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Abstract

Hyperpolarisation encompasses a multitude of methods to increase the species’
spin polarisation for nuclear magnetic resonance (NMR) and magnetic res-
onance imaging (MRI) applications. Hyperpolarised 129Xe is produced via
spin-exchange optical-pumping (SEOP). Firstly, electronic spins of alkali metal
vapour are polarised via absorption of circularly polarised light. Alkali metal
polarisation is subsequently transferred to noble gas nuclei via collisions.

Within this thesis, the SEOP process is examined by probing the kinetics
of the 129Xe polarisation build up. A combination of diagnostic techniques are
used including low field NMR to measure 129Xe polarisation (PXe) at different
spatial positions, near-IR optical absorption to give a global estimate of the
alkali metal polarisation, and in situ Raman spectroscopy to spatially moni-
tor the energy transport processes by detecting the internal gas temperatures
(TN2). TN2 values were found to be dramatically elevated above oven thermo-
couple readings, with observations of up to ∼1000 K for an oven heated to
only ∼400 K. Internal gas temperatures are presented for the first time along
the length of the optical cell, showing spatial temperature and PXe variations
during steady state and rubidium runaway conditions.

Two contrasting methods of Raman spectroscopy are examined: a conventional
orthogonal arrangement of detection and excitation optics, where intrinsic spa-
tial filtering of the probe laser is utilised; and a newly designed inline module
with all components in the same optical plane. Optical filtering is used to
reduce the Rayleigh scattering and the probe laser line. This new inline device
is presented herein and has a ∼23 fold improvement in signal to noise enabling
increased accuracy and precision of ‘real-time’ temperature monitoring.

Rubidium, caesium and a rubidium/caesium hybrid are compared as the al-
kali metal of choice in the SEOP process. Caesium has a higher spin-exchange
cross-section with 129Xe, thus a system is envisaged where current Rb D1 lasers
in many polarisers can be utilised with a Rb/Cs hybrid to gain improvements
in polarisation rates or levels. Xenon polarisations are shown up to 50% for a
hybrid cell.

Finally, preparatory experiments crucial to the imminent lung imaging study
are presented, including measurements of PXe at low and high magnetic fields.
In addition, polariser technology is examined including the current Notting-
ham device and an open-source consortium polariser.
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Chapter 1

Introduction

1.1 Overview

The motivation for investigating hyperpolarised 129Xe is to improve the current

methods available to diagnose and monitor lung diseases. Chronic obstructive

pulmonary disease (COPD) is a non-reversible air flow condition with direct

annual healthcare costs to the NHS of greater than £800 million in 2011 [1].

Lung cancer is the second most prevalent cancer with a median survival time

after diagnosis of only 203 days in England, [2]. Idiopathic pulmonary fibrosis

is one of several interstitial lung diseases with about 4200 new cases every

year in the UK [3]. With earlier and more accurate diagnosis of these types of

respiratory disease, there can hopefully be improved disease management and

quality of life for these patients.

A disadvantage of the most commonly used current method, high resolution

computed tomography (HRCT), for investigating ventilation and perfusion in

the lungs is the need for a dose of ionising radiation. Although HRCT scans

provide good anatomical images, most clinical measurements of lung function

(such as spirometry) assess the entire lung as a global entity. However, it is

well known that both health and disease function are not homogeneous and
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may vary over the lung space. The reader is referred to a review article com-

paring the techniques of HRCT and magnetic resonance imaging (MRI) for

functional lung imaging [4]. The key advantages of MRI over HRCT is that it

has the ability to probe various nuclei (e.g. 1H, 3He, 13C and 129Xe) and it is a

fast technique without ionising radiation. It also provides a method by which

longitudinal studies can be completed to study effects of drugs for treatments

or to follow disease progression, this is more accessible with hyperpolarised gas

MRI as the radiation doses experienced from HRCT scans limit repeat visits

in a study.

The technique of spin exchange optical pumping (SEOP) produces a high no-

ble gas polarisation through the transfer of angular momentum from photons

in a circularly polarised laser beam to alkali metal electronic spins and this

is spin-exchanged onto 129Xe nuclei via collisions [5, 6]. 129Xe polarisations

which are many orders of magnitude greater than thermal xenon polarisations

have given rise to many applications of hyperpolarised gases including lung

imaging. The first hyperpolarised 129Xe lung image was reported in 1994 by

Albert et al. [7] and shows the complementary use of conventional MRI and

hyperpolarised gas MRI in an excised mouse lung.

This thesis aims to investigate hyperpolarised xenon (129Xe) production via

rubidium (Rb) and caesium (Cs) optical pumping with an application towards

functional lung MRI. The first stage in this study was to characterise the

optical pumping process by looking at the individual aspects using different

experimental techniques. This was carried out using various techniques in-

cluding examining energy transport with Raman spectroscopy, low-field NMR

spectroscopy and optical absorption. Within this work, the polarisation of

129Xe was probed under different experimental conditions such as a choice

of alkali metal, laser power, and laser centroid wavelength. Translating this

2
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fundamental knowledge involved working closely with a collaboration of many

research groups in the USA which came together to create an open-source clini-

cal polariser with near unity polarisation [8, 9]. Leading towards future clinical

129Xe work at Nottingham, calibrations and optimisations have been carried

out on the current continuous flow polariser, with various experimental pa-

rameters being investigated including gas flow rate, volume, and accumulation

time.

1.2 Thesis Outline

Chapter 2 leads the reader through the principles of hyperpolarisation and the

different techniques used to polarise a sample. The author describes techniques

including the brute force method, dynamic nuclear polarisation, parahydrogen,

metastability exchange optical pumping, and spin exchange optical pumping.

As this thesis focuses on spin exchange optical pumping this is explained in

more depth than the other techniques. A comparison is drawn on the two main

types of 129Xe polarisers: batch mode and continuous flow. An open-source

batch mode clinical polariser designed as a part of an international consortium

is discussed, [8, 9]. The latter part of this chapter introduces applications of

hyperpolarised samples and covers in vivo lung imaging and in vitro crypto-

phanes which promise to have a clinical application in the future.

Chapter 3 sets the framework for the experimental methods used in the ma-

jority of the work in this thesis. The techniques include low field 129Xe NMR

spectroscopy to measure the 129Xe polarisation, in situ Raman spectroscopy

to probe internal gas temperatures and energy transport within the spin ex-

change optical pumping arrangement, and optical absorption to look at the

pump laser light absorbed in the sample by the rubidium electrons to gain

an approximation of the alkali metal polarisation. The theory behind these

approaches is given and the procedures for calibration and data analysis are

3



CHAPTER 1. INTRODUCTION H.L. Newton

outlined.

Chapter 4 applies the basic principles of Raman spectroscopy laid out in

Chapter 3, focusing on the geometry of the excitation and detection optics in

the Raman set-up. This chapter has led to two publications: one by Whiting

et al. [10] which gives the details of the orthogonal method and the second

by Newton et al. [11] that describes a new in-line module with all the Raman

spectroscopy optics in a single plane (180◦ method). An approximately 23

fold improvement in signal to noise is observed with the self-aligning inline

module allowing ‘real-time’ monitoring of internal gas temperatures. This lat-

ter method was the subject of a talk by Newton [12] at the 4th International

Conference on Xenon NMR in Materials (XeMAT 2012), Dublin, Ireland.

Chapter 5 examines current procedures for thermal management within a

spin exchange optical pumping system, including overall temperature reduc-

tion, localised temperature variations and global temperature ramping. A

comparison of xenon polarisations and internal gas temperatures is made when

steady state conditions occur and rubidium runaway takes place. The temper-

ature variation in the oven and internal gases during the spin exchange optical

pumping experiment is spatially monitored and the impacts on the 129Xe po-

larisation and pump laser light absorption are discussed.

Chapter 6 firstly looks at the effect of spin exchange optical pumping with

different alkali metals namely rubidium and caesium and then studies the re-

sponse of mixing the two metals to form a Rb-Cs hybrid. Rb and Cs are com-

pared under spin exchange optical pumping on their respective D1 transitions,

using frequency-narrowed laser diode arrays. The proposed Rb-Cs-129Xe hy-

brid system is expected to follow the pathway of optically pumping the Rb

vapour then spin exchange with the Cs and subsequently onto the 129Xe. The
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xenon polarisation build up rates and maximum values obtained from the dif-

ferent alkali metals is examined. The first section of this chapter was presented

by Whiting et al. [13] at the 52nd Experimental Nuclear Magnetic Resonance

Conference 2011. The latter part of this work culminated in the award of the

ENC Ritchey Prize 2014 and an opportunity to present our work at the 55th

Experimental Nuclear Magnetic Resonance Conference 2014 by Newton et al.

[14].

Chapter 7 translates the fundamental physics laid out in the previous chap-

ters towards a clinical application. Measurements of thermal and hyperpo-

larised 129Xe, enable 129Xe polarisations to be measured at 2 mT and 1.5 T. Po-

larisations are examined at various flow rates, accumulation times and volumes

of xenon gas on a continuous flow polariser to find optimal conditions with a

balance between gas residence time within the cell to enable spin exchange

optical pumping and accumulation time of frozen xenon. Proton lung MRI

is developed with a comparison of sequences to obtain good co-registration

images for future 129Xe imaging of the human lung.
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Chapter 2

Principles and techniques of

hyperpolarisation

2.1 Strategies for improving nuclear spin

polarisation

The sensitivity is limited in conventional nuclear magnetic resonance resonance

(NMR) due to the small population differences in the nuclear Zeeman energy

levels even at high magnetic fields, Figure 2.1(a). For example, the proton

polarisation at room temperature and 9.4 T is only Pthermal ≈ 3x10−5. This

arises from the equilibrium Boltzmann equation in the high temperature ap-

proximation:

Pthermal =
γ~B0

2kBT
(2.1)

where γ is the gyromagnetic ratio of the sample, ~ is the reduced Planck’s

constant, B0 is the magnetic field, kB is Boltzmann’s constant, and T is the

sample temperature.
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Figure 2.1: Thermal equilibrium state (a) has small population difference with a small
magnetisation vector, M0, whereas (b) hyperpolarised state has a much larger magnetisation
vector resulting from a large spin polarisation. N↑ and N↓ denote the two states.

Considering a spin-1/2 system, the polarisation can be described as

P =
N↑ −N↓
N↑ +N↓

(2.2)

where N↑ and the N↓ are the number of spins in the two sublevels, Figure

2.1. Polarisation is directly related to the observable magnetisation, M0 by

considering the total number of nuclear spins, Ns and the gyromagnetic ratio,

[15]

M0 =
1

2
Nsγ~P (2.3)

To improve this inherent limitation in NMR sensitivity, it can be seen that

there are two potential ways of increasing the thermal polarisation. The first

is to increase the magnetic field, B0, and the second would be to lower the

temperature, T , of the sample to around a few Kelvin. This is a disadvan-

tage for biological substances which can not be cooled to low temperatures

without altering or destroying the sample. In addition, high magnetic field

strengths are very expensive. Hyperpolarisation techniques can be used to

increase the polarisation of a sample, by various methods as discussed below.

Hyperpolarisation is a non-equilibrium technique resulting in non-renewable

polarisation; this means that once the sample has been saturated (either a

single 90◦ pulse or multiple low flip angles) it has been ‘used’ and returns to

its thermal equilibrium state, it then needs to be re-polarised before it can
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be ‘used’ again. In this non-Boltzmann distribution of nuclear spins where

there are more nuclear spins in the lower state than the upper state, Figure

2.1(b), NMR enhancements of 3-5 orders of magnitude are achieved. A brief

overview of various techniques to obtain hyperpolarised states are described in

the following sections.

2.1.1 Brute force polarisation

The brute force method of polarisation (or cryogenic method) relies on cooling

the sample to very low temperatures in a high B0 field, to obtain high equilib-

rium xenon polarisations. For example, the theoretical thermal polarisation is

≈ 99.96% for 129Xe at 1 mK and 15 T [16]. The main obstacle to overcome is

the time it takes to polarise a sample. At 4.2 K the T1 is greater than 60 hours

for natural abundance xenon (129Xe and 131Xe), rising to ∼180 hours with iso-

topically enriched 129Xe. This polarisation time constant is reduced with the

addition of a relaxant, such as O2 or 3He [17, 18], this lessens the time it takes

to produce a hyperpolarised sample. The advantage of this method is that it

can be applied to various nuclei as the system is not restricted to polarising

xenon.

2.1.2 Dynamic nuclear polarisation (DNP)

Dynamic nuclear polarisation (DNP) can be used to hyperpolarise solid and

liquid samples. DNP utilises low temperatures to cool a sample, containing, for

example 13C, which has been doped with molecules having unpaired electron

spins (free radicals). Microwave radiation is applied to induce electron-nuclear

spin transitions. This technique utilises the high gyromagnetic ratio of the

electron to obtain high electron polarisations at low temperatures which can

then be transferred to the nuclei of interest (γe = 1.76 x 105 MHzT−1, γ13C =

10.7054 MHzT−1 from ref [19] and [20]). The reader is referred to a review by
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Hurd et al. [21] for more information on this technique.

2.1.3 Para-hydrogen

The para-hydrogen technique involves a rapid conversion of ortho-hydrogen

(↑ ↑) to para-hydrogen (↑ ↓) by use of a metal catalyst and low temperatures

[22, 23]. This utilises the knowledge that ortho-hydrogen is dominant at room

temperature but para-hydrogen becomes energetically favourable at decreased

temperatures. This para-hydrogen polarisation can then be transferred to

other species in order to follow chemical and biological processes. Further

information is in a review article by Duckett et al. [22].

2.1.4 Metastability exchange optical pumping

Metastability exchange optical pumping is only used to hyperpolarise 3He,

which, as will be discussed in section 2.1.5.2, is experiencing a world-wide

shortage. This technique uses two excited states of the same species such

that a weak radio frequency (rf) discharge causes a transition to an excited

metastable state and then irradiation with 1083 nm circularly polarised light

is the optical pumping transition. More information can be found in a paper

on the fundamental aspects of this technique by Batz et al. [24].

2.1.5 Spin exchange optical pumping

The work described in this thesis uses spin exchange optical pumping (SEOP)

which is now described in detail. SEOP utilises a transfer of momentum be-

tween the electronic spins in alkali metal vapour and noble gas nuclei to pro-

duce hyperpolarised noble gases, the choice of which will be discussed below.

Optical pumping originated in the 1950s from experiments by Kastler [25]

who demonstrated that light can be used to remove electron spin populations

10
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Figure 2.2: Schematic of optical pumping of Rb electron spins. Transition due to circularly
polarised light is denoted by the red line, blue lines signify relaxation, orange is collisional
mixing.

from their state of thermal equilibrium. He also envisaged experiments where

it was possible to transfer the non-equilibrium spin polarisation from electrons

to nuclei.

The SEOP process involves an alkali metal (e.g. K, Rb or Cs) and a no-

ble gas (e.g. 3He, 21Ne, 83Kr, 129Xe or 131Xe) [26–29]. Circularly polarised

resonant laser light drives a transition to polarise the alkali metal (AM) elec-

tron’s spins, Figure 2.2. This spin is then transferred as angular momentum to

the nuclei of the noble gas (NG) to give a non-thermal distribution of nuclear

spins, known as hyperpolarisation.

Alkali metals are used in this process as they possess a single unpaired electron

in their valence shell, which has the spin state of 1/2. Also, it is highly con-

venient that they have strong absorption lines where lasers are commercially

available. For example, the Rb D1 (52S1/2 → 52P1/2) line is at 794.77 nm

and the Cs D1 line is at 894.36 nm (62S1/2 → 62P1/2), air reference, [30, 31].

These transitions, Figures 2.3 and 2.4, are described by term symbols which
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Figure 2.3: 87Rb D1 and D2 transitions showing hyperfine structure, [30]. Both transitions
originate from the same ground state with the D2 absorption (b) resulting in a lower
excited state than the D1 transition (a). F denotes the total atomic angular momentum
which gives rise to the hyperfine splitting. F = J + I where J is the total electron angular
momentum and I is the total nuclear angular momentum, with the magnitude of F being
|J − I| 6 F 6 J + I. For example for the ground state 52S1/2 of 87Rb, J = 1/2 and
I = 3/2, therefore F = 1 or 2. For 85Rb (not shown), I = 5/2, so ground state splitting
is F = 2 or 3. Spacing between the S and P sublevels are not to scale, wavelengths are
shown with air reference.
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Figure 2.4: Absorption lines for Cs (a) D1 and (b) D2 from 894.593 nm and 852.347 nm
respectively, [31]. The nuclear spin of 133Cs is I = 7/2, consequently, for the D1 ground
state (62S1/2) F = 3 or 4, and for the D2 excited state (62S3/2) F = 2, 3, 4 or 5. Spacing
between the S and P sublevels are not to scale, wavelengths are shown with air reference.
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are used to denote a particular electronic state within an atom, noting the

angular momentum and the atomic orbital location, known as the principle

quantum number, n:

n2S+1LJ (2.4)

where L is the electron orbital angular momentum (e.g. L = 0 denotes the S

level and L = 1 denotes the P level), J is the total angular momentum and

S is the total spin electronic angular momentum, with 2S + 1 being the spin

multiplicity term.

In further detail, the hyperpolarisation process begins with circularly polarised

resonant photons (normally D1 transition) whose angular momentum is trans-

ferred to the electron spin of the alkali metal in the presence of a weak magnetic

field (e.g. 30 G). This excites the Rb electron spins from the 52S1/2, m = −1/2

to the 52P1/2, m = +1/2 state as the angular momentum has to be changed by

∆m = +1 due to selection rules (Figure 2.2). Collisions will occur which lead

to depletion of the population. Repopulation of the required 52S1/2, m = +1/2

state will cycle until a steady state is formed, thus giving rise to electron po-

larised alkali metal vapour, which results in the alkali metal polarisation, PAM .

This is a balance between the rate of optical pumping, γOP (z,r), as a position of

z the depth into the optical pumping (OP) vessel (known as a cell) and r the

radial distance from the centre, and the rate of alkali metal spin destruction,

ΓSD [32].

PAM =
γOP (z,r)

γOP (z,r) + ΓSD
(2.5)

For optical pumping to create a high PAM we need γOP (z,r) � ΓSD. The rate

of optical pumping is defined as [33]

γOP (z,r) =

∫
Φ(z, r, v).σ0(v)dv (2.6)
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where Φ(z, r, v) is the amount of light flux at position (z, r) per unit of fre-

quency, (hence the need for high powered resonant lasers) and σ0(v) is the

frequency-dependent absorption cross-section of the alkali metal. Counteract-

ing this, the rate of spin destruction of the alkali vapour is [33],

ΓSD =
∑
i

kiSD.[Mi] (2.7)

which is the sum over all the collisions, kiSD which occur between the alkali

metal and a gas, i, combined with the number density, [Mi], of the particular

gas. Although some collisions are undesirable due to spin destruction, oth-

ers will transfer the polarisation from the polarised alkali metal electron to

the unpolarised noble gas nucleus. This occurs via Fermi contact hyperfine

interactions [34],

α
−→
S .
−→
I =

α

2
[S+I− + S−I+] + αSZIZ (2.8)

where α is the coupling constant between the nuclear spin and the electron

spin and is proportional to the probability of the two species being in the same

place. The element S+I− + S−I+ is known as the flip-flop term and governs

the process of polarisation transfer, which leads to a build up of a polarised

noble gas PNG given by [32]

PNG = PAM(z,r)

(
γSE

γSE + ΓNG

)
(1− exp[−(γOP (z,r) + ΓNG)t] (2.9)

where ΓNG is the spin destruction rate of the noble gas nuclei and is equivalent

to 1/TNG1 . The process of relaxation is mostly dependent on collisions with

the wall of the vessel. γSE is the spin exchange rate between the alkali metal

and the noble gas [33],

γSE = [AM ]cell

[
γAMNG

[NG]cell

(
1

1 + br

)
+ < σv >

]
(2.10)
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where [AM ]cell is the number density of the alkali metal vapour, γAMNG is

the spin exchange rate due to 3−body Van der Waals type interactions and

< σv > is the velocity averaged cross-section occuring in 2−body binary type

interactions. A discussion on Rb/129Xe spin exchange rates due to these two

different types of interactions is presented in a paper by Cates et al. [35]. The

value [33] br is governed by the pressure of both the buffer gas, pN2 and the

noble gas, pNG,

br = 0.275

(
pN2

pNG

)
(2.11)

In ideal conditions, with perfect polarisation transfer, the noble gas polarisa-

tion tends towards the polarisation of the alkali metal.

lim
t→∞;γSE�ΓNG

PNG → PAM (2.12)

2.1.5.1 Choice of alkali metal

Rubidium has commonly been used for optical pumping with 129Xe due to the

availability of lasers at the wavelength required. However, caesium is thought

to be a better prospect for spin-exchange. Due to its larger size (Cs has an

atomic radius of 235 pm and the radius of Rb is 216 pm, [38]), its electrons are

more easily spin-polarised and the process of spin-exchange to the noble gas

is more efficient. Shao et al. [39] measured the spin exchange rates for K, Rb

and Cs to be 0.031, 0.048 and 0.062 s−1 respectively under typical conditions.

Additionally, Cs has a much lower melting point [40], 28.4 ◦C, compared to

Rb at 39.3 ◦C, so lower oven temperatures can be utilised for spin exchange.

Furthermore, the vapour pressure, PV , of Cs is much greater than Rb (and

of K). At 25◦C, PV (Rb) = 3.92(20)x10−7 torr [30], PV (Cs) = 1.488(74)x10−6

torr [31], PV (K) = 9.75x10−9 torr [36]. Relative vapour pressure ratios for the
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Figure 2.6: Liquidus (red) and solidus (blue) curves for hybrid Cs-Rb. Open symbols
represent calculated values, closed are measured values. Liquidus and solidus are the points
at which the composition is completely liquid and solid respectively, the gap between the
two values are the melting interval where both states co-exist. Figure is adapted from
reference [37].
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alkali metals are shown in equation 2.13 and demonstrated in Figure 2.5.

PV (Cs)

PV (Rb)
≈ 3.8

PV (Rb)

PV (K)
≈ 30

PV (Cs)

PV (K)
≈ 114 (2.13)

A hybrid of alkali metals in the SEOP process was first proposed by Happer

et al. [41] in a USA patent in 2001, followed by experiments by Babcock et

al. [42] in 2003 examining K/Rb hybrid vapour with 3He. In 2007, Chen

et al. [43] compared the previous work of Babcock et al. to pure K SEOP.

Babcock et al. [42] used the knowledge that K/3He collisions are more ef-

ficient at polarisation transfer than Rb/3He collisions and thus a standard

Rb laser was used to optically pump, with the momentum being transferred

via collisions to K electrons and then onto 3He. Whiting et al. [28] showed

that with the use of frequency-narrowed high powered laser diode arrays, the

spin exchange rate of Cs-129Xe is 1.5 times higher that of Rb-129Xe. These

alkali metal hybrid principles were applied to Rb/Cs in our work, using a

standard Rb laser and exploiting the fact that the binary spin-exchange rate

coefficient1, κ, for Cs-129Xe is 1.6 times greater than Rb-Xe129. (At 9.4 T,

Jau et al. showed κ (Cs-129Xe) = (2.81 ± 0.2) x 10−16cm3s−1, [44] and κ (Rb-

129Xe) = (1.75 ± 0.12) x 10−16cm3s−1, [45].) For a hybrid mixture of Rb and

Cs, we have to consider the liquidus and solidus transition points instead of

melting points. This is due to the non-pure substance in which there is a

transition over which the melting occurs where both solid and liquid states are

present. These transition points are shown as a function of the percentage of

Rb in the alloy in Figure 2.6.

This argument is further forged by considering the spin-exchange cross sections

which are 1.2 times greater for Rb-Cs than Rb-Rb [46], as shown in Table 2.1.

In addition, the characteristic time for spin-exchange between non-identical

1The spin exchange rate coefficient, γSE , shown in equation 2.10 encompasses both the
2 body and 3 body interactions. The 2 body term is denoted separately by the binary
spin-exchange rate coefficient, κ.
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Table 2.1: Comparison of spin exchange cross section and time constants for Rb87-Rb87

and Rb87-Cs133. a data from Gibbs and Hull [46] and b data from Happer [5].

Alkali Metal Spin-exchange cross-section spin-exchange time
x 10−14 cm2 x 10−10cm3s−1

Rb87-Rb87 1.9±0.2 a 7.9±0.8 a

Cs133-Cs133 2.20±0.35 b

Rb87-Cs133 2.3±0.2 a 8.6±0.9 a

atoms (cross-exchange between Rb87-Cs133) is greater than the self-exchange

time between Rb87-Rb87, Table 2.1. These arguments suggest that hybrid

Rb/Cs SEOP with 129Xe is worth exploring.

2.1.5.2 Choice of noble gas

3He has been widely used for hyperpolarised noble gas applications due to its

large gyromagnetic ratio; 32.4338 MHz/T for 3He compared to 11.7769 MHz/T

for 129Xe, ref [20]. However, a downside of 3He is the worldwide shortage of the

gas which is such an issue that the US Department of Energy prepared a white

paper on it in 2009 [47] and the issue was presented before congress in 2010

[48]. The only method to produce 3He is via the radioactive decay of tritium

(3H (t1/2=12.3 years) → 3He + β), but this is in decline due to reductions in

the arsenal of stored nuclear weapons. Current users of 3He have two options:

set up recycling procedures to reuse the 3He that they have, or look for other

viable options.

Naturally abundant 129Xe is a good alternative to 3He, as despite it’s lower

gyromagnetic ratio which leads to a decreased magnetisation (equation 2.3)

the time required to polarise a sample is much reduced (from hours to min-

utes). In addition, 129Xe has a very large chemical shift range which enables it

to be used as an molecular probe in MRI. As a further advantage of 129Xe, it

is soluble in many solvents. Importantly, it dissolves in the blood stream and

a dissolved phase image can be obtained as well as a gas phase image in the
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Figure 2.7: Xenon polarisation, PXe, for various Xe partial pressures, pXe, under two
temperature regimes. Right axis shows PXe.pXe being increased with increasing Xe partial
pressure. Reprinted figure from [33] with permission from Elsevier.

lung. This allows the transfer of gas from the lungs to the blood through the

alveolar walls to be monitored, giving further diagnostic information.

Traditionally within the field, most groups use a low Xe density mix, for ex-

ample the commercial GE clinical polariser generally uses a 1% Xe, 10% N2,

89% He composition, [49]. The reason for working at low Xe densities is due

to the 129Xe-129Xe spin- destructing collisions which occur and are increas-

ingly destructive at higher densities. However, within our research group it

has been shown by Whiting et al. [33], Figure 2.7, that although the polarisa-

tion of 129Xe, PXe, is low at high partial pressures, pXe, the product of the two

components, PXe.pXe which is directly related to the magnitude of 129Xe NMR

signal, shows a previously unexpected upward trend. This has led to our group

collaborating in a consortium of researchers to build a polariser with near unity

polarisation at high Xe densities, [8].
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2.1.5.3 Choice of buffer gas

Nitrogen gas, and often 4He, are added to the noble gas and alkali metal mix-

ture within the OP cell as buffer gases. Both of these gases are added into the

vessel to pressure broaden the alkali metal absorption line; predominantly in

early work with broadband lasers high pressures of He were used for pressure

broadening, [32]. Nitrogen also has a second use of quenching undesired al-

kali metal fluorescence. This violet emission (421 nm, 6P to 5S) was visually

shown for Rb/129Xe by Saha et al. [50]. This emission would be harmful to

the overall polarisation as it is omni-directional and unpolarised. With little

or no nitrogen gas, energy pooling occurs in a collision of two Rb atoms such

that their energy is shared with one having a higher energy and the other

returned to its ground state. 421 nm light is emitted when the highly excited

Rb relaxes back to its ground state. The authors also noted other emissions

at various wavelengths and degradation of the optical cell coatings, leading to

a lower PXe. In the studies in this thesis, experimental work includes a variety

of binary (129Xe/N2) mixtures, always using >500 torr N2 to prevent radiative

relaxation processes occuring.

Due to the ability of nitrogen gas to non-radiatively de-excite the alkali metal

transitions, it can be used to examine the gas temperature within the OP

cell. This has been studied by Walter et al. [51] who found that for an outer

cell temperature of 100◦C and 15 W of broadband laser light, the nitrogen

ro-vibrational temperature was greatly elevated using in-situ Raman measure-

ments, with 4He as a buffer gas. This thesis builds on these data using high-

power frequency-narrowed lasers and we will obtain temperatures without 4He,

i.e. only using N2 and Xe.
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2.2 Hyperpolariser technology for 129Xe

129Xe can be produced using a hyperpolariser (also known as a polariser), us-

ing two different methods. The first is a continuous flow design where a lean

xenon gas mix is flowed through an optical pumping cell (with buffer gases) at

a fixed flow rate. Upon exit from the polariser the polarised gas can either flow

directly to an experiment or it can be frozen and accumulated for later use.

The second method is known as batch mode where xenon along with the buffer

gases are heated inside an oven with optical pumping by a high power laser.

Upon reaching steady state polarisation, which can occur within minutes to

tens of minutes, the cell is cooled and then the gas is moved out of the cell.

Along with the different gas flow mechanisms, there are two different pressure

regimes resulting from two types of spin-exchange collisions. Rb-129Xe col-

lisions can occur via sudden binary collisions which are 2-body interactions,

or by long-lived van der Waals molecules resulting from three-body collisions.

The 2-body interactions are pressure independent and dominant at high pres-

sures, whereas the three-body collisions are more efficient at Rb-129Xe spin

exchange and this dominants at low pressures.

The first continuous flow polariser was presented by Driehuys et al. [32] which

was later used as a prototype for the company Magnetic Imaging Technologies

INC (MITI) [52], which was taken over by GE Healthcare, currently the tech-

nology is available through Polarean [53]. Lean xenon mixes (e.g. 1% Xe, 10%

N2, 89% He) are used to reduce the Rb-129Xe spin-destruction which is a dom-

inant relaxation process at high pressures, [54]. However, low partial pressures

of xenon necessitate compression or cryogenics to obtain high magnetisation.

Xenon is generally separated from the buffer gases and accumulated as frozen

xenon to be sublimated for gaseous applications. The polarisation after an
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accumulation time, ta is dependent on the original 129Xe polarisation, PXe(0),

and the T1 of the solid xenon at a particular magnetic field, [32].

PXe(ta) = PXe(t0)
T1

ta
(1− e−ta/T1) (2.14)

Examples of various 129Xe polarisers utilising a continuous flow device have

been shown by Hersman’s group [55], Saam’s group [56] and Wild’s group [54].

Recent success in large-scale (∼1 l/hr) batch mode polarisers has produced

near unity polarisations at high xenon densities with an open-source design

by Nikolaou et al. [8]. This device builds on previous work by Whiting et

al. [33] who found surprisingly high xenon polarisations under conditions of

high xenon partial pressures, as shown in Figure 2.7. A consortium of hyper-

polarised xenon researchers collaborated to design and build an automated,

modular instrument known as XeNA - Xenon polarizatioN Automated. High

resonant photon flux of up to 200 W at the Rb D1 transition with xenon rich

gas mixes, produced xenon polarisations of 30-90% for 300-1600 torr xenon,

with nitrogen making up the total cell pressure of 2000 torr in a 500 cc volume.

One of the main advantages of batch mode collection is that it negates the need

for a cryogenic collection, this lessens the design complexity and removes the

losses in 129Xe polarisation caused by storage as frozen xenon and phase tran-

sitions. It was shown by Kuzma et al. [57] that rapid sublimination is required

as the T1 near the Xe melting point (161.4 K) is only 6 s. However, cryocol-

lection does aid in the removal of residual rubidium and reduces the likelihood

of it entering the sample collection vessel, accordingly in the batch mode col-

lection a Teflon filter is used in the transfer line. Full technical details of this

device are available in a report by Nikolaou et al. [9]. A second generation

129Xe polariser device built within the consortium is known as XeUS [58, 59]

and includes a 3D-printed oven which increases the simplicity of the integra-

tion and alignment of various components including the in situ NMR using
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Figure 2.8: Lung images acquired from a healthy volunteer showing the complementary
use of the three nuclei: 1H, 3He (red) and 129Xe (blue). Reprinted figure from [60], with
permission from RSNA.

3D-printed coil formers, laser alignment, optics holders for retro-reflection, op-

tomechanical alignment, OP cell valve holders. In addition, the device has a

thermo-electric temperature control unit, in situ near-IR spectroscopy and is

fully automated. Incredibly high xenon polarisations of 74 ± 7% were moni-

tored with a high xenon partial pressure of 1000 torr in a 500 cc cell. These

high xenon partial pressures provide high magnetisation for a multiple of dif-

ferent applications across many fields incorporating preclinical, clinical, and

materials magnetic resonance spectroscopy and imaging.

2.3 Applications of hyperpolarised noble gases

Hyperpolarised noble gases have been used for a variety of applications, a brief

selection of which are discussed here. The most popular is in vivo lung imag-

ing. As mentioned in Chapter 1, Albert et al. [7] presented the first reported

image of 129Xe in lung tissue in 1994. Since then there have been many studies

of lung disease, using both 3He and 129Xe. In recent years, Wild et al. [60]

has presented work enabling the acquisition of 1H, 3He and 129Xe images si-

multaneously to enable co-registration from a 1H image, diffusion information

for the different hyperpolarised nuclei and an image of 129Xe dissolved into

the blood stream due to its solubility and large chemical shift range. This
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provides complementary structural and functional data. Driehuys et al. [61]

discussed the tolerability and safety of 129Xe as a probe for lung diseases whilst

performing MRI within a 16 second breath hold. It was found that no serious

adverse events resulted and no significant changes in vital signs were observed,

although the majority of subjects did experience some mild short-lived symp-

toms such as dizziness. Another emerging translated methodology from the

chemical to medical field is the use of caged xenon, which allows the user to

have a targeted biosensor due to the chemical shift of 129Xe and its ability to

act as a host. Work in this area has been recently reported by Klippel et al.

[62] where the possibility for a highly sensitive tracer is discussed.
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Chapter 3

Experimental methods for

probing a low-field 129Xe system

3.1 Introduction

This chapter describes the experimental methods used in the majority of this

thesis. Details are provided here of the optical pumping cells, the alkali metal

and gas filling process, and the lasers. In addition, approaches utilised for low

field NMR spectroscopy, optical absorption and for measuring in cell buffer

gas temperatures with Raman spectroscopy are discussed.

3.2 Optical bench setup

3.2.1 Optical pumping cells

For the majority of experiments reported here, a new design of optical pump-

ing cell was used, Figure 3.1. It is based on a Rosen style cell [63], but with

adaptations described below to allow for ease of access to the oven [10]. The

inner cell used for SEOP is ∼167 mm long and ∼20 mm in diameter and is

made from Pyrex glass. It is held in a Pyrex glass cylinder with Chemglass
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Figure 3.1: Optical pumping cell photograph (a) and schematic (b) used for the majority
of experiments in this thesis. The design is a Pyrex cylinder measuring ∼167 mm long,
∼20 mm diameter with flat end windows for the pump beam to traverse through. An
open-ended Pyrex outer jacket in combination with Teflon window mounts creates a hot
air oven. This cell is a modification of a design by Rosen et al. [63].

(a) (b)

Figure 3.2: Teflon window mounts referred to in Figure 3.1 are shown here mounted onto
the glass cell (a). These create an oven outside the sealed reaction vessel containing the
alkali metal and noble gas. The anti-reflective coated windows are removable (b) in order
to allow for ease of alkali metal distribution by a heat source.

Figure 3.3: Surface coil mounts which allow measurement of 129Xe polarisation at different
positions, generally front, middle and back of the OP cell
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Chem-thread #7 valves to allow the cell to be loaded by a pipette method.

The open outer cylindrical vessel allows for the surface NMR coils to be placed

immediately adjacent to the inner cell containing the SEOP components. The

surface NMR coils are placed on a mount which can be slid into the oven

space and has holes to allow air flow through the vessel, Figure 3.3. The oven

is formed by using Teflon mounts, Figure 3.2, which can hold anti-reflection

coated windows. A layer of foam is applied between the Teflon mounts and

the glass to allow for thermal expansion of the two materials. The removable

window mounts also enable the distribution of the alkali metal by use of a hot

air blower which can heat the flat ended windows of the inner oven to prevent

deposition onto the windows where the laser would penetrate.

Optical pumping cells are prepared by first placing them into a base bath

solution of potassium hydroxide and methanol to clean the glassware. This

process is followed by a rinse with distilled water. The cell is then placed into

a solution of 1:1 distilled water and methanol in a sonic bath for one hour.

Finally, the cell is rinsed with methanol to remove traces of water. Once the

vessel is dry, a solution of SurfaSil is applied to the internal surface of the

inner cell walls as a coating to reduce the wall relaxation in the SEOP process

[64, 65]. This consists of a series of washes starting with hexane then a solution

of 15% SurfaSil with hexane. This is repeated three times, finishing with a

rinse of hexane and a separate methanol rinse to remove any uncoated SurfaSil.

It was shown by Zeng et al. [64] that a silicone coated pyrex cell increases the

T1 to about 20 mins from the order of tens of seconds in a non-coated cell.

The reasons for this reduction in 129Xe surface relaxation were discussed by

Driehuys et al. [65] where various mechanisms were presented including the Xe

being absorbed on the coating surface with a large energy barrier that hinders

its escape.

27



CHAPTER 3. EXPERIMENTAL METHODS FOR PROBING A
LOW-FIELD 129XE SYSTEM H.L. Newton

After a drying process, the cell is prepared for alkali metal filling. First the

vessel is evacuated using a rotary and turbo pump to the 10−5 torr range and

then transferred into a controlled environment cabinet with oxygen levels less

than 10 parts per million (ppm) and water levels less than 2 ppm. Alkali metal

is heated in its ampule or a Schlenk tube (which is used as a storage vessel

from previous cell fillings) and then pipetted into the OP cell through one of

the Chem-thread valves. Once the alkali metal has solidified it can be removed

from the controlled environment cabinet and then the gas filling preparation

can be undertaken.

Following a cell filling procedure, any materials with alkali metal on it needs

to be thoroughly cleaned to prevent adverse reactions taking place. A mixture

of tert-butanol with a small quantity of methanol (to keep the tert-butanol in

liquid state) is used to dissolve left over alkali metal in a safe manner within

a controlled environment cabinet.

3.2.2 Gas loading

In initial experiments in section 4.2 and 6.1, the cell was moved from the op-

tical table to a separate gas loading manifold in order for gas loading to take

place. However, it was noted that time-consuming laser alignment would need

to take place after each gas loading on the separate rig, to aid reproducibly.

It was therefore decided to implement an in situ gas loading which could take

place on the optical table without the need for realignment of the laser, thus

improving reproducibly of multiple gas mix filling. This method was used in

Chapter 5 and sections 4.3 and 6.2.

The gas loading procedure, Figure 3.4, begins with evacuation of the cell to the

mid 10−5 torr range and heating of the alkali metal to remove any dissolved
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Figure 3.4: Schematic and photograph of gas loading manifold for Xe, N2 and He. The
numbers in the photograph refer to the various pressure gauges shown in the schematic. In
(b) the rough and turbo pumps are below the table. The OP cell is on the optical table for
in situ loading.

gases that may have been trapped during the pipette method. After the cell

has cooled and been re-evacuated using first the rough pump to ∼ 10−3 torr

and then the turbo pump to ∼ 10−5 torr, measured using pressure gauge 1

shown in Figure 3.4, the gas rig can be prepared for filling the OP cell. This

comprises several steps. Initially the lines are evacuated and then the Alltech

OxiClear disposable purifiers (AT8864) are filled for the first two gases to be

loaded. The OxiClear purifier has two uses; primarily it acts to remove O2,

H2O and organic substances to parts per billion (ppb) levels, second it acts as a

storage vessel for the gas, such that the gas cylinder is closed when performing

a load into the OP cell. The gas is loaded into the OP cell using the needle

valve to regulate the flow whilst monitoring the pressure using gauges 2 and

3. Two gauges are needed for the precision (gauge 2) of a low density gas e.g.

100 torr, but this gauge will not provide a reading above 1250 torr, as such

a coarse instrument (gauge 3) is needed to read up to the total cell pressure

used in the bulk of experiments of 2000 torr.

29



CHAPTER 3. EXPERIMENTAL METHODS FOR PROBING A
LOW-FIELD 129XE SYSTEM H.L. Newton

3.2.3 Lasers

After the cell was filled with a particular gas mixture, it was aligned to the

pump laser beam. The beam size was determined by a collimating optical

lens, Figure 3.5 and the cell was positioned to the centre of the Helmholtz

coils and the pump laser beam. Various pump lasers were used for the SEOP

experiment depending on the desired experimental procedure. For example,

in Chapter 6, Rb and Cs lasers were used, namely the QPC Ultra 50 and 100

Brightlock and Brightlase. The Brightlock lasers are frequency narrowed to

∼0.2 nm, whereas Brightlase lasers are relatively broadband at ∼2 nm. The

broadband and narrow band lasers were utilised in section 3.5.2 to examine the

difference in buffer gas temperature with spectral profile. The spectral profile

of the frequency narrowed laser can be shifted by the use of a water cooled

chiller plate to tune the centroid wavelength of the laser by ∼1 nm over the

region of interest around the alkali metal transition, Figure 3.6.

In addition, some experiments (section 6.1) utilised a flexible ∼ 30 cm long op-

tical fibre output from the pump laser (Figure 3.7(b)), whereas improvements

were made with the retention of a greater percentage of linear polarisation

when a short ∼ 5 cm solid fibre was utilised (Figure 3.7(a)), allowing a max-

imum amount of polarised laser light to reach the OP cell. After the pump

laser light leaves the fibre, it enters the collimating and polarising optics, Fig-

ure 3.5. Firstly, the beam is collimated to a 2.54 cm beam diameter which

then passes through the polarising cube, where linear polarised light (Figure

3.8(a)) of the correct orientation passes straight through, else it is deflected to

the beam dump. Subsequently, the vertically polarised light passes through

the λ/4 wave-plate at a 45◦ angle (Figure 3.8(b)), where it becomes circularly

polarised, Figure 3.8(c). This light then traverses towards the OP cell for

SEOP to occur.
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Figure 3.5: Schematic of the collimating and polarising optics used for SEOP. The thick-
ness of the line is a representation of the amount of light passing through the optic. Initial
experiments used a flexible 30 cm fibre from the pump laser to the collimating lens, this
lost a maximum of ∼ 30% of light at the polarising cube. The advent of the solid fibre
allowed the retention of a high quantity of polarised light exiting the laser and thus less loss
occurred at the polarising cube (less than ∼ 3%) as shown in this diagram.
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Figure 3.6: Spectral profile of frequency narrowed laser showing the tunable nature of the
array by utilising a water cooled chiller plate to vary the temperature, TLDA, of the laser
diode array (LDA).
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Figure 3.7: Annotated photograph of pump laser shown with a) short ∼5 cm solid fibre
and b) long 30 cm flexible fibre along with collimating/polarising optics described in 3.5.
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Figure 3.8: Optical waves describe the polarisation state of light. (a) A vertically polarised
wave has the electric field lines only propagating along one axis. (b) Light polarised at
45◦ has equal amplitude and phase for both vertically and horizontally polarised light. (c)
Circularly polarised light has a λ/4 phase shift of one electric field component relative to
its perpendicular component.
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3.3 Low-field NMR

3.3.1 Introduction

The first diagnostic technique for the SEOP experiments described herein,

is low field NMR spectroscopy. This is used to measure the polarisation of

129Xe nuclei. The introduction of the newly design optical cells described in

section 3.2.1 along with the coil mount shown in Figure 3.3, allow for the 129Xe

polarisation to be spatially probed at the front, middle and back positions.

3.3.2 Spin dynamics

For a nuclear spin of spin-1/2 (e.g. 1H or 129Xe), applying a magnetic field B0,

splits the energy levels into two sub levels of magnetic quantum number, mI ,

shown as +1/2 and -1/2 in Figure 3.9. As shown in Figure 3.9, the Zeeman

splitting energy level difference is

∆E = Eupper − Elower =
1

2
γ~B0 −

(
−1

2
γ~B0

)
= γ~B0 (3.1)

where γ is the gyromagnetic ratio of the nucleus as shown in Table 3.1.

For a spin system in thermal equilibrium, the population difference between

the spin states is shown to be [66]

N↑
N↓

= exp

(
−∆E

kT

)
(3.2)

where N↑ and N↓ are the populations of the upper and lower states respec-

tively, k is the Boltzmann constant and T is the room temperature in Kelvin.

The nuclear spin polarisation, Pthermal, is defined as the difference in spin po-
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Figure 3.9: Energy levels of a spin-1/2 nucleus with a positive gyromagnetic ratio (e.g.
1H) in a magnetic field. Note that for a system with a negative gyromagnetic ratio (e.g.
129Xe) the magnetic quantum number, mI , is positive for the upper state and negative for
the lower state.

larisations [67]

Pthermal =
N↑ −N↓
N↑ +N↓

≈ ∆E

2kT
=
γ~B0

2kT
(3.3)

3.3.2.1 Polarisation Calculation

The polarisation of a hyperpolarised xenon sample can be calculated by com-

parison with a proton sample by keeping the precession frequency constant and

varying the B0 by the gyromagnetic ratio of the nuclei, Table 3.1. Keeping

the precession frequency constant has other additional advantages, as the Q

factor and gain of the coil would vary with frequency and would complicate the

calculations. In experiments shown here B0(1H) = 8.4 G, B0(129Xe) = 30.2 G

and the frequency was 36.3525 kHz. The proton sample, in an optical cell,

was doped with 10 mM of CuSO4, equating to ∼ 0.11 g in an optical cell with

Table 3.1: Nuclear Spin Properties from ref [20]

Nuclide Gyromagnetic ratio, γ /MHzT−1 Natural abundance
1H 42.5759 0.99985

129Xe 11.7769 0.2644
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a volume of 68 ± 2 cm3. This concentration gave a T1 of 0.149 ± 0.002 s at

Earth’s field [68] which is similar to the T1 experienced at 8.4 G. This allows

for a lower repetition time than that required for pure water, given a T1 of ∼

3-4 s and the need for approximately 5 times the T1 for full relaxation back

to thermal equilibrium after application of an rf pulse. The proton molar con-

centration, cH is 111.12 M, which is derived from utilising the molar mass of

water (18 g/mol) for 1 litre (1000 g) of water, with the factor of two deriving

from H2O, i.e. 2 parts of hydrogen in every water molecule.

cH = 2x
1000 g

18 g/mol
= 111.12 M (3.4)

The molar volume of an ideal gas at 1 atmosphere of pressure at 0◦C is known

to be 22.414 L/mol as shown in equation 3.5 utilising the ideal gas law.

Vm =
V

n
=
RT

p
=

8.314 Jmol−1K−1 x 273 K

101.325 kPa
= 22.414 Lmol−1 (3.5)

Given the definition of the molar volume, the concentration of xenon, cXe is

calculated from

cXe =
βXe
Vm

pXe
p760

T273

TXe
(3.6)

where βXe is the natural abundance of xenon as shown in table 3.1, pXe is the

pressure of xenon loaded in the optical cell, p760 is the pressure of 1 atmosphere,

i.e. 760 torr, T273 is 0 ◦C as defined above and TXe is the temperature at which

the xenon gas is loaded into the cell. Combining the elements described above,

a polarisation enhancement factor, εenhance can be calculated to determine the

enhancement of the hyperpolarised xenon signal compared to the thermally

polarised proton signal. This is similar to the equations set out in Ruset’s

PhD [69].

εenhance =
cH
cXe

sin(αH)

sin(αXe)

γH
γXe

SXe
SH

(3.7)
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where αH and αXe are the flip angles for proton and xenon respectively as

described in section 3.3.5.1, SXe and SH are the signal intensities of the xenon

and proton samples respectively. A compensation factor for T∗2, C∗T2 , is intro-

duced to take into account loses in NMR signal due to the acquisition delay,

Taq, and T∗2, see the SI of ref [59] for further information on this effect.

C∗T2 = exp

(
TaqXe

T ∗2Xe

− TaqH
T ∗2H

)
(3.8)

Combining equations 3.3, 3.7 and 3.8, the xenon polarisation, PXe can be

calculated.

PXe = εenhance.C
∗
T2
.Pthermal.100 (3.9)

The largest error in the system is generally due to the proton spectrum signal to

noise. The error on hyperpolarised (HP) Xe polarisation is therefore calculated

from the reciprocal of the signal to noise ratio of the proton spectrum, equation

errorHP =
1

SNR
∗ PXe (3.10)

3.3.3 Low field 129Xe NMR methods

The requirement for a 129Xe magnetic field of ∼30 G was created by two coils

with an inner diameter (ID) of 81.28 cm placed into a Helmholtz configuration

with 179 turns each, powered by a Sorenson XG80-21 programmable power

supply unit, Figure 3.10(a). Calibration with a Gauss meter to measured the

field at various currents supplied by a power supply, Figure 3.10(b). This

field provided a resonant frequency for 129Xe of ∼36 kHz, and this was the

probe frequency generated by a Magritek Kea2 and delivered to surface coils

(2.54 cm diameter) with 350 turns. A simple pulse and acquire sequence was

used as shown in Figure 3.11. Pulse length and height are set along with the

acquisition delay between the pulse and the collection of the signal.
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Figure 3.10: a) SEOP apparatus utilising low-field NMR but without additional detection
methods such as in situ Raman spectroscopy. b) Calibration plot for Helmholtz Coils,
produced using a Gauss meter to measure the magnetic field at increasing current.
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Figure 3.11: Simple pulse and acquire NMR sequence used for low field NMR acquisitions
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3.3.4 Data analysis protocol

Subsequent to the pulse and collect NMR probe experiment, the data were

automatically saved utilising the Kea2 Prospa user interface feature. This

can then be implemented into a data processing program, which in this thesis

is Matlab, where the data were Fourier transformed from the free induction

decay (FID) and then plotted ±1.5 kHz either side of the probe resonant

frequency. Upon acquisition of a NMR spectrum, the peak maximum is taken

and then utilised to calculate the 129Xe polarisation present by comparison

with a reference thermally polarised proton peak.

3.3.5 Calibration of polarisation

3.3.5.1 Flip angle calibration

The flip angle needed for equation 3.7 is computed by sweeping through incre-

mental pulse durations and integrating the area under the peak at each point

and then fitting a sine curve to the resulting plot to calibrate the flip angle for

a set pulse duration. For the proton calibration, Figure 3.12(a), 22,464 scans

were performed with 100 steps in increments of 4 µs, to determine a 90◦ pulse

at ∼81 µs. This was implemented using a Magritek Kea2 NMR spectrome-

ter with the Pulse Duration Sweep program. The repetition time was 0.5 s.

The xenon flip angle calibration was performed manually using a pulse acquire

program on the Kea2 NMR spectrometer, Figure 3.11. Following a 10 minute

build up of hyperpolarised xenon in an optical cell, the pulse sequence was

applied. Subsequently the remaining signal was killed using crusher pulses.

Figure 3.12(b) shows a 90◦ pulse is equivalent to ∼260 µs pulse duration. The

difference between the two 90◦ pulse durations acquired for 1H and 129Xe is

due to the ratio of the gyromagnetic ratios, Table 3.1. At greater flip angles,

an asymmetry of the flip angle calibration peak is observed. This is due to the
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Figure 3.12: Flip angle calibration for proton (a) and xenon (b). A 90◦ pulse is obtained
using a 81 µs and 260 µs pulse for 1H and 129Xe respectively.

experiment being performed on a surface coil with a small volume of interest,

hence the 90◦ flip only occurs at one location whereas the signal is present in

a larger volume.

3.3.5.2 Acquisition of reference signal

The reference proton NMR spectrum was acquired by averaging over 950,400

scans on a 10 mM CuSO4 doped water sample, Figures 3.13(a), 3.13(b). The

pulse duration used was 77 µs equating to ∼ 86◦ pulse, a 0.5 s repetition time,

36.3525 kHz frequency and 5 µs acquisition delay. A spectral width of 50 Hz

and 4096 complex data points were acquired, resulting in an acquisition time

for each FID of 81.92 µs. The same parameters were used for xenon, however,

a single pulse of duration 200 µs was employed for this sample, Figures 3.13(c),

3.13(d). In later experiments, it was found that 7200 scans could be used to

produce a proton signal with a signal to noise ratio which was sufficient for

polarisation calculations and could be run in one hour.

39



CHAPTER 3. EXPERIMENTAL METHODS FOR PROBING A
LOW-FIELD 129XE SYSTEM H.L. Newton

A
m

p
lit

u
d

e
 (
µ

V
)

Time (ms)
50250

0

-0.2

-0.1

0.1

0.2

0.3

-0.3

(a)

A
m

p
lit

u
d

e
 (
µ

V
/k

H
z
)

Frequency (kHz)

35.0 35.5

0.0

0.5

1.0

1.5

2.0

2.5

36.0 36.5 37.0 37.5

(b)

A
m

p
lit

u
d

e
 (
µ

V
)

Time (ms)
50250

0

100

200

-100

-200

(c)

A
m

p
lit

u
d

e
 (
µ

V
/k

H
z
)

Frequency (kHz)

35.0 35.5
0

500

1000

1500

36.0 36.5 37.0 37.5

(d)

Figure 3.13: a) and b) Proton reference FID and spectrum, signal averaged to be equivalent
to a single scan, acquired from 950,400 scans using a 10 mM CuSO4 doped water sample
using ∼86◦ pulse. (c) Single scan hyperpolarised xenon FID and (d) spectrum obtained
using ∼74◦ pulse.
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3.4 Optical absorption of laser light

3.4.1 Introduction

When light passes through the OP cell, it is absorbed by the rubidium electrons

via the process of optical pumping. The amount of optical absorption is a

direct measure of the quantity of rubidium vapour absorbers, due to polarised

rubidium being unable to absorb more light. Thus the Rb polarisation is also

indicated by this method, as shown by Nikolaou et al. in Figure 3 of ref [8].

3.4.2 Methods

An OceanOptics HR2000+ (or HR4000) fibre-coupled high resolution spec-

trometer was used to check the wavelength tuning of the lasers and to record

the optical absorption as a global quantity at a particular point in time. In

initial experiments, the data were manually saved using OceanOptics’ Spec-

traSuite program, at the same time as low field NMR spectroscopy data were

recorded. However with the addition of OceanOptics’ new software Ocean-

View, the user was able to set up for the spectrometer to automatically record

data at fixed time intervals for the duration of the experiment. For the later

experiments described in Chapter 5, data were recorded every 20 seconds for

30 minutes.

The optical absorption spectrometer fibre was positioned to collect reflected

light off a power meter situated behind the OP cell, Figure 3.14. The power

meter gives a second indication of the quantity of light absorbed and the two

techniques act as a verification of each other. The power meter will collect all

light without discrimination for wavelength and so is a global determination of

the light passing through the cell. The spectrometer can be tuned to accumu-

late pump laser light over a particular wavelength region, thus ignoring changes
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Figure 3.14: Power meter is situated directly behind the OP cell to measure the quantity
of light absorbed through the cell relative to a cold cell. The optical fibre collects pump
laser light scattered off the power meter into an Ocean Optics spectrometer, as a second
probe.

in the environment or any unlocked output from the laser at wavelengths away

from the region of interest.

3.4.3 Data analysis protocol

Upon acquisition of a full dataset of absorbed pump laser light, it was processed

using a computer analysis program (Matlab) where the data were imported

and then the region of interest selected. A percentage difference was calculated

between the integral of the data taken and the integral of a cold cell (20◦C)

spectrum and then the absorption was determined as a global measurement at

a specified time point.
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Figure 3.15: A molecule has three types of degrees of freedom: translations, vibrations
and rotations. For the case of nitrogen which is a simple diatomic molecule, there are 3
translations shown as x, y and z; 2 rotations as the molecule can rotate around a point
and 1 vibration which is a symmetric stretch. Note that the line shown between the two
nitrogen atoms represents the nitrogen molecule’s triple bond.

3.5 Measurement of N2 buffer gas

temperature

It has been shown by Walter et al. [51] that the temperature measured by the

thermocouple in the oven is not representative of the temperature of the gas

within the cell. For this reason, measurement of energy transport within an

optical pumping cell is a very important diagnostic tool. It was discussed by

Walter et al. that when optical pumping can be performed with little or no

4He as a buffer gas and with frequency-narrowed lasers, the topic of energy

transport should be revisited. In our research group, we have shown that bi-

nary mixes give high polarisations and that frequency-narrowed lasers can be

utilised to give increased laser absorption and 129Xe polarisations [70, 71]. The

reasons for these high polarisations is not fully understood and investigations

into energy transport may help to further the understanding of the SEOP pro-

cess.
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Within the SEOP apparatus shown in Figure 3.2(a), the outer glass cell of

the vessel forms an oven which is heated by a 400 W heat pipe and controlled

by a CAL9500 temperature control unit with a Pt100 temperature sensor at

the oven inlet positioned at the back of the cell. There is a second CAL9500

and Pt100 to monitor the oven temperature at the oven outlet near the front

of the cell. The rotational temperature of the N2 buffer gas, TN2 , can be mea-

sured using Raman spectroscopy and compared to the temperature recorded

via the thermocouple, Tcell. Nitrogen is the only gas in the SEOP cell able to

be used as a probe for Raman spectroscopy due to the its change in polarisabil-

ity making the diatomic molecule Raman active. A molecule is only Raman

active if it has a change in polarisability, α, upon application of an incident

electric field, E, leading to a dipole, µ, which is induced by interaction with

this linearly polarised radiation.

µ = αE (3.11)

This phenomena arises from how easily the electrons are able to be moved in

response to an external electric field. Nitrogen is a centrosymmetric molecule

and its degrees of freedom for a linear molecule are shown in Figure 3.15. It

has three translational degrees of freedom which are 3 vectors (x, y, z) in three

perpendicular directions, 2 rotations due to its ability to rotate both around

and about a point and 1 vibration arising from a symmetric stretch along the

triple bond.

3.5.1 Utilising Raman Spectroscopy to

calculate internal gas temperatures

Figure 3.16 shows a typical Raman spectrum acquired using the orthogonal

method described in section 4.2 with a long acquisition time to obtain good

SNR. The spectrum shows the Stokes and anti-Stokes spectral lines along with
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Figure 3.16: Full background corrected Raman spectrum acquired from 3 atm of N2 in
a Schlenk tube using the orthogonal method for probing and collection, acquisition time
of 360 s per detection window. Stokes lines are shown in red and have a gain in energy
upon return to the rotational energy level, anti-Stokes lines are shown in blue and have
an decrease in energy. Rayleigh lines are shown in green as they originate from elastic
collisions.
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Figure 3.17: Stokes Raman spectra showing the effect of equation 3.12 where the linear
increase in probe laser power causes a linear increase in Raman scattering intensity. In the
plot the spectra have been normalised for the probe laser power, with the 2.0 W spectra in
green and the 4.0 W in red. It can be seen that both spectra follow the same Boltzmann
distribution and thus the probe laser does not induce any noticeable heating. The rotational
transitions are shown for the nitrogen peaks with rotational quantum number J from its
initial to final state, the transition is referred to by its initial state.
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the corresponding energy level diagram. Both Stokes and anti-Stokes transi-

tions are inelastic, whereas Rayleigh transitions are elastic. The Rayleigh

transitions are much more intense than the Raman scattering, approximately

only 1 in 106-108 photons lead to Raman scattering. As such the intensity of

the Raman scattering needs to be improved and the Rayleigh scattering and

probe laser light needs to be reduced to prevent the light from flooding the

detector, this is especially important when energy levels close to the laser line

are trying to be detected as is the case in this thesis. There are two methods

for collecting Raman scattering, a 90◦ and a 180◦ geometry. The 90◦ arrange-

ment has light passing through the sample and then collected at 90◦ to the

probe laser through a different lens, whereas the 180◦ method involves light

passing through the same lens to and from the sample. Raman scattering oc-

curs uniformly in a spherically symmetric manner.

In combination with the two geometries, the intensity of the Raman lines can

be manipulated according to the knowledge of the theory of Raman scattering.

The intensity of the Raman scattering, Iscattering is dependent on the power of

the exciting laser, Plaser and the fourth power of the frequency of this source, ω

along with the square of the polarisability of the molecule [72], equation 3.12:

Iscattering = Plaser.α
2.ω4 (3.12)

The signal to noise ratio (SNR) can therefore be improved by increasing the

probe laser power or going to shorter wavelengths. The effect of increasing

laser power to increase SNR is shown in Figure 3.17; this also proves as a

demonstration that the laser is not heating the sample and artificially chang-

ing the temperature recorded via this method.

In order to calculate the rotational Raman temperature, the relative line in-

tensity, I(J), of a transition, J , is compared to the signal received by the
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spectrometer, S(J). A constant of proportionality, G, includes all the experi-

mental constants (as referred to by Walter et al. [51]) of a particular set-up,

including the volume of the nitrogen gas, cross-section of the transition, photon

scattering cross-section and intensity of probe beam.

S(J) = GI(J) (3.13)

The following derivation which originates from Hickman et al. [73] can be

exploited to extract temperature information from the nitrogen Raman spec-

tra. Firstly, we consider the relative line intensity equation for a ro-vibrational

spectrum from a J to J ′ state:

I(J) ∝ ν4nJPJ→J ′ (3.14)

where

nJ = g(2J + 1)exp

(
−BJ(J + 1)hc

kBT

)
(3.15)

and for Stokes scattering where the selection rule for the transition is defined

as ∆J = +2

PJ→J ′ =
3(J + 1)(J + 2)

2(2J + 1)(2J + 3)
(3.16)

where J is the rotational quantum number, ν is the frequency of the rotational

line (assumed to be constant over the range that we work in), g is the ground

state degeneracy due to nuclear spin, B is the rotational constant for N2 (∼

2 cm−1) [74] see Appendix A, c is the speed of light, and kB is Boltzmann’s

constant.

Starting from equation 3.14, the proportionality relation can be removed by

utilising a constant, for example C:

I(J) = Cν4nJPJ→J ′ (3.17)
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Figure 3.18: A sample plot of equation 3.27 from which the temperature of the nitrogen
gas, TN2 , can be calculated, where S(J) is the signal intensity of a particular line with
rotational quantum number J , f(J) is defined in equation 3.21.

If we make C = 1/G where G contains all experimental optical factors as

described above, then we arrive at equation 3.18.

S(J) = I(J)G = ν4nJPJ→J ′ (3.18)

From equation 3.18 we can substitute in equations 3.15 and 3.16.

S(J) = gν4(2J + 1)exp

(
−BJ(J + 1)hc

kBT

)
3(J + 1)(J + 2)

2(2J + 1)(2J + 3)
(3.19)

Cancelling out the (2J + 1) terms,

S(J) = gν4exp

(
−BJ(J + 1)hc

kBT

)
3(J + 1)(J + 2)

2(2J + 3)
(3.20)

Simplifying equation 3.20 using f(J),

f(J) =
3(J + 1)(J + 2)

2(2J + 3)
(3.21)

Following through we arrive at equation 3.26.

S(J) = gν4f(J)exp

(
−BJ(J + 1)hc

kBT

)
(3.22)
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S(J)

gν4f(J)
= exp

(
−BJ(J + 1)hc

kBT

)
(3.23)

ln
S(J)

gν4f(J)
=
−BJ(J + 1)hc

kBT
(3.24)

ln
1

ν4
+ ln

S(J)

gf(J)
=
−BJ(J + 1)hc

kBT
(3.25)

−J(J + 1)
Bhc

kBT
= ln

S(J)

gf(J)
+ 4ln

1

ν
(3.26)

It is possible to translate a spectrum of Raman peaks (Figure 3.16) into a

rotational temperature measurement, taking the peak heights, S(J) for six

even J Stokes line (J = 6, 8, 10, 12, 14, 16). Taking equation 3.26 with g = 1,

and comparing to the equation of a straight line, a plot can therefore be created

with a linear fit

J(J + 1) versus ln
S(J)

f(J)
(3.27)

enabling T to be determined as illustrated in Figure 3.18, with the slope equal

to Bhc/kBT .

3.5.2 Methods

In this thesis, two contrasting methods were investigated for measuring the ro-

tational temperature of the N2 gas using Raman spectroscopy. This has lead

to two publications within our research group by Newton et al. [11] and Whit-

ing et al. [10]. The two experimental setups will be discussed in more detail

in Chapter 4 with a brief overview only presented in this section. The probe

laser light has to travel through collimating optics and then onto the sample,

denoted by a star in Figure 3.19. When Raman scattering occurs at the sam-

ple it will uniformly distribute scattered light in a spherical arrangement in

all directions. Therefore, there is flexibility as to where the experimentalist
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Figure 3.19: Spatially variant setups for Raman spectroscopy. The star represents the
sample, the arrows denote the direction of light travel through the fibres, green is laser
input and red is the Raman scattered light. The boxes represent the optics needed for
expansion, collimating and beam separation. a) is a 90◦ arrangement, b) is a 180◦ inline
module where the same optics are used for transmitting and receiving light.

wishes to collect and detect this light. In one of two main methods of col-

lection, light is collected perpendicular to the probe laser beam such that the

laser is spatially filtered from the collection optics and doesn’t enter into the

spectrometer; this is easier than placing the detection optics behind the initial

optics as the spectrometer will be flooded with probe laser light and the less

intense Raman scattered light (compared to the Rayleigh and probe light) will

be hard to detect. This first method, Figure 3.19(a), utilises simple optics but

it difficult to spatially align due to sub-mm accuracy and may drift over time.

The second approach, which is self-aligning, leads to increased SNR due to

the pump and probe regions being identical as they follow the same optical

path which is not true for the orthogonal method, Figure 3.19(b). This enables

quick and simple alignment but expensive optics are needed to block the probe

laser light from re-entering the module and the spectrometer.

3.5.3 Data analysis protocol

This section aims to inform the reader about the process required to quickly

analyse data collected from a Raman spectrometer. Initially the data were

analysed manually using BioRad Knowitall for baseline correction, OriginPro
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Figure 3.20: Original data which have had a baseline correction programmatically applied,
followed by Gaussian fitting, giving a temperature of 26.1 ± 2.2◦C, for a measured cell
thermocouple temperature of 25 ◦C.

Figure 3.21: Data analysed using all the techniques reported in section 3.5.3: baseline
correction, oxygen peak removal using an evacuated cell spectrum allowing removal of
Raman scattering along the optical path and consideration of the transmission efficiency for
filters in the in-line module. A cumulative of these methods gives a calculated temperature
of 23.2 ± 2.5◦C, for the same spectrum shown in Figure 3.20 with a cell thermocouple
temperature of 25◦C.

51



CHAPTER 3. EXPERIMENTAL METHODS FOR PROBING A
LOW-FIELD 129XE SYSTEM H.L. Newton

for Gaussian fit to the Raman peaks and Microsoft Excel for temperature cal-

culations, but then the process was simplified and the processing time reduced

by automating this process in a Matlab program. In an experiment in which

a total of 93 Raman spectra, collected every 20 seconds over a 30 minute time

period, analysis could be completed in a few minutes rather than many hours.

The automation also allowed the inclusion of some other features such as the

removal of a scaled, shifted evacuated cell spectrum to eliminate the back-

ground oxygen peaks along the optical train of the inline module box and the

inclusion of the transmission efficiency of the filters within the in-line module.

The automation of the analysis of a Raman spectrum from a raw text file di-

rect from the spectrometer to a temperature result with its associated error is

described, including the steps of background correction and Gaussian fitting

of the even J value Raman Stokes spectral peaks. All examples shown in this

section are in the absence of spin-exchange optical pumping. The Matlab code

is performed following the series of steps shown below.

Following cosmic ray removal described in section 3.5.4.4, a correction is ap-

plied for the transmission efficiency of the filters supplied from Ondax:

corrected intensity =
(
−4 ∗ 10−9x2 + 8 ∗ 10−5x− 0.5201

)
∗ intensity (3.28)

where x is in wavenumbers relative to 532.21 nm as the central wavelength.

See Figure 3.21 for implementation of this filter correction. Next the data are

baseline corrected, similar to the process applied in BioRad Knowitall, but au-

tomated into the Matlab code. Four noise regions in the spectrum are located

and a line is fitted through these regions, this line is subsequently removed

from the spectrum, see left part of Figure 3.20.

When the inline module is utilised, a small amount of Raman scattering is

collected from the optical path as well as the focal point of the laser, due to
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atmospheric oxygen and nitrogen. The method for removing this is to collect

a Raman spectrum from a evacuated cell, ∼10−5 torr, which was acquired

over 30 minutes and averaged over two scans to remove cosmic rays. This

can then be compared to the data spectrum following baseline correction and

the optical path Raman spectrum can be removed. Slight spectral drift of the

spectrometer means that the two spectra need to be lined up, this is done

by the nitrogen peak locations being found in both the evacuated cell and

data spectra. A scaled evacuated cell spectrum is then produced by taking

the ratio of the peak heights of the oxygen peaks present in both datasets.

Subsequently a difference spectra is calculated from the data spectrum and

the shifted, aligned evacuated cell spectrum, see Figure 3.21.

A Gaussian fit is applied to the even J value N2 peaks in the difference spec-

trum using a non-linear least squares fit and the max peak heights are recorded.

The rotational temperature is calculated according to the equations in section

3.5.1. The error on the temperature is computed from the reciprocal of the

signal to noise of the data spectrum multiplied by the temperature.

3.5.4 Calibration techniques

3.5.4.1 Wavelength calibration of Raman

spectrometer

The wavelength of the Raman spectrometer was calibrated using an OceanOp-

tics CAL-2000 light source with a Hg/Ar high pressure gas discharge light. The

Hg/Ar source has many sharp peaks which are commonly used to tune an in-

strument to a particular wavelength. Several lines in the spectrum were chosen

as being close to the probe laser line (532 nm), these were 435.833, 546.074 and
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Figure 3.22: Calibration lines for a mercury argon source. Red lines denote lines used
for Raman spectroscopy calibration and the blue line is for the calibration of the optical
spectrometer for the pump laser light. Figure adapted from CAL2000 manual [75].

a pair of doublets at 576.960 and 579.066 nm, red lines in Figure 3.22. This

allowed the correct wavelength to be set on the spectrometer; a similar process

was also performed on the HR2000+/4000 spectrometers to ensure that the

correct wavelength for the Rb D1 transition was found, for example by using

the Hg/Ar peak at 794.818 nm, blue line in Figure 3.22.

3.5.4.2 Verification of in-cell temperature

Two thermocouples (Pt100) were placed into the SEOP oven with one in the

oven inlet to control the oven temperature and one in the oven outlet to mon-

itor the out-going air temperature. This allows the oven temperature gradient

to be measured, with the mean of these two values giving Tcell. The tem-

perature calculated from the Raman spectra, TN2 , was calibrated by varying

the temperature of the oven, Tcell, with no pump laser, i.e. no spin exchange

optical pumping taking place. Tcell was compared to TN2 , as shown in Figure

3.23. This shows a good correlation between the two values so no calibration

factor is needed.

54



CHAPTER 3. EXPERIMENTAL METHODS FOR PROBING A
LOW-FIELD 129XE SYSTEM H.L. Newton

25 50 75 100125150

25

50

75

100

125

150

T
N

2
  
- 

 R
a

m
a

n
 (

°C
)

 T
cell

 - Thermocouple (°C)

Figure 3.23: A calibration plot for TN2 and Tcell, this was repeated for front, middle
and back positions and repeated five times for each position. This demonstrates that the
temperatures recorded utilising the Raman spectrometer are reliable, due to a R2 value of
0.99.

3.5.4.3 Background spectra removal

The validity of removal of the air contribution along the optical path and oven

via the subtraction of a Raman spectrum acquired from an evacuated optical

cell is shown in Figure 3.24. It can be seen how the evacuated cell spectrum

peaks are programmatically aligned to the position of the peaks from the

data spectrum and the heights of the peaks are scaled proportionally. These

methods are further confirmed in Figure 3.25, where a residual plot is shown

for measurements at the front, middle and back of the cell and repeated five

times at each position. The dashed line shows the temperature recorded by

the thermocouple in the oven inlet and outlet (25◦C). The application of the

removal of the evacuated cell spectrum lowers the temperature deviation and

this is further lowered by the inclusion of the efficiency of the filters, such that

the accuracy of the temperatures increases with the implementation of these

additional analysis tools.
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Figure 3.24: a) Spectrally aligned and scaled evacuated spectrum with data spectrum. b)
Zoomed in version of (a).

Figure 3.25: Residual plot for 25◦C data spectra at 3 positions in cell front (F), middle
(M) and back (B), repeated 5 times at each position.
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Figure 3.26: A typical Raman spectrum shown with cosmic ray peaks highlighted in red.

3.5.4.4 Cosmic rays

High energy particles called cosmic rays are often detected with the charge

coupled device array detector (CCD). These manifest on a Raman spectrum

as a sharp peak or spike of high intensity counts as shown in Figure 3.26.

As they are distinctive from the Raman scattering peaks they can be easily

removed by cosmic filtering. Cosmic filtering is performed before any other

data processing and can be carried out by a variety of methods including using

in-built programs on the instrument computer which requires two successive

scans to be taken and the lowest intensity pixel being recorded, however, this

doubles the acquisition time needed for each scan, so neglects the ‘real-time’

nature of the experiment. We used a different cosmic filtering method in

which cosmic ray peaks are manually removed post experiment using an in-

built computer tool on the Horiba LabSpec program.

3.5.5 Temperature dependence of absorption

coefficient

In this section, the variation of absorption coefficient with temperature is ad-

dressed. It has been noted that as the temperature increases, the signal to
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Figure 3.27: Comparison of intensities and corresponding absorption coefficient with tem-
perature: a) 25◦C and b) 150◦C Raman data spectrum.
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Figure 3.28: Normalised relative absorption coefficient dependence with temperature
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noise drops, as the intensity of the Raman peaks decreases, as illustrated in

Figure 3.27.

The Beer-Lambert law describes the absorbance of a material [76–78],

I = I0exp(−k(ν)l)) (3.29)

where radiation of intensity I travels through a sample of length l with an

absorption coefficient, k which is a function of the wavenumber, ν. The total

strength of a transition is known [76] to be
∫
k(ν)δν, such that the sum of

relative Raman scattering cross-sections can be determined from the integrated

peak areas as discussed by Simonelli and Shultz [79]. They showed that as the

temperature of a sample increases (in their case an ammonia/water complex),

the cross-section of the transition decreases, this is shown in our experimental

data in the absence of spin-exchange optical pumping, in Figure 3.28.

3.6 Data reproducibility

It is imperative to ensure that experiments are reproducible. As a quality con-

trol, some experiments were repeated several times and analysed to compare

the data. It was noted that the data were comparable within experimental

error. A sample plot of this quality control is shown in Figure 3.29 where intra

cell reproducibility was tested by running the same experimental conditions

on the same cell. The open and closed symbols represent the two repeats and

it can be seen that the data agree within the spread of the error bars.
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Figure 3.29: Repeatability checks were carried out by performing the same experiment
several times on one set of experimental conditions, an example of which is shown here.
129Xe polarisation is denoted by red circles, power absorption measurement by blue dia-
monds, thermocouple temperatures by purple triangles, and TN2 by green squares. The
two experiments shown here are indicated by open and closed symbols; good repeatability
is shown within experimental error.

3.7 Summary

This chapter has laid out the theory and methods for the majority of experi-

ments performed within this thesis, including the processes required for loading

an optical pumping cell with alkali metal and gas along with the techniques

to probe the experimental parameters within a dynamic system. These in-

clude low field NMR spectroscopy, optical absorption using a power meter and

an optical spectrometer and Raman spectroscopy to measure the temperature

of the nitrogen gas within the cell. Raman spectroscopy will be discussed in

more detail in the next chapter where two contrasting methods will be debated

which have resulted in two publications for the author.
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Chapter 4

in situ Raman spectroscopy

geometries to probe in-cell

energy transport

4.1 Introduction

Energy transport within a SEOP cell is a useful quantity to examine as many of

the spin exchange and spin destruction terms have temperature, T , dependent

aspects. There is an expected T 0.3 dependence on the Rb absorption line

shift, asymmetry and line broadening which varies with Xe and N2 density

arising from the van der Waals model [80]. As the temperature within the

OP cell varies, the diffusion coefficients, viscosity and heat conductivity of

the various gases alter [81]. In addition, the alkali metal number density

will increase with rising temperature. Utilising the ideal gas law and vapour

pressure equations the Rb number density, [Rb] in units of m−3, as a function

of T can be computed [81–83]. The Rb vapour pressure, p, is valid in the range

from the melting point of Rb to 550 K according to Alcock [83].

[Rb] =
p

kBT
(4.1)

61



CHAPTER 4. IN SITU RAMAN SPECTROSCOPY GEOMETRIES TO
PROBE IN-CELL ENERGY TRANSPORT H.L. Newton

[Rb] =
109.318−4040/T

kBT
(4.2)

Wagshul and Chupp [84] found that the actual Rb number density varied by

about a factor of 2 from the predicted vapour pressure curves (Figure 2.5)

from apparent uniform temperature distributions, measured from a cell wall

thermocouple, Tcell. Fink et al. [81] showed numerical simulations of non-

uniform temperature and xenon polarisation distributions within the OP cell.

Consequently, Six et al. [82] proposed that the divergence between the theo-

retical and observed noble gas polarisations could be due to the temperature

not being well characterised between the internal gas temperature and Tcell.

Raman spectroscopy can be used to probe these energy transport consider-

ations by examining the ro-vibrational manifold of nitrogen, as discussed in

section 3.5. Walter et al. [51] showed that the temperature measured by a

thermocouple in the oven (Tcell) was not reflective of the gas temperatures

experienced during the OP process (TN2). In particular towards the end of

the paper, they noted that when optical pumping could be performed with

significantly good polarisation without the use of helium as a buffer gas and

with high powered frequency-narrowed lasers, the topic of energy transport

should be revisited.

In addition to the work carried out by Walter et al., Fink et al. [81, 85]

have performed simulations and experimental comparisons of transport pro-

cesses in SEOP experiments. Oven temperature, xenon and nitrogen density,

and laser power were varied as key hyperpolarisation parameters, particularly

interesting is the spatial distribution maps presented in [81] which show the

convection patterns of the spin polarisation that occur at increasing tempera-

tures.
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(a) (b)

Figure 4.1: Schematics of the two contrasting Raman arrangements, a) a simple orthogonal
set-up utilising spatial filtering with two modules which have to be a set distance from each
other at a 90◦ geometry. b) Optical filters are utilised to remove Rayleigh scattering and
laser reflections, thus enabling an in-line module with a 180◦ collection geometry.

Evidence of laser heating was also shown by Parnell et al. [86] via the use

of NMR diffusion gradients. This gave a method to examine the temperature

and pressure of the gas during 3He SEOP, the authors describe the additional

challenges required to perform the same treatment on 129Xe SEOP due to the

lower gyromagnetic ratio resulting in a decreased NMR sensitivity and the

lower diffusion coefficient of 129Xe necessitating stronger NMR gradients.

This chapter builds on the discussion presented in section 3.5.2, where two

contrasting methods for exploring Raman spectroscopy were presented in Fig-

ure 3.19. Firstly a 90◦ optical Raman arrangement will be discussed, Figure

4.1(a). Followed by a 180◦ optical Raman instrument which was designed in

collaboration with Ondax Inc., Figure 4.1(b).

4.2 90◦ Optical Raman Arrangement

The work in this section is a manuscript in preparation for submission [10],

with the author of this thesis being a co-author of this work.

Following on from the work by Walter et al. [51], our initial Raman stud-

ies utilised a 90◦ set-up as shown in Figure 4.2. The orthogonal arrangement
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Figure 4.2: Photograph of the orthogonal set-up showing the position of the excitation
and detection modules and the struts required to hold them in place.

consists of two modules placed at 90◦ to each other, one module is for exci-

tation and the other for detection of Raman scattered light, Figures 4.2 and

4.3. The two modules have several purposes, firstly they were used to support

fibre collimation. In addition, one unit houses a lens to focus the 532 nm 5 W

probe laser light (Verdi V5 Coherent) onto a point inside the OP cell, whilst

the second unit collects the scattered light through a lens which then travels

to the Raman spectrometer (Horiba-Yvon U1000) for analysis. The U1000

Raman spectrometer, Figure 4.4, is a double additive monochromator with a

long 2 x 1 m focal length and ultra high spectral resolution, this allows for

Stokes and anti-Stokes line to be obtained close to the laser line.

Translational stages are positioned beneath both modules to enable optical

alignment to less than 1 mm accuracy. These two modules act as spatial fil-

tering, as the probe laser light is not directly collected. However, reflections

and Rayleigh scattering will be detected, accordingly a second layer of filter-

ing is applied at the spectrometer. Upon entry into the Raman spectrometer,
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Figure 4.3: a) Schematic of orthogonal set up, with b) corresponding photograph in situ
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and d) a temperature calibration curve for Tcell and TN2 . Figure adapted from ref[10].

Gratings

Baffles

Figure 4.4: Illustration of a double additive monochromator for a U1000 Raman spec-
trometer. The gratings can be seen which disperse the light. The baffles are used in the
90◦ method to remove the probe laser light as a physical filter by blocking the light. Figure
from ref [87].

65



CHAPTER 4. IN SITU RAMAN SPECTROSCOPY GEOMETRIES TO
PROBE IN-CELL ENERGY TRANSPORT H.L. Newton

Figure 4.5: Photograph showing experiments performed using the 90◦ arrangement on a
Schlenk tube containing 3 atm of N2. This was used to obtain optimum performance of
the Raman spectrometer for testing out protocols.

the light is diffracted and thus physical blocks known as baffles between the

two stages can be used to block out the probe laser light and prevent it from

reaching the CCD detector, Figure 4.4. This results in a Raman spectrum

from either the Stokes or anti-Stokes scattering. Figure 4.3(c) shows a base-

line corrected Raman spectrum acquired from initial experiments performed

on a sample of 3 atm of N2 held in a Schlenk tube, Figure 4.5 over a time

period of 360 s per acquisition window, ∼100 cm−1. Due to the baffles within

the spectrometer this spectrum was performed from two separate acquisition

windows, the first window was to remove the probe light and the anti-Stokes

lines. The second was to remove the probe light and the Stokes scattering,

this resulted in a cumulative spectrum as shown in Figure 4.3(c).

After initial optimisation of the 90◦ method with the Schlenk tube, a temper-

ature calibration was preformed under conditions of no spin exchange optical

pumping, as discussed in section 3.5.4.2. Experiments were performed by

heating the oven air to set temperatures, Tcell, and then comparing with the
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calculated N2 temperatures recorded from the Raman spectra, TN2 . This was

repeated five times at three locations across the SEOP cell to ensure repeatabil-

ity. A sample plot is shown in Figure 4.3(d), good agreement is seen between

the surface thermocouple measurements, Tcell and TN2values. Following on

from the optimisation and calibration, SEOP experiments could be performed

using this set-up. These include effects of PXe and TN2 which were studied

for different Xe/N2 gas mixtures and laser power; longitudinal position within

the OP cell on PXe and TN2 ; and polarisation build up curves over time with

varying Tcell.

4.2.1 Experiments performed using

90◦ Raman arrangement

Several experiments were performed with the orthogonal Raman arrangement

with a ∼70 W, ∼0.25 nm full width half maximum (FWHM) tunable frequency

narrowed Rb D1 laser. In situ 129Xe polarisation and TN2 were monitored dur-

ing studies. Due to the forced air oven being heated from the back and the

removable windows creating heat loss, a temperature gradient across the cell

was experienced of about 30-40◦C. In experiments described here, Tcell refers

to the rear thermocouple in the oven inlet.

In situ monitoring of PXe and TN2 on a comparison of Xe/N2 gas mix ratios was

explored for different laser powers, Figure 4.6. Increased laser powers led to

elevated 129Xe NMR signals, this is indicative of the current setup being laser-

power limited for Pmax. For the three gas mixes: 100/1900, 500/1500, 1500/500

torr of Xe/N2 respectively, corresponding trends of increasing TN2 measure-

ments are observed. The highest gas temperatures of ∼650 K are detected

at the highest Xe partial pressure. These elevated results were detected after

only 5 minutes of SEOP and are greater than 200 K above the Tcell value. A
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simple explanation of this would be from increased laser power and therefore

increased absorption. However, with further insight, it can be shown that this

effect may arise from the decreased N2 partial pressure and therefore a greater

amount of energy per N2 gas molecule absorbed. Furthermore, Xe has a lower

thermal conductivity than N2 (Xe: 0.7; N2: 3.09; x 10−2 Wm−1K−1), and

thus in a high Xe density mix, energy is more slowly dissipated onto the cell

walls. Despite high TN2 values at the high Xe partial pressures, which may be

expected to be detrimental to 129Xe polarisations and organic wall coatings,

the highest NMR signals intensities (pXe.PXe) were observed with this gas mix.

The centroid laser wavelength was varied around the Rb D1 transition using

the temperature tunability of the LDA to examine the effect of the 129Xe NMR

signal and TN2 , with a gas mixture of 1500 torr Xe and 500 torr N2, Figure

4.7. In addition, the longitudinal position of the 90◦ Raman arrangement and

the NMR coil position was varied to allow measurements to be collected from

the front, middle and rear of the OP cell. After only 5 minutes of optical

pumping, internal gas temperatures were elevated by ∼220 K above Tcell. The

highest NMR signal (which is proportional to the PXe) and TN2 were observed

at the rear of the OP cell. This could be due to the forced air oven heating the

cell from the rear and therefore a Tcell gradient is expected, this would subse-

quently cause a [Rb] gradient and thus increased laser absorption and TN2 at

the rear of the cell. Uneven cell heating would likely lead to a non-symmetrical

distribution of energy transport and mass flow and thus a change in convection

flow patterns, [81]. This may be able to be an advantage though, as uneven

cell heating may help to reduce Rb runaway effects, as discussed by Witte et

al. [88]. The profile shown in Figure 4.7 shows the asymmetric broadening

exhibited on the Rb D1 transition, as described by Romalis et al. [80].

In another example of the 90◦ Raman arrangement, the TN2 and 129Xe NMR
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signals were monitored over a longer time period (30-40 minutes), Figure 4.8,

with a gas mixture of 1500 torr Xe and 500 torr N2. Dramatic changes in the

PXe and TN2 were observed with only ∆Tcell=30 K where the system changes

from steady state (Tcell=383 K) to Rb runaway effects (Tcell=413 K). Under

steady state conditions, the TN2 quickly plateaus and remains at a constant

temperature throughout the 40 minute experiment. This corresponds to a

steady build up in polarisation and a nearly constant laser absorption profile.

Raising Tcell to 413 K creates an contrasting performance profile within the

SEOP dynamics. Within 15 minutes, temperatures are driven to ∼1000 K,

which is elevated almost 600 K above the set Tcell value. A steep rise in the

NMR profile is observed within the first 10-12 minutes with a fast build up

rate. After Pmax is reached, a drop in 129Xe polarisation is detected with in-

ternal gas temperatures simultaneously dropping slightly and then fluctuating

over time. This seems to be indicative of Rb runaway, [33, 89, 90], where a

high gas temperature leads to an elevated cell wall temperature, where the

gas is in contact with the Rb droplet and therefore the Rb number density
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increases. Increased turbulence is created within the cell. This effect is seen

more at higher Xe densities gas mixes due to the reduced Xe thermal conduc-

tivity compared to buffer gases and hence its diminished ability to transfer

heat to the cell walls for dissipation.

The examples shown here have shown that internal gas temperatures can be

elevated much above the cell wall temperatures, for example, for a surface

temperature of ∼400 K, the internal gas temperatures are raised to around

1000 K. These heightened temperatures are seen most prominently at high

laser powers, long SEOP time periods, on resonance and slight red-shiftening

of the laser centroid wavelength relative to the Rb D1 absorption transition and

high xenon densities. These effects might not be too dramatic for a continous

flow polariser due to the low average gas residence time within the OP cell

and the typically low xenon partial pressures utilised. Nonetheless, the effects

shown here will be highly relevant to batch mode/stop flow polarisers, due to

long average gas residence times, particularly when high xenon (or other heavy

gas) partial pressures are used.

4.3 180◦ Optical Raman Arrangement

This work in this section has been published by Newton et al. [11]. This inline

module was designed in collaboration with Ondax Inc.

The work described in section 4.2 has provided a useful insight into the en-

ergy transport dynamics and how the internal gas temperatures can help to

provide more understanding into the SEOP process. Despite achieving this

useful information, the signal to noise ratio of the Raman spectra was low and

hence the resulting errors were large on the TN2 values. Sub-mm3 accuracy is

needed to align the focal points of the excitation and detection modules which

leads to labour-intensive set-up and over time the system is prone to drift.
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thermocouple and Raman measurements. This figure is comparable to Figure 4.3 for the
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The conventional orthogonal arrangement used a combination of intrinsic spa-

tial filtering and the internal baffles of the Raman spectrometer to block the

probe laser light and the Rayleigh scattering. A new in-line module has been

developed which has a ∼23 fold improvement in detection sensitivity leading

to faster data acquisition and more accurate real-time monitoring of energy

transport.

The 180◦ method incorporates optical filters to suppress the probe laser light

and allow the weak Raman lines only a few wavenumbers away from the probe

laser to be resolved. As shown in Figure 4.9(a), the Raman excitation and

detection occur along the same optical path, as such once the module has

been aligned, it does not require any future adjustment. Two Ondax Sure-

Block ultra narrow-band notch filters are included in the module. The angular

tunability of the notch filters greatly attenuates background scattered light, al-

lowing ultra-low frequency Raman spectroscopy to be performed, Figure 4.9(c).

Moser and Havermeyer [91] showed that combining several reflective volume

holographic gratings together with different slant angles could lead to a filter

with an optical density of 4 and a transition width of ∼10 cm−1. In addition,

there is one Ondax NoiseBlock ASE filter (Amplified Spontaneous Emission).

This serves two purposes, firstly, on the pathway towards the cell (shown in

green, Figure 4.9(a)) it will transmit to the beam dump: laser sidebands, spon-

taneous emission from laser diodes and fibre-induced fluorescence resulting in

a single frequency source being reflected and focused into the cell. On return

from the cell (shown in blue), it acts as a spectrally sensitive 90:10 beam-

splitter to transmit Raman scattering and reflect Rayleigh light. The device

with its translational stages are shown in situ within the SEOP apparatus in

Figure 4.9(b). The focal length of the module can be varied by the choice of

entry/exit collimating lens, in our device the focal length is 50 mm on an A

coated plano convex lens (Thorlabs LA1131-A).
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Figure 4.10: Comparison of 90◦ and 180◦ excitation and collection methods. a) A typical
spectrum produced from the 90◦ arrangement, b) under the same acquisition times (15 s),
cell temperature (24◦C) and gas loading (100 torr Xe, 1900 torr N2) a ∼23 fold improve-
ment in SNR is shown in a typical spectrum acquired from the 180◦ setup. Corresponding
temperature calibration curves for the 90 and 180◦ methods are shown in c) and d) re-
spectively. Oxygen peaks appear from the 180◦setup from contributions along the optical
pathway, as discussed in section 3.5.4.3 this contribution can be removed by background
correction. Reprinted figure from Newton et al. [11] with permission from Springer.

A comparison of the 90◦ and the 180◦ Raman arrangements is shown in Fig-

ure 4.10. Example spectra are plotted for identical cell conditions of 100 torr

Xe, 1900 torr N2 with a 15 s acquisition time at 24◦C, under conditions of

no SEOP. The spectra show a ∼23 fold improvement in SNR between the

90◦, Figure 4.10(a), and 180◦ methods, Figure 4.10(b). This results in more

precise temperatures measurements as shown in the temperature calibration

plots, Figures 4.10(c) and (d). In Figure 4.10(b), O2 peaks can be seen man-

ifested in the spectra in addition to the N2 peaks. These arise from Raman

scattering that occurs along the line of the optical path and can be removed

by an evacuated cell spectra, as described in section 3.5.4.3. At our excitation
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wavelength the molar scattering intensity is ∼1.5-2 times greater for O2 than

N2 [92], but these peaks are fully removed in our background correction.

4.3.1 Experiments performed using

180◦ Raman arrangement

Demonstration of ‘real-time’ (3 s) in situ measurements of internal gas tem-

peratures with a gas mix of 100 torr Xe, 1900 torr N2 show pump laser induced

cell heating in Figure 4.11(a). The 180◦ module is able to be spatially trans-

lated and thus measurements were acquired perpendicular to the main pump

laser beam transversely across the front of the cell, Figure 4.11(b). Data was

acquired after 5 minutes of SEOP whilst using either a broadband laser (QPC

Brightlase Ultra 100 with a FWHM=2.13 nm, Figure 4.11(c)) or a frequency

narrowed laser (QPC Brightlock Ultra 100 with a FWHM=0.26 nm, Figure

4.11(d)). Temperature elevations of ∼40◦C above Tcell were observed with the

broadband pump laser beam, whereas with the frequency-narrowed laser tem-

peratures were in excess of 200◦C above Tcell. This effect is likely due to the

increase in resonant photon energy and will be dependent on gas mixture and

SEOP pump up time.

Figure 4.12 illustrates the effect of illuminated laser power on ∆TN2 (TN2-Tcell)

for various Tcell values. A linear trend is shown with ∆TN2 being observed for

increasing laser powers for increasing Tcell. The highest TN2 is measured at the

highest PXe and Tcell. Increased Tcell will likely give rise to increased Rb num-

ber density and therefore a greater number of absorbers in the gas phase to

absorb the pump laser light leading to more energy deposition into the N2 gas.

Low Tcell gives a relatively stable TN2 across the incident laser powers.
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4.4 Summary

Raman spectroscopy can be used to measure internal gas temperatures in situ

during the spin exchange optical pumping process. A ∼23 fold improvement

in detection sensitivity has been shown with the 180◦ arrangement utilising

optical filters as opposed to the 90◦ setup which encompasses spatial filtering

and the internal baffles of the spectrometer to manually block out the probe

laser and Rayleigh scattering. The increased SNR when using the in-line mod-

ule results in improved accuracy and precision in TN2 and enhanced ease of

use for spatial measurements. This module will be used for further Raman

temperatures in future chapters of this thesis.
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Chapter 5

Thermal management in the

spin exchange optical pumping

process

5.1 Introduction

Spin exchange optical pumping systems are very sensitive to many experi-

mental parameters, in particular the oven temperature dramatically changes

the maximum possible 129Xe polarisation (PXe) and the spin exchange times.

Although it was demonstrated by Walter et al. [51] that the cell surface tem-

peratures (Tcell) are not a good indication of the internal cell temperatures,

due to limitations of budget and equipment, many research groups use surface

thermocouples to get an indication of optical cell and oven temperatures or to

return to a particular set of conditions.

A dependence of transmitted pump laser spectra with Tcell was shown by Zook

et al. [90]. Relative Rb densities can be inferred by these transmission spec-

tra. Low temperatures were shown to have too little absorption and higher

Tcell suggested greater Rb number density, [Rb], thus light could be blocked
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from reaching the back of the cell. For sufficient illumination across the length

of the cell, an optimal oven temperature needs to be found. Simulations by

Fink et al. [81] noted that the external temperature governs the [Rb] and

convection patterns. PXe was shown to increase with increasing Tcell and laser

power until a maximum polarisation was reached and then the polarisation

dropped off exponentially as these two variables continue to increase. This led

to some early suggestions that SEOP experiments should not be performed

at high laser powers to mitigate uneven heating distributions [89]. Deviations

seen by Fink et al. [81] and Six et al. [82] between simulated and experimen-

tal values of PXe are thought to be due to external cell temperatures being

used to calculate the spin-exchange terms and thus the [Rb] will vary between

the actual and calculated values. As well as Tcell altering the amount of [Rb],

over time the vapour pressure of rubidium will decrease due to contaminants

creating rubidium oxides on the surface of the rubidium droplet and thus ex-

periments need to be run at hotter temperatures to generate the same Rb

vapour density [81]. Numerical simulations of PXe across a polarisation cell

showed that low temperatures where the laser light penetrates the whole cell

leads to transverse convection rolls. However, high cell temperatures create

longitudinal convection patterns from uneven temperature distributions and

thus decreased PXe arising from a greater amount of spin destructive wall col-

lisions [81].

The interdependence between Tcell with PXe was further investigated by Whit-

ing et al. [33] with the Xe polarisation dynamics being examined with various

xenon partial pressures. It was shown that optimal cell temperatures (TOPT ,

the temperature at which steady state PXe is maximised) varied such that

TOPT was higher for lower xenon partial pressures (e.g. 110◦C for 50 torr Xe,

compared to 80◦C for 1400 torr Xe, in 2000 torr total cell pressure). This

inverse relationship between partial pressure and TOPT was attributed to the
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xenon as when similar experiments were performed with constant xenon par-

tial pressure and varying nitrogen partial pressure, there was little variation

in TOPT . As the accumulation rate of PXe increases with Tcell causing the [Rb]

to increase, it can be seen from equation 2.10 that the spin-exchange rate, γSE

will increase. High Tcell causes [Rb] to increase to a detrimental level, absorb-

ing a high percentage of pump laser light and thus poor illumination of the

middle and back of the cell is observed. This leads to a decrease in PRb which

directly results in lowered PXe. This instability within the SEOP cell is known

as rubidium runaway [33, 89, 90]. The process of rubidium runaway is initiated

by increased light absorption which creates heat due to energy pooling into the

nitrogen [50]. This increase in internal temperature creates more Rb vapour

which raises the opacity through the cell resulting in the majority of the light

being absorbed at the front of the cell. As the cell becomes more opaque, the

rubidium polarisation decreases resulting in more available absorbers which ab-

sorb more of the pump laser light thus creating a self-reinforcing feedback loop.

Rubidium runaway has a severely adverse effect on the PXe as this dramati-

cally drops, therefore it becomes crucial to monitor and prevent this harmful

process for taking place. Currently, there are three main practices to impede

this effect. Firstly, implementation of a pre-saturation column where rubid-

ium can be heated to a particular temperature in the absence of any lasers

before entering the OP vessel [55]. Rubidium runaway can not take place as

the source of rubidium is outside the SEOP region. This method will only

work in a continuous flow polariser as the gas is required to flow through the

pre-saturation column then in the laser absorption region. In addition this

creates a bulky system as multiple glassware regions are required.

A second approach is to control the thermal management of the global pump

cell vessel by obtaining a full parameter space of different Tcell values and
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avoiding the regions of this space where rubidium runaway is known to take

place [33, 59]. Nikolaou et al. [59] have demonstrated this thermal mapping,

with a feedback loop to control the Rb concentration in the gas phase by a

thermistor on the optical pumping external cell surface. As previously shown

by Whiting et al. [33], an inverse relationship between [Xe] and TOPT was ob-

served, a suggested explanation is that the Rb spin destruction by Xe becomes

more dominant at high [Xe]. This can be reduced by lowering the operat-

ing temperature and thus maintaining a sufficient ‘photon-to-Rb’ ratio with a

high volume averaged Rb polarisation, <PRb>, and maximum PXe. Spin ex-

change rates were noted to not be constant with the external cell temperature

at different partial pressures. Therefore it was proposed that higher internal

cell temperatures might be seen for high Xe densities resulting in higher than

expected Rb vapour densities, this was explored with Raman spectroscopy in

Figure 4.6. Nikolaou et al. [93] performed further studies and found a ramped

temperature method might present the optimal SEOP conditions. In this pro-

cedure initially the cell is heated to an optimal SE rate and then cooled to a

region of optimal PXe, thus utilising multiple temperatures to create a high

polarisation in a short period of time whilst avoiding rubidium runaway.

Witte et al. [88] presented a third technique to alleviate rubidium runaway

effects in a continuous flow polariser, whereby regional cell temperatures are

monitored and altered. Surface thermocouples were attached to the surface

of an optical pumping vessel at the front, middle, and back, Figure 5.1, and

although they did not have the capabilities to monitor internal gas temper-

atures, they utilised the thermocouples along with transmitted laser spectra

into a feedback loop to know when rubidium runaway was starting. Using this

method, they were able to observe temperature gradients across the cell of

greater than 80◦C during rubidium runaway with the hottest temperatures at

the front. This team were able to cool the front of the cell by several tens of
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Figure 5.1: Schematic showing a technique of temperature control utilising surface ther-
mocouples at the front, middle and rear of cell in a continuous flow polariser. Reprinted
figure with permission from ref [88], copyright 2014, AIP Publishing LLC.

degrees, to dissipate the heat and create a stable temperature gradient. This

resulted in a 2-3 fold enhancement in PXe compared to the more conventional

global heating method.

In order to hinder this rubidium runaway mechanism and to aid future experi-

ments with increased xenon polarisations we need to understand it further.

Within this chapter, temperature dependent SEOP experiments were con-

ducted whilst monitoring PXe, TN2 and transmitted laser spectra, are shown

in Figures 5.2 and 5.3.

5.2 Experimental investigations of thermal

management and rubidium runaway

The response of Tcell to a spin exchange optical pumping system is shown in

Figure 5.2. At low SEOP temperatures (under these conditions, 90◦C), the

polarisation builds slowly due to low power absorption. This is reflected in

the internal gas temperatures, measured via Raman spectroscopy, see Chapter

3 and 4 for methods. Under conditions of slow 129Xe polarisation build up,
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Figure 5.2: Temperature variation of (a) polarisation, (b) internal gas temperatures and (c)
power absorbed as a function of time and oven temperature. Tcell = 90, 110, 140◦C denoted
by red squares and dotted lines, blue triangles and dashed lines, and black circles and solid
lines respectively. Tcell and TN2 are distinguished by open and closed symbols in (b). Gas
mix: 100 torr Xe, 1100 torr N2, 800 torr He; 60 W frequency narrowed laser power; obtained
from the middle of the cell.
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TN2 is slightly elevated above Tcell by about 20◦C, this temperature elevation

is stable and maintained at a constant value throughout the experiment. This

is indicative of a steady state experiment. At a slightly higher temperature

of 110◦C, the pump laser power is absorbed at a steadily increasing rate over

time, resulting in more energy being dumped into the nitrogen. This arises

from laser light being absorbed by the excited state Rb which is quenched by

N2 (50:50 ratio of depletion to m = ± 1/2 states, see Grotrian diagram, Figure

2.2) and thus the Rb relaxes to its ground state. The majority of the optical

energy absorbed by the Rb is transferred to the nitrogen (95-99%) [51], this

is converted to heat energy which raises the temperature of the gas. Elevated

temperatures increase the rubidium vapour density and thus more power is

absorbed as there are more available unpolarised rubidium electrons which are

subsequently quenched by nitrogen creating a feedback loop which occurs with

a rapidly increasing temperature. In this particular case (110◦C), conditions

are on the edge of steady state as the 129Xe polarisation plateaus but we are

approaching a rubidium runaway scenario, as seen by increasing power absorp-

tion and rising temperatures of 185◦C above the set oven temperature.

Rubidium runaway describes the non-ideal case where the xenon polarisa-

tion is seen to quickly increase and then dramatically decrease, hence the

word runaway, as seen in the 140◦C conditions in Figure 5.2. In the initial

stage of Rb runaway, SEOP appears to occurs as normal with the increasing

129Xe polarisation, however, this is often very rapid with dramatically elevated

temperatures (TN2-Tcell∼200◦C) and a high percentage of pump laser light be-

ing absorbed. After maximum polarisation is reached, a rapid deterioration

in polarisation is observed, with a corresponding drop in the gas temperature,

whilst the power absorbed reaches a plateau. It is thought that the unpo-

larised Rb density is large at the front and therefore optically opaque due to

a high rate of nitrogen quenching (returning excited Rb to its ground state)
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resulting in high temperatures. This occurs predominantly at the front of the

cell as the light initially enters here, subsequently if most of the laser light

is absorbed at the front, it will not be able to travel through to the back of

the cell, thus power absorbed plateaus at a maximum. After maximum power

absorption is reached, the middle of the cell has limited photons available for

absorption (due to high absorption at the front of the cell) and hence there

are few polarised rubidium electrons to be quenched by the nitrogen, leading

to a drop in TN2 (TN2-Tcell=100◦C) and thus a drop in Xe polarisation. It

can be seen how the final PXe is much reduced compared to the polarisation

obtained from a 110◦C experiment. Rubidium runaway has been used as an

advantageous effect in the work by Nikolaou et al. [93], where high PXe can

be quickly achieved (for example with Tcell=140◦C in Figure 5.2(a)) then the

cell temperature is actively reduced (e.g. to 110◦C in Figure 5.2(a)), so that

high xenon polarisations are rapidly produced using active feedback to control

cell temperatures.

In order to examine spatial effects of the steady state (120◦C, under condi-

tions in Figure 5.3) and rubidium runaway processes (130◦C), three NMR

coils were used to correspond to three spatial probe Raman positions along

the longitudinal length of the cell, Figure 5.3(a). Global power absorption was

examined using a HR4000 Ocean Optics Spectrometer, Figure 5.3(b). A cold

cell measurement at 25◦C, in the absence of optical pumping, was acquired for

comparison to the SEOP measurements at 120◦C and 130◦C. In Figure 5.3(b)

spectra are shown after 30 minutes of SEOP with 57% and 90% absorption at

120◦C and 130◦C respectively, with the dip from the Rb D1 transition observed

at 794.77 nm.

Under steady state conditions, with the optical pumping cell heated from the

rear, the highest in cell temperatures are observed at the back, Figure 5.3(d),
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Figure 5.3: Characterising polarisation and internal gas temperatures in steady state and
rubidium runaway conditions. (a) Schematic of spatial probing of low field 129Xe NMR
and Raman spectroscopy along the longitudinal length of the OP cell. Colours denote the
spatial positions of front (red), middle (blue) and back (green). (b) Transmitted pump laser
spectra for a cold cell (cyan), Tcell=120◦C (orange) and Tcell=130◦C (purple). (c) and
(d) represent 129Xe and TN2 build up curves at 120◦C under steady state conditions, (e)
and (f) are at 130◦C showing rubidium runaway. The grey area in (c) and (e) signifies the
percentage power absorbed within the optical pumping cell relative to a room temperature
cell. Black error bars in (d) and (f) show the spread of oven temperatures (Tcell) recorded
by a thermocouple placed in the oven inlet (back) and outlet (front). A large deviation is
seen between Tcell and TN2 in both experimental conditions.
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suggesting that there is a higher rubidium number density in that position.

Given a higher rubidium number density, it is possible that there is an increased

rubidium polarisation, PRb, resulting in an increased PXe at the rear of the cell,

Figure 5.3(c). After 30 minutes of SEOP, an approximately 40% spread in the

values of PXe is observed across the length of the cell from 6-10% in this high

Xe density mix (1500 torr Xe, 500 torr N2), with a corresponding temper-

ature difference of Tcell=122◦C, TN2(front)=199◦C, TN2(middle)=223◦C, and

TN2(back)=335◦C. Along the length of the cell, the resultant temperature

gradient is 136◦C, and a ∼175% temperature elevation between Tcell and the

back internal gas temperature is observed with a numerical value of 213◦C.

This temperature elevation and gradient is a contributing factor as to why the

simulations and SEOP experiments do not agree.

When the conditions of rubidium runaway are examined with a spatial fo-

cus, very different dynamics are observed relative to steady state. Although

all three positions initially, at time t = 0, exhibit the same temperature, the

back rapidly increases in temperature to almost 400◦C (Tcell=120◦C). After

8 minutes of SEOP, a maximum 129Xe polarisation is seen and this plummets

as more absorption is seen in the front and middle of the cell which is observed

as increasing temperatures in these positions. A positional crossover in maxi-

mum temperature is seen at the point of Rb runaway (when maximum PXe is

reached and absorption reaches a plateau at almost 100% absorption). After

further SEOP, the front and middle positions become fairly homogeneous with

similar PXe and TN2 , but the back is very different with elevated PXe and lower

TN2 .

5.3 Conclusions

It is seen that the global temperature of the gas approximately follows the

global xenon polarisation (Figure 5.2). This is validated by the knowledge that
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the nitrogen quenching the excited rubidium states produces heat in the ni-

trogen and non-radiative relaxation to the rubidium ground state. This allows

a build up of spins in a single state creating a rubidium polarised state which

can spin exchange with xenon. However, when the spatial variants are exam-

ined, it is seen that this is a highly sensitive system with position dependent

conditions. When typical optical pumping conditions are used a steady state

xenon polarisation is obtained and a constant temperature elevation above the

surface thermocouple is observed, with temperatures greatest at the back of

the cell. However, when rubidium runaway takes place, a rapid rise and then

fall in PXe is detected, which changes the internal gas temperatures with the

back temperature plummeting as the laser light is absorbed at the front of

the cell. Although convection has been shown to take place during optical

pumping [51, 81], these results suggest that minimal mixing occurs across the

cell. Temperatures at the front of the cell were ∼110◦C hotter than the back,

and elevated by ∼240◦C relative to the surface thermocouples. This validates

the discussion that a high percentage of pump laser light is prevented from

reaching the back of the OP cell due to a high [Rb] at the front of the cell

resulting from high internal cell temperatures. In the future, if these Raman

experiments to spatially measure internal gas temperatures could be combined

with a localised alkali metal number density measurements, such as that shown

by Appelt et al. [89], then further advances could be made to link together

SEOP theory and experiments.

89





Chapter 6

Alkali metal choice for SEOP

6.1 Investigations of rubidium vs. caesium

6.1.1 Introduction

Rubidium has long been the alkali metal of choice for hyperpolarised gas prepa-

ration during the SEOP process. This is primarily due to its large spin ex-

change cross section, relatively high vapour pressure and the availability of

high power lasers at the D1 wavelength [28]. With the advent of caesium

lasers at the D-line wavelengths it became possible for SEOP to be considered

using Cs as the alkali metal for the optical pumping process, as investigated

by Whiting et al. [28]. Cs is a good prospect for SEOP due to the 1.5 - 2

times greater binary spin exchange cross section for Cs-129Xe when compared

to Rb-129Xe, [5, 28, 39, 44–46]. In addition, Cs has lower energy absorption

lines leading to more photons per Watt of light, a lower spin destruction rate

and a higher vapour pressure, Figure 2.5, [30, 31].

The advantages of the lower melting point and higher vapour pressure of Cs

enable SEOP to be performed at lower temperatures. There are many techni-

cal reasons why this may be preferable, for example in section 3.2.1 an organic
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Figure 6.1: Comparison of PXe buildup curves (collected at ∼32 G) for Rb and Cs alkali
metal laser pumping on the D1 transition. Each run was carried out using 2000 torr Xe,
600 torr N2 with the optimal Tcell and laser power for each set of runs being 70 ◦C &
∼46 W for Cs D1, and 80 C & ∼53 W for Rb D1 excitation. Reprinted figure from ref [28],
with permission from American Physical Society.
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Figure 6.2: Xe polarisation, PXe, (measured at 9.4 T) as a function of Xe partial pressure
for Cs (red-solid) and Rb (black-solid) SEOP, with corresponding estimated alkali-metal
electron spin polarization (PAM ) values for Cs (red-dashed) and Rb (black-dashed). Laser
powers are 48 W for Cs and 52 W for Rb. Reprinted figure from ref [28], with permission
from American Physical Society.
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cell wall coating (SurfaSil) was discussed to reduce 129Xe relaxation via wall

collisions, at high temperatures this surface coating deteriorates. At lower cell

temperatures, thermal stability is expected to be easier to control. Finally,

lower cell temperatures would enable faster heat up and cool down cycles re-

quired for production of HP 129Xe in batch mode polarisers.

Previous studies by Whiting et al. [28], found that the spin-exchange rate

for Cs-129Xe is about 1.5 times greater than Rb-129Xe under optimal condi-

tions when pumping on the D1 transition, Figure 6.1. The advantage seen

for Cs SEOP is especially pronounced at high Xe densities, Figure 6.2, mak-

ing it potentially viable for clinical use particularly with a batch-mode po-

lariser, [8]. This work utilised two 40 W broadband LDAs tuned to Cs D1

(∼894.3 nm) and D2 (∼852.1 nm) and a comparable Rb D1 laser (∼794.8 nm)

with a linewidth of 1.9-2.9 nm. This allowed the direct comparison of D1 and

D2 for Cs-129Xe SEOP under similar experimental conditions.

The work in this chapter explores Cs-129Xe SEOP under a higher powered

(∼60 W), frequency-narrowed LDA (∼0.35 nm). Utilising this new laser tech-

nology, we were able to compare frequency-narrowed and broadband lasers for

129Xe production using Cs. We examine whether similar improvements can

be realised to the three fold improvement in PXe attained with Rb-129Xe fre-

quency narrowed light sources compared to broadband lasers [70]. In addition

Cs-129Xe and Rb-129Xe can be directly compared using narrowed lasers. We

aim to gain a further understanding of Cs-129Xe spin exchange dynamics.
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Figure 6.3: (a) Cs cell shown in situ with custom designed PTFE cell mounts and surface
coil mount, (b) photo and (c) schematic of SEOP apparatus shown for Cs experiments.
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Figure 6.4: a) Example normalised transmitted laser profiles for frequency narrowed Cs
pump laser. Laser wavelength can be tuned by varying the LDA temperature, TLDA,
controlled by a water chiller. Typical linewidth is ∼0.35 nm, spectral resolution is limited
by the ability of the IR spectrometer. b) Red curve denotes the tuning for TLDA with
emitted laser wavelength. Corresponding change in laser power (blue) is shown with a
constant 45 A driving current. Power loss is about 6 W over the range, this is less than a
10 % loss in total laser power.
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6.1.2 Methods

The laser SEOP apparatus was set-up as outlined in Chapter 3, with the long

fibre (∼30 cm) shown in Figures 3.7(b) and 6.3(b). A Rosen style cell [63]

(∼3.8 cm diameter, ∼16.5 cm length) was held in place with custom designed

PTFE mounts, Figure 6.3(a). The mounts are adjustable to facilitate cell

alignment with the laser and magnetic field, in addition they are able to hold

various sized OP cells. A small surface coil of ∼2.5 cm diameter was held in

place outside of the Rosen cell and was used for pulse and acquire experiments

with a Magritek Aurora spectrometer, Figure 6.3(c).

The Cs laser (∼60 W, ∼0.35 nm FWHM) is able to be spectrally tuned via the

‘on-chip’ volume holographic gratings. Altering the temperature of the LDA,

TLDA, changes the spacing between the internal gratings and the tuning of

the wavelength is reflected back into the diodes forcing the emission of a par-

ticular wavelength. An example of this spectral tuning can be seen in Figure

6.4(a). The effect of varying the laser wavelength and power is shown in Figure

6.4(b). Increasing the TLDA red-shifts the spectral output by ∼0.07 nm/◦C,

whilst laser power decreases at 0.60 W/◦C. In addition to this frequency-

narrowed laser, comparative studies utilised a broadband Cs D1 laser (∼50 W,

∼3.8 nm FWHM) and a frequency-narrowed Rb D1 laser (∼80 W, ∼0.30 nm

FWHM). Unfortunately, neither frequency narrowed laser had the capability

to tune into the ‘red’ side of the respective absorption lines, preventing the

in-depth study of changes to the alkali metal absorption profile at high xenon

densities.
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6.1.3 Results and discussion

The effect of TOPT on xenon partial pressure, pXe , for Cs optical pumping on

the D1 transition is demonstrated in Figure 6.5(a). Higher pXe are shown to

have a preference for lower Tcell. A stronger dependence of Tcell and pXe was

seen previously for Rb-129Xe SEOP by Whiting et al. [33], but this difference

could be due to lower laser flux for the Cs-129Xe SEOP under current exper-

imental conditions. Sample 129Xe polarisation build up curves are shown for

1750 torr Xe and 250 torr N2 at various temperatures, Figure 6.5(b). Increased

buildup times and 129Xe NMR signal were achieved at low Tcell values. High

Tcell values correlate to thermal runaway conditions being experienced and thus

the 129Xe signal is drastically reduced due to increased laser absorption.

Optimal Tcell is explored for the different alkali metal D1 transitions in Figure

6.6. The optimal temperature for SEOP is lowered when traversing from Rb

D1 narrowed to Cs D1 broadband to the Cs D1 narrowed source. Observations

of up to 3-fold improvement in 129Xe NMR signal is observed for the narrowed

compared to the broadband Cs laser source due to increased resonant laser

flux in the frequency narrowed laser.

Polarisation build up rate curves are fitted to NMR datasets such as Figures

6.5(b), 6.7(a) using an exponential fit:

S(t) = Pmax(1− exp(−Γt)) (6.1)

where the signal, S(t), varies as a function of time, t, until it reaches a maxi-

mum polarisation, Pmax with a time constant of the buildup curve being Γ. Γ

is plotted as a function of Tcell and excitation method in Figure 6.7(b). Opti-

cally pumping with the Cs narrowed laser provides the highest Γ values which

corresponds to the fastest PXe build up rates. Although Figure 6.7(a) shows
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Figure 6.5: Optimal cell temperature was investigated using a Cs D1 frequency-narrowed
laser. a) Low field 129Xe NMR signal acquired after 5 minutes of Cs D1 optical pumping
for a variety of Tcell and Xe partial pressures. b) Build up of 129Xe polarisation monitored
over time, increased Tcell above 80◦C results in rubidium runaway and a poor fit to the
NMR signal. Experiments performed using ∼60 W laser power, ∼0.05 nm ‘blue-shifted’.
Total cell pressure (balance N2) was 2000 torr, except the 2250 torr Xe loading which had
an additional 250 torr N2.
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Figure 6.7: a) Three laser excitation methods are compared with optimal cell temperatures
(TOPT ) being 70◦C for Cs broadband, 60◦C for Cs narrowed and 80◦C for Rb narrowed.
Example spectra shown for one gas mix - 1750 torr Xe, 250 torr N2. b) 129Xe buildup time
constants, Γ, as a function of Tcell, faster buildup rates are shown for Cs optical pumping
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NMR signal intensity is seen to increase with increasing Xe partial pressure except for the
highest cell pressure. Experiments performed at 60◦C, ∼60 W laser power, ∼0.05 nm
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that the Cs D1 broadband laser gives the lowest 129Xe NMR signal, the buildup

rate shown in Figure 6.7(b) is greater for both Cs D1 lasers than for Rb D1

and so it reaches it’s steady state polarisation faster.

Increased build up times (Γ) are observed for the higher Xe densities (1750 torr

Xe, 250 torr N2) for a fixed total cell pressure (2000 torr), Figure 6.8. Less

129Xe NMR signal was observed for the highest pXe gas loading (2250 torr Xe,

250 torr N2), this could be due to a change in total cell pressure or due to laser

limitations in the ‘red-shifted’ spectral offset, it may be that we were not able

to optically pump under optimal experimental conditions for this gas mix.

6.1.4 Conclusions

It has been shown that Cs-129Xe SEOP is a viable alternative to Rb-129Xe,

particularly at high Xe densities. As shown in work by Nikolaou et al. [8] high

Xe densities are a clinical possibility with batch mode collection as it negates

the need for a freeze out stage in the polariser. Hence the spin relaxation that

occurs during the phase transitions is removed, [57], and the polariser design

is simplified, further reinforcing the viability of Cs SEOP. Optically pumping

with narrowed Cs lasers provided generally higher PXe than with narrowed Rb

lasers, however, this was not as dramatic as previously observed by Whiting

et al. [28] with Cs and Rb broadband lasers. This may be due to the limita-

tions of the lasers not being able to fully explore the ‘red-shifted’ side of the

absorption line.

Throughout a wide range of pXe and Tcell the Cs frequency narrowed laser

gave increased 129Xe NMR signal compared to the broadband laser. This is

consistent with work on Rb-129Xe SEOP by Nikolaou et al. [70] and further em-

phasises the necessity for frequency narrowed lasers for hyperpolarised xenon

production when a large polarisation is required in a short space of time.
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6.2 Investigations of rubidium-caesium hybrid

6.2.1 Introduction

Current laser technology is preventing full utilisation of Cs SEOP, as high

power, on-resonance diodes are not available to the same standard as Rb

lasers. If we had comparable laser technology for Rb and Cs, Cs would seem

a better prospect for hyperpolarised noble gases than Rb, due to increased

spin-exchange times and spin-exchange efficiencies. In order to aid more clini-

cal applications of hyperpolarised gas MRI, higher polarisations would provide

increased SNR and faster build up rates would allow for a higher throughput

of patients who are able to be scanned in a specified time period.

The question that we wanted to investigate is whether we could apply the

benefits of the larger spin-exchange cross section of Cs but with the improved

laser technology that is present for Rb. This would also allow any improve-

ments to be easily retro-fitted to current polarisers as most groups use a Rb

laser with corresponding optics for the Rb D1 wavelength. Hybrid SEOP was

first proposed in a patent by Happer et al. in 2001 [41] with an approach being

carried out on Rb-K-3He by Babcock et al. [42], Figure 6.9. Increased build up

rates were demonstrated when utilising the hybrid mixture and thus Pmax was

achieved in a shorter time scale. Hybrid SEOP relies on rapid spin transfer

between the primary and auxiliary alkali metals. The primary alkali metal is

the one which is optically pumped by the laser source and the auxiliary metal

is polarised via spin-exchange collisions with the primary metal.

In Rb-K-3He SEOP, spin exchange efficiences of hybrid cells exceeded those

of pure Rb cells by an order of magnitude and the highest polarisations and

polarising rates were observed with K/Rb ratios of 2-6, [42, 43]. In an anal-
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Figure 6.9: Schematics of Rb-3He and K-3He SEOP process. a) Rb-3He SEOP using a Rb
D1 pump laser, b) K-3He SEOP using a K D1 pump laser, and c) Rb-K-3He hybrid SEOP
using a Rb D1 pump laser. Numbers on the arrows denote spin exchange cross-sections
and spin exchange rate coefficients, [5, 94–96].

Figure 6.10: Schematics of Rb-129Xe and Cs-129Xe SEOP process. a) Rb-129Xe SEOP
using a Rb D1 pump laser, b) Cs-129Xe SEOP using a Cs D1 pump laser, and c) Rb-
Cs-129Xe hybrid SEOP using a Rb D1 pump laser. Numbers on the arrows denote spin
exchange cross-sections and spin exchange rate coefficients, [5, 44–46].
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ogous system for 129Xe, a hybrid system was envisioned to be Rb-Cs due to

the size differences and preferences for spin-exchange compared to a 3He sys-

tem. This system is demonstrated in Figure 6.10. Cs-129Xe has a higher

spin-exchange cross section than Rb-129Xe SEOP (2.3 ± 0.2 x 10−14cm2 vs

1.9 ± 0.2 x 10−14cm2), [46], accordingly, it is more viable that Rb will spin

exchange onto Cs than Rb or 129Xe (which has a lower cross-section). Conse-

quently, it follows that we could optically pump Rb with a Rb D1 laser which

would spin exchange onto Cs and then onto 129Xe, with higher SE efficiency

than Rb/129Xe interaction.

6.2.2 Methods

Considering Figure 2.6, it is possible to see that due to colligative properties

there is a depression of the melting point (liquidus) for the hybrid mixture

compared to the pure Rb or Cs states. Thus if a 1:1 ratio of Rb and Cs was

mixed together the liquidus point would be 9.78◦C, which is dramatically low-

ered from the pure Rb (39.3◦C) or pure Cs (28.5◦C) melting points. In order

to prevent loading liquid alkali metal which would never solidify at room tem-

peratures and cause possible splashing onto the optical windows which would

create local heating, we initially tried to run low ratio alkali metal combina-

tions which were not mixed within the SEOP cell. The non pre-mixed cells

were loaded with a droplet of Rb at one end and a droplet of Cs at the other

Figure 6.11: Photograph of a pre-mixed Rb-Cs-129Xe hybrid cell
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end. Over time, this was non-reproducible as upon cooling the alkali metal

vapour would solidify onto the liquid metals and start to mix on the surface of

the two metals and thus change the dynamics of the system. A small selection

of results are shown here from non pre-mixed alkali metal cells before a cool

down cycle and hence they can be considered as a comparison. For the higher

percentage Rb in the hybrid mixture, the liquidus point approaches that of

pure Rb and thus solidifies at room temperature.

The ratio of the hybrid mixture was determined by a mass balance, inside

a controlled atmosphere glove box with an inert nitrogen environment. The

overall aim was to weigh the components before and after alkali metal load-

ing into a mixing tube to calculate the ratio, then calculate what quantity

was transferred into the cell (∼0.3 g). This was achieved by initially weigh-

ing the empty components: an empty mixing Schlenk tube with valve (m), a

clean pipette and bulb (n), Rb Schlenk tube with valve (o). The pipette was

then heated and Rb was transferred into the mixing Schlenk tube. After Rb

transfer, the components were weighed again: mixing Schlenk tube with valve

containing Rb (p), used Rb pipette bulb (q) and original Rb Schlenk tube (r).

Calculate the mass of Rb transferred into the mixing Schlenk tube, mass of Rb

= p-m. Consistency checks can be performed to check that m+n+o=p+q+r

(i.e. original mass=final mass). This procedure is repeated for the Cs load

into the mixing Schlenk tube, so now the ratio of the two metals can be de-

termined. Once the two metals are in the mixing Schlenk tube, they need to

be heated and mixed to result in a miscible liquid and then cooled to check

then the mixture will solidify. To quantify the mass of the hybrid mixture

being transferred into the OP cell, measure the weight of Schlenk tube, valve,

pipette and bulb before and after loading. The cell should now to be ready to

be aligned to the laser and filled in situ with a gas mixture, as described in

sections 3.2.2 and 3.2.3.
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For the Rb-Cs-129Xe hybrid SEOP, a 60 W laser tuned to the Rb D1 tran-

sition wavelength of 794.77 nm and emitting circularly polarised photons was

used to perform optical pumping of Rb electrons. Several experimental tools

were used to probe the pure Rb and hybrid cells to allow comparison of PXe,

TN2 and PRb. Polarisation build-up curves of low field 129Xe NMR signal and

Raman temperature were constructed by taking sequential measurements at

the front, middle and back of the cell every 20 seconds for 30 minutes. These

two techniques give the 129Xe polarisation and the TN2 in situ in the OP cell.

In addition pump laser light absorption was measured to give an estimation

of the PRb as a global measurement along the length of the cell, Figure 6.12.

As discussed by Nikolaou et al. [8, 70], the transmitted laser light obeys the

Beer-Lambert law, with the absorption, A, being

A = − ln
Ihot
Icold

(6.2)

where Ihot is the intensity of light after travelling through a ‘hot’ cell and Icold

is the intensity of the pump laser light after a ‘cold’ cell. A ‘cold’ cell is defined

as room temperature, ∼25◦C and a ‘hot’ cell has been heated to 70-140◦C for

a SEOP experiment. Combining equation 6.2 with Figure 6.12(a) where the

quantity of alkali metal absorbers varies with the magnetic field on or off,

PRb can be computed.

| < PRb > | =
A

A0

− 1 (6.3)
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(a)

(b)

Figure 6.12: a) Methodology to estimate the alkali metal polarisation by utilising the
change in pump laser light absorption with the magnetic field on and off. Near equal
populations are expected in the ground electronic spin states when the magnetic field is
‘off’. Consequently, a high quantity of absorbers are seen in the gas phase resulting in a large
amount of pump laser light being absorbed. When the magnetic field is ‘on’, more efficient
optical pumping occurs and thus unequal spin state distribution in the ground state, this
ensues that there are less Rb electrons able to absorb the laser light. This figure assumes
σ+ circularly polarised light. Figure adapted from Nikolaou et al. [8]. b) Monitoring of
global Rb polarisation within a hybrid cell of a 10:1 ratio of Rb and Cs. Cold cell is 25◦C,
hot cell is 140◦C. Error bars on the Rb polarisation were determined from spectral SNR of
cold cell measurements.
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6.2.3 Results and discussion

Figure 6.12(b) shows that reasonably high PRb measurements have been achieved

in a Rb-Cs-129Xe hybrid cell, using the absorption technique described above,

this is consistent with PRb being greater than PXe. In Figure 6.13, a compari-

son of PXe measurements is drawn between a pure Rb and a Rb-Cs (10:1 ratio)

hybrid cell both in terms of overall Pmax and the spatial distribution of polar-

isations across the length of the OP cell. It can be seen that the pure Rb cell

has a greater variance of polarisations along the optical pumping path length

compared to the hybrid cell. This could be due to the colligative properties

of the two metals, which include elevation of boiling point and depression of

freezing point. With the elevation of the boiling point, there would be less al-

kali metal in the vapour phase and thus less absorption of the pump laser light.

With Rb-K-3He hybrid SEOP, as the ratio of the two alkali metals were varied,

the buildup rate, Γ, and Pmax altered. Therefore with the Rb-Cs-129Xe hybrid

it seems valid to also consider the ratio of the two metals. Figure 6.14 exam-

ines the effect of the ratio on the PXe over a thirty minute time period, with

data being collected in the middle of the cell once a minute. It can been seen

that hybrid SEOP with only a moderate quantity of Cs gives high PXe. The

highest stbale PXe is observed with a 10:1 ratio (Rb-Cs), but the greatest Γ

was obtained from a 20:1 ratio. Although, it looks like the Rb-Cs hybrid is

approaching conditions of the pure Rb cell, with further optimisation of the

hybrid state (gas mix, temperature, ratio of alkali metals, centroid wavelength,

laser power) the hybrid SEOP may be able to surpass that of the pure Rb.

Further justification of the colligative properties disrupting the expected re-

sults from the Rb-Cs-129Xe hybrid SEOP cell are shown in Figure 6.15. When

the pure states were under investigation, e.g. Figure 6.6, the optimal operating

temperature was reasonably low, with the TOPT being lower for Cs than Rb as
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Figure 6.13: Polarisation build up curves for a) Rb-Cs hybrid cell (10:1 ratio) and b) pure
Rb cell. Polarisations were measured as a function of position, front (red squares), middle
(blue circles), and back (green triangles). Experimental were carried out at TOPT for both
cells: 140◦C for hybrid and 120◦C for the pure Rb cell, both had the same gas loading of
1500 torr Xe, 500 torr N2. inset: NMR signal intensities.
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Figure 6.14: Polarisation build up curves for Rb-Cs hybrid cells as a function of ratio of
the two alkali metals, considering only the middle NMR coil position. Rb-Cs-129Xe exhibits
high 129Xe polarisations with the 10:1 ratio having the highest PXe and 20:1 ratio having
the highest Γ (build up rate). The hybrid cells are approaching PXe values similar to those
obtained in a fully optimised Rb cell and with further optimisation the PXe of the hybrid cell
may exceed that of the pure Rb cell. Cell conditions: ∼60 W Rb D1 laser light, 140◦C oven
temperature, 100 torr Xe, 1900 torr N2. The open symbols denote experiments where the
alkali metal was loaded into the pumping cell as separate metals, the filled symbols were
pre-mixed prior to loading into the cell.
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expected by the melting points and vapour pressures, Figure 2.5. However, in

the hybrid state, even at 140◦C the optimal operating temperature does not

appear to have been located, as the highest polarisations are observed for the

140◦C experiments in both the low and high xenon density mixes. Consistent

with previous data published on pure Rb 129Xe SEOP by Whiting et al. [33],

the high xenon density mix, Figure 6.15(b), has a higher magnetisation as de-

noted by PXe.pXe than the lower xenon density mix.

Finally, Figure 6.16 examines the effect of the fraction of Cs on the spatial dis-

tribution of PXe and TN2 along the length of the OP cell. The build up rates of

the pure Rb and 20:1 ratio hybrid cell are similar at about 0.14 and 0.15 min−1,

but a much lower build up rate of about 0.07 min−1 is observed in the 10:1

hybrid cell. As the quantity of Cs decreases, the spread of the PXe increases,

but the overall average PXe seems to remain similar. The spatial distribution

is also observed in the TN2 values, with much elevated temperatures relative to

Tcell observed in the pure Rb state and negligible temperature difference seen

in the hybrid cell. As more SEOP appears to occur in the current experimental

conditions within the pure Rb cell, more energy is dumped into the nitrogen

and so this follows through to a higher rotational temperature.
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Figure 6.15: Dependence of Tcell on PXefor 10:1 Rb/Cs hybrid cell with two gas mix-
tures: a) 100 torr Xe/1900 torr N2, and b) 1500 torr Xe/500 torr N2). As Tcell increases,
PXe increases and at 140◦C a turning point in polarisation still has not been observed,
experiments were not pursued above 140◦C to prevent degrading the SurfaSil coating (as
discussed in section 3.2.1). This is opposite to the effect seen in pure Rb or pure Cs cells
as shown in Figure 6.6, where TOPT occurs at low Tcell values. Despite the apparently low
PXe for the high pXe mix, PXe.pXe is greater (PXe=6%, pXe=1500 torr, PXe.pXe=9000;
PXe=50%, pXe=100 torr, PXe.pXe=5000), which is consistent with previous results by
Whiting et al. [33].

0

25

50

75

0

25

50

75

0 5 10 15 20 25 30
0

25

50

75

 Front

 Middle

 Back

1
2

9
X

e
 P

o
la

ri
s

a
ti

o
n

 (
%

)

Time (min)

0 5 10 15 20 25 30

0 5 10 15 20 25 30

20Rb:1Cs

10Rb:1Cs

Pure Rb

(a)

0 5 10 15 20 25 30
100

200

300

400

0 5 10 15 20 25 30
100

200

300

400

0 5 10 15 20 25 30
100

200

300

400
10Rb:1Cs

T
e

m
p

e
ra

tu
re

 (
°C

)

Time (min)

Pure Rb

 Front

 Middle
 Back

20Rb:1Cs

(b)

Figure 6.16: Dependence of Cs fraction on hybrid SEOP examining both performance and
spatial dependence. As the quantity of Cs is reduced the PXe increases, as does the spatial
distribution of the polarisations and TN2 across the length of the OP vessel. TN2 decreases
with decreasing Cs concentration. This could be an effect of colligative properties increasing
the vapour pressure of the two consistent alkali metals and thus the high temperatures are
needed. Cell conditions: ∼60 W Rb D1 laser light, 140◦C oven temperature, 100 torr Xe,
1900 torr N2.
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6.2.4 Conclusions

Within this section, it has been shown that as a proof of concept Rb-Cs-

129Xe is a viable technique with high PRb and PXe. However, from current

investigations, the hybrid cells under investigation have not performed better

in terms of Pmax or Γ (build up rate) compared to the pure Rb cell. Future

work within the research group will look at further optimising the hybrid state

and examining more measurements to understand more about how to improve

the hybrid system. These measurements would include PRb and PCs, either

as described in Figure 6.12 or by utilising electron spin resonance which is

described in detail by Baranga et al. [26], Young et al. [97], and Shah et

al. [98]. In addition, in situ PXe and TN2 allow diagnostic measurements as

described above, this would be combined with measurements of spin-exchange

and spin-destruction rates of Xe using steady-state polarisation build-up curves

and T1 decay measurements. Finally, a complete picture of the SEOP process

could be determined by knowing about the Rb and Cs number density in

comparison to pure Rb and pure Cs cells, this would justify the colligative

properties arguments for lowering the combined alkali metal vapour pressure.

6.3 Summary

The choice of alkali metal for SEOP experiments has been examined in this

chapter. It has been shown that Cs has a potential role in hyperpolarising

noble gases with increased maximum polarisations and faster build up rates.

However, Cs can’t reach its full potential at this current time due to the lack of

available laser technology when compared to Rb. Accordingly, a hybrid SEOP

system was investigated to see if the benefits of Cs could be realised whilst

pumping with a Rb D1 laser via spin-exchange collisions from the Rb onto the

Cs and subsequently onto the 129Xe.
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Chapter 7

A pathway to hyperpolarised

129Xe clinical imaging

7.1 Introduction

The primary function of the lungs is to supply oxygen to, and eliminate carbon

dioxide from, the blood. In order for this to occur, adequate gas exchange is

required with a constant supply of fresh air and blood in the alveoli. Ven-

tilation is the process of oxygen travelling to this gas exchange vessel where

pulmonary perfusion supplies blood to the lungs so that oxygenated blood can

leave the lungs. Pulmonary disorders affect the airways, alveoli, interstitium

or pulmonary circulation. To aid diagnosis it is important to know how the air

is regionally distributed in the lungs; whether there are airway constrictions

or restrictions; and whether gas exchange is occurring effectively between the

air and the blood at the alveolar walls.

Current measurement techniques include global pulmonary function tests and

lung biopsies. In order to support diagnosis and treatment of lung diseases,

investigations could be aided by obtaining structural and functional informa-

tion in a regional manner. Regional structural information can currently be
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provided by high resolution computerised tomography (HRCT) and in clinical

trials by hyperpolarised (HP) gas magnetic resonance imaging (MRI), [99].

However, a drawback of HRCT is the ionising radiation which prevents lon-

gitudinal drug development studies for managing disease progression. HP gas

MRI could aid new drug development as a non-toxic, non-ionising procedure

[61]. Regional functional information could be clinically supported by util-

ising xenon’s solubility and chemical shift environment variability to obtain

dissolved and gas phase images to monitor gas exchange.

HP gas MRI is a promising future clinical tool as proton MRI is limited in the

lungs due to an intrinsic low proton density. Other issues that hinder proton

MRI functionality are respiratory and cardiac motion as well as lung deforma-

bility. In addition, there is a high susceptibility mismatch at the air/tissue

interface leading to very short T∗2. Short T∗2 can be overcome in proton MRI

with ultra-short echo time sequences, [100, 101], but this is technically chal-

lenging. Gases have a low density and low sensitivity at normal Boltzmann

polarisation. However, hyperpolarisation greatly increases the signal at all field

strengths. The challenge of hyperpolarisation is how to make optimal use of

this non-renewable polarisation. In most studies, it is desirable to undertake

a MRI scan within the duration of a breath-hold (∼15 seconds); for patients

with comprised breathing this time is further reduced, requiring short acqui-

sition times and fast imaging techniques. Fast techniques are also necessary

to examine the effects of gas diffusion. Prior to hyperpolarised 129Xe clinical

MRI scanning in Nottingham, a series of calibration studies were performed.
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7.2 Polarisation studies

7.2.1 Introduction

This section describes the determination of the polarisation from a sample of

hyperpolarised xenon produced by a GE2000 continuous flow polariser. Po-

larisers were described in section 2.2, with some of the information repeated

here for clarity of reading. The methodology of continuous flow polarisers is

that a lean mix of xenon with its buffer gases (helium and nitrogen) are flowed

through an optical pumping vessel containing rubidium which is heated via

a hot air oven to create a rubidium vapour. Spin exchange occurs in this

vessel between polarised rubidium electrons (optically pumped via circularly

polarised light) and xenon nuclei. Upon exit from the pumping vessel, xenon

needs to be separated from the buffer gases. Separation is through cryogenic

collection in a liquid nitrogen trap. The xenon accumulation time, ta, affects

the polarisation decay, as stated in equation 2.14, repeated here to aid the

reader, [32].

PXe(ta) = PXe(t0)
T1

ta
(1− e−ta/T1) (7.1)

Relaxation rates, T1, in the frozen xenon state have been found to be a constant

2-3 hours at 500 G or above (the mechanisms for the relaxation were discussed

by Cates et al. [102], Gatzke et al. [103] and Morgan [104]). The 500 G field

is implemented by permanent magnets surrounding the liquid nitrogen trap.

129Xe polarisation calculation is determined from a series of steps, firstly, the

flip angle is calibrated using a thermal xenon sample to obtain optimal signal to

noise ratio (SNR) for a single shot acquisition. Then using the same flip angle

for both a single scan hyperpolarised and signal averaged thermal xenon ac-

quisition, the polarisation of the hyperpolarised sample is calculated using the

steps discussed in section 7.2.2.2. Utilising these measurements, a continuous
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flow GE2000 polariser was calibrated for flow rate, volume and accumulation

time to obtain optimal polarisations for future studies. A slow flow rate allows

more time for the spin-exchange process to occur between Rb/129Xe within

the optical cell. However, for a set volume this requires a longer storage time

than for a fast flow rate. Following on, these xenon polarisation measurements

were compared with various wait times between a pre-calibrated polarisation

measurement station (0.2 mT) and a 1.5 T MRI scanner to examine relaxation

rates and mutual consistency between the two field strengths. A good corre-

lation is shown between the polarisation calculated at 1.5 T using a thermal

xenon sample and the pre-calibrated polarisation measurement station. It is

shown that the decay time of the polarisation in the corridor between the po-

lariser and the scanner is minimal for at least the first three minutes, with the

decay being dominated by the field gradients around and into the magnet (loss

of about 10% of the polarisation). This has implications for clinical studies as

this transfer can be controlled without hurrying into the magnet. These results

are in agreement with previous T1 measurements of 129Xe, which ranges from

a few minutes at Earth’s field, (∼ 5 x 10−5 T, [105]), through to about an hour

at typical SEOP rig magnetic fields (∼30 mT, [106]) to several hours at 1.5 T.

7.2.2 Methods and results

7.2.2.1 Flip angle calibration

The same flip angle was used for the thermal and hyperpolarised signal acqui-

sition. This value was determined to gain the largest signal to noise ratio for

polarisation measurements (i.e. ∼90◦). A flip angle calibration was conducted

using a xenon frequency tuned birdcage coil and thermal xenon sample. FiD-

CSI (Free induction Decay Chemical Shift Imaging) pulse sequence was used in

spectroscopy mode, ie. no gradients on (cfxfull = cfyfull = cfzfull = 0). A hard

pulse (to excite all frequencies) width (pw rf1) was set to the default value of
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(a) 90◦ pulse (b) 180◦ pulse (c) 200◦ pulse

(d) 90◦ pulse (e) 180◦ pulse (f) 270◦ pulse

Figure 7.1: Flip angle determination, showing actual and simulated FIDs. a,b,c) top:
absorption spectra and bottom: real part of FID for TG of 93, 186 and 200, approximately
corresponding to 90, 180 and 200◦. A 270◦ pulse was not possible due to constraints
of a maximum TG of 200 under these conditions. d,e,f) simulated FIDs for 90, 180 and
270◦ pulses respectively showing the changes observed in the FID.

500 ms. The amount of radio frequency (rf) transmitted is determined by the

sum of the voltage control (ia rf1), the transmit gain (10 TG=1dB) and an

attenuation factor (xmtaddSCAN) which is set to the default value of 11.5792.

Increasing the ia rf1 value, increases the amount of rf and therefore too large

a number could result in multiple wraps of a spin revolution. It was found

that a value of 10,000 gave a good range of values across the available TG

starting with a low pulse angle, building up to a 90◦ pulse then dropping to a

180◦ pulse and confirming this by witnessing the increase of the pulse height

past the 180◦ towards the next maximum at 270◦, Figure 7.1.

In the spectroscopy prescan mode ‘Q Chan Raw’ - the real part of the FID and

‘Pure absorp’ - the real part of the fourier transformed complex data set, were
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used. The xenon frequency is set to be on resonance (17,663,299 Hz), which

enabled a pulse angle calibration to be carried out using the knowledge that

a 90◦ pulse will be the first maximum, Figures 7.1(a) and 7.1(d). Due to the

180◦ pulse flipping the magnetisation into the opposite longitudinal plane, the

FID will show a flat line with no signal, due to no transverse magnetisation,

Figures 7.1(b) and 7.1(e). In a continuation of the pulse rotation, a 270◦ pulse

will be the next maximum but due to the opposite rotation in the transverse

plane, this will be an inverted signal, both in the FID and the absorption spec-

trum, Figures 7.1(c) and 7.1(f). This technique determined a 90◦ pulse to be

TG ∼ 93, which is used in polarisation calculations studies below.

7.2.2.2 Polarisation calibration

A GE2000 continuous flow polariser was used to produce hyperpolarised 129Xe

using a 60 W Integra laser (two VBG narrowed Comet modules with a fibre

combiner), with f% xenon (typically 1-3%), 10% nitrogen and balance helium.

The polariser conditions were varied through a choice of gas flow rate and

storage time of the frozen xenon (at a field of 500 G) which determines the gas

quantity and production rate, according to equation 7.2.

Time (min) =
Volume (l)

Flowrate (l/min)
∗ 100

f
(7.2)

Upon collection of the hyperpolarised xenon into a Tedlar bag (Jensen Inert

Products, USA), the bag is placed into a holding field of 2 mT to measure the

polarisation using a simple NMR pulse and acquire sequence, pre-referenced

to a known signal calibrated against a proton sample held at Polarean, [53].

This instrument is known as the polarisation measurement station.

The Tedlar bag containing hyperpolarised xenon is then transported to the

GE 1.5 T HDx MRI scanner. Once inside the bore of the magnet, the gas is
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Figure 7.2: Two identical glass vessels used for xenon samples in MRI scanner. Left:
thermal sample, right: hyperpolarised sample container.

transferred to an evacuated glass vessel (∼ 200 ml volume), Figure 7.2. The

sample then undergoes a spectroscopic NMR detection using a FiDCSI pulse

sequence and a purpose built birdcage coil. The glass cell was subsequently

attached to a pressure line to measure the pressure of xenon in the vessel us-

ing a Honeywell 26PCD pressure sensor which was used for the polarisation

calculations.

Polarisation of the hyperpolarised xenon was calculated by comparison with a

thermal xenon sample at 1.5 T. The thermal sample was filled with 1.046 bar

oxygen and 2.870 bar natural abundance xenon, pth, into a glass vessel of the

same dimensions as the hyperpolarised sample, as shown in Figure 7.2, this

eliminates the volume from the polarisation calculations. Oxygen was added

as a relaxant for thermal xenon; it reduces the T1 from tens of minutes for

a pure Xe sample (∼43 minutes for a 66 amagat sample) to less than a sec-

ond, [107]. Shortening the T1 allows for a repetition time, TR, to be selected

which enables full relaxation back to the thermal equilibrium state. Jameson et

al. [107] explored the relaxation mechanisms of pure Xe and Xe/O2 mixtures.

The thermal sample was run overnight for 2048 scans for 9 hours 40 minutes
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Table 7.1: Control variable parameters used on GE 1.5 T HDx MRI Scanner for polarisation
studies in spectroscopy mode

Name of Control Variable Value
Sequence FidCSI

Coil MNS 129Xe TR
Nucleus 129 Xe

Scan type Axial 2D
Field of View, FOV 48 cm

Slice thickness 100 mm
Number of averages, NEX 1

Spectral width 2500 Hz
Number of points 1024

Scan mode 1 (spectroscopy)
rf pulse 0 (hard)

Repetition time (thermal), TR 17000 ms
TR PASS 1100

Dummy time prior to scan, tlead 0
Dummy acquisitions, dda 0

Digitial gain, DG 28
Analogue gain (HP), AG 4

Analogue gain (thermal), AG 8
Transmit gain, TG 93

Frequency 17663299 Hz
Voltage transmit gain, ia rf1 10000

x gradient, cfxfull 0
y gradient, cfyfull 0
z gradient, cfzfull 0

Save raw data file, autolock 1
rf amplitude, ia rf1 10000

Repetition time for pass entry pt, TR PASS 1100
Total number of scans (thermal) 2048

Total number of scans (hyperpolarised) 1
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Figure 7.3: (a) Thermal and (b) hyperpolarised 129Xe NMR normalised signal intensities
acquired on a 1.5 T MRI system. (b) also shows the difference in signal intensity between the
thermal (red line) and hyperpolarised (black line). Signals were acquired using parameters
in Table 7.1.

and 16 seconds to obtain a good SNR. Due to a phase correction applied by

the scanner, alternate FIDs were flipped by 180◦. Consequently, it is necessary

to accumulate the scans by multiplying each alternate scan by -1. To obtain a

thermal spectrum which has an equivalent signal intensity to a single scan, the

scans were accumulated and divided by the number of scans. Both the ther-

mal, Figure 7.3(a), and hyperpolarised samples, Figure 7.3(b), were scanned

using the same control variables, see Table 7.1. A few differences between the

two scans were the total number of scans and the gain settings for the smaller

thermal signal. The analogue gain was changed by 12 dB and accounted for

by multiplying the hyperpolarised spectrum by 3.98 to get equivalent settings.

To compute the hyperpolarised xenon polarisation, firstly, it is necessary to

obtain the pressure of the hyperpolarised xenon gas, pHP , using a pressure sen-

sor. The sensor records a voltage measurement, so this is converted to pressure

using the manufacturer conversion factor of 3.33 mV/psi. The signals of the

hyperpolarised and equivalent single scan thermal spectra are determined, tak-

ing into account the changes in gain settings. There are several stages which

are analogous to the polarisation calculation steps laid out earlier in section

3.3.2.1; the thermal xenon polarisation, pth, is calculated using equation 3.3.
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Considering this value, a polarisation enhancement factor, εenhance, aids in de-

termining the hyperpolarised polarisation, equation 7.3 is similar to equation

3.7 described earlier.

εenhance =
SHP
Sth
∗ pth
pHP

(7.3)

Finally, the percentage hyperpolarised xenon polarisation, PHP , is calculated

using equation 7.3 which is equivalent to equation 3.9, with the error on PHP

being based on the SNR of the thermal xenon signal, such as it is in equation

3.10.

PHP = εenhance ∗ Pth ∗ 100 (7.4)

7.2.2.3 Characterisation of the GE polariser -

flow rate, storage time, volume of gas

produced

According to equation 7.2, parameters of flow rate and storage time can be

varied to give optimum conditions for a desired volume of gas. As previously

discussed in section 7.2.1, a balance needs to be sought between the residence

time of the gas within the optical cell where it is polarised and the time for

which the gas needs to be stored in its frozen state to allow accumulation to

a specific volume. T1 relaxation will decrease the 129Xe polarisation, due to

the gas being stored in the frozen state for long periods of time, see equation

7.1. For small volumes of gas (Figures 7.4(a) and 7.4(b)), a short accumulation

time is needed in the frozen state and therefore slower flow rates can be used to

obtain relatively high polarisations of ∼5.5%. When the frozen xenon storage

time increases with increasing gas volume (Figures 7.4(d) and 7.4(f)), the flow

rate to obtain the optimal polarisation needs to increase correspondingly. For

the gas mix used in Figure 7.4 of 3% xenon, 10% nitrogen, and 87% helium,

the optimal conditions for the highest polarisations are: 0.2 l bag, 0.5 l/min
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Figure 7.4: 129Xe polarisation as a function of flow rate (left) and time (right) for three
volumes of gas. A 0.2 l (red) bag of xenon would be suitable for a flip angle calibration or
phantom study, whereas a 0.6 l (black) or 1.0 l (blue) bag of xenon would be suitable for
a subject to breath in during a clinical study. Polarisations are measured at ∼2 mT and
subsequently at 1.5 T. Gas mix: 3% xenon, 10% nitrogen, and 87% helium.
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flow rate and 13 min 20 s storage time; 0.6 l bag, 0.75 l/min flow rate and

26 min 40 s storage time; and 1.0 l bag, 1.25 l/min flow rate and 26 min 40 s

storage time.

This study also compared the polarisations obtained at low field (∼2 mT, po-

larisation measurement station) and subsequently at 1.5 T (GE HDx clinical

scanner). This study aimed to mutually verify the calibrations of both sys-

tems, as polarisation measurements should be similar but lower for 1.5 T due

to losses on transfer into the scanner and T1 relaxation. Figure 7.4(a) shows

a rough correlation between the two magnetic fields but random fluctuations

are observed. These fluctuations arise from the polarisation measurement sta-

tion’s lack of ability to measure accurate polarisations for a small volume of

gas. This is due to the region of interest above the NMR surface coil being

about 2.54 cm and if the volume of gas doesn’t fill this region, even with com-

pression of the bag to attempt to fill the required volume, then the results will

not be as consistent. This is overcome with the larger volumes of gas (0.6 l

and 1.0 l) in Figures 7.4(c) and 7.4(e). A good correlation is seen in these

examples with the polarisation being higher at the polarisation measurement

station than at 1.5 T due to T1 decay and transfer through field gradients

causing further loss in polarisation.

7.2.2.4 Polarisation decay tests

Further to the mutual consistency and polarisation optimisation tests shown in

Figure 7.4, further studies probed the hyperpolarised gas signal at low field pre

and post being held at 1.5 T. Polarisation was measured prior to a scan in the

2 mT field of the polarisation measurement station and then after transfer to

the glass vessel in the 1.5 T magnet. The residual gas remaining in the Tedlar

bag, which has experienced a field of 1.5 T but not an NMR pulse (due to non-

complete transfer into the glass vessel), is transferred back to the polarisation
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measurement station. Here the xenon polarisation is measured to determine

the signal decay due to time and the field gradients during transportation

to and from the magnet. Unfortunately due to the permanent magnets used

during the freeze/thaw cycle in the polariser, it was not possible to measure

the 129Xe polarisation in situ within the OP cell. Reasonable consistency was

shown between the different magnetic field measurements, as shown in Figure

7.5 on the right hand side of the plot.

In addition, the study probed the decay of the polarisation when delayed in

transit between the polariser and the MRI scanner, at the position of the red

star shown in Figure 7.6, for varying periods of time between 0 seconds and

20 minutes is as shown in Figure 7.5. The field at this position was measured

to be 0.08 mT in the direction of the Earth’s field (typically ∼ 0.05-0.06 mT);

this slightly elevated field helped to maintain the 129Xe polarisation, with only

about a 45% drop after 20 minutes. Relaxation of the gas is further increased

due to moving the sample through the magnetic field lines: from the polariser

via the measurement station and through to the 1.5 T clinical scanner. Relax-

ation due to magnetic field gradients was investigated by Schearer et al. [108]

who proposed that the Brownian motion of spins causes randomly fluctuating

magnetic fields thus influencing the spin-lattice relaxation time.
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Figure 7.5: 129Xe Polarisation measurements before, during and after transportation to the
1.5 T scanner. Measurements before and after 1.5 T scan were acquired on the polarisation
measurement station at ∼2 mT. Wait times are defined as the period that the bag was held
stationary between the polarisation measurement station and MRI scanner, so relaxation is
affected most between the first two measurements.

Figure 7.6: Site Plan showing location of the 129Xe continuous flow polariser, MRI scanner
and position of Tedlar bag containing hyperpolarised xenon, during wait times shown in
Figure 7.5, which is indicated by the red star. Floor plan from GE Site Planning for 1.5 T
scanner.
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7.3 Imaging modalities

7.3.1 Proton lung imaging

To enable utilisation of hyperpolarised Xe129 for clinical use, a proton MRI im-

age of the lung needs to be acquired as a localiser in order to visually examine

the lung cavity such that the hyperpolarised lung images can be overlayed onto

an anatomical image and any defects or blockages observed. Proton MRI of

the lung is inherently difficult for several reasons. The first is the low quantity

of tissue that is present in the lung, which leads to an inherently low proton

mass making conventional proton MRI difficult. The second problem experi-

enced is the rapid signal decay from the short T∗2 values due to the multiple air

and fluid interfaces. Finally there will be motion artefacts due to respiratory,

cardiac and vascular motion. The final two difficulties are lessened by having

short echo times. Short echo times enables overall fast scan times which facili-

tates the subject to be able to hold their breath for the length of the scan thus

reducing the respiratory motion. However, there are hardware and software

constraints with ultra short echo times.

Cardiac motion can either be reduced by cardiac gating or short repetition

times. Cardiac gating would appear initially to be the preferred scenario as

short repetition times prevent full recovery of the proton signal to its initial

state. However, unfortunately, cardiac gating slows the sequence down dra-

matically as the k-space lines can only be acquired at a specific time in the

cardiac cycle and the sequence can no longer be acquired within a breath-hold.

Motion artefacts can cause blurring or ghosting in an image, for example, car-

diac motion causes noise running through the heart in the phase encoding

direction. In addition artefacts can arise from phase wrapping if the dimen-
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Figure 7.7: Schematic showing the origin of phase wrapping. This occurs when the field
of view (FOV) is smaller than the volume of interest (a). When phase shifts outside the
FOV (blue spins), exceed +180◦ or are less than -180◦, they are mapped onto a phase shift
within the region of interest. For example, a shift of +220◦ and is mapped onto -140◦ (b).
This results in the same spatial encoding as spins within the FOV and overlapping occurs.
If the object extends outside the right hand side of the FOV, it will be wrapped onto the left
hand side of the image and vice versa, denoted by the coloured areas in (b). The effect of
this aliasing is shown in two MRI scans with arms down (c) with phase wrapping (denoted
by yellow dashed lines) as the arms are outside the FOV and arms up (d) where an image
is produced without aliasing. Scans were performed on a healthy male volunteer using a
Fast GRE pulse sequence with a flip angle of 10◦, TE: 2.2 ms, TR: 4.8 ms, matrix size:
128 x 128, FOV: 38 cm x 38 cm, slice thickness: 5 mm, scan time: 0.672 s. Figures (a)
and (b) based on concepts in [109].
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sions of the object being scanned are greater than the field of view (FOV), as

shown in Figure 7.7. Phase encoding errors arise as the scanner assumes that

the phase range of spins in the region spans from -180◦ to +180◦. However,

regions of the object lying outside of the FOV are assigned a phase >+180◦ or

<-180◦, and these phases are folded onto the region of interest. For example, a

phase +220◦ in Figure 7.7(a) is given the same phase encoding as -140◦, shown

in Figure 7.7(b). This results in multiple spins with the same phase encoding

and thus overlapping occurs on the image, as shown in Figure 7.7(c). Phase

wrapping can be avoided by including all of the region of interest within the

FOV, either by increasing the FOV or, for the upper body, by placing the arms

above the head, as shown in Figure 7.7(d). An inbuilt scanner algorithms such

as ‘no phase wrap’ could be used to prevent the aliasing by oversampling the

object outside the region of interest (i.e. increasing the FOV) but then dis-

carding this additional information before reconstruction, so that the apparent

FOV is not increased.

Speed of image acquisition is very important with lung imaging, as it enables

dynamic studies, reduces the likelihood of motion artefacts and enables breath-

hold imaging without respiratory motion. Two sequences were compared in

Figure 7.8: a fast GRadient Echo (GRE, used in Figure 7.7) and a Fast Imag-

ing Employing Steady State Acquisition (FIESTA). FIESTA is also known as

FISP (Fast Imaging with Steady state Precession) and balanced Fast Field

Echo (FFE). Both of these sequences are gradient echo sequences. Gradient

echoes are generated by reversing the gradient in the frequency encoding di-

rection (X gradient in Figures 7.8(a) and 7.8(b)). GRE sequences with short

repetition times (TR), do not allow time for the transverse magnetisation to

decay before the next TR, and this ‘left over’ magnetisation needs to be dealt

with. For Fast GRE the magnetisation is destroyed by switching the slice

select gradient with opposite polarity to dephase the spins before the next cy-
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Figure 7.8: Comparison of pulse sequences and proton MRI scans for (a) and (c) spoiled
(Fast GRE), and (b) and (d) refocused (FIESTA) gradient echo sequences, performed on
a healthy male volunteer. Fast GRE scan parameters: flip angle: 10◦, TE: 1.3 ms, TR:
3.8 ms, NEX: 1, matrix size: 128 x 128, FOV: 40 cm x 40 cm, slice thickness: 5 mm, scan
time: 0.536 s. FIESTA scan parameters: flip angle: 50◦, TE: 1.3 ms, TR: 3.1 ms, NEX: 1,
matrix size: 128 x 128, FOV: 40 cm x 40 cm, slice thickness: 5 mm, scan time: 0.458 s.
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Figure 7.9: Hyperpolarised 129Xe MRI scan inside a glass phantom, acquired using a
fast GRE pulse sequence with an actual flip angle of ∼3◦ (100◦ set on scanner), TE:
4.9 ms, TR: 11 ms, NEX: 1, matrix size: 128 x128, FOV: 48 cm x 48 cm, scan time: 2 s,
129Xe polarisation: 4.6 ± 0.1%. Acquisition parameters of 129Xe: flow rate: 0.75 l/min,
volume of gas: 0.6 l, storage time in frozen state: 26 min 40 s, percentage xenon in gas
mix: 3%, these were optimal conditions for a 0.6 l bag as noted in 7.2.2.3.

cle; this is known as spoiling. FIESTA uses unspoiled sequences and instead

refocuses the transverse magnetisation so that it is preserved from one TR

cycle to the next, Figure 7.8(b), which enables shorter scan times. Due to the

transverse magnetisation being refocused, a higher flip angle can be utilised in

the FIESTA sequence and a sharper MRI scan is obtained for FIESTA, Figure

7.8(d), compared to Fast GRE, Figure 7.8(c). In these images, the scanner

‘autovoice’ was selected to synchronise the scan with asking the subject to

breathe in and hold their breath and then after the scan to relax and return

to normal breathing.

7.3.2 Hyperpolarised 129Xe MRI imaging

Hyperpolarised MRI requires highly efficient sequences because there is no

recovery of the magnetisation (without going through the hyperpolarisation

process again). The magnetisation decays due to T1 relaxation and the exci-

tation pulses. A pulse sequence needs to be fast on the time scale of the T1

of the sample. For pure 129Xe gas at 1.5 T, the T1 is a few hours, whereas in
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vivo this drops to minutes. For a ventilation image, the typical scan time is

about 2 s per slice, as shown in Figure 7.9, which means negligible T1 decay

is occurring over the time scale of the image acquisition.

7.4 Summary

This chapter has demonstrated the techniques that will be required for hy-

perpolarised 129Xe functional lung MRI scans in Nottingham. Methods have

been discussed as to how to obtain a measure of 129Xe polarisation on a 1.5 T

GE HDx scanner and comparisons were drawn to low field (∼2 mT) 129Xe po-

larisations. This allowed optimal conditions for hyperpolarising 129Xe to be

achieved using a GE 129Xe continuous flow polariser. These parameters take

into account a balance between the rate of flow of gas through the cell along

with the storage time of the frozen xenon. The flow rate alters the gas residence

time within the SEOP cell and thus the time available to allow spin-exchange

processes to occur between Rb and 129Xe. Xenon is frozen to separate it from

its constituent buffer gases and to allow accumulation of large volumes. These

optimal specifications were subsequently used to acquire a 129Xe MR image in

a phantom. Furthermore, proton lung MRI has been examined to obtain op-

timal parameter sets for localisation scans which can be used in future clinical

trials in Nottingham.
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Chapter 8

Conclusions

This thesis is focused on probing the spin exchange optical pumping process

with multiple techniques, under different experimental conditions. The vari-

ous techniques outlined include low field NMR spectroscopy, near-IR optical

absorption and in situ Raman spectroscopy. Xenon polarisations were mea-

sured using three surface NMR coils which are placed at the front, middle and

back of the optical pumping cell to obtain spatial PXe values. An estimation

of the rubidium polarisation was obtained by measuring the amount of pump

laser light absorption with the magnetic field on and off. Energy transport

and internal gas temperatures (TN2) were investigated using in situ Raman

spectroscopy. Walter et al. [51] showed that energy transport is an important

topic within SEOP, as thermocouples exterior to the OP cell are not a good

indication of the internal gas temperatures. We have followed on from Wal-

ter’s studies to look at high powered frequency narrowed lasers in the absence

of helium as a buffer gas. Due to the advent of frequency narrowed lasers,

SEOP experiments no longer require helium to pressure broaden the Rb D1

absorption line. As part of the investigations, the orientation angle of the

detection and excitation optics within the Raman instrumentation was exam-

ined. Firstly, the optics were arranged perpendicularly to allow the probe laser

light to be spatially filtered by the arrangement. This method also utilised the
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internal baffles of the spectrometer to physically block the light from enter-

ing the spectrometer. Due to the need for the optical pathways to be aligned

to sub-mm accuracy, improvements can be made in experimental consistency

by having the pathways arranged along the same optical plane. This idea is

utilised in a new 180◦ geometry inline module, with the addition of optical

notch filters to reduce the optical transmission of non-Raman scattered lines

by many orders of magnitude. This module enables ultra-low frequency Ra-

man scattering to be performed on a gas sample, with a ∼23 fold improvement

in SNR compared to the conventional orthogonal arrangement using the same

acquisition parameters.

SEOP conditions were investigated under different parameters, including Xe

density, laser linewidth, temperature and alkali metal. Xe has a much lower

thermal conductivity than N2 (0.70 x 10−2 Wm−1K−1 compared to 3.09 x 10−2

Wm−1K−1), with correspondingly higher TN2 values observed at the highest

xenon partial pressures (pXe) for a fixed total cell volume. This corresponded

to the region of highest signal intensity, PXe.pXe. Narrowing of the laser

linewidth, increased the xenon polarisation of a sample as previously shown

by Whiting et al. [71]. This was further investigated with the use of Raman

spectroscopy to look at temperatures changes as probed across the cell, per-

pendicular to the SEOP pump laser. Internal gas temperatures were elevated

by hundreds of degrees at the centre of the cell with the frequency narrowed

laser, whereas only a few tens of degrees with the broadband laser due differ-

ences in resonant photon energy for the same overall laser power. At the cell

walls, the gas temperature corresponded to the oven temperature measured by

the thermocouple, leading to uneven heating across the vessel. This heating

phenomena was also investigated along the length of the optical cell, parallel

with the pump laser to obtain PXe and TN2 values at the front, middle and

back of the cell. Under steady state conditions, TN2 and PXe were observed to
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be largest at the back of the cell with a temperature and polarisation gradient

exhibited across the cell. When rubidium runaway takes place, a process where

PXe initially has fast buildup and then a dramatic drop to a lower PXe value,

the temperature gradient switches as the back internal gas temperatures be-

come the lowest. It is proposed that this is due to increased light absorption

at the front of the cell and so less light penetrates to the back. This means

that unpolarised rubidium at the rear of the cell is not able absorb the light

and therefore no heat is transferred via non-radiative collisions to the nitrogen.

Rubidium runaway can be alleviated by several methods discussed in Chapter

5 including lowering the overall temperature of the cell to reduce the rubidium

number density, spatially monitoring and altering the oven temperature via

feedback loops, [88], removing the rubidium from the laser line thus removing

this heating effect and enabling more control over the rubidium number den-

sity, [55], and taking advantage of the increased spin exchange times during

rubidium runaway but then lowering the cell temperature to a stable PXe to

avoid the detrimental effects of this process, [93].

Along with rubidium, caesium was also investigated as the alkali metal of

choice for SEOP experiments. Cs has been shown to have a higher spin ex-

change cross-section with xenon than Rb and is particularly effective at high

Xe densities. In a previous study by Whiting et al. [28], Rb and Cs SEOP

were compared using comparable broadband lasers and an approximately two-

fold improvement in spin polarisation was observed. In this thesis, a similar

comparison was made utilising frequency-narrowed lasers, it was seen that Cs

optical pumping under these conditions produces higher polarisation than Rb

but the same gains were not seen as with the broadband lasers. It is currently

believed the reason for this is due to the limitations in the laser technology

of the Cs laser, as it was not possible to have tuning across the whole spec-

tral range of the Cs D1 transition. Due to these restrictions in being able to
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utilise the full potential of Cs SEOP, a hybrid alkali metal SEOP experiment

to use Rb D1 optical pumping and then spin exchange onto the Xe via Cs

was studied. Dependencies of various ratios, temperature and gas mix were

investigated, with high PRb and PXe being observed. Currently, the Rb/Cs

hybrid does not have a increased PXe compared to pure Rb, but it does have

comparable polarisation rates. With further work into this field, it is proposed

that a future improvement to 129Xe polarisers might be able to use this hybrid

method without having to change the laser or optics, which are generally the

most expensive parts of a polariser.

Finally, the thesis concludes with the purpose of studying the SEOP process

within our lab, as it will be used as a tool for studying lung diseases with clini-

cal lung MRI. Measurements of thermal and hyperpolarised 129Xe NMR signals

are performed at 1.5 T to enable polarisation measurements to be calculated

and compared to a pre-calibrated 2 mT helmholtz coil measurement station.

Polarisations were compared at different volumes, accumulation times and flow

rates to allow calibration of the polariser for future studies. There is a balance

needed between the flow rate, which controls the gas residence time and thus

the time available for spin exchange between Rb and 129Xe, along with the

accumulation time of xenon in the frozen state. Following on from this, pro-

ton MRI localisation scans of the lungs were investigated as co-registration of

129Xe MRI scans. Sequences for proton lung MRI were compared and artefacts

discussed.
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Appendix A

Calculation of rotational

constant of nitrogen

The rotational partition function for a diatomic molecule is

qR(T ) =
∞∑
J=0

exp

(
−J(J + 1)θR

T

)
(A.1)

where θR is the rotational temperature as defined by

θR =
B

kB
=

h2

8π2IkB
(A.2)

where I is the momentum of inertia of a molecule, I = µr2, with µ being the

mass of the molecule and r is the bond length. Given that the N2 bond length

is 53 pm [38] and the mass is 28.02 mu (atomic mass constant), the momentum

of inertia, I, is 1.31 x 10−46 kgm2. Therefore the rotational constant can be

calculated to be 6.42 x 1010 s−1. This is converted to wavenumbers using

ν̄ =
ν

c
(A.3)

where ν̄ is wavenumbers, ν is frequency, and c is speed of light, to give

2.14 cm−1 as the rotational constant of nitrogen. This is converted into Joules
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to allow calculation of the rotational temperature, using

E = hν (A.4)

This gives B with a value of 4.25 x 10−23 J, thus the rotational temperature

is calculated to be 3.08 K using equation A.2. At this rotational temperature

the thermal energy (kBT ) is comparable to the spacing between the rotational

energy levels (hcB) and therefore the rotational energy levels are populated

above this temperature.
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