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Abstract

Laser Doppler Blood Flowmetry (LDBF) has for several decades been

applied to measure the flow of red blood cells in living tissue. Laser

Doppler Perfusion Imaging (LDPI), a recent advancement which enables

full-field blood flow visualisation, is gaining clinical acceptance in fields

such as burn diagnostics.

However, video-rate full-field imagers with appropriate sensor and

processing capability require large financial and physical resources and

this has prompted the development of under-specified systems. These

systems may reduce the bandwidth and processing complexity but

the question of how they perform compared to their fully specified

counterparts remains. The advantages of these cheaper and often highly

reconfigurable systems are recognised and so it is beneficial to ask

whether any novel processing schemes can reduce the resultant error.

Here a reduced bandwidth LDBF signal processing system has been

modelled. Bayesian Inference has been used to show that the Pareto

distribution is a likely model for the LDBF power spectrum, despite

often being cited as exponential. Methods of evaluating microvascular

blood flow have been described and compared. Additionally, one fast

algorithm’s effectiveness has been explained, and a novel and accurate

method using the Hilbert transform has been presented.

By understanding how aliasing modifies the frequency distribution,

Bayesian Inference has been used to correct the blood flow output

towards gold-standard values. The technique has been shown to correct

the output of a low bandwidth CMOS camera imaging a rotating diffuser.

Low bandwidth LDPI systems may be suitable for certain clinical

applications where sensitivity to high flow is not required. However,

where sensitivity to higher flow than baseline is required, e.g. in burn

diagnostics, low bandwidth systems may underestimate the true blood

flow leading to misdiagnosis. Nevertheless, low bandwidth systems could

be used in this scenario if reliable post-processing is employed, such as

that suggested by this thesis.
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Chapter 1

Introduction

1.1 Introduction

In 1842, Christian Doppler, when observing the colours of stars, proposed

an explanation for the apparent frequency shift that occurs when the

distance between a source of waves and an object changes with time. The

Doppler Effect, as it became known, is readily observable in everyday

life with sound waves, such as when an emergency vehicle passes in the

street. The sirens seems to change pitch as the vehicle moves towards

and then away from the observer. The classic sounds of motor racing

owe their trademark slide in pitch to the Doppler Effect, with the high

speed movement of the cars shifting the pitch of the engine as the car

moves in front of an observer.

The effect can also be observed on moving red blood cells. The

frequency of a light source illuminating an area of skin is shifted by the

erythrocytes as they are pumped around the body. The discovery of this

phenomenon in 1975 [117] has prompted nearly four decades of clinical

and engineering research and the subject area forms the basis of this

thesis.

This chapter will lay out the technique of laser Doppler blood

flowmetry (LDBF) and introduce the thesis. The basic principles of the

Doppler Effect and how it applies when light interacts with the near
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surface regions of the skin will be described. The chapter will also discuss

progress in engineering terms, followed by an overview of laser Doppler

systems and an evaluation of clinical applications and requirements.

This will be followed by an analysis of the research question, that is,

‘what is the effect on accuracy of using low bandwidth imaging sensors

and can resultant errors can be corrected post-acquisition’. Finally the

objectives of the thesis along with its outline will be detailed.

1.2 Laser Doppler Blood Flowmetry

1.2.1 Background

The technique of LDBF is well established [16, 90, 91, 97]. It was first

suggested in 1972 by Riva et al. [101] with the first measurements in

vivo implemented in 1975 by Stern et al. [117]. The research field has

enjoyed increased interest over the last four decades, the usefulness

of the technique becoming ever more apparent in a variety of clinical

situations.

LDBF research can subdivided into three main strands. The

first is an understanding of the underlying physical phenomena which

are used to determine blood flow. In 1981 Bonner and Nossal [12]

published a key theoretical article on the relationship between the

speed of the red blood cells (RBCs) and calculation of flow, and it is

these same calculations which are used today. Understanding of the

physical systems is improving, along with a greater appreciation of what

constitutes the Doppler spectrum and the possibility of resolving different

velocity components [7, 30, 131]. However, many of the improvements

in theoretical understanding have yet to find their way into research

devices or commercial systems.

The second strand is the engineering. The overarching improvements

in electronics over the last 40 years have paved the way for significant

2



advances and refinements in the way LDBF is implemented. Moving from

analogue signal processing to largely digital and from photomultipliers

to CMOS imagers, the advancements in the tools required to build

flowmeters have allowed development from single point systems to full-

field imagers.

The third strand of research concerns the clinical and research

environment. The potential and realised clinical uses are extensive

and include burn diagnostics [78], diabetes [17] and post-operative flap

monitoring [105].

These three strands will now be described in more detail.

1.2.2 Light and Tissue

This first strand of LDBF research deals with the understanding of light

interaction with tissue and RBCs. The Doppler Effect will be considered

more generally before being applied to microvascular circulation.

1.2.2.1 The Doppler Effect

As mentioned in Section 1.1, the Doppler Effect has been known and

studied for well over 150 years. Srinivasan [115] describes it as ‘a change

in the observed frequency when there is a relative motion between the

source and the detector.’ Consider a source object, x, and a receiving

object, y, moving with speed, v, directly towards each other (Figure

1.1).

x y

v

Figure 1.1: A source x emits a wave of frequency fi. An object

y moves towards x with speed, v.
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The incident phase angle, θi(t), can be evaluated, where c is the

speed of light in the medium and λi is the incident wavelength, by:

θi(t) = 2π
ct

λi
+ θi(0) (1.1)

x y

v

Figure 1.2: The wave-fronts are observed by y and reflected.

The rate the phase angle changes is increased.
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(a) The incident wave with phase angle θi
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(b) The reflected wave θr = θi + ∆θ

Figure 1.3: As wave-fronts hit an object moving towards the

source over displacement D(t), the phase angle increases. The

rate of change of θr is the new angular frequency.

When the incident wave hits the moving object y (Figure 1.2), the

displacement D(t) of y changes the phase angle at time t by:

∆θ(t) = 2π
D(t)

λi
(1.2)

In this case, the object is moving at a steady speed and D(t) = vt.

The observed phase angle is therefore:
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θr(t) = θi(t) + ∆θ(t) = 2π
( ct
λi

+
vt

λi

)
+ θi(0) (1.3)

and the derivative of the phase angle is the angular frequency (so

removing θi(0)):

ω =
dθr(t)

dt
= 2π

c

λi
+ 2π

v

λi
(1.4)

The original frequency is fi = c
λi

and so the change in frequency, ∆f ,

is:

∆f =
v

λi
(1.5)

and the frequency observed by y, fr, is:

fr =
c+ v

λi
(1.6)

D(t) can be replaced with any expression describing the displacement

of y in the direction of x. For example, if y instead moved at a constant

speed at an angle φ in relation to x, the displacement is D(t) = vt cos(φ),

the component of the velocity in relation to x is V (t) = v cos(φ) and

the frequency shift ∆f = v cos(φ)
λ

. For this reason the direction of

motion needs to be known in order to determine the Doppler shift.

Another example of an expression for displacement is found in the

field of vibrometry, where for a surface vibrating with frequency fv,

D(t) = sin(2πfvt). The Doppler Effect can be used to determine fv:

V (t) =
dD(t)

dt
= 2πfv cos(2πfvt) (1.7)

∆f = V (t)
λi

then forms a frequency modulated (FM) process and fv

is calculated by demodulation. It should be noted that the Doppler

equations derived here are non-relativistic.

The case presented above where a source emits a wave and a moving

observer detects a shift is modified for LDBF because RBCs do not emit
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or observe light themselves; i.e. the source and detector are stationary

relative to each other, and the emitted waves are Doppler shifted upon

interaction with a moving cell. y can therefore be viewed as an emitter

of waves (but in reality these are reflected waves) with a single shift

from the original v
λi

. Then the reflected waves are observed again at x

with another shift. The Doppler shift in Equation 1.5 is thus modified

by a factor of 2:

∆f = 2
v

λi
(1.8)

and any subsequent calculations with alternative velocity expressions

are modified similarly.

1.2.2.2 Single Scattering Event

A Doppler shift (∆f) can be detected when a monochromatic light

source interacts with a moving RBC. A single scattering event, where

an electromagnetic field interacts with an erythrocyte, will first be

considered.

As described by Humeau et al. [56], the electric field vector, ~εi, of an

incident wave of amplitude Ai, frequency w, directional vector ~ki, time

t and position vector ~x can be written as:

~εi = Aie
−j(wt−~ki~x) (1.9)

As shown in Figure 1.4, the wave will scatter quasi-elastically to

vector ~ks, producing a scattering vector ~s. The angle between the

incident vector ~ki and the scattered vector ~ks is α, and is determined

by an appropriate phase function. Commonly used functions describing

scattering include the Henyey-Greenstein phase function [4, 5], the

Gegenbauer kernel scattering phase function [39] or the Mie phase

function [59]. The position vector ~x of the moving particle from the
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origin is given by ~vt where ~v is the velocity vector. The angle between

the scattering vector ~s and the velocity vector ~v is θ.

� �

����

�

�

�
�

��

Figure 1.4: A single scattering event where an electric field

vector interacts with a RBC. The Doppler shift is a result of

the magnitude of the velocity and scattering vector |v||s| and

the angle between the scattering vector and velocity vector, θ.

Assuming a constant electromagnetic magnitude, i.e. Ai = As, and

neglecting the time-invariant phase factor ~ki ~x0 + ~ks ~x1, the scattered field

can be written as:

~εs = Aie
−j(wt−(~ki− ~ks)~vt) = Aie

−j(wt−~s~vt) (1.10)

Such that:

~s~vt = |s||v| cos(θ)t (1.11)

According to Nilsson et al. [88] the scattering vector is:

~s = 2|k| sin
(α

2

)
=

4π

λ
sin
(α

2

)
(1.12)

where λ is the wavelength of the incident electromagnetic field in

tissue. Now, the Doppler shift can be evaluated by:

∆ω = ~s~v =
4π

λ
sin
(α

2

)
|v| cos(θ) (1.13)
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This single shift forms the basis of the Doppler spectrum observed

in LDBF in low perfusion sites.

1.2.2.3 The Microvascular Circulation

The epidermis, roughly 120 µm in the hand [63], forms the surface layer

of the skin. Below this is the dermis, which is approximately 1 mm

thick. According to Oliveira et al. [93], the majority of these regions

are perfused by nutritive capillaries, which have high resistance and

relatively low flow [99]. At the boundary between dermis and epidermis,

the subpapillary plexus, these nutritive capillaries are known as papillary

loops. Below the dermis is the dermal subcutaneous interface [93] and

then the hypodermis, which contains thermoregulatory blood flow. The

epidermis and dermis are referred to as the dermal layers. Figure 1.5

illustrates the structure of the skin.

Figure 1.5: The structure of the skin. The vessels in the

dermis are where the majority of photon-cell interactions

occur. The stratum corneum is a layer of protective dead

skin cells. It is thicker, for example, on the soles of the feet or

palms.
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Fredriksson et al. [39] note that ‘For LDPI systems and LDF probes

with a fibre separation <1.2 mm, skin surface measurements are well

within the dermal layers, including only capillaries, arterioles, and

venules (the microcirculation).’ Skin models in the literature generally

deal with layers including the microcirculation alone. For example,

at 780 nm wavelength, the measurement depth in the index finger

for a fibre separation of 1.2 mm is approximately 0.85 mm [39] (the

depth is defined in [39] as where 63% of signal contribution arises from

above that point). Thus the majority of photon-cell interactions (where

photons then scatter back to the surface and the detector) occur in

nutritive vessels and not generally in the larger thermoregulatory vessels

at the dermis-hypodermis interface below (although there may be bodily

sites where these vessels are closer to the surface and as such LDBF

measurements will include a greater influence from them).

1.2.2.4 Light and Tissue Interactions

As photons enter the skin, they ‘generally suffer several collisions with

somatic cells, connective tissue, blood vessels walls etc. before interacting

with a blood cell.’ [12]. The authors go on to state that the number of

static tissue interactions is large enough that the direction of illumination

of the RBCs is effectively random. Figure 1.6 illustrates how light moves

in a random fashion throughout the tissue after 10 to 20 scattering

events.

Different wavelengths of light are absorbed and scattered in varying

proportions: Lindberg and Öberg [74] state that at green wavelengths,

absorption in blood is a factor of 10 greater than scattering, but that

in the infrared regions scattering dominates. Additionally each skin

layer has slightly differing scattering and absorption coefficients. Further

information on coefficients at a range of skin depths has been provided

by Fredriksson et al. [39].
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Figure 1.6: Light enters the tissue (in this case via fibre optics)

and is scattered by static and moving cells. Some light is

scattered back to the surface and reaches the detector [114].

From the coherent light source, a large number of photons enter the

skin. A percentage are absorbed, with a further fraction then scattered

by static tissue, whilst others interact with moving RBCs. Some of these

photons reach the surface of the tissue and possibly the detector. Thus

the power of the frequency shifted light arriving at the detector is small,

in the region of 0.06% [47] of the illumination power.

In Bonner and Nossal’s theoretical paper [12], the authors describe a

scenario where, because of the intensely interwoven and sufficiently dense

network of capillaries, venules and arterioles in the microvasculature, the

trajectories of the blood vessels form a random network with constant

direction over the interaction time. The authors postulated that the

velocity distribution was Gaussian. The combination of these hypotheses

results in a situation similar to Brownian motion, where the expected

value of the velocity vector is zero:

〈Vx〉 = 〈Vy〉 = 〈Vz〉 = 0 (1.14)

10



(Equation (2) from Binzoni et al. [7]). This simplifies the calculations

because Figure 1.4 does not then need to take into account the absolute

direction of the RBC on a fixed axis. If the velocity vector’s expectation

value is zero, the value of interest becomes the expected value of

the speed distribution, which, of course, does not take into account

direction. Bonner and Nossal [12] show, via an expression for the

photon autocorrelation function, that the weighted first moment of the

photocurrent’s spectrum M1

M0
is proportional to the RMS speed 〈v2〉 12 :

M1

M0

=
〈v2〉 12β
(12ξ)

1
2
a
f(m̄) (1.15)

where, from their paper, a is the radius of an average spherical

scatterer, m̄ is the average number of collisions, f(m̄) is linear for m̄� 1

and varies as the square root of tissue blood volume for m̄� 1 (because

as blood volume increases, the chance of multiple scatters increases, so

M1 increases). β is an instrumental factor 0 < β < 1, ‘which primarily

depends upon the optical coherence of the signal at the detector, and...

the intermediate scattering function of the Doppler shifted light.’ [12] ξ

is an ‘empirical factor which is related to the shape of the cells.’ [12]

As such, this equation is only valid under a set of constraints. There

are approximately 4.8 million RBCs per µL of blood [60]. Therefore,

to keep the chances of multiple interactions low (m̄� 1), the amount

of blood as a percentage of tissue must be small (in the microvascular

regions, it is roughly 1%). The equation also relies on the assumption

of Brownian movement, and movement that is also uniform over the

sampled volume in space and uniform over the sampled period in time.

These assumptions have been questioned by several authors [7, 56],

particularly as full-field imagers are becoming more prevalent [10]. One

can imagine the complications of deriving analytical expressions when

conjoining sample spaces are imaged at the same time. Binzoni puts the

problem thus: ‘This can be seen as an infinite number of source-detector
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couples with the photons simultaneously interacting in a complex manner

over all possible paths.’ [10] Modelling this presents significant challenges.

Additionally, because of the variation in structure over the body and

the complications of scattering and absorption, only relative changes in

flow can be characterised using this formula [90].

Particularly in the last ten years, research in this field has focussed

on two areas: firstly on the interpretation of the spectral moments in

an attempt to derive more precise expressions and define more exactly

the conditions under which the expressions hold true [6, 7, 9, 67, 90]; and

secondly to model the microvasculature in more detail, using methods

such as Monte-Carlo to analyse the resulting spectra, and thus perhaps

to resolve independent velocity components [8, 26,40,59,68,131].

Of course, there is much overlap in these areas. The first is really

concerned with the interpretation of existing methods for calculating

blood flow, whereas the second deals mainly in techniques for reliably

evaluating tissue samples to determine their structure and photon

interactions (e.g. by Monte-Carlo, repeated sampling and parameter

searching) and then using the resultant information to very precisely

map blood flow through the sample. Needless to say, the second method

is extremely time consuming.

However, despite those discussions, the first moment of the

photocurrent’s spectrum is still used as the gold-standard approach:

‘Practically all LDF instruments use the original theory derived by

Bonner and Nossal (1981) or some improvement of the same approach.’

[7]. In classical laser Doppler theory the unnormalised first moment, M1,

represents blood flow, while the zeroth moment, M0, represents blood

volume. But knowledge regarding applicability for imaging is still in its

infancy. In 2008, Binzoni and van de Ville acknowledged that the first

moment, when ‘handled with care’, is probably reasonable for full-field

imaging, but that it ‘does not allow us to obtain information on blood
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velocity or volume independently’, [10] i.e. the zeroth moment is not a

valid representation of blood volume in full-field imaging, but still may

be determinative in single-point monitoring or scanning imagers.

For the purposes of this thesis, it will be assumed, as is generally

accepted, that the first moment of the photocurrent’s spectrum

represents relative blood flow.

1.2.3 Engineering

In an engineering sense, there are two main streams of development:

single point monitoring and area imaging. In this thesis, these will be

referred to as laser Doppler perfusion monitoring (LDPM) and laser

Doppler perfusion imaging (LDPI) [56]. LDPI can be analysed further as

single point scanning, line scanning and full-field imaging. The technical

developments have been focused on LDPI, namely how to build up a

blood flow map over a region of skin. The drive is towards imagers

whose output blood flow maps satisfy the Nyquist criterion, so that any

changes in blood flow are accurately displayed (e.g. pulsatile signal),

and that also deliver on accuracy and spatial resolution.

1.2.3.1 LDPM

Initially, LDPM monitors were the only laser Doppler blood flowmeters

available [2, 114]. The technique involves illuminating a point of tissue

with a laser via a fibre optic and probe head, collecting the returned

light with another fibre or fibre bundle in the probe, and then connecting

those fibres to the active area of a photodiode. Because only one channel

is involved, the data collection and processing can be performed in real

time and a recording session may last for many days.

The drawback of this method is the susceptibility of the system to

movement artefacts, mainly due to the use of optic fibres [112]. Several

research groups have attempted to integrate the laser and photodiode
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into the probe head itself to reduce this noise [27, 53, 112, 120]. The

integration of the optics into a probe head has allowed for further

development of portable or wireless sensors [113].

Two single point systems currently in production are the Perimed

(Sweden) PeriFlux 5000 and the Moor Instruments (Axminster, U.K.)

VMS-LDF.

1.2.3.2 LDPI - Single Point Scanning

Single point systems can produce an area image by scanning the region

of interest using a moving mirror (Figure 1.7). Only one small area (e.g.

1 mm x 1 mm) is illuminated, sampled and processed at any one moment.

This technique is very slow, requiring several minutes to capture one

image [129]. It is also very susceptible to movement artefacts: if the

subject is moved the image will be corrupted. The advantage is that the

processing power required, by today’s standards at least, is minimal.

Figure 1.7: LDPI single point scanning. A mirror moves the

laser beam over an area, building up an image over several

minutes [80].
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1.2.3.3 LDPI - Line Scanning

The line scanner is an extension of the point scanner. It simply adds

an array of channels in a line and was proposed in 1987 by Fujii et

al. [42], who built a system based on 256 channels. A one dimensionally

divergent laser beam illuminates a line (e.g. 10 cm x 1 mm) of skin, and

the linear photodetector array is focused onto the region. A motorised

mirror then moves the laser, scanning the required area, as shown in

Figure 1.8. However, it takes between 5 and 10 seconds to capture an

image [86]. The processing requirements are clearly larger than the

single point scanner, and commercial systems employ multiple analogue

to digital converters (ADCs) with FPGA backends [85].

Figure 1.8: LDPI line scanning. A mirror moves the laser line

beam over the region of interest [81].
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1.2.3.4 LDPI - Full Field

The natural extension of the line scanner is the full-field array. Instead

of, for example, a 64x1 line of photodetectors, a 64x64 array of

photodetectors can be employed to directly acquire an image without

mechanical movement. The advantage is obvious, namely speed,

resulting in the reduction of movement artefacts. In 2007, Humeau

wrote ‘Efforts are made to reduce the acquisition time and approach the

ideal situation of real time whole field perfusion imaging’ [56]. However,

every time a dimension is added, the processing requirements, design

considerations and so cost increase exponentially.

The technological requirements can broadly be divided into three

categories: illuminating optics, collection optics and processing circuitry.

The laser illumination source is of course vital to this system. However,

moving from a single point, to a line, to full-field illumination increases

the required power by a factor proportional to the area of illumination.

The back-scattered light from the skin is of the order of 0.06% of

illuminated light [47] and so sufficient radiant power must be provided if

the measurements are to be successful and not contaminated by intensity

dependent noise.

The collection optics, i.e. the sensor technology, cannot simply

be scaled from single point to full-field. Conventional discrete PIN

photodiodes have ‘insufficient packing density’ [106] and thus an array

of PINs would not supply the required spatial resolution. CCDs, a

popular imaging technology, are not fast enough to supply the required

temporal resolution, at least not for the price that LDPIs can command

[106]. However, CMOS sensors have emerged as a cheap, fast and high

resolution technology, and importantly, are sensitive in the regions of the

spectrum employed in LDBF (red and near-infrared) [106]. Therefore

the main developments in collection optics have been focused on the

utilisation of CMOS technology [52,65,73,105,110,111].
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The main bottleneck in LDPI is the data processing required to

digitize and evaluate the thousands of channels in the array at once. In

order to achieve Nyquist appropriate (e.g 10-20 Hz) blood flow maps,

trade-offs in the processing are required: for example, reducing the

photocurrent sampling rate [73] or employing faster but potentially less

accurate processing algorithms [31]. There are several design routes being

explored. Firstly custom application specific integrated circuits (ASICs),

where an array of CMOS photodetectors are combined with high-speed

processing on-chip [48]. There, the processing circuitry can be built

directly at the pixel level. The disadvantage is their cost and inflexibility

once fabricated, but the advantage is that only the low sampling speed

blood flow image data needs to be transferred off-chip. Hybrid solutions

of OEM CMOS cameras with FPGA backends are also being explored

because they are cheaper and more easily reconfigurable [106]. This

requires very fast video transfer between camera and processing platform,

for example by using low-voltage differential signalling (LVDS).

This high specification is required if the collection and processing

implementation is an extension of the single point, i.e. the unnormalised

first moment of the power spectrum of a sufficiently well-sampled

photocurrent is taken as representation of flow on a pixel by pixel basis.

However, another type of imaging known as Laser Speckle Contrast

Analysis (LASCA) offers a way of substantially reducing the temporal

resolution required, at the expense of spatial resolution. The theory will

be summarised in Section 1.2.3.5 but, briefly, it analyses the standard

deviation divided by the mean intensity of a matrix of pixels (e.g. 5x5),

where the pixels represent a spatial speckle formation.

Table 1.1 summarises the LDPI state of the art. A range of

bandwidths are used with the point and line scanners easily achieving

the 40 kHz sampling rate required for a 20 kHz bandwidth. The

DOPCAM, the final system in Table 1.1, also achieves this rate because
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the processing circuitry is on-chip. However CMOS cameras using off-

chip processing, for example, FPGAs, sample at lower rates so have

lower bandwidths. As such CMOS cameras are susceptible to aliasing

as they do not usually have any anti-aliasing circuitry built in [106].

Device Name Manufacturer

or Research

Group

Year Type Resolution Speed Bandwidth

LDI2 Moor Instru-

ments

N/S Point scanner 256x256 5 mins 20 kHz

Periscan PIM3 Perimed N/S Point scanner 255x255 5 mins 20 kHz

FLPI Moor Instru-

ments

N/S Full-field

(LASCA)

576x768 25fps N/A

CMOS camera Serov et al.

[106]

2005 Full-field 256x256 0.8fps 4 kHz

TOPCAM Draijer et al.

[32]

2009 Full-field 128x128 25fps 13.5 kHz

LDLS2 Moor Instru-

ments

2009 Line scanner 64x512 6s @ 64x64 20 kHz

Pericam PSI Perimed 2010 Full-field

(LASCA)

1386x1036 0.2fps (up

to 112)

N/A

FluxExplorer Schlosser et al.

[105]

2010 Full-field 256x256 1fps 2.5 kHz

CMOS camera Leutenegger

et al. [73]

2011 Full-field 480x480 12fps 8 kHz

DOPCAM He et al. [52] 2011 Full-field 32x32 1fps 20 kHz

Table 1.1: LDPI and LASCA devices currently in development,

research or commercial market. Some devices’ manufacturers

do not specify (N/S) the year of introduction, and the

bandwidth is not an applicable (N/A) quantity for LASCA

imagers.

1.2.3.5 LASCA

Laser Speckle Contrast Analysis (LASCA) is an alternative method of

mapping blood velocities by determination of the speckle contrast over

small sub-frames in a single image.

When a coherent light source illuminates a static, optically rough

18



surface, a static grainy pattern is created as wavefronts constructively

and destructively interfere. This spatial grainy pattern is referred to

as speckle. However when an object moves through the light, the

speckle pattern starts to ‘boil’ as temporal fluctuations in the individual

speckles are introduced. In 1996 and 2001, Briers [15, 16] showed

that the temporally fluctuating interference pattern generated by an

object moving through light was in fact the same as the temporal

fluctuations created by the Doppler Effect. Although these two fields

of understanding had developed separately, the underlying physics is

the same. Basically LDPI is founded on the understanding of Doppler,

whilst LASCA is based on the understanding of fluctuating speckle in

the presence of moving particles. However, even though the underlying

physics is the same, this does not mean that LDPI and LASCA are

identical techniques.

Conventionally, LASCA uses one image produced by integrating over

a set exposure time. The exposure time is chosen to be consistent with

the decorrelation time of the speckle pattern. This means that it is

sensitive to the range of frequencies up to the inverse of the exposure

time and insensitive to all other imaged frequencies since they average

to a constant intensity. It works by analysing the temporal contrast

of a collection of speckles with the optical set-up arranged so that the

speckle size and pixel size match. A speckle size greater than pixel

size also works, but increases the number of pixels needed to form a

contrast image. Normally 5x5 or 7x7 pixels are used (a square with a

side length of an odd number of pixels means that the speckle contrast

can be assigned to the central pixel [69]) and the speckle contrast K is

calculated from the ratio of the standard deviation σ to mean intensity

Ī of the pixels used (e.g. 25 or 49):

K =
σ

Ī
(1.16)
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K is thus in the range 0 to 1, where 0 represents a constant intensity

‘image’ with no contrast and 1 a high contrast image with equal standard

deviation and mean. Values will always be in this range for a fully evolved

speckle pattern, where the ‘phases of the interfering electromagnetic

fields are uniformly distributed’ [11]. For a set exposure time, low

contrast occurs where high velocities blur the speckles in the view of

the camera, and high contrast where low velocities effectively produce a

speckle pattern that is frozen in time. However, as stated, the sensitivity

to a particular velocity is determined by the exposure time.

LASCA has the advantage of being a very fast technique, only

requiring one image and using exposure times much greater than those

a conventional LDPI camera requires (e.g. 5 ms instead of 50 µs). One

of the main disadvantages, and there must be some trade-offs, is the

loss of spatial resolution because every output image pixel requires 5x5

or 7x7 input pixels [110].

Another drawback is that the underlying relationship between blood

perfusion and K has not been established [33, 56] in the same way that

it has for LDPI. For example, the Doppler technique measures the power

spectrum directly, and thus in theory provides information on blood cell

concentration as well as speed [12]. In 2009, Draijer et al. [33] stated

that a concentration measure has not been ‘shown to be possible’ with

LASCA. This means that LDPI gives a measure of flow (velocity times

concentration) whereas LASCA only gives information about velocity.

Much has been done to try and resolve this problem with the model

and so provide some correspondence between values gained by LASCA

to those in conventional LDPI. In 2010, Thompson and Andrews [125]

linked a multi-exposure time autocorrelation to the Doppler power

spectrum. As the exposure time is varied, an estimation of power in

certain frequency bands can be gained and a more conventional analysis

performed. However, there are complexities involved in taking such
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variable exposure images, a fact acknowledged by the authors in a later

paper [124], and the cost and complexity of these systems may approach

that of conventional Laser Doppler imagers.

Hence, the comparisons between LASCA and LDPI have so far

mainly been empirical [92,107,123,124], and independent assessments of

LASCA, not unlike LDPI, have focused on the quality of the resultant

image [11].

Having outlined the underlying relationship between the first

moment of the photocurrent’s spectrum and blood flow, this thesis

will concentrate on this better understood and more accepted method of

calculating blood flow. This is not to say that developments in LASCA

are less useful, but that this research builds on the slightly firmer LDPI

foundation. In future, it is hoped that the speed advantages of LASCA

may be combined with the accuracy of LDPI, and indeed hybrid systems

are beginning to emerge [33].

1.2.4 A Laser Doppler System

Before the third strand of research, the clinical side, is addressed, an

overview of a typical laser Doppler system will be given. Figure 1.9 is a

schematic of a full-field LDPI system.

Laser: The laser must deliver enough power with long enough

coherence length to provide sufficient signal to noise ratio (SNR). One

of the potential disadvantages of full-field LDPI, as compared to line

scanning or single point scanning, is that higher powered lasers are

required, e.g. a 250 mW laser and a 400 mW laser are used in [106]

and [127] respectively. These powers are approaching class 4 (500 mW),

which, because of the necessary safety controls, precautions, training

and therefore expense, make integration into a clinical setting more

difficult.
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Figure 1.9: An overview of a typical LDPI full-field system.

The sensor, ADCs, and high speed processing in some systems

are often combined into a single chip (ASIC), in others a

CMOS sensor is combined with a FPGA.

Imaging optics: Coherent light sources produce speckle patterns

when illuminating optically rough surfaces. As well as magnifying and

focusing the light with an appropriate depth of field, the imaging optics

must resolve these speckle patterns in space to optimise the signal to

noise ratio.

Image sensor: Single point and line scanners have tended to

use conventional photodiodes, in which the current is a continuous

representation of the intensity at the photodiode and is continuously

converted to a voltage through a transimpedance amplifier. However

the newer full-field imaging devices (e.g. CMOS sensors) tend to use

integrating detectors. These accumulate charge over a set time period
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(the integration time) onto a capacitor, which is then read out at the

end of the period. According to Serov and Lasser [106], the integrating

detectors improve the SNR compared to a non-integrating detector

by π
2

√
N (where N is the number of pixels in a read-out sub-frame).

However, by the nature of the integration they also low-pass filter the

resultant signal. The effect of this will be more fully considered in

Chapter 5.

ADC: Often integrated into the sensor, the analogue to digital

converter (ADC) converts the pixel voltages into a digital representation.

One ADC is assigned to a sub frame of N pixels, so that the larger

the sub-frame the slower the readout speed of all the pixels for a given

clock frequency. The resolution is often programmable and typically

ranges between 8 and 12 bits. High throughput data transfer is required

between sensor, ADC and processor. For example, in a system with

256x256 pixels, sampled at 10 kHz and 10 bit resolution, the link between

ADC and processor must be able to handle at least 782 MB/s, and

sometimes more if the protocol requires byte-rounded data.

High speed processing: The processing converts the ‘photocurrent’

(with a sampling rate of up to 40 kHz) to a value representing blood flow

(usually output at 1-30 fps). This is normally achieved by calculating

the first moment of the photocurrent’s power spectrum [23]. Methods

of doing this are covered more fully in Chapter 2. The transfer of high

speed data from the image sensor and the subsequent digitisation and

processing forms the major bottleneck in full-field LDPI.

Flow output: An image representing blood flow is transferred to the

display. Any post-processing, for example, averaging [105] or colour-map

correction may be added.
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Display: A user interface is presented to the researcher or clinician

with device calibration and acquisition controls. The display may be a

combination of blood flow image with monochromatic photograph to

enable easier interpretation of results.

1.2.5 Clinical Applications

An overview of the theoretical background to and engineering advance-

ments in LDBF has been presented so far, along with a typical LDBF

device set up. The application of LDBF in clinical situations will now

be considered.

LDPI and LDPM are elements in a range of tools clinicians have

available for assisting in the diagnosis and treatment of disease and

injury, firstly of the skin directly [98], but secondly of other conditions

which affect the microcirculation [61]. LDBF is potentially useful in

a variety of clinical and research situations. Its main advantages are

that it is non-invasive, safe (with appropriate precautions) and relatively

instantaneous. However its use is certainly not yet widespread. Table 1.2

is an overview of applications for which LDBF is currently used either

in clinical situations or in research. It is important to note that for some

applications, for example malaria or diabetes, LDBF applicability is in

its very early stages of investigation.

One sector which has received a lot of attention is that of burn

assessment. Recently, a report issued by the National Institute for

Health and Care Excellence (NICE) in the U.K. [87] advised clinical

centres of a new product which reduces the cost and eases diagnosis

of the severity of a burn. This was the Moor Instruments LDI2-BI

point-scanning imager, which shows the healing potential of large areas

of skin tissue based on their blood perfusion. In 2012, Stewart et al. [118]

found that LDPI had a >90% positive predictive value for the need

for skin excision and grafting post-burn, thus making it a worthwhile
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Medical Area Synopsis Authors and Dates LDPI/LDPM LDPI Range

Burn assessment Burn regions can be imaged to

determine the severity of the

burn: superficial burns show

increased flow from baseline,

whereas severe damage will

show decreased flow.

Droog et al. (2001) [35], van

Herpt et al. (2010) [127],

Erba et al. (2012) [37],

Monstrey et al. (2011) [79],

Stewart et al. (2012) [118]

LDPI x3-5 baseline

Reconstructive Surgery The post-operative reperfusion

of a flap can be monitored,

and complications or potential

partial or total flap loss can be

predicted and resolved using

both LDPI and LDPM.

Holzle et al. (2006) [54],

Booi et al. (2008) [13],

Schlosser et al. (2010) [105]

LDPI/LDPM x1.5 baseline

Cancer Treatment The microcirculation can be

studied to determine optimum

conditions for drug delivery or

other treatments.

Scheving et al. (1993) [104],

Haus (2008) [49]

LDPM

Amputations Blood flow levels in limbs can

determine the the most appro-

priate amputation location and

healing potential of the stump.

Gebuhr et al. (1989) [43] LDPM

Malaria Treatment The reduction in deformability

of RBCs (which reduces flow)

and the resultant anaemia

(which increases flow) can be

monitored as treatment is

provided.

Dondorp et al. (2000) [29] LDPM

Neonatal Care Baseline changes in flow in the

first week extrauterine indicate

changes in microcirculatory

structure.

Suiches et al. (1988) [120],

Suiches et al. (1990) [121],

Purcell and Beeby (2009)

[96]

LDPM

Sepsis Diagnosis Changes in the microcircula-

tion may be able to predict sep-

tic shock, or indicate reduced

risk.

De Backer et al. (2002) [25],

Sakr et al. (2004) [103]

LDPM

Critical Care Monitoring the microcircula-

tion could help to forsee resus-

citation outcomes.

Fries et al. (2005) [41] LDPM

Diabetes Assessment There is scope for the assess-

ment and prevention of dia-

betic neuropathy by intersite

microcirculatory comparisons.

Kim et al. (2008) [61] LDPM

Table 1.2: Clinical applications for LDPI and LDPM. The

LDPI range is an assessment of the expected range of LDPI

values encountered in this medical field.
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application area on which to focus.

Another application area is that of skin flap monitoring. Surgical

flaps are sections of skin removed from one part of the body (e.g.

Transverse Rectus Abdominis Myocutaneous, or TRAM, flap from the

abdomen) which are then used to repair a damaged area of skin or

assist in reconstructive surgery. Because the reperfusion of a flap after

application to the new site is a good indicator of the likelihood of

successful transplant, LDPM and LDPI could be used to image or

monitor perfusion levels to determine flap health and highlight the

possible need for remedial action.

These two application areas serve as a focus for assessing imaging

requirements. This thesis is partly concerned with the error created

in flow values due to low bandwidth and undersampled photocurrents.

However, instead of viewing this error abstractly, it is useful to look at it

through the lens of these clinical applications to match specifications to

requirements. The range of flow values required in these two application

areas is gathered from the literature.

1.2.5.1 Burn Assessment

In 2001, Droog et al. assessed the perfusion values associated with

LDBF burn imaging. Having found that there are many factors

influencing perfusion values (e.g. angle of imaging, tissue flatness,

imaging distance etc.), they found that deep burns generally show

lower to equal flow values than the baseline in normal skin, whereas

superficial burns show increased perfusion (3-5x) compared to normal

skin [35]. As previously discussed, blood flow values are relative and

many physiological and instrumental factors affect the output flow values.

However, with a properly calibrated and consistent device used in a

controlled environment, the output readings should be sensitive up to 5

times baseline flow to avoid incorrect diagnosis of burn severity.
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1.2.5.2 Flap Monitoring

Flap monitors do not have the same high flow requirements. There

are at least two possible situations in this field of surgery where LDBF

may be useful. The first is the location of perforator vessels in the

pre-operative flap. The study of Schlosser et al. [105] starts from the

evidence-based supposition that blood flow is marginally higher by about

20% in the microvasculature above perforator vessels (that supply and

return blood to the tissue and hence need to be located pre-operatively).

The technique using LDPI to locate these is still not reliable, but in

principle blood flow values need to be sensitive to around 1.5 times

baseline or normal flow. The second is the detection of regions of

ischaemia post-operatively, where the lack of blood flow will cause the

tissue to die and hence require more extensive remedial surgery. If

ischaemia can be detected early then the required remedy is lessened in

severity, reducing treatment time, cost and further complications [13].

Clearly this detection only requires sensitivity to flow values lower than

baseline.

1.2.6 Review

With some of the clinical applications of LDBF having been considered,

this concludes the background to the thesis. As has been seen, there is

a large volume of literature on the laser Doppler technique. However,

it should be noted that it is a constantly evolving technology and new

application areas will continue to be discovered whilst existing ones are

reinforced. Additionally, businesses are vying to make a commercial

success of this technology and therefore research will continue to push

forward in each sector. This work aims to add to the scholarly foundation

laid down over the past thirty-five or so years.

27



1.3 Research Rationale

1.3.1 State of the Art

With clinical applicability in mind, the present research mainly focuses

on signal processing techniques for providing accurate blood flow values.

The rationale prompting the research contained in this thesis will now be

considered. First of all, the state of the art in LDBF signal acquisition

and processing will be described.

Classically, the LDBF photocurrent is sampled at 40 kHz [65] in

order to detect frequency shifts up to 20 kHz. These frequency shifts

correspond to movements of up 7.5 mm/s (see Equation 1.13, this is

wavelength dependent and is in the case of perfect back-scattering and

velocity alignment with ks). However, in the baseline ranges, RBC

speeds are around 2-4 mm/s [119, 126]. Higher speeds would only be

reached in extraordinary circumstances, for example for superficial burns

as discussed earlier, or if temperature provocation or steroidal cream

stimulant is applied, remembering also that blood flow is a product of

speed and concentration and blood flow values may be affected by a

change in either. Thus 20 kHz represents the upper limit of the Doppler

shift range, and is used so as to encapsulate all possible scenarios.

Several research groups [32, 73, 105, 106] have developed imagers

which sample the LDBF photocurrent at lower frequencies than this

(see Table 1.1), even as low as 5 kHz. The rationale for this is that

using existing CMOS image sensors or cameras with external processing

negates the need to build custom devices, thus substantially reducing

the expense and development time required. However, current CMOS

technology, in the price ranges suitable for LDBF, cannot sample at the

full bandwidth with large enough resolution and transfer or store the

data generated and so the sampling rates are reduced. CMOS technology

is therefore a compromise between processing accuracy, and cost and
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convenience.

Two immediate issues present themselves: firstly, whether any anti-

aliasing circuitry is applied before digitisation and, secondly and more

fundamentally, how this undersampling and potential aliasing impact

upon blood flow output values.

In 2005, Serov et al. [106] acknowledged the aliasing problem: ‘Digital

image sensors do not usually include anti-aliasing circuitry in their

design; therefore the aliasing effect is virtually unavoidable in the imager.’

Aliasing is undesirable in all acquisition scenarios because of the inability

to distinguish frequencies greater than or equal to the Nyquist frequency

(half the bandwidth) from those less than the Nyquist frequency. The

effect of high frequencies manifesting as low frequencies in the power

spectrum must therefore be included in any assessment of low bandwidth

effects on blood flow values.

In 1990, Obeid et al. [90] stated that in order to prevent flow

under-estimations, higher frequency cut-offs are a necessity. This

was backed up by Binzoni et al. in 2008 [10], who noted that ‘A

too low temporal sampling rate will miss high-frequency components

and introduce distortion in the [concentration] and [flow] estimations.’

Binzoni et al. go on to assess the effect of sampling at 7 kHz on a

Monte Carlo generated spectrum by setting an upper cut-off of 3.5 kHz.

They report that output blood flow is roughly constant as RBC velocity

increases for a constant blood volume, essentially because the higher

frequencies generated by larger velocities are undetected. However,

Binzoni et al.’s investigation is limited to one sampling frequency and

one first moment calculation method, and neglects the effect of aliasing,

but is useful for the initial characterisation of low sampling frequency

behaviour.
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1.3.2 Present Research

It has been identified that there is some improvement to be made

in understanding how CMOS imagers which undersample an LDBF

photocurrent affect blood flow output values and whether this is

acceptable. Therefore an aim of the present research is to characterise

the effect of undersampling and see whether it can be compensated for.

By creating a model of the frequency distribution of the photocurrent,

the effect of undersampling, aliasing and complete processing method-

ology can be determined. The model can then be used to predict the

power spectrum of the LDBF photocurrent in these conditions and thus

compensate for them, moving closer to the original blood flow values.

As the research outcome of determining the effect of undersampling is

realised, so can the applicability to the two clinical situations described

earlier be ascertained.

1.4 Thesis

1.4.1 Aims & Outline

The aim of the thesis is to describe the background to the research and

rationale, moving on to evaluate, by a suitable model, current methods

of processing the LDBF photocurrent and presenting a technique for

compensating for undersampling.

This will be achieved by the following subsidiary aims, each of which

forms a chapter of the thesis:

1. Introduce the background to the research and the reasons behind

it (this chapter).

2. Describe the current methods of evaluating the first moment of

the photocurrent’s spectrum.
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3. Determine a model of the power spectrum of the LDBF photocur-

rent using Bayesian Inference techniques.

4. Characterise the effect of algorithm selection and bandwidth on a

variety of processing methods by using the model.

5. Characterise the effect of aliasing and use the model to compensate

for an undersampled simulated photocurrent, also using Bayesian

Inference techniques.

6. Evaluate the performance of two ‘low bandwidth’ high speed

cameras and correct real recorded data using the techniques

described in chapter 5.

7. Conclude by summarising the thesis and suggesting suitability for

differing applications.

1.4.2 Scope

LDBF is an extremely large field of research that extends from

fundamental engineering and physics, through to clinical needs, usability,

result interpretation, diagnosis, treatment and cost-benefit analysis. It

is therefore necessary to define the scope of this thesis, acknowledging

that there are present and pressing issues which may impinge on the

work that cannot be dealt with here.

Blood flow imaging results are usually presented to the clinician in

a colour coded format, which is in some sense arbitrary. For example,

flow values in lower ranges are assigned blue, through the spectrum to

mid flow ranges in green and orange and high flow ranges in red. Thus

adjustment of the colour map ranges or de-linearisation can arbitrarily

change result interpretation without any underlying values changing.

However there may be good reasons for adjusting colour maps. For

example, the Moor Instruments LDI2-BI re-casts its colour map in terms

of wound healing potential. What needs to be acknowledged is that
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the output flow results are interpreted and diagnoses, treatments and

prognoses can be based on that interpretation. Thus, the next stage of

an analysis into processing error is the impact on clinical interpretation.

This thesis will suggest that mis-diagnoses, the extent of which are

dependent on the particular clinical field, may result from inaccurate

flow calculations, but a full study is outside its scope.

1.5 Conclusion

The LDBF technique has been described, with the three research

strands of physiological and photological understanding, engineering

development and clinical applications outlined. The justification of the

research presented here has been given, along with the scope and outline

of the thesis.

It is currently accepted that the first moment of the photocurrent’s

power spectrum represents microvascular blood flow, but it is noted here

that a reduction in the bandwidth of the signal by undersampling may

introduce distortion in the output flow values. It is the intent of the

thesis to characterise and compensate for this error which will enable

an accurate picture of flow to be presented.
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Chapter 2

The First Moment of the LDBF

Photocurrent’s Power Spectrum

2.1 Introduction

This chapter aims to describe techniques for evaluating the first moment

of the photocurrent’s power spectrum, widely acknowledged to represent

microvascular blood flow. One of the bottlenecks in full field LDBF

imaging is processing the photocurrent to obtain this value, as the

number of operations to evaluate the fast Fourier transform at each pixel

is so large. For this reason a variety of computationally efficient methods

have been suggested [9, 31, 50, 73, 82, 105] that reduce processing time

and hardware space. The chapter will detail derivation of the methods

along with issues regarding implementation. As far as is known, a review

of all methods for processing LDBF signals has not yet been published.

Some of the derivations are mathematically precise, others are

mathematically precise under certain conditions, whilst others are

approximations. An evaluation and comparison of the complexity of

each method will be provided, but it is acknowledged that each method

has a plurality of possible implementations that can be highly optimised

for the chosen hardware.

Firstly, the methods will be classified according to domain, although
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evaluation in time and frequency are mathematically identical, then

routes using other moments of the power spectrum and the analytic

signal will be explored. Before this, some properties of the photocurrent

will be recalled to enable appropriate implementation.

2.2 The Photocurrent

2.2.1 Electric Field

The electric field vector of the light received at the photodetector has

frequencies comprising the incident frequency plus Doppler shifts from

scattering erythrocytes, and phases related to the path length through

the epidermis and dermis. Because the photons undergo multiple static

scattering, the path lengths and so phases can be assumed to be uniformly

random (see Section 1.2.2.4). Hence the photocurrent looks noisy but

has spectral properties related to the speed of the RBCs.

If an incident wave ~Ei = Aie
j(ωit+~ki~x), where ~ki is the direction vector

and ωi is the incident frequency, interacts with a moving RBC (a single

scattering event) an electric field vector:

~Es = Ase
jωite−j((~ki− ~ks)~vt)e−j(~kix0+ ~ksx1) (2.1)

is created [88]. This corresponds to the Doppler shift as described in

Figure 1.4. The three exponential terms in Equation 2.1 correspond to

the incident wave, a time varying phase factor (the Doppler shift), and a

time invariant phase factor respectively. Here information about the size

of the detector is neglected, assuming the photocurrent generated by

all electric field vectors scales with area at the same rate. N fields

corresponding to N scattering events (assuming the proportion of

multiple scatters is small, as is reasonable for small tissue volumes)

arrive at the detector along with un-shifted light reflected from the skin

surface. The electric field at the detector for the un-shifted light is

34



~Er = Are
j(ωrt+ ~kr~x) and the total electric field is:

~Esum = ~Er +
N∑
s=1

~Es (2.2)

The photodetector is a square-law detector and the photocurrent i(t)

is a result of the square of the electric field [88], with a proportionality

constant related to the detector’s quantum efficiency for the incident

wavelength. The quantum efficiency does not change significantly across

the bandwidth of the LDBF signal (ωr � ∆ω). The response time of

the photodetector τ is much larger than the period of the electric field

so that the photocurrent is an integration of the electric field over time

τ and it can be written as:

i(t) ∝

τ
2∫

− τ
2

~Esum(t) ~E∗sum(t)dt (2.3)

The result is an expression with three main terms:

i(t) ∝

τ
2∫

− τ
2

~Er(t)
2 + 2 ~Er(t)

( N∑
s=1

~Es(t)
)

+
( N∑
s=1

~Es(t)
)
×
( N∑
s=1

~Es(t)
)

dt

(2.4)

The photocurrent will contain a DC element (the first term in

Equation 2.4), heterodyne elements, a result of the multiplication of ~Er

by each element ~Es (the second term), and homodyne elements, a result

of the multiplication of each element of ~Es by each other element of

~Es (the third term). Since the amplitude of the un-shifted light, Ar, is

much greater than the amplitude of the shifted light As, the heterodyne

elements dominate over homodyne elements [88].

The frequencies in the range of ωr are large compared to the

integration time of the detector [34], the detector therefore acts as

a low pass filter and the time-varying portion of i(t) will be a result of

intensity fluctuations at frequencies ∆ω, the direct result of Doppler
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shifts by moving scatterers. Different detectors will integrate over

different time lengths, but normally these are much smaller than the

analogue to digital converter (ADC) sample time (e.g. τ=1 µs). Some

detectors, however, may be designed to integrate for longer (e.g. τ=50

µs). The effect of integration time will be discussed in Chapter 5. After

the photodetector, the photocurrent is normally converted, through a

transimpedance amplifier, to a voltage and is conditioned for the range

of the ADC.

Additionally, Ar = Ar(f) with f in low frequency ranges, up to

30 Hz [64]. This is because the intensity of the reflected light is

dependent on skin surface movements [90], optical absorption and the

photoplethysmographic effect [66]. This low frequency light scales the

higher frequencies (>10 Hz) and the LDBF signal requires division by

the low frequency signal before digital conversion. This can be achieved

by low pass filtering the signal and dividing the signal by the filter

output. The resultant signal will hereafter be referred to as s(t).

2.2.2 Sample Rates

The flow calculation signal processing system has two sample rates that

define its operation (Figure 2.1): firstly, the input sample rate of the

photocurrent (fpcs ) and secondly, the output sample rate of the blood

flow information (f bfs ). Both are determined by the bandwidth of the

respective sampled data. Many samples of the photocurrent are needed

to estimate a single blood flow value.

It is generally accepted that the bandwidth of a laser Doppler

photocurrent signal s(t) ranges from 20 Hz to 20 kHz (see Section

1.3.1). According to the Nyquist criterion (fs > 2fbw, where fbw is the

bandwidth of the signal) the sampling frequency fpcs must therefore be

at least 40 kHz. The bandwidth of blood flow variation is much lower.

For well perfused skin this change is cardiac synchronous, which equates
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Figure 2.1: Input and output sample rates for the blood flow

calculation. Each sample rate depends on the bandwidth of

its signal.

to a dominant frequency around 1-2 Hz [19] with further components

up to 10 Hz [71]. Unless the system can be designed to synchronise with

the heart beat (using, for example, an electronic heart rate monitor),

the sample rate f bfs must be at least 5 Hz and ideally above 20 Hz. This

may not be required at bodily sites where the influence of the heart rate

on the microvascular flow signal is not as strong. It is acknowledged

that, whilst laser Doppler perfusion monitors exceed this easily, with

sample rates up to 40 Hz, the state of the art in laser Doppler perfusion

imaging is only just reaching these speeds [51]. Heart rate artefacts may

be noted at these low output sampling rates.

If the photocurrent is not processed in sequential input samples with

a moving window, but rather block by block, the number of samples, N ,

which can be processed is:

N ≤ fpcs

f bfs
(2.5)

If N is less than the maximum value given by this ratio, some input

data is discarded after the previous output data sample is calculated.

One reason for discarding data may be that, whilst a system’s ADC

might sample at 40 kHz, the processing electronics cannot calculate

blood flow values continuously at this speed. The theoretical minimum

length of N is determined by the required frequency resolution and

bias and will be discussed further in Chapter 3. In reality, N is also
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determined by the processing method (e.g. the fast Fourier transform is

more efficient for N = 2n) and memory limits.

With values of N and fpcs chosen1, the methods of determining M1,

the blood flow samples, can be examined.

2.3 Evaluating the First Moment

The photocurrent can be processed either in the frequency domain via

a transform or directly in the time domain. The frequency case will be

considered first, starting with the definition of the first moment.

2.3.1 Frequency Domain Definition

The ith moment of a power spectrum P (f) of a signal is defined as:

Mi =

∞∫
0

f iP (f) df (2.6)

When i=0, the total power in the signal, the RBC concentration, is

evaluated. When i=1 the first moment, the blood flow, is evaluated.

2.3.2 Frequency Domain Implementation

The signal s(t) is a time domain process so, for frequency domain

calculations, the spectrum P (f) must be determined. The photocurrent

will be considered as a stationary stochastic process although strictly

speaking it is not stationary because the blood flow varies and so the

frequency content of the signal changes with time. However the rate

of change of blood flow (dominant 1-2 Hz with components up to 10

Hz [71]) is low enough that small sections of the photocurrent may be

considered ‘stationary’.

1fs is used in future without qualifier where fpcs is intended
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The Fourier transform of a stationary stochastic process, because it

has infinite energy, does not strictly exist. The signal must be multiplied

by a suitable window function (rectangular, i.e. a finite number of

samples, Hamming or Hanning etc.) to limit the energy. Figure 2.2

illustrates how a window function can be used to bound the photocurrent.
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Figure 2.2: An infinite stationary stochastic process sin(t) is

multiplied with a window function (in this case Hamming as

this window reduces spectral leakage from side lobes) to give

a resultant bounded signal.

Mathematically the window can be described by:

w(t; ζ, T ) =


0 t < ζ

0.54− 0.46 cos
(

2π(t−ζ)
T−(t− ζ)/T

)
ζ ≤ t ≤ ζ + T

0 t > ζ + T

(2.7)

where ζ represents a specific starting point in all time t and T is

the length of the window. Given an infinite signal sin(t), the resultant
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signal is:

s(t) = w(t; ζ, T )× sin(t) (2.8)

s(t) now represents a continuous function of time with value 0 outside

the window region. Different sections of the infinite signal can be selected

by moving ζ. The autocorrelation of the real signal s(t) can now be

taken:

rss(τ) =

∞∫
−∞

s(t+ τ)s(t) dt (2.9)

In practice the lags need only be calculated from τ=0 to τ=T because

the autocorrelation is zero valued outside the range −T < τ < T and is

symmetric around τ=0.

By the Wiener-Khinchine theorem [77], the autocorrelation and

power spectrum form a Fourier pair, so that the Fourier transform

F{rss} will yield P (f):

P (f) =

∞∫
−∞

rss(τ)e−2jπτf dτ (2.10)

However P (f) may also be evaluated directly by |S(f)|2, where:

S(f) =

∞∫
−∞

s(t)e−2jπtf dt (2.11)

Equation 2.11 forms the basis of the frequency domain methods.

From here on s(t) will refer to the signal starting with t=0 at ζ and with

length T . As the signal s(t) is sampled with frequency fs, the discrete

Fourier transform (DFT) is required. s[n] represents the sampled signal,

where n=0 when t=0 and N = Tfs. With k representing the discrete

frequency bins such that f = k
N
fs, the DFT is:

S[k] =
N−1∑
n=0

s[n]e−2jπnk/N (2.12)
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And the power can be evaluated by:

P [k] = |S[k]|2 (2.13)

2.3.2.1 N-point FFT

The DFT is not an efficient method for computer calculation of S[k]

because its complexity scales with O(N2) 2. The fast Fourier transform

(FFT) is a more computationally efficient algorithm for evaluating

the DFT, reducing the complexity of the calculation from O(N2) to

O(N log2N) in the Cooley-Tukey implementation [22]. Its output S[k]

does not suffer loss of accuracy compared to the DFT. The terms will

be used interchangeably, such that when ‘FFT’ is used it implies the

results of a DFT are calculated. MATLAB 7.12 (The Mathworks) and

its libraries are employed by this thesis for FFT evaluation.

The discrete form of Equation 2.6 for i=1 is:

M1 =
fs
N

N/2+1∑
k=2

kP [k] (2.14)

with the starting frequency bin adjustable for lower cut-off.

This is the discrete form of a definite integral and so it makes use of

the rectangle (or midpoint) rule to calculate area under the spectrum.

This makes the assumption that the area between the midpoint and

both edges of a frequency bin are roughly equivalent (or if not equivalent

that the triangular area lost on one side of the midpoint is equal to the

triangular area gained on the other side). This is a valid assumption

because in most cases N is large enough that the power spectrum shape

has approximately constant gradient across the bin width. However for

small N the integration becomes less accurate.

The FFT equation is classically employed in LDPM scenarios [85,89,

112] because it is theoretically the closest to the first moment definition.

2O() here refers to ‘Big O’ notation [62].
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The choice of N and the accuracy of P [k] control the error in M1.

The complexity will be determined by the number of multiply-

accumulate (MAC) operations required to produce one output blood

flow value from N=1,024 input samples. In this case, the number of real

MACs required to perform an N-point FFT is 10N/2 log2N [95], and a

further N/2 MACs are needed for the weighting and accumulation of

the frequency spectrum. Therefore the total number of MACs is:

MACFFT = 10× 1, 024/2 log2 1, 024 + 1, 024/2 = 51, 712 (2.15)

2.3.2.2 Frequency Averaging

Equation 2.14 can be modified so that the P [k] are the average of

the square of L DFTs taken from consecutive sets of N samples [84].

In Equation 2.14, the total time period of the window was a result

of N samples: T = N
fs

. With frequency averaging, the total time

period T = NL
fs

. As such, Equation 2.14 is simply the case for L=1.

For T to remain the same whilst introducing averaging, N must be

reduced proportionally. The rationale is that to perform many smaller

FFTs is less computationally expensive than longer FFTs. The cost

is O(LN logN). As L increases and N decreases proportionally, the

cost is reduced [82]. Small DFTs also have other advantages: the

memory requirements are minimal and the coefficients, for example, in

an 8-point DFT, may be approximated in hardware by substituting
√

2
2

by 2
3

[82]. If all the coefficients in the DFT are multiplied by 3

after the approximation is made, the new coefficients for an 8 point

sinusoid become 0,2,3,2,0,-2,-3,-2. The effect of approximating the DFT

coefficients in this way will be tested in Chapter 4.

Another advantage is that the estimates of P [k] at the particular

frequency bins in the N -point DFT may be improved by averaging.

The reason for this will be discussed in Chapter 3. However, one of
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the potential disadvantages is that as N is reduced, the use of the

midpoint integration rule, which assumes triangular formations between

the spectral vertices, loses accuracy because the gradient of the power

spectrum is not constant.

The averaging process is expressed by:

Pav[k] =
1

L

L∑
l=1

Pl[k] (2.16)

where Pl[k] is the lth DFT in a set of L consecutive N-point DFTs.

The effect of averaging on M1 will be assessed theoretically in Chapter

3 and tested in simulations in Chapter 4.

The number of MACs to produce one output sample from 1,024

input samples using 128 averages (i.e. 8 point FFTs) is:

MACFA = 128× 10× 8/2 log2 8 + 8/2 = 15, 364 (2.17)

2.3.3 Time Domain Equivalence

Despite the FFT delivering improved performance to the DFT, it is

still computationally expensive compared to time domain approaches.

As the signal is captured in the time domain, so it seems efficient to

process it directly and therefore by-pass any costly transformation into

frequency domain. Parseval’s theorem states that the energy in a signal

is equivalent whether evaluated in the time or frequency domain. If the

case where i=0 is considered, Parseval’s theorem can be readily applied

such that M0 can be evaluated in the time domain:

M0 =

fmax∫
0

P (f) df =

T∫
0

|s(t)|2 dt (2.18)

When i=1, an equivalent process of frequency weighting the power

spectrum must be applied in the time domain. The convolution theorem

states that convolution in the time domain is equivalent to multiplication
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in the frequency domain, or vice-versa [36]. Introducing a function h(t)

with Fourier transform:

F{h(t)} = f
1
2 (2.19)

The convolution of h(t) and s(t) becomes:

F{h(t) ∗ s(t)} = F{h(t)}.F{s(t)} = f
1
2S(f) (2.20)

Squaring this equation gives total energy and Parseval’s theorem can

again be applied:

M1 =

∞∫
0

fP (f) df =

∞∫
0

|h(t) ∗ s(t)|2 dt (2.21)

The function h(t) is a filter with f
1
2 weighted amplitude response, as

defined in Equation 2.19, and M1 can be calculated precisely if Equation

2.19 holds true. An example of the impulse response h(t) for an IIR

filter is shown later in Figure 2.5. Note that the phase response of the

filter is ignored as the phases of frequencies comprising an LDBF signal

are uniformly random and the phase is not used in the first moment

calculation.

2.3.4 Time Domain Implementation

Again, the implementation is usually discrete as s(t) is digitised and

filtering is performed after the ADC stage. In this case h(t) becomes

h[m], and the first moment, for a block of N data points and a finite

impulse response (FIR) implementation, is calculated by:

M1 =
1

N −M

N−1∑
n=M−1

∣∣∣(M−1∑
m=0

h[m]s[n−m]
)∣∣∣2 (2.22)

where M is the length of the filter. In this case the convolution

length is finite, i.e. h[m] is not continuously sliding across the data but
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is restricted to N −M operations, as this is typical in LDBF where

continuous data is not generally available.

2.3.4.1 Filter Designs

There are at least three issues to consider when designing a filter for

hardware implementation.

The first is the order of the filter. Filters with greater order are

more computationally expensive, but the frequency response is usually

closer to the requirement. One advantage of infinite impulse response

(IIR) filters over FIR filters is that, because they are recursive, they can

achieve the desired frequency response in much smaller length.

The second is the impulse response. Usually, whatever the processing

method, a LDBF signal is processed in individual windows [85] rather

than continuously. Thus, the beginning of each signal window will

comprise an impulse response associated with the filter. Essentially this

means that N raw points cannot produce N filtered points because there

is a settling time associated with the filter response. For IIR filters, the

results will only be valid after the impulse response has reduced to the

noise level. For FIR filters, the results are valid after the length of the

filter has elapsed.

The third is the stability. FIR filters are always stable because no

feedback is utilised, but IIR filters are only stable if the poles of the

transfer function are located within the unit circle of the z-plane.

Two filter designs, one FIR and one IIR, will be described.

2.3.4.1.1 He’s FIR: In 2008, He [50] designed a 4th-order FIR

(response in Figure 2.3) using a least-squares method in MATLAB.

The effect of the error in the frequency weighted filter will be tested

in Chapter 4. The design requires 5 multiply-accumulations (MACs)

per output sample.

The author also employed a device for reducing computational load in
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Figure 2.3: Frequency response of He’s f
1
2 weighted 4th-order

FIR filter (calculated from Appendix A in [50]).

the process of squaring and accumulating the filtered samples. Instead of

squaring each sample, the absolute is taken, accumulated, and one final

square is used. Mathematically, Equation 2.22 is modified to become:

M1 =
π

2(N −M)

( N−1∑
n=M−1

∣∣∣(M−1∑
m=0

h[m]s[n−m]
)∣∣∣)2

(2.23)

The reason this can be done is that, if the marginal distribution of

the signal is Gaussian with zero mean, then the square and average is

the variance of the signal:

N−1∑
n=0

(s[n])2

N
= σ2 (2.24)

The author [50] shows that, under the conditions above, the average

of the absolute process (µ′ in his terminology) is proportional to the

square root of the variance by a factor k:

µ′2 = kσ2 (2.25)

where k is dependent on the distribution. For a Gaussian distribution
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k = 2
π
. This derivation is given fully in Appendix A. The performance

of both square and average and absolute and average will be compared

in Chapter 4.

The number of MACs required to evaluate a 5 coefficient FIR is:

MACFIR = 5× 1, 024 + 1, 024 = 6, 144 (2.26)

where the additional 1,024 is because of the square and accumulation

of the filtered samples.

2.3.4.1.2 Morgan’s IIR: In 2011, Morgan et al. [82] designed two

2nd-order IIR filters in cascade. Higher order IIR filters become unstable,

hence the cascaded design. As can been seen in Figure 2.4, for 12 MACs

per output sample, the frequency response is much closer to the ideal.

The impulse response, shown in Figure 2.5, has reduced to being

close to zero by 50 samples. Nguyen [84] starts processing from 16

samples, which seems reasonable as the response is at 0.004 by this

point.

The equation for the first moment of the photocurrent’s power

spectrum using the recursive filter is:

M1 =
1

N − 16

N−1∑
n=16

|y[n]|2 (2.27)

where:

y[n] =
M−1∑
m=0

hb[m]s[n−m]−
M∑
m=1

ha[m]y[n−m] (2.28)

hb and ha are the filter coefficients for the feed forward and feed back

components respectively.

The number of MACs needed to evaluate these two cascading 2nd-

order IIR filters is:

MACIIR = 12× 1024 + 1024 = 13, 312 (2.29)
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Figure 2.4: Frequency response of Morgan’s 2 stage 2nd-order

cascaded IIR filter [82].
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Figure 2.5: The impulse response of the IIR filter. The

response approaches zero as the number of samples approach

50.

2.3.4.2 The Second Moment

Whilst the first moment is generally used in LDBF applications, in

2010 Binzoni et al. [9] suggested that an expression (Equation 2.30)

involving the square root of the second moment (M2) might provide a
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good measure of ‘Pmove〈||~V ||〉’ (the blood volume times average velocity,

their syntax):

Pmove〈||~V ||〉 ∝M0

(√
M2

M0

)
(2.30)

The advantage of using M2 is that it is easily evaluated in the time

domain using a finite difference method:

M2 ≈
A

N − 1

N−2∑
n=0

(|s[n+ 1]− s[n]|)2 (2.31)

And M0 is simply the total power in the signal:

M0 =
N−1∑
n=0

|s[n]|2 (2.32)

In 2008, Binzoni and van de Ville [10] used a Monte Carlo

methodology varying both the Brownian and translational perfusion

to show that M1 is approximately linear to Pmove〈||~V ||〉, as is generally

understood. As the authors then showed in 2010 [9], the expression

in Equation 2.30 is also approximately linear. One of the reasons for

this may be to do with the shape of the power spectrum. Although the

authors themselves did not derive a direct link between M1 and M2, it

was highlighted by Koelink et al. [64] that an exact relationship exists

under certain conditions, although no proof was given in their article.

The proof, that an exact relationship between these moments holds true

if the power spectrum is a decaying exponential, is shown here. That the

spectrum follows the decaying exponential shape is an observation made

by several authors [75,107], although the accuracy of this widespread

assumption is considered in Chapter 3.

A decaying exponential with decay rate 1/m and dependent variable

x is used to model the power spectrum. L is the limit of the integration.

Firstly the normalisation factor, which is the zeroth moment, must be

found:
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M0 =

L∫
0

e−
x
m dx =

[
−me−

x
m

]L
0

= −me−
L
m +m (2.33)

Then the first moment:

M1 =

L∫
0

xe−
x
m dx =

[
−mxe−

x
m

]L
0

+m

L∫
0

e−
x
m dx (2.34)

M1 = −Le−
L
m +m M0 = −Lme−

L
m −m2e−

L
m +m2 (2.35)

And finally the second moment:

M2 =

L∫
0

x2e−
x
m dx =

[
−mx2e−

x
m

]L
0

+ 2m

L∫
0

xe−
x
m dx (2.36)

M2 = −L2me−
L
m + 2m M1 (2.37)

As L→∞,

lim
L→∞

M0 = m

lim
L→∞

M1 = m2

lim
L→∞

M2 = 2m3

To normalise, both first and second moment are divided by the zeroth.

The normalised first moment becomes m, the normalised second moment

becomes 2m2 and the relationship between them is:

M1

M0

=
1

2

√
M2

M0

(2.38)

Rearranging:

M1 =
M0

2

√
M2

M0

(2.39)
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The relationship between second and first moment will be evaluated

in the simulations, testing whether, on this type of signal, there is

linearity between the moments.

The number of MACs needed for one output sample is vastly reduced

for this algorithm:

MACM2 = 2× 1, 024 = 2, 048 (2.40)

A further 1,024 MACs would be needed to evaluate M0, but this

would normally be calculated alongside all the other algorithms too and

therefore it is not included in Equation 2.40.

2.3.4.3 Draijer’s Method

In 2009, Draijer et al. [31] proposed a fast time-domain algorithm for

evaluating the first moment:

M1 ≈ 2π
〈∣∣∣s(t)∂s(t)

∂t

∣∣∣〉 (2.41)

such that the first moment is approximately proportional to the

absolute value of the product of the signal and its temporal derivative.

They derived this expression by starting with Parseval’s theorem,

expressed in its purest form:

∞∫
−∞

X(f) Y ∗(f) df =

∞∫
−∞

x(t) y∗(t) dt (2.42)

The frequency weighted element can be introduced into this equation

by noting that:

F{ d

dt
x(t)} = jf (2.43)

And Equation 2.42, with s(t) = x(t) = y(t) and S(f) = X(f) =

Y (f), becomes:
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∞∫
−∞

jfS(f)S∗(f) df =

∞∫
−∞

d(s(t))

dt
s∗(t) dt (2.44)

However the problem with this equation, as described in their paper,

is that it evaluates to zero. The authors attempt to overcome this

by replacing jf in the left hand side (LHS) of Equation 2.44 with

|f | (effectively single siding the frequency spectrum) so that the LHS

becomes the first moment definition. The equivalent operation on the

RHS, they posit (but without mathematical justification, a fact they

acknowledge [31]) is to take the absolute value
∣∣d(s(t))

dt
s∗(t)

∣∣. The time

average of this expression is then equivalent to the first moment. In

discrete form this is:

M1 ≈
2πfs
N

N−1∑
n=0

|s[n](s[n+ 1]− s[n])| (2.45)

The authors [31] test their algorithm empirically, comparing with

the standard FFT approach on a phantom and living tissue. Their

results suggest it is an effective method for calculating M1, and although

the algorithm cannot be justified mathematically, the next section will

illustrate why it is effective.

Like the 2nd moment calculation, the number of MACs needed

is small, but has one additional MAC to account for the additional

multiplication:

MACDRAIJER = 3× 1, 024 = 3, 072 (2.46)

2.3.4.4 The Analytic Signal

Having described the work of Draijer et al. [31], this section presents

novel work which suggests why Draijer’s method is effective, but

mathematically unjustifiable, but then uses the ‘correct’ approach to

introduce a method of evaluating the first moment of the photocurrent’s
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power spectrum which has not been applied to LDBF before.

One method of overcoming the zero-value problem presented by

Equation 2.44 is to set all negative frequency components to zero. This

can be achieved by introducing the analytic signal sa(t) [23] (Equation

2.47). The analytic signal is complex valued, and is composed of the

original signal added to its quadrature in the imaginary plane:

sa(t) = s(t) + jŝ(t) (2.47)

The average frequency (the normalised first moment) can be

evaluated by:

〈f〉 =

∞∫
−∞

f |S(f)|2 df =

∞∫
−∞

d(sa(t))

dt

1

j
s∗a(t) dt (2.48)

which is Equation 1.29 in [21].

In 1998, Huang [55] showed that this equation can be developed as

a function of the instantaneous frequency θ̇(t) and amplitude a(t):

〈f〉 =

∞∫
−∞

(
θ̇(t)− j

ȧ(t)

a(t)

)
a2(t) d(t) (2.49)

The instantaneous bandwidth ȧ(t)
a(t)

is small for signals which are

approximately monocomponent [76]. The mean frequency becomes:

〈f〉 ≈
∞∫

−∞

θ̇(t)a2(t) d(t) (2.50)

Equations 2.41 (Draijer [31]), 2.48 (Cohen [21]) and 2.50 (Huang [55])

can be represented before integration as a continuous time signal.

In order to demonstrate the mechanisms of the Draijer algorithm,

a signal with similar properties to a LDBF signal was simulated using

a monotonically decaying exponential (Equation 2.51) as the power

spectrum model [64,107]:
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P (f) =
∣∣∣Ke f

〈f〉

∣∣∣2 (2.51)

Because of multiple scattering off static tissue and moving RBCs, the

path length and so phases of the electromagnetic waves arriving at the

detector are stochastic. A phase spectrum θ(f) was simulated using the

‘rand’ function in MATLAB to generate a uniform distribution between

−π and π.

The bandwidth of Equation 2.51 was set to between 30 Hz and 20

kHz, reasonable for LD spectra, and the sampling rate set to 100 kHz.

An inverse fast Fourier transform (IFFT) on 8,192 points yielded a

noise-like photocurrent with zero mean. This data is similar to that

produced from real LDBF systems.

In Equation 2.48, the signal sa(t) is complex valued, therefore the

quadrature of s(t) was calculated by the Hilbert transform [45,55]. A

comparison of the three signals over 9 ms is presented in Figure 2.6.

The Draijer method is not precisely equivalent mathematically to the

analytic approach, but appears to be similar.
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Figure 2.6: A comparison of the three continuous time signals.

The similarity of Cohen (blue, vertically offset by 1) and

Huang (black) is to be expected, but it is shown here that the

Draijer (red) algorithm seems to mimic the analytic approach.
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This can be explained by considering that, in the Draijer expression:

s(t)
∂s(t)

∂t
=

1

2

∂s(t)2

∂t
(2.52)

The signal s(t) has noise-like characteristics (Figure 2.2) with zero

mean. If the signal s(t) is squared, it becomes positive unipolar where

each waveform is related to its instantaneous energy. When the squared

signal is differentiated, zero crossings are introduced at the peaks and

troughs. The ‘steepness’ of the waveform in the squared signal is related

to the frequency. Hence when differentiated, the maximum of the new

waveform is proportional to the frequency of the half-periods which

form the ‘humps’ of ∂s(t)2

∂t
, and therefore approximates the instantaneous

frequency θ̇(t). The peaks are also related to the energy in the signal

and therefore approximate the instantaneous amplitude a2(t). The

rectification (Equation 2.45) therefore produces a positive signal which

approximates θ̇(t)a2(t).

Figure 2.7 uses narrowband data (100 Hz) to illustrate. The first

signal shows the narrowband s(t). The signal is squared and the Draijer

signal shows the additional differentiation and rectification. The value

of the peaks are proportional to Equation 2.50, which implies that if

integrated over a long enough time period, M1 may be well approximated

by the Draijer approach.

The first moment via the analytic signal can be evaluated discretely

by:

M1 ∝
1

N − 1

(
N−2∑
n=0

s[n](ŝ[n+ 1]− ŝ[n])−
N−2∑
n=0

ŝ[n](s[n+ 1]− s[n])

)
(2.53)

where ŝ[n] represents the discrete analytic signal calculated by Hilbert

transform, either in the time domain, by Hilbert filter, or via the FFT

in the frequency domain [20]. Both methods of calculating the Hilbert

transform will be tested in Chapter 4, alongside the Draijer algorithm.
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Figure 2.7: Data with 100 Hz bandwidth was simulated to

emphasise how the process of squaring and differentiating

approximates the analytic approach. The laser Doppler (LD)

signal is in red, with its square in black. The Draijer (green,

vertical offset by 1) signal is the differential of the square,

and its envelope approximates the Huang signal (blue, vertical

offset by 1).

The Hilbert method requires different numbers of MACs depending

on whether it is evaluated in the time or frequency domain. In the

frequency domain, the FFT is followed by two differentiations, two

point-wise multiplications and a final accumulation:

MACHILBF = 10×1, 024/2 log2 1, 024+2×1, 024+2×1, 024+1, 024 = 56, 320

(2.54)

In the time domain, the FFT is replaced by the Hilbert filter with 3

taps:

MACHILBT = 3×1, 024+2×1, 024+2×1, 024+1, 024 = 8, 192 (2.55)
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2.4 Conclusion

Various methods of evaluating the first moment of the power spectrum

of the LDBF photocurrent have been described and are summarised in

Table 2.1. These methods operate in both time and frequency domain.

The domains are theoretically equivalent, however the implementation of

transforms, filters and accumulation techniques will affect the resultant

accuracy. Some of the methodology makes use of particular properties of

the photocurrent. For example, the absolute and average technique

makes use of the fact that it is a stochastic signal with Gaussian

marginal distribution. A graphical representation of how M1 may be

evaluated from the signal s[n] is shown in Figure 2.8. Additionally, a

possible explanation for why the ‘Draijer’ algorithm is effective has been

suggested. The explanation makes use of the analytic signal, and this

may also be an effective method of determining M1. The accuracy of

the algorithms described here in evaluation of M1 will be compared

in simulations in Chapter 4, and plotted against the computational

complexity as defined by the MAC number.
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Name Domain Algorithm

DFT [82,85] F fs
N

N/2+1∑
k=2

kSav[k] , L = 1, 2, ..., 64

FIR square and average [50] T 1
N−M

N−1∑
n=M−1

∣∣∣(M−1∑
m=0

h[m]s[n−m]
)∣∣∣2

FIR absolute and average [50] T π
2(N−M)

( N−1∑
n=M−1

∣∣∣(M−1∑
m=0

h[m]s[n−m]
)∣∣∣)2

IIR [82] T 1
N−16

N−1∑
n=16

y[n]2 ,

y[n] =
M−1∑
m=0

hb[m]s[n−m]−
M∑
m=1

ha[m]y[n−m]

2nd moment DFT F fs
N

N/2+1∑
k=2

k2Sav[k]

Binzoni’s 2nd moment [9] T A
N−1

N−2∑
n=0

(|s[n+ 1]− s[n]|)2

Draijer [31] T 2πfs
N−1

N−2∑
n=0

|s[n](s[n+ 1]− s[n])|

Analytic [23] T 1
N−1

(N−2∑
n=0

s[n](ŝ[n+ 1]− ŝ[n])−
N−2∑
n=0

ŝ[n](s[n+ 1]− s[n])
)

Table 2.1: List of algorithms for testing. Domain signifies

whether algorithm processes in time domain (T) or frequency

domain (F).
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Figure 2.8: An overview of the design routes available to

evaluate M1. The boxes are colour-coded as follows: blue

for DFT based methods, yellow for analytic signal, green for

Draijer, red for time domain filters, purple for 2nd moment.
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Chapter 3

Modelling the Power Spectrum

of the LDBF Photocurrent by

Bayesian Inference

3.1 Introduction

This chapter describes how the power spectrum of a LDBF photocurrent

can be modelled using a probability distribution whose shape is controlled

using a set of parameters. Several authors have noted the similarity of

LDBF power spectra to an exponential distribution [107]: in 1999

Lohwasser and Soelkner [75] stated that ‘The Doppler frequency

spectrum is assumed to be given by the functional relation [of the

decaying exponential]’. However, as far as is known, model fits based on

measurements on human skin tissue have still to be performed; a state

rectified in this chapter.

Also introduced is the concept of Bayesian Inference, the machinery

used to evaluate, from the data, which is the best-fit model. The

methodology of data collection will be explained, along with the spectral

conditioning and other processing required to perform the inference.
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3.2 Experimental Design

3.2.1 Data Requirements

To model the power spectrum of the photocurrent, real spectra obtained

in vivo over a range of flow values are required. It is known that

the photocurrent is a stochastic process [12] and as such the Fourier

transform will also be stochastic. Modelling the underlying frequency

content of this random process necessitates a long run of data to average

out variability. In order to obtain such data, an experiment was designed

to capture raw blood flow photocurrents with gradually increasing flow.

3.2.2 Ethical Considerations

Ethical approval for the collection of photocurrents from human

participants under varying thermal conditions was granted by the

University of Nottingham Faculty of Engineering (Application ID

2012-01). Data was collected and stored in accordance with Faculty

requirements and no personally identifiable information was stored with

the photocurrent data. Three participants were recruited for 20 minute

recordings. This allowed collection of a large number of power spectra for

the model fit. There were no specific human requirements or exclusion

factors.

3.2.3 Recording Devices

A Moor Instruments Laser Doppler Line Scanner (LDLS) was used as

one of two recording instruments. A line of approximately 9 cm length

and 2 mm width is illuminated by a laser of 785 nm wavelength. The

reflected and Doppler shifted light is detected by 64 spatial channels

across the line length. Although the device has the capability to move

the line by way of a motorised mirror, for the purposes of this experiment
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it was held steady in one location. The device samples all channels

simultaneously at 40 kHz but it can only record 1024 samples per buffer

(T=0.0256 s). However, it is able to repeat this measurement at a

rate of 10 Hz. Figure 3.1 illustrates the temporal and spatial sampling

characteristics of the device.

Figure 3.1: 64 channels sample a line of approximately 9

cm. Each channel samples at 40 kHz and takes 1024 samples,

giving T=0.0256s. The photocurrents are not continuous, but

under static flow conditions concatenated photocurrents may

be considered stationary.

A Moor Instruments VMS-LDF2 single point monitor was used

alongside the LDLS providing a blood flow comparison standard. It also

used a laser of 785 nm wavelength. The VMS-LDF2 probes also had the

capacity to measure skin surface temperature, important in monitoring

the reflex vasodilatory response (refer to Section 3.2.4). The device does

not give raw photocurrent output, but serves to validate the flow and

temperature changes in the experiment. The positioning of the probe

head next to the line is shown in Figure 3.2. The output is a calculated

blood flow value in arbitrary units (A.U.).

3.2.4 In Vivo Data Collection

Whilst recording LD photocurrents, the microvascular blood flow was

altered by first immersing the recording hand (the right hand) up to

the wrist in 15� water for 2 minutes. This causes vasoconstriction of
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Figure 3.2: The laser line from the LDLS imaged a section on

the back of the hand. The VMS-LDF2 temperature and flow

probe was positioned approximately 1 cm behind.

the microvasculature, restricting the movement of blood. The hand was

then dried, positioned under the LDLS laser line and the probe attached

as in Figure 3.2. The time between the end of the cold immersion and

start of the LDLS recording was 1 minute.

In 2003, Daanen noted that ’When one body part is cooled,

vasoconstriction also occurs in other parts of the body. This phenomenon

is known as reflex vasoconstriction. Similarly, if heat is applied to another

part of the body... the vessels open up... This phenomenon is known as

reflex vasodilation.‘ [24] To increase blood flow in the recorded hand,

the contralateral hand was immersed to the wrist in 43� water and

held for 20 minutes. During this 20 minute period the LDLS and VMS-

LDF2 recorded the raw photocurrent and blood flow and temperature

respectively in the non-immersed hand.

3.3 Models

It is widely accepted that the power spectrum from a LDBF device

resembles a decaying exponential e.g. [75,107]. The criteria for selection

of model spectra were that they should follow this monotonically
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decreasing shape with increasing frequency and the distribution should

exist on all positive frequencies. A set of standard probability

distribution functions fulfilling these criteria was selected. All the models

have an x-axis scale and y-axis scale parameter, and additionally some

have a shape parameter. If the distributions have a location parameter,

this is set to 0 so that the peak of the distribution is centred. Table 3.1

details the definition of the models, with examples displayed in Figure

3.3.

No. Name Number of

Parameters

Definition PM(f)

1 Exponential 2 θ2
1e
− f
θ2

2 Exponential with powered exponent 3 θ2
1e
−
(
f
θ2

)θ3
3 Cauchy 2

θ21

πθ2

[
1+
(
f
θ2

)2]
4 Type 3 Logistic 2

θ21e
− f
θ2

θ2

[
1+e

− f
θ2

]2
5 Type 2 Logistic 3

θ21e
− θ3f
θ2

θ2

[
1+e

− f
θ2

]θ3
6 Type 3 Logistic 3

θ21e
− θ3f
θ2

θ2

[
1+e

− f
θ2

]2θ3
7 Generalised Pareto 3 θ2

1

(
1 + f

θ2

)− 1
θ3
−1

8 Generalised Pareto (with fixed shape) 2 θ2
1

(
1 + f

θ2

)− 1
1.74
−1

9 Pareto 3
θ21(

f
θ2

)θ3+1

Table 3.1: Models selected for comparison. All decrease

monotonically with increasing frequency. Model 8 is model 7

but with a fixed shape parameter, determined experimentally

by the mean of θ3.

The exponential distribution has been used to describe the LDBF

power spectrum. It is included first with 2 parameters, where increasing

θ2 increases the power at higher frequencies. θ1 is, as is the case for

the other distributions, the y-axis scale. A three parameter exponential

has an additional shape parameter, θ3, which increases the negative
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Figure 3.3: Example plots of the models from table 3.1. All

have a monotonically decreasing shape but the precise shape

and distribution of power across the frequency range varies.

gradient of the exponential slope. The Cauchy distribution includes

two θ2 x-axis scale parameters. This has the effect of reducing power

at lower frequencies and increasing the power at higher frequencies as

θ2 increases, for fixed y-axis scale. The logistic family of distributions,

which has a wide variety of applications in sociology and biology [83], is

similar in shape to the exponential (being constructed of exponential

expressions) but has a larger tail. The Pareto distributions are based on

a 1/f distribution. In initial tests, the Generalised Pareto (model 7) was

a likely model and it may be that the third parameter can be replaced

with a fixed value which then approximates to the correct shape across

all spectra. To test this, a Generalised Pareto with fixed shape was also

included (model 8) with the fixed value of the third parameter determined

by performing the analysis with the three parameter distribution and

selecting the mean value of θ3. This value was 1.74.

One usual condition of probability distribution functions is that

the integral of the distribution (i.e. the sum of probabilities) equals 1.
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Because the y-axis scale parameter, θ1, is included (so that varying total

power can be measured), this condition is no longer true. This means

that any other parameters which also scale the distribution independent

of θ1 can be ignored. The distributions are then reduced to the two or

three parameters which, when searched over, vary the scale or shape of

the distribution. For example, the formula for the Generalised Pareto is:

p(x) =
1

σ

(
1 +

ξ(x− µ)

σ

)(− 1
ξ
−1)

(3.1)

The 1/σ is absorbed because θ1 is now included, and since µ=0 the

peak is at zero. σ
ξ

becomes θ2 as σ now only exists once in the expression.

Replacing ξ with θ3, the formula becomes:

p(x) = θ2
1

(
1 +

x

θ2

)(− 1
θ3
−1)

(3.2)

This process of reforming the parameters was repeated for all the

distributions.

3.4 Bayesian Model Selection

Bayesian model selection can be used to find the most likely model fit

data from a range of models independent of the model parameters. It

can perform a fair comparison even if the models have different numbers

of parameters, penalising more complex models with higher numbers of

parameters according to the principle of Occam’s Razor [14].

The ordinary least squares regression is a popular and relatively

simple data fitting solution [94]. However, in the case of a LDBF pho-

tocurrent, which is a wide-bandwidth stochastic signal, the distribution

of the power spectra, calculated by DFT, is heteroscedastic because

the variance is correlated with the square of the power (Figure 3.4).

In 1968, Jenkins and Watts [58] showed this fact and it will also be

demonstrated in Section 3.5. This renders ordinary least squares, which
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Figure 3.4: An example of heteroscedastic data - the variance

of the power spectrum is not constant across the data. Least

squares regression requires homoscedastic data, but the power

spectra of LDBF is heteroscedastic.

requires constant variance, unsuitable for the task. However, Bayesian

model fitting can calculate the probability at each individual frequency

point, by using independent variances. It starts with Bayes’ theorem:

p(B|A, I) =
p(A|B, I)p(B|I)

p(A|I)
(3.3)

p(B|A, I) is termed the posterior and is defined as the probability ofB

given some value or condition A and prior information I. Then p(A|B, I)

is the probability of A given B and termed the likelihood function. The

two probabilities p(A|I) and p(B|I) are the probabilities of A and B

independent of any condition (but based on prior information). The

model selection problem considered in LDBF is illustrated in Figure 3.5.

Applying Bayes’ theorem:

p(M |P (f), I) =
p(P (f)|M, I)p(M |I)

p(P (f)|I)
(3.4)

the goal is to find which M produces the largest value of the posterior
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Figure 3.5: Bayesian Model Selection on Laser Doppler data.

Given a signal s(t), and thus a power spectrum P (f), p(M |P (f))

is the probability that a model M describes that power

spectrum. The most likely model is then the one with the

highest probability.

probability for a given P (f). I, any prior information known about

the data, will be omitted from all future equations because it does not

now formally contribute to the mathematical derivations. p(P (f)) is a

normalising function, equal to:

∫
p(P (f)|M)p(M) dM

and is constant for a fixed P (f). The main computational term, the

likelihood function, is:

p(P (f)|M) (3.5)

So, given a certain M , p(P (f)) is the probability of obtaining

the spectrum P (f) for any parameters. Let M be a model with

two parameters θ1 and θ2. Then the probability of obtaining the

spectrum P (f) at some set of parameter values is p(P (f)|θ1, θ2,M). The

requirement, however, is to evaluate the probability independent of the

parameter values. This can be achieved by the process of marginalisation,

essentially integrating over all possible parameter values:

p(P (f)|M) =

∫∫
∆θ1∆θ2

p(θ1|M)p(θ2|M)p(P (f)|θ1, θ2,M) dθ1 dθ2 (3.6)

where ∆θ is the range of possible parameter values searched over

(later, δθ will refer to the gap between adjacent discrete parameter
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values). Note that in equation 3.6 two new terms are introduced,

the independent probabilities of the parameter values, or priors. As

no information about these probabilities is known in advance of the

experiment, they are referred to as uninformative priors and are constant

over the parameter range. The probability of a particular value of the

parameter occurring is therefore

p(θ|M) =
1

∆θ
(3.7)

It has been the subject of much debate over the years whether 3.7

actually represents equal parameter probability. In fact, where the scale

of the parameters is also an unknown (e.g. is the parameter in the

range 0.1 to 1 or 1000 to 10,000?), the flat prior does not assign equal

probability per decade [46]. In that case, the Jeffrey’s prior is more

suitable because it uses a logarithmic scale. However, in the case of

these results, where the spectra all fall within a roughly similar power

level and shape, and where the posterior is finite and discrete, the flat

prior is suitable [57].

The effect of equation 3.7 is to penalise probabilities with higher

numbers of parameters: it acts as an Occam’s Razor and simpler models

are preferred. Many of the models tested have 3 parameters instead of

2. For a model with higher number of parameters to be more likely, the

quantity p(P (f)|θ1, ..., θi,M) needs to be proportionally larger (by an

extra ∆θ for each additional parameter) so as to compensate for the

penalisation.

The difficulties posed in performing these integrations analytically

lend favour to a numerical approach. If P (f) is sampled with

frequency resolution fs
N

(where fs is the sampling frequency and

N the number of time domain samples), it consists of samples

P (f1),P (f2),P (f3),...,P (fN/2) up to the Nyquist frequency. Expression

3.5 for certain parameter values becomes
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p(P (f1), P (f2), P (f3), ..., P (fN/2)|θ1, θ2,M) (3.8)

= p(P (f1)|θ1, θ2,M), p(P (f2)|θ1, θ2,M), p(P (f3)|θ1, θ2,M), ..., p(P (fN/2)|θ1, θ2,M)

(3.9)

=

N/2∏
n=1

p(P (fn)|θ1, θ2,M) (3.10)

p(P (fn)|θ1, θ2,M) is the probability of the power at a particular

frequency fn occurring given the model M and parameters θ1 and θ2:

i.e. it is the probability of an error from the mean, PM(fn) (the value

calculated from the model function using θ1 and θ2).

Before any further derivations are performed, the properties of the

power spectrum and error function require discussion.

3.5 Power Spectra Conditioning

3.5.1 Overview

The aim of this section is to show how a LDBF photocurrent may be

processed such that Bayesian Inference can be used to model-fit its power

spectrum. This is important because a single power spectrum calculated

from a LDBF signal is not, by itself, suitable for the model-fitting

exercise.

Maximal probability at the correct point is required. That is to

say, where the true power of a certain frequency (an unknown) resides,

the probability distribution function (PDF) of the error model of the

power should be at its maximum. A spectral estimate, calculated from

a time domain signal from LDBF, does not, however, form a PDF

with this property because it is a white noise-like stochastic process

and, importantly, the variance of the spectral estimate is unknown.
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This section will show that this is the case, and then how the spectral

estimates can be manipulated to become suitable for Bayesian analysis.

3.5.2 LDBF Theoretical Spectrum

The LDBF photocurrent can be considered to be a white noise process

passed through a linear filter. Given that: there is a large quantity of

red blood cells and a small chance of multiple scattering events off RBCs

[12]; the frequencies generated are proportional to the velocities of the

RBCs [114] and the velocity distribution has a Brownian component [7];

the heterodyning of Doppler frequencies with reflected coherent light

dominates the photocurrent [88] and the phase is random according to

the path length through the scattering medium (tissue); then this seems

reasonable for the noise-like photocurrent. The frequency response of

the ‘filter’, H(f), then determines the theoretical spectrum, B(f), such

that:

B(f) = σ2
z |H(f)|2 (3.11)

where σ2
z is the variance of the white noise process. By first

considering properties of unfiltered white noise (B(f)=1), the properties

of filtered white noise can be derived and checked for consistency.

3.5.3 Properties of Spectral Estimates of White

Noise

White noise is a Gaussian process with infinite bandwidth and zero mean

and as such, the Fourier transform, and so power spectrum, is stochastic.

This means that if consecutive Fourier transforms (squared to produce

power) are performed on a white noise process, single spectral estimates

selected from each power spectrum will form a PDF i.e. they will not

be constant. White noise was simulated by taking the inverse Fourier

71



transform of a very well sampled frequency spectrum (222 frequencies,

with unity power across the bandwidth) and uniformly random phase.

This long signal was broken up into smaller processes and the Fourier

transforms taken (Figures 3.6 and 3.7). In this analysis C(f) is an

estimate of the power of a frequency f upon taking the square of the

Fourier transform of a white noise time series. C̄(f) is an estimator of

the power of a frequency f after averaging multiple sets of C(f):

C̄(f) =
1

L

L∑
l=1

Cl(f) (3.12)
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Figure 3.6: A signal of length TTotal = 222 was broken up into

K sections of length T , signified by sT i(t). K is controlled by

the length of T as TTotal is constant.
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Figure 3.7: Each sT i(t) is broken up into L sections of length

N and the Fourier transforms taken.

Therefore one power spectrum estimator distribution is formed for

each T giving K estimators in total. By simulating in this way, it is

shown in Figure 3.8 than the PDF of one frequency (C(fx)) of the power

spectrum of this process matches the theoretical Chi-squared with 2
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degrees of freedom (χ2
2). Effectively this is the case for when L = 1. But

when the power spectra from multiple Fourier transforms are averaged

(C̄(f) when L = 32), the PDF’s degrees of freedom increase (by twice

the number of averages, in this case 64) and a χ2
64 distribution is created

(Figure 3.9).

So, by averaging the spectra, not only does the estimate move

closer to the mean, but the distribution changes shape and becomes

approximately Gaussian.
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Figure 3.8: Simulated distribution of 2C(f)
B(f)

for one frequency of

a white noise process, with the theoretical χ2
2. The theory of a

white noise process predicts that the variance is proportional

to the value of B(f)2 [58].

3.5.4 The Laser Doppler Spectrum as Filtered

White Noise

The more white noise is filtered, the less Gaussian it becomes. This is

intuitively true since an ideal filter with a delta frequency response will

leave a perfect sinusoid. However the filtering in this case is relatively

wide band, and the signal still has a Gaussian marginal distribution.
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Figure 3.9: Simulated distribution of 64 C̄(f)
B(f)

for one frequency

of a white noise process after 32 averages. Upon averaging,

the degrees of freedom of the χ2 distribution is increased and

the distribution becomes approximately Gaussian.

3.5.4.1 The Three Distributions

The white noise spectrum of the previous simulation was modified to

resemble an exponential distribution, as the spectrum of LDBF is of

similar shape [107]. The filter H(f) has the effect of slightly reducing the

smoothness of the theoretical spectrum B(f) as it changes from being

completely flat to decaying. This is important to note when evaluating

the bias of the averaged spectral estimator.

There are three separate distributions to consider. The first is the

distribution of C(f), the spectral estimator with no averaging (L = 1).

It should resemble a χ2
2 (Figure 3.10). The second is the averaged

spectral estimator, which should resemble a χ2
ν where ν is twice the

number of averages (Figure 3.11). The third is the final distribution

of the power spectrum across the bandwidth; this is the distribution

for the model fitting exercise (the theoretical version of which is Figure

3.12). The distributions are not to be confused; it is a coincidence that

the χ2
2 actually resembles the LDBF power spectrum, in fact the χ2

2 is a

74



decaying exponential by definition. However the first two distributions,

the χ, are the distributions of spectral estimators at one frequency only

and it is only the third, made up of multiple estimators that is actually

the full power spectrum of the LDBF process.
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Figure 3.10: Distribution 2C(f)
B(f)

of a frequency f , 1
8
th of the

Nyquist frequency fs
2

with the theoretical χ2
2.

There are several choices to be made. First, the number of averages

L that make up C̄(f), second, the length of N (i.e. how many samples

to take) that make up the total time period T = NL and third, the

spectral window to apply to the time series.

3.5.4.2 Number of Averages

The value of L determines the shape of the resultant estimator PDF and

decreases the variance. The central limit theorem dictates that upon

the addition of independent identically distributed samples, such as the

addition of multiple χ2
2 distributions, the distribution of the estimator

is forced towards a Gaussian. As L increases, the degrees of freedom

increases by 2L. This is because the degree of freedom increases by one

as a sine or cosine (independent Normal distributions) of the Fourier

transform is added. One estimate C(f) has 2 degrees of freedom as:
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Figure 3.11: Distribution 64C̄(f)
B(f)

of a frequency f , 1
8
th of the

Nyquist frequency fs
2

with the theoretical χ2
64. The number of

averages was 32 and the number of samples in the distribution

K = 4096. There is a small bias in the result, the reasons for

which are discussed in Section 3.5.4.3.
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Figure 3.12: Example LDBF theoretical spectrum, B(f), which

resembles a decaying exponential.

C(f) = A2 +B2 (3.13)

where A and B are the sine and cosine components of the Fourier
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transform. A and B form normal distributions with zero mean. Squaring

them results in a χ2
1 distribution and the addition of the two results in

χ2
2 under the additive property of the χ2

ν distribution:

χ2
ν1+ν2

= χ2
ν1

+ χ2
ν2

(3.14)

Hence the addition of multiple transforms increases the degrees of

freedom. As ν increases, the skewness property (
√

8
ν
) and the kurtosis

property (12
ν

) decrease and the distribution tends to normality. This

is illustrated in Figure 3.13 by theoretical χ2
ν for different ν against a

normal PDF with the same mean and variance (µ = ν and σ2 = 2ν).

Recalling that ν = 2L, as the number of averages moves above 32 the

distribution very much resembles the normal (Figure 3.13e). It is also

worth noting that the variance of the estimator C̄(f) is not dependent

on ν because the χ2
ν distributions in Figure 3.13 are distributions of

νC̄(f)
B(f)

. That is, despite the χ2 distribution variances increasing by 2ν,

the dependence of the variance on ν is eliminated by the multiplication

of C̄(f)
B(f)

by ν.

3.5.4.3 Data Length and Window

If L is large then this decreases the available number of samples N to

produce the estimator C̄(f) in the same period T (T = NL). The choice

of N and the spectral window affects the bias as the bias is dependent

on the smoothness of the spectrum with respect to the window size in

the frequency domain. A larger N therefore reduces the bias as the

spectrum looks ‘smoother’ at smaller ∆f . A window with narrow main

lobe and attenuation of the side lobes will decrease the bias as the effect

of neighbouring frequencies is reduced. The ideal window from a bias

point of view is a delta function at the frequency f , but this requires

infinite N . As discussed below, the variance decreases by a factor k

with wider windows, and the choice of window is a function of spectral

77



0 1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

x

P
(x

)

 

 
Chi2 v=4
Normal

(a) χ2
4 and N

0 2 4 6 8 10 12 14 16
0

0.02

0.04

0.06

0.08

0.1

x

P
(x

)

 

 
Chi2 v=8
Normal

(b) χ2
8 and N

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

x

P
(x

)

 

 
Chi2 v=16
Normal

(c) χ2
16 and N

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

x

P
(x

)

 

 
Chi2 v=32
Normal

(d) χ2
32 and N

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

x

P
(x

)

 

 
Chi2 v=64
Normal

(e) χ2
64 and N

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

x

P
(x

)

 

 
Chi2 v=128
Normal

(f) χ2
128 and N

Figure 3.13: χ2
ν and N PDFs with same mean and variance

highlight how the estimator PDF tends to normal as L is

increased.

smoothness. A Hamming window was chosen for this simulation (note

that to obtain correct estimates the spectral values must be normalised
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by the mean square of the spectral window). The effect of the length of

N on the bias is shown in the following Figures (Figures 3.14 to 3.16).

These figures also illustrate the third distribution, the power spectrum,

against its theoretical values.
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Figure 3.14: The expected value of the estimator C̄(f) as a

function of frequency with the theoretical spectrum B(f) with

length N = 32. The number of averages in the expected value

function was 4096.

The number of averages of the estimator decreases as N increases

(4096 to 2048 to 1024) but this does not affect the estimator value. The

estimator converges well before 1024 averages is reached. It can be seen

that the bias decreases with increasing N .

However, as these figures show the expected value of the estimator

distribution, they do not reveal the variance. Contrary to intuition,

increasing N does not decrease the variance and C(f) is not a consistent

estimator of the power spectrum. It can be said that C̄(f) is a consistent

estimator because as L → +∞ the variance tends to zero (Equation

3.15) and therefore a trade-off between bias and variance exists for the

same T .
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Figure 3.15: The expected value of the estimator C̄(f) as a

function of frequency with the theoretical spectrum B(f) with

length N = 64. The number of averages in the expected value

function was 2048.
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Figure 3.16: The expected value of the estimator C̄(f) as a

function of frequency with the theoretical spectrum B(f) with

length N = 128. The number of averages in the expected value

function was 1024.

Var[C̄(f)] = k
B(f)2

L
(3.15)
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k is a factor affected by the choice of spectral window: windows

with higher bandwidths have lower k [58]. For the Hamming window,

k = 0.7353.
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Figure 3.17: An illustration of the variance of the smoothed

spectral estimator for frequency bin 3 where N=64 and the

number of averages is 32. The bias is 0.007, with σ=0.021.

Figure 3.17 reveals the distribution of the estimator (essentially the

χ2
64 unnormalised by ν

B(f)
) with the variance being proportional to B(f)2.

The fact that the variance is not independent of the spectral power

requires the normalisation of the exponential in the normal distribution

by the variance of the power at each frequency. This will be discussed in

the next section as the Bayesian derivation continues. For the purposes

of the analysis, the spectral estimator from the Gaussian process will be

made equivalent to the power spectrum for Bayesian Inference (equation

3.16).

P (f) ≡ C̄(f) (3.16)
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3.5.5 Summary

It has been shown that single spectral estimates from an LDBF

photocurrent form a PDF where the point of maximal probability

is not equivalent to the true theoretical power spectrum. However,

by averaging multiple power spectra from a stationary photocurrent,

the error model becomes more Gaussian and the point of maximal

probability approaches the true theoretical point. Now the error model

can be approximated by a Gaussian distribution.

3.6 Further Bayesian Derivation

3.6.1 Likelihood function

The effect of averaging, by the central limit theorem, is to approximate

a Gaussian distribution. Hence the probability term in equation 3.10

can be evaluated by:

p(P (fn)|θ1, θ2,M) ≈ 1

σn
√

2π
e
− (P (fn)−PM (fn))2

2σ2n (3.17)

Where:

σ2
n = k

PM(fn)2

L
(3.18)

The likelihood function becomes:

p(P (f)|θ1, θ2,M) =

N/2∏
n=1

1

σn
√

2π
e
− (P (fn)−PM (fn))2

2σ2n (3.19)

At this stage, it is usually easier to work with the log of likelihood

because the terms can be summed instead of multiplied:

ln(p(P (f)|θ1, θ2,M)) =

N/2∑
n=1

[
−ln(PM(fn))+

1

2
(ln(L)−ln(2kπ))−L.(P (fn)− PM(fn))2

2kPM(fn)2

]
(3.20)
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3.6.2 Model distribution

The model function (assuming a two parameter model) is:

PM(f) = g(θ1, θ2,M) (3.21)

This presents a potential problem. By varying θi not only does the

comparison term in the exponential in equation 3.19 change, but so does

the variance (from equation 3.18). This means that, as the parameters

are searched, the variance controlling the likelihood probability also

causes a change in the probability outcome. Now the distribution of

P (fn) about a particular model value is normal (equation 3.17), but

as the likelihood function involves varying the model values with fixed

data, it is interesting to see the distribution of model values PM(fn)

about a particular P (fn).
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Figure 3.18: The distribution of PM(fx) around P (fx) = 0.5.

The location of the peak is 0.4924, 1.5% difference. The

variance constant L/k = 64.

Figure 3.18 illustrates the result of changing variance, that is, a

slightly skewed normal distribution with a small bias. The bias is easily
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calculable by evaluating:

d

dPM

(
− ln(PM)− L(P − PM)2

2kP 2
M

)
= 0 (3.22)

where the function arguments have been neglected for ease of reading.

This will calculate the maximum of the PDF for PM and allow verification

of the difference between P and PM . Equation 3.22 evaluates to:

P 2
M +

P.L

k
PM −

P 2.L

k
= 0 (3.23)

and solving for PM :

PM =
P

2
(±
√
L

k
(
L

k
+ 4)− L

k
) (3.24)

Setting α =
√

L
k
(L
k

+ 4) − L
k

and by taking the difference and

percentage:

Bias = 100
P − PM

S
= 100

(
1− α

2

)
(3.25)

From equation 3.25 the bias is a constant percentage of P controlled

by the constant k and the number of averages, decreasing as L increases.

This is illustrated in Figure 3.19 and gives another reason for keeping the

number of averages high. The small bias at larger numbers of averages

should not adversely affect the results of the model selection problem.

For the purposes of this model fitting exercise, L was selected to be 32.

This number represents a reasonable number of averages considering the

length of photocurrent required, and a bias percentage of 2.2% according

to Figure 3.19.

3.6.3 Numerical Marginalisation

Equation 3.6 (from Section 3.4) should be implemented numerically on a

model by model basis. p(P (f)|θ1, θ2,M) may be evaluated numerically

as in Equation 3.20, replacing P (fn) with the spectral data P [n] and
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Figure 3.19: The bias percentage as a result of changing

variance in the likelihood function. At L
k

= 64 the percentage is

1.5, matching Figure 3.18. At L
k

= 43.5 (L=32), the percentage

bias is 2.2.

PM(fn) with a model function calculated over the chosen parameter

ranges. Thus a 2-D or 3-D map of values calculated from equation 3.20

is built up. Visualising a 2-D map, a probability function is created

where the maximum gives the coordinates (i.e. parameters) of the most

likely distribution from the model. Marginalisation is the process of

integrating over this map. The most likely model is the one with highest

summed likelihood, not the one with tallest peak. For three parameters

this is:

p(P [n]|M) =
1

A′B′C ′

A∑
a=1

B∑
b=1

C∑
c=1

exp(ln(p(S[n])|θ1[a], θ2[b], θ3[c],M))

(3.26)

where A, B and C are the numbers of parameters evaluated, A′=A-1

etc. and θ1[a], θ2[b] and θ3[c] are functions which calculate the parameters

from the indices a, b and c. 1
A′B′C′

acts as the Occam factor. This is

because the integration is numerical, so that the summation should

be multiplied by the gap δθ between the parameters to give the full
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area. In this case, the midpoint rule for numerical integration is used as

the function is approximately linear at small δθ and the function does

not vary sinusoidally. The gap for parameter 1, for example, can be

evaluated by:

δθ1 = θ1[a+ 1]− θ1[a] =
θ1[A]− θ1[1]

A− 1
(3.27)

and the parameter range is:

∆θ1 = θ1[A]− θ1[1] (3.28)

From equation 3.7, the summation should be divided by equation

3.28 for each parameter. This leaves:

θ1[A]− θ1[1]

A− 1
.

1

θ1[A]− θ1[1]
=

1

A− 1
=

1

A′
(3.29)

Equation 3.26 will be evaluated for each model on each spectrum.

It is assumed that the prior probabilities of the models are equal, as

are the prior probabilities of the parameters. The posterior can thus be

determined purely from the likelihood function.

3.7 Data Processing

This section shows how the data files received from the two Moor

Instruments devices are processed in accordance with Bayesian model

selection methodology.

3.7.1 Raw Data Files

3.7.1.1 Moor VMS-LDF2

This device was used as a validator of the experimental method, to show

an increase of blood flow and skin surface temperature due to reflex

vasodilation. The device already processes the photocurrent into a value
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representing blood flow, therefore this value can be viewed directly. The

output sample rate f bfs is 40 Hz, so that over 20 minutes more than

48,000 blood flow samples were recorded. The blood flow is smoothed

for ease of viewing long term variation by applying a 400 point (10 s)

moving average filter, and the results for subjects 1, 2 and 3 can be seen

in Figures 3.20, 3.21 and 3.22 respectively. The temperature is displayed

as recorded by the point probe.
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Figure 3.20: VMS-LDF2 flow and temperature recording on

subject 1. The recorded hand was immersed for the first 2

minutes to prompt vasoconstriction, followed by 1 minute of

drying and positioning. At 3 minutes, the contralateral hand

was immersed in 43� water. The results show an increase of

flow, coinciding with an increase in skin surface temperature.

The flow results are not smooth functions, but have medium term

temporal variations. In some cases this was simply due to movement

artefacts - if the fibre optic light guide was moved this affected the noise

level substantially. There are also respiratory and myogenic variations

[66] and resistive mechanisms on top of the heart beat. Stefanovska et

al. [116] found five oscillations within the range 0.0095-1.6 Hz by LDBF.

These may have contributed to the variations seen in the VMS-LDF2
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Figure 3.21: The same experiment as in Figure 3.20 repeated

for subject 2. The flow increase is not as large as subject 1 at

this site, but the temperature still shows an increase of 4�.

0 5 10 15 20
0

5

10

15

20

25

P
er

fu
si

on
 (

A
.U

.)

Time (Mins)
0 5 10 15 20

21

22

23

24

25

26

27

28

29

30

31

S
ki

n 
te

m
pe

ra
tu

re
 (

° C
)

Figure 3.22: The same experiment as in Figure 3.20 repeated

for subject 3. Again the temperature increases by roughly 4�

but the flow remains stationary.

results. An FFT on subject 1 blood flow data (Figure 3.23) illustrates

the frequency bands present in the signal.

There is some variation in gradient of flow increase. All show a

skin surface temperature increase of 3-5�. In subject 1, this appears

to be accompanied by a flow increase of similar gradient. Subject 2
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shows a slight increase, but subject 3 seems to have a relatively flat

flow response over the 20 minutes. This could be due to variation in

haemodynamic responses to heat provocation between subjects, but it

may also be due to probe positioning. The results from the Moor LDLS

add some understanding.

Figure 3.23: FFT of four minutes of data from subject 1

shows the low frequency bands present in the blood flow signal.

The colours correspond to physiological frequencies as follows:

purple is cardiac, yellow is respiratory, green is myogenic,

light blue is sympathetic and grey is endothelial. Image was

captured using the Moor Instruments VMS-PC software.

3.7.1.2 Moor LDLS

This device, in contrast with the VMS-LDF2, records raw photocurrents.

The blocks, with 1,024 samples at fs=40 kHz, were windowed by a

Hamming window, the square of the FFT taken, frequency-weighted

and accumulated (as in Section 2.3.2.1) to give a blood flow value.

Figure 3.24 shows the whole of the blood flow as recorded by the

LDLS over 18.5 minutes (the LDLS recording started after 2 minutes of

cold immersion and 1 minute extra for drying and positioning) across

64 channels. The location of the larger veins are visible by the spatial

regions of higher flow. It can be seen here, and to a greater extent in
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Figure 3.26, that some spatial locations show increasing flow with others

giving flatter responses.
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Figure 3.24: The whole of the LDLS recording for subject 1

(the position of the laser line is static and shown in Figure 3.1).

The vein locations appear as regions of higher flow, which also

increase with time.

Figure 3.25 depicts the raw flow values. Averaging has again been

applied, which smooths out the heart rate and noise, to view longer

term trends. Figures 3.26, 3.27 and 3.28 show the flow processed by a

100 point (10 s) moving average filter.

So some channels (i.e. skin locations) show an increase in flow, others

are more stationary, and there are degrees in between. This situation,

interesting in its own right (and also observed by Rendell et al. [100]),

is acceptable for the purposes here. Photocurrents at a variety of flow

values are now available for model selection.
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Figure 3.25: Channel 52 from the Moor LDLS on subject 1

before averaging. The flow gradually increases due to reflex

vasodilation.
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(a) Channel 52
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(b) Channel 57

Figure 3.26: Two channels from LDLS recording on subject

1. The first shows an increase of flow whereas the second

shows a flatter flow response. This suggests tissue with

varying underlying blood vessel structure exhibits variations

in response to temperature provocation.
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(a) Channel 53
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(b) Channel 10

Figure 3.27: A similar effect to subject 1’s increase in flow

over time can be observed in subject 2, though not as marked.

Some regions of the image (e.g. channel 28) show increasing

flow.
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(a) Channel 28
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(b) Channel 3

Figure 3.28: Subject 3, whose VMS-LDF2 flow recording was

relatively stationary, shows that the recording location has an

effect on flow response.
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3.7.2 Averaging

The data received from the LDLS is in blocks of 1,024 samples. This

gives a power spectrum of 512 points up to the Nyquist frequency.

In order to use 32 blocks for averaging, 16,384 samples are required.

However, the block rate is 10 Hz, so 3.2 seconds of data would need to be

collected. The problem with this is that blood flow varies at roughly the

heart rate (1-2 Hz) and thus adjacent photocurrents are not necessarily

similarly stationary. However, where the flow and concentration are

similar in the same channel, the spectral shape should also be similar.

To have enough photocurrent blocks to average, a method where blocks

of like flow and concentration are concatenated was employed. Firstly,

the flow and concentration for each block were calculated by the 1,024

point FFT method.

The flow and concentration values were normalised so that the range

for each was between 0 and 1. The flow and concentration ranges

were then each divided into 75 bands, as shown in Figure 3.29. This

number was chosen so that it was large enough to ensure comparable

statistics for the grouped photocurrents, but small enough to make

available a sufficient number of photocurrents per band. 75 flow bands

and 75 concentration bands give a total possible set of 75×75=5,625

bins. Each photocurrent was then assigned to a bin according to its

flow and concentration value. Channels at the edges of the image were

discarded because the laser line was wider than the hand so no tissue

was imaged.

Each bin was then examined to see how many blocks it contained.

If it contained at least 32 blocks, the spectra were averaged to create 1

spectrum. If more sets of 32 were available in the band then these sets

were also averaged. If fewer than 32 spectra were in the bin (many bins

contained no spectra) then the bin was ignored. Figure 3.30 shows that

upon averaging stochastic spectra, they become smoother.
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Thus for each subject, a file of averaged spectra was created. Subject

1 produced 12,305 averaged spectra, subject 2, 14,207, and subject 3,

7,295.
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Figure 3.29: The flow and concentration were normalised and

75 equally spaced bands created for each (this figure shows

example signals from subject 1). Therefore across the pulsatile

signal seen here in the flow graph, approximately 5 bands

straddle each pulse.
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Figure 3.30: Examples of the effect of averaging on spectra

from subject 1. 32 averages produces a much smoother

spectrum.

The flow and concentration were recalculated for the averaged spectra.

Figures 3.31, 3.32 and 3.33 show the distribution and histograms of flow

and concentration for each subject. Any spectra with flat frequency

responses (e.g. due to non-tissue imaging) were discarded. Three spectra
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sampled from a higher region of flow and concentration, a medium region

and a lower region respectively for each of the three subjects are shown

in Figures 3.34, 3.35 and 3.36.
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(c) Concentration histogram

Figure 3.31: Subject 1: recalculated flow and concentration

after spectral averaging. Flat spectra with low flow values

were removed.
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(c) Concentration histogram

Figure 3.32: Subject 2: recalculated flow and concentration

after spectral averaging. Flat spectra with low flow values

were removed.
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Figure 3.33: Subject 3: recalculated flow and concentration

after spectral averaging. Flat spectra with low flow values

were removed.
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Figure 3.34: Subject 1: examples of averaged spectra (after

32 averages) at various flow levels. Greater flow is represented

by a broader frequency spectrum.
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Figure 3.35: Subject 2: examples of averaged spectra (after

32 averages) at various flow levels. Greater flow is represented

by a broader frequency spectrum.
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Figure 3.36: Subject 3: examples of averaged spectra (after

32 averages) at various flow levels. Greater flow is represented

by a broader frequency spectrum.

3.7.3 Fitting Process

The 3 sets of spectra from each subject were individually processed. For

each set, the 9 models were run in turn. Parameter ranges were chosen

wide enough so that the posterior functions decay to low probability at

the extremes of the ranges. 32 separate parameters were used for θ1,

128 for θ2, with 10 for θ3. This means that a total of 40,960 function

evaluations are required for each 3 parameter model and each spectrum,

with 4,096 for each 2 parameter model.

The bandwidth of the fit was adjusted so that, for each spectrum,

only the region well above the noise floor was included in the inference.

The noise floor was calculated by examining the final 100 points in each

spectrum (where no signal is present) and taking the mean. When the

spectrum drops below twice the noise floor for 3 frequency bins, the

cut-off frequency is set. This ensures an inference based on the Doppler

shifted regions, where the majority of the power lies, and prevents results

skewed by fits to noise-only bins.
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3.8 Model Fit Results

For each spectrum, the posterior probability was evaluated. The results

for each spectrum were normalised such that the sum of the posteriors

was unity. Figures 3.37, 3.40 and 3.43 show the posterior probability

for the four highest probability models as a function of the spectra

index, where the spectra are sorted according to increasing flow value.

A 50 point moving average filter smooths the posterior probability to

highlight the trends.

The model with the largest posterior probability at each spectrum

was selected and added to a cumulative total for each subject. Figures

3.38, 3.41 and 3.44 show the total number of maximum probabilities for

each model.

The results from Figures 3.38, 3.41 and 3.44 illustrate not only the

most likely model, but also how good the less likely models are.

Figures 3.39, 3.42 and 3.45 show samples of fitted spectra from likely

models for each subject. Model 1 (the Exponential distribution) is shown

by way of comparison, because it is usually assumed to describe the

LDBF power spectrum. Models 3, 7 and 8 are the three most probable

other models over the range of spectra and subjects so are also included.

As model 7 (the three parameter generalised Pareto) was the most

likely model on the first fitting exercise, model 8 was created by taking

the mean of the third parameter value. This two parameter model

with fixed shape has now proven to be more probable than the three

parameter model. It should be recalled that the Bayesian methodology

penalises models with higher numbers of parameters which is why model

7 is less probable than the fixed shape version. This shows that fixing

the third parameter at its mean value (in this distribution) does not

adversely affect the fits and is a good approximation.

At lower flow values (less than around 0.01 in Figures 3.37 and
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Figure 3.37: Subject 1 model fit results. The spectra are

sorted by increasing flow (blue line). Only the four models

with highest probability are displayed. A 50 point moving

average filter has been applied to smooth the results. The

posterior probability shows the relative likeliness for each

model, illustrating how much better is one model than another.

For example, at greater flow values, model 8 (turquoise) is

approximately 5 times more likely than models 3 (green) and

9 (purple).

3.43), model 3, the Cauchy distribution, is marginally more probable,

but the posteriors for the Pareto distributions are not much lower in

value. As the flow gets larger, models 7 and 8 (the generalised Pareto

distributions) becomes much more likely on all three subjects and model

3 moves downwards. Flow can be increased by a total power increase (i.e.

greater numbers of red blood cells), or by higher frequencies (i.e. greater

RBC velocities). There is, however, a positive correlation between flow

and bandwidth, so that as flow increases, greater power is present in

higher frequencies. This is significant as one of the aims of this thesis

is to characterise the effect of frequencies which fall above the ‘low

bandwidth Nyquist’. So the model to choose is firstly, of course, the

most likely, but also the one which is most likely at higher flow rates.
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Figure 3.38: Subject 1: maximum probability results. Each

bar represents the number of times that model had the

greatest probability on an averaged spectrum. Model 8 has

the largest number of maximum probabilities.

Model 8 is both the most likely at higher flow rates and also not unlikely

at lower flow. This suggests it is the best model to use.
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(b) Bar plot of posterior probabilities against model.

Figure 3.39: An example of a model fit comparing models 1,

3, 7 and 8 on one spectrum for subject 1. The posterior for

all the models is shown in 3.39b. This shows, for example,

that model 8 is 8.5 times more likely than model 9 on this

spectrum.
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Figure 3.40: Subject 2: model fit results. The spectra are

sorted by increasing flow (blue line). Only the four models

with highest probability are displayed (model 3 is green, model

7 is red, model 8 is turquoise and model 9 is purple). A 50

point moving average filter has been applied to smooth the

results.
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Figure 3.41: Subject 2: maximum probability results. Each

bar represents the number of times that model had the

greatest probability on an averaged spectrum. Again, model

8 has the largest number of maximum probabilities.
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(a) Best fit on spectrum.
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(b) Bar plot of posterior probabilities against model.

Figure 3.42: An example of a model fit comparing models 1,

3, 7 and 8 on one spectrum for subject 2. The posterior for all

the models is shown in 3.42b. Although model 7 and 8 show a

very similar fit, the posterior probability for model 8 is larger

due to the Occam factor penalisation.
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Figure 3.43: Subject 3: model fit results. The spectra are

sorted by increasing flow (blue line). The posterior probability

for model 3 is green, model 7 is red, model 8 is turquoise

and model 9 is purple. Only the four models with highest

probability are displayed. A 50 point moving average filter

has been applied to smooth the results.
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Figure 3.44: Subject 3: maximum probability results. Each

bar represents the number of times that model had the

greatest probability on an averaged spectrum. Again, model

8 has the largest number of maximum probabilities.

109



0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

Frequency (Hz)

P
ow

er
 (

V
2 )

 

 
True Spectrum
Model 1
Model 3
Model 7
Model 8

(a) Best fit on spectrum.

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Model

N
or

m
al

is
ed

 p
os

te
rio

r 
pr

ob
ab

ili
ty

(b) Bar plot of posterior probabilities against model.

Figure 3.45: An example of a model fit comparing models 1,

3, 7 and 8 on one spectrum for subject 3. The posterior for

all the models is shown in 3.45b.
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3.9 Creation of Photocurrent

The best fitting model (model 8) is used to create a LDBF photocurrent,

with ‘flow’ controllable by its parameters:

P (f ; θ1, θ2) = θ2
1

(
1 +

f

θ2

)− 1
1.74
−1

(3.30)

Combining P (f) (sampled at appropriate frequency resolution fs
N

)

with a uniformly random phase distribution, mirroring the conjugate

around the Nyquist frequency and performing an IFFT yields a

photocurrent of length N . This photocurrent will form the basis of the

following chapter, as algorithms for calculating blood flow are compared

in full and low bandwidth conditions.
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Figure 3.46: An example of the model fit on one averaged

spectrum (Subject 1 spectra index 12,000 from Figure 3.37).

The graph is limited from 0 to 10 kHz, illustrating the

improvement the Pareto distribution has over the Exponential

distribution.
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3.10 Conclusion

The photocurrent of an LDBF process has been modelled by a probability

distribution function. In vivo recordings under varying flow conditions

were used as the data input. Bayesian Inference formed the machinery to

determine the best fitting model. The spectra were binned according to

their flow and concentration values, to provide groups of photocurrents

with similar underlying spectral properties, and then the spectra in each

bin were averaged to become suitable for the analysis. The generalised

Pareto distribution, with fixed shape factor of 1.74, was inferred to be

the best fitting model, particularly at higher flow values.

It has been noted that an Exponential distribution approximates

the power spectrum of the LDBF photocurrent [64]. However, it has

been shown that the Pareto distribution may better describe the power

spectrum. This is significant because the shape of two distributions

differ. The Pareto has a sharper decrease at lower frequencies and

longer tail whereas the exponential is more gradual in its slope. This

is illustrated in Figure 3.46. The shape of the spectrum is one of the

key factors in determining the performance in low bandwidth systems,

as this affects the way the high frequencies fold back onto the lower

frequencies due to aliasing. Thus, a distribution which more accurately

describes the spectrum will more accurately predict the low bandwidth

performance.

Therefore, from now on, the Pareto distribution (model 8) will be used

in this thesis as the basis for bandwidth and algorithm comparisons.

112



Chapter 4

A Comparison of Processing

Algorithms for LDBF

4.1 Introduction

The aim of this chapter is to assess the accuracy of the LDBF algorithms

described in Chapter 2 under full and reduced bandwidth conditions. In

addition to this, a Laser Speckle Contrast Analysis (LASCA) algorithm

will also be evaluated on the simulated data.

The recent advances in video-rate full-frame (i.e. 2-dimensional

pixel array) laser Doppler imaging systems [10, 65, 108, 111, 127] call

for algorithms that take less time to process and require smaller on-

chip silicon area (in terms of both memory and calculation space).

The ‘gold-standard’ approach uses 1,024 point fast Fourier transforms

(FFTs) [31,82]. Performing an FFT on 4,096 pixels 25 times a second

(true video rate imaging requires 25 FPS [31]) would require 102,400

FFTs a second. After the FFTs are calculated, the results must be

squared, weighted and accumulated. Since the volume of calculations

required per second would be inefficient and expensive to implement,

cheaper and less resource intensive, but still accurate, algorithms are

needed. A variety of algorithms have been proposed that offer solutions

to the resource problem; however, whilst increasing the processing speed,

113



they suffer from reduced accuracy. It is timely, therefore, to analyse the

effectiveness of these algorithms.

Additionally, the algorithms may be implemented in low bandwidth

systems, and the accuracy in these conditions will also be evaluated.

Thus the signal processing implementation and performance of a low

bandwidth system may be characterised. In this chapter, a model

simulating perfect anti-aliasing will be used. In the next chapter, where

a full CMOS front-end is characterised, the effect of an integrating and

aliasing detector will be modelled.

Previous work in algorithm comparison has concentrated on eval-

uating the difference between moments of the spectrum, M0, M1, M2

and M1

M0
[70, 130] rather than on variations in implementation of the

first moment. In 2011, Wojtkiewicz et al. [130] analysed the effect of

reducing the upper cut-off frequency to 5 kHz from 20 kHz and found

that sensitivity to higher flows was reduced in all moments. Here, a

greater range of cut-offs is evaluated in addition to the various methods of

calculating the first moment. The effect on images is also considered, as

a reduction in bandwidth or variation in algorithm implementation

may or may not affect the quality of the resultant image and its

subsequent interpretation. It is worth noting that in LDPI systems,

colour representations of the flow results can be scaled or manipulated,

either to accentuate temporal variations or to reduce noise.

The first moment of the power spectrum (proportional to mean RBC

speed) is defined by:

〈v2〉
1
2 ∝M1 =

20kHz∫
30Hz

fP (f) df (4.1)

Where the bandwidth of a LDBF system is generally accepted to be

between 30 Hz and 20 kHz [64].

LASCA has emerged as a parallel technique for evaluating mi-

crovascular blood flow. Therefore it seems worthwhile to use the
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simulated photocurrents to analyse and compare the output of the

LASCA algorithm. This comparison is not possible on the experimental

results because the captured photocurrent length does not provide

sufficient data for the temporal LASCA analysis, but the simulated

results illustrate LASCA’s relationship to flow.

4.2 Theoretical Accuracy

Before assessing the algorithms on real recorded data, they were

assessed theoretically using a simulated signal. This was to test how

the algorithms performed using known inputs. Whilst assessment in

vivo is important, it can only provide comparative results with each

algorithm compared to the ‘gold-standard’ frequency-domain approach.

This section considers the outputs of each algorithm when given a

photocurrent with known properties; the results can then be used to

predict in vivo performance.

4.2.1 Pareto Distribution

Chapter 3 used experimental data and Bayesian Inference model selection

to suggest that the best model for the power spectrum of the LDBF

photocurrent is the Generalised Pareto distribution under two variable

parameters (see Equation 3.30 in Chapter 3):

P (f ; θ1, θ2) = θ2
1

(
1 +

f

θ2

)− 1
1.74
−1

(4.2)

Figure 4.1 plots examples of the distribution with 3 separate values

for each parameter (i.e. 9 plots).

4.2.2 Methodology

There are three steps in the methodology:
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Figure 4.1: Generalised Pareto distribution evaluated over

ranges of θ1 and θ2.

1. Generating LDBF photocurrents.

2. Processing with the algorithms.

3. Creating and interpreting the results.

These three steps will now be detailed in turn. MATLAB 7.12.0

(The Mathworks) was used for all simulation and processing.

4.2.2.1 Generating LDBF Data

Figure 4.2 shows the process for generating one block of photocurrent

data from given input parameters. Process P1.1 firstly generates the

voltage amplitude spectrum according to the square root of Equation

4.2. It evaluates the equation at discrete points, according to the length

required. The IFFT algorithm (Process P1.3) generates a signal that

is a summation of sinusoids at the amplitudes and phases (the phases

are generated in Process P1.2) of the input phasors. These phasors are

located at integer cycle lengths, and so the resultant photocurrent will

be constituted of sinusoids with whole numbers of cycles. However, it

is necessary to include frequencies in the photocurrent which are not
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at integer bins (i.e. full cycles) of the FFT algorithm, as this would be

the case in a real signal. This was performed by executing an IFFT

with greater number of points than the photocurrent length required.

The resultant signal from the IFFT was then truncated to the specified

photocurrent length (Process P1.4). Figure 4.3 highlights the frequency

resolution used for the IFFT (P1.3). For this simulation, the IFFT

length was 16,384 points from 0 to 40 kHz, and the photocurrent length

was 1024. A sinc function shows the frequency response of a rectangular

window function for an 1,024-point FFT, along with the extra frequencies

generated in the IFFT of 16,384 points.
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Figure 4.2: The process for generating the photocurrent, given

parameters θ1 and θ2.
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Figure 4.3: A sinc function, the frequency response of a

rectangular window, illustrates that if only frequencies at

integer bins of the FFT are included in the IFFT, then the

power influence of neighbouring bins is zero. However, in this

simulation, frequencies at 1/16 of the frequency resolution of

the FFT are included as this more realistically represents the

wide frequency content of the signal.

This is a situation similar to the white noise generation in the previous

chapter, where a well sampled frequency spectrum is transformed to

the time domain, and then truncated, so containing non-integer cycles.

There is then a difference between the length of the amplitude spectrum

generated for the inverse fast Fourier transform (IFFT) and the length

of the photocurrent used in the analysis. Signal S1.3 is therefore of

length 16,384, and process P1.4 reduces this to 1,024 samples.

Because the LDBF spectrum is contained in frequencies up to 20

kHz, and the Pareto distribution has infinite bandwidth, the frequency-

domain function should drop to zero power above 20 kHz. To facilitate

this, the spectrum is multiplied by the band-limiting function, given in

Equation 4.3 and shown graphically in Figure 4.4. This function forms

part of Process P1.1. A roll-off function was used rather than a sharp
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cut-off to simulate a real filter response. Figure 4.5 shows an example

of the updated spectrum.

c(f) =

 1 0 to 19 kHz

1
2
(cos( 2πf

2,000
) + 1) 19 kHz to 20 kHz

(4.3)
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Figure 4.4: Process P1.1 Band-limiting function, generated

according to Equation 4.3. The roll-off starts at 19 kHz.

The first moment of this updated spectrum is calculated in process

P1.8 by weighting and accumulating the power spectrum samples and the

output represents the real flow value. For the new amplitude spectrum,

A[k] (where k is the discrete f , such that k = fN
fmax

, N = 8192 points

and fmax=20 kHz), the first moment, M1, is given by Equation 4.4:

M1 =
1

N

N=8192∑
k=12

k.A[k] (4.4)

Because A[k], the discrete Pareto distribution, is a function of the

two parameters θ1 and θ2 (see Equation 4.2), the real flow value is also

a function of these two parameters:

M1 = f(θ1, θ2) (4.5)
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In the simulations, these two parameters θ1 and θ2 are the controlling

variables rather than the flow value.
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Figure 4.5: Process P1.1 Final ‘exponentially’ decaying

amplitude spectrum of 8192 points.

Process P1.2 generates the phase spectrum, as seen in Figure 4.6.

The phase spectrum is effectively random across all frequencies, and the

probability distribution uniform between π and −π.

Process P1.3 combines the amplitude and phase spectra together

into complex data. The required data length is 16,384 points, so the

amplitude and phase spectrum will have been generated over 8,192

points in processes P1.1 and P1.2. The first frequency sample is 0 Hz

(DC) and is set to 0. The points from 8,194 to 16,384 are the mirrored

(about the Nyquist point, 8193) complex conjugate of points 2 to 8,193.

This will ensure the IFFT generates real data. The process then feeds

the 16,384 points of real time-domain data to process P1.4, which then

truncates the photocurrent to 1,024 points.

Noise is generated in process P1.5. The signal to noise ratio (SNR)

specifies the ratio between the mean power in the signal, P̄ (s), and the

mean power in the noise, P̄ (n), as in Equation 4.6. In reality, the value

is variable. In the system used by Serov et al. [106], for small integration
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Figure 4.6: Process P1.2 generates the phase spectrum using

the random number generator ‘rand()’ function in MATLAB

to give a uniform distribution between π and -π.
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Figure 4.7: Process P1.5 generates white noise using the

random number generator ‘rand()’ function in MATLAB, at

a signal to noise ratio of 20, as indicated by Serov et al. [106].

times the SNR is 10 dB, moving up to 25 dB for larger integration times.

He et al. [52] state a range of 0.2 dB to 20.25 dB for their CMOS pixel

array (dependent on AC/DC ratio). In 2011, Wojtkiewicz et al. [130]
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calculated that at 40 dB, the error on M1 as a result of the noise is

small, at 10%. Here an SNR of 26 dB is used, small enough so as to

evaluate performance in the presence of noise but not so small that the

inter-algorithmic comparison is masked. A typical power spectrum of

the noise data is shown in Figure 4.7.

SNR =
P̄ (s)

P̄ (n)
= 20 = 26dB (4.6)

A ‘DC’ offset level is incorporated in process P1.7. Although it is

called ‘DC’, in fact it refers to low frequency components at higher

power than the Doppler shifted components. The offset simulates a

variance in total signal amplitude, for example, if the amount of light

reflected off the skin surface changes due to movement or blood volume.

A sinusoidal DC drift is created (as in Figure 4.8) of 1 Hz with resolution

at the sampling frequency. Therefore there is one DC value per sample.

This set of numbers is multiplied by the samples in the block. The final

signal (S1.5) is shown in Figure 4.9a over 0.025 s and Figure 4.9b over

2.5 s.

The whole process in Figure 4.2 was run 10,000 times over a range of

θ1 and θ2 values. This equates to a total signal length for the simulation

of:

Tsim =
win.length

fs
× num.wins =

1, 024

40, 000Hz
× 10, 000 = 256s (4.7)

The parameter values were created using sinusoidal functions, across

the ranges observed in Chapter 3. θ1 oscillates much faster than θ2

because it only moves over a relatively small range, and so while θ2

changes slowly over its large range, θ1 oscillates quickly creating a broad

range of flow values. The parameter input values are shown in Figures

4.10 and 4.11.

A bank of 10,000 photocurrents of 1024 samples in length was created

and stored, along with the known flow values, ready for evaluation. The
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Figure 4.8: Output of process P1.6 over 2,000 of the 10,000

windows. Each window has 1024 samples of DC data. The

amplitude was selected so that the DC is approximately 10

times AC when multiplied, a value typical of LD systems [50].
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Figure 4.9: Output of process P1.7 showing signal with noise

and DC drift over a short time period of 0.025 s and over a

longer time period of 2.5 s. The signal looks noisy, as the phase

is random, but has a power spectrum related to the ‘flow’ of

RBCs, in this case simulated by a Pareto distribution.

next section will look at the processing of simulated data using the

various algorithms.
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Figure 4.10: Input parameter θ1 over 2,000 of the 10,000

windows generated. It varies sinusoidally and at high

frequency compared to parameter θ2.
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Figure 4.11: Input parameter θ2 over 2,000 of the 10,000

windows generated. This parameter varies slowly over its large

range. Together, the simultaneous slow and fast variation of θ1

and θ2 respectively create a broad range of distribution shapes

over the 10,000 windows.

4.2.2.2 Simulation Process

A block diagram of the program flow is shown in Figure 4.12. At

its simplest, the process takes a window of photocurrent with known
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properties (P2.1), processes it using the algorithm, stores the results

and then repeats.

Figure 4.12: The simulation process for analysing the

algorithms under test.

Process P2.2 removes the DC by calculating the mean of the signal,

dividing it through the signal and removing the offset. This simulates

the normalisation process in existing systems [50,84].

The theoretical simulation was separated into two tests. Firstly, a full

bandwidth comparison of algorithms, and secondly, a comparison under

reduced bandwidth conditions. Process P2.3 sets the bandwidth of the

photocurrent by performing a FFT, setting all components of the FFT

above the cut-off to zero, and reversing the transform using the IFFT.

This simulates a ‘perfect’ anti-aliasing filter. However, as discussed in

Chapter 1, CMOS imagers do not have anti-aliasing circuitry built in.

Therefore Chapter 5 will model the CMOS imager frequency response.

Here, however, the response using ‘perfect’ low frequency signals will be

considered.

Table 2.1 in Chapter 2 was updated to include various FFT options,

such as number of averages, and that table can be referred to for

authorial information and numerical implementation. Table 4.1 lists the

algorithms tested.

The flow results were calculated for each window using each algorithm.

Additionally, for the reduced bandwidth test, 5 upper cut-offs were

assessed: 20 kHz, 10 kHz, 5 kHz, 2.5 kHz and 1.25 kHz.

Process P2.6 normalises the results because the algorithms provide
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Algorithm Abbreviation Domain

FFT N=1,024 FFT F

FFT (FA) N=8 FA8 F

FFT (FA) N=8 (approx. coefficients) FA8APP F

FFT (FA) N=32 FA32 F

FIR square and average FIR S T

FIR absolute and average FIR A T

IIR IIR T

Draijer DRAIJER T

Analytic/Hilbert frequency domain (new) HILB F F/T

Analytic/Hilbert time domain (new) HILB T T

Binzoni’s 2nd moment M2 T

Laser Speckle Contrast Analysis LASCA T

Table 4.1: List of algorithms for processing in P2.4. The

LASCA algorithm is tested separately in Section 4.2.4. The

FFT of lengths 1,024, 32 and 8 are used, giving frequency

averages (FA) of 1, 32 and 128 respectively. The Hilbert

transform is performed in both frequency and time domain,

with additional processing (for differentiation) performed in

the time domain. The abbreviations are used on results.

an output that is proportional to real flow. The proportionality constant

for each algorithm was calculated by taking the mean of the 10 largest

flow values computed by the algorithm, dividing all the data by this

value to normalise, then multiplying by the largest true flow value. The

output of this process for the full bandwidth results is shown in Figure

4.13, and summarised in Figures 4.14 and 4.15.

There are two methods by which the reduced bandwidth results

may be normalised. The first, displayed in Figure 4.17, is where the

data is normalised against the full bandwidth constant. This shows the
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reduction in ability to determine higher flows.

The second is where the data is normalised against its own maximum

values. An example of this type of normalisation is shown in Figure

4.18, and this second type is used in the results in Figures 4.19 and 4.20

as this provides a fairer comparison of the linearity and error.

Where line fits are shown, the results are fitted to a 2nd order

polynomial, and linearity is assessed using the 2nd order coefficient.

The full bandwidth results are also plotted against the complexity

calculated in Chapter 2.
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4.2.3 First Moment Results

4.2.3.1 Full Bandwidth

The results in Figure 4.14 indicate that, as is expected and accepted,

the 1,024 point FFT is an accurate method of estimating M1, generally

taken to indicate blood flow. The frequency averaging method at

N=8 (FA8) is marginally worse than its N=1,024 counterpart. The

approximation of coefficients (FA8APP) seems to be a reasonable step,

barely increasing the error. At N=32 (FA32), the error sits between

these levels, suggesting that there is an trade-off between variance,

bias and numerical integration method: at N=8, the variance is small

because 128 averages have occurred but the bias is larger because the

frequency bin is wider (see Chapter 3). The variance, bias and numerical

integration may be more balanced at N=32 because the error is smaller.

At N=1,024, the numerical integration and bias are more accurate

because the frequency resolution is small, despite the variance being

larger, and this algorithm is the most accurate. Therefore it seems the

numerical integration and bias have a greater effect on the error than

the variance.

In the time domain, because the IIR filter has a frequency response

close to the ideal f
1
2 (see Figure 2.4), it is also accurate. The FIR

filters (FIR S and FIR A) do not show nearly as good performance. The

absolute and average method is only slightly less accurate than square

and average, proving that the approximation of coefficients is a good one.

The performance of the time domain filters is therefore a consequence

of the shape of the filter, and how far it resembles the ideal. The FIR

filters tend to overestimate the flow (Figures 4.13e and 4.13f); this is

probably because the frequency weighted filter (response in Figure 2.3

in Chapter 2) has a higher gain at larger frequencies (>10 kHz) than

the ideal f
1
2 weighted filter.
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(b) FA8
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(c) FA8APP
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(d) FA32
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(e) FIR S
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(f) FIR A
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(g) IIR
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(h) DRAIJER
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(i) HILB F
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(j) HILB T
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(k) M2

Figure 4.13: Full bandwidth raw data results showing 10,000

points for each algorithm. The real flow (x-axis) is a function

of the two parameters θ1 and θ2 and calculated according to

Equation 4.4. The algorithm flow (y-axis) was calculated

according to the algorithms specified in Table 4.1 and detailed

in Chapter 2.
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Figure 4.14: The root mean square (RMS) error of the

calculated flow from the real flow values under full bandwidth

conditions over 10,000 windows. The full 1,024 point FFT is

the most accurate algorithm, but it still has an error due to

spectral leakage effects.

The analytic signal based algorithms (HILB F and HILB T) seem to

perform reasonably, as in theory the equations are exact. However, the

calculation of the differentials by finite difference adds some error, which

is reflected in their results. The calculation of the Hilbert transform by

time domain filter performs similarly to the same calculation performed

in the frequency domain (as would be expected).

As expected, the approximate methods, Draijer and the second

moment (M2), perform at a level between FIR filter and the others.

However as Figure 4.16 reveals, these algorithms are extremely efficient

in terms of resource usage and therefore are still worth considering in

system implementations. The analysis on recorded experimental data

will reveal how much this error impacts on a resultant flow map. All

the algorithms responses are generally linear, as Figure 4.15 testifies.

Figure 4.16 illustrates the RMS error (from Figure 4.14) as a

function of the complexity. As expected, the two quantities exhibit
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(a) Fitted line
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Figure 4.15: A 3rd order line was fitted to the data for each

algorithm, to visualise the linearity of the algorithms. As can

be seen, they are approximately linear over the flow range with

the FIR filter algorithm showing the greatest non-linearity,

followed by the second moment and Draijer algorithms. The

deviation, or RMS error, from the fitted line (4.15b) is in

accordance with Figure 4.14.

inverse proportionality. Draijer and the second moment are extremely

resource efficient but the IIR, Hilbert time domain (HILB T) and 8

point frequency average (FA8) approximately halve the RMS error and

are still resource efficient. These three therefore may be the optimum

algorithms in terms of balance between error and resource.
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Figure 4.16: The complexity of the algorithms measured by

the number of MACs required to produce one output blood

flow sample from 1,024 input samples plotted against the RMS

error from Figure 4.14. The Hilbert time domain (HILB T),

IIR and 8 point frequency average (FA8) algorithms are both

low in complexity and RMS error.

4.2.3.2 Reduced Bandwidth

Generally a reduction in the bandwidth reduces the sensitivity of larger

flow values because the higher frequency content of the larger flow values

is attenuated. When the data is not re-normalised, i.e. in Figure 4.17,

the RMS error (i.e. the variance of points), across the bandwidths, is

fairly consistent in relation to the shape of the line.

The data can be re-normalised by calculating the ratio of the mean

of the largest 10 points in the full bandwidth results to the mean

of the largest 10 points in each of the reduced bandwidth results,

and multiplying each set of results by the ratio for that bandwidth.

An example of this is shown in Figure 4.18. By performing this re-

normalisation, the reduction in linearity and increase in error is evident.

Figure 4.19 shows the absolute value of the 2nd order coefficient versus
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bandwidth. All the algorithms follow a similar trend as the bandwidth

is reduced, except the FIR because the RMS error is so large. The IIR

and Hilbert time domain (HILB T) show consistently low RMS error

and 2nd order coefficient, however the FFT algorithm, whilst it is the

most accurate at full bandwidth, increases its error more sharply at

lower bandwidth than the first two algorithms.

Evaluating the performance of all the algorithms under reduced

bandwidth conditions, it seems that the method of calculation of M1

does not have as big an impact on error as the reduction in bandwidth

itself, as all the algorithms responses follow a similar shape. However, of

the group, the analytic method by Hilbert transform and IIR both have

good linearity i.e. low 2nd order coefficients (from Figure 4.19), and,

from Figure 4.20, low RMS error. The under-representation of higher

flow values is the major factor in determining appropriate bandwidth.
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(a) FFT raw output
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(b) FFT 3rd order fit
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(c) FA8 raw output
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(d) FA8 3rd order fit
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(e) FA8APP raw output
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(f) FA8APP 3rd order fit

100 200 300 400 500 600

100

200

300

400

500

600

700

Real Flow (A.U.)

A
lg

or
ith

m
 F

lo
w

 (
A

.U
.)

 

 
20 kHz
10 kHz
5 kHz
2.5 kHz
1.25 kHz

(g) FA32 raw output
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(h) FA32 3rd order fit
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(i) FIR S raw output
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(j) FIR S 3rd order fit
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(k) FIR A raw output
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(l) FIR A 3rd order fit
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(m) IIR raw output
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(n) IIR 3rd order fit
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(o) DRAIJER raw output
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(p) DRAIJER 3rd order fit

136



100 200 300 400 500 600

100

200

300

400

500

600

700

Real Flow (A.U.)

A
lg

or
ith

m
 F

lo
w

 (
A

.U
.)

 

 
20 kHz
10 kHz
5 kHz
2.5 kHz
1.25 kHz

(q) HILB F raw output
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(r) HILB F 3rd order fit
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(s) HILB T raw output
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(t) HILB T 3rd order fit
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(u) M2 raw output
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(v) M2 3rd order fit

Figure 4.17: The algorithms calculating M1 at 5 bandwidths

(20, 10, 5, 2.5 and 1.25 kHz) are plotted against the real flow

on the left hand side plots. A 3rd order fit to the reduced

bandwidth results is plotted against the real flow on the right

hand side plots.
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(a) Re-normalised raw output
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(b) Re-normalised fits

Figure 4.18: An example of the re-normalisation process, on

the 1,024 point FFT, for evaluating linearity and RMS error.

The data were normalised by the ratio of the mean of the

largest 10 points in the full bandwidth results to the mean of

the largest 10 points in the reduced bandwidth results.
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Figure 4.19: Low bandwidth linearity evaluated over 5

bandwidths. The 2nd order coefficient is the absolute, so

as to measure deviation from linearity. The fit of the line

is calculated after re-normalising the results. The IIR and

Hilbert time domain (HILB T) show the greatest linearity at

lower bandwidths.
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Figure 4.20: Low bandwidth RMS Error evaluated over 5

bandwidths. The error is calculated from the fitted line.

Again, the IIR and Hilbert time domain (HILB T) show the

smallest RMS error at lower bandwidths. Surprisingly, the

FFT algorithm is not consistently the most accurate algorithm

across the bandwidth range.
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4.2.4 LASCA Results

4.2.4.1 Overview

As introduced in Chapter 1, LASCA is an alternative method for

estimating blood flow. Whilst the processing methodology does not aim

to calculate the first moment of the photocurrent’s power spectrum,

it does aim to measure some quantity representing the state of the

underlying velocity distribution and is becoming an accepted clinical

imaging technique [16]. In 1996, Briers [15] showed that, despite the

processing methodology and measured quantity being different, the

physical phenomenon which underpins LDBF theory, i.e. the Doppler

Effect, and the resultant interfering speckle pattern, which underpins

LASCA, are the same. Because of this fact, the photocurrents generated

in this section can be used to quantify the accuracy of the LASCA

method in comparison to LDBF.

The LASCA algorithm calculates the ratio of the standard deviation

of a time integrated speckle pattern to its mean (Equation 4.8), on, for

example, a 7x7 spatial pixel region.

K =
σ

Ī
(4.8)

where K is a quantity between 0 and 1. However, it has been shown

that the local spatial statistics of this speckle pattern are equivalent to

the temporal statistics [44], and experimental studies have shown that

a large spatial resolution can be gained by implementing a temporally

based solution [1,18]. This overcomes one of the drawbacks of spatial

LASCA, i.e. reduced spatial resolution. Thus K can instead by obtained

by computing the ratio of the standard deviation to the mean of 49

(for example, in comparison to the 7x7 pixel window) temporal samples,

where each sample is integrated over the period τ . This is convenient for

this study, where the existing photocurrents, with known properties, can
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be temporally averaged in a straightforward manner to provide input

data for the LASCA algorithm.

Using a simple measure of K means that when the blood velocity

is low, K is large as contrast is maintained for a set integration time.

At higher blood velocities, the averaged photocurrent is blurred over

consecutive input samples and thus K is low. This inverted situation

can be rectified by taking a measure of 1/K to quantify blood flow as

in [3]. It has been noted that LASCA measurements are insensitive to

concentration but are sensitive to variation in velocity distribution [33].

In classical LDBF, flow is equivalent to concentration multiplied by

mean velocity. To ensure that the LASCA results compute a ‘flow’ value,

they were multiplied by the true concentration (M0) for that window,

computed in the classical way. This is a necessary step for this study as

the simulated photocurrents contain modifications in both concentration

and mean frequency by the parameter variation.

FLASCA = M0
Ī

σ
(4.9)

where each Ī and σ are computed over 49 time integrated samples.

4.2.4.2 Photocurrent Data

The previous photocurrent data was sampled at 40 kHz and generated

in blocks of 1024 samples. An optimal integration time for LASCA is

τ=5 ms [132], therefore 200 samples of existing photocurrent data were

averaged to provide one sample for the LASCA evaluation (Equation

4.10). However, in order to provide 49 samples for calculation requires

49× 200 = 9, 800 photocurrent samples (t=245 ms). Therefore 10,000

photocurrents were regenerated which satisfied this criterion. The

first moment, M1, of these generated photocurrents was recorded for

comparison.
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LASCA[i] =
1

200

200∑
n=1

s[(i− 1).200 + n] (4.10)

where i is the index of the temporal LASCA samples and s[] is the

well-sampled LDBF photocurrent. The mean and standard deviation of

49 of these samples was used for the FLASCA calculation.

4.2.4.3 Results

LASCA does not aim to calculate the first moment of the photocurrent’s

power spectrum (M1). However, it has been shown that M1 scales

linearly with blood flow [12] and therefore it is prudent to compare the

LASCA output with this quantity.

The LASCA results from the set of photocurrents were normalised,

as before, so the mean of the largest 10 LASCA flow values matched

the mean of the largest 10 true flow values. The output normalised

LASCA flow values were plotted against the true flow value for that

photocurrent, and the 10,000 pairs are shown in Figure 4.21.

100 200 300 400 500 600
0

100

200

300

400

500

600

700

Real Flow (A.U.)

A
lg

or
ith

m
 F

lo
w

 (
A

.U
.)

Figure 4.21: Temporal LASCA results over 10,000 windows.

The RMS error was 128 (compare with Figure 4.14). The

widely reported non-linearity of the LASCA output is evident.

142



The LASCA flow results have evident non-linearity and a high RMS

error compared to the first moment calculations (see Figure 4.14: RMS

error was 15 for the 1,024 point FFT versus 128 here), as is to be expected.

This error can be explained by considering the time integration, standard

deviation and mean calculations from a signal processing perspective.

The time integration acts as a simple low pass filter, and at τ=5 ms, the

cut-off frequency is 200 Hz. The variance of a signal (σ2) measures the

total power at all frequencies, and the square of the mean (Ī2) measures

the power at DC. Therefore K2 is a measure of the ratio of the total AC

to DC power, where the AC frequencies are attenuated above 200 Hz.

K is thus related to this ratio, being the square root of the calculated

quantity. Figure 4.22 illustrates how filtering the Pareto distribution

under two different θ2 parameters, corresponding to high and low flow,

results in low or high K values.

The quantity being measured, K, is therefore related to the shape of

the velocity (and frequency) distribution, and how that shape is modified

as blood flow increases. The integration time sets the sensitivity of K to

a particular frequency band, in this case 200 Hz. It is clear that, whilst

1/K may scale with flow, it is not and cannot be a direct replacement

for a first moment calculation.
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(a) Low flow, high K
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(b) High flow, low K

Figure 4.22: The effect of temporal averaging at τ=5 ms on

the LDBF spectrum. Two Pareto distributions with θ2=200

(a) and θ2=1500 (b) were generated, and plotted with the τ=5

ms filter response and filter output. The first distribution

shows a greater proportion of power at lower frequencies (i.e.

lower blood velocities), so that when filtered, the K2 quantity

(σ2 is area under the curve) is large. However, in (b), where

power is distributed to higher frequencies, the total power in

the filtered spectrum is smaller and thus K2, and so K, is

small.
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4.3 Experimental Recordings

4.3.1 Data

The Moor Instruments LDLS was used as the data source. It provides

photocurrents as described in Section 3.2.3, except in this recording the

laser line is moved, providing a scan of an area of tissue. The backs of

the hands of three subjects (age 24 to 26, two males and one female)

were recorded using the device, providing 3 images of 64x64 pixels with

each pixel containing 1,024 time domain samples. Figure 4.23 shows

the images from the three patients calculated by the 1,024 point FFT

at full bandwidth. This is because, from the previous section, the 1,024

point FFT is the most accurate algorithm at full bandwidth.
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(a) Subject 1 (image 1)

 

 

10 20 30 40 50 60

10

20

30

40

50

60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Subject 2 (image 2)
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(c) Subject 3 (image 3)

Figure 4.23: Images recorded for comparison. The

photocurrents have been converted to flow values by the 1024

point FFT algorithm. Data on row 63 was corrupted so the

images only use rows 1-62.

4.3.2 Methodology

The processing of the data is similar to the simulated methodology,

except the DC normalisation has already been performed by the LDLS.

Figure 4.24 summarises the processing implemented. Process P3.1

retrieves the collected photocurrent and feeds it to Process P3.2. The
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reduction in bandwidth (process P3.2) is achieved by performing a FFT,

setting all components above the cut-off to zero, and recalculating the

time domain signal by IFFT. Process P3.3 then processes the data

according to the algorithms listed in Table 4.1. The results are stored

via Process P3.4.

Figure 4.24: Process for evaluating the images recorded by

the Moor Instruments LDLS.

The normalisation value is calculated (Process P3.5) at 80% of the

maximum pixel value in the image because this means that the display

colour bars show the variation across the majority of the image data. The

histogram in Figure 4.25 illustrates this. The RMS error is calculated

from the root mean square of the differences between the full bandwidth

1024 point FFT image and the test image.

4.3.3 Results

The resultant images are displayed in Appendix B. The colour map range

of the images have been adjusted, and shows that the error increases as

the bandwidth is reduced. Here, the bar graphs of full bandwidth RMS

errors are presented followed by line plots of bandwidth vs RMS error.

4.3.3.1 Full Bandwidth

The results from images 1 and 3 generally agree with the simulations, as

the relative levels of RMS error are consistent with Figure 4.14. Image 2

shows larger errors in the frequency averaging and analytic classes than
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Figure 4.25: Histogram of flow data in image 1. The

normalisation value at 80% of the maximum pixel value means

that the colour bars, on a scale of 0 to 1, capture the variation

in the bulk of the data. The large peak around 0.1 shows ‘dark’

areas.

the other images. Again, the IIR and FIR have consistently small and

large errors respectively.

In the simulations, the approximate algorithms had larger errors

than in the experimental data. This may be because a larger range

of flows were generated for the simulations than are present in the

experimental images. Analysing the images in Appendix B, the Draijer

and second moment (M2) algorithms show a slight loss of clarity due

to increased noise, but the veins are still distinguishable. The lower

flow regions between the veins reveal small over-estimations, which may

be significant if very good sensitivity to flow is required e.g. in burn

analysis. But if feature detection, such as the locating of perforator

vessels in flap replacement surgery (where a general region of higher

flow indicates the location) the fast approximations may be sufficient.
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Figure 4.26: Bar plot of image 1 RMS error of the flow

map compared to the 1,024-point FFT full bandwidth. The

frequency average and IIR methods give the lowest error, but

the fast (computationally) Hilbert and Draijer methods still

only give errors of around 0.05 (i.e. 5% of the image colour

range).

4.3.3.2 Reduced Bandwidth

Figures 4.29 to 4.31 show the RMS error with reduced bandwidth. The

general level of the errors presented in these figures corroborates with

the simulation, where at the lowest bandwidth (2.5 kHz) the RMS error

is approximately 15% of the full range, except in image 2 where the

errors increase to 25%.

Most features in the images in Appendix B are distinguishable down

to 10 kHz bandwidth, although there is some loss of clarity at higher

flow. As the bandwidth moves down to 5 kHz there is more significant

distortion. At 2.5 kHz, some information about where the general regions

of higher flow might be is still observable. At 1.25 kHz, information

about the mere presence of blood flow is available, i.e. where there are

moving scatterers, but more detail than that is indistinguishable.
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Figure 4.27: Bar plot of image 2 RMS error of the flow

map compared to the 1,024-point FFT full bandwidth. The

results are similar to image 1, although the frequency average

methods give slightly greater error here.
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Figure 4.28: Bar plot of image 3 RMS error of the flow map

compared to the 1,024-point FFT full bandwidth. Again, the

results are consistent with image 1.
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Figure 4.29: Image 1 RMS error of the flow map from the

1,024-point FFT full bandwidth. The images themselves can

be seen in Appendix B. The results reveal that the IIR and

Hilbert algorithms are the most accurate at lower bandwidths.
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Figure 4.30: Image 2 RMS error of the flow map from the

1,024-point FFT full bandwidth, over a range of bandwidths.

The images themselves can be seen in Appendix B.
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Figure 4.31: Image 3 RMS error of the flow map from the

1,024-point FFT full bandwidth, over a range of bandwidths.

The images themselves can be seen in Appendix B. Here,

again, the IIR and Hilbert algorithms are the most accurate

at lower bandwidths.

4.4 Conclusion

The performance at full and reduced bandwidth of a range of methods

that compute the first moment of the LDBF power spectrum has been

evaluated. The simulated photocurrents with known properties were

used to test the absolute performance, before comparing the algorithms

with the 1,024 point FFT on recorded images.

The simulation confirmed that the full FFT is the most accurate

method of determining the first moment, as is generally expected and

accepted. However, other algorithms using reduced FFT lengths with

averaging and time domain methods with frequency responses close

to the f
1
2 performed reliably, and the analysis on images showed that

these faster algorithms were indistinguishable from their gold standard

counterpart.
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The approximate class of algorithms (DRAIJER and M2) were less

accurate in both the simulation and experimental analysis. However, a

clinical trial would be needed in order to determine whether the error

from these much faster implementations affects diagnosis. For example,

a recent study that claimed that ‘LDI was >90% accurate at predicting

the need for excision and grafting.’ [118] in burn applications. Further

work could include a study which determined the effect on this figure of

using the faster and/or approximate algorithms. Such a study might also

overcome some of the limitations of this work, as it has not been possible

to include data from subjects with skin complications or pathologies

which affect microvascular blood flow because this was outside the scope

and resource of the project.

In general, the reduction in bandwidth reduced the sensitivity to

higher flow, the measurement of which is a requirement for accurate

diagnosis of burn severity. However, for an application such as flap

monitoring where a measurement of the general increase in perfusion

(from zero to baseline) to the flap area is required, a lower bandwidth

may be sufficient. The results suggest that a camera that samples at

10 to 20 kHz, and uses perhaps the IIR or Draijer algorithm, could

be implemented and would perform adequately in this scenario. Thus

a relatively cheap solution, using off the shelf components, may be

produced. But if the device also needs to accurately determine the

location of perforator vessels, which have marginally higher flow from

baseline and so need instrumentation which is more sensitive to deeper

and higher flow, it may not be adequate.

A reduction in resource requirements (see Figure 4.16) may be realised

at little expense in terms of error. For very small resource usage, a set

of approximate algorithms may provide adequate results. The reduction

in bandwidth may be suitable for some applications, but further trials

are necessary to evaluate the trade-off. In the next chapter, the effect
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of aliasing on the results is modelled, and whether low bandwidth flow

values may be corrected for is considered.
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Chapter 5

Low Bandwidth Correction

5.1 Introduction

The aim of this chapter is to characterise the error introduced into the

LDBF flow value as a result of using an integrating CMOS imager, and

then, using Bayesian Inference, develop a method by which the error in

the flow value can be reduced.

In order to characterise the CMOS imager, the effect of the

integration time on the frequency response, and how this affects the flow

error, will be considered. Then, a model for aliasing in the imager will be

explained and tested, before being applied to simulated photocurrents.

Because the underlying power spectrum (Pareto distribution),

frequency response and aliasing effects are known, Bayesian Inference

(introduced in Chapter 3) can be used to determine the most likely

parameters of the distribution for an undersampled photocurrent,

therefore allowing calculation of a ‘real’ flow value.
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5.2 An Integrating CMOS Imager

5.2.1 Overview

An integrating pixel differs from a non-integrating pixel in that instead

of directly and continuously converting the light intensity to current (as

a conventional logarithmic photodiode will do [106]), it allows charge

to collect on a storage capacitor (Cint) for a set period of time (the

integration time, τ). The voltage on the capacitor is then read-out at the

end of the period. Figure 5.1 shows a typical integrating pixel circuit.

Figure 5.1: An example of an integrating pixel. The

capacitor Cint is reset to the voltage Vreset (minus the reset

and shutter transistors voltage drop) by the reset signal. The

shutter signal then allows the capacitor to discharge at a rate

proportional to the photodiode current for the integration

time, τ , at the end of which the capacitor voltage is sampled

by the read-out circuitry.

The integration provides benefits in terms of signal to noise ratio

(SNR) but has disadvantages in terms of sampling rates and filtering

effects. The timing characteristics of the integration and sampling are

illustrated in Figure 5.2.
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Figure 5.2: The integration time τ must be less than the

sample time Ts. τ sets the SNR and low-pass filtering

characteristics of the system, and Ts controls the bandwidth.

5.2.2 Integrating Pixel

5.2.2.1 Noise

There are two types of noise that will be considered here: thermal and

shot noise. Reset noise is ignored, assuming the use of correlated double

sampling [28]. Thermal noise is the result of the random excitation of

electrons due to thermal energy, and is ‘white’ i.e. has constant power

at all frequencies. Shot noise is the result of the fact that the conversion

of light to electrical current in the photodetector is not a continuous

process. Rather, it is a discrete process, as photons arrive at the detector

in ‘packets’ and are subsequently converted to electrons, which are also

discrete charge carriers. It is also white.

The mean square thermal noise current, 〈i2th〉, is:

〈i2th〉 =
4kBTB

R
(5.1)

where T is the temperature in degrees Kelvin, kB is the Boltzmann

constant, B is the noise equivalent bandwidth and R is the resistance of

the load. The mean square of the shot noise current, 〈i2sh〉, is:

〈i2sh〉 = 2q〈Ipd〉B (5.2)

where q is the elementary charge, and:
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〈Ipd〉 = 〈Ipc〉+ 〈Idk〉 (5.3)

so that the total DC photodiode current, 〈Ipd〉, is the sum of the

photo current, 〈Ipc〉, and dark current, 〈Idk〉. From [109], the mean

square signal, where M is the number of speckles in the photodetector

area, is:

〈i2s〉 =
〈Ipc〉2

M
(5.4)

Therefore the SNR is:

SNR =
〈i2s〉

〈i2th〉+ 〈i2sh〉
(5.5)

The details of the experimental setup in [106] were used to calculate

approximate signal to noise ratios. The authors use a 250 mW laser at

671 nm wavelength to illuminate an area with 17 cm diameter. Using a

f-number of 1.2 (so numerical aperture (NA) of 0.42), the speckle size

dsp can be evaluated by Equation 5.6 [44].

dsp = 1.22 λ
1

2NA
(5.6)

With a pixel size of 7 µm, M can therefore be determined. Then,

using a working distance of 20 cm and focal length of 6 mm, the power

incident at the pixel, when illuminating skin tissue, is 0.25 nW. With a

sensitivity of 0.3 A/W, the DC photocurrent is calculated to be 74 pA.

The data sheet for the sensor gives a typical dark current as 0.2 fA. The

SNR at various integration times (τ) can then be calculated, assuming:

B =
1

2τ
(5.7)

For example, by using this bandwidth in Equation 5.2 at τ=80 µs

and with a DC photocurrent of 74 pA, the RMS shot noise current

is 0.12 pA. The results of all the SNR calculations from Equation
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5.5 are given in Figure 5.3. The values are slightly larger than the

experimental measurement in [106], possibly because of quantisation

noise, inefficiencies in optical illumination (as fibre optics are used) or

variations in the reflection coefficient of skin.
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Figure 5.3: The choice of integration time is a critical factor in

determining the SNR (black line), as it sets the bandwidth of

the system. But the integration time also affects the maximum

sampling frequency of the system (red line).

5.2.2.2 Frequency Response

Although the signal to noise calculations favour a larger integration

time, the maximisation of the sample rate and frequency response of

the detector favour a smaller period. The integrating detector acts as a

low-pass filter. One advantage of this is that it attenuates high frequency

noise components.

5.2.2.3 Sample Rate

Typical integration times range between 60 and 100 µs [106], so that

the maximum sample rates are in the range 10-16 kHz according to

Figure 5.3. However, the sample rate is also a function of the capabilities
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Figure 5.4: The integration time sets the -3 dB bandwidth

of the system. However the cut-off is not sharp, and there is

unwanted attenuation in the pass-band and poor rejection of

frequencies above the -3 dB point.

of the sensor’s ADCs and data throughput, and is usually determined

by the size of the spatial window (resolution) required. For example,

Leutenegger et al. [73] can achieve 14.9 kHz sample rate at a resolution

of 480x60, or 12.4 kHz at 360x90, with other combinations possible. In

order to record the whole image, the sampled regions are moved through
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the sensor area. For example, to achieve 480x480 pixel resolution, 8

lines of 480x60 are sampled consecutively.

The sample rate also sets the Nyquist frequency. If there is any power

present in frequencies above this point, the power will be represented at

frequencies up to the Nyquist frequency in the digital system. This is

known as aliasing and is the subject of the next section.

5.3 Aliasing

5.3.1 Model

It is well known that in order for a digital system to fully represent an

analogue signal s(t), the signal must be sampled at a frequency (fs)

greater than twice the maximum bandwidth (fbw) of the analogue signal:

fs > 2fbw (5.8)

The digital samples are separated by 1
fs

seconds and the original

signal can be perfectly reconstructed from its digital representation.

If the sampling frequency, fs, is not greater than 2fbw then aliasing

will occur: high frequencies (f > fs
2

) are ‘undersampled’ and manifest

themselves as lower frequencies in the digital system. This can be

modelled by considering a 10 Hz wave: firstly well sampled at 64 Hz

(the Nyquist-Shannon criterion requiring a frequency greater than 20

Hz), as shown in Figure 5.5, and then undersampled at 16 Hz, as shown

in Figure 5.6.

In Fourier transform theory, the spectral leakage effect of a known

frequency can be predicted, but not reversed once the transform is

complete. So also in aliasing theory, the effect of undersampling a

known frequency can be predicted but not reversed. For example, it is

possible to predict that 6 Hz will be the aliased frequency when a 10 Hz

signal is sampled at 16 Hz, but with only the sampled information to
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Figure 5.5: The 10 Hz wave is accurately represented in the

digital system when sampled at fs >20 Hz (64 Hz in this case).
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(b) FFT frequency representation

Figure 5.6: The 10 Hz wave, when sampled at 16 Hz in this

case, is represented as a 6 Hz wave (i.e. aliasing occurs).

hand it is not possible to know the original frequency. It could very well

have been 6 Hz originally, or 10 Hz, or 22 Hz or 26 Hz ad infinitum.

In general, if a frequency f with amplitude A and phase θ (i.e. Aeiθ)

is known, the new frequency can be determined in a system, using the

following conditions, where f resides between Nfs and (N + 1)fs, N is

an integer and fs is the new sampling frequency.
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falias =



f −Nfs f < Nfs + fs
2

(N + 1)fs − f f > Nfs + fs
2

0 f = Nfs
fs
2

f = Nfs + fs
2

(5.9)

This is a folding effect, where frequencies greater than the Nyquist

(fs
2

) are ‘folded’ back over into the lower spectrum. The frequencies

greater than fs but less than 3fs
2

are copied down to the lower spectrum

directly, and the pattern continues as N →∞. The phasor Aeiθ at falias

is a result of the addition of the phasors of all aliased frequencies that

copy onto falias, except that when the frequencies are folded (condition 2

in Equation 5.9) the conjugate of the phasor is added instead. However

according to sampling theory the resultant amplitude and phase of

frequencies at fs
2

, whilst being accurately predicted by this set of

conditions, cannot be accurately digitally represented at the new sample

spacings 1
fs

s because fs must be greater than 2fbw

This set of conditions can be applied to model the effects of aliasing

on a known frequency spectrum.

5.3.2 Model Test

To test whether this set of conditions accurately describes a true

undersampled photocurrent, a simulation was carried out. A set of 512

frequencies in the range 0 to 20 kHz with uniformly random amplitude

and phase were generated in MATLAB (Figure 5.7). The complex

conjugate of the phasors of the frequencies up to the Nyquist frequency

(20 kHz) was mirrored around this frequency. An IFFT then produced

a signal of 1,024 points.

The aliased spectrum may be produced in two ways: firstly, by

undersampling the signal (Figure 5.8), performing a FFT and viewing

the results directly, and secondly, by using the conditions in Equation

5.9 on the generated phasors.
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Figure 5.7: The generated spectra for the model test. These

spectra were used to generate a signal of 1024 points.

0 0.002 0.004 0.006 0.008 0.01

−0.06

−0.04

−0.02

0

0.02

0.04

Time (s)

A
m

pl
itu

de
 (

V
)

Figure 5.8: The signal, originally sampled at 40 kHz (green),

was undersampled by selecting every 8th sample (red). The

total signal length was 0.0256 s.

The new sampling frequency was set as 5 kHz. The results in Figure

5.9 show that the model conditions predict the aliasing effect. This

model can now be used to predict aliasing in a LDBF situation.
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Figure 5.9: Aliasing is accurately predicted by the model.

The exception is the new Nyquist frequency (2.5 kHz), which

cannot be represented properly. The original spectrum

extends to 20 kHz; only 2.5 kHz is shown here as that is

the range of the new spectrum. Each amplitude point of the

aliased spectrum is the result of 8 summed phasors. There

is little resemblance between original and aliased amplitudes

because the phasors are random in amplitude and phase.

5.3.3 Anti-Aliasing Comparison

5.3.3.1 Theoretical Data

The aliasing model can, along with the frequency response of the

integrating detector, be used to assess the performance of a low

bandwidth camera. The same photocurrent generation method as in

Chapter 4 (Figure 4.2) was used, and the simulation process was modified

to include the additional integrating pixel effects. The new process is

illustrated in Figure 5.10.

An integration time of 60 µs was used as this is typical of LDPI

systems [106]. The filter frequency response corresponding to this
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Figure 5.10: The simulation process for evaluating the

performance of a low bandwidth camera.

integration time can be seen in Figure 5.4a. This will be referred to as

the detector response, and it serves to limit, but not eliminate, the effect

of aliasing. Five bandwidths were tested: 20 kHz, 10 kHz, 5 kHz, 2.5

kHz and 1.25 kHz. The results were first normalised against the 20 kHz

bandwidth for display in Figure 5.11, thus revealing the sensitivity to

higher flow values. 2nd order polynomials were fitted to the results, and

these can be viewed in Figure 5.12. Then the results were renormalised,

so that the mean of the highest output flow values sat at approximately

the same level for every bandwidth (as in Figure 4.18 in Chapter 4).

This is so the RMS error and linearity can be directly compared.

The flow results with perfect anti-aliasing and no attenuation caused

by the integrating detector were included for comparison.

Figure 5.13 shows a surprising result: as the bandwidth decreases the

flow response of the system with aliasing and τ=60 µs detector response

has higher linearity than the anti-aliased response. One reason for this

may be to do with the shape of the spectrum. If the integration time is

reduced to 50 µs, with results shown in Figure 5.14, the point at which

the 2nd order coefficient line for the aliased response crosses the line for

the anti-aliased response increases from approximately 7.5 kHz (Figure

5.13) to 9 kHz (Figure 5.14). This means that as more frequencies

are permitted to alias, the error due to non-linearity decreases. Before

these results are discussed further, the same test will be performed on

experimental data.
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Figure 5.11: Flow results for simulation of CMOS integrating

detector response at 5 bandwidths. The aliased response has

greater sensitivity to higher flow values than the anti-aliased

response.
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Figure 5.12: The results in Figure 5.11 were fitted with

2nd order polynomials. The linearity may be assessed by

renormalising these results so that the mean of the 10 largest

flow values are equivalent.

5.3.3.2 Experimental Data

The data from image 1 in Chapter 4 was processed again using the

aliasing rules and integrating detector response. The full bandwidth
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(b) Linearity

Figure 5.13: The 2nd order coefficient gives a measure of

linearity, and the RMS error was calculated from the fitted

line. As the bandwidth decreases, the aliased and τ=60 µs

detector response is more linear and has slightly lower RMS

error than the anti-aliased response.

FFT of the photocurrent in each pixel was taken, and then squared to

calculate the power. This was passed through the detector response and

the aliasing rules were applied. However, in order to see how the detector
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(b) Linearity

Figure 5.14: A 50 µs integration time confirms that as further

higher frequencies are aliased to lower frequencies (i.e. not

attenuated by detector), the point where the anti-aliased and

aliased lines cross moves further right.

filter response increases the error in the aliased results (because it acts

as an anti-aliasing filter, albeit not one with sharp cut-off), images with

only aliasing and no detector response were also evaluated. The results

can be seen in Figure 5.15, and the RMS error for the three scenarios
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(evaluated against the image at full bandwidth with no detector response)

is shown in Figure 5.16.

The images confirm that aliasing (i.e. under sampling) in LDBF

can actually recover some of the sensitivity to higher flow values. This

can mainly be seen in terms of the location and clarity of the veins (i.e.

regions of higher flow). For example, the phenomenon is particularly

marked as the bandwidth moves down to 5 kHz (e.g. Figures 5.15m

and 5.15n), where the ability to distinguish the veins is greater in the

‘aliased’ image than under anti-aliased and detector response conditions.

In Figures 5.15c and 5.15h the veins are harder to distinguish and the

clarity of the higher flow regions is more obscured by noise.
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Figure 5.16: The RMS error calculated from the full

bandwidth image with no detector response. The purely

aliased results show lower error as the bandwidth decreases.

5 kHz seems an optimum bandwidth as the lines start to

converge slightly at lower bandwidths.

This reduction in error may be because the spectrum decays towards

higher frequencies, and thus when the aliasing causes those frequencies

to fold back, the effect is to add greater weight to spectral frequencies

towards the Nyquist frequency. This is illustrated in Figure 5.17, which

shows the Pareto distribution up to 10 kHz and the aliased spectrum

with and without the detector response. It is the effect of folding this

shape which helps to ‘recover’ the linearity.

It must be noted that the effect of aliasing is also dependent on

the relative phase of the original and aliased frequencies. The aliased

shape in Figure 5.17 will only be that shape if the phases in the aliased

frequencies are either exactly 180◦ apart (for folded frequencies) or in

phase (for directly copied frequencies). LDBF signals have random

phase and so the quantity of aliased power is dependent on this random

relative phase. However, if the spectra from multiple undersampled

photocurrents are averaged, the aliased shape can be seen. The global
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effect when frequency weighting and accumulating the aliased spectrum,

despite its reliance on phase, is to add a ‘useful error’ back in and

therefore recover some linearity.
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Figure 5.17: The Pareto distribution alongside aliased spectra.

The shape of the aliased spectrum may explain why sensitivity

to higher flow values is recovered.

Having shown that the aliased flow response can, in fact, produce

lower error, there are two options. The first is to accept the low

bandwidth error; further work is then required to ascertain its effect on

clinical interpretation as a result of the error. This will be discussed in

the conclusion. The second is to try and correct the error using Bayesian

Inference. This is the subject of the next section.

5.4 Correction using Bayesian Inference

5.4.1 Bayes’ Theorem

If, after filtering by the detector, the shape of the aliased spectrum is

known, then that information can be used to recover the full bandwidth

spectrum and correct for undersampling. Again, the machinery

172



used is that of Bayesian Inference, essentially determining what the

most probable parameter values are given the power spectrum of the

undersampled photocurrent and knowledge of its probable true shape.

This is the Bayesian parameter selection problem [46]. Bayes’ theorem

can thus be cast as:

p(θ1, θ2|P (f), U) =
p(P (f)|θ1, θ2, U)p(θ1, θ2|U)

p(P (f)|U
(5.10)

This is the posterior and reads as the probability of θ1 and θ2 given

a power spectrum P (f) and an updated model function U (U will

be defined in Section 5.4.2). The likelihood function then inverts the

posterior:

p(P (f)|θ1, θ2, U) =

N/2∏
n=1

1

σn
√

2π
e
− (P (fn)−U(fn))2

2σ2n (5.11)

to give the probability of the power spectrum occurring given some

parameter values of the updated model U . It has already been shown in

Chapter 3, that upon averaging, the error model of the power spectrum

can be approximated by a normal distribution, and that the variance is:

σ2
n = k

U(fn)2

L
(5.12)

There is no reason to prefer any particular parameter values over

another, although it may be that, in the future, more informative priors

are deployed in LDBF. A non-informative flat prior is used here:

p(θ1, θ2|U) = p(θ1|U)p(θ2|U) =
1

∆θ1

1

∆θ2

(5.13)

And the normalising function (constant for all parameter values for

a fixed P (f)) is:

p(P (f)|U) =

∫∫
∆θ1∆θ2

p(P (f)|θ1, θ2, U)p(θ1, θ2|U) dθ1dθ2 (5.14)
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The aim, then, is to find the values of θ1 and θ2 which maximise

the posterior probability function, given the updated model U . This

updated model is the subject of the next section.

5.4.2 Updated Model

The Pareto distribution describes the LDBF power spectrum:

Up(f ; θ1, θ2) = θ2
1

(
1 +

f

θ2

)− 1
1.74
−1

(5.15)

Because the effect of the integration attenuates the spectrum before

aliasing occurs, the Pareto distribution is multiplied by the integration

response. Leutenegger et al. [73] use the response (Equation 5.16) as

a correction factor (to reverse the effect of integration), but it is used

here to attenuate the full model:

sinc(fτ) =
1

τ

τ/2∫
−τ/2

cos(2πft) dt (5.16)

This sinc function (the result of a rectangular averaging window in

the time domain) determines the amplitude response of a frequency f

using an integration time τ . This stage of the model becomes:

Ui(f) = Up(f)× sinc(fτ)2 (5.17)

Finally, the full bandwidth spectrum Ui(f) is reduced to a set

bandwidth using the aliasing rules in Equation 5.9, and becomes U(f).

The process is illustrated in Figure 5.18.

For this simulation, τ was set to 60 µs.

5.4.3 Methodology

A set of photocurrents was generated as in Figure 5.19. For each set

of parameters, an amplitude spectrum of length 0.5NL × k × Highfs
Lowfs
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Figure 5.18: The model U(f) is formed in three stages

- generating the Pareto with 2 parameters, passing the

distribution through the detector response with set τ and

finally applying the aliasing rules.

was produced, where N (the DFT length) and L (number of averages)

have the same meaning as in Chapter 4. This amplitude spectrum was

frequency weighted and accumulated to give the real flow value. NL

was selected to be 1,024, so that as L is increased N is reduced and the

performance at different numbers of averages can be ascertained. k is the

number of photocurrents to evaluate for each parameter set and values

of N and L, and was chosen to be 16 to provide a large enough number

of results to analyse variance. k also serves to over-sample the frequency

spectrum, as has been done in previous simulations. Instead of applying

the aliasing rules to the generated spectra, they were undersampled

by the rate Highfs
Lowfs

. For example, if the high sampling frequency is 40

kHz and the low sampling frequency is 10 kHz, then the undersampling

rate is 4 and every 4th sample is selected for the reduced bandwidth

photocurrent.

Once k photocurrents are generated, each can be passed to the

process in Figure 5.20. The signal is split into L segments of N length

and the FFT calculated. The power spectra of the L FFTs are added

to produce an average. A flow value is calculated directly from this

averaged spectrum before any inference, to evaluate the reduction in

error, if any, produced by inference.

26 values of each parameter were tested, giving a total number of
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Figure 5.19: The process for generating a set of photocurrents

for the correction test. The full amplitude spectrum, after

calculating the real flow value, is attenuated and undersampled

to create the aliasing effect.

Figure 5.20: A photocurrent of length NL is processed to

determine the corrected flow.

photocurrents for each low bandwidth value and NL pair of 26× 26×

16=10,816. Recalling from Chapter 3 that the bias and variance are a

function of N and L, several pairs of these values were tested. These

pairs were, for N and L respectively, 8 and 128, 16 and 64, 32 and 32,

64 and 16, 128 and 8, and 256 and 4. The low bandwidth sample rates

were 10 kHz, 7.5 kHz and 5 kHz (bandwidths of 5 kHz, 3.75 kHz and

2.5 kHz respectively). For the 7.5 kHz sample rate, Highfs=60 kHz to

give an integer undersampling rate.

Process P6.7 calculates the flow by creating a Pareto distribution
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with the maximum probability parameters, frequency-weighting and

accumulating the weighted samples.

5.4.4 Results

5.4.4.1 Example Fit

Before displaying the full results for each bandwidth, some example

fits from the inference will be shown. Figure 5.21 is one such example

of the posterior probability function. The maximum value gives the

coordinates of the most likely parameters.
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Figure 5.21: An example of the posterior probability

p(θ1, θ2|P (f), U) evaluated over 128 values for each parameter.

The low sampling frequency was 10 kHz, N=32, L=32, input

θ1=1 and θ2=1,000. The most likely parameter values, at the

peak of the posterior, are at the coordinates of the input

parameters.

It is computationally expensive to evaluate every set of parameters

of the posterior probability space. However, the images are shown here

for information. To speed up the processing of all the photocurrents, a

climbing search algorithm was used. This will be discussed further in
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Figure 5.22: The most likely output parameter values (from

Figure 5.21) provide a full bandwidth curve to compare to the

original data. Also included is the averaged spectra and the

fitted line. The low sampling frequency was 10 kHz, N=32,

L=32, input θ1=1 and θ2=1000.

Section 5.4.5.

The ability of the inference to recover flow varied. An example of

a good fit is shown in Figure 5.22, where the full bandwidth spectrum

is recovered almost exactly. The posterior probability and fits for a

worse case example (where the maximum probability coordinates were

further from the true coordinates) are shown in Figures 5.23 and 5.24

respectively. It is worth noting that more than one combination of

parameters may fit the averaged spectrum similarly, therefore comparing

the input and output flow values will give the decisive verdict on the

ability of the inference to recover the true flow.
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Figure 5.23: The posterior of a worse result, where the

coordinates of the peak are further from the input parameters.

The low sampling frequency was 10 kHz, N=32, L=32, input

θ1=1 and θ2=1000. This is a result of the stochastic nature of

the photocurrent, and where the sizes of N and L are limited,

the inference will not always detect the true parameters.
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Figure 5.24: The output parameter values (of the worse result

from Figure 5.23) provide a full bandwidth spectrum. The low

sampling frequency was 10 kHz, N=32, L=32, input θ1=1 and

θ2=1000.
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5.4.4.2 Corrected Flow

An example of the corrected flow results is given in Figure 5.25. The

full set of corrected flow results are given in Appendix C. The true flow,

calculated from process P5.3, is the x-axis value. The direct calculation

is the result of process P6.4; the corrected flow is the result of process

P6.7. To calculate the RMS error and linearity, the directly calculated

flow was normalised to the corrected flow (Figure 5.25b) and 2nd order

polynomials fitted. The linearity is the 2nd order coefficient and the

RMS error is calculated from the fitted line. These results are given in

Figures 5.26 to 5.28.

Figure 5.25 illustrates how the inference process recovers the

sensitivity of the system to higher flow values. Essentially, this is

because it can predict the higher frequency components based on the

lower frequency components.

The RMS error and linearity change with N and L pairings. An

increase in N provides more points to perform the inference fit, but an

increase in L reduces the variance and brings the spectral estimates

closer to the mean. The optimum pairings at all sampling frequencies

seems to be either N=64 and L=16, or N=128 and L=8 based on the

lowest 2nd order coefficient and RMS error from Figures 5.26 to 5.28.

Now the number of data points per photocurrent is fixed at 1,024.

This could be increased to yield more points or averages at higher

sampling frequencies. There is no reason that the number of averages

needs to be a power of 2, but it is more important to keep the DFT

calculation (i.e. N) at whole powers of 2 for efficient calculation by

FFT. The limitation on NL is the length of time the photocurrent can

reasonably be called stationary, and the minimum output sample rate

required (f bfs ).

The absolute error values decrease as fs increases: this is to be

expected because less aliasing is occurring, which means that the recovery
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Figure 5.25: Flow results for fs=10 kHz, with N=128 and

L=8. The inference recovers sensitivity to higher flow values,

because the higher frequency components of the spectrum are

recovered for the first moment calculation.

of linearity is more marked for fs=5 kHz than for fs=10 kHz. However

the inference seems to reduce the RMS error in roughly equal measure.

The variance of the error is larger at higher flow and this is also to

be expected. As the greater amount of power at higher frequencies is
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Figure 5.26: Flow results for fs=5 kHz. The inference goes

some way to reducing the RMS error, but is very effective at

correcting the non-linearity introduced as a result of reducing

the bandwidth.

aliased (and also lost due to the attenuation of the integrating detector)

the uncertainty of the inference increases.

The results show that, by using knowledge of the underlying statistics

of the photocurrent, Bayes’ theorem can be applied to reduce the error in
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Figure 5.27: Flow result for fs=7.5 kHz. The reduction in

RMS error and 2nd order coefficient is similar to 5 kHz, except

that, as is to be expected, the original values are smaller.

an undersampled photocurrent. For example, applying the inference to

data sampled at 5 kHz, the RMS error can be reduced by approximately

35% (from 20 to 13) and the 2nd order coefficient decreased by 88%

(Figure 5.26). To test how well this inference scheme functions on real

data, it will be applied to a rotating diffuser experiment in the next
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Figure 5.28: Flow results for fs=10 kHz. The RMS error is

the lowest where N=32, but the 2nd order coefficient where

N=256.

chapter. Before concluding this chapter, a possible implementation will

be suggested.
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5.4.5 Implementation

Evaluating the entire posterior probability space is a computationally

expensive task. However, there is no need to know the probability of

each pair of parameters given a power spectrum - all that is required is

the coordinates of the maximum probability. Therefore there is wasted

resource in evaluating the whole probability space, and in fact much of

it can be ignored. It can be used as an advantage that the log of the

posterior forms a smooth function (as has been the case in all observed

posterior spaces, although the possibility of local maxima cannot be

ruled out) because all that needs to be done is simply ‘climb the posterior

hill’ until the top is reached.

However, the movement is blind. Because the direction of the top of

the hill is unknown, trial movements in random directions are required,

and these movements are only ‘accepted’ when a higher point is reached.

An algorithm that implements this scheme has been developed by the

author of this thesis, which is summarised in Figure 5.29.

Figure 5.29: The climbing algorithm for fast search of the

posterior probability to find the parameters of the maximum

value.
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The climbing algorithm initialises a pair of coordinates (Xcurr,Ycurr)

to (64,64), and calculates the posterior POSTcurr. The coordinates are

translated to parameter values (i.e. θ1 = f(X) and θ2 = g(Y )), but for

the purposes of the algorithm an index of values of 1 to 128 for X and Y is

used. A random movement (R) in the range -4 to +4 for each coordinate

is generated, and the new coordinates are tested to make sure they still

reside in the range 1 to 128. The posterior probability POSTnew

is evaluated on these coordinates: if it is greater than POSTcurr

(i.e. movement uphill has been detected), then POSTcurr becomes

POSTnew and Xcurr and Ycurr are also updated. If it is not greater,

the random movement is rejected and the values of Xcurr and Ycurr

remain unchanged. For every random movement, after an update of

POSTcurr, a counter is incremented. This acts as an exit method for

the algorithm. If 128 random movements result in values of POSTnew

that are less than or equal to POSTcurr, so that no movement uphill is

found, the algorithm assumes the top has been reached. 128 was chosen

because it is twice the number of sample spacings possible (8×8). A

balance needs to be sought between the maximum size of the random

movements (R) and the number of random movements required to exit

the algorithm (E); larger random movements may reach the peak faster

but require more evaluations before exiting to ensure the peak has really

been reached.

Figure 5.30 shows the log of the posterior. The log is easier to

calculate computationally because it utilises additions rather than

multiplications (see Equation 3.20). The dark blue dots show the

locations of Xcurr and Ycurr, but do not reveal the random movements

attempted. For this particular task, the percentage of climbing algorithm

function evaluations versus the full posterior function evaluations is:

Nclimb

Nfull

=
415

128× 128
× 100 = 2.53% (5.18)
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Figure 5.30: The log of the posterior, which is simpler to

evaluate computationally. Instead of evaluating the whole

posterior probability space, the path of the climbing algorithm

shows the maximum can be reached in much fewer posterior

evaluations (in this case the total was 415, and the number of

movements was 37). The low sampling frequency was 10 kHz,

N=32, L=32, input θ1=1 and θ2=1,000.

Further optimisation of R and E, by using a larger set of posteriors,

may reduce the average value of Nclimb.

5.5 Conclusion

The effect on LDBF flow values as a result of using low bandwidth

CMOS imagers has been described. Aliasing, undesirable in acquisition

systems, acts as a ‘useful’ error because the folding of the decaying

spectrum increases the sensitivity to higher flow values. The low-pass

filtering effect of the integrating pixel reduces aliasing (thus reducing

the impact of this phenomenon) and serves to limit the noise bandwidth.

However the shape of the filter response does not provide a sharp cut-off

and has large side lobes, distorting amplitudes in the frequencies of
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interest.

Therefore, there are strong reasons to keep the integration times

small, as this also allows for faster sample rates. However, this strength

must be balanced with the maximisation of the SNR of the system in

the presence of shot and thermal noise. There is a trade-off each system

must make, dependent on laser power, illumination area, magnification,

aperture size etc. Moving towards practicalities, the next chapter will

describe the test of the sensitivity of two CMOS imaging systems and

show that the inference techniques explained in this chapter can be used

to correct the unavoidable errors of low bandwidth acquisition.
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Chapter 6

CMOS Camera Evaluation

6.1 Introduction

The theoretical performance of an integrating CMOS detector has been

described. It has been shown that aliasing, occurring due to the limited

bandwidth of a CMOS imager, can actually serve to reduce the error in

the estimated M1 values when detecting frequency distributions with

shapes like those of the power spectrum of an LDBF signal. The aim of

this chapter is to evaluate the sensitivity of two CMOS imaging systems

when imaging samples with small to large velocity components. The

first imaging system is currently being developed at the University of

Nottingham. In this device, a CMOS sensor (Micron MT9M413) is

connected to an FPGA controller. The second imaging system is an

off-the-shelf camera system. It is constituted of an Optronis CL600x2

camera, incorporating a Cypress Semiconductor LUPA-1300-2 CMOS

sensor, with Dalsa Xcelera-CL PX4 Full frame-grabber.

In previous chapters, the tests comparing full and low bandwidth

systems were based on photocurrents with known underlying properties.

This was either in the simulations, where the parameters producing the

photocurrent, and therefore flow, were known, or in experimental data,

where the full bandwidth spectra were available. The low bandwidth

results were produced by reducing the quality of the known data via sub-
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sampling, and then performing a comparison. In this chapter, however,

the full bandwidth properties of the photocurrent are unknown, and

all that is available at the output of the imagers is the low bandwidth

(undersampled) photocurrent. In order to evaluate the sensitivity of

these cameras, properties of the sample under inspection are required.

In the first experiment (using the Micron imager), the known property

is the speed of a rotating diffuser. The speed of the diffuser can be used

to model the distribution of Doppler-shifted frequencies present at the

detector. In the second experiment, human finger blood flow is modified

by cold and hot water immersion and then independently evaluated by

a full bandwidth single point monitor (Moor Instruments VMS-LDF2)

acting as the gold-standard. These full bandwidth results then represent

the comparator. In the first experiment, the low bandwidth results

are also corrected using the Bayesian Inference techniques described

previously, and compared to the gold-standard.

Recent tests on LDPI systems (for example, in Leutenegger et al. [73])

do not consider the response compared with the full bandwidth result.

Although the pulsatile signal and regions of high and, particularly, low

flow are distinguishable, a comparison with a known gold-standard

result is not given. It is acknowledged that a straightforward colour

map highlighting these regions may be sufficient for clinical practice.

However, knowing the accuracy of the result given by the imagers will

further the chances of wider clinical uptake, because understanding the

meaning of the result displayed increases confidence in the system.

For that reason, blood flow is stimulated, rather than the occlu-

sion/release test often applied. The upper limit of the system’s response

can then be tested.
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6.2 CMOS Sensor & FPGA

6.2.1 Overview

This device has been custom built specifically for the LDBF application

by Sun [122] and the author of this thesis had no input to the design or

build of the system. The commercial CMOS sensor is connected to an

FPGA (Xilinx Virtex 6 XC6VLX240T), which is in turn connected to

the PCI slot of a PC. The functioning of the device is controlled from

the PC. The FPGA itself acts as the camera controller and receives the

sampled photocurrent data (raw data) from the sensor. In its normal

configuration, it also processes this data into a value representing blood

flow, by calculating M1 via the FFT. However, in the configuration for

this experiment, the FPGA transmits the raw data to the computer’s

RAM so that it can be analysed directly in MATLAB. The experimental

configuration is illustrated in Figure 6.1.

A rotating diffuser is used to test the sensitivity (Figure 6.2). This

is a well known experiment [38, 102] and has predictable results. The

diffuser provides a distribution of frequencies with similar shape to

LDBF (i.e. monotonically decaying) and so is suitable for estimating

the CMOS camera’s response in an LDBF environment. The expected

distribution of Doppler shifts (and so mean frequency) will first be

modelled. The experimental results will then be described, followed by

an analysis and comparison.

6.2.2 Theoretical Response of Diffusing Surface

The Doppler shifts, which occur as a result of illuminating a rotating

diffuser, can be predicted by the standard equations in Chapter 1 [16].

The diffuser consists of a 26 mm diameter disc connected to a low speed

motor driver (Maxon 110048 DC brushed). A piece of white paper is
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Figure 6.1: The experimental configuration for the rotating

diffuser experiment. A 580 nm laser is expanded to illuminate

the disc and the static diffuser provides an interfering

reference beam. A lens focuses the Doppler shifted light onto

the CMOS sensor, which passes data to the FPGA and then

to the PC. The integration time of the sensor was 78 µs and

hence the sampling rate was 12 kHz.

Figure 6.2: A small section of the rotating disc comprising 320

horizontal and 1 vertical pixels was imaged (highlighted green).

The radius, R, is 13 mm, and the velocity, V , is variable.

attached to the front of the disk and functions as the diffusing surface.

A static diffusing reflector is placed in front of the rotating disc and this

provides the interfering reference beam (see Figure 6.1).

The surface profile of the white paper needs to be known in order to

predict the relative phase difference between the illuminating coherent
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light and its reference. Because the paper is rotating, the relative phase

differences are a function of time, and it is the differential of the phase

differences that give the Doppler shift frequency.

The starting point is a one dimensional paper surface model. Vernhes

et al. [128] list a variety of parameters describing the statistics of the

surface: the dispersion, the skewness and the kurtosis. The dispersion

quantifies the RMS surface height variations from the mean. The

skewness quantifies whether the distribution of surface height variations

has a longer tail at the positive or negative side of the slope and the

kurtosis quantifies the ‘peaked-ness’ of the surface height variations.

Leising, in an application note for a profilometer, lists typical values for

white paper [72]. An RMS dispersion of 5 or 6 µm is typical of white

office paper. Gaussian statistics for the skewness (0) and kurtosis (3)

will be assumed as example values vary around these regions and no

information on the true values for these parameters is known.

Therefore a Gaussian process with an RMS height variation of 5.7 µm

was randomly generated in MATLAB. The length of the paper was 222

spatial samples, corresponding to 5 mm. The surface height variations

u(n) were oversampled by 213, i.e. the first 29 spatial frequencies had

unity power, with the remainder zero power. This resulted in a spatial

sampling frequency, 1/Fx, of 838,860,800 m−1. Thus, the sample number

n can be related to distance in meters x by:

x = Fx.n (6.1)

The data were oversampled for two reasons: firstly because the

speed differences are evaluated by sub-sampling the spatial data, and

no aliasing is desired, and secondly because the finite difference method

of differentiation (used to determine the Doppler shifts) becomes less

accurate as the frequency content approaches the Nyquist frequency.

Figure 6.3 gives an example of the paper surface, with the histogram in
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Figure 6.4.
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Figure 6.3: The zero-mean surface height variations of the

simulated paper surface. This Figure shows 1 mm of a sample

length of 5 mm. The spatial sampling frequency, Fx, is

838,860,800 m−1.
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Figure 6.4: The histogram of surface height variations. The

RMS (i.e. standard deviation) of variations was 5.7 µm.

To simulate the difference in speed of the paper, the spatial data

was sub-sampled. The degree of sub-sampling, S, is linearly related to
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the speed of movement v(S), and was increased from 1 to 15 in unity

steps. The function u(n) becomes u(S.n). However, the speed of the

slowest sub-sample rate (i.e. 1) must be chosen artificially. It was set at

0.276 mm/s as this produced a maximum speed, at the sub-sample rate

of 15, of 4.1 mm/s. This corresponds to the maximum speed, at the

edge, of the spinning disc used in the experiment. Similar to Equation

6.1, the time in seconds t in relation to the sample number n, is:

t = Ft.n (6.2)

where Ft, constant for any S, is:

Ft =
Fx.v(S)

S
= Fx × 0.276 mm/s (6.3)

Now the surface height variations of the 15 sets of data (essentially

the same data with varying sub-sample rates) can be treated as a phase

difference by dividing by the wavelength of the incident light, λ. For this

experiment, the wavelength was 580 nm. This phase difference is then

differentiated with respect to time to give an instantaneous frequency:

ω =
dφ

dt
=

1

λ

du(S.n)

dn

dn

dt
(6.4)

The final term in this equation, a product of the chain rule, can be

evaluated from Equation 6.2 by:

dn

dt
=

1

Ft
(6.5)

The Doppler shift is twice the frequency, because source and detector

are stationary relative to each other (see Chapter 1). Converting from

the angular frequency, fD, the Doppler shift, is:

fD = 2
ω

2π
=
ω

π
(6.6)

1
λ

du(S.n)
dn

is evaluated by finite difference differentiation to produce

a range of instantaneous frequencies. Figure 6.5 shows an example of
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the frequencies produced versus time. By calculating the histogram of

the frequency data, the shape of the distribution of frequencies at each

speed can be determined.
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Figure 6.5: An example of the instantaneous frequencies

produced by differentiating the phase difference, caused by

the surface height variations, with respect to time.

The simulation was performed 32 times, and the distributions at

each speed averaged. The averaged distributions of the first five speeds

are shown in Figure 6.6. The shapes match those observed in the

experimental results of Romero in 2000 [102].

The mean frequencies of the averaged distributions were calculated

by M1

M0
. This gives a representation of the true mean frequency at each

speed (shown in Figure 6.7). This mean frequency response can now be

compared to the experimental data.

6.2.3 Experimental Data

This section will describe the experimentation and signal processing

required to evaluate the response of the CMOS sensor. The actual

collection of raw photocurrent data from the camera was not performed

by the author of this thesis but was performed by the designer of the
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Figure 6.6: The averaged frequency distributions of the first

five speeds of a simulated rotating disc.
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Figure 6.7: After 32 simulated distributions of the spinning

disc were averaged for each speed, the mean frequency was

calculated by M1

M0
.

CMOS camera system [122]. However all the subsequent processing,

analysis and correction was performed by the author.

The capabilities of the system limit the amount of data that can

be transferred and stored on the PC. In its normal configuration, the

FPGA processes all the high speed data locally and hence reduces the
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output data bottleneck. However, because in this configuration the raw

photocurrent data is required, only a small area can be captured. A

320x1 pixel horizontal section positioned at half the height of the disc

and to the right side (as shown in Figure 6.2) was selected as the region

of interest.

The noise floor was measured by recording the photocurrent with no

rotation of the disc, calculating the power spectrum and then evaluating

the mean. Figure 6.8a shows the static noise power, which is used

as a soft threshold for the rotating disc spectra calculations. The

soft threshold is subtracted from the calculated power spectrum. Any

resultant negative components are set to zero. The DC light level is

recorded as the mean of the stationary photocurrent. As can be seen

in Figure 6.8b, the light level decreases at increasing radius, due to the

illumination angle of the laser. As the shot noise is reduced with the

DC light level, a slight decrease in overall noise power is seen.

The DC voltage supplied to the motor was increased from 250 mV to

4.75 V in steps of 250 mV. The relationship between the supply voltage

and speed of the disc at increasing radius is illustrated in Figure 6.9.

The camera, sampling at 12 kHz, collected 32 windows of 1,024

samples for each pixel. The 1,024 point FFT was used to provide a

power spectrum for each window. The 32 spectra then provided an

average. Thus a spectrum with low variance was produced for each

radius at 1 pixel intervals, and for each DC motor supply voltage.

Two operations were then performed. The first was to directly

calculate the mean frequency by evaluating M1

M0
, and the second was to

correct the spectrum using the Bayesian techniques described in the

previous chapter, before calculating the mean frequency for the corrected

spectra.

198



50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Pixel

N
oi

se
 P

ow
er

 (
V

2 /H
z)

(a) Noise power

50 100 150 200 250 300
0

100

200

300

400

500

600

700

Pixel

10
−

bi
t d

ig
ita

l l
ev

el

(b) DC level

Figure 6.8: The noise power and DC light level of the device

calculated from the stationary disc. The noise power decreases

slightly towards the edge of the disc. This is because the laser

illuminates at an angle and the DC light level is smaller at the

edge than at the centre.

6.2.4 Comparison & Correction

Examples of the averaged spectra are displayed in Figure 6.10. The

mean frequency increases because the distribution of frequencies in the
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Figure 6.9: The voltage sets the speed of the disc. This graph

shows the relationship between radius of the disc and surface

speed, for 5 voltages.

spectrum flattens, as predicted by the simulations. Figure 6.11 shows

how the mean frequency increases with increasing radius and voltage. As

the voltage increases, the plots become less linear. This familiar result

is caused by the integration time limiting the bandwidth, producing

underestimations. The assessment of the accuracy of these results can

now be evaluated by comparing experimental with theoretical data.

The result for 4.75 V is shown again in Figure 6.12. The theoretical

data was overlaid by replacing the speed axis with a pixel value, using

the information calculated for Figure 6.9. At the maximum speed of the

disc, which corresponds to pixel 320, the speed was 4.14 mm/s and the

theoretical mean frequency was 3.8 kHz.

Firstly, comparing the CMOS camera response with the theoretical

response, the camera underestimates the mean frequency and only has

the ability to detect mean frequencies up to around 2 kHz. However,

the response may be linear enough to represent blood flow increases

and decreases with sufficient accuracy, particularly in a flap monitoring

situation where zero to baseline flow is the normal range.
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Figure 6.10: Example averaged spectra for a motor DC supply

voltage of 4.75 V. The device had significant noise components

around 100 Hz and 4.25 kHz. The power results from these

frequencies were discarded and replaced with averages of the

surrounding values. Later, the power at these frequencies will

be replaced with values calculated from a Bayesian inference

fit.

Secondly, because it is known that the power spectrum is approx-

imately Gaussian [102], the inference techniques of Chapter 5 can be

used to correct the undersampled spectra.

The first step is to fit an updated model U to the recorded spectra.

Instead of using a Pareto distribution, an Exponential distribution,

because the Gaussian is based on this function, is input to the integration

filter (τ=78 µs) and then to the aliasing model. The posterior probability

was then evaluated over a 2 parameter range and the most likely

parameters selected. The mean frequency of the model, using the

most likely parameters, was calculated and is displayed in Figure 6.12

(light green line). An example of a fitted Exponential is given in Figure

6.13.

The fitted mean frequency results agree closely with the recorded
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Figure 6.11: The mean frequency of the averaged spectra

was calculated for each pixel over a range of supply voltages

(i.e. increasing motor speeds). One reason that the mean

frequency may flatten off at lower pixel values, where it would

be expected to continue decreasing towards 0 Hz, is because

the true level around 100 Hz in the recorded power spectra

is unknown (due to noise in the equipment), and as there

is significant power at these frequencies at lower speeds, the

calculation gives a skewed result.

spectra. Visually, the Exponential fits the spectrum well, despite the

variance of the averaged spectrum. The most likely parameters were

then used to produce a full bandwidth (up to 20 kHz) power spectrum.

The mean frequency of this spectrum was calculated and is also displayed

in Figure 6.12 (dark green line). As the mean frequency of the CMOS

camera output is constant at low speeds (at pixels closer to the origin of

the spinning disk, Figure 6.12), the fitted and recovered spectra are also

constant. One reason for the levelling is that the CMOS camera might

not have been focussed directly at half the height of the disc, therefore

producing Doppler shifts at greater frequencies than expected. After

the point where the theoretical response crosses the recovered response,
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Figure 6.12: The output from the CMOS camera is

compared to the theoretical response, the mean frequency

of a decaying exponential (assuming aliasing and a 78 µs

integration time) fitted using Bayesian Inference, and the

mean frequency recovered using the fit parameters (r=0.986

between recovered and theoretical)). The CMOS camera

response was recalculated for this graph using corrected values

(from the exponential fit) for 100 Hz and 4.25 kHz.

at pixel 120, there is good agreement between the corrected values and

the theoretical mean frequency (r=0.986).

In this section it has been shown that the CMOS camera, sampling

at 12 kHz and with an integration time of 78 µs, underestimates the true

mean frequency, but that it can be corrected for with good accuracy

using the inference techniques of the previous chapter. The next section

describes the evaluation of a second camera system that images blood

flow in vivo.
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Figure 6.13: The frequency spectrum at pixel 260, fitted

with a decaying exponential model U , and the representative

‘corrected’ spectrum. The fitted spectrum can also be used to

recover the lost components around 100 Hz and 4.25 kHz.
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6.3 Optronis CL600

6.3.1 Overview

This system was comprised of an Optronis CL600x2 CMOS camera,

connected via two CameraLink cables to a Dalsa Xcelera framegrabber

PCI card mounted in a PC. The camera is monochrome and has a

maximum resolution of 1,280 pixels (width) by 1,024 pixels (height).

Manufacturer software on the PC controls the camera settings and

receives the data to the computer’s RAM. After being stored in the

RAM, the raw data was analysed offline in MATLAB. In this respect,

the system is simple to assemble because it is made up of off-the-shelf

components. A 40 mW infrared (785 nm) laser, aligned with a 30 mW

red (660 nm) laser, is used to illuminate the sample. The red laser

is provided for ease of optical configuration. The beam is expanded

using a square diffuser, similar to the previous experiment, to a size of

approximately 1 cm by 1 cm.

In order to assess the accuracy of this LDPI system, six volunteers

had their blood flow assessed in one finger under hot and cold water

stimulation. It was recorded with the Optronis system and also using

the Moor Instruments VMS-LDF2 single point monitor as a comparison

standard.

6.3.2 Ethical Considerations

University of Nottingham Faculty of Engineering ethical approval with

application ID 2012-01, as used in Chapter 3, covers all experimentation

undertaken in this chapter. Data was collected and stored in accordance

with Faculty requirements and no personally identifiable information

was stored with the photocurrent data.
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6.3.3 Experimental Method

6.3.3.1 Camera and Optical Apparatus

Figure 6.14 shows the experimental set up. The equipment was

configured in order to maximise the photocurrent SNR. Firstly the

laser was expanded only to the size of the imaged region to maximise

the incident optical power per unit area. Secondly the aperture of

the camera lens (Schneider Xenon 50 mm) was opened to F/2.2, its

widest setting. This had the disadvantage of reducing the depth of

field, which meant the hand position was critical as small forward or

backward movement from the focal point caused the image to be out of

focus. Two ADC resolutions were available, 8-bit and 10-bit. Clearly a

higher resolution is more desirable to reduce quantisation noise, but 10

bits must be transferred through the low-voltage-differential-signalling

(LVDS) cabling to the PC as two bytes. Therefore this acquisition

resolution doubles the data volume for the same spatial resolution and

sampling rate. However, a look-up table is available on the camera

which assigns the 10-bit value (range 0 to 1023) number to any value of

choice in the 8 bit range (0 to 255). If the signal of interest is an AC

signal with DC offset, and that DC offset is roughly known, then the

ADC can sample at 10 bits and send the data as 8 bits. The signals

sampled from illuminated tissue were found to be consistently in the

lower quartile of the 10-bit range. Therefore any value in the range 0

to 255 was transmitted as 0 to 255 respectively, and any value above

this (256 to 1,023) was also transmitted as 255. In theory this means

the output would saturate at higher light levels, but in practice this

situation did not occur because the full-field LD signals are not high in

power. The results section will reveal typical ADC sample values.

The receiving buffer, limited by the size of the PC’s RAM, allowed

up to 20,000 frames to be saved at the selected resolution. At 5 kHz,
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this produced four seconds of data. The photocurrent at each pixel was

then divided up into 1,000 sample windows. Each window was processed

by 1,000 point FFT to generate a power spectrum Sraw[k]. A noise

threshold N [k] was measured by recording the frequency spectrum of

a static diffuser and taking the average value of the resultant power

spectrum. This was used as a soft threshold on Sraw[k] to produce S[k].

As is normal in LDBF [73], the photocurrent was normalised by dividing

by the square of the mean DC value:

Flow =
fs
N

500∑
k=1

k
P [k]

DC2
(6.7)

However, because the sensitivity setting of the camera was set high (in

order to detect the photocurrent fluctuations with acceptable resolution)

the DC value recorded at each pixel was very sensitive to fixed pattern

noise. As a large image resolution was used, a 10 x 10 pixel spatial

Gaussian low pass filter was applied to the DC image. Over a small

group of pixels (10 x 10 pixels is 0.5 mm x 0.5 mm) the true imaged DC

level is effectively constant. The aim of the normalisation is to divide by

the average intensity, and not simply the individual pixel value, which is

contaminated by fixed noise levels. By processing in this way, the noise

level of the flow map is reduced. Figure 6.15 shows an example of the

processed DC image.

The speckle pattern generated as a result of illuminating a rough

surface with coherent light must be resolved by the imaging system,

although it is not required to be strictly resolved (this would mean a

pixel size less than or equal to the speckle size) [73]. The approximate

diameter of a speckle (therefore allowing coherence area Aspeckle to be

evaluated) can be calculated by the wavelength and f-number (f/#) of

the imaging system:

Dspeckle = 2.44.λ.f/# = 2.44× 785nm× 2.2 = 4.2µm (6.8)
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The number of speckles per pixel can thus be evaluated by:

Nspeckle =
Apixel

Aspeckle

=
14µm2

π × 2.1µm2
= 14.1 (6.9)

Although the ratio of AC to DC current level is inversely proportional

to the number of speckles per pixel [109], the aperture, the one practically

variable quantity in Equation 6.8, also controls the amount of light

entering the lens. Therefore to maximise the light level it is left at its

widest setting (f/2.2).1

6.3.3.2 Recording Procedure

Six participants, aged between 21 and 30, including both males and

females, were recruited for the study. After a period of rest during which

the study was explained and informed consent obtained, each subject

had their baseline flow recorded using the VMS-LDF2, with the probe

attached onto the rear of the right index finger. The baseline flow was

also then recorded using the Optronis system, where 4 s of data (20,000

frames at 5 kHz) was collected. Then, each subject’s right hand was

immersed in a container of water at 15� for 2 minutes. The hand was

dried and black tape, acting as a reference marker, was applied to the

fingertip as shown in Figure 6.14. Firstly the true blood flow value was

recorded by attaching the probe of the VMS-LDF2 to the right index

finger. Then the probe was quickly removed and the finger placed in

the focal range of the camera system. Again, 4 seconds of data was

recorded at a 5 kHz sampling rate.

To stimulate blood flow, the right hand was immersed in a container

of water at 43� for 2 minutes. Then the same recording procedure as

1It is worth noting that for a LASCA system, the size of the speckle should

approximately equal the size of the pixel detector and therefore the aperture must

be reduced to F/7.2, if using this optical set up [16]. This means less optical

power reaches the detector, although this is usually compensated for by increased

integration times in LASCA configurations.
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Figure 6.14: The experimental configuration for recording

from the Optronis CL600x2. A 40 mW 785 nm laser is aligned

to a 30 mW 660 nm laser, which illuminates a 1 cm2 area

of the finger. Black tape is used as a reference marker and

also prevents glare and other unwanted effects [106] from the

fingernail. Once the data is recorded, it is stored in the PC’s

RAM for offline analysis in MATLAB.
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Figure 6.15: A DC image processed using a Gaussian low pass

filter to reduce fixed noise. One of the effects of the filter is

to create a transient at the boundaries of the image.

after the cold immersion was repeated. Thus three separate recordings

from each instrument, a baseline, cold and hot, were obtained for each

subject.
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6.3.4 Results

Once the data was recorded it was processed as previously described. An

example of 1,000 samples of the photocurrent from one pixel is shown

in Figure 6.16, along with its power spectrum in Figure 6.17.

0 0.05 0.1 0.15 0.2
90

95

100

105

110

115

Time (s)

A
m

pl
itu

de
 (

sa
m

pl
ed

 le
ve

l)

Figure 6.16: An example of the photocurrent obtained from

one pixel of the Optronis CL600x2 after hot water immersion.

The window length is 1,000 samples at 5 kHz.
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Figure 6.17: The power spectrum calculated by fast Fourier

transform of the photocurrent in Figure 6.16.
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In order to evaluate the flow in the tissue, a small region was selected

for averaging in order to compensate for the spatial variability. It is

assumed the blood flow is roughly equivalent in a region of 11x11 pixels

(approximately 0.5 mm by 0.5 mm). The region of interest is illustrated

in Figure 6.18, which also shows a complete blood flow map of the

imaged fingertip. Averaging spatially also smooths the power spectrum,

as demonstrated in Figure 6.19.

Figure 6.18: A flow image, taken with the Optronis CL600x2,

of the tip of the right forefinger of subject 5 after 2 minutes

immersion in hot water. The location of the black tape can be

resolved (compare with Figure 6.14). The black box (upper

left) indicates the location of the 11x11 pixel region averaged

to evaluate the temporally varying blood flow.

The flow values created from the average demonstrate the temporal

variability of the blood flow. Figure 6.20 clearly shows the pulsatile

signal, with the dichrotic notch (a slight deflection on the diastolic phase

of the waveform) visible on several pulses. Thus the system is capable

of ‘imaging the pulse.’
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Figure 6.19: An average of multiple spectra from a small

region (11 by 11 pixels), at one window time point (i.e. not

temporally averaged), using the Optronis CL600x2.
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Figure 6.20: A small spatial region’s flow values (11x11) was

averaged at each output time point to give 20 samples at 5

Hz. The data was collected using the Optronis CL600x2. The

pulsatile signal can easily be resolved.
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Table 6.1 gives the raw output from the two systems. To compare

the sensitivity, the percentage change was computed for the baseline

and hot flow. The percentage change used the cold result as the fixed

quantity as the cold water is controlled, rather than using the baseline

flow value which may be affected by pre-experimental environmental

factors:

Perc.Change =
Flow − FlowCold

FlowCold

× 100 (6.10)

Subject 1 2 3 4 5 6

VMS Base 31 7 8 8 7 13

VMS Cold 15 8 9 31 17 8

VMS Hot 230 130 270 300 510 150

Op. Base - 16.7 10.1 12.6 17.1 14.7

Op. Cold - 10.3 12.1 12.8 15.3 13.2

Op. Hot - 21.8 27.9 32.7 23.7 24.1

Table 6.1: Flow results from the Moor VMS-LDF2 and the

Optronis CL600x2 for six subjects. The two systems’ units

are arbitrary, therefore a direct comparison of values is not

possible. One set of data for subject 1 was corrupted and the

flow could not be determined.

6.3.5 Discussion

It is clear that the VMS system is much more sensitive to higher flow

rates. This is not surprising given the bandwidth of the VMS system

is six times the size of the Optronis. However the location of the 11

x 11 pixel window used for the Optronis analysis may not have been

the precise location that the VMS system analysed the flow because

the area covered by the probe is small (0.5 mm fibre separation at 785
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Figure 6.21: A comparison of flow results from the two

systems. The red box plot represents the flow recorded using

the Moor VMS system, and the blue box the flow recorded

using the Optronis camera. As the units of both devices are

arbitrary, the percentage change from cold was used (hence

the cold box plot shows zero). The edges of the box represent

the 25th and 75th percentiles, and the whiskers the extremities

of the data.

nm wavelength). To counter this, every effort was made to position

the probe on the centre of the apex of the final joint of the finger,

the location of the pixel window. It is unlikely that small variations

in this location would adversely affect the results and the conclusion

considering there are few large veins near the skin surface and so the

microcirculation of the skin can be assumed homogenous in this region.

It is also acknowledged that hot water immersion is an extreme

method of stimulating flow and that in clinical situations it is unlikely

to be raised to this extent. For example, in burn analysis, first degree

burns may cause the flow to be raised only up to 500% of normal values.

Thus, what this data shows is that the Optronis system, despite the

large flow stimulation, is only sensitive up to around twice the baseline

because the bandwidth is limited.
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6.4 Conclusion

Two CMOS camera systems have been evaluated for their ability to

accurately represent the first moment of a Doppler-shifted photocurrent.

The first system, a custom device compromised of a CMOS sensor

sampling at 12 kHz and interfaced with an FPGA, underestimated the

mean frequency of a rotating disk. The true values were computed using

a theoretical model. It has been shown that the errors introduced by

undersampling the photocurrent can be corrected for using Bayesian

Inference techniques.

The second system, an Optronis CL600x2 high speed CMOS camera

sampling at 5 kHz and interfaced with a PCIe framegrabber, also

underestimated flow values, but the experiments were performed on

human skin rather than rotating diffuser. A Moor Instruments VMS-

LDF2 provided the gold-standard flow values. A cold and hot water

immersion technique was used as the stimulator. Whilst the VMS device

showed the hot water stimulation increased flow by a median value of

17 times, the Optronis system at 5 kHz only increased it by twice the

cold water values.

Thus simpler off-the-shelf CMOS systems can detect the Doppler-

shifts off moving scatterers with acceptable accuracy at ‘normal’ flow

values, and so can detect the pulsatile signal in this range, but are not

sensitive to larger frequency shifts in the way that conventional systems

are.
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Chapter 7

Conclusion

7.1 Introduction

Accurately identifying the condition of skin blood perfusion is crucial in

a variety of medical and surgical situations. For example, by diagnosing

the severity of a skin burn through examination of blood flow levels,

correct remedial surgery may be provided. Additionally, by monitoring

the re-perfusion of a skin flap after transplant, appropriate action may

be taken to prevent flap necrosis, or partial or total flap loss. NICE

has published guidelines [87] that describe how using LDBF technology

reduces the cost and improves patient outcomes in the treatment of skin

burns.

LDBF technology has had a presence in the marketplace for several

decades in its single point monitoring configuration (LDPM), but recently

a market has opened for LDPI, the imaging configuration. Reports such

as the NICE guidelines have further facilitated the expansion of this

market, however there is much ongoing work to try and gain widespread

clinical acceptance. This work includes technological development, where

much of the current focus is on providing full-field video-rate imaging

devices. Clinicians need fast, reliable, repeatable and understandable

diagnostic tools. Working towards this, whilst being constrained by

current technological limitations, has been the subject of this thesis.
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LDBF is a non-invasive optical technique for measuring blood flow.

It works by measuring the frequency changes (Doppler shifts) that occur

when light interacts with moving RBCs. However, there are many

millions of RBCs per µl of blood, and with a distribution of scattering

angles and velocity vectors, it is not just one single frequency shift

but a distribution of shifts that is produced in a sampled region. The

bandwidth of these shifts is typically in the range 30 Hz to 20 kHz.

LDPM devices have therefore, with appropriate anti-aliasing filters,

set an ADC sampling rate of 40 kHz. However, such sampling rates

have proved difficult to achieve in imaging devices. This is for several

reasons; firstly because many thousands of pixels (one frame) need to

be sampled at once and the data transferred off-chip, which represents

a large data conversion, transfer and processing task, and secondly

because the integration times for the CMOS sensors, required to provide

adequate SNR, limit the maximum sampling rate. LDPI sampling rates

have therefore typically been in the 5 to 15 kHz range. Since LDPI

devices are entering commercial production, it is appropriate to ask

how the acquisition and processing method impacts upon the results,

and whether the reduction in accuracy, if any, can be corrected for

post-acquisition.

7.2 Summary of Results

From conversion of light into electrical current to final blood flow image,

there are several processing decisions a system designer must make.

For example, the ADC sampling rate or method of calculation of M1.

Different chapters of this thesis have dealt with these different decisions,

the errors they introduce and how the errors may be compensated

for. Chapter 2 detailed current methods of evaluating M1 from a time-

domain signal, and suggested a fast and novel method utilising the

Hilbert transform. The computational complexity of these algorithms
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was quantified.

In order to compare these processing methods and how they perform

in low-bandwidth scenarios, the photocurrent must be modelled. By

the machinery of Bayesian Inference, Chapter 3 has shown that the

power spectrum of a LDBF photocurrent can be modelled using the two-

parameter Pareto distribution with fixed shape factor. Chapter 4 used

this model to compare the processing algorithms and determined that,

as expected, the full FFT method was the most accurate but that an

IIR filter, which approximates a frequency-weighted response, performs

reliably. The approximate class of algorithms performed adequately,

meaning that very fast implementations may give ‘good enough’ results

in certain scenarios. The simulated photocurrents were used to evaluate

a temporal LASCA processing scheme and this revealed high error

and non-linearity. The first moment analysis was repeated on real

recorded images, and encouragingly these results matched the simulation.

Additionally, it is confirmed that the ‘Draijer’ algorithm is an effective

and efficient way of calculating M1 from the noise-like photocurrent.

Chapter 5 turned to CMOS imagers, the main imaging technology

used in LDPI, and modelled the response of an integrating pixel and

the aliasing of high frequencies that occurs as a result of undersampling.

It was then shown that, by understanding how the aliased frequencies

fold or copy back into the power spectrum, the error introduced because

the LDBF photocurrent is undersampled may firstly be characterised

and then corrected for using Bayesian Inference. It has been shown

that allowing high frequencies to alias introduces a ‘useful error’ that

can reduce the non-linearity of the output M1 values. This reduction is

limited by the size of integration time. However the error can be further

reduced using Bayesian techniques.

Chapter 6 then applied this methodology to a CMOS camera system

imaging a rotating diffuser, confirming that the true mean frequency,
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underestimated due to low bandwidth acquisition, can be recovered

using the inference technique. A second commercial CMOS camera

system was then evaluated on its detection sensitivity to high blood

flow using a water stimulation technique. This showed that at baseline

values, the CMOS system sampling at 5 kHz was able to detect the

pulsatile signal. However, when hot water stimulated the blood flow to

15 times the cold water stimulation values, the CMOS camera system

was only sensitive to around twice the cold values.

7.3 Future Work

Although the Bayesian Inference error reduction technique has been

applied to a rotating diffuser successfully, it has yet to be applied to

a CMOS camera imaging perfused tissue. This is because the shapes

of the spectra collected from the Optronis system did not match those

collected from the Moor Instruments LDLS and therefore the inference

could not be performed. Ideally the inference needs to be performed on a

system which can output the full bandwidth photocurrent continuously

(the LDLS did not do this) whilst flow is modified (for example, by the

water stimulation technique). The inference system could then be tested

on a sub-sampled version of the output photocurrent and compared to

the full bandwidth result.

One drawback of the Bayesian method is that the computational

resources required to perform the inference are not insignificant, in that

several hundred function evaluations may be required per pixel per

output frame. A method of reducing the computational load by utilising

a climbing algorithm has been presented, but the number of function

evaluations is still high. This number could be further reduced by giving

the start position of the climbing algorithm at the last known peak

location; this is a guess that the next blood flow value will be similar to

the last. Further optimisation is required to minimise resource usage
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whilst still maintaining accuracy of results.

7.4 Conclusion

Bayesian Inference has been applied in a novel way to facilitate the

use of low bandwidth CMOS camera systems to calculate the true first

moment. It has been successfully demonstrated in a practical CMOS

system imaging a rotating diffuser and been applied theoretically to

blood flow data. In addition to this, aliasing CMOS systems have been

characterised and a decision can be made on which applications low

bandwidth systems may be suitable for.

In the introduction, two clinical applications were discussed. One,

post-operative flap monitoring, does not require sensitivity to high

flow values (the exception being when locating perforator vessels).

The system requires accuracy of flow values between zero and normal

baseline. Therefore a relatively low cost off-the-shelf CMOS camera

system, processing the photocurrent by, for example, the Hilbert time

domain algorithm on an FPGA or graphics card, may be used in this

situation to give adequate results. There is even the possibility that

such a device could be built into a small handheld unit, increasing

usability, although some attention would need to be given to the safety

and efficacy of the illumination system.

However in the case of burn imaging, the second application,

sensitivity up to fives times baseline may be required in order to

distinguish superficial burns from more severe tissue damage. In this

case, a low bandwidth CMOS imager may be used, but the results

need correction in order to give correct clinical diagnosis. By using

Bayes’ theorem, the most likely true flow value given an undersampled

photocurrent, may be elicited. Further work is required to build such a

system and optimise the signal processing to enable accurate real-time

laser Doppler blood flow imaging.
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7.5 Summary of Findings

� It has been confirmed that the Draijer algorithm is an effective

method of calculating the first moment of the photocurrent’s power

spectrum.

� A novel Hilbert transform based processing method for LDBF is

both low in resource usage and high in accuracy.

� Bayesian Inference model selection has been used to determine

that the power spectrum of the LDBF photocurrents collected can

be modelled more appropriately using a 2-parameter Pareto rather

than the usual Exponential distribution.

� Processing methods for LDBF have been compared in full and

reduced bandwidth conditions. The low resource IIR filter method

is almost as accurate as the gold standard FFT.

� A reduction in bandwidth reduces the sensitivity to high blood

flow, but aliasing introduces a ‘useful error’ that can serve to

recover some sensitivity to higher flows.

� The error resulting from undersampling the LDBF photocurrent

using an integrating CMOS sensor can be compensated for using

Bayesian Inference. A fast implementation of the most likely

parameter search has been proposed.

� This undersampling compensation method has been successfully

demonstrated on data collected from a CMOS sensor imaging a

rotating diffuser.

� An off-the-shelf CMOS imager undersampling the LDBF photocur-

rent can be used to image blood flow, but its sensitivity to high

flow is reduced compared to a full bandwidth single point monitor.
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Appendix A

Derivation of Absolute and Av-

erage

The following derivation shows why the absolute and average of a LDBF

signal is proportional to the square and average. The variance of a signal

with samples x1 to xM is defined as

σ2 =

M∑
i=1

(xi − µ)2

M
(A.1)

It can be expanded and simplified to become

σ2 =

M∑
i=1

x2
i

M
− µ2 (A.2)

The signal has Gaussian distribution with zero mean, so taking the

square and average calculates the variance:

M−1∑
n=0

(x[n])2

M
= σ2 (A.3)

Suppose the absolute value is taken of the signal. The distribution is

changed from

p(x) =
1

σ
√

2π
e−

1
2

(x−µ
σ

)2 (−∞ ≤ x ≤ ∞) (A.4)
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to

p′(x) =
2

σ
√

2π
e−

1
2

(x−µ
σ

)2 (0 ≤ x ≤ ∞) (A.5)

The mean of the distribution after the absolute process is

µ′ =

∫ ∞
0

xp′(x)dx =

∫ ∞
0

x
2

σ
√

2π
e−

1
2

(x−µ
σ

)2dx (A.6)

Letting x−µ
σ

= X and dX = 1
σ
dx,

µ′ =

∫ ∞
0

(σX + µ)
2

σ
√

2π
e−

1
2
X2

σdX

µ′ =
2σ√
2π

∫ ∞
0

Xe−
1
2
X2

dX +
2µ√
2π

∫ ∞
0

e−
1
2
X2

dX

As µ = 0, then

µ′ =
2σ√
2π

∫ ∞
0

Xe−
1
2
X2

dX

Letting U = X√
2
, then dU = 1√

2
dX,

µ′ =
2σ√
2π

∫ ∞
0

√
2Ue−U

2√
2dU

µ′ =
2
√

2σ√
π

∫ ∞
0

Ue−U
2√

2dU

µ′ =
−
√

2σ√
π

e−U
2 |∞0

µ′ =

√
2√
π
σ (A.7)

Squaring equation A.7 gives

µ′2 =
2

π
σ2 (A.8)

Equation A.8 shows us that the result of the absolute and average

with a final square is proportional to the variance, or square and average,

by a factor of 2
π
. It is important to note, however, that this is only valid

for Gaussian data with zero mean.
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Appendix B

Reduced Bandwidth Images

The raw data for these images was captured using the Moor Instruments

Laser Doppler Line Scanner. The 3 images were processed using a

variety of processing algorithms and at a range of bandwidths. The

details of these algorithms and the comparison methodology can be

found in Chapter 4.
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Figure B.1: Image 1 evaluated over 6 bandwidths using FFT.
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Figure B.2: Image 1 evaluated over 6 bandwidths using FA8.
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Figure B.3: Image 1 evaluated over 6 bandwidths using

FA8APP.
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Figure B.4: Image 1 evaluated over 6 bandwidths using FA32.
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Figure B.5: Image 1 evaluated over 6 bandwidths using FIR

S.
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Figure B.6: Image 1 evaluated over 6 bandwidths using FIR

A.
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Figure B.7: Image 1 evaluated over 6 bandwidths using IIR.
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Figure B.8: Image 1 evaluated over 6 bandwidths using

DRAIJER.
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Figure B.9: Image 1 evaluated over 6 bandwidths using HILB

F.
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Figure B.10: Image 1 evaluated over 6 bandwidths using HILB

T.
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Figure B.11: Image 1 evaluated over 6 bandwidths using M2.
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Figure B.12: Image 2 evaluated over 6 bandwidths using FFT.
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Figure B.13: Image 2 evaluated over 6 bandwidths using FA8.
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Figure B.14: Image 2 evaluated over 6 bandwidths using

FA8APP.
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Figure B.15: Image 2 evaluated over 6 bandwidths using FA32.
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Figure B.16: Image 2 evaluated over 6 bandwidths using FIR

S.
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Figure B.17: Image 2 evaluated over 6 bandwidths using FIR

A.
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Figure B.18: Image 2 evaluated over 6 bandwidths using IIR.
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Figure B.19: Image 2 evaluated over 6 bandwidths using

DRAIJER.
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Figure B.20: Image 2 evaluated over 6 bandwidths using HILB

F.
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Figure B.21: Image 2 evaluated over 6 bandwidths using HILB

T.
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Figure B.22: Image 2 evaluated over 6 bandwidths using M2.
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Figure B.23: Image 3 evaluated over 6 bandwidths using FFT.
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Figure B.24: Image 3 evaluated over 6 bandwidths using FA8.

 

 

10 20 30 40 50 60

10

20

30

40

50

60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) 20 kHz

 

 

10 20 30 40 50 60

10

20

30

40

50

60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) 16 kHz

 

 

10 20 30 40 50 60

10

20

30

40

50

60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) 10 kHz

 

 

10 20 30 40 50 60

10

20

30

40

50

60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(d) 5 kHz

 

 

10 20 30 40 50 60

10

20

30

40

50

60

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(e) 2.5 kHz

 

 

10 20 30 40 50 60

10

20

30

40

50

60

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

(f) 1.25 kHz

Figure B.25: Image 3 evaluated over 6 bandwidths using

FA8APP.
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Figure B.26: Image 3 evaluated over 6 bandwidths using FA32.
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Figure B.27: Image 3 evaluated over 6 bandwidths using FIR

S.
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Figure B.28: Image 3 evaluated over 6 bandwidths using FIR

A.
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Figure B.29: Image 3 evaluated over 6 bandwidths using IIR.

238



 

 

10 20 30 40 50 60

10

20

30

40

50

60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) 20 kHz

 

 

10 20 30 40 50 60

10

20

30

40

50

60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) 16 kHz

 

 

10 20 30 40 50 60

10

20

30

40

50

60
0

0.1

0.2

0.3

0.4

0.5

0.6

(c) 10 kHz

 

 

10 20 30 40 50 60

10

20

30

40

50

60
0

0.05

0.1

0.15

0.2

0.25

0.3

(d) 5 kHz

 

 

10 20 30 40 50 60

10

20

30

40

50

60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(e) 2.5 kHz

 

 

10 20 30 40 50 60

10

20

30

40

50

60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(f) 1.25 kHz

Figure B.30: Image 3 evaluated over 6 bandwidths using

DRAIJER.
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Figure B.31: Image 3 evaluated over 6 bandwidths using HILB

F.
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Figure B.32: Image 3 evaluated over 6 bandwidths using HILB

T.
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Figure B.33: Image 3 evaluated over 6 bandwidths using M2.

240



Appendix C

Corrected Flow Values

The following images illustrate the input (real) flow versus the output

calculated flow value for simulated photocurrents at a range of

bandwidths, where the output is either directly calculated (no correction)

or corrected using Bayesian Inference techniques to attempt to move

towards gold standard values. These techniques are described fully in

Chapter 5. It can be seen that the correction recovers the sensitivity

to higher flow values, however the corrected outputs are still relatively

noisy. This noise level and the linearity are quantified in Figures 5.26,

5.27 and 5.28.
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Figure C.1: Recovered flow values for fs=5 kHz.
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Figure C.2: Recovered flow values for fs=7.5 kHz.
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Figure C.3: Recovered flow values for fs=10 kHz.

244



References

[1] K. Basak, M. Manjunatha, and P. K. Dutta. Review of laser

speckle-based analysis in medical imaging. Medical & Biological

Engineering & Computing, 50(6):547–558, Jun 2012.

[2] G. Belcaro. Laser Doppler. Med-Orion, London, 1994.

[3] T. Binzoni, A. Humeau-Heurtier, P. Abraham, and G. Mahe.

Blood perfusion values of laser speckle contrast imaging and laser

Doppler flowmetry: Is a direct comparison possible? Biomedical

Engineering, IEEE Transactions on, 60(5):1259–1265, 2013.

[4] T. Binzoni, T. S. Leung, A. H. Gandjbakhche, D. Ruefenacht, and

D. T. Delpy. The use of the henyey-greenstein phase function in

monte carlo simulations in biomedical optics. Physics in Medicine

and Biology, 51(17):N313–N322, Sep 7 2006.

[5] T. Binzoni, T. S. Leung, A. H. Gandjbakhche, D. Rufenacht, and

D. T. Delpy. Comment on ’the use of the henyey - greenstein

phase function in monte carlo simulations in biomedical optics’.

Physics in Medicine and Biology, 51(22):L39–L41, Nov 21 2006.

[6] T. Binzoni, T. S. Leung, D. Rufenacht, and D. T. Delpy.

Absorption and scattering coefficient dependence of laser-Doppler

flowmetry models for large tissue volumes. Physics in Medicine

and Biology, 51(2):311–333, Jan 21 2006.

[7] T. Binzoni, T. S. Leung, M. L. Seghier, and D. T. Delpy.

Translational and Brownian motion in laser-Doppler flowmetry of

245



large tissue volumes. Physics in Medicine and Biology, 49(24):5445–

5458, Dec 21 2004.

[8] T. Binzoni, T. S. Leung, and D. Van De Ville. The photo-electric

current in laser-Doppler flowmetry by monte carlo simulations.

Physics in Medicine and Biology, 54(14):N303–N318, Jul 2009.

[9] T. Binzoni, C. S. Seelamantula, and D. Van De Ville. A fast

time-domain algorithm for the assessment of tissue blood flow

in laser-Doppler flowmetry. Physics in Medicine and Biology,

55(13):N383–N394, Jul 7 2010.

[10] T. Binzoni and D. Van de Ville. Full-field laser-Doppler imaging

and its physiological significance for tissue blood perfusion. Physics

in Medicine and Biology, 53(23):6673–6694, Dec 7 2008.

[11] D. A. Boas and A. K. Dunn. Laser speckle contrast imaging in

biomedical optics. Journal of Biomedical Optics, 15(1), Jan-Feb

2010.

[12] R. Bonner and R. Nossal. Model for laser Doppler measurements

of blood-flow in tissue. Applied Optics, 20(12):2097–2107, 1981.

[13] D. I. Booi, I. B. J. G. Debats, W. D. Boeckx, and R. R. W. J.

van der Hulst. A study of perfusion of the distal free-tram flap

using laser Doppler flowmetry. Journal of Plastic Reconstructive

and Aesthetic Surgery, 61(3):282–288, 2008.

[14] G. Larry Bretthorst. Bayesian spectrum analysis and parameter

estimation / G. Larry Bretthorst. Lecture notes in statistics ; 48.

Springer-Verlag, 1988.

[15] J. D. Briers. Laser Doppler and time-varying speckle: A

reconciliation. Journal of the Optical Society of America A-Optics

Image Science and Vision, 13(2):345–350, Feb 1996.

246



[16] J. D. Briers. Laser Doppler, speckle and related techniques for

blood perfusion mapping and imaging. Physiological Measurement,

22(4):R35–R66, Nov 2001.

[17] Alexandra Brugler, Shaun Thompson, Scott Turner, Binh Ngo,

and Marc Rendell. Skin blood flow abnormalities in diabetic

dermopathy. Journal of the American Academy of Dermatology,

65(3):559–563, 2011.

[18] Haiying Cheng, Qingming Luo, Shaoqun Zeng, Shangbin Chen,

Jian Cen, and Hui Gong. Modified laser speckle imaging method

with improved spatial resolution. Journal of Biomedical Optics,

8(3):559–564, 2003.

[19] K. H. Chon, S. Dash, and Ju Kihwan. Estimation of respiratory

rate from photoplethysmogram data using time-frequency spectral

estimation. Biomedical Engineering, IEEE Transactions on,

56(8):2054–2063, 2009.

[20] V. Cizek. Discrete hilbert transform. Audio and Electroacoustics,

IEEE Transactions on, 18(4):340–343, 1970.

[21] Leon Cohen. Time-frequency analysis. Prentice Hall PTR, Upper

Saddle River, N.J, 1995.

[22] J. W. Cooley and J. W. Tukey. An algorithm for machine

calculation of complex Fourier series. Mathematics of Computation,

19(90):297–&, 1965.

[23] J. A. Crowe, J. Carpenter, and K. Hopcraft. An explanation for

the effectiveness of the ‘Draijer’ algorithm for high speed laser

Doppler perfusion imaging. Med Biol Eng Comput, 50(3):211–4,

Mar 2012.

[24] H. A. Daanen. Finger cold-induced vasodilation: a review. Eur J

Appl Physiol, 89(5):411–26, Jun 2003.

247



[25] D. De Backer, J. Creteur, J. C. Preiser, M. J. Dubois, and J. L.

Vincent. Microvascular blood flow is altered in patients with sepsis.

Am J Respir Crit Care Med, 166(1):98–104, Jul 1 2002.

[26] F. F. M. de Mul, M. H. Koelink, M. L. Kok, P. J. Harmsma,

J. Greve, R. Graaff, and J. G. Aarnoudse. Laser-Doppler

velocimetry and monte-carlo simulations on models for blood

perfusion in tissue. Applied Optics, 34(28):6595–6611, Oct 1 1995.

[27] F. F. M. de Mul, J. Vanspijker, D. Vanderplas, J. Greve, J. G.

Aarnoudse, and T. M. Smits. Mini laser-Doppler (blood) flow

monitor with diode-laser source and detection integrated in the

probe. Applied Optics, 23(17):2970–2973, 1984.

[28] Y. Degerli, F. Lavernhe, P. Magnan, and J. A. Farre. Analysis

and reduction of signal readout circuitry temporal noise in cmos

image sensors for low-light levels. IEEE Transactions on Electron

Devices, 47(5):949–962, May 2000.

[29] Arjen M. Dondorp, Piet A. Kager, Johan Vreeken, and Nicholas J.

White. Abnormal blood flow and red blood cell deformability in

severe malaria. Parasitology Today, 16(6):228–232, 2000.

[30] Klaus Dorschel and Gerhard Muller. Velocity resolved laser

Doppler blood flow measurements in skin. Flow Measurement

and Instrumentation, 7(3-4):257–264, 2006.

[31] M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen.

Time domain algorithm for accelerated determination of the first

order moment of photo current fluctuations in high speed laser

Doppler perfusion imaging. Medical & Biological Engineering &

Computing, 47(10):1103–1109, Oct 2009.

[32] M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen.

Twente optical perfusion camera: system overview and

248



performance for video rate laser Doppler perfusion imaging. Optics

Express, 17(5):3211–3225, Mar 2 2009.

[33] Matthijs Draijer, Erwin Hondebrink, Ton van Leeuwen, and

Wiendelt Steenbergen. Review of laser speckle contrast techniques

for visualizing tissue perfusion. Lasers in Medical Science,

24(4):639–651, 2009.

[34] L. E. Drain. The laser Doppler technique. J. Wiley, Chichester,

1980.

[35] E. J. Droog, W. Steenbergen, and F. Sjoberg. Measurement

of depth of burns by laser Doppler perfusion imaging. Burns,

27(6):561–568, Sep 2001.

[36] Shlomo Engelberg. Random signals and noise : a mathematical

introduction. CRC Press, Boca Raton ; London, 2007.

[37] P. Erba, D. Espinoza, N. Koch, T. Christen, A. Serov, and

W. Raffoul. Fluxexplorer: a new high-speed laser Doppler imaging

system for the assessment of burn injuries. Skin Res Technol, Feb

15 2012.

[38] Lee E. Estes, Lorenzo M. Narducci, and Richard A. Tuft.

Scattering of light from a rotating ground glass. J. Opt. Soc.

Am., 61(10):1301–1306, 1971.

[39] I. Fredriksson, M. Larsson, and T. Stromberg. Measurement depth

and volume in laser Doppler flowmetry. Microvascular Research,

78(1):4–13, Jun 2009.

[40] I. Fredriksson, M. Larsson, and T. Stromberg. Model-based

quantitative laser Doppler flowmetry. Journal of Biomedical Optics,

15(5):12, 07/09/2010 2010.

249



[41] M. Fries, W. Tang, Y. T. Chang, J. Wang, C. Castillo, and

M. H. Weil. Microvascular blood flow during cardiopulmonary

resuscitation is predictive of outcome. Resuscitation, 71(2):248–53,

Nov 2006.

[42] Hitoshi Fujii, Kunihiko Nohira, Yuhei Yamamoto, Hiroharu Ikawa,

and Takehiko Ohura. Evaluation of blood flow by laser speckle

image sensing. part 1. Appl. Opt., 26(24):5321–5325, 1987.

[43] P Gebuhr, JP Jorgensen, B Vollmer-Larsen, SL Nielsen, and

B Alsbjorn. Estimation of amputation level with a laser Doppler

flowmeter. Journal of Bone & Joint Surgery, British Volume,

71-B(3):514–517, May 1, 1989 1989.

[44] J.W. Goodman. Speckle Phenomena in Optics, Theory and

Applications. Roberts and Company, Englewood, Colorado, 2006.

[45] V. A. Grechikhin and B. S. Rinkevichius. Hilbert transform for

processing of laser Doppler vibrometer signals. Optics and Lasers

in Engineering, 30(2):151–161, 1998.

[46] P. C. Gregory. Bayesian logical data analysis for the physical

sciences: a comparative approach with Mathematica support.

Cambridge University Press, Cambridge, 2005.

[47] Q. Gu. An Analogue Integrated Circuit Design for Laser Doppler

Blood Flow Measurement. PhD thesis, University of Nottingham,

Nottingham, 2007.

[48] Q. Gu, B. R. Hayes-Gill, and S. P. Morgan. Laser Doppler blood

flow complementary metal oxide semiconductor imaging sensor

with analog on-chip processing. Applied Optics, 47(12):2061–2069,

Apr 20 2008.

[49] E. Haus. Chronobiology in oncology. Int J Radiat Oncol Biol

Phys, 73(1):3–5, Jan 1 2009.

250



[50] D. He. Full Field Laser Doppler Blood Flow Sensor. PhD thesis,

University of Nottingham, Nottingham, 2008.

[51] D. He, H. C. Nguyen, B. R. Hayes-Gill, Y. Zhu, J. A. Crowe,

G. F. Clough, C. A. Gill, and S. P. Morgan. 6464 pixel smart

sensor array for laser Doppler blood flow imaging. Opt. Lett.,

37(15):3060–3062, 2012.

[52] Diwei He, Chayut Kongsavatsak, Barrie R. Hayes-Gill, John A.

Crowe, and Stephen P. Morgan. 32 x 32 pixel array complementary

metal-oxide semiconductor imaging sensor for laser Doppler blood-

flow measurement. Optical Engineering, 50(5):054403–11, 2011.

[53] E. Higurashi, R. Sawada, and T. Ito. An integrated laser blood

flowmeter. Journal of Lightwave Technology, 21(3):591–595, Mar

2003.

[54] F. Holzle, D. J. Loeffelbein, D. Nolte, and K. D. Wolff. Free

flap monitoring using simultaneous non-invasive laser Doppler

flowmetry and tissue spectrophotometry. Journal of Cranio-

Maxillofacial Surgery, 34(1):25–33, Jan 2006.

[55] N. E. Huang, Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. N.

Zheng, N. C. Yen, C. C. Tung, and H. H. Liu. The empirical mode

decomposition and the Hilbert spectrum for nonlinear and non-

stationary time series analysis. Proceedings of the Royal Society of

London Series a-Mathematical Physical and Engineering Sciences,

454(1971):903–995, Mar 8 1998.

[56] A. Humeau, W. Steenbergen, H. Nilsson, and T. Stromberg. Laser

Doppler perfusion monitoring and imaging: novel approaches.

Medical & Biological Engineering & Computing, 45(5):421–435,

May 2007.

251



[57] Harold Jeffreys. An invariant form for the prior probability in

estimation problems. Proceedings of the Royal Society of London.

Series A. Mathematical and Physical Sciences, 186(1007):453–461,

September 24, 1946 1946.

[58] Gwilym M. Jenkins and Donald G. Watts. Spectral analysis and its

applications. Holden-Day series in time series analysis. Holden-Day,

San Francisco ; London, 1968.

[59] H. W. Jentink, F. F. M. de Mul, R. G. A. M. Hermsen, R. Graaff,

and J. Greve. Monte-carlo simulations of laser Doppler blood-flow

measurements in tissue. Applied Optics, 29(16):2371–2381, Jun 1

1990.

[60] Price N. B. Judy He. Hemoglobin level and red blood cell count

findings in normal women. JAMA: The Journal of the American

Medical Association, 167(5):563–566, 1958.

[61] S. W. Kim, S. C. Kim, K. C. Nam, E. S. Kang, J. J. Im, and D. W.

Kim. A new method of screening for diabetic neuropathy using

laser Doppler and photoplethysmography. Medical & Biological

Engineering & Computing, 46(1):61–67, Jan 2008.

[62] Donald E Knuth. Big omicron and big omega and big theta. ACM

Sigact News, 8(2):18–24, 1976.

[63] Martin Johannes Koehler, Tanja Vogel, Peter Elsner, Karsten

König, Rainer Bückle, and Martin Kaatz. In vivo measurement

of the human epidermal thickness in different localizations by

multiphoton laser tomography. Skin Research and Technology,

16(3):259–264, 2010.

[64] M. H. Koelink, F. F. M. de Mul, B. Leerkotte, J. Greve, H. W.

Jentink, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse. Signal-

252



processing for a laser-Doppler blood perfusion meter. Signal

Processing, 38(2):239–252, Jul 1994.

[65] C. Kongsavatsak, D. W. He, B. R. Hayes-Gill, J. A. Crowe,

and S. P. Morgan. Complementary metal-oxide-semiconductor

imaging array with laser Doppler blood flow processing. Optical

Engineering, 47(10):–, Oct 2008.

[66] P. Kvandal, S. A. Landsverk, A. Bernjak, A. Stefanovska, H. D.

Kvernmo, and K. A. Kirkeboen. Low-frequency oscillations of

the laser Doppler perfusion signal in human skin. Microvascular

Research, 72(3):120–127, Nov 2006.

[67] M. Larsson, W. Steenbergen, and T. Stromberg. Influence of

optical properties and fiber separation on laser Doppler flowmetry.

Journal of Biomedical Optics, 7(2):236–243, Apr 2002.

[68] Marcus Larsson and Tomas Stromberg. Toward a velocity-resolved

microvascular blood flow measure by decomposition of the laser

Doppler spectrum. Journal of Biomedical Optics, 11(1):014024–9,

2006.

[69] M. Leahy, editor. Microcirculation Imaging. Wiley-VCH,

Weinheim, 1st edition, 2012.

[70] M. Leahy, A. Liebert, and R. Maniewski. Evaluation of

different signal processing algorithms in laser-Doppler perfusion

measurements. Opto-Ireland 2002: Optics and Photonics

Technologies and Applications, Pts 1 and 2, 4876:120–127, 2003.

[71] Chungkeun Lee, Hang Sik Shin, and Myoungho Lee. Relations

between ac-dc components and optical path length in photoplethys-

mography. Journal of Biomedical Optics, 16(7):077012–077012,

2011.

253



[72] Craig Leising. Paper surface roughness with 3D profilometry -

http://www.nanovea.com/application notes/paperroughness.pdf,

accessed 20/11/2012 2010.

[73] Marcel Leutenegger, Erica Martin-Williams, Pascal Harbi, Tyler

Thacher, Wassim Raffoul, Marc Andr, Antonio Lopez, Philippe

Lasser, and Theo Lasser. Real-time full field laser Doppler imaging.

Biomed. Opt. Express, 2(6):1470–1477, 2011.

[74] L. G. Lindberg and P. A. Oberg. Optical-properties of blood in

motion. Optical Engineering, 32(2):253–257, Feb 1993.

[75] Robert Lohwasser and Gerald Soelkner. Experimental and

theoretical laser-Doppler frequency spectra of a tissuelike model

of a human head with capillaries. Appl. Opt., 38(10):2128–2137,

1999.

[76] P. J. Loughlin and K. L. Davidson. Modified Cohen-Lee

time-frequency distributions and instantaneous bandwidth of

multicomponent signals. IEEE Transactions on Signal Processing,

49(6):1153–1165, Jun 2001.

[77] Leonard Mandel and Emil Wolf. Optical coherence and quantum

optics. Cambridge University Press, Cambridge, 1995.

[78] S. M. Monstrey, H. Hoeksema, R. D. Baker, J. Jeng, R. S. Spence,

D. Wilson, and S. A. Pape. Burn wound healing time assessed

by laser Doppler imaging. part 2: validation of a dedicated colour

code for image interpretation. Burns, 37(2):249–56, Mar 2011.

[79] Stan Monstrey, Henk Hoeksema, Jos Verbelen, Ali Pirayesh, and

Phillip Blondeel. Assessment of burn depth and burn wound

healing potential. Burns, 34(6):761–769, 2008.

254



[80] MoorInstruments. Laser Doppler Imager 2 Brochure Issue 2

- http://gb.moor.co.uk/product/moorldi2-laser-Doppler-imager/8,

accessed 19/06/2012 2012.

[81] MoorInstruments. Laser Doppler Line Scanner 2 Brochure Issue

1 - http://gb.moor.co.uk/product/moorldls2-ld-line-imager/10,

accessed 19/06/2012 2012.

[82] S. P. Morgan, H. C. Nguyen, B. R. Hayes-Gill, Y. Q. Zhu, J. A.

Crowe, and D. W. He. Low resource processing algorithms for

laser Doppler blood flow imaging. Medical Engineering & Physics,

33(6):720–729, Jul 2011.

[83] G. S. Mudholkar and E. O. George. Remark on shape of logistic

distribution. Biometrika, 65(3):667–668, 1978.

[84] H. C. Nguyen. High Speed Processing For Laser Doppler Blood

Flow Imaging. PhD thesis, University of Nottingham, Nottingham,

2009.

[85] H. C. Nguyen, B. R. Hayes-Gill, S. P. Morgan, Y. Zhu, D. Boggett,

X. Huang, and M. Potter. A field-programmable gate array based

system for high frame rate laser Doppler blood flow imaging. J

Med Eng Technol, 35(5-6):306–15, Jul 2010.

[86] H. C. Nguyen, B. R. Hayes-Gill, Y. Q. Zhu, S. P. Morgan, and

IEEE. A high frame rate and high accuracy implementation using

an fpga for calculating laser Doppler blood flow. In 2008 IEEE

Instrumentation and Measurement Technology Conference, Vols 1-

5, IEEE Instrumentation & Measurement Technology Conference,

Proceedings, pages 212–217. IEEE, New York, 2008.

[87] NICE. New nice guidance on scanner

to help improve burns treatment -

255



http://www.nice.org.uk/newsroom/pressreleases/scannerimproveburnstreatment.jsp,

2011.

[88] G. E. Nilsson, E. G. Salerud, T. Strömberg, and K. Wärdell. Laser
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