX + iUy) = KO(Z) + O(z) + (z - z)n'(z), (2.B 1)

~XX + ~yy = 2(O'(z) + n'(z)),

~yy - i~xy = O'(z) - O'(z) + (z - z)n"(z);

(2.B 2)

(2.B 3)

the overbar denotes the complex conjugate.

Appendix 2.C. Numerical method

The denominator that appears within the integrand is the Scholte wave function S+ (0 rather
than the Rayleigh wave function R(~) that typically occurs in the absence of the fluid. The
former contains six branch points and either two or four zeros depending upon the precise choice
of branch cuts. The latter has four branch points and two real zeros.

In the limit as x -+ 0,

(2.C 1)

The constant Q is unknown and the purpose of this appendix is to detail how it is found.

Here the choice of branch cuts for the functions "Yq(~) = (e - k~)t, q = d, s, 0, in the upper
half of the complex {-plane is taken such that they run from 0 to +kq along the real axis and
from 0 to +ioo along the imaginary axis, Figure 2.8. By deforming the branch cuts from the
conventional choice of straight lines from +kq to +kq + ioo the zeros at ±k1, corresponding to
leaky Rayleigh waves, are crossed and move onto the lower Riemann sheet; they play no role here.

The Scholte wave speed, ksch' is

(2.C 2)

The functions ¢I and ¢2 are

472(72 _ k2) t (k2 _ 72) t + Ek4 ko( 7
2
- k~)!

_ d s 8 kd(k~ _ 72)!
¢I - (272 _ k;)2

£k4k (72 - k2)~¢ sod

2 = kd(k~ _ 72) t [(272 _ k;)2 _ 472 (72 - k~) t (72 - k;) t]'
and the branch of the inverse tangent is chosen such that 0 ~ tan -I ¢ ~ 1r. The Sch6lte wavespeed

(2.C 3)

(2.C4)
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Figure 2.8. The position of the poles and branch cuts, together with the contour L, here shown
explicitly by the broken line, in the upper half of the compl x ~-plane; the branch cut is shown

by the solid line.

is not related to the Rayleigh wavespeed, indeed for £ « 1 it is marginally less than the com-
pressional wavespeed of the fluid.

We now subtract the well known Hankel function representation from the integral (2.C 1) in
the limit as x -+ 0, in the form

(2.C 5)

where I is Euler's constant, to remove the logarithmic term explicitly. Setting x = 0 without loss
of generality,

(2.C 6)

This produces a representation for a.

The remaining integrand is manipulated around the integration contour L, in the ~-plane,
Figure 2.8; combining the integral along the two sides of the branch cuts from 0 to +kq and
from 0 to +ioo. The contribution due to the Scholte wavenumber is calculated explicitly by the



2. Scattering by small defects 34

theory of residues. Now standard numerical techniques, here Gaussian quadrature, yield fast and
accurate results.

It can be shown that the integral (2.C 6) is entirely real, and we can ('XPJ"{'ssthe imaginary
part of 0: simply by the term,

(2.C 7)
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Chapter Three

Asymptotic representations for transient forcings
beneath a fluid-solid interface

3.1. Introduction

The coupled dynamics of a fluid overlying a solid are of fundamental importance in several
different branches of geophysics, applied mathematics and engineering. The principal
applications are to seismology and to non-destructive testing techniques. Oue of the
primary aims of non-destructive testing is to identify the presence of any defects. The
testing of a solid to detect such defects is often undertaken with the solid immersed in
a fluid. The solid is usually imaged by waves incident from the fluid. Oue such testing
device is the acoustic microscope; the experimental technique associated with the acoustic
microscope is described in Briggs {1992}. In other experimental devices the theoretical
results can be used as an aid to determining the material parameters of the solid, and
the geometry of any subsurface structures. In particular, this approach is used iu vertical
seismic profiling, see for instance de Hoop & van del' Hijden (1985).

In marine seismology the coupled dynamics of the ocean and sedimentary layers are
of considerable interest; shallow explosive sources are a key ingredient in oil exploration.
The analysis here of a compressional source beneath a fluid-solid interface, in the limit
as the source depth tends to zero, is of relevance in that context.

The aim here is to examine the exact solutions for some model problems ill detail and
extract as much analytical information as possible. The fluid and solid responses are

found exactly in a simple closed form using the Cagniard-de Hoop (Cagniard, 1939; de
Hoop, 1960) technique. Asymptotic analyses for special time dependent loadings are used
to determine the form of the wavefronts. Once these expansions are obtained asymptotic
solutions to general time dependent forcings are easily found, thus providing an accu-
rate and versatile method of analysis avoiding long numerical calculations. We model
subsurface defects as line force loadings which due to the complexity of the wavefronts
generated are split into compressional and shear source terms and these are analysed
separately. In the future we aim to utilise these Green's function solutions, and their
associated asymptotics, to model more complex subsurface defects.

Leaky waves will feature heavily in the analysis and they principally occur when fluid,
or other, coupling perturbs an interfacial wave that would in the absence of the coupling

be unattenuated. Typically this causes leakage of energy from that wave into the fluid,
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leading to attenuation. Their principal application has been in structural acoustics, see
for instance Crighton (1989), where flexural plate waves are perturbed by an overlying
fluid. The situation for a fluid loaded elastic solid is somewhat similar, but more com-
plicated, due to the number of waves that an elastic solid sustains and their interactions

at interfaces. Also here we are interested in the transient response.

In the absence of the fluid an unattenuated surface wave, the Rayleigh wave, propagates
along the surface. With the addition of a fluid loading the unattenuated interfacial wave
is a Stoneley wave, often called the Scholte wave. Perhaps surprisingly, in the limit as
the fluid coupling tends to zero the Scholte wave does not tend to the Rayleigh wave; it
tends to the compressional wave in the fluid, thus this limit is non-uniform. With a small
amount of fluid loading the Rayleigh wave becomes a leaky wave; it is a perturbation of
the usual Rayleigh wave, that is, it is no longer unattenuated, and energy now flows into
the fluid along a critical angle. For situations when the fluid loading is significant, the
leaky wave looses its significance and it is more difficult to attribute a direct response
to it. This is typically the case in rock-water combinations, nonetheless the asymptotic

solutions we find later still perform well in this limit.

In the absence of the fluid Chapman (1972) has presented a detailed treatment of
the responses to subsurface loadings, Lamb's problem (Lamb, 1904), with particular
attention to the leaky waves that may occur for specific ranges of Poisson's ratio. These

leaky waves are not the same as those that occur due to fluid loading, and arise in a
different context, they are related to small pulse arrivals near to the head wave arrivals.
Nevertheless the treatment is instructive, and our treatment of the leaky Rayleigh wave
is similar in approach.

In addition to the Scholte and, possibly, leaky Rayleigh waves the fluid will also carry
waves generated by the interaction of elastic body waves, either compressional or shear,
with the interface.

In the limit as the line loading tends to the surface, that is h/x --+ 0, a sharp response
becomes evident in a certain region. This is the precursor of the cylindrical compressional
wavefront in the fluid created when the source is on the surface; this limiting situation
is also treated.

Similar configurations have been treated by several authors, for instance Roever et al.
(1959) and in a series of papers by de Hoop & van del' Hijden (1983, 1984, 1985). They
considered several problems involving sources either in the fluid, or within the solid.
Their approach differs from ours in several respects, with a different interpretation of
the leaky Rayleigh pole that does not lead to quantitative asymptotic representations,

nor lend itself easily to generalisations to more complicated situations. There is also a
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less detailed analysis of the solution. In particular the light fluid limit is not explored in
detail, nor is the limit as the source tends to the surface discussed. Typically in previous
papers the primary results are numerical, and are limited to the interfacial responses. In
this investigation, the exact solution is presented for the full field in the fluid, together

with a detailed analysis of all the salient responses. We also make generalisations to find
the asymptotic responses for more general time dependence.

It is emphasised here that the Cagniard-de Hoop technique has considerable numerical
and analytical advantages over alternative approaches such as using, say, Fourier trans-
forms for harmonic sources, and then using superposition to generate more general time
dependence. In particular most of our solutions are explicit and not limited to far field
evaluations, they are in real time, and involve minimal numerical work. Further appli-
cations of the method to anisotropy and layered materials are to be found in van der
Hijden (1987).

3.2. Formulation

In the region y > 0 is an isotropic linear elastic material and in y < 0 is a compressible
fluid. The problem is two dimensional and typical configurations to be considered are
shown in Figure 3.1 and Figure 3.2; the wavefronts are described in detail lat r. The
responses of the two half spaces are coupled together through the continuity boundary
conditions along the interface y = 0, these are discussed following (3.2.6).

Fluid

x

Solid

Figure 3.1. A schematic showing the radiated wavefronts for the waves generated by a line
compressional source a distance h beneath a fluid-solid interface.

A Cartesian coordinate system is adopted with Xl, x2 corresponding to x, y.
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Solid

Fluid

x

Figure 3.2. A schematic showing the radiated wavefronts for the waves generated by a line
shear source a distance h beneath a fluid-soliel interface.

The elastic material has Lame constants A, u and density p. The stresses aij in the
material are related to the displacements Ui by

1
(jij = AEkk6ij + 2j.1,Eij where Eij = 2(Ui,j + Uj,i),

the comma denoting differentiation with respect to Xi. The governing equations are the

equilibrium equations aij,j = PUi, where the notation" denotes double partial differentia-

(3.2.1)

tion with respect to time.

It is convenient to adopt displacement potentials ¢ and 'if; where the displacement u

is u = \l¢+ \l x 'ljJ2, where 2 is the unit vector in the z direction, that satisfy the wav
equations

(3.2.2)

The displacement potentials ¢ and 'if; are related to the compressional (or dilatational)
and shear disturbances respectively, thus we utilise these when generating compressional
and shear sources. The wave speeds Cd, Cs are defined in terms of the material parameters
as

(3.2.3)

The subscripts d and s denote the variables associated with the dilatational and shear
waves respectively.

The compressible fluid in y < 0 is effectively an elastic material that supports no shear

stresses, thus
(3.2.4)

where the fluid has density Pf and compressional modulus Af. The governing equations
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are aij,j = PUi again, and we introduce a third displacement potential X such that the
displacement u is u = V'x; this potential satisfies

(3.2.5)

The compressional wavespeed of the fluid is defined as c~= >"1/ PI'

The continuity boundary conditions

[ayy(x, 0, t)] = 0, axy = 0, [uy(x, 0, t)] = 0 (3.2.6)

are taken on the interface y = 0, where the braces [ ] denote the jump in a quantity
across the interface; both the stresses ayy and the normal displacement uy are continuous
across y = O. The fluid supports no shear stresses, thus axy = 0 on y = o.

A coupling parameter E occurs throughout the analysis; it is defined as E = Plco/ pCd·

The coupling parameter is physically interpreted as the ratio of the fluid and solid
impedances relative to the compressional waves, and gives a frequency independent mea-
sure of the fluid-solid coupling. The light fluid loading limit is when E « 1; this specific
limit is not taken here unless explicitly stated, although the metal-water results are for
E ,... 0.086. The set of material parameters usually taken for the figures is typical of
either metal-water or rock-water combinations. Metals have relatively high densities and
wavespeeds relative to the fluid. For aluminium-water the solid density is 2700kg/m3

with compressional and shear wavespeeds 6374m/s and 3111m/s respectively. The fluid
density is 1000kg/m3 with wavespeed 1480m/s. The Rayleigh and Scholte wavespeeds are
2906m/s and 1477m/s respectively; here E = 0.086. A second set of material parameters
typical of rock-water combinations (sandstone-water) is taken for comparative purposes,
now Cd and Cs are 2920m/s and 1840m/s respectively; the parameters demonstrate the
effects of increasing the fluid coupling, E, and reducing the mismatch between a 'fast'
solid and 'slow' fluid. In particular for this case the Rayleigh and Scholte wavespeeds are
1667m/s and 1358m/s respectively, and E = 0.201. The reduced mismatch between solid
and fluid wavespeeds and increased fluid coupling leads to different behaviour from the
metal-water case. The material parameters are primarily taken from Briggs {1992}and
are compiled in Table 3.1.

The assumption that the compressional wavespeed of the fluid is less than the shear
wavespeed of the solid is taken so that Cd > Cs > Co; this is a reasonable assumption
for most solid and fluid combinations. The analysis presented here does not rely on this
assumption, and is easily generalised to allow Cd > Co > Cs, say, which would be typical
of perspex-water combinations.

The analysis is performed using Fourier and Laplace transforms in space and time
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P Cd Cs Co f. (water) cT Csch

Aluminium 2700 6374 3111 0.086 2906 1477
Sandstone 2440 2920 1840 0.201 1667 1358
Water 1000 1480

kg/m3 mls tu]« ta]« tu]» ta]«

Table 3.1. Material parameters (Briggs, 1992).

respectively: the Laplace transform in t, and its inverse, are defined as

- lOO 1 jC+ioo_f{p) = f{t)e-ptdt, f(t) = -. f{p)eptdp, for Re{c) > 0
o 2m c-ioo

(3.2.7)

where p is the transform variable, and the Fourier transform in x, and its inverse, are
defined as

(3.2.8)

where E is the transform variable. The inversion path C runs along the real axis from
-00 to 00 and, if necessary, is indented to lie below any singularities on the positive real
axis and above any that lie on the negative real axis. We also utilise the Cagniard-de
Hoop method; it is often stated that p must be real and positive but this is unnecessary,
see the discussion in Section 5.1.

The representations for the Fourier and Laplace transformed stresses and displacements
are given in Appendix 3.A. A brief description of the functions that occur during the
analysis is also given.

3.3. Subsurface loadings

In this section we solve three canonical problems exactly, these are the responses gen-
erated by compressional and shear sources within the solid, and by a line force within
the solid. The line force is given by a combination of the source results. These prob-
lems, once solved, open the way to considering a wide range of scattering problems. For
instance more realistic fluid-solid problems involving specific geometries that are so far
out of analytical reach. Perhaps most importantly, the physical structure of the results
is revealed; we consider the fields in the fluid in detail. We demonstrate that, in the light
fluid coupling case, a definite response is associated with the leaky Rayleigh pole; this
is done by using an alternative choice of branch cuts from that usually adopted to move
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the pole from the lower to upper Riemann sheet and then using a residue calculation.
In addition wavefront expansions are deduced and it is illustrated that these expansions
can be used together with the convolution theorem to deduce asymptotic results valid
for general loadings.

To avoid any notational confusion the pressure in the fluid will be described a." the
negative of the stress (jyy. The results presented in the text describe the field generated
by source interactions with the interface.

3.3.1. A subsurface compressional line source

Consider a line compressional source a distance h beneath the interface; the geometry of
the problem is shown in Figure 3.1 together with a schematic of the primary wavefronts
generated. The notation that appears has been adopted from geometrical ray theory. The
letters P, S, and F are used to denote the compressional and shear waves in the solid, and
the compressional wave in the fluid, respectively. The field generated by interaction with
the interface is denoted by a combination of two or more letters; the final letter denotes
the type of wave and the letters preceding it denote the source type. For instance, in the
followingdiscussion, PP, PS, and PF denote the compressional and shear responses in
the solid, and the compressional wave in the fluid, generated by a compressional source
loading, respectively. As we only show the fields in the fluid we only discuss the PF
wave. The conventional Figure 3.2, omits several 'wavefronts' that, as we shall see, are
significant. The missing responses are those due to the interfacial Scholte wave, the leaky
Rayleigh wave and, in the limit as h -7 0, the response due to a pseudo-compressional
wave in the fluid.

The plan of this section is that we solve the source problems exactly, both for displace-
ments and pressures; the asymptotic analysis then follows in Section 3.3.1.3.

The continuity boundary conditions (3.2.6) are taken on the interface y = O. The total
field in the solid consists of the superposition of two fields. The first is the solution to
'V2¢ _ ¢/c~ = F(t)t5(x)t5(y _ h), in an infinite elastic material, where F(t) is the pulse
shape and t5 ( ) is the generalised function. The second field is the response generated by
the interfacial boundary conditions; all figures show this second field.

3.3.1.1. Exact solution

Using the integral representations for the quantities of interest in Appendix 3.A the
solutions are derived. In the fluid the Laplace transform of the normal displacement is

00 2 - 2 2
U (x y p) = __!_ r ~pF(P)(2( + k ) e-P(-y~()h-'Y~{()y+i<x)/cdd(
y , , 211' 1-00 Cd S(() , (3.3.1)
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where F(p) is the Laplace transform of F(t) given by (3.2.7). We have introduced the

rescaling e = p( / c« for convenience, see Appendix 3.A. In this formula k and k' are
defined to be the ratios Cd/Cs and Cd/Co respectively.

The fluid pressure is given by the Laplace transform
2-- 2 2

a (x y ) = _~ JOO P k2P F(p)(2( + k ) e-pb:l()h-,),~()Y+i(:I;)/cdd(.
yy "p 27r -00 f 'Y~(()S(()

(3.3.2)

The Scholte function S(() is vital to the analysis and is defined as S(() = R(() +
Ek4k'((2 + 1)~/((2 + k,2)L It contains six branch points at ±i, ±ik, ±ik', and either two
or four zeros depending upon the precise choice of branch cuts. If E = 0, that is, if the
fluid is decoupled from the solid, the Scholte function is truncated to the function R(().
This is the standard Rayleigh function, R(() = (2(2 + k2)2 - 4(2((2 + 1) ~((2 + k2) ~; this
function has four branch points at ±i, ±ik, and two zeros at ±ik7, where k; = Cd/Cr' and

Cr is the Rayleigh wavespeed (k < kr < k').

The functions 'Yd(~'P), 'Y~(e,p), and 'Y~(~,p) that appear are defined as 'Y~(() = ((2 +
k~)~, with q = d, s, 0, see Appendix 3.A. Here, unless stated, the choice of branch cuts
for the functions 'Y~(() in the complex (-plane is taken such that they run from ±ikq to
±ioo along the imaginary axis. With this choice of branch cuts the zeros of the Scholte
function corresponding to leaky Rayleigh waves in the physical domain then occur on the
lower Riemann sheet, and play no explicit role in the exact solution. However the effect
of these zeros is observed experimentally, Roever et al. (1959), as in the case for some
of the materials discussed below and we later extract these responses asymptotically.
Given the choice of branch cuts above the Scholte function has only two zeros at ±iksch
where ksch = Cd/Csch and Csch is the Scholte wavespeed (ksch > k'). This wavespeed is
not related to the Rayleigh wavespeed, indeed for E « 1 it is marginally less than the

compressional wavespeed of the fluid in this limit. An asymptotic representation when

E « 1 is

(
2,2 8)'k 'k' E (k - l)k 'k' (1 1 2 2)

1 sen '" 1 1 + 2R2(ik') = 1 + 2E U ,

and in general the root is found numerically.

(3.3.3)

The case F(t) = H(t), where H(t) is the Heaviside step function, is considered in detail

for the displacements and is denoted by u: (x, y, t); for more general F(t) the convolution
theorem gives _ r ; Huy(x, y, t) - lo F (t - r)uy (x, y, r)dr (3.3.4)

provided F(O)= O. The H(t) loading is convenient as a loading for the displacements as

explicit solutions are easily found. We shall consider general loadings later and demon-
strate the routine manner in which they are treated. In addition we show that wavefront
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expansions under general F(t) can be obtained by a convolution using the asymptotic:
solutions. In a similar manner the loading tH(t) is convenient for obtaining the ex-
act solution for the pressure, and general loadings are found using a convolution; the
superscript tH is used to denote the loading.

The full solution is found using the Cagniard-de Hoop method, see for instance Mik-
lowitz (1978). The inversion contour is chosen so that

(3.3.5)

and this then places the integral (3.3.1) in the form of a Laplace transform. This amounts
to a transformation of the Fourier integration path. As we ultimately require the inverse
Laplace transform of this integral our solution in real time is found immediately by
inspection. We adopt polar coordinates based upon the defect such that y - h = -1' cos ()
and x = r sin e'.

On the interface, y = 0, the Cagniard path for ({t) can be found explicitly; the situation
for y < 0 is more complicated and the path is found either numerically, or for h « 1;

via a perturbation analysis (the details of which are in Section 3.3.1.2). For responses
in the fluid, y < 0, both Id and I~ are present in the exponential term of (3.3.2). This
complicates the analysis as a convenient analytic form, valid for all x, y, and h, for
((t) is not forthcoming. From the formulation of a quartic algebraic equation (see for
instance Appendix 4.A) or via a Newton-Raphson algorithm, the Cagniard path ((t) is
found numerically as the root of equation (3.3.5) with positive real part. Using symmetry
properties of the integrand it is sufficient to only consider the path in the fourth quadrant
and this is given by taking the branch of ((t) with the positive square root.

Three typical paths are shown in Figure 3.3. For y = 0 the integration path, shown in
Figure 3.3, is given by

I

«» = _ic;t sinO ± [ (C;t) 2 _ 1]2 cosO, for ~ s t < 00,

where 1'2 = x2 + h2 and tanO = x/hi r is the distance of a point on the interface from
the source. For this explicit case the path cuts the imaginary axis at ( = -i sin () so
the path does not intersect the branch cuts of the functions appearing in the transforms.
The time at which the path cuts the imaginary axis is the arrival time for the P F wave,
tpf. The path is hyperbolic and approaches the asymptote Im(()/Re(() = ± tanO. For
h; y ~ 0 the Cagniard path, in the lower plane, cuts the negative axis between -i and
O. As the source approaches to the surface, in the limit as h ~ 0, the point at which it

cuts the axis tends to -i and the path ((t) tightens around the branch cut originating
at ( = -i; this is treated separately in 3.3.1.2. Thus in the general case the situation is

(3.3.6)
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Figure 3.3. Three typical Cagniard paths; y = 0 solid line, y < 0 dashed lines. The path when
h « x is labelled.

similar to that when y = 0, except that we usually have to find both the path and tpj'

numerically.

The exact solution for the vertical displacement in y ~ 0, written as a function of t, is
simply

(3.3.7)

where tpJ (= TICd when y = 0) corresponds to the arrival of the PF wave and ((t) is the
path described above. The wavefront arrivals are shown for 7rCdU;f (x, y, t) Ik2 versus t for
the rock-water case in Figures 3.4, 3.5 for typical values of .'1:, y, and h. The ratio' .'CI h
and y Ih determine the shape of the response; we have avoided rescaling each figure by
h for convenience. The plots for the metal-water case are also shown in Figures 3.6, 3.7.
Also shown on these figures are asymptotic representations for th dominant responses;
these are derived in the next section. The lines denoted by tpf, tt, and tsch are tl e
arrival times associated with the P F, leaky Rayleigh, and Scholte waves respectively.
The differences in material parameters lead to different dominant responses in each case.
For the rock-water cases the Scholte response is very dominant with a rather weak, but
nonetheless distinctive leaky Rayleigh response.

An additional compressional response is visible for very small h see Figures 3.9, 3.10
and the discussion of Section 3.3.1.2.

The metal-water case has very large leaky Rayleigh responses whilst the Scholte wave,

once we are off the interface, is typically rather small. From looking at the Cagniard
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Figure 3.4. A plot of 7rCd U;:l /k2 versus t for material parameters typical of rock-water
combinations; x = 40, y = -1, h = 0.1.
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Figure 3.5. A plot of 7rCd'U~I /k2 versus t for material parameters typical of rock-water
combinations; x = 40, y = -1, h = 1.

path one can deduce that the Scholte wave only becomes fully developed when x/h >
1/f,2k'v,2, where u is defined in (3.3.3). In addition the Scholte response is confined to
the neighbourhood of the interface.

In both cases the first arrival is the compressional wave in the fluid, which is singular,

and this arrives at t = tpf. The large distinctive peak at t = tl in these plots is the
response due to the presence of the leaky Rayleigh wave, and is one of the dominant
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Figure 3.6. A plot of 7rCcl'U~f IP versus t for material parameters typical of metal-water
combinations; x = 40, Y = -1, h = 0.1.
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Figure 3.7. A plot of 7rCcl'U~ I k2 versus t for material parameters typical of metal-water
combinations; x = 40, y = -1, h = 1.

responses for E « 1. It only exists in the angular region defined by tt ~ tpf; the angle
en in polar coordinates based at the origin x = r sin e, y = -T cos e, is sin-1 (col c.) when
h = O. The arrival time tt of the leaky Rayleigh wave is defined in equation (3.3.15).

As E increases this peak decreases in size. Increasing the coupling, as in the rock-water

cases, leads to a large distinctive peak forming at t ::::tsch = x/csc/J., that is due to the

Scholte wave. Increasing h decreases the magnitude of the responses.
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The pressure in the fluid is given as

tH pfk2 ( 2(2(t) + k2 d((t})
a yy (x, y, t) = ---;- H (t - tpf )Re 16(( (t) }S ((( t )} ~ . (3.3.8)

This differs from the displacement only in the 'Y~ term, this alters the response by mag-
nifying the pseudo-compressional response when h « x. Apart from that the responses
are qualitatively similar to those found for the displacements, and the asymptotics arc
of similar accuracy.

In Figure 3.8 we show the pressures with increasing x. This corresponds to increasing
the receiver distance along the interface, and the magnitude of the responses decrease
and the arrivals become more separated in time. The situation when f = 0 and f = 0.086
is shown; by simply setting f = 0 in equation (3.3.8) we have not removed the effect of
the fluid that emerges through the I~ term so strictly we are not in vacuo. This can be
seen as a small bump in both panels of Figure 3.8 after the (leaky) Rayleigh wave arrival;
some further examples are shown in later figures. Nevertheless, when the fluid decouples

from the solid such that f = 0 then the in vacuo results of Garvin (1956) are replicated,
at least insofar as the Rayleigh wave is concerned.

In this figure the dimensionless time T is the ratio of the real time to r / Cd, the time
that would be required by the incident pulse to reach a point if travelling at ca. An
increase in x/(h - y} corresponds to a contraction of the real time scale. In the absence
of the fluid the Rayleigh wave grows until it takes on the strongly peaked form described
by Garvin (1956). For e = 0 Figure 3.8 demonstrates the birth of the Rayleigh wave as
we move away from the source. The shape of the pulse remains essentially unchanged
in shape beyond x/(h - y} = 20.0. With the fluid loading, the leakage of energy causes

the wave to die away, and we witness the decay and finally the death of the leaky wave.
The Scholte wave is unattenuated and grows to take on a peaked form; this is slightly
obscured in the figure as its amplitude is O(f).

3.3.1.2. The source close to the interface

In Figure 3.3 a typical path for h « x is shown and is labelled, this is distinctly different
from the other two paths. The different shape is interpreted via considering the case
when the source is actually on the surface, that is, h = O. Here the situation h = 0 is
non-physical for the compressional source loading as it does not satisfy the interfacial
conditions correctly. Nevertheless, in this case the path, ((t), then consists of a piece
running directly along the branch cuts from ( = -i to ( = -ik'sinO together with an

almost hyperbolic path; the appropriate expressions are in Craster (1996b). The angle

is defined in polar coordinates based at the origin, that is, x = r sin 0, y = -r cos O.
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Figure 3.8. A plot of 7fatI:t / p f k2 versus edt / T" for increments of x / (h - y). The birth and death
of the leaky Rayleigh wave can be seen in panel (a), and it is compared to the case with no fluid
loading shown in panel (b).
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In essence the integrals along the branch cuts give head wave contributions. If h = 0
the point ( = -ik' sin 0 is the saddle point in a steepest descents analysis and gives
wavefronts travelling with wavespeed Co due to a compressional wave generated within
the fluid. In the context of the schematic 3.1 it then forms a semicircular arc in the

fluid. For 0 :S 0 < sin-l(colcd) this is the same as the PF wavefront. However for
o ~ sin-l (co ICd) this is not shown in the schematic and elements of this response emerge
quite strongly when h «x. When h « x the path runs from -i(pj very close to the
branch cuts before turning away at approximately ( '" -ik' sin O. This point. generates a
distinctive response in the fluid when t '" rico = to. The importance of points like this in
the Cagniard path in different situations have been recognised previously by, for instance
Hong & Helmberger (1977), Drijkoningen & Chapman (1988), but. either not analysed in
detail, or investigated in simpler situations. This regime is discussed in detail in Chapter
4.

Here, in general, the path must be found numerically, but noticing the similarity with
the h = 0 path suggests a perturbation approach. A useful asymptotic representation for
the path when h is small is thus found by perturbing away from the h = 0 path. That
is, we consider (p(t) = (O)(t) + h((l)(t) where (O)(t) is simply

1

(O)(t) = _ic~t sinO + ik' [1- (C;tf]2 cosO

for tpj < t < rico and its analytic continuation for t > rico, where tpj = (x - y(kP -
1)~)/cd. In this formula r2 = x2 + y2 and tanO = -xlY. The perturbation ((l)(t) is

(((0)2 ) 1
(1) - + 1 2

( (t) = ix_y(0)(((0)2 +k'2)-~; (3.3.10)

(3.3.9)

a measure of the error in t is easily found by substituting this back into (3.3.5), whence
() ( 2 2 1the error is (1)( 0 1(( 0) + k' )2.

Both the path and the solutions for the displacements and stresses found using this
approximation are indistinguishable from the numerical solution provided h « x, thus
to all intents and purposes the solutions for the stresses and displacements in this regime
are completely explicit. The expressions are somewhat lengthy, so are omitted from the
text. Nonetheless this perturbed path is useful as asymptotic expressions for the limit
hi x -+ 0 can be awkward to evaluate. In particular when h « x, and we are not in the
close neighbourhood of the interface, the Scholte response is small and the compressional

response at t '" rico = to begins to emerge. The pressure in the neighbourhood of to is
then given as

tH Pfk2 (2(2(t) + k2 I d(p(t))
(jyy {x, y, t} '" ---;:-Re ,~(((t)S(((t» <=-ik'sin6 dt ' {3.3.11}
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where (p(t) is given above. Two typical pressure plots are shown in Figures 3.9, 3.10,
the solid line is the exact solution and the dashed lines are the asymptotic expressions;
those around t = tl, tpj are given in the next section.
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Figure 3.9. A plot of 7futlJ / P f k2 versus t for material parameters typical of rock-water
combinations; :1: = 40, y = -4, h = 0.1.
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Figure 3.10. A plot of 7futlJ / Pfk2 versus t for material parameters typical of metal-water
combinations; x = 40, Y = -10, h = 0.01.

As we increase y the wavefronts move closer, more evidently for the rock-water case,

nonetheless the asymptotics are still accurate. The only response masked somewhat is
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that for leaky Rayleigh wave. In the metal-water case the Scholte response disappears

once we are sufficiently far from the interface.

3.3.1.3. Asymptotic analysis

It is clear there are distinctive responses within the fluid associated with various wave-
fronts, we now wish to extract these explicitly. The previous section dealt with the

1
emergence of the compressional response at t '" (x2 + y2)2 ICo as hix -t 0; this section is
concerned with the asymptotic forms of the other responses.

The Cagniard-de Hoop solution is intimately connected with the method of steepest
descents, Knopoff & Gilbert (1959), in particular the saddle point is the point at which
the Cagniard path cuts the imaginary axis. In the situation considered in this section
this identifies the first arrival at t = tpf. Thus one can explore the asymptotic behaviour
of the solution either from the explicit solutions (3.3.8,3.3.2), or via an analysis of the
Fourier transform and subsequent Laplace inversion. Since the path (( t) has often to be
found numerically we use the later route as this leads to explicit results.

The inverse Fourier transform of (3.3.2) can be reduced to the sum of residue contri-
butions and line integrals, however with the choice of branch cuts used above the poles
either lie upon the cuts or on the lower Riemann sheet. For this calculation it is therefore
convenient to change the orientation of the branch cuts, that is, we now take the cuts for
((2 + k2)t, in the lower half plane, to run from -ik to -ik - 00, with similar definitions
when k is replaced by k', 1. With our original choice of branch cuts the leaky Rayleigh
pole lay on the lower Riemann sheet, thus we could not ascribe any response explicitly to
it. However with this new choice of cuts the leaky pole is exposed, as is the Scholte pole;
the leaky pole now lies upon the upper Riemann sheet. A convenient way of visualising

a function like S(() and the various associated cuts and zeros, Chapman (1972), is to
consider the natural logarithm of the modulus of the Scholte function. For S(() this
is shown contoured on the upper Riemann sheet, and the features in the lower half of
the complex (-plane are shown in Figure 3.11; the zeros are labelled -ikl and -iksch,
and the branch cuts are shown by the bold solid lines. The Scholte zero is very close
to the branch point at -ik'. Using this choice of cuts the asymptotic behaviour of the
wavefronts is identified.

We examine each wave response in turn, beginning with the first arrival at t = tpf.
The wavefront is given by the limit as ( '" -i(pf in the exact solution (or using this as

the saddle point in a steepest descents approach), where ((tpf) = -i(pf. Thus

tH Pfk2 (k2-2(;f)
ayy (x,y,t) = --- 2 1. l'

11" (k' - (;f)"2S(-1(pf)[20pf(t - tpf)]"2
(3.3.12)
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Figure 3.11. The natural logarithm of the modulus of the Scholte function contoured on the
physical Riemann sheet, shown in the lower half of the complex (-plane. The zeros are labelled
-ikl and -iksch and the branch cuts are shown by the bold solid lines.
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where O'.pf= [h/(l- (;f) ~ - k,2y/(k,2 - (;f) ~]/Cd and S( -i(pf) is real. This is a (me-sided

disturbance for t > tpf. This captures the singularity at t = tpf' but if h « 1 there is a
small, but distinctive peak that follows this singularity which is not captured by (3.3.12),
see Figure 3.6. When h « 1 the Cagniard path becomes closer to the branch cuts and
the saddle point ( = -i(pf approaches the branch point at ( = -i, thus further terms
are required and the asymptotic response is represented by

Pfk
2

[ 1at~(x,y,t)""'- 1 1

7I"(k,2 - 1)2 (k2 - 2) (20'.pf(t - tpf))2

_ 4Cd (2(t-tPf)(k2_1))~l
h(pf(k2 - 2)2 Cipf .

(3.3.13)

The next response in time is due to the leaky Rayleigh wave; from the figures this
clearly generates a large distinctive response in the fluid. As the choice of branch cuts
above exposes the Rayleigh pole we calculate the leaky Rayleigh response via residues.
The precise position of the pole is deduced using a simple numerical scheme described in
detail in Appendix 3.B. Typical results are that, for aluminium-water, ±ikl = ±O.06336±
i2.18398, and for sandstone-water, ±ikl = ±O.15201±i1.64787. An asymptotic expression
for kl is

if-k4k' (k2 - 1) ~
-ikl ""' -ik + r

r (k,2 _ k;) t R' (- ikr )

recalling that R'( -ikr) is imaginary we rewrite this for convenience as -ikl = -ikr - €kc.

Thus one deduces an approximate arrival time for the leaky wave as

(3.3.14)

(3.3.15 )

and crucially this contains a source depth correction to the arrival time one deduces via
geometrical ray theory.

The residue from the leaky pole is

(jtH(x y p) = _P k2Re [ i(k
2

- 2kf) e-P('Y~(-ikz)h-'Y~(-ikllY+kIX)/cdl
YY " f ,~( -ik,)S'( -ikl) , (3.3.16)

and upon taking the inverse Laplace transformation, we obtain

tH( __ Pfk
2

Re [ (k
2

- 2kf) 1
ayy x, y, t) - 1r ,~( -ikl)S'( -ikl)[t - bd( -ikl)h - ,~( -ikl)Y + kIX}/Cd] ,

(3.3.17)
together with terms of less significance; we have employed well known properties of the
exponential integral in the above.



3. Asymptotics for transient loadings 54

The expression (3.3.17), or the corresponding formula for the displacement, is plotted
versus the exact solution in Figures 3.4,3.5, 3.6, 3.7; (3.3.17) is the dotted line in the
neighbourhood of tl' Thus it is clear that equation (3.3.17) correctly predicts the position
and magnitude of the peak associated with the leaky Rayleigh wave both for light and
moderate fluid loading. It is perhaps surprising that the result still performs well even
when E is relatively large, as in rock-water, and this demonstrates the persistence of the
leaky Rayleigh response even in this regime.

It is clear from the exact solution that there is an additional, sometimes significant,
response. This is identified with either the Scholte wave, when y « x, or a compressional
wave in the fluid, for h « x see Section 3.3.1.2; or a combination of the two.

When the Scholte response is fully developed, as in Figure 3.4, a residue calculation
yields the appropriate expression near tach for the Scholte wave as,

2 2 2)tH Pfk ~{2~k~a~ch~-__k~{~t_-_t~s=Ch~) _
(J (x, y, t) = ---
yy 11' (k;ch-k'2)~{{t-tsch)2+AI)iS'{-iksch)

(3.3.18)

where Al = [y{k;ch _k,2)~ -h{k;ch -l)~l/cd, and S'{ -ikach) is imaginary. Once again this
asymptotic formula, or the corresponding result for the displacements, is highly accurate.
It is shown as the dotted line in the neighbourhood of tach in the figures.

If both h « x and y « x both the Scholte and compressional fluid responses found
in Section 3.3.1.2 are evident. If we are dealing with the metal-water case the Scholte
pole is very close to the branch point at -ik' and this complicates the asymptotics
deduced via transforms, however the analysis in 3.3.1.2 using the perturbed path allows
the asymptotic forms to be extracted.

3.3.2. A subsurface shear line source

In an analogous manner to the above the transform solutions to the normal displacement
and fluid pressure can be found; we will only treat the pressure here. The field consists

of two pieces, the first is taken to be the solution of V2¢ -1j;/c~ = F(t)6(:r:)6{y - h) in an
infinite elastic material, and the total field in the solid then consists of the superposition
of this infinite body solution and the scattered field generated by the interface. We
investigate the scattered field in detail. Figure 3.2 shows the geometry of the problem
together with a schematic of the wavefronts generated.

Using the integral representations for the quantities of interest in Appendix 3.A the
solutions are derived. In the fluid the Laplace transform of the fluid pressure is given by

the Laplace transform

{j (x y p) = _!_ JOO Plk2P2F(p)2i('Y~{() e-pb~«)h-I'~«)Y+i(X)/Cdd('
YY " 211' -00 'Y~(()S(() , {3.3.19}
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the inversion contour (( t) is chosen so that cat = ((2 + k2) t h - ((2 + k'~ )1y + i( x. This
might appear only trivially different from the path in the previous section, however this
path can now intersect the branch cuts, and this leads to additional effects.

If, for simplicity, we initially restrict ourselves to results on the surface by setting 11= 0

the integration path is given by

(3.3.20)

where r2 = x2 + h2 and tanO = x/h. The path now cuts the imaginary axis at ( =

- ik sin (] and does not intersect the branch cuts provided that 0 :S (] < sin-1 Cs / ea- If

however sin -1 Cs/ Cd :S (] :S 7r /2 then the path must be supplemented by integrals taken
along the branch cuts; these paths are defined as

1

(,(t) ~ _i";tsinO ± ik [1 - (";t)'r cos 0, for t S ;, (3.3.21)

In essence the integrals along the branch cuts give the head wave, SP F, contributions and
an asymptotic analysis near the branch points yields the wavefront behaviour, described
below for y < O.

For y < 0 the Cagniard path ((t) is, as in the previous section, found numerically, or

for h « x via a perturbation from the h = 0 solution. Three typical paths are shown
in Figure 3.12. These differ from the path found for the compressional source as the
point where the path meets the imaginary axis ((ts!) = -i(s! (t.~f is the arrival time of
the SF wave) can intersect the branch cuts, that is, (s! > 1. In this case the path is
supplemented by an additional piece (c(t) that runs along the branch cut from ( = -i to
( = -i(s!' The function (c(t) is also typically found numerically.

The pressure is

(TtH(X Y t) = P!k2 [H(t _ t )Re ( 2i((th~(((t)) d((t))
yy " 7r sf /'~(((t))S(((t)) dt

(
2i(c(th~((c(t)) d(c(t))]

+(H(t - tsp!) - H(t - ts!))Re 'Y~((c(t))S((c(t)) dt '

and two typical plots of7rat~(x,y,t)/PJk2 versus t are shown in Figures 3.13,3.14. The
second term in 3.3.22 uses the supplementary path (c and only occurs for 0 ~ Osp! where
Osp! = tan-1[(k2 _1)-1/2 - (k,2 - 1)-1/2y/hl/[1 - (y/h)l. In this case the first arrival

is the head wave generated by the compressional wave in the solid and this occurs at

tsp! = [(k2 - 1)~h - (k,2 - 1)~y + xl/Cd,

(3.3.22)

The pressure is singular at the arrival of the wave SF that is at t = t.~!.In the interval
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Figure 3.12. Three typical Cagniard paths; y = 0 solid line, y < 0 clashed lines.
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Figure 3.13. A plot of 7r(Jt~ /pJk2 versus t for material parameters typical of m tal-water
combinations; x = 40, y = -1, h = 0.1.

between tsp! and ts! the pressure has a zero with zero slope; the zero arrives at time
t = (k (x + h) - (2k,2 - k2) !y) / y'2Cd. The point of zero pressure travels along the interface
with a horizontal velocity equal to y'2 times the shear wavespeed of the solid, thus it is
independent of both the fluid and the compressional wavespeed of the solid. A similar
phenomenon occurs in the problem discussed by Roever et al. (1959). The pressure is
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Figure 3.14. A plot of 7rat~ /pfk2 versus t for material parameters typical of metal-water
combinations; x = 40, y = -1, h = l.

zero at the arrival time of the leaky Rayleigh wave, tl where

(3.3.23)

with two large distinctive peaks either side of tt. The Schulte response follows at t = ts h,

and we have a similar situation to that of Section 3.3.1.2 when h « 1 with the emergence
of a sharp compressional response at t = to.

The asymptotic behaviour in the neighbourhood of each wavefront arrival is shown by
the dashed lines. They are deduced in a similar manner to those of the previous s ction.

The form of the head wave generated by the compressional wave in the solid is found
from the exact solution in the limit as ( rv -i and it is

tH( ) __ pjk2 2(2(t-tspj))t
ayy x, y, t - 1 3/2 '

7r (k,2 _ 1)"2 (k2 - 2)2 aspj
(3.3.24)

where aspj = (x+y/(k,2 -l)t -h/(k2 -l)t). This is a one-sided disturbance for t > tspj.

In the neighbourhood of the point, (J = (Jspj, where it meets the compressional wave the
above approximation fails and we recover the approximation to the compressional wave
below. This is a two-sided disturbance and near its wavefront ( rv -1(8f_

(3.3.25)
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and ( '" -i(sj+

tH( ) _ pjk2 2(8j((;j -1)1<52
ayy X, y, t - 1 1 .

1r (k,2 - (;j)2(<5? + 8~)(2asj(t - tsj))'i

In these formulae <51 = (k2 - 2(;j)2, 82 = 4(;j((;j -1) ~(k2 - (:j) 1+ tk4 k' ((;/ -1) 1/ (k,2 -
(;j)~' and asj = (k2h/(k2 - (;j)1 - k,2y/(k,2 - (;j)1)/Cd. The plus and minus signs
for (sj± denote the direction from which we approach. Note this exchanges a spatial

(3.3.26)

singularity for one in time.

Once again we find the response due to the leaky Rayleigh wave by changing the
orientation of the branch cuts, as discussed in the previous section, and use the residue
contribution from the leaky Rayleigh pole this gives

tH ( _ pjk2 R [ 2ikn~(-ikd ( 1
ayy x,y,t) - 1r e ,~(-ikl)S'(-ikl) [t - (r~(-ikl)h - ,~(-ikdy + klx)/cdl

- [tl - (r~(-ikdh - ~~(-ikdY + kIX)/Cdl) 1 '
(3.3.27)

where we have utilised the asymptotic form of the Laplace transform of the exponential

function, and for additional accuracy we have incorporated the next term in the expan-
sion. Equation (3.3.27) correctly predicts the position and magnitude of the peaks either
side of the arrival time tl, and confirms that they are due to the presence of the leaky
Rayleigh pole; one could be misinterpreted as being due to the arrival of the SF wave.

Taking the residue due to the pole at ( = -iksch yields the appropriate expression for
the Scholte wave, that is,

(3.3.28)

where Ak = [y(k;ch - k,2)~ - h(ksch - k2)t]/Cd'

When h « x a perturbation from the h = 0 path similar to that adopted in 3.3.1.2 is
used, and this gives a strong response near to; this is shown in Figure 3.13.

3.3.3. Subsurface line force

Now we consider a vertical line force a distance h beneath the interface; the geometry of
the problem together with a schematic of the wavefronts generated is borrowed from a
superposition of Figures 3.1, 3.2. The field generated by the interaction of the line force

with the interface is equivalent to the two-dimensional field generated by a plane pulse,
with the wavefront parallel to the interface, incident upon an elastic solid containing a
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small cylindrical void. Thus this example has a practical interpretation. The line force
is also useful as a Green's solution for integral equation formulations.

The line force is characterised by pF = F(t)8(x)8(y - h)y where y is the unit vector
in the y direction. The fluid pressure is

this is closely related to the compressional and shear line sources. Equation (3.3.29) is
the sum of compressional and shear terms that are distinguished by the subscripts d, s in
the exponential terms. Thus in each piece we utilise the analysis of the previous sections.
In particular the Cagniard paths described in the previous sections are used for the
compressional and shear pieces, plots of 7rCda!!v (x, y, t) / ek' k2 versus t are shown in Figure
3.15 together with the asymptotic wavefronts. The first arrival is the compressional fluid
wave generated by the compressional wave in the solid and this arrives at t = tpf. This
is immediately followed by the head wave generated by the shear wave in the solid. The
compressional fluid wave generated by the shear wave in the solid arrives at t = tsI.
The asymptotic forms of the wavefronts follow by a minor adjustment of those in the
earlier sections, and are not given here. The arrival time of the leaky response is slightly
different for the compressional and shear pieces, however the difference is not noticeable
in this figure. If the line force lies on the surface, h = 0, then the fiuid pressure for a
surface line force in Craster (1996b) is recovered.
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Figure 3.15. A plot of 7rcda{~/f.k'k2 versus t for material paramet rs typical of metal-water
combinations; x = 40, y = -1, h = 1.
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To demonstrate the ease by which more general loadings are incorporated we take
the pulse shape of the source to be the four-point optimum Blackman window function,

Harris (1978), i.e.,

F(t) ~ !~b"cos C;'t)
when -00 < t < ()

when 0 < t < T (3.3.30)

when T < t < 00

in which the constants bTl are given by bo = 0.35869, b, = -0.48829, b"2 = 0.14128,
and b3 = -0.01168. This pulse shows similarity with the classical Rieker wavelet often
used in seismology, de Hoop & van der Hijden (1985). To get the numerical form of the
pressure response we convolve the pressures found for the special time dependence used in
previous sections, that is, equations (3.3.8,3.3.22) and, if required, the analogous normal

displacements, with the second and first derivative of this function, respectively. The
pulse duration is taken to be T = 0.01 and the results are shown in Figures 3.16, 3.17. The
response in the interior of the fluid is presented; the wavefront arrivals are dearly visible
in the synthetic seismograms shown. The wavefront expansions for these more general
cases are obtained by convolving the explicit expressions following equations (3.3.8) and
(3.3.22) with the second and first derivative of (3.3.30), respectively. The expansions
could be directly obtained via an asymptotic analysis of the transform solutions. However,
it is an useful feature of our analysis that we generate these representations by a simple
convolution.

Figures 3.16, 3.17 shows the wavefront expansions versus the exact solution and the
agreement is reasonable.

3.4. Conclusion

The Cagniard-de Hoop technique has been used to examine three canonical problems,
each of which is essentially a Green's function in space and time. In each case the exact
solution is found in a simple closed form requiring minimal numerical work, and we are
able to identify asymptotic representations for each wavefront arrival. When the sources
are close to the surface an asymptotic representation of the Cagniard path is found, thus
explicit solutions when h « x are obtained. The perturbation approach of generating
Cagniard paths should be useful in a range of related problems. This is explored further

in Chapter 4. In addition we have identified the response due to the leaky Rayleigh wave,

and in many circumstances this is the dominant disturbance. The origin of the leaky
Rayleigh wave from a pole on the lower Riemann sheet demonstrates the importance of
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Figure 3.16. A plot of 1rayy/ pjk2 versus t for the four-point optimum Blackman window function
under compressional source loading for material parameters typical of metal-water combinations;
x = 100, y = -1, h = 1.
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Figure 3.17. A plot of nayy / p jk2 versus t for the four-point optimum Blackman window function
under shear source loading for material parameters typical of metal-water combinations; .1; = 100,
y = -1, h = 1.

the contribution of complex poles on lower Riemann sheets to the full solution. The effect
of these poles is often ignored, or it is incorrectly stated that they cannot be utilised.

A particularly useful aspect of our asymptotic analysis is that general time dependent
forcings are easily treated. That is we can construct the asymptotic form of the wavefront
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arrivals for a general forcing utilising the wavefront expansions found for simpler Green's
function forcings; these are considerably simpler to use than the full solution. They are
also considerably faster to evaluate than the full convolution solution; this will become
even more noticeable when similar methods are used in more complicated geometries.

Similar methods can be used to find the wavefronts in the solid, and moreover, the
asymptotic fields in the solid for any forcing. It is felt that these results are of less
practical importance, and therefore the results are not presented here. One other aspect
not treated here is the asymptotics of very light fluid loading, e « 1. As described
in Craster (1997) one can perturb away from the in vacuo elastic solution and obtain
relatively simple and accurate approximations.

The above results will be useful in formulating more realistic fluid-solid interaction
problems. The treatment may be routinely extended to examine the equivalent three
dimensional problems as well as extensions to layered media and anisotropic elastic ma-
terials.
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Appendix 3.A. Fourier and Laplace transformed variables

In y > 0 the material is elastic and the Fourier and Laplace transformed displacements and
stresses are

iix(~, y,p) = -ieA(~,p)e-'Yd(~.p)y - 'Y.(e,p)B(e,p)e-'Y·(~·p)y, (3.A 1)

iiy(~, y,p) = -'Yd(e,p)A(~,p)e-'Yd(~.p)y + i~B(~,p)e-'Y·(e.p)y, (3.A 2)

~xy(~,y,p) = J.t [2i~'Yd(~'P)A(~,p)e-'Yd(e.p)y + B(e,p) (2e + ~;) p-I'.(CP)y] , (3.A 3)

~yy(~,y,p) = J.t [(2e + ~;) A(~,p)e-·Yd(e.p)y - 2i~'Y8(~'P)B(~,p)e-I'.(e.l»Y] , (3.A 4)

and in the fluid region y < 0 the relevant Fourier and Laplace transformed variables are

iiy(e, y,p) = 'Yo(~,p)C(~,p)e'Yo(e.p)y, (3.A 5)

~yy(~,y,p) = PIP2C(~,p)el'o({"p)y, (3.A6)

where the functions A(~,p), B(e,p), and C(e,p) are presently unknown functions of ~ and p.

The functions 'Yd(~,P), 'Y.(~,p), and 'Yo(e,p) that appear are defined as T'q(e,p) = (e + p2 /c~)!
with q = d, s, 0; the functions have branch cuts from ±ip/cq to ±ioo. We introduce a rescaling
e = P(/Cd in the text, such that the functions are now given by 'Y~(() = ((2 + k~)!, with
q = d, s, 0; the factor p/Cd is extracted explicitly. In this formula kd = 1, k. = k = Cd/C. and
ko = k' = Cd/Co.
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Appendix 3.B. The zeros of S()

The purpose of this appendix is to obtain the position of the leaky Rayleigh zero of the Schulte
function S((), this is required in the text. As noted earlier the zeros are usually on the lower Rie-
mann sheet and have no explicit influence, however we can choose the branch cuts appropriately
to move them onto the upper Riemann sheet. The leaky poles are then utilised in the residue
calculation. In this appendix the branch cuts for the function ,~ are taken to be the straight lines
from ±ikq to ±ikq ± 00; this choice of branch cuts differs from that adopted in Appendix 3.A,
and the additional zeros now move back to the upper Riemann sheet. The two leaky poles are at

±ikl; for simplicity only the upper half plane is considered here. The position of the zero at ik,
is found using a simple numerical scheme outlined in Craster (1996a).

Given an analytic function J(z) that has a simple zero inside the closed domain D, then the
integral

[ zJ'(z) dz
lo» J(z) ,

(3.B1)

around a positively orientated contour along the boundary of D, extracts its position explicitly.
This integral is performed numerically around a rectangle whose longer sides run along the edges
of the branch cuts for (( - ik)! and (( - ik')! and shorter sides are parallel to the imaginary
axis; the part of the imaginary axis between ik and ik' is enclosed by the rectangle. It can be
demonstrated using the argument principle that a zero lies in this region.

The root is found to an accuracy of 10-5 using a standard numerical quadrature routine.
Typical results are that, for aluminium-water, ±ikl = ±O.06336± i2.18398, and for sandstone-
water, ±ikl = ±O.15201± i1.64787. Hence, the position of the leaky zero is considered known
when it is used in the text.

The numerical scheme can equally be used to find the Sch6lte zero at ±iksch; the rectangle is
now positioned above the branch cut at ik' in the upper half plane.



6S

Chapter Four

Cagniard-de Hoop path perturbations with appli-
cations to non-geometric wave arrivals

4.1. Introduction

The Cagniard-de Hoop technique, Cagniard (1939), de Hoop (1960), provides an excellent
method for solving and investigating various elastic wave interaction problems. Indeed,
many model problems can be analysed in detail, and both the physical structure and the
importance of the responses determined. In particular, the interactions between source
excitations, interfaces and layers are revealed, and explicit solutions found; this, together
with a useful asymptotic scheme, is the aim of the current chapter.

In seismology and seismic exploration many cases exist where tunnelling is important;
this contribution is sometimes overlooked. One major area where this response is relevant
is in oil exploration where shallow explosive sources generate these signals due to mode
conversion at the free surface. The responses may also be evident in acoustic microscopy
when dealing with scattering by shallow sub-surface cracks.

The method itself is discussed in considerable detail by Aki & Richards (1980), Mik-
lowitz (1978), and others. In essence, the solution is given in terms of a path (or several
paths) ((x, y, t) that, in general, depends on a parameter, h, that is either the source
depth, or the layer thickness. Using a particular time dependence the Cagniard-de Hoop
method consists of an elegant transformation that reduces a double transform inversion
to an explicit result; more general time dependence is then easily incorporated using
convolution theorems.

In brief, we utilise Fourier and Laplace transforms in space and time respectively: the
Laplace transform in time t, and its inverse, are defined as

1 jC+iOO
f(t) = -2 • j(p)ePtdp,

71'1 c-ioo
for Re(c) > 0 (4.1.1)

where p is the Laplace transform variable, and the Fourier transform in a:, and its inverse,
are defined as

(4.1.2)

where ~ is the Fourier transform variable. The inversion path C runs along the real axis
from -00 to 00. Using transformations of the governing equations, to be discussed in
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Section 4.2, and a rescaling of the transform variable, typically ~ = p(, we obtain

1 jC+iOO 1 foof(x, y, t) = -. - g(()e-pz(()cl(eptdp.
2m c-ioo 2n -00

(4.1.3)

Both the functions g(() and z(() are usually rather complicated, containing branch points
and poles. Typically, as in the case we consider in Section 4.2, the function z( () takes
the form

z(() = 'Yd(()h + 'Ys(()Y + i(x. (4.1.4)

The functions "Iq that appear are defined as 'Yd(() = ((2 + 1)~, 'Ys(() = ((2 + k2)~,
where the branch cuts are taken running along the imaginary axes from ±i to ±ioo
and ±ik to ±ioo respectively. The Cagniard-de Hoop technique now involves defining a
Fourier inversion path ((x, y, t) such that it is the solution of the transcendental equation
z(() = t, namely

t = 'Yd(()h + 'Ys((}Y + i(x, (4.1.5)

with t > tcritical say. Once such a path is found the double transform above becomes
the inverse Laplace transform of a Laplace transform, thus the explicit answer is clear
by inspection.

In simple cases when, say h = 0, equation (4.1.5) is solvable explicitly and this then
yields much useful information. In particular we can study the wavefront arrivals and
their asymptotic forms explicitly. These can then be used in conjunction with a convo-
lution theorem to generate fast and accurate artificial seismograms.

The limit as the ratio h/x -+ 0 is of interest in many applications. This perturbation
away from h = 0 smooths out the sharp wavefront arrivals that were, when h = 0,
associated with saddle points in the transform domain, or equivalently specific points on
the Cagniard paths where the path left the branch cuts. Once the parameter h is non-zero
the analysis becomes more difficult since the path ((t) must now be found numerically.
A quartic equation may be formulated and solved explicitly; the analysis is relegated to
Appendix 4.A. However in the limit as h/x -+ 0 this is not particularly revealing. In
this case we expect the asymptotics of the wavefronts to be less obvious; this occurs for
many model problems. For instance the path in (4.1.5) is required if we are interested in
studying the S* arrival, Hron & Mikhailenko (1981), that has been given much attention
and which we describe in Section 4.2. In the limit as the source tends to the interface,
h -+ 0, the Cagniard path has a noticeable sharp bend; this has been noticed before
by Hron & Mikhailenko (1981). This dramatic bend occurs near to the point at which
the path would have left the branch cuts when h = 0, thus it is natural to investigate
perturbing away from the h = 0 solutions.

In the case of a thin fast fluid layer sandwiched between larger fluid layers, Mellman &
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Helmberger (1974) also noticed a sharp bend in one of the Cagniard paths for a generalised
ray and drew attention to the connection with the non-geometric transmitted wavefront.
Later Drijkoningen & Chapman (1988) and Drijkoningen (1991) suggested that this bend
in the Cagniard path was generic for many wave arrivals of this type, and that the

Cagniard technique was the natural way to study these phenomena. The problems treated
in Drijkoningen & Chapman (1988) concentrate upon fluid half spaces for which the
Cagniard paths are known explicitly, the current chapter is an extension of this approach
in that. the elastic counterparts are treated. More generally the perturbation scheme we
use easily leads to asymptotic results in the more complicated cases when the Cagniard
path must be found numerically.

One detail that appears to have been overlooked, but is rather useful, is that in the limit.
as the ratio h/x tends to zero we can use the explicit path found when li = 0 to generate
an accurate asymptotic representation for ((t) outside some close neighbourhood of ts',

that we discuss and determine in Section 4.2. In itself this is already faster than finding
((t) numerically but crucially any further manipulations are much less time-consuming,
particularly if we then wish to look at quite general time dependent sources, or consider
extensions to three dimensions. It also indicates that the approach might be equally
rewarding in anisotropic media. More importantly it also allows a thorough asymptotic
analysis of the underlying physical problems to be examined.

In this chapter we consider a compressional source beneath a fluid-solid interface. This
problem illustrates tunnelling effects within a 'slow' material (the fluid) due to a source
in a 'fast' material, and also tunnelling in the 'fast' material due to the coupling between
a 'fast' compressional wave and a 'slow' shear wave.

To demonstrate the wider applicability of the approach used here we also consider a
thin fast layer and use generalised ray theory to analyse this in detail. In this case we
pick out the paths relating to the non-geometric arrivals, and these are then treated using
the asymptotic approach.

Several alternative approaches to similar problems have been considered in the litera-
ture, but the explicit effect of the non-geometric waves is often hard to extract. Treating
time harmonic dependence, several authors have identified high frequency, far field re-
sponses, see for instance Abramovici et al. (1989), Gutowski et al. (1984), Daley &
Hron (1983); the analysis then involves steepest descents and follows, say, Brekhovskikh
(1980); the equivalent responses are evanescent waves. Complex ray theory could also be
employed since the arrivals have complex phase, see for instance Einziger & Felsen (1982),
Babich & Kiselev (1989), or numerical modelling, see for instance Hron & Mikhailenko

(1981), Stephen & Bolmer (1985). However, the Cagniard-de Hoop approach is very
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direct, particularly revealing, and explicit solutions in all space and time are deduced;
the time harmonic results, if required, are then a subset of these solutions.

4.2. A compressional source beneath a fluid-solid interface

In this section we solve the problem of a compressional source beneath a fluid-solid
interface. We demonstrate that, in the limit as the ratio li]« -+ 0, a definite response
occurs in the solid associated with the prominent S* arrival. The S* response is a non-
geometric arrival that is formed by the reflected shear wave at the interface. Moreover, we
identify the part of the Cagniard path that contributes to this response, namely the bend
in the path that is close to the branch cuts. In order to appreciate the characteristics
of the pseudo-shear wave a wavefront expansion is deduced using a perturbation of the
Cagniard path that may be found explicitly when the source depth h = O. This approach
will open the way to considering a wide range of problems that contain a characteristic

length scale h that effects non-geometric responses. In the next section we consider a
thin fast layer; this configuration often occurs in model problems. The non-geometric
response in the fluid is not treated here.

The fluid-solid configuration to be considered is shown in Figures 4.1 and 4.2 with
the y-axis pointing downwards. The depth, h, of the line compressional source is not
shown; it is taken to be 0 < h/x « 1. In addition a schematic of the primary geometric
wavefronts generated in each case, h/x -+ 0 and h = 0, is shown in Figure 4.1 and
Figure 4.2 respectively. Here the situation h = 0 is non-physical for the compressional
source loading as it does not satisfy the interfacial conditions correctly. Nevertheless,

the physical effects are relevant when this problem is perturbed; we are interested in this
limiting case.

The notation that appears in the two schematics has been adopted from geometrical
ray theory. The letters PP, PS, and PF are used to denote the compressional and
shear waves in the solid, and the compressional wave in the fluid, generated by the direct
compressional field from the source respectively. In the case h = 0 both the PS and PF
responses take the shape of head waves.

The starred letters F*, S*, and SF* are used to denote the compressional wave in the
fluid, the shear wave in the solid, and the head wave in the fluid generated by the shear

wave respectively, in Figure 4.1. That is, these are the waves generated by interaction

with the interface. These waves are the precursors to the unstarred field in Figure 4.2,

and are investigated in the current chapter. As h is sufficiently increased the starred
fields loose their prominence. In addition, the figures omit the wavefronts due to the
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Fluid

Solid

x

Figure 4.1. A schematic showing the radiated wavefronts for the waves generated by a line
compressional source in the limit as the ratio hjx --+ O.

Fluid

Solid

:1;

Figure 4.2. A schematic showing the radiated wavefronts for the waves generated by a lin for e
at a fluid-solid interface; h = O.

interfacial Scholte wave and, for light fluid loading, the leaky Rayleigh wave, and the
direct compressional wave from the source.

The configuration consists of an isotropic linear elastic material in y > 0 and a com-
pressible fluid in y < O. The responses of the two half spaces are coupled together through
the continuity boundary conditions along the interface y = 0, these are discussed follow-
ing (4.2.1). A Cartesian coordinate system is adopted with Xl, ~£2 corresponding to
x, y.

In the usual way, the elastic material has Lame constants A, p" and density p. The

stresses CJij in the material are related to the displacements Ui via CJij = AEkk8ij + 2J1-Eij
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where Eij = ~(Ui,j + uj,d, the comma denoting differentiation with respect to Xi. The
governing equations in the elastic material are the equilibrium equations aij,j = PUi,
where the notation" denotes double partial differentiation with respect to time.

The compressible fluid in y < 0 is effectively an elastic material that supports no shear
stresses. Thus aij = AIEkk8ij, where the fluid has density PI and compressional modulus
), I' The governing equations are aij,j = PlUi again.

We utilise the displacement potentials ¢, 'l/J, and X where the displacements are u =

\1¢ + \1 x 'l/J2 (where 2 is the unit vector in the z direction) in y > 0 and u = \1X in
y < O. The displacement potentials ¢ and 'l/J are related to the compressional and shear
disturbances respectively, thus we utilise these when generating compressional sources.
The following wave speeds Cd, Cs, and Co are defined in terms of the material parameters

as c~= (A+2/-l)/p, c; = /-lip, and c~= AI/PI'

The assumption that the compressional wavespeed of the fluid is less than the shear
wavespeed of the solid is taken so that ea > Cs > co; this is a reasonable assumption
for most solid and fluid combinations. The analysis presented here does not rely on this
assumption, and is easily generalised to allow Cd> Co > cs, say, which would be typical of
perspex-water combinations. A coupling parameter f. occurs in the analysis; it is defined

as f. = Plco/ PCd, and gives a measure of the fluid-solid coupling. The light fluid loading
limit is when f. « 1; this specific limit is not taken here unless explicitly stated.

The continuity boundary conditions

[O"yy{x, 0, t)] = 0, axy = 0, [uy{x, 0, t)] = 0 (4.2.1)

are taken on the interface y = 0, where the braces [ ] denote the jump in a quantity
across the interface; both the stresses 0"yy and the normal displacement uy are continuous

across y = O. The fluid supports no shear stresses, thus O"xy = 0 on y = O. The total
field in the solid consists of the superposition of two fields. The first is the solution to
the source problem \12¢ - ¢/c~ = F{t)8{x)8(y - h), in an infinite elastic material, where
F{t) gives the time dependence of the source and 8( ) denotes the delta function. The
second field is the response generated by the interfacial boundary conditions; all figures
show this second field.

The analysis is performed using the Fourier and Laplace transforms defined by equa-
tions (4.1.1) and (4.1.2) respectively. The representations for the Fourier and Laplace

transformed stresses and displacements are given in Appendix 3.A; they are not repeated
here.

The plan of this section is that we solve the source problems exactly, both for displace-
ments and stresses; the asymptotic analysis is then developed as in Section 3.3.1.3. In this
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chapter we concentrate solely upon the asymptotics associated with the non-geometric
effect; the asymptotics for the other responses are shown in the figures, but the expres-
sions are not given explicitly here. We concentrate upon the S* response in the solid;
the F* response in the fluid is treated more briefly in Section 3.3.1.2.

4.2.1. Exact solution

Using the appropriate integral representations the solutions are derived. In the solid the
Laplace transform of the normal displacement is

uy(x, y,p) = __!__100_1_pP(p)s(() e-p('Yd()(h+y)+i(X)/Ccld(
27r -00 2Cd S(() .

00 - 2 2 2+_!__ 1 !pF(p)( (2( + k ) e-p(')'d()h+1.()II+i(X)/Ccld(
27r -00 Cd S(() ,

(4.2.2)

where F(p) is the Laplace transform of F(t) given by (4.1.2). The stress ayy in the solid
is given by a similar Laplace transform:

2- 2 2
a (x y p) = _!__ 100 _!!_p F(P)s(()(2( + k ) e-P(')'d ()(h+y)+i(x)fcd d(
yy " 27r -00 2c~ Id(()S(()

_ _!__ 100 4~ p
2p(p)(2(2(2 + k2hs(() e-p(')'cl()h+"Y.(OY+i(x)/ccld(.

27r -00 Cd S(()

(4.2.3)

The plan is to discuss the response due to the normal displacement and identify asymp-
totic representations with particular attention to the non-geometric wavefront S*. The
pressure in the fluid and stresses can then be similarly treated, but for brevity we exclude
them here.

The Scholte function S(() appears in both formulae, and is vital to the analysis; it is
defined as S(() = R(() + €k4k'((2 + 1) ~/((2 + k,2)L In this formula k and k' are defined

to be the ratios Cd/Cs and Cd/Co respectively. The Scholte function contains six branch
points at ±i, ±ik, ±ik', and either two or four zeros depending upon the precise choice
of branch cuts. If € = 0, that is, if the fluid is decoupled from the solid, the Scholte
function is truncated to the function R((). This is the standard Rayleigh function,
R(() = (2(2+k2)2_4(2((2+1) ~ ((2+k2) ~; this function has four branch points at ±i, ±ik,
and two zeros at ±ikr where k; = Cd/Cr and Cr is the Rayleigh wavespeed (k < k; < k').
The complement function s(() defined as s(() = r(() _ €k4k'((2 + 1) ~/((2 + k,2) ~, where
r( () = (2(2 + k2)2 + 4(2 ((2 + I)! ((2 + k2) ~, is also required and is described in Appendix
4.B.

The functions ,d(() that occur are defined as Iq(() = ((2 + k~)~, with q = d, s, 0;

kd = 1, k, = k, ko = k'. Here the choice of branch cuts for the functions Iq(() in the

complex (-plane is taken such that they run from ±ikq to ±ioo along the imaginary
axis. With this choice of branch cuts the zeros of the Scholte function corresponding to
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leaky Rayleigh waves in the physical domain then occur on the lower Riemann sheet,
and play no explicit role in the exact solution. Given the choice of branch cuts above,
the Scholte function has only two zeros at ±iksch where ksch = Cd/ Csch and Csch is the
Scholte wavespeed (ksch > k'). This wavespeed is not related to the Rayleigh wavespeed,
indeed for E « 1 it is marginally less than the compressional wavespeed of the fluid in
this limit. The migratory behaviour of the zeros of s(() from the imaginary axis, Roever
et al. (1959), is found to be important and a full description is given in Appendix 4.B. In
essence, for low values of the Poisson's ratio both zeros of s(() lie on the imaginary axis,
the second zero lies close to the branch point at -i. As the Poisson's ratio is increased
the zeros approach each other, intersect, and, typically at 0.28 < v < 0.3, migrate from
imaginary axis and form conjugate pairs. Typical results are that, for aluminium-water,
±ikp = =fO.15979± i1.01638, and for sandstone-water, ±ikp = ±iO.99912, ±iO.638995.

The loading F(t) = H(t), where H(t) is the Heaviside step function, now reduces

the integral equations to the form (4.1.3). This case is now considered in detail for the
displacements for convenience, and is denoted by u: (x, y, t). To incorporate more general
loadings, F(t), we may utilise the following convolution theorem,

uy(x, y, t) = lot F'(t - T)U: (x, y, T)dT (4.2.4)

provided F(O) = O.

The explicit solution is found using the Cagniard-de Hoop method, see for instance
Miklowitz (1978). The displacement has been written above, in equation (4.2.2), as the
sum of two integrals, that is, in the form f 91(()e-pz1(()d( + f 92(()e-pz2(()d( where the
two functions Zl and Z2 differ only by the function multiplying y. Two inversion contours

are chosen so that Zl (() = t and Z2 (() = t, namely,

Cdt = (((P)2 + 1)~(h + y) + i((P)x

and cdt = (((S)2 + l)~h + (((S)2 + k2}~y + i((S)x.

(4.2.5)

(4.2.6)

These contours are used in turn in the integrals appearing in (4.2.2,4.2.3) to place each
integral in the form of a Laplace transform. This amounts to a transformation of the
Fourier integration path. As we ultimately require the inverse Laplace transform of this
integral, our solution in real time is found immediately by inspection. The superscripts
(P) and (8) relate to the compressional and shear disturbances respectively.

For the response in the solid the first Cagniard path (4.2.5), ((p)(x,y,t), is found

explicitly. The integration path is given by
1

((P)(t) = _{:t sinO + [(c:tr - 1r cos 0, for tpp ~ t < 00, (4.2.7)
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where tpp = r/ed, '1'2 = x2 + (h + y)2, and tanB = x/(h + y). This path is of less interest
with regard to the asymptotic procedure. The situation for y > 0 is more complicated
for the second Cagniard path (4.2.6), ((S) (x, y, t), and the path is found numerically,

or for either h « x or y « x via a perturbation analysis (the details are given in
Section 4.2.2). From the formulation of a quartic algebraic equation, the full details are
given in Appendix 4.A, or via a Newton-Raphson algorithm, the Cagniard path ((8) (t) is
found numerically as the root of equation (4.2.6) with positive real part. Using symmetry
properties of the integrand it is sufficient to only consider the path in the fourth quadrant
and this is given by taking the branch of ((S) (t) with the positive square root. When
y = 0 the integration path is already given explicitly by (4.2.7) where '1'2 = x2 + h2 and
tan B = .x/h.

o .-------~------~--------~------~------_,

-0.5

-3

o 0.02

--1.5

-2

-2.5

Re(()

Figure 4.3. Three typical Cagniard paths for ((S)(t). (a) x/h = 40, y/h = 1. (b) ;£/h = 40,
y/h = 0. (c) »[h. = 400, ylh = 10. Note the sharp bend in (c).

In each case the Cagniard path, in the lower half plane, cuts the negative imaginary
axis between 0 and -1. For particular choices of .x / hand y / h the path departs from the
axis very close to -i; this can be seen in Figure 4.3 and in the next section in Figures
4.8 and 4.11. In Figure 4.3 a typical path for h « x is shown and is labelled (c), this is
distinctly different to the other two paths. In this limit the path approaches the branch
point at -i and tightens around the branch cuts along the negative imaginary axis. In
particular the path has a dramatic bend away from the axis near the saddle point that

would exist at -ik sinO in the case h = 0; in this case it is associated with the direct

reflected shear arrival. Thus in the general case the situation is similar to that when

y = 0, except that we usually have to find both the path and tps (= tC1'iticad numerically.
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The exact solution for the vertical displacement in y > 0, written as CL function of t, is
simply

(4.2.8)

where tpp and tps (= r / Cd when y = 0) correspond to the arrival of the PP and PS waves
respectively and ((P)(t), ((S)(t) are the paths described above.

The wavefront arrivals are shown for 7rCdU{f (x, y, t) versus t in Figure 4.4 for typical
values of x, y, and h. The ratios x/h and y/h determine the shape of the response;
we have avoided rescaling each figure by h for convenience. The material parameters
(Briggs, 1992;Table 3.1) are taken to be typical of sandstone-water configuration; Cd and
Cs are 2920m/s and 1840m/s respectively, and Co is 1480m/s, the solid and fluid densities
are 2440kg/m3 and 1000kg/m3 respectively. Also shown on these figures are asymptotic
representations for the dominant responses; the expressions are not given here, but are
found following Section 3.3.1.3. The lines denoted by tpp, tps, tl, and tsch are the arrival
times associated with the PP, PS, leaky Rayleigh, and Scholte waves respectively. The
non-geometric S* arrival is denoted by an arrival time ts •.

In Figure 4.4 the compressional wave in the solid arrives first at t = tpp, and this is
shortly followed by the shear wave at t = tps. The shape of these arrivals is brought
about in each case by the branch points or poles that lie close to the path. The Scholte
wave generates a distinctive response that dominates the leaky wave that precedes it;
nevertheless the leaky wave has a definite shape that here persists, away from a light
fluid loading limit. The piece of the Cagniard path that gives the contribution leading
to the compressional wavefront arrival is often close to a zero of the Scholte complement
function s((). The importance of the zeros of this function are that the sign of the
singularity associated with this response may change, this phenomenon is not illustrated.

An additional shear response, that is S*, is visible for small h, see the discussion of
Section 4.2.2. This response is shown in detail in Figure 4.5, together with an asymptotic
representation.

4.2.2. The source close to the interface

In this section we investigate directly the signals associated with non-geometric arrivals.
These arrivals only give large responses when the source is close to the interface, that
is, when h is small. As h increases their effect is diminished. We have already observed
that in the limit h/x -t 0 the Cagniard path is distinctly different to the typical path,
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Figure 4.4. A plot of 7fCdU0i (x, y, t) versus t for material parameters typical of sandstone-water;
x = 40, Y = 4, h = 0.01. The asymptotic results are the dashed lines,

see Figure 4.3(0" b) and (c). This motivates us to examine the Cagniard path, and we
crucially identify the S* arrival with the sharp bend in the path in the limit hi x --t 0; in
Figure 4.3(c). The physical significance of the bend in the path has also been observed
by Hron & Mikhailenko (1981).

In the limiting case h = 0, corresponding to the source on the interface, the path,
((S)(t), consists of a piece running directly along the branch cuts from ((S) = -i to
((S) = -ik sin 0 together with a hyperbolic path; in these formulae, x = r sin 0, y =
T cos 0. The point ((S) = -ik sin 0, where the path leaves the imaginary axis, is the saddle
point in a steepest descents analysis and gives wavefronts travelling with wavespeed Cs

due to a shear wave, S, generated within the solid. This is shown in Figure 4.2. When
h « x the path runs from -i(ps very close to the branch cuts before turning away
dramatically at approximately ((S) rv -iksinO. This point generates the distinctive
response S* in the solid when t '" r ICs = ts*' The Cagniard-de Hoop technique identifies
this response; it is useful to analyse the structure of the response by constructing an
asymptotic representation.

As an alternative to finding the Cagniard path numerically we find a useful asymptotic
representation for the path, when h is small, by perturbing away from the h = 0 path.
That is, we consider the path

(4.2.9)

where (hO(t) is simply the solution to edt = ((~O+k2)~Y+i(hOX' This is found explicitly
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as

[ ( t) 2] !_{~t sinO + ik 1 _ c; cosO

[ 2]1.Cdt . cst 2-17sm 0 + k (7) - 1 cos 0

.,.
when thO:::; t < -

Cs
(4.2.10)

7·
when -:::; t < 00

Cs

where tho = (x + y(k2 -l)!)/Cd. In this formula r2 = x2 + y2 and tanO = :r/y. Utilising
the path (4.2.9) in the transcendental equation (4.2.6), the perturbation t.erm (hl(t) is
found to be

1 ( k2y)-1(hl(t) = -(hO((~O + 1)2 Cdt - l'

((~o+ k2)2
but crucially the denominator in expression (4.2.11) is zero at dt((ho)/d(ho = 0 and
this occurs when (hO = -ik sin () at arrival time ts·. It follows that the representation
(4.2.9) is only valid outside some close interval of ts •. It is an unfortunate consequence
of perturbing away from the explicit zero path that the perturbed path we find is invalid
for It - ts· I < t; = O(h/Cd). This non-uniformity is because the part of the zero path
that sharply departs from the imaginary axis leads to a large change in (4.2.11). The
exact path found numerically contains a smoothing term of order ih.

(4.2.11 )

In addition, we may construct a similar expression for the derivative of the path via a
direct differentiation of equation (4.2.9) or expanding an expression for the path in the
derivative of the path (4.2.6); this is a vital part of the explicit solution:

(4.2.12)

where

(4.2.13)

There is some interest in near surface responses, that is, when the receiver depth y
is also small. We construct an asymptotic representation for the Cagniard path when
y is small by following the approach described above, and now perturbing away from
the explicit y = 0 path. Once again, we consider dS) (t) = (yo(t) + Y(yl (t) where the
perturbation (ydt) is

(4.2.14)

The smooth behaviour of the Y = 0 path, see Figure 4.3(b), avoids any difficulty close
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to ts'. In Figure 4.6 we show an approximation to the S* arrival in the restricted case

h « y « x.

From the discussion above we see that when h « x the response associated with the

S* wave at ts' '" r / Cs begins to emerge. The displacement in the neighbourhood of is'

is then given as

(4.2.15)

where ((P)(t) and dS)(t) are given by equations (4.2.7) and (4.2.9, 4.2.10, 4.2.11) respec-

tively.
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Figure 4.5. The exact and asymptotic expressions for 7fCdUi! (x, y, t) versus t in the region near
ts' in Figure 4.4; x = 40, y = 4, h = 0.01. Material parameters are sandstone-water.

In Figure 4.5 we compare the exact and asymptotic solutions for the normal displace-
ment. The basic features of the S* arrival have been preserved. The position and shape
of the response is well predicted before and after ts·. The asymptotic representation
for the displacement when we are in the close neighbourhood of the interface so that
h « y « x is shown in Figure 4.6. Now the shape of the response is well matched almost
everywhere. There can, however, be a reasonable difference in the size and position of the

exact and approximate responses. This is principally due to the interference of nearby

wavefronts.

As we increase y the wavefronts move closer, particularly 111 this rock-water case,
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Figure 4.6. The exact and asymptotic expressions for 7rCdutJ (x, y, t) versus t in the region near ts'
in the case h « y « x; x = 40, y = 0.1, h = 0.0008. Material parameters are aluminium-water.

nonetheless the asymptotics are still accurate. The leaky Rayleigh response may be
masked and interfere with the non-geometric shear arrival that dominates.

The arrival time of the PS wave, tps, is the first arrival and is typically found numer-
ically. Often it is a useful characteristic and we determine its approximate form, when
h « x, be seeking a solution to dt((ps)/d(ps = 0 in the form (ps = -j + i(~s where
(~s « 1. Thus we find that

(4.2.16)

For h/x « 1 this provides the small curvature correction from the straight head wave
wavefront found when h = O. The head waves are confined to the region defined by
cst:::; r :::; cdt(sinB + (k2 -1)~ cosB)-l and sin-1cs/cd :::;B :::;7r/2. In these formulae
x = r cos B, y = r sin B.

4.3. A compressional source beneath a thin high velocity layer

The previous section described the tunnelling effects in dissimilar material half spaces

due to either material mismatch, or wave coupling at the interface. Another example of
tunnelling occurs when a thin, high velocity layer lies embedded within a slow surrounding
material. For illustrative purposes we first consider a source above a fluid layer, see

for instance Mellman & Helmberger (1974), Drijkoningen & Chapman (1988), and use
generalised ray theory to identify the explicit solution for the wavefronts transmitted
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through the layer. We then move on to treat the more relevant elastic problem. The
tunnelling response is the perturbation caused to the cylindrical wavefront that would, in
the absence of the layer, be seen. Instead of a sharp, singular, wavefront some smoothing
that is dependent upon the layer thickness occurs, and we aim to find this dependence.

It turns out that under certain conditions on the source depth and layer thickness only
one generalised ray contributes to the tunnelling response. We may then analyse this path
in a similar manner to the previous section. This avoids having to consider the complete
generalised ray expansion and we are able to neatly pick out the non-geometric response.
Importantly, we are able to identify these conditions and further make a prediction when
a second ray becomes important.

When we proceed to treat the more complicated elastic analogue, that is, a compres-
sional source and an elastic layer between two elastic half spaces, and look at the trans-
mitted compressional wavefront, a similar simplification can be employed thus avoiding
rather complicated sums of rays.

Y i

Figure 4.7. The geometry of a typical configuration considered in the text. The layer occupies
o < y < h and the semi-infinite space y > h contains a source at depth d. The paths of the
generalised rays are shown to illustrate the tunnelling response; the letters P and S denote the
wave type and the transmission coefficients are included at the interfaces.

4.3.1. A .fluid layer-

As a brief illustrative example of the generalised theory and our perturbation scheme on
the leading generalised ray we first treat the equivalent fluid problem, that is, the shear

ray path is absent from the schematic in Figure 4.7. The fluid is again assumed to be
compressible, and has density PI and wavespeed Cl, apart from the layer in 0 < y < h,
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that has density P2 and wavespeed C2 (C2 > cd. The governing equations follow those
outlined in Section 4.2 and the equivalent source equation is given following equation
(4.2.1).

We employ the method of generalised rays, see for instance Pao & Gajewski (1977), to
derive the solution. In essence the multiply reflected and refracted waves in the solution
are represented by a series of ray integrals. Each integral is then evaluated exactly using
the Cagniard-de Hoop method and the exact solution is then found up to the arrival of
the next ray.

In the fluid for y < 0 the Laplace transform of the normal displacement is

1 100 1 _ 00 ( ) 7n ( )
uy{x, y,p) = 211' -00 2C2PF{p)TpP{OTPP{() fo Rpp{()RPP(() e-Pz", c d(

(4.3.1)

where Zm {() = {/1«() (d - h - y) + {2m + 1h2 (Oh + i(x) / C2. The reflection and transmis-
sion coefficients, which are usually given as functions of angle of incidence, Ewing et al.
(1957), are expressed in terms of ( in Appendix 4.C. The ratios of the transmitted and
reflected waves to the incident waves are denoted by the letters T and R respectively.
We have introduced the rescaling e = p( / C2 for convenience. In this formula p is defined

to be the ratio p2/Pl and F(p) is the Laplace transform of F{t) given by (4.1.2). The
functions /1 «(), /2{() that appear are defined as {(2+ k2) ~ (k = c2/cd and «(.! + 1)~
respectively.

To calculate the exact solution utilising the Cagniard-de Hoop method, a Cagniard
path for each of the generalised rays is determined by setting Zm{() = t, that is

(4.3.2)

so that (m(t) is the root of this equation typically found numerically. In Figure 4.8
typical Cagniard paths are shown. The path departs from the negative imaginary axis
at -i(m, between 0 and -i at time tm. Using (4.3.2) tm, the arrival time of the direct
geometrical wave, is determined by the condition dt{(m)/d(m = O. This corresponds to
a combined contribution of a geometric and a head wave type arrival. The other, and
more important, feature of the path is the bend; this is the part of the path that we are
interested in since it gives us the tunnelling ray.

First consider the behaviour of the first path (m = 0). This path runs close to the

imaginary axis before sharply bending away near -iksine at t "" r jc, = tp' (x = r sinfi,
d - y = rsinO). This sharp bend has been observed by Drijkoningen (1991). The
change in the shape of the path typically becomes less pronounced as h is increased,
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and in particular, the bend is less prominent. When h = 0 the Cagniard paths are all
equivalent. Otherwise the paths are separate, however when h is very small, several
paths now have a significant bend. The bend in each of these paths now contribute to

the tunnelling signal, and our analysis then requires modification.

o ,---------~--------~----------~--------,
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Figure 4.8. Typical Cagniard paths, (m(t), for values of m = 0,4 as labelled.

A useful asymptotic representation for the path when h is small is found following the
scheme described in Section 4.2.2, that is, by perturbing away from the h = 0 path. We
consider (m,p(t) = (hO(t) + h(m,hl (t) where (/to(t) is for all values of m simply the solution
to C2t = (ao + k2) ~ (d - y) + i(hOX, Now the perturbation (m,hl (t) is

(4.3.3)

This approximation to the path is identical to the path found numerically outside some
small interval of tp' as discussed in Section 4.2.2. Indeed, equation (4.3.3) performs well
for greater values of h, and is not exclusive to the first path (m = 0).

In addition we determine an approximate form for tm be seeking a solution to (4.3.2)

of the form (m = - i + i(in where (in « 1;

(4.3.4)

The following numerical results are calculated for the loading F(t) = H(t). Other

loadings may be incorporated as described in Section 4.2. In Figure 4.9 the exact response
1fC2'u;f(.'E,y,t)/2p is plotted against t for C2/Q = 2 and P2/Pl = 1.4, together with an
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asymptotic representation for the tunnelling wave and the first solution (m = 0). The
total (added) solution is described by the summed response in the figures, and is taken for
values of m up to m = 24. There are a succession of square root singularities associated
with the geometrical wave; the singularities appear very close together in the figures
shown. In the added response the different rays interfere. The head wave arrivals are
altered when we include many multiples. The shape of the first response has almost
completely disappeared, see for instance Mellman & Helmberger (1974), where similar
behaviour is discussed. The waves that have been multiply reflected in the layer interfere
with the size of the tunnelling wave and can cause a reasonable offset, however, the shape
of the arrival is not very different from the response due to the tunnelling only once. This
direct tunnelling signal is completely captured by the first path in this case. We identify
a wavefront expansion for the tunnelling signal in a similar manner to equation (4.2.15)
in Section 4.2.2.
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Figure 4.9. A plot of 7rC2u:(x,y,t)/2p versus tin y < 0; x = 40, Y = -4, h = 0.004, d = 2. (a.)
Summed response up to m = 24. (b) Exact response m = O. (c) Approximation m = O.

The displacement in the neighbourhood of tp' is given as

uH (x Y t) = ~Re ( II (()r2(O I d(o,p(t)) .
Y " 7rC2 (r2(() + PI2(())2 (=-iksin 0 dt

(4.3.5)

The last term can be written in a more explicit form using (4.3.3). In Figure 4.10 we
compare the exact response with the approximate response. The basic features of the
tunnelling signal have been preserved, and both the shape and size of the leading solution

are well matched. The multiply reflected arrivals can cause a considerable size difference
to exist between the exact and approximate solutions. Nonetheless the direct tunnelling
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Figure 4.10. The exact and asymptotic expressions for 7fC2U~1 (x, y, t) /2p versus t in the region
near tp' in Figure 4.9. (a) Summed response up to m = 24. (b) Exact response m = O. (c)
Approximation m = O.

wave, a key feature in the wave field, is itself well predicted. In other cases when h
becomes very small, we need a second generalised ray to fully capture the wavefront that
has tunnelled through the layer, and then expect to represent this wavefront by a sum
of expressions like (4.3.5), involving (.m,p for m = 0,1, ...

4.3.2. An elastic layer

We now proceed to treat the more relevant elastic layer problem. As shown in Section
4.3.1 the generalised ray theory yields the exact solution to the model problem up to the
arrival of the next ray. Moreover, this approach directly constructs the ray integrals, thus
avoiding any laborious matrix determination, see for instance the discussion in Kennett
(1983). This enables us to pick out the main features associated with the leading arrivals
directly with a minimum of work.

Now consider a line compressional source at y = d beneath an elastic layer, thickness
hi the geometry is shown in Figure 4.7. The elastic material has density PI and com-
pressional and shear wavespeeds Cdl and Csl, apart from the layer in ° < y < li, that has
density P2 and wavespeeds Cd2, Cs2i we assume that Cd2 > Cdl > Cs2 > Csl. The governing
equations follow those outlined in Section 4.2 and the equivalent source equation is given
following equation (4.2.1).

We now proceed to derive the solution. At each of the interfaces y = 0 and y = h we
have to satisfy four continuity conditions: the continuity of the stresses ayy and axy, and
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the continuity of the displacements Ux and uy. Instead of determining the coefficients
from a system of eight simultaneous equations and then constructing the ray integrals we
prefer to employ the method of generalised rays, see for instance Pao & Gajewski (1977)
and the discussion of Section 4.3.1.

We have already observed, when treating the fluid layer, that the shape of the wave-
fronts in the summed solution closely resembles the response given only by the leading
generalised ray. The equivalent physical approximation leads us to consider only the
transmitted waves in the layer; the multiply reflected and refracted waves are omitted.
The compressional part of the transmitted wave in the layer is obtained by superimposing
all transmitted P waves, together with the source function:

uy(x,y,p) = __2_jOO _l_pF(p) (TppTPPenS2h/cd2 +TpsTSPeP'"Id2h/Cd2)
27r -00 2Cd2

x e-p(('"!dd'"ls2)h+'"Idl(d-h-y)+i(x)/f'd2d(.
(4.3.6)

The reflection and transmission coefficients in this formula are expressed in terms of
( in Appendix 4.C together with a brief description of the notation. In addition the
functions "{d2, "{82, "{dl, and "(sI that appear are defined. We have introduced the following

wavespeed ratios: kd2 = 1, ka = calca, kdl = Cd2/Cdl, and ksl = CddCIi!.

A generalised ray path has been constructed to connect the source and receiver for each
transmitted waves, see Figure 4.7. The path describes the vertical distance travelled by
each mode of waves in each layer, the total horizontal distance, and the direction of
propagation. The two Cagniard paths in this case are now found by identifying the ray
paths with t, that is, setting

Cd2t = "Yd!((d(d - h - y) + "Yd2((dh + i(IX,

Cd2t = "Ydl ((2)(d - h - y) + 'Ys2((2)h + i(2X•

(4.3.7)

(4.3.8)

The subscripts 1 and 2 on ( have been introduced to describe the first and second paths.
Note that when h = 0 the two paths are equivalent. Both Cagniard paths (dt) and
(2{t) are again found numerically and are shown in Figure 4.11. As we have already
observed the paths have two main features. First the path leaves the negative axis. For
the first path this occurs at -i(p (0 < (p < 1), the second path has a piece lying along
the negative axis from -i to -i(s (1 < (s < kdd. In both cases the intersection occurs at
dt(()/d( = 0 and this corresponds to the direct geometrical arrival. The branch point at
-i causes a head wave in the second path. The second and more interesting feature is the
sharp bend in the path, that we have previously identified with the non-geometric and

tunnelling signals; the two paths bend away at approximately -ikdl sinB and -iks2sinB.

The exact solution for the direct transmitted compressional part of the normal displace-



4. Path perturbations and non-geometric arrivals 85

-0.5

-'1.5 ...

""""----2

-2.5

-3.5

Re(()
0.01 0.015 0.02 0.025 0.03 0.035 0.04

Figure 4.11. The Cagniard paths (l(t) and (2(t) for x[h. = 200 and (d - y)/h = 2.

ment in y < 0 may now be extracted utilising the Cagniard method; it is not included
here. Moreover, we may employ our perturbation scheme to find a further asymptotic
representation for the (1 path when h is small. Thus (l,p(t) = (hO(t) + h(l,hL(t), where
(hO (t) is again the explici t zero path and the perturbation (1,h1 (t) is

(4.3.9)

The (2 path is well predicted by the zero path since tsp is close to tp' = r / Cdl, and leave
the imaginary axis at (sp - 5 for some 6 « 1; the second bend in the path occurs near

t = rlca-

In Figure 4.12 the leading compressional response 27rCd2'U~ is plotted against t. To
demonstrate the tunnelling signal, the material parameters of aluminium and copper,
typical of a fast and slow material are utilised. The density of copper is 8933kgjm3 with
compressional and shear wavespeeds 4759mjs and 2325mjs respectively, and aluminium
density is 2700kgjm3 with compressional and shear wavespeeds 6374mjs and 3111mjs

respectively. The material parameters are taken from Briggs (1992) and Bradfield (1964).

In the figure the geometric wave, SP generated by the shear wave in the layer arrives
at tsp. Immediately prior to this arrival is the sharp non-geometrical wavefront that

we identify as P*, the cylindrical wave in the case h = O. The asymptotic expression
performs well and correctly matches the position and shape of the tunnelling signal.

This is particularly useful, since other asymptotic approaches are awkward to evaluate,

particularly close to a direct geometric arrival.
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4.4. Conclusion

TUnnelling rays in dissimilar and layered materials are ideally suited to analysis via the
Cagniard-de Hoop method, and we examine two canonical problems. In each case an
asymptotic representation ofthe Cagniard path is found, thus explicit and highly accurate
solutions when h/x ~ 0 are obtained. This perturbation approach of generating Cagniard
paths bypasses any numerical work, and should be useful in the asymptotic study of a

range of related problems.

In each case we approximate the exact response and obtain simple expressions for th
tunnelling signal. A particularly useful aspect is that the approximation to the tunn lling
signal does not rely on an explicit expression for the contour.

In the example of a thin high velocity layer we have obtained the tunnelling ray using
generalised ray theory.

The results presented here will be valuable in formulating more realistic fluid-solid in-
teraction problems. The treatment may be routinely extended to examine the equivalent
three dimensional problems as well as to dipping structures, see for instance Hong &
Heimberger (1977), Pao et al. (1989). Since one is freed from the numerical calculation
of many Cagniard paths, one can consider more complicated scenarios and further ex-

tensions may be to examine fluid-layered elastic, anisotropic media and model problems
involving cracks beneath interfaces and multiple reflections.
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Appendix 4.A. Quartic equation

The purpose of this appendix is to find an explicit expression for the Cagniard de Hoop path. We
would naturally assume that an explicit solution might be helpful for extracting the asymptotics,
The path is the solution to a transcendental equation, namely,

(4.A 1)

where j(= 1) and k are constants, chosen to satisfy the inversion contour. In the text, a Newton
Raphson algorithm is applied to find this path numerically. Here, we choose to formulate a
quartic algebraic equation; the solution is standard. The notation follows Ma & Huang (1996),
but crucially their equations contain some unfortunate typographic errors, that are corrected
here.

Equation (4.A 1) may be rewritten as the following quartic equation for (,

(4.A 2)

where

(4.A3)

The quartic equation (4.A2) may now be solved, Abramowitz & Stegun (1972), and the ana-
lytical solution is expressed explicitly as

1
(= 2'(P+Q), (4.A4)
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where

p = -~ [II - (I; - 4h + 4R) ~] , Q = {p2 - 2 [R + (R2 - 414) ~]} ~ ,

R = S + T + ~, S = [W + (V3 + W2)~] i ,
111

T= [W_(V3+W2)"2]3, V=g[3(hI3-414)-ln,

1 [ (2 2) 3]W = 54 -912 (1113 - 414) - 27 41214 - 13 - 1114 + 212 .

This expression for the path is awkward to evaluate when h « x, y, but it compares favourably
with the numerical solution to the path.

(4.A5)

We now approximate the explicit solution with a view to comparing this representation with the
perturbation approach used in Section 4.2.2. We may hope to get an asymptotic representation
valid very close to ts', that is, where our simple scheme breaks down. However, the behaviour
of the branch points and cuts in the quartic, and the excess of algebraic terms makes this an
arduous task, that is ultimately unrevealing. The part of this treatment that compares with the
simple perturbation scheme we have adopted is outlined below.

Introduce i, = [(x2 + y2 + h2)2 - 4y2h2]lq, so that equations (4.A 3) may be rewritten as

i, '"4icdtx(x2 + y2) + h24icdtx,

i2 '" - [4c~t2x2 + 2(x2 + y2)(C~t2 - k2y2)] _ h22 [C~t2 + y2(k2 + 1) - x2] ,
(4.A 6)

Following a systematic expansion of the other equations (4.A 4-5) and crucially obtaining Q2 =
h2 Z2 we may find an asymptotic representation:

(4.A 7)

Note that when h = 0 we have regained the explicit zero path in equation (4.2.10). The explicit
form of Z is lengthy and we exclude it here, but it can be shown numerically to compare favourably
with the perturbation in equation (4.2.11).

Appendix 4.B. The zeros of s( <")

The piece of the Cagniard path that gives the contribution leading to the compressional wavefront
arrival is often close to a zero of the Scholte complement function s( (). The Scholte function is
discussed in Appendix 3.B. The migratory behaviour of the zeros from the imaginary axis, Roever
et al. (1959), is shown in Figure 4.13. For low values of the Poisson's ratio both zeros lie on the
imaginary axis, the second zero lies close to the branch point at -i. As the Poisson's ratio is
increased the zeros approach each other, intersect, and, typically at 0.28 < u < 0.3, migrate from
imaginary axis and form conjugate pairs. The figure shows the position of the zeros for intervals
v = 0.02 of the Poisson's ratio and c; = 60 of the shear wavespeed. Typical results are that,
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Figure 4.13. Part of the complex ( plane showing the position of the zeros of s(() as functions of
the Poisson's ratio. The crosses show the pairs of zeros at intervals of 1) = 0.02 for the Poisson's
ratio and c, = 60 of the shear wavespeed; when J/ = 0.1, Cs = 2271. The behaviour of the zeros
is discussed in the text.

for aluminium-water, ±ikp = =1=0.15979± il.01638, and for sandstone-water, ±ikp = ±iO.99912,
±iO.638995.

We have already observed that there is a square root singularity associated with the direct
compressional wave that arrives at tpp in the solid. The importance of the z ros is that

H [ ((P) )]d((P)(t)1uy (x, y, tpp) '" -sgn Re s(( (tpp)) d _.'
t t_t""

(4.B1)

where (CP) (tpp) = -i sin 11, and the sign of the singularity associated with this response may
change, see for instance Figure 4.4. Indeed we find that the path intersects the zero when the
ratios x[h. and y/h that determine the response, are chosen to satisfy h + y = (k;;-2 -l)h.

Appendix 4.C. Reflection and transmission coefficients

The relevant reflection and transmission coefficients required in Section 4.3.1 are

(4.C1)

The subscripts 1 and 2 are used to denote the fluids in y < 0, y > h, and in 0 < y < h. In
these formulae P = P2/Pl and the functions ')'1 and ')'2 are defined as ((2 + k2)! (k = C2/CJ) and
((2 + I)!.



4. Path perturbations and non-geometr-ic arrivals 91

The relevant reflection and transmission coefficients required in Section 4.3.2 are

2 2 [ 2 '2 I 2 I 2 I 2 :2]'Tpp = 21'd(( - 1'.) /-L(')'s( + I'sl'. - 21's( ) + (')'s( + I'./'.. - 21's( ) K,
pp I 2 '2 [ 2 '2 I 2 I 2 1:2 :2]'T = 2/-LI'A( - I's ) /-L(')'s( + 1'.1'. - 21's( ) + (')'s( + 1'.1'. - 2,),.( ) K.,

Tes = 2il'd(((2 - 1';) [-/-L((2 + ')':2 - 21's,),~) + ((2 + 1'; - 2')'81':1)]K,

TSP = 2i/-LI'~(((2 - 1';) [-/-L((2 + 1':2 - 21's,),~) + ((2 + 1'; - 2')'8')':1)]K,

(4.C2)

where

(4.C3)

The primed letters are used to denote the elastic material in 0 < y < h and the unprirned letters
in y < 0, y > h. In these formulae /-L= C~2pl/C;p and the functions ')'~, I'~, I'd, and 1'. are defined
as I'~ = ((2 + k~2)~, with q = d, s, and ')'q = ((2 + k~)!, with q = £1, s; k;1 = 1, k~ = c~/c~,

kd = cd/cd, and ks = cd/cs'

The ratios for the transmitted waves to the incident wave at y = h are labelled by the subscripts
Tpp, Tps (P wave transmits as P or S wave), and the transmitted waves at y = 0 are labelled by
the superscripts TPP, TSP (transmitted P or S wave transmits as P wave). In addition the ratios
for the reflected waves in the layer are denoted by R where superscripts, PP, and subscripts, PP,
again relate to the upper and lower interfaces respectively.
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Chapter Five

Pulse scattering by a semi-infinite crack

5.1. Introduction

The dynamic stress loading of cracks, and the related fracture mechanics, is an area that
has received much attention; for a detailed description see Freund (1990), Atkinson &
Craster (1995b). There is particular interest in wave or pulse interactions with cracks
that lie beneath surfaces or interfaces, as material failure or interfacial debonding is often
caused by the subsequent growth of cracks. There has also been resurgent interest in the
modelling of fracture in non-homogeneous solids (Craster & Atkinson, 1994; Choi, 1997;
Erguven & Gross, 1999), as modern fabrication methods and functionally graded mate-
rials become of more use, thus we also address some aspects of crack-wave interactions
in non-homogeneous media.

Determining the stress fields, and crack tip stress intensity factors, generated by the
int.eract.ion of stress waves with cracks, and boundaries, is of fundament.al interest in frac-
ture mechanics. It is also of great interest in the non-destructive evaluation of structures.
The scattered field yields information for crack detection and characterisation, thereby
enabling estimates to be made of the location and size of the crack. The presence of au
interface or free surface is a complicating feature and analytical solutions are often diffi-
cult to obtain (Tsai & Ma, 1992, 1993). In these previous analyses for in-plane loadings
the results are valid until the first wave scattered from the crack returns t.o the crack after
having been reflected by the free surface. With the addition of an overlying fluid there

are no current analyses. For anti-plane loadings the analysis becomes slightly simpler.
One can utilise the method of images (Achenbach, 1973) for some rather special problems
to extract the full solutions; however typically the situations are often somewhat more
complicated.

The aim of this chapter is to develop approaches that generate the stress intensity
factors and give the exact form of the wavefronts, up to a specified time, generated
by the dynamic loading of a semi-infinite subsurface crack. For ease of exposition we
consider cracks that are parallel to the interface, the results may be generalised to look
at cracks arbitrarily orientated to the interface; these results are not presented here. A
variety of different stress loadings may be considered and here we consider the crack to
be subjected to a prescribed stress loading on the crack faces and if required this could

be chosen to be that induced by an incident pulse and hence identical to a scattering

problem. Unfortunately it turns out that the plane strain problem cannot currently
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be solved conveniently and with this in mind we introduce an iterative (or generalised
Wiener-Hopf) method in which successively the Cagniard-de Hoop (Cagniard, 1939; de
Hoop, 1960) and Wiener-Hopf (e.g. Noble, 1958) techniques are applied to solve a matrix
Wiener-Hopf equation. This follows the scheme presented by Haak & Kooij (1996) and
Kooij & Quak (1988) for anti-plane problems. The application of the Cagniard-de Hoop
technique follows Garvin (1956) and Harris (1980). The iterative scheme is illustrated
in detail on an anti-plane crack problem and, in addition, we demonstrate how weight
functions can be incorporated into the iterative scheme.

The analysis is performed using Fourier and Laplace transforms in space and time
respectively. The Laplace transform in time, t, and its inverse, are defined as

1 lc+ioof(t) = -. j(p)ePtdp, for Re(c) > 0,
2m c-ioo

(5.1.1)

where the Laplace transform variable is p. The Fourier transform in one spatial direction,
x, and its inverse, are defined as

1(s) =i:f(x)eiSXdx, 1 100 - .f(x) = -2 f(8)e-lsxd.9,
7r -00 (5.1.2)

where 8 is the Fourier transform variable.

We also utilise the Cagniard-de Hoop technique, there is sometimes an element of
mystery in the derivation used by some authors, in that p must be real and positive; this
is unnecessary. The function ultimately occurring in the double transform inverse is, for
the problems considered here, ultimately homogeneous in p and 8. Thus in the analysis
if we put 8 = p~ then p occurs only in the exponential and, depending upon the time
dependence of the incident field, as an isolated factor. The resulting double transform
pair is:

f(x, u. t) = ~ r+ioo 100 1(8, y,p)e-isx+ptd8 dp
47r 1 Jc-ioo -00

= ~ r= f t« y,p)e-ip~xpePtdt. dp.
47r 1 Jc-ioo le;

The change of variable in the inner integral rotates the integral path of that integral by
arg(p), see for instance Hudson (1980); this does not cross any singularities, provided
one defines the branch cuts that will arise in the appropriate manner. Thus by Cauchy's
theorem, as we cross no singularities, we can take Gp to run along the real axis once
again. Hence the rescaled Fourier transform pair,

(5.1.3)

(5.1.4)

can be used at the outset with impunity. The technique itself is comprehensively discussed
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by Achenbach (1973), Miklowitz (1978), and Hudson (1980). The double transform
typically takes the form

for a function g(~) that may contain branch cuts and poles, where ')'(0 is a function con-
taining branch cuts, appropriately chosen. The aim of the Cagniard-de Hoop technique
is, following Lamb (1904), to recast the inner integral as a Laplace transform via the
substitution t = ,(~)y + i~x, for t real and positive. This deforms the contour for the
Fourier transform; the piece of this path in one quadrant is then related to the conjugate
of the path ill the other quadrant. This ultimately takes the inner integral to a Laplace
transform and then inversion can be performed by inspection.

One of the most useful results found during any study of crack behaviour is the stress
intensity factor; it is the stress intensity factor that characterises the near crack tip
stress field. Here the results for the stress intensity factors are checked, and in some
cases extended, using an invariant integral based on a pseudo energy momentum tensor
(Atkinson, 1977; Atkinson & Craster, 1995a); which is a generalisation of the Eshelby
(1951, 1970) energy momentum tensor. In particular, for a class of crack loadings, it
enables us to investigate the effects of material inhomogeneity without any need for
Wiener-Hopf analysis. This is motivated by the current interest in non-homogeneous or
layered media.

For simplicity we treat a simple spatial form of stress loading on the crack faces. We
then demonstrate how weight functions (Bueckner, 1970) can be deduced within this
iterative procedure and this allows us to generalise the stress intensity factor results to
deal with any stress loading.

The plan for the following five sections of this chapter is as follows: First, in Section 5.2,
we consider the anti-plane problem of a semi-infinite crack in a layered elastic material.
The exact solution is found as an inverse integral using the Wiener-Hopf technique. This
integral could then be evaluated numerically; these results are not included. Instead, we
employ an iterative generalised Wiener-Hopf method (e.g. Thau & Lu, 1971) that yields
a series solution. The motivation for developing this approach is that the exact solution
contains a triple integral to evaluate and this obscures the physical interpretation of the
solution. Also the analogous problem of a subsurface crack in an elastic solid cannot
currently be solved conveniently as one obtains a matrix Wiener-Hopf equation whose
factorisation is awkward; we briefly consider this case in Section 5.5. An invariant integral
is introduced in Section 5.3 which is then used to explore some model non-homogeneous
materials, the aim is to illustrate the method as a useful analytical tool. Following this,
in Section 5.4, we develop an iterative weight function method thus enabling us to use
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x

Figure 5.1. The geometry of the problem shown together with a schematic of the first reflected
waves for t < rl + Za] c where r-I = x2 + (y - a)2; b - a > 2a. This is after the wave from the
crack that has been reflected from the surface strikes the crack, but before this wave returns to
the surface, and before the wave reflected by the interface strikes the crack.

the generalised ray method to find formulae for the stress intensity factors exact up to a
specified time.

The in-plane crack problems are substantially more complicated, involving mode cou-
pling at both the crack tip and the interfaces. We briefly illustrate how the techniques
developed in the simpler anti-plane case carry across to this harder situation in Section
5.5. Finally a summary of the results is given in Section 5.6.

5.2. Anti-plane loading

We consider an elastic layer in 0 < y < b, bonded to a semi-infinite elastic material
that occupies the half space b < y < 00; along the interface, y = b, the stress and
displacement fields of the two materials satisfy continuity conditions. Within the elastic
layer a semi-infinite crack is present along y = a (a < b) for x > 0; this is shown in Figure
5.1.

A Cartesian coordinate system is adopted with Xl, x2 corresponding to x and y. The

problem is two-dimensional and the relevant stress components, O"zj(:r;, y, t), are related

to the out-of-plane, that is, in the z-direction displacements uz(x, y, t) via

O"zj = f.tuz,j (5.2.1)



5. Pulse scattering by a semi-infinite crack !)(j

where the comma denotes differentiation with respect to Xj and IL(X, y) is the clastic shear
modulus. The governing equations are the equilibrium equations azj,j = pfLz, where the
notation .. denotes partial double differentiation with respect to time and p(;1:, y) is the

material density. The displacement satisfies

(5.2.2)

which reduces to the wave equation \i'2uz = uz/c2 when the material parameters f-l and
p are constant; the wavespeed c is then defined as c2 = J1./ p. To distinguish between the
different materials in the layer and underlying half space a superscript (h) is adopted
to denote the elastic half space y > b. In this section we henceforth assume that the
material is homogeneous so J1. and p are constant; we consider non-homogeneous materials
in Section 5.3.

The surface y = 0 is taken to be rigid, hence Uz = 0 there; a very similar analysis
can be performed if the surface is stress-free. The crack lies in undamaged material so
the condition taken ahead of the crack, y = a for x < 0, is that the displacement Uz

is continuous there, and the stress a zy is continuous along y = a, -00 < x < 00. The
loading taken on the crack y = a, X> 0 is that azy = F(t)H(x), where F{t) is the time
dependence of the pulse and H{x) is the Heaviside function. Later, in Section 5.4, we
utilise our solution in conjunction with weight functions to extend our final results to
any spatial loading. Along the interface, y = b, both the displacement Uz and stress azy
are continuous, i. e. uz=u~h) and a zy = ai~).

5.2.1. Exact solution

First we shall solve the problem exactly, and then using an iterative approach. To
formulate a functional equation, we apply Fourier transforms in the spatial x coordinate
and Laplace transforms in time, together with the following half-range Fourier transforms:
the transform of the unknown stress a zy ahead of the crack y = a for x < 0, and the
transform of the unknown jump in the displacement, uz, across y = a for x > 0,

a_{~,p) = j_°oo azy(x,a,p)eieXdx, U+{~,p) = 1000 [uz{x,a+,p) -uz(x,a-,p)] eiexdx.

(5.2.3)
The subscripts + and - denote functions analytic in the 'plus' and 'minus' regions of

the complex ~-plane respectively; specifically in Im(~) > 0 and in Im(~) < min{p/c,p/c")
respectively. In the following we loosely refer to these regions as the 'upper' and 'lower'

halves of the complex e-plane. The superscripts + (-) for a+ (a-) denote the limit as
we approach the crack faces (y = a) from above (below).
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The Wiener-Hopf technique generates a functional equation that connects the trans-
forms of these unknown quantities. This equation is then disentangled to identify the
unknowns, and hence it determines the full solution. Along the way we require, of course,
to satisfy the edge conditions, that is in terms of polar coordinates (T, 0) based at the
crack tip, the displacements are O(rl/2) and the stresses are 0(r·-1/2) at the crack tip.
The functional equation emerges as

Q(~,p) [(T_(~,p) + T +(~,p)] = -J-L'Y(~,p)U+(~,p), where T+ = ~~p);
1<.,+

the function T + has been introduced for convenience. To incorporate the specific loading
adopted here, that is, the spatially constant stress loading we adopt the convention that
the pole at zero is in the lower half of the complex e-plane; this is, it is a 'plus' function
and we remind ourselves of this fact using the subscript + upon e and T. In (5.2.4) F(p) is
the Laplace transform of the time dependence of the stress loading, F (t), and the function
'Y(~,p) b(e,p)(h») is defined as 'Y(e,p) = [e +p2/e2]1 b(h)(e,p) = [e +p2/c(h)2]1). The

branch cuts for these functions, in the complex e-plane, are taken such that they run
along the imaginary axis from ±ip/c (±ip/e(h») to ±ioo.

(5.2.4)

A function Q(~,p) is introduced in (5.2.4) and is defined as

Q(e) h( ) _ J-L(h)'Y(h) sinhb b) + J-L'Ycoshb b)
,p cos 'Ya - J-L(h)'Y(h) coshb (b - a)] + J-L'Ysinhb (b - a)]'

where ry == 'Y(Cp) and 'Y(h) == 'Y(h)(e,p). This function captures all the essential physics
of the wave reflections from the surface, crack faces and interface together with the
waveguide nature of the geometry.

(5.2.5)

The next step in our Wiener-Hopf recipe involves separating the functional equation
(5.2.4) into a piece that is analytic in the + region, and a piece that is analytic in the
- region. These pieces have a common overlapping region in the e plane and thus are
equal to the same analytic function within this strip. Hence, by analytic continuation,
both sides must equal a function that is analytic everywhere. This must remain true even
as lei --+ 00, and so (by Liouville's Theorem) this function is a polynomial in~. This
allows us to find the unknown transforms analytically. This polynomial is determined by
applying the known edge behaviour at the crack tip, that is, the stresses are 0(r-1/2)
there.

In order to make the split into the standard Wiener-Hopf form the function Q(e,p)

is split into a product of ±-functions: Q(e,p) = Q+(e,p)Q-(e,p); a related splitting
is described in Appendix 5.B, here it is ultimately most easily performed in terms of

some quadratures. We also require the product split 'Y(e,p) = 'Y+(e,ph-(~,p) where
1

'Y±(e,p) = [~± ip/e]l·



5. Pulse scattering by a semi-infinite crack 9H

We now rearrange the functional equation (5.2.4) so that the left and right hand sides
are analytic in the upper and lower halves of the complex ~-plane respectively:

The regions of analyticity overlap on 0 < Im(~) < min{p/c,p/c(h)); this is enough to
invoke analytic continuation and to determine that both sides of the functional equation
can be extended to the full complex ~-plane, and hence are equal to the same analytic
function everywhere. Using the edge conditions (the stresses in the limit as T -t 0 are
0(r-l/2)) this function is determined to be zero.

One of the most immediate results that can be deduced from the functional equation
is the behaviour of the stress near the tip of the crack. The limit as I~I-t 00 in the
transform space corresponds to the limit as x -t 0 in the physical domain. The stress
ahead of the tip of the crack is O"_(~,p) from which

1

azy(x, a,p) '" F(P) (cQ(o,p))"2 (-x)-~ == Km(P)( -271"x)-~ for x < O.
2p7l"

To obtain this result we have employed the inverse Fourier transform given in Appendix
5.A and the result Q_(~,p) -t 21/2 as I~I-t 00. The mode III Laplace transformed stress
intensity factor Km(P) == K(p) is also defined by (5.2.7) and hence can be explicitly
extracted; that result is also extracted using an invariant integral in Section 5.3. The full
solution for the stresses in the elastic layer is identified from equation (5.2.6) as,

(5.2.7)

( ) __ 1 jC+iOO _!_ JOO F(Ph-(~,p)Q-(O,p) cosh('Y y) -i~Xdt ptd (528)azy x, y, p - . . () e" e p ..271"1c-ioo 271"-00 1~+'Y_(O,p)Q- t,» cosh(f a)

for 0 < y < a. A similar expression may be deduced in a < y < b and in y < 0; these
results are not included here. So far we have taken the stress loadings to be uniform
along the crack faces, however, we may routinely generalise this to any loading of the
form azy = F(t)G(x). For ease of presentation, we restrict ourselves to the stress intensity
factors. The stress ahead of the crack tip is now asymptotically

azy{x, a,p) '" -F{p) 1 1 (~ roo Q-(X,p)G(x) dX) (-x)-~ H( -x),
(271"i)~ 2m 1-00 'Y-(x,p)

(5.2.9)

where G{X) is the Fourier transform of G(x) (with Fourier transform variable X). We
also note that Q-(X,p) '" 21/2 + 0(e-2,),(x,p)a) to deduce the solution for a single crack
in an infinite homogeneous material. This general formula is useful in comparison with
one obtained later using weight functions.

These formulae formally solve the canonical problem. A direct numerical evaluation
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of the integrals above can be performed, but this is not overly revealing. III cases when
we expect the first few arrivals to completely characterise the solution it proves to be
more straightforward to proceed iteratively. Hence we choose to develop a method that
iteratively solves equation (5.2.4) rather than formally expand the integral ill (5.2.8).

In this section we have made a direct product split Q = Q+ Q_. The essence of a
generalised ray approach is rather than digest Q in its entirety, we swallow it as smaller
more manageable portions, that is,

1 1 [ (/1-(h)-y(h) - Wy) 1Q '" 2 1+ exp[-2, a] + /1-(h)-y(h) + /1-, exp[-2, (b - a)] + ... (5.2.1O)

and each term of Q now contains all the physics up to a specific time; the terms involving
/1-(h), ,(h), /1-, and , can be identified with reflection coefficients from the interface or
surface, and thus each term has physical significance. Each term of Q is ultimately split
into a product Q~QJ_ of + and - functions; however, the 'sum of products' that we
construct does not, as a whole, have an obvious factorisation into a product of + and -
functions so that Q+ (01' Q_) is not ea..sily recovered from its smaller portions as we may,
at first, expect.

5.2.2. Iterative solution

In this section we utilise an iterative scheme similar to that described by Kooij & Quak
(1988) and Haak & Kooij (1996) to solve the problem we formulated in the previous
section. This places the physical language of various superpositions, see for instance
Tsai & Ma (1993), in a more rigorous setting. This approach lends itself well to further
generalisations.

To formulate the current problem the original functional equation (5.2.4) is split into
a series of less complicated subsidiary equations. Each equation then corresponds to the
wavefield due to successive reflections from the crack, the interface and the surface. In
the followingwe drop the tilde and overline decoration on Uz and write ;frz{~, Y,]J) as Uz

to shorten the notation; the same convention applies to (Tzy. In order to use generalised
ray theory we first expand Uz as

00 00

Uz = L L u~m,n) in 0 < Y < a,
m=On=O

(5.2.11)

with a similar expression for Uz in Y > b and for (Tzy. Similarly we expand the unknown
quantities in the transform domain (7- == (T_(~,p) and U+ == U+(~,]J); the arguments
~ and ]J are again omitted here and in ,(~,p). The superscripts (rn, n) correspond to
m. reflections against the interface, y = b, and the crack, and n reflections against the
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surface of the elastic layer, y = 0, and the crack. The functional equation (5.2.4) IH

rewri t ten as

(5.2.12)

where n is the reflection coefficient at the interface of two dissimilar half spaces:

(5.2.13)

The reflection coefficient at a rigid surface is, of course, -1; so there is no need to
introduce any extra notation for that reflection coefficient, although one can envisage
having yet another elastic material in y < 0 and then requiring a reflection coefficient
for reflected waves from y = O. Using the expansion in equation {5.2.11} we split the
functional equation (5.2.12) into a series of simple functional equations each of which is
order exp[-2rwy{b - a) - 2wya). Doing so, we arrive at the following explicit functional
equations:

CO,O) 1 U(O,O)e: = -2J1."Y +

s~,n) = -~J1."Y (U~o,n) + U~O,n-I)e-2oya) for n ~ 1
m-I 1

s~m,O) + L nm-qe-2(m-q)-YCb-a) s~'O) = - 2J1."YU~u,0) for m 2: 1
q=o

m-I
S~m,n) + L nm-q (s~,n) + O"~q,n-I) e-2oya) e-2(m-qhCb-a)

q=O

(5.2.14)

_ 1 (UCm,n) + UCm,n-l) -2oya)- -2J1."Y + + e for 1n, n 2: 1.

In these formulae s~'O) = O"~,O) + T+ and otherwise s~m,n) = O"~I,n). To recover the
stresses in 0 < y < a we require a further expansion that has the following form

O"i~,n) = [f)_1)qS~m,n-q)e-2q'Yal e-oya (e'YY + e-'YY);

q=O
{5.2.15}

recall that 0"zy = E~=o E~=oO"~~,n). The stresses in a < y < band b < yare not included
here, but may be found in a similar way. Note that each successive solution in equation
(5.2.15) includes both forward and backward going waves to +00 and -00 respectively,
i.e. both the waves diffracted by the crack and reflected by the free surface at y = 0 and
the interface at y = b are described by a single iteration. A more physical approach that
we could choose to exploit relies on a superposition of three separate problems. This
approach is briefly described in Section 5.2.3.
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5.2.2.1. First loading

The zero order functional equation from the first equation of (5.2.14) is

2 ( (0,0) + 'V' ) _ _ U(O,O)
0" _ .L + - J-L'Y + . (5.2.16)

This is equivalent to the standard infinite medium problem (Freund, 1990) as the crack is
initially unaware of either the surface or interface, and the unknown transforms emerge
as

U(O,O) _
+ - a d (0,0) = r ['Y-(~,p) - 1]

n 0"_ + (0) ,'1- ,p
(5.2.17)

fromwhich wemay deduce the zero order diffracted stress field explicitly. A more striking
result that falls out of the analysis is the behaviour at the tip of the crack; we can extract
the leading behaviour (using inverse Fourier results from Appendix 5.A) as

(5.2.18)

where L denotes the Laplace transform operator. This result verifies, in part, the near
stress field evaluated in equation (5.2.7).

It is straightforward to find the zero order solution utilising the Cagniard-de Hoop
method, a detailed description of the method may be found in Miklowitz (1978) and
others. In this case it transpires that we require two different inversion contours, chosen
so that eT = {(2+ 1)t{a - y) + i(x and eT = «(2+ 1)! (a + y) + i(x, for time T real and
positive. This is equivalent to constructing a generalised ray path; the path describes the
vertical distance travelled by each wave, the total horizontal distance, and the direction
of propagation. This device places the inverse Fourier integral in the form of a Laplace
transform; in further iterations this is not enough and we are required to formulate further
Cagniard paths. We now require the inverse Laplace transform of this integral and as a
result the solution in real time is found immediately by inspection. The explicit solution,
for a general time dependence, is

(0,0) _ r 1 [ ( 'Y-«(I(T)) d(I(T))
O"zy (x,y,t) - io F{t - T); H(T - rl/e)Re i(I(Th-(O) ~

(
'Y-«(2(T)) d(2(T))]

+(H(T - r2/e)Re i(2(Th-(O) ~ dr.

In this formula r?,2 = x2 + (y =t= a)2 and tanlh,2 = =r-x/(y =r- a). We have also added
some further decoration on the Cagniard paths: eT = 'Y«(1,2(T))(a =r- y) + i(1,2(T)x, and
a rescaling ,«() = [(2+ 1]!. This solution corresponds to the cylindrical wavefields in
x < 0 generated by the crack and subsequently reflected by the surface y = o. It is
formally valid in the interval 0 < t < (rl + 2a)/e. In addition in x > 0 waves parallel

(5.2.19)
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to the crack faces are generated and in this case are given, by a residue calculation,
in the form F(t - (a - y)/c) + F(t - (a + y)/c). In further iterations it is necessary
to formulate the integral in terms of 'plus' and 'minus' functions in :1; < 0 and x > 0
respectively as a result of shifting the integration path in the upper and lower halves of
the complex ~-plane. In (5.2.19) this distinction is not necessary. This result is plotted
later in Figure 5.2 for the case F(t) = 8(t).

5.2.2.2. Reloading by the surface

To proceed we utilise the zero order solution we have determined in Section 5.2.2.1 to
reload the crack and find the waves diffracted by the crack in this case. The Wiener- Hopf
equation of exponential order exp[-2')' a] is given by (5.2.14) as

2 (D,l) _ _ (U(D,l) + -2')'au(D,D»)a_ - Jl'Y + e + . (5.2.20)

In order to utilise the Wiener-Hopf equation we define Q(D,l) = e~2')'a and this function
is split into the sum of ±-functions, i.e. Q(D,I) = Q~,I) + Q~,I) where

Q(D,I)(C ) = ±_1 1 Q(D,1)("11,p) d = ±_l 1
± ~,P 2 . C "11 2'

11"1 c± "11 - ~ 11"1 C±
(5.2.21)

and Q~,l)({,p) = Q~,I)(_{,p)j C+ (C_) is the contour from -00 to 00 indented be-
low (above) the real axis. After some Wiener-Hopf analysis we arrive at the following
expressions for the unknown transforms

(5.2.22)
and

(i) Stress intensity factors for O(e~2"Ya)

We can again obtain the near tip behaviour either via taking the limit I~I-t 00, that
corresponds to x -+ 0, in the inverse Fourier integral and evaluating the remaining integral
in "11, or equivalently utilising expression (5.2.22) directly. In the limit as 1(1 -t 00 then
Q~,I)(e,p) -+ 0, and the near crack tip behaviour may now be extracted by evaluating
Q~,I) (0, p) only. This is obtained by collapsing the integral around the branch cut that
runs from ip]« to ioo in the upper half plane and then evaluating the resulting definite
integral using 3.7166 of Gradshteyn & Ryzhik (1980). That is

Q~,I) (O,p) = ~ foi sin(2pa tan ,plc) tan ,pd,p = ~e-2pa/c = ~Q(O'l) (0, p), (5.2.23)
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so that we obtain

(5.2.24)

The results for the stress intensity factor presented here using an iterative approach are
again consistent with those obtained by expanding equation (5.2.7). We provide a further
check on this analysis using an invariant integral in Section 5.3.

(ii) Stress intensity factors for O(e-4"Ya)

Before we proceed to compute the stress field in this case, we briefly focus our attention
on determining a further stress intensity factor. It is observed that the evaluation of
further wavefields needs only the solution of a finite set of Wiener-Hopf equations. To

evaluate this next reflection we require

where

(0,2) _ 1 1 e-2')'(172,p)a [ (0,1) (0,1)]
Q_ (e,p) - --2 . e Q+ (112,p) + Q_ (D,p) dr/2,

7l'1 C_ 112 -

and Q~,2)((,p) is similarly defined. As before, the near crack tip behaviour may now be

extracted by evaluating Q~,2)(D,p) = IQ + [Q~,I)(D,p)r. This is obtained by collapsing
the integral IQ around the branch cut that runs from tp]«: to ioo in the upper half plane
and in this case evaluating the resulting double definite integral numerically:

(5.2.26)

1 00 00 sin [+,2 - ~) !aJ sin [2 ( X' - ~) IaJ 1
IQ = 2" { ( dX dV) = _e-4pa/c.

7l' Jp/c Jp/c 1/J(X + 1/J) 8
(5.2.27)

Using this result we have found Q~,2) and hence the near crack tip behaviour:

<71~·2)(x,a, t) _ L -1 [F(P) (~) I~e-4.PI'( -2~X)-ll.

The stress intensity factors are discussed in detail in Section 5.3.

Following our short aside, writing Q~,I) (e,p) and Q~,I) (D,p) explicitly, the stress field

(5.2.28)

is
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In the present case we wish to invert a transformed field quantity that already contains all

integration over the variable 171.Following Harris (1980) we introd lice Cagniard contours
in both the (-plane, as described above, and the 171-plane,

(5.2.30)

We shift the (- and 171-integrations onto contours along which T and tl are real. The r/l

path is defined by

[(ct)2 ]~
17f (td = ± 2~ - 1 ,

2a
for - < tl,

c
(5.2.31)

and the (1,2(T) path employed in the first iteration is here expressed explicitly a.'!

[
2 1~. eT . eT

(1,2(T) = -1- smOl,2 + (-) - 1 COS01,2,
rl~ rl~

r12for -' <T;
e

(5.2.32)

we have taken the branch of the path with positive square root.

The modified Cagniard method (Harris, 1980) relies on a change of order of integration
and the result t = tl + T to rewrite the integral in the usual Cagniard form. Then the
time transform is of such a form that the inverse transform can be identified for any
general loading, F(t), in 0 < y < a as

(7~~,I)(x, y, t) = r F(t - T)~ [H(T - (rl + 2a)/c) r>: g(O,l)((dT), 11l(T - T))dTlo 27r lrJ/c
+H(T - (r2 + 2a)/e) IT

-

2a
/
c

g(0,1)((2(T),17dT - T))dT] dr,
r2/

c (5.2.33)

where the function g(O,I) is defined by

(0,1) T) t = _ [a( 'Y-(() ( 1 o17t _ 1 0171)]
g ((( ,17d I)) 1m OT'Y_(O) i17t(17t - () atl i171(r/

l
- () Uti .

(5.2.34)

In Figure 5.2 the wavefield valid in time 0 < t < "t +4a/e, that is (7zy = (7i~'O)+ai~,l) +

O(c6')'a, e-2')'(b-a»), until the second wave reflected by the surface returns to the crack,

is shown in x < 0 and 0 < y < a for the loading F(t) = c5(t). In addition in x > 0 waves
parallel to the crack faces are generated and proceed to be reflected by the surface in a
similar way. Further reflections are mainly distinguished by the singularity associated
with their arrival; this is partly seen in Figure 5.2.

As »[a is increased the sharp peak that occurs close to the wave arrival is smoothed

out. When y/a « 1 and the observer is near to the interface then the amplitude of the
reflected wave is increased and arrives near to the wave incident on the surface. Similarly
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Figure 5.2. The stress field for the case F(t) = 8(t) is shown by the solid line for t < rl + Aa]«
for x = -0.04, y = 1.2, and a = 2. The dotted line shows the equivalent result in an infinite
body. There is a one-sided singularity associated with each cylindrical wavefront, and these can
be seen in the figure.

when y / a rv 1 and the observer is now near the crack then the diffracted wave and the
wave incident on the crack arrive close together. These observations may b predicted
by physical considerations.

So far the formulation and analysis has been for a crack in a semi- infini te half space
o < y < 00; that is the crack is unaware that it is in a layer above a half spa ·e. In
o < y < a the effect of the interface between the fluid layer and half space is first seen
after time t > r'l +2( b - a) / c, that is, after the first wave reflected by the interface returns
to the crack. The previous analysis and Figure 5.2 have assumed that b - a > 2a. This
problem is considered briefly in the next section.

5.2.2.3. Reloading by the interface

In this case the Wiener-Hopf equation of exponential order exp] -21 (b - a)] is given by
(5.2.14) as

(5.2.35)

Following the approach used in Section (5.2.2.2) we define Q(l,O)(~,p) = e-2-y(b-a), split
this into ±-functions, Q(l,O) = Q~'O) +Q0'0), and extract the expressions for the unknown

transforms

(5.2.36)
and
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(i) Stress intensity factorsfor O(e-:l)(b-fl))

In the same way that we evaluated the near crack tip behaviour in Sed ion 5.2.2.2 ill
this case it may be extracted by evaluating Q~'O)(O,p). Again using integral 3.7166 in
Gradshteyn & Ryzhik (1980) (or evenness of function Q(l,O)((,p)) we find that

(5.2.37)

where ~ = (J..Lc(h) - J..L(h)c)/(/J.(h)c + J..Le(h)) and this result is consistent with the solution
in (5.2.7). Out of completeness, the stress field in this case is

a~t,O)(~,y,p) = _T+1'(O(~';)R [Q~'O){~,p) _ Q~'O)(O,p)] (e'Y(y-a) _ (~-'Y(y+a));
1'- ,p

(5.2.38)

this expression may be routinely inverted using the Cagniard-de Hoop method described
in Section 5.2.2.2.

5.2.3. Comment on fundamental solutions

An alternative approach of generating an iterative solution is to treat as separate prob-
lems the loading of the crack, the surface of the elastic layer, and the interface between
the elastic layer and the underlying half space; each of these successive iterations takes
the negative of the previous solution as its loading. This can be shown to he completely
consistent with the analysis presented in the earlier sections and it has been used as a
consistency check; the details are not included. Physically, this approach has some ad-
vantages over the iterative scheme used in Section 5.2.2 and in Haak & Kooij (1996); in
a more complicated coupled situation, such as the in-plane scattering problem of Section
5.5 where identifying the wavefields is less elementary, it is sometimes more convenient
to adopt this separation approach and extract each scattered field independently.

5.3. Invariant integral

In this section attention is given to the field near the crack tip, which is completely char-
acterised by the stress intensity factor, and in particular we focus upon non-homogeneous
materials. The results for the near crack tip stresses for a homogeneous material have
been presented in Sections 5.2.1 and 5.2.2; these results are also recovered using a path-
independent integral. The basic method was first used in dynamic elasticity by Nilsson
(1973). Followingthe approach initiated in elastostatics by Eshelby (1970), a Lagrangian
is deduced in the Laplace transform domain in each material such that the Euler-Lagrange
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relations recover the governing equations; the Lagrangian L, is

L = -~ (az/uZ,j + PP2u/uz) .

As this is defined in the transform domain this Lagrangian does not have an immediately
obvious physical interpretation. When we consider the layer-half space configuration of
Section 5.2 this Lagrangian is defined in 0 < y < b and we also need to define a Lagrangian
L(h) in b < y by (5.3.1) with appropriate changes to material parameters. Initially we
treat a non-homogeneous half space and only need the first of these Lagrangians. The

(5.3.1)

corresponding pseudo energy momentum tensor is

(5.3.2)

again, unlike Eshelby's elastostatic energy momentum tensor the pseudo energy mo-

mentum tensor in the Laplace transform domain does not have any obvious physical
interpretation. The Lagrangian does not depend explicitly on the space variable, and
thus the integral, Fi ; defined as

(5.3.3)

is zero provided that the path S does not enclose any singularities; Ttj is the unit vector
normal to S (Figure 5.3). This integral is analogous to Rice's J-integral (Rice, 1968) but
is now also incorporating dynamic effects and the non-homogeneous material variation.

For anti-plane strain the stress intensity factor can be rapidly evaluated using this in-
variant integral. Although it is important to realise that the technique only works neatly
as a computational tool for spatially constant applied stress or displacement bound-
ary conditions along the horizontal (x) boundaries and for material variation in the y

coordinate. In the more complicated situations found for in-plane elastic problems mode-
coupling occurs at the crack tip and the method often leads to a representation for the
sum of the squares of the stress intensity factors (Section 5.5). In static elasticity the-
ory this all reduces to the energy release rate, however we are currently in the Laplace
transform domain and it is unclear what physical significance, if any, these results have
apart from neatly capturing the transformed stress intensity factors.

In essence the information near to the crack tip can be obtained by studying the far
away field; we evaluate the integrals far from the crack tip and relate this to the stress
intensity factors. The behaviour near the tip of the crack is determined in terms of

cylindrical polar coordinates (r,O) centred on the tip with 0 = 0 ahead of the crack and

the elastic material is in -7r ~ 0 ~ 7rj the stress is locally azy '" K(p)/(27rr)-1/2 cos(O/2),
and the related displacements are given in Appendix S.C. The coefficient K(p), the stress
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Figure 5.3. The path, 5, required for the application of the invariant integral in Section 5.3.

intensity factor (in Laplace transform space), characterises the near tip singulari ty and
here we shall extract it using the invariant integral. These near tip fields are used to
evaluate the integral around CH (in path S).

To evaluate the stresses we note that the derivatives with respect to ;r; tend to zero as
.T -+ ±oo, see Nilsson (1973). As a result the governing equations become

dazy 2 _ _ ( )duz
-d- = P p(y)uz where <Jzy = J.-lY -d .y y

(5.3.4)

When treating spatial variations in the shear modulus or density the application of the
Wiener-Hopf method or numerical methods, to a semi-infinite crack problem, may be
difficult. Currently much of the non-homogeneous fracture mechanics literature concen-
trates upon static situations, for example, Erguven & Gross (1999). However, the path
independent integral is ideally suited to dealing with special situations (spatially constant
loadings and material variation normal to the crack), and in fact the method gives results
for any variation of modulus. Some related static problems are considered for general

J.L(y) in Atkinson & Craster (1995b).

For analytic simplicity, as in Atkinson (1975), we make the further restriction that the
density p varies in such a way that p(y) / J.L(y) = Cl a constant. Introducing the substi-
tution v(y) = J.-ll/2(y)'uz(Y) then enables the governing equation (5.3.4) to be rewritten
as

d2~ = v [P: + a.(y)] where a.(y) = 41 [2dd2~,- ~ (ddtJ,)2].
dy c J.L Y tJ, Y

We now make some specific choices for the material variation. The first choice, tJ,(y) =

a2 exp(2,8y), where,8, a are constant, has the advantage that the resulting function o.(y)
is equal to (32. This results in the simple solutions v(y) = A exp( -ry) +B exp(ry), where

(5.3.5)
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I'= [(plc)2 + ,62]1/2,for constants A, B determined by the boundary conditions on y = ()

and y = a.

We now proceed to relate the integral around the crack tip to the knowu integrals
around the body; the only integrals that contribute to the invariant are along EF, AB,
(and B' A' in an elastic layer), and the points at F and A along the crack faces. Performing
the integrals we obtain

I

K _ F [ f(sinhfa + cosh fa) /3 ] 2'
(p) - (p) (f + ,6)(f cosh fa - ,8sinh fa) + 2(fcoshfa - j3sinhfa)2

(5.3.6)

In addition the solution in an infinite body with this modulus variation is found as

(5.3.7)

and we may invert the Laplace transform exactly, for example when F{t) = H(t):

(5.3.8)

where IF2 is the generalised hypergeometric function. It is perhaps surprising that the
stress intensity factor is independent of the choice of a for this specific loading. A
related choice of It(y) in an infinite body is a2 exp(2,8IY - al) which is a symmetric
modulus variation about the fracture plane, in this case the Laplace transform of the
stress intensity factor for an infinite body is

1

K(P) = F(P) (f! ,6) 2' • (5.3.9)

The stress intensity factors are shown in Figure 5.4; the Laplace transform (5.3.6) is
inverted using an adaptation of the Fourier inversion routine described in Atkinson &
Craster (1992a). The rather striking changes in the stress intensity factor in Figure 5.4{a)
are caused by the waves reflected from the surface reloading the crack; the reflections
occur at equal values of etla since we have taken e to be constant. The result in an
infinite body (5.3.8) is shown by the dashed line in this figure. Figure 5.4(b) compares
this with the variation chosen to be symmetric about the crack and with {-J = 0 (constant
It) .

Increasing the value of ,8 in these results leads to larger peaks in the stress intensity
factor as the material has decreasing rigidity in the layer between the crack and the
surface; the net effect of which is to concentrate the wave energy near the surface and

leads to a stronger reloading effect for waves reflected from the surface. The sharp
reloadings become less evident, and this can already be partly seen in Figure 5.4(a).
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Figure 5.4. The stress intensity factor rescaled as K( t) (7r /80.) & versus non-dimensional time et/ a.
In panel (a) we show the intensity factors for a subsurface crack with parameters (3= 0.5/0., 0 = 1
for the modulus variation J..I.(Y) = 02 exp(2(3y) (-); the corresponding result for a crack in an
infinite material is shown by (- -). For comparison the dotted line (... ) shows the results for
constant J..I.. In panel (b) the effect of a modulus variation, symmetric about the fracture plane,
on the intensity factor is shown for a crack in an infinite material with (3 = 0.4/0., 0 = 1 and
modulus variation J..I.(Y) = 02 exp(2(3IY- 0.1) (-), and otherwise as in panel (a).

In contrast in Figure 5.4(b) the symmetric modulus variation is crudely speaking anal-
ogous to a rigid boundary above and below the crack, we no longer obtain the sharp
peaks due to the distinct reloadings caused by the reflections from a rigid boundary, but
rather we get a continual and gradual reloading which causes the stress intensi ty factor
to level off to a constant value (3-1/2.

To contrast with the earlier choice of an exponential variation we now choose a variati n
with algebraic growth, {J,(Y) = ((3y+a)2, which is also analytically rewarding. The stress
intensity factor is shown in Figure 5.5; this modulus variation leads to a(y) = 0 so
that the solutions take the form v(y) = Asinh(py/c) + B cosh(py/c). In gen ral for
J..I.(Y) = ((3y + a)n then a(y) = n(n - 2)(32/4((3y + a)2 and, therefore, in general we have
to proceed numerically; this is not the case for n = 2. Evaluating the integrals and
relating the non-zero contribution to the integral around the crack tip gives

[ 1

t
-) -) p ~ sinh(pa/c) + cosh(pa/c)K(p = F(p -U (~+ (ila~ a)) (~cash(Pa/c) - (ila~ a) 'inh(Pa/C))

(5.3.10)
where the solution in an infinite body is

- - ( 2P) ~ [p2 (32]- ~
K(p) = F(p) ~ c2 - ((3a + a)2 ' (5.3.11)
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Figure 5.5. The stress intensity factor rescaled as K(t)(7r/8a)~ versus non-dimensional time cif a.
The modulus variation is p,(y) = ((3y + 0:)2 and the presentation of the results is as in Figure 5.4.

and the Laplace transform (5.3.11) is inverted for F(t) = H(t) as

(5.3.12)

A related result in an infinite material for a symmetric variation about the crack p,(y) =

(,Bly - 0,1 + a)2 is K(p) = F(p)[2/(p/c + ,B/a)p/2. Under Heaviside loading F(t) = H(t)
this can be inverted to give an error function K(t) = (2a/,B)1/2erfJ,Bct/a. A comparison
between this result and the result in an infinite body (5.3.12) is made in Figure 5.5(b),
the symmetric modulus variation which have increasing shear moduli as one moves away

from the crack, have lower stress intensity factors as waves return to reload the crack
from the regions with higher rigidity. In contrast to the symmetric exponential loading,
the stress intensity factor approaches a constant value, (2a/,B) 1/2, monotonically from
below.

These solutions provide useful benchmark examples upon which numerical solutions
can be tested. In addition they demonstrate the effect of inhomogeneity can be to
substantially amplify the stress intensity factors after successive reflections reload the
crack. Note that when ,B = 0 in both the cases we have considered in detail then the
shear modulus is constant, J-1. = a2, and we just recover the stress intensity factor for
a cracked half space. For small ,B (or y) then for both cases, provided a = 1, we find
p,(y) "-' 1+ 2,By and we are in a position to compare algebraic and exponential variations
and as we might expect the exponential growth leads to a stronger response with more
noticeable peaks.

We now return to the layer-half space configuration of Sections 5.2.1 and 5.2.2, we
can generalise the stress intensity factor results we have already obtained by using the
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invariant integral with a Lagrangian in the half-space and layer: For convenience assum«
that both the layer and half space are homogeneous, then applying the invariant around
the contour shown in Figure 5.3 and evaluating the integrals along the sides of the strip,
one deduces that

I

- - ( C ) ~ [ Jl.(h)csinh(pbjc) + pc(h) cosh(pl)jc) 1 ::!

K(p) = F(p) pcosh(pajc) Jl.(h)ccosh(p(b _ a)jc) + Jl.c(h) sinh(p(b - a)jc)
(G.3.13)

Some representative numerical results are shown in Figure 5.6(a) where we have ChOSCll

some typical values for the two free parameters bja and Jl.c(h) jJl.(h)c.

As an aside, the treatment of a layered-inhomogeneousmaterial may, in certain consid-
erations, be approximated by the suitably adjusted treatment of an n-Iayered material.
The full solution of the n-Iayered problem is an arduous algebraic task since we are
required to solve continuity conditions at each interface, however, the invariant integral
yields the stress intensity factors very rapidly by utilising simplified continuity conditions
and only the integrals over the layers as x -* 00. The following result is for two layers
above a half space, but may be routinely extended to several layers. The elastic layer
in 0 < y < bl (== b) is now labelled by a subscript 1, and the second elastic layer in
b, < y < b: is denoted by 2; the half space is in bz < Y < 00,

K(p) =F(p) ( Cl )~ [ Jl.2CI"'1 sinh(pbI/ct} + Jl.IC2"'2 cosh(pbtjcd ] ~
pcosh(pajcd Jl.2CI"'1 cosh(p(bl - a)jct} + Jl.IC2"'2 sinh(1)(b(- a)jct)

{5.3.14}
where b = b2 - bI,

Jl.2 (Pb) /-L(h) (Pb)"'1 = - sinh - + -(h) cosh - ,
c2 c2 C c2

Jl.2 (Pb) /-L(h) (Pb)
"'2 = - cosh - + -(I) sinh - .

c2 c2 c I c2

(5.3.15)
In this case we have five free parameters, bi]« and Jl.lC(h) j Jl.(h)c(, as before, and also b2ja,

cd C2, and /-Llc2j Jl.2Cl.

The Laplace transforms (5.3.13) and (5.3.14) are again inverted numerically for the
case F(t) = H(t), and the stress intensity factors are shown in Figures 5.6. The rather
striking changes in the stress intensity factor are, again, caused by the waves reflected
from the surface, and this time also interface(s), reloading the crack. In Figure 5.6{a}the
solid and dashed lines show the stress intensity factor for positive and negative valuesof ~
(when b-a > a) respectively; the layer wavespeed is slower, or faster than the wavespeed
in the half space. (The dotted line shows the result for ~ = 0 that corresponds to a crack
in an infinite homogeneous body; the case p = p(h) and c = c(h).) This illustrates how,
if we fix the material properties of the layer, changes in the half space contribute to
the near field. In each case the first reflection, that from the surface y = 0 is identical,
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Figure 5.6. The stress intensity factor rescaled as J( (t) (IT /80.) ~ versus non-dimensional time et/ a
under loading F(t) = H(t). In panel (a) either the waves in the layer travel faster than those in
the half space (-) (the specific parameter values are that b/a = 5/2, /.l = /.l(h), and c = 2c(h)) or
the wavespeed in the layer is slower than that of the half space (- -) (p = /-L(h) and 2c = C(/l)). The
dotted line (- .. ) shows the result when .6. = 0 (the half space and layer parameters are identical)
and the result for a crack in an infinite homogeneous body is given by the dotted-dashed line (- -).
In panel (b) b-]« = 5/2, bda = 4, CdC2 = 2/3, and /.lle(/t) //1,(h)Cl = 1/2. Either /1'JCdl.L2C1 = 4
(-) or /.llcd/.l2Cl = 1/4 (- -) and the dotted line (- .. ) shows the result when materials 1 and
2 are identical. The semi-infinite result (in an infinite body) is given by the dottd-da hed line
(- -).

thereafter if the wavespeed of the half space is slower less energy is reflected towards the
crack and the stress intensity factor lies below the dotted (identical materials) line and
vice-versa if the half space is faster then it lies above. It is worth noting, that changing
the boundary conditions on the crack and on the free surface, may significantly alter th
properties of the stress intensity factor.

Finally, in Figure 5.6(b), waves are reflected from the surface (y = 0) and the int rfac s,
y = bI, y = b2 at intervals cii]« = 2, cIt/a = 2(bl/a - 1), and cit]« = 2(bda -
bl/a)q/c2 + 2(bl/a - 1) respectively, and combine to generate reflections at all intervals

of cIt/a. In the figure b2/a and cl/c2 are chosen so that th lower layer first contributes
at Cl t / a = 5 and, for ease of presentation, so that the reflections occur at integer values
of Cl t/ a. In this figure we compare the ratios of the moduli in the layers for a fixed ratio
of their wavespeeds and demonstrate how similar energy distributions take place.

To explicitly identify the reflections that contribute to the near field expression (5.3.13)

may be first rewritten as

1 1 1 I

K(p) = F(p) (~) 2 (1 + ~e-2Pb/C) 2 (1 _ ~e-2Pb/C+2)Ja/c) -2 (1 + e-2pa/c) -2,

(5.3.16)
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where ~ is given following equation (5.2.37), and now by taking a Taylor expansion of

each part in turn:

_ _ _ (2C) ~ 00 (2i)!~ie-2p(b-a)i/c 00 (_I)j+l(2j)!~je-:.!pb.i/"
K(p) - F(p) p L 22i(i!)2 L (2j _ 1)22j (j!)2

1=0 J=o / (5.3.17)
00 (-I)k(2k)!c-:.!pak,.

X ~ 22k{k!):.! '

which corresponds to the value of K2 that is deduced from equation {G.2.7}. Note that
the sign of K cannot be determined without additional information; nonetheless this
provides a useful independent check upon one part of the analysis.

We can expand expression (5.3.17) in orders of the exponential, and this enables us
to perform each Laplace inversion term by term to reconstruct the solution in real time
explicitly as an infinite series; in particular when F(t) = H(t) and Ll = 0 we obtain

( ) = (2C) ~ ~ (-I)k(2k)!(t - 2ka/c)! H(t - 2ka/c)
K t 2 7r t:o 22k(k!)2 . (5.3.18)

This is consistent with the solution found numerically. In addition writing the first terms
in the series,

K (t) = 2 (;:) ~ [(et) tH (ct) - ~ (ct - 2a) tH (ct - 2a) + ~(ct - 4a) t H (et - 4a) + ...]
(5.3.19)

we can identify these with the coefficients of the singular fields found iteratively in equa-
tions (5.2.18,5.2.24,5.2.28) i.e. K(t) = K(O,O)(t) + K(O,I)(t) + K(0,2)(t) + ... In Figure

5.6(a), the dotted line for K{t) in the interval 0 < et < 6a is given by the first three
terms in equation (5.3.19).

5.4. Weight functions

We have the explicit solution for our model problem of Section 5.2.1 when the stress
loading on the crack is of a simple form; the purpose of this section is to identify the
stress intensity factor for any loading using weight functions either for the exact solution,
or for the iterative method. Other authors (e.g Thau & Lu, 1971) have utilised itera-
tive methods for related problems; the weight function method carries across to those
problems too.

The reciprocal theorem, assuming no body forces are present, is:

Is (atjUi - aijui)njdS = 0, (5.4.1)



5. Pulse scattering by a semi-infinite crack lIS

with nj the outward pointing normal to the closed surface S. The starred and unstarred
fields are independent solutions of the governing equations in the chosen geometry; the
starred field is a specially chosen field typically more singular at. the crack tip than the
physically relevant solution and satisfying zero boundary conditions, that is, it is an
eigensolution. Each term in (5.4.1) is taken to be in the Laplace transform domain.

For the eigensolution we consider stresses that are unphysically singular, O(1·-:I/:l), at
the crack tip so that in Fourier transform space a~ '" O(~~2) as I~I-7 XI:

(5.4.2)

In our exact formulation of Section 5.2.1 the functional equation for the eigensolutious is

(5.4.3)

C is an arbitrary constant which is determined by Liouville's theorem. The value of C is
found by comparison with the known asymptotic form of the near crack tip stresses in
(5.4.2). Using the reciprocal theorem along a contour applied around the crack tip; the
contour then goes along the crack faces and is closed in a large circular arc at infinity,

K(P)K(P) = I-' 1000 O"zy(x, a,p)u;(x, a,p}dx.

As u; emerges from (5.4.3) we have a formula for K(p}:

(5.4.4)

- 1 1100 100 Q e-i~xK{p) = -2 i~ O"zy(x, a,p) + . d~ dx.
1r 0 -00 /'+

(5.4.5)

The application of this formula to the full solution involving product splits of Q is not
a trivial calculation. None the less one can do so and recover the general formula found
earlier (5.2.9).

We can again proceed in an iterative manner and as a first step this reduces to

*(0,0) 1
I-' U*(O,O) _ 210"- - C - 2' 2 K*'
-1 /'+ + - - 2-- - - 1+ ,22 /'- (5.4.6)

the formula for the stress intensity factor in this case is given by

-(00) 1 1 100 100 e-i~xK 1 (p) = -2 (2i)~ O"zy(x, a,p) --d~ dx
1r 0 -00 /'+

(5.4.7)

The particular (Heaviside) loading chosen in the earlier analysis may be recovered using
the Fourier transform results given in Appendix 5.A; namely K(O,O) = F(P )(2c/p) 1/2.

The point of the weight function is that having obtained the solution once for a specific
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loading, we can utilise the same method to generate eigensolutions; the primary effort
in any solution is the factorisation of the 'kernel' function Q. We now choose a loading
that is no longer 'uniform' along the crack faces, for instance an exponential loading like
azy = F{t)exp{->.x), that decays with distance along the crack for positive A, in which
case

1

K(O,o){p) = F{p) (p/c2+ >.) 2

and when F{t) = H{t) we can find K(O,O){t) = (2/ >.)1/2erf..r>:ct.The uniform loading
treated in the previous sections is a special case of this for A = 0 and we can recover the

(5.4.8)

earlier stress intensity factors.

So far the results have effectivelybeen for a crack in an infinite body; that is the crack
is unaware of either the surface or the interface. Next the solutions we have just derived
are used to drive the 'reloading' of the unphysically singular crack,

1 *(0,1) 1
J-t U*(o,l) + 2.2Q(O,l)K* _ 21o: 2·2"Q(O,l)K* - 0
-1 'Y+ + 1+ + - - 2 -- - 1_ _ -
22" 'Y-

using Q~,l) .....O{l/~) -+ 0 as I~I-+ 00. At first sight it is unclear that the stress or
displacement field has the correct too singular behaviour. However if, for instance, we
consider the stresses, a" = a*(O,O)+ a*(O,l) + ... , then this expression is still O{e/2) and
thus after inversion to the physical domain is still too singular. The stress intensity factor
taking into account the first reflection can be found again from applying the reciprocal

(5.4.9)

theorem, and is

-(0,1) 1. t 100 JOO (0,1) e-i~xK (p) = --2 (21)+ azy{x,a,p) Q+ -d~ dx;
7f ° -00 'Y+

(5.4.10)

this formula reduces to equation (5.2.24) under a Heaviside loading, making a change of
order of integration and then capturing the residue at ~ = 0 by closing in the upper half
plane.

For further illustration we again take an exponential loading, exp{- >.x) along the crack
faces in which case

1

K(O,l){p} = -F(p) ( 2 ) 2" ~e-2pa/c
p/c+>. 2

and whose inversion for F{t) = H{t) is K(O,l)(t) = -1/2{2/>.)1/2erfJ>.{ct - 2a}H{ct-
2a}. In Figure 5.7 a comparison is made between a uniform and an illustrative non-
uniform (exponential) loading for the stress intensity factor. As >.increases the loading
decays more rapidly with distance from the crack tip, and the resultant effects on the
crack tip stresses are reduced; this is reflected in the reduced stress intensity factor values.

(5.4.11)
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Figure 5.7. The stress intensity factor (~) for an exponential loading exp( - AX) when). = 0.5/0,.
This is compared with the intensity factor for a uniform loading (- -}; the equivalent solutions
for a crack in an infinite body are also shown in each case.

The next solution is given in terms of Q*(0,2) = Q~,l)Q(O,l) = Q(0,2) _ Q~,l)(O)Q(O,l),

where Q(0,2) is given in equation (5.2.25),

-(0,2) _ 1 .! 100 /00 *(0,2) e-i€x .K (p) - ---(21)+ azv(x, a,p) Q+ --d~ dx,2n ° -00 T'+
(5.4.12)

for a uniform loading a single residue calculation again recovers our earlier solution. The
stress intensity factor for an exponential loading afteT inversion (F(t) = H(t)), showu
in Figure 5.7, is K(0,2)(t) = 3/8(2/A)1/2erfJ_A.(ct - 40,)H(ct - 40,). The combination of
formulae K(O,O) (t) +K(O,l) (t) +K(0,2) (t) +... gives a representation for the stress intensity
factors which is exact within the time window for which the last of these is valid. The
weight function for waves reflected from the interface between the layer and half space
also follows in a similar fashion.

5.5. In-plane loading

Despite the anti-plane problem of the previous sections being of some independent inter-
est, we are usually more interested in the analogous in-plane problems which we outline
in this section. Here there is little success to be had from tackling the problem head-on,
unless one wishes to proceed numerically, because of the matrix Wiener-Hopf equation

that emerges, however the iterative approach, that we have been advocating so far, is

still applicable. There the application of the Cagniard-de Hoop method again avoids any

potentially difficult or awkward evaluation of a Fourier and Laplace inverse integral that
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typically contains a Wiener-Hopf split function. Although the continual reloading of the
crack becomes progressively harder to describe.

5.5.1. Formulation

The problem is already complicated enough without an elastic layer so we only treat a
single homogeneous medium with an overlying fluid: In the region y > 0 is an isotropic
linear elastic material and in y < 0 is a compressible fluid. The responses of the two
half spaces are coupled together through the continuity boundary conditions along the
interface y = 0, these are discussed following (5.5.2). A Cartesian coordinate system is
again adopted with Xl, x2 corresponding to x, y.

The elastic material has (constant) Lame constants A, u, and density p. The stresses
aij in the material are related to the displacements Ui via

(5.5.1)

the comma denoting differentiation with respect to Xi. The governing equations are the
equilibrium equations aij,j = pUj, where the notation" denotes double partial differentia-
tion with respect to time. In this case the analysis is most easily performed by utilising

the displacement potentials 1; and 1/; where the displacement u is u = V1; + \7 x 1/;i,
where z is the unit vector in the z direction. The wave speeds Cd, c, are defined in terms
of the material parameters as c~ = A + 2J.t/ p, c; = u] p. The subscripts d and s denote
the variables associated with the dilatational and shear waves respectively.

The compressible fluid in y < ° is effectively an elastic material that supports no shear

stresses, thus (Jij = A If.kk6ij, where the fluid has density PI and compressional modulus
AI' The governing equations are CTij,j = pUi again, and we introduce a third displacement
potential X such that the displacement u is u = VX. The compressional wavespeed of
the fluid is defined as c~= AIIpt.

It is useful to define the following 'Y-functions that occur throughout the analysis:
1

'Yq(~,p) = {e +p2/c~)2 for q = d,s,o,r where er is the Rayleigh wavespeed. A coupling
parameter (;occurs throughout the analysis and is defined as (;= PIco/ PCd. The assump-
tion that the compressional wavespeed of the fluid is less than the shear wavespeed of
the solid is taken so that Cd > Cs > co.

The following boundary conditions are taken on y = a, ahead of, and on, the crack

x>o

[Ux] = [uy] = 0, x < 0, and CTxy = 0, ayy = F(t)H(x), X> 0, (5.5.2)

and the stresses axy, CTyy are continuous across y = a: [axy] = [ayy] = 0. In addition,
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the continuity boundary conditions

(5.5.3)

are taken on the interface y = 0, where the braces [] denote the jump in a quantity across
the interface; both the stresses ayy and the normal displacement uy are continuous across
y = O. The fluid supports no shear stresses, thus a xy = 0 on y = O. For convenience we
have, again, taken a spatially uniform loading of the crack faces.

5.5.2. Transform solution

Once again we apply Fourier and Laplace transforms, this time with the following half-
range Fourier transforms: the transform of the unknown stresses, axy and ayy, on y = a,

x < 0,

O"_(e,a,p) = fO O'yy(x,a,p)ei~Xdx,
-00

(5.5.4)

and the transform of the unknown jump in the displacements, ux and 'uY' across y = a,
x > 0,

v+(e, a,p) = 1000 [ux(x, a+ ,p) - ux(x, a- ,p)] ei~xdx,

U+(e, a,p) = 1000 [uy(x, a+ ,p) - uy(x, a- ,p)] ei~xdx.

So far the problems treated have resulted in a single Wiener-Hopf equation like

(5.5.5)

{5.5.6}

and in order to rearrange this equation into the standard Wiener-Hopf form we require
only the product factorisation of P(() = P+(()P-((). In the present case we obtain
a coupled system of two Wiener-Hopf equations and to proceed we need a matrix fac-
torisation. Unfortunately, the components of the matrix do not fall into any of the
classes amenable to exact factorisation, and we require some numerical, approximate, or
asymptotic method to provide it.

The resulting Wiener-Hopf matrix is

F(P)
where 1+ =~;

1.,+
(5.5.7)

much of the analysis is relegated to the appendices. The expressions for aij are lengthy

and are omitted here; they are written in Appendix 5.D, alternatively we can use the

language of generalised ray theory to piece together the matrix. It is our aim to split this
equation into a series of elementary Wiener-Hopf equations each of exponential order



5. Pulse scattering by a semi-infinite crack 120

exp[-2m'Yda - 2n'Ysa]. This corresponds to m compressional and n shear reflections
against the crack and the fluid-solid interface. The properties of aij in a Taylor expansion,
required to formulate a series of Wiener-Hopf equations are given in Appendix 5.D.

An alternative to approaching the matrix problem head-on is to interpret each reloading
separately (Section 2.3). If we do so here, and use displacement potentials, then the
potentials that are generated by the first compressional wave that is reflected from the
interface are

(5.5.8)

by iteratively constructing those potentials that arise after each reflection one can con-
struct the matrix. In addition if one has, say, a crack obliquely aligned to an interface
this method by-passes the necessity of constructing a formal Wiener-Hopf matrix equa-
tion. These potentials neatly encapsulate the reflection coefficients (Rpp etc.) that one
expects to emerge from generalised ray theory and the same functional equations ulti-
mately emerge; this is both algebraically and conceptually easier than dealing with a
matrix.

The notation employed in Section 5.2 is again adopted; the arguments ~ and pare
dropped whenever possible. The zero order Wiener-Hopf equation is equivalent to the
symmetric problem for a semi-infinite crack in an infinite elastic material, and the cor-
responding anti-symmetric equation yields T~O,O) = 0:

2

RU(O,O) - -2 !!_ ( (0,0) + T )J-t + - 'Yd 2 G- + ,
Cs

2
RV(O,O) - 2 P (0,0)

J-t + -- 'Ys2T-
Cs

(5.5.9)

In these formulae R is the standard Rayleigh function, R(~,p) = (e + 1';)2 - 4e'Yd'Ys'
In order to rearrange the symmetric equation into the usual Wiener---Hopf form this
function is split into the product of ±-functions. To this end we introduce the function
.c(~,p) = .c+(~,p).c_(~,p) defined by (5.B5); the relevant details and expressions are
given in Appendix 5.B. Rearranging this functional equation so that the left and right
hand sides are analytic in the + and - regions (defined following (5.2.3)), equation (5.5.9)
becomes

'Yd-(~,p) (0,0) T ['Yd-(~'P) 'Yd-(O,P) 1
- 'Y~_(~,p).c_(~,p) G_ - + 'Y~_(~,p)C_(~,p) - 'Y~_(O,p)C_(O,p}

= J-t (1 - C~) 'Y~+(~,p)C+(~,p) U~O,O) + T+ 2 'Yd-(O,P) = ~(~,p).
Cd 'Yd+(~,p) 'Yr-(O,p).c-(O,p} (5.5.10)

Analytic continuation may now be invoked to determine that both sides of the functional
equation are everywhere equal to the same analytic function, ~(~,p). The known edge
conditions (that is, again, the stresses are O(r-l/2) there) are now used to determine that
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this function is in fact zero. This now yields the following expression for the unknown
half-range transforms

17(0,0) = T+ ['d-(O'Ph~_(~'P).c_(~,P) -1]
- Id-(~,phr_(O,p).c-(O,p)

( 2 )-1U(O,O) - T Id-(O,phd+(~,p) Cs - 1
+ - + J.lI;_{O,ph;+{~,p).c_{O,p).c+{~,p) C~ ,

(5.5.11)
and

where T + = F(P)/i~+.

The behaviour of the stresses near the crack tip may be extracted (using asymptotic
results in Appendix 5.B) from (5.5.11) as I~I-+ 00, for x < 0:

(5.5.12)

this result is checked using an invariant integral for the mode I and mode II stress intensity
factors KI and KII in Section 5.5.3.

The Fourier and Laplace transform of the stress 17£~,o) may be extracted from the
expressions for 17~'0) and the Cagniard-de Hoop method. In order to do this we need
the six Cagniard paths that can be constructed from

(5.5.13)

so that these paths place the inverse Fourier integrals in the form of a Laplace transform.
This is almost equivalent to a generalised ray theory approach using the reflection and
transmission coefficients given in Appendix 5.D. In the following we have introduced the
rescaled I-functions, Iq(() = ((2 + kq)1/2 for q = d, 8,0, r, where kd = 1, k, = k = Cd/Cs,
ko = k' = Cd/Co, k; = Cd/Cr. The explicit solution is

(0,0)( ) _ 1R ([1"2 2( )]2 (I" )d(p(t) 2 ( ) ( d(~(t)
ITyy X,y,t -;: e 'op +,s (p Z 'op ~ -4(sls (s Id (s)Z(s)~

. () [ 2 2 ()] () d(ps (t)- 21(psIs (ps (ps + Is (ps RpsZ (ps dt

[
2 2]2 d(pp(t)

+ (pp + Is ((pp) RppZ((pp) dt

+ 2i(sPld((sp) [(;p + ,; (sp) ] 'R..5pZ(sp) d(;ft(t)

2 ( ) () () d(ss (t) )+4(S81S (ss Id (ss RssZ (S8 dt
(5.5.14)

where we have defined Z() as

(5.5.15)
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5.5.2.1. Reloading by the compressional wave

In this section we consider the reloading of the crack by the compressional wave reflected
by the interface. The same procedure may be followed, with some careful attention
to the analysis, in extracting the successive Wiener-Hopf equations, to find both the
compressional and shear wavefields up to the next arrival. For now we will only consider
the first reloading of the crack, which for some practical purposes may be thought to
be sufficient; further reloadings are briefly examined in Section 5.5.2.2. An interesting
and unexpected result near the crack tip falls out of this analysis and is more rigorously
explored in Section 5.5.3. In order to make use of the Wiener-Hopf equation of exponential
order exp[-2'Yda] we recall that 1'~0,0) = 0 and therefore from the matrix (5.5.7), or using
the displacement potentials (5.5.8),

II.RU(I,O) _ -2-v p2 [0'(1,0) -!n (1 _ nN) e-2'Yda (0'(0,0) + 1 )]
r: + - [d 2 - 2 pp pp - +.

Cs
(5.5.16)

The coefficients nand R:N are related to the reflection coefficients for an incident P or S
wave on an interface and a surface in the absence of the fluid respectively, and naturally
occur in the equations. Their precise form is given in Appendix 5.D.

The corresponding 'anti-symmetric' Wiener-Hopf equation this times yields a non-zero
1'~1,0) (that we expect to contribute in the next iteration) from

RV(l,O) = -2 p2 [ (1,0) _!"., ".,N ( (0,0) + 'V' )]J.L + 'Ys 2 1'_ 2 ''\.PP''\.ps (1_ .1 + .
Cs

(5.5.17)

Our game plan now requires us to split equation (5.5.16) into the usual Wiener-Hopf
form:

'Yd-(e,p) (1,0) 'V' 8(t) 'Yd-(O,P}
- 0' -.l+- .. P'Y;-(~,p}£_(~,p) - , 'Y;_(O,p}£_(O,p}

= J.L (1 _ c~) 'Y;+(~,p}£+(~,p} U(l,O)
c~ 'Yd+(~,P} +.

We have taken in hand the sum split of 8(~,p) into a + function and a - function:

(5.5.18)

(5.5.19)

some consideration of the function reveals that e+(~,p) = 8_(-~,p) and therefore
28±(0,p) = 8(0,p) = [(1 - e)/(1 + e)]e-2pa/cd, which will be seen to be useful later.
The resulting functional equation yields the unknown stress transform

(5.5.20)
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and we extract the stress intensity factor by employing asymptotic result e_(~,p) --t

O(I/e) as e --t 00, i.e.

a(I,O)(x,a,t) "-' L-1 [F(P) (cs) [2 (c~ - -r e_(o,p)(-X)-~l; (5.5.21)
YY ea P7rCd

where

e (O,p) = _1_c: ~R (1- RN)e-2'Yd(u,p)adu = ~ (1 - to) e-2pa/cd;
- 27ri -oo+id 2 pp pp u 2 (1 + to) (5.5.22)

d is some small, positive, real number. We may now use this result to find the mode
I stress intensity factor, KI(P), In addition the mode II stress intensity factor may be
found, in a similar manner, by first setting

~(~,p) = -2'Ys- RppR:Se-
2'Yd({,p)a = ~+(~,p) + <I>_(~,p).

'Yd-

The functional equation then yields

(5.5.23)

(1,0) __ r 'Yd-(O,ph;_(e,p)L-(~,p) [<I> (~ ) - <I> (0 )]
T- - + (~) 2 (0 )L (0 ) - ,>,p - ,p ,'Ys- "p 'Yr- ,p - ,p

(5.5.24)

and we may extract the stress intensity factor utilising ~_(~,p) "-' O(l/~) as

(5.5.25)

where
1 jOO+id 'Y d<I> (0 p) = - __!!::_~. RN e-2'Yd(u,p)a~ = 0-, 2' 2 "'pp ps ,7r~ -oo+id 'Yd- u

(5.5.26)

as <I>(O,p)= <I>±(O,p) = o. As a consequence of this result the mode II stress intensity
factor is zero, at least until the next wavereloads the crack; without the fluid loading and
for a stationary crack a similar result is found by Tsai & Ma (1997). This is consistent
with the invariant integral that we use in Section 5.5.3; there we conclude that the zero
mode II intensity factor is a result of the specific stress loading we have taken on the
crack faces.

We may pursue a modified Cagniard method again to explicitly determine the stress
fields anywhere in the fluid or solid, using these results for unknown transforms and
closely following the analysis in Section 5.2.2. Alternatively, as is this case here, we
may further investigate the stress intensity factors. We have seen, when treating the
anti-plane example, that this is often best achieved using an invariant integral. First,
we briefly examine the effect near the crack tip, of some other waves reloading the crack
using our iterative approach.
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5.5.2.2. Reloadings by other waves

The crack is also reloaded by mode-converted and shear waves reflected by the inter-
face whose contributions to the stress field may be found from the following functional
equations:

• SP wave:

II.RU(l,l)a = -2"V p2 [O'(l,l)a -!'R 'RN e-Ida-I.a (0'(0,0) + T )]
r: + Id 2 - 2 ps sp - +,

2 Cs (5.5.27)
HRV(l,l)a = -2"V ~ [r(l,l)a + !'R (1 + 'RN) e-'da-,.a (0'(0,0) + T )].
r: + IS 2 - 2 ps ss - +,

Cs

• PS wave:

RU(l,l)b = -2 p2 [,...(l,l)b -!'R 'RN e-'da-,.a (0'(0,0) + T )]
J-L + Id 2 v - 2 sp ps - +,

2 Cs ] (5.5.28)
HRV(I,l)b = -2"V ~ [r(I,I)b -!'R (1 - 'RN) e-'da-,sa (0'(0,0) + T ) .,.,.. + IS 2 - 2 ps ss - +,

Cs

• SS wave:

IIRU(O,I) = -2"V p2 [U(O,I) +!'R (1 + 'RN) e-2,•a (0'(0,0) + T )],.,.. + Id 2 - 2 ss ss - +,
CS

IIRV(O,I) _ -2'" p2 [r(O,I) -!'R 'RN e-2,.a (0'(0,0) + T )],.,.. + - t s 2 - 2 ss ps - +.
Cs

(5.5.29)

There are two mode-coverted waves (SP and PS) that reload the crack and some phys-
ical considerations are required to extract these equations separately from the matrix
expansion (5.D 8-5.D 10) in Appendix 5.D. In each of these equations (5.5.27--5.5.29) the
function to be split in order to make the correct combination of + and - functions is
somewhat akin to ~ defined in equation (5.5.23) in that it is zero at the pole situated
at ~+ = 0+. Then, as in that case, some consideration of the the ±-functions implies
that they too are zero. Ultimately this means that both the mode I and mode II stress
intensity factors are zero for each of these successive reloadings.

A more complete picture for the stress intensity factors is given in Section 5.5.3. That
section suggests that we only expect to find a non-zero contribution near the crack tip
from purely compressional reloadings on the crack. This multiply reflected wave becomes
increasingly difficult to describe in our iterative language. However, there are simplifi-
cations that occur in the limit as ~ ~ 00 that we can take advantage of to find Kr(P)
directly. The functional equation in this case is

II.RU(2,0) = -2'" p2 [0'(2,0) _ !'R (1 _ 'RN) e-2'Yda,...(1,0)
r: + Id 2 - 2 pp pp v_

Cs

-!'R 'RN e-2'Y.ar(I,0) - !'R -nN'R (1 - -nN) -4'Yda (,...(0,0) + T )]2 pp sp - 2 pp''-pp pp ''-pp e v_ +,

(5.5.30)
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so that the equality of a + and - function is ultimately given in terms of the sum split
of W:

w(Cp) = ~npp (1- n~) e-2')'da [8-(E,p) - 8_(O,p)]

+2"Yd-nppnr;e-2')'sa [<l>-(E,p) - <l>_(O,p)]- -21nppn~npp (1- n~) e-4')'da (5.5.31)
"Ys- = w+(E,p) + w_(~,p);

the stress intensity factor is found by evaluating w_(O,p) = fill + [8-(O,p)f, the other
pieces of W do not contribute. The integral flJ! is found numerically:

1 JOO+id d1] 1 (1 - to) 2flJ! = -. 8(1],p)8_(1],p)- = - -- e-4pa/cd,
2m -oo+id 1] 8 1+ to

(5.5.32)

and this result gives the value of KI, also found in the followingsection.

5.5.3. Invariant integral

In the previous section we observed that the mode II intensity factor for this specific
loading is zero to O(e-2,),da). This is perhaps unexpected and is verified in this section
using an invariant integral, together with some extensions to non-homogeneous media.
More general loadings, using a weight function, are not considered here but could be
treated as in Section 5.4.

Following the approach used in Section 5.3 a Lagrangian is, this time, deduced in each
half space (fluid and solid) such that the Euler-Lagrange relations recover the governing
equations. In the elastic material the Lagrangian L is defined as

1 (_ _ 2- _)L = -- (7' ·U· . + pp U·U·2 I) I,) I I (5.5.33)

and in the fluid half space L(J) is the same expression with superscripts (f) used to
denote displacements and stresses in the fluid and P replaced by PI' The pseudo energy
momentum tensor P"j is formed in the usual manner, i. e.

(5.5.34)

This pseudo energy momentum tensor has P"jJ = ° so that the integrals defined by PI
are invariant. We should note, see Atkinson & Craster (1995a), that closing a contour
around a crack tip gives a term involving K~(P) + K~I(P) and the physical significance
of this result is not clear. Nevertheless, this is a valuable check on our, or further,
numerical work. The designation I or II indicates the independent contribution due to
crack extension in mode I or mode II.
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Figure 5.8. The path, 5, required for the application of the invariant integral in Section 5.5.

The integrals defined as

(5.5.35)

are zero provided the path S (Figure 5.8) does not enclose any singularities and the path
remains in the material for which PIj is defined. In this formula 'nj is the unit vector
normal to S. The integral Fl = Fl + F{fl is considered around the contour shown in
Figure 5.8; the paths in the fluid and the solid have the interface in common, Near
edge fields are used to evaluate the integral around GH in Figure 5,8, The only other
integrals that contribute to the invariant are along EF, AB, and F' E' (in the fluid), an I
the points at F and A along the crack faces. The stresses at a crack tip are singular,
i.e. a '" KG(e)r-~ where rand e are polar coordinates based at the crack tip; se
Appendix S.C.

Performing the integrals gives

(1 - //2) (K2 + K2 )(p) + i' ~(a(f)u(f) + Pfp2U(J)U(J)) d'y
El II 2 22 2,2 2 2 .

F'E'

+ { -2
1
(O'22U2,2 + pp2fhf.i2) dy + [' O'22U2,1 dx = 0,

.JEF+AB .JFC+f-JA (5.5.36)

where E is Young's modulus and v is the Poisson's ratio; E and // are related to the

shear modulus f..Land the wavespeeds Cd, Cs by (1 - v2)/ E = c~/4f..L(c~ - c;). When we
evaluate the integrals we obtain

2 -2 (COShpa + sinh pa)
(1 - 1/ ) [Ki (p) + Kil (p)] = F (p) _1_ (E + 1) -;-,-__ C-"'.d__ ~Cd~, ,--

E P 2pCd (E cosh pa + sinh pa) .
Cd Cd

(5.5.37)
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Figure 5.9. The stress intensity factor (cs/cd)(1-c;/d)1/2 ](R(t) = [](f(t) +Kfl (t)JI/2(11)16a)I/2
versus non-dimensional time celt/a under loading F(t) = H(t). In panel (a) we compare the two
cases of moderate, E = 0.2 (-), and zero, E = 0 (- -), fluid loading on the stress intensity factor
for a subsurface crack lying in a homogeneous elastic material; the corresponding result for a crack
in an infinite elastic material is given by the dotted line (- .. ). In panel (b) we show equation
(5.5.40) by the solid line (-) when {3 = 0.3/0" {30 = O.lcd/coa, and E = A)'OC,t/(AO + 2J.lo) Co = 0.2.
The results in an infinite body are also compared for this inhomogeneity (- -) and replacing the
y dependence of each parameter by Iy - 0,1 to make it symmetric about the crack (- -); the dotted
line is when the material is homogeneous as in panel (a).

The stress intensity factor in 0 < Cdt/a < 2 is the first term in th expansion,

. (2 2) ~ [ 2 1K[(p)= 2F(p) (Cs) Cd - Cs 1+ ~ (1- E) e-2pa/Cd + ~ (1 - E) e-4pa/Cd + ....
Cd pCd 2 1+ E 8 1+ E

(5.5.38)
This result corresponds to the value of KI that is deduced from (5.5.12). The s cond
term is also consistent with (5.5.21). This provides a useful independent check upon one
part of our analysis. It is noteworthy that these results are the same as those we would
obtain if we had 'pre-fractured' the plane y = a, and therefore ax,!) = 0 for all x along
y = a. In that case, one only extracts a mode I stress intensity factor Kt using the
invariant rather than the sum of the squares of both intensity factors. Apart from a term
which comes from the time dependence of the crack loading, the result in (5.5.37) only
includes the compressional wavespeed suggesting that no shear waves reload the crack
in such a way as to induce singular shear stresses at the crack tip. Hence we conjecture
that for the specific 'opening' loading on the crack then, in fact, Kn is zero for all time.
Further inspection of the iterative scheme confirms this.

Similarly for a 'shearing' loading on the crack, like ayy F(t) on y a,
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x > 0, then we find the combination of stress intensity factors to be

2 -2 (COShpa + sinh pa)
(1 - v ) [K2(p) K2 ( )] _ F (p) _1_ Cs Cs
"':""_-=---'- I + II P - pa'E p Zpc; sinh _

Cs

(5.5.39)

and this time K, is zero.

In Figure 5.9(a) we compare the stress intensity factors under moderate and zero fluid
loading, and we can see that the effect of the fluid is to draw energy away leading to less
reflected back towards the crack. In contrast to the anti-plane results in Figures 5.4, 5.6
which were for a crack beneath a rigid surface, the stress continuity conditions on the
interface have reloaded the crack in such a way as to increase the stress intensity factor
with each successive reloading.

The organisation of this section has primarily been to investigate the stress intensity
factors of the previous section, and hence, a homogeneous cracked elastic half-space
coupled to an overlying fluid. But there is nothing to stop us, bar some unpleasant
algebra, from looking at non-homogeneous materials; for simple analytical results the
moduli variations in the y direction are best given specific forms. For example, if we
choose A(Y) = Aoe2/3y, p(y) = p.oe2/3y, and AJ(Y) = Afoe2/3fY to vary in such a way that
Cd, Cs, and Co are all constant, then the square of the stress intensity factors is

(1~v2) [K~ (P) + K~r (P)]

F2 (p) [1 ( (13 + erd) sinh r da + r d cosh r da ) 1
= 2(A + 2p.)(a) (I'd + 13) - (,82+ £,8r d - ra) sinh I'da -lT~coshrda

(5.5.40)

where
(5.5.41)

and we have defined rd = (P2 /c~ + 132) and ro = (p2 /c~ + f3J). As in Section 5.3 if we
now choose A(Y) = Aoe2/3ly-al and p(y) = JLoe2/3ly-al in an infinite elastic body then we
find for such a symmetric variation

- - ( Cs) [ c~ - c~ l!
Kr(P) = 2F(P) Cd (rd + f3)c~ (5.5.42)

This result (Figure 5.9{b)) again demonstrates how the effect of inhomogeneity can be
to increase or decrease the stress intensity factors. In the latter case, when the material
variation is such that the crack, in effect, appears to be within a strip bounded by rigid
walls. It is worth noting that the special situation of a crack centred in a strip (Atkinson
& Craster, 1992b)with either symmetric, or anti-symmetric, loadings applied to the strip
walls is a special case, here the invariant extracts the stress intensity factor (and there is
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now only one factor due to the complete symmetry or anti-symmetry of the problem) ill
a particularly neat and concise manner.

5.6. Conclusion

An efficient method based on both physical considerations and an iterative approach to
the underlying Wiener-Hopf equation(s) for scattering by a crack is demonstrated ill
this study. In essence, the equation is broken into smaller pieces, using generalised ray
theory, that capture the wavefield within a finite time window. Of course it is necessary
to pose and solve a series of Wiener-Hopf equations, and this procedure can become
progressively more involved.

To illustrate the scope of the method we have applied it to both anti-plane and in-
plane loadings of a crack, and extracted the stress fields and the stress intensity factors.
It is noted that for a specific class of in-plane loadings on the crack, namely a spatially

constant pure 'opening' or 'shearing', there is no complementary 'shearing' or 'opening'
piece of the stress intensity factors.

A second route taken in this chapter is to use an invariant integral to extract the stress
intensity factors directly. This is, in part, an independent check on the results. It also
permits some extensions to non-homogeneous media, where our other approach is less
feasible. Some illustrative results are given and it is anticipated that the general method-
ology will carryover to problems of a harder nature. The effect of the inhomogeneity
is, of course, dependent on the precise nature of the variation as one moves away from
the crack, and we demonstrate some contrasting behaviour in the stress intensity factors
dependent upon whether the modulus decreases or increases with distance away from the
fracture plane.

Specifically, for either stress free or rigid boundary conditions the reloading on the crack
faces reinforces the initial opening stress or it stifles the opening. The non-homogeneous
moduli do this in a 'continuous' way rather than via the discrete reflections of a layered
material.
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Appendix 5.A. Fourier transform results

If F denotes the Fourier transform operator, then

F-1 (_1_) = (x)n-l/2 H(x)
(~+1/2 i~+1/2r(n + 1/2) ,

where n is an integer, and I'(z) is the Gamma function defined to be

r(n + 1) = 100 tne-tdt.

(5.A 1)

(5.A 2)

Appendix 5.B. Product splits

In Section 5.2.1 we have taken in hand the the product split of Q«(,p) (see equation (5.2.5».
This function is split into + and _ functions that are analytic and non-zero in the upper and
lower complex (-planes: Q«(,p) = Q+(e,p)Q-(e,p),

log c,«.» = ~ t:log Q(11,P) d77
27rl -oo-id 77- {

(5.B 1)
for -d < Im(e) < d, where d is some small, positive, real number. It is adequate, in most cases,
to compute this product split numerically, and this is most easily performed using quadratures.

I Q (t ) = _ __!__ l°O+id log Q(11,P) d dog - ..,P 2 . t 11 an
7rl -oo+id 77_ ..

There is a useful limit as b --+ 00 that permits some explicit formulae to be derived. In this case,
the function to be split into a product of ±-functions is Q*(e,p) = e'Y((,p)a / cosh('Y(e,p)a), and
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these be constructed analytically. The factorisation can be achieved by considering separately
the factorisations of e-,a and cosh-vu, and has the familiar form, Noble (1958),

~* (~,p) = e-x({,p)-1P+({,p) IT [(1+ p2a~_!c-2)! - i~an_!] ei{"n-~
+ n=O

(5.B 2)

where an_! = a/en - t)7l", Q~(~,p) = Q:t(-~,p) and

( 2) 1 ( )a 2 p 2 -1 .~c
'ljJ+(~,p) = -; ~ + c2 cos =i: (5.B3)

In equation (5.B 2) X(~,p) is an arbitrary function chosen so that Q:t and Q~ have polynomial
behaviour at infinity. Thus, using well known properties of the gamma function we choose

. {a [ ( . ne )] {aX(~ p) = -1- 1-1' + log -1- + -,
''Ir 2ap 2

(5.B 4)

where in (5.B 4) l' is Euler's constant. In practice, we can avoid these splits be using the modified
Cagniard method.

The Wiener-Hopf method in Section 5.5 requires the product split of the Rayleigh function,
R( (), suitably rescaled. To split this Rayleigh function first consider a new function .c(() (that
appears in Section 5.5),

(5.B 5)

the product splits for R() follow directly from those of .c(): .c() = .c+(O.c- (). By introducing
the branch cuts Re(() = 0, 1< IIm(()1 < k, .c(() is made analytic everywhere in this cut ( plane.
The following asymptotic property is useful: in the limit as 1(1-. 00, .c() -. 1+ 0((-2). These
properties of .c(() make the logarithmic function log .c(() analytic everywhere in the same cut (
plane as C(() and ensures that the Cauchy integrals converge. Using Cauchy's theorem .c_() is
determined explicitly as

(5.B 6)

where .c+ () = .c_ (-() and the branch of the inverse tangent is chosen so that 0 ~ tan -1 ¢ ~ 'Ir /2.
Some further asymptotic properties of C+ () are useful when we come to consider the stress
intensity factors: as 1(1-.00 then C+(() -. 1, and £+(0) = k2/[2!(k2 -l)hr]. Then we have

(5.B 7)

a rescaling by { = p(/c and k = Cd/C. is required in the main text.

In more general diffraction problems the kernel function is split similar to the above funda-
mental procedure, although often explicit formulae are not forthcoming.
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Figure 5.10. An illustration of the three types of crack opening modes: pure opening I, in-plane
shearing II, and anti-plane shearing III (Erdogan, 1983).

Appendix 5.C. Near crack fields

The relations between the stresses, aij, and displacements, 11.j, are defined for anti-plane and
in-plane in equations (5.2.1) and (5.5.1) respectively. One of the most important results that
we extract concerns the stress intensity factors and this arises as the stresses at a crack tip are
singular, i.e.

(5.C 1)

where r and () are polar coordinates based at the crack tip. The stress intensity factor chara .torisos
the interaction between the applied stress field and the crack tip. Th following re ults arc
standard for isotropic bodies in plane strain (Atkinson & Craster, 1995b) where K, = 3 - 41/

(plane strain), and are illustrated in Figure 5.10 .

• Mode I

1
e 3()

1- sin - sin-
axx J{, (). () 2 3() 2
axy } = ---1 cos -2 sin - cos-

(27l'7') 2 2 f) 2 3f)
{Jyy 1 . .+ sin 2' 8111"2

(5.C2)

{

() ( 2 ()~

}

cos - '" - 1 + 2 sin -
11.x 1(, 1. 2 2

= 11'2 ()( ()
'tty 2fJ.(27l') 2 sin 2' '" + 1 - 2 cos2 2'

(5.C 3)

• Mode II

}

1(lI

= (27l'1')!

. e ( () 3())
1 - 81112' 2 + cos 2' cos "2

e ( . () . 3())cos - 1 - 'm - sm -
222

. () () 3()
8111 - cos - cos -

2 2' 2

(5.C4)
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ux} Kn 1{Sin~(~+1+2COS2~)
= 1 r» 8 ( . 8)

uy 2/L(21l')2 - cos 2" ~ -1 - 2sin2 2"
(S.C 5)

• Mode III

(5.C6)

(S.C 7)

Appendix S.D. Reflection coefficients and Wiener-Hopf notation

In this first part to this appendix the coefficients R. and R.N are related to the reflection coefficients
for an incident Par S wave on an interface and a surface in the absence of the fluid respectively
(the superscript N denotes no fluid). The subscripts on R and RN follow the convention that
the first denotes the type of incident wave and the second denotes the type of reflected wave.

There are related transmission coefficients, and coefficients given by incident waves from the
fluid, but these are not required in the application considered in the text.

In the following the usual notation is used for the Rayleigh, R(e)' and Scholte, S(~), functions
and also their complements r(e) and sCe). The Laplace transform parameter, p, dependence has
been omitted for ease of presentation.

• Incident P wave:
sce)

Rpp = - Sce)'
N r({)

R.pp = - R({)'
R.N = 4i{"Yrl({)[e + "Y~({))

pB R(O .
(5.D 1)

• Incident S wave:
R - 4i{"YB(e)[e + "Y;(e)) R __ SCe) + se"Y.(ehrl({)

Bp - - Sce) , BB - Sce) ,
'ON = _ 4i{"Y.({)[e + "Y;({)) N reel
''-BP R(e)' R.,. = - R(O'

In Section 5.5 the problem reduces to the solution of a Wiener-Hopf matrix (5.5.7)

(5.D 2)

(5.D 3)

It is unfortunately the case that the matrix terms aij become rather ugly, and as noted in the
text we can piece together the matrix in orders of the exponential using generalised ray theory.
Alternatively we can deal with the matrix and perform a series of expansions. The latter route
is taken here:

/Lall = -"Yd~; [~+ ~ (S + se-2'')'da - (S + Se'Y;"Y~)e-2"Y.a - (s - 8e"YB"Ycl)e-2hd+ ..wa) ]

(5.D 4)
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where

K = 8R-8re-2'Yd"- (8 +Sel';I'~)re-2'Y.a+ (8 -Sel'sl'd)Re-2hd+'Y. )"+32el'sl'd(e +1'; )2e -( '<1+'Y.)a.
(5.D5)

Note that in the case of a pre-fractured crack where the boundary condition ahead of the crack
is axy = 0 so that the shear stresses are zero all along y = a, then the Wiener-Hopf equation
(5.5.7) reduces to U+ = all (rr., + T+). The remaining components are as follows:

[
q2 1 ( 2 Cl (2 2'Y"J.ta12 = -J.ta21 = i~ R - K q28 - sqie" 'Yd - 8 + S{ I'sl'd)qle- •

+ (8 - Sel'sl'd)Q2e-2(-rd+'Y.)Cl + 81'sI'd(/'; + e)('Y2 + 3e)e-('Yd+I.)U)] ,
(5.D 6)

/La22 = -I's :; [!+ k (8 - 8e-2'Yda + (8 + Sel'sl'd)e-2'Yoa - (8 - 8eI'Sl'd)e-2hdI0)")] ;

(S.D 7)

we have introduced Ql = (e + 1'; + 21'sI'd) and q2 = (e + 1'; - 21'sI'd) for convenience.

The leading exponential terms required in the text and relevant to the present chapter are
given by a Taylor's expansion. They are intricately connected with the reflection and transmission
coefficients but this is, often, not transparent when each component is taken in turn.

/LRall = _l'd
p2 {2 + ~ (1+ .!:_)e-2'Yda _ 8+ 8e'Ys'Yd (1 _ .!:_)e-2'Yoae; 8 R 8 R

+2 (1 + i) (1 - ~) e-(-rd+'Yo)a
2 (8 2 )2

+~ (1 +.!:_) -41'da _ + 8~ 'Ys'Yd r (1 _.!:_) -4'Yo"
82R R e 82R R e

+ O(e-(3'Yd+'Y.)a) + O(e-2(-rd+1'o)a) + O(e-hd+3'YO)")} ,

2 [ 2 (5.DS)
/LR2a12 = -/LR2a21 = 4i~'Ysl'd(e + 1';):; ~e-2'Yda + 8 + 8; I'sl'd e-21'oa

8 + 8 + Sel'Bl'd -('Yd+1'o)a + s2r -4'YdU + (8 + Sel'sl'd)2r -4'Yo"
S e 82Re 82R e

+ O(e-(3'Yd+'YO)a) + O(e-2bd'Yo)a) + O(e-hd+3-ro)tJ)] ,

(5.D 9)
/LRa22 = -1' p2 {2 _ ~ (1 _ .!:_) e-2'Yda + 8+ Se'Ys'Yd (1+ .!:_) e-2'Y.a

Be; 8 R S R
+2 (1+ i) (1- i) e-(-rd+'YO)a

2 (2 )2_!...!_ (1 _.!:_) -4'YdU + 8+ 8~ 'Y.l's r (1+ .!:_) -41'oa
S2R R e 82R R e

+ O(e-(3'Yd+'YO)a) + O(e-2(-Yd+'YO)") + O(e-hd+3'Yo)tJ)}.

(5.D 10)
Similarly the expressions for the stresses and displacements are recovered from an expansion in
terms of the displacement potentials.
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Chapter Six

Diffraction at plate junctions by flexural plate waves

6.1. Introduction

The scattering of structure-borne waves from material inhomogeneities is a key ingredient
in sound generation by fluid-loaded structures: vibrational energy is often carried by
flexural plate waves and significant acoustic energy can only be radiated into the fluid
when the flexural waves scatter off structural changes. The diffraction of acoustic and
structure-borne waves at plate junctions is particularly important in many engineering
contexts. For example, in marine engineering there is interest in the acoustic fields
of ships, submarines, and submerged structures such as pipelines. There are further
examples in mechanical and nuclear engineering, as described by Crighton (1989).

One of the simplest ways to model sharp structural changes occurring at plate junctions
is as material discontinuities or defects (Crighton, 1989; Junger & Feit, 1986). For defects,
wave scattering can lead to some interesting physical effects, such as beam formation and
resonance phenomena. For example, the problem of wave scattering from an isolated line
defect, such as a rib, can be solved exactly in terms of a Fourier integral (Leppington,
1978; Howe, 1994b). Adding more ribs leads to the possibility of multiple scatterings and
acoustic resonances (Leppington, 1976; Crighton & Innes, 1983). These responses can
dominate the scattered acoustic field, and often occur in the limit of light or heavy fluid
loading, where a single inhomogeneity can reflect an incoming flexural plate wave almost
perfectly, except for a phase change. For obliquely incident flexural plate waves, this
reflection property can occur over the full frequency spectrum subject to a constraint,
discussed later, on the angle of incidence.

Here we consider the scattering of flexural plate waves from the junction of two semi-
infinite and co-planar, elastic plates. Scattering problems of this type are often tackled
using Fourier transforms and the Wiener-Hopf technique, and we shall follow that route
here. Most previous authors have dealt exclusively with normally incident plate waves,
line sources or incoming plane waves from the fluid. Moreover, they have typically
assumed that one elastic plate is attached to a rigid baffle, or is unbafHed (Cannell, 1975,
1976). When treating realistic underwater structures, materials cannot realistically be
considered to be rigid. This led Brazier-Smith (1987) to provide a comprehensive study
that generalises many of the previous analyses to differing kinds of plates; that study has
recently been reworked by Norris & Wickham (1995). Both papers specialise to giving
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numerical results for plates of identical material properties, but differing thicknesses at
a latter stage. Here, we will consider the general problem of scattering from plates with
different composition and thickness, that are joined in various ways, and we will allow
the incident waves to have arbitrary angle of incidence.

The reason why most previous studies have concentrated on normal incidence is that
the analysis becomes apparently rather awkward for oblique incidence. For example,
the analysis of flexural waves incident obliquely along a baffled, heavily fluid-loaded
membrane appears in Crighton & Innes (1984); from that analysis it appears that concise
results may not be forthcoming. Analogous incident acoustic wave problems for line
defects have been modelled using phased line sources (Crighton & Maidanik, 1981;Rogoff
& Tew, 1997). But in many physical situations we have to deal with three dimensional
problems and oblique incidence becomes important. In particular, for incoming plate
waves, oblique incidence introduces a critical angle above which transmission of flexural
waves is no longer possible. Moreover, the locations of peaks in the angular distribution
of scattered acoustic waves (the directivity) are dependent upon incidence angle. It is
our aim here to describe these effects within a formulation that neatly connects with the
simpler, limiting cases of heavy fluid loading (Abrahams, 1981; Cannell, 1976; Crighton
& Innes, 1984) and light fluid loading.

The plan of the chapter is as follows: in Section 6.2 weformulate the scattering problem,
non-dimensionalise, and discuss the critical angles. The solution and a power flowresult
are described in Section 6.3. Results are provided in Section 6.4, showing the partition
of power converted into the reflected, transmitted or acoustic far field, together with
representative directivity patterns, concentrating primarily upon clamped and welded
edge conditions. Section 6.5 is split into subsections that describe various limiting cases,
where one plate is rigid, acoustically soft, or where both plates are identical. Later
subsections in Section 6.5 concentrate upon heavy or light fluid loading. Some concluding
remarks are compiled in Section 6.6. Much of the mathematical details are subsumed
into appendices.

6.2. Formulation

We consider the geometrical configuration sketched in Figure 6.1; the junction of two
elastic plates with fluid loading to one side. We assume time-harmonic vibrations of
frequency w, and so all physical variables have an e-iwt dependence; this dependence is
considered understood, and is henceforth suppressed.

The two plates that occupy the plane z = 0 are taken to be of different material and
thickness; they occupy the half-planes, x < 0 and x > 0, and so the junction is the line
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• z,

Fluid

Vacuum-

Figure 6.1. The geometry of the problem. The angle of incidence, (}" is the angle made between
the wavenumber vector and the (horizontal) normal to the plate junction (which lies along the
line x = z = 0).

x = z = O. These plates are assumed to separate the fluid in the region z > 0 from a
vacuum lying in z < O. The fluid lies in the half space, z > 0 and -00 < :C, y < ; we
assume it to be compressible and inviscid.

With the assumed time dependence, the fluid pressure f>(x, y, z) satisfie the Helmholtz
equation in z > 0,

(\72 + k6)f>(x, y, z) = 0, (6.2.1)

and ko, the acoustic wavenumber, is related to the sound speed of the fluid, co: ko = w/co.
The displacement in the z direction on the plate, fJ(x, V), is related to th fluid pressure:

(6.2.2)

To model the elastic plates we adopt the thin plate equation (Junger & Fci t, 1986) in
the form,

(6.2.3)

where \7~ is the horizontal Laplacian,

82 82

\7~ == 8 2 + 8 2' (6.2.4), x y

and with .i = 1 for x < 0 and .i = 2 for x > O. Here Ej and mj are material parame-
ters. Apart from a membrane, this is the simplest model for a wave-bearing structure.



6. Diffraction at plate junctions

Crucially it neglects transverse shear and rotary inertia effects, which introduces a loss
of accuracy for frequencies near to and above the coincidence frequency (the frequency
when the in vacuo flexural and fluid wavespeeds are equal). Nevertheless the thin plate
equation is widely used, and often gives useful insights into phenomena associated with
scattering by elastic plates.

We must supplement these two plate equations with edge conditions that must lw
imposed at the junction. These edge conditions reflect the detailed way in which the two
plates are joined. The most commonly encountered edge conditions are damped, welded,
free, and hinged. Each of these can be described by mathematical relations that translate
to conditions on the plate displacement and its derivatives as we limit into the joint from
either side (Timoshenko & Woinowsky-Kreiger, 1959). We leave the precise form of the
edge conditions open for the moment, but later on, we consider explicitly the cases of
clamped or welded edges. However, there is no pressing reason to quote the formulae at
this stage. We write the form of the edge conditions in the four cases in Appendix 6.B.

The bending stiffness Bj and mass per unit area mj of each plate are related to the
physical properties of the elastic plate through

EjhJ
Bj = ( 2) and mj = pjhj,12 1 - v·J

(6.2.5)

where Ej, hj, Vj, and Pj denote the Young's modulus, thickness, Poisson ratio and
mass density of the elastic material, respectively. In order to minimise the number of
parameters that occur later, we introduce the quantities,

2 .4 _ w mJK.. ---J - Bj ,
p ( B. ) tf'-- _J_

J - rn; m·c2J J 0
( )

2
ko w .

and OJ = - = -mjfj for J = 1,2.
K.j CoP

(6.2.6)

Here, K.j represents the in vacuo flexural wavenumbers. Also, OJ is the square of the
ratio of the in vacuo plate wave speed to that of the fluid, and provides a dimensionless
measure of frequency. Lastly, fj, provides a frequency-independent measure of fluid
loading. Thus, for each plate there are two parameters that we vary by adjusting the
dimensional frequency and material combinations: OJ and fj. We take fluid loading to
be 'heavy' when OJ « fj and fj « 1. The loading is 'light' when OJ > 1 and fj « 1.

In this chapter, all results are presented for elastic plates beneath water. Typically the
plates have thicknesses of order 10-2 m (Junger & Feit, 1986), and we show illustrative

values of the main elastic constants for aluminium and steel in Table 6.1. From these
values we observe that fj is usually small. However, OJ, ranges through all values. Note
that, for aluminium and steel, Oz/Ol = O.996h2/h1; thus the main effect of material
differences is through the changes in the fluid loading parameter ..
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Constants Aluminium Steel

E 70.3 GPa
v 0.345
p 2700 kg/m3

e (water) 0.393

211.9 GPa
0.291

7900 kg/m3

0.134

Table 6.1. Physical constants (Bradfield, 1964).

6.2.1. N on-dimensionalisation

To proceed we first non-dimensionalise the equations. There is no need to non-dimen-
sionalise p, however it is convenient to scale p so that the incident wave amplitude on
the plate is unity. We adopt the dimensionless space variable x = kox derived from the
acoustic wavenumber. (Alternatively, we could rescale using, say, either of the in vacuo
wavenumbers ~1 or ~2.)

On dropping the tilde and hat decoration, the governing equation becomes

(
82 82 82 )
8x2 + oy2 + 8z2 + 1 p{x,y,z) = 0, (6.2.7)

subject to the thin plate equat.ions (boundary conditions),

[nj (::, + ~, )' - 1] : (x, y, 0) + ri/(x,y,O) ~ 0 for j ~ 1,2, (6.2.8)

and p -t 0 as z -t 00.

6.2.2. Flexural waves and critical angles

Each plate can support a flexural wave that, in the fluid, takes the form,

p{x,y,z) = exp[-{r~ -l)!z + i~jx + i~yl, (6.2.9)

where the total plate wavenumbers, rj, are defined by r;= ~J+ ~2. These wavenumbers
are found from substituting the solution into the plate equations. Then we find the
dispersion functions,

(j = 1,2). (6.2.10)
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Note that, formally, Kj is a function of only the total flexural wavenumber, rj = r(~j),
which is, in turn, a function of 'j. The total flexural wavenumber is given by the real,
positive value of r that produces a zero of the dispersion functions, Kj = O. The total
flexural wavenumber is real, positive and always greater than unity, which signifies that
these waves are subsonic relative to the acoustic wavespeed. Given, rj, we may then
construct the transverse (to the junction) flexural wavenumbers, ~j (this wavenumber is
not necessarily real; see below).

Depending upon the precise choice of branch cuts for (r2(0 - 1)~ the dispersion
functions (6.2.1O)also have zeros for complex I'; these roots and their significance are
discussed further in Appendix 6.A.

The flexural waves in each plate are associated with an angle of propagation OJ, see

Figure 6.1, such that 'j = fj cosBj and K. = fj sinBj. In the scattering problem, both
plates support such waves, but they may have different total wavenumbers. However,
the wavenumber along the junction, K., cannot change as a result of scattering. Hence we
deduce a version of Snell's law:

(6.2.11)

Now, in the formulation of the problem, the angle of incidence, 01, is prescribed (0 :s
(h :s 7r/2), and so

. B ri. 0sm 2 = f2 sin 1· (6.2.12)

Thus, if r2 < f1 there can be incident angles for which the right-hand side of (6.2.12)
is greater than unity and, therefore, B2 does not exist as a real angle. In other words,
there is a possibility of total internal reflection for angles of incidence above a critical
threshold. This critical angle, Be, is given by the ray for which the transmitted wave
emerges with B2 = 7r/2: Be = sin-I(f2/fd.

The critical angle is plotted against 01 (a non-dimensional frequency) in Figure 6.2.
Both material contrast and variations in plate thickness can lead to cut-off frequencies
below which transmission of flexural waves ceases. Above the threshold, the incident
flexural wave excites an edge wave which decays spatially with distance into the plate (6
is complex). The minimum values of the critical angle decrease on increasing the material
contrast, or relative plate thicknesses. These minimum values of the critical angle occur
in the heavy loading limit, for which fj '" €ysOj3/S.

6.2.3. Radiated acoustic waves

In the scattering problem, the incident flexural wave can also excite acoustic waves that
propagate in the fluid. In the far field these are cylindrical waves, and are better described
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(a) aluminium-aluminium (b) aluminium-steel
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Figure 6.2. The critical angles versus dimensionless frequency with the thickness of plate two,
x > 0, double that of plate one, x < 0. In panel (a) both plates arc aluminium, and in
panel (b) there is material contrast with aluminium-steel plates. The dashed Jines arc ap-
proximations to the critical angle Be using rj ~ 1 + ~(Ej/DjCD] - 1))2 for Dj » 1 and
rj ~ EY5nj3/5 (2 - (1 + tCDj/E])2/5)-1) for Dj « Ej and nj «1. The dotted line in each
panel compares the two cases.

in a cylindrical polar coordinate system (r, 19, y) whose axis lies along the junction (.1: =
r cos 19, z = r sin 19). These waves have the far-field form,

p(r 19 y) ex: ('2G(19)ei>.r-i~+i/l;y," V;>; (6.2,13)

characterised by an angular directivity G(19), where A = "h - ",2 is the radial wavenurn-
bel' of the acoustic wave.

When the incident flexural wavenumber has", < 1, the .cattering off the juncti n will
excite acoustic waves in the fluid. But if K, > 1, these waves are vanescent and there
are no scattered acoustic waves in the far field. Equivalently, in order to xcite acoustic
waves, the component of the flexural wave in the y direction must travel super-sonically.

In other words, there is a second critical angle, eo, = sin-1(1/fd, for scattered acous-
tic waves. This cut-off angle is always smaller than that arising from flexural waves
associated with the material contrast. The situation is illustrated in Figure 6.3.

6.3. Transform solution

We now move on to the full scattering problem. As sketched in Figure 1, we consider

incoming flexural waves from x < 0 with an angle of incidence el. The case 81 = 0
corresponds to normal incidence, and was treated by Brazier-Smith (1987) and Norris &
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x

Figure 6.3. An illustration showing the critical angles beyond which, first G == 0 (n scattered
acoustic waves), and then both G == 0 and ITI == 0 (no scattered acoustic wave nor transmitted
flexural waves).

Wickham (1995); the latter authors give some explicit results for the limit of heavy fluid
loading. (More complicated incoming wave behaviour can be considered, but here we are
concerned with the essential details of scattering and so we take incoming I late waves
for simplicity.)

The incident field has the form,

(6.3.1)

where If = fi -1 and fi = (~r+K:2); equivalently ~1 = rlCOSOl and K, = rl sinOI' We
next write

(6.3.2)
thereby introducing the scattered field pSC(:E, z); pinc(x, y, z) has the same exponential y
dependence. We now formulate a boundary value problem for the scattered field pSC(x, z),
and drop the superscript se hereon.

In terms of the scattered field we have

(
[)2 [)2 2 )
[)x2 + [)z2 - K: + 1 p(x,z) = 0 (6.3.3)
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in -00 < x < 00 and z > 0, subject to the plate boundary conditions on z = 0 that

{ [
02 (82

_ J'i,2) 2 _ 1] ~ + !:L} p(x, 0) = {n~(ri-1) h:::.!(~dei~J'I: for :1: > 0 .
J 8x2 8z OJ ° otherwise

(6.3.4)
The scattering problem falls into a class of mixed boundary value problems that can be
solved via the Wiener-Hopf technique (e.g. Noble, 1958).

6.3.1. The Junctional equation

To proceed we apply Fourier transforms in the spatial x direction. First, we define the
transform of the pressure

(6.3.5)

where P± denote the half-range transforms of p(x, z):

(6.3.6)

Note that the scattered flexural wave field may have finite amplitude as x ~ ±oo and
the transforms must be interpreted in a generalised sense (e.g. Lighthill, 1958).

The inverse transform is defined by

(6.3.7)

where the path C runs from -00 to +00 and is indented above (below) any singularities
occurring on the negative (positive) real axis. The region above (below) C is the 'plus'
('minus') region; in what follows, we loosely refer to these two regions as the 'upper'
and 'lower' halves of the complex ~ plane. This definition of C avoids the unnecessary
introduction of artificial dissipation and then later limiting this to zero. Wemay evaluate
the inversion integral by closing the contour C on adding arcs enclosing either the entire
lower or upper half planes. In these half planes the functions to be inverted may have
poles that in the physical domain correspond to reflected or transmitted waves, and
branch point singularities that give rise to scattered acoustic waves. Oblique incidence
distorts the familiar pattern of singularities found in normal incidence as, for example,
the branch points may no longer lie on the real axis, but upon the imaginary axis instead.

On applying the half-range transforms to the governing equation we find

(6.3.8)
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The relevant solution is

P(~, z) = 1(~)exp[-Jr2(~) - 1 z], (6.3.9)

where the function 1(~) is currently unknown. Also, we choose the branch cuts of (r:l -
1)1/2so that this function becomes -i(1- r2) 1 for r real and less than unity; this ensures
that (6.3.9) then becomes the correct, out-going wave solution. The aim is to find 1{0
by using the plate conditions. Once this function is determined, the far field behaviour
of p(x, z) and other quantities of interest followfrom the inverse transform.

FollowingBalmfort.h & Craster (1999), we next consider the quantities

D.j± = [r4(~) - ~JlP±z(~,o) + ~P±{(,o) +'R±{O·

These functions capture the edge behaviour of the plates within the terms,

(6.3.1O)

'R±(~)==t= [Pzxxx(O±,O) - i{pzxx(O±,O) - (2~2 + e)pzx(O±,O) + i~{2~2 + e)pz(O±,O)] .
(6.3.11)

In the followingwe mainly encounter half-range transforms on z = O. To shorten the no-
tation, we write P+(~, 0) as p+(e), and similarly for the other transform, unless explicitly
denoted otherwise.

The sum of the two half-range transforms in (6.3.10) provides the relation,

(6.3.12)

Also, from the transformed boundary conditions,

(6.3.13)

and

[
4 1 ] f2 + 'Y1K:2(~d

D.2+ = r (e) - n~p+z(e) + n~p+(e) + 'R (e) = - i(~ + ~d+'

The + subscript on the final term in (6.3.14) reminds us that this pole on the real axis
is to be interpreted as lying in the minus region, that is, the final term is analytic in the

(6.3.14)

plus region.

(6.3.15)
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This relation is nearly in the form suitable to use the Wiener-Hopf technique; we need
only split the functions Kj (0 into products of ±-functions: Kj (~) = Kj+ (OKj- (0·
These minus and plus functions analytic and non-zero in the lower and upper complex
~ planes (or, more properly, the regions above and below the contour of integration of
the inverse transform), respectively. We describe how to accomplish the splitting in
Appendix 6.A.

With the splitting in hand, we may write the basic functional equation,

K1-(O {[r4(~) _ __!_] P-z(O + ~P_(~) _ n+(~) _ .'Y1K2(~d} + ')'lK~_(6)Kl+(~d
K2-(~) O~ O~ l(~ + ~d+ l(~ + ~d+

= K2+(~) {[r4(e) - -;] p+z(e) + €~p+(e) - n-(e)} + ')'lK~_(~dKl+(~d = -E(O,
K1+(~) 01 01 l(~ + ed+

(6.3.16)
which expresses the equality of a + function to a - function, and therefore both are
equal to an entire function, E(~). Strictly speaking the + and - functions are equal to
the entire function along a common line of analyticity, and analytic continuation is then
used to extend this relation to the full complex e plane. We may deduce what this entire
function must be by considering the behaviour of the ±-functions for I~I~ 00: In this
limit, Kj±(~) ,....,O(e) and Pz ,....,O(I/e). Thus, using Liouville's theorem, E(O is a cubic
polynomial: E(e) = E3e + E2~2 + El~ + Eo.

To reduce the length of the following expressions we define

(6.3.17)

and

(6.3.18)

Hence,

(6.3.19)

and

(6.3.20)

It is important to note that both sides of (6.3.19) and (6.3.20) are analytic in the
correct pieces of the complex ~ planes. However, the transforms, P±z(O, are themselves
not analytic unless we satisfy the four simultaneous equations,

O~K1+(~) [E(~) + ,),IK~+(6)K:2-(6)] = O~n+(~) + O~tc: (~)+ 0~')'1K:2{6), (6.3.21)
€lK2+(~) l(~ + 6)+ €2 €l €21(~+ ~d+
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for ~= Xj, j = 1, ... ,4, where

! 1) t 12 1 t ±i (~2 - n for ~2 > n
XI,2 = ±i (~ + n) 'f and X3,4 = ( 1 2) t 2 l'

± 0 - ~ = for ~ < 0

are the four roots of r4(~) - 1/02 = o. The zeros in the plus (minus) region are Xl and
X3 (X2 and X4). In physical terms, this set of constraints ensures that the scattered field

(6.3.22)

consists only of outgoing waves.

In order to satisfy these constraints, we must fix some of the free parameters that are
hidden in (6.3.19)-(6.3.20). These free parameters are the coefficients,El with I = 0,...,3,
of our cubic polynomial E(O, and the displacement and its derivatives at the edge, which
are contained in 'R±: Pz(O±,O), Pzx(O±,O), Pzxx(O±,O), and Pzxxx(O±,O). In total, this
makes twelve unknown parameters. However, the coefficientsof the cubic and quadratic
terms in E(O are simply related to the jumps in the displacement and its first derivative
across the joint or edge:

the constant in the last term of (6.3.23) requires an asymptotic expansion of the split
functions Kj+(~) as ~ -+ 00. Moreover, it is only the combination n~'R+/€2 + n1'R-/€1
that appears in (6.3.19)-(6.3.20). This signifies that our unknown variables enter only
through combinations of the form, n~o;pz(o+, 0)/f.2 - O~~Pz(O-, O)/f.l for I = 0, ...,3.
In other words, we have only eight unknown variables. Explicitly, these are

Eo, El,
Pz(O+,O), Pz(O-, O},

Pxz{O+,O), Pxz(O-, 0),
nWxxz(o+, 0)/€2 - O~Pxxz(O-, O)/f.l,

0~Pxxxz(O+,0)/€2 - O~Pxxxz(O-,O)/f.l.

(6.3.24)

Lastly we recall the edge conditions. These provide four more relations between the
unknowns (see Appendix 6.B). Hence, there are, in total, eight equations for eight un-
knowns, and as a prelude to evaluating the full solution, wemust solve these simultaneous
equations. In practice, we adopt either clamped or welded edges. There is a simplifica-
tion that occurs in this case because Pz(O+, 0) = Pz(O-, 0) and Pxz(O+, 0) = Pxz(O-, 0) are
both prescribed. Hence, in this case, we need only solve the four simultaneous equations
(6.3.21).

(6.3.25)
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The far-field form of p(x, z) is extracted from this integral using asymptotic means. We
quote the results next.

6.3.2. Reflection, transmission, and diffraction coefficients

The far-field behaviour consists of different contributions. First, we may identify the
scattered flexural waves; these arise from poles in the transform lying on the real axis
(the zero of K1-(~) on the positive real axis lead to the reflected wave, and any zero
of K2+(~) on the negative real axis generates a transmitted wave). In addition, the
integrand in (6.3.25) contains a factor [r(~)2 -lt1/2 which possesses a branch cut. This
leads to a second contribution that, if the branch point is on the real axis, provides the
scattered cylindrical waves in the fluid. In addition, for light fluid loading, one can (if
desired) identify a piece of the wave spectrum with a 'leaky' wave (Crighton, 1979).

The scattered flexural wave amplitude is given explicitly in terms of reflection and
transmission coefficients,Rand T:

p(x, z) ,....,R exp (-i6x - '"Ylz) as x -+ -00, (6.3.26)

and provided (h < 8e,

p(x, z) ,....,T exp (+i~2X - 'Y2Z) as x -+ +00, (6.3.27)

with 'Y~ = r~ - 1 and r2 = r(6). If (h > 8e, on the other hand, there is no transmission.

If I),< 1, we define oX = (1 - 1),2)1/2and the form of the far-field scattered cylindrical
wave can be extracted using either stationary phase or saddle point arguments. This
cylindrical wave is characterised by the directivity, G(iJ), and the pressure field is given
by

1

p(r, iJ) ,....,G(iJ) (11" ~r ) "2 eiAr-i1I,

as r -+ 00 and 0 :s iJ :s 11". If I),> 1, the pressure field is O(exp[-y'I),2 - 1 r]) in the far

(6.3.28)

field, and there is no scattered cylindrical wave.

By using the explicit form of the transform solution for p(x, z), it followsthat

and
G(iJ) = -i [E( -oX cos iJ) + II( -oX cos iJ)]

2Kl+ (oX cos t'J)K.2- (oX cos iJ)
(6.3.30)
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6.3.3. Power flow

We may also extract a 'power flow theorem' that gives a relation among IRI2, ITI2, and
G (19). This relation derives from the identity

(6.3.31)

where * denotes the complex conjugate and S is a closed surface enclosing the plate
joint and the plates themselves. The integral may be evaluated in terms of the far-field
behaviour of p(x, z), leading to the relation,

Re [2n~(ri - 1)K:~ (6)(IRI2 - 1)+ 2n~(r~ - 1)K:~(6}ITI2 + ~ {7r IG(19}12d19]= O.
El E2 tt io

(6.3.32)

This relation holds for all edge conditions that do not introduce energy into the system.
Equation (6.3.32) is used to verify all results presented within this chapter.

The proportion of the scattered power converted to flexural waves is given by the sum

of the reflected power, PR, and the transmitted power, Pr. The remainder comprises
that converted into the diffracted acoustic far field, PA. From (6.3.32) we deduce that

(6.3.33)

The power-flow relation is simpler in some limiting cases. For example, in the limit of

heavy fluid loading, the fluid is effectively incompressible, and so the diffracted acoustic
power is negligible. Hence, to leading order, the power flow result becomes a relation
between the flexural reflection and transmission coefficients

(6.3.34)

provided (h < Oc; otherwise IRI2 = 1.

6.4. Numerical results for clamped or welded edges

We now specialise to the specific cases of clamped or welded edges and present some
numerical results. Even though we have explicit formulae for the solution, numerical

computations are needed because the splitting of the functions Kj is most easily per-

formed in terms of some quadratures (see Appendix 6.A).

In Figures 6.5-6.9, we display the partitioned energy distributions for clamped and
welded junctions of aluminium (x < O) and steel (x > O) plates beneath water. One
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(a) welded

Cl.0::0.5
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(b) clamped
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Figure 6.4. The distribution of reflected power, PR, as a function of the dimensionless fre-
quency, DJ, and incident angle, B1, caused by diffraction at the welded or clamped junctions of
aluminium-steel plates. The relative plate thicknesses are h2 = 1.6h1·

of the most important effects of oblique incidence is the introduction of the two critical
angles (Figure 6.3). On raising (h from zero (normal incidence), the first critical angle we
encounter is associated with the 'Mach' number of the longitudinal (with respect to the
junction) flexural wavespeed, ea. For e1 > ea, the scattering of power into the acoustic
far field is zero, G('!9) = O. Then, under the conditions discussed earlier, there may exist a
second angle, ee, beyond which no flexural waves are transmitted into the plate in x > 0;
here both ITI and G(rJ) are zero.

The critical angles are both important and distinctive; below these critical angles
the welded and clamped plates have very different behaviour. Figure 6.4 compares the
reflected power and Figure 6.5 contrasts the transmitted flexural and diffracted acoustic
power in the two cases for various values of frequency .01 and incident angle el. For
incident angles below the cut-offs, a welded plate reflects very little power, and the
majority of the wave energy is transmitted as flexural waves in x > 0, with some scattering
into the acoustic far field.

In Figure 6.5 one sees that beyond the first cut-off, the far-field acoustic power vanishes,
and the transmitted power increases. However, on passing above the second cut-off, all
power is reflected. Clamped plates show qualitatively similar details regarding the cut-
offs, but the clamped joint typically scatters far more energy into both the reflected
and scattered acoustic fields, with an attendant reduction in transmitted flexural power.

Although both welded and clamped plates have IRI = 1 above the two cut-off angles,
phase change associated with reflection is markedly different (this is not shown in these
figures).

But, in any event, a striking result for oblique incidence is that we can have total
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(a) welded

a,<fO.5

o
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o 1.5

(c) welded
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(b) clamped
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(d) clamped
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Q
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Figure 6.5. The distribution of power scattered into the acoustic far-field, PA, and transmitted as
flexural waves into the plate along x > 0, PT. These are shown as a function of the dimensionless
frequency, fh, and incident angle, (h, caused by diffraction at either welded or clamped junctions
of aluminium-steel plates. The relative plate thicknesses are h2 = 1.6h1. For ease of visualisation
the orientation of the frequency and incident angle axes have been reversed from that used in
Figure 6.4.

reflection (with an associated phase shift) for situations away from the limits of heavy
or light fluid loading. This is significant because it implies that resonant behaviour may
occur over wider physical regimes in plates with multiple junctions.

In Figures 6.6, 6.7 the partitions of scattered energy are directly compared for a fixed
incident angle.

In Figure 6.8, we show the modulus of the directivity, IG('!9)I, for the incident angle
01 = 1r /12. The figure shows IG ('!9) I as a function of the polar angle '!9; the axes in the
figure are cartesian (so each curve shows the angular distribution of IGI at various values

of Dd. In both cases, there is a substantial amount of scatter in the forward direction;
this leads to the large lobes near () '" O. But, there are also differences in the two
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Figure 6.6. The power distribution at the welded junction of aluminium-steel plates; h2 = 2h1·
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Figure 6.7. The power distribution at the clamped junction of aluminium-steel plates;
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(a) welded (b) clamped

",

2·

IG(1'1)lcosl~ IG(1'1)lcos1'1

Figure 6.S. The directivity IG(73)1 shown as a function of the dimensionless frequency rh. The
specific choice of incident angle (h = 'iT /12 has been taken.

directivity patterns, because the amount of scattering into the acoustic field is different
for welded and clamped joints (see Figure 6.5).

In addition, there are also two distinctive, sharp peaks that occur in both plots along
specific angles determined by the frequency and incident angle. The occurrence of these
special angles can be understood in terms of the appearance of 'leaky waves' (that is, a
disturbance that can be thought of as the remnant of the flexural wave that exists only
provided the plate is in vacuo - see Crighton, 1979). Provided the wavespeed of the in
vacuo flexural wave is greater than the acoustic wavespeed then the leaky wave sheds
energy into the fluid along precise angles (this is further described in Section 6.5.4); the
two peaks which appear in the directivities form along these angles.

As we increase the frequency, a peak develops first in the forward direction, 0 < () <
tt /2. This arises because, for the choice of materials here, the plate in x > 0 is close to
the limit of light fluid loading (where leaky waves typically occur), but the plate in x < 0
is not. Further increasing the frequency places both plates in the light fluid loading limit,
and a peak also emerges in 7f /2 < {)< 7f.

The results can also be seen for a particular choice of the dimensionless frequency in
Figure 6.9.

In the cases shown in the figures, the aluminium plate in x > 0 is either 8/5 times
the thickness of the steel one in z < 0 (6.4,6.5,6.8,6.9) or twice the thickness (6.6,6.7).
Further increasing the plate thickness in x> 0 has the main effect of reducing the amount
of energy transmitted to x > 0; some further examples are shown in later figures. If we
specialise to plates of identical material, but different thicknesses, and then consider

only normal incidence, we recover the numerical results presented by Norris & Wickham
(1995) and Brazier-Smith (1987); these results are shown in Figure 6.10. The effect of
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Figure 6.9. A comparison of the directivity IG('I9) I with either clamped (-) or welded (- -) edges
is shown for dimensionless frequency (a) 01 = .6 and (b) 01 = 1.2. The specific choice of incident
angle (h = 7r/12 has been taken.

increasing the material contrast (that is, having a material in x > 0 that supports slower
flexural waves than that in x < 0) is very similar to increasing the plate thickness in
.1: > o.

6.5. Special cases

There are some special, limiting cases in which the scattering problem is more accessible,
and we devote this section to a discussion of these simpler cases. The special cases are
of three flavours. First, simplifications occur when the plate lying along x > 0 is either
completely rigid or acoustically soft. This case corresponds to the distinguished limits,
D2, EdD2 ---7 0 (a rigid plate) or E2/D2 ---7 00 (an acoustically soft plate). Second, the
formulae gain symmetries and can be reduced further when we consider two identical
plates with a joint. Thirdly, there are simplifications when the fluid loading is either

light or heavy; here, Ej « 1 and Dj > 1, or Ej « 1 and Dj « Ej, respectively. These
cases all limit neatly from the formulae of the full analysis.

6.5.1. Rigid plate

For an elastic plate in x < 0 connected to a co-planar rigid plate on x > 0, we have the

relation, p+z(~) = i(fr - 1)1/2 /(~ +6). The functional equation then becomes

(6.5.1)
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In this case, our entire function, E(E), is O(~) when I~I~ 00, for all edge conditions in
Appendix 6.B. Hence,

and

(6.5.2)

If we take the edge to be clamped, it transpires that El = Eo = 0, and so

(6.5.4)

In the construction of the inverse transform, the residue contribution at ~ = 6 then gives
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Figure 6.11. The reflected power PR == IRI2, panel (a), and the phase, panel (b), versus angle of
incidence and frequency for an elastic aluminium plate clamped to a rigid plate.

the reflected wave:

Consequently, the reflection coefficient, R, is

(6.5.5)

(6.5.6)

Some results contained in Appendix 6.A (equation (6.A 7)) indicate that IRI = 1 for
K; > 1. Thus, when the component of the flexural wavespeed in the longitudinal direction
is subsonic relative to the acoustic wave speed, all the scattered energy is reflected back
along the plate. But there is scattering into acoustic waves when /'L < 1.

The reflected power and phase shift 'Ij; are shown in Figure 6.11 for various values of
the angle of incidence (h (hence r.;) and n1 (the non-dimensional frequency). It is worth
noting the similarity between the reflected power in Figure 6.11 and that in panel (b) of
Figure 6.4 for the aluminium-steel plates. This suggests that changing the type of plate
in x > 0 can alter the distribution of power scattered into the transmitted and acoustic
fields, but leaves the reflected power largely unchanged.

As n1 increases, ea also increases, and so the range of (h over which total reflection
occurs becomes smaller. Indeed, for large nI, the scattered wave energy is primarily

concentrated in the fluid, leading to the large forward lobe in the directivity (Figure
6.12). As we approach higher frequencies, another peak emerges in the backward direction
along the critical angle linked to the leaky zero of the plate dispersion relation (see Section

6.5.4). The peak is 'sharpest' for normal incidence; this is also seen later in Figure 6.17.
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Figure 6.12. The modulus of the directivity IG('I.9) I for an elastic aluminium plate clamped to a
rigid plate as a function of the dimensionless frequency, nI, which ranges from 0.1 to 2.0 in steps
of 0.1. The angle of incidence is Ol = 7r/12.

6.5.2. Soft plate

If the plate on x > 0 is now taken to be acoustically soft, then the boundary condition
for x > 0 on z = 0 becomes p(x,O) = _pinC(x,O). In this limiting case, ,,(2(0 '"

-E2/9(~)n~ with 9(~) = (~2 +".2 -l)t = (~+ ..jK,2 -1)~(~_J".2 - 1)~== 9+(09-(0;
and 9-(0 = -i9+( -0. Moreover, P+(O is defined by P+(~) = -ij(~ + 6) and the
functional equation reduces to

El~ + Eo = 9-(~),,(1-(OP-(O + [-i9-(~),,(1-(~~~ ~1~:(6),,(1+(6)l

1 {_ El [ 4 1 ] } 9+(6),,(1+(6)
= ,,(1+(~)9+(~) n (0 - n~i(~ + 6)+ - r (~)- ni P+z(~) + (~ + 6)+ '

(6.5.7)
where the entire function E(O is again linear for all edge conditions, and we remind the
reader that

Thus P±z(O can again be isolated from the functional equation. But, as in the full
problem described above, these functions are only analytic in the respective regions of
the complex plane if we satisfy some simultaneous equations. In the case at hand, these
equations are

(6.5.9)

where X takes each of the four values satisfying, r4(X) - Ijni = O. By solving these
equations, we determine Eo and El and the two free constants in n- that remain after

applying edge conditions.
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Figure 6.13. The modulus and phase of the reflection coefficient for an elastic aluminium plate
either freely attached or clamped to an acoustically soft plate. The reflected power PR is shown
in panels (a) and (b) and the phase in panels (c) and (d) versus angle of incidence and frequency.

Finally, the reflection coefficient is

R = iK 1+ (6) [E C + E _ ~h(6)K 1+ (6)] .
Q_ (6)K~ (6) 1-,1 0 26 '

the plate in x > 0 does not support flexural waves, thus T = O.

(6.5.10)

The reflected power, phase shift, and directivity are plotted in Figures 6.13-6.14 for
clamped and free junctions. It is striking that even in this special case, the condition of the
junction greatly influences the scattering properties. The free edge radiates less energy
in the fluid, but the peaks in the directivity (Figure 6.14b), are much more pronounced
than for the clamped edges (Figure 6.14a).

Note that in the two extremes of rigid and acoustically soft plates, the distributions
of power converted into reflected waves are similar, although the phases on reflection are
not. The acoustic directivity patterns are also quite different; in the acoustically soft

case there is no scatter in the direction of the plate and the orientation of the lobe in

o < {)< 7r /2 largely obscures the other, sharper peaks.
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Figure 6.14. Representative ciirectivities for IG("17)1 with 81 = 7r/12 versus 01 for an elastic
aluminium plate freely attached or clamped to an acoustically soft plate.

6.5.3. Identical plates

We now take the two plates to be constructed of identical material, but retain a junction
at x = O. This makes our problem equivalent to scattering in an infinite plate with a
line constraint or gap. For normal incidence, such examples have been treated by Howe
(1986, 1994b). For oblique incidence, we take the appropriate limits of the formulae
above. Then

(6.5.11)

and there is no longer any need for a Wiener-Hopf analysis. For brevity we give the
results in the clamped case when E(~) is linear in ~; Eo and El emerge explicitly as

(6.5.12)

from which it is straightforward to determine that

R = .(El6 + Eo) _ 1 T = _. (El6 _ Eo)
1 IIK~ (6)' 1 Il,q (6) ,

G (13)= _i [_ El Acos 13+ Eo + hd(~(6)] .
2Kl (Acos '19)

(6.5.13)

In this example, because the two plates are identical, only the acoustic cut-off angle,

Ba is present; G(13) = 0 for K. > 1, and then IRI2 + ITI2 = 1. However, there is also a
second type of cut-off angle that is associated with the leaky waves that give rise to the

sharp peaks in acoustic directivity, when r: < 1. We describe this second angular cut-off
in more detail in Section 6.5.4.

The proportion of power converted to reflected waves, as shown in Figure 6.15, is very
similar to previous figures for clamped plates. The main consequence of the identical
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Figure 6.15. The partition of scattered powers PR, PT and PA for an infinite elastic aluminium
plate with a clamped joint. The non-dimensional frequency 01 ranges from 0.1 to 2.0 in steps of
0.1.

plate in x > 0 is that, as the frequency increases, the majority of the scattered power is
converted to the transmitted flexural plate waves.

Figure 6.16 compares directivities for a clamped junction in aluminium and steel plates.
The distributions are similar, but as E is smaller for steel plates, there are more prominent
sharp peaks associated with leaky waves. Also, the large forward scatter prominent in
previous examples is absent in this figure because of the lack of material contrast.

The results described above are for a closed gap. Open gaps with normal incidence are
treated by Howe (1994b) and one can generalise that analysis to oblique incidence in a
straightforward manner using the methodology outlined above.

6.5.4. Light fluid loading

In the light fluid loading limit, Ej « 1 and 0.j > 1, two complex zeros of the dispersion
relation Kj(~), at ±k), are associated with leaky waves. These disturbances (which are
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Figure 6.16. The modulus of the directivity 10(19)1for an elastic aluminium plate, panel (a),
and a steel plate, panel (b), with a clamped joint.

not strictly individual waves in their own right) are related to certain flexural waves of
the plate if it were 'in vacuo. These waves disappear on the addition of fluid loading,
but they nevertheless leave behind a remnant signal, commonly referred to as leaky
waves. Moreover, provided the in vacuo flexural wavespeed is greater than the acoustic
wavespeed, then energy is shed into the fluid along a certain angle (Crighton, 1979). This
leads to distinctive beaming along that angle, and the directivity develops sharp peaks.

In the case of oblique incidence,

(6.5.14)

and by modifying the analysis of Crighton (1979), one finds the special angles to be

1

'l9Bj ~ cos-1 [(Ojl_ 1\;2)/(1- K;2)r (6.5.15)

(as measured in the cylindrical polar coordinates based at the plate junction).

This angle exists only if 1/0j > K;2 and K, < 1, which is not automatic. Indeed, as
we increase the angle of incidence, the beam of leaky waves eventually cuts off. In other
words, oblique incidence introduces a second kind of critical angle associated with the
disappearance of peaks in the directivity corresponding to leaky waves. We illustrate
this cut off in Figure 6.17: As one varies the angle of incidence past ea "-'0.7833 the
leaky-wave peaks disappear and the directivity becomes a featureless lobe.

This example shows a case in which there are both forward and backward peaks in
directivity, which transpires because the plates are identical. In Figure 6.18, we show a
case with material contrast. In this second example, the plate along x < 0 has 01 < 1
and does not radiate energy in leaky waves, but there are forward peaks in the acoustic
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Figure 6.19. The phase change in R as the angle of incidence changes for an aluminium plate
clamped to a rigid plate.

6.5.5. Heavy fiuid loading

The heavy fluid loading limit, Ej « 1 and OJ « E, can be approached either directly
from the governing equations (Crighton & Innes, 1984), or from a reduction of our non-
dimensional equations. The main feature this limit is that structural inertia terms disap-
pear and the fluid becomes effectively incompressible. The governing and plate equations
in this limit reduce to:

(6.5.16)

in z > 0, and

(
cj2 2) 2 8p {O for z < 0
8x2 - K, 8z (x, 0) + Njp(x, 0) = (NI - N2) exp (i6x) for:» > 0 '

with Nj = EdO] == pw2 / e,kg.

(6.5.17)

For the analysis in the main text, when one approaches this limit, one can make
considerable progress using simpler factorisations of the functions ICj (0, as described in
Appendix 6.A. However the range of validity is restrictive, as Figure 6.20 demonstrates.
This figure is for scattering from the welded junction of aluminium and steel plates when
Bi = 1["/6; for this angle of incidence, K, > 1 and so the power scattered into the acoustic

far field is zero.

If the plate is attached to a rigid baffle, then in this limit, all the incident power is

reflected, regardless of incident angle. The only distinguishing feature between different
edge conditions is an associated phase change; this is important for resonance behaviour.
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Figure 6.20. A comparison between results deduced using the heavy limit and the full analysis;
this is for scattering at a welded aluminium-steel joint (steel plate double the thickness of the
aluminium plate) and incident angle tt /6.

Crighton & Innes (1984) detail the phase changes for normal incidence. In Figure 6.19
we show the phase change as the angle of incidence varies for an elastic plate clamped
to a rigid plate; the purpose of this is to demonstrate that oblique incidence changes the
phase quite dramatically from the value 3n /8 found for normal incidence.

6.6. Concluding remarks

In this chapter, we have provided a general solution for oblique scattering of flexural
plate waves upon a plate junction; this general solution encompasses many limiting cases.
Although we have concentrated upon clamped and welded edge conditions, the analysis
carries through, with minor changes, to other edge conditions. Our main thrust has been
to investigate the effect of non-normal flexural wave incidence, as this has been largely
ignored in previous studies.

The general trend illustrated by our results is that the reflected power is very similar
for all cases involving one kind of joint. The chief effect of altering the properties of
the plate in x > 0 is to redistribute the proportion of scattered power transmitted into

plate waves, or into the scattered acoustic field. As one increases the frequency so that
the power is concentrated in the fluid then for identical materials the power is totally

converted into the transmitted flexural wave, whereas with a rigid, or soft, plate in :r > 0

the power is totally converted into the acoustic far field.
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Perhaps the most important effect of oblique incidence is the introduction of two types
of cut-off angle. The first type is of a geometrical flavour: when the angle of incidence
exceeds one threshold, the scattered acoustic power vanishes. There is also sometimes a
second threshold beyond which flexural waves are not transmitted. The second type of
cut-off is in peaks in the directivity of scattered acoustic power that are associated with
leaky waves. By raising the angle of incidence we can also eliminate these peaks.

The occurrence of these cut offs implies that conclusions based upon results for normal
incidence may be a little misleading. For example, for welded junctions under normal
incidence, there is negligible reflected power. However, for some angles of incidence,
perfect reflection can occur; this may lead to resonances developing for several joined
plates. Other details, such as the phase change on reflection in the heavy fluid loading

limit are also highly dependent upon the angle of incidence.
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Appendix 6.A. Factorisation: for K(e)

The purpose of this appendix is to describe the factorisation of the functions Kj ({) (see equation
(6.2.10)) required by the Wiener-Hopf method. Because both functions have a similar mathe-
matical form we split both in the same way. Hence we drop the subscript and consider

(
2 2) 2 1 e (2 2 ) -1/2

K({) = { + '" - 02 - 03 e + '" - 1 . (6.Al)

This function must be split into a product of functions that are analytic and non-zero in the
upper and lower complex ~-planes: K(~) = K+ (~)K_ (~). (This terminology is a little loose;
strictly speaking, the two regions are the areas above and below the contour of integration of the
inverse Fourier transform - see Section 6.3.1.)

We proceed in two complementary ways, first we generate a general formula for the splits that
is convenient numerically. Then we deduce some explicit formulae.

The function K({) typically has two zeros at ±a that correspond to flexural waves (or edge
waves if a is complex), and, depending upon the choice of branch cuts for the f~nction (e + ",2_
1)1/2, additional complex roots. The first stage of the factorisation is to take the zeros at ±a
explicitly into account. We also need to make a choice for the branch cuts of ({2 + ",2 - 1)1/2.
First of all, we take these cuts to be ±[i~, ioo) if", > 1, or ±[V1 - ",2 + iD,v'f""=K2 + ioo)
if", < 1,

To split the functions in a numerically convenient fashion, consider a new function,

(6.A 2)
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The product splits for K(~) follow directly from those of R(O. Importantly, this function tends
to unity as I~I--+ 00, and has no zeros on the real axis. Thus we take

I 'D (t:) 1r: logR(TJ)d d I 'D (t:)- 1r: logR(r1)dog ''''_." = - -. TJ an og ,"'+." - -. 71
27r~ -oo+ia TJ - ~ 27r~ -oo-ia 71 - ~

(6.A 3)

for -a < Im(() < a, where a is some small, real number (0 < a« 1). Then logR+ + logR_ =
logR, provided there are no singularities of R(~) in -a < Im({) < a. This may always be
achieved for", > 1 by taking a to be sufficiently small. When", < 1, we must be careful about
the branch cuts of (e + ",2 - 1)1/2, and we then indent the path of integration in (6.A 3) beneath
the branch point on the positive real axis and above that on the negative real axis. Then we may
define logR+ + logR_ = logR in both cases.

We may evaluate the contour integral rather easily by changing the contour of integration.
First, we take advantage of the even nature of R(~), to write

I R (t:)=~1°010gR(77)~dog +.. . 2 t:2 TJ71"1 0 TJ -."
(6.A 4)

for Im(~) > 0 (and similarly for log'R_). Then, we deform the contour of integration such that
it runs from the origin to infinity along a line of slope -71"/4. This is permissible as the wedge
shaped region between this line and the real axis encloses no zeros, and one can use Cauchy's
residue theorem and the known behaviour at infinity. Finally, we map this semi-infinite line onto
a finite interval [0,1] and the resulting quadrature is then simply and rapidly achieved; this is
equivalent to a change of variable TJ = e-i'lr/4q/(1 - q) where 0 $ q $ 1 in (6.A4). A similar
change of variable can be used to enable us to evaluate log'R_ just as easily.

This numerical construction of the product split is adequate for most purposes. However in
some particular parameter regimes, and for limiting or asymptotic cases it is convenient to have
more explicit formulae. We derive these formulae differently in the two cases, '" < 1and '" > 1.

(i) '" > 1

With our current choice of branch cuts for (~2+ ",2 _1)1/2, the function K(~) has two real zeros at
±a (for some values of (1 and f the continuation of these real roots are purely imaginary and have
modulus < (",2 - 1)1/2) and a quartet of complex zeros at ±6, ±6*. Thus we define a function,

(6.A 5)

Now Q(~) has no zeros in the cut plane and Q({) --+ 1 as I~I--+ 00. It is now straightforward to
show that

(6.A6)

Note that for real ~,

(6.A 7)
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which emerges by using the following observation: Q(~) is even in ~, and so Q+W = Q-(-~).
Thus, for real ~, IQ+WI2 = IQ(~)I; the result then follows. This result is useful as it proves that
IRI = 1 for certain of the cases in the text, and because it allows explicit results to be deduced
in the limits of light and heavy fluid loading.

In the heavy fluid-loading limit, we rescale, ( = ~/Nl/5 (N = f/0.3) and then

(6.A 8)

with K«() = ,..4«() - Ih«(), and ,,2«() = (2 + sin2 (h. The splits for this function are expedited
by explicit formulae for the roots of the dispersion relation: ± cos 91, ±6, and ±6* where cS =
(e41Ti/5 _ sin2 (1)1/2 = ql/2 = Iqll/2ei1/J/2 (with the branch taken such that Re(6) > 0). Then, the
rescaled Q(~) (= N-4/5Q(~)) has simple product splits in the form

Q±«() = exp {-!100 cot-1 [(772 - sin2 (1)~] ~}.
7r sin lit 77 =t= 1(

(6.A 9)

In the text, we require the split functions to be evaluated at specific points. In particular it is
useful to note that, if ( = cosB}, then, from (6.A 7),

(6.A 10)

and

[K ( 1I)] 1100 5p(P2 - sin2 9d! -1 (sin (1) darg + cos Ul = - 2 tan -- p
7r sin91 (P2 - sin (1)5 + 1 p

-1 (2COS91 sin *Iql!) 91 37r+tan - - +-.
cos2 Bl - Iql 2 4

(6.A 11)

This last formula is useful for computations of phase and can be approximated for 91 « 1 or
fh '" 7r/2. Explicitly, if 91 = 0 then the argument is 37r/8, and if 91 = 7r/2, the argument is 7r/2.
Also

IK+(f31/5 cosO)1 = [f3-i(fJ _ 1) (fJi cosO + COSOd]! ,
(fJi cos 0 - cos (1)

where f31/5 cosB is the positive real root of r5(~) = f3 with I\, = fJl/5 sin O.

(6.A 12)

(ii) I\, < 1

In a similar manner we can extract an explicit factorisation for I\, < 1. But this time it is more
convenient to take the branch cuts of (~2 + 1\,2 - 1)1/2 to lie along the real axis. The function
K:(~) then has two real zeros at ±a which now lie on the branch cuts. In addition there are four
complex zeros. Two of these zeros, ±k, are associated with leaky waves. The remaining two
zeros, at ±JL lie close to the imaginary axis. We take

(6.A 13)

Now Q(~) has no zeros in the cut plane and Q(e) -+ 1 as I~I-+ 00. Using Cauchy's integral
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comparison of light and exact
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Figure 6.21. A comparison between results deduced for the directivity using an approximate
factorisation in the light limit and the full analysis; this is for scattering at a clamped alu-
minium-steel joint (steel plate double the thickness of the aluminium plate), incident angle rr/12,
and non-dimensional frequency n1 = 1.8.

formula it is straightforward to show that

(6.A 14)

In the light fluid-loading limit, fin « 1 and so Q±W '" 1. Hence, an asymptotic factori sation
is simply achieved using the zeros of the dispersion relation:

(6.A 15)

Note that Cl! '" (1 - /1:2) ~ + O(f) in this limit.

The details of the full Wiener-Hopf factorisation described above are admittedly a little tech-
nical. However, there are also some approximate formulae available that can provide adequate
results (Llewellyn-Smith & Craster 1999). These approximations contain no contour integrals
and involve only finding the roots of the dispersion relation, in the light fluid loading limit. A
brief comparison between these results and the full analysis is shown in Figure 6.21.

Appendix 6.B. Edge conditions

In the text, we outline a general solution to the scattering problem that is independent of the
precise edge conditions that we impose at the junction. But in any illustration, we must use
explicit conditions (Timoshenko & Woinowsky-Kreiger, 1959). If we define OJ = O± for j = 1,2,
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and use [X(O] to denote the jump in X(O across the edge from ~ = 0+ to ~ = 0-, then the
following are four commonly applied edge conditions.

• Clamped edges Both the displacement and rotation vanish on either side of x = 0:

pz(O-,O) = pz(O+, 0) = 1'1, Pzx(O-, 0) = Pzx(O+, 0) = i61'1. (6.B 1)

• Welded edges Continuity of the displacement, rotation, bending moment, and shear force at
x =0:

Pz(O-,O)=Pz(O+,O), [~!(a;-(2-Vi)1\":2)PZX(Oi,0)]] =

. [OJ [2 ( ) 2]]-1~l'Y1 -;; ~l + 2 - vi I\": ,

(6.B 2)

(6.B 3)

• Free edges The bending moment and force are zero at either side of x = 0:

• Hinged edges The displacement and force are continuous across x = 0 and the bending moments
are zero either side of x = 0:

(6.B 5)

(6.B6)
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Chapter Seven

A reciprocity relation between plane and flexural
plate waves scattered by rigid defects

7.1. Introduction

The diffraction of acoustic, flexural or leaky waves from inhomogeneities embedded in
elastic plates or shells is important in any description of scattering by a fluid-loaded
structure. The waves scattered from these defects generate sound in the fluid, and scat-
tered flexural plate or leaky waves are also responsible for further sound generation via
interaction with other material inhomogeneities. Numerical and analytical studies of
these problems are often complicated by geometrical considerations and edge conditions
that are required at sharp structural changes. Our aim here is to derive, and apply, a
reciprocity relation that should be a useful tool for both checking results, and for reducing
computational effort in parametric studies.

Reciprocity theorems have a long history in acoustics, electromagnetism and elasticity
notably initiated by Helmholtz and Rayleigh amongst others. Many of these reciprocity
theorems involve two scattering problems found by interchanging the position of a source
and receiver; thus relations between the two states are deduced, and these are particularly
useful in structural acoustics, say, scattering from an elastic sphere or cylinder (Junger
& Feit, 1986, pp. 376).

A closely related reciprocity result is often used in acoustics, and in a more compli-
cated guise in elasticity. In the latter case several different body waves (both shear and
compression), surface waves and mode conversion at interfaces often lead to complicated
analysis; it is well-worth having subsidiary results to act as check. If one is interested in
scattering by an obstacle, of arbitrary shape or cross section, say, a crack or void, then
reciprocity relations have been deduced for obstacles in an infinite isotropic elastic do-
main (Tan, 1977;Varatharajulu, 1977), an elastic half space (Mei, 1978;Neerhoff, 1980;
Rogoff, 1993) or coupled fluid-solid media (Craster, 1998). Typically these reciprocity
theorems are concerned with relating one aspect of the solution of one problem to an-
other aspect of a second problem. It is usual to explore how one relates the scattered
far field angular coefficient (the directivity) associated with a scattered cylindrical wave,
or the amplitude of a scattered surface wave, that is generated by one type of incident
wave (the first problem) to the scattered far field coefficient generated by another inci-
dent wave (the second problem); the incident waves in isotropic elasticity could be either
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plane compressional or shear body waves, surface Rayleigh waves or interfacial Stoneley
waves.

A typical relation would emerge from analysing the scattered shear directivity, say,
generated by an incident plane compressional wave upon a defect to the scattered com-
pressional directivity generated by an incident plane shear wave. If we have a half space
or joined elastic media then other relations occur with, and between, the other waves of
interest, that is, surface or interfacial waves. One can construct several different inter-
relations each of which forms a useful non-trivial check upon any numerical or analyt.ical
work. The theorems are usually quite general and hold for obstacles of arbitrary number,
orientation and shape, provided they are compact, that is, in so far as the far-field is con-
cerned they are all clustered near to the origin. These results are particularly useful for
checking numerical or analytical results that involvecomplicated subsidiary calculations,
say, the evaluation of Green's functions and solution of coupled integral equations for
scattering by sub-surface cracks. As the reciprocity formulae arise from finding equiva-
lences between two different scattering problems, this can also substantially reduce the
number of calculations in a parametric study.

In a similar vein we now consider a compressible fluid overlying a thin elastic plate;
the plate contains embedded obstacles, cracks, or other scatterers. This is in many ways
analogous to the elastic half space problems in that we now have both a compressional
fluid wave (a body wave) and a flexural plate wave (a surface wave). Thin elastic plates
coupled to an overlying compressible fluid support a subsonic flexural wave, and many
problems in structural acoustics are concerned with the mechanisms whereby model de-
fects scatter these waves; a substantial proportion of vibrational energy in a structure
is transmitted into a fluid via such interactions. Our aim is to deduce the relation that
exists between the scattered far field directivity associated with the scattered cylindrical
wave in the fluid due to a flexural wave obliquely incident (in the plane occupied by
the plate) upon this collection of defects to the amplitude of a scattered flexural wave
created by an incoming fluid compressional plane wave also incident upon those defects.
To demonstrate the manner in which the relation should be applied we briefly consider
two model geometries for which analytical solutions can be derived and the reciprocity
relation verified.

The present analysis is designed to complement so-called "optical theorems", these
arise from power balance considerations and are also useful in scattering problems; recent
work along these lines in structural acoustics and fluid-solid coupled media are contained
in Guo (1995), Craster (1998) and Andronov & Belinskiy (1998).
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Figure 7.1. The geometry of a general problem showing typical rigid defects, involving rigid
strips and plates, and line joints.

7.2. Basic equations

We consider a single elastic plate, with one-sided fluid loading, containing embedded rigid
strips, or line defects and joints; a typical geometrical configuration shown in Figure 7.1.

Time-harmonic vibrations of frequency ware assumed, thus all physical variables have
an e-iwt dependence; this is considered understood, and is henceforth suppressed. The
problem is three dimensional with an inviscid, compressible fluid lying in the half spac

z > ° and -00 < x, y < 00. With this assumed time dependence the fluid pI' ssure
p(x, y, z) satisfies the Helmholtz equation in z > 0,

(\72 + k5)p(x, y, z) = 0, (7.2.1)

and ko, the acoustic wavenumber, is related to the sound speed of the fluid, co, via
ko = w / Co. The displacement in the z direction on the plate, fJ(.'E, y), is related to the
fluid pressure via pw2'fi(x, y) = pz(x, y, 0).

The elastic plate lies in the plane z = 0 and is potentially separated by a number, i, of
embedded rigid defects; these defects occupy domains 1)j where aj :s: x :s: bj. To model
the elastic plate we adopt the classical thin plate equation (Junger & Feit, 1986) in the
form

B'Jf1fJ(X, y) - mw2fJ(x, y) = -fi(x, y, 0),

where 'J~. is the horizontal Laplacian,

(7.2.2)

(7.2.3)
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The plate separates fluid in the region z > 0 from a vacuum in z < O. The bending
stiffness, B, and mass per unit area, m, of the plate are related to the physical properties
of the elastic plate through B = Eh3/12{1 - v2) and m = ph, with E, h, u, and p the
Young's modulus, plate thickness, Poisson ratio and mass density of the elastic material
respectively. In order to minimise the number of parameters that occur later, we intro-
duce the in vacuo flexural wavenumber fi,p, 'Mach' number n and fluid loading parameter
fas

p ( B )~
f = m mC5 ( )

2
ko Wand n = - = -nu.
fi,p CoP

(7.2.4)

Here n, the square of the ratio of the in vacuo plate wave speed to that of the fluid, pro-
vides a dimensionless frequency and the fluid loading parameter, f, provides a frequency
independent measure of fluid loading.

At plate edges, joints, or defects various edge conditions can be adopted (as the dis-
placement is directly related to pz we give the conditions in terms of the latter quantity);
we take x = 0 to be the edge of a rigid plate extending along 0 < x < 00, say, and then
x = 0- is the line along which the edge condition is to be applied, for instance:

• Clamped edges: Both the displacement and rotation vanish at x = 0-, i.e.,

(7.2.5)

• Hinged edges: The displacement and force are zero at x = 0-, i.e.,

Pz(O-, y, 0) = 0, (::2 + v ::2) Pz(O-, y, 0) = o. (7.2.6)

7.2.1. Non-dimensionalisation

To proceed we first non-dimensionalise the equations and adopt the non-dimensional
space variable x = kox based on the acoustic wavenumber; henceforth we drop the tilde
and hat decoration. For convenience, the pressure is scaled so that the amplitude of the
incident waves is unity.

The governing equation is now

(::2 + ::2 + ::2 + 1) p(x,y,z) = 0,
subject to the non-dimensional thin plate equation

[0' U:,+ ~, r -1] :(x,y,O) + ~p(x,y,O) ~ 0,

(7.2.7)

(7.2.8)
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for all x on z = 0 excluding x E Dj. In addition the scattered field decays as z -+ 00.

For x E Dj the rigid plate condition translates to pz = O.

7.2.2. Incident wave structure

Several different incident wavefields could be considered, incident flexural plate, leaky
and acoustic waves are the more common, although we could also treat 'end-fire' waves
(Brazier-Smith, 1987), and we briefly discuss the flexural, leaky and acoustic waves.

7.2.2.1. Flexural waves

An elastic plate can support a flexural wave, of unit amplitude on the plate, that takes
the form

p(inc) {x, y, z} = exp[-(r~ - I}! z + i6x + i~YJ; (7.2.9)

the superscript (inc) denotes that this is an incident wave. This surface wave decays
exponentially with distance into the fluid and is localised close to the plate. The total
plate wavenumber r l, defined from r~ =~r+ ~2, is found from the positive real root (for
I') of the dispersion relation K(O:

(7.2.10)

The total plate wavenumber r 1 is greater than unity and this indicates that the flexural
plate waves are subsonic relative to the acoustic wavespeed. Associated with the flexural
plate wave is an angle of propagation 01. see Figure 7.2, such that 6 = r 1cos 01 and
~= rl sinOl.

7.2.2.2. Leaky waves

Depending upon the precise choice of branch cuts for (r2{~) - l)t in equation (7.2.10)
then the dispersion relation K(~) has, in addition to two real solutions at ±6, complex
roots that are also potentially important. In particular when the fluid loading is light, that
is, the dimensionless frequency is large, n» 1, and the fluid loading parameter is small,
€ « 1, then the in-vacuo flexural plate waves (which, as n > 1, have supersonic velocities
relative to the acoustic wavespeed) are perturbed by the presence of the overlying fluid
and shed energy into the fluid along characteristic angles (Crighton, 1979). In terms
of the dispersion relation these waves emerge from complex roots, with small imaginary
part, at ~ = ±~Ieaky, where

(7.2.11)
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Fluid

,(a)
• z,
,
,
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• z,

Flexural wave

Figure 7.2. The geometry of the problem and the incident wave fields under consideration. In
panel (a) the obliquely incident flexural wave of Section 7.2.2.1 is shown; the angle of incidence,
B1, is the angle made between the wavenumber vector and the horizontal normal to the plate
junction (which lies along the line x = z = 0). In addition an incident leaky wave Section 7.2.2.2
is also illustrated. In panel (b) an incident acoustic wave (Section 7.2.2.3) from the fluid, along an
angle, Ba, to the horizontal normal and an angle, cPn, to the vertical normal of the plate junction
is shown together with the wave that would be reflected from a defect-free elastic plate.

The incident field of a leaky wave is then

p(inc) (x, y, z) = exp[-(freo.ky - l)t z + i~leo.kyX + iIl;Y]; (7.2.12)

here we take K; real, and note that a leaky wave is a piece of the wave spectrum that can
be identified explicitly, but cannot exist in isolation, the wave decays exponentially with
both distance into the fluid and distance along the plate; they are discussed in Crighton
(1979). In addi tion if n > 1/11;2 then the leaky wave root no longer has the imaginary
component, and this can significantly affect the scattered far-field (Chapter 6).

7.2.2.3. Acoustic plane wave

Alternatively we could have incoming acoustic waves and associate angles of incidence
with this wave; one angle in the z = 0 plane giving the angle of incidence on the plate
relative to the joint, and the other giving the angle of incidence within the fluid relative
to the z = 0 plane. Thus we define an angle of incidence Bo. in the z = 0 plane (on the
plate) as the angle subtended between the projection of the incoming wave and the x
axis and angle <Po. as the angle subtended between the incoming wave and the plate; see
Figure 7.2.

Taking the incident field to have unit amplitude then that acoustic wave has the form

(7.2.13)
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In terms of the angles of incidence we define r~= (~~+ 1i2) = cos2 CPa (so the square root
term is [r~- 1]1/2 == -i sin CPa), with ea = cos ()a cos CPa and Ii = sin ()a cos CPa; note the
wavenumber in the y direction, Ii has llil < 1 always, this is in contrast to the case of
incoming flexural plate waves, where Ii due to the subsonic nature of the flexural wave
can be greater than unity. In order to deduce a relation between the flexural and acoustic
waves we shall require Ii to be identical for both problems, thus we restrict our attention
to Ii < 1.

Later in this chapter we shall require the solution for a plane wave reflected from a
defect-free elastic plate; this is shown in x > 0 in Figure 7.2. In this regard, we define a
plate reflection coefficient, R, as

- (4 1) e 1with K:(~) = r (~)- 02 + 03 1
H H (r2(~) - 1)'2

(7.2.14)

and the reflected field, denoted by a superscript (re!), is

(7.2.15)

Thus, for an acoustic wave incident upon a defect-free plate, the full field is

p(x,y,z) =p(inc)(x,y,z) +p(ref)(x,y,z). (7.2.16)

7.2.3. Far-field wave structure

We assume the defects, ribs, joints or plates are all clustered within a non-dimensional
distance d of the origin, and that we observe the far-field such that x, r »d.

The scattered field, denoted by the superscript (se), falls into two distinguishable pieces
in the far field. Firstly, one generates scattered flexural plate waves that propagate to
x -t ±oo, these are characterised by amplitude coefficients H±:

(7.2.17)

Secondly, we can also excite acoustic waves that propagate in the fluid. In the far field
these are cylindrical waves, and are better described in a cylindrical polar coordinate
system (r,fJ,y) whose axis lies along the line x = 0 (x = rcosfJ,z = rsinfJ). These
waves have the far-field form,

p(8C)(r, fJ,y) '" v-;r;;G(fJ)ei>.r-i1r/4+iKY,

characterised by an angular directivity G{fJ), where A= vI - 1i2 is the radial wavenum-
ber of the acoustic wave. For scattered cylindrical waves we require Ii < 1; if Ii > 1,

(7.2.18)
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these waves are evanescent and there are no scattered acoustic waves in the far field; see
Chapter 6 for further details. Equivalently, in order to excite acoustic waves, the COlIl-

ponent of the flexural wave in the y direction must travel supersonically. To deduce our
reciprocity relation we restrict our attention to /'i, < 1. Additionally, if the fluid loading is
light we can distinguish a response due to a leaky wave; we attach amplitude coefficients
L± to this response and take

(7.2.19)

as x -+ ±oo.

We assume that each defect does not vary spatially in the y direction, thus the
wavenumber in the y direction is unaltered during the scattering from a defect and
this eiKY dependence can be incorporated throughout. That is, we take

(7.2.20)

with a similar form for the incident fields, and henceforth we omit the eiKY term and
consider this exponential y dependence as understood.

Given a collection of defects on the plane z = 0 with x E 1) = UjDj then the scattered
field can, using an appropriate Green's function, be immediately written down as

(7.2.21)

Using Ox, to denote the partial derivative with respect to x', the operators C(ox) and

M(ox) are
(7.2.22)

Each integral within (7.2.21) must be interpreted as an integral over aj < x < bj together
with a contribution from the edges aj and bj, that is,

In [£(ox' )p~SC)(X', 0) + M(ox' }p(SC)(x', O}]pG (x, z; x/}dx'
J

== r [£(ox' )p~SC)(X', O) +M(ox' }p(sc) (x', O}]pG (x, z; x/}dx'
J

+pG(x z x'}03 (sc)(x' O)lbj 0 G( z X')02 p(SC)(x' O}lbj" x'Pz ,aj - x'P x,, x' z ,aj
(7.2.23)

+02 G( ')!'l (BC)( I O)lbj ",,1 G( ') (BC)( I O}lbjx'P X,Z,X Vx'Pz X, aj - 0x'P X,Z,X Pz X, aj

+ 2 2[!'l G( ') (sc)( , O}lbj G( ')0 (sc)(, O}lbj 1/'i, Vx'P x, z, x Pz x, aj - p x, z, x x'Pz x, aj'

The scattered pressure field is given in terms of an unknown distribution of point forces
along the elastic plate. The Green's function follows from solving the Helmholtz equation
with boundary condition

(7.2.24)
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on z = O. The resulting solution is found as the inverse Fourier transform

G( . ') __ ]__j exp[-i~(x _ x') _ (r2 -1)~z]dc
p X,Z,X - 1'"

21T c (r2 _ 1)2K(~)
(7.2.25)

The path C in the inverse Fourier transform runs from -00 to +00 and is indented
above (below) any singularities occurring on the negative (positive) real axis. We now
substitute this Green's function into equation (7.2.21) to deduce the far-field scattered
pressure. Analysing the asymptotic form of the Fourier integral using residues, or a
saddle point analysis, we explicitly identify the characteristic far-field coefficients as:

i(r~_ 1) ~K'(6)H± = h,[C(8x1 )p~8C)(X', 0) + M(8x' )p('~C)(X', O)le'fi~lXI dz/; (7.2.26)

the prime on K'(~) denotes the differential with respect to ~,

i(rreaky _ 1) t K' (~leaky)L± = h,[£{8x1 )p~sc) (x', 0) + M{8x' )p(sc) (x', O)]e'fi{l<akIlX' dx'

(7.2.27)
and

2iK(.Acos 1?)G(1?) = h, [£(8XI )p~sc) (x', 0) + M(8xl )p(SC) (x' ,O)]e-ix' A cos 1?dx'. (7.2.28)

The domain V incorporates the edge, and as in (7.2.23) the edge conditions are included
in these expressions. This is illustrated for a single joint in Section 7.4.1.

7.3. The reciprocity relation

In this section we extract a reciprocity relation between the scattered fields generated by
the different incident waves under consideration in this chapter. In order to achieve this
we use the reciprocity relation

Is [p(f)p~~) _ p(a)p~)] nidS = 0

for two independent states (J) and (a) (the choice of superscript will become transparent)
in a source-free domain bounded by a surface S (with outward pointing normal ni), for
which both states satisfy the Helmholtz equation. Taking the assumed y dependence and
using this result in the x, z plane with S bounded by a semi-circular arc at infinity and
running parallel to, and just above, the plate, then furthermore

(7.3.1)

Is ([£{8nJP~) +M{8nJpU)]p~~) _ [£(8nJp~~) +M(8ni)p(a)]pW) nidS = O. (7.3.2)

Provided, that is, [£(8x)p~f,a) +M(8x)pU,a)] = 0 as x ~ ±oo and pU,a) decays at infinity.
Now we manipulate this.



7. A reciprocity relation 181

Let state (J) be the scattered field due to an incoming flexural plate wave, (7.2.9),

(7.3.3)

and state (a) is that due to an incident acoustic wave together with its reflection from
an unblemished elastic plate (7.2.16), that is,

p(a inc)(x, z) = exp[i~ax+ (r~ - 1)~z] + Rexp[i~aJ; - (r~ - 1)~z]. (7.3.4)

Both incident fields have C{8x)p1f,a inc) (x, z) + M(8x)p(J,a inc)(x, z) = ()on z = 0. Thus
the relation (7.3.2) gives

k[C(8x)p~f sc) + M(8x)p(J sC)]P1ainc)dx = k[C(8x)P1a sc) + M(8x)p(a sC)]P1! inc)dx;

(7.3.5)
where we have used the rigid boundary condition p~sc) + p~inc) = 0 on V. We have
also exploited the edge conditions (7.2.5-7.2.6)j taking into account the exp(i~y) depen-
dence these translate to: clamped, pAO-,O) = O,Pzx{O-,O) = 0; hinged, pz(O-,O) =
O,Pzxx(O-,O) = O. The direct relations with pz and its derivatives mean that these edge
conditions can be easily incorporated.

Inserting the respective incident fields into equation {7.3.5},and furthermore noticing
the similarity to the H± and G formulae, equations (7.2.26,7.2.28), yields

(r~-1)K'(6)H(a)-(Oa,<Pa) = ~~G(J)(iJ,Ol)' (7.3.6)

We have now appended some further decoration to the flexural wave amplitude H-
and directivity G, this is to make it plain that this relation holds for specific angles of
incidence, angles of observation and types of wave incidence.

• H(a)- (Oa, <Pa) is the amplitude of the scattered flexural wave travelling to x = -00 due
to an incoming plane wave, state (a), from Ba, r/>a
• GU)(iJ,Bt} is the directivity due to an incident flexural wave travelling, state (J), from
x = -00. This travels along an angle Bl to the x axis; the directivity is evaluated at
angle iJ:

(7.3.7)

The wavenumber in the y direction, n; is identical for both incident waves; this leads to
the relation rlsinOl = sinOacos<Pa,and we recall that>. = \1"1- ~2j if ~ = 0, that is,
normal incidence then these formulae simplify with iJ = 11' - <Pa.One then observes the
directivity along the same angle, given the definitions of these angles, upon which the
acoustic wave in state (a) is incoming; the effect of altering the angle of incidence (in the
plate) of the flexural wave is to remove this simple relation.
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state (a) Fluid Fluid

:rn,,
Elastic plate Elastic plate

Vacuum Vacuum

Figure 7.3. Illustration of the reciprocity relation for states (j) and (a). {) + ¢(. ::; tt .

At this point it is worthwhile to draw the readers attention to the precise angular
behaviour in the x, z plane and a sketch of the two relations is shown in Figure 7.3.

7.4. Illustrative examples

The main application of the reciprocity relation is in numerical studies; it is also valuable
for analytic work and we briefly demonstrate the manner in which it can be applied for
a line joint or semi-infinite plate.

7.4.1. A single line joint

A single line joint is probably the simplest example upon which to illustrate the reci-
procity relation as we have a single defect of vanishing width so that at and b, are 0_
and 0+ respectively.

The far-field coefficients then involve the jumps in scattered field across the joint
(denoted by [ ]), for instance, the amplitude of the scattered flexural wave, H- is

i(fi -l)bC'(6)H- = [p~~Clx(x',O)] - i6[P~~Cl(x',0)] - ~?[P~~EC)(X',O)] + i~r[P~sc)(x',O)].
(7.4.1)

This is crucially dependent upon the edge conditions, see for instance Howe (1986, 1994b).
Following that analysis for a clamped joint

( ) 1 j' (El~ + Eo) [. 2 1]p/C (x, z) = - 211' C K(O exp -l~X - (F - 1) 2' z de,

with constants El and Eo determined from the incident field. We now consider two
states (1) and (a) as those due to incoming flexural and acoustic waves respectively. The
constants El and Eo take different forms in both cases and we distinguish them as E~f,a)

(7.4.2)
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and EV,a). Applying the edge conditions which are that the jump in pz and Pzx across
the joint are zero one finds that

(f,a) _ _ (f,a) [_!_ f ~] -1 __ AU,a)
Eo - A 211" le K(~) - 10' (7.4.3)

(7.4.4)

The constants A(f,a) are

A(a) = (R - l)(r~ - 1)~ (7.4.5)

and the eU,a) are ~U) = 6 and e(a) = ea. We have also defined Iq (Howe, 1986) as

1 ( eq

t,= 211" le K(e) d~ (7.4.6)

where the path C is defined following equation (7.2.25).

Asymptotic considerations of the inverse Fourier transform for p(8C)(X, z) (which follows
from (7.4.2)) give the far-field coefficients required for (7.3.6) as

H(a)-((J </» = i[E~a)€I + Ea
a
)] == i(R -1)(r~ - 1)1~[ea6I-1 _1-1],

a, a K'(~)(r~ -1)~ K'(~d(r~ _ 1}2 1 0
(7.4.7)

(f) . [(f) (I)] (n - 1)~ _ . (r~-1)~ -1-1
G (fJ,lh}=-l -El Acost9+EO 2K(ACOSfJ)=-12K(ACost9}[ea€IIl -10]

(7.4.8)
for t9given by (7.3.7). After substitution into (7.3.6) one sees that the reciprocity relation
holds.

Other edge conditions upon the joint can be considered, and the analysis is then more
complicated as the integrals which appear in an analogous manner to those in {7.4.8}can
be apparently divergent (Howe, 1986). None the less one can pursue the analysis and
obtain similar results.

7.4.2. A semi-infinite rigid plate

The reciprocity relation is valid even when the rigid defect covers the half plane on z = 0
for x > 0, -00 < y < 00 and we now turn to this slightly more involved example, that
is, an elastic plate on z = 0 in x < 0 connected to a co-planar rigid plate on x > O. This
can be solved using Fourier transforms and the Wiener-Hopf technique, see for instance
Crighton & Innes (1984). One can approach this either by constructing an integral
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equation manipulating (7.2.21) or directly from the governing equations and boundary
conditions; we follow the latter route.

We define the Fourier transform of the scattered pressure

(7.4.9)

where P± denote the half-range transforms of p(sc)(x, z);

P+(~, z) = i" p(SC) (x, z)ei~Xdx, P_«(, z) = /0 p(sc)(x, z)ei~Xd;E;
h -=

(7.4.10)

the same notation is used for the half range transforms ofp~sc)(x,z) which are P±z. The
inverse transform is defined by

p(SC) (x, z) = 2~ fc P(~, z)e-i~Xd~, (7.4.11)

where the path C is defined after (7.2.25). The subscripts + and - attached to the half-
range transforms denote that these functions are analytic in the + and - regions; these
denote the regions of the complex ~ plane above and below C; we loosely refer to these
two regions as the 'upper' and 'lower' halves of the complex ~-plane. In what follows
we shall mainly deal with the transforms along the plate, z = 0, and we shall shorten
p+(e,O) to p+(~) henceforth, and similarly for the other halfrange transforms on z = O.

We generate a functional relation between half-range transforms that are unknown.
This relation is then unravelled using the Wiener-Hopf technique to identify the un-
knowns and deduce the full solution. Along the way we are required to satisfy the edge
conditions; for problems in structural acoustics these edge conditions are slightly awk-
ward to incorporate.

The incident flexural and acoustic wavescan be treated simultaneously: we let state (J)
be that associated with an incident flexural wave (7.2.9), and (a) be that associated with
an incident acoustic wave (7.2.16). Using the rigid boundary condition p~inc) + p~sc) = 0
on z = 0 and x > 0 then for the states (f) and (a) we have the relation, p~a) (e) =
iA(J,a) /(~ + e(f,a»)+. The terms involving the superscript (f, a) take different values
depending upon whether we are dealing with state (f) or state (a). The representation
of p~a) «() simply states that the transform of p~C(x, 0) is known, and the subscript +
we have attached to the last term is to remind us that the pole at _~(f,a) is taken to lie
in the plus region, and we must indent the inversion contour, and take account of this in
the analysis, accordingly.

The constants AU,a) are given in equation (7.4.5) and the e(f,a) are again ~(f) = 6
and e(a) = ~a.
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We follow the usual Wiener-Hopf recipe (Noble, 1958) and the functional equation
emerges as

K(O [p~~a)(o - i(~(~~f: 0+] = [r4(~)- ~2] p-Vz'a)(O + ~3P.i!'a)(~) - n-U,a)(o·

(7.4.12)
This relates the transform of the unknown pressure on the rigid plate, P+ (0, to the
transform of the unknown displacement of the elastic plate, effectively P-z(O; these are
clearly different depending upon the incident field. The edge behaviour of the plates is
completely captured in the term,

tc: (e) = [p~~lx(O-, 0) - iep~~l(o-, 0) - (2~2+ e)p~c)(O±, 0)+ i~(2~2 + e)p~SC)(O-, 0)].
(7.4.13)

Our most valuable player here is the Wiener-Hopf technique, in essence one separates
the functional equation into a piece that is analytic in the + region and a piece that is
analytic in the - region. These two pieces are equal along a common line and therefore
both are equal to the same entire function E(e), using analytic continuation this is
extended to the whole complex e plane. Edge behaviour is then used with Liouville's
theorem to fix the form of E(e).

Technically we require the split of the function K(e) into a product of + and - func-
tions. That is, we require ,qe) = K+(~)K-(e); this is discussed in detail in Chapter 6 and
is not repeated here, splitting is most easily performed in terms of some quadratures. (It
is worth mentioning that K_ (+0 = K+( -e)). For our purposes here it is only necessary
to note that one can do the factorisation and we proceed formally.

This factorisation and subsequent rearrangement of the functional equation expresses
the equality of a + and - function, and utilising Liouville's theorem and an estimate of
the growth behaviour of the unknown transforms wemay deduce that our entire function,
E(J,a) (e)' is O(e) when lei ~ 00, for all edge conditions; this leads to the transform of
the unknown P» along the plate as

(7.4.14)

Both Eaft) are unknown and must be determined from the edge conditions; we shall,
consider clamped and hinged cases. Hence, the scattered pressure field is ultimately

p(sc I,a)(x z) = _..!.. f [E(J,a)e + EU,a) _ A(J,a)K+(e(J,a»)]
, 271' le 1 0 i(e + e(J,a»)+

exp [- (r2(e) - 1)1/2 z - i~x]
x de

K-(e) [r2(e) - 1]1/2

(7.4.15)
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and the far-field coefficients follow from asymptotic considerations of this integral. Con-
sequently, the coefficients for incident waves (J) (flexural) and (a) (acoustic), are

HU,a)- = -iK+(~d [Eu,a)6 + EU,a) _ Au,a)K+(~u,a»)] , (7.4.16)
(r? _ 1)tK'(6) 1 0 i(6 + ,(f,a»)

L(f,a)- _ -iK+(~leaky) [E(f,a)~ + EU,a) _ A(f,a)K+(e(f,a»)] ( )
- (r~eaky-l)tK'(~leakY) 1 leaky 0 i(~leaky+e(f,a»)' 7.4.17

and

_. [ AU,a)K (C(f,a»)]aU,a) ({)) = 1 _ EU,a) )..COS{)+ E(f,a) _ + l,

2K+(ACOS{)) 1 0 i{~U,a) _ Acos '!9) . (7.4.18)

If required, the coefficients for incident leaky waves may be similarly deduced; they are
closely related to incident flexural waves replacing rl with rleaky in A(f) and ~(f).

Clearly the terms C(J)({)'(h) and H(a)-{Oa, ¢a) required for the reciprocity result
(7.3.6) appear similar, at least they have a similar structure, but we still have the edge
conditions to incorporate; it is at first sight unclear that these components too are cor-
rectly related.

If we take the edge to be clamped, it transpires that EV,a) = E~f,a) == 0 and upon
noting the choice of {)for the reciprocity relation is Acos {)= -~a then the relation (7.3.6)
is immediately satisfied. However, more complicated edge conditions have non-zero E's
associated with them. In general, to satisfy relation (7.3.6) the constants must satisfy

(7.4.19)

Ifwe now take the edge to have the hinged conditions, (7.2.6), these edge conditions are
incorporated by taking the limit in the Fourier transform p!};a) (e) that ~ --+ 00 which
after inversion corresponds to x --+ 0-. That is, we explicitly determine P» along the
elastic plate and then enforce the edge conditions.

To enforce the chosen edge condition we require the expansion of the split function
K_(~) as e --+ 00 which is

(7.4.20)

where kl is independent of e, and for our purposes is a constant found using quadratures.
Inserting this result into p!};a) and inverting term by term to obtain that

pz(x, z) = Po + XPI + X2P2 + ... ; (7.4.21)

for constants Po, PI, and P2' This result is for the total pressure now and not only the
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scattered piece of the pressure. On applying the hinged conditions we find that EV,a) = 0
and use the equation

(7.4.22)

to determine that

(7.4.23)

and thus the constants are determined.

Substitution into the equations (7.4.16,7.4.18) leads to the far-field coefficients

(7.4.24)

and
aU) '!9 (J __ (r~- 1)~K+(~d (_!_ _ 1 )

( , d - 2K+(ACOS'!9) kl (6 - ACOS'!9) .

Noting that the choice of '!9 in (7.3.7) ensures that ~a = -A cos '!9, and some minor
manipulations, these too satisfy the reciprocity relation (7.3.6) and (7.4.19).

(7.4.25)

7.5. Concluding remarks

A reciprocity relation has been identified for rigid plates lying upon an infinite elastic
plate that should, besides being of independent interest, be of value in numerical studies
involving, say, arrays of rigid ribs, plates and other rigid defects; it provides a non-trivial
check. It therefore complements other results, such as extensions of the optical scattering
theorem Guo (1995), Norris & Rebinsky (1995) and Andronov & Belinskiy (1998). The
two analytic examples demonstrate how the result should be applied.

In addition, the reciprocity result we have given can be generalised in a straightforward
manner to rigid plates on, say, a membrane, or rigid cylindrical shells on an elastic
cylindrical shell; the general methodology outlined here should be useful in those contexts.
However, the replacement of the rigid plate by an elastic plate (of differing material
properties to the plate which extends to infinity) and higher order edge conditions leads
to further difficulties, and this is currently under study.

There are two additional reciprocity results, that is, involving two incident waves of
the same type, that is, both flexural waves or both acoustic, and then interrelating the
scattering coefficients; the resulting relations are then obvious, so we have not given upon
these cases. Relations between flexural (or acoustic) waves and incident, scattered leaky

-y



7. A reciprocity relation 188

waves can also he deduced. For instance, if we have an incident leaky wave with the form

(7.2.12) then

(7.5.1)

where we taken the two states to be

• H- (fJleaky) is the amplitude of the flexural wave travelling to x = -00 due to an
incoming leaky wave from fJleaky
• L-(fJd is the amplitude of the leaky wave travelling to x = -00 due to an incoming
flexural wave from fJ1•
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Chapter Eight ,

Concluding remarks

8.1. Summary of conclusions

This thesis investigates, in detail, various topics involving wave-bearing surfaces under
fluid loading; the understanding of fluid loading effectsand leaky waveshas been furthered
by the problems considered. The organisation and results in this thesis have already been
described in the introduction and the proceeding chapters. Here attention is simply drawn
to compiling some broader remarks. The problems described have been approached by
mainly analytical routes involving integral transform techniques and related methods
such as the Wiener-Hopf method and matched asymptotic expansions. This unearths
many of the physical mechanisms involved, for instance the emergence of surface and
leaky waves. It also allows us to identify physical approximations to tackle problems
where an exact solution is not feasible. A direct numerical approach may fail to expose
some of these, often subtle, details. A particular advantage of having the explicit solution
is that limiting cases and useful approximations emerge.

For instance, in Chapter 2, matched asymptotic expansions were used to look at the
scattering effects of low frequency waves by very small interfacial defects. We observed
a natural separation that occurs in the inner problem into fluid and solid pieces. This
enabled us, in each case, to give a useful physical interpretation of each defect in terms
of a specific interfacial discontinuity.

Also in the second chapter, several directivity patterns were used to demonstrate the
distinctive beaming that occurs along the Rayleigh angles (where energy is 'leaked' into
the fluid) for light fluid loading.

When treating the scattering of flexural plate waves, in structural acoustics, in Chap-
ter 6, we encountered similar peaks in the directivity of scattered acoustic power that
were again associated with leaky waves, although these peaks now also depended upon
the angle of incidence of the waves that are ultimately scattered. In this case, a criti-
cal angle for the transmission of flexural waves from one plate into another, and this is
caused by non-normal flexural wave incidence; this aspect has been largely ignored in
previous studies. In addition, two geometrical critical angles emerge that give us infor-
mation about the energy distribution of the scattered field. That is, for some angles of
incidence, all of the energy is reflected and there is then scope for resonances to occur for
several joined plates. Related power flowand reciprocity relations have also been derived
in Chapter 7.
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In the third and fourth chapters we looked at the time dependent wave motion geu-
erated by sources in a fluid-elastic solid set-up. We were able to identify asymptotic
representations for each wavefront arrival and in addition give an interpretation of the
leaky Rayleigh and non-geometric waves that emerge in a broadly analogous way in
regimes of 'light' fluid and 'shallow' source loading.

The interaction of waves multiply reflected from (fluid-solid) interfaces and surfaces
with a crack under an initial 'opening' loading was our concern in Chapter 5. We chose
to focus mainly on the wavefieldclose to the crack tip and not the multiples of 'leaky'
waves that could emerge. However, along the way, we did observe that the effect of the
fluid loading on the crack was broadly to draw energy away from it.

8.2. So what happens next?

We now address possible extensions to the work presented here. Although a number
of topics have been covered in this thesis there are some noteworthy omissions. For
instance, scattering by defects upon a curved fluid-solid interface, or at the junction of
two dissimilar, elastic, fluid-loaded shells; the analytical methods described here should
be useful. When treating elastic shells, most previous authors have considered one shell
that is either open-ended (Howe, 1994a) or closed (Skelton, 1999), or attached to a rigid
baffle (Lawrie, 1986, 1987). The analysis of Chapter 6 with suitable additions should
allow us to consider joined dissimilar shells. We may also generalise the problem of
co-planar elastic plates to curved plates, recently Norris et al. (1998) looked at curved
plates with normally incident plate waves. Much of the analysis contained in Chapter 6
also carries across to the curved plate situation. The reciprocity and power flowrelations
can also be generalised to these cases.

Finite elastic plates are often of more practical interest, an elastic plate embedded
in a rigid baffle is looked at in Llewellyn-Smith & Craster (1999). The observations in
Chapter 6 suggest that for some angles of incidence, for excitations of an elastic plate
embedded in a second infinite elastic plate, there is scope for reverberant build up. That
is, if the finite plate is excited then all the energy may be trapped in the plate. This too
should be investigated.

The application of an invariant integral as a means to obtaining the stress intensity
factors (Chapter 5) has also led to some interesting questions regarding other possible
uses of this method in, say, structural acoustics. It is speculated that the non-singular
behaviour at the junction of elastic or rigid plates, or at an opening in a plate could be
investigated in this way.
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Ultimately, we may be interested in a finite elastic plate under fluid loading lying 011

an elastic solid (that is, the vacuum-backing in Chapters 6 and 7 has been replaced with
an elastic solid). By a physical analogy with the structural acoustics problems one could
conjecture that for an obliquely incident surface Scholte wave at the open end of a plate,
then the energy distribution in the fluid, solid, and plate would be governed by a similar
physical mechanism as we found in Chapter 6. There are additional complications here
due to the edge conditions of the plate.

Another aspect that has not been treated fully here is the asymptotics of very 'light'
fluid loading, Craster (1997). The underlying idea is that a natural separation occurs
into fluid and solid pieces i c.], Chapter 2) from which we can piece together the solution
without attempting the (often complicated) coupled fluid-solid problem. In a similar
vein, the solutions we have found, together with their physics, provide useful building
blocks for some related problems.

There are also a wealth of related problems involving fluid-layered elastic, anisotropic,
and viscoelastic media. In the main, these are treated by various approximate methods;
some of these methods are discussed in Aki & Richards (1980). Nevertheless we may
generalise some of these problems, for example an infinite inhomogeneous material con-
taining single (Erguven & Gross, 1999) or multiple (Choi, 1997) cracks, to include the
effects of fluid loading. Some aspects of non-homogeneous media under fluid loading were

discussed in Chapter 5.

It is hoped that this thesis provides some insight into these, and many other related
problems.
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