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Abstract

This dissertation studies the dynamics of atomic Bosc-Einstein condensates (BECs)
and Bose gases in a suddenly modified potential.

Firstly, we investigate the correlation between vortex formation and interference
in merging Bose-Einstein condensates. This inherent correlation can explain some
experiments in which vortices are formed in interfering condensates. Furthermore, we
show the interference properties of merging condensates, particularly the relation of
interference among colliding, expanding, and merging condensates, which can explain
some complex interference phenomena in recent experiments.

Secondly, using the truncated Wigner approximation, we investigate the role of
quantum fluctuations in different forms on the transport properties of bosonic atoms
in a 1D optical lattice. The dynamics of transport with respect to quantum fluctua-
tions in the plane-wave modes is distinct from that in the single-harmonic-oscillator
modes. The discrepancies are demonstrated in detail. Quantum fluctuations in Bo-
goliubov modes lead to stronger damping behavior of the center-of-mass motion than
quantum fluctuations in the planc-wave and single-harmonic-oscillator modes, which
is in agreement with the experiment.

Thirdly, the role of the relative phase variation and velocity of two low-density
condensates, and quantum noise on interference properties are discussed. In partic-
ular, the incoherent atoms have significant effect on the interference visability and
microscopic dynamics. Although the interference pattern is not broken by quantum
fluctuations, indicating the robust character of this interference, the process of inner
correlations and dynamics is very complex and can not be understood purely with
mean-field theory.

Finally, we investigate the elementary excitation spectrum and mode functions
of a trapped Bose gas by numerically solving the Bogoliubov-De Gennes equation.
The characteristic form of the Bogoliubov matrix, determined by the interatomic
interactions, and the interaction between atoms and confining potential, specifies
excitation spectra and mode functions. The role of these interactions on the propertics

of spectra and mode functions are shown.
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Definition of Symbols and Fundamental Constants

Fundamental Constants
Plank’s constant, h = h/(2m).
The charge of an electron.
The mass of an clectron.

The Bohr magneton.

Boltzmann’s constant.

Symbols

The mass of an atom.

The temperature of the system.

The critical temperature for Bosc-Einstein condensation.
The number of atoms in the system.

The number of condensed atoms in the system.
The chemical potential of the system.

The volume of the system.

The period of an optical lattice.

The s-wave scttering length.

The recoil energy of a particle.

The phase of condensed atomic wave function.
de Broglie wavelength.

The Wigner characteristic function.
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CHAPTER 1

Introduction

Bose-Einstein Condensation (BEC) of dilute atomic gases is a macroscopic quantum
phenomenon with consequences for superfluidity, superconductivity and the laser.
The realization of Bose-Einstein condensation in dilute atomic gases [1,2] achieved
several long-standing goals. First, since neutral atoms were cooled into the lowest en-
ergy state, the ultimate control over the motion and position of atoms can be limited
only by Heisenberg’s uncertainty relation, explicitly ArAp > ’2‘ Second, all atoms
occupy the same quantum statc and this macroscopic system leads to the realization
of atom lasers, devices which generate coherent matter waves. An important appli-
cation of this kind of matter waves is to process quantum information and sculpt
wavefunctions by optical pulses or external fields [3]. Third, some possible measure-
ment techniques provide some ways of exploring properties of many-body states in the
dilute Bose gases which are difficult in the quantum liquids *He and *He. These have
stimulated the rapid development in some experimental techniques, such as cooling
atoms to extremely low-temperature, microscopic manipulation of atoms and preci-
sion measurements of the quantum properties of these atoms. Consequently, it is
immediately necessary to understand the principles of these techniques.

In this chapter, we will descibe some experimental developements and principles

used in the formation. control and measurement of BECs.



1.1 Production and Trapping of Cold Atoms

In order to create a Bose condensate in a dilute gas, atoms must be cooled and com-
pressed in a trap until the thermal de Broglie wavelength, \p = \/—% ! is on the
order of the spacing between atoms. This can be achieved by trapping atoms with
magnctic ficlds or with laser light inside ultra-high vacuum chambers. To understand
the behaviour of atoms in a magnetic field and a laser field and how they are trapped,
the Zeeman effect and atomic interactions with laser fields are explored in the fol-
lowing section. Subsequently the primary features of magnetic and optical traps are

shown, particularly optical lattices produced by optical standing waves.

1.1.1 Magpnetic-Optical Traps

The procedure for creating a BEC normally involves three steps. Firstly, non-charged
atoms are cooled down to temperatures near absolute zero using circularly polarised
laser light (Pre-cooling). Sccondly, these atoms arc trapped at a certain place using
magnetic fields and laser light (Trapping). Thirdly. the final cooling of the atoms is
done by evaporation.

With the addition of a magnetic field gradient, the velocity reduction of Doppler
cooling (Pre-cooling) can be used to help confine and trap neutral atoms. In a weak
inhomogeneous magnetic field the internal energy levels of the atoms are split into
their Zeeman components. By using circularly polarized light to Doppler cool the
atoms in the presence of this magnetic ficld, these atoms can also fecl a spatially-
dependent force that pushes them towards the zero of the magnetic field (Trapping).
Using a quadrupole magnetic field and retroreflected, circularly polarized laser beams
in a 3-D geometry enables cooling and trapping in all three dimensions. This type of
magneto-optical trap, or MOT, was first demonstrated for the trapping and cooling
of alkali metal atoms, but the method can be easily extended to atomic states that

have broader cooling linewidths by increasing the applied magnetic field gradient.

This formula refers to the thermal de Broglie wavelength for a free ideal gas of massive particles
in equilibrium. kg is Boltzmann’s constant, m is the mass of one particle, and 7T is the temperature
of the gas



Zeeman effect

To understand the mechanism of trapping it is crucial to briefly summarize the spin
properties which determine the interaction of atomic systems with an external mag-
netic field, B. The atomic Hawiltonian in the presence of an external maguetic field
has the following form

H=Al-J+ 2upJ,B, (1.1)

where A is a coupling constant, and I and J are the nuclear and electronic angular
momenta, respectively. pup = |e|h/2m, is the Bohr magneton and z indicates the
direction of the magnetic field. Indeed, there exists also the interaction between
external magnetic field and nuclear magnetic moment. However, the contribution
from the nuclear magnetic moment is very small compared to the two terms in the
Eq.(1.1) so we can neglect it from this point onwards.

The first part of Eq.(1.1) is usually called by hyperfine interaction. This interac-

tion is related closely to the quantum numbers I, J and F 2
1.J= %[F(F +1) = I(I+1) = J(J+1)], (1.2)

where F = I+ J and J = 1/2 for the alkali atoms. The energy splitting produced
by the interaction of the nuclear and electronic angular momenta between the two
hyperfine states F' = I + 1/2 is then casily calenlated and is given by the formula
AFE = A(T + 1/2). Typical values range between 1 and 10 GHz.

We can consider two limits for Eq.(1.2). In weak magnetic fields, the second
term can be considered as a perturbing part and the following result derived for the

interaction energy between the atom and the external field :
< Fymp|2ppd.B|F,mp >= gLugmrB, (1.3)

where mp is the cigenvaluc of F, and

_FE+)+ I+~ HT4+1)
3 2F(F + 1)

9L (1.4)

2Eq.(1.2) is equivalent to mathematical transformation, F? = 1? + 2I - J + J2. Since the unper-
turbed eigenstates of J2, I?, and F? are known and their corresponding eigenvalues are J2 — J(J+1),
1?2 - I(I +1), and F? - F(F + 1), Eq.(1.2) can be deduced.



is the Lande Factor. In strong magnetic fields, the nuclear and electronic angular
momenta, I, J arc magnetized so that the direction of I and J is antiparallel or parallcl
to the direction of the magnetic field B. Thus the eigenvalues of J, are the same as
the eigenvalues of J, 3. Thus for I = 3| the maximum total angular momentum
F = 2 so that there exist 2F' + 1 = 5 states for mp, namely mp = —2,-1,0,1,2.
From Eq.(1.1) and Eq.(1.2), the eigenvalues for these relevant states of the alkali

atoms in the strong magnetic field are,

Emp=12 = %A + upB
3 (1.5)
j JA—T _ZA + upB.

For arbitrary maguctic ficlds the cigeustates and cigenvalues of Eq.(1.1) should
be determined by diagonalization. The structure of the group in the spin momentnum
has the following character [f,,fy] = ihl, and [jx, jy] = ihJ,. Thus we perform
angular transformation [f+, f_] = 2hI, and [j+, J_] = 2hJ, where the raising operator
I, =1+ ify and the lowering operator /_ = ify3. By expressing I - J in terms
of the raising and lowering operators according to I-J = LJ, + (I, J- + I-J)/2,
one can easily construct the matrix elements of Eq.(1.1) ou the basis |my, my > with

~I <m; < +I and m; = £1/2. Thus Eq.(1.1) is rewriten as
H=ALJ.+(,J-+1.J,)/2]+ 2upJ.B. (1.6)

For a nuclear spin I = 3/2, the maximum total angular momentum F' = 2 so that

there exist 2F + 1 = 5 states for mp, namely mp = —2,—1,0,1,2. The eigenvalues

3From the view of Lie group and Lie Algebra, this kind of transformation is similar to the
transformation of operators {#.p} = {a,a'}.



for these relevant states of the alkali atoms are, thererfore?,

3 1
Emp::tZ = ZAiaC (17)
. 1 TR i
b/m,,=+1 = "4-14 + ZA e Z(A + (/) (18)
1 3 1
Bngnet 5 g \/Z/P +7(A-C)? (1.9)

1 1
Emgeo = —ZA:t,/AuZCz, (1.10)

where C = 2ugB. From above analysis, one can see that for the maximum or mini-
mum value of mp, the magnetic fields play the role of shifting the initial energy level
without the magnetic ficlds. For other mp, the energy levels arc split by the external
magnetic fields. Meanwhile the width (gap) of split energy levels is increased with
raising magnetic fields but approaches the constant levels +upB for high magnetic
fields. When considering the magnetic trapping of atoms, the variation of the direc-
tion of the field experienced by an atom is assumed to take place slowly compared to
the inverse of the Larmor frequency [4]; consequently, atoms will remain in the same
quantumn state. Thus, an atom in a state whose energy increases with increasing field
will move towards a minimum in the field, referred to as low-field seeking, and the
reverse behavior referred to as high-field seeking.

From the above eigenvalues, we can see that E,,, is determined by magnetic field
B? under the condition of a fixed A. The existence of a maximum E,,, requires
0B?/0x). = 0 and 92B?/dx} < 0 for each k. However, this is impossible for magnetic

traps because

V5t =20 (B2 = 2B.B, + A5 > 0 (111)

where V2B, = 0. This means that the alkali metal atoms cannot be maintained in
a stable stationary equilibrium configuration solely after a magnetic field is applied
(Earnshow’s theorem). The interaction between the magnetic field and the atoms

forces the atoms to move to the point of minimum £, ..

*The Hamiltonian Eq.(1.6) conserves the 2-component of total angular momentum F. mp = +2
have one state respectively and the other mp have two different states



Atomic Interaction with Laser fields

The atomic interaction with laser fields is of importance to understand the confine-
ment and manipulation of BECs by laser. Meanwhile it enriches the performances
already available with magnetic trapping. In the dipole approximation®, the interac-
tion can be written as

V(r,t) = -d E(r,1), (1.12)

where d is the electric dipole operator for a single atom and
E(r,t) = E(r)c ™" + c.c. (1.13)

is a time-dependent electric field oscillating with frequency w. In this field, the electric

dipole moment is < d >= a(w)E(r,t), where

_ " 2wno
a(w) =k 1¥| < n|d-éo> |2w30 T (1.14)
is the dipole dynamic polarizability and ¢ is the unit vector in the direction of the
electric field. In addition, the polarization produces a change in the energy of the
system and this change is called the AC Stark shift which can be calculated by using
second-order perturbation theory [4]. This energy change can be regarded as an
cffective potential

Ulr) = ——;-a(w)EZ(r,t) (1.15)

felt by each atom, where the bar indicates a time average. Usually the time variation
of the laser field is much faster than the typical frequencies of the atomic motion so
the time averaging of the potential is justified. Comparing Eq.(1.6) and Eq.(1.15), it
is easy to see that the magnetic interaction energy is linear in B due to the intrinsic
magnetic moment of atom while the electric interaction energy is quadratic in F as

a result of the dipole atomic polarizability.

5In general, the wave-length of the type of electromagnetic radiation which induces, or is emitted
during, transitions between different atomic energy levels is much larger than the typical size of a
light atom. Thus, ezplilw/c)n r] =1+i%n-r+ -, can be approximated by its first term, unity.
This approximatiou is kuown as the clectrie dipole approximation.



In classical mechanics, a potential generates a force F = —VU(r) if the poteutial

varics with position. So the effective potential (1.15) gives the foree

EX(r,1) 4

f = a(w)V——"=— 5

(1.16)

which affects the motion of the atoms. The behaviour of the force is determined by
the spatial variation of the radiation intensity E2(r,#) and on the exact value of the
laser frequency. If the dipole polarizability (1.14) is dominated by a single resonant
frequency wg, we define detuning 6 = w — wg (|6] << wg), given by the difference
between the laser and the resonant frequencies. Thus the polarizability behaves like
a(w) = —| < R|d - €
d > 0 (blue detuning) the energy change (1.15) is positive and the laser field will

|R > is the resonant state. Obviously if

force the atoms to move towards regions of low field (repulsive effect). In contrast,
if the detuning is negative (red detuning) atoms will be attracted to the regions
of higher electric field. In experiments, red detuning was employed to provide an
optical confinement of BECs, namely optical traps. The blue detuning was applied to

manipulate atoms away from the centre of quadrupole trap.

Optical Lattices

Optical traps, as discussed above, have many advantages. They can be employed to
investigate the cocxistence of multi-spin components with the possible oceurrence of
new magnetic phases. Also the value of the interaction between atoms can be tuned
by adding a magnetic field. Most importantly, optical traps can be modulated into
different traps like box traps, low-dimensional traps, optical lattices, rotating traps,
etc to manipulate cold atoms. Among these optical lattices are applied frequently.
When considering the radiation field of an applied standing wave along the 2-
direction,
E(r,t) = Ecos(gz)e ™" + c.c., (1.17)

the time-averaged effective field (1.15) takes the form

U(r) = —a(w) E*cos®(qz). (1.18)
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FIGURE 1.1: Atomic scattering rate versus laser frequency.

As a result, a periodic potential along the z-direction with wavelength 7/q is formed
and called an optical lattice. If the intensity of the laser is sufficiently high, this
periodic potential with a magnetic trap can produce an array of condensates. Ex-
periments can create a 3-dimensional optical lattice through three orthogonal lasers.
Three optical standing waves arc aligned orthogonal to cach other, with their crossing
point positioned at the centre of the atomic gas. Each standing wave laser field is
created by focusing a laser beam to a waist of about one hundred pm at the position
of the gas. A second lens and a mirror are then used to reflect the laser beam back
onto itself, creating the standing wave interference pattern. Thus a 3-dimensional

optical lattice can be formed [5].

1.1.2 Laser Cooling

The radiation-pressure force used in laser cooling and trapping is the recoil where
momecntum is transferred from photons scattering off an atom. Despite the infinites-
imal momentum kick that the atom receives from each scattered photon, typically
about lcm/s, more than 107 photons per second are possibly scattered by exciting a
strong atomic transition so that large accelerations are produced. Consequently the
controlled radiation-pressure force can bring the atoms in a sample to a velocity near

zero (“cooling”) and hold them at particular point in space (“trapping”).
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The cooling is achieved by making the photon scattering rate velocity-dependent
using the Doppler effect [6]. The principle is illustrated in Figure (1.1). If an atom
is moving with velocity v along the direction of a laser beam with frequency wiu.e.,
the shifted frequency is wiaser — (V/€)Wiaser Where c is the speed of light. If the laser
frequency is below the atomic resonance frequency (6 < 0), the atom, as a result of this
Doppler shift, will scatter photons at a higher rate when it is moving toward the laser
beam (v negative), than when it is moving away. If laser beams impinge on the atom
from all six dircctions, the only remaining force on the atom is the velocity-dependent
part, which opposes the motion of the atoms. This provides strong damping of any

atomic motion and cools the atomic vapor.

1.1.3 Evaporative Cooling

Evaporative cooling is required because of the reality that to achieve BEC, the tem-
peratures of atoms must be lower than those reached by laser or magnetic cooling.
The essential ideas of evaporative cooling are to reach an extremely low temperature
through reducing the mean kinetic energy of atoms in the system. Evaporative cool-
ing is done by continuously removing the high-energy tail of the thermal distribution
from trap. If there were a hole, produced by inducing a spin transition via the ap-
plication of a radio frequency pulse, in the side of the trap, only atoms with kinetic
energy no less than the potential energy of the trap at the point of the hole would
escape [104]. These evaporated atoms carry away more than the average energy,
which means the temperature of the remaining atoms decreases. The high energy tail
must be constantly repopulated by collision, thus maintaining thermal equilibrium
and sustaining the cooling process [7]. The only requircment for evaporative cooling
to commence is a collisional re-thermalization time much shorter than the lifetime of

an atom in the trap.

1.2 Experimental Probes

Much theoretical work tends to explain some experiments as well as guide experiments

to realize some possible phenomena. It is fundamental and important to understand
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experimental probes. The two most important techniques for observing Bose-Einstein
condensates are in-situ and time-of-flight imaging. In both cascs, onc obtains an image
which reflects the density distribution of the atoms either in a trapped state or in

ballistic expansion.

1.2.1 Free Expansion and Direct Imaging
Free Ezpansion Imaging

Free expansion imaging in BEC is naturally the imaging of the momentum distribu-
tion of cold atoms. The process of imaging is shown below. After the formation of
BEC, the trap spring constants were first adiabatically reduced and then suddenly
reduced to nearly zero so that the atom cloud essentially expands ballistically [8].
A field gradient remains and supports the atoms against gravity to allow longer ex-
pansion times. After a few milliseconds expansion, the spatial distribution of the
cloud was determined from the absorption of a few microscconds, polarized resonant
laser pulse. The shadow of the cloud was imaged onto a charge-coupled device array,
digitized, and stored for analysis.

This shadow image contains a large amount of easily interpreted information [8].
In general, a time-of-flight measurement of the velocity distribution is performed by
experiments. At each point in the image, the optical density is proportional to the
column density of atoms at the corresponding part of the expanded cloud. Thus,
the recorded image is the initial velocity distribution projected onto the planc of the
image. For all harmonic confining potentials, including the TOP trap, the spatial
distribution is identical to the velocity distribution, if each axis is linearly scaled by
the harmonic oscillator frequency for that dimension. Thus, from the single image
one obtains both the velocity and coordinate-space distributions, and from these one
also extracts the temperature and central density, in addition to characterizing any

deviations from thermal equilibriuin.
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F1GURE 1.2: Dark-ground (A) and phase-contrast (B) imaging set-up. Probe light
from the left is dispersively scattered by the atoms. In the Focal plane of the lens,
the unscattered light is filtered. In dark-ground imaging (A), the unscattered light is
blocked, forming a dark-ground image on the camera. In phase-contrast imaging (B),
the unscattered light is shifted by a phase plate (consisting of an optical flat with a
A/4 bump or dimple at the center), causing it to interfere with the scattered light in
the image plane.

Direct, Non-Destructive Imaging

After free expansion imaging was uscd in BEC, some groups commenced to explore
the direct and non-destructive observation of the spatially localized condensate. in
a gas of trapped atoms. The initial difficulty for this imaging was derived from
the fact that because of the high optical density of the atom cloud near the critical
temperature. direct observation by absorption imaging failed. For example, for typical
experimental parameters the peak optical density (D,) for resonant light is around
300, corresponding to a transmission coefficient of ¢73% [9]. Thus the probe light is
completely absorbed cven in the wings of the spatial distribution, preventing direct
imaging of the condensate. One applicable way to reduce the absorption is to detune
the probe light. The light reveals major image distortions due to dispersive effects:
the condensate acts as a lens and strongly deflects the light. However, by employing
the “dark-ground” imaging technique the dispersively scattered light can be used to
clearly image the condensate [7].

The central idea of dark-ground imaging is to obtain the imaging of scattered light

and block the unscattered light by placing a small opaque object into the Fourier
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Fi1GURE 1.3: Phasor diagram of dark-ground and phase-contrast imaging. A ray of
incident light with an clectric ficld Fy is scattered by the atoms. causing the light to
be attenuated and shifted in phase, resulting in the electric field . The dark-ground
method images AE = E,,, the difference between incident and scattered electric
fields. Phase-contrast methods cause AE and FEj to interfere by rotating the phase

of Ey by 90°, resulting in the field F,.
plane (Fig.1.2). In Fig.1.3, the probe light field after passing through the atoms can
be separaated into the scattered (AF) and unscattered radiation (Ej),

E =tEye = Eg+ AE (1.19)

Blocking the unscattered light gives the dark-ground signal:
1
< Iy >= EIE — Eo|? = Io[1 + t* — 2tcosd) (1.20)

For small ¢ the dark-ground signal is quadratic in ¢ [7].

1.2.2 Phase-contrast Imaging

The purpose of phase-contrast imaging is to obtain the phase information by interfer-
ing the unscattered light (kp) with the scattered radiation (AL). This is performed
by shifting the phase of the unscattered light by +7/2 in the focal plane of the imag-
ing lens (Fig.1.2). This is done with a “phasc platc” which is an optical flat with a

small bump or dimple in the center.
From Fig.1.3, the intensity of a point in the image plane is then

< by >= %lE — Ey+ Epe®i2 =1y [t" + 2 — 2v/2lcos (¢:i: %)] (1.21)
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FIGURE 1.4: (a) Traditional geometry for Bragg scattering. The initial and final
atomic momenta are P; and py, respectively. The fields’ Rabi frequencies are denoted
by r, r1, and the fields’ frequency by Q. (b) In a reference frame moving with velocity
v = —n(hk/m)z, the atoms are incident orthogonal to the standing-wave field and the
frequency of the traveling-wave components of the standing-wave ficld are Doppler
shifted by +nwi/2 = +nhk?/m.

For small ¢ one obtains
< Lo >= Lh[t? + 2 — 2t + 2t¢) (1.22)

which is linear in ¢. This makes phase-contrast imaging superior to dark-ground

imaging for small signals [7].

1.2.3 2-photon Bragg Scattering

The standard Bragg scattering is performed by using two counterpropagating beams
aligned perpendicularly to the weak axis of the trap (see Fig.1.4). A standing-wave
field with spatial period 7/k = A/2is directed along the z axis. The initial momentum
components of scattered atomic beam are p; , p;,, and final momentum components
are py,, py,- For off-resonant scattering by the field, the atoms remain in their ground
state. The momentum of the atoms can change by p;, — p;, = 2nhk (n = £1,£2,
etc.), since the scattering process can result in an exchange of photous between the
two traveling-wave components of the standing-wave field [11]. In general, the out-
going channel contains values of p;, corresponding to all values of n; however, in a

sufficiently long time, (p;, + 2nhk)? = p? , or p;, = —nhk fulfills overall conservation
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of energy. For a given value of n, resonant nth order Bragg scattering is achieved for
an incident direction of the atomic beam given by tan0 = pi./pi, = —nhk /pi,; all
other components of the scattering are suppressed.

Considering nth order Bragg scattering of atom beam with velocity
v = (—nhk/m)z,

where m is atomic mass, the field frequencies of the traveling-wave components of the
field are Doppler shifted by +(nhk/m) = £nw/2, where wy, = h(2k)?/(2m) is the
recoil frequency associated with a two-photon process. In this frame (see Fig.1.4),
the atomic beam is incident in the y direction and the relative detuning of the two
traveling-wave components of the field is = nwj. Thus resonant Bragg scattering can
be viewed as arising from the interaction of an atomic beam with counter-propagating
“pump” and “probe” fields that are detuned from one another [11].

This method of Bragg scattering can be used to probe density fluctuations of the
system and thus to measure directly the dynamic structure factor S(q,v), which is
the Fourier transform of the density-density correlation function and is central to the

theoretical description of many-body systems [10].

1.3 Superfluidity

1.3.1 Overview of Physical Properties

Superfluidity is intimatcly connccted with the phenomenon of Bosc-Einstein con-
densation, a macroscopically occupied quantum state. In general, the property of
superfluidity refers to the ability to flow through the narrowest capillaries without
apparent friction [4]. The superfluidity of liquid “He, below the so-called A-point,
was discovered by Kapitza [12] and, independently, by Allen and Misener [13]. The
foundation for the description of superfluidity is a picture of the system as being com-
prised of a condensate and elementary excitations. The earliest theory of superfluidity
was developed by Landan, who showed that, if the spectrum of clementary excita-
tions satisfies suitable criteria, the motion of the fluid below a critical flow velocity

cannot give rise to dissipation. Landau’s work marks the first explicit introduction
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into condensed-matter physics of the seminal notion of a “quasiparticle”, that is, an
excitation of the system from the ground state, which is characterized by a definite
energy and momentum, the total energy, momentum, etc., of the system can be re-
garded as the sum of that carried by the quasiparticles [48]. Next, Landau put forward
two-fluid hydrodynamics to construct a quantitative theory of the flow properties of
He-II: the “superfluid” component, which he identified, in an intuitive way, with the
part of the liquid that remained in its ground state, and a “normal” component,
which corresponded to the quasiparticles. Morcover, irrotationality of the superfluid
plays a crucial role in this dissipationless motion. Irrotationality is directly related to
Bose-Einstein condensation, being naturally associated with the phase of the order

parameter which fixes the shape of the velocity potential.

1.3.2 Landau Criterion

Let us consider a liquid flowing along a capillary at a constant velocity v. If one
discusses the flow in a coordinate system moving with the liquid, the liquid helium
is at rest, and the walls of the capillary move with velocity —v. The entrainment of
the liquid by the walls of the tube cannot initiate movement of the liquid as a whole.
The motion must arise from a gradual cxcitation of internal motions, that is, from
the appearance of elementrary excitations in the liquid. As elementary excitation

appears in the liquid, the energy of the liquid £ has the form
1
E=c+p-v+§Mv2, (1.23)

where M is the mass of the liquid and the expression ¢ + p - v is the change in
cenergy duc to the appearance of the excitation. This change must be negative, since
the energy of the moving liquid must decrease. In the conditon that p and v are

antiparallel, one can get
v > e/p. (1.24)

The minimum value of ¢/p is clearly given by the point at which the line from the
origin is a tangent to the curve. If this minimum is not zero, then, for velocities of

flow below a certain value, excitations cannot appear in the liquid. This means that
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the flow will not become slower, i.e. that the liquid exhibits the phenomenon of su-
perfluidity [15]. One can see that any spectrum in which sufficiently small excitations
are phonons will lead to superfluidity. One should notice that the arguments given
above remain valid at any low temperature, since they made no direct use of the fact
that the liquid was originally in the ground state.

Next, we consider the movement of quasi-particle gas as a whole with respect
to the liquid, with a translational velocity v. The distribution function for the gas
moving as a whole is obtained from the distribution function n(c) for the gas at rest
by replacing the energy € of a particle by € — p - v. Thus the total momentum of the

quasi-particle gas per unit volume is

P /pn(c —p-v)dr. (1.25)

Assuming that the velocity v is small, one expands the integrand in powers of p - v.
The zero-order term gives zero on integration over the directions of the vector p,

lcaving

pE /p(p-v)d’;(c‘)dv, (1.26)

or, on averaging over the directions of p,

iy dn\ , .
P o= §v/ (_I) pidr. (1.27)

From the fomula (1.27), one can see that the motion of the quasi-particle gas is
accompanied by a transfer of mass: the effective mass per unit volume of the gas
is determined by the proportionality cocfficient between the momentum P and the
velocity v. On the othe hand, the fact that the quasi-particles collide with the walls
of the tube and exchange momentum with them indicates that the excitation gas will
be slowed down, like any ordinary gas flowing along a capillary.

Thus one fundamental result can be obtained. In a quantum Bose liquid there
can exist simultaneously two motions, each of which has a corresponding “effective
mass” such that the sum of these two masses is equal to the actual total mass of the
liquid. One of these motions is “normal”, i.c. has the same propertics as that of an

ordinary viscous liquid; the other is “superfluid”. The two motions oceur without
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transfer of momentum from one to the other. In the hydrodynamic seuse the density
of a Bosc liquid can be written as a sum p = p, + p, of normal and superfluid parts,
each corresponding to a hydrodynamic velocity v,, or v,. An important property of

superfluid motion is that it is a potential flow:
Vxwv,=0 (1.28)

This property is the macroscopic expression of the fact that the elementary excitations
with long wavelength (i.e. with small momentum) are sound quanta (phonons). When
T = 0, the normal part of the density p, = 0; the liquid can have only superfluid

motion. For non-zero temperatures, p,, is given by (1.27):

= At
Pn = 3/( dﬁ)pdr (1.29)

If we consider phonon excitation ¢ = up where u is the velocity of sound in the liquid,

1 [>*dn ,4np?dp

(Pr)pn = “3u g dpp (2mh)3
4 [ Ampidp
= S s i 1.30
3u/n " @2rh)y Sl

== % f endr.

The remaining integral here is just the energy of the phonon gas per unit volume; If
one takes the form of the energy of the non-interacting liquid E = V - 72T*/30(hu)?,

the density of normal fluid contributed by phonon excitation has the form,
(Pn)ph = 212T* /45R*u®. (1.31)

In a similar way. onc can deduce the roton contribution to p,. Another important
conclusion can be drawn. As the temperature increases. an increasing fraction of the
mass of the liquid becomes normal. At the point where p,, = p, the properties of
superfluidity disappear entirely. This is called the A — point of the liquid, and is a
phase transition point of the second kind. One can notice that the quantitative for-
mulae (1.31) is inapplicable near the A — point, where the quasi-particle concentration

becomes large, so that even the concept of quasi-particles is largely meaningless [15].
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CHAPTER 2

Bose Gases

Since the experimental realization of Bose-Einstein condensation (BEC) in dilute
atomic gases was achieved in 1995 [1,2], the study of quantum gases in conditions
of high degeneracy has become an emerging field of physics, attracting the interest
of scientists from different areas. Experiments in cold atom systems allow access to
regimes inaccessible in the Helium liquids, principally the weakly interacting limit.
In addition, quite different properties became experimentally measureable. In partic-
ular, in these novel systems BEC shows up not only in momentum space but also in
coordinate space, making the direct experimental investigation of the condensation
feasible and providing new opportunities for interesting studies.

For temperature T" — 0, the fraction of non-condensed atoms is extremely small,

for example, the number of particles in the condensate for a uniform ideal Bose gas

=i (2)”

where N is total atom number and T, is the critical temperature at which the dilute

varies as

, (2.1)

atomic gas undergoes the BEC phase transition. For T — 0, the condensed atom num-
ber Ny — 0. Consequently, the thermal fluctuations will be neglected and mean field
theory (Gross-Pitaeviskii equation (GPE)) can be applied to describe a large variety
of physical phenomenon, including equilibrium configurations, collective oscillations,
expansion, interference, quantized vortices, solitons, etc [4]. On the other hand, the

number and distribution of noncondensed atoms can influence the properties of Bose
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gas. In many cases, this number and distribution of noncondensed atoms are deter-
mincd by the interatomic interaction and temperature in Bose gas. In general, the
interatomic interaction can be modified to a large value by Feshbach resonances [16]
or strong confinement [17], and the role played by finite temperature effects in the
properties of Bose gases is also of importance. For example, due to thermal excita-
tion, some quantities such as the spatial density of the condensate atoms [18] and the
distribution of the number of particles in the condensate [19] are modified in thermal
cquilibriwin.  Some phenomena related to the role of finite temperature such as the
damping and frequency shifts of collective modes [20,21], the evolution of the recently
created vortices [22-24], must be explained by the noncondensed atoms and further
by the interatomic interaction and temperature.

In this chapter, I will summarize existing theoretical approaches to Bose Gases

upon which my work is based.

2.1 The Weakly-Interacting Bose Gases

As is well known, in the presence of Bose-Einstein condensation, an ideal Bose gas
has infinite compressibility !. A weak interatomic interaction affects the properties
of a Bose gas in a dramatic way, even for very dilute samples. On the other hand,
the traditional perturbation techniques cannot be applied for uniform Bose gas be-
cause the ground state energy is zero in the absence of interactions. Therefore the

Bogoliubov theory is an cffective means to solve this kind of problem.

2.1.1 Uniform Interacting Bose gas

Uniform means translationally invariant. In the regime T' < T, the typical atomic

momentum always satisfies the inequality pry/h << 1 where r; is the mean distance

In the BEC phase, the pressure formula of the ideal Bose gas in a box is P = %\Bgz gs/2(1).
The Bose functions gp(z) = T‘%{J [ dear ! 5 =T, %:—, where z = ezp(Bu) is the so-called

fugacity and I'(p) is the factorial function (p—1)!. The thermal wavelength Ar = ‘/%%;w [4]. Since
the P does not depend on the volume, this implies that in the BEC phase the compressibility of the
gas is infinite.
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between atoms. At such momenta the scattering amplitude becomes independent
of energy as well as of the scattering angle and can be safely replaced with its low-
energy value which, according to standard scattering theory, is determined by a single
parameter, the s-wave scattering length. First, we can consider a general Hamiltonian

for a uniform Bose gas including two-body interaction,

= 2111, /Vz/; Vz/)( )dr + / /dJ (r) l/’t(r) (r- Tl)l/)( )"/)( Ndrdr'. (2.2)

At low energy, the atomic interactions are essentially elastic, hard-sphere collisions
between two atoms, and can be modeled in terms of the pseudo-potential, V (r—7r') =
g6(r —1’), where g = 4wh® Na/m, with a the s-wave scattering length. Then, Eq.(2.2)

can be rewritten as

A h?

1= 5 [Vt + § [P OB Oioir ey
Eq.(2.3) can be rewritten in terms of the momentum basis by using

- o e o

where V is the volume of the system. So the Hamiltonian of the system in terms of
the Bose field operators is simplified as
2
A=Y Taliy+ 25 37 ahigbhs i (2.5)
P P1.P2,9
The crucial point of the theory now is to replace the operator @y with a C-number:
@y = /Ny in the Eq.(2.5). The advantages of this description is that it is simplc and
can explain some phenomenon in the Bose gas at extremely low temperature. But

one can find that the substitution breaks Gauge symmetry and actually
&0 =V N e‘é.

Thus the problem with this approximation is that it breaks the conservation of particle
nunber. In addition, the substitution, V(r — r') — ¢d(r — /), can not be made for

a realistic potential since it would result in a poor approximation at short distances
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of order ry, where the potential is strong and quantum correlations are important.
On the other hand, ao|No >= vNo|No — 1 > and @}|No >= N + I|No + 1 >. So
Bogoliubov approximation becomes applicable when Ny >> 1 and Ny >> N — Nj,.
For dilute Bose gas at the temperature T — 0, the interatomic interaction is very
weak and its perturbation is small at all distances so the replacement is accurate. In
the case of T — 0, all atoms drop almost into condensated atoms, Ny — N. In the
first approximation, the ground state energy takes the form
N?g

Ey = v (2.6)

where we notice some conclusions for homogeneous Bose gas: Fy x é; Fy x N2

Contrary to the ideal case, the pressure of a weekly-interacting Bose gas does not

vanish at zero temperature:

P o 0 oo e (2.7)

where n is the density. Accordingly, the compressibility is also finite:

on 1

5P gn’ (2.8)

which implies that it is more difficult to compress the gas for larger interatomic

interaction gn. Using the hydrodynamic relation?

1 on
peane = P (2.9)

we can obtain v = /Z, where v is sound speed.

2.1.2 Bose gas in the isotropic harmonic traps

Now we consider a BEC confined within an isotropic trap, the Hamiltonian is
2 - 242 23242 22
= / ( 5"_ Vv dr + / %muzrz\lﬁ\lldsr + % / VIO @3 (2.10)
m

2In classical hydrodynamics, the mass density p = -'-"V’! and flux per unit time V = v x § where
the velocity v is in the direction of a driving force F' acting on the fluid, orthogonal to the transverse

direction S of a rectangle shape of chanmel. Thus in an unit time, F = pv x Sv = mv? = P/n.
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For a trapped gas, we expand the field operators ¥, Ut in the basis of simple harmonic

oscillator,

U(r)= Y a.®u(r) Vngnyn, >0 (2.11)

n=(nz,ny,n;)

where @,(r) = ¢n, (2)dn, (y)dn, (2) satisfics the Schrodinger equation

? 1
__h_VZ G, (r)+ = ol 120,(r) = (ng +ny +n. + é)hwfb,,(r).
2m 5
Using Eq.(2.11), we expand the kinetic and potential parts as

2
/(: V\I/TV‘I/)dr—i—/-;-mw 20N dr

h 1
= !, */ s s ; 2 ‘1
- Z 2m“"’“" / / / v, V‘I’"dzdyd”zzmw L / / / r2®;, &, drdydz

— — * 2
= 2ma / / / o}, VP, drdydz + Z smw?a!, i, / / / o}, P, dzdydz
_ Zhw Ny + Ny +n, + )a",aﬂ / / / ®;, P, drdydz

= Z hw(ng +ny + n, + 5)&n&n

n

(2.12)
For the interaction part,
9 I sigt2es -4 NI * P*
5 / Uit wdr = 3 ,Z A A / / / ¢, P, P, drdydz
ot i (2.13)
:% Z &I,Ia:nldn&mAm’,n’,m,n

where

Am’,n’.m,nz/// :,;@:n@nq)mdmdydz.

When T — 0, the condensate fraction approaches 1, i.c., Ng &~ N. From the
Bogoliubov description, the ground state energy

2
Fy 5 N%ﬁw+£’_9_f‘;ﬂ_m

2.14)
3 Nzg (
= Nzhw + T
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where V,;; = (2m)%21% is “effective volume” of the condensate. It is a little different
from the homogencous casc; for every atom, its ground state energy is increcased with
zero-point energy. The chemical potential

: oy 3 Ng

H=3N T2y,

(2.15)

2.1.3 Penrose-Onsager Criterion for Bose-Einstein Condensation

Before demonstrating Penrose-Onsager Criterion for BEC, we first define the one-

body density function by
p(r,r'st) =< UH(r, ) (', 1) >, (2.16)

where the expection < - - - > is taken in the initial state. We suppose that ¢;(r’, () are
a sct of cigenvectors of p(r,r';t) with their cigenvalues €;(t) depending on the index
7

[ o000 0" = €051, (217)
If the eigenvalue §; is macroscopic, i.e., O(N) where N is the total atom number,
there exists BEC state. There is no BEC if all cigenvalues are very small, i.c., O(1).

This criterion is called Penrose-Onsager Criterion [26].

2.1.4 Off diagonal long-range order

We implement an example of a uniform and isotropic system of N particles occupying
a volume V in the absence of external potentials to demonstrate the concept of off
diagonal long-range order. In the thermodynamic limit, where N,V — oc with the
fixed density n = N/V/, the one-body density depends only on the modulus of the

relative variable s = r — r': n®(r,r') =< ¥ (r)¥(r') >= n(s), and one can write

nW(s) = -‘;/dpn(p)e'ip"/h. (2.18)

For a normal system the momentum distribution has a smooth behavior at small mo-
menta and consequently the one-body density vanishes when s — oc. The situation

is different if instead the momentum distribution exhibits the singular behavior

n(p) = Nod(p) + 7(p) (2.19)
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characterized by a d function term with a weight Ny proportional to the total number
of particles. This singular term arises from the macroscopic occupation of the single-
particle state with momentum p = 0. The macroscopic occupation of a single-particle
state serves as a general definition of BEC and the quantity Ny/N < 1 is called the
condensate fraction. From Eq.2.18, one finds that, in the presence of BEC, the one-

body density matrix does not vanish at large distances but approaches a finite value:
'n.(l)(.s)s_,oo — N, (2.20)

fixed by the parameter ny = N,/V. This behavior is often referred to as off-diagonal
long-range order, since it involves the nondiagonal components (r # r’) of one-body
density [4].

2.2 Approximation Schemes for Bose gas

2.2.1 Mean-field Approximation

We show the most simple way to derive the Gross-Pitaevskii equation (GPE) [27,28].
If readers hope to know about rigorous derivation of GPE, this paper [29] would be
a nice work about it. The Hawmiltonian of the weakly-interacting Bose gas has the

following form,
i - / e () Ho(r) + / et (r) i ()b (0) § (), (2.21)

where Hy = (h?/2m)V? + V,,, is the single particle Hamiltonian and V.. is the

external potential acting on the system. Using the Bose commutation relations,
(), ¥ (x)] = 50 — ), [0, B(0)] = (), D)) =0, (222)
then Heisenberg’s time evolution equation becomes,

th

A(r) TR
o el (2.23)
= [Ho + Veur + g¥H (') ¥ (x) B (x).
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Since the condensate state involves the macroscopic occupation of a single state it
is appropriate to decompose the Bose ficld operator in terms of a macroscopically-

populated mean field term 3 (r') =< ¥(r') > and a fluctuation term ¥'(r'),
U(r') =)+ ¥'@). (2.24)

Inserting Eq.2.24 into Eq.2.23 and taking only the leading order terms in 2, Eq.2.23
leads to the time-dependent GPE,

oY == h2Vv?
ot 2m

ih— + Vear + glY|*)0. (2.25)

Since the mean-field approximation neglects quantum fluctuation, i.e., neglects ther-
mal and quantum depletion of the condensate, this is a valid approximation when
(1) the temperature is much less than the transition temperature for the onset of
condensation, and (2) when the condensate is sufficiently weakly-interacting so that
s-wave scattering length a is much smaller than de Broglie wavelength of the particles

AdB-

2.2.2 Normal Bogoliubov Approximation

We describe our system of N interacting bosons using the second quantized Hamil-
tonian in terms of the Bose field operator W. This operator is a function of space in
the Schrodinger picture. The second quantized Hamiltonian is then given by,
i = / Prit (r) Hob (r)
1 A (2.26)
+ 5/d37'/d37"\IlT(r)\IIT(7")V,'m('r., )W (r )W (r),
Where Vi (r,r’) is the interaction potential acting between the bosons and Hy =
~(h?/2m)V? + V.4 is the single particle hamiltonian, where m is the particle mass
and V., is the external potential acting on the system. The bosonic creation and

annihilation operators W1(r), ¥(r) fulfill the commutation relations

[1/)(7") ;1(7" ) =6(r—7)

(2.27)
[(r), $(r")] = [ (r), $'(")] =
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The gas is sufficiently dilute that the atomic interactions are dominated by low
energy, two-body s-wave collisions. These arce essentially clastic, hard-sphere collisions

between two atoms, and can be modelled in terms of the pseudopotential
Vim (r,7") = go(r’ — 1), (2.28)

where g = 47h?’Na/m, with a the s-wave scattering length. Through this potential,
the Hamiltonian (2.26) is of the form

o= [ermmie) +§ [EEOVEInie. o)

We can expand the field operator ¥(r.t = 0) in terms of the BEC ground-state
amplitude agy)y with < &Z,&o >= N, and the excited states

U (r) = o(r)ao + 6%(r). (2.30)

The c-number function () is the normalized one-body wave function for the con-
densate, and a, is the corresponding destruction operator. In the Bogoliubov approx-
imation, since the condensate contains most of the particles (N — Ny << N;) where
N is total number of particles and Ny the number in the condensate , the operator

ag is replaced by a c-number NU'/ 2 [30]. As a result. Eq.(2.30) can be written as

It is convenient to work in the Grand Canonical ensenble so we introduce the chemical

potential 4 and a modified Hamiltonian
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Substituting Eq.(2.31) into Eq.(2.29) and then putting them iuto Eq.(2.32), we obtain
i = / & [Nots(r) (Ho = i+ 51u(r) P)n(r)
+ No "53(r) (Ho — p + g Nolaho (r) [2) 0% (r)
+ No 2094 (r) (T — 1+ gNo[o(r)|*)o(r)
+6WH(r)(Ho — p+ 29 No[vo(r)|?) 0% (r)]
+ % / &*r [ Noyg?(r)6 W (r) 6 (r) (2.33)
+ 2Ny g3 (r) 5 (r) 5 (r) 8 (r)
+ NotR(r) oWt ()60t (r)
+ 2Ny 2o (r) 00 (r) 8 (r) 80 (r)
+ 0 (r) 60 (r) 0 (r) 0 ()]
Since the scenario in which the number of noncondeusate atoms, N — Ny, is far less

than that of condensate, Ny, we consider terms up to second order in 6¥ and 5t and

ignore the interaction of noncondensate atoms. The linear terms vanish identically if

%o obeys the following constraint

[Ho — p+ gNolto(r)[*Jabo(r) = 0, (2.34)
where Eq.(2.34) is the time-independent Gross-Pitaevskii equation. Consequently the

Bogoliubov Hamiltonian can be written as

7 = [ o)l Ho ~ o+ Nolta(r) i)
H / &rowt (r)[ITy — p + 29 No[wo(r)[2]0 ¥ (r)
+2g / dr [Now?(r) 0% (r) 6 (r)

+ NooW! (r) 60! (r)42(r)].

(2.35)

Introducing the “quasiparticle” creation and annihilation operators a;, ‘;- allows

us to diagonalize the Hamiltonian (2.35) via

o'\il(r) = Z[u,j(r)d,- - 1);(7‘)&;] (2.36)
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Iposing bosonic commutation relations on @ and a' leads to the constraints on

u;(r) and v;(r)
Z[uj<r)u; () = v;(r)u; ()] = &(r,7')
2l () = 5] =0 (2.37)
Z[u;vj(r') = v (r)u;(r)] = 0.
;
Inserting Eq.(2.36) into Eq.(2.35). the Bogoliubov Hamiltonian becomes

_ / d*rNos[Ho — 1 + S Nolyol"lo

+ Z/d3 v]Lka gNov,[)O UV — gNglpgu;uj)
1 1 & 2
+a! 0k (u Luy — —-yNot/)O vju — 2gNo’¢/)é'ukuj) (2.38)
1 1 :
— ajay (v;Luy, — §QN0% ujuy — —2-gN0¢5’vjvk)
d a) ( ‘ka 9N0¢52U*v; ngm,bgu‘u;)]
Here L is a Hermitian operator
L = Ho — p+ 29No|iho(r)[%, (2.39)
which satisfies
/ d*ru* (r)Lo(r) = / d*r(Lu* (r))v(r) (2.40)
We require that u; and v; satisfy the Bogoliubov equations:
Luj(r) — gNoyg (r)vj(r) = Eju;(r), (2.41)

L*v(r) — gNobg(r)u;(r) = — Ejv;(r). (2.42)
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Using these results, the Hamiltonian (2.38) can be written as
H = /daan%[Ho - p+ gNanlz]T/)n
+ % }k: / &r((E; + Ey)(alacugux — a;alv;0p)
J
+ (E; — Ex)(a;axuxv; — alajuop)] (2.43)
/ PNy [Ho — p+ = No|1/J0| *Jtpo

- Z Ej /darlv,-lz -+ Z E]dI&]
J ’ )

2.2.3 Elementary excitations of Bose gas in the isotropic harmonic traps

For elementary excitations of Bose gas in homogeneous system, readers can find it
easily in some textbooks. Here we show elementary excitations of Bose gas in the
isotropic traps. This work is the extended contents of section 2.1.2. The Bogoliubov
scheme in homogeneous Bose gas can be extended to cover the harmonically trapped

gases. Here we consider one-dimension situation. Eq.(2.13) is written as

Vint Z Apin 00(4aoat Gotn + @l @l aodo + alalaman)
m ,n#0
2.44)
T oL T (
4 .‘g Z Anfo’o,o(af‘af,agao + af,af,aoa,,) -+ EAQ’Q,(],QGJJQ&GDGQ e
n#0

where one must notice that due to the eigenfunctions ¢}, (z) = ¢, (x),

mw \1/2 _ 1 m;+mn; + 1

. = s —1)Bmj+n;)/2 iy e MR
A m,n,0,0 Am n,0,0 = (27r2h) ( ) \/TW 2 ) (245)
where m;,n; label excitation modes, m;+n; is even for all j and A,, , 00 = 0 otherwisc,
I'(n) is Gamma function. In Bogoliubov approximation, the normalization relation

should be &Z,&o + E#O ala, = N, and neglecting higher-order terms?,

ahabaodo = N? — 2N Y &} . (2.46)
n/0

3The conditions for Eq.(2.46) are the condensate number Ny >> 1 and the non-condensate
number N — Ny << Ny
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Based on the new normalization relation, the sumn of Eq.(2.2) and Eq.(2.44) yields

the following cxpression for the Hamiltonian:

H_-th g S il o+ Dyatd,
2 (2 n) g; Rt

+gN¥2 " Anooo(@h + an) (2.47)

N "
“a E A1u,n,0,0(4a'1na'n it (lIn(I,Tn o a"ru"'n)-
m,n#0

The following ideas for dealing with Eq.(2.47) is based on Bogoliubov transformation,
expressed in the language of matrix theory [31]. Let the indices m, n run over all the
states denoted by vector indices m, n. To diagonalize Eq.(2.47) in order to obtain the

energy spectrum, it is possible to write Eq.(2.47) in the following matrix form:

IT = alea + 20VN (a'A, + &"TA,)

L, i (2.48)
+ ) (4a'A,, 4+ aTA,, 81T + 8T A n8) .
In the above equation, a and A, are vectors of infinite dimension:
o= (&1, ﬁ'z-u),ét ((11 (12,- ) A, = (Al,u,u,u, Az,u,u,u, ),
€1 0 0
the diagonal matrixe = [ 0 ¢, 0 ... |, and the matrix elements of A,, ,, are the
coefficients A,, »00. We have also written 9% = A
In order to obtain the Hamiltonian in a diagonal form,
1 = Badlan = a'Ea, (2.49)

which € is the diagonal matrix with elements F.,, one can apply a generalization of

the well-known Bogoliubov transformation demanding
a=Xa+YaT+za =a'X+alY +27, (2.50)

where X and Y are Hermitian square matrices of infinite dimension and z is a vector

with real components. The Bosonic commutation relation of 4 and af, & and &'"
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require that matrices X and Y obey the following condition
X2-Y% =], (2.51)

where I is a unit matrix. Inserting Eq.(2.50) into Eq.(2.48) and simplifying the
results., we can obtain separately the following parts if one hopes to eliminate the

linear terms of &, &' and @'@'” and &”é@& terms,

z = —2\VN(e+6AA,..) A, (2.52)

and
XeY + 40XA,.,.Y + A\XA,,,.X + A\YA,,,Y =0 (2.53)
YeX + 4AYA o X + AYA,, Y + AXA, X = 0. (2.54)

Finally the energy matrix € is
€ =XeX + YeY + 4AXA,, . X + 4 YA, Y + 20X A,,, Y + 2AYA,,, , X (2.55)

and its eigenvalues define the energy spectrum. If the interatomic interaction g is
zero, the solutions for Egs.(2.51, 2.53, 2.54) are X = I, Y = 0. In the condition that
A is very small, we apply matrix perturbation theory to expand the matrices X and

Y into series over A [31].
X=T+23%+..., Y=Av+ v +.... (2.56)
The matrices x, v, v, can be found from Eqgs.(2.51, 2.53, 2.54):
v=2x, X=—-€"'An./2, Vi=4e"A, . A, (2.57)
In the approximation up to A? we obtain the matrix £:
E=€+4)Ann+ é;{((‘Amy,,)ze —3Anne 'Amn — 2¢'A2 1} (2.58)

and the energy levels are given by €, = ¢, + 4\ A, n o0+ O(N?). For other situations,
it is hard to solve analytically the Eqs.(2.51, 2.53, 2.54) and in general we must
apply numerical methods to solve them. The details of numerical solutions and their

applications will be demonstrated in Chapter 6.
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2.2.4 Number-conserving Bogoliubov Approximation

In real experiments, only a few BECs can be regarded as a homogeneous gas: most
are created in inhomogeneous potentials such as magnetic traps and optical lattice
potentials. So it should be more realistic and meaningful to explore a series of theories
for inhomogencous Bosc gases. Additionally, rcal condensates arc gencrally influenced
by the environments around them, resulting that few of them are completely “pure”
condensates; that is to say, there exist quantum (thermal) fluctuations and conden-
sates at the same time. In general, quantum (thermal) fluctuations play an important
role in the properties of condensates. Especially in low-dimensional system. For ex-
ample, the quantum damping of a Bose gas propagating in 1D optical lattices [17], the
BKT trausition and thermalization in 2D Bose gas [25]. Thus, these topics of interest
require us to develop some theories to explore some propertics of pure condensate,
condensates with quantum/thermal fluctuation and more importantly, the dynamics
of these Bose gases in realistic conditions.

In this section, I will derive the Bogoliubov theory conserving the total number of
particles based on previous work [32]. This background knowledge is convenient for
readers to understand the work of Chapters 5 and 6. Also, readers can identify the
discrepancies between normal Bogoliubov theory and number-conserving Bogoliubov

theory.

Hamiltonian constitution

A pure, homogeneous Bose gas appears rarely in real experiments. Bose-Einstein
condensation in atomic gases was experimentally achieved in traps, where gases are
naturally nonuniform. This nouniformity give rise to a new series of phenomena where
the quantum nature of the system shows up in a peculiar way. The Hamiltonian of
an inhomogeneous Bose gas is formed by adding an external potential term in the
Hamiltonian of Eq.(2.3),

i~ [3) A+ 5 [ BB (259)

where Hy = —2—'::;V2 + Uezt(r) and U, is the potential function.
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Constitution of condensate and non-condensate states

As is well known, a density matrix can be used to analyse some properties of a
quantum system in thermal equilibrium or explore quantum decoherence of mixed
states. To describe the properties of condensates and noncondensates, we first define

the one-body density function by
pi(r.r'st) =< i (r. 0P, ) > (2.60)

where the expectation < - -- > is taken in the initial state. We assume in this section
that the N-particle system is initially in thermal equilibrium at temperature 7. 1

suppose that ¢, be the eigenvector of p; with the largest eigenvalue Nj:

/mmmﬁmmﬁn=m%mn (2.61)

The eigenvector fulfills the normalization condition, i.e., < ¢¢|py >= 1. It is not
difficult to understand that in the presence of a Bose-Einstein condensate, ¢, is the
condensate wave function and N, =~ N. As a description of the condensate and

non-condensate in our system, the atomic field 1[) is split into two parts:

P(r) = doiio + 09P(r), (2.62)

where ag annihilates a particle in the condensate ¢g. The remainder 61/3(7") is orthog-
onal to ¢y:

/ dsdh =0 (2.63)
For number conservation of particles, there is no single particle coherence between

the condensate and the non condensed modes:
< aio) >=0. (2.64)

Thus we define the operator A transferring one non condensed particle into the con-
densate:
A(r) = N~V 59 (r). (2.65)

Since the number of non-condensed particles §N << N in the large N limit when the

temperature is much lower than the critical temperature of BEC, and the trapping
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potentials and mean interaction energy are fixed, one can make a systematic expansion
of the exact condensate wavefunction ¢g and of the ficlds A and At in powers of the
small parameter \/ON/N ~ 1/+/N. Formally,

. R 1=

A = A(o) + TNA(]) -+ NA(g) == (2.66)
1 1

do = o0+ -\/TN-¢(1) of ﬁd)(z) + ... (2.67)

Order V' N : Gross-Pitaevskii equation

In order to simplify the understanding of the relation between condensate and non-

condensate modes, we define the projector onto condensate wavefunction as

Q.(r, 75 t) =< r|po(t) >< ¢o(t)[r' >

and thus the non-condensate space is orthogonal to condensate space [32], written as
Qnon(r, ;1) = 6(r — ') — Q.(r,7’;t). So

8(r,b) = (r, 1) — o(r. 1) / dr' gy (1!, O (r', 1)
2 / dr' (8(r' — 7) — dolr, )L, ), 1) (2.68)
= /dr'Qm,,,(r, r'; t)z/](r', t)
From Eq.(2.65) and Eq.(2.68), we get
d . I ! d ’ ()
Zh= —Na:,( [ ' (G Quentr 00" 0)

Quan(r, 5 (9, 1) (2.69)

dd)rt
\/— a4) 0 (r, ).

Then we will simplify the three termns of Eq. (2.69). In the first term,

/dr —Qnon(7, 1'; t))w ) /dr —Q(r,7"; )Y (r t)

(2.70)
~0u(r,0) [ (G5, 0)(on(r', 0o + 53¢, 0) — u(r, Dia(t)
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If the lowest approximation is considered, < ¢o|dg >=< )|y > and

d
= dr|@)(r.t)|> = 0. (2.71)

From Eq.(2.71), Eq.(2.70) can be rewritten
Eq.(2.70) = (607, 1))
+0(n0) [ [ G0 016" 00— [ d (Gt (0050
= ~ia [ (o006 =) = bl O (1)
- o0 [ a0 (r',t))o'u?(r'., 1)
= o [ I Quentr )50 1)
- b(rt) [ (Gt ),

(2.72)

In order to simplify the second term of Eq.(2.69), we first obtain a dynamic equation

of 1&(1‘, t) through the Heisenberg equation of motion,

ihd’w(d‘r:’t) _ [’(/3(7",15), f:’], (273)

and insert Eq.(2.59) into Eq.(2.73) so

dz,br t)

/ drip (', )0 (r, t) [ Ho + w*(r P(r, ) (r, )
_ / drijt( r,t)[Hu+§1/) (r, )P (r, DI (r, (', 1) T
- / drd(r — 1) [Ho + g9 (r, )0 (r, )} (r, )

= Hop(r',t) + gt (', )9 (r', ) (7', ).



37
Then inserting Eq.(2.62) into Eq.(2.73) gives,

ih%w&(r" 1) = Hodo(r', )i + gV |do(r’, )2o(r", )ag
+ Hodt(r',t) + 29N |eo(r', £) 269 (r', )
+ g63(r', t)aoaodv! (1, t) (2.75)
+2g¢0(r', )00t (r', )09 (', L)to + gd30h(r', )8 (', t)al
+ godt (r', )0 (', )53 (1, )

In terms of the lowest approximation and ignoring all but terms of \/17\/' , Eq.(2.75) is

rewritten as

ih%i/?(r’, t) = Hod(o) (', t)ito + 9N o) (', 1) P o) (', t)éio (2.76)
Due to
g = / dro(r, t)d(r, t), (2.77)
d 2 d * ~ $ - d ey
<00 = / dr{=65(r, t)(@o(r, )do + 0%(r, 1)) + $5 (1, ¢) (1, 1)) (2.78)

Combining Eq.(2.77) and the last term of Eq.(2.69), one can see that the last term
of Eq.(2.69) is of the order N° so it does not contribute to the present order VN.
From Eq.(2.69), Eq.(2.72), Eq.(2.76) and Eq.(2.77), one can get

d - I d
EA = —\/.ﬁaf,ag/dr'Q,m(r, r';t)ada(o)(r’,t)
1 ., - -
il 1) [ ' Goia' 0501

. ALt
* = a(T) / dT’Qnoﬂ(T, rl; t)[H0¢(0) (7", t) + g|¢(0) (T’a t)|2¢(0) ("Jr t)af,ao]ao
ihvV N

[l DG, + 091, + 0n(r0) 010088
(2.79)

In the lowest approximation, we choose all terms of V N , resulting in

ih%f\ = \/N[/ dr'Quon(r, 7'; t)[Ho + gN|¢(o) (', ) - ihac-iz]ab(o)(r',t) (2.80)
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From the requirement Eq.(2.64), (d/dl) < A >= 0, and the expectation value of

Eq.(2.80) determines the lowest-order approximation to @:

VR / A1 Quon(r, 73 ) Ho + gN (o) (', )2 — ih%]cﬁ(o)(r',t) —0. (281

Since the orthogonality relation between Q... and ¢, i.e.,

[ ' Quntrst)E 000/ 0",0) = 0, (2.8
where the {(t) should be real constant because |y > is the eigenstate of H, +
gN | (', t)|?. we therefore have

d A )
[—‘ihm + Ho + gN|dw)(r', O]l dwy >= &(1)| o) > (2.83)

where the arbitrary real function £(#) corresponds to an arbitrary global phase of the
wave function ¢q). The time-dependent Gross-Pitaevskii equation is recovered by
choosing &(1) = 0.

Order N°: Time-dependent Bogoliubov-De Gennes equations

As one can see, the term of ¢y should contribute to the order of N°. In the next
section, we will display the result of ¢y = 0 and we will use directly this result to
deduce the corresponding equation for N°. In the first term of Eq.(2.69), only the
second term of Eq.(2.72) contributes to the order of N. For the second term of
Eq.(2.69). we can apply two means of deriving the same results contributing to the

order N° and here we will prove the equivalence of two means. In first case,
d . / ’ d - ! / d wr, ) ST
méz/)(r,t) = /dr o I R ;t)aw,/)(r ) — | dr (d_l,%(r 1) bo(r, t)(r', 1)

A A (2.84)
i / dr' G5 (s, 1) (g ol D)D)
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Since dtl/)(? {)= ( oao(r, L)) ao + ¢o(r, L)d¢“0+¢u°d’(7 L), the term of dlod)(r l) can be
simplificd as

—Otl)rt)——'d)'rt) (= ¢ort)/dr¢n(r P, t)
—¢ort)/dr SO0 - dulrt) [ a0 tdiw )
= (S0l 1) / A D)~ du(r.0) [ ar (G0
+ /dr'Q,.o,,(r,r';t)%d;(r',t)
(2.85)

where we have use the condition of ao = [ dr'¢g(r’ ), t). Although we deduce
the same term, %61/}(7‘, t) in two means shown separately in Eq.(2.84) and Eq.(2.85),
it demonstrates the applicability of physical qualities, such as Q, Q,.on, and 1. Since
we only collect those terms with the order N 0 Eq.(2.84) is simplified as

Eq.(2.84) = / dr' - Quonr, )] [1o + 200d0loto (7, O] 3,0
+ 9oty (', 0)a2o0 (v, t)} (2.86)
- [ @ G 000 055" 1)

Through the previous results, %1,/)(‘0) (r',t) = P (r',t) so the last term of Eq.(2.86)
is equal to zero.

In the same order approximation,

d o h dé; 0 dl/l t
\/_dt : [/d ” t)+/d¢(0)rt) T)]
- lh /d dd)(o)(T )¢(0)( t)ao
4 / dr i) (r, t)[Ho + gN|do) (r: t) "] (o) (r, t)ho (2.87)

1 . d
e / drdiy (O F + gV 1610 (r, )12 — ih 160 (7 )

= f(f) \/ﬁ
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Inserting Eq.(2.86) and Eq.(2.87) into Eq.(2.69) and we collect the previous results
and identify @ and g&f,&o with @) and gN , respectively, in a manner consistent with
the order N° of the calculation.

d: 1, it :
maAZVT@/wnmyquPﬁ+@@m@ﬁﬂmﬂwwu)

A ) ” (2.88)
+ g¢(0) (Tla t)d25¢1 (7./’ t) o —-—;{(t)& ¢(Tla t)
0 } \/-N 0
Here, we utilize 8 (1, 1) = | 8 Qsenl?, 7 t)&[;(r, t) and Eq.(2.88) can be rewritten as
L d 1. Y / )
zh-(ﬁl\ = —ﬁaolno + gN|d()(r )2 = €(1)]03p(r, 1)

# =l [ Quntr 50Nl (O [ drQuntr rit)b 1) (289)
+ —\-/l__lfvgﬂ' / dY’ Qusilr, r';t)zﬁ?o)(r’,t)&o / drQr, (v, r; 1) (r, 1)

Thus, we can obtain the time evolution of the operators A, At through Eq.(2.89),

nd ((AO ) _ oo AO
mﬁ(ﬁm)_ﬁm (Nm> (2.90)
with
L(t) = A (2.91
AN Y R )

where A = Hgp(t) + gNQnon| @) (7. 1)|*Qnon — &(t) and Hgp = Hy + gﬁl¢(0)(r’,t)|2
and B = gN qubfo)(r,t)Q;m(t). The o describes the integral relation shown in
Eq.(2.89). Although the means of writing in Eq.(2.90) is much simper than Eq.(2.89),
we should keep clear in mind the integral relation shown in Eq.(2.90).

Order N=V/2: Corrections to the Gross-Pitacvskii cquation

As one can see, the fact of ¢g = ¢(g) in the lowest approximation permits to derive

the next order N='/2 by inserting ¢ = by + 7‘;(15(1) into Eq.(2.81) and ignoring
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other terms,

-—.[/ dr' Qnon (1,7 1) [Hoda) (', t) + 29N |0y (', £) 2pa) (", 1)
(2.92)

d
+ gN ¢ 0 (', ) (', 1) = zh—¢(1) (v, ) = €dqy(r', 1)) = 0.
One needs to notice that the last term corresponds to the global phase of the conden-
sate wavefunction @y because of the orthogonality relation, [ dr'Q,.on(r,7’;t)do(r',t) =

0. Through minimal manipulation, one can obtain

(Qnan(t) 0 i - ¢(1) (t) B
( 0 Q;.,,.(t))<mdt £ ”)( w)) 0 (299

( Ho + 2gN|go|* — ¢ gNg? )

Lgp = o . ;
—gNd¢g —Hy — 2gN|do|* +

From the Eq.(2.93), one can see that ¢()(t) = 0 if ¢u)(t = 0) = 0 in that ¢, is

linear and homogeneous. This assumption is easily satisfied in real systems. The

where

(2.94)

system is initially in thermal equilibrium; in this case, from a time-reversal symmetry
argument, the N-particle wave function is real, consequently ¢y, ¢y can be real.
Howecver, the ¢,y must be orthogonal to ¢(g) because of the normalization condition.

The wave function ¢(;) should be zero through the above equation.

2.3 Classical Field Method

2.3.1 Introduction

A key focus of the explosion of interest in the dilute atomic gas Bose-Einstein conden-
sates has been the study of the time evolution of condensates from some initial state.
Among many works, the description of condensate using the time-dependent Gross-
Pitaevskii equation (GPE) or coupled Gross-Pitaevskii equation ( or their equivalent
hydrodynamic versions) has succeeded in explaining some phenomena, such as shak-
ing the trap to excite sound waves [33, 34], removing a potential barrier to allow two
condensates to interfere [35,36]. applying electromagnetic fields to transfer conden-

sate population into other, possibly untrapped states [37,42], or stirring a condensate
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to excite vortices [43,44]. However, there is an increasing number of works which
focus on coherence [45] and the diffusion of relative phase between two condensates
held separately [46]. probing for many-body states in two- or one-dimensional qua-
sicondensates [25] and the pairwise scattering of condensate atoms into unoccupied
modes [47]. Since the GPE can be derived as an equation for the condensate ampli-
tude assuming that the condensate state is multimode coherent state,it is impossible
to describe these phenomena. So we must seek an applicable theory to explore these
interests.

In research on quantum optics, early work suggested that the coherence proper-
ties in atom lasers may be strongly influenced by the nonlinear interactions and the
processing of quantum noise by nonlinearities leads to interesting statistical proper-
ties. In addition, it is well known that in quantum optics a classical electromagnetic
field obeying Maxwell’s equations arises as an assembly of photons all in the same
quantum state. The motivation of the classical field method (Truncated Wigner
method) is that in the same way a Bose-Einstein condensate, composed of Bosonic
atoms all in the same quantum state, might behave very much like a classical field,
whose equation of motion is the Gross-Pitaevskii equation.

In this section, we will focus on a very useful method, the truncated Wigner
method (TWA), from quantum optics used in Bose-Einstein condensates. The trun-
cated Wigner method is one of the classical field methods. The basic idea of this
method is to expand a quantum field operator equation in the Wigner representa-
tion and derive a generalized Fokker-Planck cquation. The diffusion matrix of the
Fokker-Planck equation for the Wigner distribution vanishes identically and dynam-
ical quantum noise acts via third-order derivatives. These result in a deterministic
equation for the classical field, which coincides with the Gross-Pitaevskii equation.
We will give the derivation of the truncated Wigner method. Prior to this, the essen-
tial idea of the classical field method is shown in the flow diagrams and some recent

developments about this method will be shown in the middle part of this chapter.
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2.3.2 Truncated Wigner method
Hamiltonian constitution

In weakly-interacting Bose gas systems, the range ry of the interatomic forces is much
smaller than the average distance d = n~'/3 between particles, fixed by the density
n = N/V of the gas. This allows one to consider only configurations involving pairs
of interacting particles, while configurations with three or more particles interacting
simultaneously can be safely neglected [4]. Thus the Hamiltonian of the system in

terms of quantum ficlds 1[)‘(!‘, t), z/;(r, t) can be written:

. R 202
H(t) =/drw"(r,t)[— hTVn

43 [ e [ dd @ 0B OUsE - 0,

+ Uegt(r) + Uz (r, )] (x, 1)
(2.95)

where U, (r) and 6U.,(r,t) are respectively a time-invariant external potential and
a time-dependent potential, while Uy (r — ') is the two-body scattering potential.
Under appropriate conditions, and with appropriate qualifications, the true interac-
tion potention {/(r — r’) may be replaced by a delta function d(r — r’) of strength
Us, where Uy = 4mh?a/m, where a is the s-wave scattering length [48]. The second-
quantized field operator 1,/A)(r) annihilates a particle from position r and obeys the

equal-time commutation relations for identical bosons,

[Y(r), ()] = [P (r), ¥ (x')] = 0

et (2.96)
[W(r),¥'(x")] = &(r - 1),

where 4(r) is the three-dimensional Dirac delta function.

Second quantization for bosonic field operator

By decomposing the field operator onto a single-particle basis

¥(r.t) = Z ¥;(r)a;(t),
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Write the Hamiltonian H(t)
in the forms of field operators

Y

Get new field operators
on new (mode) basis

l

Rewrite H(t)
on the new field operators

l

Heys(t)

l

ih% = [Hepr(t), p)

l

Expanding equation on the phase space
representation ( Wigner representation )

l

Get new equation
(Fokker-Planck equation)

l

Get stochastic equation
(Gross-Pitaevskii equation)

FIGURE 2.1: The flow diagrams about the procedure of the classical field method.
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where the mode operators a;(¢) and d;.(t) also obey bosonic commutation relations?,

we can obtain the full Hamiltonian on this basis, written as °

H(L) — Z hu)J&;&J + Z < J|0Uea ()] > &;&l

Uy ' iy (2.97)
+ 5 Z < jr|st > a.ja,la,al.

One can notice that the application of TWA is similar for the plane-wave basis
(PW) and single-harmonic-oscillator basis (SHO) except that the quantum fluctu-
ations in the inital state are introduced by adding half an average quanta into a
limited number of different basis modes (PW and SHO) with a Gaussian distribution
in amplitude (here, we assume that /., (r) is harmonic potential). Physics must be
independent of choice of basis but, once approximations are made, some bases are
more natural than others and lead to more obvious approximation schemes. The
above point of view is one motivation for Chapter 5. Recently, the effect of the
plane wave basis and harmonic oscillator basis has been investigated with respect to
the equilibrium properties of a harmonically trapped BEC at finite temperature [50].
Here we choose the basis set to be the orthonormal cigenstates of the noninteracting

and time-invariant potential portions of the Hamiltonian, Eq.(2.95), i.e.,
i Ve

2m
Since in higher-energy modes, time dependence is so rapid as to be unobservable in

+ Ueat (r) }1;(r) = huwji;(r). (2.98)

experiments on ultracold gases [51,52], it is suitable to simplify Hamiltonian by using
an effective field theory, obtained by eliminating higher-energy modes. Thus within

the Heisenberg picture, the effective low-energy Hamiltonian becomes

Meps(t) =3 hwjala; + Y < jloU.a(t)[t > dla,
jel jtel

Us (2.99)
to D <drlst > ajala.a,,
grstel

“Here, {v,} is an orthogonal and complete set, i.e.. [ dry} (r)y;(r) = 6;; and ¥, ¥7 (r)vi(r’) =
8(r —1’). Under these conditions,the commutation relation of field operator ¥(r), ¥ (r) lead to the
bosonic commutation relations of mode operator a,a'.

SIndeed, Eq.(2.97) is obtained in the condition that the single-particle functions v¥;(r) is the
eigenfunctions of —"—;mv—l + Uext (r).
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where L describes the low-energy modes. It should be noticed that in numerical
calculations, the low-cnergy modes include both condensed modes and low-energy
excitation modes. Since the BEC is initially weakly interacting and confined in a
harmonic trap with no optical lattice, the main contribution to the matter wave
coherence comes from the thermal and quantum fluctuations of low-energy phonons
[55]. Here, the treatment of TWA gives a uniform average distribution of quantum
noise in every low-energy mode. This might be inappropriate for dealing with the
distribution of quantumn fluctuation in a strongly confined harmonic trap. However,
the Bogolinbov theory can correct the distribution of quantum fluctuation in low-
energy excitation modes. Thus it provides further motivation for the work in Chapter
5. Let us define the density operator of the restricted basis field to be p(t), whose
time evolution is straightforwardly obtained using the Von Neumann equation

0

o = Heps (1), p(2))- (2.100)

The construction of dynamic equation in Wigner representation

In quantum mechanics, the role of harmonic oscillator arises from the fact that in
practice very many forces arc ncarly harmonic as well as from the all pervading
nature of electromagnetic fields, which, like all Bose fields, are exactly equivalent to
assemblies of harmonic oscillators. The harmonic oscillator has an infinite number of
equally spaced energy levels. In general, systems with a finite number of energy levels
do not exist. However, in many situations it is possible to consider that interesting
processes involve only a few energy levels of some system, and in these situations
it is advantageous to consider an idealized Hamiltonian whose full range of energy
levels comprises only those of interest.  As discussed in the above section, Bose-
Einstein condensates satisfy this situation: a large number of atoms occupy limited
low-energy states, and the properties of high-energy states occupied by a few atoms
are hard to explore and measure by experiments and thus can be neglected.

From the regime of quantum optics there have been developed a very rich profusion
of techniques for dealing with these kinds of system. Much of the thrust of these tech-

niques lies in their ability to exploit classical analogues-most particularly analogues
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with classical noise theory. Using these techniques, namely phase space techniques,
such as the P-representation of Glauber and Sudarshan and the Wigner representa-
tion, purely harmonic systems can be reduced to non-operator systems. However the
essentially quantum mechanical nature of the problem is present in terms of the inter-
pretation of the apparently classical variables. These phase space techniques are not
actually applicable to their fullest advantage until quantum noise systems are dealt
with but even in the case of non-noisy systems they bring a clarity to the problem of
the transition from the quantum world to the classical world. The central idea which
unifies all the harmonic oscillator techniques is the coherent state, first introduced
by Glauber, which is the quantumn state which most closely approaches the classical
description of harmonic physics.

Since the earliest period when the phase space techniques, i.e., the positive-P
function and the Wigner distribution have been applied to trapped Bose-Einstein
condensates [53]. the methods have played an important role in the regime of Bose
gascs, such as the prediction of quantum turbulence [47] and quantuimn correlations [54]
in colliding condensates, and damping quantum transport of 1D Bose gas in the
lattice [55]. To obtain the time evolution of (¢) we may represent p(t) in a suitable
phase-space. Here we make use of the Wigner representation and the multimode

Wigner function is defined:

M
1
W (ay, o, ) "'W/‘ml .../dZAM [T ezpl-a
j=1

(2.101)
+ Ajaglxw (A, Aj, 1),
where the multimode Wigner characteristic function is
M
xw(Aj, A5, t) = Tr {ﬁ(t) H exp[)\jé; - )\;&j]} . (2.102)
j=1

Here &}(d,-) creates (annihilates) atoms in the jth single particle mode. For con-
verting between expectation values of the multimode density operator and averages

over the corresponding multimode Wigner function, we use the multimode operator
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correspondences [56]

- 19 )
a;p(t) « (a; + E%E)W(aj,aj,t)
i . 19 :
ajp(t) & (o - 235 W (@4, 0, 1)
) 3’ (2.103)
pt)a; < (a; — 550[—;)W(aj,a;,t)
S(t)al 1 19\ 1
p(t)a; & (o + 550—1_) (g, 05, t).

Here, we give a proof for one of them and others can be verified in a similar way. This
process of deducing correspondences can help us understand the nature of TWA and
know how to use them. For simplification, we consider the case of a single mode and
the Wigner characteristic function is expanded on coherent state,

do*d . .
xw (A A E) = / (;m' e <alpDla > (2.104)

where D = exp[Aa! — \*a]. Thus

dxw (A, A*, 1) N
pl S S ol ol S, 5 T SR -
D r{p(-a+ 3)D} (2.105)
Using partial integration, we can obtain
L | dxdr expl=Asat + XalPrigal) = 52 /d,\d,\*’\ wp[—Ajot
i g b P = 2 2“-’4’ O

+ Xa;|Tr{pD} + aW (o, a*, 1)

o * *
e W(a,a",t) + aW(a,a’,t).
(2.106)

S 0 .
pa (a 0 E)W(a,a )t)a

and other results can be obtained in a similar way.

On the other hand, one can see easily the correspondences of time differentiation

of density operator,

dp(t) _ W (a,0",1)

a a1 s
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Defining the multimode Wigner function W («;, o}, () to be the quasiprobability ana-
logue of the density operator p(t), the quantum-mechanical Eq.(2.100), inserted with
Eq.(2.99) can immediately be written in Wigner representation as

oW B awdiag N 6Wpert + aWnonlin
o ot at o

(2.108)

where the diagonal. perturbing and nonlinear portions of the partial differential equa-
tion correspond respectively to the first, second and third terms of dynamic equation
Eq.(2.99). The diagonal portion of the evolution, corresponding to the free rotation
of the modes, is obtained as

i demy Z’w’( a)a,' - %a;)w. (2.109)
p ]

Similarly, the Wigner function evolution due to the perturbing potential can be shown

to become

oWt 9 )
i = - ;e_‘; < 10Uzt > (O_ZQt waj)w (2.110)

The more complicated term is expanded and simplified as

. aWnonlin U, : 9 ‘
th———— = —70 Z < jr|st > [ﬂa,aaa,

ot jrstel
g . AP A
-+ oaraja,at - &Eaja,at = Daz ;a0
10 10 XIS S
- §'daj af =~ -2'%(11 e ETdZasoj,L
i %airat j,s + %di; a;d. ¢+ %'{,‘,‘%&'a:d},t (2111)
)
3 %6 ;01;5” + %;):a:é,,.
1 & 1 ' o
- ey — ==,
4 dovjOa Dot 4 Do dogOcg
+ 1—63 ar + l————-83 a".]
400;0020a; " 40, 0a%da;

where some commutation relations have been applied to deduce the above result, as
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shown below

i, 611 ==b; o, %] =0
&3 thy (2.112)
[, a;] =0 [, @] = 0.

Due to the presence of the summations, the specific indices involved in each term are
mutable. We can therefore write the nonlincar Wigner function evolution component

as

ihM = -Up Z < jr|st > [(—?—at LT af)(a:as —br4)

ot da; day
’"‘;’; . (2.113)
1 *
4 (Bajaa,aa; N Ba,0az0a; = )] i

In order to proceed analytically, we shall restrict ourselves to a multi-mode Wigner
function which at some time 7 is factorisable into single-mode functions, thus
. L
W(aj,aj,7) = H -;’ea:p[ — Tjla; — ajol?]. (2.114)
jEL
Substituting the given Wigner function Eq.(2.114) into the nonlinear portion of

the equation of motion Eq.(2.113) gives the evolution at time 7 as

BWrumlin
ih———=Up ) <ijrlst> [Tj(e} — oo
Jrstel
— I (o — ano)] ¥ {[a:a, — 6] (2.115)
Lol :
T2 [?(O" = o) (@5 — ag0) — ér,,] }W

Given that the process giving rise to the cubic noise is local in coordinate space, we
now introduce
Up(r) = Y 9;(r)ay, (2.116)
j€L
which represents a possible state of the total restricted basis field in coordinate space.
For the purposes of the present analysis we also find it uscful to define the wavefunc-
tion

&r(r) =Y 9 (r)%a,-, (2.117)

JeEL
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F1GURF 2.2: The plots of Wiger distribution function W (a*, a) = Zezp(—2|a|?).

and the related
T,
Epo(r) =< bp(r) Sw= Y z/)j(r)alajo, (2.118)
jel.
where we have calculated the (classical) expectation values using the particular form
of the multimode Wigner function given by Eq. (2.114). These definitions (Eq.(2.116),
Eq.(2.117), Eq.(2.118)) allow us to rewrite the evolution of the multimode Wigner

function due to the pairwise collisions at time 7 as

: (')Wm)uhn ‘ . 3 i
ih—— = 20y [ da[(65 ~ &) ¥ ~ T (& ~ )]

X {(I\IJPP =Y 151 = (Ip — &pol? (2.119)

J€L

—Z%|¢j|2)},

JEL
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where we have suppressed the explicit spatial dependences and have retained the
previous ordering of terms on the second line.

As we have now evaluated all the operators acting on the Wigner function, the
evolution given by both Eq.(2.115) and Eq.(2.119) is uniform over that Wigner func-
tion. It would therefore be sufficient, in order to justify the truncation of the cubic
derivative terms. to show that the total evolution imparted to the Wigner function
by these terms is small compared with the integrated linear derivative terms. Under

this local analysis then, the inequality

1€p — &pol® — ZJeL ANZ1N
,‘I’PIZ - E]GL |¢J

must hold over all space. Using the multimode Wigner function Eq.(2.114), we find

| 221, (2.120)

expectation values of some terms in Eq.(2.120),

< |Wpl?, 7 >= |Upg|? + Z—W

jeL

< |ép — &pol® >w= Z |52,

jeL

(2.121)

where

‘I’PO Z ¢] a)0>

J€EL

is the expectation value of the coordinate space field, and can be identified as the
condensate wavefunction. Applying the multimode correspondence between Wigner

function averages and mode operator expectation values [56],
< {a"(a") }oym >= / Pac’(a*)W(a,a), (2.122)
we also find that in the general case
< |Up(r)]2 Sw=< Th(r)¥p(r) > +%5,,(r,r), (2.123)

where dp(r,v') = 3. w;(r')d)j (r) is defined as the restricted delta function [52].
Using these results Eq.(2.120) and Eq.(2.123) we are led to the condition

| < Wb (r)¥p(r) > ——op(r )| >>Y" ’|¢, (r)|%. (2.124)
JEL
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Thus in order to justify the truncation it is required that the real particle density
be large compared with some function of the density of modes 3./ [4;[%. Bascd
on the above condition, the total Wigner function evolution given above (Eq.(2.109),
(2.110), (2.113)) can be written as the Fokker-Planck equation

m— - Z hw,»aj +D < J10Uenlt > o

tel

+ Uy Z < jrist > (afas — Ors)ae] W

ratGL (2125)
+Z fw.a +Z<J|5Uezt|t> ay
16L leL
+ Uy Z < grist >* (o — 6,,,)(1:] W.
rsteL

Within the Ito calculus, the Fokker-Planck equation governing the evolution of a
multi-mode distribution function P(z,t) over the vector of variables z = {2;} can be

written as [57)

OP(z L)

= —Zg[A 2,t)P(z,1))
(2.126)

+ 2 ZJ: r'):(')z,- {[B(z, t)BT (z,t)),; P(z, t)},

where A(z,t) and B(z,t) are respectively the drift vector and diffusion matrix. The
corresponding stochastic differential equation to Eq.(2.126) is ©

dz(t) = A(z,t)dt + B(z,t)dW(t), (2.127)

where dW (1) is a vector of independent Wicner processes, and describes gaussian
random fluctuations about the drift evolution. Our truncated Wigner Fokker-Planck
equation Eq.(2.125) contains only drift terms, enabling us to write the stochastic

differential equation for low-energy mode amplitude o; using Eq.(2.127) straightfor-

6 Actually, it is not difficult to understa.nd Eq.(2.127) providing one applies the skills of partial
differential equation. dz = 5_'4&!#2()-_"3!.9“ +33, m%m{[B(z,t)BT(z,t)],-P(z,t)}.



54

wardly as
Zhéctd—’ffl = ’ud]a] + Z < ]IaUczt(t)lt > a,(t)
L (2.128)
+Up Y <jrlst > (a}(t)as(t) — bra)au(t).

rsteL
Introducing the time-dependent restricted basis wavefunction,
Up(r,) =Y ;(r)ay(L), (2.129)
jeL
we find that the mode amplitude evolutions can be rewritten as

da; ‘

d
—0p(r,r)}¥p (€ L),

where 0p(r.7) = Zje L U5 (r);(r). dp(r,r) depends on the low energy modes, L,

(2.130)

and are spatially invariant so one can remove the anomalous term from the evolution
by a simple energy rescaling. Thus, the form of the stochastic differential equation

becomes
L da; . . ’ i
,h.(_i_ti = hwja; + f Azt [0Ueat + Up|Up|*|¥p  (j € L). (2.131)

Eq.(2.131) implies the evolution of every mode satisfies the same equation of clas-
sical trajectory and the modes display essentially Gaussian statistics at all times,
with minimal correlations between the modes. Consequently, the truncated Wigner

stochastic differential Eq.(2.131) expressed in a fully coordinate space form becomes

L, OWp [ h2v?
th—r—= |-
ot

+ Um] Up + P[0Uest + Up|¥p[*] Up. (2.132)

2m

Finally, some concepts and central ideas about Truncated Wigner method will
be described below as well as some misunderstandings about the method and the
motivation of work in presence of Chapter 6 will be discussed. Firstly, we must
identify the difference between many-body state Wy 5, = |¢1,%9,...,9, > and the
mode state ) a;¢; here. a; in classical field refers to the amplitude function in the

Jj-th low-energy mode while one particle state ; in many body state is constituted
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possibly by the states of several modes. Due to the noise part of «; with random
Gaussian distribution, it causcs some states in a single trajectory behavior like many
body states but the average effect of so many trajectories is equivalent to single
particle behavior. For understanding conveniently the central ideas and applicability
of Truncated Wigner method, we give a simple example in quantum physics. As is well
known, [ a4} (r)ajy;(r)dr = 6;; in normal case where a;, a; are constant. However,
in the classical field, a;,a; are variables and the integral above might not be true
and is coufirmed if the average of many trajectories is performed for these variables
< aja; >w= 0;j. Secondly, in the condition of single trajectory, a; = ajy + x;, where

ajo is condensate part and x; is noise part, and
aja; = ajyajo + ayX; + Xi o + X Xj- (2.133)
In many trajectories.
< aja; >w=< apjo >w + < XiXj >w - (2.134)

From Eq.(2.131) and Eq.(2.134), one infers that if the number of non-condensed
atoms is small compared with the condensed number, it will not affect the nature of
dynamics from classical field theory in every mode and the dynamics is independent
of the mode functions. However, we can see in Eq.(2.133) and Eq.(2.131) that if the
noise number is large and its contribution to the nonlinear term cannot be ignored,
a small change might cause dynamic instability so that the dynamics might depend

on the choice of basis.
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CHAPTER 3

Vortex Formation and Interference
Properties of Merging Bose-Einstein

Condensates

Interference is the superposition of two or more waves that result in a new wave
pattern. In general, the term interference refers to the interaction of waves which are
correlated or coherent with cach other. In BECs, matter wave interference implics
the long-distance coherence of cold atoms in analogy to the coherence phenomena
exhibited by light. Distinguishing from light interference, this interference from many
massive atoms can be controlled and modulated freely, particularly in local regime
of position and in some parameters. Meanwhile this interference might be sensitive
to some factors, such temperature, interatomic interaction, the geometric shape of
atom clouds, etc. Thus it is used to sense accelerations [93,112], monitor quantum
decoherence [41] and measure fundamental constants [112,113].

A quantum vortex is a topological defect exhibited in superfluids, superconductors
and BECs. In BECs, there is the relation between the velocity of the condensate flow
v and the phase of condensate 0, v = %VO, so that V x v = 0. This implies that the
velocity field is irrotational, unless the phase of the order parameter has a singularity
[104]. Possible motions of the condensate are therefore very restricted. In terms of a
single-particle wave function of the condensate, around a closed contour the change

A0 in the phase of the wave function must be a multiple of 27, or A0 = f V0-dl = 2nl,
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where [ is an integer. The corresponding circulation I' around a closed contour is given
by[=§v-dl = £2wl = l%, which shows that it is quantized in units of h/m. This
quantized circulation indicates the possibility of forming quantum vortices.
Considering purely azimuthal flow in a trap invariant under rotation about the
z axis, to satisfy the requirement of single-valuedness, the condensate wave function
0 where 6 is the azimuthal angle. It is easy to obtain vy = ls—, which

2nmr’?

must vary as €
indicates that if [ # 0, the condensate wave function must vanish on the axis of the
trap r = 0 aud the structurce of the flow pattern is that of a vortex line. In the case of a
umiform medium, the analytic form ¥(7) = 7,‘-,"%,6‘“’, where n? is the BEC density far
from the vortex, z = with £ is healing length of the condensate. Correspondingly, a
singly-charged vortex (I = 1) energy ¢, is given by €, = 1m"—£ln(1.464§) where b is the
farthest distance from the vortex considered. For multiply-charged vortices (I > 1),
the energy is equal approximately to ¢, =~ l’n’n%ln (g), which is greater than that
of | singly-charged vortices. This implies that these multiply-charged vortices are

unstable to decay [4].

3.1 Introduction

Experiments in which a Bose condensed cloud of ultra-cold atoms is divided into
two spatially separated components and then allowed to overlap spatially have been
widely reported [68,94,103]. These experiments have a fundamental interest, for
example, in demonstrating the quantuin nature of the condensate, and in investigating
decoherence. In addition, such processes are central to matter wave interferometry
using ultra-cold atom condensates, which may have many technological applications.
In general, there are two ways in which initially separated clouds can be made to evolve
so that they subsequently overlap. Firstly, they can be allowed to expand by relaxing
the confining potential that holds them apart [35,94, 105]. Secondly, they can be
subjected to external potential gradients that cause the clouds to move together and
collide whilst maintaining their form [106]. In rcalistic sccnarios, a merging process
will, to some extent, involve both of these mechanisms. The resulting interference

pattern will be more complex than in either of the idealized cases. To date, there
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has been little study of this general case or how it compares with either the purely
expanding or purcly colliding scenarios.

It is now known that while the behaviour of very low density condensates in such
situations can be well described using elementary single-particle quantum mechanics,
systems in which the interactions are stronger show behaviour which is quantitatively,
and frequently qualitatively, different. In particular it was shown by [86] that the in-
terference pattern formed when two counterpropagating interacting clouds overlap
can give rise to the formation of persistent dark solitary waves and. subscquently,
the nucleation of linear arrays of vortex rings. As well as having implications for
real matter wave interferometers, these processes are of intrinsic interest as an ex-
perimentally controllable route to homogeneous quantum turbulence [69]. Recently,
experiments have observed the formation of spontaneous vortcies in the merging and
interfering of three part BECs [38]. Correspondingly, some theoretical works focus on
the role of ramping down and phase imprinting in the formation of these spontaneous
vortices [39,40]. Although the role of interference in the formation of vortices has
been pointed out [39,40], the detailed description of how the interference affects the
formation of nonlinear excitations has not been shown.

In this part, we investigate the interference instability and vortex formation of
two merging BECs in a simple heuristic model, which is equivalent to curve a single
trap into a double minimum trap using an atom chip [94], optical barriers [103] or an
acousto-optic modulator [105]. Our results show that the formation of vortex rings
ariscs in the regions which cvolved from interference minimu. Through the analysis
of our simulations and known experiments, we argue that the role of the interference
in merging BECs is of critical importance for the spontaneous vortex formation:
interference of atom clouds generates high-density peaks and extremely low-density
valleys. These additional degrees of freedom might be produced by thermal/quantum
fluctuations [25]. dynamic instability [103], external potential or perturbation [86,92,
94]. Therefore the additional degrees of freedom excitate high-density region from
original peaks or condensate patches recling around low-density regions evolved from
initial valleys, resulting in the formation of vortices. Moreover, an intrinsic relation

among colliding, expanding, and merging BECs is deduced based on simulations using
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a large range parameters. Our interference formula derived from the analysis of these
simulations can explain well the spatial nonuniformity and dynamic propertics of the
fringe patterns in some experiments [35] and our simulation. Finally, we propose that
the interference dynamics of merging BECs can be observed experimentally under
presently available conditions [94,105, 106].

Our general protocol involves preparing each of a pair of clouds such that it is
in the lowest (mean field) energy state of a harmonic trap. The prepared clouds
arc then displaced in opposite directions and allowed to cvolve when subject to a
harmonic trap potential which need not bhe the same as that used to prepare the
initial clouds. In general two dynamical processes will occur before the two clouds
overlap. Firstly the clouds can undergo (ballistic) centre-of-mass motion in response
to the trap potential. Secondly the clouds can change shape as they evolve (most
notably expanding or contracting). In general, of course, both processes will occur
but we can identify two extreme limits. If two copies of a non-interacting Bose gas are
prepared in the lowest energy state of a given harmonic trap and are then placed at
symmetric points away from the centre of that trap, the clouds will move ballistically
without changing volume until they overlap spatially. We refer to this as a “colliding
process”. Alternatively two (interacting) clouds prepared as above can be placed a
fixed distance apart and then allowed to evolve in the absence of any trap potential.
In this case the clouds will expand until they overlap. We refer to such a process
as an “expanding” process. Intermediate cases where neither ballistic centre-of-mass

motion nor cxpansion dominate will be referred to as “merging” processcs. .

3.2 Simulations

In the most general case our simulations have the following general features. We

begin with a trap potential of the form

1 1
Vo(r, 2) = Emwl,grz + Emw"pz2 \ (3.1)
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FI1GURE 3.1: Solid curves show the effective potential and Shaded areas in the two
pictures represent the initial atom density profile |¥(z, 0, 0)]°.

where (7, 8, z) are polar coordinates of positions within the trap. We choose the form

for the function @(r, z) which minimizes the GP energy functional
E[¢] = 21r/ dz/ drr [V¢| + Vo(r, 2 |¢|
- 00 0

+50ldl'}.

subject to the constraint

(3.2)

N = 27r/ dz/ dr'r|$|2rdrdz (3.3)
—00 0

where g = 4wh*a,/m is the usual GP coupling constant and a, is the s-wave scattering
length for inter-atomic collisions. In all of these simulations we use the value ag =
2.9nm and m = 3.82 x 10~ **kg, appropriate for a Sodium-23 condensate. In practice
the minimization is effected by evolving an initially Gaussian form according to the

imaginary time Gross-Pitaevskii equation

65(1‘,2,7) 6E[¢ r, 2,7)]

or 8o(r, 2, 7) L)

where I' is a suitablly chosen friction co-efficient. To conserve the total particle

number, we normalize ¢(r, z, 7) in every time step using Eq.(3.3).
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The initial condition for the main simulation is then obtained by setting the order

paramcter to have the form

1

¢(T,Z,t=0)= 2(1—+Q_)

(6(r,z = A) + ¢(r, z + A)) (3.5)

where : 5 o
Q= —]\721r /_.oo dz/0 drro(r,z — A)d(r, z + A), (3.6)

representing a pair of clouds displaced in opposite directions along the z-axis. Q
ensures correct normalization of ¢ and might he important for tunneling and inco-
herence. It is worth pointing out that the representation in terms of a single order
parameter, ¢ implies that the two clouds are fully coherent and it is not the case that
there are N/2 atoms in each cloud. In all of the simulations described below, the two
clouds are spatially non-overlapping so that Q = 0.

The subsequent evolution of the system is determined by numerically solving the

Gross-Pitacvskii cquation

. a(b s h2 2 2
”"797 = %V ¢p+V(r,2)o+gld" o (3.7)

assuming that the initial rotational symmetry in the zy-plane is preserved using a
2d Crank-Nicholson algorithm adapted to correctly treat the polar variable r. The
potential is now

1 1
V(r,2) = —z-m,z.alr2 - §mw"22 : (3.8)

where, in general w; < wy etc..

3.3 General description of two condensates coming together

By analyzing the interference pattern generated by the merger of two condensates
we indetify three types of behaviour and their corresponding paramcter regimes.
We refer to the two extreme cases as colliding and ezpanding, and to the generl-
ized intermediate case as merging. To explore the role of the repulsive interatomic
interaction in the interference fringes, we calculate the half center of mass (c.m.),

<z > (t) = [} alY(z,t)[*dz in a 1D freely expanding single condensate through
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various atom mumber. From Fig.3.2, we observe that the strong interaction tends to
speed up lincarly the expansion of condensate. Genuinely, our simulations are well in
agreement with ab initio calculation [110]. < z >, (t) = /1 + (wt)?R(0) where R(0)
is initial radius of condensate and w is trap frequency for generation of condensates
and is larger than 27 x 800 rads s™' here. Thus at ¢t > 3us the second part in the
square is much larger than 1 and < z >, (¢) is increased approximately linearly.
Therefore we take heuristically into account the atomic cloud internal expansion due
to the nonlincar term, approximate as a(z,t) <= 4|y (z,t)|%, where a(z, t) is a modi-
fied coefficient dependent on the density of the wavepackets. In real space, the state

of one condensate can be described using a Guassian ansatz:

2.2 " ~

0 0.025 0.05 0.075 0.1
t (ms)

F1GURE 3.2: The c.m. trajectories of half condensate versus process time ¢ from 1D
simulation of freely expanding single condensate with parameters of ¢ = 2hw,a and
total number of atoms N varied from 10 (bottom) to 1000 (top); Insert: short-time
behavior of the trajectory.

Yo(z,t) = (2nl3)~ lldo'l(t)c "2(‘) (3.9)

where o(t) = /I§ + 1(2m Sf). Now we consider a pair of wavepackets initially
at positions +£1/2, ¥(z,0) = 2(wn( —£.0) + o(z + £0)) so that, this pair of
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wavepackets at later time ¢ with the same speed v = hk'/m toward each other,
V(z,t) = 7'5(1/)0('5 - %, t)c %= 4 (T + -éi, t)e’*'*), where wavevector k' is modulated
by the variation of trap potential. Thus, we can obtain the effective wavelength for
the interference fringes through |¥(x,t)|?,

4nll§ + (£ + £)7)
T+ %) + 1+ (& + Sk

(3.10)

Under the condition that the nonlinear term is extremly small, there exists the
highest-visibility interference fringe with A = 5 = —; and the expansion of the atomic
cloud is almost zero; that is analogous to classical interference. We define this process
as colliding. In the other extreme condition, k' =~ 0 and g|¢|* =~ 0, it describes
free expansion of two BEC wave packets without the interatomic interaction and
interference fringe period A = -21(-4“‘—;"”1—-;1 In general, the first term in the bracket
can be neglected with respect to the second term in a fairly long time so that the fringe
spacing A = 2 used in explaning the experiments of expanding two condensates [35].
We refer this process as expanding. Except the two cases refered above, we define
the process of two condensates coming together as merging. Obviously the role of

interatomic interaction has involved with the interference pattern.

3.4 Distortion of fringes in interfering double condensates

We will begin by describing in detail three simulations which illustrate “collision”,
“merging” and “expanding” behaviour. In particular, we will emphasize the role of
the repulsive interatomic interaction in the distortion of fringes in interfering dou-
ble condensates and the resulting spoutaneous vortex formation. Furthermore, we
summarize the general relations between “collision”, “merging” and “expanding” be-

haviour.

3.4.1 System |: Free Expansion of Well Separated Clouds

The initial state is chosen such that the peak density in each component is ny =

6.9 x 10'°m3, the trap frequencies are wyo = 21 x 180Hz and w; o = 27 x 120Hz,
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the displacment from the centre of the trap is A = 4.8l = 9.5 x 107%m where

h
b= (3.11)

is the oscillator length for the trap. The initial state corresponds to two well separated
low density clouds: the Thomas-Fermi lengths being R = 3.5/; = 5.5 x 10~®m and
R, = 8.2 x 107®m. The total number of atoms being N ~ 8 x 10*. Hence we have,
initially, two well separated high density clouds. After preparation, the system is
allowed to evolve frecly, i.c. with the trap frequencies set to wy = w; = 0. Such free
expansions are well studied, in particular it is straightforward to show that, in the

absence of interactions, the order parameter has the form @o(r, z2— A, 1) +¢o(r, 2+ A, t)

where [4]
I Y
mw 1 1
r.z2,l) = | — : :
bolr: 2,) (ﬂ'h) 14wyt V 1+ awyt (3.12)
X e—(a"(I.)—iﬂ“(t))22/2[ﬂe—(a_1_—iﬂl)‘rz/Zli
and
i 1
N wit?
o wjt
S 1+ wiit?
Hence at arbitrary time ¢ we have
d(r,z,1) = A(t)e 2oL/ g2/ (3.13)

X <cosh (Zﬂ_(l_?_Af) + cos (gp_?”_(’;)ﬁ)) (3.14)
I l

From this we deduce that the length scale characterizing the interference fringes

5 L R s ik
(t) = SAT it (3.15)
which, at times larger than 27/wy behaves as A(t) ~ (lﬁ/ZA)w”t as observed in our

simulations (see Fig.3.5 Ia and Ib). From our simulations, with the more overlapping,
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the more number of interference fringes appear and the period of fringes become
larger. Mcanwhile the peak density of the fringes also increases until the time of
point in which two clouds expand fully, i.e., the peak density of fringes is comparable
to the peak density in two clouds. After the time of point, the peak density of fringes

will reduce but the width of fringes still increase.
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FIGURE 3.3: Left: The central density peak of interference versus time ¢ in the
process of expansion with N = 3 x 10* (solid line) and 4 x 10° (dashed line). Right:
The central fringe spacing versus time ¢ in the process of expansion with N = 3 x 10*
(solid line) and 4 x 10° (circled line) and the first-order finge spacing for N = 3 x 10*

(dashed line) and 4 x 10° (crossed line).

In Fig.3.3, the linear fringe spacing versus time in the weakly interacting regime
agrees qualitatively with the formula \ = %, where d refers to the separation of two
condensates and t process time [35]. However, beyond the weakly interacting regime,
the central and first-order fringe spacings become different and the uniform pattern
of interference in the weakly interacting regime is broken (see Fig.3.3 (b)) so that
the distorted fringe pattern appears. Meanwhile the high-density clouds speed up
the the expansion of clouds and produce larger fringe spacings than the low-density
clouds (see Fig.3.3 (a)). Based on Eq.(3.10), the high-density central fringe has larger
« than the first-order fringe so that the larger fringe spacing occurs on the central
fringe. Thus, the role of interatomic interaction has been involved in the interference
pattern so that this process becomes the process of merging. Supposce that there are

external potential gradients along the direction of merging and the initial density of
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the expanding clouds are sufficient high, the nonlinear excitations in Fig.3.5 can be

produced.

3.4.2 System Il Collision of Well Separated Clouds

The clouds are prepared in the same manner as for system 1. But by holding the traps,
two clouds are allowed to collide to each other. For the low-density condensates, the
system bchaves, at lcast over onc period of the longitudinal trap, like an idecal Bose
gas. Since the preparation trap has the same frequencies as the main trap, the initial
state is a superposition of two coherent states of the oscillator potential so that

‘lf)("', 2, t) L _1__08—:"/211 (c-;}((t)e—(z—Z(t))’/zlfl

V2 (3.16)

+ eiK(t)e-(zwLZ(t))’/ﬂﬂ)
where

Z{l) = Acos(wut)
K(t) = é—sin (wyt)

I
Hence when the clouds are maximally overlapped (at ¢ = 7/2w)) the finge spacing is
given by
oA 27Tlﬁ 3.17
i (3.17)

Fig.3.5 panel Ila shows the density distribution for the initial state, while Fig.3.5
panel ITb shows the fringes formed when the clouds are maximally overlapping. Sub-
scquently the two clouds scparate with their density pcaks following classical trajec-
tories. Each time the clouds overlap plane fringes form with the ideal spacing. The
classical argument being that the velocity at 7 is given by
S = Smuf A% (3.18)
which gives v = wjA and A = h/mv = 27rlﬁ /A. In this case the collision velocity is
7 = 6.08ljwy = 1.07 x 10 ?ms ™" and A = 1.036; = 1.62 x 10~°m.
We increase the effect of the nonlinear term by increasing the number of atoms

in the initial state. In Fig.3.4, for the initial peak density ny in the low density
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F1GURE 3.4: The central density peak (dash curve), the first-order density peak (solid
curve) of interference, the central fringe spacing (crosses), and the first-order fringe
spacing (circles) versus various initial peak density of condensates in the process of
collision with fixed g .
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regime, the amplification of the central and first-order peak of interference increases
lincarly, which is analogous to optical interference where the power spectrum of in-
terference is raised linearly with the growth of optical resource power. In this regime,
once the initial double trap frequencies and separation are fixed, the fringe spacings
are independent on the density of initial condensates. However, when the nonlinear
interaction is sufficiently strong, i.e. ng is larger than 1.58 x 10'*cm™3, the central
and the first-order fringe spacings become different and the uniform peak pattern is
broken so that the distorted fringe pattern appears. The higher the peak density,
the larger fringe spacing. Correspondingly, the amplification of the density peaks in
the high density regime is not changed linear with the inital peak density. Also, our
formula Eq.(3.10) can explain well about the nonuniform fringes; the larger a with
respect to the higher density in the central fringe results the larger fringe spacing.
Furthermore, once the ng is sufficiently large, the interference becomes unstable so
that the deformation of the interference pattern at high densities leads to the vortex

production.

3.4.3 System Ill: Merging of Well Separated Clouds

This initial state is chosen such that the peak density in cach component is ng =
4.6 x 10*'m~%, the displacment from the centre of the trap is A = 4.33 x 10~%m, the
trap frequencies are: wyo > 27 x 800Hz, w, o > 27 x 533Hz, wy = 27 x 180Hz and
w, = 27w x 120Hz. Becuase the trap used for the simulation is much less confining than
the trap used in preparing the clouds, each clouds expands due to internal pressure
as well as undergoing bulk motion. Because the initial displacement from the centre
of the trap is smaller than in systewn I the relative velocity of the two clouds when
they overlap is much smaller, 7 = 2.8ljwy. Panels IIla - ITIf of Fig.(3.5) show the
time evolution of the density profile. As can be seen in panel IIla, when the clouds
are maximally overlapped a fringe pattern forms but it is distorted with “thicker”
fringes in the centre of the cloud and a larger fringe spacing, towards the edge of the
cloud the density is much lower so that interaction effects are negligible and the fringe

spacing is closer to its non-interacting value.
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F1GURE 3.5: Gray-scale plots of atom density (black=high) in the z-r plane (axes in-
set) for double condensates, evolving with the process of expanding at ¢ = 5.81ms(Ia),
10.21ms(Ib), colliding at ¢ = Oms(IIa), 2.01ms(IIb), and merging at ¢ = 1.21ms(IIIa),
2.01ms(I1b), 2.41ms(IIlc), 3.61ms(IIId), 4.11ms(IIle), 4.41ms(I1If); The phase of
the BEC wave function within the dashed box in IIIf is shown in the gray-scale plot
(black=27, white=0) to the bottom of the density profile; arrowed v, and v, show
the directions of motion in left-upper(bottom) part of clonds depended on the postion
of speed coordinates.
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From Eq.(3.10), in the process of merging, since the expanding speed of an atom
clond v, is initially much larger than its speed of motion v,,, the pattern of inter-
ference fringes in the region of local strong interaction is dominated by the term
a(z,t)t/h in Eq.(3.10) at ¢t < 2.1ms. Therefore, fringe spacings at the middle part
of interference are larger slightly than those at the edge as well as the density of
central peak larger than those of high-order peaks, which can explain the results of
experiments in freely-expanding BECs in short separation, as shown in Fig.1 (left) in
ref. [35] : condensates with short scparation tend to form large variations of density
in the region of mergence. With further mergence of two clouds in later time, the
increasing k" and ht/2m predominate gradually and the differences of fringe spacing
at the middle and edge have been reduced correpondly (seen IIIa-IIIb).

As can be seen in IIIb and IIlc the stronger interactions in the centre of the cloud
lead to a net radial flow of atoms in the high density fringes. The speed for BECs
to propagate radially from position 1 to 2, v, & L;2/l12 = 11.076mms™!, is more
than twice as large as the center-of-mass speed vy, = 4.8971mmns ™!, Thus the high
transverse speed with respect to strong nonlinear interaction from merging two con-
densates tends to fragmentate the fringe peak, resulting in the formation of a dark
soliton as seen in figure IIlc. Also this rapid outflow leads to complete depletion of
the centre of trap after the two clouds have passed through one another. As can be
seen in ITId when the two clouds recollide, at time 2, both are recollapsing radially
leading to an enhanced density in the bright fringes causing an even greater longitu-
dinal cxpansion and greater density gradients in the radial direction. The curvature
of the fringes is thus even greater than in the first collision. Ille, and is sufficient
to generate a net circulation around localized regions that are fully depleted: vor-
tices are generated, as seen in IIIf. In general, due to strong interatomic interaction
and the competition between v,, and v,, additional degrees of freedom are gener-
ated, resulting that high-density areas from the second-time interference peaks reel
around extremely low-density areas arising from the prior interference valleys (I1le).
The positions of four vortex rings corrclate naturally with the previous positions of
interference valleys. Actually, the formation of soliton and vortices from quantum re-

flection of high-density and low-velocity BEC is naturally analogous with our results;
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the low velocity enables the interference between the incident and reflected parts of
the condensate, which has been shown as fringe patterns in Fig.2(h) in [86], and the
high density and trap potentials incite inner degree of freedom for high-density parts
of the condensate. Through analysis of much simulation and known experiments, we
argue that the role of interference of BECs is of critical importance for the sponta-
neous vortex formation: interference of atom clouds generates high-density peaks and
extremely low-density valleys, and additional degrees of freedom possibly produced
by thermal (quantum) fluctuations [25], dynamic instability [103], external poten-
tial or perturbation [36,92.94| might excitate high-density region from original peaks
or condensate patches reeling around low-density region evolved from initial valleys,

resulting in the formation of vortices.

3.5 General Features in the parameter space

Here, we identify approximately three processes through their interference charac-
ters. In the process of expansion, the interference fringes are time-dependent and
uniform, and in colliding process are confirmed and uniform in the fully overlapping,
and the interference pattern in expanding process are time-dependent and nonuni-
form. Based on simulations of a large range parameters, we describe heuristically the
interference properties and the creation principles of nonlinear excitations shown in
Fig.3.6. In merging and expanding process, the creation principles of soliton and vor-
tex are naturally dependent on the competition between expanding (merging) speed
and motion speed of condensates. The moving speed is too large (position C in solid
line) and small (A). it is not easy to observe the excitations. Thus, we can explain
the experiments in which more vortices in merging and interfereing region except the
central vortex which is formed by phase mechanics, are formed provided that three
components of clouds are merged more quickly. Due to high potential barrier, three
parts of condensates expand rapidly and fast merging might avoid the loss of rapidly
expanding condensates and form high-density condensates in merging region so that
the strong nonlinear interaction can easily generate inner degrees of freedom. Mean-

while, the interference pattern is of critical importance in the formation of vortices.
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FiGURE 3.6: Heuristic description of the parameter space for v, and gng(t = 0).
Dash lines are drawn through identifying different interference patterns: fringes vary
approximately linearly with ¢ for the case of expanding, are nonuniform and time-
dependent for merging, and uniform and fixed highest-contrast period for colliding.
Solid lines are drawn through identifying whether there exists nonlinear excitations.
We must emphasis that gn.(t = 0) is determined by v, and v, is determined by size
of condensate for which the dynamics and interference pattern corresponding to too
small separation is naturally equivalent to merging case.
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The faster merging produces more interference fringes so that there is the possibility
for the formation of more vortices. In addition, for a qualitative depict of differences
among colliding, merging and expanding processes in Fig.3.6, the dashed line can be
altered by different parameters. In general, for the small nonlinear constant with the
large atoms numbers, it is more easy to observe the crossover from colliding process

to merging process.

3.6 Summary

In summary, we have investigated vortex formation and interference instability of two
merging condensates. Our theoretical predictions should verify recent some experi-
mental work in which the spontaneous vortices are formed in merging BECs and the
nonuniform interference pattern forms in expanding BECs. The regularity of vortex
formation and interference might allow some experiments for vortex creation. Our
latest calculations show the more vortices are formed, the more interference fringes
occur in the unstable region, and we propose to verify this experimentally. Addi-
tionally, the interference formula from many simulations and theoretical analysis can
explain well some phenomena in merging and expanding condensates. However, a
completely confirmed formula is needed from more rigorous theoretic deductions and

experimental tests.

3.7 Vortex Decay and Dynamics in Merging BECs

3.7.1 Motivation and Findings

As seen in the above section, the dynamics and decay of the spontaneous vortices
might be of importance for studies of quantum turbulence in the system of mixing
superfluids or classical fluids. On the other hand, in the experiment [103], vortices
are observed by probing for merging dynamics by releasing all traps and viewing the
atom cloud using absorption imaging after a period of ballistic expansion. In general,
the excitation energy of a vortex is macroscopically large and those off-center vortices

in merging clouds might decay and vanish rapidly [4]. It is required to answer whether
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this measure of time of flight can reflect the production of vortices in merging BECs.

In this work, we study the factors affecting the spontancous formation of vortices
when merging two atomic BECs. In the non-uniform condensates, two factors are of
critical importance for the formation: interference and strong nonlinear interaction.
The interference of condensates plays an important role in the formation of the vortex
core. The strong nonlinear interaction triggers the interference peaks or condensate
patches reeling around the vortex core. Through simulation and analysis, a feasible
criteria for this formation has been shown. In addition, our simulations show that
vortices decay from high-density regions into low-density regions, disappear ultimately
on the edge of the condensate, with their cores becoming correspondingly larger. The
fragmentation of atom clouds is caused by vortices with opposite rotation which
are analogous to magnets. Finally, we demonstrate that the measure results for
vortices through releasing all traps can reflect the dynamics of BECs with traps in
real experiments when vortex decays can be neglected. The role of two other factors
in the formation of this kiud of vortices, i.c., relative phasce of merging two clouds and

quantum (thermal) fluctnations, has been discussed in the papers [39.86].

3.7.2 Exemplar Model

In this work, the dilute double condensates are realized with total number 4 x 10°
2Na atoms in the same traps used in the above part. The process I in this part
is similar to the process of merging in the above part. Process II is modulated by
the similar evolution to some experiments [103], where they removed all trapping
potential after merging and viewed the atom cloud using absorption imaging. After
the formation of vortices, all trapping poteutials are removed and the atomic clouds
are released completely from traps, expand freely. We record the dynamics of BECs

in this process during a long time.

3.7.3 Results and discussion

We now explore the dynamics of vortices in two processes. As has been shown the

above part, the interference of atom clouds generates high-density peaks and ex-
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FIGURE 3.7: Hot-scale plots of atom density (white=high) in the z-r plane for dou-
ble condensates, evolving with process I at ¢ = 6.02ms(Ia), 6.46ms(Ib), 6.74ms(Ic),
7.46ms(Id), and process IT at ¢ = 6.74ms(Ila), 7.44ms(IIb), 8.34ms(Ilc), 9.74ms(11d),
10.64ms(IIc); The phase of the BEC wave function within the dashed box in Ile is
shown in the hot scale plot (white=2m, black=0) to the right of the density profile;
Coordinate axes are inserted in Ila and length scales are labeled separately for both
processes (see la and Ila).
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tremely low-deusity valleys (Ia), and additional degrees of freedom produced by dy-
namical instabilitics might excite high-density region from original peaks or conden-
sate patches reeling around low density region evolved from initial valleys, resulting
in the formation of vortices (Ib). Since four vortex rings are created at the ramp
located between the high-density region (around z = 0 and r = 0) and low-density
region (far from center of trap), they are highly unstable and thus tend to decay
into more “stable” areas. As seen in Fig.(3.7) Ic and Id, the vortex rings propagate
to the low-density region far from the center of trap although the trap potential in
z-axis direction compresses them into the center, and later disappear at the edge of
main clouds. The competition between the force of “dragging” the outer two vor-
tices into high-density region from trap potential and expelling force originating from
the variation of strongly interatomic interaction around them results in the clouds
fragmenting into three parts from the region of vortex disappearance. In process II,
the decay of vortices is similar to process I and the time of decay is a little shorter
(ITa dnd IIb). since strong interaction can excitate faster dynamics in the absence of
a trap potential. Thereafter, three parts of the clouds fragmented by the outer two
vortex rings expand further as well as the compressed central part (Ilc). After 1.4ms,
the outer two parts interfere with the expanding center part and a vortex pattern is
reformed in the freely expanding process. Contrasted with the rapid variation of the
vortex pattern in the interval of 6.74ms to 7.44ms, the latter interference and vortices
are more stable and last much a longer time. Indeed, the pattern of interference and
vortex rcformation will remain unchanged because the interaction energy of atom
clouds is approximatly zero at ¢ > 10ms. Although the method of creating these
vortices has not been changed. the possibly results from releasing all traps might not
show the nature of initial vortex formation in a long time, i.e. ¢ > 12ms, because
macroscopic nonlinear excitations might decay, merging, or disappear in this period.
It indicates that there might exist some discrepancies between the dynamics of BECs
with traps and the results from experimental observation at comparatively long times,

in particular, in presence of nonlincar excitations [103], thermal fluctuation [25] and
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dynamical instabilities *.

We explore the dynamics of vortices by tracking onc vortex (arrowed in Fig.(3.7))
in process I, based on two reasons: 1. due to the weak variation of the trap potential
and strong excitation energy including kinetic energy and interaction of nonlinear
excitation in the bottom of traps, the confining potential does not alter naturally
the results of vortex decay and the dynamics of a vortex in confined potential; 2.
four vortex rings decay entirely from high-density regions into low-density ones and

disappear at the edge of main condensates. We characterize the size of the core by
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FIGURE 3.8: Vortex configuration arrowed in the Ib of Fig.(3.7) (a); Vortex core
trajectory in x direction (circles) and r direction (squares) versus time (b); The size

of core [, (circles), I, (squares) versus time (c); Density variation An,; (circles), Ans,
(squares) versus time (d).

1Our recent results demonstrate that thermal(quantum) fluctuations can alter strongly the dy-
namics of interference in a short time.
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integrating the smooth part of distribution function from core center 0 to position
2, where the variation of density is very small, in Fig.(3.8) (a) along z dircction
with L,(t) = [ (z — o) |(z,t)*dz/ [? [1(z,t)*dz and L,.(t) is defined similarly to
l.(t). To figure out the relation between the trajectory of a vortex and its surround-
ings, we define the variation of density function in x and r directions by calculating
Anya(t) = na(t) — 0y (t) and Ang(t) = ns(t) — 7a(t) separately. Here 7ij—1234) is
the mean density around the high-density position ¢. For convenient contrast in the
dynamics, we iutegrate I, (t) and () in a fixed interval of 2o — zo(r3 — 1) and use
the mean value of 30 density points as 71;. Because of the discrepancy of density dis-
tribution between the center of condensates 3 and the edge 4, the strong interatomic
interaction of condensates around r = 0 tends to expel the vortex ring from the
high-density area into the low-density area, i.e. far from r = 0, as shown in Fig.(3.8)
(b). Correspondingly the density variation Ang,(t) is reduced rapidly with respect
to process time, reflecting the “ Gaussian-shaped " configuration of condensates in
r direction. In the z direction, the trap tends to compress two condensates toward
the center of the trap while interatomic interaction inclines to expel them. During
the domain of repelling (A—B), the vortex rings move apart in the z direction and
the density variation An,,(t) is reduced prior to ¢t = 4.51ms. After that (B—C),
compression causes the vortex rings to move toward the center of trap and conse-
quently the density is increased gradually. Despite the slight shake of characteristic
core size of vortex versus time, indicating local instability of the surroundings around
the vortex, the characterized core size of a vortex I, (t),1-(t) from genceration of vortex
rings to disappearing are increased overall, as can be explained by classical dynamics:
fixed angle-velocity vortex in the superfluid of BEC balances reducing pressure force
with respect to low density by increasing the core size.

We analyze the vortex dynamics through macroscopic vortex-vortex interaction,
with analogy to spin-spin interaction. In Fig.(3.9), since vortex ring 1 (3) and 2 (4)
have the same spin direction, and 2 and 3 have the different spin direction, vortex
ring 1 (3) and 2 (4) expel cach other while 2 and 3 attract onc other. Consequently,
vortex rings 2 and 3 move toward each other and the fragmentation of atom clouds is

presented in the regions between vortex 1 (3) and 2 (4) as shown in Fig.(3.7) Id and
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FIGURE 3.9: Vortex configuration of density at ¢t = 6.46ms (left) and corresponding
phase plot (white= 0, black= 27)

Ilc.

In condition of interference of merging two condensates, the possibility of forming
vortices is determined by the velocity direction of superfluid. Oscillation, expansion
and compression respond to case (a) and (b) in Fig.(3.10) and there is little possibility
of forming a vortex. In case (c) and (d), there are enormously large possibility for

the formation of vortex.

(a) (b) (c) (d)

F1GURE 3.10: Four possibilities ((a), (b), (c), (d)) of velocity directions of two con-
densates during the process of mergence: left (right) arrow labels velocity direction
arrowed separatively by 1 and 2 in the r = 0; up (down) arrow labels velocity direc-
tions in radial direction arrowed by 3 and 4.

3.7.4 Summary

In conclusion, we have investigated the spontaneous formation and dynamics of vor-

tices in two merging BECs. Interference and strong nonlinear interaction play an
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important role on the formation of vortices. Our results should guide experiments
to produce spontancous vortices. Meanwhile it should be taken as a model for stud-
ies of quantum turbulence and topological defect formation in mixing superfluids or

classical fluids.
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CHAPTER 4

Interference Properties of Colliding

Bose-Einstein Condensates: from Mean
Field Theory to Classical Field Theory

4.1 Introduction

Atom interferometer technology has been developed for various novel applications
such as characterizing atomic and molecular properties [111], precision measurements
in fundamental physics [112,113), and planetery gravity field mapping [114]. Research
on matter wave interference in Bose-Einstein condensates(BECs) has significant of-
fect on the optimization of atom interferometer techonology. Previous studies of
interference phenomena in BEC were mainly based on freely expanding BECs. Ex-
perimentally, the techniques for division and manipulation of cold atom condensates
have evolved from early experiments in which a magnetically trapped condensate is
split with a blue-detuned laser beam [35], to later work in which a single laser beam is
passed through an acousto-optic modulator [105] and most recently to an experiment
in which a magnetically trapped condensatce is split with an atom chip [94].
Recently, the evidence for quantum entanglement between matter waves generated
by these techniques has demonstrated that the collisional four-wave mixing process
is coherent. This coherent collision process indicates the applicability of quantum in-

terference in colliding BECs [115], as has been verified in the recent experiment [103].
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Thus this applicability stimulated huge interest in quantum interference and interfer-
ence instability in colliding BECs. On the once hand, previous experiments and theo-
ries for the interference based on freely expanding BECs have shown some correlations
between interference fringe spacing and initial separation [35], the relative phase be-
tween two separated condensates and the spatial phase of their interference [105], and
uniform and nonuniform interference fringe spacing [116]. To explore properties of
the interference in the colliding BECs, it might be valuable to understand previous
theorics based on the interference in freely expanding BECs. Also the rescarch in the
area of colliding BECs will extend further to understand the interference phenomena
such as instability, coherence and decoherence, and quantum collision effect. On the
other hand, some experiments in quantum interference in (quasi-)BECs have revealed
that the true condensate cannot be described by a “pure” multimode coherent state *
and it should also include the effect of quantum(or thermal) fluctuation [25,117]. In
general, the coherence of the condensate state can be suppressed during the collision
process. Thus, the bare Gross-Pitacviskii equation (GPE) basced on a pure coherent
state can not explain completely all phenomenon that occured in experiments, in
particular the case that the collision of many atoms is involved.

Indeed, a recent theoretical treatment in terms of a classical field with added

quantum fluctuations (Truncated Wigner Approximation; TWA) beyond the bare

11f a condenusate wave fuuction is constructed by ¥(z1). Such a coherent state is the cigenstate
of the annihilation operators b(z,) at the location z;, and can be expressed explicitly as

[0 >= eapl [ darv(@)¥ (@)llvac > -AW), (1)

where the normalization factor is A(¥) = ezp[—1 [ dz|y(x)|*]. Moreover if a condensate wave func-
tion is constructed by different functional forms 9*), we can write the coherent state of condensate
corresponding to the wave packet ¥*) as

|¢(k) >= AkeN(k)(s(k))tlvac >’ (42)

where N®) = [ dz|y®)(z)]> and b®) = W{ﬁfda:(il)("))‘(m)i)(m). Thus the condensate state with
respect to all wave packets can be described as the multiple coherent state [132]

hb i HAkeN“)(Bm)'Ivac S . (4.3)
k
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GPE has produced the scattering halo and predicted the unobserved phenomenon of
quantum turbulence in the colliding BECs [52,118]. The method of TWA for a bosonic
field originally devised for quantum optics and was first applied to BECs by Steel [53].
Later, this method was applied successfully in describing the damping of a collective
excitation of a one-dimensional Bose gas [121] and disruption of reflection of three
dimensional BECs [77]. Thus the introduction of quantum fluctuations to colliding
BECs probes the robustness of interference, which has been exhibited previously in
expanding BECs. The underlying correlations in colliding BECs, caused by quantumn
fluctnations, are valuable to understand experimental phenomena and the detection of
coherence might have important implications for atom interferometers and quantum
entanglement.

In this chapter, within the region of coherence, we show that once the initial con-
finement and geometry of double condensates are formed, the relative phase variation
of condensates will not alter essentially the spatial fringe period, although the rel-
ative phasc between the two separated condensates has a pronounced cffect on the
spatial phase of interference pattern. Our results demonstrate the hyperbolic relation
between the absolute velocity of double condensates modulated by different trap sep-
arations, and the fringe period, which is expected for the behavior of single-particle
waves. This fringe pattern is determined by the center of mass motion unaffected
essentially by interactions up to the point where a nonuniform fringe pattern ap-
pears. Despite the reservation of hyperbolic fringe pattern versus displacement, due
to intcratomic interaction, the velocity of atom clouds is reduced a little so that the
fringes are widened slightly. Moreover, we also discuss the effect of quantum noise
on the low-density BECs interference in colliding condensates. The ratio of coherent
atom number to incoherent atom number affects essentially the visibility and phase
fluctuation of interference in the process of collision. The incoherent atom number is
increased rapidly during the process of merger while it is increased much more slowly

in the other process. The detailed analysis is shown through a correlation function.
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4.2 Model and Numerical Methods

For the bare GPE calculation, we consider initially very dilute BECs of 4 x 10° " Rb
atoms in two pancake-shaped traps with cylindrical symmetry and trap frequencies of
wy = 2m x 50 rads s7! (longitudinal) and w, = 27 x 35 rads s™! (radial) in the x and
r dircctions respectively, which produce two atom clouds of equilibrium peak density
ny = 2.7 x 10" em~*. The two condensates are realized by the double harmonic traps
in the z direction (Fig.1(a)):

Va(z) = %mwf(m +Az)2 <0

and .
Vi(z) = §nw:(w - Azx)? z >0,

where Az is the distance from symmetry point z = 0 to the center of each trap, i.e.,
half the BEC seperation, and in the r direction: V(r) = -;-mwfrz , so that the total trap
potential is V (&, 1) = Va(x) + V(r). Although there are some discrepancies between
our theoretical double traps and experimental traps, our double-well system can pro-
duce excellent insights for understanding substantially the process of interference of
double condensates in the experiments where a single well is curved into a double well
by a laser beam passing through an acousto-optic modulator (AOM) (105]. At time
¢ = 0, we abruptly change the double trap into a single trap with the same frequency
along the z direction (Fig.(4.1) (b)), Va(z,t = 0) = 3mw?2z?, and hence accelerate the
two BECs toward one another. An interference pattern can be observed after the two
condensates meet and overlap well. The amplitude and contrast of the interference
pattern depends on the overlap between two condensates and our discussions in this
work are based on the highest-contrast interference pattern.

Within mean-field theory, we determine the dynamics of the BEC in two dimen-
sions by using the Crank-Nicolson method [78] to solve the time-dependent Gross-

Pitaevskii equation

2 4 2
th— = [— -ﬁ—Vz + V(z,r) + =
2m m

|\If|2] v, (4.4)
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(b)
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~Ax, 0 Axg =

FIGURE 4.1: Solid curves show the effective potential and Shaded areas in the two
pictures represent the initial atom density profile |¥(z, 0, 0)|%.

where V? is the Laplacian in cylindrical coordinates, @ = 5.4nm is the s-wave scatter-
ing length of 3 Rb, and ¥ (x, () is the axially symmetric condensate wave function
at time ¢ *, normalized so that [¥[? is the number of atoms per unit volume.

In the calculation of TWA on bosonic field, our model system is a little different
from the system of bare GPE calculation. Two quasi-condensates are formed by 4 x 10*
87 Rb atoms in a two dimensional system with trap frequencies of w, = 27 x 50rads s*
and w, = 27 x 35rads s~'. The separation of two quasi-condensates and the switch
from initial double trap into single trap in the treatment of TWA are identical to mean
field treatment. The critical difference is the coefficient of interatomic interaction
g= i;—“ \/@ (See Appendix D) in the TWA rather than g = i”;—'ﬁ in the treatment
of bare GPE. In order to avoid the effect of strong nonlinear interaction on the
interference (has been discussed before) and focus on the role of quantum noise in
the interference and colliding coherent atoms, we choose z-component trap frequency
w, = 21 x 35rads s~'.

As is well known, a uniform two-dimensional fluid cannot undergo BEC, in con-

trast to the three-dimensional case. However the two-dimensional system can form

?In the initial condition, the condensate wave function ¥(z,r,0) is symmetric about 7 — 0, ie.,
V(-z,7,0) = ¥(z,7r,0). Due to the symmetry of ¥(z,r,0), Eq.(4.4) is symmetric about z = 0 at
time ¢ = 0. Since no external force alters the symmetry of ¥(z,r,t), the wave function ¥(z,r,1) is
symmetric about z = 0 for all time ¢.
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a ‘quasi-condensate’, i.e., condensed atoms with fluctuations [25]. We hope to un-
derstand the role of strong quantum noisc in interfering two atom clouds so that
two-dimensional system should be more reasonable. Additionally, we solve numer-
ically the Eq.(4.4) by the Projected Fourth-order Runge-Kutta in the Interaction
Picture (RK4IP-P) algorithm. Details of the numerical method are given in appen-
dix C. In this calculation, we choose a two dimensional harmonic-oscillator basis using

the mode expansion,

M

U(x,y,l) = Z a(n,n', 1) o (x)dw (y), (4.5)

n,n'=0

where a(n.n’.t) is the amplitude for the oscillator mode (n,n’) and ¢, (z) is the
nth single harmonic-oscillator wave function. The quantum fluctuations are intro-
duced in the initial condition for ¥(z,y,t), which is given by the sum ¥(z,y,t =
0) = ¢(z,y) + x(z.y), where ¢(z,y) and x(z,y) are, respectively, the real and
virtual particle fields. We express the field of virtual particles using x(z,y) =
Zi{n,:n x(n, 1) ¢, ()b (), where the amplitude in each mode is Gaussian with the
properties < x*(n,n)x(m,m') >= 38, m0u m, < X(n,n')x(m,m’) >= 0. The mean
value of the total virtual population is thus M /2. To choose M, we confirm firstly
the minimum value of mode n; above which the energy is larger than the chemical
potential p of groundstate. Due to the variation of traps, the potential energy is
increased with $mw?(Az)? for cach atom in the cloud so that the maximmum value of
Nonae ShoOUld satisfy Mye. > ny + Wi%éfﬁ where the effect of collision has been consid-
ered. Also 7,0, should be fulfilled in y direction. In order to satisfy the requirement,

we choose M =~ 11000 in this work.

4.3 Results and discussion

4.3.1 Mean field theory for colliding BECs

The initial ground state of the atomic clouds in the double well potential is calculated
numerically by an explicit imaginary time evolution [85]. For coupled condensates

this method unambiguously yields the nondegenerate ground state. However, for well



87

separated condensates [94, 105], the ground state is virtually degenerate and can be

written as a coherent superposition
VY(z,1) = (Vi(z,7)e’ + ¥a(z,7)) C (4.6)

of the two independent condensate wave functions ¥, 5(z.r) with an(a priori) arbi-
trary relative phase 6 [4.107,108]. Here c is determined by the normalization condi-
tion, [ [ |¥(z,7)[*2nrdedr = N. Tt is worth noticing that numerically 6 = 0 in the
imaginary time cvolution but we can choose the 0 in the initial state, corresponding
to the experiment where the phase in one condensate can be adjusted by applying
ac Stark phase shifts [105]. This state does not correspond to definite numbers in
each well. As is well known, even when the numbers in each well have definite values
(Fock states), interference patterns are still observed in experiments. It is supposed
that the imaging process used in the experiments, projects the state onto a coherent
state with a randomly chosen phase [4,107,108].

To confirm the cffect of an alteration of the initial condensate’s phase on the mat-
ter wave interference pattern, we adjust the phase @ of the left condensate from 0 to
27 and switch rapidly the double trap into single trap at time ¢ = Oms. Thus, the
potential energy of each BEC is increased by AV =~ jmw?Az?, causing the atoms
of each condensate to move toward the areas of lower potential field with a maxi-
mum velocity of v, =~ w,Az = 2 mms~'. This evolution is equivalent to two isolated
condensates with different phase moving together. As seen in the Fig.4.2, the rel-
ative phasc of two condensates is changed, however the fringe period is not altered
intrinsically and retains the same value of the fringe spacing, Ay = 1.6yam, indicating
that the interference period is not dependent on the initial phase, as would occur
in a noninteracting system. The interference plots reveal that the distance of two
closest-neighbor valleys is quite similar and all equal to Ao, which is consistent with
the recent theoretical prediction that the fringes are uniform for large separations and
weak interatomic interaction of the two BEC clouds [116]. Furthermore, contrasting
the interference profiles from 0 = 0 to 0 = 3/27, we can infer that when the initial
phase 6 of the left condensate is changed with a period of 27, the atomic spatial dis-

tribution of the interference pattern is also moved forward to the positive z direction
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FIGURE 4.2: Dotted curves: atom density profiles of interference pattern at ¢ =
7.21ms with different initial relative phase 0 along r = 0. Solid curves: density
profiles of fitting our data to experimental formula with C' = 5.625, D = 1, z, = 0,
0? =~ 2/mw?, A = Xy, and 0 = 0, /2, 7, 37 /2 respectively.
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with a length of fringe period Ag; that is, the spatial phase of interference pattern
varics with a period of 27 again as occurs in a non-intcracting system. A possible
theoretical interpretation in our system is that we initially show double condensates

with Gaussian distribution in z direction as follows:

V(z,t) = [Acrcp (— w2 Ut)2> cxp (z 27;vt + i0>

202

(z —d/2+ vl)? 27l
+ Bexp ( 957 erp | —i 3 ],

where d is the separation, v is the absolute speed of the two BECs, and A is the wave

(4.7)

length as well as A, B denote two condensates density. When the double condensates

move together and overlap fully at vt = d/2, we have
2

|W(x,t)* = Cexp (—%) [1 + D(:O.S(g/\z(;l; — L) — 0)] . (4.8)
where z, is the center of interference and C, D are A* + B? and 2AB/(A? + B?)
respectively. Eq.4.8 is fairly similar to experimental formula about double BECs
interference pattern in the ref. [105]. Comparing our result (Dotted curves) with the-
oretical prediction (Solid curves) in Fig.4.2, our results from numerically anomalous
quantum interference is quantitativly consistent with the conclusion of experiments
and thereby we demonstrate the correctness of this formula numerically. From an-
other angle, the spatial phase of interference occurs to change corresponding to the
variation of the relative phase of separated double condensates, which yields perfect
agreement for the results of the experiment [105] where the phase sensitivity of the
trapped-atom interferometer was demonstrated by applying ac Stark phase shifts to
two separated condensates.

Previous experiments [35] have revealed the hyperbolic relation between interfer-
ence fringe and expanding speed. In the ref. [35], the double condensate’s relative
speed v at any point in space is d/t, where d refers to the separation between two
point-like condensates and ¢ can be regarded as the time of atom cloud expansion.
The fringe period is the de Broglie wavelength ) associated with the relative motion

of atoms with mass m,
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FIGURE 4.3: Fringe period versus trap displacement Az: Dashed red curve from the
results of theory formula, Open squared-lined curve without interatomic interaction,
Open circle-lined curve with interatomic interaction g, and Solid triangle-lined curve
for slightly larger interatomic interaction 5g.

where h is Planck’s constant. A similar conclusion has been presented in the classical
interference for two colliding waves in which the interference fringe A = miv where
v is the absolute speed for each wave. Thus this analogy should be replanted into
two colliding non-interacting BECs. However, the situation might be a little com-
plex for nonuniform interacting BECs. For the nonuniform spatial distribution of two
clouds, maximum contrast of the interference occurs when clouds are fully overlap-
ping. Distinguishing classical wave interference, the repulsive interatomic interaction
will decelerate the center-of-mass motion during the overlapping of two clouds so that
v < w A, for g # 0.

To quantify how the absolute velocity of two BECs affects their interference fringe
period, we produce a linearly increasing relative speed by regularly adjusting different
Az at the fixed frequencies [Fig.4.3]. Conscquently, cach condensate’s velocity of
propagation can be regarded approximately as w,Ax. Fig.4.3 shows that increasing
the separation of potential trap in the z direction tend to shorten the interference
fringe spacing. It is worth putting forward that there exists an explicitly hyperbolic

relation between the fringe period of the interference and Az by contrasting the results
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from simulation and theoretical formular A = h/mw,A,, in agreement with our initial
prediction. However, one can sce that the fringe spacing with interatomic interactions
is slightly larger than the fringe spacing without interatomic interaction. This implies
that the interatomic interaction tends to reduce the velocity of two clouds during
the merging process so that compared with the case without interaction, the slower
velocity contributes to a larger fringe pattern. Furthermore, we increase interatomic
interaction a little in the region of dynamic stability and find that the interatomic
interaction, during the merger of two clouds, decclerates the velocity of two clouds
more for short separation than for large separation. Consequently, comparing the
interference pattern of g with 5g, the variation of fringe period is slightly larger for
short separation than for large separation. Here, we perform our analysis by modeling

the center-of-mass motion of one cloud as

& = —wiz — n(z)z, (4.9)
where
2y |lz| <o
z) = . (4.10)
() = { 0 lils 0

Here o is the width of the cloud, and the damping v is rclated to the interaction
constant ¢ and the spatial density distribution of two clouds during the mergence.
Thus the stronger interatomic interaction corresponds to the stronger damping. If we
suppose that at ¢ = 0 we have z(0) = A > ¢ and #(0) = 0, then the solution has the

form
Acos(wyt) 0<t<tp

Ce "—leos(d(t — to) +¢¥)  to < t
where ) = /w? — 2, C and ¢ are, as yet, undetermined constants and (; is the

carlicst time at which z(t5) = 0. Calculating the velocity then gives

x(t) = { (4.11)

: —wzyAsin(w,t) 0<t<tg
o(t) = #(t) = { ; (4.12)
—yz(t) — CQe™ " gin(QL — L) + ) Lo <L
Henee we have
z(to) = 0 = Acos(w,ty) = Ceos(y
(to) (wato) (¥) (4.13)

v(lo) = —Awzsin(wgly) = yo — CQsiny
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which can be solved to give

Cecosy = o
(4.14)
Csinyp = ( VA2 — g2 + 'ya)
or
C = \/02 o= (wz\/A2 — g2 +’ya)
<w1\/A2 —o%+ 'ya) Cen)
1 = arclan :
Qo
Now we define T to be the first time at which z = 0 so that
z(T) = 0= Ce " T~ cos(QT — to) + ) (4.16)
so that
QT - o) + ¢ = % (4.17)
and
v(T) = —-CNe G-I/ = _Aw, f(0/A, v/ws) (4.18)
where

f(a,8) = {1 - 208VI— a2

X ﬂ 2 rctan ______m+aﬂ i
cxrp \/1——_[3‘ - a = \/1—_—52

h h 1
AZ mo(T) ma,,A Ii%. =+ s (4.20)

From Fig.4.4, the interference pattern for 7y = 0 (corresponding to g = 0) satisfies the

so that

hyperbolic relation. With increasing interatomic interaction (v), fringe period is also
growing for the different seperations. In addition, the variation of fringe period is
larger for small separation than for large separation. These results from our analytic
model are identical to our simulation, implying the applicability of this model for the
colliding BECs.
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FIGURE 4.4: Fringe period versus trap displacement A from our analytic formula
4.20.

4.3.2 Classical field theory for colliding BECs

There is considerable interest in the way that quantum and thermal fluctuation will
decrease the contrast of the interference patterns of two BECs and how the phase
coherence is broken when the BECs experience impurity and dynamic instability.
The following parts concentrate on the role of quantum noise in the interference
pattern of low-density colliding atom clouds, using the Truncated Wigner method.
First, we show the spatial atomic density distribution from single realization in
the calculation of TWA. In Fig.(4.5(a)), in presence of quantum noise, the smooth
density distribution in the mean field theory is broken and there are some fragments
of atom clouds in the outer region of the main clouds. As the two clouds move
toward each other, the initial interference fringe is created by the overlapping wings
of the two clouds (see Fig.(4.5(b))). One can see easily that the initial fringe is
obviously distorted, but with more merger of the two clouds, the fringes are more
stable and visible (see Fig.(4.5(c))). Since the wings of the atom clouds are composed

of noncondensed atoms, the ratio of condensed atom number to noncondensed atom
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FIGURE 4.5: Jet-scale plots of atom density at times ¢{ = 0 (a), 3.61ms (b), 5.11ms
(¢), 7.81ms (d). Note the small population particles.
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FI1GURE 4.6: Normalized second-order equiposition coordinate-space correlation func-
tion g (r,t) at times 1.21ms (a), 2.11ms (b), 3.61ms (c), 5.71ms (d). Reults are
shown only for those coordinate space points for which the real particle density ex-
ceeds 3.

number in the initial area of mergence is very low so that the strong phase fluctuations,
derived from noncondensed atoms, distort the fringe pattern in the area. With more
condensed atoms merging and interfering in the later time, the ratio of condensed
atom number is rising rapidly in the merging area so that a stable and clear fringe
pattern appears. Correspondingly phase fluctuations are much weaker than in the
initial period of merger. Contrasting Fig.(4.5(a)) and (d), there is not much change in
the shape of atom clouds. This implies that the collision and quantum noise cannot
significantly alter the Bose gases in the current conditions and the interference is
robust.

Furthermore, through many realizations in the calculation of TWA, the normalised

second-order correlation function, coherent and incoherent atom number can be ob-
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F1Gure 4.7: Total coherent (a) and incoherent (b) populations for colliding system

tained. These quantities are related directly to the measurement of experiments and
thus some results might be contracted with experimental results. In particular, the
second-order correlation function can be measured experimentally by detecting noise
correlation [70,71]. We evaluate these various quantum statistics of the colliding sys-
tem by using an ensemble of 100 individual trajectories. Following [56], we define the

normalised second-order correlation function in coordinate space

@ _ < ObEBhE)bp(r)p(r) > (1)
g (1', t) ey 7 5 2 §
[< b mdr) > )]

(4.21)

Now we show the underlying physical meaning of this correlation function. If the
regions of cohcerently distributed density arc concerned, we define a coherent state in
coordinate space as |x(r) > which has the form of exp(— [ a(r)t/)"(r)dr)lvac > where
a is complex function. Thus it is easily seen that g®®(r) = 1. For a thermal state,

one can define the Q-function corresponding to a density operator p [56]

3|

Q. ") = = < alpla >, (4.22)
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so that the Q-function for the thermal state

1 e—hw/KT

Qr(a,a*) = exp {—|af® (1 - e"""/KT)} : (4.23)

One can infer that the Q-function for the thermal state in coordinate space also satis-
fies the Gaussian distributed density [52]. For simplification, we use Qr(a(z), a*(z)) ~
exp(—|a(x)|?) and neglect all other parameters. Thus

< GO ENrrbr) > () = [ dala’)(a)eap(—lal)
= 2/d2(1|a|2€mp(—|a|2) (4.24)
=2 < Ph(r)dp(r) >.

Since the integral [ dajal?ezp(—|al*) = 1, the normalised second-order correlation
function in coordinate space g™ (r, 1) = 2 for a thermal distributed density. If ¢ (r)
is bracketed in the regime (1, 2), onc can infer that one part of atoms at the position
r are thermalized.

Expanding Eq.4.21 in terms of harmonic-oscillator modes and using the multimode

correspondence between Wigner function averages and expectation values,
ri f\s e 2 (o % B *
< {a"(a') ' }oym >= /d aa’ ()W (a,a*),

we find that the second-order normalized correlation function in coordinate space can
be expressed as
< [¥(r,t)|* >w =2 < |¥(r,t)|? >w op(r,r) + %(5%(1',1-)

(2) 1) =
bl (< [¥(r, )2 >w —Lop(r,1)]’

(4.25)

Here, the restricted delta function 8p(r.x') = Y., #3(r')¢;(r) where L means low-
energy modes. The coherent and incoherent population in all modes are defined

separately as

Nh() = D1 < ay(t) >w 12, (4.26)
jeL
and
inco 1
Nk = 3" < o () >w —| < a;(t) >w |2-§ (4.27)

JEL
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Some details of numerically solving the normalised second-order correlation func-
tion, cohcrent and incoherent atom number, are shown below. The coherent number
in the numerical process is calculated as

2

N, 4
oo 1 max -
N =¥ o Y o™ (4.28)
JEL mar m=1

where N,,... is the number of realizations (100 in our calcuations), (m) labels m — th
rcalization, and ayn)(t) means the amplitude of j—th ficld mode at time ¢ in (m) —th
realization. Also the incoherent number can be written as

Nmaz 2

N =3 | 7 Ll -

JjEL m=1

1 Nmaz

g 30 )

mazr . 1

(4.29)

N =

In a similar way, one can deduce the numerical form of g (r, ).

From Fig.4.6 (a) and (d), we can see that the second-order correlation functions
before and after interference are similar; that is to say, incoherent atoms occupy the
edge of the cloud (¢@(r) > 1) and coherent condensate atoms (g (r) = 1) are
located in the central areas of the cloud. Although the process of mergence and
interference for two atom clouds is exceedingly stable, the incoherent atoms around
interference valley (Fig.4.6 (b)) are expelled by condensed atoms to the edge of fringes
during the process and correspondingly the visibility of the interference at the edge of
condensates is much lower than in the central areas. Contrasting Fig.4.6 and Fig.4.5,
it is seen that although the visibility and phase fluctuations are affected by the ratio
of non-condensed atom number to condensed atom number, the detailed dynamics
and correlations are very complex. The non-condensed atoms at the beginning of
the merger and interference oceupy the periphery of the cloud and interference val-
leys. Correspondingly, the visibility is very low where phase fluctuations are very
strong. However, with more merger, the non-condensed atoms are expelled by the
condensed atoms to the edge of the cloud so that the visibility becomes high and
phase fluctuations become weak. Moreover, the effect of collision in the low-velocity
and low-density condensates is shown in Fig.4.7. The fact that the number of in-

coherent atoms is increased significantly during the process of the collision implies
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that, because in the process of collision the interaction between condensed atoms
and virtual particles is much stronger than other processes. the quantum flucutations
excite more condensed atoms into non-condensed atoms in this process than other
processes. Although the interference pattern is not broken by quantum fluctuations,
indicating the robust character of this interference, the process of inner correlations
and dynamics is very complex and can not be understood purely within mean-field

theory.

4.4 Conclusion

In conclusion. in the mean-field approximation, the effect of variations of the relative
phase & separation of two clouds and trap frequency on quantum interference of two
BECs has been studied. Our results demonstrate the possibility of using a single-
particle wave function to describe some phenomena of interference of two BECs in
some experiments. Distinguishing classical wave interference, the fringe period of the
colliding condensates is slightly smaller than the fringe formula from classical wave
interference when the interatomic interaction becomes larger (still much smaller than
the point at which instabilities occur) although the classical character of the mat-
ter wave fringe pattern is preserved. Furthermore, the Truncated Wigner method
provides a description of the many-body state of two coherent BECs. The under-
lying dynamics of noncondensed atoms is of critical importance to understand the

propertics of the interference of colliding BECs.



100

CHAPTER 5

Quantum Transport of a 1D Degenerate
Bose Gas in a Lattice: The Role of

Different Quantum Fluctuations

5.1 Introduction

An optical lattice provides a versatile testbed for exploring the quantum transport of
Bose-Einstein condensates (BECs) through the energy bands of a periodic quantum
system. By accelerating condensed atoms through an optical lattice, experimental-
ists have investigated the quantum transport of BECs in periodic potentials, and
successfully observed Bloch oscillations [58,60,61,93]. These experiments stimulated
considerable theoretical interest. which focused on damping mechanisms and the dis-
ruption of the Bloch oscillations. Much theoretical work has shown that the damping
of Bloch motion is attributed to strong nonlinear interactions [62-67]. Recently, the
strongly damped oscillation of a 1D Bose gas in a combined harmonic and optical
lattice potential has been observed experimentally [17], under counditions for which
undamped motion has been observed previously for 3D BECs [72]. Distingushing
some experiments on the damping of transport in OL [73-75], the inhibited transport
of the degenerate 1D Bose gas is not due to Bloch oscillations, where transport is
frustrated by Bragg reflection at the Brillouin zone boundary. Theoretical work has

suggested that quantum fluctuations can strongly damp dipole oscillations of a 1D
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atomic Bose gas, providing an accessible manner to explain these observations [76].

The trmncated Wigner approximation (TWA) has been utilized extensively for the
dynamics of BECs with quantum fluctuations. It provides a description of quantum
field theory based on the Gross-Pitaevskii equation in which quantum-mechanical
vacuum fluctuations are simulated by adding appropriate classical fluctuations in ad-
dition to the coherent field of the initial state of the BEC. These amount to half a
quantum per degree of freedom, corresponding to the zero-point energy of the har-
monic oscillator which represents cach mode of the field [47]. Recently, the TWA has
predicted quantum turbulence in the collisions of two condensates [47] and explained
the disruption of reflecting BECs from Silicon surface [77]. In these theoretical works,
zero-temperature quantum fluctuations, i.e. quantum noise, are modeled by adding,
on average, half quantum into low-energy plane-wave (PW) modes, with a Gaussian
distribution in amplitude. Therefore the average uniform quantum fluctuations in
the coordinate space are added into the nonuniform condensates. It seems that the
distribution of quantum fluctuations does not depend on the shape of atom clouds
and interatomic interaction. Although the mean-field dynamics without quantum
fluctuations does not depend on the choice of basis [79], initial wave functions are
definitely different in the treatment of TWA when noise is added into distinct limited
bases. These differences might cause some variation in local correlations and dynamic
properties, in particular when quantum fluctuations dominate physical phenomenon.
Moreover, the wave vector should not be a good quantum number for harmonically
trapped condensates [80].

Although some work has been involved in the limitation of TWA [81] and the effect
of cutoff [50], little work shows the discrepancies of quantum fluctuations in different
forms, especially in local correlation functions and microscopic dynamics. Quantum
fluctuations in correct form are of critical importance to explain some experimen-
tal phenomenon. Very recently, the distribution of quantum fluctuations of trapped
atoms, determined from the Bogoliubov approximation, has shown reasonable results
in the nonadiabatic dynamics and dissipative dynamics of quantum transport in op-
tical lattices [55]. Consequently, under the ultracold condition, Bogoliubov theory

might be an appropriate way to consider the effect of quantum fluctuations, which
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depend on the shape of atom clouds and interatomic interaction.

Motivated by the effect of quantum fluctuation in distinet forms on the transport
properties, in this chapter we demonstrate the discrepancies between the dynamics of
a 1D degenerate Bose gas with respect to quantum fluctuations separately in PW and
SHO modes. Despite slight difference in two trajectories of the center of mass (c.m.)
motion. calculated respectively in PW and SHO modes, there exists some intrinsic
differences which are characterized by phase coherence, number fluctuations and den-
sity distribution, especially in the short-time behavior. These discerepancies in short
time indicate that local correlations depend definitely on the forms of initial quantum
fluctuations. Quantum fluctuations from PW modes tends to kick some atoms out
of the main part of atom cloud while quantum fluctuation from SHO modes break
slightly the structure of the whole cloud. In addition, the results in PW modes do not
agree completely with the observation in recent experiments [17] while the calculations
respectively based on SHO and Bogoliubov modes show rational density function in
agreement with experiments. Comparatively, in the same number of modes, Bogoli-
ubov theory can offer stronger damping of c.m. trajectory than PW and SHO and
thus the results from Bogoliubov theory is closer to the results of experiments [17].
This implies that quasiparticle excitation due to the strong confinement and optical
lattice is critical factor in the strong damping of c.m. trajectory. Finally, to show
robust proofs and a rigorous investigation of numerical methods, we contrast some
results from mean-field approximate Gross-Pitaeviskii equation solved numerically by
the Crank-Nicolson method [67,78.86] and TWA solved numerically by the Projected
Fourth-order Runge-Kutta in the Interaction Picture (RK4IP-P) algorithm [47, 84].
We also calculate statistical results using different number of realizations. Since re-
sults from 100 realizations are similar to ones from 200, we show results in this chapter

with respect to 200 realizations.

5.2 Theoretical model and numerical methods

Our theoretical model is based on the experiment [17] where an array of independent

1D atom “tubes” were generated by applying a strong transverse 2D optical lattice
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potential. Next, the tubes are corrugated by applying a very shallow 1D lattice aloug
the axial direction. The dipole oscillations of atoms along the weak axial lattice were
excited by suddently displacing the harmonic trap by means of applying a linear
magnetic field gradient and the center-of-mass (c.m.) velocity was imaged. In the
experimental condition, which the transverse 2D confining potential is much larger
than the axial potential, and the chemical potential u is smaller than the lowest
energy hw,, contributed by 2D confining potential, the 3D dynamics of the bosonic
atoms in cach tube can be simplified into 1D dynamics.

We consider the potential energy profile of the 1D optical lattice is characterized
by Voi(z,t) = V(t)sin*(rz/d), where d = 405nm. The amplitude V (¢) is set to zero
initially, ramped up to half photon recoil energy E, in 2.653ms as exp(kt) — 1 where k
is an constant determined from the ramping time, and after that remains unchanged.
Consequently the total confining potential is V (z,t) = Vor(x,t) + 3mw?z?, where m
is " Rb atom mass and w = 27 x 60Hz is angular frequency of the harmonic trap,
similar to experimental parameters [17]. At time ¢ = 2.653ms, we abruptly displace
the harmonic trap through a distance Az = 3pm, and hence accelerate the BEC in
the optical lattice.

To explore the effect of quantum fluctuation in different forms on the quantum
transport of BECs, we consider four dissimilar dynamic cases. In case I, the atom
condensates propagate in the optical lattice without any quantum fluctuation. Case
IT is allowed for the transport of condensates with 1/2 amplitude of virtual particle
in every low-cnergy PW modes in the initial state [47,77]. That is to say, the c-
number field amplitude ¥ (z, t) satisfies Gross-Pitaeviskii Equation (GPE) and in the
initial condition, ¥(z,t = 0) = y¥(z) + £(z), where ¥(z) and (x) are, respectively,
the real and virtual particle fields. We express the field of virtual particles using
£(z) = ZJ’Z & exp(ik;x)/v/L, where k; is the wave vector in the j-th mode and the
amplitude in each mode is a Gaussian random variable with the properties < £t 5=
30i4, < &€ >= 0. The mean value of the total virtual population is thus M/2. In
casc III, quantum noise is added into low-cnergy SHO modes. The ficld of virtual
particles ¢(z) = Z,’f':(,{(n)eb,.(x), where the amplitude in each mode is a Gaussian
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random variable with the properties < £*(n)é(m) >= 18,m, < €(n)é(m) >= 0. In
casc IV, we consider quantum fluctuation in the quasiparticle modes of SHO cnergy
based on Bogoliubov theory. We approximate the field operator zﬁ(m,t = 0), within
the Bogoliubov theory:

¥(z) = Yo(@)ao + Y _[u;(x)a; — v} (2)al]. (5.1)
j>0
Here 1) is the ground state solution of the GPE and < ajaq >= Np, the number of

ground state atoms. we diagonalize the Bogoliubov equation,

Luj(r) — goNotpd(r)v;(z) = Fjui(z)

. (5.2)
Lv;(x) — goNopy’ (x)uj(z) = — Eju;(x),

based on the SHO modes in the subspace orthogonal to ¥,(£) and get the quasiparticle
amplitude u;(z), v;(z) and excitation spectrum E;. The detailed analysis of the
Bogliubov excitation spectra and mode functions is shown in next chapter. Here
L = Ho — pu+ 290 No|tbo(z)|* and Ho = — 225 + V.zy. Since TWA is valid providing
the density of real particles is much larger than the density of virtual particles, we
cousider the total atom number N = 1.0 x 10* and virtual particle number is less
than 150 in all cascs. Two groundstates with optical lattice amplitude V(¢) = 0 and
F, /2 are calculated numerically by an explicit imaginary time propagation [85].

The dynamics of quantum transport of the atom cloud in the lattice is studied
using the TWA method. The basic idea of the TWA is shown below. We expand
the field operators W(r), ¥!(r) in suitable basis, i.e., PW or SHO. In Wigner rep-
resentation, some terms among Heisenberg equation of density operator j(t) might
be truncated under certain conditions, resulting in deriving a generalized Fokker-
Planck equation. The corresponding stochastic differential equation of Fokker-Planck
equation is simplified into the Gross-Pitaevskii equation [55]

i0,Uw = Holw + go| Uw [*¥yy. (5.3)

Here, Hy = —%%+V(x, t) and go = 2hw, a (see appendix D) where w, = 27 x38kHz
is derived from theoretical analysis for 2D optical lattice used in the experiments
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[17,55] (see appendix E). Here a = 5.4nm is the s-wave scattering length of 87Rb
and Wy is the 1D classical stochastic ficld. The thermal and quantum fluctuations
are included in the initial state of Wy in Eq.(5.3), which represents an ensemble of
Wigner distributed wave functions [55]. The TWA and closely related approaches have
previously been successful in describing atomic BECs [47, 53] and optical squeezing.
In case IV, the initial state can be obtained through Eq.(5.1) and the excited state
quantum operators (a;, &;) (for j > 0) are replaced by the random variables (a;, a}),
obtained by sampling the corresponding Wigner distribution of the quasiparticles in
a thermal bath.

W(aj,aj) = %tanh(ﬁj)exp[—ma,-|2tanh(£j)], (5.4)

where §; = FE;/2kgT. In this chapter, we concentrate on the case T = 0 where the
Bogoliubov approximation can be justified.

To the precision and validity of results, different numerical methods are applied
in our simulation. In case I, we obtain dynamic results by using the Crank-Nicolson
method to integrate the time-dependent Gross-Pitacvskii equation. In case II, we ap-
ply a distinctive numerical method, RK4IP-P [47,84]. In case III-IV, both methods
are used in order to investigate their equivalence. For the solutions of c.m. trajectory,
phase coherence and number fluctuation in truncated Wigner method, we have calcu-
lated them numerically using different numbers of realizations. We found that some
results can be significantly different when the number of realizations is small. i.e. less
than 50. However, all results have little difference when the number of realizations
is morc than 100. Here, we show all results in casce II-IV based on 200 realizations.
Although more realizations might increase the precision of results, it should not alter

the nature of physics in our calculations.

5.3 Results and discussion

5.3.1 Analysis of groundstate

We now explore the properties of the groundstate of a quasi-1D Bose gas in a 1D

elongated trap in the extreme situation where the properties of the ultracold Bose gas
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are dominated by condensed atoms. This hypothesis is based on the fact that in TWA
the introduction of quantum fluctnations in the equilibrinm state are determined
mainly by the groundstate of condensate wavefunction. Under the condition of atom
number conservation, we set the nonlinear term g to the value of g, which is expected
by experiments [17]. Some corresponding ground states versus various g are obtained
through strict numerical calculations '. If the nonlinear term is strong and the trap

1

0 e 5.4
a(x10?°)

F1GURE 5.1: Parameter space for which LDA is applicable (above red line) and our
method of calculations is applicable (below red line). In the regime of LDA, there are
two solvable areas: perturbative limit (between red and blue line) and Thomas-Fermi
limit (above black line).

potential in the axis direction is very weak, the local density approximation (LDA)
should be applied to explain the properties of the groundstate. The conditions of
applicability of the LDA is (N %‘f)l/ 3 >> 1 where a is s-wave scattering length and
a. (ay) is the longitude (vertical) characteristic length corresponding to the harmonic
trap frequency w, (wy) [4]. implying that the scattering length a should be large in
a fixed total atom number of N. But it is not true in our case though we take the
full value of go and (N -‘i—‘_i:)l/ 3 22 13.5. The regime of our calculations should be below

the red line in Fig.5.1. With g increased from 0 to go, the interatomic interaction

'Unlike normal imaginary time method, we detect the variation of atomic number in every SHO
mode rather than the variation of density until an extremely small difference at one time step among
all SHO modes so that the stable groundstate is obtained.
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tends to smooth the middle part of density distribution and expels the “Gaussian-

shaped” part far from the center of trap (Fig.5.2(a)). Correspondingly the central
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FIGURE 5.2: The configuration of groundstate density distribution (a), distribution
function in SHO modes (b) and PW modes (c); (insert) momentum distribution
function zoomed out. Different interaction coefficient g scaled by different color;
g = 0(black), 0.01go(magenta), 0.03go(red), and go(blue). The number of the largest
occupied modes in SHO presentation (Square) and PW presentation (Circle) versus
interaction coefficient g (d).

part of momentum distribution becomes more narrow, and more importantly, there
exist periodic tail waves of which the number becomes more, the amplitude becomes
narrow, and the spacings become smaller (Fig.5.2(c)). To cxplain this phenomenon,

we divide approximately the condensate into three parts:

apme 9 <€ <o
‘I’U(g) o Zn Nnc_fz ‘Hn(E) _EC < 6 < €C (55)

2
12 -G
Nyne 3 -0 < €< =&,

(2ma3)1/4
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where N, is determined by the atom number of the central part and character of
the wave function and N, depends only on the atom number of the side part. o,
should be closely related with characteristic length | «~ \/h/mw. Eq.(5.5) is Fourier

transformed with respect to the position variable to give

0. NS - dz 2
[To(k)[* = 21/27r3/2e 202%" cos? (k€,) -
5.6
N, _.
+ ;11 /z;. ~291k or £ (£.) + other terms,

where the second teru is from the middle part with n = 0, oy is characteristic length
of Gaussian function and er f () is error funtion. From Eq.(5.6), one can see that with
g — go, & is larger and the value of o5 is decreased so that more tail waves will occur,
their amplitude will be smaller and their fringe spacing will be smaller. Meanwhile the
value of o, is increased and the integral of central part will be larger, resulting that
the central peak will be more narrow and higher. To prove our theoretical prediction,
we fit the data of wavefunction from numerical calculations with the preset function.
Although we find a solution to satisfy the solution of wavefunction in the middle
part, we still do not satisfy the precise and thus the complexity of middle part of
wavefunction should be due to the nonlinear term. However, the fitting of Gaussian
formula is found to yield quantitative agreement with the side part of wavefunction
for varied g. In Fig.5.3, we show only the fitting results of g = go.

As is well known, there is no pure BEC state for a homogeneous one-dimensional
system. Most of 1D degenerate Bose gas is treated approximately by using condensed
atoms with strong fluctuations. It should be truc that the propertics of quantum
fluctuations depend crucially on the form of interacting condensed atoms and pertur-
bations of external potential. Due to strong confinement of optical lattice potential,
the initial state should occupy more energy modes and the selection of suitable initial
state is of vital importance in the dynamics of transport with respect to quantum
fluctuation. We investigate the role of nonlinear terms on the wave function of ground-
state and the maxirmum nmunber of occupied mode respectively in the SHO and PW
representation. In Fig.5.2(d), the largest occupied mode in the SHO representation
increases as a power of g, while the maximum modes in the PW representation is

reduced at small g and remains nearly constant at large g. It seems reasonable that
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F1GURFE 5.3: The configuration of groundstate wave function in g = gy (square). Data
fittings from formulas: Guassian formula for side part with N, = 65, g, = 0.63638um,
¢ = 24pm; the formula f(2) = yo+ﬁ57-re“"7/2 (1+ |53 % Hi(2)|), where z = =t
Hy = 2* — 3z, Hy = 2* — 62® + 3. The suitable parameters for middle part are
yo = —1.45 x 10°, z. = 31.749um, A = 7.7347 x 10%. w = 57pm, a3 = —1.98 x 103
and a4 = —1.0 x 10*.

the stronger interatomic interaction should excite more noise which are determined
by more occupied modes in TWA. We argue that SHO representation in our system is
more suitable to investigate quantum fluctuation than PW representation, especially
for strong interactions. In order to include all information in low-energy modes and
compare the role of the similar number of quantum noise in three different modes, we

choose the number of low-energy modes as approximately 200.

5.3.2 Dynamics without fluctuation

Unlike previous work in which solitons and vortices cause the damping of the c.m. tra-
jectory (67,87, 88|, the strong interaction here due to the lattice and the confinement
does not trigger these excitations. In addition, in absence of quantum fluctuations,
the extremely weak optical lattice in the axial direction can not damp the oscillation
of 1D gas. Thus the dipole oscillation of the gas without fluctuation should keep the

regularity that the matter wave oscillates in the space of energy modes 2. In terms of

2In order to demounstrate this point of view, we define ¥(z,t) as the wave function of the gas
and thus < z > (t) = ff:o V*(x,t)z9p(x,t). In the treatment of semiclassical method, we support
that the shape of wave function is not changed versus time exept its position so < = > () =
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F1GURE 5.4: Plots of atom number |, (#)|? versus time ¢ in one period in n-th SHO
mode from simulation (Cross plots), and theoretical formula (Red line): w = 27 x 60,
t' = 11.025ms, A = 2.1592 for all modes and B = 135.314078, 270.0407,17.0516

respectively for n = 0,1, 2.
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V(€)= C‘ne“; H,.(€), we define

o0 X 2 k2
Ca(k) = / Cue™e= H,(¢)dt = (2m)/2Ce~ 7 H,(k)i™, (5.7)

oo

we might infer that the distribution function |C,(k)|* in SHO modcs should have
similar configuration to exp(—k?)H?2(k). In the undamped c.m. trajectory, the wave
vector k has similar behavior to semiclassical dynamics [67]. Considering the cos-
shaped < x > with period of 27 /w (Fig.5.6), we suppose k with the shape of Asin(wt),

where A is the constant amplitude of wave. Thus,
ICa(8)]? = C2e A=) [12( Asinfw(t — t'))). (5.8)

where ¢’ is determined by the initial phase and C, depends critically on the initial
atom number in different modes.

Fig.5.2 shows that our simulation is well in agreement with this prediction. More
importantly, this analogy between semiclassical theory and quantum-mechanical sim-
ulation is crucial to understand the iutrinsic dynamics of transport in the represen-
tation of cnergy. At time ¢ = 11.025ms, the atom cloud moves up to the highest
potential and the velocity of the center of mass (k) is nearly equal to zero. Conse-
quently the properties that the distribution function have maximum value in n € even
and minimum value, i.e., nearly 0, in n € odd are embodied by the period 2 of distri-
bution function (Fig.5.3 top). With time, the variations of the distribution function
are increased with respect to increasing the velocity (k). Even at the same time
L = 15.2ms, the variations of distribution function are also increased versus larger n
(Fig.5.3 inset). For simplification, the variations depended on k or ¢ are named as
period, and the variations depended on SHO mode n as modulation period. Also the
variation of distribution function depends on the energy mode n; the larger modu-

lation period, the larger SHO mode. It is worth stressing that one can identify the

i) f°°° P* (x — Asinwt) 21 (x — Asinwt)dx where we regard the variation of position of the wave function
as Acoswt. It is casy to scc that < z > (t) =< z > (t = 0) — Asinwt is a periodic function. In
a siwilar way, we define the variation of atow wunber in one wode n of SHO base as < n >
(t) = [ on(x)y*(z,t)pn(z)¢(z,t)dx where ¢,(7) is the eigen function of single harmonic osillator
in the energy level n and ¢}, (z) = ¢n(z). In the semiclassical method, < n > (t) = f @2 (z)y* (z —
Asinwt)y(z — Asinwt)dz. Since ¢,(z) is a localized function in a limited region of space and
Y (z — Asinwt) is a periodic function, < n > (¢) should be a periodic function versus time t.
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F1GURE 5.5: Plots of atom number |C(n)|? versus mode n in time ¢ = 11.025ms
(top) and 15.2ms (bottom); different scaled plots (Insert).

dissipative dynamics of condensates directly from distribution function in SHO modes

rather than c.m. trajectory and phase coherence in the representation of coordinate

or momentum.

5.3.3 Dynamics with different fluctuations

Since there is an analogy between the explanation of semiclassical dynamics and
quantum mechanics on the transport of condensate without quantum fluctuation, we
hope to implement further semiclassical dynamics of dissipation to explain the role

of diverse quantum fluctuations on the c.m. motion. We attempt to model the c.am.
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motion as a damped harmonic oscillator

Xem. + 27 Xem, + T:"X =10 (5.9)
where
S (e, )Pda
e
In underdamped case, Eq.(5.9) have a solution X, = —e 70 (Acos (L — o) +
Bsin§)(t — to)), with B = Jnﬁ and = \/k/m*_~'yi, where %5 is determined by initial
phase.

From Fig.5.6(b) and (d), it is not possible to fit definite parameters through the

Xem. =<2 > (1)

solution of Eq.(5.9) to our simulation, implying the complexity of the role of differ-
ent quantum fluctuation on the condensate transport. For convenient comparison,
we show the applicable parameters of theoretical solution that satisfy the results
of the first period in our simulation. Despite stronger damping amplitude prior to
t < 15.2ms in cascs I and III, the damping ratio in casc IV is much larger than in cases
II and III. To contrast the damping ratio versus time particularly in cases III and IV,
we perform the similar definition from ref. [89], vo =In(Do/D1). 7172 =In(D1/2/ D32).
Our results give vy, = 0.3049, 0.2309, 7,2 = 0.2003, 0.2745, v, = 0.1873,0.2514 respec-
tively for cases III and IV. Although quantum fluctuations from the PW and the
SHO modes cause stronger damping behavior in the initial movement of clouds (v =
0.3049, 0.2309), quantum fluctuations from the Bogoliubov theory trigger a stronger
damping movement in a long later time (y;/2 = 0.2003,0.2745, 71 = 0.1873,0.2514).
It demonstrates directly that quantum fluctuations from Bogoliubov calculation dis-
sipates the Bose gas more rapidly than the fluctuations from the low-energy PW and
SHO modes.

Additionally, one can see in Fig.5.6(a) that there are slight differences of the
trajectories of c.m. motion according to two forms of quantum noise. Does it indicates
that there are completely identical dynamics in casc II and 1117

Since the trajectory of the c.m. motion does not reflect the local correlations
and phase information of the condensate dynamics, we explore the properties of local

phase coherence and number fluctuations. In order to avoid the complications arising
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F1Gure 5.6: The plots of c.m. trajectory of BECs versus time with Az = 3um
in case I (black in (a)); in case II (red in (a)); in case III (cross in (a), black in
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(red in (b)) aud IV (red in (d)); 2 = 27 x 60 and A = 3.0um for both cases.
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middle) and in case III with different neighbors (bottom).
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from the symmetrically ordered multimode field ¢y [55], we define the ground state

opcrators a; for cach individual lattice site j:
a;(t) = / dzpy (z)Yw(z, 1), (5.10)
jthwell

where Yw (z,1) is the stochastic field, determined by Eq.(5.3) and 9),(z) is the ground-
state wave function in the combined harmonic trap and optical lattice. The normal-
ized phase coherence between the central well and its jth neighbor and the atom
number fluctuations in the jth site arc separately sct as C; = | < &I,&J- > |//mon;
and An; = [< (ala;)? > — < ala; >2)1/2,

Fig.5.7 and Fig.5.8 show respectively the configuration of phase coherence and
number fluctuations in distinct cases (top and middle) and in case III with different
spatial neighbors (bottom). In the process of transport, phase coherence C; and
number fluctuation An; are closely correlated to damping amplitude and damping
rate of c.m. trajectories, the forms of quantum fluctuation and spatial length j. The
variation of phase coherence is reduced identically in cases 11, 1M, IV correspouding
to the damping c.m. motion. Comparing phase coherence in cases III and IV (Fig.5.5
middle), the variation of Cj3 in case IV is definitely smaller than in case III. The
mean value C3 = — f:l’ Cs(t)dt from 2.65ms to 42.65ms in case IV is 0.62973,

t2—1

5.21% smaller than in case III (0.66435). The corresponding mean value of number
fluctuation Ans = h+t‘ Ltl’ n3(t)dt in the interval of time in case IV is 3.94849, a
little higher than 3.87862 iu case ITI. These indicate that quantumn fluctuations from
Bogoliubov thcory have stronger effect on the damping behavior of ¢.m. motion,
more loss of phase coherence, and stronger number fluctuation than quantum noise
in low-energy modes.

From Fig.5.7 bottom, we see that the larger the phase coherence and number fluc-
tuation, the closer is the referred site of the condensate to the central well. However,
from our full simulation, there is small difference of phase coherence from 10th neigh-
bor to 60th neighbor while there exists an obvious difference in Angg and Ansg. Since
we consider only the correlation functions in left sites from central well, the number
fluctuation in the site farther from the central well is affected more by low-density gas

when the clouds move to right site, so that there exists large variation of fluctuations
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FIGURE 5.9: Initial density distribution |¢(£,¢ = 0)|? in cases II (a) and III (b).
Density distribution for Az = 3um at ¢ = 8.65ms in cases II (c), III (e), IV (g), and
their corresponding atom distribution in SHO modes (d), (f), (h).

over the whole real space (Fig.5.9(a)) while the space with the length, compared to the
width of atom cloud, is occupied by noise from SHO modes (Fig.5.9(b)). During the
transport process, one can see that some atoms, labeled by two ellipses (Fig.5.9(c)),
are kicked out of main part of atom cloud in case II while it is not present in case III
(Fig.5.9(d)). Correspondingly, there are a large number of atoms localized in some
energy modes in case III (arrowed) while this does not occur apparently in case 11
(Fig.5.9(d)). Based on Fig.5.7, 5.8 and 5.9, we infer that the damping of c.m. tra-
jectory in case II is attributed to PW-mode quantum fluctuations which tend to kick
some atoms out of main region of atom cloud while SHO-mode quantum fluctuations

are included to break slightly the inner configuration of condensates 3. In addition,

3We also analyse dynamic distribution function from the mean of many trajectories and the
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in the experiments [17], C. D. Fertig, et al. did not see a significant difference in
TOF width between atoms that undergo damped harmonic motion and those that
are unexcited but held for an equal time. It is obviously not true for the calculations
in PW modes. Those atoms which are kicked out and occupy high-energy potential
position can be observed in the experiments and the length of atom cloud should be
extended. Conversely, the results based on SHO and Bogoliubov modes do not modify

obviously the width of atom cloud, closer to the observation of the experiments.

5.4 Summary

In conclusion, we have studied the role of quantum fluctuations in different forms on
the transport behavior of the Bose gas. The intrinsic discrepancy with respect to
phase coherence, number fluctuation, and density distribution at short time behavior
demonstrates that the correct forms of fluctuations are of critical importance in the
dynamics of a Bose gas. Quasiparticle excitations from Bogliubov theory cause more
loss of phase coherence and more number fluctuation on the damping dynamics than
quantum noise from low-energy modes and condensate modes. Moreover, distribu-
tion function in SHO modes is an useful tool for identifying dissipative dynamics for

trapped condensates, even in 2D and 3D system.

function shows also the results similar to Fig.5.9 but plots are more smooth
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CHAPTER 6

Elementary excitations of a trapped Bose
condensed gas: the role of interatomic

interaction

6.1 Introduction

The term quasiparticle refers to a particle-like entity arising in a certain system of
interacting particles. Since the quasiparticle is one of the known ways of simplifying
the quantum mechanical many-body problem and is applicable to an extremely wide
range of many-body systews, the quasiparticle concept is onc of the most important
in condensed matter physics. In the language of many-body quantum mechanics, a
quasiparticle is a type of low-lying exzcited state of the system (a state possessing
energy very close to the ground state energy) that is known as an elementary exci-
tation. This means that most of the other low-lying excited states can be viewed as
states in which multiple quasiparticles are present. It turns out that the interactions
between quasiparticles becowe negligible at sufficiently low temperature, in which
case we can obtain a great deal of information about the system as a whole including
the flow properties and heat capacity by investigating the properties of individual
quasiparticles.

The Bogoliubov approximation scheme leads naturally to a discussion of interact-

ing bosons in terms of quasiparticles. As seen in chapter 2 the field operator for the
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real bosons is expanded as

¥(r) = Nyay + b3 {"1(1‘ vj(r )"1}

7>0

where @ is an annihilation operator for the condensate and Ny the number of bosons
in the condensate. The mode functions u; and v; are chosen so that the @, and 'd;
operators satisfy bosonine commutation relations and such that the Hamiltonian can

be written in the form
H FU o= Z 0 GJ

>0
so that Ei; and @; can naturally be interpreted as creation and annihilation operators
for bosonic quasiparticles. The terms omitted in the Hamiltonian in the Bogoliubov
approximation can then naturally be interpreted in terms of processes involving qua-
siparticle scattering.

In this chapter we study the influcnee of interatomic interactions on the Bogoli-
ubov mode functions and excitation spectra of a quasi-1D bose system confined to
a parabolic trap by numerically solving the Bogoliubov equation. We aim to under-
stand the distribution of quasiparticles. The intensive analysis of excitation spectra
and mode functions with respect to different nonlinear interactions are shown. Also
the details of numerical calculations of the Bogoliubov spectrum in single-harmonic-

oscillator basis are presented here.

6.2 Model and Numerical method

The Bogoliubov equations in real space were derived in chapter 2 and are reproduced

below

( L—p+o@l  —g@) ) <u(w) ) b ( u() ) (o)
9W03@) (L pt 2l(@)) ) \ v () v(2)

where the one-body Hamiltonian is

Ll i S
L= g~ + gmw’e : (6.2)
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If we work in ters of the dimensionless variables € = x/xg, € = E/hw, \ = ) how,
v = g/Tohw, Yo(§) = /Toto(z) where 29 = /h/mw and g = 2Mw, a, is the cffective
1d coupling constant (w; being the frequency of the transverse confining potential)

then we have

~3dr + 38— A+ 27 %o (O =7 (4o (€))° ( u (€) )
7 (©)° -(iE e a2 ©F) |\ v

<u<¢)>
=€
v (£)

To solve Eq.(6.3), one general method is to expand the condensate wavefunction

(6.3)

¥o(€) and the amplitudes of quasiparticle u(¢) and v(£) in a suitable basis which is
related closely to the characters of these wave function. Thus we choose to use the
Simple-Harmonic-Oscillator (SHO) basis ¢,(€) here. One might notice that it should
be much easier numerically to use the plane-wave basis in our system. However,
the momentum p (or wave vector k) is not good quantum number to describe the
condensate confined in a harmonic trap, and fewer basis states should be neccessary

in the SHO basis to give an accurate account of the Bogoliubov excitations. Now we

set
= f; ann () (6.4)
v(§) = io badn (€) (6.5)

so that

S an (<5 + 56 = A+ 210 OF) 800 =7 3 b (0 ) (©
i = (6.6)
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~ 73 457 () + o (5 + 36~ A+ 21 OF) a0
n=0 n=0

. (6.7)
= —¢€ Z bndn (é)
n=0

which simplifies using

(_5% +36) 6n 0 = (n+3) 8 © (63)

to

Son (n 5 2) 00+ 213 00 n (O 60(0 =7 b (0 (600

n=0
o0

(6.9)

1
B 72”’10 7/)[) E)) d’n f) + Zbu (n o i 5 T A) d’u + 272’)1: Ii/)ﬂ {)l ¢n (E)

n=0 n=0
= = Z bn¢u (£)
n 0

(6.10)

Now we premultiply each side of each equation by ¢; (¢) and integrate over £ to give
using the result

/ detti B =5, . (6.11)
> (mt5-3) oy 4 21 Y [ 05 O W OF 60 6
n 0 n 0

- (6.12)
=130t [ dE8; (O (0 (O () = cant,



1Yo [ det; © 05 ©P O+ Y (n g A) badin
n=0 n=0

273 b [ A6 (©) o €0 90 () = b
n=0

Now we write

so that

y / dEd; (€) o (€)% b (€) =

Yo (§) =D _ cmém (€)

2
y / dd; (€) b (6)

Y tmbm (€)

1 [ A (© Y cnbn (©) 3 i (€60 (©
m=0 m'=0

S cmciu [ d685(6)0m (©) m (€) 60 0

m,m’=0
a0

§ : C"nc:n'r‘.j1m';mlyn

m,m'=0

- 2
y / ded; () (%o (6) dn (6) = v / dd; (€) (2 Cmbm (E)) 6n (€)
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(6.13)

(6.14)

(6.15)

- 57 e / 4G, (€) bm () b (€) 6 (€)  (6.16)

m.m’/=0

)
== Z CmnCn? Fj,m,m',n

m.m'=0

2 2
s / dtd; (€) (65 (6)) b (€) = 7 / ded; (€) (Z g (e)) 6n (6)
m=0

. 5 c;,,c;,,,f/ dEB; (€) b (€) b (€) 60 (€)  (6.17)

m.m’=0

ok
— * * 3
ois E : cmcm‘ F],m,m’,n

m.m’=0
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where
e B [ de i (€) 63 (€) bm (€) bn (€) (6.18)

Now we can use the standard form for the harmonic oscillator basis functions

¢n(€) = Fpexp —52/2Hn(€)

where H,,(€) is the nth Hermite polynomial and
1

Fo= ———

V2rnl/m

is the appropriate dimensionless normalization constant. Hence we have

Pi,j,m,u = EF1FnFm7 (619)
x [ @ REOmEOmOMEO (6.20)

The Bogoliubov equations thus become
o0 o0
Z Xj,nan e Z yj,nbn = Ean(sj,n
n=0 n=0

- i Yo+ i Xjnbn = —zbubjn
n=0

n=0

where

1 - A
e (et L

mym’=0

a8
Yin= D cmtmTimmn

m,m’=0

Xj.n p Yj,n an = 551-1,, an . (6.21)
Y;,n 'Xi," b" b"

or, in matrix form,
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Normalization

As described in the last chapter, the “quasiparticle” creation and annihilation oper-

ators a,. d} obey boson commutation relations which lead to the constraints on u;(r)

and v;(r)
Zj,“luj(r)u;(r’) = vi(r)v; ()] = 6(r,7") (6.22)
E[u, (r)v}(r') = v} (r)u;(r)] = 0 (6.23)
Z[u Yvj(r') — vj(r)u}(r’)] = 0. (6.24)

Here we will deduce the normalization condition for the mode functions in our nu-
merical calculation through Eq.(6.22). By analogy with 1(z), we expand v (r) amd
vU)(r) (notice that to demonstrate the application of the normalization condition in
a numerical calculation clearly, we have changed the notation u;(r) and v;(r) into
w9 (r) and vV (r)) in the SHO basis so that

ud(r) =Y aP¢i(r)

Lo (6.25)
v9(r) = 3 b 6:(r)

where a ) is the j—th Bogoliubov mode amplitude coefficient. of the SHO eigenstate
¢:(r); that is to say, every Bogoliubov mode is expanded in the SHO basis. Inserting
Eq.(6.25) into Eq.(6.22), one can obtain

3 Y (a2 - B g; (1)) = Y 61 (r)au(r). (6.26)
j t 1
One can see easily that the condition Eq.(6.26) must be fulfilled as

> (16 - ) =1 (6.27)
3

for every SHO basis state. Compared with the matrix (6.21) for Bogoliubov equation,

one can find that the normalization condition for the mode functions o', b% for cvery
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energy level ¢ must satisfy

> (0@ — 9P = 1. (6.28)

n

The integrals ¢,, and I';j, which are needed for the matrix elements were calcu-
lated using the Gauss-Hermite quadrature method [130]. The matrix diagonalization

was carried out using the standard EISPACK routines.

6.3 Results and Discussion

The standard structure of the matrix in Eq.(6.21), which is composed of four real
symmetric tridiagonal matrices X, —Xjn,Yjn, —Y;n providing the phase of con-
densed atomic wave function is zero, determines essentially the Bogoliubov spec-
tra and mode functions. In principle, the mean-field nonlinear terms 2hw; alt(z)|?
influences the structure of matrices Xj,,Yjn. which has internal relation with the
Bogoliubov spectra and mode functions. Thus the role of the noulinear term in the
excitation spectra and mode functions becomes an immediate requirement of explain-

ing some elementary excitation phenomena in cold atoms. To discuss conveniently

50{

401

50

10 20 30 40 50 10 20 30 40 50
n J

F1qURE 6.1: The plot of the characterized matrix X, (left) in the case of g = 0.05¢;
plots of two energy parts (right), (n + 1 — ) (solid line) and } 7 o CmCmTjim me ;
(dash line).

our results, we define some quantities to characterize the matrix X;,, and mode func-

tions. In Fig.6.1, we show the distribution of elements in the real matrix X;,, (Fig.6.1
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Left) ! and the distribution of two parts of its diagonal elements (rn + § — X) §;,, and
Y ' 0CmCmLjmm,; (Fig.6.1 Right). As will be scen in this part, the matrix X,
and its diagonal elements play a crucial role in the excitation spectra and mode func-
tions. In general, the width of nonzero elements in (sub)diagonal parts d (labeled in
Fig.6.1 left) and the width of high-amplitude modes (labeled in Fig.6.5) grow with
increasing interatomic interaction. Moreover, the competition between ('n + % = /\)

and 3200 1o emCoTjmme; leads to some odd excitation energy and mode functions.

-

0 _05 1-1 0

50
40 40
wi™ 20| - b
20 l
0 F""~~a 10{4
07 25 50 4 20 40 20 40
J n n

FIGURE 6.2: The plots of Bogoliubov excitation spectrum E; (Left), mode functions
a,, (middle) and b, in the situation of g = 0

We explore firstly an extreme condition in which the nonlinear term g|v(z)|? is
trivial, specifically the interatomic interaction energy Z f_t: [to(z)|[*dx << hw. The
matching groundstate wave function of the condensed atoms fulfills the criterion,
vo(z) = codo(z) + cadha(z) V o >> ¢z and ¢, = 0V n € odd with regard to the
symmetry of the wave function about = = 0. To explore the role of chemical potential
in the eigenvalue and eigenstate, we adjust artificially 1 = 4.9992hw much larger than
the true pu ~ 0.5hw. Fig.6.2 shows that U; =), a;n =1, V; =3 b;» = 0 for each
excitation energy FE; so that the mode function a;, for every j is identical with
Kronecker delta function. Apparently d = 1 for U; in this case as well as d = 1.

The fact that the amplitude of mode functions is identical for all modes implies

1Since the global phase # in condensed wave function 9% (§) cannot affect the elementary excitation
spectra, for simplification, we choose # = 0. One notices that mode functions are Gauge invarient
only for the number-conserving Bogoliubov equation [32] but it is not true for the normal Bogoliubov
equation.
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that quantumn noises from TWA based on Bogoliubov modes do not depend on the
mode functions, and is determined merely by the number of modes. This property
coincides with the TWA used in ref. [47,77]. In addition, the positions of the kink
and V-junction, arrowed separately by a and b in Fig.6.2, demonstrate that the linear
structure of the excitation spectra and the distribution of mode elements is broken
with respect to the introduction of distinct chemical potential. Indeed, for some n of
which (n + 3)hw < p. the value of the abscissa in the position of V-junction refers
to the specific value n, which satisfics (n,, + %)hw ~ p and the kink point to n' with
(n' + 3)hw = 2p. Consequently, the chemical potential . plays a role in displacing
the distribution of elements of mode functions a;, and b;,, in the direction of abscissa
axis n.

An explanation from the matrix theory of the distribution of elements of mode
functions is shown below. The matrix elements satisfy X;, # 0V j = n and 0

otherwise, and Yj, = 0 so that

X jn 66]"" 0

=D (6.29)
0 ~Xjn — €jn

Eq.(6.29) can be simplified as

(X101~ )(X22— ) (Trmanimes =~ I Tnsai nuan = S} = Aha— N~ Xaa ~ ] =0,

(6.30)
and correspondingly the eigenvalue ¢ = +X,,,. According to the orthogonality and
normalization of a, and b,,, for a given value of n’ € = Xp o, an =1V n = n’ and
a,, = 0 otherwise while b, = 0 for all values of n.

The next case. in which ¢ = 0.05g, (a little stronger than the above case), is
considered and the matching groundstate wave function ¢o(z) = 3 ca¢n(z) where
co ~ 2.04¢,, co = Gy, and ¢, = 0V n # 0,2,4. Our simulations show the width d ~ 8
for X,,. Since |c4|? is much smaller than |co[?, for brevity we ignore its contribution

to I';». Thus the analytic formula for diagonal elements and subdiagonal elements
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F1GURE 6.3: The plots of Bogoliubov excitation spectrum I (Left), mode functions
a,, (middle) and b, in the situation of g = 0.05g0.

are respectively

I171,71 = S cicjri,j,n,n

7N 2)
= W [2(c} + &5)(n — —) n —) (6.31)
+Ge? + G+ 2 - 3)
W)
I‘n_,,+2 = LZjCichi,j,n.er = I"(n e 1)23/271,[ n+ 2) (n g 1)]1/2 (6 32)
x [2(ch+c3)(n® - l) 1602+3( C\O/Cg)(n—‘;‘)],

where I'(z) function satisfics the property I'(z + 1) = aI'(x).

Fig.6.3 (a) shows that I',,,, and T, .42 from our simulations are identical to the
semianalytic formulas (6.31), (6.32). A slight difference for I, 2 in the regime of
small n can be found while there does not exist for I, , in the whole regime. It is
derived from the fact that. due to |co|? >> |cq|?, the contribution of ¢4 to 'y, , can be
neglected safely but the terms including ¢4 in T, .42 might not be neglected in that
¢, is not much larger than ¢q. However, the contribution of ¢4 for ', and Ty, n 49 is
reduced rapidly with incrcasing n and there is little difference between the fomulac
(6.31), (6.32) and our simulations for large n. Although we can not give the confirmed

value of d for mode functions a; ., b;» from Fig.6.3, it can be seen that d' grows with
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40 100

F1GURE 6.4: The plots of [';,, from our simulation and corresponding fittings from
our fomulars for T,,,, and T, 2 in the situation with g = 0.05g, (a); The plots of
I;, from our simulation in the situation with g = go (b).

increasing d. This demonstrates that the stronger interatomic interaction in Bose gas
tends to produce some excitations occupying more oscillator modes.

An explanation from matrix theory for g = 0.05g, is shown below. To simplify
the complex Bogoliubov matrix and confirm the validity of conclusions, we suppose
that the clements of Bogoliubov matrix X, n-2. Xnny Xnnt2 (Yan-2, Yan, Yany2) are
nonzero and otherwise X;, = 0 (Y}, = 0). We also assume X, n—2 = Xp—2n << X0
(Yan-2 = Yn-2n << Yon) and Y, , << X, n. In general, the constraint conditions are
valid for the case in which the condensate wave function occupies a limited number

of harmonic modes. The Bogoliubov equation (6.21) is written into

Xj.n e C(sj,n —Yj,n
: =0, (6.33)
Yin = Xin— lin
and also
1 Xjn — €0jinl - | Xjn + €8jn| — |Y; a2 = 0. (6.34)

If we define € as the eigenvalue of | X, — €d;n] * [ Xjn + €8l = 0. |Y;a|> in the
Eq.(6.34), contributed by the nonlinear interaction, plays a role in “displacing” the

eigenvalue ¢’
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Since Y is similar to X, in the form and Yan << Xpn, the Eq.(6.34) is equiv-

alent approximately to
| Xjn — €0nl - | Xjn + €0;| = 0, (6.35)
and thus is simplified into
| Xjm = €8jn] = 0 (6.36)
| Xin + €6ja] = 0. (6.37)

Here we give an example about solving Eq.(6.36) and the way of solving Eq.(6.37) is

similar. Use Laplace’s formula to expand Eq.(6.36) so
(X131 — €)|M1a| + X15|Mys| = 0, (6.38)

where M;,, is the minor of matrix Xj,,. If we define ¢” as the eigenvalue of (X;, —
€")|My,| = 0, the term of X 3| M, 3| in Eq.(6.38) plays the role in “displacing” the
eigenvalue ¢”. Since X, 3 << Xy and |M; 3| << |M; |, Eq.(6.38) is changed into

(Xl,l i E)lAjl,ll ~ 0. (639)
In a similar way. one can deduce
(X121 —€)(Xa2 — €+  (Xuimas,nimee — €) = 0. (6.40)

Eq.(6.40) implies that when the excitation spectra with respect to weak nonlinear

interaction are perturbed around the excitation spectra in absence of the nonlinear

interaction. Furthermore. we give a deduction, which is not rigorous in mathematics,

about the eigenvector equations. The eigenvector equations are written as
XjnGn-205n-2 + (Xjn — €)andjn + X;ntn+20jnsa+ (641)
Yj,nbn—26',n-—2 o Yj,nbn(sj,n o Yj,nbn+26j,n+2 =0 Vje (1; nmu).

If we ignore the contribution of Yj,. Eq.(6.41) becomes the standard triangular

equations. Thus for a given eigenvalue ¢; close to X/, a; is nonzero for j=

j'=my-- 7 =27, 7' +2,-- -, j'+ m where m is positive integer and close to 2, and
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FIGURE 6.5: The plots of Bogoliubov excitation spectrum F; (Left), mode functions
a, (middle) and b, for all j; first, second and third row for the situation of g = go
but the results obtained by using seperately 50 (first row), 100 (second row) and 150
SHO modes (third row).
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approximately zero otherwise. 7 should depend on the value of the non-diagonal ele-
ments. Conscquently, we can infer that the width of clements in (sub)diagonal parts
d (see Fig.(6.1)) is related closely with the width of high-amplitude modes d'(see
Fig.(6.5)) through m.

The following analysis concentrates on the excitation spectra and mode function
in the case of g = go, presented in the first, second and third row in Fig.6.5. For
the same paremeters and numerical calculation, a visible gap of excitation spectra
appears in the case of nye. = 50 but does not exist for 7n,,.. = 100. Indeed, since
the contribution to Bogolinbov matrix from strong nonlinear interaction does not
described completely by the limit number of modes, the existence of gap in Fig.(6.5)
is wrong. More essentially, the limit modes (for example n,n.. = 50) do not fulfill
the condition (T -T —1) << hw. As seen in Fig.(6.4), the one-
body part (n + 3)hw — p increases linearly with n while the two-body part T, ,

Nmazx,maz Nmaz—1,maz

decreases approximately exponentially. This results in some special point m where
[pnm 18 competitive to the one-body part. An important criteria for how many
modes would be sufficient to solve correctly the Bogoliubov excitation, is that the
minimum matrix dimension n,,;, must be larger than the level n, where n, satisfies

Alnn ~ hw (see row two and three in Fig.(6.5)). Moreover, in second and third

n=ne

row in Fig.(6.5), there are visible kink structures of Bogoliubov spectra, in which
the point of kink is independent on the number of modes provided the number of
modes is sufficiently large to describe the properties of system. Through the previous
analysis for Bogoliubov matrix structure, the cnergy spectra below the point of kink
are contributed primarily from the nonlinear term of Hamiltonian and the part above
the point is from one-body term.

Although three dimensions produce more complex structure of I';,, in the Bogoli-
ubov equation, there exist some analogies for I'; , between 3D and 1D in the case of
extremely week interatomic interaction. These analogies imply that some conclusions
drawn above for 1D situation might be also effective in 3D situation. If the occupied

modes of the condensate wave function in 3D are only four and Ng oo is much larger
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than any one of nygq, ng20, and '700)0,22, the form of quantum noise from the TWA
in Bogoliubov modes should be independent on the mode and thus it is identical to
TWA in PW mode.

In conclusion, we have investigated different forms of quantum fluctuation con-
tributed by different interatomic interaction by solving numerically Bogoliubov equa-
tion. In the regime of extremely weak interaction, the contribution of quantum fluctu-
ations from the TWA based on Bogoliubov modes and the TWA based on plan-wave
modes arc cquivalent but they are definitely distinet in the regime of strong inter-
action, such as in the presentation of normal 1D Bose gas in experiments [17]. Our
analysis of eigenvalue and eigenvector for distinct matrix structure might be practical
for the Hamiltonian matrix in strongly correlated system such as spin-grid system

and superconduction system.

6.4 More work on rigorous mathematics for future

Our simulations have revealed some regularities in the excitation spectrum F; and
mode functions a,,, b,, derived from an underlying matrix configuration in the Bogoli-
ubov equation. For simplification, one can consider only the case of nondegenerated

energy.  In general, the equation has the form,

Ximn  Yin a | __( & : (6.42)
")/_j,n 'Xj.n bn bn ;

where X, and Y, are N x N real symmetric tridiagonal matrices. Here we define d
is the width of band tridiagonal elements (see Fig.(6.1)); that is to say, d = 1 means
there are nonzero elements only in the diagonal part. d = 2 means there are nonzero
elements only in the diagonal and sub-diagonal parts. Meanwhile the matrix X ,, has

the following characters,

|Ajil > |Ajie1] = |Ajsrgl > |Ajjeal = |Ajaagl > ..

?Here, we consider the wave function describing Bose gas with center symmetry.
3In special case, i.e. attractive interatominc interaction and low dimension, there exist some
complex excitations such as roton-like excitation.
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Also |A;j jsm| > |Ajjem| Y < m! with m,m' are positive integer.

We usc two matrices M, N;, to save cigenstates a, and b, scparatcly for all
j-level energy under an ascending order; that is to say, the corresponding eigenstates
a, and b, for F;, defined the lowest excited energy, are deposited respectively into
M, , and N .

Here, we define d’ as the width of continuous high-amplitude modes in the a,
or b,. One needs to investigate the way in which with increasing d, d' increases

correspoudingly.
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CHAPTER 7

Conclusion

7.1 Summary and overview

This thesis has explored the role of repulsive interatomic interaction in the sponta-
neous formation of vortices and interference pattern in merging BECs. the role of
quantum fluctuation in colliding BECs and transport properties of 1D degenerate
Bose gas.

In the mean-field approximation, the single particle wave, describing the BEC
state, is affected strongly by interatomic interaction. The competition between the
centre of mass speed due to an initial displacement and expansion speed due to
interatomic interactions for merging BECs exhibits complex interference phenomenon
such as non-uniform and distorted fringes. Meanwhile the essential relations between
the spontaneous formation of vortices and interference have been shown clearly in
Chapter 3. In many cases, these results should motivate some experiments on vortex
creation.

Quantum fluctuations are always present in real systems. Beyond mean-field
theory. the Truncated Wigner method described in Chapter 4, is one way of in-
cluding some fluctuations, shows that they have a significant effect on interference
visibility and internal correlations. In particular, the detailed dynamics of non-
condensed atoms, and the interaction between non-condensed atoms and condensed
atoms are of critical importance to understand the phenomenon of interference in

quasi-condensates.



138

Finally, both mean-field method and the classical-field method with Bogoliubov
theory arc used to discuss the quantum transport of Bosc gas in strongly confining
potential. We have shown the internal relation between interatomic interaction and
the form of excitations and have explored how the form of excitations influences the

dynamics of the transport.

7.2 Suggestions for further study

In Chapter 4, we find that the fringe spacing in colliding BECs is sensitive for the
repulsive short-range interatomic interaction. This stimulates us to explore the in-
terference properties in merging BECs with different interaction. For example novel
phenomena may occur in merging BECs when there are strong dipole-dipole inter-
actions (DDI). As distinct from the repulsive interatomic interaction in Alkali metal
atoms, the DDI is long-range and anisotropic (partially attractive) so that it leads
to some new interference phenomena if two clouds merge in different directions or in
different DDI.

Another promising research direction is to explore the properties of BECs, or
Fermi gases when a disorder potential is present in these systems. It should be
meaningful to study how and why the internal correlations are lost with the disorder
potential and reformed without this potential. Obviously this work should be done
beyond mean-field theory. More theoretical tools and mathematical methods should
be required for this region. The Bogoliubov theory might be a possible way to begin

to study this kind of problem.
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APPENDIX A

Derivation of equations 2.2, 2.5, 2.52,
2.53, 2.54

A.1 Understanding Eq.2.2 and 2.5
The kinetic energy operator of Eq.2.2 is manipulated slightly with Green formula,
B [devrien = g [9i09ed - o [ 9@ 090 (1)
2m 2m 2m :
The second part of Eq.A.1 is changed by Gaussian formula into
2 [y =-2 [ [@nviey-a (@3
2m 2m J J,

If the integral area s is sufficient large so that there is no “current” (t/;f(r)Vq,f)(r))

passing through the surrounding area s, the final result of Eq.A.2 is zero and thus
-2 [dovrie = o [vinvie
5 Yi(r r)dr = o— r, (A.3)

As a two-body operator, V on a state |ey...co, > of N particles is the sum of the

action of V on all distinct pairs of particles:

~ - 1 -
VIQ]...GN >= Z ‘/ij|al"'aN >= 5 Z nglal...aN R 2 (A4)
1<i<j<N 1<i#j<N
So
' ’ ~ ’ ’ 1 S
< ay...ay|V]a..ay >=< ul...aN|§ Z VapPaglay...an >, (A.5)

af
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where Pog = fiafig — daplfia = &L&},&a&ﬁ is counting-operator for pairs of particles

in the states and |# >. So the sccond term of Eq.(2.2) is similar to two-body
operator V =33, VusPag.

The deduction of Eq.(2.5) is shown below. Insert the Eq.(2.4) into Eq.(2.3),

A 1 LP_LZ, 9 e ML @iy =p")

_ A : [
11 2,” / dr + e E’ apa R dr

T’P PPo
P TA _(l ot A
= E ooy + 507 E Gigy 4 ot — oo Oy -
PsP0q
(A.6)

A.2 Derivation of Eq.2.52, 2.53, and 2.54

Inserting Eq.(2.50) into Eq.(2.48). we can obtain the following parts

Eq.2.48 = a'XeXa + a'XeYa'!” + a'Xez

+a’YeXa + a"YeYa'T + a" Yez
+2TeXa+2"eYa'" + 2"ez
+ 20N (a'XA, +a" YA, +2"A
+&"XTA, +&'YTA, + zTA,.)
+A (4a*XA,,. X + 46 XA Yo' + 46 XA, 2

+ 46TYA,, . Xa + 46TYA,, . Y&'T + 46"YA,, .2 -
+ 427 A o Xt + 427 A Yo' + 427 A 02 e
+a' XA XTa!" + &' XA, YTa + &' XA, .2
+a"YA,. X a'T + @"YA,, .Y & +a YA, 2
- zTA,,, ,,XT&fT +2z Am NTa+z Am,nz

a"XT Ay o Xa + @ XTA,  Ya'" +a"XTA,, 2

+ a*YTA,,,,,,xa +a'YTA,,, Ya'" +&'YTA,, .z
+ 27 Ap X + 2T A Yo' + zTAm,,,z)
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Due to X7 = X and Y7 =Y, we rearrange Eq.(A.7) in the order of & so

Eq.(2.51) = 27 (ez + 4\VNA,, + 6A,, .2)
+a"Y(ez + 2\VNA,, + 6)A, .2)
+ @ X (ez + 2\ NA,, + 6AA,, ,2)
+a'X(ez + 22V NA,, + 6)A,, ,2)
+a'Y(ez + 2\VNA, + 6)A,; »2) (A.8)
+ @' (XeX + YeY + 40XA,, . X
+4AYA, Y + 20XA,, .Y + 2)YA,, . X)a
+ @' (XeY + XA, Y + AXA,. . X + AYA,, . Y)a"”
+a" (YeX + 4AYA . X + AYA Y + AX A, 2 X)é.
We use the property ATBCD = DTCBA where A,D are vectors and B, C are
Hermitian matrices. From Eq.(2.52), one can see that the linear terms in Eq.(2.48)

produce only a shift of the energy levels but do not affect the distance between them.

Moreover, to eliminate the linear in & terms from H , the vector z must be

2 = —2A\VN(€ + 6AAmn) An. (A.9)

For the purpose of a'a'" and &" @ to vanish in the Hamiltonian, the following matrix

equation should be fulfilled,

XeY +4AXApn Y + AXA X + AYA,, Y =0 (A.10)
YeX + 4AYA o X + AYA,, .Y + AXAp o X = 0. (A.11)

Finally the energy matrix £ is
£ = XeX + YeY + 4\ XA, n X + 4AYA,, Y + 20X A n Y + 2)YA,, . X (A.12)

and its cigenvalues define the energy spectrum.
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APPENDIX B

The Crank-Nicolson method for solving

numerically Gross-Pitaevskii equation

B.1 Three dimensition system

In general, the 3D time-independent Gross-Pitaevskii equation with harmonic traps

can be written as

. B PR R e R
zhat = 2mV + (jz-mu,.r +gmwyy” + gmwz )+ TW)I P, (B.1)

where w,, w,, w. are trap frequencies separately in z, y and z direction, and a is the
s-wave scattering length of Alkali atom with mass m. ¥(z,y. 2,t) is normalized so
that [1(z.y, z,t)|* is the number of atoms per unit volume.

In order to ensure maximum numerical accuracy and to identify the irreducible
minitnum of independent system parameters, it is customary in computational treat-
ments of physical systems to express the relevant equations in dimensionless compu-

tational units. Here, we select natural units of length, time and energy to be

= h
- 2mw,
Wy
€ = h‘dm,
so that the original equation can be changed into
N R ¥ Gl G
i— = [=V2+ < [Z + (\8)? + (X.2)*] + Dol (7, D)9 (B.3)

1
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Here,
w
y
Ay e
We
w
Ay = —

5 (B.4)
- / MW,
Uy, = 8ma 5

O, 1) = ¢(r, Oz
In order to maintain a simple relationship between the wavefunction at time step
n and the wavefunction at time step n + 1, the first order temporal derivative in
Eq.(B.3) is approximated by

1
ik e — Vi
ot A, 3

where A, is the size of each time step, and the integers j, [ and k are the coordinates

(B.5)

of a particular point on the cubic wavefunction gride in the z, y and z direction. The

spatial derivatives with respect to # are approximated by taking the Taylor expansions

AZ 52
Vis1ak = Yian + Ay a’d)lﬂk + ’d:I]lka (B.6)
o 0 A2 0%

Vi—t ik = Pigk — Azggb,z,k + f‘gglj,l,k, (B.7)
where A, is the grid spacing in the z-direction. Adding Eq.(B.6) and Eq.(B.7) yields
*Y Yiv1k — 29 k”l"'(b—lk

72 — | L AJ; it (B.8)
Subtracting Eq.(B.7) from Eq.(B.6) yields
(o4 Yit1,0k — Vj-1,0k
5 itk = - Y e (B.9)

Using approximations Eq.(B.5), (B.8) and (B.9), together with equivalent expressions
for derivatives with respect to y and 2, the Eq.(B.3) can be rewrited as

+1
i idk ~ ik _ _(1/’}'“.(,1: = 295k + Vi1 1k i Yitarke — 25k + Yim1k

A, A2 4y
L Vitksr = 2050k + Vi
A2

(B.10)
R )+ Vi
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and
+1 +1 +1 +1 +1 1
; ik~ Yk -y ik — 200 T 3 e — 25k + U,
A, a2 Al
¢'"+1 = 2,¢n+1 =% “/}n+1 (B]-l)
2,Lk+1 2Lk 3.l k=1 yrtlyntl
A2 )+ Vitw ik
b4
Adding Eq.(B.10) and Eq.(B.11) and simplifying it to
+1 +1 1
mit gy B Wine ~ Wi Vi | Vi~ Wi H Y ik
"/)Jlk Jlk+ 2 ( A2 a3 A2
x z
+1 +1
Ve — 2050k + U1k ,,1+1 k= 200 ¥k
Ay i Ay B.12
Ve — 207 + U7 Y — 207 + Ve e
4 itk Lkt V50 k-1 & ikl ~ “Vi0k T Vjik-1 )
A3 Al
iA‘ a 1 1
= (Viiwdiun + Vitk i)

By using three times time-operator and spatial operator splitting, the Eq.(B.12) can
be splitted into three small equations:

nl|l/3 n|1/3 n|l1/3
z/)n+1/3 =" e f_ﬁ(wﬁl,l,k 2 ij,l.k '1’ i—1,0,k
abk Jy

2 A?
n 2¢u i d)u A (B13)
Lk AWk 3 0—1.k 1 n+1/3  n+1/3
. A12 2 t( zk'/’,,zk'*'v,ﬂ/ +/),
n+2/3 n+2/3 n+2/3
ni2/3 _ nilfs g‘:(‘/’x ik = 2050+ ik
’d)j,l,k T v hk A2
Y
A - P i -
b k+1 -1 t n+1/3 ;n+1/3 n+2'<l n+2/3
+ =2 ]Af . )i "6"( j,l,k/ "pj,t,k/ ¥V ; wj,::k/ %
nt1 _ i3, 800 Yither — 20705 + Y7k
ik = Yipk + 5 A2
nt2/3 n42/3 . n+2/3 (B.15)
w)"’l,l,k et l/)],l,k/ + w;—] {k) 1‘A‘ (Vn+] n+1 Vﬂ+2/3 ﬂ+2/3
Ai Jlk 3k ]lk )1
Rearranging Eq.(B.13), (B.14) and (B.15) ylelds
iD  nt1/3 ZAVENRAY! /3y nt1/3 iA; nt1/3
2A2¢,+uk+(1 A2 g 6 ,,zk/ ) ,lk/ 2A2¢ 1{::
x
iA, iA, il o (B.16)

sazVirne t (1= 73 = = Vi + 55V
v Y
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i  nt2/3 TAVERNE VAW Y3t 2/3 1At ny2/3
‘E‘/’mu +(1+ 53 A? +—==Vik Wi 2A§¢j,z+—1/,k=
: Bt
1A dn+1/3 {15 lAt i l_A_g n+l/3)¢n+l/3 i ¢n+1/3 ( )
2A2 I, Lk+1 Ag 6 ibLk 3:b,k 2A2 Ilk=12
ZAt n 'I,Ag ’I,A v “ 'lAt 5t
2Azd’;l+kl|1+(l A‘ +—6— Jlil)wyr’: QAJ JI’LI:
: B.18
AV 1lnu/:az +(1- ZAYRR 74V n+2/3)¢n+2/3 A 1/)n+2/3 ( )
2A2 J'*'1 Lk Ag 6 jll)k jrl»k 2A2 & g I)I:k'

The exact process of Crank-Nicolson method for numerically solving 3D Gross-
Pitaevskii equation has been show above. The following thing is involved in the
general realization of codes. To solve Eq.B.16, B.17, and B.18 numerically, one can use
the technique of LU decomposition followed by forward and backward substitution [130]
to solve these equations. The detailed process has been shown in the thesis [131].
Also, one can utilize more simple techuique, Tridiagonal Systems of Equations to
solve them [130]. Normally, the first method is more stable than the second one but
the later is more efficient than the former. Since the elements on the diagonal plus
and minus one column are normally nonzero and a series of regular values, the second
method should be sufficient and stable to solve these equations.

Moreover, there are two methods inplemented to realize the code. The first method
is involved in using some natural units of length, time and energy to reduce constants
as far as possible. The above process of Crank-Nicolson method is attibuted to
this method. The second method is to realize the code directly from the original
equation and some constants such as h,m,a can be adjusted in a rational range
so that these constants behave as some variables. According to two methods. they
have different advantages separately in real applications. If one hopes to contrast
numerical results with analytic results or to explore some physical properties which
are correlated closely with known parameters, such as characteristic length of single
harmonic oscillator, we suggest to realize the code in the first method. If one hopes
that their simulation results satisfy well the results of experiments, the second method
should be better in that real experiments are generally not more “perfect” than
theoritic prediction and altering properly the values of those constants might cause

more ideal results.
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B.2 The 3D system with cylindrical symmetry

We consider the 3D time-independent Gross-Pitaevskii equation in the harmonic traps

with cylindrical symmetry as

N h? 1

1
P i 2 2
3= "am Yt (gmerr + gmwsa’)

where w,, w, are trap frequencies respectively in the radial and longitudinal direc-

4rh’a

in=t +——¥P', (B.19)

tions, and a is the s-wave scattering length of Alkali atom with mass m. ¥(r, 2, 1) is
normalized so that [¢(r, z,1)|? is the number of atoms per unit volume.
We select the units of length, time and energy and evolve the process in analogy

to three dimensional Crank-Nicolson method. Thus the orignal equation is split into
; ;",lH— ;",l ~( Y 2‘1"l+¢—1[+¢gl+1"2¢":l+w"‘,l—l
2

B a7 A7 (B.20)
w;‘,Hl - 'd’;',t—l n_in :
+ AT ) + Vi,
and
i v i - 2 e | et - 20 et
A, a3 A2
d)ni}ll i n‘+l (le)
bAL 3.d=1 n+1,)n+1
e A )+ V. z/) :
Adding Eq.(B.20) and Eq.(B.21) and simplifying it to
ot = g+ 0 Biena = R VR Wl 205 W
T2 A? A?
]l+l 2#)1 » d’]l 1 w;‘?‘-{»ll 2 "+1 ¥ ‘p;‘?-ll (B 22)
A? Az i
",l ¥ d)":l—l ’1 il d":l iA n,.n Ve n
s J |2rArJ + J (; ] 1) Sl 21(1/].,1,‘/}.",‘ + +]'l/) +l).

By using two times time-operator and spatial operator splitting, the Eq.(B.22) can
be splitted into two small equations:
> nil/2 ull/2 n|l/2
ﬂ+]/2 i ,n + E_A__"(w)'+l,l +¢-—ll £ ]‘+l 2,‘1)]‘.*—'/)_1[_
'/’J‘,l 5 dJ}l 2 A’ A?

].'l;r—Ad’j_lwl ) = ‘?l (Vﬂ+l/21/ n+l/2 ‘/]’,‘ﬂ/":l),

(B.23)
+
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and
. n+1/2 n+t1/2 n+l 2 n n n
Y = yrHE ﬁ(wﬁ:{ — 295 : + 9, / ¢Jz++11 =25+
. A2 ™ B.24
w"?ll—wnfll iA 1/2 1/2 ( : )
)y t n n n n
+_J_*_§___-’_)___ +/¢,JT/ v+l¢+1)
Rearranging Eq.(B.23) and Eq.(B.24) yields
_ A a 72 VRN 74 VN i ¥ VIS
At2 /1:1142‘* (1+ A; + 4: +1/2)¢ +1/2 A;w +1/2 &
A, A .. A A iA, zA, (B.25)
(2_A_'5+4r_A,)d)"'+‘ +A-gg -Vt GG - ) pRcT
and
iAt 'lAg "+] ZA: 1At a1 n+l ZAt 'I.At n+l
(_EA_3—4rAr)'/)l+l+(1+Ar 4 V;l ) +(_2A2+:1T) ],l 1
; (B.26)
_ A a2 (AVEE PA V) yr 2 e 1/2 iAr ni1y2
i E—A—gwj+l,l Ag 4 _), )1/) Az"p_’ 1,1

The realization of codes is basically similar to 3D case except that the normalization

of condensate wave function is a little different.
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APPENDIX C

RKA4IP-P algorithm for solving

numerically Gross-Pitaevskii equation

C.1 Gross-Pitaevskii equation in the mode space and inter-

action picture representation

A generalized Gross-Pitaevskii equation has the form as

O (r, t D i
W22 = |-V Vo, + U, )+ Uol¥ (e, 0P| W06, (C)

Normally, we choose special basis ¢;(r) which are closest to the character of condense

wave function to expand ¥(r.t) in low-energy mode space ! | i.e.,

Up(r,0) = ) 5(r)ay(0). (C2)
j€L
Here, ¢,(r) satisfies the eigenvalue equation,
)2
-5 V20;(1) + Uena(r, )65 (x) = huv; 5 (r). (C.3)
Thus Eq.(C.1) is rewriten as
doy(t) . gt 5
—y = "iwe; + | drd; [0Ucat(r, t) + Uo|¥p(r,t)[*] Up(r,t) p . (C.4)

IThe reasou of choosing ouly low-cnergy wode space for Bose field is based ou three factors.
Firstly, condensed atoms occupy the lowest energy modes. Secondly, the interatomic interaction
between low-energy modes and high-energy modes are extremely weak. Thirdly, it might be difficult
for experiments to probe for the behavior of atoms in the high-energy modes. One can infer that
this method might be improper used in strongly correlated system.
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The Eq.(C.4) in the Schrodinger picture representation can be simplified more in the
interaction picture representation. Defining

ﬂj(t) = C—iwj (t_"")d, (t), (C5)

where the equivalence time between the pictures t,.s is choosn shortly, the Eq.(C.4)
is changed into

(v; (L
%_Ztll = —jetslt=trer) / dr g (r) [0Ueui(r, 1) + Up|¥p(r, )] ¥p(r,t) (€ T),
(C.6)
where the coordinate space field is now calculated using
Vp(r,t) = Z ¢, (r)e s ttena, (t). (C.7)

JEL
C.2 RKA4IP-P algorithm for Eq.(C.6)

The stardard fourth-order Runge-Kutta (RK4) method can be used to deal with

differential equation with the general form,

20 - )0, ©8)

where f(t) is the vector-valued function. Then, we advance the vector f(¢) between
discrete time steps, such that

tiv1 = t; + At,

where At is the time increment between numerically integrated solutions. Thus in

the RK4, the vector at the discrete time is written
f(tigr) = £(t:) + é [y + 2(hy + h3) + hy] + O(A¢®), (C.9)
where the individual Runge-Kutta terms are calculated as
hy = g[f(L:), L] At

hy=g [f(t.) + -l-;l,t.- + _A2_§] At
(C.10)

hg = g [f(t.) + P2—2,t,' + %] At

hy =g [f(t.) + hg, t; + At] Al.
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Coutrasting Eq.(C.6) and (C.7) with Eq.(C.10), one can see easily that when choos-
ing t,ey = t; + At/2, we can remove a large number of the exponential multiplica-
tions. Thus the final process of the projected fourth-order Runge-Kutta algorithm in
the interaction picture algorithm (RK4IP-P) for numerically sovling Gross-Pitaevskii
equation is shown completely below. The evolution of @;(t) in RK4 algorithm is

1
8 (tin) = &(t) + (@l +2(a)? + &) + al] (C.11)

where the Runge-Kutta increments to
al = —iate ¥ / dre} [0U.z(ts) + U W3 2] W

—1Al /drd); |:(5Ue_-,g (t,' 5 —Aig) 3 5 UQ!‘II’;,’P] ‘I”;:?

s (C.12)
6?3 = —lAt/dr¢; [6U¢xt (t, + —2“‘) e i UOI‘I”;JSP] ‘II’;)S
&M = —iAteerd / dr g [Uar(ts + AL) + Ul Wit 2] s,
The corresponding coordinate fields are now
Vi (r) = Y ¢i(r)c ¥ a(t:)
J€L
hy g 1 hi
V(e = o400 [a,(r )+ 58, ]
) Y (C.13)
r) = Zcb,«(r [a,(t )+ 5 ‘]

jeL

Vi) =Y ¢y(r)e s ¥ [a,(t)+ -’“]

€L
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APPENDIX D

Interatomic interaction in low dimensional

system within mean-field theory

The interaction energy in the mean-field approximation for Bose-Einstein condensate

in full space is writen as

Boc=au [ [ [1%0(z,4,2,0l'dadydz. (D.1)

If we consider a quasi-2D system and z-component is independent on time, the wave-
function of condensate can be read as ¥y(z,y, 2,t) = ¥Yy(z, y,1)¥e(2). With ansaz of

|Wo(2)|? = 7"'—02(-“’/("”. the above equation can be writen into
v _ 93D
Eine = = e 1 dz |Wo(z,y,t)| dzdy

o / / Wo(z, y, )| *ddy.
2no,

Here, the characteristic quantum-mechanical length scale for the harmonic oscilla-

(D.2)

tor in z-component o, = \/h/(mw,) so one can define new interatomic interaction

coefficient in the quasi-2D system

_ gsp _ ha [8mmuw,
D maz e m h \ (D.3)

Similarly, one can deduce the interatomie interaction cocfficient in 1D system

9ip = % = 2ha/w;wy. (D.4)
v
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APPENDIX E

Thomas-Fermi density envelope in a
strong 2D optical lattice and harmonic

potential

If the density of atomic gas changes slowly in space, the kinetic energy term in Gross-
Pitaevskii equation (or the quantum pressure term in the corresponding hydrody-

namic cquations) can be neglected and the GPE can be simplified iuto

[V(r) + Ualy(r) "9 (r) = pp(r), (E.1)
where p is the chemical potential. Eq.(E.1) has the solution

n(r) = [Y(r)]* = [u - V(r)l/Uo (E.2)

in the region where the right hand side is positive, while n(r) = 0 outside this region.

The boundary of the cloud is therefor given by
V (Tboud) = p. (E.3)

We shall determine the ground-state energy for a gas trapped in an anisotropic

three-dimensional harmonic-oscillator potential V' given by
’ 1
V(z,y,2) = §m(wf12 + way? + wi?) (E.4)

where the three oscillator frequencies w; (i = 1,2, 3) may differ from each other. In the
TFA the extension of the cloud in the three directions is given by the three semi-axes
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R; obtained by inserting Eq.(E.4)into Eq.(E.3),
, 21
R:= — i=1,23. :
P omw? ; 15
The normalization condition for n(r) in Eq.(E.2), yields a relation between the chem-
ical potential g and the total number of particles N. For a harmonic trap with a
potential given by Eq.(E.4), onc finds

87T( 2“ )3/2
15 “mnw?

U (E.6)

where &° = wywyw,.
The deduce of Eq.(E.6) is shown below. First, we set u = w,x, v = wyy, w = w,2

to give

1 2, .2 2
= U5 ///dudvdw(u«- Em(u + v* + w?)), (E.7)
where &* = w,wyw,. Exchange the integral in the Cartesian coordinates into the

spherical polar coordinates and give

\ 2mn/m
N = 47;/ r(p - -1-mr2)dr
Uo@® Jo B (E.8)
- @.(2_‘“)3/2_’_‘_
15 mw2 Uo.

Through Eq.(E.6) and Uy = "'—,'f“, one obtain the following relation between p and
N:

4f l
N =22 (E.9)
R hw(ISaN)z/s’ (E.10)
where | = /2.
Insert Eq.(E.10) into Eq.(E.5), three semi-axes
15aN
R =1 -“i( =), (E.11)
where
Lol &

muw;
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The quantity R = (R, H,Hg)é is a convenient measure of the spatial extent of the
cloud and through Eq.(E.2), R = (15/*aN)'/5. Thus

12 "2 2 x 12 F4
o) sr(l-(r+hk+h) G+E+ia) <!
0 (,—3}+§%+§5)>1

We now turn on a deep 2d optical lattice potential of strength v of the form
v(x,y) = v(2 + cos(kx) + cos(ky)) (E.12)

where k = 27 /d which generates an array of tubular minima at o; = (2l + )7 /k =
(21 + 1)d/2,y,, = (2n + 1)7/k = (2n + 1)d/2. We suppose that this redistributes the
density so that the wavefunction becomes
11)(1'1 Y. Z) i Z"bt(xl,ym z)¢(.’l: gl 4% ey yn) (E13)
Ln

where ¢(x — x;,¥ — y,) is the ground state wavefunction of the potential within a

single unit cell. If the potential is deep we can approximate
V(zi+ & yn+0) = v(2+ cos(k((2l + 1)d/2 + §))
+ cos(k((2n + 1)d/2 + 6)))

: S E.14
z(2—1+%k’£‘—1+%k‘0") o

= -;-mﬂz(f2 + 6%

/ 2
Q 4 v_k—
m

so that the tube potential is harmonic with natural frequency ©Q and zero point
amplitude A = /h/mQ. Hence the ground state wave function is

where

(¢, 6) = ce” €O/ (E.15)

The constant C must be chosen so that the presence of the lattice does not change

the total number of atoms in a given unit cell. Hence we must have

d/2 d/2
/ d [ dojgp = & (E.16)
-2 J-dan2
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which gives (assuming that A << d so that the limits of the integration can be

extended to +00 which leads to an crror of order ¢ %/2%)
N = &
d
C=——=

AT

and, close to the I, n tube we have

15N x? ’lﬂ 1 o
pmi+&ynt+0.2)= m(l (ng + 1{22 —2))m6 ey
15N d? y" 2 —(€246%) /22
= 87r2R3A2( (Rz t R R? tehe D T

(E.17)

(E.18)
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APPENDIX F

Numerically solving time-dependent
Bogoliubov-deGenne equation for Bose

gas in a harmonic trap

The first order in Bose field operator ¥ through number-conserving Bogobiubov the-

ory (see chapter 2) provides the equation of motion for quasiparticle wavefunction,

ihd, ( el 2 ) = L(t) ( e = ) ; (F.1)
lv;(t) > lv; (t) >

where the Bogoliubov operator

Cz(ff(r)«q(éu)|w<f,z>t’é(t) 9QOY(E.1)°Q" (1) ) F2)
-9Q" ()Y(&,0)2Q(t)  —H - gQ" (1)|¥(&,1)1*Q"(¢) :

Here the Hamiltonian is given by
-2

YO 4 SR ‘

where the phase factor u(t) is equal to the ground state chemical potential 1 when
¥(z, 1) is the ground state of Gross-Pitaevskii equation. Since the space of quasipar-

ticle is orthogonal to the space of condensates, Q projects orthogonally to ¥(z, t):

Q=1-|yp>< | (F.4)
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Eq.(F.2) corresponds to the time evolution operator

Q) 0 Q) 0
L(t) = y Lt & . PD
(t) ( 0 0 ) au(t) ( 0 &) ) (F.5)

where £ (1) is the full-space evolution operator. Now we explore the numerical skills
for Eq.(F.1). we can do the integration of the Bogoliubov equation without the state

projection Q,

ih, ( W) > ) = Loault) ( (&) > ) . (F.6)
[Vj(t) > Vj(t) >

where apply the projection ( us) > ) = ( ?(t)|U,-(t) 5 ) whenever we need to
|v;(t) > Q*®)V;(t) >

export the states. Notice that £.u(t) is in principle time dependent through (g, t).
In a small time step At, the evolution may be adiabatical, given approximately by

( U;(t + At) > ) < LB/ ( U;(t) > ) . D
Vit + At) > Vi) >

The time evolution operator e CauAt/h can be split into position- and energy-
dependent parts, that is, e=*Con A/ — g=iFA/2he—iGA/he=iFA!2h, where the energy-
(n+ 1)hw/2 0
0 —(n+ 1)hw/2
5 ( Al(E 0P g0
—gu*(2,1)* —2g|y(Z,t)[*

dependent part M = ( ) and position dependent part

) . The energy part is

( |Ujn(t) > ) o ( e NPT (1) > ) F8)
Vylt) > ORIV, (1) >
Using Spectral method, we can transfer the state back to real space. The position-
dependent part is
( \U;(t + At) > ) i e-‘GA'/“( U;(t) > ) . i)
Vit + A1) > Vi) >

The eigenvalue of G are
A = £v/3g|y? (F.10)
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and the correspouding eigenvectors are

621'0
( -(V3+2) )

(147)

for A = —/3g|1|?, where @ is the phase of the ground state wavefunction 1. Therefore

for A\ = V/3g|¥|? and

the solution can be written as

|U](t =+ At) > cZiO iv3 2 C%o i 2
= A Wiglvl*at L p V3gly P At
<|V,»(t+At)>) (—(\/'3'+2)>e ° (vV3-2) -

(F.11)
From the initial conditions
62:'0 cﬂ2:’0 A o Uj(t)
(—(\/3+2) (\/5—2))(13)—<Vj(t)>' o
determine the coefficients
( A ) _ 1 { (V3-2e*U;0) - V;(®) ) (F.15)
B) 2/3\ (V3+2e®U,t)+V;(t) ) ’
Finally. we have
Uit + Af) = v ( (2v/3cos(AAL) — disin(AAL))U;(t)
2V3 \ +(—2isin(AAt)cos(20) + 2sin(AAt)sin(260))V;(t) -l

Vit + At) = —— (2v/3cos(AAL) + 4isin(AAL)V;(t)
20 : 2V/3 +(2isin(AAL)cos(20) + 2sin(AAL)sin(26))U;(t) :

Although the central idea of solving numecrically Bogoliubov-deGenne equation
have been shown, the stability of this method is still of problem. We will not. exhibit
the results of dynamics about Bogoliubov-deGenne equation here until we find an

elegent way to solve the problem of the stability.
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