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Thesis Abstract

Tinnitus, often defined as the perception of sound in the absence of an
external stimulus, affects millions of people worldwide and, in extreme
cases, can be severely debilitating. While certain changes within the
auditory system have been linked to tinnitus, the exact underlying causes
of the phenomenon have not, as yet, been elucidated. Animal models
of tinnitus have considerably furthered understanding of the some of the
changes associated with the condition, allowing researchers to examine
changes following noise exposure, the most common trigger for tinnitus.
This thesis documents the development of an animal model of tinnitus,
using the guinea pig to examine neural changes following induction of
tinnitus.

In the first study, a novel adaptation of a behavioural test was developed,
in order to be able to determine whether guinea pigs were experiencing
tinnitus following the administration of sodium salicylate, a common
inducer of tinnitus in humans. This test relies on a phenomenon known as
prepulse inhibition, whereby a startle response can be reduced in amplitude
by placing a gap in a low-level, continuous background noise immediately
prior to the startling stimulus. The hypothesis for this test is that if the
background sound is adjusted to be similar to an animal’s tinnitus (induced
artificially following noise exposure or drug administration), the tinnitus
percept will fill in the gap and the startle response will not be reduced. The
results from this first study indicated that using the Preyer reflex (a flexion
of the pinnae in response to a startling stimulus) as this startle measure
was more robust in guinea pigs than the commonly-used whole-body startle.
Furthermore, transient tinnitus was reliably identified following salicylate
administration.

Following the development and validation of this test, a study was
conducted to determine whether guinea pigs experienced tinnitus following
unilateral noise exposure. Neural changes commonly associated with the
condition (increases in spontaneous firing rates and changes in auditory
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brainstem responses) were examined, to determine whether there were
any differences between animals that did develop tinnitus following noise
exposure and those that did not. Two different methods were applied to the
behavioural data to determine which animals were experiencing tinnitus.
Regardless of the behavioural criteria used, increased spontaneous firing
rates were observed in the inferior colliculus of noise-exposed guinea pigs,
in comparison to control animals, but there were no differences between
tinnitus and no-tinnitus animals. Conversely, significant reductions in the
latency of components of the auditory brainstem response were present
only in the tinnitus animals.

The final study examined whether the original hypothesis for the
behavioural test (that tinnitus is filling in the gap) was valid, or whether
there was an alternative explanation for the deficits in behavioural gap
detection observed previously, such as changes in the temporal acuity of
the auditory system preventing detection of the gap. Recordings were
made in the inferior colliculus of noise-exposed animals, separated into
tinnitus and no-tinnitus groups according to the behavioural test, as well
as unexposed control animals, to determine whether there were changes
in the responses of single-units in detecting gaps of varying duration
embedded in background noise. While some minor changes were present
in no-tinnitus animals, tinnitus animals showed no significant changes in
neural gap detection thresholds, demonstrating that changes in temporal
acuity cannot account for behavioural gap detection deficits observed
following noise exposure. Interestingly, significant shifts in the response
types of cells were observed which did appear to relate to tinnitus. The
present data indicate that the Preyer reflex gap detection test is appropriate
for examining tinnitus in guinea pigs. It also suggests that increases in
spontaneous firing rates at the level of the inferior colliculus cannot solely
account for tinnitus. Changes in auditory brainstem responses, as well as
shifts in response types, do appear to relate to tinnitus and warrant further
investigation.
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CHAPTER 1

General Introduction

1.1 Introduction to Tinnitus
Tinnitus is defined as the perception of sound in the absence of an external

stimulus. It is often perceived as a ringing sound (the word tinnitus actually

originates from the Latin tinnire, which translates as ‘to ring’), but its

characteristics can vary depending on the individual. There are two main

types of tinnitus: subjective and objective. Objective tinnitus is a rare

disorder caused by sounds originating within the body, sometimes through

increased perception of vascular processes or contractions of muscles in the

ear (Heller and Bergman, 1953). This type of tinnitus may be observed

by others, as opposed to subjective tinnitus, which is much more prevalent

and can be perceived only by the affected person. This thesis will focus on

the subjective form of tinnitus. As such, the term ‘tinnitus’ will be used to

denote subjective tinnitus, unless stated otherwise.

1.1.1 Prevalence of Tinnitus
Tinnitus is not a ‘modern’ phenomenon. In a letter to a friend, the

18th/19th century composer Ludwig van Beethoven declared that “my

ears are buzzing and ringing perpetually, day and night”, referring to

the disturbance his tinnitus caused him. The naturalist Charles Darwin

actually kept daily records of his tinnitus, noting its amplitude and

frequency (Shaikh, 2012). Many observations of tinnitus have been made

throughout history, with the earliest reference proposed to be the ancient

Egyptians, who suggested its cause to be from a ‘bewitched’ ear (Dietrich,

2004). Despite many cultural references, research into the condition
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2 Introduction to Tinnitus

did not properly begin until the early 1980s (Salvi and Ahroon, 1983).

Though most people will experience tinnitus at some point in their lives,

perhaps after a rock concert or through operating noisy machinery, recent

epidemiological studies suggest that 10-15% of the population suffer from

the condition chronically (Heller, 2003). A subgroup of those affected find

their tinnitus severely debilitating, sometimes leading to suicide attempts,

though it has been shown that the perceived intrusiveness of tinnitus is not

intrinsically linked to the actual characteristics of the tinnitus (e.g. Meikle

et al., 1984).

1.1.2 Causes of Tinnitus
While the exact underlying mechanisms of subjective tinnitus are currently

unknown, the most common trigger for this type of tinnitus is repeated

exposure to loud noises (Eggermont and Roberts, 2004). Its onset

can also be linked to the intake of ototoxic drugs, such as salicylate

or quinine (Ralli et al., 2010). Historically, the origin of tinnitus was

believed to reside within the inner ear (Zeng et al., 2011). However,

studies have demonstrated that symptoms of tinnitus persists even after

the ablation of the cochlea (Zacharek et al., 2002) or severance of the

auditory nerve (AN; House and Brackmann, 1981), so it is commonly

accepted that tinnitus is the result of aberrant neural activity beyond the

level of the AN, possibly triggered by initial changes at the peripheral

level. Increased hyperactivity following noise exposure has been observed

in the dorsal cochlear nucleus (DCN; Kaltenbach and Afman, 2000),

inferior colliculus (IC; Chen and Jastreboff, 1995) and the auditory cortex

(AC; Norena and Eggermont, 2003), implicating this phenomenon and

these areas as possible contributors to the perception of phantom sounds.

Interestingly, it does appear that, at least in the early stages, there is still a

peripheral component to the causes of tinnitus, as Mulders and Robertson

(2009) found that hyperactivity in the IC of guinea pigs (GPs) could be

extinguished by silencing cochlear activity within 6 weeks of unilateral

acoustic trauma.

Within certain regions of the auditory system, such as the cortex, different

frequencies are represented in spatially distinct areas along a smoothly

changing gradient from low to high. This organisation of frequencies is

known as tonotopic mapping. Many studies have shown that there is

a reorganisation of these maps following noise exposure (for a review



Chapter 1. General Introduction 3

of these, see Eggermont and Roberts, 2004). Some have suggested

this tonotopic map reorganisation as a putative mechanism for tinnitus

generation (e.g. Muhlnickel et al., 1998). The theory for this mechanism

suggests that reduced input to a particular area of the map, which can

result from a profound hearing loss, causes an over representation of

the frequencies surrounding this area, which along with an increase in

spontaneous firing rates (SFRs) and neural synchrony within this area

may lead to the perception of tinnitus (particularly in the case of tonal

tinnitus). This theory is somewhat disputed (e.g. Langers et al., 2012),

although support for this idea comes from studies showing that tinnitus

is often represented at frequencies near or at the edge of the hearing loss

(Hazell and Jastreboff, 1990). Other studies have seemed to contradict

this, showing that tinnitus can occur in the absence of any hearing deficit

(Muhlau et al., 2006), but it has been proposed that there may still be

a subclinical hearing loss present that is not detected by the audiological

assessment (Langguth et al., 2009). Indeed, when the audiological

test is altered to include frequencies above 8 kHz, people with tinnitus

demonstrate some kind of hearing loss at the higher frequencies (Roberts

et al., 2006a).

There is a suggestion that this cortical map reorganization is a necessary

prerequisite for the development of chronic tinnitus (Rauschecker et al.,

2010), but others propose that this alone may not be sufficient to result

in the perception of the phantom sound (Stolzberg et al., 2011). As a

consequence of the fact that people with hearing loss do not necessarily

develop tinnitus (Lockwood et al., 2002), it is likely that there are

further neural changes required for tinnitus generation. Furthermore,

there is contradictory evidence to the edge frequency theory (see Section
1.4.3), with some patients reporting their tinnitus occurring within the

region of hearing loss (Sereda et al., 2011), so the exact mechanisms

of how this reorganisation may contribute to the perception of tinnitus

are as yet unknown. Ultimately, it appears likely that there will be a

number of inter-related factors that lead to the chronic percept of tinnitus,

including somatosensory and limbic interactions (Rauschecker et al., 2010),

increased SFRs, reorganisation of tonotopic maps and changes in excitatory

and inhibitory connections (Scholl and Wehr, 2008) but it may only be

necessary for a subset of changes to be present in any one case.
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1.1.3 Tinnitus Treatment Considerations
Tinnitus cannot accurately be defined as a homogenous disorder, as patients

exhibit a variety of different sensations and aetiologies (Meikle, 2002). This

is a consideration that needs to be taken into account when developing

standardised methods of clinical diagnoses and also treatment options

(Langguth et al., 2011). For example, some patients find that their tinnitus

can be masked successfully using various stimuli (Hobson et al., 2012).

One type of masking is known as residual inhibition, whereby suppression

of the tinnitus continues for some time after the masker is switched off,

from a period of seconds to minutes (Roberts, 2007). Others, however,

find that their tinnitus gets worse in noise (e.g. Tyler et al., 2008), so

using noise maskers is not a viable treatment option for these individuals.

Another subset of tinnitus sufferers demonstrate the ability to alter the

characteristics of their tinnitus through various somatic manipulations,

such as jaw protrusion (Lockwood et al., 1998), neck contractions (Abel

and Levine, 2004) and cutaneous stimulation (Cacace et al., 1999), thereby

implicating the role of somatosensory interactions in the perception of

tinnitus for these patients. A further subset experience tinnitus when gazing

in certain directions (known as gaze-evoked tinnitus; Coad et al., 2001),

which has been reported to be cured by repetition of gaze movements in

a case study of one individual (Sanchez and Pio, 2007). Considering the

inter-individual variability outlined here, it is likely that there is not going

to be a one-for-all cure, so it has been proposed that creating and defining

subtypes of tinnitus is a necessary step in developing treatment options

(Landgrebe et al., 2010).
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1.2 Overview of the non-pathological auditory
system

In order to discuss the various pathological changes in the auditory system

that may give rise to tinnitus, it is useful to first describe how the ‘normal’

auditory system works. Here I will outline the different pathways of the

auditory system and briefly illustrate their functional relevance. Fig 1.1

provides a basic schematic of the primary auditory pathway, showing the

main ascending connections. There are also many important descending

connections, but for the purposes of brevity the ascending system will be

mainly focused on here. Where possible, examples will be used specifically

for the guinea pig auditory system, as this is the model used in this thesis.

Fig. 1.1: Schematic of the ascending primary auditory pathway. From Ehret
(1997).
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Fig. 1.2: Diagram of the human ear (Flanagan, 1972).

1.2.1 Ear
Fig 1.2 shows the three main peripheral sections of the auditory system -

the outer, middle and inner ear. This is where sound waves, rapid pressure

fluctuations around atmospheric pressure that convey information in the

form of sounds, are first processed. The external auditory meatus (or ‘ear

canal’) is surrounded by folds of cartilage known as the pinna, which is the

visible part of the ear. The corrugated shape of this cartilage helps to direct

sounds into the external auditory meatus whilst attenuating or amplifying

sounds depending on where they are coming from and their frequency, thus

creating differences in level and aiding in sound localisation (Hofman et

al., 1998). Sound energy is transformed at the external/middle ear border

by causing vibration of the tympanic membrane, which in turn produces

movement in three small bones (or ‘ossicles’) located in the middle ear,

known as the malleus, incus and stapes. These bones are essential in

enabling the sound wave to travel to the inner ear, which has a higher

acoustic impedance than air due to the fact that it is filled with fluid.

Without this ‘impedance matching’, much of the acoustic energy would be

reflected away from the inner ear. A large part of this impedance matching

is due to the fact that the tympanic membrane has a larger area than the
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stapes footplate, which means that the force is exerted on a smaller area,

thus concentrating the sound pressure. This process is further aided by the

lever action of the ossicles, which move in a pivot-like motion as a result of

the malleus being longer than the incus.

The middle ear bones move in a lever motion, causing the stapes to

drive into the oval window of the cochlea in a piston-like manner. The

round window moves in opposite direction to the oval window, in order to

compensate for the pressure applied to the incompressible fluid of the inner

ear.

The cochlea is vital for transforming energy from acoustic signals into

electrical neural impulses. It is a bony-walled, snail-like coiled tube,

consisting of three channels - the scala tympani, scala vestibuli and scala

media - separated by two thin membranes, known as the basilar and

Reissner’s membranes (Fig 1.3). The scala tympani and scala vestibuli are

filled with a fluid called perilymph, which has a similar ionic composition

to cerebrospinal fluid and mainly contains sodium (Na+) and chloride ions

(Cl−).

Fig. 1.3: Diagram showing the 3 divisions of the cochlea, along with the dividing
membranes. From Nolte (1993).
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The scala media is filled with potassium (K+) rich fluid called endolymph.

It receives its potassium ions from the stria vascularis. The high levels

of potassium mean that endolymph has much higher positive potential

than perilymph (approximately +80 mV as opposed to +5 mV). When the

transduction channels open, potassium flows into the hair cells and partially

depolarises the negatively charged hair cell. This depolarisation creates a

receptor potential, which increases the likelihood that neural activity will

be propagated from the auditory hair cells (Konishi et al., 1978).

The movement of the stapes against the oval window causes displacement

of the endolymph (the perilymph of the scala vestibuli and scala media is

also displaced), which in turn applies pressure on the basilar membrane

in a wavelike motion. This travelling wave moves from the base to the

apex, with high frequency sounds causing maximal displacement towards

the basal end of the basilar membrane and low frequency sounds causing

maximal displacement towards the apex. This differential movement of

the basilar membrane means that areas are selectively tuned to different

frequencies. This is known as tonotopy, a characteristic which is passed

on to the auditory hair cells and is preserved throughout the ascending

auditory pathway.

The auditory hair cells protrude from the top of the organ of Corti, which

is located in the scala media and sits on the basilar membrane, and move

against the tectorial membrane (Fig 1.4). There are two types of these cells

- inner hair cells (IHCs) and outer hair cells (OHCs).

Fig. 1.4: Representation of the organ of Corti resting on the basilar membrane,
with hair cells highlighted in red. The AN is labelled here as the eighth
cranial nerve (CN VIII). From Nolte (1993).
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The majority of afferent activity is caused by activation of the IHCs

(Spoendlin, 1967). The tectorial membrane moves laterally above the hair

cells, causing motion of the cilia which rest on top of the hair cells. This in

turn opens mechanically-gated ion channels on the IHCs, causing an influx

of K+ ions from the scala media. This influx of K+ ions depolarises the

hair cell, which activates the chemical synapse at its base and causes the

generation of action potentials along the afferents of the spiral ganglion of

the AN. OHCs are embedded in the tectorial membrane and receive most

of the efferent input to the cochlea. They are also active, meaning that they

can amplify the travelling wave, a useful attribute for detecting quieter

sounds. This active process is a result of the OHCs ability to elongate

or contract, thereby pushing or pulling on the basilar membrane, and is

mediated by a motor protein called prestin (for an overview, see Dallos et

al., 2006). When OHCs are largely absent, as seen in patients with severe

hearing impairment, hearing sensitivity is dramatically reduced (Chen et

al., 2008).

1.2.2 Auditory Nerve
The AN (or eighth cranial nerve) enters the cochlea through an area of the

bony cochlear wall known as the modiolus. Consisting of approximately

40000 fibers in humans, this bundle contains two types of neurons with

different functionality. The majority (95%) of neurons are myelinated type

I fibers, which receive afferent input from the IHCs. Each fiber innervates

a single hair cell, whilst each hair cell provides information to a number

of nerve fibers. The rest of the AN fibers are unmyelinated type II, which

innervate the OHCs (Spoendlin, 1967).

1.2.3 Cochlear Nucleus
The cochlear nucleus (CN) is the first structure of the auditory brainstem

(Fig 1.5). It is comprised of three distinct sections - the anteroventral

cochlear nucleus (AVCN), the posteroventral cochlear nucleus (PVCN)

and dorsal cochlear nucleus (DCN). These areas receive uniform input

from the AN and separate this into discrete information which is relayed

to higher auditory structures. Cochlear tonotopy is preserved in each

region, as AN fibers bifurcate into ascending and descending branches to

innervate all three areas. For example, in the DCN, low frequency fibers

terminate ventrally and high frequency fibers terminate dorsally, producing
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a tonotopic gradient from low-to-high organised from ventral-to-dorsal

regions.

The cochlear nucleus contains four distinct primary cell types: bushy

(spherical and globular), stellate, octopus and fusiform. These cells are

prevalent in different subdivisions, for example, fusiform cells are found

only in the DCN and bushy cells in the AVCN. The temporal discharge

patterns in response to auditory stimuli differ significantly between

cell types, thus aiding in the categorisation of cells when performing

electrophysiology (Pfeiffer, 1966). To further aid this categorisation,

frequency response areas (which indicate a cell’s responsiveness to various

frequencies and sound levels) can be obtained and their shapes are different

depending on the cell type (Rhode and Smith, 1986; Stabler et al., 1996).

Fig. 1.5: The three sections of the mammalian cochlear nucleus, with approximate
tonotopic organisation of the DCN labelled. The AN root and its
connections to the various regions are also shown (adapted from Ryugo
and Parks, 2003).
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1.2.4 Superior Olivary Complex
The superior olivary complex (SOC) primarily receives input from the AVCN

and PVCN, via commissural fibers. As it is the first site in the auditory

pathway where significant amounts of acoustic information from the left

and right ears converge, it plays an important role in sound localisation.

The medial superior olive (MSO) is involved in detecting interaural time

differences between the two ears (as sounds arrive at each ear at different

times depending on the location of the stimulus). This aids in localising

sounds on the azimuthal plane and is most sensitive to low frequency

stimuli (Wightman and Kistler, 1992). The lateral superior olive (LSO) is

mainly involved in detecting differences in sound levels (interaural level

differences) and is particularly useful for localising high frequency stimuli

(Park et al., 2004). The SOC projects to a midbrain auditory structure, the

IC, via an axonal tract known as the lateral lemniscus (Kelly et al., 1998).

1.2.5 Inferior Colliculus
The IC receives most of the ascending projections from the brainstem. It

consists of three major sections (Fig 1.6) - the central nucleus (CNIC),

the surrounding dorsal cortex and laterally located external cortex. It

receives bilateral input from both the MSO and LSO. The site at which

most of these afferent inputs terminate is the CNIC, which can be identified

histologically, via its laminar organisation (Malmierca et al., 1995), and

electrophysiologically by its sharply tuned ‘v-shaped’ tuning curves (Aitkin

et al., 1975). Like many of the auditory structures, CNIC demonstrates clear

tonotopic organisation, with low frequencies represented dorsally and high

frequencies ventrally (Clopton and Winfield, 1973; Huang and Fex, 1986).
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Fig. 1.6: The three divisions of the IC of the rat. Abbreviations - CNIC: Central
nucleus of the IC; DC: Dorsal cortex; LC: Lateral cortex. Adapted from
Loftus et al. (2008).

The IC is an important site for decoding a variety of auditory information,

such as complex temporal structure (Keller and Takahashi, 2000) and

sounds that are of particular significance (Casseday and Covey, 1996). IC

neurons respond differentially to sounds of a particular duration, frequency

or amplitude modulation. This mechanism is vital for detecting gaps in

sound and therefore important for understanding a temporally fluctuating

stimulus, such as speech (Gordon-Salant and Fitzgibbons, 1993). The IC

has also recently been shown to be the first site where a mechanism for

detecting infrequent stimuli, known as stimulus-specific adaptation (SSA;

Duque et al., 2012; Malmierca et al., 2009), is evident. SSA comes from

neurons reducing their responsiveness to a particular repeated stimulus

and increasing their firing rate following the detection of a stimulus that is

presented infrequently. This aids in identifying biologically relevant sounds,

such as the sound of a predator approaching.

1.2.6 Medial Geniculate Body
The medial geniculate body (MGB) receives most of its input from the CNIC

(Malmierca et al., 1997), though there are also some direct projections from

the DCN (Anderson et al., 2006). It represents the auditory thalamic relay

from the IC to AC. Histological and electrophysiological examination of the

GP MGB has revealed five subdivisions (Fig 1.7) - the ventral MGB (vMGB),

the dorsolateral and suprageniculate (collectively referred to as the dorsal

MGB), the medial MGB and the shell MGB (Anderson et al., 2007).
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Fig. 1.7: Schematic of the five divisions of the GP MGB. From Anderson et al.
(2007).

Neurons in the vMGB mostly have V-shaped tuning curves and are

tonotopically organised, whereas the other areas do not show these

responses or arrangement. As a result, it is generally believed that

the vMGB is the primary thalamic area responsible for relaying intensity,

frequency and spatial information to the AC (for a review, see McAlpine,

2009).

1.2.7 Auditory Cortex
Fig 1.8 outlines the distinct regions of the GP auditory cortex (AC), which

demonstrates similar organisation to that of other mammals (Redies et

al., 1989). AC is comprised of two core tonotopically organised regions:

Primary AC (AI) and dorsal cortex (DC). There are two other tonotopic

areas: the ventrorostral belt (VRB) and the small field (S) but these appear

to be belt areas.

There are also three secondary belt areas that lack a tonotopic arrangement

and generally prefer noise to tones - dorsocaudal belt (DCB), dorsorostral

belt (DRB) and ventrocaudal belt (VCB). Additionally, a transition zone

(labelled ‘T’ in Fig 1.8) is evident between AI and DC, which does not

follow the tonotopic gradient of either region but does respond well to

tones (Wallace et al., 2000). These areas show differential responses to

stimuli. For example, neurons in DRB respond more strongly to broadband

noise (BBN) than pure tones, while all the other belt areas tend to have

longer latencies to pure tones than the core areas.
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Fig. 1.8: The eight divisions of the GP auditory cortex, with their relative positions
to visual and somatosensory areas. Shading indicates the organisation of
characteristic frequency along isofrequency bands in dorsal cortex and
primary auditory cortex, outlined by the key. See text for abbreviations.
From Wallace et al. (2000).

Attempts have also been made to identify tonotopy in the AC of humans,

using functional magnetic resonance imaging (fMRI) as a measure (e.g.

Langers and van Dijk, 2012), as well as magnetoencephalography (MEG;

Lutkenhoner and Steinstrater, 1998). This has proved more difficult than

in animals, as the invasive recording techniques used in animal models

allow for much greater spatial resolution than any of the human imaging

techniques. As a result, there are disparities in the studies examining

tonotopic mapping in humans. Some indicate three different tonotopic

gradients (Humphries et al., 2010; Langers and van Dijk, 2012), while

another recent study found six different tonotopic gradients (Striem-Amit

et al., 2011). The main point of agreement seems to be that there are

at least 2 areas with different tonotopic gradients, similar to those shown

in other mammals, including the GP. It has recently been highlighted that

these disparities between studies are likely due to varying degrees of spatial

resolutions, as a result of using different imaging techniques (for a review,

see either Baumann et al, 2013 or Saenz and Langers, 2013).
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1.2.8 Generation of Auditory Brainstem Responses
I will briefly describe the generation of auditory brainstem responses

(ABRs), as they are used within this thesis. ABRs are often used in

both clinical and experimental settings as a measure of hearing thresholds

(Moller, 1999). They reflect the synchronous evoked activity at various

levels of the auditory system. In small animals five waves are often defined,

while in humans and other mammals seven waves are present (Zhou et

al., 2006). ABR waves are measured a variety of ways, such as by their

amplitude (as determined by the amplitude change from peak-to-trough),

absolute latencies or interpeak latencies (e.g. Vaney et al., 2011). An

auditory threshold is usually defined as the lowest sound level which elicits

a clear response from a particular wave (wave V in humans; wave IV in

small animals). As this thesis is focused on the GP, I shall briefly describe

ABRs in small animals.

Fig 1.9 illustrates the typical waveform of a GP ABR. It is generally accepted

that fiber tracts within the auditory system generate the major contributions

to the ABR waveform (Rudell, 1987). Wave I of the ABR is commonly

agreed to be a result of the activity of the AN (Wada and Starr, 1983a;

Simha et al., 1988; Melcher and Kiang, 1996; Melcher et al., 1996a;

1996b), while the second wave is thought to be generated by the AVCN

and PVCN (Buchwald and Huang, 1975; Simha et al., 1988). Wave III

is believed to arise from the SOC and medial nucleus of the trapezoid

body, and wave IV from the SOC and lateral lemniscus, i.e., fibers that

project to the IC (Buchwald and Huang, 1975; Popelar et al., 2008; Simha

et al., 1988; Wada and Starr, 1983b). The fifth wave is then thought to

be generated in the IC and lateral lemniscus (Harrison and Palmer, 1984;

Melcher and Kiang, 1996; Melcher et al., 1996a; 1996b; Palmer and

Harrison, 1984; Popelar et al., 2008). Wave IV (which parallels wave V

in humans) is usually the most distinguishable wave in small animals, so it

is this wave that is usually used as the measure of detectability of a signal

(Boettcher, 2002).
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Fig. 1.9: A representative ABR, in response to a 10 kHz tone stimulus presented
at 70 dB SPL. Dotted vertical lines indicate approximate time windows
when each component wave of the ABR occurs (I-V).

1.2.9 Limbic-Auditory Interactions
As well as receiving and processing auditory input, the auditory pathway

has recurrent interactions with the limbic system, the network responsible

for emotional responses (Armony and LeDoux, 2010). Many models of

tinnitus generation and maintenance implicate involvement of the limbic

system, so it is therefore useful to briefly describe the interaction between

the two systems. One main limbic region which can be modulated by

auditory experience is the amygdala (Sah et al., 2003). The limbic

system also has reciprocal connections to the central auditory system,

which can affect neuronal activity and plasticity (Marsh et al., 2002;

Weinberger, 2007). The main auditory input to the amygdala is sent

from MGB and AI (Garrido et al., 2012). These connections terminate

in the lateral amygdala, and a reciprocal connection is sent from the

basal amygdala to the auditory system, thus creating a feedback loop

(Kraus and Canlon, 2012). Such connections are involved in behavioural

tests where a conditioned stimulus (e.g. a brief tone) is paired with an

unconditioned stimulus (e.g. a foot shock). Briefly, the auditory system

processes the conditioned stimulus, whilst the unconditioned stimulus is

processed by the somatosensory system, which also projects to the lateral



Chapter 1. General Introduction 17

amygdala. The central nucleus of the amygdala responds by generating

an emotional response, such as freezing behaviour. Following conditioning,

the tone alone is sufficient to induce the emotional response, due to fear

conditioning mediated by limbic-auditory interactions (Weinberger, 2011).

These connections also explain emotional reactions to music: patients with

grey matter loss in the region of the amygdala show impaired recognition

of emotion within musical scenes (Omar et al., 2011), highlighting that

limbic-auditory interactions are essential for processing sounds that carry

particular meaning.

The amygdala can modulate auditory activity via its connection to the

nucleus accumbens (Salimpoor et al., 2013). This area projects to

the thalamic reticular nucleus (TRN), which provides inhibitory input

to the ascending pathway of the MGB. It has been suggested that this

connection may enable habituation to unwanted stimuli by preventing

cortical activation (Rauschecker et al., 2010). This can be thought of

as an auditory gating mechanism. Reduced activation of this circuit has

been proposed to explain the inability to habituate to chronic tinnitus

(Rauschecker et al., 2010), an idea which will be discussed later on.

1.3 Inducers of Tinnitus
Different inducers of tinnitus will now be discussed in more detail, in

order to provide context to the pathological changes associated with the

condition. Tinnitus can be either transient or chronic. Transient tinnitus has

a near immediate onset following induction and lasts anywhere between a

few seconds to a few days. Chronic tinnitus is defined as lasting more than

6 months and is often more debilitating (Folmer et al., 2004). The most

common cause of both transient and chronic tinnitus is known to be noise

exposure (Axelsson and Prasher, 2000). This inducer can be subdivided

into two different types - occupational and leisure. Occupational noise

exposure involves chronic exposure to sounds of a damaging level within a

work environment. While sound levels within a work environment are now

limited (within the UK, the Control of Noise at Work Regulations 2005 state

that the maximum average exposure allowed is 85 dBA without hearing

protection and 87 dBA if hearing protection is worn), neural changes

associated with tinnitus have been shown to occur in animals following

noise exposure to sound levels falling within this limit (Kaltenbach et
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al., 2005; Pienkowski and Eggermont, 2012). This suggests that further

work is required to determine whether the current standards for noise

exposure within a work environment are suitable for protecting hearing

and preventing tinnitus.

The other main type of noise exposure - leisure noise - has become more

of a concern with the growing popularity of personal music players (PMPs).

A recent study of high school students in Canada (Lévesque et al., 2009)

found that the mean listening level to PMPs was 82.59 dBA, with some

reaching as high as 110.34 dBA. They also found a much higher prevalence

of tinnitus in students using these devices at high levels (> 80 dBA)

compared to those listening to levels ≤ 80 dBA, similar to what others have

found (e.g. Meyer-Bisch, 1996). As a result of such research, the Scientific

Committee on Emerging and Newly Identified Health Risks (SCENIHR,

2008) proposed a limit of 85 dBA to all devices sold in the European Union

with music playback capability, which came into effect in February 2013,

although this limit may be overridden by the user. Leisure noise exposure,

however, is not simply limited to PMPs. Rock concerts, night clubs and

sporting events have all been linked to increased incidence of tinnitus,

most likely due to the high levels of noise exposure that accompany them

(Bogoch et al., 2005; Gunderson et al., 1997; Hodgetts and Liu, 2006; Yassi

et al., 1993). One method of preventing leisure noise-induced tinnitus is

to wear hearing protection. This is, however, rarely used by young adults

participating in these activities, perhaps due to the social stigma it carries

(Gilles et al., 2012). Ultimately, further public knowledge and changing of

social attitudes may be required to prevent hearing damage from leisure

noise.

Certain ototoxic drugs have been shown to reliably induce transient tinnitus

in both humans and animals. The most common of these is sodium

salicylate (for a review, see Stolzberg et al., 2012), the active ingredient

in aspirin. In a therapeutic setting, this drug has anti-inflammatory and

analgesic effects, as well as aiding in the prevention of certain types

of cancer (Paterson and Lawrence, 2001). At high doses, however, it

can reliably induce reversible tinnitus in humans (Mongan et al., 1973;

Pedersen, 1974) and behavioural evidence of tinnitus in animals (Jastreboff

et al., 1988; Lobarinas et al., 2006). In fact, therapeutic dosing of salicylate

has historically been performed using the clinical adage, ‘Push to tinnitus,

then back off slightly’, though this is not always recommended, particularly
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in patients with a pre-existing hearing loss where such a strategy is not

effective (Mongan et al., 1973). Other drugs which have been shown to

induce transient tinnitus include cisplatin (Rachel et al., 2002) and quinine

(Ralli et al., 2010). As all these drugs induce a type of tinnitus which is

reversible, their clinical significance is less relevant than noise exposure,

which is often associated with chronic tinnitus.

Finally, tinnitus has been shown to occur with age-related hearing loss,

known as presbycusis. There is strong evidence for increased incidence

of tinnitus with age (Shargorodsky et al., 2010). Importantly, Schlee

et al. (2011) highlight that the level of tinnitus distress is strongly

associated with the age of onset: patients who develop tinnitus earlier

in life are significantly less affected by the emotional component of the

tinnitus than those who have a late onset of tinnitus. The authors

argue that this decreased acceptance of tinnitus may be related to the

reduction in neuroplasticity seen with advancing age. As this was the first

study examining tinnitus-related distress in relation to the age of tinnitus

onset, clearly more work is required to determine the neurophysiological

mechanisms behind the age of onset as an influencing factor in the distress

caused by tinnitus.

1.4 Pathological Changes Following Acoustic
Trauma

1.4.1 Damage to the Cochlea and AN
Whilst the middle ear reflex can act to protect against damage from loud

sounds, this protection is minimal (Moller, 2011). Ultimately, when sounds

are too loud for a prolonged period of time, there is damage to the

auditory periphery and compensatory changes within the central auditory

system. The IHCs and OHCs are both damaged by acoustic over-exposure,

with some completely abolished in profound hearing loss. Excitotoxicity

can cause injury to the afferent dendrites of the AN (as a result of

increased glutamate release from the IHCs), with this proposed as the main

mechanism behind reduced input to the auditory system (Hakuba et al.,

2000). In the OHCs, it has been suggested that the motility of the stereocilia

is strongly affected with sub-lethal damage (Liberman and Dodds, 1984).

This reduction in motility has been measured by observing reduced cochlear
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microphonics, assumed to be primarily a measure of the receptor potentials

of the OHCs (Santarelli et al., 2006), following prolonged noise exposure in

chinchillas (Ferraro et al., 1981). Reduced OHC function has been proposed

to be caused by an increased concentration of calcium ions (Ca2+) in OHCs,

which may also have excitotoxic effects (Fridberger et al., 1998). The

primary effect of degraded IHC and OHC function, or complete loss of a

section of hair cells, is reduced sensitivity of hearing (Ulfendahl and Flock,

1998).

1.4.2 Changes in SFRs and Synchronicity
Reduced input to the auditory system may induce central changes as a

result of maladaptive compensatory mechanisms (Brozoski et al., 2012).

Changes in the SFR of auditory-responsive neurons have been observed at

various levels of the auditory system following acoustic trauma. Decreases

in the SFR of AN fibers have been observed immediately after acoustic

overexposure (Norena and Eggermont, 2003), along with a permanent

loss of AN fibers (Furman et al., 2013). Conversely, increases in SFR are

well documented for the DCN (Brozoski and Bauer, 2005; Brozoski et al.,

2002; Kaltenbach et al., 2004; Zhang et al., 2006), IC (Bauer et al., 2008;

Mulders and Robertson, 2009; Mulders et al., 2011) and AC (Engineer et

al., 2011; Norena and Eggermont, 2005). While some of these studies

did use behavioural tests to identify tinnitus in these animals, an essential

prerequisite for linking pathological changes following noise exposure with

the condition, none of them examined animals that either only exhibited

a significant hearing deficit following noise exposure or simply did not

develop tinnitus. This is an important aspect, as there is some ambiguity as

to which changes may relate to tinnitus and which may simply be a result

of hearing loss.

Based on the evidence that increases in SFR are seen in tinnitus animals

as a result of reduced afferent input, Schaette and McAlpine (2011)

measured ABRs in tinnitus patients, as well as in a control hearing-matched

population. They demonstrated a reduction in the amplitude of Wave I in

tinnitus patients compared to controls, indicating some degree of reduced

hearing sensitivity (in the absence of a discernible hearing loss as identified

by an audiogram). Contrastingly, the amplitudes of wave V were the same

as controls in these patients, which equated to an increase in the ratio

between Wave I and Wave V in tinnitus subjects. They attributed this to
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an increase in central gain, reflecting a compensatory neural mechanism

for some degree of loss of input from the periphery, suggesting that this

may contribute to the tinnitus percept.

Clearly this model is over-simplistic and does not account for other factors

that may affect tinnitus, such as the limbic component or somatosensory

input, but it is nevertheless an interesting and compelling theory. It is even

more interesting when combined with other theories of tinnitus generation,

including Rauschecker’s limbic gating mechanism theory (Rauschecker

et al., 2010), whereby reduced activation of TRN (through abnormally

functioning limbic circuits) may reduce inhibition to the MGB and allow

this increased activity to reach cortex, resulting in a phantom perception of

sound. The idea of combining these theories to create a more cohesive

explanation of tinnitus generation will be discussed further in a later

chapter. One cause of the increased excitation outlined here may be a

reduction in inhibitory input at certain levels of the auditory system, as the

result of an acoustic insult (Gerken, 1996; Roberts et al., 2010). Reduced

inhibition (along with increased excitation) has been observed following

peripheral deafferentation in the auditory system, at the level of the DCN

(Kaltenbach and Godfrey, 2008), IC (Caspary et al., 2008; Dong et al.,

2010; Syka, 2002) and AC (Norena et al., 2003; Scholl and Wehr, 2008),

similar to what has been documented in other sensory systems following

the loss of peripheral input, including somatosensory (Rasmusson and

Turnbull, 1983) and visual cortices (Schmid et al., 1995). Furthermore,

Middleton et al. (2011) demonstrated hyperactivity in the DCN of mice

with behavioural evidence of tinnitus. They attributed this hyperactivity

to a decrease in GABAergic inhibition, as an increase in excitation was

observed when GABAergic (but not glycinergic) antagonists were applied

to the brain slices of tinnitus animals. Combined with an increased

strengthening in glutamate transmission observed following noise exposure,

this could feasibly result in hyperactivity (Eggermont, 2005). This idea of

reduced inhibition is further supported by an age-related down regulation

of inhibition which has been reported (Caspary et al., 2008; Frisina, 2010),

perhaps helping to explain the increased incidence of tinnitus with age

(Shargorodsky et al., 2010).

Changes following noise exposure are not simply restricted to increases

in SFR. There is a reasonable body of evidence suggesting that increases

in neural synchrony at the level of the cortex may also contribute to
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the phantom percept of tinnitus following loss of peripheral input (e.g.

Norena and Eggermont, 2003; Seki and Eggermont, 2003). This refers

to temporally synchronous activity, the result of multiple neurons firing

at the same time, which has been demonstrated to increase around the

region of any hearing loss (Eggermont, 2007). The animal literature

suggesting neural synchrony as a contributor to tinnitus is supported

by human research demonstrating increased oscillatory brain activity in

patients with tinnitus (Weisz et al., 2007). This oscillatory activity reflects

the synchronous firing of neural populations (Singer, 1999). As all the

previous studies examining neural synchrony have been performed in

cortical structures, it is unclear whether changes in synchrony observed in

the cortex will be evident subcortically. It is possible that increases in neural

synchrony as observed in the cortex may reflect a compensatory mechanism

for desynchronous activity received from ascending, subcortical pathways

(Shulman and Goldstein, 2010).

1.4.3 Reorganisation of the Auditory System
Following loss of peripheral input, reorganisation of the

tonotopic/somatotopic maps has been demonstrated in both auditory

areas (Harrison et al., 1998) and somatosensory areas (Elbert et al., 1994;

Flor et al., 1995; Flor et al., 1998; Merzenich et al., 1984). In the latter,

this reorganisation has been attributed as a major cause of phantom

limb sensation, whereby pain or feelings of sensitivity are felt in the

area where a limb once was following amputation (Ramachandran and

Hirstein, 1998), a phenomenon which clearly parallels the perception of

tinnitus following peripheral loss. A considerable amount of research into

tonotopic reorganisation as a result of noise exposure has been performed

on animals, in the CNIC (Irvine et al., 2003; Snyder et al., 2008; Snyder

et al., 2000), vMGB (Kamke et al., 2003) and AC (Eggermont and Komiya,

2000; Norena and Eggermont, 2005; Rajan et al., 1993; Robertson and

Irvine, 1989). The suggested mechanism behind this reorganisation is

that loss of input to a particular area results in a compensatory plastic

change within the central auditory system, whereby neurons that once

responded to frequencies within the dysfunctional region of the cochlea

begin responding to the frequencies represented in surrounding areas

(Eggermont and Roberts, 2004; Pienkowski and Eggermont, 2011). This

observation of edge-frequency reorganisation is outlined by Fig 1.10.
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Fig. 1.10: Reorganisation of tonotopic maps. Dotted lines indicate reduced input
from the cochlea, which induces homeostatic mechanisms that result in
an overrepresentation of the frequencies surrounding the hearing loss.
From Eggermont and Roberts (2004).

Based on these findings, if cortical reorganisation was solely responsible

for the perception of tinnitus, one would expect the dominant pitch of a

person’s tinnitus to correspond to the frequency at the edge of the hearing

loss, rather than falling within the hearing loss region. While this is

sometimes true (Konig et al., 2006; Moore et al., 2010), there are many

incidences where the tinnitus pitch often falls within the hearing loss region

(Henry and Meikle, 1999; Norena et al., 2002; Roberts et al., 2006b; Sereda

et al., 2011) thus questioning the validity of the edge-frequency hypothesis

of tinnitus.

Muhlnickel et al. (1998) published one of the earliest studies to indicate

that reorganisation of tonotopic maps may relate to tinnitus. Using

magnetoencephalography they demonstrated a clear shift in the cortical

representation of the tinnitus frequency into a surrounding tonotopic area

in tinnitus patients. Since then, there has been much debate as to

whether this organisation is actually the cause of the tinnitus percept,

or if there are other changes that take place concomitantly that might

provide a mechanism for tinnitus (such as increased neural synchrony or

hyperactivity). Using fMRI, Langers et al. (2012) did not find any evidence
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of tonotopic map reorganisation in tinnitus patients with normal hearing

or mild hearing loss. A possible caveat of this study, however, is that the

hearing loss may not have been severe enough to cause dramatic cortical

reorganisation, or the imaging technique may not have been sensitive

enough to detect slight changes associated with the condition. Conversely,

Engineer et al. (2011) demonstrated that reversing this reorganisation in

rats (through stimulation of the vagus nerve combined with tone-pairing)

led to elimination of behavioural evidence of tinnitus. However, they

also showed a reduction in other correlates of tinnitus (such as increased

hyperactivity), so it is not clear whether a reversal of the reorganisation of

the tonotopic map or the reduction of another tinnitus correlate may have

caused the cessation of behavioural evidence of tinnitus.

Interestingly, Rajan and Irvine (1996) suggest that a steep hearing loss of

~50 dB per octave is required for tonotopic map reorganisation, based

on the fact that they were unable to demonstrate reorganisation in cats

with gradually sloping hearing losses, which would explain the lack of

cortical reorganisation observed in subjects with normal hearing or a mild

hearing loss (Langers et al., 2012). However, more recent studies have

indicated that sounds of only a moderate sound pressure level are sufficient

to produce tonotopic map reorganisation (Pienkowski and Eggermont,

2009; Pienkowski and Eggermont, 2010a; 2010b), although it is unclear

whether these plastic changes caused tinnitus, as no behavioural tests were

performed. Ultimately, it appears that tonotopic map reorganisation may be

a necessary but not sufficient condition for tinnitus perception (Elgoyhen et

al., 2012; Norena and Eggermont, 2003), though clearly further work is

required to elucidate precisely how this reorganisation may contribute to

the phantom perception of tinnitus.

1.5 Behavioural Models of Tinnitus
It is essential to develop robust animal models of tinnitus to allow research

into the condition, as the invasive recording techniques that can be

used in an animal model allow researchers to track changes following

noise exposure and allow rigorous testing of various drug manipulations

(Kaltenbach, 2011). Until the late 1980s, progress in tinnitus research

was slow. The lack of validated animal models of tinnitus is thought to

have been a major factor in the slow progress (Shaikh, 2012). Jastreboff
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et al. (1988) developed the first behavioural test to enable verification

of the presence of tinnitus. By pairing electric shocks (an unconditioned

stimulus) with the onset of periods of silence (conditioned stimulus), they

trained water-deprived rats to lick from a spout only when continuous

noise was present. When the unconditioned stimulus was removed and

after administering salicylate to an experimental group, the animals were

assumed to have tinnitus if they ceased the trained behavioural response

quicker than control animals. There have since been slight variations on

this method (e.g. Bauer and Brozoski, 2001; Heffner and Harrington,

2002), but for a long time this was the most common behavioural test for

tinnitus in animals. Whilst this method does seem effective for detecting

the presence of tinnitus, it has some drawbacks. Firstly, it is very time

consuming, as it takes weeks to condition the animals to only lick during

sound. Also, as it only measures the rate at which the conditioned

response extinguishes, it doesn’t allow the tracking of tinnitus over time.

Finally, it requires attention and short-term memory resources, factors

which can be heavily affected by various drugs and so restricts the types of

manipulations that can be researched into using this method. Nevertheless,

the development of this model formed the basis for research into the

subjective condition of tinnitus.

Turner et al. (2006) overcame many of these problems by developing a

simple test in rats which relies on a reflex, known as the whole-body startle.

When an animal hears a startling sound, they contract their muscles in

response. Muscles involved include the leg extensors which are involved in

preparation for flight and can be measured by the animal pushing against

the floor. Turner et al.’s (2006) test exploited the reduction of this response

by the presentation of a gap in continuous noise just before the startle.

This paradigm was based on the phenomenon of prepulse inhibition (PPI),

whereby the startling stimulus is preceded by a quieter pulse as opposed

to a gap, which also causes a diminished startle response (Hoffman and

Searle, 1965). Turner et al. (2006) hypothesised that, following noise

exposure, animals that were experiencing tinnitus would show deficits in

gap detection when the frequency of the background noise was similar to

that of their tinnitus, as the tinnitus would effectively ‘play over’ the gap

and therefore cause reduced inhibition of the startle reflex (Fig 1.11) .
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Fig. 1.11: Schematic of the gap detection test, adapted from Turner and Parrish
(2008). A startling pulse in continuous background noise elicits a startle
reaction (A). When a gap (50 ms) is presented before the startling pulse,
this reduces the amplitude of the startle response (B). When an animal
is experiencing tinnitus, it will have difficulty detecting the gap, as this
will be partially filled in by the tinnitus, and will show less inhibition of
the startle response (C).

Using this method, Turner et al. (2006) found that rats exposed to loud

noise showed significantly reduced inhibition of the startle reflex only when

the continuous noise was centred around 10 kHz, suggesting that the

animals might be experiencing tinnitus within this frequency region. They

also measured ABRs in the same animals to test hearing thresholds and see

whether or not hearing loss could account for this deficit. The ABRs showed

that hearing for most animals recovered, thereby ruling out hearing loss as a

factor for diminished gap detection and leaving the researchers able to infer

that the animals were experiencing tinnitus around the 10 kHz frequency.

Where the ABRs did not recover, a further deficit in gap detection ability

was seen at the 16 kHz frequency, thereby implicating hearing loss as the

cause of the deficit in this case (see Fig 1.12). The test was further validated

by using Bauer and Brozoski’s (2001) operant conditioning method of

behavioural testing.

There are a number of benefits in using Turner et al.’s (2006) gap detection

paradigm as a behavioural test for tinnitus. One key advantage is that it

relies on an unconscious and innate reflex, which means that no lengthy

or complex training is required. This also means that there are no memory

or attentional demands, so drug manipulations can be used without having
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to consider the cognitive effects that may affect performance. Furthermore,

the factors that can affect this response, as well as the neural circuitry that

mediates it, are well researched (Swerdlow et al., 2001). For example,

the length of the gap and the delay between gap and startling stimulus

can change the amount of startle response reduction (Leitner et al., 1993),

as can particular drugs (Davis et al., 1993). Another benefit is that it

is possible to repeat this test on many occasions in one animal, as it

doesn’t require the extinction of a particular behaviour. This enables

the observation of the development of tinnitus over time (for instance,

Turner et al. demonstrated that tinnitus did not develop until 8-9 weeks

post-trauma).

Fig. 1.12: The relationship between gap detection and ABRs following noise
exposure. This highlights that gap detection deficits were present at the
10 kHz background frequency regardless of whether ABRs recovered. A
further deficit was seen for the 16 kHz frequency in rats where ABRs did
not recover. Asterisks indicate a significant difference in gap-induced
PPI at that frequency. Adapted from Turner et al. (2006).
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Although a number of studies have demonstrated whole-body startle PPI

deficits in rats, only two studies have thus far used the method for

measuring deficits in GPs (Dehmel et al., 2012a; 2012b). GPs are used

in auditory research because they show relatively similar audiograms and

tuning curves to humans (albeit their high-frequency hearing is better and

their audible range is larger), meaning that they are well-suited to make

cross-species inferences from data (Harrison et al., 1981). The problem is

that they are not very active animals when required to perform behavioural

tasks, possibly due to a supposedly natural resistance to authority or control

(Heffner et al., 1971). In fact, it has recently been suggested that aversive

and stressful stimuli (e.g. electric foot shocks) are essential for training

GPs (Agterberg et al., 2010). Further to this, our early trials suggested

that they quickly habituated to the startle and often didn’t respond, despite

increasing the volume of the startle eliciting stimulus. As a result of this,

we developed a similar yet novel test using another startle response, known

as the Preyer reflex (Bohmer, 1988).

The Preyer reflex is a flexion of the pinnae in response to a startling

stimulus. Often used as a gross measure of hearing in rodents (Jero et

al., 2001), the parameters that can modulate this response have been well

researched and it has been shown to be affected by PPI (Cassella and Davis,

1986). The neural circuitry mediating this reflex has also been defined,

mainly involving the cochlear nucleus, SOC and the IC in the auditory

system, as well as areas of the reticular nucleus and facial motor nuclei

(Li and Frost, 1996). These anatomical pathways are simple and form

a useful basis for observing cellular and behavioural changes following

various manipulations (Cassella and Davis, 1986). As the pinna response

requires less muscle movement and exertion of energy, it was hypothesised

that the GPs will show strong movements over a longer period than they

do for the whole-body startle, thus presenting the Preyer reflex as a more

reliable behavioural test for tinnitus in this species.
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1.6 Aims of this Thesis
This thesis will document a novel development of Turner et al’s (2006) gap

detection test for use in GPs, using the Preyer reflex as the startle measure,

where this behavioural test was used to confirm the presence of tinnitus in

GPs. Recordings of SFRs were made in the IC, a midbrain auditory structure,

to determine if there are differences between animals with tinnitus and

those without following acoustic over-exposure. ABRs were analysed for

changes in latency or amplitude in tinnitus and no-tinnitus animals, as

changes have recently been demonstrated in tinnitus animals and also

humans (Dehmel et al., 2012a; Gu et al., 2012; Schaette and McAlpine,

2011). Finally, neural recordings of gap detection ability were performed

to establish whether changes seen in the behavioural test directly related

to tinnitus or were merely some form of abnormal temporal processing

occurring as a result of noise exposure.





CHAPTER 2

General Methods

2.1 Animals
Experiments were conducted on a total of 51 male and female pigmented

GPs from an in-house colony. The animals weighed 300-500g at onset of

behavioural testing. GPs were group-housed on a 12: 12 h light: dark cycle,

and food and water were freely available. All procedures were carried

out in accordance with the Animals (Scientific Procedures) Act 1986, UK

and the approval of the ethical review committee at the University of

Nottingham, UK.

2.2 Behavioural Methods
Here I shall describe the methods for behavioural testing common to all

the experiments performed within this thesis. Any methodological details

which are specific to a particular experiment will be included within the

relevant chapter.

2.2.1 Measuring Whole-Body Startle (WBS)
The ability of a GP to detect a gap in background noise - and consequently

produce PPI - was initially assessed by quantifying whole-body movement

in response to the startling stimulus. GPs were placed in a wire cage

(310 mm x 155 mm x 155 mm) on a custom-made startle platform in

a sound proof booth; GPs were not restrained and were free to move

around the cage. The startle platform was connected to a load-cell (3

kg capacity; Model 1022, Vishay Tedea-Huntleigh, Basingstoke, UK) to

measure the downward force applied to the platform following a startling

31
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acoustic stimulus. The output from the load-cell was amplified by a factor

of 1000 and recorded in Adobe Audition (Adobe Systems Incorporated, San

Jose, CA) via a Tascam US-122 external sound card (44.1 kHz sampling rate,

16-bit resolution; TEAC Professional Division, USA). Synchronisation pulses

were recorded simultaneously with the signal from the load-cell; pulses of

different size denoted either a ‘gap’ or ‘no gap’ presentation. The signal was

low-pass filtered at 200 Hz post-hoc.

2.2.2 Preyer Reflex
In addition to measuring the WBS response, a motion tracking camera

system was used to monitor flexion of the pinna (Fig 2.1). The motion

tracking system (Vicon Motion Systems, Oxford, UK) consisted of four

infrared cameras. A reflective marker (4 mm diameter) was attached

to each pinna using cyanoacrylate adhesive (Fig 2.2), and an additional

marker was attached to a central point to determine the orientation of the

animal. In initial trials, the central marker was place in middle of the back

- in later trials, the centre of the head was used as a central reference.

Fig. 2.1: The behavioural test setup, using motion tracking cameras and a startle
platform to measure both reflexes.
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Fig. 2.2: A photograph showing the position of the reflective markers when fixed
to the pinnae. Arrows indicate the direction of movement of the pinna in
response to a startling auditory stimulus.

The motion tracking system used these markers to triangulate the position

of the ears, and subsequently to track pinna movement during the

presentation of startling stimuli. In order to track movement effectively,

the system requires a minimum of two cameras detecting marker positions.

The Vicon system was calibrated at 2-3 week intervals to ensure that the

motion tracking cameras were able to correctly establish the positions of

the markers; this involved using a static object (a flat calibration object

with four reflective markers attached) to determine the lowest vertical

level of the platform and a dynamic object (a t-shaped wand with two

reflective markers attached) to define the range of movement. Triangulated

marker positions were recorded at a sampling rate of 200 Hz using Vicon

Workspace software and after each trial raw data (x, y, and z coordinates

for each marker over the time-course of a trial) were exported to Matlab®

(R2009b, MathWorks, MA, USA) for analysis.

2.2.3 Auditory Stimuli for Behavioural Testing
Auditory stimuli were standard 16-bit digital waveform files (.wav)

files using Adobe Audition and presented through a single 25 mm

loudspeaker (Peerless DX25, Tymphany, Hong Kong), via the Vicon motion

tracking software to enable synchronisation of the onset of recording with

presentation of auditory stimuli. Sound pressure level calibration was

performed using a ½ inch free-field microphone (Brüel & Kjær Model 4165)
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calibrated with a Brüel & Kjær Type 42 Sound Level Calibrator. The speaker

was positioned at 18.5 cm above the startle platform and aligned with the

front of the cage, on its midline. The position of the GP relative to the

speaker did change between, and often within, trials because the animals

were not restrained. Consequently, sound levels at the animal were not

always constant.

The gap detection method of Turner et al. (2006) requires a continuous

background noise; in this thesis, the background noise comprised either

narrowband noise (2 kHz bandwidth) centred at 5, 9, 13 or 17 kHz,

or broadband noise. Startling stimuli were broadband noise bursts (20

ms; rise/fall time of 1 ms). A single trial consisted of 10 presentations

of the startle stimulus preceded by a gap, and 10 presentations without

a gap (randomised order of presentation), delivered sequentially for a

given background noise condition. The inter-stimulus interval (ISI) was

optimised by pilot experiments to 15 or 24 seconds, leading to a single

trial taking around 6 minutes and 30 seconds. The background noise was

not switched off (apart from during the prepulse gap presentation) during

a trial. A gap duration of 50 ms (rise/fall time of 2 ms) and a delay of

100 ms between the gap onset and the startle stimulus onset were selected

for all GPs included in the present study. Previous work shows that the

size of the WBS response is susceptible to variations in both gap duration

and delay between the gap and startling stimulus; the values selected in

this study were demonstrated to be optimal for maximising gap detection

(Friedman et al., 2004; Leitner et al., 1993). In a single testing session,

each background noise condition was presented once, in a randomised

order, with ~2 min of silence between each trial. In pilot experiments, the

startle stimulus was presented at either 105 or 117 dB SPL, in combination

with background noise delivered at 70 dB SPL. In the main experiment the

levels were chosen optimally for each GP using a sound level-dependency

test (SLDT).

2.2.4 Sound Level-Dependency Test (SLDT)
To avoid saturation of whole-body or Preyer responses (whereby the sound

is too loud to be inhibited by a prepulse), or habituation (whereby the

sound is too quiet and the startle response is quickly diminished), an

SLDT protocol was devised by which to best match the sound level of the

background and startle stimuli to achieve optimal gap detection. To do
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this, a number of combinations of startle sound levels (95, 100, or 105 dB

SPL) and narrowband background noise (4-6 kHz) sound levels (55, 60, or

70 dB SPL) were presented, and PPI quantified. Narrowband background

noise was selected for the SLDT, as it was found in earlier experiments

that less PPI was elicited when presenting narrowband background noise,

compared with BBN, and this was consistent with previous data from

others (Turner and Parrish, 2008). The startle/background sound levels

for optimal gap detection were selected based on the combination that

produced the greatest magnitude of startle response and largest amount

of PPI for each individual animal.

Each GP included in all experiments (other than pilot testing) was subjected

to the SLDT, prior to commencing baseline testing. The introduction

of the SLDT served a dual purpose: Firstly, determining whether GPs

exhibited significant PPI enabled us to discard animals that did not, before

undertaking time-consuming baseline testing. Secondly, by optimising gap

detection at this stage, the probability of retaining robust PPI throughout

the duration of behavioural testing was increased. SLDT, as a precursor

to extended measurement of PPI, is important as the magnitude of the

startle response can significantly decrease after noise exposure. This is

more than likely due to a reduced ability to detect the startle-eliciting

stimulus (Longenecker and Galazyuk, 2011). However, it should be noted

that - owing to the improved reliability of detecting a sustained Preyer reflex

(with consistently higher signal-to-noise ratios: see Section 3.1.2) over WBS

in our pilot experiments - the SLDT focussed on determining optimal sound

levels for the Preyer reflex. As a result, the levels for these experiments may

have been suboptimal for the simultaneously-measured startle response.

2.2.5 Comparing PPI of WBS and Preyer Reflexes
Gap detection was assessed in 12 GPs prior to any tinnitus induction, using

both Preyer and WBS reflexes, and the data obtained for each GP examined

for robust and consistent evidence of PPI (Section 3.2). These GPs were first

subjected to the SLDT, before undergoing testing sessions over a period of

two weeks (minimum of three and a maximum of six sessions). Based

on data acquired in our initial pilot experiments (see Section 3.1), an ISI

of either 15 or 24s (necessary to prevent short-term habituation) and a

background noise bandwidth of 2 kHz, were used as optimal values for

maintaining reliable startle responses and PPI.
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2.2.6 Analysis of Behavioural Data
Raw data, encompassing x, y and z coordinates for each of the

markers, were exported from the Vicon motion tracking software into

comma-separated value (.csv) files. Preyer reflex data were then analysed

using custom-written Matlab® software. From these, the absolute positions

and Euclidean distance between the markers were calculated. The centre

point marker was not used for analysis; this marker was required solely for

the purpose of identifying the orientation of left and right pinna markers.

Data exported from Vicon were then matched to synchronisation pulses

(square waves that marked where each startle pulse occurred and whether

there was a gap preceding) included in the sound files. Each individual

startle response was plotted to enable manual adjustments for an occasional

computer lag (caused by Vicon) between the synchronisation pulse and the

sound presentation (up to 1s) - any lag that was present simply meant that

all the data were shifted by a fixed amount (lags did not vary throughout

a trial). In some trials, marker tracking was disrupted by GP movement

occluding the markers from the camera field-of-view. Consequently, the

analysis software was designed to remove startle presentations in which

occlusion errors (frames during which the markers were not visible)

occurred during the 500 ms recording epoch, to avoid distorting the data.

The magnitude of the Preyer reflex was calculated for all error-free trials

as pinna displacement (change in peak-to-peak distance between right and

left pinnae).

The WBS reflex was quantified as the root mean squared (RMS) amplitude

of the startle-evoked response (as measured by the load cell) divided by

the RMS amplitude immediately prior to presentation of a startle to give

an ‘amplitude ratio’ value (epochs for calculating the RMS values were 150

ms). This accounted for spontaneous movement on the platform and the

RMS was used for this reflex as a result of pilot trials highlighting poorer

SNR of the WBS (and therefore a less detectable signal). The RMS of the

startle evoked response was calculated from 50 ms to 200 ms after the

startling stimulus, i.e., the time during which the WBS occurred, in order

to avoid any background noise confounding the signal.

Outliers for both Preyer and WBS reflexes greater than two standard

deviations from the mean were removed. For each background frequency,

the mean displacement (Preyer reflex) and mean amplitude ratio (WBS) for
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‘gap’ and ‘no-gap’ startle data (10 startle presentations for each condition,

per trial) was calculated. A percentage difference between ‘gap’ and

‘no-gap’ data was then calculated and PPI was expressed as a percentage

decrease in response when a gap was presented, compared with the

‘no-gap’ condition. Data from all sessions were pooled and the statistical

significance of PPI was determined using a Wilcoxon rank-sum test to a

95% confidence rating for each GP at each background frequency. Finally,

data from all GPs were pooled according to background noise condition

and statistical significance was compared for each reflex, with a two-way

ANOVA and Bonferroni post-hoc analysis. The variability of PPI for each

reflex was assessed with a Coefficient of Variance test.

2.3 Induction of Tinnitus

2.3.1 Sodium Salicylate
The effects of sodium salicylate on PPI of the Preyer reflex and WBS

were investigated in a subset of GPs (n = 4). Mean baseline PPI was

assessed in each GP (minimum three sessions / maximum six sessions

over two weeks), prior to administration of sodium salicylate (350 mg

kg−1; i.p.) dissolved in saline. Behavioural evidence of tinnitus and

neurophysiological effects of salicylate, when administered at this dose,

have been demonstrated previously in GPs (Norena et al., 2010). PPI was

subsequently measured at 2 h and 5 h post-injection, and again at 72 h

to establish whether PPI had recovered to baseline levels. Data from all

animals were pooled and the effects of salicylate on the Preyer and WBS

responses were assessed statistically for each background noise condition at

each time point with a two-way ANOVA and Bonferroni post-hoc test. It has

previously been demonstrated that the significant decrease in amplitude

of the WBS following noise exposure, owing to reductions in hearing

thresholds, may render changes in PPI difficult to interpret (Lobarinas et al.,

2013). To account for this in our interpretation, raw amplitudes for both

reflexes were analysed before and 2 h following sodium salicylate injection.
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Fig. 2.3: The experimental timeline for noise-exposed GPs. Baseline behavioural
testing was performed during the first two weeks prior to noise exposure.
ABRs were collected immediately before and after noise exposure. GPs
were then retested for evidence of tinnitus at weeks 9 and 10 (7 and 8
weeks post-exposure). ABRs were repeated to assess hearing loss and IC
recordings were then performed.

2.3.2 Noise Exposure and ABRs
The timeline for baseline behavioural testing, subsequent noise exposure,

behavioural assessment of tinnitus, ABR recording and IC neurophysiology

is illustrated in Fig 2.3. Baseline PPI of the Preyer reflex was measured

in each GP over a two-week period (minimum of three and a maximum

of six testing sessions). GPs that did not exhibit significant PPI in all

background noise frequency conditions were excluded from the study - this

was usually no more than one in five of the GPs tested. Following baseline

data collection, GPs (n = 24) were unilaterally exposed to loud noise, in

order to trigger the onset of tinnitus pathology - 12 of these animals were

also used in Comparing PPI of WBS and Preyer reflexes (see Section 3.2).

For the noise exposure and ABR measurements GPs were anaesthetised with

Ketamine (50 mg kg−1, i.p.) and Xylazine (10 mg kg−1, i.p.), supplemented

with further administrations of a mixture of Ketamine and Xylazine, in a

ratio of 15:2 (i.m.), throughout the procedure. Core body temperature

was monitored throughout and maintained at 38◦C ± 0.5◦C using rectal

probe linked with a homeothermic heating pad (Harvard Apparatus Ltd.,

Edenbridge, UK). ABRs were recorded using custom in-house software prior

to and immediately after noise exposure to determine hearing thresholds.

Once anaesthetised, hypodermic needles were inserted through the skin

to act as recording electrodes over the right and left mastoids, and a

reference needle inserted at the vertex point. ABR recording electrodes

were connected via a Tucker Davis Technologies (TDT) Medusa headstage

amplifier (Alachua, FL, USA) to a TDT System 3 interface and checks were
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performed to confirm that impedances were low. If impedances were

too high, the recording needles were replaced and moved slightly until

satisfactory impedances were obtained. Auditory stimuli for ABRs were

presented binaurally via 25 mm loud speakers (Peerless DX25). In order

to maintain a closed sound system, polyethylene tubes (diameter of 20

mm) were connected to the speakers and placed around each ear to form

a seal (Fig 2.4). GPs were placed inside a sound-attenuating chamber and

remained there for the duration of the ABR recording and acoustic trauma.

The door to the chamber was opened periodically to check for areflexia and

administer anaesthetic as required.

Fig. 2.4: The circumaural speaker arrangement for noise exposure and ABR
recording. The seal created by the speaker tubes, combined with cotton
wool placed in the tube of the right speaker, allowed for unilateral noise
exposure, leaving the right ear unexposed.
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2.3.3 Recording ABRs
ABRs were recorded independently for left and right ears in response

to ipsilaterally-presented pure tone bursts of 5, 10, and 15 kHz (5 ms

duration; rise/fall time of 1 ms), using custom-written software. Tones

were presented at progressively decreasing sound levels (5-10 dB SPL steps;

starting from 90 dB SPL) until an auditory-evoked response threshold was

determined based on the absence of a discernible wave IV from the ABR

signal. The signal from the recording electrodes was amplified 25000

times and filtered at 300 Hz - 1 kHz, with a sampling duration of 20

ms. After pre-trauma thresholds had been determined, the right speaker

was electrically disconnected and the polyethylene tube was plugged with

cotton wool. The right pinna was then folded over, and the plugged tube

placed over the ear. This served to reduce the risk of incurring hearing

deficits in the right ‘control’ ear. The success of this protection was later

confirmed by the absence of a hearing deficit (as identified using ABRs) in

the right ear following noise exposure. The left ear was then exposed to

narrow band-passed noise bursts (duration of 500 ms and ISI of 200 ms;

centre frequency 10 kHz; bandwidth 1 kHz), presented at 120 dB SPL, for

1 h. These values were selected in order to produce a hearing loss which

was somewhat reversible. Control animals were unexposed and only used

for neurophysiological recording.

2.4 Classification of Noise-Induced Tinnitus
GPs were initially classified as ‘tinnitus’ (T) animals if they fitted the

following criteria: (1) A complete absence of PPI, i.e., 0%, was required

for at least one background noise frequency 7-8 weeks after acoustic

trauma. (2) Hearing level (HL) thresholds - as indicated by ABRs

recorded at 8 weeks (see below) - had to recover to within 20 dB HL

of pre-acoustic trauma thresholds at the ABR frequency closest to the

behavioural background frequency at which the PPI deficit was observed.

This criterion for the recovery of hearing thresholds was selected as it is

conventionally used as the tolerance in human audiograms for “normal”

hearing (Houston et al., 1999). GPs that did not exhibit any abolition of

PPI, or with PPI abolition accompanied by a permanent hearing loss (> 20

dB HL) after 8 weeks, were assigned to a ‘no-tinnitus’ (NT) group. This

was done to ensure that the T group was not subject to caveats such as
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the inability to hear the background carrier due to hearing loss. However,

this means that some of the animals in the NT group that showed reduced

PPI (along with hearing loss) may have also been experiencing tinnitus. For

this reason, when analysing the data, an alternative classification of tinnitus

based on significance testing was also applied, in order to minimize any bias

caused by the definition of tinnitus used.

The alternative classification was similar to that used by others (e.g.

Dehmel et al., 2012a; 2012b; Zhang et al., 2011), whereby a two-way

ANOVA with a Bonferroni post-hoc test (p < 0.05) was applied to the

behavioural data to determine whether any significant changes in PPI were

evident 7-8 weeks following noise exposure, compared to baseline PPI

values. For this alternative criterion, change in PPI was expressed as a ratio.

For example, if a GP demonstrated 30% PPI before noise-exposure, this was

converted into a ratio using the following formula: (100 - % PPI)/100. In

the above example, this would equate to a ratio of 0.7. PPI at the 7-8 week

time point was also calculated as a ratio and then expressed as a change in

ratio compared to baseline (before/after) for the purposes of displaying the

data. Therefore, a value of 1 would indicate no change in PPI from baseline,

whereas a value lower than 1 would indicate a reduction in PPI and a value

higher than 1 would suggest improvement in PPI. Neural data were then

reanalysed under this new behavioural classification.

2.5 Neurophysiological Recording

2.5.1 Surgery
GPs were anaesthetised with urethane (0.5 g kg−1 in 20% solution, i.p.;

Sigma), Ketamine (40 mg kg−1, i.p.) and Xylazine (8 mg kg−1, i.p.),

supplemented with further administrations of a mixture of Ketamine

and Xylazine, in a ratio of 15:2 (i.m.), throughout the procedure to

maintain a constant state of areflexia. A single bolus injection of atropine

sulphate (0.06 mg kg−1, s.c.) was administered to suppress bronchial

secretions. ABRs were recorded in noise-exposed GPs (using the method

described previously) in order to determine hearing status. GPs were

then tracheotomised and respired with 100% oxygen to maintain normal

end-tidal CO2 levels within a range of 28-38 mm of mercury (0.04 - 0.05

atmospheres). Core body temperature was monitored throughout and

maintained at 38◦C ± 0.5◦C using rectal probe linked with a homeothermic
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heating pad (Harvard Apparatus Ltd., Edenbridge, UK). Animals were

placed in a stereotaxic frame, with hollow plastic speculae replacing the

ear bars, inside a sound-attenuating chamber. The posterior fossa was

opened to release the pressure in order to reduce respiratory pulsations of

the brain. The bullae were vented on both sides using polyethylene tubes

(0.5 mm diameter) to equalize pressure across the tympanic membrane.

The tubes were inserted through a small hole in the ethmoid bone and

sealed with petroleum jelly (Vaseline ®). Craniotomies were performed

over the right and left IC (~4 mm diameter). Electrodes were positioned

above the IC stereotaxically, using coordinates described in the guinea pig

atlas of Rapisarda and Bacchelli (1977). This involved determining the

point between 11.4 mm back from bregma and the interaural line formed

by the speculae that represented ear bar zero. For each side this was point

was marked 3 mm away from the sagittal suture.

The dura mater was excised and pairs of electrodes were slowly lowered

down at 10◦ to the vertical plane through the cerebral cortex on each

side - such an angle was required to fit both electrodes in at the same

time. The exposed cortex was kept moist with intermittent application

of 0.9% sodium chloride solution. When necessary, the brain surface was

covered in 1.5% agar if stabilisation of recording was required. Search

stimuli (noise or tone pips) were presented while lowering the electrodes so

that any auditory responses could be identified. When correctly positioned,

electrodes encountered auditory driving at a depth of ~2.8 mm from the

cortical surface.

2.5.2 Single-Unit Recording
Extracellular single-units (filtered between 600 Hz and 3 kHz) were

recorded simultaneously from right and left IC using two pairs of

glass-coated tungsten electrodes (Bullock et al., 1988). These electrodes

were made and assembled in-house. For each pair, the tungsten electrodes

(~1-3 MΩ impedance) were attached to a single circuit board using araldite

and electroconductive paint, with tips aligned and separated by ~200

µm, and advanced simultaneously. Electrodes were connected via a TDT

Medusa headstage amplifier to a TDT System 3; on-line data collection was

facilitated with Brainware (software developed by J. Schnupp, University

of Oxford, UK).
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2.5.3 Auditory Stimuli & Recording Procedure
Auditory stimuli were delivered diotically through sealed acoustic systems,

composed of Etymotic ER-4 earphones (Etymotic Research, Inc., IL, USA),

inserted into the hollow speculae. A search stimulus (generated by TDT

System 3) was utilised to search for neuronal unit activity in the IC; this

comprised a wideband noise (duration 50 ms), gated on and off with

cosine-squared ramps lasting 8 ms and a repetition period of 300 ms.

Search stimuli were selected to encompass a broad frequency range, thus

maximising identification of auditory-evoked neuronal single-unit activity.

Once an IC cell had been isolated, a frequency-response area plot (FRA)

was generated by presenting pure tone bursts (50 ms; 200 ms repetition

rate) over a range of frequencies (50 Hz - ~25 kHz randomly interleaved

at 0.25 octave intervals) and sound levels (attenuations of 0-95 dB in 5

dB steps, from a maximum of ~100 dB SPL). FRAs were followed by 100

seconds of recording in silence to obtain spontaneous firing rates. Auditory

stimuli used in the neural gap detection experiments are described below.

2.5.4 Auditory stimuli for gap detection thresholds
In order to determine the minimum gap detection thresholds (MGDTs) of

each single-unit, a gap detection protocol was run following each FRA.

Stimuli were delivered using the method described above. These comprised

200 ms of stimulus, followed by a fixed-length gap duration of 1, 2, 4, 8,

10, 20, 50 or 75 ms and another 50 ms of stimulus after the gap. Each

gap duration was presented 20 times (with a 700 ms repetition rate) in

ascending order, from shortest to longest. Three different stimuli were

used - BBN, narrowband noise (NBN) and pure tones. The frequencies

used for the narrowband noise matched those used in the behavioural test.

The pure tone frequency was selected as the characteristic frequency (CF)

of each cell. The sound level used for each animal was the optimal level

for the behavioural test, as identified by the SLDT. All gap durations were

presented for each type of background.
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2.6 Analyses

2.6.1 Analysis of ABRs
In light of previous research linking changes in the relative sizes of ABR

peaks with tinnitus (Dehmel et al., 2012; Gu et al., 2012; Schaette

and McAlpine, 2011), ABR signals were examined for changes in the

component peaks. Pre-noise exposure and 8-week time-point ABRs were

compared in response to 5, 10, and 15 kHz tone bursts presented at 70

dB SPL. Since GPs were unilaterally exposed to noise, the ABRs recorded

on the right (unexposed) side were able to be used as a within-animal

control. This allowed us to gauge the degree of variability between

sessions that could occur in a disparate series of ABR recordings, as a

result of factors such as depth of anaesthesia or electrode placement. First,

ABRs were inspected for shifts in absolute latency and for changes in the

inter-peak latencies that might be indicative of pathology at specific stages

of the ascending auditory pathway. Previous work demonstrates a clear

relationship between ABR latency and sound sensation level (SL): sounds

of increasing audibility result in progressively shorter latencies (Prosser and

Arslan, 1987). By comparing ABR waveforms collected in response to a

suprathreshold stimulus (70 dB SPL), the aim was to avoid increased ABR

latencies that might result from a hearing loss. This was not a problem

in T animals experiencing only a small hearing loss (≤ 20 dB HL in

all cases), where the 70 dB SPL stimulus was equivalent to at least 20

dB SL, but may have contaminated latency analysis in NT animals, as a

positive latency shift could be caused by reduced audibility of a 70 dB

SPL stimulus. Next, ABRs were inspected for changes in amplitude; the

absolute amplitudes of peaks in the ABR signal are not reliable, as variables

such as depth of anaesthesia or electrode placement seem to affect signal

magnitude. Consequently, relative changes in the peak amplitudes between

different component waves of the ABR were assessed, comparing pre- and

post-exposure ratios.

2.6.2 Analysis of Spontaneous Firing Rates
The characteristic frequency (CF) of each single-unit was identified in

real-time. Characteristic frequencies were defined as the frequency at

which the lowest sound level was required to produce an evoked response,

as determined by the frequency response area. Cells were selected based on
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a short latency and v-shaped tuning curves, indicative of CNIC (Aitkin et al.,

1975). It is important to note that these are not the only frequency response

types found in CNIC (for a detailed analysis, see Palmer et al., 2013),

so some population bias may have been present in the data. However,

cells selected were restricted to these types of typical responses in order

to ensure that cells were only recorded within CNIC, as no histology

was performed to confirm this. Spontaneous firing rates (SFRs) were

expressed as spikes-per-second, calculated by dividing the total number

of spikes during silence by the stimulus duration in seconds (100). SFRs

were first compared between control, T, and NT animals - regardless of

hemisphere - and statistically assessed with a Kruskal-Wallis non-parametric

test and Dunn’s post-hoc test. Single-units were then sub-divided according

to recording side and their SFRs were compared statistically between

groups on the same side, e.g. left-T vs. left-NT vs. left-control, with

a Kruskal-Wallis test and Dunn’s post-hoc test, or between sides within a

group, e.g. left T vs. right T, with a Mann Whitney test. A multi-factor

repeated-measures statistical test was deemed inappropriate as the data

were not normally distributed.

2.6.3 Analysis of Gap Detection Thresholds
Data were analysed in 5 ms time bins. MGDTs of single-units were defined

as the minimum gap duration where a significant increase in firing (> 2

standard deviations above the mean firing within the preceding 50 ms, as

well as a response of at least 3 spikes within 20 repeats) could be detected

following the onset of the post-gap noise. While Matlab® (R2009b,

MathWorks, MA, USA) scripts were used to automate analysis, each cell was

checked visually (using the Brainware software to visualise responses) to

determine the MGDT. Each single-unit was analysed under three categories

- BBN minimum gap detection thresholds, the NBN condition that fell within

1 kHz of the CF of each single-unit, and pure tone MGDTs. If a unit did

not respond strongly to the first 200 ms of stimulus presentation, it was

discarded. Units were also discarded if they exhibited a long (> 20 ms)

latency, as these may not have been recorded from CNIC. A small subset

of units exhibited offset responses only, i.e. they suppressed their firing

during the presentation of auditory stimuli. In these units, MGDTs were

determined solely by visual inspection, using a discernible increase in firing

around the time of the gap as an indication that the gap had been detected.
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MGDTs across animals (but within experimental groups) were expressed

as a percentage of responding units for each gap duration. NBN was

not useable for any units which did not have CFs within 1 kHz of any of

the narrowband frequencies, as the further the CF of a unit is from the

frequency of the stimulus, the worse its gap detection is. This is supported

by research in humans showing that MGDTs are strongly affected by the

width of an auditory filter (Shailer and Moore, 1983), so including units

for analysis with stimuli too far from their CF could affect our estimates

of MGDT. This phenomenon was evident for single-units in our data and,

as a result, the number of units obtained was lower for the NBN condition

than the other two conditions. Mean and median MGDTs were compared

for control, NT and T animals for each background stimulus condition. A

Kruskal-Wallis test and Dunn’s post-hoc test was performed as a measure of

significance within each background noise condition.



CHAPTER 3

Development of a novel behavioural approach to
detecting tinnitus in the guinea pig

While the gap detection test of Turner et al. (2006) is widely used in

rats and mice, as mentioned previously, only two studies (prior to the

publication of these data in Berger et al., 2013) had successfully used the

method for measuring deficits in guinea pigs (Dehmel et al., 2012a; 2012b).

Here, it is demonstrated that in guinea pigs the Preyer reflex is a more

reliable and consistent measure of PPI than WBS. The results reported here

were obtained from a number of pilot studies designed to determine the

optimal parameters for applying the gap detection method to the Preyer

reflex, followed by the main experiment testing the efficacy of the test in

detecting tinnitus in guinea pigs.

3.1 Pilot Experiments

3.1.1 Habituation of Startle Response
Pilot experiments were conducted on control animals to examine the effects

of randomly varying the ISI between startle stimuli on the magnitude of

startle responses, and habituation of PPI. In these pilot experiments two

different ISI values were presented in random order within a single trial.

The values used were 9 or 15s, 12 or 20s, and 15 or 24s (n = 3 GPs). In

the same animals, the effects of varying the bandwidth of the narrow-band

background noise (either 1 or 2 kHz) were also assessed.

47
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Fig. 3.1: Example from one GP of Preyer reflex amplitudes over the course of one
trial, in response to startling stimuli with no gap preceding and using
15-24s ISIs. With these ISIs, no clear short-term habituation was evident
and response amplitudes were consistent.

Startle responses were most consistent in amplitude (and habituation was

consequently least) with an ISI of 15 or 24s, and a noise bandwidth of 2

kHz. An example of Preyer responses over the course of a trial is shown in

Fig 3.1.

It is perhaps not surprising that the longest ISI yielded the least habituation.

Moreover, it is plausible that an even longer ISI would result in a further

reduction of habituation. However, the duration of a testing session is a

limiting factor, as GPs can become stressed if they are solitary for a long

time in an unfamiliar environment (Sachser et al., 2007). As a consequence,

ISI values randomly varying between either 15 or 24s were selected as the

optimal condition and testing was limited to one hour per session. These

ISIs were similar to those used in Leitner et al. (1993) and were randomly

varied to prevent anticipation of the startling stimulus.

The potential confound of either reflex habituating to startle stimuli,

according to the number of trials per week, was further explored in two

groups of GPs, over a five-week period: Group One was tested 2-3 times
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per week (n = 3), while Group Two was tested once a week (n = 5). For

both groups, an ISI of either 15 or 24s was used. No clear changes in the

average magnitude of WBS and Preyer reflex startle responses were evident

in either group of GPs, indicating that - when tested up to three times per

week - animals did not habituate to the startle stimulus on an inter-trial

timescale. The only habituation observed was within a single trial where

the WBS to the first few stimuli tended to be bigger than the subsequent

responses.

3.1.2 Signal-to-Noise Ratios and Variability Between
Reflexes

Signal-to-noise ratio (SNR) was compared for each reflex in the long-term

(5-week) habituation groups of GPs, described in the previous section (n
= 8). This was calculated by taking the mean peak-to-peak signal after

startle presentation (for all ‘no-gap’ startle presentations) from the mean

peak-to-peak signal before (500 ms epoch for each). This calculation was

performed across all trials for both reflexes. The SNR was calculated as 20

log(signal/noise) and expressed as dB. This process was repeated for each

background noise condition, and the difference between Preyer and WBS

calculated for all frequencies across all animals. The mean SNR (± SEM) of

the Preyer reflex (29.2 ± 6.2 dB) was substantially higher than the SNR for

WBS (21.4 ± 3.8 dB), which equated to ~8 dB improvement in SNR when

measuring the Preyer reflex. Further to this, the variability of the startle

amplitude for both reflexes was assessed with a coefficient of variance test;

Preyer reflex responses exhibited ~50% less variability than WBS.

3.2 Comparing PPI of WBS and Preyer Reflexes
Gap detection and PPI were assessed in a group of GPs (n = 12) by

measuring the WBS and Preyer reflexes simultaneously. Representative

examples of raw recordings of the responses to a startling sound are

illustrated in Figure 3.2. These plots are typical of the recordings obtained

for each reflex, and highlight the superior SNR and consistency (i.e.,

minimal variability) of pinna displacement measurements (Fig 3.2A) versus

those acquired from measurements of WBS (Fig 3.2B). Raw signals for all

‘gap’ stimulus presentations within a trial were pooled and mean RMS and

pinna displacement plots derived for WBS and Preyer reflexes respectively;
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the same process was applied to ‘no gap’ presentations. PPI was then

quantified for a session for each background noise condition (as described

in Section 2.6.1).

Fig. 3.2: Representative raw traces of ‘no gap’ startle stimulus presentation (n =
10) overlaid for the Preyer reflex (A) and the WBS (B), taken from a
single trial for one guinea pig (BBN background carrier at 70 dB SPL,
with a 105 dB SPL startling stimulus). Dotted lines indicate the window
of analysis for WBS and peak-to-peak measurement for Preyer reflex.
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PPI was assessed in each GP over 3-6 testing sessions. First, the SLDT

determined whether a GP was capable of detecting a gap (and the sound

levels at which this was best achieved); each animal then underwent

testing sessions to obtain significant PPI. In some cases, significant PPI was

obtained in three sessions (Wilcoxon rank-sum test; p < 0.05), but in other

animals additional sessions were required to achieve significance (no more

than six sessions - over a period of two weeks - were conducted to avoid

the possible confound of habituation).

All 12 GPs exhibited significant PPI of the Preyer reflex at all background

noise frequencies (p < 0.05). By contrast, significant PPI of the WBS reflex

was only apparent at all frequencies in four GPs (see Table 3.1). In some

cases, this was due to a complete absence of PPI at a given frequency, and

in others to a much higher degree of variability in the WBS response. This

was confirmed by a coefficient of variance test; the mean variation (for ‘no

gap’ presentations across all frequencies/animals) of the WBS reflex was

63%, whereas the coefficient of the Preyer reflex was 39%.

Table 3.1: Percentage PPI of the WBS and Preyer reflexes at each background
noise frequency (BBN, 4-6 kHz, 8-10 kHz, 12-14 kHz, 16-18 kHz),
expressed as % PPI, are shown for all GPs (n = 12). Shading indicates
significant PPI values, as determined with a Wilcoxon rank-sum test
(p < 0.05). All GPs demonstrated significant PPI of the Preyer reflex,
whereas only four GPs (GP2, GP3, GP6, and GP11) showed significant
PPI of the WBS reflex at all frequencies.
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When PPI data were pooled across animals and analysed statistically with a

two-way ANOVA, significant differences were detected in both background

noise centre frequency (F (4,4) = 4.48, p < 0.01) and reflex type (F (1,4) =

11.86, p < 0.01) variables, and a significant frequency by reflex interaction

was also observed (F (4,55) = 4.00, p < 0.01). Post-hoc analysis indicated

significantly higher PPI of the WBS reflex in the BBN condition, compared

with the Preyer reflex (t = 4.92, p < 0.01), but no significant differences

were apparent at other frequencies (Fig 3.3). However, given the limited

number of animals demonstrating significant PPI of WBS at all frequencies

and the greater range in magnitude of PPI, the WBS measure did not

appear to be optimal for determining gap detection abilities across a range

of frequencies, and therefore would be less effective for detecting tinnitus

perceived as tonal rather than as a broadband noise.

Fig. 3.3: PPI of the WBS and Preyer reflexes. Mean PPI of each reflex at a
given background noise frequency is indicated by the solid horizontal
line contained within each box; boxes indicate 95% confidence intervals;
whiskers indicate the full range of values obtained across all GPs (n = 12)
for each condition. PPI of WBS was significantly higher than the Preyer
reflex in the BBN condition (** p < 0.01).
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3.3 The Effects of Sodium Salicylate on PPI
In order to compare the efficacy of detecting tinnitus using the Preyer and

WBS responses, as measured by reductions in PPI, sodium salicylate was

administered to four GPs and PPI of both reflexes was measured at 2 h

and 5 h post-injection (Fig 3.4). Across animals, using the Preyer reflex

as a measure of PPI (Fig 3.4A), statistical analysis revealed a significant

effect in the time-point variable (F (3,12) = 3.88, p < 0.05), no effect in

the background noise centre frequency variable (F (4,12) = 0.73, p = 0.59),

but a significant time by frequency interaction (F (12,45) = 2.76, p < 0.01).

Post-hoc analysis indicated that salicylate significantly attenuated PPI of the

Preyer reflex in the BBN background noise condition at 2 h (t = 3.98, p <
0.01) and in the 8-10 kHz background noise condition at 5 h (t = 3.81, p
< 0.01). Conversely, no significant reductions in PPI of the WBS (Fig 3.4B)

were observed following salicylate administration for either the time-point

(F (3,12) = 0.28, p = 0.84) or background noise centre frequency (F (4,12) =

1.56, p = 0.24) variables, or a time-frequency interaction (F (12,45) = 1.33,

p = 0.24).

PPI was also measured at 72 h post-salicylate administration to

establish whether the effects of salicylate were transient; previous work

demonstrated wash-out of salicylate effects occurring within a 72 h period

(Mongan et al., 1973). No significant deficits in PPI of the Preyer reflex

or WBS were apparent at this time-point in any of the background noise

conditions. The deficits in PPI of the Preyer reflex may be indicative

of tinnitus and the transient nature is in agreement with the predicted

time-course of salicylate-induced tinnitus.
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Fig. 3.4: The effects of sodium salicylate on PPI of the Preyer reflex (A) and the
WBS (B). Mean (± SEM) PPI values for all GPs (n = 4) are shown for each
background frequency noise condition at 2 h, 5 h, and 72 h post-salicylate
administration. For the Preyer reflex, significant reductions in PPI were
seen at 2 h in the BBN condition and at 5 h in the 8-10 kHz condition
(** p < 0.01). For the WBS, no significant changes were observed at any
time point.

In order for the Preyer reflex behavioural test to be a useful assay, it is

important that differences in gap detection can be detected in individual

animals following salicylate administration (as tinnitus characteristics may

vary between animals). Therefore, to determine whether significant

reductions in gap detection could be identified in individual GPs using

the Preyer reflex, the following analysis was applied to the data: every
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peak-to-peak Preyer reflex measurement in response to a startle with no

gap preceding was compared with every measurement in response to a

startle with a gap preceding, for all timepoints (before and after salicylate

administration). This was done to provide error values for statistical

analysis of PPI, which was required for the timepoints at which only

one trial was performed. From this, the mean difference between gap

and no-gap Preyer reflex amplitudes was expressed as percentage PPI,

to indicate the degree to which a gap was inhibiting the Preyer reflex.

Following this, for each frequency, mean PPI at each timepoint following

salicylate administration was compared with the baseline PPI values for

each animal. Statistical analysis was again performed using a two-way

ANOVA with a Bonferroni post-hoc test (p < 0.05).

The results of this analysis are shown in Fig 3.5. Using this individualised

analysis, more variability was evident than when GPs were grouped. At

the 2 h timepoint, all four GPs showed a significant reduction in PPI at

the BBN background noise condition, two GPs at 4-6 khz (GP1 and GP3),

two GPs at 8-10 khz (GP2 and GP4), three GPs at 12-14 khz (GP1, GP2

and GP4), and one GP at 16-18 khz (GP4). At the 5 h timepoint, only

two GPs still showed a significant reduction in PPI compared to baseline

values at the BBN background noise condition (GP2 and GP4). Two GPs

showed a significant reduction in PPI at the 5 h timepoint at 4-6 khz (GP2

and GP4), all four GPs at 8-10 khz, three GPs at 12-14 khz (GP1, GP2 and

GP4), and three GPs at 16-18 khz (GP2, GP3 and GP4). With this analysis,

significant differences were still evident at the 72 h timepoint for some

frequencies. This may be a limitation of the current analysis (there were

considerably more data points at baseline compared to the post-salicylate

timepoints). Nevertheless, there was still a clear trend towards PPI recovery

at all frequencies for all GPs (see Fig 3.5).
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Fig. 3.5: Preyer reflex data for GP1 (A), GP2 (B), GP3 (C) and GP4 (D), using
individualised analysis to determine whether any significant changes
were present following salicylate administration in individual animals.

3.4 Changes in Reflex Amplitudes Following
Salicylate Administration

To determine whether the effects seen here may be purely related

to changes in the amplitudes of either reflex following salicylate

administration, raw Preyer reflex and WBS amplitudes were analysed

before and 2 h after injection (Fig 3.6). As opposed to the decreases

observed following noise exposure (Lobarinas et al., 2013), both reflexes

exhibited increases in startle amplitudes at all frequencies 2 h following

the salicylate injection, indicating that the reductions seen in the PPI of the

Preyer reflex were not simply a result of reduced startle amplitudes.
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Fig. 3.6: Changes in amplitude of the Preyer (A) and WBS (B) responses. Mean
(± SEM) values are shown for all guinea pigs (n = 4) at each background
noise frequency before (baseline) and 2 h after salicylate administration.
Significant increases in response amplitude were detected at 16-18 kHz
(** p < 0.01) for the Preyer reflex, and 4-6 and 8-10 kHz (* p < 0.05;
*** p < 0.0001) for the WBS.





CHAPTER 4

Changes in ABRs and Spontaneous Firing Rates
Following Noise Exposure

4.1 Background to Study
Following noise exposure, many studies have attributed changes in SFRs

at various levels of the auditory system to tinnitus (Bauer et al., 2008;

Brozoski and Bauer, 2005; Brozoski et al., 2002; Kaltenbach et al., 2004;

Mulders and Robertson, 2009; Mulders et al., 2011; Zhang et al., 2006).

Increases in SFR have commonly been observed in the IC, which are

suggested to occur as a result of compensatory mechanisms following loss

of peripheral input (Schaette and McAlpine, 2011). While the degree of

increase in spontaneous activity in the DCN has previously been correlated

with the strength of behavioural evidence for tinnitus (Kaltenbach et al.,

2004), no studies to date have examined animals based on categorisation

into tinnitus and no-tinnitus groups following noise exposure.

Tinnitus has also been related to changes in ABRs. Schaette and

McAlpine (2011) found that tinnitus patients with supposedly normal

hearing thresholds, as indicated by their audiogram, had a normal wave

V amplitude (the human equivalent to wave IV in GPs), while wave I

was significantly reduced. The smaller wave I indicated a degree of

reduced hearing sensitivity in tinnitus patients that seemingly did not

exhibit hearing loss. It also provided support for a compensatory increase

in central gain since wave V was normal. Gu et al. (2012) found similar

results, demonstrating that wave III was also increased compared to wave
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I in tinnitus patients, which they suggested implicates the ventral cochlear

nucleus in tinnitus generation.

In animals, only two studies to date have analysed the amplitude and

latency of ABRs following tinnitus induction. Dehmel et al. (2012a)

found that animals with behavioural evidence of tinnitus demonstrated an

increase in the amplitudes of early ABR waves (I-III), which is inconsistent

with the results of Schaette and McAlpine (2011), as well as a significant

prolongation of wave I latency, which they attributed to auditory nerve

conductivity problems following noise exposure. Furthermore, a recent

study by Ruttiger et al. (2013) demonstrated that rats with tinnitus showed

a reduction in the average amplitude of all the ABR waves compared to

no-tinnitus rats, as well as greater IHC ribbon loss, indicating a greater

degree of reduced hearing sensitivity in their tinnitus animals, although this

study is not strictly comparable with Schaette and McAlpine (2011) as they

induced a significant hearing loss in their tinnitus animals. Nonetheless,

the current data available for how changes in ABRs may relate to tinnitus

is somewhat contradictory and warrants further investigation.

This current chapter documents neural changes in GPs with behavioural

evidence of tinnitus following noise exposure. Initially, using strict criteria

(see Section 2.4), GPs were categorised into tinnitus and no-tinnitus

animals. Prior to this ABRs had been recorded and analysed before noise

exposure and after an 8-week recovery period, in order to account for

hearing loss. In addition, changes in the amplitudes and latencies of the

component waves of the ABR waveforms were assessed, to examine any

pathological changes that may relate to tinnitus. Finally, SFRs of neurons

in the IC were measured in no-tinnitus and tinnitus GPs, as well as in a

control population, in order to test the theory that increased spontaneous

activity would be correlated with tinnitus (Mulders and Robertson, 2009).

4.1.1 Alternative Classification of Tinnitus
The initial behavioural criteria for tinnitus were highly conservative, as

they attempted to minimise the potentially confounding effect that hearing

loss may have on the gap detection test. Therefore, for the purposes of

comparison and in order to avoid any bias in interpretation, the data have

been reanalysed at the end of this chapter (see Section 4.4), using a two-way

ANOVA and Bonferroni post-hoc test to examine statistically significant
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changes in PPI at each background frequency 7-8 weeks following noise

exposure, in comparison to baseline PPI values (see Section 2.4 for a more

detailed description of this classification method). This test is similar to that

applied by other researchers using the gap detection behavioural test (e.g.

Dehmel et al., 2012a; 2012b; Zhang et al., 2011). Under this criterion, any

animals exhibiting a significant reduction in PPI at one or more background

frequencies were labelled as tinnitus GPs. Animals with no significant

deficits at any frequency tested were categorised as no-tinnitus GPs.

4.2 Results

4.2.1 Behavioural Evidence of Tinnitus
Noise-exposed GPs were tested behaviourally for evidence of tinnitus.

Under the initial classification, the presence of behavioural tinnitus was

determined by two criteria: First, PPI of the Preyer reflex had to be ≤ 0%

for at least one background noise frequency band. Second, PPI deficits had

to occur at a background noise frequency at which there was no more than

20 dB of threshold elevation. The behavioural results for a single GP with

tinnitus are shown in Figure 4.1. This GP exhibited a complete absence

of PPI in the 16-18 kHz background noise condition (Fig 4.1A), as well as

displaying a high frequency (15 kHz) ABR threshold within 10 dB of the

baseline hearing threshold (Fig 4.1B).
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Fig. 4.1: Demonstrating noise-induced tinnitus in a GP. A: % PPI is shown for each
background noise frequency (BBN, 4-6 kHz, 8-10 kHz, 12-14 kHz, and
16-18 kHz) under baseline conditions (black bars) and following noise
exposure at 7-8 weeks (white bars) in a representative animal. The
shaded area indicates that this GP has tinnitus (0% PPI) at 16-18 kHz.
B: ABR threshold shift in the same animal at 5 kHz, 10 kHz, and 15 kHz.
Shading indicates hearing level threshold recovery to within 20 dB HL.
Note: recovery at 15 kHz corresponds with 0% PPI at 16-18 kHz.

Using the original conservative criteria, 8 (of 16) GPs (50%) exhibited

behavioural evidence of tinnitus over a range of frequencies at the 7-8 week

time-point (Fig 4.2). This figure is similar to that reported elsewhere by

others (Dehmel et al., 2012a; 2012b) and the time-point was selected based

on the assumption that tinnitus develops within 7-8 weeks of an acoustic

insult (Turner et al., 2006; Turner et al., 2012). In some cases, tinnitus

behaviour was observed at more than one background frequency. Four

animals exhibited 0% PPI and threshold recovery at 4-6 kHz (Fig 4.2B; GP1,

GP2, GP13, and GP16), two GPs at 8-10 kHz (Fig 4.2C; GP2 and GP11), and

three GPs at 16-18 kHz (Fig 4.2E; GP2, GP5, and GP15). Moreover, two GPs

exhibited 0% PPI and threshold recovery (based on a mean threshold taken

from the 5 kHz, 10 kHz, and 15 kHz hearing levels) in the BBN condition

(Fig 4.2A; GP4 and GP15). Taken together, these findings indicate that

behavioural tinnitus was not occurring in a specific frequency band.
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Fig. 4.2: Objective behavioural assessment of tinnitus. The % PPI values for each
GP are shown - plotted against hearing threshold shift at the nearest ABR
frequency (5 kHz, 10 kHz, or 15 kHz) - at each behavioural background
frequency: A: BBN, B: 4-6 kHz, C: 8-10 kHz, D: 12-14 kHz, and E: 16-18
kHz. Numbering denotes GP number. In each plot, the grey shaded
area indicates animals that have behavioural evidence of tinnitus with no
hearing loss, according to the current criteria (i.e., ≤ 0% PPI coinciding
with threshold recovery to within 20 dB HL of baseline hearing level).
Using these criteria, 7 of 16 animals exhibited tinnitus behaviour.
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Table 4.1: Mean (± SEM) amplitudes of the Preyer reflex before and 7-8 weeks
after noise exposure, for each background condition across all GPs
in response to ‘no gap’ startling stimuli, regardless of whether they
were classified as experiencing tinnitus or not. Headings indicate
background frequency (kHz). Mean values are expressed in mm.

4.2.2 Changes in Reflex Amplitudes
Mean Preyer reflex amplitudes (± SEM) are shown for all animals (both

no-tinnitus and tinnitus) before and 7-8 weeks following noise exposure in

table 4.1. There were clear reductions in the amplitudes of the Preyer reflex

in all animals 8 weeks following noise exposure compared to baseline levels.

However, these reductions were observed even when a GP was able to gap

detect at a particular frequency following noise exposure. Therefore, it is

unlikely that this would have confounded the assumption of the presence

of tinnitus.

4.3 Changes in ABRs Following Noise Exposure

4.3.1 ABR Threshold Shifts
A representative example of an ABR recorded in a GP prior to noise

exposure is shown in Fig 1.9. This illustrates the series of positive and

negative deflections that constitute the five waves of an ABR signal in a GP

(as opposed to seven waves seen in a human ABR), in agreement with that

shown previously (Dehmel et al., 2012a; Gourevitch et al., 2009; Simha et

al., 1988; Wada and Starr, 1983). Component waves of the ABR waveform

were categorised based on the time at which they occurred, as indicated by

the dotted vertical lines.

The variability in the tinnitus frequency seen in behavioural assessment

can be explained by the ABR threshold shifts observed across both groups

of animals: Despite the fact that acoustic trauma was induced with a

narrow-band stimulus (9.5-10.5 kHz band-passed noise), ABR shifts were

evident in response to 5, 10, and 15 kHz pure tones in both NT (Fig 4.3A;

n = 9) and T (Fig 4.3B; n = 7) groups of GPs. ABR shifts across a broad
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frequency range are consistent with previous data from animals exposed to

a tonal acoustic insult (Chen et al., 2013).

In order to determine whether any shifts in ABR thresholds were

statistically significant, a 2-way ANOVA with Dunnett’s post-hoc comparison

was applied to the data. For T GPs, a significant shift was observed in

the mean ABR thresholds (compared to baseline hearing thresholds) for

all frequencies immediately after noise exposure (p < 0.0001). Following

recovery, T GPs still exhibited a small, albeit significant shift from baseline

levels at 15 kHz (p < 0.05), but it is important to note that all these animals

still had hearing thresholds within the clinically-relevant 20 dB level at

frequencies where behavioural gap detection was abolished. For the NT

GPs, there were significant shifts in hearing thresholds at all frequencies,

both immediately after noise exposure and 8 weeks later (p < 0.0001).

Fig. 4.3: ABR hearing thresholds in N and T animals. In both groups of GPs,
threshold shifts were seen across all frequencies. A: Mean thresholds are
shown for all NT animals at each ABR frequency (5 kHz, 10 kHz, and 15
kHz) before noise exposure (shown in black), immediately after acoustic
trauma (grey), and then at 8 weeks (white). B: Mean thresholds for all T
animals.
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4.3.2 ABR Latencies in Animals with Tinnitus
ABRs were further scrutinised for changes in latency and the relative

amplitude of the constituent peaks. In these data, waves II, IV, and V were

confidently and consistently identified. However, wave I and III were not

robustly identifiable across all animals, even when using suprathreshold

stimuli, and as a result were excluded from further ABR analysis.

The latency of wave IV (the most prominent and consistent wave in the

GP ABRs) was first examined: ABRs recorded in T and NT groups, were

compared before noise exposure and at 8 weeks, in response to 5, 10, and

15 kHz tones presented at 70 dB SPL. Surprisingly, it was identified that

there was a shortening in wave IV latency after trauma in the exposed ear of

T animals, in response to the 10 kHz stimulus condition (Fig 4.4). Given the

slight reduction in the HL of the ABR stimulus in T GPs, it had in fact been

anticipated that latency might increase following noise exposure. When

this phenomenon was examined across pooled data from T animals (n =

6 GPs with complete sets of ABR recordings), a significant decrease in the

latency of wave IV in the left (exposed) ears of T GPs was evident when

compared with within-animal right-side controls (Fig 4.5A; p < 0.05). An

inspection of the relationship between stimulus sound level and wave IV

latency before noise exposure in T GPs confirmed that, as expected, 10 kHz

stimuli presented at 50 dB SPL exhibited a longer mean latency than at 70

dB SPL on both left and right sides (Fig 4.5A).

Fig. 4.4: Representative ABRs from a single T GP recorded before noise exposure
(solid black line) and 8 weeks later (dashed grey line) to a 10 kHz tone
at 70 dB SPL. In this example, waves IV and V are clearly visible and
illustrate the decrease in latency seen at 10 kHz in T animals. Roman
numerals denote the waves used for latency analysis.
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Fig. 4.5: A: Mean (± SEM) latency shift (before exposure vs. 8 week time-point) of
wave IV in T GPs (n = 6) in response to a 10 kHz tone at 70 dB SPL in the
left (exposed) ear (shown in white) and right ear (hatched bar). Wave
IV latency was significantly shorter in the left ear after noise exposure in
T animals compared with right-side controls (* p < 0.05). Also shown
are latency shifts at decreasing stimuli sound levels (70 dB SPL vs. 50
dB SPL) before noise exposure in T animals. As expected, decreased
levels resulted in longer latencies in both left (light grey bar) and right
(dark grey bar) ABRs. B: No significant latency shifts were apparent in
response to 5 kHz tones at 70 dB SPL. C: Likewise, no significant latency
shifts were apparent to 15 kHz tones at 70 dB SPL.

A further comparison of the mean (± SEM) latencies of wave IV to 10

kHz stimuli at 70 dB SPL between left- and right-side ABRs (not shown)

indicated that, under control conditions, i.e., before noise exposure, the left-

(4.37 ± 0.12 ms) and right-side (4.33 ± 0.05 ms) latencies were extremely

similar.
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By contrast, there were no significant differences in wave IV latencies in

response to 5 kHz and 15 kHz stimuli (Fig 4.5B and Fig 4.5C) when

pre-exposure and 8-week ABRs were compared. These factors, taken

together, indicate that the decrease in wave IV latency in T animals is a

robust observation. No significant latency shifts were observed in the NT

animals (n = 6; Fig 4.6).

In order to identify whether overall shifts in latency could be attributed to

specific waves (and therefore specific components of the ascending auditory

system), the inter-peak latencies (IPL) of left- and right-side ABRs were

examined, before and after noise exposure. Interestingly, no differences

between the IPL were detectable when comparing pre-exposure (II-IV: 1.53

± 0.01 ms; II-V: 2.81 ± 0.06 ms; IV-V: 1.28 ± 0.06 ms) and 8-week

time-point (II-IV: 1.52 ± 0.06 ms; II-V: 2.74 ± 0.04 ms; IV-V: 1.22 ±
0.04 ms) ABRs on the left (exposed) side. This effectively means that the

latencies of all measured ABR waves (II-V) in T GPs were reduced after

noise exposure, in response to 10 kHz stimuli. Likewise, no differences

were apparent in right-side controls, nor was there any variability in IPL

between left and right sides before exposure (data not shown).

Fig. 4.6: Mean (± SEM) latency shift (before exposure vs. 8 week time-point) of
wave IV in NT GPs (n = 6) in response to a 10 kHz tone at 70 dB SPL
in the left (exposed) ear (white bar) and right ear (hatched bar). No
significant differences were found between the two ears.
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4.3.3 ABR Wave Amplitude Ratios
ABR waveforms were also analysed for changes in amplitude.

Observationally, in most cases, the amplitude of wave IV was reduced

after noise exposure (see Fig 4.4), presumably due to small HL reductions

caused by threshold increases; this is in contrast to the effects on latency

described in the previous section. ABR recordings from T GPs were

subsequently inspected for changes in the relative amplitudes of the

constituent waveform peaks at the region of the latency shift, i.e., 10 kHz,

in light of previous work conducted in tinnitus patients (Gu et al., 2012;

Schaette and McAlpine, 2011). These comparisons were limited by the

SNR of the ABR data: waves I and III were unable to be reliably identified,

and therefore only the ratios between waves II, IV and V were examined.

No significant changes in the amplitude ratios were detected in left- or

right-side ABRs. A slight, albeit not statistically significant, increase was

observed in the mean (± SEM) II/IV (from 0.44 ± 0.08 to 0.56 ± 0.04)

and V/IV (0.41 ± 0.07 to 0.78 ± 0.20) ratios in left-side ABRs. This

increase was likely due to the reduction in amplitude of wave IV after noise

exposure.

4.3.4 Neuronal Hyperactivity in the IC
Following behavioural testing and ABR recordings, spontaneous neuronal

firing was recorded from the left and right IC of each GP, as well as in

an additional control group (not exposed to noise) of GPs (n = 6). The

SFR of each cell - plotted according to CF - is shown for control GPs

(Fig 4.7A; n = 137 cells), NT GPs (Fig 4.7B; n = 219 cells) and T GPs

(Fig 4.7C; n = 187 cells). These data indicated that, while firing rates

appeared to be elevated following acoustic trauma in both groups compared

with control GPs, there were no significant trends in relation to CF. This

is perhaps not surprising, given the broadband nature of both hearing

threshold shifts and behavioural PPI deficits. Statistical analysis of the mean

firing rates of all cells recorded in each of the three groups indicated that

SFRs were significantly higher in T (p < 0.0001) and NT (p < 0.0001)

groups compared with controls, but that no significant differences were

apparent between T and NT groups (Fig 4.8A). Furthermore, the median

SFR values, which are arguably more reliable when considering that these

cell populations were not normally distributed, clearly showed elevated

SFRs in noise traumatised GPs, relative to control GPs (Fig 4.8B).
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Fig. 4.7: SFRs are shown for each recorded single-unit - plotted logarithmically
according to CF - in A: control animals (n = 137 cells), B: NT animals
(n = 219 cells) and C: T animals (n = 187 cells). These data have been
separated into left and right hemispheres (as denoted on each figure). No
trends were apparent between T and NT animals in terms of increases in
firing rate at specific frequencies, nor were there any clear hemispheric
differences.
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Fig. 4.8: A: Mean firing rate (± SEM) for pooled data for all single-units recorded
in control (black), NT (white), and T (grey) animals. Firing rate was
significantly higher in NT and T groups compared with control GPs (***
p < 0.0001). No significant differences were seen between T and NT
groups. B: Median firing rates for control (black), NT (white), and
T (grey) groups of GPs. Median rates also indicated an increase in
firing rate following noise exposure. C: Median firing rates for the three
different groups, separated according to hemisphere. While an increase
in SFR was clearly evident in NT and T GPs compared with control GPs,
there were no significant intra-group hemispheric differences, nor were
there any significant differences between NT and T GPs.
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In addition to examining changes in firing rate according to CF, the data

were also assessed for whether there were any laterality-dependent effects

(see Fig 4.7 and Fig 4.8C). This was important, as the noise exposure

was unilateral (left-sided), so it is plausible that any effects on SFR may

have been restricted to the right IC. However, no ‘within-group’ differences

between neuronal firing rates on left and right sides were observed in

control (p = 0.50), NT (p = 0.96), or T (p = 0.41) groups of GPs.

When recordings made in the left IC and the right IC were compared

independently across the behavioural groups, i.e., left-control vs. left-NT

vs. left-T, and then right-control vs. right-NT vs. right-T, it was found

that in both cases T and NT groups exhibited significantly higher SFRs than

control GPs (p < 0.0001). As was the case when, irrespective of CF or side,

all single-unit recordings were compared between groups, there were no

significant differences between T and NT groups of GPs when subdivided

according to side.

4.4 Alternative Classification
The following results show the ABR latency and SFR data under the

different behavioural classification (detailed in Section 2.4, similar to

that used by others, taking a significant reduction in PPI at a particular

frequency as an indication of tinnitus presence.

4.4.1 Behavioural Evidence of Tinnitus
Using the alternative criterion, 12 of the 16 noise-exposed GPs exhibited a

significant reduction in PPI for at least one frequency, as determined by a

two-way ANOVA with a Bonferroni post-hoc test (p < 0.05). An example of

a no-tinnitus GP and a tinnitus GP are presented in Fig 4.9A and Fig 4.9B,

whereby change in PPI is expressed as a ratio (see Section 2.4 for a more

detailed explanation). Across animals, there was no clear trend with regard

to the frequency of the gap detection deficits, although 16-18 kHz was the

most common frequency at which a significant deficit was present, whereas

only 1 animal demonstrated significant gap detection deficits at 12-14 kHz

(Fig 4.10).
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Fig. 4.9: PPI performance 7-8 weeks following noise exposure, normalised to
baseline performance for one no-tinnitus GP (A) and one tinnitus GP
(B). Performance is expressed as a ratio of the original gap detection
ability, whereby a value of 1 equates to the same level of PPI as baseline,
a value lower than 1 indicates poorer performance and a value greater
than 1 indicates better performance. Dotted line highlights baseline PPI
level. White bars suggest no significant change and black bars denote a
significant reduction in PPI (* p < 0.05).
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Fig. 4.10: Number of GPs demonstrating significant reductions in PPI following
noise exposure, for each background frequency, as determined using a
two-way ANOVA with a Bonferroni post-hoc test (p < 0.05).

4.4.2 Changes in ABR
ABRs were reanalysed for changes in latency, to determine whether the

intriguing result examined using the other criteria was still present under

the alternative criterion. Given the greater degree of hearing loss for some

animals in the new group of T GPs (compared to the other criteria), ABRs

were examined only for animals where 70 dB SPL equated to 10 dB SL or

greater, in order to reduce the confounding effect of severe hearing loss

on latency. A shortening in latency of wave IV was again evident in T

animals, solely for the 10 kHz frequency, although there was no longer

a significant difference in ABRs between stimulation of the left (exposed)

and right (unexposed) ears within T GPs (Fig 4.11).
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Fig. 4.11: Mean (± SEM) latency shift (before exposure vs. 8 week time-point)
of wave IV in T GPs, in response to 10 kHz (A), 5 kHz (B) and 15 kHz
(C) tones, using an alternative criterion for tinnitus. A shortening of
latency was again apparent in the left (exposed) ear at 10 kHz, though
there was no significant difference compared to the right ear in the same
animals.
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Fig. 4.12: Mean (± SEM) absolute latency of wave IV in the left (exposed) ears
of T GPs, in response to 10 kHz (A), 5 kHz (B) and 15 kHz (C) tones,
before noise exposure (white bar) compared to 8 weeks following noise
exposure (hatched bar), as well as in the right (unexposed) ear in
response to 10 kHz (D), 5 kHz (E) and 15 kHz (F) tones, using an
alternative tinnitus classification. A significant shortening of latency
was only evident for the 10 kHz frequency in the left ear (* p < 0.05).

However, when the absolute latency of wave IV for the left (exposed) ear

following noise exposure was pooled for all T animals and compared to

ABRs recorded prior to noise exposure in the same GPs, the latency of wave

IV for 10 kHz proved to be significantly shorter (Fig 4.12A; p< 0.05). There

were no significant changes in absolute latency for 5 kHz (Fig 4.12B) or 15

kHz (Fig 4.12C), nor were there any significant changes in absolute latency

in the right ear (Fig 4.12D, Fig 4.12E and Fig 4.12F).
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4.4.3 Changes in SFRs
Spontaneous activity of neurons in the IC was reanalysed under the

alternative criterion. The SFR of each cell - again, plotted according to

CF and hemisphere - is shown for control GPs (Fig 4.13A; n = 137 cells),

NT GPs (Fig 4.13B; n = 101 cells) and T GPs (Fig 4.13C; n = 298 cells).

The spread of spontaneous activity suggests there were still no significant

trends in relation to CF or hemipshere.

Fig. 4.13: SFRs - plotted logarithmically according to CF and hemisphere - in A:
control animals (n = 137 cells), B: NT animals (n = 101 cells) and C:
T animals (n = 298 cells), using the alternative criterion for tinnitus
classification. Legends on each figure denote hemisphere.
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As with the original criteria, statistical analysis indicated that SFRs were

significantly higher in T (p < 0.0001) and NT (p < 0.0001) groups

compared with controls, but that no significant differences were apparent

between T and NT groups (Fig 4.14A). Again, median SFR values highlight

that SFRs were elevated in noise trauma-treated GPs, relative to control

GPs (Fig 4.14B). There were no significant hemispheric differences in

SFR present within each experimental group. There were still significant

increases in SFR for NT and T GPs compared with controls when data were

separated according to hemisphere (Fig 4.14C), but not between NT and T

GPs.

Fig. 4.14: A: Mean firing rate (± SEM) for pooled data for all single-units recorded
in control (black), NT (white), and T (grey) GPs, using alternative
criterion. Firing rate was significantly higher in NT and T groups
compared with control GPs (*** p < 0.0001). Again, no significant
differences were seen between T and NT groups. B: Median firing rates
for control (black), NT (white), and T (grey) GPs. C: Median firing rates
for the three different groups, separated according to hemisphere.



CHAPTER 5

Neural Gap Detection Thresholds Following Noise
Exposure

5.1 Background to Study
The hypothesis of the gap detection test for tinnitus is that tinnitus is

perceptually “filling in” the gap, causing a reduction in gap-induced PPI

(Turner et al., 2006). While this hypothesis is somewhat supported by

research demonstrating gap detection deficits following noise exposure

or salicylate (Chapters 3 and 4; Chen et al., 2013; Dehmel et al., 2012;

Longenecker and Galazyuk, 2011; Turner and Parrish, 2008; Turner et al.,

2012), recently it has been suggested that the test may actually reflect a

deficit in temporal processing associated with the noise exposure, rather

than tinnitus per se.

This question initially arose following a study by Fournier and Hebert

(2013). Using the eyeblink as a startle measure, they examined the gap

detection abilities of human patients experiencing high-frequency tinnitus

in comparison to a hearing-matched non-tinnitus control group. In support

of the animal literature, the tinnitus patients demonstrated gap detection

deficits in comparison to controls. However, these gap detection deficits

were not selective to high frequency background carriers (similar to their

tinnitus). The deficits were seen at both high and low frequencies, contrary

to what would be expected in the presence of a high-frequency tinnitus.

The authors concluded that the gap detection deficits seen in tinnitus

patients may not necessarily relate to a perceptual “filling in” of the gap, but

instead reflect neural temporal processing deficits that somehow relate to

79
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the tinnitus and impair the detection of gaps in noise. A need for evidence

to determine whether this is the case has since been proposed by others

(e.g. Chen et al., 2013).

While Walton et al. (2008) found no significant differences in gap detection

between mice carrying a deafness gene and normal-hearing controls, no

study to date has attempted to quantify neural gap detection thresholds

following noise exposure. This chapter addresses this question. The

minimum gap detection thresholds (MGDTs) of single-units were measured

in the IC of control, no-tinnitus and tinnitus GPs. Walton et al (1997)

showed that IC gap detection thresholds are also in good agreement with

those seen behaviourally. With this in mind, as well as the fact that the IC

is an important area for the convergence of ascending auditory information

(Casseday et al., 2002), IC is a good candidate for recording neural gap

detection thresholds to understand the neural basis of behavioural gap

detection. Therefore, recordings from the IC for the three experimental

groups were compared to determine whether there were any differences in

neural gap detection abilities (which would reflect a temporal processing

deficit) following noise exposure, and if any deficits related solely to

tinnitus. Ultimately, it was important to determine whether a gap of 50

ms (the duration used in the behavioural test) was detectable from the

responses of the majority of neurons in the IC following noise exposure,

to establish whether the behavioural gap detection deficits reported in

this thesis could be due to temporal processing deficits following noise

exposure.

As with the previous chapter, the data were also analysed under the

alternative criterion for behavioural evidence of tinnitus, for the purposes

of comparison. This follows the analysis using the original criteria (see

Section 5.4).
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5.2 Results
A total of 9 GPs were noise-exposed and tested for behavioural evidence

of tinnitus 7-8 weeks following acoustic trauma. The initial criteria used

for tinnitus classification are described in Section 2.4. A further 6 animals

were unexposed and used solely for neurophysiological recordings, in order

to serve as controls. Fig 5.1 shows behavioural PPI measures, plotted

against ABR threshold shifts. Three out of the nine noise-exposed GPs

developed tinnitus based on our original criteria. The other GPs either

recovered their hearing and were able to show PPI, or did not recover their

hearing. While the number of tinnitus animals is slightly lower than was

observed previously using the same criteria (~33% compared to ~44%),

it is a similar figure to that found by others (Henderson et al., 2011).

Furthermore, this difference in the percentage of animals developing

tinnitus is understandable when considering the inter-individual variability

of the effects of noise exposure. One of the animals (GP9) showed clear

evidence of tinnitus at all four of the narrow background frequencies and

was close to showing clear evidence of tinnitus with BBN. However, the

other two tinnitus animals were different in that they only showed clear

evidence of tinnitus at one narrow background frequency range (4-6 kHz).
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Fig. 5.1: Behavioural assessment of tinnitus. The % PPI values for each GP are
shown - plotted against hearing threshold recovery at the nearest ABR
frequency (5 kHz, 10 kHz, or 15 kHz) - at each behavioural background
frequency: A: BBN, B: 4-6 kHz, C: 8-10 kHz, D: 12-14 kHz, and E: 16-18
kHz. Numbering denotes GP number. In each plot, the grey shaded
area indicates tinnitus status, i.e., ≤ 0% PPI coinciding with threshold
recovery to within 20 dB HL of baseline hearing level. Using these
criteria, 3 of 9 animals exhibited tinnitus behaviour.
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5.2.1 Neural Gap Detection Thresholds
Following behavioural testing, MGDTs of single-units were examined in the

left and right IC of control, NT and T GPs. Fig 5.2 provides an example

of a cell responding to stimuli, in order to demonstrate how MGDTs

were calculated, which was in a similar manner to that applied by other

researchers (e.g. Dehmel et al., 2012a; 2012b; Zhang et al., 2011). MGDTs

for each unit were analysed according to the background stimuli used - BBN,

NBN (within 1 kHz of the CF of the cell) and pure tones.

Single-units with short latencies (~15 ms or less) were recorded from

control GPs (n = 96), NT GPs (n = 94) and T GPs (n = 58). Cells with much

longer latencies were discounted, as this may indicate that they were not

recorded from CNIC (Syka et al., 2000). The number of cells is somewhat

fewer for BBN and NBN than for pure tone, as some cells did not respond to

these stimuli or had CFs greater than 1 kHz away from the NBN frequencies.

Fig. 5.2: Responses of a single-unit to gaps of different durations, indicating an
MGDT of 10 ms. Numbers on the right-hand side signify length of gap.
The background stimuli used to elicit responses have been included at the
top of the figure. Responses in the 50 ms following a gap were deemed
significant if there were a minimum of 3 spikes over 20 repeats which
were 2 standard deviations above the firing rate during the preceding 50
ms. All MGDTs were confirmed visually.
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5.2.2 Pure Tone MGDTs
The mean and median MGDTs for pure tones, separated according to

experimental group, are shown in Fig 5.3 (A and B). MGDTs in response

to pure tones are plotted as a function of the percentage of cells responding

to gaps of those durations in Fig 5.3C. For pure tones, mean (± SEM)

MGDTs were 10.82 (± 1.76; n = 96) for controls, 17.28 (± 2.49; n =

94) for NT and 11.02 (± 2.40; n = 58) for T GPs. Statistical analysis

(Kruskal-Wallis with a Dunn’s post-hoc test) revealed a significant difference

between control and NT GPs (p < 0.05). In control GPs, 98% of single-units

had MGDTs of 50 ms or less. A similar value was observed in T GPs (97%),

whilst in NT GPs 89% of cells had MGDTs of 50 ms or less.

To determine whether there were hemispheric differences in gap detection

thresholds, pure tone responses for the three different experimental groups

were analysed according to the IC that they were recorded from (Fig 5.3D).

Fig. 5.3: Mean (A) and median (B) MGDTs of single-units for the three different
groups in response to pure tones. (C) shows gap detection thresholds
as a function of % of responding cells. * p < 0.05. (D) shows gap
detection thresholds for the three different groups, separated according
to hemisphere.
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This highlighted that, while noise-exposed GPs generally had longer

MGDTs, there were no statistically significant differences in mean MGDTs

between any of the three experimental groups when data were separated

according to hemisphere. However, there were significant hemispheric

differences in the data, in that left IC gap detection thresholds were

considerably longer for all three groups than the right IC (p < 0.05).
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5.2.3 BBN MGDTs
Fig 5.4 shows mean (Fig 5.4A), median (Fig 5.4B) and % of gap detecting

cells (Fig 5.4C) in response to BBN. Mean (± SEM) MGDTs in response to

BBN were 11.79 (± 2.12; n = 76) for controls, 16.04 (± 2.27; n = 85)

for NT and 21.67 (± 3.46; n = 55) for T GPs. There were no statistically

significant differences between any of the groups (p = 0.08). In control

GPs, 96% of single-units had MGDTs of 50 ms or less. A similar value was

observed in NT GPs (95%), whilst in T GPs, MGDTs of 50 ms or less were

present in 89% of cells.

Fig. 5.4: Mean (A) and median (B) MGDTs of single-units for the three different
groups in response to BBN. (C) shows gap detection thresholds as a
function of % of responding cells.
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5.2.4 NBN MGDTs
Fig 5.5 shows mean (Fig 5.5A), median (Fig 5.5B) and % of gap detecting

cells (Fig 5.5C) in response to NBN. Cells were analysed in response to NBN,

provided their CF fell within 1 kHz of the frequency of the NBN. Mean (±
SEM) MGDTs were 13.33 (± 2.99; n = 43) for controls, 19.34 (± 3.54; n =

38) for no-tinnitus and 20.25 (± 6.13; n = 20) for tinnitus GPs. In control

and NT GPs, 95% of single-units had MGDTs of 50 ms or less. T GPs were

slightly less, with 85% of cells exhibiting MGDTs of 50 ms or less. Statistical

analysis (Kruskal-Wallis with a Dunn’s post-hoc test) revealed no significant

differences between any of the groups (p = 0.23).

Fig. 5.5: Mean (A) and median (B) MGDTs of single-units for the three different
groups in response to the narrowband noise condition that fell within
1 kHz of the CF of each unit. (C) shows gap detection thresholds as a
function of % of responding cells.
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5.3 Types of Responses
Cells were further analysed according to the types of responses they

exhibited. The data were divided into three different classes of units: if

a unit responded to the onset of the first 200 ms stimulus but then ceased

activity within ~30 ms, it was labelled as an “onset” response; if a unit

showed a response that lasted more than 30 ms to the first 200 ms stimulus,

it was entitled a “sustained” unit; units which were mostly silent throughout

the presentation of both the initial 200 ms stimulus and the second 50

ms stimulus, but responded following the offset of the second stimulus,

were categorised as exhibiting offset responses. In determining their MGDT,

offset units were classed as having responded to the presentation of a gap if

they responded during the silence between the first 200 ms stimulus and the

second 50 ms. The first two classes of units were based on the classification

used by Astl et al. (1996). Offset responses were classified in a similar

manner to Kasai et al. (2012). Examples of the three different unit types

are shown in Fig 5.6.

Across the three experimental groups, in response to the pure tone

condition, onset cells had a mean (± SEM) MGDT of 16.03 ms (± 2.17;

n = 88). The mean MGDT for sustained units was considerably shorter at

7.89 ms (± 1.45; n = 124). There were only a few cells which exhibited

offset responses. The mean MGDT of offset units was 30.5 ms (± 10.81; n
= 6). These results will be described in more detail in the next section.
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Fig. 5.6: Example responses of three different types of units - onset (a), sustained
(b) and offset (c) - in response to the pure tone stimulus condition with
a 50 ms gap.
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Fig. 5.7: The percentage of unit types for the three different experimental groups.
The majority of cells recorded from control animals were classed as
sustained units. Contrastingly, onset responses were the most common
type for tinnitus GPs.

5.3.1 Changes in Response Type
The three different experimental groups were analysed to determine

whether there were any changes in the types of responses expressed by

IC neurons. The percentages of unit types for each group are shown in

Fig 5.7.

For units recorded from control GPs, 26% exhibited onset responses (n =

23), 67% were sustained (n = 58) and 7% were offset responses (n = 6).

For T animals, the majority of units were onset responders (73%; n = 44),

while only 27% of units were classified as sustained responses (n = 16) and

no units demonstrated offset responses. A chi-squared test was applied to

compare the frequency of the different types of units, which revealed that T

GPs proportionally had fewer sustained units than controls, but more onset

responses (χ2 (2) = 70.47, p < 0.0001). In NT GPs, 38% of units were

categorised as onset (n = 36), 61% as sustained (n = 58) and 1% as offset

(n = 1). Again, a chi-squared test revealed that there were proportionally

more onset units than controls, as well as fewer sustained units (χ2 (2) =
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10.47, p < 0.01). Statistical analysis between T and NT GPs highlighted

that the proportion of onset units was significantly higher in T GPs than

controls, while the reverse was true for sustained units (χ2 (2) = 31.91, p
< 0.0001).

Units were also examined for whether their MGDTs (in response to pure

tones) varied as a function of response type for each experimental group.

The results are displayed in Fig 5.8. Offset units were excluded from

analysis due to their low incidence in the sample (6 recorded in total across

the three groups). The mean (± SEM) MGDT for onset units in control

GPs was 17.43 ms (± 4.19; n = 23), while sustained units in the same

animals had a mean MGDT of 6.75 ms (± 1.85; n = 56). Similar figures

were observed for NT GPs, with onset units exhibiting a mean MGDT of

17.31 ms (± 3.51; n = 36) and sustained units averaging 10.44 ms (±
2.76; n = 52). The mean MDGT for tinnitus GPs was considerably shorter

for both response types, with onset units at 12.71 ms (± 3.06; n = 42) and

sustained units averaging 3.56 ms (± 1.34; n = 16).

Fig. 5.8: Mean MGDT plotted for the two types of units which occurred most
frequently, divided into the three different experimental groups. Error
bars represent SEM.
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Significance testing was performed using a two-way ANOVA with

Bonferroni post-hoc test. This indicated that there was a significant overall

effect of response type on MGDT, F (1,224) = 11.17, p < 0.01, consistent with

the findings of Walton et al. (2008). The differences in MGDT between the

three experimental groups were not significant when analysed according to

response type, F (2,224) = 0.21, p = 0.81.

It is interesting that the mean MGDT was considerably shorter for T GPs

than the other two groups when analysed under both response types, and

yet slightly longer before cell type categorisation. This can be explained by

the fact that there was a significant difference in the unit types expressed

in control GPs and T GPs, with control GPs mainly consisting of sustained

responses, while T GPs had mostly onset responses. As sustained units

had, on average, significantly shorter MGDTs than onset units, this higher

incidence in control GPs would mean that they would have shorter MGDTs

simply as a result of having more of the types of units that intrinsically had

lower MGDTs.
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5.4 Alternative Classification of Tinnitus
The data presented in this chapter were reanalysed using the alternative

criterion for tinnitus, described in Chapter 4 under the heading ‘Alternative
Classification of Tinnitus’. A total of 7 of the 9 noise-exposed GPs were

classified as having behavioural evidence of tinnitus. This number is

considerably higher than that found using the original, stricter criteria.

However, this equates to ~75% of the animals developing tinnitus, which is

consistent with the percentage found in the previous study using the same

criterion (see Chapter 4.4). Again, across animals, there was no clear trend

with regard to the frequency of the gap detection deficits, although only 1

animal demonstrated significant gap detection deficits around the exposure

frequency (8-10 kHz background condition; Fig 5.9).

Fig. 5.9: Number of GPs demonstrating significant reductions in PPI following
noise exposure, for each background frequency, as determined using a
two-way ANOVA with a Bonferroni post-hoc test (p < 0.05). Numbering
denotes GP number.
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5.4.1 Pure Tone MGDTs
Fig 5.10 shows mean (Fig 5.10A), median (Fig 5.10B) and % of gap

detecting cells (Fig 5.10C) in response to pure tones, analysed under the

alternative criterion for tinnitus. Mean (± SEM) MGDTs in response to pure

tones were 16.40 (± 3.68; n = 43) for NT and 14.29 (± 2.06; n = 109) for

T GPs. The mean MGDTs for control GPs remained the same for all three

background conditions, as these were not affected by the classification.

There were no statistically significant differences between any of the groups

(p = 0.13). In NT GPs, 88% of single-units had MGDTs of 50 ms or less,

whilst in T GPs, MGDTs of 50 ms or less were present in 94% of cells.

As with the previous behavioural criteria, data were separated according

to the IC that they were recorded from (Fig 5.10D). Again, there were no

statistically significant differences in mean MGDTs between any of the three

experimental groups when data were separated according to hemisphere.

There was still a significant hemispheric difference across the three groups,

in that left IC MGDTs were considerably longer than right IC MGDTs (p <
0.01).

Fig. 5.10: Mean (A) and median (B) MGDTs of single-units for the three different
groups in response to pure tones. (C) shows gap detection thresholds as
a function of % of responding cells. (D) shows gap detection thresholds
for the three different groups, separated according to hemisphere.
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5.4.2 BBN MGDTs
Fig 5.11 shows mean (Fig 5.11A), median (Fig 5.11B) and % of gap

detecting cells (Fig 5.11C) in response to BBN. Mean (± SEM) MGDTs in

response to BBN were 16.76 (± 3.81; n = 37) for NT and 18.79 (± 2.27;

n = 103) for T GPs. No statistically significant differences were evident

between any of the groups (p = 0.07). In NT GPs, 92% of single-units had

MGDTs of 50 ms or less, whilst in T GPs, MGDTs of 50 ms or less were

present in 93% of cells.

Fig. 5.11: Mean (A) and median (B) MGDTs of single-units for the three different
groups in response to BBN. (C) shows gap detection thresholds as a
function of % of responding cells.
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5.4.3 NBN MGDTs
Fig 5.12 shows mean (Fig 5.12A), median (Fig 5.12B) and % of gap

detecting cells (Fig 5.12C) in response to NBN. Cells were analysed in

response to NBN, provided their CF fell within 1 kHz of the frequency of

the NBN. Mean (± SEM) MGDTs in response to NBN were 20.28 (± 4.95;

n = 25) for NT and 19.18 (± 4.03; n = 33) for T GPs. Statistical analysis

revealed that there were no statistically significant differences between any

of the groups (p = 0.18). In NT GPs, 92% of single-units had MGDTs of 50

ms or less, whilst in T GPs, MGDTs of 50 ms or less were present in 91% of

cells.

Fig. 5.12: Mean (A) and median (B) MGDTs of single-units for the three different
groups in response to the narrowband noise condition that fell within
1 kHz of the CF of each unit. (C) shows gap detection thresholds as a
function of % of responding cells.
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Fig. 5.13: The percentage of unit types for the three different experimental groups.
Using the alternative criterion for tinnitus classification, no difference
was evident in the type of cells observed between NT animals and T
animals.

5.5 Changes in Response Type - Alternative
Criterion

Again, using the alternative tinnitus classification criterion, the three

experimental groups were analysed for changes in the types of responses

expressed by IC neurons. The percentages of unit types for each group are

shown in Fig 5.13.

For T animals, using the alternative tinnitus criterion, 50% of units were

onset responders (n = 55), while 49% of units were classified as sustained

responses (n = 54) and 1% of units demonstrated offset responses (n =

1). Again, despite the lower percentage of onset responses compared to the

original criteria, a chi-squared test revealed that there were proportionally

more onset units in T animals than controls, as well as fewer sustained units

(χ2 (2) = 35.47, p < 0.0001). In NT GPs, 56% of units were categorised

as onset (n = 25), 44% as sustained (n = 20), while no offset units were

present. Again, a chi-squared test revealed that there were proportionally
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more onset units than in controls, as well as fewer sustained units (χ2 (2)

= 21.69, p < 0.0001). Statistical analysis between T and NT GPs was

performed, excluding the offset group (as there were no offset cells present

in NT GPs to compare to T GPs). The difference in unit types was no

longer evident between these two groups, using the alternative tinnitus

classification criterion (χ2 (1) = 1.36, p = 0.24).



CHAPTER 6

General Discussion

This thesis documented a number of findings with regard to noise exposure

and tinnitus. First, the Preyer reflex gap detection test is a more reliable and

robust measure of tinnitus than the WBS in GPs. Second, there is a marked

shortening in the latencies of components of the ABR waveform following

noise exposure that appears to be linked with tinnitus. Third, increases in

the spontaneous firing rate of auditory neurons do not appear to be a strong

correlate of tinnitus, but are instead representative of changes following

noise exposure (regardless of whether tinnitus is present). Fourth, there

is a change in the response patterns of neurons in the IC following noise

exposure. Finally, deficits in neural gap detection thresholds following noise

exposure do not explain deficits in behavioural gap detection, suggesting

that impaired performance on the behavioural task is not a consequence of

poor temporal acuity. Here, the impact of these findings will be discussed,

along with how they relate to tinnitus.

6.1 Behavioural Measure of Tinnitus Following
Salicylate

Objective behavioural measures of tinnitus are essential when creating an

animal model of the condition (Kaltenbach, 2011). Chapter 3 detailed a

novel method for quantifying PPI in GPs (published in Berger et al., 2013).

This method appears to give robust, consistent responses, and was more

reliable than the WBS approach in these GPs. It was also demonstrated that

the Preyer reflex method was sensitive for detecting deficits in PPI induced

by sodium salicylate, indicative of a tinnitus-like percept in these animals.

99
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The data presented in Chapter 3 indicate that the Preyer reflex was a more

suitable measure than the WBS in detecting tinnitus following salicylate

administration. This may be due to the variability of the WBS response in

guinea pigs, as highlighted in this study. Since the development of the gap

detection model by Turner et al. (2006), the WBS model has been widely

used in rats (Wang et al., 2009; Yang et al., 2007), but very few groups

have to date successfully induced and measured tinnitus in mice (Turner

et al., 2012) or GPs (Dehmel et al., 2012a; 2012b). GPs are notoriously

difficult to train without aversive stimuli (Agterberg et al., 2010), and early

pilot studies also indicated that they habituated very rapidly to the startle

stimulus, or showed a complete lack of WBS responses, which further

complicates adaptation of this model for use in GPs. Consequently, it

was desirable to find a more-robust method of evaluating PPI in the GP,

while still retaining the essential characteristic - measurement of a reflex

requiring no training.

The Preyer reflex (described in Bohmer, 1988) appears to offer an elegant

solution to these limiting factors. In the present study robust, reproducible

startle-evoked responses have been demonstrated that appear far less

susceptible to habituation, exhibit a superior SNR overall (meaning that

the response was more detectable), and show clear PPI, when compared

with the WBS data. Most importantly, baseline PPI of the Preyer reflex

was demonstrated at all background noise frequencies in all twelve GPs

tested, whereas this was only the case in four of the GPs when evaluating

WBS. Moreover, PPI of the Preyer reflex was sensitive to manipulations with

sodium salicylate whereas the WBS was not, and thus may present a useful

alternative for relating changes in a reflex response to tinnitus.

Salicylate causes transient and reversible tinnitus when administered at

high doses in both humans (Mongan et al., 1973) and animals (Ralli

et al., 2010). Behaviourally, salicylate has been shown to significantly

impair gap detection in rats (Turner and Parrish, 2008), consistent with

the results shown in Chapter 3. Although the precise mechanisms behind

salicylate-induced tinnitus have not - as yet - been elucidated, a number

of neural changes have been observed following salicylate administration

in animal experiments, including slight decreases in SFRs at the level of

the AN, DCN, CNIC and AI, as well as increases in SFRs in the external

cortex of the IC and secondary auditory cortex (Basta and Ernst, 2004;

Eggermont, 2013; Eggermont and Kenmochi, 1998; Evans and Borerwe,
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1982; Lobarinas et al., 2006; Roberts et al., 2010; Wei et al., 2010),

although there are conflicting results from different studies (see Stolzberg

et al., 2012 for a review). Considering that changes at certain levels of the

auditory system may differ from noise exposure (Eggermont, 2006), it is

likely that the pathways for tinnitus generation are different dependent on

the inducing agent. Nonetheless, salicylate is a useful tool for examining

tinnitus. Salicylate treatment reliably induces transient tinnitus; this is

proposed (at the central level) to occur as a result of decreased GABAergic

transmission and thus a loss of inhibition (Stolzberg et al., 2012).

An important, and potentially confounding, aspect of the gap detection

method following tinnitus induction is a reduction in startle amplitudes that

has previously been observed after noise exposure (Lobarinas et al., 2013).

The potential implication of this finding is that such a decrease may render

any gap detection deficits difficult to interpret, as the PPI calculation is a

relative measure and thus could be affected by reduced startle amplitudes.

In light of the greater degree of variability as well as the poorer SNR of

the WBS (compared with Preyer) in these data, it is conceivable that any

reduction in amplitudes may often obscure a detectable startle response

and render calculations of PPI as meaningless.

In Chapter 3, it was documented that reductions in the amplitudes of

either Preyer or WBS responses following salicylate administration were not

observed. In fact, significant increases were present at various background

frequencies. Such increases in amplitude following tinnitus induction have

been suggested to relate to hyperacusis (Chen et al., 2013; Sun et al.,

2009; Turner and Parrish, 2008), an oversensitivity to sounds that is often

present with tinnitus (Dauman and Bouscau-Faure, 2005; Hebert et al.,

2004). It is not clear from the data presented in Chapter 3 whether these

increased amplitudes may relate to hyperacusis, as the salicylate injection

itself may have caused stress-related augmentation of the startle response

in these animals (an idea similar to the fear-potentiated startle; Davis et

al., 1993). Interestingly, fear or stress should also cause greater degrees

of PPI (Cassella and Davis, 1986; Grillon and Davis, 1997), which is

opposite to what has been observed here, further supporting the idea that

salicylate-induced tinnitus is causing reduced gap-induced PPI.

It is important to highlight that whilst startle amplitudes did not decrease

following salicylate administration, decreased amplitudes are clearly
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prevalent following noise exposure (Lobarinas et al., 2013). Consequently,

any studies using the gap detection method, regardless of which startle

response is measured, should ensure that a clearly detectable response is

present following noise exposure. Furthermore, hearing thresholds should

have recovered sufficiently in order for an animal to detect and respond to

the background stimulus, as this may also confound interpretation of gap

detection deficits.

Although the advantages of using the Preyer reflex were clear from the data

presented in Chapter 3 (three times as many GPs demonstrating baseline

PPI at every frequency and sensitivity to changes following salicylate

administration), an important caveat lies in the design of the SLDT protocol

used in these experiments. The SLDT was conducted to determine the

optimal sound level combinations (background/startle) for detecting PPI of

the Preyer reflex, not the WBS. As a result, the testing conditions were not

necessarily optimal for the WBS and hence it is possible that better results

might have been obtained for the WBS if the optimisation focussed on this

response. For example, the results of Dehmel et al. (2012a; 2012b) suggest

that, if optimised, the WBS can be used effectively to measure PPI in GPs.

However, from the early pilot experiments that showed inferior SNR and

lower levels of detectable WBS, it still seemed likely that the Preyer reflex

provided a ‘cleaner’, more-robust measure in these GPs. The WBS reflex has

previously been shown to successfully identify tinnitus in naturally active

species, such as rats (Turner et al., 2006) and mice (Turner et al., 2012),

but the Preyer reflex may be more suitable in more lethargic animals such

as chinchillas or cats (Koka et al., 2011). Furthermore, these animals have

large pinnae which would render any Preyer response easier to detect; this

may be an important factor in the utility of this approach to measuring gap

detection. It would be useful to compare the two methods for measuring

PPI in other species.

6.2 Behavioural Measure of Tinnitus Following
Noise Exposure

In Chapter 4, it was demonstrated that the Preyer reflex gap detection

test is a reliable measure of tinnitus following noise exposure, similar to

the results of other studies using the WBS as the reflex measure (Chen

et al., 2013; Dehmel et al., 2012a; Kraus et al., 2011; Turner et al.,
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2006; Turner et al., 2012; Turner and Parrish, 2008; Yang et al., 2007;

Zhang et al., 2011). Interestingly, the exposure frequency (10 kHz) was

not the most common frequency for gap detection deficits, using either

tinnitus classification method. In fact, there was no clear trend with regard

to the frequency of the gap detection deficits. This can be explained in

part by the ABR shifts observed immediately following noise exposure

that occurred across a broad range of frequencies, which would suggest

that the exposure frequency would not necessarily predict the frequency

of the tinnitus. Another interesting observation is that 4-6 kHz was the

most common frequency for gap detection deficits across all noise exposed

animals (both Chapter 4 and Chapter 5 combined). However, given that

deficits were observed at other frequencies in a number of animals, it is

debatable as to whether this finding informs us about the precise tinnitus

frequency. Other studies suggest that humans often show significant

variability when estimating the frequency of their tinnitus (Burns, 1984;

Henry et al., 2004; Penner, 1983; Tyler and Conrad-Armes, 1983), with the

matched tinnitus pitch fluctuating over time, so the variability observed in

these GPs is not surprising. Regardless of any variability between animals,

the data presented in Chapter 3 and Chapter 4 highlight that the Preyer

reflex was suitable for detecting tinnitus in individual animals, without

the requirement for animals to be grouped to see differences. This is an

important facet of any tinnitus model, as there are clearly interindividual

differences in susceptibility of developing tinnitus, the characteristics of

tinnitus and the efficacy of different treatments (for an overview of possible

genetic differences in interindividual susceptibility, see Sand et al., 2007).

There are limitations to using the reflex response approach that at

present remain unresolved. In either form, the method measures - at

best - perception of a phantom sound, but fails to assess the emotional

components and characteristics that are linked to the level of annoyance

produced in the human condition. This, clearly, is a challenging facet

to model and quantify in animals, while retaining other features of the

current models and not introducing complex behavioural tasks that may

interfere with measurement of the phantom sound perception. Despite

recent advances in animal tinnitus models, the scope for understanding

the pathophysiology of tinnitus remains limited without significant further

development. The ideal behavioural test would account for the limbic
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components of tinnitus, which clearly have a large impact on how affecting

the condition is in humans (Leaver et al., 2012; Rauschecker et al., 2010).

There are concerns that have been raised over the WBS gap detection

measure for tinnitus that also need considering for the Preyer reflex

test. Reduced startle amplitudes following impaired hearing sensitivity

have been shown to affect the measure of prepulse inhibition, which

could confound any gap detection deficits. Lobarinas et al. (2013)

demonstrated a reduction in startle response amplitude to the level of the

noise floor (background movement) in several rats, following unilateral

noise exposure. Subsequently, they showed that unilateral conductive

hearing loss (induced with earplugs) resulted in rats being classified to

a tinnitus group, based on traditional criteria, despite the fact that the

earplug testing would likely not cause tinnitus. However, the Preyer

reflex, while somewhat reduced in amplitude, is still clearly distinguishable

above the baseline noise level, for both ‘gap’ and ‘no-gap’ startling stimuli

following noise exposure, in animals that are categorised as experiencing

tinnitus. Furthermore, by only including animals in the tinnitus group

that do not have severe residual hearing loss, as was done in the initial

criteria by ensuring that the threshold is no greater than 20 dB HL at the

“tinnitus frequency”, gap detection deficits caused by reduced audibility

of the background carrier are minimised. Also, animals exhibiting gap

detection deficits were usually still able to detect gaps at other background

frequencies, despite reductions in the amplitude of the Preyer reflex across

all background frequency conditions. Therefore, reduced startle amplitudes

observed here are unlikely to have confounded measures of gap detection

in these animals.

Another major criticism of the gap detection test that has recently been

raised is whether it actually measures tinnitus, rather than some form of

temporal acuity deficits that may relate to the tinnitus or to the hearing

deficit. The initial hypothesis for the test was that gap detection deficits

following noise exposure or drug administration reflect a perceptual “filling

in” of the gap by the tinnitus (Turner et al., 2006; Turner and Parrish,

2008). With this in mind, it would be expected that gap detection deficits

would likely be frequency-specific in tinnitus patients, occurring at or

around the frequency of the tinnitus. Fournier and Hebert (2013) recently

demonstrated that this was not the case, and that deficits in patients

with high frequency tinnitus were also present at much lower frequencies.
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As a result, they suggested that gap detection deficits following noise

exposure may be caused by reduced temporal acuity of the auditory system

preventing detection of the 50 ms gaps.

6.3 Does Tinnitus “Fill in” the Gap?
Chapter 5 detailed the assessment of neural gap detection thresholds in

the IC of noise-exposed GPs. This was done to test the validity of the

behavioural gap detection test for tinnitus and is the first study to examine

neural gap detection thresholds following noise exposure. More specifically,

it was of interest to see whether any gap detection deficits observed

behaviourally after acoustic trauma may be explained by a reduction

in the temporal acuity of the auditory system. While some differences

were present, it was clear that 50 ms gaps (the duration used in the

behavioural task) were detectable by the majority of single-units in the

IC, regardless of whether or not a GP was subjected to acoustic trauma,

or subsequently developed tinnitus. Given that IC gap detection thresholds

predict behavioural gap detection thresholds in a non-pathological model

(Walton et al., 1997), behavioural deficits in gap detection, as seen in the

Preyer reflex test, do not appear to be a result of temporal acuity deficits

caused by noise exposure.

Interestingly, the only statistically significant difference observed between

the three groups was an increase in MGDT for NT GPs compared to controls,

for the BBN condition, when using the conservative criteria for tinnitus

classification. This suggests that noise exposure does have some effect

on gap detection abilities. As some of the GPs in this group sustained a

substantial hearing deficit, and given the lack of any significant differences

in the other conditions, it is likely that this result is due to a reduction

in the audibility of the gap in these animals. However, given that the

average MGDT for NT animals in response to BBN (16.04 ms using the

original criteria) was far shorter than the duration of the 50 ms gap used

behaviourally, this is unlikely to have had a profound effect on behavioural

performance. Moreover, many of the GPs in this group still exhibited

gap-induced prepulse inhibition at all or most frequencies. Further to this,

when the alternative criterion for tinnitus classification was applied, no

significant differences were evident between any of the groups for any of

the stimulus conditions. With this in mind, it is clear that the slight deficits
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in neural gap detection thresholds observed following noise exposure do

not explain the gap detection deficits seen behaviourally in T GPs.

It is interesting that there was a significant hemispheric difference in

MGDTs across the three experimental groups, in that left IC MGDTs were,

on average, considerably longer than right IC MGDTs. This suggests

a right hemisphere advantage in temporal processing in these GPs. In

humans, some psychophysical studies have previously reported that a left

hemisphere advantage was evident in temporal processing (e.g. Brown

and Nicholls, 1997; Sulakhe et al., 2003), contrasting with the right side

advantage demonstrated in Chapter 5. However, other psychophysical

studies failed to reproduce this left hemisphere advantage in humans

(e.g. Efron et al., 1985; Samelli and Schochat, 2008). Nonetheless, the

data presented in Chapter 5 do conflict with the human psychophysical

literature reporting a left hemisphere advantage. It is highly plausible

that differences between human studies and the paradigm used here may

play a role in any inconsistencies in these findings (e.g. species differences,

the use of anaesthetics, or procedural differences, i.e., electrophysiological

experiments vs. psychophysical measurements). Interestingly, fMRI studies

in humans appear to support the findings of Chapter 5 and contradict the

psychophysical results in humans, showing that increased activation in the

right hemisphere was better correlated with performance on a temporal

processing task than the left hemisphere (Harrington et al., 2004; Reiterer

et al., 2005). Further investigation in animals on hemispheric differences

in temporal processing is necessary to address these discrepancies in the

literature.

One limitation of the present study is that many of the units did not respond

strongly enough to NBN, or their CFs did not fall within 1 kHz of the

lower or upper frequency of the noise band, so an MGDT could not be

reliably obtained. As a result, the number of units for this condition is

substantially lower than the other conditions. In an ideal scenario, these

numbers would be equal for all the conditions. Nonetheless, given that the

average MGDT for the units that were responsive to NBN was considerably

less than the important 50 ms gap duration, it is unlikely that if this sample

size was increased the means would substantially change so as to indicate

that 50 ms was not detectable by the majority of units. Furthermore, it

has been highlighted that psychophysical gap detection thresholds may

feasibly be determined by across-channel integration of responsive neurons
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(Eggermont, 1999). With this in mind, it can be assumed that the average

MGDT to the pure tone gap carrier condition would be a reasonable

predictor of behavioural gap detection thresholds. Therefore, the fact that

pure tone responses had, on average, the same MGDT for T and control

animals suggests that deficits in neural gap detection thresholds are not

responsible for behavioural gap detection deficits.

Walton et al. (1998) demonstrated that aged CBA mice with minor

sensorineural hearing loss (threshold elevations of 20-30 dB) had poorer

gap detection thresholds in the IC than young mice. This is consistent

with other studies which have shown that psychophysically-estimated gap

detection thresholds are poorer in both aged animals (Barsz et al., 2002;

Hamann et al., 2004) and aged humans (Gelfand et al., 1988; Lister

and Roberts, 2005; Roberts and Lister, 2004). However, Walton et

al. (2008) highlighted that these differences in gap detection thresholds

could be solely attributed to age. They examined MGDTs in the IC

of middle-aged C57 mice, which are genetically predisposed to develop

severe hearing loss (threshold elevations of 40-50 dB) within 6 months,

and compared these to young, normal-hearing C57 mice. Their results

indicated that there were no significant differences in MGDTs between the

middle-aged hearing-impaired mice and normal-hearing young mice. This

contrasts somewhat with psychophysical evidence from hearing-impaired

humans, showing that gap detection thresholds are significantly longer

with a hearing loss when sensation levels are matched to a normal-hearing

population, even at a young age (Fitzgibbons and Wightman, 1982).

The present study provides an addition to the considerable body of

evidence examining factors that affect gap detection thresholds, showing

that while some minor deficits are present following noise exposure, these

are generally not significant. It is important to highlight that the estimates

of MGDTs found here are considerably longer than those of Walton et al.’s

(1998; 2008) studies. However, in their studies, sound levels were matched

to the best response of each unit. In order to best model the conditions

of the behavioural test, the same sound levels used in the behavioural

paradigm were used to determine the sound levels in each neural gap

detection experiment. As a result, the levels were not necessarily optimal

for each unit, hence the estimates of MGDTs may have been longer. Further

to this, the estimates of MGDTs presented in Chapter 5 are very similar

to the psychophysically-estimated thresholds of Fitzgibbons and Wightman
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(1982). Regardless of any minor differences, the results here highlight that

neural gap detection thresholds following noise exposure cannot explain

behavioural gap detection deficits.

The question then remains - what is causing behavioural gap detection

deficits following noise exposure? Eggermont (2013) suggested that

deficits in gap detection may reflect increased SFRs in subcortical structures.

While an animal is under anaesthetic the perception of tinnitus should

be abolished (as tinnitus, by definition, requires conscious perception).

Thus, if this hypothesis were correct, gap detection would have been

expected to be significantly impaired in neurons of the IC, as increased

SFRs were indeed present under anaesthetic following noise exposure and

this could feasibly result in reduced temporal acuity. However, there was

no significant impairment of neural gap detection thresholds observed in

tinnitus animals.

Fournier and Hebert (2013) suggested that tinnitus may not be filling in

the gap, as the deficits in gap detection they observed in patients with

high-frequency tinnitus were not limited to the high-frequency background

carrier, but were also present in the low-frequency condition. However, the

frequency most similar to patients’ tinnitus (16 kHz), as determined using a

likeness matching procedure (similar to that used by others; e.g. Moore et

al., 2010), was not matched to the frequency of the background carrier

(4 kHz for the high-frequency condition; 500 Hz for the low-frequency

condition). Therefore, it would have been interesting to determine whether

gap detection deficits were even worse at the frequency of the tinnitus

than the other frequencies. If this was the case, it would not rule out the

hypothesis that tinnitus is perceptually filling in the gap, but would in fact

support it. Further studies should be performed using carrier frequencies

more similar to the patients’ tinnitus, in order to determine whether this

hypothesis is correct.

Given the current evidence, Turner et al.’s (2006) original perceptual

“filling in” hypothesis still seems a likely candidate for the behavioural gap

detection deficits. Nonetheless, further research on humans assessing their

performance in detecting gaps similar to their tinnitus would be welcomed.



Chapter 6. General Discussion 109

6.4 Increased SFRs Following Noise Exposure
Many studies have examined hyperactivity throughout the auditory system

following noise exposure (e.g. Mulders and Robertson, 2009; Norena et al.,

2003). However, few studies objectively assessed animals for noise-induced

tinnitus before electrophysiological measurement (Brozoski et al., 2002;

Dehmel et al., 2012a; 2012b; Engineer et al., 2011; Kaltenbach et al.,

2004; Middleton et al., 2011). At the time of writing, no studies have

reported data for noise-exposed NT animals, although Kaltenbach et al.

(2004) did demonstrate a correlation between hyperactivity in the DCN

and strength of behavioural evidence for tinnitus. In Chapter 4, it was

reported that spontaneous neuronal firing in the IC was elevated following

noise exposure. However, there were no discernible differences between

T and NT animals, using either the original criteria or the alternative

criterion for tinnitus classification. Neither were there any trends with

regard to CF or hemisphere, a result that contrasts with previous reports

of a relationship between elevated spontaneous firing and acoustic trauma

frequency (Kaltenbach et al., 2004; Mulders and Robertson, 2009; Mulders

et al., 2011). Nevertheless, it can be concluded that increases in SFRs

appear to relate to the reduced input caused by noise exposure, rather than

the tinnitus.

While no previous studies have assessed spontaneous rates in the IC in

relation to T and NT (but noise-exposed) animals, Zhang et al. (2004)

found that the level of spontaneous activity in the DCN correlated better

with the degree of hearing loss than behavioural evidence of tinnitus. The

authors concluded that the only reason increased SFRs in DCN relate to

tinnitus is because both tinnitus and hyperactivity are caused by the same

trigger, i.e. hearing loss. This idea is further supported by the fact tinnitus

often occurs immediately following exposure to loud sounds, whereas

increases in spontaneous activity are not evident in the DCN until more than

2 days following noise exposure (Kaltenbach and Afman, 2000). This issue

is further discussed by Heffner and Koay (2005): it is clearly a contentious

point, as many studies still use increased hyperactivity as a neural correlate

of tinnitus. Nonetheless, the evidence presented above and in Chapter 4
suggests that it is likely that increases in SFRs are a direct consequence of

damage to the IHCs or OHCs, resulting in reduced input to the auditory

system, rather than reflecting the sole underlying cause of tinnitus. This
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idea is consistent with the results of studies showing that damage to

the IHCs, using the ototoxic drug carboplatin, caused increases in neural

activity in the central auditory system (Salvi et al., 2000), as did damage

to the OHCs following cisplatin application (Kaltenbach et al., 2002),

although these drugs are also known to cause tinnitus (Dille et al., 2010).

It is important not to completely rule out increased spontaneous activity in

the auditory system as a contributing factor in tinnitus. However, clearly

further work is required to determine precisely how this hyperactivity may

relate to tinnitus.

The origin of increases in SFRs at the level of the IC following noise

exposure was elucidated by Manzoor et al. (2013). They measured

SFRs in both the DCN and IC of hamsters following noise exposure,

tracking the time-course and the frequency specificity of any changes. The

progression of hyperactivity over time was observed in both structures, at

similar locations on the tonotopic axis, suggesting that increases in SFRs

at the level of the IC were inherited via a passive relay from the DCN.

However, SFRs in the IC of noise-exposed animals were considerably lower

than those observed in the DCN. This suggests that there is a greater

degree of tonic inhibition preserved at the level of the IC following noise

exposure. It is uncertain how this relates to tinnitus, as no behavioural tests

were performed, although the authors suggest that the relative lessening

of increased SFRs at the level of the IC compared to DCN may result

in adaptation to the tinnitus signal, leading to lower levels of tinnitus

sensation than if levels of IC hyperactivity matched the DCN. Their claim is

supported by evidence indicating that tinnitus in humans is often matched

to very low sensation levels (Axelsson and Prasher, 2000; Axelsson and

Sandh, 1985).

6.5 A Problem of Classification?
One major caveat in the measurements of SFRs in Chapter 4 is that the

classification of the animals as having tinnitus or not relies solely on the

behavioural test. The initial criteria used were stricter than many others

use, as animals were only considered to have tinnitus if they showed

impaired gap detection but minimal hearing loss. This was done to ensure

that any gap detection deficits following noise exposure were not simply

due to severe hearing deficits preventing detection of the gaps. As a
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result, using these criteria, it is not completely certain that all of the

no-tinnitus animals did not experience tinnitus, as it was unable to be

reliably determined whether tinnitus was present in some of the more

hearing-impaired GPs. However, there are a number of factors that support

classification of the animals in this manner. First, the percentage of

animals that appeared to develop tinnitus following noise exposure is very

similar to that found by others using similar levels of noise exposure,

with different criteria and operant-conditioning behavioural tests in other

species (Henderson et al., 2011; Ruttiger et al., 2013). It is also a similar

figure to that reported in humans with a hearing impairment (Lockwood et

al., 2002).

Further support for the application of these criteria comes from histological

data acquired from GPs used in the SFR experiments (Berger et al., in

revision). Histological analysis of the tinnitus and no-tinnitus brains (as

identified with the initial conservative criteria), as well as controls, was

performed to determine whether there were any changes in the levels of

nitric oxide synthase (NOS) expression following noise exposure. Nitric

oxide synthase, in its neuronal form (nNOS), is known to modulate synaptic

plasticity (see Steinert et al., 2010 for review). High levels of nNOS have

also been linked to synaptogenesis in the AVCN following removal of the

cochlea (Chen et al., 2004). Using NADPH-diaphorase, which co-localises

with NOS (Dawson et al., 1991; Wallace, 1996), significant asymmetries

were observed in the VCN of tinnitus GPs compared to controls, but not in

the VCN of no-tinnitus GPs (Fig 6.1). As NADPH-diaphorase is not selective

to particular isoforms of NOS (of which there are three - neuronal, inducible

and endothelial), immunohistochemistry was performed with a monoclonal

anti-nNOS primary antibody to confirm that increased expression of NOS

was attributable to the neuronal isoform. This is an intriguing result, which

suggests that NOS may mediate some of the changes which have been

observed in the VCN following noise exposure (e.g. Robertson et al., 2012;

Vogler et al., 2011). Further work is required to determine precisely how

nNOS may contribute to neural changes associated with tinnitus perception,

but the clarity in these nNOS data appears to provide support for the

original behavioural criteria.
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Fig. 6.1: Left-right NOS asymmetry in GPs with tinnitus. The mean (± SEM) ratios
between left (exposed) VCN and right VCN data are shown - expressed as
the degree of asymmetry where values > 0 indicate more NOS-positive
cells in the left (exposed) VCN - for control (n = 5), NT (n = 5), and T (n
= 5) animals. A significant asymmetry was seen between T and control
groups (* P < 0.05), but not between NT and control groups. The upper
dashed line and grey box indicates the upper 95% confidence limit of the
NT group. The lower dashed line indicates the lower 95% confidence
limit of the T group. From Berger et al. (in revision).

Also, the frequency-selective changes in ABRs observed were present only

in the tinnitus animals. As mentioned previously, any changes in the

no-tinnitus animals may have been confounded by significant threshold

shifts, but this finding nevertheless further supports the use of these criteria.

Finally, the data presented within this thesis were reanalysed under an

alternative criterion, similar to that applied by other researchers. All the

results established using the original criteria were replicated using the

alternative criterion (including the NOS findings presented above). As

a consequence, the lack of differences between tinnitus and no-tinnitus

animals in relation to SFRs is an important finding requiring consideration.
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6.6 Changes in ABRs Following Noise Exposure
Previous work suggested ABRs as a potential indicator of pathological

changes associated with tinnitus. Changes in ABR latency and amplitude

were shown in GPs following tinnitus induction (Dehmel et al., 2012a),

while a change in the ratio of the amplitudes of the ABR peaks was found

in tinnitus patients, supporting the idea of increased central gain in tinnitus

(Gu et al., 2012; Schaette and McAlpine, 2011). Chapter 4 documented a

reduction in the latency of ABRs at 10 kHz in T animals, using the original

classification criteria. This appeared at least as early as the second wave.

The mechanisms behind the reduction at a relatively early stage in the

ascending auditory pathway are unclear. However, given the frequency

specificity (no latency effects were seen at 5 kHz or 15 kHz), as well as the

lack of variability between left and right-side ABRs before noise exposure,

this appeared to be robust.

The latency shift was not apparent in NT animals (as classified using

the initial criteria). An important caveat, however, is the greater degree

of hearing loss in this group and therefore, presumably, a decrease in

audibility of the stimuli. This may have increased the latency of the ABRs,

which could have obscured any minor reductions in latency that may have

taken place. Consequently, it cannot be ruled out that these effects occurred

as a non-selective result of noise exposure, and would not therefore be

recommended to use these latency shifts as an independent indicator of

tinnitus. However, reductions in ABR latency, compared to ABRs measured

prior to noise exposure, were observed even when using the alternative

criterion for tinnitus classification, which included some animals that had

severe hearing loss. Therefore, the observed latency shift shown here is an

intriguing result.

This reduction in ABR latency becomes less surprising when viewed in

context of human research showing that shorter ABR latencies may be

present in hearing impaired listeners, compared to normal hearing listeners

(Strelcyk et al., 2009). The explanation for this is that broader filter widths

at the level of the cochlea are caused by noise exposure, as a result of

decreased frequency selectivity (Dallos and Harris, 1978). This means that

each auditory nerve fiber has a broader range of frequencies to which it

responds. Based on an idea known as linear systems theory, decreased

frequency selectivity at the level of the cochlea would result in a reduction
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in cochlear response time (Boer, 1996; Ruggero, 1994). This is further

supported by Henry et al. (2011), who demonstrated that noise exposure in

chinchillas caused reduced frequency selectivity at the level of the auditory

nerve, which was associated with decreases in wave I latency. As a result,

it is possible that the reduction in ABR latency observed in Chapter 4 may

simply be a consequence of the noise exposure, rather than tinnitus. This is

still unclear though, as significant shifts in ABR latency were only observed

in T GPs, around the noise exposure frequency. Furthermore, using the

initial, stricter behavioural criteria, the degree of hearing loss was not

severe for the T GPs, so any changes in the filter widths as a result of the

noise exposure should not have been large enough to significantly affect

the latency of the ABR.

Conflicting with the above findings of reduced ABR latencies following

noise exposure, Gourevitch et al. (2009) demonstrated that guinea pigs

exposed to noise trauma show prolonged Wave III ABR latencies when

large temporary threshold shifts were present. Therefore, tinnitus (or its

underlying causes) may play a role in the reduction of ABR latencies, as

a tinnitus-specific effect on ABR latencies has been shown here. However,

more work is required to further elucidate the association between tinnitus

and ABR latency. Future studies examining auditory filter widths - which

are useful indicators for ABR latencies - in relation to tinnitus would help

bridge this gap in the literature.

6.7 Changes in Response Types in the IC
In Chapter 5, data was presented on the response types of single units in

the IC, for control, noise-exposed and tinnitus GPs. These were broadly

categorised into three types based on their post-stimulus time histogram

(PSTH) responses to pure tones - onset, sustained and offset. In control GPs,

the most common type of unit response was sustained, while approximately

26% of units were onset responders. These figures are consistent with

those found by others in the IC of GPs (Astl et al., 1996; Le Beau et

al., 1996). Following noise exposure there was a significant increase

in the proportion of units exhibiting onset responses, regardless of the

behavioural classification of tinnitus applied. In fact, while in control

animals the majority of responses were classified as sustained (67%), using

the initial classification for tinnitus, units in the IC of T GPs demonstrated
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the opposite, resulting in the majority of units (73%) being classed as onset

responders. This increase in the proportion of onset responses was still

evident using the alternative tinnitus criterion, albeit less dramatic.

Changes in response types of units in the IC have been demonstrated

following bicuculline and strychnine (Le Beau et al., 1996). For example,

approximately 50% of units demonstrated changes in their PSTH class

following application of either drug, most commonly to ‘chopper’ responses,

characterised by a regular discharge pattern of three or more peaks near

the stimulus onset. These changes in response type were attributed to the

antagonistic effect that these drugs have on GABA and glycine receptors.

Furthermore, Wang et al. (1996) examined types of responses in the IC

of chinchillas immediately following acute noise exposure, and showed

that there was no marked change in the types of responses exhibited by

single units. However, the data presented within Chapter 5 provide the first

evidence for long-term changes in response types following noise exposure.

It is particularly intriguing that the degree of change in response type was

greater for T GPs than NT GPs when using the initial tinnitus classification

criteria. This difference between T and NT GPs was no longer evident

when using the less strict, alternative criterion. Nevertheless, the change

in response types observed following noise exposure was still evident and

is a result which warrants further investigation, particularly in determining

how this may relate to the manifestation of tinnitus.

There is evidence indicating that the types of responses expressed by IC

neurons may represent differing functional roles. For example, Zheng and

Escabi (2008) demonstrated that sustained units are effective at encoding

the envelope shape of stimuli with low modulation rates, while onset

units are most suited to representing repetitive stimuli at high modulation

rates. Response properties of units are also determined by inhibitory inputs

(Le Beau et al., 1996), mediated by GABA and glycine neurotransmitters.

Furthermore, Wallace et al. (2012) found that onset responses are never

indicative of laminar cells in the IC, but rather are found to be stellate cells,

while sustained units are more likely to be flat laminar cells, highlighting

morphological differences between the two response types. As yet, it is

unclear how this change in unit type may be associated with tinnitus,

although changes in inhibitory circuits, as observed in tinnitus animals

(Wang et al., 2011) could feasibly contribute to the changes in the response

patterns of units observed above.
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Types of units were also analysed in respect to their MGDT. Between

experimental groups, when units were divided according to the type of

responses they exhibited, no significant differences were found, further

highlighting the lack of significant difference in neural gap detection

thresholds following noise exposure. Interestingly, sustained units had,

on average, significantly shorter MGDTs than onset responders. This

is consistent with Walton et al. (2008), who also demonstrated that

pure onset units (which mirror the responses that classed as onset here)

had slightly longer MGDTs than sustained responses, although their

main conclusion from this analysis of response types was that offset (or

inhibitory) responses had the longest MGDTs. As the sample size for

offset responses was too small, these were not included in the analysis,

as they may have skewed the statistical test. However, the results for

offset responses were similar to those of Walton et al. (2008), as well

as Wilson and Walton (2002), in that the mean MGDT of offset responses

was considerably longer than onset or sustained responses (30.5 ms, 10.81

SEM; n = 6).

6.8 What Do the Present Results Tell Us About
the Causes of Tinnitus?

It is useful to briefly reconsider what the underlying causes of tinnitus may

be, in light of some of the data presented within this thesis. It appears that

increased SFRs following noise exposure are not sufficient alone to induce

a chronic tinnitus percept. Based on Schaette and McAlpine’s gain control

theory (Schaette and McAlpine, 2011), increased spontaneous rates would

result from homeostatic mechanisms as a consequence of reduced input to

the auditory system from the periphery following noise exposure. This is

supported by the data presented here and consistent with what others have

found (Kaltenbach et al., 2004; Mulders and Robertson, 2009; Mulders et

al., 2011). However, there must be further mechanisms which induce and

sustain the chronic tinnitus percept, as the work presented here and that

of Zhang et al. (2004) indicates that increased hyperactivity in the IC and

DCN is likely a direct result of noise exposure.

Rauschecker’s limbic system gating control mechanism (Rauschecker et al.,

2010) is an appealing candidate as a contributing factor. It is evident

that, following noise exposure, spontaneous firing rates are increased
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throughout the auditory system, up to the level of the inferior colliculus.

Then, if there is dysfunction in the limbic gating mechanism, which

prevents unwanted sustained activity from reaching the auditory cortex,

this could feasibly result in cortical hyperactivity, driven by bottom-up

connectivity. It is plausible that this cortical hyperactivity may manifest

itself consciously as a tinnitus percept. Patients who suffer badly from

tinnitus are often found to also have a major depressive disorder (Dobie,

2003). Additionally, the severity of a patient’s tinnitus, as well as tinnitus

prevalence, has been shown to be reduced by a reduction in their depressive

mood (Hebert et al., 2012). It is therefore possible that depression, or

extreme stress, may cause dysfunction in this gating mechanism, via a

depletion in serotonin (the neurotransmitter proposed to mediate this

gating mechanism; Rauschecker et al., 2010). Clearly the above proposal

is an over-simplistic explanation for tinnitus generation. However, further

work on animal models of stress, combined with animal models of tinnitus,

may help reveal the role that stress plays in tinnitus production.

It is important to remember that tinnitus is not a homogenous disease, but

a heterogeneous collection of symptoms. Indeed, with the research field it

will likely be necessary to break tinnitus down into different subtypes, as

the causes of tinnitus may differ according to the characteristics (Landgrebe

et al., 2010). For example, some patients are able to manipulate their

tinnitus with jaw movements (Lockwood et al., 1998) or by changing the

direction of their gaze (Coad et al., 2001), which implicates a role for the

somatosensory system in modulating their tinnitus (Dehmel et al., 2012b).

Creating subtypes may prove difficult in animal models of tinnitus, where

it is currently impossible to determine the precise characteristics of the

tinnitus. It is nevertheless essential for this subdivision to be considered, in

order to fully identify the mechanisms behind chronic tinnitus generation

and create successful therapeutic interventions.
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6.9 Conclusions
• From these data, the Preyer reflex gap detection test for tinnitus

appears to be more reliable than the whole body startle measure in

GPs.

• Tinnitus is a plausible explanation for gap detection deficits observed

following noise exposure, particularly when severe hearing loss is

accounted for, as gaps of 50 ms are detected by the majority of IC units

following noise exposure, regardless of whether there are behavioural

gap detection deficits.

• Hyperactivity alone cannot account for tinnitus perception, as

increased SFRs are present following noise exposure even in the

absence of behavioural evidence of tinnitus.

• Reductions in ABR latency, changes in levels of nNOS and alterations

in the responses of IC neurons do appear to be uniquely related to

tinnitus. Further studies should elucidate how these may contribute

to the manifestation of the tinnitus percept.

6.10 Suggestions for Further Developments
• Although in this thesis, the Preyer reflex was measured using

expensive motion tracking hardware, there is little reason why the

reflex could not be measured using simpler hardware, such as

accelerometers or low-cost, high frame rate cameras analysed on a

frame-by-frame basis. This would provide a cost-effective behavioural

test for tinnitus.

• It would be of interest to measure (using electromyography) the

post-auricular muscle reflex (PAMR), a vestigial response in humans

which produces the pinna reflex in animals (Berzin and Fortinguerra,

1993), to assess the possibility of developing an objective test for

tinnitus in humans, based on the gap detection paradigm. The PAMR

seems to have a simpler circuitry than the commonly-used eyeblink

startle response and appears to be less influenced by attention

(Benning et al., 2004; Hackley, 1993; Hackley et al., 1987), so may

be a good candidate as a startle measure in a tinnitus test paradigm.

This might provide a highly useful tool for clinicians to determine
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the characteristics of a patient’s tinnitus without solely relying on

subjective report. Such a test is not currently available but would

be of considerable use (McCombe et al., 2001).
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