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Abstract 
 
There is a need to breed for root systems architectures (RSAs) that optimise soil resource 

acquisition. This requires high resolution and high-throughput quantification of RSA in as 

natural an environment as possible. Current imaging techniques are limited by cost, 

reproducibility, throughput and complexity. This thesis describes (1) the construction of a 

low cost, high-resolution, root phenotyping platform that requires no sophisticated 

equipment which is adaptable to most laboratory and glasshouse environments and (2) its 

application to quantify environmental and temporal variation in RSA between genotypes of 

Brassica rapa L. 

 

The high resolution root phenotyping system (HRP) that was constructed employed 24 

scanners and could screen up to 72 individual plants at any time, with the possibility of 

capturing thousands of root images daily depending on the operational number of scanners 

and scanning periodicity. Plants were supplied with a complete nutrient solution through 

the wick of a germination paper. Images of RSA were acquired automatically, over extended 

periods, using multiple scanners controlled by customised software. The RSA data was used 

to validate a mechanistic model and mixed effects models were used to describe the 

sources of variation in traits contributing to RSA. Plants were also grown in rhizoboxes and 

under varying concentrations of P ([P]ext). 

 

Broad-sense heritability (H2), was highest (≥ 0.70) for shoot biomass, length of primary roots 

(PRs), number of lateral roots (LRs). Coefficients of variation in RSA traits within a genotype 

were large and ranged between 5 and 103%. It was found that between 4 and 48 replicates 

were needed to detect a significant difference (95% CI, 50% difference between trait 

means). Significant differences were found between genotypes in root traits with strong 

positive correlations among RSA traits and between biomass and RSA traits. Principal 

component analyses identified 5 significant axes of variation, accounting for approximately 

86 and 78% of the variation in the genotypes on paper and soil substrates, respectively. 

Cluster analysis of the genotypes produced 5 discrete groups. Genotypes with more or less 

shoot biomass or with bigger or smaller RSA could be distinguished. 
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A density-based 2D model reproduced experimental results accurately by simulating PR 

length and total length of LRs. Mixed-effects statistical models demonstrated that root traits 

show temporal variations of various types with significant effects of genotype. All genotypes 

followed a similar growth pattern with time, but differed in their maximum total root length 

(TRL), primary root length (PRL) and LR growth. A 3-parameter logistic model satisfactorily 

described TRL and PRL when genotypes were grown on both paper and soil substrates. On 

paper substrate, TRL required only a single, random-effect parameter (asymptote), 

describing maximum  TRL. On soil substrate, TRL required two random-effects parameters, 

asymptote and inflection, describing maximum TRL and time at which ½ of maximum TRL 

occurs, respectively. Primary root length on both paper and soil substrates required only a 

single, random-effect parameter, describing maximum PRL. The growth rate of LRs of all 

ages followed a quadratic function and required only a single, random-effect parameter, 

describing maximum growth rate.  

 

There was variation in specific RSA traits and plasticity in response to [P]ext among 

genotypes. Length of the apical un-branched zone of the PR increased with increasing [P]ext. 

Total root length, total LR length and number of LRs was positively correlated with total 

plant tissue P concentration at low [P]ext but not at high [P]ext. Paper substrate was more 

suitable for screening seedling root traits but root phenotypes must be validated in situ in 

the field or in soil media because some differences were evident between data observed on 

paper and soil substrates.  

 

Scanner-based phenotyping of RSA provides economical means of studying the mechanisms 

underlying the plant-soil interactions and can be used to quantify environmental and 

temporal variation in traits contributing to RSA. The HRP system can be extended to screen 

the large populations required for breeding for efficient resource acquisition. The necessity 

for high replication and time-consuming image analysis could however limit throughput in 

the phenotyping system. 
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 : BACKGROUND AND LITERATURE REVIEW CHAPTER 1

1.0 Background  
The growth, morphology and physiology of roots are intimately linked to plant genotype and 

the properties of the soil or medium in which they grow. Crop plants have evolved many 

root adaptations for acquiring soil nutrients such as nitrogen (N), potassium (K) and 

phosphorus (P). This adaptability (plasticity) of roots is of particular importance for acquiring 

resources with low phytoavailability such as P (George et al., 2011a; Hammond et al., 2009; 

Hammond and White, 2008; Lynch, 2011; White et al., 2009). Brassica crops, for example, 

adapt to P limiting conditions through the initiation and rapid growth of lateral roots (LRs; 

Hammond et al., 2009; Lynch and Brown, 2008; White et al., 2005). Accurate measurements 

of root system features can be used to predict plants’ ability to acquire water and nutrients 

and help screen for root architectural traits that might increase agricultural productivity 

(Gregory et al., 2009). Root system measurements will provide data with which growth and 

developmental patterns of roots can be formalised for the development of architectural 

models for resource acquisition. Accurate and precise root phenotyping strategies would 

provide for training genomic selection models in plant improvement (Cobb et al., 2013).  

 

Ideally, root systems must be studied continually, directly and non-destructively in the soil 

in which they grow. Unfortunately, the opaque nature of the soil makes these sorts of 

measurements difficult. Traditional methods for measuring roots in the soil such as 

excavation of the root system (Harrington et al., 1989; Jackson, 1995; Trachsel et al., 2011), 

coring methods (Kücke et al., 1995; Nadelhoffer and Raich, 1992), soil monoliths (Buman et 

al., 1994; Kücke et al., 1995) and trench profiles (Bohm, 1979; Kücke et al., 1995) are 
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destructive, slow and difficult (Smit et al., 2000). As a result there is still paucity of reference 

data for many crops on within and between-genotype variations in root traits.  

 

Recent advances in imaging using Neutron or X-ray imaging for example is providing new 

ways to measure roots in soil (Pierret et al., 2003a). These emergent technologies however 

have limitations due to cost, reproducibility, throughput and complexity of installation. If 

the generation of phenotypic data will be at par with that of genotypic information, it is vital 

that new cost-effective, increased throughput and easily accessible approaches of studying 

root systems are developed. The development of phenotyping procedures capable of 

generating accurate, precise and pertinent information is now vital and this requires easily 

automated phenotyping pipeline. This thesis describes the development of a low cost, high-

resolution root phenotyping (HRP) system that employs commonly used optical scanners to 

generate data to characterise genotypic variations in root system. This thesis further 

describes the application of the HRP system to generating data for statistical and 

mechanistic modelling and its application to phenotypic selection of root phenotypes with 

efficient P acquisition. 

1.1 Phosphorus sustainability of crop production 
Agriculture faces tremendous challenges due to escalating world population and looming 

change of the climate. Also very prominent among the constraints to global food security is 

imminent threats of water scarcity and limited availability of plant nutrients, the mineral 

elements required for plants growth (Roy et al., 2006). Out of the 17 elements required by 

plants to achieve optimal growth and productivity, 14 are acquired primarily from the soil 

solution (Vance et al., 2003; White et al., 2005). These include six macro elements namely N, 

P, K, calcium (Ca), magnesium (Mg) and sulphur (S) and eight microelements namely 
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chlorine (Cl), boron (B), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), nickel (Ni) and 

molybdenum (Mo) (White et al., 2005; White and Brown, 2010). Crop production is often 

limited by low  phytoavailability of essential mineral elements (White and Brown, 2010) with 

P being the second most limiting essential element after N in the majority of soils (Osivand 

et al., 2009; Ramaekers et al., 2010; Vance, 2001). An estimated third of total arable land 

contains inadequate P for sustainable crop production (Vance et al., 2003). Based on cereal 

production, global average yield and total production losses arising from P deficiency is 

approximately 1093 kg ha-1 and 491.5 x 106 kg y-1 respectively (Tan et al., 2005). 

Development of high yielding crop genotypes capable of acquiring and using P efficiently is 

thus considered a vital task for the attainment of global food security. 

 

The availability of any soil nutrient to the plant is primarily dependent on the soil’s capacity 

to release that nutrient into the region of the soil subject to the influence of plant roots, the 

rhizosphere. Phosphorus is acquired as phosphate (Pi), mainly in the form of 

orthophosphate (H2PO4
−) (Amtmann et al., 2005; Vance et al., 2003) and although there is 

substantial quantity of P in the lithosphere, Pi is sparingly available to plants. The 

concentration of Pi in the rhizosphere solution generally ranges between 2 and 10 μM 

(Marschner, 1995; Schachtman et al., 1998; Vance, 2001; Yang and Finnegan, 2010). Some 

amount of soil P is present as labile Pi bound to soil particles, but most soil P often form 

complexes with aluminium (Al) and Fe under acidic conditions (George et al., 2011a; Vance, 

2001; Vance et al., 2003). In alkaline environments, P forms complexes with Ca (King, 2005; 

Vance, 2001; Vance et al., 2003). Greater amount of P is thus fixed particularly in calcareous 

soils (Akhtar et al., 2007; Akhtar et al., 2008a; Akhtar et al., 2009; George et al., 2011a; 

Raghothama, 1999; Schachtman et al., 1998; Vance, 2001).  
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Low phytoavailability of P in the soil solution has consequently necessitated increased 

application of P fertilizers. Approximately 85% of the processed P is used as agricultural 

fertilizer and as a mineral source for animal nutrition (Dawson and Hilton, 2011). 

Phosphorus fertilizers are however produced from finite supplies of rock phosphate (RP) 

(Cordell et al., 2009; Hammond et al., 2009; White and Brown, 2010). Unfortunately, while 

the quality of RP is said to be rapidly declining, its extraction is also estimated to peak soon 

(Cordell et al., 2009). Recent estimates of RP reserve suggest that at the current rate of use 

of P, the expected time-frame of availability of reserves is between 300 and 400 years 

(Dawson and Hilton, 2011). Moreover, viable sources of RP are found only in limited places 

worldwide, which may cause economic and geopolitical crises (Cordell et al., 2009). 

 

The exploitation of P fertilizers could also become non-viable for many farmers around the 

world, with severe implications for small scale farmers in developing nations (Kumar et al., 

2009; Vance et al., 2003). Moreover, the financial costs involved in the use of P fertilizers 

might rise with possible introduction of financial instruments aimed at achieving goals of 

climate change, the water framework directives, and other soil management targets 

(Hammond et al., 2009). Accordingly, high P fertilizer prices will constraint low-input 

systems and amount to a substantial production cost in high-input systems (Vance et al., 

2003).  

 

Potentially, environmental implications could also arise from greenhouse gas emissions 

resulting from the quarrying, production and transport of the RP. In the USA for example, 

continuous application of P fertilizers is creating soil P accumulation to levels in surplus of 
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crop needs (Daniel et al., 1998; Sharpley et al., 2003). The excess P could move to enrich 

neighbouring surface waters (Hammond et al., 2009; Lambers et al., 2006; Vance, 2001). 

The resulting eutrophication has negative effects on both aquatic and terrestrial habitats 

(White et al., 2005; Yang and Finnegan, 2010). Furthermore, cadmium (Cd), a toxic 

substance to man has been shown to be contained in phosphatic fertilizers and RP has been 

suggested to be the sole source of the fertilizer Cd (Williams and David, 1973). Rising levels 

of Cd in soils increases the amounts of Cd available for plant uptake and could be harmful to 

human health (Lambers et al., 2006; Modaihsh et al., 2001; Rafiq et al., 2006; Williams and 

David, 1973). In addition to the current problem of climate change, these trends pose a 

threat against the attainment of world food security goals and therefore necessitate urgent 

remedial actions (Raven, 2008). 

1.2 Phosphorus use efficiency (PUE) 
Nutrient-efficient plants are capable of producing higher yields per unit of nutrient applied 

or absorbed from the soil solution compared with other plants grown under similar agro-

ecological conditions (Fageria et al., 2008; Wang et al., 2010). Phosphorus efficient plants 

could either produce comparable yields with lower inputs of inorganic Pi fertilizers or have 

reduced physiological P requirements and tissue P concentrations (Hammond et al., 2009). 

Breeding for root traits to increase the efficiency with which P is acquired thus offer a 

promising route to minimise the use P fertilizers. Phosphorus acquisition efficiency (PUpE) 

represents the increase in the P content in a plant tissue in relation to unit of added P 

fertilizer (g P g-1 Pfertlizer), whereas P utilization efficiency (PUtE) denotes the increase in crop 

yield as a result of a unit increase in the crop’s P content (g DM g-1 P). Among the common 

propositions of phosphorus use efficiency (PUE), agronomic PUE is commonly used 

(Hammond et al., 2009; White et al., 2005). Agronomic PUE reflects plant's ability to 
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produce higher yield per unit of P applied as fertilizer or available in the soil. It is equivalent 

to the product of PUpE and PUtE (Table 1.1).  

Table 1.1: Definitions of phosphorus use efficiency (Hammond et al., 2009) (Yhigh=yield on a high P/fertilized 
soil; Ylow = yield on a low P/unfertilized soil; Phigh = tissue P concentration on a high P/fertilized soil; Plow = tissue 
P concentration on a low P/unfertilized soil; ∆Papp = difference in amount of P applied as fertilizer between high 
and low P treatments; DM = dry matter; Pf = fertilizer P). 

Name Abbreviation  Calculation Units 
Agronomic P use efficiency APUE (Yhigh-Ylow)/∆Papp g DM g-1 Pf 
P uptake efficiency PUpE [(Phigh x Yhigh)-(Plow x Ylow)]/∆Papp g P g-1 Pf 
P utilization efficiency PUtE (Yhigh-Ylow)/[(Phigh xYhigh)-(Plow xYlow)] g DM g-1 P 
Physiological P use efficiency PPUE Yhigh/Phigh or Ylow/Plow g2 DM g-1 P 
P efficiency ratio PER Yhigh/(Phigh x Yhigh) or Ylow/(Plow x Ylow) g DM g-1 P 

 

Genetic approaches to increase crop yield on soils deficient in P have targeted enhancing P 

acquisition by roots and tissue P utilisation (White and Hammond, 2008b). Moreover, crop 

plants differ in their agronomic PUE and plants’ PUpE is positively correlated with root 

architecture (Akhtar et al., 2008a, b; Hammond et al., 2009). For example, root gravitropism 

determines the relative distribution of roots in the soil profile and therefore may influence 

PUpE (Liao et al., 2004). Furthermore, the acquisition of P by plants and the efficient use of 

P in the plant are genetically determined and the genetic variation is largely attributable to 

PUpE (Akhtar et al., 2008a, b; White et al., 2005). Since, P acquisition efficiency can be 

improved by plant breeding; the exploitation of genetic variation in root architecture and its  

plastic responses to mineral elements in the soil  thus presents a promising tool to cope 

with plant P limitation (Akhtar et al., 2008a; Beebe et al., 2006; Hammond et al., 2009; 

White et al., 2005). It is essential therefore to understand the genetic variation and the 

biology of root architectural traits in order to identify mechanisms which could be used to 

design crops for efficient acquisition and use of soil P (Liao et al., 2001). 
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1.3 Variation in PUE 
Differential response of several crops to P nutrition has been reported (Akinrinde and 

Gaizer, 2006; Fageria and Baligar, 1997; Fageria et al., 1988; Hammond et al., 2009; 

Hammond and White, 2008; Ozturk et al., 2005; White et al., 2005). Extensive natural 

variation for several parameters including PUE, root uptake, root-shoot translocation and 

seed P content has been reported in many species (Alonso-Blanco et al., 2009). For example, 

out of 35 cowpea lines assessed for P response on soil of a P-deficient alfisol, P fertilizer 

significantly enhanced shoot, root, grain dry weights and nodule weight, with over 50% of 

the lines showing significant response to P (Kolawole et al., 2002). Environment and 

genotype interaction play a major role in the variation of P acquisition and PUE (Iqbal et al., 

2001). Thus, crop genotypes behave differently at low and high soil P levels and high 

yielding crop varieties need suitable soil environment to achieve optimum yield.  

 

Efficient and responsive crop genotypes could be described in terms of two situations 

namely P-limited (Plim) or P-optimum (Popt) soil conditions. P-efficient genotypes are capable 

of producing higher yield in Plim conditions (i.e.: with lower supply of P fertiliser than 

commonly used for the crop). P-responsive genotypes are capable to attain economically 

significant increases in productivity in Popt conditions (i.e.: with quantities of P fertiliser 

higher than normally used in a given environment) (Parentoni et al., 2012). Based on a 

presentation by Fageria and Baligar (1993), crop genotypes could consequently be 

categorised into four groups using their performance under Popt and Plim soils: i) efficient and 

responsive (ER)-genotypes which produce more than average yield and higher than average 

P-use both in Plim and Popt environments; ii) efficient and non-responsive (ENR)- genotypes 

which produce more than average yield, but PUE is less than average in Popt conditions. 

7 
 



Thus, these have high productivity under Plim but do not respond to increases in P supply; iii) 

non-efficient and responsive (NER)-genotypes which produce less than average dry matter 

yield, but PUE is higher than average. Thus, these produce below average yield under Plim 

but they respond positively to increases in P supply with above average yield in Popt 

conditions and iv) non-efficient and nonresponsive (NENR) - genotypes which produce less 

than average yield and less than average PUE both in Plim and Popt condtions (Cock et al., 

2002; Fageria and Baligar, 1993, 1997; Parentoni et al., 2012; Shenoy and Kalagudi, 2005; 

White et al., 2005). In general, ER genotypes are the most desirable for production 

purposes, but more importantly these differences in P-use have been observed to be 

genetically controlled (Cock et al., 2002; Fageria and Baligar, 1993) and thus, potentially 

could be harnessed to enhance crop productivity on P-limited soils.  

 

Sufficient tissue P concentration is required for plant cell functions. The tissue P 

concentration that produces 90% of the maximum yield is termed the “critical” P 

concentration. In other words, the critical P value is reached when 10% of the maximum 

yield is lost due to P deficiency. Maximum yield here may be defined as the highest yield 

when growth is not limited by factors including deficiencies in other mineral elements, 

diseases or pests, soil water, acidification and compaction. The critical P concentration can 

be determined statistically from the relationship between yield and tissue P concentration 

(Bolland, 2007; Liu, 2007). Genetic variation in tissue P concentration has been reported for 

many crop plants (Broadley et al., 2004) including ryegrass (Breeze and Hopper, 1987); rice 

(Fageria et al., 1988); tomatoes (Lee, 1998); wheat (Ozturk et al., 2005); maize (Chen et al., 

2009) and (Akhtar et al., 2007; Akhtar et al., 2008a; Akhtar et al., 2009; Broadley et al., 

2010; Hammond et al., 2009). Factors that alter the critical tissue P concentration include 
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growth rate, plant tissue age, and genotype (Liu, 2007; White and Hammond, 2008b). 

Greenwood et al. (1980) noted that the essential tissue P for maximum growth usually 

declines as plants get larger because in older plants, a greater proportion of photosynthate 

is directed towards structural support of the plant.  

 

Crop plants also differ in the efficiency by which they acquire P from the soil (Hammond et 

al., 2009; Lambers et al., 2006; White et al., 2005; White and Hammond, 2008a; White and 

Hammond, 2008b). Phosphorus acquisition efficiency is associated with the ability of crops 

to mobilise Pi from poorly soluble sources or to take up Pi in the soil (Gahoonia and Nielsen, 

1996; Narang et al., 2000; Ramaekers et al., 2010; Zhang et al., 2009). Phosphorus 

acquisition efficient plants employ a number of genetically determined adaptive 

mechanisms including alterations in their root systems for better growth on poor P soils 

(Gahoonia and Nielsen, 1996; Lambers et al., 2006; Narang et al., 2000). Genotypic 

differences in the morphology of root systems points to the possibility of exploiting 

selection and breeding of crop genotypes with extensive root systems for efficient use of 

soil P resources and increased agricultural yield. 

1.4 Phosphorus acquisition 
Three processes may be involved in the uptake of P: root interception, diffusion and mass 

flow (Barber, 1984; Marschner, 1995; Syers et al., 2008). Whilst these processes may be 

mutually inclusive, prevailing soil conditions determines which is exploited at any point in 

time. For successful root interception, root must grow into the region rich in the nutrient. 

Given that roots occupy only small space in the soil volume, root interception of Pi is often 

inadequate to supply the full plant P needs (Barber, 1984). During mass flow, soluble P 

present in the soil solution flow to the root as water and is taken up by the roots. Mass flow 
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is thus influenced by water movement to the root, and P concentration in the soil solution 

(Syers et al., 2008). Unfortunately, P concentration in the soil solution is very low and so 

majority of P moves to root surface through diffusion (Hinsinger, 2001). The absorbing 

power of the root is dependent on the metabolism of the root and the P status of the plant 

and the amount of P required at the root surface as determined by the depletion profile 

that develops with time (Barber, 1984; Hinsinger, 2001; Syers et al., 2008; Tinker and Nye, 

2000).  

1.5 Root system architecture (RSA) 
Roots grow through elongation and branching, both the magnitude and direction of their 

elongation depend on local environmental conditions, physiological status of the plants and 

the type of root (Malamy, 2005). This leads to formation of complex arrangement, in space 

and time, of numerous interconnected roots, which is termed the Root System Architecture 

(RSA). RSA is thus the three dimensional geometry of the root system (Lambers et al., 2006; 

Lynch, 1995; Vance et al., 2003). Three features of the root system combine to form its 

architecture; the root system topology, distribution and the morphology (Fitter, 1985, 1991; 

Lynch, 1995). 

Topology represents how individual roots are branched and he ecologist Alastair H. Fitter is 

among the pioneers in exploring the details of root system topology (Fitter, 1985, 1986, 

1987, 1991, 2002; Fitter et al., 1991). Employing a simulation model of root growth, he 

described roots as a branching tree with the links or internodes as its unit of classification. 

Two links are distinguishable: an external link (E) - a root between a meristem and 

secondary root and an internal link (I) - a root lying between two secondary root axes or an 

axis and stem (Fitter, 1986). Features of links include lengths and diameters, number of 
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roots originating from a node, root insertion angles, magnitude (µ, the number of root tips) 

and the altitude (ɑ, number of branching points from the base to the extreme root tip) 

(Fitter, 1986; Glimskar, 2000). Although, the µ is indicative of the root system size, multiple 

root systems of same µ may vary in soil exploration efficiency depending on the length of 

their links. Longer links that exhibit predominant branching on the main axis (herringbone) 

may be more efficient at soil exploration than root systems where all E form new branches 

with equal probability (dichotomous) (Figure 1.1). Herringbones structures are however 

associated with large tissue volumes and hence high construction cost (Fitter, 1991). 

Estimates of topology may however be dependent on the plant’s ontogeny. Glimskar (2000) 

observed that topology estimates changed with plant size in grasses, a phenomenon that 

may make regression-based topological indices difficult to interpret. This observation raises 

questions about the relevance of root topology for plant performance particularly for 

dynamic traits such as dynamics of root growth angles that may change with the growth of 

the plant. 

 

 

 

 

 

 

Figure 1.1: Schematic representation of (A) herringbone and (B) dichotomous topological patterns showing link structure, I 
= internal, E = external and altitude, which is the number of links in the longest pathway through the root system, and has a 
value of seven in this illustration (after (Fitter, 1991)) 
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Measures of the spatial distribution of roots simplify the dissection of root systems (Lynch, 

1995). Root distribution is affected by soil physical properties such as bulk density, drainage, 

porosity and soil compaction. It indicates the soil health status and could so inform soil 

management practices. Root distribution often is measured from traits such as biomass and 

length and is expressed as a function of soil depth or position in the rhizosphere. Unlike 

topology and morphology, the distribution of root system could be obtained via destructive 

sampling and this is often measured to quantify the fraction of soil resources available to 

roots (Bengough et al., 2000).  

 

Root morphology on the other hand refers to the external features of a root axis considered 

as an organ and may include properties of roots hairs, root diameter and trend of secondary 

root emergence. Most general descriptions of RSA have however only concentrated on the 

entire root system or bigger sub sets of it at the expense of minute root features such as 

root hairs. In order to obtain a complete picture of RSA, the three features of the root 

system mentioned above must be measured. A description of the topology is important 

because of it functional significance. Other variables that may alter the functioning of RSA 

such as the duration or longevity of individual root parts and the presence of symbiotic 

associations are also important to measure (Fitter, 1987). Specific root length (SRL), the root 

length per unit dry weight measures the soil exploited per unit root biomass.  The SRL 

measures the allocation strategy within-roots and could be a good indicator of the relative 

soil exploitation but not of root diameter for which it is sometime used (Atkinson, 2000). 
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1.6 Root structure and function 
Primarily, functions of roots include subterranean anchorage and the absorption of soil-

based resources such as water and nutrients (Fitter, 1987; Kramer and Boyer, 1995; Osmont 

et al., 2007). Other roles of the root system are considered secondary and may include 

phyto-hormone synthesis of essential compounds such as cytokinins, and photo-assimilate 

storage of food reserves common in plants such as onion (bulbs), cocoyam (corms), yam 

(tubers) and pineapples (rhizomes). Some roots, particularly tap roots of desert plants also 

have the capacity to store large amounts of water (Graham and Nobel, 1999). Smucker 

(1993) noted that root systems may function in respiration of photosynthesis and in the 

maintenance of balance between below- and above-soil biomass. Root respiration is 

particularly common in epiphytic orchids and aerial roots of mangrove. The vital functions 

served by root systems are closely linked to the soil in which they reside. Thus, depending 

on the soil’s composition, differences in root system morphology may affect root function 

capabilities in the soil (Fitter, 1987; Osmont et al., 2007).  

 

Roots axes are categorised into four classes depending on the site of emergence on the 

plant. The tap or primary root (PR) is the embryonic first root to emerge from the seed and 

may be visible two or three days after germination. Anatomically, the structure of PR is 

simple and defined, showing little variability and thus possesses a stable morphological 

system (Hochholdinger et al., 2004a; Hochholdinger et al., 2004b; Zobel and Waisel, 2010). 

Lateral roots (LRs) refer to post-embryonically formed and branched roots from other roots 

and may initiate from the pericycle in about four days after germination (Hoecker et al., 

2006). Shoot-borne and basal roots respectively originate from the shoot tissues and the 

hypocotyl (Zobel and Waisel, 2010).  
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In simple terms, plants are distinguished into dicots and monocots. This gives rise to two 

types of root systems: tap and fibrous root systems (Figure 1.2). In tap root systems, 

exemplified by crop plants such as brassicas, legumes and Arabidopsis, there is a single main 

root axis, the PR which remains the largest root with smaller LRs originating from it (Figure 

1.2a) (Dickison, 2000; Doussan et al., 2006). Tap root systems, also termed allorhizic 

systems, usually lack adventitious roots although these can arise from the hypocotyl 

especially when the plant is wounded (Osmont et al., 2007). Conversely, fibrous root 

systems (Figure 1.2b), exemplified by grasses have many adventitious roots of nearly equal 

size emerging from the seed with multiple branches parallel to the PR (such adventitious 

roots are referred to as seminal roots in monocots). Fibrous root systems, also called 

homorhizic systems, are relatively shallower and can be differentiated based on diameter 

class classifications (Bohm, 1979; Osmont et al., 2007).  

 

Figure 1.2: Schematic representation of root system types (a) a typical tap root system in 5-day-old and 12-day-old 
seedlings; (b) a typical fibrous root system in 7-day-old and 14-day-old seedlings. Root hairs are not represented; PR, 
primary root; LR, lateral root; CR, crown root (from (Osmont et al., 2007)) 

 

1.7 Root-soil interactions  
Rhizosphere refers to the zone of soil under the control or direct influence of root systems. 

Modifications of soil properties in the rhizosphere are essential for efficient resource 
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capture (Cheng and Kuzyakov, 2005). For example, through rhizodeposition, C compounds 

are released into the surrounding soil, consequently altering the physio-chemical 

composition of the soil. Roots also serve as host for many soil microbes whose proliferation 

in or outside of the surface of roots are inadvertently catalysed by the release of C from root 

cells to the rhizosphere (Gregory, 2006; Lambers et al., 2009). Increased rhizodeposition can 

in turn stimulate mineralization of N from recalcitrant soil organic matter (SOM) pools (de 

Graaff et al., 2009).  

 

Fageria and Moreira (2011) have distinguished three changes in the rhizosphere: physical, 

chemical and biological. Physical changes include changes in temperature, water availability, 

and soil structure. Modification of soil pore space geometry is for instance one of the 

dominant ways by which root systems affects the physical properties of the soil. This in turn 

may have important implications for the bulk density, drainage and other fluid properties as 

well as aggregation of the soil which also controls soil biological and hydrologic properties. 

Chemical changes include changes in pH, redox potential, root exudates and allelopathy. 

Other main chemical soil properties likely to be influenced by root system growth include 

SOM decomposition and nutrient concentration. Biological changes such as microbial 

association and nitrogen fixation are also common root-induced changes in the local soil 

environment.  

 

Soil properties also impact greatly on root systems. For example, a greater proportion of 

root biomass of arable crops is found in the 0 - 20 cm topsoil, an occurrence that may be 

associated with greater SOM, nutrients, aeration, and water availability in the topsoil 
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compared to lower soil depths. For most crops, physical constraints exerted by the soil 

affect water retention, soil aeration and root growth, whilst chemical constraints mostly 

influence nutrient status of the soils and hence the plant. These constraints however differ 

spatially and temporally (Bengough et al., 2006; Bengough et al., 2011; Whitmore and 

Whalley, 2009). 

 

Root system growth is an irreversible and ontogenetic change in the biomass of different 

root axes measured in size, form or number (Hunt, 2003; Paine et al., 2012). During root 

growth, new cells are formed at the root tip and elongated at the zone proximal to the 

meristem, leading to a permanent stream of new cells through the growth zone of root tips 

(Walter and Schurr, 2005). Environmental effects on root growth dynamics are very 

complex.  In very simple terms, the environmental factors that affect dynamic root growth 

behaviour either act independently or in combination, directly through the effects of 

physical and chemical conditions on primary cell growth processes, or indirectly via 

developmental adaptation to promote or limit root elongation. For example, roots in 

compacted or dry soils have slow growth (Bengough et al., 2006; Bingham et al., 2009). An 

investigation on the effect of soil compaction on the dynamics of root growth in barley 

(Hordeum vulgare L.) revealed that soil compaction reduced the total length of root 

produced but not mortality (Figure 1.3). Indirect constraints on root growth are exemplified 

by developmental plasticity of root systems (Bingham et al., 2009). 
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Figure 1.3: Visible root length (current), cumulative total length produced and length of dead and decayed root 
at the observation window (a section of rhizotron constructed with transparent acrylic sheet to facilitate 
visualisation of roots) 20-28 cm below the soil surface in loose (a) and compacted (b) soil (Bingham et al., 2009) 

 

1.8 Root Plasticity 
Quantitative traits are expressed differently in diverse environments. Phenotypic plasticity is 

the capacity of a single genotype to express variable phenotypes in different environments 

(Whitman and Agrawal 2009). For example, plasticity in the phenotype of a plant occurs 

when a single genotype produces different phenotypes in different environments. This 

exemplifies genotype-by-environment interaction (G×E) by plants. Plasticity could thus be 

said as a subset of G x E where G x E is the effect of a locus (i.e.: a chromosomal region) that 

changes in magnitude or direction across environments (Des Marais et al., 2013). Thus, G x E 

occurs when a single genotype differ in magnitude or direction of the expressed plasticity.  

Root development is also highly dependent on the environment (Bell and Sultan, 1999; 

Gerald et al., 2006). The plasticity of RSA arises due to responses of individual root 

meristems to factors including light regime (Yazdanbakhsh and Fisahn, 2009) temperature 

fluctuations (Walter and Schurr, 2005), soil water status (Eapen et al., 2005) or nutrient 

availability and concentration (Bai et al., 2013). For example, under constant temperature, 

no diurnal variation in root growth was observed in maize (Zea mays L.) seedlings but 
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velocity and relative growth rate at 21 °C and 26 °C were different (Walter et al., 2002). 

Similarly, with adequate provision of water, roots of maize (Zea mays L.) elongated to a soil 

depth of 60 cm with the greatest percentage of total root length (TRL) found between 20 

and 40 cm. In contrast, suboptimal provision of water restricted root growth in the top soil 

and increased deeper root penetration resulting in higher soil water depletion rates at 

depth, compared with the soil of the well watered plants (Sharp and Davies, 1985). Plasticity 

accounts for a large fraction of the variability in the RSA and it demonstrates an adaptation 

to intra- and inter-specific competition. For example, crop species with faster root growth 

may respond more efficiently to nutrient-rich patches in the soil than species with slower 

root system growth. In nutrient-deficient conditions, plasticity in root system growth may 

be positively correlated with soil resource acquisition and species with faster root system 

growth might thus be superior in adjusting their RSA in resource-limited environments. 

 

Root development is highly sensitive to changes in the supply and distribution of inorganic 

nutrients in the soil. The nutrient supply can affect root development either directly, as a 

result of changes in the external concentration of the nutrient, or indirectly through changes 

in the internal nutrient status of the plant (Forde and Lorenzo, 2001). When external 

nutrient supply is sensed by plants, the roots integrate and translate the cues into a range of 

developmental outputs. These include changes in root growth and branching rate, root 

diameter size, root growth angles, root hair length and density and regulation of root 

gravitropism (Forde and Lorenzo, 2001). For example, when roots encounter nutrient rich 

zones, they often proliferate via increased production of root biomass (Hodge et al., 2000a); 

elongation of individual roots (Zhang et al., 1999); increased TRL (Hodge et al., 2000b); and 
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increased initiation of LRs (Farley and Fitter, 1999; Hodge, 2004). Also, bean roots may 

change their geotropic curvature and the proportion of root system in the topsoil in 

response to low P availability in order to explore the topsoil where concentration of P is 

normally greater than in the subsoil (Bonser et al., 1996; Lynch and Beebe, 1995).  

Most of the P available in the soil is also restricted to the topmost layers of the soil (Bates 

and Lynch, 2000). Root systems that are able to proliferate in volumes of high nutrient 

availability will thus acquire more P than those that proliferate less or in other volumes. For 

example, shallower root growth angles of axial, basal, seminal or crown roots in maize, 

common bean (Lynch, 2011; Lynch and Brown, 2001) and soybean (Wang et al., 2010; Watt 

and Evans, 2003; Zhao et al., 2004) can increase topsoil exploration and may enhance P 

acquisition. Besides, spatial competition for P among roots of the same or different plants 

may result when the volume of the soil is depleted by root branches present. Under such 

conditions, RSA that minimises competition is expected to be more efficient at P acquisition. 

In common bean for example, shallower root systems had greater P acquisition per unit 

carbon cost than deeper root systems due to greater inter-root competition in deeper root 

systems (Ge et al., 2000).  

1.9 Phenotyping 
A fundamental step towards breeding for improved crop roots is the ability to accurately 

measure root traits of crop plants from their genetic composition (genotype). The process of 

measuring the phenotype from a genotype is generally referred to as phenotyping 

(Subramanian, 2012). Connecting the genotype to phenotype is faster pathway to selecting 

for superior genotypes in plant breeding programmes (Walter et al., 2012; White et al., 

2012). There have been tremendous advances in the capacity; cost efficiency and speed of 
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genotyping techniques such as “next generation” DNA sequencing, however, phenotyping 

has made relatively less progress in the past three decades especially for complex traits such 

as abiotic stress tolerance and yield potential (Cobb et al., 2013; Jackson et al., 2011; 

Shendure and Ji, 2008) and this has become a major bottleneck in developing crop cultivars 

conferred with improved resource acquisition traits.  

 

Generally, the aim of phenotyping is to measure or find the differences among several 

genotypes under defined environmental conditions. This usually requires several hundreds 

or thousands of genotypes to be compared with each other (Fiorani and Schurr, 2013; 

Subramanian, 2012). High-throughput phenotyping procedures capable of phenotyping 

large numbers of lines or individual plants accurately with a fraction of the time, cost and 

labour of current techniques are thus needed (White et al., 2012). It is through high-

throughput phenotyping that new genes and complex interactions are likely to be revealed 

and this particularly is essential for quantifying root traits due to the high plasticity of root 

systems. Moreover, root phenotypes may be manifested transiently, only at specific times 

and under varying environmental conditions, hence any developed technique of 

phenotyping must be non-invasive and incorporate high spatio-temporal resolution 

(Subramanian, 2012). 

 

Studying root systems is difficult. The opacity of the soil is the main limitation to root 

studies. Not only do the measurements of roots growing in soil destroy the soil habitat but it 

is also extremely difficult or in some instances not feasible to extract an entire root system 

from soil without damaging its structure or its finer elements (Smith and De Smet, 2012). 

Trachsel et al. (2011) recently employed excavation and washing to study crown roots of 
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maize (Zea mays L.). Such approaches are laborious, time consuming and may fail to recover 

parts of the root system. Although very vital, studying mature root systems raises additional 

challenges. The size of the root system is larger and more difficult to excavate.  

 

Sampling of the root system can be used; however, sampling introduces large variability 

(Araujo et al., 2004; Bengough et al., 2000). The reported large variations between samples 

could be attributable to abiotic and biotic factors, which unpredictably influence RSA and 

root development. Root system plasticity thus constrains root studies. Studying root 

systems is also very difficult not only because RSA and root growth are the consequence of 

local conditions, but also, roots are composed of many complex structures of varying 

developmental, physiological and morphological structures (Lynch, 1995). As a result, it is 

very difficult to have any form of standardised methods or protocols of evaluating root traits 

across sites, root features and plant genotypes. All these attendant characteristics have 

culminated in lack of reliable root phenotyping methods.  

1.10 Methods of quantifying root systems 
Regardless of the challenges involved in root system studies, many attempts have been 

made. Studies of root systems date back to the 18th century. Duhamel du Monceau has 

been credited as the possible pioneer with his work on the root systems of trees from 1764-

1765 (Kramer and Boyer, 1995). The earlier work mainly involved digging up roots and 

manually measuring their weight and length. The ecologist J.E Weaver is one of the pioneers 

of root research by field excavation. Weaver excavated entire root systems by using pick 

axes to dig big trenches (up to 3 x 10 x 20 feet) by the side of the plants. Plants studied by 

Weaver and colleagues included Rosa arkansana, Lygodesmia juncea, Petalostemon 

purpureus, Liatria punctala and during the studies roots of the plants were drawn in place 
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with pencil on a large drawing-sheet ruled to scale. Drawings were made simultaneously 

with the excavation of the root, to exact measurements and subsequently retraced with ink 

when the whole root has been excavated (Figure 1.4) (Weaver, 1919, 1920, 1925, 1926; 

Weaver and Bruner, 1927). Many others also cultured plants in containers in order to study 

their root systems (Bohm, 1979). This included Hiltner (1904), Bates (1937), Kutschera 

(1960) and others who quantified root systems of crop plants in the field or in pots by 

observation, sketching or tracing.  

 

Excavation of roots from the soil and washing them in order to measure their length and 

architecture is the most common and simplest method of studying roots in the field. Other 

classical methods to study roots are based on destructive sampling of soil techniques 

including core, monolith, and profile wall (Zhu et al., 2011). Auger methods are suitable for 

taking volumetric soil-root samples with no attempt to keep the roots in their natural 

positions (Bohm, 1979). Perhaps the greatest advantage of these systems is that the 

measurements are normally carried out in the field. Trench profiles can also be used to 

measure root spatial distribution and more importantly, the environment surrounding the 

root system. Trench profiles also have potential to provide quantitative information on the 

roots system but unfortunately it also involves a major disturbance of the soil and provides 

measurements for a small fraction of the root system (Pierret et al., 2003b). Classical 

techniques are not often suitable in investigating root developmental processes (Liedgens et 

al., 2000) and may lead to loss of information on finer root parts such as root hairs (Smit et 

al., 2000). 
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Figure 1.44: Examples of root systems analysed by excavation and drawing; (a) Liatria punctala and (b) 
Petalostemon purpureus (Weaver, 1919; 1920) 

 

1.11 The use of imaging in phenotyping root systems 
More recently, techniques for studying RSA have progressed from sampling-based 

techniques to in situ imaging systems some of which were derived from medical sciences 

(Xuecheng and Xiwen, 2009). There are many reasons in support of this shift. Given the 

limitations in classical sampling techniques, quantifying the temporal and spatial root 

distribution has been challenging. Since local conditions have strong effects on the RSA, 

environmental stimuli may only be manifested transiently. Additionally, it would be 

advantageous for phenotyping techniques to be compliant with screening many plants at 

any point in time, given that a single phenotypic root trait may be determined by several 

genes. Imaging permits the time-lapse observations of root systems at very minuscule scales 

that approach dimensions of single cells in plant tissues (Connelly et al., 1987).  

 

a b 
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In situ imaging of roots refers to imaging techniques, carried out either in the field (Rodgers 

et al., 2004) or in controlled environments in which the rooting medium for the plant is soil 

(Volkmar, 1993). Popular in situ root observations and measurements employ rhizotrons or 

minirhizotrons. Both techniques use transparent soil-air interfaces for the observation of 

plant roots (Taylor et al., 1990). Rhizotrons have larger flat transparent windows and may be 

constrained by setup and operational cost. Minirhizotrons on the other hand are small-

diameter transparent tubes inserted into the soil at either a vertical, horizontal or at an 

angle to observe and measure roots and soil processes (Figure 1.5) (Herrera et al., 2012; 

Rewald and Ephrath, 2013). Minirhizotrons imaging usually combine a light source, a small 

camera constructed to fit into cylindrical tubes (Faget et al., 2010) and store the images on a 

computer equipped with software to capture and label pictures (Figure 1.5). There are many 

variants of rhizotron methods (Smit et al., 2000), with different imaging devices or 

techniques having been applied. Variants setups applicable to high throughput imaging 

include growing plants on small-sized 2D rhizotrons (Devienne-Barret et al., 2006). For a 

comprehensive review on minirhizotrons see (Rewald and Ephrath, 2013). 
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Figure 1.5: Schematic diagram of minirhizotrons tubes in both angled and vertical position. Images are 
captured by either digital camera- or scanner-based minirhizotron (MR) systems connected to a 
laptop(Adapted from: (Rewald and Ephrath, 2013)) 

 

The incorporation of various imaging technologies has generally enabled the conduction of 

faster experiments and more comprehensive measurements and capture of highly resolved 

images. However, many imaging techniques employ 2-dimensional imaging and influence 

root growth since it is forced to grow at the surface of the imaging window. With 

developments in radiation tomography, such as X-ray computed tomography (X-ray CT), X-

ray microcomputed tomography, neutron tomography and magnetic resonance imaging 

(MRI), it is now possible to image the 3D architecture of soil and root structures non-

destructively and with great resolution (Asseng et al., 2000; Moradi et al., 2009; Perret et 

al., 2007; Tracy et al., 2010). Following the pioneering efforts of Willatt and Struss (1979) 

and Bois and Couchat (1983), use of medical scanners has grown rapidly in roots and soil 

research (Hainsworth and Aylmore, 1983; Hamza and Aylmore, 1992). Subsequently, the use 
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of industrial scanners mostly developed for materials research have been employed to 

improve the resolution obtainable in visualizing root systems in soil (Tracy et al., 2010).  

 

MRI uses signals of nuclear magnetic resonance from hydrogen nuclei in root tissues and 

soil matrix to differentiate between roots and soil (Berger, 2002), and to provide 3D 

architecture of roots and their rhizosphere. The approach is considered beneficial in 

providing exact locations of the various structures within the soil with high spatial resolution 

(0.39 mm) (Stingaciu et al., 2013). For example, Nagel et al. (2009) could observe response 

of root structure and gradient of carbon transport to root zone and observed that low 

temperature induced smaller branching angles between PR and LRs. Using the technique, 

they could conclude that the volume explored by roots is reduced at low temperatures. MRI 

is however limited in soils rich in ions of Fe and Mn as these may provide interference 

(Pierret et al., 2003a). 

 

In X-ray CT, the physical density of the medium is probed via the acquisition and 

reconstruction of images from thin cross sections or slices of root and rhizosphere on the 

basis of measurements of attenuation of an electromagnetic wave (the gradual loss of 

electromagnetic wave through the soil medium) (Mahesh, 2002; Mooney et al., 2012). 

Among the methods of radiation tomography, X-ray CT is currently the preferred 3D imaging 

approach in soil-root studies. Image quality is not influenced by Fe or Mn in the soil matrix 

(Tracy et al., 2010). It provides the best contrast between soil and roots. For example, fine 

root systems of wheat plants measured with X-ray tomography were generally within 10% 

range from those obtained from destructive samples and with a flat-bed scanner (Gregory 

et al., 2003). However, X-ray CT has difficulties resolving with diameters of less than 100 µm 
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(Kaestner et al., 2006). Water content of soil also has an influence on the contrast between 

root and soil. Particularly, pore saturated with water can be confounded with roots and 

organic matter (Tracy et al., 2010).  

 

Methods for field based 3D non-destructive imaging are also developing rapidly (Luster et 

al., 2009). These methods include ground penetrating radar (GPR). GPR uses high frequency 

radio waves. Contrast is created by differences in material dielectric constants (Zhu et al., 

2011). The approach has been developed for geophysical methods and can provide 2D and 

3D live images (al Hagrey, 2007). Using this approach, al Hagrey (2007) produced images of 

root systems growing in the field using information on soil moisture distribution. Ground 

penetrating radar could however be extremely dependent on soil type. 

 

Radiation based imaging are not suitable to study biological processes. For this reason the 

use of artificial substrates in imaging is common (Bengough et al., 2004; Hargreaves et al., 

2009). These artificial substrates mostly utilise economical, non-invasive and high-

throughput imaging facilities including scanners, video and digital cameras (Ortiz-Ribbing 

and Eastburn, 2003). Digital cameras and scanner are common in ex situ applications where 

they are usually combined with experimental systems in which plants are grown or cultured 

on moist germination papers (Hund et al., 2009; Lee and Woolhouse, 1969; Yorke and Sagar, 

1970), in hydroponic systems (Chen et al., 2011; Sena et al., 2011) and in aeroponic systems 

(Lobet et al., 2011; Waisel, 1996, 2002) and transparent substrates (Downie et al., 2012; 

Iyer-Pascuzzi et al., 2010). Agar-filled petri dishes were for example used to undertake 

automatic screening of complex root systems of rice (Oryza sativa) varieties (Iyer-Pascuzzi et 

al., 2010).  
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Although the use of experimental setups such as aeroponic and hydroponic culture may be 

a limitation in their inability to offer the same mechanical impedance inherent in the soil 

matrix to root growth, such approaches are still very useful because they are 3-D. Root 

development in aeroponics for example may be more extensive and more anatomically 

similar to soil grown roots than is achievable with hydroponics and may be due similar 

exodermis development in aeroponic and soil substrates (Redjala et al., 2011). More 

recently, a transparent soil approach was developed. This uses a low refractive index 

polymer to simulate soil and made transparent upon saturation with water. This technique 

allows control of moisture content during plant growth in a granular, unsaturated substrate 

and thus incorporates the physical heterogeneity of soils (Downie et al., 2012). Transparent 

substrates can be used in combination with a number of powerful imaging techniques such 

as Confocal Laser Scanning Microscopy (CLSM; Roberts et al., 2010; Smith, 2008; Yu et al., 

2001), Single Plane Illumination Microscopy (SPIM) or Light Sheet Fluorescence Microscopy 

(LSFM; Huisken et al., 2004; Huisken and Stainier, 2009; Sena et al., 2011; Yang et al., 2013) 

and Optical Projection Tomography (OPT; Downie et al., 2012; Lee et al., 2006; Sharpe, 

2004; Sharpe et al., 2002). These microscopic techniques give different scale of data to that 

pursued in this thesis and will not be reviewed here.   

 
 
Although both 2D and 3D imaging are possible in these microscopic techniques, it may 

however not represent accurately the natural 3D nature of RSA in soil (Zhu et al., 2011). 

Again, the size of the imaging area of most of these techniques is usually small and 

therefore restricted to small specimens. Furthermore, most of the emerging platforms often 

incorporate robotics and conveyor belts which enable the movement and positioning of 

plants in front of imaging devices and sensors (Tsaftaris and Noutsos, 2009). Unfortunately, 
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these infrastructures make installation of such platforms complex and complicated. The 

complexity of instrumentation is such that it is usually difficult to obtain sufficient 

throughput or to collect time lapse data and even in cases where they are not proprietary, 

such platforms are difficult to replicate elsewhere (Iyer-Pascuzzi et al., 2010; Smith and De 

Smet, 2012). For screening purposes where large numbers are required to be phenotyped 

within short time, these techniques may thus be of low throughput, and its usage may be 

constrained by increased screening times, installation complexity and cost.  

1.12 Image analysis  
Image acquisition is only the first step in a series of processes involved in computed image 

analysis. What follows include image enhancement and analyses of geometric features 

(Duncan and Ayache, 2000). Root images, 2D or 3D, colorimetric or grayscale, normally 

come with artefacts that complicate processing and extraction of information (Lobet et al., 

2011). Image enhancement is the process of modifying the attributes of digital images to 

improve the quality so that the results are more suitable for display or further analysis 

(Maini and Aggarwal, 2010). The conversion of each pixel of an image into one bit with two 

possible values (making a binary image) is often the second stage in most systems of image 

analysis. Image segmentation follows and is performed to discriminate (segment or 

threshold) root structures from non-root objects or artefacts on the image (Chen and Zhou, 

2010; Zhang et al., 2008). Thus, root image segmentation is an image processing step by 

which whole or part of root system is extracted from the image data for purposes of 

visualization and measurement. It involves associating a pixel with a root, based on the local 

intensity, spatial position, neighbouring pixels, or prior information about the shape 

characteristics of the root systems (Budinger et al., 1996).  
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There are many ways to segment an image as different images require different 

segmentation procedures (Smit et al., 2000). While current developments in computer 

capabilities mean that segmentation of digital images could be automated and accelerated, 

there is no off-the- shelf solution for all data sets (Sezgin and Sankur, 2004). Segmentation 

by thresholding for example is prone to high degree of subjectivity (Zhang et al., 2008) but 

this is true especially for diameter measurements but not for length measurements. 

Standardisation of these processes is one that is very vital but also very challenging to 

achieve.  

 

Software dedicated to root image analyses are now increasingly available (Le Bot et al., 

2010). These software which are either designed to analyse minirhizotron pictures of roots 

growing in soils (e.g.: MR-RIPL (http://rootimage.msu.edu/MR-RIPL/), RMS (Ingram and 

Leers, 2001) or images of roots grown on gels or paper substrates (e.g.: SmartRoot (Lobet et 

al., 2011), EZ-Rhizo (Armengaud et al., 2009), DART (Le Bot et al., 2010) or for harvested and 

washed roots analysis (e.g. WinRHIZO® (http://www.regent.qc.ca/)) and can be grouped 

based on their mode of operation.  

 

The first set of software operates by first segmenting a complete network of root system, 

followed by a skeletonisation (thinning or morphological erosion) so that measurements are 

made on the resultant pixel-wide centreline or perimeter of the root system (skeleton of the 

root) (Kirbas and Quek, 2004). Segmentation techniques employed include filtering and 

edge operator techniques, pixel classification techniques and mathematical morphology 

approaches. Skeleton-based software work well with high quality images or may require 

extensive processing of image pixels, followed by extracting boundaries or centrelines. They 
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extract centrelines of root axes and operate by identifying the pixels located on the specific 

areas of the image covered by the root structures (Boroujeni et al., 2010). Example includes 

WinRHIZO, (Arsenault et al., 1995) and EZ-Rhizo (Armengaud et al., 2009). EZ-Rhizo for 

example is a Windows-based semi-automated root analyses software with functionality for 

user-defined image enhancements capabilities (filtering and thresholding) and was applied 

to evaluate natural variation in RSA across accessions Arabidopsis thaliana (Armengaud et 

al., 2009). 

 

A second category of software operates by tracking. Algorithms that incorporate a search 

procedure which keeps track of the centreline of the root axis and progress along the root 

track based on certain properties to determine the future path of the root. For example, 

RootTrace uses iterative algorithm of density functions to track moving objects, in order to 

track the line of the root from a user-defined start location to the tip of the root (French et 

al., 2009; Naeem et al., 2011). RootTrace for example, was applied to quantify the effect of 

10 µM dexamethasone treatment on the root system growth of 3-d-old transgenic 

Arabidopsis seedlings (French et al., 2009). Another example of tracking-based root analyses 

software is the RootflowRT which employs optical flow procedures (Van der Weele et al., 

2003). RootflowRT was for example employed to identify two distinct growth zone regions 

of root system of several plants including Arabidopsis, tomato (Lycopersicon esculentum), 

lettuce (Lactuca sativa), alyssum (Aurinia saxatilis), and timothy (Phleum pratense (van der 

Weele et al., 2003). 

 

Tracing-based software usually avoid low level pre-processing steps and instead, locate a 

number of initial seed points and only process the pixels which are close to the feature of 
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interest. These approaches often rely on user-defined or automatic detection of seed points 

which are assumed to be located on the centreline of the root axis (Boroujeni et al., 2010). 

SmartRoot is an example of tracing-based root image analysis software and combines a 

vector representation of root objects with a powerful tracing algorithm. The software has an 

underlying wireframe model of connecting image vertices with lines and utilizes an 

algorithm that determines the midline of the root near a user selected seed position and 

proceeds with stepwise construction of segmented line to the root tip by approximating the 

root midline (Lobet et al., 2011). SmartRoot was used to generate data from 20-day old 

maize root systems grown in rhizotrons (Lobet and Draye, 2013).  

 

Many of these programs are available freely, but others are also proprietary. WinRhizo 

(http://www.regent.qc.ca), Lemnatec’s Scanalyzer3D (http://www.lemnatec.de) and 

Rootsnap, an accompaniment to the CI-600 in-situ root imager from CID Bio-Science 

(http://www.cid-inc.com) are common examples of proprietary root image analyses 

software. Table 1.2 provides some examples of current root image analyses software and 

brief description of their applicability but this list is not exhaustive. Although these programs 

have increased the throughput of image analyses, there are still major limitations. 

Automation works only with high contrast images and manual feature extraction are still 

very slow.  
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Table 1.2: Examples of available software used for analysing root images (Source: http://www.root-image-
analysis.org/; Lobet et al., 2013) 

Software Degree of User 
Interaction 

Availability / input 
format / Export 
Format / Platform  

Type of Analyses (Examples 
of Measured Root traits) 

WinRHIZOTM 
(Arsenault et al., 
1995)  

Automated Commercial / txt / 
Windows 

Local, global (length, area, 
volume and topological, and 
colour analyses) 

RootTrace (French et 
al., 2009; Naeem et 
al., 2011) 

Automated Freeware / cvc / 
Windows 

Time-lapse (Length, 
curvature, number, 
gravitropism) 

RootflowRT  (van 
der Weele et al., 
2003) 

Automated Freeware / ppm, tiff / 
txt / Windows, Mac  

Time lapse (Growth, spatial 
velocity profile) 

KineRoot  
(Basu et al., 2007)  

Automated  Freeware / jpg Matlab 
/ txt / Windows, Mac, 
Linus 

Time-lapse (Spatio-temporal 
patterns of growth and 
curvature) 

Growth Explorer 
(Basu and Pal, 2012) 

Automated Windows /Image 
Unknown / Matlab  

Global (velocity profiles) 

RootScan 
 (Burton et al., 2012) 

automated Freeware / no image 
requirement / 
Windows, Mac, Linus 

Global / root morphology 

Root System 
Analyser (Leitner et 
al., 2013) 

automated Freeware / windows, 
Mac/ Matlab 

Root architectural 
parameters (length, angle, 
diameter, count) 

IJ_Rhizo (Pierret et 
al., 2013) 

automated Freeware / jpg/ 
windows, Mac, Linus 

length, diameter, 

SmartRoot  (Lobet et 
al., 2011) 

Semi-
automated 

Freeware / gif, jpg, tiff, 
bmp / csv / sql 
database / Windows, 
Mac, Linus 

Local, time-lapse (Length, 
diameter, angle, insertion 
point, root direction, 
architecture, topology) 

Rootnav 
(Pound et al., 2013) 

Semi-
automated 

Freeware/ Windows Root system architectures 

DigiRoot  (Stefanelli 
et al., 2009) 

Semi-
automated 

Commercial /jpg, bmp, 
tiff, png, gif / xml / 
Windows  

Local (Length, area, volume, 
number of branches, 
branches angle and 
branching hierarchy)  

RooTSnap  
(www.cid-
inc.com/ci-690.php)  

Semi-
automated 

Commercial / jpg, bmp, 
tiff, png, gif etc / csv 
/Windows  

Local, global, time lapse 
(Root development, 
architecture, and 
morphology) 

RootReader2D 
(www.plantmineraln
utrition.net/rootread
er.htm)  

Semi-
automated 

Freeware (as Java Web 
Start / modified xml / 
Windows, Mac, Linus  

Local, global (Lengths, 
number of laterals)  
 

EZ-Rhizo 
(Armengaud et al., 
2009) 

Semi-
automated 

Freeware / bmp / sql 
database /Windows  

Global (Length, vector 
length, angle, number of 
laterals, position etc.)  

Growscreen_Root 
(Nagel et al., 2009) 

Semi-
automated 

on-demand/ no image 
type / Windows 

length, angle, number 

RootScape  
(Ristova et al., 2013) 

Semi-
automated 

Freeware / no image 
requirement 
/Windows, Mac  

Global (capture root system 
architecture as one 
integrated trait) 

WinRHIZO TronTM 
(www.regent.qc.cac)  

Manual  Commercial / rhizotron 
images / txt / Windows 

Local, global (Length, area, 
volume, diameter, number) 
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RootView 
(www.mv.helsinki.fi/
aphalo/RootView)  

Manual  Unknown / jpg / txt / 
Windows  

Time lapse (Length, 
diameter, growth) 

DART  
(Le Bot et al., 2010) 

Manual  Freeware / gif, jpg / 
stat program / 
Windows, Mac, Linus  

Local, time-lapse (Length, 
order, insertion point) 

Rootfly 
 (Zeng et al., 2008, 
2010) 

Manual  Freeware / 
minirhizotron images, 
jpg/csv/ Windows  

Local, time-lapse (length, 
diameter, colour of roots, 
birth and mortality) 

RootLM    
(Qi et al., 2007) 

Manual  Freeware / jpg, colour 
image / Matlab / 
Windows, Mac, Linux  

Length  

 

1.13 Summary 
Root system architecture (RSA) exhibit high degree of plasticity and represents a key plant 

trait that could condition plants’ ability to respond to nutrient stress.  In this thesis, 

phosphorus (P) is employed as a case study because whilst P is an essential mineral nutrient 

for plant productivity and its availability regulates RSA  in many crops,  its phytoavailability is 

however low and resources for P fertilisers are finite. Identifying the variations in RSA traits 

or root growth between crop genotypes therefore represents a promising route towards 

genetic improvement of crops and ultimately for producing elite ideotypes for improved P 

acquisition and use. Past work on root systems revealed that the structure is complex and 

greatly influenced by soil environment. There are also different types of root systems for 

different crop plants. Although progress has been made in root measurement methodology 

to observe and quantify RSA, methods employed in the past still have some limitations.  

i. Most current methods are not suitable to capture temporal data on root growth 

dynamics; 

ii. Current methods are not adequate to phenotype large numbers of plants; 

iii. Some high throughput imaging technologies involve complex installation systems 

and are too expensive;  

iv. Correlation between measured data and actual root system is not often. 
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1.14 Aims  
The present study aims to develop a cost-effective and highly resolved root phenotyping 

methodology that integrates automated temporal data acquisition with limited engineering 

complexity. It also aims to study root system dynamic and root system response of Brassica 

rapa seedlings to external P concentration. 

 

This project utilizes Brassica rapa L. (syn. Brassica campestris L.) commonly referred to as 

field mustard as a model crop. The genus Brassica comes from the family Brassicaceae and 

includes some of the most important vegetable and oilseed crops grown globally. These 

include three elementary diploid species namely B. rapa (2n=20; AA), B. nigra (2n=16; BB) 

and B. oleracea (2n=18; CC). Also included are three amphidiploid species which originated 

through interspecific hybridization between any two of the diploids and are B. juncea 

(2n=36; AABB), B. napus (2n=38; AACC) and B. carinata (2n=34; BBCC) (Song et al., 1990; 

Song et al., 1988). Brassica in general show considerable genetic variation in their 

adaptations to P limited conditions including changing their root morphology, changes in 

the amount of biomass invested into the root system and secretion of enzymes and 

metabolites in the rhizosphere to increase the availability of Pi (Hammond et al., 2003; 

Hammond et al., 2004; Hammond and White, 2008). Brassica rapa is a non mycorrhizal 

plant and is considered a good candidate for research due to their characteristic rapid 

cycling and close relation to the model plant Arabidopsis thaliana and the widely cultivated 

B. napus (Wang et al., 2011). The relatively small genome size of B. rapa (468 - 516 Mbp) 

also make research using the crop preferable. There are extensive resources available for B. 

rapa including a complete Brassica A genome sequence (Wang et al., 2011), rapid cycling 

35 
 



Brairri mapping population (Iniguez-Luy et al., 2009) and Genetic Diversity Foundation Set 

(BraDFS) (White and Brown, 2010). 

1.15 Objectives 
i. To develop 2-dimensional root phenotyping system that uses a flatbed optical 

scanner and enables non-destructive high resolution phenotyping of growing B. rapa 

seedlings with high spatial and temporal resolution and repeatability.  

ii. Generate relevant data to validate 2-dimensional root system density based models.  

iii. Investigate the effect of environment or growth media on the dynamics of RSA traits 

and root growth. 

iv. Quantify root system architecture to evaluate within and between genotype 

variations in root traits.  

v. Analyse the response of root system architecture of B. rapa genotypes grown under 

varying P availability on non-soil and soil rooting media. 

vi. Analyse root growth dynamics using mixed-effects models in order to establish the 

variation in root traits attributable to effects of genetic factors and environmental 

effects. 
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 : DEVELOPMENT OF A LOW-COST HIGH RESOLUTION ROOT PHENOTYPING CHAPTER 2
SYSTEM 

2.0 Introduction  

 
This chapter describes the development of a root phenotyping platform. We chose to design 

a root phenotyping platform based on flatbed scanners because: 

i. it is inexpensive and the design is simple which can be assembled in many places; 

ii. it has high image quality;  

iii. it can be automated easily (Dannoura et al., 2008; 2012).  

The root phenotyping platform is made of three main components, namely: the physical 

system, the image acquisition control system which consist of software and thirdly the data 

analyses system (Figure 2.1). The following sections describe the development and testing 

of each of the three components of the phenotyping system. Finally, we conclude this 

chapter with a discussion on the components described.  

2.1 Physical System 

2.1.1 Growth chamber 

The imaging system was developed in a 2.40 m x 4.15 m x 2.15 m growth room equipped 

with heavy duty wire mesh grid of 3.85 m x 1 m raised 30 cm above the floor to 

accommodate scanner banks (Figure 2.2). This growth chamber provides light, temperature 

and humidity control. Lighting in the growth room was initially provided by a Philips SON-T 

Agro 400-W high pressure sodium lamp (http://www.eltacnet.com/philips5.pdf) with an 

illumination of 550 μmol m−2 s−1 photosynthetically active radiation (PAR) (s.d. ±12 μmol m-2 

s-1) at plant height (about 90 cm). These lamps produced excessive heat and excessive 

condensation on the scanner window. 
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Figure 2.1: Workflow for the development of the high throughput scanner-based root phenotyping system 

 
 

Subsequently, we employed two banks of 3 each 100-W cool-white fluorescent tubes 

(Philips, Eindhoven, Netherlands), providing PAR of 100 μmol m-2 s-1 (s.d. ±15 μmol m-2 s-1) 

at plant height (Figure 2.2). These cool light sources enabled the light source to be closer to 

plant leaves. The fluorescent lights also provided even light and temperature distribution 
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over the plants and scanners. The experiments in this thesis were conducted with a 16/8 h 

light/dark cycle. The growth room air temperature was maintained at 20°C (s.d. ± 1°C) 

during the light/dark period seemed optimal also for fungal growth on the seed germination 

paper (see Section 2.1.6 for description of germination paper). A constant temperature of 

15 °C (s.d. ± 1°C) was adopted to limit fungal growth with a relative humidity of 60% (s.d. ± 

5%). 

 

Figure 2.2: Growth chamber showing light source and wire grid on which the scanner banks were assembled. 

 

2.1.2 Imaging Device 

The imaging device used in this study is a Canon flatbed scanner CanoScan 5600F (Figure 

2.3) which at the time of writing this thesis was priced at £91.97 per unit 

(http://www.canon.co.uk). This scanner uses an advanced Charge Coupled Device (CCD) 

technology incorporating a reflective cold cathode fluorescent lamp with a white Light-

Emitting Diode (LED) as its light source. It reads images of objects placed on its glass surface 
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through a lens after reflected light is consolidated in a mirror (Dannoura et al., 2008). The 

scanner provides a 2-dimensional imaging panel of 216 x 297 mm. Other features and 

specifications given by manufacturer include 4800 x 9600 dots per inch (dpi) resolution and 

48-bit colour image as well as zero warm-up time during imaging. It is easily operated using 

a USB interface for image capture. The CanoScan 5600F is supported by several versions of 

Windows and Mac operating systems with an optimal operating temperature range of 10 - 

35 °C and humidity of 10 - 90%.  

 

Figure 2.3: Flatbed scanner used in the study (Source: www.canon.co.uk/) 

 
To facilitate the fixing of germination papers on scanners, the top cover of the scanners was 

detached. Black polyvinylchloride plates, (215 × 300 mm) were used as covers for the 

scanners (Figure 2.4). The plates were initially fixed with magnetic tape but the adhesive 

was not strong enough to hold plates and germination papers during the course of 

experiments. Plates were therefore attached with duct tape, with the duct tape being 

replaced for each new experiment.  
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Figure 2.4: (a) Modified flatbed scanner with cover detached and magnetic strips fixed at both ends of its 
width; (b) Black Perspex plates used as scanner cover and also to hold rooting medium vertically on scanner 
surfaces - two magnetic strips used to attach plates to scanners are shown.  

 

2.1.3 Effects of scanning on seedling RSA 
 
Potential influence of the spectral effects of scanner LED on RSA could increase for 

individual seedlings. This is because the scanners incorporated white LED and repeated 

scans were done on same plants over longer periods of time. Moreover, given that root 

systems of seedlings are in close proximity to the light source in our setup, it is plausible 

that conclusions drawn from root system data obtained may be confounded by the effects 

of the scanners’ light. Here, we assessed the influence of the scanners’ lighting on root 

system traits. 

a 

b 
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Environmental conditions (Sections 2.1.2; 2.1.6; 2.1.7 & 2.1.8) other than scanning 

frequency were uniformly maintained among seedlings grown for 10 days on flatbed 

scanners. Seeds of Brassica rapa genotype R-o-18 were pre-germinated for 72 h. For 

germination, seeds were sown on 12 × 12 cm germination papers (Anchor Paper, Saint Paul, 

MN, USA) sprayed with deionized water and placed vertically in a Sanyo MIR153® incubator 

at 20 °C. Three days after sowing (DAS), seedlings of similar size with radicles 2-3 cm in 

length were transferred to large sheets of germination paper (30 × 42 cm; Anchor Paper 

Company, St. Paul MN., USA, http://www.anchorpaper.com/) (Section 2.1.7.1) attached to 

flatbed scanners using 30 × 20 cm clear-Perspex plates. The germination paper surrounding 

each radicle was cut and transferred with the seedling to minimize disturbance during this 

process (Adu et al., 2014). The genotype used for this experiment, R-o-18, is a diploid self- 

fertile inbred line of the B. rapa subsp. trilocularis (Yellow Sarson) closely related to B. rapa 

oilseed crops grown in Pakistan (Stephenson et al., 2010). The germination paper with the 

seedlings were held in place by 30 cm x 20 cm opaque / transparent Perspex plates and then 

fixed to Canon CanoScan 5600F flatbed scanners (Sections 2.1.1, 2.1.3; Figure 2.3).  

 

Roots of the seedlings grew vertically on the rooting medium. Nutrient solution was 

supplied through the germinating papers (Section 2.1.7). Two independent experiments 

were run and for each, there were two treatments. In experiment 1, roots of seedlings were 

scanned every 12 hours (Section 2.2) for the whole 10 d duration of the experiment. The 

resolution for scanners was set at 300 dpi. In experiment 2, seedlings also grown on 

germination papers fixed to Perspex plates abutting flatbed scanners but were not 

periodically scanned except ones on the 10th day after sowing (DAS), just before the 
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seedlings were harvested. For each experiment, there was two independent run and 12 

scanners were used in each run with six scanners per scanner bank (‘Scanner bank’ will be 

explained in Section 2.1.5). Treatments were randomly placed within scanner banks. Two 

plants were grown on each scanner giving 12 replicates per treatment for each run. 

Seedlings were harvested 10 days after sowing (DAS) and were separated into shoot and 

root parts for fresh weight measurements and dry weights, following drying at 60 °C for 72 

h. SmartRoot (Lobet et al., 2011) was used to extract root traits (see Section 2.3.3.1 for 

description of SmartRoot) from all images captured on the final day of the experiments. 

Analyses of variances (ANOVA) were performed on shoot and root traits using R (R Core 

Team, http://www.R-project.org).  

 

Total root length (TRL), total lateral roots length (1st order lateral roots, TLRL), primary root 

length (PRL) and mean length of all laterals (mean LRL) were measured, along with shoot 

biomass (shoot fresh weight, SFW; shoot dry weight, SDW) and root biomass (root fresh 

weight, RFW; root dry weight, RDW). Also, diameter of primary (PR Diam.) and lateral roots 

(LR Diam), branching density, (B. Dens), number, mean insertion angle (angle) and inter-

branch distance of laterals (Int. Dist.) were measured. Root-to-shoot biomass ratio (R:S) was 

also calculated from SDW and RDW.  

 

No seedling mortality was recorded for the 48 individual seedlings studied. There was no 

significant difference between the two experiments except in 3 traits (i.e.: LR diameter, 

number of LRs and R:S; p<0.05; Figure 2.5). Lateral roots of seedlings that were periodically 

scanned for example recorded higher diameters (Figure 2.5; p=0.05). It is also seen in Figure 

2.5 that that there was large variation within these traits. This may suggest that the sample 

43 
 

http://www.r-project.org/


size (n = 6) was not adequate, traits investigated here were unstable or control of 

environmental conditions may have been sub-optimal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: The effect of run on (a) mean diameter of LRs; (b) Number of LRs and (c) root-to-shoot ratio of 
Brassica rapa seedlings grown for 10 DAS under with or without periodic scanning with flatbed scanners 
 

Scanner light did not affect growth of plants (Figure 2.6). Seedlings which were not 

periodically scanned recorded 5.71 mg, 1.62 mg, 54.10 cm, 39.0 cm, 15.12 cm and 0.83 cm, 

respectively for SDW, RDW, TRL, TLRL, PRL and mean LRL. Periodically-scanned seedlings 

recorded 5.66 mg, 1.60 mg, 59.0 cm, 45.20 cm, 13.74 cm, and 1.03 cm, respectively for 

SDW, RDW, TRL, TLRL, PRL and mean LRL (Figure 2.6). Estimates of number of LRs, P Dens., 

LR Diam., Int. Dist., angle and R:S for ‘Not-Scanned’ seedlings were 51 roots, 4.82 roots cm-1, 
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0.27 mm, 0.27 cm, 75.30 ° and 0.28, respectively. Estimates of number of LRs, P Dens., LR 

Diam., Int. Dist., angle and R:S for ‘Periodically-Scanned’ seedlings were respectively 47 

roots, 5.32, roots cm-1, 0.27 mm, 0.25 cm, 75.68°, 0.28 ( Figure 2.6). The results showed that 

cool white LED light source of flatbed scanners does not significantly alter root growth.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: The effects of scanner white light emitting diode (LED) on shoot dry biomass (a), root dry biomass 
(b), total root length (c), total lateral root length (d), mean lateral root length (e), primary root length (f), 
number of lateral roots (g) branching density (h), mean diameter of lateral roots (i), root-shoot-ratio(j), mean 
insertion angle of lateral roots (k) and mean inter-branch distance of lateral roots (l) of Brassica rapa seedlings 
grown for 10 days after sowing on seed germination paper fixed to flatbed scanners with or without scanning 
by the flatbed scanners. (n=24). 
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2.1.4 Rhizobox experiments  
During this thesis, root growth were also studied using rhizoboxes (root observation 

chambers) filled with soil. Rhizoboxes were constructed after the design of Bengough et al. 

(2004). Boxes were constructed from two Perspex plates, one of which was opaque and the 

other transparent. Each plate measured 30 × 21.5 × 0.3 cm (Figure 2.7). Strips of Perspex 

(0.3 cm thick) were used as spacers around each plate, giving a plate separation of 0.6 cm. 

Three gaps, each approximately 3 cm long, were left along the top surface to allow gas 

exchange with the surrounding atmosphere and unimpeded shoot growth (Figure 2.7a). 

Rhizoboxes were initially oriented in landscape format for the growth of seedlings (Figure 

2.7a) but primary roots grew faster in soil (e.g.: 21 cm could be reached after 8 days). Boxes 

were therefore re-oriented (Figure 2.7b). Root growth was captured by flatbed scanners. 

Rhizoboxes were fixed on scanners with the transparent wall aligned with the scanning 

glass.  

 

 

 

 

 

 

 

 

 

Figure 2.7: Schematic of the rhizobox used as observation-chamber for experiments involving soil; (a) rhizobox 
when scanners are used in landscape mode; (b) rhizobox when scanners are used in portrait mode (Bengough 
et al., 2004) 
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2.1.5 Scanner Bank  

Scanner bank refers to the equipment used to provide support for the ensemble of scanners 

and also to provide adequate support for plants by supplying nutrients onto the seed 

germination papers. Two types of scanner banks were used in this thesis. The first 

generation of scanner banks was constructed using transparent polyvinylchloride plates 

(Figure 2.8). These banks consist of a tank measuring 100 x 60 x 24 cm for holding nutrient 

solution. The tanks had a tap for drainage and were covered with black plastic sheets to 

limit exposure to light in order to prevent the proliferation of green algae (Figure 2.8). Each 

bank could hold 8 scanners and scanners were held vertically above nutrient solution on 

supports within the tanks (E-F, Figure 2.8). Five removable scanner supports, three of which 

could house two scanners each at opposite ends and the remaining, one scanner each, were 

also constructed from transparent polyvinylchloride plates. During an experiment, scanners 

were placed on these supports within the tanks (Figure 2.8). 

 

The size of this first generation scanner banks was a severe limitation. It was difficult to 

move and wash after each experiment. It made them quite fragile and susceptible to 

leakage after several uses. Consequently, a lighter and simple tank (Figure 2.9) was used. 

The tanks measured 60 x 40 x 17.5 cm could accommodate 6 scanners at a time. Scanners 

were larger than these tanks so scanners could simply be held on the top of the tanks at 

various angles (Figure 2.9).  

 

47 
 



  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.8: Schematic of the scanner banks; (i) with scanner platforms within the tank but without scanners (ii) with scanners mounted on platforms within the tank. A-C: 
Bottom and side plates; D: vertical support for scanners; E - F: horizontal support for scanners; All dimensions are in centimetres. (iii) tank for nutrient solution; (v) tank for 
nutrient solution covered with black plastic sheet; (v) support for 2 scanner (i-G); (vi) support for 1 scanner (i-F). 
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Figure 2.9: a) Polypropylene tanks for the 2nd generation scanner bank; b) scanners held on top of the tanks of 
nutrient solution. 

 

2.1.6 Rooting Medium 

2.1.6.1 Paper  
Seed germination paper was the primary substrate used in the scanner banks. This is similar 

to pouch systems where plant roots grow at the surface of germination blotters (Hund et al., 

2009; Liao et al., 2001). In this project, seedlings were grown on a germinating paper, placed 

on a polycarbonate plate and attached to the scanners. Observing root growth on 

germination papers was on some occasions problematic because roots can occasionally 

grow within the paper. This phenomenon was observed when the germination paper was in 

a 

b 
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tight contact with another surface. For example, we initially covered the growing root 

systems with the transparent films to facilitate two-dimensional root growth on the surface 

of the paper and also to reduce some of the potential effect of light emitted by scanners 

onto the live root system. It has been suggested that there could be light-induced effects on 

root growth (Webb, 1982). The exposure of white light to the elongating zone of growing 

maize (Zea mays L.) induced a very rapid inhibition of the elongation rate (Pilet and Ney, 

1978). So in an attempt to reduce this effect, we covered the growing roots with the 

transparent films but this promoted the tendency for fine roots to grow within the paper 

which made weighting and other analyses more difficult. The use of the transparency covers 

was thus terminated. Besides, roots grew two-dimensionally on the surface of the papers 

with no observed difficulty. Moreover, the transparencies were also hydrophobic, leading to 

increased condensation on its surface and introducing more artefacts on the images of root 

systems.  

 

Root growth on different paper types was tested and paper types that were tried included: 

(i) Black construction paper (http://shop.hobbylobby.com). This paper is a 100% recycled 

material made from wood pulp and has a slightly coarse texture on its surface. The black 

construction paper provided very good contrast and was ideal for imaging fine root 

structures. Root growth was also vigorous. Due to its lighter weight, this paper type was not 

adequately hydrophilic and couldn’t transport enough water and nutrients to the root zone 

and roots could be subjected to drought. Moreover, the paper was subject to discoloration 

which also affected the colour of roots during the course of experiments. For this reason, 
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black construction paper was not used beyond simple root growth experiments (system 

testing stage of this thesis).  

 

(ii) Steel blue seed germination blotter (Anchor Paper Company, St. Paul MN., USA, 

http://www.anchorpaper.com/). This 30 x 42 cm paper standard seed germination paper is 

produced from 100% recycled cellulose fibre. It is a nontoxic paper with an open and porous 

structure free from mechanical pulp content, bacteria and other impurities. The steel blue 

seed germination blotter provides good contrasts and roots are easy to see. It also has good 

water retention properties (Dutt et al., 2005) (Table 2.1) and can store water 14 to 16 time 

of its dry weight. The minimum capillary rise above water surface after immersion for 5 

minutes is approximately 4 cm. 

 

(iii) The third paper type was a Versapack or Kimpak paper (Anchor Paper Company, St. Paul 

MN., USA). Apart from being brown in colour, this paper shared most of the properties of 

the steel blue anchor paper. For brevity, the three paper types described above hereafter 

will be called construction, blue and brown papers.  

 
Table 2.1: Absorbent properties of a seed germination blotter (1Minimum Castor Oil Penetration (COP) values 
are preferred in water Absorption measurements as higher values adversely affect water Klemm. 2Water 
Klemm: the degree of water absorption of a paper and is related to water rise in capillaries (Dutt et al., 2005) 

Particulars  Specifications  

Basis weight (g/m2)  155 ± 3 
1Average COP (at 35 ± 1 °C, s) 11.5 
2Average water klemm (mm/4min) 24 

Wet strength (g/cm) 200 
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The P concentration of the paper was determined. The construction (black) paper was not 

used further so the [P] assessment here was made on the remaining two paper types. A 3 x 

3 cm dry paper sample from the two germination papers (3 replications each) was weighed, 

digested in MARS® microwave sample digester (CEM Corporation, Matthews, NC, USA) and 

the P concentration determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 

method (Ivanov et al., 2010) (Section 2.3.3.4.3). Results show that both paper types 

naturally contain some levels of P (Figure 2.10). A small fraction of this P might be available 

to the roots.  

 

Figure 2.10: P concentration in unused germination papers 

 

In the scanner bank, the bottom quarter of the paper is in contact with the nutrient solution 

during an experiment. In order to determine if adequate quantities of P are transported to 

the rooting zone on the paper, the P concentration of the portion of germination paper not 

in contact with nutrient solution was measured. The papers were subjected to nutrient 

solutions containing P concentrations of 10, 30, 50, 100, 150 and 300 µM. Samples of the 
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papers were taken and solution extracted from them using a pair of cleaned flat edge 

tweezers. Concentrations of P in the solutions were then determined by the Malachite 

Green (MG) method (Van Veldhoven and Mannaerts, 1987). Concentrations of P in the 

rooting zone of the paper correlated with the externally imposed P regimes, although the 

observed [P] was in most cases greater than the actual [P]ext in original nutrient solution 

(Figure 2.11). It seemed that the germination papers were providing additional sources of P 

to the nutrient solution.  

 

Figure 2.11: External P concentration of nutrient solution and the P concentration in the rooting zone of used 
germination papers 

 

2.1.6.2  Soil rooting medium  
Topsoil from 0 to 10 cm depth was collected from Tayport (56.45° N, 2.88° W), a site near 

the James Hutton Institute, Dundee, Scotland. The soil was typical of arable soil of the 

region and defined as a Cambisol (George et al., 2011a). The soil was a sandy loam with a pH 
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of 6.3 and contained total digestible P of 1475.0 mg P kg-1 of which 40.8% was in organic 

moieties (Table 2.2). The soil had a relatively high Olsen P content of 84.5 mg P kg-1 

(probably due to recent additions of pig manure) and water extractable P was relatively low 

(Pi = 6.3 mg P kg-1 and Po = 0.5 mg P kg-1) (Table 2.2) (Brown et al., 2012). Soils were air-

dried, mixed and passed through a 2 mm sieve to remove coarse material and vegetative 

matter. Soils were subsequently put into rhizoboxes to approximately 0.4 to 0.5 cm deep. 

Soils were loosely packed into rhizoboxes at a dry bulk density of approximately 1.0 g cm−3 

and a volume of approximately 300 cm3 per rhizobox. All soils were watered to 

approximately 80% field capacity as determined by gravimetric water content. Depending 

on the nature of the experiment, soils were either amended with additional nutrient 

solution or left un-amended.  

Table 2.2: Summary of soil properties used to fill rhizoboxes (Brown, 2011). 
 

Soil property  Value 
pH (Ca Cl2) 6.0 
Olsen P (mg P kg-1) 84.5 
Total P ( mg P kg-1) 1175.7 
Inorganic P (mg P kg-1) 696.1 
Organic P (mg P kg-1) 479.5 
Organic C (%) 2.0 
Clay (%) 5.0 
Course Silt (%) 11.0 
Fine Silt (%) 29.0 
Sand (%) 55.0 

 

2.1.6.3 Case study: Effect of rooting media on root system growth 

2.1.6.3.1 Methods 
Brassica rapa genotypes, R500 and IMB211 were used to study the effect of rooting media 

on root growth parameters. IMB211 and R500 are the parents of the BraIRRI mapping 

population (Iniguez-Luy et al., 2009). Genotype IMB211 is a highly inbred rapid cycling 
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Chinese cabbage B. rapa subsp. pekinensis and R500 is a highly inbred annual yellow sarson 

B. rapa subsp. trilocularis (Iniguez-Luy et al., 2009; Xu et al., 2010). The experiment used 3 

of the first generation scanner banks and 2 plants were grown on each scanner with 6 

replications per genotype and rooting media. Rooting media treatments namely 

construction paper, blue paper, brown paper and soil were randomised within scanner 

banks. Two independent experiments were run and time-lapse images were taken at 

twelve-hour intervals using the fixed flatbed scanners abutting the plates and rhizoboxes. All 

plants were harvested 10 DAS.  

 

Root traits were extracted with ImageJ software (http://rsb.info.nih.gov/ij/) from each 

image (Section 2.3.3.2). Traits extracted included TRL, PRL, TLRL and R:S, the quotient of 

RDW/SDW. Time-lapse emergence of LRs was also extracted from images by counting the 

number of LRs that emerged each day. The number of root tips on each seedling was 

counted to calculate root topological indices. The topological index (TI) was calculated as 

the slope of the linear regression between log(altitude) and log(magnitude) (Fitter, 1987; 

1991). The Relative Rates of Extension (RRE) of total, primary and total LRs, Relative 

Multiplication Rate (RMR) of LRs and Mean Extension Rates (MER) of seedlings grown with 

the different rooting media were calculated as described by (May et al., 1965; Tennant, 

1976): 

𝑅𝑀𝑅 =  log𝑒 𝑛2− log𝑒 𝑛1
𝑡2− 𝑡1

 ≈  𝑛2 − 𝑛1
𝑡2− 𝑡1

 ≈  𝑑𝑛
𝑑𝑡

           (𝟐. 𝟏)           

 
𝑅𝑅𝐸 =  log𝑒 𝑙2− log𝑒 𝑙1

𝑡2− 𝑡1
 ≈  𝑙2− 𝑙1

𝑡2− 𝑡1
 ≈ 𝑀𝐸𝑅             (𝟐. 𝟐)               
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where, n, l and t for each parameters refer to root number, root length and time (measured 

in DAS) image was acquired. The data were analysed in Genstat 15th edition using residual 

maximum likelihood (REML) and employing the model below: 

𝑦𝑖𝑗 =  µ + 𝛼𝑖 +  𝛽𝑗 +  𝛼𝛽𝑖𝑗 +  𝜀𝑖𝑗                     (2.3) 

where yij is the trait value of the ith genotype (i = 1,2) grown on the jth media (j = 1,…,4) ; α is 

the main effect of the genotype , 𝛽 the main effect of the rooting media , 𝛼𝛽 the genotype-

by-rooting media interaction and εij the residual. 

 

2.1.6.3.2 Results  
Brassica rapa genotype R500 attained the greater biomass and root system size than the 

IMB211 genotype. For IMB211, shoot biomass was significantly higher on soil than on the 

other rooting media (p<0.001). Shoot biomass of R500 on the blue paper was greater than 

on the other rooting media although there was no significant difference between that and 

the biomass recorded on soil. Root dry matter was highest for genotypes on the blue paper 

(Table 2.3). However, the higher root biomass on the blue paper does not appear to be a 

consequence of root length as the greatest root length was not recorded on blue paper. 

Root-to-shoot ratios were higher on construction paper for both genotypes. There was a 

significant genotype × rooting media interaction for root biomass and R:S, but no such 

interaction for shoot biomass (Table 2.3). There was significant difference between 

genotypes, rooting media and genotype × media interaction for topological index (TI) values 

derived from the data (Table 2.3; Figure 2.12 A, B). 
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Table 2.3: Probability levels for treatment main effects and interactions, and treatment mean values for shoot 
and root biomass, root: shoot ratio and topological index for 12 replicates of two Brassica rapa genotypes 
grown for 10 DAS on blue seed germination, brown Kimpack, construction paper and on soil-filled rhizoboxes ( 
ns: not significant) 

 Shoot dry 
weight 
(mg) 

Root dry 
weight 
(mg) 

Root: 
shoot 
ratio 

Topological 
index ± s.e. 

Genotype effect  
(s.e.d.) 

P<0.001 
(0.965) 

P<0.001 
(0.136) 

P<0.001 P<0.001 

Media type effect  
(s.e.d.) 

P<0.05 
(1.322) 

P<0.001 
(0.187) 

P<0.001 P<0.001 

Genotype x media type effect  
(s.e.d.) 

ns P<0.001 
(0.264) 

ns P<0.001 

 

IMB211 

Construction paper 2.16 0.72 0.34 0.93 ± 0.008 
Blue paper 2.47 0.73 0.30 0.95 ± 0.005 
Brown paper 1.87 0.44 0.23 1.00 ± 0.006 
Soil-filled rhizobox 6.88 0.35 0.09 1.0 ± 0.011 

 

R500 

Construction paper 6.57 2.57 0.39 0.82 ± 0.004 
Blue paper 10.07 3.77 0.37 1.0 ± 0.006 
Brown paper 6.97 2.41 0.35 0.9 ± 0.005 
Soil-filled rhizobox 9.97 1.75 0.24 0.99 ± 0.003 

 

 

 

Log(alt) on construction  = 0.93Log(mag) + 0.1182   R² = 0.94 

Log(alt) on blue = 0.95Log(mag) + 0.0682   R² = 0.95 
Log(alt) ob brown = 1.0613Log(mag) - 0.2408   R² = 0.98 

Log(alt) on soil = 1.0594Log(mag) - 0.1682   R² = 0.98 
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Figure 2.12: Linear regression plots of log altitude (number of branching points from the base of the root 
system to the extreme root tip) on log magnitude (the number of root tips on the root system) for (A) IMB211 
and (B) R500 Brassica rapa genotypes grown on three paper cultures and on soil rooting media. 

 

Lateral roots emerged generally from 3 DAS. Emergence of LRs for the R500 genotypes was 

greater on the blue paper whereas that of the IMB211 genotype is greater on the 

construction paper (Figure 2.13B). Derived RMR however show that emergence on LRs on 

the black and brown papers are higher for the R500 genotype. The lowest LR number was 

recorded on soil media at almost all time points for both genotypes (Figure 2.13A). Relative 

rates of increase in LR number were highest initially and decreased with time for both 

genotypes and for each rooting media. The decrease in RMR approached constant levels 

and fell to zero during the period of the experiment particularly for the R500 genotypes 

(Figure 2.13B).  

 

Log(alt) on black = 0.8187Log(mag) + 0.6145  R² = 0.68 

Log(alt) on blue = 1.0016Log(mag) - 0.149   R² = 0.97 
Log(alt) on brown = 0.9656Log(mag) + 0.0197   R² = 0.89 
Log(alt) on soil = 0.99Log(mag) - 0.0194  R² = 0.96 

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8

Lo
g 

al
tit

ud
e 

Log magnitude 

Construction Blue Brown Soil

Linear (Construction ) Linear (Blue) Linear (Brown) Linear (Soil)

B 

58 
 
 
 
 



Type of rooting media significantly affected TRL and PRL (p<0.05). Generally, seedlings 

grown on the construction paper showed faster root growth. The effect of medium on root 

length was evident from six DAS (Figs. 2.13 C - D; Figure 2.14 A - D). On all rooting media, 

the highest relative rates of increase occurred over the first 6 DAS and subsequently fell 

until nearly constant, mainly with the PRs. On all media, RRE values during the periods of 

constant relative increase were higher for LRs than for PRs and the total root system. Soil 

medium however seem to favour PR growth than LR growth as RRE of PR on soils was 

generally greater. Paper rooting media, particularly the construction and brown papers 

seem to favour LR growth.  

 

There was significant variation (p<0.05) between treatments in mean extension rate (MER), 

as a function of time for LRs (Figure 2.15). In the R500 genotype, MER increased with time to 

a peak at 6 to 7 DAS after which it declined but the decline was sharper on the construction 

paper. For the IMB211 genotype, MER appears to be constant with time and significantly 

higher on the blue paper. In both genotypes, MER recorded on soil medium is generally the 

lowest. 
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Figure 2.13: (A) 1. Lateral root number (LR); (B) relative LR emergence rates of LR; (C) primary root length and (D) relative extension rate of primary root during the first 10 
days of growth on four different rooting media. (Continuous or solid lines: R500; Dashed lines: IMB211) 
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Figure 2.14: (A) Total length of LR; (B) relative extension rates of LR;(C) length of the total root system and (D) relative extension rate of the total root system during the first 
10 days of growth on four different rooting media. (Continues lines: R500; Dashed lines: IMB211) 
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Figure 2.15: Mean extension rates of LR during 10 days of growth of two B. rapa genotypes on four different 
root media. (Bars & primary axis: R500; Circles & secondary axis: IMB211) 

 

2.1.7 Nutrient Supply to Plants 

The HRP system employs a modified pouch systems (Hund et al., 2009) in which a 

germination paper is attached to a scanner. The bottom of the germination paper is 

submerged in the nutrient solution (Figure 2.16). Scanners were fixed in near-vertical 

positions 5 cm above 20 l of nutrient solution contained in opaque polyvinyl plastic tanks, 

each supplying six scanners. Approximately 10 cm of the germination paper was submerged 

in the nutrient solution (Adu et al., 2014). In this thesis, nutrient solutions were not changed 

and replaced during experiments. In this system, nutrients and water are transported to the 

region of the roots via capillary action. The default nutrient solution was prepared with 

deionised water and was composed of the macronutrients [in mM]: KH2PO4 [0.25], MgSO4 

7H2O [0.75], FeNa EDTA [0.1], Ca (NO3)2 4H2O [2], NH4NO3 [2] and micronutrients [in μM] 

H3BO3 [30], MnSO4 4H2O [10], ZNSO4 7H2O [1], CuSO4 5H2O [3], and Na2MO4 2H2O [0.5] 

(Broadley et al., 2003). The nutrient solution was adjusted to pH 6 (s.d. ± 0.5) at the start of 
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the experiment using H2SO4. Since the nutrient solution was stagnant, air pumps connected 

to porous stones were used for aeration.  

 

Figure 2.16: Schematic of nutrient absorption onto root zone. 

 

In order to quantify the depletion of nutrients in the solution, plants were grown under six 

external P nutrient concentrations. For each, micro-samples (10 μL) of nutrient solutions 

were collected from each concentration on the first, fifth and tenth day of plant growth. 

Phosphorus concentration in each solution and at the three time points was analysed by the 

Malachite Green (MG) P assay method (Van Veldhoven and Mannaerts, 1987). At the end of 

10 DAS, solution concentrations generally decreased by approximately 20 -27%, except for 

solutions containing 10 and 50 µM P for which [P]ext increased (Figure 2.17). These results 

show that there is decline in [P]ext in the initial solutions but this decline is not likely to affect 

plant growth.  
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Figure 2.17: Depletion of P in nutrient solutions 

 

2.2 Image acquisition tool: ArchiScan  

ArchiScan was authored by Lionel X. Dupuy and Antoine Chatot and is programmed in 

Python employing libraries such as wxPython for graphical user interface, the Python TWAIN 

module (http://twainmodule.sourceforge.net/). The software uses the TWAIN driver 

provided by the constructor to access built-in functionality for the scanner such as image 

type, format, and resolution. ArchiScan is generic and can be used with any other type of 

scanners, provided a twain driver is available. An additional key feature of ArchiScan is its 

utility in controlling an assembly of numerous scanners with one or more computers for 

scheduled image acquisitions. ArchiScan provides an environment for setting image 

acquisition parameters. Thus, it enables user-defined image feature setting with the 

graphical interface allowing control of most image properties relevant to phenotyping such 
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as image resolution, format and frequency of image capture. Following the setup of a 

project, image acquisition and data storage proceeds automatically.  

2.2.1 Running and user-defined feature setting in ArchiScan  

The acquisition interface is Windows-based software and must be installed on a computer 

directory on which there is sufficient space to save images. To operate ArchiScan, the 

program must be opened and a new project created from a file menu (Figure 2.18a). Details 

of the project must then be specified. Details may include initial scanning time, duration of 

scanning or project duration, period between serial scans (Figure 2.18d). Scanner properties 

can also be set (Figure 2.18e). Image features including, colour (black and white, greyscale 

or red green blue-RGB channel images), resolution (dpi), scaling (percent) and frame size 

(x10, inch) can be chosen. The brightness, contrast and file format (bmp, jpeg etc.) can also 

be set here (Figure 2.18e). Image acquisition (Figure 2.18g) can then proceed.  
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Figure 2.18: Screenshots of setting an a project in ArchiScan: dialogue boxes for (a) project creation; (b) saving 
new project; (c) chosen scanners; (d) specifying project details; (e) setting up scanner parameters; (f) 
confirming scanner that have been selected and setup; (g-h) acquiring time-lapse images; (i) progress of image 
acquisition during and end of project. 

 

(a) (b) (c) 

(d) (e) 

(f) 

(g) 
(h) (i) 
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2.2.2 Image Resolution  

Wires of varying diameters and length were scanned at different scanner resolutions in 

order to determine if the scanners could adequately resolve the fine root structures of the 

seedlings. Five types of wires at three replications each were selected and their actual 

diameters were measured with callipers. The wires were then moulded into caricatures of 

roots systems and their actual length determined with thread and ruler. Subsequently, the 

artificial root systems were scanned at 150, 300 and 600 dpi. From the images obtained, the 

diameter and the total length were extracted (observed length and diameter) using 

SmartRoot (Lobet et al., 2011).  

 

The results indicated that resolution has no effect on the length of the scanned images 

(Figure 2.19a). However, actual and observed diameters of the wires at different resolutions 

seemed to vary (p = 0.027) and there also appear to be difference in the observed diameters 

of the wires at the three different resolutions (p = 0.002). The disparity between the actual 

and observed diameters could possibly be due to the overestimation of the observed 

diameter at 150 dpi (Figure 2. 19b). Seeing that at 300 dpi, even the wire with the least 

diameter (0.2 ± 0.005 mm) was accurately resolved and quantified, this resolution was 

chosen for my experiments.  

67 
 



 

 

Figure 2.19: Effect of resolution on (a) total length and (b) diameter on wires. 

 

2.3 Image processing and geometric feature extraction  

Scanners generate digital images. Digital images consist of grid of pixels. Each pixel is 

associated with unique pixel intensity. For example, an 8-bit greyscale image can take any 

integer value between 0 (black) and 255 (white) and a 16-bit image can take values between 
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0 (black) and 65535 (white) (Megahed, 2012). Root data is not directly accessible from 

digital images and therefore requires analyses of the image to extract the needed 

information. Image analyses prior to extraction of root traits data from images are also 

meant to improve the image by reducing artefacts on the image. An image artefact is any 

feature which appears in an image which is not present in the original imaged object. 

Artefacts may result from improper operation or practical limitations of the imaging device, 

or are a consequence of natural processes or properties of the imaging environment 

(Hornak, 2008; Martinez-Ortiz, 2010). Artefacts can obscure, and be mistaken for a root 

feature and can result in false negatives and false positives, confounding the reliability of 

the data obtained. The following sections describe the chain of analysis procedures 

developed to process and extract root trait data from images.  

2.3.1 Image enhancement 

The objective of this step is to correct for noise and defect in the image. All processing 

routines were performed with algorithms implemented in ImageJ 

(http://rsbweb.nih.gov/ij/). Images were captured in the RGB image format. Analysis was 

hence based on 8 bit greyscale images obtained from the red channel of the colour images. 

Images were restored from two types of image imperfections namely short range and long 

range variations in pixel intensity.  

 

Short range variation in pixel intensity can be attributed to interferences on the surface of 

the imaging device or on the rooting medium. Short range variations are introduced for 

example by water droplets due to condensation at the surface of scanners, or due to 

inhomogeneity on the surface of the germination paper. Such variations in the images were 
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minimised with a median filter. The median filter is considered robust average and is more 

suited to image edge preservation since it does not create new unrealistic pixel values when 

the filter straddles an edge (Marion, 1991). The filter works by finding the median value of 

the pixel intensity of a neighbourhood whose size is smaller than the size of objects of 

interest in the image. The median value is then replaced by the initial pixel intensity value. 

Figure 2.20 illustrates how the median filter works using a 3 x 3 square in this example. The 

central pixel value here 149, is not representative of the eight other neighbouring pixel 

values around it. The median pixel value of 120 could thus be used instead (i.e.: 115, 116, 

119, 120, 123, 126, 127, 130 and 149).  

       

 111 128 129 136 139  

 118 126 115 127 140  

 125 116 149 120 133  

 117 119 123 130 121  

 129 110 122 134 131  
       

Figure 2.20: Calculating the median value of a pixel neighbourhood. 

 

Long range intensity profile variations may be the variations that remain after short range 

intensity profile variations are removed. Long range variations are corrected by a 

background subtraction technique. The background subtraction algorithm starts with the 

plotting of intensity profile of the image background. This is followed by the calculation of 

the mean pixel intensity over a neighbourhood with size larger than the object of interest in 

the image i.e. root diameter. The mean value is then subtracted from the original value 

(Figure 2.21). A Gaussian filter (convolution with a Gaussian function) was subsequently 
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applied to ensure smooth root edges and in turn more precise estimation of the root 

perimeter.  

 

Figure 2.21: Image pre-processing routings: (A) an original RGB colour image showing the presence of short 
range pixel intensity variations; (B) RGB image with short range variations reduced with the median filter; (C) 
images with long range variations reduced through background subtraction procedures; (D) image with 
Gaussian blur filter applied. Images have been inverted for clarity.  

 

2.3.2 Image segmentation 

Segmentation involves associating an image pixel with an object in order to decompose the 

image into meaningful parts with respect to a particular application (Barrow and 

Tenenbaum, 1978; Haralick and Shapiro, 1992). Parts of an image are distinguished or 

segmented by local intensity, spatial position, neighbouring pixels, or prior information 

about the shape characteristics of the object (Sekulska-Nalewajko and Goclawski, 2009; 

NIFA-NSF- USDA, 2011). Segmentation by thresholding was employed in this thesis. In order 

to choose the most suitable thresholding technique, we evaluated all sixteen thresholding 

algorithms implemented in ImageJ on images of 14 d root system of Brassica rapa seedlings.  
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For these images, five of the algorithms recognised and segmented the root systems 

satisfactorily. These were Isodata (Ridler and Calvard, 1978), Li (Li and Lee, 1993; Li and 

Tam, 1998), Moments (Tsai, 1985), Otsu (Otsu, 1979), and Triangle algorithms (Zack et al., 

1977) (Figure 2.22). Further, we measured the TRL of the segmented images as (i) 50% of 

the root perimeter (one pixel-wide edge around the root image) from the products of the 

five satisfactory threshold routines and (ii) length of the topological skeleton of the images 

obtained using ImageJ. Topological skeleton of the root system is a pixel-wide version of the 

root system obtained from the iterative removal of pixels from the edges of the root system 

in a binary image (Zhang and Suen, 1984). In order to compare the ensuing data with some 

kind of a standard, TRL data were also extracted from the same images using root analyses 

software, called SmartRoot (Lobet et al., 2011). 

 

Results obtained from the five threshold algorithms were generally comparable, but they 

underestimated the TRL when compared with data obtained from the SmartRoot (Figure 

2.23). Some features of the root system are possibly lost following segmentation. On my 

data, we generally found that the Moment-preserving threshold algorithm (Tsai, 1985), 

performed consistently well and so was employed in subsequent analyses. The Moment 

algorithms use the grey level image histogram to determine an optimal threshold in the 

image. The optimal threshold is the one that best preserves moment of the thresholded 

image. A Gaussian blur filter that uses convolution with a Gaussian function was then 

employed to smooth edges of the ensuing root image.  
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Figure 2.22: RGB image of a root system segmented with ImageJ automated threshold-based algorithms. 
Original RGB image (a) segmented with Isodata (b), Li (c), Moment (d), Otsu (e), Triangle algorithms (f); Pixel-
wide root skeleton (g) and pixel-wide boundary perimeter of root system (h). Root skeleton and boundary 
perimeter were obtained from triangle threshold algorithm. 

 

 

Figure 2.23: Total root length of 14 d Brassica rapa seedlings computed from root images processed with 
different automated threshold-based algorithms in ImageJ and SmartRoot root analysing software (n=10). 
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2.3.3 Extraction of geometrical features 

ImageJ was employed as the first procedure to extract features of the root geometry from 

the processed images. Root traits including root lengths, elongation rate, root diameter and 

LR angle were extracted from the images. For example, daily root emergence and growth 

were measured by tracing the new growth increments on the images. Here, time-lapse root 

images were imported into ImageJ and point selections were placed manually on the tip of 

each root axis in successive images using mouse clicks. Root tip displacement (∆u) was 

recorded and calculated using:  

∆𝑢 =  𝑢𝑓 − 𝑢𝑜       (𝟐. 𝟒)        

where uf = original x co-ordinate and uo = x co-ordinate of the point selection in next image 

in the sequence. Vertical patch (∆v) displacement was calculated as:  

 ∆𝑣 =  𝑣𝑓 − 𝑣𝑜         (𝟐. 𝟓)           

where vf = original y co-ordinate and vo = y co-ordinate of point selection in the next image 

of the sequence. 

The daily root elongation rate (cm d-1) of each root axis was calculated using movement in 

both x and y co-ordinates as:  

𝑦 =  �(∆𝑢)2 + (∆𝑣)2

𝑝𝑥
          (𝟐. 𝟔)          

where y = growth rate (cm d-1), px = scale factor calibration value (pixel/cm). Although the 

technique yielded highly reproducible data, it was too slow to be employed in extracting a 

high throughput data.  

2.3.3.1 Extraction of root features using SmartRoot software 

Second procedure employed in extracting root traits is an ImageJ plugin called SmartRoot 

(Lobet et al., 2011). SmartRoot is a root image analysis tool which tracks root objects and 
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sends measurement to a standardised access database. SmartRoot has an underlying 

wireframe model of connecting image vertices with lines. SmartRoot describes root images 

by a vector representation of the root system using coordinates of connected nodes along 

various axes of the root system (Figure 2.24). The software incorporates an algorithm that 

determines the midline of the root near a user selected seed position and proceeds with 

stepwise construction of segmented line to the root tip by approximating the root midline. 

The list of specific attributes captured in SmartRoot root descriptions includes: a unique root 

axis identification number, the branching order, x and y co-ordinates of root axis, the 

distance of LR position in relation to the PR’s base and tip, and the root length and diameter 

at each observation date. Thus, SmartRoot has the capability to obtain static root traits 

including topological description of the root system.  

 

 

 

 

 

 

Figure 2.24: Analysis of RSA by SmartRoot Software (i) original grey-scale image; (ii) image traced with 
SmartRoot showing primary root (yellow) and lateral roots (green) 

 
SmartRoot can also be used to analyse developmental processes of complex RSA from 

images across time-series (Lobet et al., 2011) but the procedure could be slow by repeating 

the whole process for each image. In this thesis, SmartRoot was used to extract root growth 

information by tracing all root axes (primary and lateral roots) on the last image. The initial 

tracing was then used as the starting point for the tracing of the preceding image which is 

i ii 
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obtained by removing the portion of roots that have been created between the penultimate 

and last images. The same process was repeated until the root system from of DAS 1 is 

traced. 

2.3.3.2 ImageJ macro for extracting dynamic root features  

Dynamic root traits were extracted from successive images using custom routines 

developed in ImageJ (Figure 2.25). Particle analyses extracts non connected regions of the 

image on which it is possible to calculate shape descriptors. An example of shape 

descriptors is the circularity descriptor (circ) which gives a measure of similarity between a 

given shape and a perfect circle. Circularity ranges between 0-1 and is a dimensionless 

shape descriptor which is a function of the object perimeter and the area (circ = 

perimeter2/4π. area) (Bottema, 2000).  

 

Following image enhancement routines, the macro converts the series of time-lapsed 

images to 8-bit greyscale formats after which the images are restored and segmented using 

the moment-preserving threshold algorithm of (Tsai, 1985). Next, the stack of images is 

converted to mask where all slices are converted to black and white images and then 

threshold levels re-calculated for each individual slice. Subsequently, an edge-tracing 

algorithm implemented in the macro which utilises a user-defined size and shape 

descriptors are employed to define the boundary (perimeter) of root tissues and removes 

objects external to the root system from the image. Size of 0.2 and circularity of 0.00-0.2 

was identified as the best threshold to discriminate non-root objects from of root tissues.  

 

76 
 



The macro further implements an algorithms to estimate global traits of the root system 

(total root length, total root cross-sectional area, total root perimeter, convex hull of the 

root system, root length density) on 2D images. Convex hulls are the smallest polygon 

whose vertices are all points in the root image (Figure 2.25). The convex hull macro 

incorporated a loop in its script capable of determining the local maxima in all root system 

images in the stack from slice one to the final slice. Based on the identified local maxima, a 

band (convex hull) was then wrapped tightly around the maxima points that define the 

rectangular selection that is the same size as the root system images in each slice ( Figure 

2.25c).  

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

Figure 2.25: (a) ImageJ macro script for particle analysis (b) macro script for fitting convex hull on root system 
perimeter; (c) resultant analyses of root system by the ImageJ macros showing time-lapse images of RSA of 2, 
4, 6, 8, 10, 12 DAS B. rapa seedling. The RGB image of the root system at 14 DAS is shown at the end of figure C. 
 

a b 

c 
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2.3.3.3 Feature extraction of data from rhizobox using WinRhizo 

To verify that most roots were visible on the surface of rhizobox, root systems from 

experiments performed in soil-filled rhizoboxes were also measured with the image analysis 

system WinRhizo Version 2012b (www.regentinstruments.com). At the end of experiments, 

shoot parts were removed and the soil-root sample was suspended in water. Roots were 

washed from the soil by hand and brush and cautiously taken out by tweezers. Root samples 

were transferred into large clean petri dishes (150 mm) with no markings or scratches on it. 

Petri dishes were half-filled with water, ensuring that root axes do not overlap and are 

separate from each other as much as possible. Each washed root sample was scanned using 

an Epson Expression 10000 XL scanner. Morphological features including length, area, 

volume and diameters were then measured with the WinRhizo. 

2.3.3.4 Measurement of other seedling parameters 

2.3.3.4.1 Shoot and root biomass 

Depending on experimental objective, experiments lasted 10 to 21 days after sowing on 

scanners. In addition to the extraction of root trait data as described previously, other 

measurements obtained in this thesis included shoot biomass and phosphorus 

concentration is plant tissues. Results of these measurements will be presented in the 

subsequent chapters but a brief description of the methodology used is here described. At 

the end of experiments, shoot were severed from roots at the root-shoot junction. The SFW 

and RFW were recorded immediately. Shoot and root plant samples were then oven dried at 

60 °C for 72 hours and SDW and RDW determined.  
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2.3.3.4.2 Phosphorus concentration in plant tissues 

Total shoot-P and root-P concentrations (Shoot [P] and Root [P]) were determined by the 

MG phosphate assay method (Van Veldhoven and Mannaerts, 1987). Firstly, whole, oven 

dried and weighed plant materials were digested in MARS® microwave sample digester 

(CEM Corporation, Matthews, NC, USA). Two samples of standards made up of 30 mg 1573a 

tomato leaves, (National Institute of Standards and Technology (NIST), Gaithersburg, MD, 

USA) were also put into digester tubes to go through the entire digestion process in order to 

test the quality of the digestion. There were two round of digestion and for the first round, 3 

ml of concentrated nitric acid (15 M HNO3) (Aristar, VWR International Ltd., Poole, UK) was 

added to each sample and left to digest in a fume hood for approximately 15 minutes. Nitric 

acid was included in two tubes as a blank sample to take through the entire extraction 

procedure. The samples were digested using the STD-NO3 40 Digest programme (Table 2.4). 

The samples were then heated in steps to 180°C and held at same temperature for 20 min 

to allow the complete digestion of the material.  

Table 2.4: STD-NO3 Digest programme for microwave acid digestion of plant materials 

Ramp Time (min) Temperature (°C) Hold Time (min) 
3 100 2 
1 120 1 
3 160 2 
2 180 20 

 

Samples were then allowed to cool for 20 min and digester tubes were carefully opened in a 

fume hood to allow nitrogen oxide fumes to vent for about 20 min. For the second round of 

digestion, 1 ml hydrogen peroxide solution (30% H2O2, Aristar, VWR International Ltd., 

Poole, UK) was added to each sample and the samples left to digest in a fume hood for 15 

min. The samples were digested again in the microwave using the STD-NO3 Digest 

79 
 



programme as described above (Table 2.4). Digested samples were cooled in fume hood and 

were subsequently topped up to a final volume of 50 ml using Milli-Q water (Millipore (U.K.) 

Ltd., Watford, UK).  

 

A solution of 2 µg ml-1 P was used for calibration by dissolving 0.8789 g KH2PO4 in 1 L 

ultrapure water and diluted 100 times. Standard curve of 0, 5, 10, 15, 20, 30, 40, 50, 60 and 

80 µL of P standard in one row of a 96 well plate was prepared, adding 10 µL of blank to 

each standard well. Ten microliters of digest was pipetted into remaining wells on the plate 

and each well made up to 200 µL with Milli-Q water (Millipore (U.K.) Ltd., Watford, UK). 

Hundred microliters of MG solution was added and left for 20 minutes for colour to develop 

after which absorbance was read at 595 nm using ELx 800 Universal microplate reader 

(BioTek Instruments Inc. USA). Table 2.5 shows an example dilution of the standard solution 

included in each run and Figure 2.26 shows an example of a calibration curve obtained. The 

P concentration was calibrated to the tomato leaves standard included in the extraction 

process. Thus, the tomato leaf standard provided the analytical error for each run and its 

actual readings were used to determine the decrease or increase in P concentrations in each 

step of the run in order to correct for it.  

Table 2.5: An example of dilution for the preparation of standard curve 
 

№ 
Volume (µl) 

Standard Blank Milli-Q water Malachite green 
1 0 10 190 100 
2 5 10 185 100 
3 10 10 180 100 
4 15 10 175 100 
5 20 10 170 100 
6 30 10 160 100 
7 40 10 150 100 
8 50 10 140 100 
9 60 10 130 100 

10 80 10 110 100 
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Figure 2.26: Calibration curve for P concentration: Absorbance values are plotted against P concentrations [µg 
ml-1] 

 

2.3.3.4.3 Phosphorus concentration in seeds and paper 
rooting medium 

 
Concentrations of P in the paper rooting medium and that in the seeds of the parents of the 

BraIRRI population were determined using ICP-MS instrument (ICP-MS, ELAN DRC-e, 

PerkinElmerSCIEX, Massachusetts, USA, www.perkinelmer.com/). In PerkinElmer’s technical 

note, an explanation of how ICP-MS is performed has been provided. Briefly, samples are 

first introduced into ICP-MS instrument via nebulizer and spray chamber which also convert 

the samples into minute droplets. An argon plasma serving as an ion source of the ICP-MS 

ionises the droplets and directs them into a mass filtering device known as quadrupole mass 

spectrometer. The mass spectrometer rapidly scans the mass range of the ions and 

separates them based on mass-to-charge ratio allowing only one ratio to exit the 

spectrometer. Ions that exit the spectrometer then strike a dynode of an electron multiplier, 

serving as a detector. Electrons released from the impact of the strike are amplified into a 
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measureable pulse. Software, ELAN (PerkinElmerSCIEX, Massachusetts, USA), converts the 

counts for the ions to ppm or ppb values according to standard curves. Here, digested paper 

samples or seed and nitric acid blanks were placed in the ICP-MS. The volume of the digest 

and DW of the paper or seeds were used to calculate the amount of P in mg g-1 DW.  

2.4 Discussion 

Roots are hidden in the soil and do not lend itself easily to empirical methods to 

quantitatively describe its growth and architecture. Methods of phenotyping root systems 

do not currently have the same degree of sophistication or throughput as genomes or 

processes more proximate to the genome and frequently limit functional genomic studies. 

Efforts to understand interactions of roots and their environments are frequently 

constrained by increased root plasticity, high impacts of ontogenetic variations as well as 

strong influence of plants’ internal status (carbon and minerals) on root growth and 

architecture (Oborny, 2004). There is therefore the tendency of instantaneous variables 

such as root length to offer poor descriptions of the root system. Complex integrated traits 

such as root growth dynamics must therefore be measured and this will require 

improvements in the phenotyping process. Reproducible, methodological and technical 

alternatives which are also simple, economical and widely accessible must be sought.  

2.4.1 High resolution low cost scanner-based 2-D phenotyping system 

Work in this thesis shows that a low cost imaging facility enables rapid acquisition of high 

resolution root system images. The design comprises a simple Windows-based interface for 

automatic 2D image capture of root system growth which also permits the managements of 

several scanners at any point in time. The system has no or limited engineering 

requirements and could potentially be scaled-up to increase the throughput. In this thesis, 
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up to 72 plants can be phenotyped simultaneously for up to 21 days after sowing. The 

scanner-based phenotyping described here system combines hydrophilic germination paper 

and nutrient solution to mimic soil conditions. By design, it has the capacity to measure 

static and global root characteristics. It also provides a simple means for continuous 

observations of seedling root development enabling detailed observations of dynamics of 

root growth and development. Thus, root development can be monitored at the 

macroscopic or microscopic level at intervals ranging from minutes, days or weeks 

(Futsaether and Oxaal, 2002). The system can also be adapted to observe root growth in soil 

and could be adapted for the quantification of root growth dynamics in response to various 

stimuli such as the effects of different physical environments and nutrient supply. 

 
The interaction of quantity and quality of light could affect several plant morphological 

parameters including root system growth and architecture. Cope and Bugbee (2013) for 

example have reported that light from white LEDs increased stem elongation and leaf 

expansion and initial plant growth in radish, soybean, and wheat. In this thesis, scanning did 

not affect growth of plants (Figure 2.6). Cope and Bugbee (2013), have suggested that 

normal plant development under cool white LEDs is attributed to high percentage (25%) of 

blue light (400 to 500 nm) contained in white LEDs. Images captured by the system could 

however be susceptible to small amounts of artefacts but it is possible to extract the data 

with simple image analyses routines. Macros written in ImageJ are able to automatically 

processes and extract root features such as root perimeter and convex hull area from 

sequential images. In a normal soil environment, segmentation of roots from their 

background is an onerous task and usually limits throughput and number of samples (Basu 

and Pal, 2012). To a large extent, images captured here have uniform background and 
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facilitate the segmentation process, accelerating the analyses of RSA traits. Fine root 

features such as root hairs are visible (Figure 2.27) and show potential for fast analysis of 

their morphology in the future. 

 

 

 

 

 

 

 

 

 

 

Figure 2.27: Example of images on the two selected root growth substrates used in this thesis (blue seed 
germination paper and soil in rhizoboxes) showing highly resolved fine root features (root hairs and first order 
laterals) on 6 d after sowing Brassica rapa (R500) seedlings. 

 

2.4.2 Effect of rooting media on root topological indices  

It is important that information is given about how closely data produced in controlled 

environments relates to that produced in soil or under field conditions. Dubrovsky and 

Forde, (2012) have stressed the importance of adequately characterising the growth 

conditions, especially the rooting medium employed in the quantification processes of root 

features. This would give confidence that any manifested phenotypes are the result of the 

imposed treatments rather than environmental factors, such as growth medium, 
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temperature, light, and aeration. It would also facilitate inferences and extrapolating of data 

across both spatial and temporal scales. 

 

As part of developing the scanner-based root phenotyping system, different paper cultures 

and soil growth media were evaluated to determine their suitability. This also enabled the 

response of the early phase of root growth in brassica to environmental factors, in this case, 

the rooting media, to be examined. The results indicated that simple indicators such as 

topological indices of root systems can be used to characterise variations in seedling root 

traits. It is worth noting that the present results are based on growth media of different 

physio-chemical properties and may thus have varied water and nutrient retention 

properties.  

 

When topological index (TI) was plotted for the two B. rapa genotypes, strong linear 

relationships were established. The TI values tended to be comparable and higher for both 

genotypes. Mean TI values of 0.93, 0.95, 1.0, and 1.0 for IMB211 grown on construction, 

blue, brown and soil media respectively indicated that root media had little effect on the 

typical herringbone pattern of 10 d after sowing B. rapa seedlings. Similarly, mean TI values 

of 0.82, 1.0, 0.97 and 0.99 for the R500 genotype grown on construction, blue, brown and 

soil media for 10 days respectively in general suggest little alteration in the inherent root 

topology by the rooting media at early stages of the plants’ growth. Brassica cultivars grown 

in rhizoboxes showed similar TI values but the TI values increased when cultivars were 

constrained with limited external P supply (Akhtar et al., 2009). 
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Relatively, lower TI values were however recorded on the construction paper. Given that the 

construction paper was not originally manufactured for growing plants, it is not entirely 

surprising that the branching pattern of the root systems grown on it changed from a 

herringbone pattern to random branching. The responses observed here may be explained 

by root systems reacting to inadequate water or perhaps increased innate mineral 

originating from the dye or the raw material of production. The construction paper was 

lighter and less hydrophilic and the plants may have been subjected to drought. Moreover, 

the significant genotype x root medium type interactive effects for TI observed here may be 

explained exclusively by difference in the extent of response by the two genotypes. It is seen 

that IMB211, the genotype with smaller root system, was relatively less responsive to a 

change in rooting medium than R500 genotype with longer root length and highly branched. 

The results show that Brassica lines x root medium interactions are likely to occur more 

frequently in highly branched inbred lines with older and therefore most probably bigger 

root systems (Crush et al., 2005). In these circumstances choice of root medium become 

more critical especially in empirical studies targeting the phenotypic selection of exploratory 

root systems characterised by increased lateral root emergence and growth.  

2.4.3 Effect of rooting media on root growth  

Growth media effects were observed on primary and total root length and their 

corresponding relative extension rates. On all rooting media, rates of extension for both the 

primary root and total root system begun to approach constant following initial higher 

extension rates. These experiments lasted only 10 DAS but the constant root growth in the 

later stages irrespective of the rooting medium suggests that the rate of root growth may be 

under stable internal control, and perhaps large responses to variations in the environment 
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occur only during the early stages of growth. This confirms the suggestion that the 

responsiveness of plants to variations of the environment decreases with the age of the 

plant (May et al., 1965; May et al., 1967). Roots systems analysed by May et al., (1965; 

1967) were however from monocots.   

 

As expected, lateral root numbers and lengths increased with time to a point beyond which 

root growth was suppressed. There were consistent patterns of root number and length 

increase in the Brassica rapa seedlings. This trend has long been established in many crops 

including barley (May et al., 1965; Rahman et al., 1975) and wheat (Tennant, 1975). An 

interesting feature however is the observation here that numbers and RMR of 1st order 

laterals was altered by the nature of the medium in which the roots were growing and that 

media effect on RMR is evident between 2 and 5 DAS for R500 and between 2 and 8 DAS for 

IMB211. Irrespective of the genotype, the brown and construction paper media induced the 

greatest number of laterals and the mechanism operated within 8 days following 

germination. As indicated earlier, these paper types were relatively lighter in weight and 

may so have suboptimal capillarity and water retention capacities. Nutrition and water 

retention status of these media types could therefore be implicated in the increased lateral 

rooting (Malamy and Ryan, 2001). 

 

When lateral root number was however compared with total lateral length, it was seen that 

during early growth (up to 10 days after germination), the number of 1st order lateral roots 

was higher than the total length of lateral roots expressed in cm on the blue paper culture 

and in the soil but not on the construction and brown paper cultures. This is consistent with 

Wahbi and Gregory (1995) and May et al. (1965) for barley seedlings where there was rapid 
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increase in the length of laterals in comparison with number such that mean length 

increased. It is thus possible that during the early growth of brassica roots, there is 

increased emergence of 1st order LRs which extends relatively faster than the production of 

new LRs of the same order so that relative rates of extension decreased with time but this 

trend is subject to suitable environmental conditions. Further, differences in MER with 

respect to time give evidence of changing rate of cell division in LR meristems resulting in 

MER that at first, increases and then declines with time. This observation suggests that 

assigning a single value of elongation rate to LRs of different ages may be impractical.  

 

In general, the differences between roots grown in soil and on blue paper culture were 

relatively small in general. Consequently, it would be advantageous to use the blue paper 

culture for screening brassica seedlings for RSA and root growth traits especially in my case 

when the physical effect of a solid root medium on roots was important. 

2.5 Summary 

• Two-dimensional low cost scanners coupled with windows-based image acquisition 

interphase (ArchiScan) allows root growth phenotyping of the same plant for several 

days.  

• ArchiScan allows the management of multiple scanners concurrently, increasing the 

throughput of plants that can be screened at any time. We have developed a system 

employing 24 scanners which can screen up to 72 individual of plants at any time. 

• Scanners are of high resolution enabling finer root features to be adequately 

resolved.  

• Scanner resolution of 300 dpi adequately resolved fine root features of seedlings.  
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• White light emitting diode light of the flatbed scanners had no effects on root 

system features of Brassica rapa seedlings. 

• There were growth media effects on topological indices (TI), attributable to roots 

branching more on construction paper rooting medium with possible suboptimal 

water retention properties. Mean root topological index of 0.82 - 0.93 respectively 

recorded for R500 and IMB211 on the construction paper medium indicated that 

root growth media could have effect on the herringbone pattern of brassica roots in 

their early stage of growth. 

• First order lateral root numbers and lengths followed consistent patterns of increase 

on all root medium treatments, recording their highest rates of relative increase in 

length and number immediately after sowing. Whilst root extension rates and 

multiplication of lateral roots were responsive to rooting medium, both fell and 

approached constant with time. Mean extension rates of lateral roots vary with time 

and would be more rewarding if root system analyses procedures could account for 

this time-dependent variability rather than assigning single extension rate values to 

lateral roots of different ages.  

• Differences between roots grown in soil and on Anchor blue germination blotter 

were relatively small suggesting that the blue blotter is ideal for phenotyping 

Brassica rapa seedlings for RSA traits and root growth when the physical effects of a 

growth medium on root system is essential. 
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 : PHENOTYPIC VARIABILITY WITHIN A GENOTYPE  CHAPTER 3

3.0  Introduction 
Genetic improvement of rooting traits in crop species requires knowledge of intra-species 

variability in significant root parameters and its genetic control (O'Toole and Bland, 1987). 

For example, root diameter is highly variable within a root system and this in turn influence 

root growth rate (Lecompte et al., 2005; Pagès, 1995; Thaler and Pagès, 1996). In Brassica, 

LRs are secondary roots that emerge from the primary root (PR) (Hammond et al., 2009). 

Lateral roots (LRs) emerge consecutively and variation exists in the growth rate of successive 

LRs related to anatomical variations or root diameter (Pagès, 1995; Zhang et al., 2003). 

Understanding this variation is important because whilst roots of different orders may be 

implicated in differences in acquisition of soil-based-resources, roots segments of different 

ages may also vary in their acquisition capacity and physiological activity (Zhang et al., 

2003).  

 

Unfortunately, characterising the variability of root traits is difficult. Root system 

architectural traits and growth vary in time and in space. For example, root traits vary in 

response to soil nutrients (Gaudin et al., 2011), soil water (Ober and Sharp, 2007) and in 

response to stresses due to temporal variation in soil physical conditions (Gregory, 2006). 

Root growth also varies spatially due to changes in soil physical and / or chemical properties 

(Gregory, 2006) such as soil compaction (Montagu et al., 2001) and also due to physiological 

and developmental processes or variation in tissue differentiation associated with root 

segments (Hodge et al., 2009). Modelling approaches can be used to simplify the complexity 

of root system descriptions using processes and dynamic parameters instead of using a 

multitude of variables to describe a system that is inherently dynamic. 
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The primary aim of this chapter was to estimate phenotypic variation for morphological root 

traits for a single genotype of Brassica rapa. The second aim was to evaluate the ability of a 

mechanistic model to represent the complexity of this root system. My specific objectives 

were (i) to quantify the coefficients of variation within a single B. rapa genotype and 

determine the required number of replications needed to detect significant differences 

between root trait means; (ii) to estimate the variation in the growth of PR and LRs of 

differing ages and provide a general descriptive overview of the root growth patterns of 

different root axes of a single genotype; (iii) to apply a density-based model to assess if a 

RSA can be represented accurately using a limited number of morphological variables.  

3.1 Materials and methods 
Seedlings of a Brassica rapa genotype R-o-18 were grown on seed germination paper 

(Section 2.1.6.1) and were imaged with flatbed scanners (Sections 2.1.2; 2.2.1) in eight 

independent experiments (runs) under the same environmental conditions as described in 

Chapter 2 (Section 2.1.1). Two experiments employed 16 scanners each with the remaining 

using 8 scanners per experiment. There were two seedlings per scanner for each run, and a 

total of 160 individual plants. Seedlings were grown for 14 days after germination and 

geometric data were extracted from images using SmartRoot (Lobet et al., 2011) (Section 

2.3.3.1).  

3.1.1 Data Analyses  
Each run was treated as an independent population for analysis. Data were entered into 

GenStat (GenStat Release 14.1, VSN International, Oxford, UK) and descriptive statistics was 

performed on each population. For each population, we obtained an estimate of the 

standard deviation and the mean (± standard error) and used these estimates to determine 

91 
 



the coefficient of variation (CV). The CV was estimated as the percentage of the ratio of the 

standard deviation to the mean.  

3.1.2 Determination of required sample size (replication) 
 

We estimated the number of replicates required to detect significant differences in 

measured traits in two-sided 95% confidence interval (CI) t-test. The following equation was 

applied:  

𝑁 =  
4𝜎2(𝑧𝑐𝑟𝑖𝑡)2

𝐷2                                               (𝟑. 𝟏) 

N is the number of replicates, σ is the measured standard deviation, Zcrit is the standard 

normal deviate corresponding to selected significance level and CI, and D is the total width 

of the selected CI. Calculations were initially based on a difference of the means of 50% and 

with a 95% CI. It must be noted that this is a test with two virtual genotypes or treatments 

based on the variability of root traits measured from a single genotype. Equation 3.1 

therefore does not depend on statistical power because this concept only applies to 

statistical comparisons (Eng, 2003). 

3.1.3 Estimation of variance components and correlation between 
traits   

Variances in the static root traits were then analysed using a linear random effect model 

with run and scanner considered as random factors: 

𝑦𝑖𝑗 =  𝑚 + 𝑎𝑖 + 𝑏𝑗 +  𝜖𝑖𝑗            (𝟑. 𝟐) 

𝑖 ∈ {1, … , 𝑛}, 𝑗 ∈ {1, … , 𝑟}, 

𝑎𝑖 ~ 𝑁(0, 𝜎𝑎2), 𝑏𝑗~ 𝑁(0, 𝜎𝑏2), 𝜖𝑖𝑗, ~ 𝑁(0, 𝜎2 ). 

where 𝑦𝑖𝑗  represents the root trait from the ith run or population from the jth scanner 

number with m denoting the overall mean trait value; 𝑎𝑖 is the effect of the run, 𝑏𝑗 is the 
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effect of scanner and 𝜖𝑖𝑗  is the residual error; n = 8 is the number of runs; r = 16 is the total 

number of scanners used during the experiments. Phenotypic correlations between pairs of 

traits and significance of correlation pairs were respectively estimated using the functions 

cor() and cor.test() in R (R Core Team, 2008). These functions allow the computation of 

correlation and testing for association between paired traits, using either Pearson's product 

moment correlation coefficient, the Kendall's tau or the Spearman's rho 

(http://stat.ethz.ch/R-manual/). Here, the Pearson's product moment correlation coefficient 

was used and significant correlations with 0.2 ≤ r2 ≤ 0.5, 0.5 < r2 ≤ 0.8, 0.8 < r2, were defined 

as weak, moderate and strong, respectively. 

3.1.4 Variability in root growth 
The root elongation rates (cm d-1) of the PR and first-order LRs were obtained from time-

lapse root images. Lengths and elongation rate of LRs is dependent on the time of 

emergence from the pericycle of the PR. Variability in LR root growth was analysed by taking 

into account the time of emergence of individual LRs on the PR. Lateral root elongation rate 

were calculated separately for laterals that emerged 2, 3, 4 and 5 d after sowing hereafter 

referred to as 1st, 2nd, 3rd and 4th laterals, respectively. Growth of PR was analysed with 

mixed effects linear models with days after sowing (DAS) as covariate (Equation 3.3a):  

𝑦𝑖 =  𝑏𝑖 +  𝛽1 +  𝛽2𝐷𝐴𝑆𝑖 +  𝜖𝑖,          (𝟑. 𝟑𝒂) 

 𝑖 = {1, … , 9},  

𝑏𝑖 ~ 𝑁(0, 𝜎𝑏2), 𝜖𝑖 ~ 𝑁(0, 𝜎2). 

where yi is the growth rate of the PR on the ith DAS, bi is the random effects on the intercept 

and β1, and β2 are the fixed effect parameters of the linear function. We restricted the 

analyses of PRs to 9 DAS because PRs usually reached the bottom of the scanner at 10 days 

after sowing. Similarly, growth of LRs were analysed with mixed effects linear models with 
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DAS as covariate but included a quadratic function and the time of LR emergence as fixed 

effects (Equation 3.3b).  

𝑦𝑖𝑗 =  𝑏𝑖 +  𝛽1 + 𝛽2𝐷𝐴𝑆𝑗 +  𝛽3𝐷𝐴𝑆𝑗2 + 𝜖𝑖𝑗,        (3.3b)  

 𝑖 = {1, … , 4}, 𝑗 = {1, … ,9}, 

𝑏𝑖 ~ 𝑁(0, 𝜎𝑏2),    𝜖𝑖𝑗 ~ 𝑁(0, 𝜎2). 

where yij is the LR growth rate for type of root i on the jth day after sowing (time of LR 

emergence), β1 (general mean or intercept), β2 and β3 are the fixed effect parameters for 

the quadratic function and bi is the random effects on the intercept of the quadratic 

function. Data for primary and lateral root growth were normalised by square root prior to 

analyses and analyses were done in R (R Core Team, 2008). Log-likelihood (logLik) and 

Akaike and Bayesain information criteria (AIC and BIC) were used to select best performing 

model. The AIC and BIC are measures of the relative quality of a statistical model. The AIC is 

defined as -2 × Log-likelihood + 2 × df, where df is the number of parameters in the model. 

The BIC is defined as -2 × Log-likelihood + 2 × df × log (N), where N is the total number of 

observations (Guan et al., 2006; Posada and Buckley, 2004). A model with higher value of 

the logLik and smaller AIC and BIC indicates the best fit model. Models quality was also 

assessed visually using quantile-quantile (Q-Q) plots to check for normality and residual 

plots to check that the variance of residuals was constant (Pinheiro and Bates, 2000). 

3.1.5 Density-based models of root growth dynamics  
 In this section, a mechanistic approach was used to model root systems so that the 

dynamics of root development can be represented as a set of process-based parameters. 

The modelling approach is based on the density representation of root systems proposed by 

(Dupuy et al., 2005; Dupuy et al., 2010a; Dupuy et al., 2010b), and modified by Kalogiros et 

al (unpublished). The model is calibrated on datasets presented earlier in this chapter using 
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a method developed by Kalogiros et al (unpublished). A brief background and basic 

definitions of generalised density functions are presented here.  

3.1.5.1 Definitions of generalised density functions for density-
based RSA modelling  

In density-based models, root growth is represented through the trajectory of root apical 

meristems. This includes properties of both the geometry and topology of the root system. 

Three types of root density distribution functions suitably describe the geometry-topology 

relationship of the root system. These are root length density (ρn, 𝑐𝑚−2) which is the total 

root length per unit soil volume; root branching density (ρb 𝑐𝑚−3), which defines the root 

topology or linkages between roots of two consecutive branching orders and the root apical 

meristem density (ρa, 𝑐𝑚−3), which defines the root tips where cells more or less 

continuously divide for growth. These densities may also vary according to depth (z), incline 

angle of individual roots (α) and time (t) (Dupuy et al., 2010a). 

 

Root system growth through apical meristem activity is either by initiation of new 

meristems (visible and non-visible new meristems at a given location in the reference 

rooting volume) or through changes in the position of already emerged meristems by root 

elongation and gravitropism (Figure 3.1).  
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Figure 3.1: Illustration of root system growth through apical meristem activity: Figure shows A: Images of two 
whole Brassica rapa seedlings imaged 6 days after sowing (DAS); B & C: root meristem locations and newly 
emerged lateral roots of same root systems in A at 8 and 10 DAS, respectively.   

 

Dynamics in ρn and ρb consequently evolve through time as a function of three parameters: 

root elongation rate e (cm d-1), branching rate b (cm-2 d-1) and gravitropic rate g (° d-1). 

Changes in meristem density distribution is then determined from a classical conservation 

equation that links these growth parameters (Equation 3.4).  

 

𝑏 − 𝑑 =  
𝜕𝜌𝑎
𝜕𝑡

+ 
𝜕𝜌𝑎𝑔
𝜕𝛼

+  
𝜕𝜌𝑎𝑒𝑐𝑜𝑠𝛼

𝜕𝑥
+ 
𝜕𝜌𝑎𝑒𝑠𝑖𝑛𝛼

𝜕𝑧
                (𝟑. 𝟒) 

 
This equation states that change with time (𝜕/𝜕𝑡) due to meristems entering and leaving 

the reference volume ( 𝜕
𝜕𝑥

, 𝜕
𝜕𝑦

) through elongation rate e, in the direction of growth (cos α, 

sin α), but also through reorientation (𝜕/𝜕𝛼) of meristems due to root gravitropism g, and 

through the creation of new meristems from root branching b as well as loss of meristems 

due to death of roots axes per unit time d (Dupuy et al., 2005; Dupuy et al., 2010a). Thus, if 

the space of defined root distribution is generalised, developmental parameters describing 

the dynamics of RSA can be combined in single equation (Equation 3.4) (Dupuy et al., 
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2010a). Further details of the density-based modelling and mathematical representations 

can be referred from (Dupuy et al., 2005) and (Dupuy et al., 2010a). 

 

3.1.5.2 Modelling Procedure  
SmartRoot (Lobet et al., 2011) digitised each root axis into subcomponents or nodes and 

generated files containing coordinates which define the spatial location of the extremities of 

each root segment (called node, Figure 3.2). The coordinate for the nodes of each root 

segment for all root systems were transferred into a unique database. Information merged 

in the database included image file name, root ID, position or root nodes, the orientation of 

the root segment, root diameter at the node (Figure 3.2). The root systems in the database 

were then centred so that the first node of all root systems was positioned at the same 

point (Kalogiros et al., unpublished). Then, root length density was obtained using kernel 

density estimation method (Dupuy et al., 2005; Kalogiros et al., unpublished; Silverman, 

1996).  

 

 

 

 

 

 

 
 

 

Figure 3.2: A) An example of SmartRoot-traced root system showing primary root nodes (yellow) and lateral 
root nodes (green); B) Sample nodes dataset generated by SmartRoot- The SmartRoot algorithm estimates the 
root diameter (Diam) at each node (X,Y) of the segmented line and uses this information to set the orientation 
(theta) of the segmented line from the root base of the root tip 

 Root  X  Y  theta  Diam
 root_51 20.22562 1.414158 2.891656 0.055055
 root_51 20.18354 1.403414 2.891668 0.019026
 root_51 20.1661 1.398964 3.549982 0.019026
 root_51 20.13147 1.41395 3.54998 0.018844
 root_51 20.09688 1.428917 3.569457 0.018844
 root_51 20.06191 1.444867 3.527908 0.0254
 root_51 20.01474 1.464054 3.502004 0.014815
 root_51 19.9877 1.474243 3.448841 0.014815
 root_51 19.96085 1.482764 3.486624 0.019048
 root_51 19.92356 1.496165 3.445757 0.019048
 root_51 19.88861 1.507135 3.491148 0.023289
 root_51 19.84503 1.523022 3.491149 0.023289
 root_51 19.80127 1.538975 3.387413 0.023289
 root_51 19.49412 1.616037 3.647667 0.0288
 root_51 19.4088 1.663322 3.672298 0.014819
 root_51 19.38258 1.678706 3.672301 0.016932
 root_51 19.35338 1.695846 3.652273 0.019049
 root_51 19.32079 1.714105 3.701722 0.021166
 root_51 19.28524 1.736398 3.749746 0.014813
 root_51 19.25967 1.754202 3.696606 0.014813
 root_51 19.23573 1.769045 3.734399 0.019051
 root_51 19.20286 1.791185 3.714373 0.019051

A B 
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The final stage of the modelling process was to calibrate the density model, calculating the 

optimal values of substantial model parameters (Kalogiros et al., unpublished). The 

simulation program was written in the Python programming language 

(http://www.python.org/) and programme syntaxes were authored by Dimitris Kalogiros, a 

colleague with whom I worked on this part of the thesis. Simulated and experimental root 

systems were compared using mean root length of PRs and mean total root length of LRs. 

3.2 Results  

3.2.1 Variability in root traits within a single Brassica rapa genotype 
The variability of quantitative root traits employed 8 (6 runs) or 16 scanners (2 runs) across 

8 independent runs. With two plants per scanner, a total of 160 seedlings were grown. 

Analyses of variability in root traits within the genotype was however carried out on 133 

seedlings (Table 3.1) with approximately 17% of seedlings discarded due to mortality or 

unusual RSA arising from the death of the PR immediately after sowing. In the present 

study, time of emergence differed between plants but generally LRs became visible on the 

PR from 2 DAS. Lateral root emergence declined from 10 DAS unless the PR tip touched the 

boundaries of the plates on which the rooting media were fixed. Root emergence followed a 

typical acropetal root growth for a dicot with roots systems normally consisting of a central 

main root which had developed from the radicle herein called PR and first-order LRs 

defining the roots which emerged from the PR. Observations of subsequent orders of LRs 

were rare at the end of the experiments and were therefore excluded from the analysis.   

 

For the majority of the traits measured, the combined effect of the run and the scanner 

explained the greater proportion of the variation (Table 3.1). Largest variations attributable 

to run and scanner effect were 86.25% and 47.50% for PR diameter and root dry weight, 
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respectively. For PR surface area, root-to-shoot ratio, PR volume, LR insertion angle, number 

of LRs and branching density, the estimated unexplained variations were large and were 

69.57%, 64.56%, 64.19%, 63.65%, 61.28 and 55.84%, respectively (Table 3.1). 

Table 3.1: Sources of variation in shoot and root traits assayed 14 DAS among 133 surviving seedlings of 
Brassica rapa L. subsp. trilocularis cv. R-o-18 grown for 14 DAS in the phenotyping platform. The experiment 
was performed in 8 runs employing up to 16 scanners per run and two plants per scanner. (SDW: Shoot dry 
weight; SFW: Shoot fresh weight; RFW: Root fresh weight; RDW: Root dry weight; TRL: Total root length; TLRL: 
Total length of LRs; PRL: PR length, PR area: Surface area of PRs; PR vol.: PR volume; PR diam.: diameter of 
PRs; B. Dens: Branching density; LR No.: Number of LRs; Mean LRL: mean length of LRs; LR diam.: Diameter of 
LRs; Angle: mean LR insertion angle; Int. Dist.: Mean inter-branch distance of LRs; LAUZ: Length of the apical 
un-branched zone of the PR; R:S: Root-to-shoot ratio; SRL: Specific root length) 

 
  Variance Components Percentage Variation 

TRAIT (Unit) Mean ± se Run Scanner  Residual Run Scanner Residual 
SFW (mg) 102.77 ± 11.012 837.34 987.60 330.42 38.85 45.82 15.33 
SDW (mg) 9.03 ± 0.679 3.07 4.07 2.43 32.10 42.56 25.35 
RFW (mg) 40.17 ± 5.184 175.64 259.71 157.83 29.61 43.78 26.61 
RDW (mg) 3.44 ± 0.334 0.70 1.30 0.74 25.45 47.50 27.05 
TRL (cm) 117.52 ± 12.00  888.45 1720.85 1096.69 23.97 46.43 29.59 
TLRL (cm) 101.95± 11.580 829.28 1579.86 1034.93 24.08 45.87 30.05 
PRL (cm) 15.51 ± 0.914 5.52 4.76 10.08 27.10 23.37 49.53 
PR area (mm2) 154.92 ± 8.967 257.45 455.33 1629.89 10.99 19.44 69.57 
PR vol. (mm3) 14.74 ± 0.804 1.72 6.31 14.39 7.66 28.16 64.19 
PR diam. (mm) 0.39 ± 0.038 0.01 0.00 0.00 86.25 4.20 9.55 
B. Dens.(LR cm-1) 3.20 ± 0.263 0.38 0.76 1.44 14.65 29.51 55.84 
LR No. 46.89 ± 3.305 72.48 36.85 173.01 25.67 13.05 61.28 
Mean LRL (cm) 2.89 ± 0.413 1.15 1.06 1.45 31.48 28.89 39.63 
LR diam. (mm) 0.32 ± 0.026 0.01 0.00 0.00 39.04 33.91 27.05 
Angle ( °) 78.40 ± 0.814 3.59 5.97 16.74 13.65 22.70 63.65 
Int. Dist. (cm) 0.49 ± 0.037 0.01 0.02 0.02 16.47 35.37 48.16 
LAUZ (cm) 1.50 ± 0.297 0.30 0.79 1.04 13.98 37.05 48.98 
R:S 0.40 ± 0.021 0.00 0.00 0.01 13.94 21.50 64.56 
SRL (cm mg-1) 37.42 ± 4.742 103.86 36.36 78.00 47.60 16.66 35.74 

 

The coefficients of variation in the measured traits of the reference genotype varied 5 - 

103% (Table 3.2). The CVs across the runs were fairly constant for majority of the traits 

except for the last two runs which recorded greater CVs for most traits. Root traits generally 

had greater variability than shoot traits; largest CVs tended to be associated with LR-related 

traits. Within-genotype trait variability could be ranked as: LAUZ > TLRL > mean LRL >TRL > 

RFW > Int. Dist. > SRL > RDW > B. Dens. > LR No. > LR Diam. > SFW. Occasionally, PRs of 

seedlings reached the bottom of the rooting medium before the completion of a run and 
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therefore, the LAUZ in such cases could be underestimated. This may explain the greater 

variability observed and hence higher CVs for the trait in all the runs. Lateral root insertion 

angle recorded smallest CV throughout all the runs.  
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Table 3.2: Mean trait value (± s.e) and coefficient of variation in shoot and root traits assayed 14 DAS among 133 surviving seedlings of Brassica rapa L. subsp. trilocularis cv. 
R-o-18 grown for 14 days in the phenotyping platform. The experiment was performed in 8 runs employing up to scanners per run and two plants per scanner 

Measured Trait 
 

Unit 
Run 1 (n = 13) Run 2 (n = 15) Run 3 (n = 16 ) Run 4 (n = 16) 

Mean ± se CV (%) Mean ± se CV (%) Mean ± se CV (%) Mean ± se CV (%) 
SFW  mg 127.82 ± 8.273 23.34 97.15 ± 7.005 27.93  75.76 ± 2.693 14.22 143.83 ± 7.668  19.95  
SDW mg 9.90 ± 0.663  24.13 10.04 ± 0.398 15.35 8.82 ± 0.285 12.94 7.92 ± 0.413  19.52 
RFW mg 33.90 ± 5.266  56.01  37.57 ± 3.145 32.42  24.69 ± 2.705 43.83  42.23 ± 3.986  35.32  
RDW mg 3.04 ± 0.419  49.72  4.34 ± 0.282 25.19  2.74 ± 0.178 25.91 2.51 ± 0.227  33.71 
TRL  cm 89.19 ± 13.202  53.37  150.99 ± 14.216 36.46  65.08 ± 6.332 38.92  142.13 ± 10.932 30.77 
TLRL cm 76.71 ± 12.624  59.34  130.69 ± 13.981  41.43  48.76 ± 5.689 46.67  128.28 ± 10.844  33.81  
PRL cm 12.48 ± 1.159  33.49 20.30 ± 0.798 15.23 16.32 ± 0.784 19.21 13.85 ± 1.072  30.96 
PR area  mm2 na   na   na na  na na 151.05 ± 9.691  25.66 
PR vol. mm3 na na  na na na na 15.57 ± 1.136  29.18 
PR Diam. mm 0.45 ± 0.012  9.90 0.55 ± 0.012 8.27 0.55 ± 0.010 7.13 0.34 ± 0.013  15.23 
B. Dens.  root cm-1 3.47 ± 0.439  45.72  2.77 ± 0.152 21.28 2.37 ± 0.089 15.08 4.37 ± 0.705  64.58  
LR No.  62.46 ± 3.684  21.27 45.47 ± 2.330  19.84 29.38 ± 1.749 23.81 44.25 ± 3.817  34.51  
Mean LRL cm 1.41 ± 0.232  59.40  2.87 ± 0.251  33.83  1.60 ± 0.130 32.57  5.10 ± 0.796  62.52  
LR Diam.  cm 0.30 ± 0.005  6.24 0.44 ± 0.006  5.39 0.44 ± 0.005 4.75 0.29 ± 0.030  41.53  
Angle ° 76.54 ± 1.100  5.18 76.85 ± 1.100  5.54 74.12 ± 1.481 7.99 78.58 ± 1.222  6.22 
Int. Dist.  cm 0.25 ± 0.019  28.04 0.47 ± 0.027 21.89 0.46 ± 0.032 28.40   0.59 ± 0.064 42.90  
LAUZ cm 2.55 ± 0.541  76.58  3.24 ± 0.499 59.78  3.66 ± 0.476 52.00  2.92 ± 0.685  93.96  
R:S  0.31 ± 0.040  46.29  0.44 ± 0.026 23.34 0.31 ± 0.021 26.76  0.31 ± 0.021  25.17 
SRL cm mg-1 31.01 ± 2.465  28.66 34.84 ± 2.517 27.99  24.22 ± 2.156 35.61  56.04 ± 3.269  21.83 
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       Table 3.2 (cont’d) 

Measured Trait 
 

Unit 
Run 5 (n = 16) Run 6 (n = 15) Run 7 (n = 20 ) Run 8 (n = 22) 

Mean ± se CV (%) Mean ± se CV (%) Mean ± se CV (%) Mean ± se CV (%) 
SFW  mg 85.56 ± 5.561 26.00 136.79 ± 7.960 22.54 122.82 ± 11.560 42.09 48.70 ± 5.265 50.71  
SDW mg 9.73 ± 0.669 27.48 8.59 ± 0.516 23.30 12.14 ± 0.847  31.22 6.01 ± 0.428 33.42 
RFW mg 50.13 ± 5.031 40.15  36.78 ± 3.116 32.81  69.35 ± 7.180  46.30  26.51 ± 3.644 64.47  
RDW mg 3.79 ± 0.322 33.92 3.46 ± 0.228 25.50 5.11 ± 0.519 45.50  2.68 ± 0.269 47.16  
TRL  cm 125.19 ± 13.314 42.54  123.89 ± 7.303 22.83 159.12 ± 17.044 47.90  75.62 ± 10.761 66.75  
TLRL cm 111.13 ± 12.671 45.61  108.67 ± 7.390 26.34 141.07 ± 16.240 51.48  62.27 ± 10.448 78.69  
PRL cm 14.06 ± 1.116 31.73 15.22 ± 1.126 28.66 18.05 ± 0.880 21.81 13.35 ± 0.641 22.53 
PR area  mm2 139.12 ± 14.396 41.39  157.99 ± 11.340 27.80 184.33 ± 10.639 25.81 135.08 ± 7.983 27.72 
PR vol. mm3 14.17 ± 1.079 30.46 14.71 ± 1.131 29.77  16.31 ± 1.161 31.86 12.16 ± 0.930 35.87 
PR Diam. mm 0.33 ± 0.007 8.84 0.32 ± 0.009 11.11 0.31 ± 0.008 11.37 0.31 ± 0.011 16.53 
B. Dens.  root cm-1 2.80 ± 0.339 48.38  4.07 ± 0.226 21.52 2.41 ± 0.335 62.17  3.52 ± 0.262 34.89 
LR No  42.44 ± 3.626 34.18 51.67 ± 4.535 34.00  52.55 ± 3.887 33.08 46.64 ± 3.363 33.82 
Mean LRL cm 3.52 ± 0.376 42.72  3.17 ± 0.404 49.42  3.38 ± 0.331 43.90  2.07 ± 0.209 47.31  
LR Diam.  cm 0.28 ± 0.026 37.14 0.27 ± 0.026 37.62  0.27 ± 0.020 32.63 0.32 ± 0.021 30.43 
Angle ° 79.43 ± 1.159 5.84 80.67 ± 1.254 6.02 80.16 ± 1.059 5.91 80.24 ± 0.925 5.41 
Int. Dist.  cm 0.49 ± 0.051 41.31  0.59 ± 0.055 36.17  0.52 ± 0.060 51.80  0.57 ± 0.040 32.78 
LAUZ cm 1.17 ± 0.234 80.26  1.97 ± 0.276 54.44  1.02 ± 0.186 81.33  0.97 ± 0.213 103.27  
R:S  0.39 ± 0.015 15.73 0.40 ± 0.015 14.26 0.40 ± 0.021 23.23 0.44 ± 0.029 31.52 
SRL cm mg-1  32.49 ± 2.119 26.08 37.58 ± 2.926 30.15  32.19 ± 1.900  26.40 29.23 ± 2.537 40.71  
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3.2.2 Minimum replication  
Replication needed to detect difference between the means of each trait was largely 

consistent across runs (Table 3.3) but large variability for some traits was evident. Data from 

the eight runs were pooled to calculate the replication numbers for respective traits. 

Depending on the trait, 4 to 37 replicates are sufficient to detect a 50% significant difference 

in trait means in a 2-sided 95% CI t-test (Table 3.3). However, in many cases, 50% 

differences between mean is unrealistic. Some traits in particular, for example, PR diameter 

and LR insertion angle usually exhibit low degree of genotypic variability. The number of 

replicates increases drastically when the difference between the mean is reduced. 

Nevertheless, a few traits can retain manageable replication number when the difference 

between the means drops to 30% (Figure 3.3).   

 

Table 3.3: Number of replicates required to detect a 50% significant difference in a measured trait between 
two populations with identical standard deviations in the trait using a two-sided 95% confidence interval t-test. 

Measured shoot or 
root trait Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 

Mean 
replication 

per line 
LAUZ 36 22 17 54 40 18 41 66 37 
TLRL 22 11 13 7 13 4 16 38 16 
Mean LRL  22 7 7 24 11 15 12 14 14 
RFW 19 7 12 8 10 7 13 26 13 
TRL  18 8 9 6 11 3 14 27 12 
B. Dens.  13 3 1 26 14 3 24 8 11 
RDW 15 4 4 7 7 4 13 14 8 
Int. Dist.  5 3 5 11 11 8 17 7 8 
PR volume   na  na  na 5 6 6 6 8 6 
SFW 3 5 1 3 4 3 11 16 6 
PR area   na  na  na 4 11 5 4 5 6 
SRL 5 5 8 3 4 6 4 10 6 
LR No. 3 2 4 7 7 7 7 7 6 
LR Diam. 0 0 00 11 9 9 7 6 5 
R:S 13 3 4 4 2 1 3 6 5 
PRL 7 1 2 6 6 5 3 3 4 
SDW  4 2 1 2 5 3 6 7 4 
PR Diam. 1 0 0 1 1 1 1 2 1 
Angle 0 0 0 0 0 0 0 0 0 
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Figure 3.3: Relationship between the numbers of replicates required to detect a significant difference in a 
measured trait and the require difference between traits means.   

 

3.2.3 Correlations among seedling shoot and root traits 
A total of 47 significant correlations were classified as weak, 35 as moderate and 4 as strong 

(Figure 3.4). In general, Figure 3.4 shows that bigger plants produced bigger root systems 

with greater number of lateral roots. Shoot FW exhibited weak to moderate correlations (r 

ranged from 0.22 to 0.69) for 13 of the traits evaluated, with all the significant correlations 

being positive except for LR diameter. Shoot DW showed weak to strong significant 

correlations with 13 other traits correlations (r ranged from 0.29 to 0.90). All correlations for 

SDW were positive except with LR inter-branch distance. Root FW had moderate and 

positive correlations with RDW, TRL, PRL, and PR volume. Root DW had relationship with 

other parameters except with PR diameter, branching density, LR diameter, angle and LAUZ. 

Expectedly, TRL strongly and positively correlated with total lateral root length (TLRL) (r = 

0.98) and showed moderate correlations with PRL, root surface area and root volume. 

Significant positive correlations were found between TLRL and other parameters including 
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PRL (r = 0.52), PR surface area (r = 0.53) and PR volume (r = 0.51). The length and the 

volume of the PR both strongly correlated with its surface area (r = 0.85). The PRL further 

showed moderate positive correlation with PR volume (r = 0.68) and number of LRs (r 

=0.80), with PR surface area also correlating with number of LRs (r = 0.75) and LR number 

also correlating with PR volume (r = 0.65). The diameter of the PR moderately correlated 

with its volume (r = 0.51). Other correlations were either weak or non-significant (Figure 

3.4).  

 
Figure 3.4: Pearson’s correlation coefficients for 19 seedling shoot and root traits. The correlation coefficients 
are indicated by the colour and size of the circles in lower section of the matrix and the exact corresponding 
correlation coefficients are indicated in the upper section of the matrix. Boxes with crosses indicate non-
significant correlations (p <0.05). The scale is indicated in the bar at the right-hand side of the matrix. 

 

3.2.4 Variability in growth rate of different root axes 
Growth rate for both PRs and LRs were not constant over time. The mean growth rate of 

PRs was 1.24 cm d-1 and linearly declined over time (Figure 3.5). Model for PR was initially 
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fitted with DAS covariate as the only fixed effect parameter (PR model 1). The AIC, BIC and 

REML logLik were respectively 290.85, 313.11 and -139.42. The PR model subsequently 

included a quadratic function (PR model 2). The AIC, BIC and REML logLik were 297.55, 

323.50 and -141.77, indicating that the previous model (PR model 1) performed better and 

therefore the model without the quadratic term (PR model 1) was preferred. The intercept 

(bi1 + β1) for the fitted PR model was 1.47 but ranged between 0.70 and 2.34 for individual 

seedlings analysed. The random slope (bi1) estimated from the fitted PR model was -0.10 

and ranged between -0.01 to 0.06 for individual seedlings analysed. The model was 

satisfactory as seen in the residual and Q-Q plots which are shown in Figure 3.6. 

 

Lateral roots generally started to emerge 2 DAS. It appeared that 1st laterals generally had 

faster elongation rates than those that emerged later but all LRs of all ages seem to peak 

roughly at the same time, between DAS 6 and 9. Among the LRs, it is also evident from 

Figure 3.5 that older LRs may be separated from younger LRs by their growth rate. For 

example, 1st LRs initially exhibit faster growth than the remaining LRs but its rate declines 

from the DAS 6. For the 2nd LRs, growth rate is still increasing 6 days after sowing, and a 

maximum growth rate is obtained 8 or 9 DAS. Mean growth rates of 0.64, 0.55, 0.27 and 

0.16 cm d-1 were recorded for 1st, 2nd, 3rd and 4th laterals respectively.  

 

The mixed-effects model for LR growth was first fitted with DAS considered as a fixed 

covariate (LR model 1). The AIC, BIC and REML logLik were 44.98, 63.88 and -18.49, 

respectively. The model subsequently included a quadratic function (LR model 2). The AIC, 

BIC and REML logLik were 14.03, 47.10 and -0.02, respectively. To check if the growth rates 

were different among lateral roots based on time of emergence, a third model was fitted 
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including the categorical variable, type of LR, as a fixed effect (LR model 3). The new values 

for AIC, BIC and REML logLik were 16.43, 54.19 and -0.22, respectively. Based on these 

estimated parameters, LR model 2 had better performance. Moreover, the analyses of 

variance of the models showed that the covariate DAS and the quadratic function were 

significant (p<0.0001) in all models but the type of LR had a non-significant p-value (p= 

0.4541) in LR model 3, indicating growth rates were not different among LR that emerged 

on different DAS. Thus, growth rate of LRs generally increased quadratically to an optimum 

for all types of LRs (Figure 3.5) and the most informative model did not include the effect of 

time of LR emergence. The fitted LR model (LR model 2) indicated that random intercept 

had positive or negative values and the curves for each type of LR had different intercepts 

(Table 3.4). The model was satisfactory as seen in the residual and Q-Q plots which are 

shown in Figure 3.6.  
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Figure 3.5: Growth rate of primary and first order lateral roots of seedlings of a Brassica rapa cv. R-o-18 grown 
over a period of days after sowing on germinating paper. 
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Figure 3.6: Diagnostic plots for assessing model adequacy of primary and lateral root growth rate of seedlings 
of a Brassica rapa genotype (cv. R-o-18) grown over a period of days after sowing on germinating blotter paper. 
(A): normal plots of residuals of PR fitted model for all seedlings, (B): residuals versus fitted values for PR linear 
mixed-effects model for all seedlings, (C) normal plots of residuals of LR fitted model for each type of lateral 
root and (D) residuals versus fitted values for linear mixed-effects LR model for all seedlings.  
 

Table 3.4: Parameters estimates (Equation 3.3b) for mixed effects models describing the growth rate of LRs 
that emerged 2 (1st LR), 3 (2nd LR), 4 (3rd LR) and 5 (4th LR) DAS from a Brassica rapa genotype (R-o-18) grown 
for 14 days on paper.  

Type of 
lateral root 

Intercept 
(bi1 + β1) 

DAS 
(Random 
slope, bi1) 

DAS2 

(Fixed 
slope, β1) 

1st LRs 0.176 0.221 -0.015 
2nd LRs 0.023 0.231 -0.015 
3rd LRs -0.202 0.233 -0.015 
4th LRs -0.273 0.231 -0.015 

 

3.2.5 Density-based model  
The density based model predicted that total primary root length was 13.81 cm, while the 

estimated total primary root length was 15.28 cm. Thus, the model appeared to 
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underestimate the primary root length density by 10.2%. Model output and the estimate 

from real 14 d Brassica root systems for total lateral root length per plant were similar. The 

simulated total lateral root length per plant was 125.32 cm, and was 0.43% greater than the 

124.78 cm obtained from the measured data of real Brassica rapa roots. Qualitatively, the 

spatial mapping of root length density distribution for both primary and first order lateral 

roots with regards to radial distance (x) and depth (z) showed similar distributions between 

real roots from experimental data and model-simulated root systems (Figure 3.7). Minor 

inconsistencies are however observed between experimental and predicted root length 

density and this is more evident in the primary root length density than lateral rot length 

density (Figure 3.7). For example, the region of high primary root density appears to be 

inconsistent between measured and simulated data, with measured data seemingly 

showing higher values to the results of the simulated data. Root length density provides 

good descriptions of the local geometrical properties of root systems to model root-soil 

interactions (Dupuy et al., 2010a). Only root length density was therefore considered in this 

thesis to demonstrate the utility of scanner-based non-destructive measurement of roots to 

modelling of root system architecture. Nevertheless, it can be expected that the main root 

growth parameters such as elongation rate, gravitropic rate, and branching rate can be 

estimated using density-based models and in each case, data acquired via scanner-based 

imaging will be very relevant. 
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Figure 3.7: Experimental and predicted root length density distribution as a function of depth and radial 
distance. The global shape of the (a) experimentally measured primary root length density distribution is highly 
similar to the root length density distribution estimated from (b) simulated root systems. The global shape of 
the (c) experimentally measured lateral root length density distribution is highly similar to the lateral root 
length density distribution estimated from (d) simulated root systems.  

 

3.3 Discussion 

3.3.1 Within-genotype variability in shoots and root traits of seedlings  
There were wide variation between runs for some traits but close correspondence was also 

observed between some root traits across most runs. In general, the result suggests that 

uniform conditions were largely achieved across runs and that the experimental set-up 

provide results that are reproducible. My search did not produce any published information 

on variability of root traits within seedlings of a Brassica rapa genotype. This limits 

comparison of the results here with published results from other laboratories. The within-
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genotype variations recorded in my study were relatively less than those observed by 

Armengaud et al. (2009) who had reported up to 130% CV for LR density in 23 accessions of 

Arabidopsis. However, my estimated variations are consistent with those recorded by 

Araujo et al. (2004) for common bean genotypes under low P conditions.  

 

The correlations of pairs of root traits and with shoot traits observed in this study are 

consistent with those found by Seiler (2008), for sunflower seedlings. However, only one 

genotype has been employed here so all variations observed are due to environmental 

effects and not genetic. Results here demonstrate that due to substantial environmental 

effects, within-genotype variability in root systems can be very large for many traits. Also, 

some traits showed larger variability within a genotype than others, such that limited 

number of selected traits could account for most of the variability in a genotype. For 

example, root biomass, total and mean length of LRs might account for most of the 

variability in the traits measured here (Table 3.2). de Dorlodot et al. (2007) have stated that 

a few carefully selected traits could be used to explain most variability in RSA, indicating for 

example that variability in root branching could be accounted for by variations of root 

diameter.  

 

Due to the large variation within a genotype for many root traits, different replication 

numbers are required to detect significant differences. For some traits such as LAUZ and LR 

mean length, it may be necessary to increase replication substantially to provide the 

necessary statistical power. Without due considerations for statistical power and effect size 

in detecting phenotypic variability, root phenotyping could be futile even if data are 

generated from the most elegant and robust of phenotyping platforms. In all root 
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phenotyping protocols, the natural variability in a trait of interest determines number of 

individuals or replication (sample size) to be selected (Cornelissen et al., 2003). Due to high 

plasticity in roots, it is common that replication required in root studies exceeds that 

required in shoot studies (Bengough et al., 2000). For example, it was found that up to 120 

replications may be necessary to detect 10% difference between root traits when coefficient 

of variation is 40% (Bengough et al., 2000). In this example, a too small a sample size might 

not allow the detection of small but relevant differences between treatment effects, 

whereas an excessively large sample size may lead to the wastage of already limited time 

and resources (Bros and Cowell, 1987; Costa et al., 2000).  

3.3.2 Within-genotype variation in the growth rate of different root 
axes  

Growth data indicated that root elongation is coordinated between PRs and first order LRs 

such that plants appear to inherently switch root growth from the PR to LRs. This may 

support the hypothesis that variations in the growth of the total root system are more 

linked to variations in LR growth than PR growth (Armengaud et al., 2009). Lecompte et al. 

(2001) suggested that root elongation rate is variable within a genotype or within a single 

plant and for LRs, the age or time of emergence could be important in explaining this 

variability. Amongst all the covariate tested, this study showed however that time of 

emergence or age of LRs was not significant in explaining within-genotype variability. This 

however require further validation as the model here had incorporated only a few laterals 

sampled form plants grown for short a period. Most first order LRs seemed to grow initially 

at the same rate and peak roughly at the same time after sowing (Figure 3.5).  
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3.3.3 Scanner-based root phenotyping and density-based model  
Models are useful in synthesising knowledge to produce more global representations of the 

complexity of root systems and for testing hypothesis on the interactions in experimental 

results (Pagès et al., 2000). Root architecture models enable dynamic representation of the 

dynamics of the development of a root system (de Dorlodot et al., 2007; Pagès and 

Bengough, 1997), and their integration with phenotypic data from a range of genotypes 

would be powerful tools in plant breeding. In the present study, a density-based approach 

for the modelling of root architecture was tested for its ability to predict the root length 

distribution of Brassica rapa plants. The model was validated against a dataset from 89 

seedlings grown for 14 DAS. The model reproduced the experimental results well, accurately 

simulating PR length and cumulative length of all LRs. Although, root length distributions of 

simulated root systems were similar to data from real root systems, there was a slight 

tendency to under estimate PR by approximately 10%. From the results shown here, it is 

expected that root growth parameters including elongation rate, gravitropic rate and 

branching rate can be reliably estimated using density-based models with a relatively 

limited number of parameters and the process would benefit greatly from scanner-based 

imaging.  

3.4 Summary 
• Within-genotype variability in root systems is large for many traits. 

• Large replication is needed to detect significant differences between many root 

trait means and the needed replication may be particularly high for lateral-root 

related traits. 

• The growth of PRs and LRs of Brassica rapa seedlings are coordinated such that 

increased growth in LRs compensates for decline in the growth of PRs. 
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• Growth rate of PRs of Brassica rapa seedlings decline linearly with time, whiles 

that of first order LRs growth rate is nonlinear, with an initial increase, followed 

by peak and then a decline in the elongation rate.  

• Differentially emerged first order LR of Brassica rapa seedlings exhibit differential 

growth rates but age or time of lateral root emergence was not significant in 

explaining this variability. 

• Density-based mechanistic model reproduced experimental results accurately by 

simulating PR length and cumulative length of all LRs. Root growth parameters 

such as elongation rate, gravitropic rate and branching rate can be reliably 

estimated using density-based models. 

• Time-lapsed imaging of root systems by low-cost optical scanners provides 

reliable empirical data for the validation and parameterisation of density-based 

modelling of root system analyses. 
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 : GENOTYPIC VARIABILITY IN ROOT SYSTEM GROWTH DYNAMICS IN BRASSICA CHAPTER 4
RAPA GENOTYPES 

4.0  Introduction 
To breed for crops with improved RSA, natural variation must be observed in various root 

traits. Exploitation of natural genetic variation in RSA allows the identification of genes 

which may be targets for the evolution of morphological variation (Pacheco-Villalobos and 

Hardtke, 2012). Variation in root traits including differences among genotypes in the ability 

to establish a deep root system quickly (Siddique et al., 1990), in root length density (Mian 

et al., 1994), in root distribution (Ford et al., 2006), in the numbers of seminal and total 

roots (Box and Johnson, 1987; Robertson et al., 1979), and in root-to-shoot ratio (Sadhu and 

Bhaduri, 1984) have been found in several crops including wheat (Herrera et al., 2012) and 

Brassica crops (Hammond et al., 2009; Lu et al., 2008; Shi et al., 2013a; Shi et al., 2013b). 

Studies on bean, maize, and soybean have identified variation in root gravitropism and 

hence variation in adaptation to low P availability (Liao et al., 2001; Liao et al., 2004; Lynch 

and Beebe, 1995; Lynch and Brown, 2001; Lynch and Brown, 2008; Zhu et al., 2005a; Zhu et 

al., 2005b; Zhu and Lynch, 2004). 

 

The root system of Brassica normally consists of two distinct components, the main or PR 

and successive orders of LRs. The depth of the PR, length and number of LR depend on the 

genetic background of the seedling. Intraspecific genotypic variability in root length for 

example has been exploited to identify key genes involved with N use efficiency and drought 

tolerance (Syers et al., 2008). Brassica genotypes with long primary and lateral roots, large 

root volumes and heavy root weight may have an improved yield in nutrient deficient or 

drought prone conditions (Kumar et al., 2012). With the availability of mapping populations 

for various crops such as the Brassica rapa BraIRRI mapping population (Iniguez-Luy et al., 
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2009), rapid identification of quantitative trait loci (QTL) underlying root system architecture 

would be achieved quickly, provided the variation in RSA of genotypes is evaluated and 

understood. 

 

The aim of this Chapter was to exploit the newly developed root phenotyping platform to 

collect new high resolution data on the development of the root system architecture of 

Brassica rapa at the seedling stage. The objective is to provide a detailed quantitative 

description of the genotypic variability of root traits amongst a selection of genotypes 

derived from the BraIRRI population. The genotypes studied consisted of the parents of the 

BraIRRI population and fourteen recombinant inbred lines (RILs). The specific objective of 

this Chapter were to (i) quantify the genotypic variability and broad-sense heritability in the 

selected lines; (ii) identify the traits accounting for most of the variation in the RSA of 

Brassica rapa genotypes; and (iii) use statistical model to describe the genotypic variations 

of dynamic RSA traits. This was achieved by the development of mixed-effect models.  

 

4.1 Materials and methods 
The parents (cv. IMB211 and cv. R500) and 14 recombinant inbred lines (RILs) of the BraIRRI 

mapping population (Iniguez-Luy et al., 2009) were used to study variations in root traits 

caused by genetic factors. The BraIRRI population is an immortal mapping population 

consisting of 160 RILs derived from the cross of IMB211 and R500 genotypes. Genotype 

IMB211 is a highly inbred rapid cycling Chinese cabbage B. rapa subsp. pekinensis and R500 

is a highly inbred annual yellow sarson B. rapa subsp. trilocularis (Iniguez-Luy et al., 2009; Xu 

et al., 2010). Genotypes IMB211 and R500 have different root system characteristics and the 

RILs were expected to segregate for root traits. The inbred lines tested in this study were 
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chosen based on availability of seeds and included BraIRRI 002, 016, 030, 070, 104, 124,143, 

198, 201,205, 229, 248, 360 and 380.  

 

Growth conditions and nutrient composition were as described in Section 2 of Chapter Two. 

Twenty four scanners were assembled and seedlings were grown on four scanner banks 

with each bank containing 6 scanners and 2 seedlings per scanner (Figure 4.1). Seedlings of 

genotypes were grown in six replicates in two independent experiments. Since the 

experiments were performed under uniform and unstressed environmental conditions, all 

the data from the two independent experiments were combined for analyses given 12 

replicates for each line. From previous Chapter (Table 3.3), requisite replication is between 1 

and 37 for different traits and so depending on the trait of interest, sample size must be 

greater or lesser than 6. However, due to practical limitations, a compromise was made in 

this and subsequent Chapters to set a single replication value for all traits (n=6). This was 

small enough to be useful and feasible but not smaller than necessary because: (i) in this 

thesis, analyses were performed on continuous measurements and according to Eng (2003), 

statistical tests that incorporate the use of continuous values are mathematically more 

robust than those used for proportions, given the same sample size, and (ii) pooling 

together data from duplicated experiments also increased precision and reduced variability 

in trait measurements. 

 

Images were taken at 12-hour intervals using the fixed flatbed scanners abutting the plates 

for up to 15 DAS. Fresh and dry weights of shoots and roots, lengths and diameters of 

primary and lateral roots, the branching density and insertion angle of LRs on the PR, and 

the total length of the whole root system (Table 4.1) were determined on individuals of the 
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parental genotypes (IMB211, R500) and 14 RILs of the BraIRRI mapping population grown 

for 15 days on the phenotyping platform. Images were analysed as described in Chapter 2, 

Section 2.3.3 using ImageJ and SmartRoot (Lobet et al., 2011).  

 

Figure 4.1: The phenotyping platform comprising 24 scanners assembled in four banks of six scanners. 

 

4.1.1 Multivariate analysis of the trait space 
First, correlations and clustering of static root traits was studied using statistical multivariate 

analyses. Data from all genotypes were combined and trait correlations between 

parameters were assessed with Pearson’s correlation coefficients. Correlations were 

considered statistically significant at p < 0.05. Root and shoot traits were subjected to 

principal components analysis (PCA). Significant components were chosen when the 

eigenvalue > 1 (Tabachnick and Fidell, 1996). Subsequently, cluster analysis was conducted 
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on all the traits pooled together to identify discrete groups of lines with similar RSA traits 

among the reference population studied. Clustering was performed using Ward’s 

hierarchical approach based on minimum variance linking method with Euclidean distance 

as the similarity measure (Manschadi et al., 2008). Optimal number of clusters was chosen 

based on the ‘elbow-criterion’ which compares the Sum of Squared Differences (SSD) for 

different cluster solutions (Thorndike, 1953). Generally, increases in the number of cluster 

are associated with decreases in the SSD because clusters are, by definition, smaller. 

Therefore, the SSD is plotted against the numbers of cluster in the analysis and an optimal 

number of clusters are determined by identifying the “elbow” in the plot where the 

reduction in SSD slows dramatically (Mooi and Sarstedt, 2011).  

 

4.1.2 Statistical analysis of static root traits 
The sources of variation in static root traits were determined using a random effects model 

with experimental run, scanner and genotype considered as random factors.  

𝑦𝑖𝑗𝑘 = 𝑚 + 𝑔𝑘 + 𝑎𝑔𝑖𝑘 + 𝑏𝑔𝑗𝑘 +  𝑎𝑏𝑔𝑖𝑗𝑘 +  𝜖𝑖𝑗𝑘,           (𝟒. 𝟏)   

𝑖 ∈ {1, … , 𝑛}, 𝑗 ∈ {1, … , 𝑟}, 𝑘 ∈ {1, … , 𝑠}, 

𝑔𝑘/𝑎𝑔𝑖𝑘/ 𝑏𝑔𝑗𝑘 /𝑎𝑏𝑔𝑖𝑗𝑘 ~ 𝑁�0, 𝜎𝑔/𝑎𝑔/𝑏𝑔/𝑎𝑏𝑔
2 �, 𝜖𝑖𝑗  ~ 𝑁(0, 𝜎2 ), 

where 𝑦𝑖𝑗𝑘  represents the root trait from the ith experimental run, jth scanner and kth 

genotype, 𝑚 is the mean trait value, 𝑔𝑘 is the effect of the genotype, 𝑎𝑔𝑖𝑘 is the effect of 

interactions between experimental run and genotypic factors, 𝑏𝑔𝑗𝑘 is the effect of 

interactions between scanner and genotypic factors, 𝑎𝑏𝑔𝑖𝑗𝑘 is the effect of interactions 

between experimental run, scanner and genotypic factors, 𝜖𝑖𝑗𝑘 is the residual error, n is the 

number of runs (2), r is the total number of scanners (24) and s is the number of genotypes 

(16). A model incorporating all individual terms (i.e.: genotype, run and scanner) with all 
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their interactions was over-parameterised and sub-optimal based on model assessments. 

Phenotypic variance was then calculated with the estimated genetic variance (𝜎𝑔2), 

Genotype x Experimental run variance (𝜎𝑎𝑔2 ) and the error variance (𝜎2) as: 

𝜎𝑝2 =  𝜎𝑔2 +  
𝜎𝑎𝑔2

𝑛
+  
𝜎2

𝑝𝑛
            (𝟒. 𝟐)      

p = 6 is the number of replicates and n = 2 is the number of experiments. Broad-sense 

heritability (H2) was estimated as 𝜎𝑔2 /𝜎𝑝2, where 𝜎𝑔2 is the estimated variance associated 

with the genotypic effect and 𝜎𝑝2 is the phenotypic variance for the trait.  

 

4.1.3  Analyses of root growth dynamics  
Dynamic root trait analyses were performed using linear and non-linear mixed-effects 

models following methods described previously (Pinheiro and Bates, 2000). Models were 

used to ascertain (i) variation in total root length, (ii) variation in primary root length and (iii) 

variation in first order lateral root growth rate. Thus, the response variables were total root 

length, primary root length and lateral root growth rate with the fixed effect represented by 

days after sowing (DAS) and the random effects, the genotypes and experimental run. The 

growth rate of a lateral root was expressed as the quotient of the lateral root length and the 

length of time after its emergence from the primary root. For total root length, data was 

square-rooted to normalise it before fitting linear model. Data were grouped according to 

genotypes and the covariate DAS. The following model was applied for the linear mixed-

effect analyses:  

𝑦𝑖𝑗𝑘 =  𝑔𝑖 + 𝑏1 +  𝑏2𝑑𝑎𝑠𝑗𝑘 +  𝜖𝑖𝑗𝑘,          (𝟒. 𝟑)   

 𝑖 = {1, … , 𝑠}, 𝑗 = {1, … , 𝑛},  

𝑔𝑖 ~ 𝑁�0, 𝜎𝑔2�, 𝜖𝑖𝑗, ~ 𝑁(0, 𝜎2 ) . 
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where 

yijk is the average total or primary root length for the ith genotype for the jth day after sowing 

in the kth experimental run. gi, is the genotypic effect, dasj is therefore the time covariate, 

and b1 and b2 represent the intercept and slope respectively, of the relationship between 

root length and das, and ϵij is the residual error term. s = 16 is the number of genotypes and 

n = 15 is duration of the experiment in days.  

 
Prior to fitting linear mixed-effects models, genotypic variations in the total root length, the 

primary root length and lateral root growth rate, among genotypes were assessed 

graphically to observe the trend of growth in each parameter. The data were then centred 

at 7 DAS in order to eliminate correlations between slopes and intercepts for each 

genotype. Parameter estimates were plotted and the 95% confidence intervals of the 

estimates were used to analyse genotypic variations. In order to account for non-linear 

relation between DAS and total root length and primary root length, a logistic growth 

function was also used to model the increases in these parameters with time. The three 

parameters of the logistic function were the asymptote (∅1), inflection point (∅2 ), and scale 

parameter (∅3).  

𝑦𝑖𝑗 =  
∅𝑖1

1 + exp [−�𝐷𝐴𝑆𝑗 − ∅𝑖2 �/ ∅𝑖3]
 +  𝜖𝑖𝑗,        (𝟒. 𝟒)    

∅𝑖 =  �
∅𝑖1
∅𝑖2 
∅𝑖3

� = �
𝛽1
𝛽2
𝛽3
� + �

𝑏𝑖
0
0
�, 

𝑖 = {1, … , 𝑠}, 𝑗 = {1, … , 𝑡}, 

𝑏𝑖 ~ 𝑁 (0, 𝜎𝑏2), 𝜖𝑖𝑗 ~ 𝑁 (0, 𝜎2). 

where yij is the total root length or primary root length for the ith genotype, on the jth DAS, 

and t is the number of time-points at which measurements were made (15). The parameters 
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β1, β2 and β3 are the mean values of the individual logistic parameters ∅i1, ∅i2 and ∅i3, 

respectively, and bi, is the random effect on the asymptote of the logistic function and ϵij is 

the residual error. A likelihood ratio test was used to select the final model, which had the 

three parameters as fixed effects and only the asymptote as a random effect. 

Autocorrelation in the data was modelled using the moving average (corARMA) and 

autoregressive model of an order 1 (AR1) correlation structure (Pinheiro and Bates, 2000). 

To account for heteroscedasticity in both the linear and the non-linear models, a power 

variance function was used of the form: 

𝑉𝑎𝑟�𝜖𝑖𝑗�𝐷𝐴𝑆� = 𝜎2�𝛿1 + |𝐷𝐴𝑆|𝛿2�,       (𝟒. 𝟓)   

where 𝜎2 is the variance when j=0 and δ1 and δ2 are the two parameters for the power 

variance function (Pinheiro and Bates, 2000).  

 

The sources of variation in the growth rate of lateral roots were determined using mixed 

effects models with genotype and DAS considered as random factors (Eqn. 4.6): 

𝑦𝑖𝑗 =  𝑏𝑖 +  𝛽1 + 𝛽2𝐷𝐴𝑆𝑗 +  𝛽3𝐷𝐴𝑆𝑗2 + 𝜖𝑖𝑗,       (𝟒. 𝟔)     

 𝑖 = {1, … , 𝑠}, 𝑗 = {1, … , 𝑡}, 

𝑏𝑖 ~ 𝑁(0, 𝜎𝑏2), 𝜖𝑖𝑗𝑘 ~ 𝑁(0, 𝜎2).  

where yij is the lateral root growth rate for genotype i on the jth day of the experiment, β1, β2 

and β3 are the fixed effect parameters for the quadratic function and bi is the random 

effects on the intercept of the quadratic function. Additional factors such as plant or 

scanner effects resulted in an over-parameterised model and were therefore not 

incorporated into the model. Data for growth rates of lateral roots were normalised by 

square root transformation. 
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4.1.4  Assessment of model performance  
In all analyses, the first model was compared against respective models to assess their 

structural adequacy using the logLik, AIC and BIC. Models quality was also assessed visually 

using Q-Q plots to check for normality and residual plots to check that the variance of 

residuals was constant (Pinheiro and Bates, 2000). Further, we investigated possible 

autocorrelation in the data and subsequently introduced an autoregressive model.  

4.1.5 Software packages 
Statistical analyses of static root traits were performed using GenStat (GenStat Release 14.1, 

VSN International, Oxford, UK) whilst dynamic root analyses was conducted with the R 

statistical software (R Core Team, 2008). Principal component and clustering analyses were 

performed in R software with the princomp() and the dist() / hclust() functions respectively. 

Statistical analyses of all mixed effects models were performed using R software and the 

nlme library (Pinheiro et al., 2008; R Core Team, 2008). 

4.2 Results  

4.2.1 Genotypic variability in static root traits 
Significant effect of genotype was observed for all the root traits measured (p < 0.05) 

including fresh and dry weights of shoots and roots, lengths and diameters of primary and 

lateral roots, the branching density and insertion angle of LRs on the PR, and the total length 

of the whole root system (Table 4.1). No effect of genotype was observed for specific root 

length and root-to-shoot ratio. The quotient of the highest and lowest values for a particular 

trait ranged from 1.2 for LR insertion angle to 4.8 for TLRL and 4.9 for SFW (Table 4.1). The 

parental genotypes exhibited extreme values for many biomass and root length traits. The 

R500 parental genotype had the highest values for the majority of root and shoot traits 

assayed. Although the IMB211 parental genotype had the lowest values for TLRL and TRL, it 
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did not have the lowest values for all root and shoot traits, providing some evidence for 

transgressive segregation. Neither parental genotype had the most extreme values for 

branching density, mean length or diameter of LRs or the LR insertion angle (Table 4.1). 
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Table 4.1: Genotypic variation in shoot and root traits of parents and 14 RILs of 15 DAS seedlings of Brassica rapa (SFW: Shoot fresh weight; SDW: Shoot dry weight; RFW: 
Root fresh weight; RDW: Root dry weight; TRL: Total root length; TLRL: Total lateral root length; PRL: Primary root length; PR Diam.: Primary root diameter; B. Dens.: 
Branching density; No. LRs: Number of lateral roots; LRL: Mean lateral root length; LR Diam.: Mean lateral root diameter; Angle: Mean lateral root insertion angle; B. Dist: 
Mean Inter-branch distance; SRL: Specific root length; R:S: Root to Shoot ratio. **= significance at p<0.001; ns = not significant a= parents). 

TRAIT MEASURED (n=12; d.f.= 174) 

Lines 

SFW 
(mg) 

SDW 
(mg) 

RFW 
(mg) 

RDW  
(mg) 

TRL 
(cm) 

TLRL 
(cm) 

PRL 
(cm) 

PR Diam. 
(mm) 

B. Dens 
(r/cm) 

No. 
LRs 

LRL 
(cm) 

LR Diam. 
(mm) 

Angle 
(o) 

B. Dist. 
(cm) 

SRL  
(cm 

mg-1) 

 
R:S 

  ** ** ** ** ** ** ** ** ** ** ** ** ** ** ns ns 

IRRI 002 55.88 3.135 13.02 2.449 47.7 30.0 17.71 0.373 3.230 30.10 1.034 0.326 72.90 0.335 37.8 0.785 

IRRI 016 56.31 3.232 12.19 1.024 34.4 22.5 11.89 0.398 2.461 20.67 1.140 0.307 63.27 0.449 34.3 0.320 

IRRI 030 21.28 1.350 6.69 0.612 35.8 18.5 17.23 0.330 1.683 11.07 2.019 0.233 75.12 0.698 62.8 0.487 

IRRI 070 41.63 2.643 9.19 1.380 38.9 24.7 14.27 0.364 3.431 17.83 1.373 0.246 66.75 0.386 44.1 0.509 

IRRI 104 44.43 2.771 12.21 0.886 47.3 33.9 13.40 0.384 3.035 19.75 1.776 0.244 65.85 0.416 55 0.321 

IRRI 124 47.12 2.721 11.48 1.142 39.7 23.8 5.85 0.356 2.708 25.55 1.098 0.268 65.58 0.438 35.4 0.427 

IRRI 143 60.29 3.332 9.97 0.980 40.7 22.3 18.45 0.348 2.785 36.5 0.692 0.284 73.41 0.405 45.4 0.287 

IRRI 198 73.99 3.654 13.23 1.101 42.2 22.8 19.46 0.348 2.124 30.92 0.772 0.288 62.76 0.529 39.5 0.310 

IRRI 201 62.57 3.201 12.26 0.956 43.2 24.4 18.8 0.356 2.247 25.75 1.032 0.265 63.76 0.468 81.6 0.302 

IRRI 205 34.75 2.089 9.3 0.798 48.4 32.4 16.29 0.347 2.790 28.65 1.343 0.231 68.76 0.376 64.1 0.646 

IRRI 229 36.89 2.433 10.66 0.856 54.2 39.1 15.12 0.337 2.833 21.8 1.741 0.239 65.06 0.410 102 0.341 

IRRI 248 40.91 2.577 10.16 0.815 36.3 19.4 16.38 0.352 2.587 25.58 0.763 0.253 65.22 0.418 46.7 0.317 

IRRI 360 64.77 4.113 16.12 1.444 55.6 37.5 16.82 0.395 3.471 33.38 1.191 0.309 61.07 0.356 38.4 0.355 

IRRI 380 75.25 4.706 21.91 1.920 75.6 57.7 17.92 0.382 3.806 40.96 1.737 0.270 70.95 0.348 39.4 0.431 

IMB211a 29.42 1.950 8.2 0.758 28.8 15.7 13.08 0.360 2.653 15.50 1.332 0.256 70.09 0.450 
39.6 0.384 

R500a 104.1 5.963 22.6 2.023 95.0 74.7 20.44 0.407 3.154 50.29 1.354 0.260 70.80 0.362 
48.8 0.321 

                                

LSD 9.632 0.6318 4.055 0.8078 13.68 13.32 2.106 0.01969 0.574 7.162 0.4918 0.03524 4.127 0.09568 41.13 0.3193 
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There were strong positive correlations among biomass traits among the 190 plants studied 

(Figure 4.2). Total root length was strongly positively correlated with shoot and root 

biomass, total LR length and LR number. The diameter of the PR was also correlated with 

shoot and root biomass, and with the diameter of lateral roots. The length of the PR 

positively correlated with the number of LRs but little correlation was found between LR 

angle, specific root length or root-to-shoot ratio and any other trait (Figure 4.2).  

 

Figure 4.2: Pearson’s correlation matrix for shoot and root traits of the 16 genotypes. The correlation 
coefficients are indicated by the colour and shape of the ellipse below the diagonal and the exact 
corresponding correlation coefficients are indicated above the diagonal of trait names in the matrix. The scale 
is indicated in the bar to right of the matrix. Non-significant correlations at p<0.05 are indicated by crosses. 
Trait names from top left to bottom right of the diagonal: SFW: Shoot fresh weight; SDW: Shoot dry weight; 
RFW: Root fresh weight; RDW: Root dry weight; TRL: Total root length; TLRL: Total lateral root length; PRL: 
Primary root length; PR Diam.: Primary root diameter; B. Dens.: Branching density; No. LRs: Number of lateral 
roots; mean LRL: Mean lateral root length; LR Diam.: Mean lateral root diameter; Angle: Mean lateral root 
insertion angle; Int. Dist: Mean Inter-branch distance; R:S: Root to Shoot ratio; SRL: Specific root length 
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The PCA identified five significant axes of variation, accounting for approximately 86% of the 

variation in the genotypes studied (Table 4.2). The first and strongest principal component 

(PC) was mainly associated with traits related to size of the seedling, with shoot biomasses 

traits, total root and total LR length and number of LRs. The second PC was almost entirely 

associated mean LR length, whilst the third PC which could be described as the root 

branching component, was associated with genotype differences in PR length, branching 

density on the PR and inter-branch distance. The fourth and fifth PCs mainly explained 

differences in root-to-shoot ratio and diameters of the PR and LRs, respectively (Table 4.2).  

 
Table 4.2: Principal components of the root traits space and the associated variation explained. Components 
with eigenvalues greater than 1 were considered significant (Tabachnick and Fidell, 1996). Traits contributing 
the most to a principal component are written in bold numbers. 

 
PC1 PC2 PC3 PC4 PC5 

SFW 0.35 -0.28 0.06 0.04 -0.02 
SDW 0.37 -0.21 0.02 -0.01 0.00 
RFW 0.38 0.02 0.05 -0.13 0.15 
RDW 0.20 0.24 0.37 0.48 0.08 
TRL 0.37 0.20 0.07 -0.26 0.03 
TLRL 0.36 0.25 0.01 -0.25 0.06 
PRL 0.18 -0.28 0.41 -0.17 -0.15 
PR Diam. 0.23 -0.12 -0.33 0.23 0.38 
B .Dens. 0.21 0.28 -0.42 0.20 -0.26 
No. of  LRs 0.35 -0.16 0.08 0.02 -0.28 
Mean LRL 0.04 0.52 -0.04 -0.39 0.37 
LR Diam. 0.07 -0.30 -0.16 0.24 0.62 
B. Dist. -0.19 -0.16 0.40 -0.29 0.35 
R:S 0.00 0.37 0.45 0.46 0.09 

 
Eigen Value 5.79 1.91 1.79 1.36 1.21 
% variation 41.39 13.63 12.77 9.7 8.66 
Cumulative % 
variation 41.39 55.02 67.79 77.49 86.15 

 

Cluster analyses were conducted to evaluate if the PCA extracted features relevant to the 

inherent cluster structure of the data. Cluster analysis of the genotypes based on a trait 

space indicated that the genotypes formed 5 discrete groups with similar linkage distances 
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between the groups (Figure 4.3). The grouping of genotypes based on the root traits 

employed here appeared to be only partly related to their genetic background. For example, 

one of the parental genotypes (R500) was allocated toone discrete group, whilst RIL 

BraIRRI030 was clustered in the same group with the other parental genotype (IMB211). 

Inbred line BraIRRI380 also had a unique cluster, with the 4th and 5th clusters having 4 and 8 

clusters respectively (Figure 4.3). Inferring from Table 4.1 and Figure 4.4, it could be seen 

that genotypes in groups 1 and 2 largely exhibited bigger biomass, increased TRL and 

increased number of LRs corresponding to traits identified on PC1. In contrast, genotypes in 

group 3 have reduced biomass and root length. These clusters could thus be referred to as 

the biomass and root size clusters. Whilst genotypes in cluster 4 appear to have longer PRs 

and could be located on PC3 , genotypes expressing longer inter-branch LRs with generally 

shorter mean LR length seem to be clustered in group 5 (Figs. 4.3 and 4.4). 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 4.3: Clustering of 16 Brassica rapa genotypes based on all measured shoot and root traits. The red-lined 
boxes indicate groupings of the genotypes. 
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Figure 4.4: Examples of RSA images from the 16 Brassica rapa seedlings studied. (Counting from top left, images 1 and 2 were grouped into clusters one and two 
respectively; images 3 & 4 in cluster three; images 5 to 8 in cluster four and images 9 to 16 in cluster five).
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The effect of genotype alone accounted for more variation in shoot traits than in root traits. 

The effect of genotype alone accounted for >56 % of the variation in shoot biomass, but 

only 8-19 % of the variation in root biomass. Genotype alone accounted for 36 % of the 

variation in PRL but only 13 % of the variation in TLRL. Genotype alone accounted for 27 % 

of the variation in LR branching density and only 6 % of the variation in the mean length of 

LRs. Genotype alone accounted for 34 % of the variation in PR diameter. In contrast, 

genotype alone accounted for none of the variation in LR diameter. The effects of genotype, 

and the effects of interactions between genotype x run, genotype x scanner and genotype x 

run x scanner accounted for most of the experimental variation (Table 4.3). A large amount 

of the variation in these traits was attributed to interactions between genotype x run and 

these traits also had the largest unexplained variation. A large proportion of the variation in 

root biomass (44-61 %) was attributed to interactions between genotype x run or genotype 

x run x scanner. The interactions between genotype x run and genotype x run x scanner 

accounted for 22 % and 69 % of the variation in PRL and in TLRL, respectively. The 

interactions between genotype x run, genotype x scanner and genotype x run x scanner 

accounted for 31% of the variation in PR diameter. The interactions between genotype x run 

and genotype x run x scanner accounted for 78 % of the variation in LR diameter. 

Unexplained (residual) variation was between 16 and 61 % of the total variation. Little 

variation in the traits assayed was attributed directly to run or scanner. 

 

Broad-sense heritability was highest for shoot biomass traits (0.81 - 0.88), PRL (0.81) and 

number of LRs (0.73), Broad-sense heritability was intermediate (0.45-0.62) for root 

biomass, and LR insertion angle (0.56), and lowest (<0.25) for mean LR length, LR diameter 

and TLRL (Table 4.3).  
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Table 4.3: Sources of variation in shoot and root traits of seedlings of 16 B. rapa genotypes 

  
Trait 

Percentage contribution by individual variance components 
  
Heritability Genotype 

Genotype x 
Scanner 

Genotype 
x Run 

 Genotype x 
Scanner x Run Residual 

SFW 67.10 0.33 14.72 0.00 17.85 0.88 
SDW 56.02 0.00 23.67 0.00 20.31 0.81 
RFW 19.39 0.00 44.11 11.81 24.70 0.45 
RDW 8.05 0.00 5.51 61.42 25.01 0.62 
TRL 17.49 0.28 64.90 0.86 16.47 0.34 
TLRL 13.32 0.81 68.51 0.32 17.04 0.27 
PRL 36.20 0.00 10.61 11.64 41.56 0.81 
LRL 5.51 3.93 38.79 5.20 46.57 0.19 
PR Diam. 34.23 3.97 17.12 10.54 34.14 0.75 
B. Dens. 26.51 3.07 13.30 0.00 57.11 0.70 
LR Diam. 0.00 1.81 60.33 18.27 19.58 0.00 
No. LRs 40.51 0.00 25.95 5.87 27.67 0.73 
Angle 23.11 6.27 28.83 0.31 41.49 0.56 
B. Dist. 24.16 1.24 13.85 0.00 60.75 0.67 

 

4.2.2 The dynamics of root growth 
Total and primary root lengths were first fitted with linear mixed effects model. Initial fits 

ignored the grouping structure in the data in order to investigate the homogeneity of 

variance and normality of the distribution of the residual. The plot of the residual showed 

that the variance of the residual varies with time (Appendix 1a), indicating a violation of the 

homogeneity assumption. The Normal Quantile-Quantile plot (Normal Q-Q, Appendix 1b) 

indicated that the distribution have a significant tail toward larger values of the TRL and PRL. 

To assess if there are differences among genotypes, a model with specific intercept and 

slope was fitted and this showed that genotype by DAS interaction had a significant effect 

(p<0.05), suggesting that growth patterns are different among genotypes (data not shown). 

Subsequently, suitable random effects and covariance structure for the model were 

determined. Results showed a negative correlation between the intercept and slope 

(Appendix 2). This correlation was removed by centring the data so that the intercepts of all 

curves are 0. Variability in parameter estimates were observed, suggesting that it was 
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necessary to estimate separate intercepts and, in some cases, separate slopes to account 

for genotype-to-genotype variability. These variations indicated it would be informative to 

use the genotype as a random effect. On the whole, the use of mixed effect model was also 

motivated by the data being repeated measures on each genotype.  

4.2.2.1 Total root length: linear mixed-effects model 
Linear mixed-effects model (eqn. 4.3) was first fitted considering the interaction of the 

covariate DAS and experimental run (dasjk) as fixed effects and including the effect of 

genotype (gi) as a random effect. The best performing model and thus the chosen linear 

model incorporated random intercepts and slopes (eqn. 4.3). The estimated AIC, BIC and 

log-Lik values were 158.32, 204.14 and -68.16 respectively and were lower (AIC & BIC) and 

higher (logLik) than other models assessed. Other models that were assessed either 

excluded random intercepts or slopes, or incorporated a function to account for within-

group heteroscedasticity (model with variance function excluded random intercepts and 

slopes to allow convergence) (Appendix 3). The fitted linear model (Eqn. 4.3) showed that 

19.45% and 50.39% and 30.16% variability in TRL is attributable to the genotypic, 

experimental and residual effects, respectively. The relationship between the fitted and 

observed data for the TRL can be seen in appendix 4a. Root growths of many genotypes in 

the second run exhibited larger root system than their corresponding lines in run one 

(Appendix 4a). The assumption of normalised residuals for each genotype was confirmed by 

normal plots of residuals (Appendix 5). The final parameters estimated for fixed and random 

effects for the 16 genotypes screened in two runs are shown in Appendix 6.  

4.2.2.2 Primary root length: linear mixed-effects model  
The same linear mixed effect models tested in 4.2.2.1 were used to model PRL. Models 

showed that intercepts and slope differ for genotypes (p<0.05). Primary root length was 
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influenced by genotype (40%), environment (39%) with a 21% residual term. The 

relationship between the fitted and observed data for the PRL can be seen in appendix 4b. 

The AIC, BIC and logLik of the best performing and chosen model (eqn. 4.3) were 1256.47, 

1302.2 9 and -617.23 respectively. This model was compared with other models which 

either excluded random intercepts or slopes, or incorporated a function to account for 

within-group heteroscedasticity (Appendix 3). The assumption of normalised residuals for 

each genotype was confirmed by normal plots of residuals (Appendix5b). The final 

parameters estimated for fixed and random effects for the 16 genotypes screened in two 

runs are shown in Appendix 6. 

4.2.2.3 Non-linear mixed effect model 
The linear model appeared to fit the data well, but initial exploration of the data had also 

suggested that increments in root length appear to decrease with time as seedlings grow 

and accumulate more biomass. Indeed, growth processes are usually better modelled using 

logistic growth functions partly because such functions are able to test biologically 

meaningful parameters (Calegario et al., 2005; Hunt, 2003; Paine et al., 2012; Peek et al., 

2002). Thus, to account for the non-linearity in root growth curves, the data was also 

subjected to non-linear mixed effect models. Non-linear mixed effect models considered the 

TRL, PRL and LRGR as response variable and DAS as covariate. Since the plots of TRL and PRL 

as a function of DAS were S-shaped, an extension of the model is to model the change of 

TRL and PRL with time using a 3-parameter logistic model. The first model incorporated 

random effects for all parameters. The plot of standardised residuals for this model revealed 

that there is an increasing variability for the within-group error (Figure 4.5a). We therefore, 

in the subsequent model, accounted for within-group heteroscedasticity using a power 

variance function (Eqn. 4.5) and this improved the predictions of the model (Figure 4.5b). To 
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account for autocorrelation (when there is periodicity in the error) we also included in the 

next model, a corAR1 correlation structure representing an autocorrelation of the order 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.5: Diagnostic plot for fitted values vs. standard residual for TRL model without (a) and with (b) 
variance function; (c) Estimates of random effects by genotype in 1st fitted non-linear mixed-effects model for 
TRL 

 
All three parameters varied with genotype. The asymptote was larger for one of the 

parental genotypes (R500) and lower for inbred line BraIRI016 (Figure 4.5c). The most 

informative model however included only a single, random-effect parameter (the 

asymptote, ∅1, Equation 4.4) describing the effect of genotype on the growth in length of 

the total or the primary root system. The assessment of the adequacy of the most 
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informative (single random effect on the asymptote) models is seen in the plot of fitted and 

observed data in Figures 4.6 (Figure 4.6 shows plot for 7 sampled genotypes out of 16). 

Normal plots of residuals for each genotype indicated that residuals are normalised for each 

genotype (Figure 4.8).  

 
Figure 4.6: Measured (circles) and predicted (lines) values of (a) PRL and (b) TRL of the two parents and five 
RILs of the Brassica rapa BraIRRI mapping population over the 15 d following transfer to the phenotyping 
platform. Predicted values were estimated using a nonlinear mixed-effects model (Equation 4.4). 

 
A three-parameter logistic model where the lower horizontal asymptote is fixed at zero and 

the inflection point describes the time in DAS when absolute root growth rate (cm d-1) is 

maximised was employed to analyse total and primary root length. Parameter estimates 

from the model was applied individually to fit total and primary root growth of each 

genotype. The inflection point (∅2) and scale parameter of the logistic growth function (∅3) 

were constants across all genotypes studied. Asymptotes for the TRL and the PRL differed 

between genotypes (Table 4.4). Values for the inflection point and scale parameter of the 

logistic growth function describing TRL were 10.4 DAS and 0.310, respectively. Asymptotes 

for TRL ranged from 37.3 to 126.6 cm. The parental genotype IMB211 had the lowest 

asymptote and the parental genotype R500 had the highest asymptote of all the genotypes 

assayed (Table 4.4). Values for the inflection point and scale parameter of the logistic 
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growth function describing PRL were 8.82 DAS and 0.211, respectively. Asymptotes for PRL 

ranged from 17.0 to 29.0 cm. The parental genotype IMB211 had an asymptote of 17.4 cm 

and the parental genotype R500 had an asymptote of 28.3 cm. These observations are 

consistent with the measurements of PRL and TRL assayed 15 DAS (Table 4.1).  

4.2.2.4 Growth rate of lateral roots  
The relationship between the growth rate of first order LRs and days after transfer to the 

phenotyping platform followed a quadratic function for all genotypes (Figure 4.7). Basal LRs 

generally had faster elongation rates than those that emerged later. The maximum LR 

elongation rate predicted by the model fitted to the data was 0.35 cm d-1 for IRRI104 five 

days after transfer to the phenotyping system. The most informative model included only 

one, random-effect parameter (bi1, Equation 4.6) describing the effect of genotype on the 

initial growth rate of LRs. The model also included a correlation structure and variance 

function. The initial growth rate (bi1 + β1) of LRs differed between genotypes (Table 4.4). 

Values for bi1 + β1 ranged from 0.216 to 0.307 cm d-1. The parental genotype IMB211 had a 

value of 0.255 cm d-1 and the parental genotype R500 had a value of 0.290 cm d-1. Model 

assessment with plots of residuals suggested that the model was satisfactory (Figure 4.8), 

although unexplained residual errors were greater than those for the models for either the 

length of the PR or the total length of the root system. 
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Figure 4.7: Measured (circles) and predicted (lines) values of the elongation rates of LRs of the two parents and 
fourteen RILs of the Brassica rapa BraIRRI mapping population as a function of the time of their emergence 
after transfer to the phenotyping platform. Predicted values were estimated using a nonlinear mixed-effects 
model (Equation 4.6). 
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Figure 4.8: Examples of diagnostic plots for the three dynamic root traits investigated: normal plot of residuals by genotype for TRL (a), PRL (b), LRGR (c); fitted values for 
standardised normal for TRL (d), PRL (e) and LRGR (f). 
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Table 4.4: Estimates of the asymptotes (∅1, Equation 4.4) for mixed effects models describing temporal variation in total and primary root length, and the intercept (bi1 + β1, 
Equation 4.6) for the mixed effects model describing the growth rate of 1st order LRs among the parents (IMB211, R500) and 14 RILs of the Brassica rapa BraIRRI mapping 
population grown for 15 days in the phenotyping platform 

 
IMB211 R500 IRRI 

002 
IRRI 
016 

IRRI 
030 

IRRI 
070 

IRRI 
104 

IRRI 
124 

IRRI 
143 

IRRI 
198 

IRRI 
201 

IRRI 
205 

IRRI 
229 

IRRI 
248 

IRRI 
360 

IRRI 
380 

Total Root Length 37.3 126.6 64.2 49.4 47.8 56.8 55.9 47.5 61.1 56.1 53.5 61.3 67.6 52.6 71.5 113.7 
Primary 
Root Length 

17.4 28.3 22.3 17.0 22.9 19.1 17.1 20.3 25.4 29.0 26.5 21.1 22.5 23.5 19.1 24.0 

Lateral Growth 
Rate 

0.255 0.290 0.255 0.273 0.307 0.285 0.326 0.262 0.216 0.234 0.263 0.296 0.295 0.233 0.281 0.297 
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4.3 Discussion  
 
Breeding for roots with efficient resource acquisition traits requires screening of large 

populations of genotypes, which necessitates high-throughput, low-cost phenotyping 

platforms. The study reported here provides an assessment of the genetic variation in root 

properties of Brassica rapa genotypes and demonstrates the potential of the high resolution 

root phenotyping platform developed here.  

 

Using parents and RILs of Brassica rapa, we examined and observed significant differences 

between genotypes in static root traits including lengths of the total root system, the 

primary and lateral roots, and also in branching density, angles, inter-branch distances of 

laterals and root diameters. The range of values recorded for static root traits may not 

necessarily represent the full extent of genetic variation for the traits measured in BraIRRI 

mapping population, as we tested only the parents and selected set of inbred lines. Even so, 

significant variation in root traits observed here suggests that the BraIRRI population is 

suitable for QTL analysis (Ali et al., 2000). It is difficult to compare results here with other 

published data as root trait information for B. rapa grown for similar duration and under 

comparable conditions is rare. Correlations among root traits observed here is however 

consistent with that reported by Lu et al. (2008). Significant positive correlation among pairs 

or root traits may be a sign that QTLs for certain pairs of root traits would be mapped to 

similar genomic regions. Highly positive correlations are also likely to be associated with 

QTLs with large effects (Ali et al., 2000; Materechera et al., 1992). 

 

140 
 



A PCA was employed to determine which combinations of traits contributed more to the 

phenotypic variability in the reference population. Five PCs were identified in this study and 

PC1 which represented 41.39% of the variation was most affected by parameters 

predominantly describing biomass and length and therefore related to size of the root 

system. Most of the traits, which are not directly describing root system size such as angle 

and diameter contributed less or did not significantly contribute to PC1 variation. Therefore, 

consistent with the report of Fita et al. (2008), low values of PC1 correspond to genotypes 

with smaller root system size. High PC2 values also appear to correspond to root systems 

with long lateral roots illustrated by the high weight of the mean length of the lateral roots. 

PC3 was negatively affected by branching density and positively by inter-branch distance 

and primary root length. It was not entirely surprising that root-to-shoot ratio and root dry 

weight was both represented also on PC3 as one is the determinant of the other. What was 

however interesting was the fact that the other determinant of root-to-shoot ratio, shoot 

biomass, was not significant on the PC3. Generally, it appears that PC3 explains variations in 

primary root-related traits such a length and branching density on the primary root. 

 
 Cluster analyses of the genotypes was conducted to identify inherent natural groups in the 

data and included all shoot and root traits measured. Results of cluster analyses were 

consistent with that of PCA, providing additional insights to the observed PCA-based 

dimension reductions of the data. Broadly, cluster analysis resulted in five groups 

comprising largely of genotypes with a combination of bigger shoot and root biomass / 

increased total root length and number of laterals or genotypes with longer primary roots or 

genotypes with wider inter-branch distances and shorter mean lateral root length. The 

group composition to some extent reflected the genetic background of the genotypes and 

141 
 



was consistent with the report of Manschadi et al. (2008). For example, inbred line IRRI030 

was observed to have shorter, few and highly spaced lateral roots resulting in a smaller root 

system length and this was clustered with the parent, IMB211 which shares similar 

characteristics. Also, the inbred line IRRI380 has bigger biomass and root system length, 

quite similar to the parental genotype R500 and was clustered in distinct group but with 

similar linkage distance as R500. Similarly, RILs including IRRI198 and 360 with longer 

primary root length was in one group whilst, 070, 016 and 229 with shorter PR length, mid-

LR length between that of the two parents, few and highly spaced laterals were also in one 

group. It thus suffices to say that genotypes which were grouped together may share stress 

similar adaptive response mechanisms. The relationships between the genotypes may 

therefore be important in phenotypic selection and adoption of genotypes for particular 

environments.  

 

Broad-sense heritability, was highest for shoot biomass traits, the length, branching density 

and diameter of PRs, number and diameter of LRs (≥ 0.70), intermediate (0.45-0.67) for root 

biomass, LR insertion angle and inter-branch distance and lowest (<0.3 5) for total length of 

laterals of the whole root system , diameter and mean length of LRs (Table 4.4). Coefficient 

of variations obtained from previous studies (Chapter 3, Table 3.2), for traits such as primary 

root length (15 - 34%), branching density (15 - 65%) and number of LRs (19 - 35%) could be 

considered relatively high. These traits also recorded high heritability in the present study. 

Broadly speaking, this suggest that traits with large differences between genotypes and low 

variation within a genotype (i.e. high hereditability) require less replication to detect 

significant differences between genotypes than traits with either small differences between 

genotypes or low hereditability.  
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Many of the static traits described above also show temporal variation with significant 

effects of genotype on the dynamics of root growth (Table 4.4, Appendix 4; Figures 4.6 and 

4.7). Root growth measured in length increments of the total root system and the primary 

root over time were statistically analysed by both linear and non-linear mixed-effects 

models. Considering that variability attributable to genotype was 19.5% for TRL and 40.0% 

for PR, it could be said that PRL growth is more linear than the growth of the total root 

system. This assertion is also supported by the fact that unexplained variation encountered 

by the linear model was higher for TRL (30.16%) than PRL (21.0%). Nevertheless, the length 

of the primary root and total length of the root system follow a sigmoidal growth function 

with time (Figure 4.6) and the elongation rate of lateral roots follows a quadratic function 

with day of emergence from the primary root (Figure 4.7). Data for primary root length and 

the length of the root system indicated that all genotypes follow a similar growth pattern 

with time, but differ in their absolute growth rate. Data for the elongation rate of lateral 

roots also indicated that all genotypes follow a similar pattern with time, but differ in their 

maximum growth rate. One utility of the non-linear modelling approach is that the 

parameters of the logistic equation (Eqn. 4.4), can be interpreted biologically where ∅i1 is 

the asymptote parameter (maximum root length), ∅i2 is the inflection point (time or age at 

which ½ of maximum root length occurs) and ∅i3 is the scale parameter (distance in DAS 

from the inflection point to the point where the height is 73% of the maximum root length 

(Calegario et al., 2005).  

 
The results presented in this chapter show roots show dynamic patterns. Since the 

elongation rate of roots is not constant, the length of a root is not directly related to the age 
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and the time it has been exposed to local soil resources. Root systems of plants grown in soil 

are exposed to temporal and spatial heterogeneity in, for example, temperature, soil 

strength, aeration, the availability of water and essential mineral elements, exposure to 

toxic substances, and contact with soil biota. Mechanisms underlying dynamic response of 

roots to changes in such environmental cues would be better understood with models and 

analyses developed to characterise these responses such as the mixed effects modelling 

approaches described here. Root responses could be quantified across genetic mapping 

populations and to identify genetic factors affecting root responses to the environment. The 

ability to characterise dynamic responses to environmental variables will allow researchers 

to develop more efficient marker-assisted selection of genotypes adapted to multiple soil 

types and environmental conditions (Acuña and Wade, 2013; de Dorlodot et al., 2007; 

Gerald et al., 2006; Hochholdinger and Tuberosa, 2009; Hodge et al., 2009). 

4.4 Summary 
• Significant differences were found between genotypes in static root traits including 

lengths of the total root system, the primary and lateral roots, and also in branching density, 

angles, inter-branch distances of laterals and root diameters. 

• Significant positive correlations were found among pairs of root traits and could indicate 

the effect of closely linked genes. Chromosomal loci for certain pairs of root traits would 

thus be mapped to similar genomic regions and highly positive correlations observed here 

could be associated with QTLs with large effects.  

• Five PCs explained the variability within the data. Plant size explains larger proportion of 

the total variability within the population. Other important factors that explain variation 

within the population are branching density, number of laterals, root-to-shoot ratio and 

root diameter. 
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• Cluster analysis resulted in five groups each comprising of genotypes with a combination 

of bigger biomass and increased total root length or longer primary roots or genotypes with 

wider inter-branch distances and shorter mean lateral root length. The group composition 

to some extent reflected the genetic background of the genotypes. 

• Broad-sense heritability, was highest for shoot biomass traits, the length, branching 

density and diameter of PRs, number and diameter of LRs, intermediate for root biomass, LR 

insertion angle and inter-branch distance and lowest for total length of laterals the whole 

root system, diameter and mean length of LRs. 

• Static root traits show temporal variation with significant effects of genotype on the 

dynamics of root growth. These traits include growth of the total root system, primary and 

lateral roots.  

• Whilst primary root growth appears to be more linear than the growth of the total root 

system, the general trend of both follows a sigmoidal growth function with time. Elongation 

rate of lateral roots is quadratic and indicate that all genotypes follow a similar pattern with 

time, but differ in their maximum growth rate.  
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CHAPTER 5 : SCANNER-BASED IMAGING OF ROOT GROWTH DYNAMICS IN SOIL-FILLED 
RHIZOBOX SYSTEMS 

5.0  Introduction 
Plants are adaptable and responsive to their local environment. For example, high soil bulk 

density decreased root growth of barley seedlings (Bingham and Bengough, 2003). Similarly, 

high soil water availability caused a reduction in the number and length of lateral roots in 

Triticale (Grzesiak et al., 2002). Local soil P availability led to various alterations in RSA (Dai 

et al., 2012; Lopez-Bucio et al., 2002). This has led to the development of many lab-based 

techniques, employing root growth cultures which are approximations of field conditions to 

quantify RSA (Dai et al., 2012; Dupuy et al., 2010a; Faget et al., 2013; Galkovskyi et al., 2012; 

Gregory et al., 2009; Iyer-Pascuzzi et al., 2010; Lopez-Bucio et al., 2002; Nagel et al., 2012).  

 

Root system phenotyping through imaging requires the use of a rooting medium that is 

cheap, provides repeatable root growth conditions over time (Crush et al., 2005). It is also 

desirable that the rooting media used increase the contrast between roots and their 

background and so ease the process of image analyses (Mairhofer et al., 2013). Artificial 

rooting media such as agar or gels (Gruber et al., 2013; Jain et al., 2009; Yazdanbakhsh and 

Fisahn, 2012) and paper pouches (Hund et al., 2009; Liao et al., 2001) have been used 

successfully to screen crop plants for variation in root system characteristics. However, the 

limitations include the absence of microbial interactions, soil structure and in most cases, 

absence of mechanical impedance. In some cases, it is also challenging to adequately 

simulate heterogeneity of water and nutrient availability typically observed along soil 

profiles (Hutchings and John, 2004; Nagel et al., 2012). Moreover, the mineral 

concentrations and ionic potentials of commonly used artificial rooting media could exceed 
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those found in soils (Foehse and Jungk, 1983; Gruber et al., 2013; Jain et al., 2009). Thus, 

despite the ease and tractability of image analysis of root systems grown on artificial media, 

there are concerns regarding the effect these environments might have on root 

development (Mairhofer et al., 2013). 

 

Soil-filled chambers (rhizoboxes) are an alternative that provides the closest naturalistic 

conditions for screening plant root systems under controlled environments. Transparent 

soil-filled columns or rhizoboxes are popular because they permit non-invasive repeated 

measurements of the same roots at frequent time intervals and can be used to explore the 

dynamics of root water uptake of the root system (Garrigues et al., 2006). Compared to soil 

in the field, roots can readily be recovered from soil-filled chambers and such systems can 

be scaled up to accommodate large numbers of plants. However, despite the extensive use 

of rhizoboxes and artificial rooting media, it is not certain root system data obtained from 

soil growth media is representative of the actual harvested root traits data or correlate with 

data obtained from artificial substrates such as paper pouches. 

 

In this Chapter, the parents and 10 RILs of the BraIRRI mapping population used previously 

in filter-paper based studies were analysed. The soil-filled rhizobox study was used to 

estimate the number of replicates required to detect differences in traits contributing to 

RSA between genotypes of Brassica rapa L. The genotypic, environmental and temporal 

variations in root traits in soil-filled rhizobox were also quantified. Root growth dynamics 

was expressed as length of the total root system and the primary root, and the growth rate 

of first order lateral roots. We also assessed whether the part of the root system visible at 

the transparent face of the rhizoboxes is representative of the total root system. In addition, 
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we also tested for correlation between soil-based and filter-paper based techniques used 

previously (Chapter 4).  

5.1 Materials and Methods 

5.1.1 Plant material and soil cultivation protocols 
The parents (cv. IMB211 and cv. R500) and 10 RILs including BraIRRI 002, 016, 030, 104, 124, 

198, 201, 229, 360 and 380 were used in this study. The rhizoboxes, adapted from Bengough 

et al. (2004) as described in Chapter 2 (Section 2.1.4; Figure 2.7), consisted of two 

polyvinylchloride plates (30 × 21.5 × 0.3 cm), one transparent and the other made of an 

opaque polythene sheet (Section 2.1.4). The rhizoboxes were filled with topsoil (0-10 cm 

depth) collected from a site near the James Hutton Institute, Dundee, Scotland (NO 456 

265). The soil was typical of arable soil of the region and defined as a Cambisol (FAO-

UNESCO Classification) (George et al., 2011a). The sieved soil, prepared as described 

hitherto in Chapter 2 (Section 2.1.6.2), was left un-amended and was watered with 

deionised water to approximately 80% field capacity on gravimetric water content basis 

prior to planting (George et al., 2011a). All environmental conditions were maintained as 

described in Section 2.1.1. Seedlings were grown in six replicates in two independent 

experiments. Twenty four scanners were employed and with three replicates per scanner, 

the rhizobox system allowed the imaging of the root growth of 72 seedlings for 15 days after 

sowing. Rhizoboxes were fixed to scanners in “portrait” orientation in near vertical position 

as shown in Figure 5.1 and images were captured at 12 hour intervals. Data analyses of root 

growth were based on daily measurements.  
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Figure 5.1: Setup for phenotyping roots in soil-filled rhizoboxes showing 24 scanner positions arranged in rows 
of 6. The inclination angle of the scanners and hence rhizoboxes was adjusted to approximately 75°. 

 

5.1.2 Extraction of geometric features and root growth information 
At harvesting, roots were excised from shoots and carefully washed out of the soil. Root 

systems were individually placed in water-containing 150 mm sterile polystyrene Petri 

dishes and scanned with Epson Expression 10000 XL scanner. Morphological features 

including length, area, volume and diameters were measured with WinRhizo, (Version 

2012b, Regent Instruments) with grey value threshold 30; removal of objects with an area 

<1 cm2 and a length-to-width ratio <4 (Nagel et al., 2012). Geometric information from 

captured images was also extracted with SmartRoot software (Lobet et al., 2011) (Section 

2.3.3.1) and total root length measured with WinRHIZO was compared to the total visible 

root length obtained with the scanners. Root growth information was extracted with 

SmartRoot (Lobet et al., 2011) by first, tracing all root axes (primary and lateral roots) on the 
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last image (image at 15 DAS when the root axes were longest). The initial tracing was then 

used as the starting point for the tracing of the preceding image at DAS 14 which is obtained 

by removing the portion of roots that have been created between DAS 14 and DAS 15. The 

same process is repeated until the root system from the first day of experiment is traced. 

5.1.3 Statistical analysis  
Descriptive statistics for all traits were calculated. An estimate of the standard deviation and 

the mean (± standard error) were obtained and the first divided by latter to obtain an 

estimate of the coefficient of variation (CV) as a percentage of standard deviation to the 

trait grand mean. Root trait data from the parents of the population (cv. R500 and IMB211) 

were used to calculate the number of replicates (R) that would be required to detect a 

significant difference between the means of two populations with identical standard 

deviations in a trait using a two-sided, 95% confidence interval (CI), t-test, if the trait means 

differed by 50%. Since this involved a study comparing two means, there was slight 

modification of Equation 3.1 and the equation used here incorporated the desired statistical 

power (Eng, 2003): 

𝑅 =  
4𝜎2(𝑧𝑐𝑟𝑖𝑡 +  𝑧𝑝𝑤𝑟)2

𝐷2               (𝟓. 𝟏) 

where: R is the total sample size, σ is the standard deviation of both groups, the zcrit value is 

the standard normal deviate given in normal score tables and corresponding to the 

confidence interval of 95% (1.96), the zpwr is the standard normal deviate corresponding to 

0.80 statistical power and D is the minimum expected difference between the two means 

(50%). R represents the sum of the sample sizes of both comparison groups and σ is 

assumed to be equal for both groups.  
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Pearson’s correlation coefficients between all trait combinations were determined and PCA 

analysis was performed. Significant components were chosen by the ‘eigenvalue >1’ rule 

(Tabachnick and Fidell, 1996). Cluster analysis was conducted on all the traits pooled 

together to identify discrete groups of lines with similar RSA traits among the reference 

population studied. Clustering was performed using Ward’s hierarchical approach based on 

minimum variance linking method with Euclidean distance as the similarity measure 

(Manschadi et al., 2008). Optimal number of clusters was chosen based on the ‘elbow-

criterion’ which compares the Sum of Squared Differences (SSD) for different cluster 

solutions (Thorndike, 1953). 

 

Genotypic variability was analysed with three-way ANOVA. The sources of variation in static 

root traits among the genotypes were determined using a mixed effects model with 

experiment (run), scanner and genotype considered as random factors using Equation 4.1. 

Except for s (the number of genotypes, i.e. 12), all parameters in Equation 4.1 remains 

unchanged in the present analyses. ANOVA was also performed on some traits (SDW, TRL, 

number of LRs and mean LRL) between data generated here and data generated in Chapter 

4 when seedlings were grown on seed germination paper. Broad-sense heritability (H2) was 

estimated as 𝜎𝑔2 /𝜎𝑝2, where 𝜎𝑔2 is the estimated variance associated with the genotypic 

effect and 𝜎𝑝2 is the total variance for the trait.  

 

The sources of variation in dynamic root traits were determined using mixed effects models 

with genotype and experiment considered as random factors. To account for non-linearity in 

growth curves, a logistic growth function was used to model the increase in total root length 

and primary root length with time using three parameters of the logistic function as detailed 
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in Equation 4.4. Due to an additional random effect parameter utilised for the modelling of 

total root length, Equation 4.4 was slightly modified: 

 

𝑦𝑖𝑗 =  
∅𝑖1

1 + exp [−�𝐷𝐴𝑆𝑗 − ∅𝑖2 �/ ∅𝑖3]
 +  𝝐𝒊𝒋,    (𝟓. 𝟐) 

 

∅𝑖 =  �
∅𝑖1
∅𝑖2 
∅𝑖3

� = �
𝛽1
𝛽2
𝛽3
� + �

𝑏𝑖1
𝑏𝑖2
0
�, 

𝑖 = {1, … , 𝑠}, 𝑗 = {1, … , 𝑡}, 

𝑏𝑖1 & 𝑏𝑖1 ~ 𝑁 (0, 𝜎𝑏2), 𝜖𝑖𝑗 ~ 𝑁 (0, 𝜎2). 

Definitions of all parameters remains unchanged from Equation 4.4 but here, bi1 and bi2, are 

respectively the random effect on the asymptote and inflection point of the logistic 

function. The sources of variation in the growth rate of lateral roots were determined using 

Equation 4.6. Data for growth rates of lateral roots were normalised by square root 

transformation. The structure of the mixed effects models described were chosen based on 

Akaike and Bayesain information criteria and model quality was also assessed visually using 

quantile-quantile and residual plots as in Chapter 4. Statistical analyses were performed 

using GenStat (GenStat Release 14.1, VSN International, Oxford, UK) and R software and the 

nlme library (Pinheiro et al., 2008; Pinheiro and Bates, 2000; R Core Team, 2008). 

5.2 Results  

5.2.1 A rhizobox platform for high-resolution quantification of root 
architectural development  

The low-cost and simple scanner-based root phenotyping system for high-resolution 

quantification of RSA development was adapted to soil-filled rhizoboxes made from PVC 

plates equipped with transparent root observation windows (Bengough et al., 2004). The 
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adapted scanner-based rhizobox system allowed non-destructive measurements of root 

growth along the observation window and followed with time by taking images at regular 

intervals with scanners attached to rhizoboxes and ArchiScan (Section 2.2.1), the image 

acquisition software (Figure 5.1). Plants grew vigorously in this system, and with no 

apparent symptoms of mineral deficiencies. The experiment allowed also detailed 

quantification of architectural parameters of root systems at the end of experiments and 

also information on the dynamics of global characteristics of root systems from the images.  

 

Only the roots reaching the surface of the observation windows can be observed and 

measured by image analysis non-destructively. The proportion of roots reaching the surface 

of the observation window (total visible root length) (Figure 5.3) ranged from 42.6 to 98.9% 

(average of 85%) of the actual or harvested total root length (total root length). On a limited 

number of occasions (8.3% of measurements taken), total visible root length were larger 

than total root length for corresponding plants. This suggests that in such occurrences, root 

parts may have been lost during washing or were left unidentified in the soil growth 

medium. There was a linear relationship (r = 0.90) between total visible root length and 

total root length with a slope of 1.24 for all the genotypes combined (Figure 5.2).  
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Figure 5.2: Relationship between total visible root length on transparent surface of soil-filled rhizoboxes and 
total harvested root length of Brassica rapa seedlings grown for 15 DAS after germination  

 
The correlation between the total root length and total visible root length was dependent 

on the genotype, an observation that may be due to size of the root system. Correlation 

coefficients between visible and harvested total root length for the parental genotypes, (cv. 

IMB211 and R500) were 0.60 and 0.77, respectively. The correlation between the total root 

length and the total visible root length for the RILs combined was 0.82. Slopes of linear 

regression curves also varied between genotypes with values of 1.20, 1.61 and 1.15 

respectively recorded for IMB211, R500 and all RILs combined (Figure 5.4a). Total visible 

root length also correlated well with other traits and could therefore be proxies for other 

traits but this also was affected by the genotype (Figure 5.4b-d). Correlation coefficients of 

visible total root length with shoot biomass, root biomass and number of lateral roots were 

0.68, -0.10 and 0.61, respectively for parental genotype, IMB211; 0.71, 0.06 and 0.74, 

respectively for parental genotype, R500; and 0.65, 0.35 and 0.82, respectively for the 10 

RILs combined. Overall, correlation recorded between root biomass and visible total root 

length was the least, in which case, it also seemed that correlation was better for RILs and 

IMB211 than for R500 (Figure 5.4). 
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Figure 5.3: Examples of root system of B. rapa seedlings 15 d after sowing. R500 and IMB211 are parents and 10 RILs from the BraIRRI mapping population (For clarity, 
images shown here are from the blue channel of the RGB colour beams). 
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Figure 5.4: Correlation between root lengths visible at the transparent surface of soil-filled rhizoboxes with (a) harvested total root-system lengths; (b) shoot biomass; (c) 
root biomass and (d) number of lateral roots. Open circles, filled circles and filled triangles are data points for IMB211, RILs and R500 respectively; Equations and R2 values 
on each plot are from left to right, the trend lines of IMB211, RILs and R500, respectively. 
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5.2.2 Sources of variation in static root traits 
A few plants had not grown and so each genotype was represented by ≥ 10 individual 

seedlings in the analyses. The analyses of root architectural traits were restricted to first 

order lateral roots as no second order lateral roots could be observed 15 d after transfer to 

the rhizoboxes. Coefficients of variation (CVs) was estimated on combined data for all lines 

on measured traits including fresh and dry weights of shoots and roots, lengths of primary 

root, lateral roots and whole root system. Other measured parameters included the 

branching density and insertion angle of lateral roots on the primary root, mean diameter of 

all roots, length of the un-branched apical root zone of the primary root, mean distance 

between laterals, root-to-shoot ratio and specific root length (Table 5.1). There was nearly 

an order of magnitude of variation in most of the 18 traits studied (Table 5.1). However, 

lateral root insertion angle, mean root diameter and root biomass showed small variations 

(CV = 9.46, 10.64). Most of the variation in all the traits could be attributed to the genotype 

and vagaries in experimental conditions (i.e. run and block).  

 

Using Equation 5.1, it was estimated that between 4 and 48 replicates, depending upon the 

trait, would be generally required to detect a significant difference in means of two lines 

using a 2-sided, 95% CI, t-test if trait means differed by 50% (Table 5.2). Estimated sample 

sizes were large for certain traits including branching density, LR insertion angle, mean inter-

branch distance and specific root length (Table 5.2). Differences between means for these 

traits were very small. This may be due to lesser or non-correlation between visible and 

harvested root systems caused by non-visibility of some root axes on the surface of the 

rhizobox.  
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Table 5.1: Descriptive statistics for traits measured on the parents and 10 RILs of Brassica rapa seedlings grown 
for 15 days after sowing on soil-filled rhizoboxes. (Sample size was estimated based on the difference between 
mean values of the parental lines for each trait. ᶧSD: standard deviation - estimated as 50% of the sum of SDs 
for both groups; ᶧᶧrepresents the sum of the sample sizes of both parental lines and calculated for 50% 
difference between means).  

 Descriptive Statistics for all genotypes Difference 
between 
Means of 
parental 
lines 

SDᶧ Estimate
d Sample 
Sizeᶧᶧ 

Trait Unit Min. Max. Mean CV (%) 
SFW mg 24.00 333.30 111.07 43.02 144.40 45.44 12 
SDW mg 1.10 16.60 5.64 38.39 6.21 2.38 18 
RFW mg 3.50 39.50 13.75 43.18 19.91 4.84 7 
RDW mg 0.10 4.40 1.05 63.54 2.24 0.57 8 
TRL cm 4.27 77.27 28.32 47.73 40.84 11.62 10 
TLRL cm 1.42 64.59 16.84 57.69 27.00 8.89 14 
PRL cm 4.69 28.70 13.93 30.23 14.65 3.17 6 
B. Dens. root cm-1 0.59 3.89 1.71 32.39 0.24 0.52 590 
LR No.  - 2.00 34.00 12.59 51.18 19.75 3.54 4 
Mean LRL cm 0.08 1.93 0.68 43.11 0.32 0.18 39 
Angle ° 55.53 94.82 67.33 9.46 1.86 7.82 2212 
B. Dist. cm 0.30 3.01 0.80 47.14 0.11 0.26 762 
Mean Diam. mm 0.25 0.42 0.31 10.64 2.81 1.22 24 
Surf. Area cm2 2.57 8.84 6.77 19.02 28.75 11.74 21 
Root Vol. mm3 4.00 64.00 20.89 55.25 0.00 - - 
LAUZ cm 2.48 18.99 6.15 37.89 4.03 2.25 39 
R:S  - 0.03 0.72 0.19 53.20 0.21 0.13 48 
SRL cm mg-1 8.48 94.45 32.68 53.11 19.79 19.02 116 

 

5.2.3 Genotypic variation in root traits on soil-filled rhizoboxes 
A significant effect of genotype was observed for all the root traits measured except for 

mean root diameter (p < 0.001; Table 5.2). The parental genotypes exhibited extreme values 

for many biomass and root architectural traits with the R500 and IMB211 genotypes 

respectively having the highest and smallest values for the majority of root and shoot traits 

assayed. However, there was some evidence of transgressive segregation in some traits 

including branching density, mean LR length, LR insertion angle and LR inter-branch distance 

where some inbred lines recorded either smaller or higher trait values than parental lines 

(Table 5.2). 
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There were strong positive correlations among biomass traits for the 144 plants studied 

(Figure 5.5). There were also strong correlations between biomass and root architectural 

traits (Figure 5.5). Total root length was positively correlated with SFW (r = 0.85; p < 0.05), 

SDW (r = 0.81; p < 0.05), RFW (r = 0.83; p < 0.05). Within root traits, TRL strongly correlated 

with root surface area (r = 0.86; p < 0.05), PRL (r = 0.75; p < 0.05), number of LRs (r = 0.75; p 

< 0.05) and TLRL (, r = 0.85; p < 0.05). Root FW positively correlated strongly with PRL (r = 

0.77; p < 0.05) and TLRL (r = 0.77; p < 0.05). Other significant positive correlations included 

that between TLRL and number of LRs (r = 0.75; p < 0.05), PRL and number of LRs (r = 0.76; p 

< 0.05), TLRL and PRL (r = 0.65; p < 0.0). Significant correlations were also recorded between 

R:S and SRL (r = -0.67; p < 0.0).  
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Table 5.2: Genotypic variation in shoot and root traits assayed 15 DAS among the parents (IMB211, R500) and 10 RILs of the B. rapa BraIRRI mapping population grown for 
15 days in the scanner-based soil-filled rhizobox system. (** P<0.001* or P < 0.005, n = 12 plants; d.f = 143). ns = Not Significant; LSD = Least Significant Difference. 

 Trait  IMB211  IRRI 002  IRRI 016  IRRI 030  IRRI104  IRRI124  IRRI198  IRRI201  IRRI229  IRRI360  IRRI380  R500 P LSD 
SFW 50.40 105.20 115.30 56.80 102.50 102.50 143.70 130.30 112.10 114.00 105.00 194.80 ** 26.55 
SDW 3.00 5.23 5.03 4.04 4.70 5.24 7.12 6.13 6.17 6.47 5.28 9.21 ** 1.298 
RFW 5.41 13.65 11.12 9.52 14.28 11.62 13.57 16.4 15.7 12.76 15.63 25.32 ** 3.19 
RDW 0.28 1.00 0.717 0.842 0.817 1.083 1.083 1.053 1.017 1.113 1.067 2.517 ** 0.3716 
TRL 10.55 30.32 24.09 20.9 28.70 24.81 28.89 34.03 31.5 27.67 26.94 51.39 ** 8.415 
Mean Diam. 0.306 0.296 0.315 0.300 0.318 0.315 0.312 0.298 0.296 0.328 0.323 0.307 ns 0.026 
Surf Area 4.811 7.276 6.85 6.408 7.338 6.66 6.628 6.846 7.018 6.577 7.205 7.62 ** 0.9163 
Root Vol.  8.14 20.9 18.25 15.25 22.92 19.58 22.25 22.52 22.42 19.18 22.33 36.92 ** 8.115 
PRL 7.35 14.25 12.76 10.67 15.71 12.28 14.10 15.07 14.04 14.33 14.60 22 ** 2.217 
B. Den. 1.868 2.015 2.022 1.561 1.149 1.694 1.728 1.703 1.785 1.851 1.489 1.63 * 0.4227 
LR No. 4.47 15.15 8.58 7.67 9.88 12.00 14.42 14.57 14.33 15.83 9.92 24.25 ** 3.532 
mean LRL 0.278 0.705 0.69 0.768 0.679 0.655 0.886 0.93 0.716 0.678 0.52 0.598 ** 0.2038 
Angle 71.09 69.69 68.09 69.6 69.79 64.26 62.56 65.76 65.97 66.05 65.86 69.23 * 4.919 
Int. Dist 0.853 0.581 0.791 0.841 1.409 0.711 0.695 0.665 0.628 0.668 1.038 0.746 ** 0.2596 
LAUZ 4.41 6.58 7.25 5.49 7.11 5.29 5.43 6.08 5.77 5.57 7.49 8.44 ** 1.475 
LBZ 4.31 18.56 12.03 11.08 14.73 14.96 21.15 23.15 18.88 19.48 12.46 31.31 ** 5.975 
SRL 43.80 34.20 43.70 26.40 40.80 24.20 30.70 32.10 31.50 32.40 28.40 24.00 * 13.48 
R:S 0.1075 0.1891 0.1492 0.2244 0.1761 0.2192 0.1546 0.173 0.1694 0.1725 0.2142 0.3166 ** 0.07332 
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Figure 5.5: Correlations between plant traits. The correlation coefficients for linear regressions are indicated by 
the colour and the shape of the ellipses in the lower section below the diagonal of trait names in the matrix and 
the exact corresponding correlation coefficients are indicated above the diagonal of trait names in the matrix. 
The scale is indicated in the bar at the right of the matrix. Boxes with crosses indicate non-significant 
correlations (p <0.05). (Trait names from top-left to bottom-right of the diagonal are: SFW: Shoot fresh weight; 
SDW: Shoot dry weight; RFW: Root fresh weight; RDW: Root dry weight; TRL: Total root length; TLRL: Total 
length of LRs, , PRL: Primary root length; Surf Area: Root surface area;  Root Vol.: Root volume; Mean Diam.: 
Mean root diameter; B. Dens: Branching density; LR No.: Number of LRs; Mean LRL: mean length of LRs; Angle: 
Mean insertion angle LRs; Int. Branch: Mean inter-branch distance of LRs; LAUZ: Length of the apical un-
branched zone of the PR; R:S: Root-to-shoot ratio and , SRL: Specific root length). 

 
 
Principal component analyses (PCA) indicated five significant axes of variation, accounting 

for approximately 78% of the variation in the genotypes studied. Traits with eigenvalues 

>1.0, considered the most significant contributors to each PC, are listed in Table 5.3. The 

first and strongest PC was mainly associated with genotype differences in seedling 

biomasses (except for RDW), TRL, TLRL, and in PRL. Principal component 1 also accounted 
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for differences in root surface area and in the number or LRs. The second component was 

associated with RDW, SRL and R:S, whereas PC3 accounted for genotype differences in 

branching density and inter-branch distance. The fourth PC explained differences in mean 

LR length and root volume, whilst the PC5 explained differences in the genotypes based on 

LAUZ and angle (Table 5.3).  

Table 5.3: Principal component analyses on 18 traits of 12 genotypes of Brassica rapa seedlings grown for 15 d 
after sowing - Rotation method: varimax with Kaiser Normalization. Components with eigenvalues >1 are 
considered significant (Tabachnick and Fidell, 1996). Variable loading scores with the greatest loads on each 
component are in bold. Genotype mean data (n = 12) were used for PCA. 

Trait  PC1 PC2 PC3 PC4 PC5 PC6 
SFW 0.34 -0.06 0.01 -0.12 0.03 -0.12 
SDW 0.32 -0.06 -0.04 -0.13 0.05 -0.13 
RFW 0.34 0.06 0.10 -0.01 0.07 -0.01 
RDW 0.24 0.41 0.01 0.17 0.15 0.17 
TRL 0.35 -0.12 -0.03 0.01 0.06 0.01 
Mean. Diam. 0.21 -0.20 0.14 0.14 0.03 0.14 
Surf. Area 0.30 -0.19 0.04 0.24 -0.01 0.24 
PRL 0.32 0.01 0.21 0.01 -0.19 0.01 
No. of LRS 0.31 0.06 -0.17 0.09 -0.03 0.09 
Mean LRL 0.14 -0.06 -0.15 -0.52 -0.14 -0.52 
TLRL 0.33 -0.01 -0.14 -0.14 0.25 -0.14 
LAUZ 0.13 0.08 0.26 0.06 -0.74 0.06 
SRL 0.00 -0.55 -0.06 -0.01 -0.06 -0.01 
B. Dens. 0.01 0.07 -0.59 0.24 -0.30 0.24 
Root. Vol. 0.00 -0.20 0.12 0.56 -0.17 0.56 
Angle -0.01 -0.29 -0.08 0.35 0.38 0.35 
Int. Dist. -0.06 -0.03 0.64 -0.07 0.14 -0.07 
R.S 0.07 0.53 0.05 0.25 0.14 0.25 

 
Eigen Value 7.21 2.54 1.87 1.48 1.09 0.93 
% variation 40 14 10 8 6 5 
Cumulative 
% variation 40 54 64 72 78 83 

 

Cluster analysis of root traits showed 5 distinct groups of genotypes (Figures 5.6). Two 

genotypes, IRRI380 and R500 were allocated to unique groups but the linkage distance 

between R500 and the remaining groups was wider. IMB211 clustered with IRRI030, 

IRRI124. The remaining clusters had 3 and 4 genotypes, respectively (Figure 5.6). Genotypes 

in groups 1 and 3 largely exhibited bigger biomass, increased TRL and increased number of 
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laterals. Genotypes in group 2 have reduced biomass and root length. Genotypes in cluster 4 

appear to have root system size intermediate between that of groups 2 and 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Clustering of 12 Brassica rapa genotypes grown on soil-filled for 15 DAS. The red-lined boxes 
indicate groupings of the genotypes. 

 

Little variation in the traits assayed was attributed directly to run or block in the rhizobox 

experiment. The effects of genotype, and the effects of interactions between genotype x 

run, genotype x block and genotype x run x block accounted for most of the experimental 

variation (Table 5.4). The effect of genotype alone generally accounted for more variation in 

root traits than in shoot traits. The effect of genotype alone accounted for >35% of the 

variation in root biomass, but between 31-33% of the variation in shoot biomass. In some 

traits such as mean diameter, SRL and R:S, there was no effect of genotype alone (Table 
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5.4). Broad-sense heritability was highest for root biomass traits (>0.84), PRL (0.88) and TLRL 

(0.76), intermediate (0.40 - 0.68) for shoot biomass, mean LRL (0.65) and LAUZ (0.64), and 

lowest (<0.4) for branching density and root volume (Table 5.4). 

 

Data generated in this Chapter were compared to that of Chapter 4 where plants were 

grown on paper but under same environmental conditions and duration. Biomasses of 

plants grown in soil were on average larger than that of plants grown on filter paper. 

However, plants grown on paper had a larger root system and more lateral roots (Figure 

5.7). 
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Table 5.4: Sources of variation and broad sense heritability in shoot and root traits assayed 15 days after transfer to rhizoboxes among 144 seedlings of the parents 
(IMB211, R500) and 10 recombinant inbred lines of the Brassica rapa BraIRRI mapping population grown for 15 days soil-filled rhizoboxes scanner-based phenotyping 
platform. 𝜎𝑔2 = estimated variance associated with the effect of genotype, 𝜎𝑎𝑔2 = estimated covariance associated with the effect of genotype x experimental run, 𝜎𝑏𝑔2  = 
estimated covariance associated with the effect of genotype x block, 𝜎𝑎𝑏𝑔2  = estimated covariance associated with the effect of genotype x experimental run x block, 𝜎𝜀2 = 
estimated variance associated with the residual error, H2 = broad-sense heritability 

Measured 
Trait 

Standard deviations of effects 

H2 

Source of variation (%) 
𝝈𝒈 𝝈𝒂𝒈 𝝈𝒃𝒈 𝝈𝒂𝒃𝒈 𝝈 Genotype Genotype 

x Run 
Genotype 

x Block 
Genotype x 
Run x Block 

Residual 

SFW 30.74 28.54 0.00 11.09 24.04 0.68 32.56 30.23 0.00 11.74 25.47 
SDW 1.24 1.29 0.00 0.14 1.30 0.64 31.20 32.57 0.00 3.56 32.67 
RFW 4.55 1.13 0.00 2.67 3.25 0.89 39.18 9.75 0.00 23.04 28.03 
RDW 0.48 0.13 0.00 0.36 0.33 0.84 36.86 10.06 0.00 27.55 25.53 
TRL 6.25 9.70 0.00 4.45 6.87 0.42 22.91 35.57 0.00 16.32 25.20 
Mean Diam. 0.00 0.00 0.00 0.03 0.02 0.00 0.00 0.00 4.66 55.09 40.25 
Surf Area 0.00 0.97 0.20 0.31 0.82 0.00 0.00 42.03 8.84 13.41 35.72 
Root Vol. 2.11 7.72 0.00 7.56 5.50 0.09 9.22 33.74 0.00 33.03 24.01 
PRL 3.25 1.17 0.00 1.61 2.33 0.88 38.91 13.98 0.00 19.23 27.88 
B. Dens. 0.13 0.14 0.00 0.31 0.44 0.31 12.71 13.96 0.00 30.04 43.29 
No. of  LRS 4.69 1.79 0.70 1.85 3.79 0.88 36.60 13.95 5.47 14.42 29.56 
Mean LRL 0.13 0.12 0.01 0.05 0.23 0.65 23.61 21.53 1.66 9.99 43.20 
Angle 0.66 2.74 1.48 0.00 6.06 0.07 6.06 25.02 13.55 0.00 55.37 
Int. Dist. 0.15 0.15 0.13 0.11 0.27 0.49 18.82 18.22 16.01 13.71 33.24 
LAUZ 0.91 0.82 0.33 0.00 1.89 0.64 22.99 20.77 8.44 0.00 47.79 
TLRL 6.00 4.14 0.00 2.81 6.45 0.76 30.91 21.32 0.00 14.51 33.26 
SRL 0.00 16.66 0.00 4.96 10.48 0.00 0.00 51.91 0.00 15.45 32.64 
R:S 0.00 0.07 0.00 0.05 0.06 0.00 0.00 40.78 0.00 25.50 33.73 
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Figure 5.7: Results of shoot and root traits recorded on soil-filled rhizoboxes vs. that recorded on seed germination papers for (a) shoot dry biomass: (b) number of lateral 
roots; (c) length of the total root system and (d) mean length of the lateral roots.  
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5.2.4 The dynamics of root growth  
Primary root length, TRL and growth rate of lateral roots (LRGR) was observed in rhizoboxes. 

The length of the primary and the total root system increased sigmoidally for all genotypes 

in both runs (Figure 5.8). Except for two lines, root growth was more vigorous in one run 

due to vagaries in experimental conditions (Figure 5.8). Data also indicated considerable 

variability in the asymptote of root length. For the TRL, the model that best fitted the data 

incorporated two random-effects parameters, (the asymptote -∅i1 and Inflection point - ∅i2; 

Eqn. 5.2). The estimates for the AIC, BIC and logLik for the best fit model were 528.26, 

579.20 and -251.13, respectively. The AIC, BIC and logLik of a model that incorporated only 

one random effect (the asymptote, ∅i1; eqn. 4.4) were 569.54, 604.81 and -275.77, 

respectively, suggesting that this model was not as optimal. The best fit model for PRL used 

only one random effect (asymptote, -∅1; eqn. 4.4) and the asymptote differed between 

genotypes (P<0.05) (Table 5.5).  

 

Table 5.5: Estimates of the asymptotes and inflection points (∅i1, ∅i2 Equation 5.2) for mixed effects models 
describing temporal variation in total root length and the asymptote (∅1 Equation 4.4) for primary root length 
and the intercept (bi1 + β1, Equation 4.6) for mixed effects models describing the growth rate of lateral roots, 
among the parents (IMB211, R500) and 10 RILs of the Brassica rapa BraIRRI mapping population grown for 15 
days in the soil-filled rhizoboxes. Percentages of total asymptotic root length made up of asymptotic primary 
root length are indicated brackets 

  
IMB 
211 R500 

IRRI 
002 

IRRI 
016 

IRRI 
030 

IRRI 
104 

IRRI 
124 

IRRI 
198 

IRRI 
201 

IRRI 
229 

IRRI 
360 

IRRI 
380 

TRL 
Asymptote 9.02 61.59 35.75 29.45 23.00 37.20 35.43 31.84 41.24 29.69 42.01 24.52 

TRL 
Inflection  8.99 11.33 10.50 9.10 9.55 11.63 11.13 11.19 12.18 9.22 11.24 8.69 

PRL 
Asymptote 
(% of TRL) 

8.89 31.91 17.52 16.44 15.99 23.73 18.71 18.61 18.38 16.95 20.17 18.53 

(99%) (52%) (49%) (56%) (70%) (64%) (53%) (58%) (45%) (57%) (48%) (76%) 
Lateral GR 0.071 0.086 0.079 0.080 0.083 0.080 0.083 0.091 0.083 0.085 0.075 0.086 
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Asymptotes for TRL ranged from 9.0 to 62.0 cm with the parental genotypes IMB211 and 

R500 having an asymptote of 9.0 and 61.6 cm respectively. Asymptotes for PRL ranged from 

8.9 to 31.9 cm, and these are the values recorded by the parental genotypes IMB211 and 

R500, respectively. For growth of both the TRL and the PRL, the parental genotypes, IMB211 

and R500 recorded the least and largest asymptotes, respectively. Large proportion of the 

maximum TRL came from the maximum PRL (45 - 99%; Table 5.5), which might be a 

consequence of LRs being less visible at the surface of the rhizobox, particularly for the 

genotypes with smaller root system size (e.g.: IMB211) (see Figure 5.3). Inflection point of 

TRL ranged from 8.0 to 12 DAS with the parental genotypes, IMB211 and R500 having an 

inflection points of 8.99 and 11.30 DAS, respectively. The scale parameter of the logistic 

growth function (∅3) was 4.06 days across the genotypes studied for TRL. Values for the 

inflection point and scale parameter of the logistic growth function for PRL were constant 

and were 8.16 DAS and 5.0, respectively. Fitted values of the model to the measured data 

are shown in Figure 5.8. Adequacy of the models for TRL and PRL was assessed by logLik, AIC 

and BIC and also by residual and Q-Q plots (Figure 5.9).  
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Figure 5.8: Measured (circles) and predicted (lines) values of (a) primary root and (b) total root length of the 12 Brassica rapa genotypes measured daily for the 15 d 
following transfer to the phenotyping platform in two independent runs. Predicted values were estimated using a nonlinear mixed-effects model detailed in Equation 4.4. 
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Figure 5.9: Examples of diagnostic plots for the three dynamic root traits investigated: normal plot of residuals by genotype for total root length (a), primary root length (b), 
lateral root growth rate (c); fitted values for standardised normal for total root length (d), primary root length (e) and lateral root growth rate (f). 
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5.2.5 Growth rate of lateral roots  
Lateral roots growth rate increased quadratically with time (DAS) for all genotypes (Figure 

5.10). The most informative model included only one, random-effect parameter (bi1, 

Equation 4.6) describing the effect of genotype on the initial growth rate of LRs. The model 

also included a correlation structure and variance function. The initial LRGR (bi1 + β1) 

differed between genotypes (Table 5.5). Values for bi1 + β1 ranged from 0.071 (IMB211) to 

0.091 (IRRI 198) cm d-1. The other parental genotype, R500 had a value of 0.086 cm d-1. 

Model assessment with plots of residuals suggested that the model was satisfactory (Figure 

5.9).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Measured (circles) and predicted (lines) values of the elongation rates of lateral roots of the two 
parents and ten recombinant inbred lines of the Brassica rapa BraIRRI mapping population as a function of the 
time of their emergence after transfer to the soil-filled rhizoboxes. Predicted values were estimated using a 
nonlinear mixed-effects model (Equation 4.6). 
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5.3 Discussion 
Soils have complex structures. They are composed of numerous mineral and organic matter 

particles, whose size and arrangement is highly heterogeneous. The breeding of crop 

genotypes that thrives in such conditions is difficult. One way to achieve this goal is to 

better understand the genetic mechanisms that link root growth to soil physical conditions. 

Measuring RSA in naturalistic environment is thus vital for breeding of improved RSAs 

(Abdel-Ghani et al., 2013; Richner et al., 1997; Watt et al., 2013; White et al., 2013b; 

Wojciechowski et al., 2009; Zhu et al., 2011). Unfortunately, direct observation in soil is not 

possible and observations of root growth at soil-glass interface have been shown to be well 

suited to studies of root growth in various soil conditions. For example, rhizoboxes have 

been used to study the effect of nitrogen availability and ectomycorrhizal inoculation on 

root system architecture in seedlings of Atlas cedar (Cedrus atlantica), (Boukcim et al., 2001, 

2006). Rhizoboxes have also been adapted to study root proliferation induced by nutrient-

rich patches in soils (Hodge et al., 1999). Similarly, Nagel et al. (2012) employed rhizoboxes 

to detect differences in RSA induced by soil compaction.  

 

In this chapter, the scanner-based phenotyping system has been modified to accommodate 

the imaging of roots grown in thin rhizoboxes. The soil provided a good medium for plant 

growth and gave a good contrast for root visualisation and digitisation. The system 

proposed is of limited complexity and is adaptable to most growth environments. The 

positions of root meristems can be followed in time, and therefore growth rates, spatial 

root distribution, root/soil concentration can be estimated from the displacement of the 

root meristem at consecutive time points. Statistical analysis of these values over several 

time periods provides root growth profiles for each genotype assessed. Although, the 
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washing of soil-grown root systems in rhizoboxes may also lead to the underestimation of 

fine roots through breakage during the washing (Glinski et al., 1993; Kosola et al., 2007; 

Mairhofer et al., 2013), this is limited in this system because of the small amount of soil 

used for each rhizoboxes. Combining soil-filled thin rhizoboxes with optical scanner imaging 

could reveal root structure and development and also provide information on soil physical 

and chemical properties. 

 

Similarly to experiments where roots were grown on filter paper, the size of the rhizoboxes 

limits application of the platform to young plants. Thus, the system has potential limitation 

associated to disturbance of the soil structure, the root-zone temperatures and the limited 

rooting volume (Neumann et al., 2009). In rhizotron experiments, not all the roots of a plant 

are visible and accessible for digitalisation (Glinski et al., 1993). In rhizoboxes, root grow at 

the surface of a flat surface and so roots are coerced to grow in 2-D instead of the inherent 

3-D in natural environments.  

 

Results obtained here suggest that the proportion of root system which becomes visible on 

the transparent surface may be related to the size of the root system. Largest percentage 

(45 - 99%) of the visible root length was linked to the PR which are larger and more 

gravitropic than LRs. Results here confirm previous results that suggest that the percentage 

of visible roots in rhizotrons varies between plant species. However, the observation here 

that root axes with bigger diameters exhibit larger percentage of their root length on the 

surface of rhizotrons seems inconsistent with previous results. It has been reported that the 

visible root length of plants with roots of relatively smaller diameters are greater than that 

of plants with bigger root axes (Nagel et al., 2012). For example, for the root systems of 
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arabidopsis (Arabidopsis thaliana), rapeseed (Brassica napus), barley (Hordeum vulgare), 

rice (Oriza sativa), brachypodium (Brachypodium pinnatum) and maize (Zea mays), 

approximately 77%, 42% 33%, 32% 24% and 17%, respectively were visible on the 

transparent surface of rhizoboxes and accessible for digitalisation (Nagel et al., 2012). It was 

suggested also that the fraction of visible roots may be related to specific root weight and 

root diameter (Nagel et al., 2012; van der Weele et al., 2000). High correlation between 

visible and harvested TRL as opposed to fraction of visible root is important in rhizobox 

systems. In this thesis, there were strong correlations (R2 = 0.80, Figure 5.2) between the 

visible and harvested TRL. These results here suggest that the use of thin rhizoboxes 

improves the visible part of the root system that can be used as a measure for growth of 

total root system.  

 
Coefficients of variation (CVs) for specific shoot and root traits measured in 144 individuals 

of 12 B. rapa lines varied between traits (Table 5.2). Examples of CVs estimated here were 

43.0 for SFW, RFW and mean LRL, 38.0 for SDW, 63.5 for RDW, 47.7 for TRL, 57.7 for TLRL, 

30.2 for PRL, 51.2 for number of LRs, 32.4 for branching density and 9.5% for LR angle (Table 

5.2). These CVs fall within the range of CVs estimated for shoot and root traits in a single B. 

rapa genotype (R-o-18) (Chapter 3) grown on seed germination papers in multiple runs. In 

Chapter 3, across eight experiments, the estimated CVs for SFW, RFW, mean LRL, SDW, 

RDW, TRL, total LRL, PRL, number of LRs, branching density and LR angle ranged between 

14.2 - 50.7, 32.4 - 64.5, 30.4 - 62.5, 12.9 - 33.4, 25.2 - 49.7, 22.8 - 66.8, 26.3 -78.7, 15.2 - 

33.5, 19.8 - 34.5, 15.1- 64.6 and 5.2 and 8.0%, respectively (Table 3.2).  
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In this Chapter, since CVs varied for difference traits, the replication required to detect 

differences in these traits between genotypes also varied. For example, to detect a 50% 

difference in TRL and in mean LRL between two genotypes would require 10 and 39 

replicates respectively (Table 5.2). The replication required largely differed between 

seedling grown on soil-filled rhizoboxes and seedlings cultured on seed germination paper. 

For example, whilst 12 and 14 replicates were estimated as adequate to detect 50% 

differences in TRL and mean LRL, respectively, when seedlings were grown on paper, 5 and 

20 replicates, respectively were estimated for seedling grown on soil-filled rhizoboxes. Given 

the experimental effect, it is conceivable that another experiment could provide other 

estimates of needed replication.  Whilst this suggests that the local environment influences 

the size of the variation and hence the needed replication, it also makes a strong case for 

preliminary analyses in all setups to determine the necessary sample size.  

 

The effect growth media on seedling traits was also seen when traits measured here on soil-

filled rhizoboxes were compared with those measured from seedlings grown on filter paper 

in Chapter 4. The type of media used in growing plants had significant effects on resultant 

shoot and RSA traits. Plant cultured on soil had greater shoot biomass but smaller root 

system and plant grown on germination paper had greater root system through increased 

lateral rooting but lower shoot biomass. The reason for the behaviour of root growth and 

shoot biomass accumulation on soil and paper is not immediately clear. It is speculated that 

since roots rarely grow through soil in complete isolation, the lack of the diversity of below-

ground interactions with bacterial and fungal populations at the soil-plant interface in the 

paper pouch system may be implicated in the differences in root growth observed. It is also 

reasonable that plants grow better in soil than on paper and qualities of the rooting medium 
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such as aeration, temperature and water potential were more favourable in the soil media. 

Root systems explore the soil in order to increase surface area in order to acquire minerals 

and water that percolate through the soil. However, with the paper pouch system, nutrients 

and water may be suboptimal spatially and temporally, so the root system had to be more 

extensive than the soil-based plants in order to acquire the needed resources. It may also be 

that impedance to root growth by soil matrix resulted in smaller root system on the 

rhizoboxes and seedlings adapted by invested more assimilate into shoot biomass. If soil 

pores are not of sufficient large diameter for the roots, root tips must exert a force to 

deform the soil. This process may considerably decrease root elongation rates, increase the 

root diameter and change the pattern of lateral root initiation. The rate of root elongation 

decreases because of both a decrease in the rate of cell division in the meristem, and a 

decrease in cell length (Bengough and Mullins, 1990). 

 

In the present study, PCA on all root traits captured 78% of RSA variation across all tested 

genotypes in five components (eigenvalues >1; Table 5.3). Results of PCA obtained here 

were similar to that of Chapter 4 (Table 4.3) when seedlings were grown on paper. Five PCs 

was identified in this study and PC1 which represented 40.0% of the variation was most 

affected by parameters essentially describing biomass, length and number of LRs and 

therefore related to size of the root system. High PC2 values also appear to correspond to 

traits describing the relationship between root and shoot biomass (R:S) or root length and 

biomass (SRL). PC3 was negatively affected by branching density and positively by inter-

branch distance and seem to explain variation in PR related traits. PCA have been applied to 

investigate root trait variation among genotypes of many crop plants including narrow-

leafed lupin (Lupinus angustifolius L., Chen et al., 2011, 2012), tall fescue (Festuca 
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arundinacea, Sun et al., 2013), rice (Oryza sativa L., Matsuo and Mochizuki, 2009) and 

arabidopsis (Arabidopsis thaliana, Ristova et al., 2013). These studies suggested that 

genotypes of crop plant with intensive (i.e.: dominating PRL) and extensive (i.e.: several 

uniform LRs culminating into bigger root system) root systems could be distinguished as well 

as those with a more or less shoot biomass.  

 

Based on results of PCA, genotypes with bigger or smaller root systems and more or less 

shoot biomass could be distinguished. This was supported by the results of cluster analyses 

where genotypes with bigger, intermediate or smaller biomass root system lengths were 

uniquely grouped. For example, bigger genotypes such as R500 (SDW =, 9.2 mg, TRL = 51.4 

cm) is in one group; genotypes with intermediate biomass and root length such as IRRI229 

(SDW = 6.2 mg, TRL =31.5 cm), IRRI360 (SDW = 6.5, TRL = 27.7) and IRRI198 (SDW = 7.1 mg, 

TRL = 28.9 cm) are also in the same group and genotypes with relatively smaller biomass 

and root system size such as IMB211 (SDW = 3.0 mg, TRL = 10.6cm), IRRI030 (SDW = 4.0mg, 

TRL =20.9 cm) and IRRI124 (SDW = 5.2 mg, TRL= 24.8 cm) are also grouped together (Figure 

5.6). The results here largely corresponded to the cluster analyses in Chapter 4 (Figure 4.3), 

giving credence to the utility of the procedure in distinguishing the genotypes.  For example, 

similar to results here, in Chapter 4, R500 and IRRI380 were each allocated to a discrete 

group; IMB211 and IRRI030; 360 and 198; and 016 and 229 were respectively clustered 

together. The differences in root system sizes observed here between groups of genotypes 

could be implicated in variation in foraging strategies and can therefore be exploited for 

improving the acquisition of resources in natural environments (White et al., 2013a).  
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A significant effect of genotype was observed for all but one trait (Table 5.2). For a number 

of traits such as SRL, R:S, mean root diameter, branching density, insertion angle, root 

surface area and volume, broad sense heritabilities were small (<0.35, Table 5.4). It indicates 

that environmental vagaries, experimental errors have a strong effect on the variability in 

these traits (Table 5.2). However, the broad sense heritability for all other traits was large, 

and showed that measurements of these traits were repeatable and less affected by the 

environment (Fita et al., 2006). It was found that traits such as PRL and RFW have high 

heritability and require less replication to detect significant differences from genotypic 

variations. Among the RSA traits, the root biomass, PRL, number of LRs and TLRL had highest 

heritability values (Table 5.4). 

 

Analyses of the evolution of root growth through time showed that there were significant 

effects of genotype on the dynamics of root growth (Figures 5.8 & 5.10; Table 5.5). Data for 

PRL and TRL indicated that all genotypes follow a similar growth pattern with time, but 

differ in their maximum length. For the TRL only, genotypes also differ in the inflection 

point, the time at which the root system attains its maximum absolute growth rate. Thus, in 

this study, the best-fit model for TRL utilised two random effects parameters (∅𝑖1, ∅𝑖2; Eqn. 

5.2) as opposed to only random effect parameter (∅𝑖;  Eqn. 4.4) for the same trait in 

Chapter 4. This indicates strong dependence of root growth to environmental conditions 

(Ruts et al., 2013). Data for LRGR also indicated that all genotypes follow a similar pattern 

with time, but differ in their maximum growth rate. Similar results have been reported by 

Yazdanbakhsh and Fisahn (2009) and Ruts et al. (2013). Root elongation rate is responsive to 

temporal changes in environmental conditions (Ruts et al., 2013) including changes in light 

(Wells et al., 2012), temperature (Walter et al., 2002), nutrient availability (Blamey et al., 
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1983), and soil water potential (Sharp et al., 1988). Thus, insights into LR growth and 

development are vital to enhancing productivity of the plant in various conditions (Malamy 

and Benfey, 1997). 

5.4 Summary 
• Low cost scanner-based rhizobox methodology can be employed to characterise root 

growth dynamics with relatively high spatial accuracy and resolution. Scanner-based 

rhizobox system can be scaled to screen larger populations or adapted to simulate 

environmental regimes that are relevant for breeding optimal RSA and root dynamic 

traits.  

• The average proportion of roots reaching the surface of the observation window was 

85.0% of the actual total root length. The visible portion of root systems could thus 

be considered representative of the actual total length of the entire root system. 

• There were different correlation coefficients for the relationship between visible 

root length and actual root length for different genotypes, suggesting that visible 

part of the root system is not a constant fraction of the total root system. Such 

relationships should therefore be checked and validated prior to analysing new 

genotypes or when soil conditions are altered in any study.  

• Coefficients of variation for the measured traits ranged between 9% and 64%.  

• It was estimated that between 4 and 48 replicates, depending upon the trait, would 

be required to detect a significant difference in means of two lines using a 2-sided, 

95% confidence interval t-test if trait means differed by 50 percent. 

• The type of media used in growing plants for phenotyping studies have significant 

effects on resultant shoot and RSA traits. Plant cultured on soil have greater shoot 
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biomass but smaller root system and plant grown on germination paper have greater 

root system through increased lateral rooting but lower shoot biomass. 

• There were strong positive correlations among biomass traits and between biomass 

and root architectural traits. Principal component analyses identified five significant 

axes of variation, accounting for approximately 78% of the variation in the genotypes 

studied. Genotypes with more or less shoot biomass or with bigger or smaller root 

system could be distinguished.  

• There was a significant effect of genotype for all but one of the static root traits 

measured. 

• Broad-sense heritability, was highest (>0.80) for traits such as root biomass, primary 

root length and number of lateral roots. 

• There were significant effects of genotype on dynamics of on root growth. All 

genotypes follow a similar growth pattern with time, but differ in their maximum 

total root length, primary root length and lateral root growth rates. The length of the 

total root system required two random-effects parameters describing maximum 

total root length and the time at which 50% of the maximum toot root length are 

reached.  
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CHAPTER 6 : ROOT SYSTEM RESPONSE OF BRASSICA RAPA SEEDLINGS TO EXTERNAL 
PHOSPHATE CONCENTRATION IN NON-SOIL AND SOIL ROOTING SUBSTRATE 

6.0  Introduction 
Phosphorus is an essential plant macronutrient, making up about 0.2% of a plant's dry 

weight (Schachtman et al., 1998) and is a component of key molecules such as nucleic acids, 

phospholipids and ATP. Phosphorus is needed in several metabolic processes including 

energy transfer, signal transduction, macro-molecular biosynthesis, photosynthesis and 

respiration (Schachtman et al., 1998; Shenoy and Kalagudi, 2005). In Chapter 1 of this thesis, 

challenges facing P-availability for crop production was reviewed. It was noted that P is 

among the least available, least mobile, mineral nutrients to plants (Shenoy and Kalagudi, 

2005). While in the short to medium term, the application of P fertilizer is a common 

solution in intensively managed agricultural systems (White et al., 2005), this leads to major 

environmental degradation.  

 

To cope with low phytoavailability of P, crop plants have evolved many adaptations 

(Hammond et al., 2009; White et al., 2009; Williamson et al., 2001). These adaptations could 

be grouped into two: (i) conservation of P use through physiological adjustments to 

prioritise internal P use. These adaptation mechanisms tend to focus on modifications in the 

plant’s above-ground canopy. (ii) Enhancement in P-acquisition. This is achieved through 

modifications in the RSA, release of roots exudates and symbiotic association with soil 

microbes (Lajtha and Harrison, 1995; Lynch, 2011; Richardson et al., 2009; Vance, 2001; 

Vance et al., 2003). Alteration in RSA is a genetically-determined adaptation that enables 

the exploitation of the soil volume for sparingly soil available inorganic phosphate (Pi) 

(George et al., 2011b; Hammond and White, 2008; Lynch, 2011; Lynch and Brown, 2001). 
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Modifications in RSA to limited P is well characterised in many plant species (White et al., 

2005), including arabidopsis, (Arabidopsis thaliana, Williamson et al., 2001), common bean 

(Phaseolus vulgaris L., Liao et al., 2001), maize, (Zea mays L., Eissenstat, 1992), wheat 

(Triticum aestivum L., Teng et al., 2013), barley (Hordeum vulgare, Brown et al., 2012), rice 

(Oryza sativa, Insalud et al., 2006), lupin (Lupinus albus L., Watt and Evans, 2003) and 

brassica (Brassica oleracea, Hammond et al., 2009).  

 

Typically, crop plants show a reduction in the development of the PR under low Pi 

availability (Fang et al., 2009; Sanchez-Calderon et al., 2005; Shi et al., 2013; Williamson et 

al., 2001). In some plants topsoil foraging is typical (Lynch and Brown, 2001), whereas 

increase in length and density of root axes and/or roots hairs are observed in some other 

plants under low P supply (Brown, 2011; Brown et al., 2012; Brown et al., 2013; Ma et al., 

2001). Additionally, biochemical adaptations, including the release of organic anions 

solubilizing soil P (Shane and Lambers, 2005) and enzymes to release Pi from organic 

compounds are also observed (Richardson et al., 2011) in P-starved environments. In 

Brassica crops, adaptation to P limiting conditions is achieved through rapid LR growth rate 

and development (Hammond et al., 2009; Lynch and Brown, 2008; White et al., 2005). 

Brassicas also develop many fine roots with many root hairs and has the tendency to 

increases the length and density of root hairs, under conditions of P deficiency. Moreover, in 

P-deficient soil, Brassicas have the ability to acidify soils near root tips and root hairs to 

enhance dissolution of P in soil, and thus increase P uptake by their roots (Bolland and 

Brennan, 2008).  
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Compared to cereals such as wheat, Brassica crops, including Brassica napus (rapeseed) and 

Brassica rapa (Chinese cabbage, pak choi and turnip) commonly referred to as canola, 

require less applied P to produce near-maximum yields because their roots are better able 

to obtain P from the soil (Bolland, 1997). Even so, these crops show yield response to P 

fertilizer and without an adequate P supply, yields are normally reduced (Shi et al., 2013). 

Brassica crops need approximately 26.0 to 30.0 kg of P fertilizer (P2O5) per tonne of yield 

and are capable of removing about 18.0 to 20.0 kg of P from the soil for each tonne of seed 

yield. These crops tend to take up more P than many farmers apply and the amounts that 

are normally taken up by its roots from the soil exceed the amount that can be safely seed-

placed (http://www.canolacouncil.org/).  

 

Brassica rapa provides a suitable model crop for studies because it is closely related to 

Arabidopsis (Suwabe et al., 2006) and also corresponds to the A genome of the widely 

cultivated oilseed rape (B. napus) (Suwabe et al., 2008). There are also genomic resources 

available for the crop including mapping populations and diversity foundation sets (Iniguez-

Luy et al., 2009; White et al., 2010). Also, as an important vegetable and oil crop globally 

(Wang et al., 2011), selecting for and developing Brassica lines conferred with traits for 

efficient acquisition of P is critical. Thus, the study on the mechanisms of P uptake has 

important significance to the genetic improvement of P nutrition and judicious fertilization 

as well as reduction in nutrient loss and environmental pollution in production of B. rapa 

and other crop plants (Aziz et al., 2006).  

 

In this study, we used the parents and selected RILs from the BraIRRI mapping population 

(Iniguez-Luy et al., 2009) to quantify RSA traits using seed germination paper and soil-filled 
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rhizoboxes root phenotyping system. The first aim of this Chapter was to use the developed 

scanner-based imaging methodology to characterise the root growth response to various 

changes in Pi availability and to determine if there is genetic variation existing in B. rapa for 

root system plasticity in response to external P availability. The second aim was to carry out 

the same study in soil and to assess the genotypic variations in the response of seedlings of 

B. rapa inbred lines.  

6.1 Materials and methods  
Two separate experiments were conducted. Experiment 1 examined the effects of external 

P nutrition on the parental genotypes of the BraIRRI mapping using seed germination papers 

as the rooting medium. In Experiment 2, the effect of external P nutrition on RSA was 

examined on the parents and in addition on selected inbred lines of the BraIRRRI mapping, 

using roots grown in thin rhizoboxes filled with sieved soil. 

6.1.1 Experiment 1 
First, shoot and root P concentration of B. rapa seedlings grown previously at 250 μM were 

assayed. The results were compared to the critical shoot P concentration for B. napus in 

literature as reported by Major and Barraclough (2002). Subsequently, root responses of 

parental genotypes to external Pi concentrations ([P]ext) were assessed at appropriate [P]ext 

levels0, 10, 30, 50 100, 150, 300 and 600 µM with applicable amounts of potassium chloride 

(KCl) added to balance K in solutions with no or low potassium dihydrogen phosphate 

(KH2PO4). Six replicates each of IMB211 and R500 were grown at these different [P]ext. 

 
Time-lapsed imaging of roots was performed on four [P]ext treatments (0, 10, 30 and 600 

μM) and the remaining [P]ext treatments had no scanners. In treatments with no scanners, 

germination papers were held on plastic plates and put in the nutrient solution in the same 
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positions as those with scanners. Two seedlings were fixed on each germination paper by 

sandwiching them between a black filter paper and the germination paper (Figure 6.1). For 

the plants not growing on a scanner, root systems were imaged with Canon F500 flatbed 

scanners at the end of each experiment. In the final stage, plants were harvested to 

determine: (i) fresh and dry biomass of plant samples, and (ii) P concentration in root and 

shoot tissue as described in Chapter 2. 

 

Eight independent runs were performed in Experiment 1. First, two short runs were carried 

out for 10 DAS to determine if growth responses can be triggered at an early developmental 

stage. In the subsequent four runs, plants were grown for 14 DAS (baseline duration of 

experiments in this thesis). In the last two runs, plant growth was conducted for 18 DAS to 

assess whether P response is triggered at a later developmental stage.  

 

 

 

 

 

 

 

 

 

Figure 6.1: Set for Experiment 1 showing treatments with and without scanners 

Treatments without scanners  

185 
 



6.1.2 Experiment 2 
Six B. rapa genotypes exhibiting variation in root system length and other RSA traits 

including specific root length which also depends on variation in root diameter were 

selected. The selection was based on results from an experiment (Chapter 5) not reported 

here where ten RILs had been grown and phenotyped on soil-filled rhizoboxes at uniform 

[P]ext for 14 DAS. The genotypes selected were the parents (cv. R500, IMB211) and four RILs 

namely IRRI016, IRRI124, IRRI201 and IRRI229 and these had bigger, intermediate or smaller 

root systems. Plants were either grown at un-amended soil (low [P]ext) or on soil amended 

with a solution containing 600 μM of inorganic phosphate (KH2PO4, VWR International) (high 

[P]ext) and watered once to 80% field capacity on gravimetric water content basis at the 

onset of each run. Soil utilised was sandy loam soil collected from the 0 - 10 cm top layer of 

a Cambisol (FAO, 1998) near the James Hutton Institute (JHI) Dundee, Scotland (NO 456 

265) as described in Section 2.1.6.2 and by Brown et al. (2013). General soil characteristics 

(Table 2.2) were measured using standard methodology (Page et al., 1982). This soil 

contained total digestible P of 1475.0 mg P kg-1 of which 40.8% was in organic moieties. 

Despite having a relatively high Olsen P of 84.5 mg P kg-1 (probably due to presence of 

recently added pig manure), barley grown in this soil was responsive to the addition of P 

(Brown et al., 2013; George et al., 2011a). For each line and each [P]ext treatment, 6 

replicates of seedlings were sown across 2 independent runs. In both runs, seedlings were 

grown for 21 DAS and 12 hourly images of all root systems were captured using flatbed 

scanners abutting soil-filled rhizoboxes. Fresh and dry biomass of plant samples as well as P 

concentration in root and shoot tissue samples were determined. 
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6.1.3 Data analysis 
For each experiment, data from all runs were pooled together for analyses with 

experimental runs considered as blocks within experiments. Prior to analysis, biomass data 

and length of the total root system were log-transformed to linearise the data but frequency 

distribution indicated that the remaining traits did not require transformation (data not 

shown). The following mixed effect model was used to analyse the data:  

𝑌𝑖𝑗𝑘 = 𝜇 +  𝑔𝑖 +  𝛽𝑗 +  𝛼𝑘 +  𝑔𝛽𝑖𝑗 + 𝛽𝛼𝑖𝑘 +  𝑔𝛼𝑗𝑘 +  𝑔𝛽𝛼𝑖𝑗𝑘 +  𝜀𝑖𝑗𝑘              (𝟔. 𝟏) 

𝑔𝑖 ~ 𝑁�0, 𝜎𝑔2�, 𝛽𝑗~ 𝑁�0, 𝜎𝛽2�, 𝛼𝑘~ 𝑁(0, 𝜎𝛼2),  𝜀𝑖𝑗𝑘, ~ 𝑁(0, 𝜎2 ) 

where Yijk is the trait value of the ith genotype (i = 1 , 2) within the jth run (j = 1,2 …,8) and 

within the kth [P]ext treatment (k = 1,2 …, 8); μ the overall mean, g the effect of the genotype, 

𝛽 the effect of the run, 𝛼 the effect of [P]ext treatment, g𝛽 the genotype by run interaction, 

𝛽𝛼 run by [P]ext treatment interaction, 𝑔𝛼 the genotype by [P]ext treatment interaction, 𝑔𝛽𝛼 

the genotype by run by [P]ext treatment interaction and 𝜀𝑖𝑗𝑘 is the residual error. 

Subsequently, the mean trait value for genotypes was determined using the [Run × ([P]ext × 

Genotype)] as random factors. Broad sense heritability was subsequently calculated and for 

each trait and treatment heritability was calculated as the variance component attributed to 

genotype in the model, divided by the total variance. Data for Experiment 1 was analysed 

using a REML (residual maximum likelihood) procedures to allocate sources of variation 

(Robinson, 1987), using GenStat 14 (VSN International Oxford, UK - www.vsni.co.uk).  

 

Initial analyses suggested that Equation 6.1 was not optimal for data in Experiment 2. A 

simplified version of equation 6.1 which was without g𝛽, the genotype by run interaction; 

𝛽𝛼, run by [P]ext treatment interaction; 𝑔𝛽𝛼, the genotype by run by [P]ext was thus applied.  

𝑌𝑖𝑗𝑘 = 𝜇 +  𝑔𝑖 +  𝛽𝑗 + 𝛼𝑘 +  𝑔𝛼𝑗𝑘 +  𝜀𝑖𝑗𝑘                 (𝟔. 𝟐) 
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𝑔𝑖 ~ 𝑁�0, 𝜎𝑔2�, 𝛽𝑗~ 𝑁�0, 𝜎𝛽2�, 𝛼𝑘~ 𝑁(0, 𝜎𝛼2),  𝜀𝑖𝑗𝑘, ~ 𝑁(0, 𝜎2 ) 

 

Definitions of parameters remained the same as in equation 6.1 but here the number of 

genotypes is 6 (i = 1, 2…,6) the number of run is 2 (j = 1,2) and the number of [P]ext 

treatments is 2 (k = 1,2). Due to mortality of some seedlings, an unbalanced analysis of 

variance was performed on the data and in GenStat 14. 

 

For brevity, analyses of root growth dynamics here were based only on TRL of seedlings 

grown for 18 and 21 DAS in Experiment 1 and Experiment 2, respectively. This is because 

initial examination of the data suggested that there was no effect of external P 

concentration on other dynamic root traits and also effect on TRL seem to be manifested in 

the later stages of the plants growth. Initial examination of the data also suggested that TRL 

over the 18 DAS (Experiment 1) or 21 DAS (Experiment 2) period followed a logistic growth 

curve and only the asymptotic TRL (∅𝑖1) seem to be dependent on [P]ext. In the model used 

here, DAS and [P]ext were treated as covariates. The asymptote of TRL which is affected by 

[P]ext is composed of an overall mean (𝛽1) and a random effect (𝑏𝑖1) which varied among 

genotypes within each [P]ext. Equation 4.4 was used here but with a modification in the 

formulation of ∅𝑖1:   

𝑦𝑖𝑗 =  
∅𝑖1

1 + exp [−�𝐷𝐴𝑆𝑗 − ∅𝑖2 �/ ∅𝑖3]
 +  𝜖𝑖𝑗,         (𝟔. 𝟑) 

 

∅𝑖 =  �
∅𝑖1
∅𝑖2 
∅𝑖3

� = �
𝛽1
𝛽2
𝛽3
� + �

𝑏𝑖1
0
0
�, 

∅𝑖1 =  𝛽1 + 𝛾1𝑥𝑖1 +  𝛾2𝑥𝑖2 +  𝛾3𝑥𝑖1𝑥𝑖2 +  𝑏𝑖1, 
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𝑖 = {1, … , 𝑠}, 𝑗 = {1, … , 𝑡}, 

𝑏𝑖1 ~ 𝑁 (0, 𝜎𝑏2), 𝜖𝑖𝑗 ~ 𝑁 (0, 𝜎2). 

Definitions of all parameters remain unchanged from equation 4.4 but here, 𝛾1and 𝛾2 

represent the main effects of Genotype and [P]ext, respectively and 𝛾3is the Genotype x [P]ext 

interaction; 𝑥𝑖1 = [(i = 1, 2 for Experiment 1 and 1, 2…,6 for Experiment 2); 𝑥𝑖2 = external P 

treatment (i = 1,2…,4 for Experiment 1 and i = 1,2 for Experiment 2)] and t is the number of 

time-points at which measurements were made (18 for Experiment 1 and 21 for Experiment 

2). Autocorrelation was modelled with corARMA and AR1 correlation structure and a power 

variance function (eqn. 4.5) was used to account for heteroscedasticity. 

6.2 Results  
During the preliminary analyses, we considered [P]ext in the range of 250-300 μM as 

adequate external P suitable for maximum shoots dry weight. This was based on critical 

shoot Pi of 0.67% P calculated for 95% maximum SDW in the literature (Major and 

Barraclough, 2002). Also in the preliminary analysis, we estimated 0.59% and 0.87% P, 

respectively in the shoots of R500 and IMB211 (Figure 6.2) to determine the baseline tissue 

P concentration under adequate P supply. However, after initial trials, 600 µM was 

considered here as the replete [P]ext. 
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Figure 6.2: Tissue P concentrations of two genotypes of Brassica rapa grown at 250 µM external P 
concentration for 14 days. 

6.2.1 Experiment 1: Plant response to [P]ext supply on Germination 
papers 

6.2.1.1 Effect of genotype, run, external Pi concentration and 
their interactions  

Genotype effect accounted for the largest portion of total variance in most of the traits 

assayed including SFW (60%), RFW (58%), number of LRs (63%), PRL (68%), TRL (59%) and 

TLRL (49%) (Table 6.1). Genotype effect however recorded little or no effect in a few traits 

such as SDW, inter-branch distance, branching density, diameter of LRs, R:S and LAUZ (Table 

6.1). Although Run accounted for some of the variability observed in the data, the amount 

of variability seemed small for some traits ranging from 0 - 24% except for SDW for which 

variability attributable to Run was inexplicably large (60%) (Table 6.1). Except for inter-

branch distance (53%), for most traits assayed, little variation was attributed directly to the 

[P]ext. However, the effect of [P]ext was significant for traits including R:S (5%), SDW (8%), PR 

diameter (17%), SRL (16%),  and angle (14%). The effects of interactions between genotype x 

run, genotype x [P]ext and run x [P]ext accounted for variation ranging from 0 to 16% but the 

variation attributed to effect of the interactions of genotype x run x [P]ext was relatively 
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larger ranging from 0 to 41% (Table 6.1). Broad-sense heritability (𝜎𝑔2 / 𝜎𝑝2), was highest for 

number of LRs (0.68),PRL (0.68), SFW (0.60), TRL (0.59) and RFW (0.58). Broad-sense 

heritability was intermediate for total and mean length of LRs, LAUZ (≥0.40) but low (<0.40) 

for remaining traits (Table 6.1). 

Table 6.1: Sources of variation and broad sense heritability in shoot and root traits assayed among the parents 
(IMB211 and R500) of the Brassica rapa BraIRRI mapping population grown on seed germination paper at 
differential external P concentration for up to 18 days in the phenotyping platform. (Percentage contribution of 
sources of variation is indicated in brackets underneath variance of effects. 

 
 
 
Trait 

Trait means and variance effects 
(Percentage contribution of source of variation) 

 
 
 

H2 𝝁 
𝝈𝜷𝟐  
(%) 

𝝈𝜶𝟐  
(%) 

𝝈𝒈𝟐  
(%) 

𝝈𝜷𝜶𝟐  
(%) 

𝝈𝜷𝒈𝟐  
(%) 

𝝈𝜶𝒈𝟐  
(%) 

𝝈𝜷𝜶𝒈𝟐  
(%) 

𝝈𝜺𝟐 
(%) 

Int. Dist. 
(cm) 

 
0.665 

0.0137 
(1.36) 

0.5345 
(53.23) 

0 
(0.00) 

0.0124 
(1.23) 

0 
(0.00) 

0.0242 
(2.41) 

0.0104 
(1.04) 

0.409 
(40.73) 0.00 

Mean LRL 
(cm) 1.434 

0.0991 
(19.09) 

0.0111 
(2.14) 

0.2101 
(40.47) 

0.0068 
(1.31) 

0.0287 
(5.53) 

0.0146 
(2.81) 

0.125 
(24.08) 

0.0237 
(4.57) 0.40 

No. of LRs 21.48 
8.02 

(2.03) 
1.19 

(0.30) 
267.64 
(67.62) 

3.28 
(0.83) 

30.24 
(7.64) 

1.35 
(0.34) 

31.57 
(7.98) 

52.53 
(13.27) 0.68 

LR Diam 
(mm) 0.3161 

0.000799 
(13.57) 

0.000047 
(0.80) 

0 
(0.00) 

0.000412 
(7.00) 

0 
(0.00) 

0.000954 
(16.21) 

0.002404 
(40.84) 

0.00127 
(21.58) 0.00 

B Dens. 
(root/cm) 2.586 

0.069 
(2.98) 

0.053 
(2.29) 

0 
(0.00) 

0 
(0.00) 

0 
(0.00) 

0.019 
(0.82) 

0.233 
(10.06) 

1.943 
(83.86) 0.00 

PR Diam. 
(mm) 0.4354 

0.002738 
(24.15) 

0.001974 
(17.41) 

0.00115 
(10.15) 

0.000958 
(8.45) 

0.000022 
(0.19) 

0.000187 
(1.65) 

0.001239 
(10.93) 

0.00307 
(27.07) 0.10 

PR length 
(cm) 13.53 

1.48 
(1.95) 

0.66 
(0.87) 

51.67 
(67.93) 

2.22 
(2.92) 

0.59 
(0.78) 

0.11 
(0.14) 

3.1 
(4.08) 

16.23 
(21.34) 0.68 

RDW 
(mg) 0.969 

0.0806 
(7.65) 

0.0075 
(0.71) 

0.3801 
(36.10) 

0.0334 
(3.17) 

0.0936 
(8.89) 

0.0643 
(6.11) 

0.1725 
(16.38) 

0.221 
(20.99) 0.36 

RFW 
(mg) 12.51 

8.38 
(4.24) 

0.5 
(0.25) 

114.01 
(57.62) 

2.03 
(1.03) 

16.29 
(8.23) 

5.91 
(2.99) 

17.99 
(9.09) 

32.75 
(16.55) 0.58 

R:S 0.2036 
0.001527 

(8.45) 
0.000911 

(5.04) 
0 

(0.00) 
0.000545 

(3.01) 
0.000196 

(1.08) 
0.001532 

(8.47) 
0.003398 
(18.80) 

0.00997 
(55.15) 0.00 

SDW 
(mg) 5.56 

0.7 
(60.33) 

2.019 
(8.10) 

10.844 
(0.56) 

5.655 
(0.04) 

0.991 
(2.16) 

0 
(11.23) 

2.206 
(8.33) 

4.522 
(9.24) 0.01 

SFW 
(mg) 71.3 

53 
(1.05) 

0 
(0.00) 

3014 
(59.74) 

73 
(1.45) 

260 
(5.15) 

112 
(2.22) 

237 
(4.70) 

1296 
(25.69) 0.60 

SRL 
(mg cm-1) 62.5 

11 
(0.40) 

429 
(15.47) 

173 
(6.24) 

131 
(4.72) 

0 
(0.00) 

339 
(12.23) 

292 
(10.53) 

1398 
(50.41) 0.06 

TRL 
(cm) 49.1 

158.2 
(5.95) 

0 
(0.00) 

1558.3 
(58.58) 

37.5 
(1.41) 

208 
(7.82) 

64.2 
(2.41) 

280.3 
(10.54) 

353.7 
(13.30) 0.59 

TLRL 
(cm) 35.6 

130.2 
(6.34) 

0 
(0.00) 

1011.7 
(49.25) 

34.3 
(1.67) 

220.9 
(10.75) 

57.4 
(2.79) 

264.1 
(12.86) 

335.5 
(16.33) 0.49 

Angle 
(°) 71.57 

4.52 
(18.12) 

3.4 
(13.63) 

1.03 
(4.13) 

3.31 
(13.27) 

0 
(0.00) 

2.27 
(9.10) 

7.36 
(29.51) 

3.05 
(12.23) 

 
0.04 

LAUZ 
(cm) 6.74 

2.4 
(0.46) 

3.9 
(0.74) 

0 
(0.00) 

0 
(0.00) 

0 
(0.00) 

19.1 
(3.64) 

0 
(0.00) 

499.3 
(95.16) 0.00 
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Figure 6.3: Images captured at 18 DAS for IMB211 (a-d) and R500 plants (e-h) grown on seed germination 
papers at 0, 10, 30 & 600 µM [P]ext respectively. Root systems g and h had overgrown the scanning window of 
the flatbed scanners by 14th d. 

 
There was statistically significant differences (p<0.05) between IMB211 and R500 in all root 

architectural traits except for inter-branch distance, LAUZ, LR diameter, branching density 

and R:S. Importantly, significant interactions were observed between genotype (g) and [P]ext 

(Table 6.2, Figure 6.3), albeit the proportion of variation in most of these traits attributable 

to the interactions between genotype (g) and [P]ext were extremely low (Table 6.1). The 

effect of run was significant for all traits assayed except for the LAUZ. The effect of [P]ext was 

a b c d 

e f g h 

192 
 



significant for most traits including SDW, RDW, mean LRL, PRL and TRL, SRL and R:S (p<0.01; 

Table 6.2), as well as the number of LRs (p <0.05; Table 6.2). The effect of [P]ext was however 

relatively marginal for some traits including inter-branch distance and LAUZ (Table 6.2).  

Table 6.2: ANOVA of traits measured on plants grown on seed germination papers as affected by experimental 
run, genotype (g), phosphorus treatment ([P]ext) and g x [P]ext. 

Trait 
Mean 

(IMB211) 
Mean 
(R500) 

s.e.d. 
(Genotype) 

Run 
(df = 6) 

Genotype 
(df = 1) 

[P]ext. 
(df = 7) 

Genotype x 
[P]ext. (df = 7) 

IntBranch 0.662 0.668 0.0503 0.897 0.011 0.002 < 0.001 
Mean LRL 1.103 1.766 0.0556 < 0.001 < 0.001 0.001 < 0.001 
No. of LR 9.79 33.16 0.752 < 0.001 < 0.001 0.004 < 0.001 
LR Diam. 0.3154 0.3167 0.00442 0.775 < 0.001 < 0.001 < 0.001 
B. Dens. 2.537 2.634 0.1121 0.384 < 0.001 0.057 < 0.001 
PR Diam. 0.4105 0.4603 0.00538 < 0.001 < 0.001 < 0.001 < 0.001 
PR length 8.44 18.62 0.352 < 0.001 < 0.001 0.066 < 0.001 
RDW 0.518 1.419 0.0507 < 0.001 < 0.001 < 0.001 < 0.001 
 RFW 4.84 20.17 0.581 < 0.001 < 0.001 < 0.001 < 0.001 
R:S 0.2121 0.1951 0.0089 0.058 < 0.001 < 0.001 < 0.001 
SDW 3.21 7.91 0.258 < 0.001 < 0.001 0.021 < 0.001 
SFW 32.1 110.5 3.15 < 0.001 < 0.001 < 0.001 < 0.001 
SRL 51.9 73.2 3.22 < 0.001 < 0.001 < 0.001 0.005 
TRL 20.8 77.4 2.05 < 0.001 < 0.001 < 0.001 < 0.001 
TLRL 12.6 58.6 2.01 < 0.001 < 0.001 < 0.001 < 0.001 
Angle 72.45 70.69 0.696 0.012 < 0.001 0.012 < 0.001 
LAUZ 7.5 5.97 1.698 0.367 0.003 0.009 0.448 

 

Estimated values for root traits either increased, decreased or showed no trend with 

increasing [P]ext. At all [P]ext regimes, SDW of R500 was greater than that of IMB211 

seedlings but increase in [P]ext resulted in steady increase in SDW for both genotypes. The 

percentage increase at 600 µM from 0 µM was 182 and 134% for IMB211 and R500, 

respectively (Figure 6.4a). Root biomass at 600 µM increased by 25% than at 0 µM [P]ext for 

the IMB211 genotype and by 28% at 600 µM than at 0 µM [P]ext for R500 (Figure 6.4b).  

 

Total root length of IMB211 seedlings increased from 17.7 cm at 0 µM [P]ext to 19 cm at 600 

µM [P]ext and from 63.44 cm at 0 µM [P]ext to 103.59 at 600 µM [P]ext for R500, (Figure 6. 4c). 

At all [P]ext regimes, the PRL of R500 was greater than the PRL of IMB211 seedlings and PRL 

193 
 



increased from 7.06 cm at 0 µM [P]ext to 9.27 cm at 600 µM [P]ext for IMB211 and from 16.18 

cm at 0 µM [P]ext to 19.35 cm at 600 µM [P]ext for R500 (Figure 6.4d). The number of LRs 

increased from 32 at 0 µM [P]ext to 38 at 600 µM [P]ext for R500 but decreased from 8 at 

0µM [P]ext to 5 at 600 µM [P]ext for IMB211 (Figure 6.4e). R500 recorded 47.89% increase in 

mean LRL at 600 µM than at 0 µM [P]ext but that IMB211 decreased at 600 µM [P]ext (Figure 

6.4i). The effects of [P]ext on mean diameter of LRs seemed to be inconsistent for the two 

genotypes. IMB211 generally showed an increase in diameter with increasing [P]ext, 

recording 31.4% increase at 600µM [P]ext relative to mean diameter of LRs at 0 µM [P]ext. 

The R500 genotype however showed a decrease of 17% at 600 µM [P]ext compared to mean 

diameter of LRs at 0 µM [P]ext (Figure 6.4f). The LAUZ increased significantly in response to 

increase in [P]ext (Figure 6.3). For both genotypes, LAUZ was over 120% more at 600 µM 

[P]ext than at 0 µM [P]ext (Figure 6. 4h).  

 

Overall, there was no consistent trend in LR insertion angle, but that of IMB211, decreased 

from 75.55 ° at 0 µM [P]ext to 66.96 ° at 600 µM [P]ext, but not so much for R500 (Figure 

6.4g). There was generally a decline in R:S. Root-to-shoot ratio decreased by 53.6% and 

35.0% for IMB211 and R500, respectively as [P]ext was increased to 600 µM from 0 µM 

(Figure 6.4j). Oddly, there were very high SRL for both genotypes at 100 µM [P]ext but SRL at 

600 µM [P]ext for IMB211 and R500 decreased by 15.2% and 11.8%, respectively from 600 

µM to 0 µM [P]ext (not shown). There was no consistent trend in branching density for either 

genotype (not shown).   
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Figure 6.4: Effect of external Pi concentrations on shoot dry weight (a), root dry weight (b), total root length (c), 
primary root length (d), number of lateral roots (e), mean lateral root diameter (f), mean lateral root insertion 
angle (g), length of the apical un-branched zone of the primary root (h), mean lateral root length (i), and root-
to-shoot ratio (j) in Brassica rapa genotypes, IMB211 and R500, grown on seed germination papers up to 18 
days after sowing at different external Pi concentrations. Symbols represent means ± standard error of the 
mean (n = 12). 
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6.2.1.2 Temporal responses of root system to external P 
concentration  

Visually, there seemed to be no effect of [P]ext at the early stages, but at end of the 

experiment (Figure 6.5). Longer time-lapse analysis of TRL also seem to suggest that plants 

grown on [P]ext higher than 10 μM had higher TRL than when [P]ext was 10 µM or lower 

(Figure 6.5). Due to roots of seedlings outgrowing scanning panes (Figure 6.3), time lapse 

analyses beyond 14 DAS may be underestimated for the R500 genotype. However, ANOVA 

of the fitted model indicated that external P did not have significant effect on the 

asymptotes of TRL (Table 6.3). The overall mean (intercept, β1) asymptotes of TRL 

significantly varied between genotypes and ranged between 53 and 62 cm for IMB211 and 

44 and 66 cm for R500 (data not shown). The inflection point (∅2) and scale parameter of 

the logistic growth function (∅3) were constant across all genotypes and [P]ext. The TRL 

reached the inflection point about 11 d after transfer to scanners and 4 d later (i.e.: 15 d 

after transfer to the scanners), TRL was about 75% of the asymptote (data not shown). The 

slope term describing rate of increase in the asymptote of the TRL with [P]ext was 0.03 (data 

not shown). The overall fit of the model was satisfactory based on the normal Q-Q and 

residual plots (Appendix 7).  
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Figure 6.5: The effect of [P]ext on RSA growth dynamics in IMB211 and R500 seedlings grown on [P]ext of 0, 10, 
30 and 600 µM for 18 days after sowing in seed germination papers. (Labels in the graph show name of 
genotype/[P]ext) 

 
Table 6.3: ANOVA table for the fitted nonlinear mixed-effects model for Brassica rapa seedlings grown for 18 
DAS on seed germination papers (Experiment 1) and 21 DAS on soil-filled rhizoboxes (Experiment 2). (numDF: 
numerator degrees of freedom, denDF: denominator degrees of freedom. 

Experiment 1 
 Source of variation  numDF denDF   F-value    p-value 
Asymptote-Intercept (∅𝑖1) 1 60 132.99701 <0.0001 
Asymptote-[P]ext (Slope) 1 60 2.94363 0.0914 
Asymptote-Genotype 1 60 1.97032 <0.0001 
Asymptote- [P]ext x Genotype 1 60 0.62130 0.4337 
Inflection point(∅𝑖2 )  1 60 87.88918  <0.0001 
Scale parameter (∅𝑖3) 1 60 102.28809  <0.0001 

Experiment 2 
Asymptote-Intercept (∅𝑖1) 1 261  137.525 <0.0001 
Asymptote-[P]ext (Slope) 1 261  0.352 0.5537 
Asymptote-Genotype 5 261   6.557 <0.0001 
Asymptote- [P]ext x Genotype 5 261  0.382  0.8611 
Inflection point(∅𝑖2 )  1 261  184.569 <0.0001 
Scale parameter (∅𝑖3) 1 261  4281.286 < 0.0001 
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6.2.1.3 Tissue P-concentration and P-uptake in Experiment 1 
Seed P concentration was assayed for the two parental genotypes to determine the amount 

of P available to the seedlings at the initial stages of growth. The seed P concentration was 

approximately 11.5 and 14.5 mg g-1 in the seeds of R500 and IMB211 respectively, (Figure 

6.6).   

 
Figure 6.6: Seed P concentration of the parents of the BraIRRi mapping population. 

 

Plants grown for longer period in Experiment 1 (18 DAS) were used for tissue P analyses. 

Figure 6.7 show P-concentration (% dry weight) and P-uptake (µg plant-1). P-uptake was 

estimated as the product of P concentration (µg P mg-1) and dry matter (mg) in shoots and 

roots. Genotypes (p<0.001), [P]ext (p<0.05) and interactive effect of genotype and external P 

concentration (p<0.001), had significant effect on Shoot [P] but there was no consistent 

trend for the R500 genotype (Figure 6.7). For IMB211, Shoot [P] increased across the various 

[P]ext and there was 1.9% DW at 600 µM [P]ext which was over 100% greater than the 0.95 % 

P recorded at 0 µM [P]ext for that genotype (Figure 6.7). The mean shoot [P] over the 

different [P]ext for IMB211 and R500 was 1.4% DW and 1.0 %DW, respectively.  

 

Genotype (p<0.001) and [P]ext (p<0.05) had significant effect on shoot P uptake but the 

interactive effect of genotype and [P]ext was statistically not significant. Shoot P uptake of 
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both genotypes increased with increasing [P]ext concentration. At all [P]ext regimes, uptake 

for R500 was greater than uptake for IMB211 (Figure 6.7). On average shoot P uptake of 

R500 was 64.7% greater than IMB211.  

 

Figure 6.7: Tissue P-concentration and uptake by Brassica rapa genotypes, IMB211 and R500 grown for 18 DAS 
on seed germination papers at differential external P concentrations. (a) Shoot [P] (above) and Root [P] (below) 
and (b) P-uptake in shoots (above) and roots (below). Error bars show: ± standard error of the mean, n = 6. 

  

The effect of external P concentration was only marginally significant at p<0.05, (p= 0.036) 

on Root [P], but there was no noticeable trend. It appeared that seedlings which were not 

grown on scanners recorded greater Root [P] (Figure 6.7). Neither genotype nor the 

interactive effect of genotype x [P]ext had a significant effect on Root [P]. Genotype 

(p<0.001) and [P]ext (p<0.05) however had significant effect for P uptake in roots. Uptake in 

the roots of R500 was greater and increased with increasing [P]ext but same trend was not 

evident in P uptake in the roots of IMB211 (Figure 6.7).  
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6.2.2 Experiment 2: Plant response to [P]ext supply in soil-filled 
rhizoboxes 

6.2.2.1  Effect of genotype, run, external Pi concentration and 
their interactions 

Genotype effect accounted for the largest portion of total variance in most of the traits 

assayed including SDW (78%), RDW (64%), number of LRs (76%), PRL (59%) and TRL (56 %) 

(Table 6.4). Genotype effect however recorded little or no effect in a few traits such as 

average diameter, angle, inter-branch distance, branching density, and R:S. Run accounted 

for little variability (0 - 23%) for majority of traits but same unusually accounted for large 

variability in 3 traits namely average diameter (36%), angle (99% ) and branching density 

(63%), (Table 6.4). For most traits assayed, little variation was attributed directly to the [P]ext 

and included 5% for SDW, 19% for average diameter, 10% for LAUZ, 23% for branching 

density, 30% for R:S, 18% for root area to volume ratio and 19% for root tissue density 

(RTD). The effects of interactions between genotype x [P]ext accounted for variation ranging 

from 0 to 11% (Table 6.4). Broad-sense heritability (σg2 / σp2), was highest for shoot biomass, 

number of LRs (> 0.75), RDW, surface area and TLRL (>0.60). Broad-sense heritability was 

intermediate for TRL, PRL and mean LRL (> 0.40), but low (<0.40) for remaining traits (Table 

6.4). 
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Table 6.4: Sources of variation and broad sense heritability in shoot and root traits assayed among the parents 
(IMB211 and R500) and four RILs of the Brassica rapa BraIRRI mapping population grown on soil filled 
rhizoboxes at differential external P concentration for up to 21 days in the phenotyping platform. (Percentage 
contribution of sources of variation is indicated in brackets underneath variance of effects). 

Trait 
 
μ  

𝝈𝜷𝟐  
(%) 

𝝈𝜶𝟐  
(%) 

𝝈𝒈𝟐  
(%) 

𝝈𝜷𝜶𝟐  
(%) Residual 

 
H2 

SFW (mg) 209.0 
5 

(0.03) 
14147 
(89.13) 

83 
(0.52) 

20 
(0.13) 

1618 
(10.19) 0.89 

SDW (mg) 11.93 0.383 (0.89) 
33.811 
(78.47) 

1.995 
(4.63) 

0 
(0.00) 

6.9 
(16.01) 0.78 

RFW (mg) 25.5 
0.0132 
(2.72) 

0.251 
(51.80) 

0.0074 
(1.53) 

0 
(0.00) 

0.213 
(43.95) 0.52 

RDW (mg) 1.43 
0.0389 
(4.53) 

0.5484 
(63.86) 

0.0305 
(3.55) 

0.012 
(1.40) 

0.229 
(26.67) 0.64 

TRL (cm) 61.21 
261 

(20.17) 
722.2 

(55.80*) 
10.9 
(0.84) 

0 
(0.00) 

300.2 
(23.19) 0.56 

TLRL (cm) 55.71 
163.7 
(12.78) 

801.1 
(62.56) 

24.6 
(1.92) 

0 
(0.00) 

291.1 
(22.73) 0.63 

PRL (cm) 21.42 
0.03 

(0.07) 
23.61 

(58.61) 
0.33 

(0.82) 
0 

(0.00) 
16.31 

(40.49) 0.59 
Av Diam. 
(mm) 0.387 

0.001034 
(36.46) 

0.000021 
(0.74) 

0.00054 
(18.94) 

0.000114 
(4.02) 

0.00113 
(39.84) 0.01 

No. of LRs 21.47 
0 

(0.00) 
1.0654 

(76.02) 
0 

(0.00) 
0 

(0.00) 
0.336 

(23.98) 0.76 

Angle (o) 69.17 
2.733457 
(99.67) 

0.000167 
(0.01) 

0 
(0.00) 

0.000464 
(0.02) 

0.00831 
(0.30) 0.00 

Int. Dist. (cm) 0.95 
0 

(0.00) 
0.0098 
(6.18) 

0 
(0.00) 

0.0068 
(4.29) 

0.142 
(89.53) 0.06 

Mean LRL 
(cm) 1.12 

0 
(0.00) 

0.1196 
(45.60) 

0.0007 
(0.27) 

0 
(0.00) 

0.142 
(54.14) 0.46 

LAUZ (cm) 5.64 
0.077 
(0.53) 

4.341 
(29.87) 

1.38 
(9.50) 

0 
(0.00) 

8.734 
(60.10) 0.30 

B. Dens. 
(root/cm) 1.45 

0.20569 
(62.55) 

0.00008 
(0.02) 

0.07409 
(22.53) 

0 
(0.00) 

0.049 
(14.90) 0.00 

R:S 0.1223 
0.000007 

(0.23) 
0.000025 

(0.82) 
0.00093 
(30.36) 

0.000074 
(2.42) 

0.00202 
(66.16) 0.01 

Root volume 
(cm3) 0.0711 

8.4 x 10-6 

(0.58) 
0.000728 
(49.92) 

4.7x10-5 

(3.24) 
0.000131 

(8.99) 
0.000544 
(37.29) 0.50 

Root surface 
area (cm2) 7.287 

0.811 
(5.44) 

9.274 
(62.19) 

0 
(0.00) 

0.415 
(2.78) 

4.412 
(29.59) 0.62 

Area: Vol. 
(cm-1) 104.0 

57.9 
(23.38) 

0.9 
(0.36) 

43.3 
(17.49) 

13.8 
(5.57) 

131.7 
(53.19) 0.00 

Root Tissue 
density 0.02112 

8.1 x 10-6 
(7.41) 

1.2 x 10-5 
(11.15) 

2.0 x 10-5 
(18.53) 

1.2 x 10-5 
(11.08) 

5.7 x 10-5 
(51.83) 0.11 

Root biomass 
(%total 
biomass) 10.72 

0 
(0.00) 

0.23 
(1.30) 

5.49 
(31.00) 

0.48 
(2.71) 

11.51 
(64.99) 0.01 

 

There was statistically significant differences (p<0.05) between the six genotypes in all RSA 

traits measured except for branching density and R:S. The effect of run was significant for 

50% (9 out of 18) of traits assayed including RDW, TRL, TLRL, angle, diameter, SRL, tissue 

density, surface area and area: volume ratio. The effect of [P]ext was also significant for 50% 
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of traits assayed including SDW, RDW, TLRL, LAUZ, diameter, R:S, RTD, surface area and 

area:volume ratio (p<0.05; Table 6.5). The interaction of Genotype and [P]ext was significant 

(P< 0.05) for angle, root volume and RTD (Table 6.5). Individuals within the assayed 

reference population showed large responses to [P]ext. The relationship between biomass of 

the six lines of B. rapa grown in soil to which was added either 600 µM of KH2PO4 solution or 

0 µM of KH2PO4 was linear and correlations between low [P]ext and high [P]ext treatments for 

biomass was significant (p< 0.001; Figure. 6.8). 
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Table 6.5: ANOVA of traits measured on plants grown on soil-filled rhizoboxes as affected by experimental run (r), genotype (g), phosphorus treatment ([P]ext.) and g x [P]ext 

 
Trait 

Overall Mean 
s.e.d 

(Genotype) 
Run 

 (df = 1) 
Genotype 

(df = 5) 
[P]ext  

(df = 1) 

Genotype 
x [P]ext  

(df = 5) IMB211 IRRi016 IRRi124 IRRi201 IRRi229 R500 
SDW 7.31 7.83 13.09 10.18 10.12 23.07 0.758 0.095 < 0.001 < 0.001 0.659 
RDW 0.708 0.967 1.612 1.188 1.263 2.832 0.1382 0.004 < 0.001 0.001 0.156 
TRL 31.0 48.8 54.0 55.8 66.6 111.1 5.0 < 0.001 < 0.001 0.065 0.525 
TLRL 26.4 42.3 46.3 48.5 61.9 108.8 4.93 < 0.001 < 0.001 0.011 0.725 
PRL  13.96 18.14 23.14 22.06 22.85 28.34 1.166 0.293 < 0.001 0.164 0.789 
LAUZ 4.66 6.52 7.67 7.26 5.86 1.86 0.853 0.203 < 0.001 < 0.001 0.701 
No. of LRs 10.83 16.04 21.73 17.58 22.52 40.08 1.518 0.335 < 0.001 0.704 0.956 
Mean LRL 0.591 1.026 1.06 1.281 1.094 1.635 0.1295 0.911 < 0.001 0.83 0.85 
B. Dens. 1.319 1.533 1.531 1.425 1.357 1.527 0.1843 0.822 0.746 0.162 0.604 
Int. Dist. 1.175 0.917 0.867 1.047 0.904 0.795 0.1088 0.467 0.01 0.39 0.157 
Av Diam. 0.3996 0.3897 0.3841 0.3755 0.3995 0.3743 0.00969 < 0.001 0.026 < 0.001 0.057 
Angle 72.7 68.8 66.77 66.49 69.82 70.45 1.7 < 0.001 0.003 0.825 0.007 
R:S 0.0982 0.13 0.1293 0.1231 0.1281 0.1249 0.01297 0.267 0.13 < 0.001 0.215 
SRL  52.4 56.7 36.6 51.9 54 42.4 5.31 < 0.001 0.001 0.165 0.351 
Surface area 3.83 5.69 6.54 6.43 8.34 12.89 0.606 < 0.001 < 0.001 0.254 0.066 
Root volume 0.0381 0.0572 0.0662 0.0594 0.085 0.1206 0.00673 0.148 < 0.001 0.002 0.003 
Surf:vol ratio 102.49 100.39 102.26 107.88 101.77 109.32 3.313 <.001 0.038 < 0.001 0.052 
RTD 0.01859 0.01737 0.02815 0.02145 0.01652 0.02463 0.002178 0.001 < 0.001 < 0.001 0.005 
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Lines grown on high [P]ext soil yielded between 13 and 36% higher SDW but between 3 and 

53% lesser RDW than lines grown on low [P]ext soil (Figures 6.8; 6.9a). External P supply 

decreased the biomass partitioning between shoot and root (p<0.001) with higher 

proportion of biomass invested into root at low [P]ext (Figure 6.9b). At high [P]ext, 

approximately 8 to 10% of total biomass was of root in various lines compared to 10 to 14% 

at low [P]ext in various lines. Total root length was significantly reduced in three of the six 

lines assayed at high [P]ext compared with low [P]ext (Figure 6.9c). While the effect of [P]ext 

did not significantly alter PRL, same significantly (p<0.001) affected the LAUZ. Respectively,  

LAUZ were 28.43, 22.91, 11.74, 50.60, 64.19 and 81.82% higher in seedlings of IMB211, 

IRRI016, IRRI124, IRRI201, IRRI229 and R500 grown on high [P]ext soil compared to those 

grown on low [P]ext (Figure. 6.9d). Seedlings grown at high [P]ext recorded lesser TLRL for 

majority of the lines assayed (Figure. 6.9e). Whilst mean diameter and volume of roots were 

on the average depressed under low [P]ext, root tissue density and the ratio of root surface 

area and volume were generally higher (p<0.001) at low [P]ext (Figures 6.9f -h). 
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Figure 6.8: Variation in (A) shoot dry weight and (B) root dry weight in selected RILs and parents of the BraIRRI mapping population. Seedlings were grown on soil-filled rhizoboxes 
containing soil either un-amended or amended with solution containing 600 μM KH2PO4. Data are observed values of 12 replications per line per treatment and the continuous line 
represents the 1: 1 line 
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Figure 6.9: Changes in shoot and root dry weight (a), root-to-shoot ratio (b), total root length (c), primary root length and length of the apical un-branched zone of the primary root 
(d), number of lateral roots and total length of all laterals (e), mean diameter of all root axes (f), volume of roots (g), root tissue density and root surface area-to-volume ratio (h) in 
six Brassica rapa genotypes grown on soil-filled rhizoboxes at two [P]ext for 21 DAS. Symbols represent means ± s.e.m. (n = 12). 
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6.2.2.2 Temporal responses of RSA to external P concentration  
The fitted model indicated that [P]ext did not have significant effect on the asymptotes of TRL 

(Table 6.3). The overall mean (intercept, β1) asymptotes of TRL significantly varied between 

genotypes and were 56.47 and 53.45 cm for IMB211, 64.63 and 63.43 cm for IRRI016, 51.88 

and 35.27 cm for IRRI201, 58.68 and 56.74 cm for IRRI229, 33.60 and 39.51 cm for IRRI124, 

and 45.58 and 39.50 cm for R500, respectively for high and low [P]ext (data not shown). The 

inflection point (∅2) and scale parameter of the logistic growth function (∅3) were constant 

across all genotypes and [P]ext. The TRL reached the inflection point about 13 d after transfer 

to rhizoboxes and 5 d later (i.e.: 18 d after transfer to the scanners), TRL was about 75% of 

the asymptote (data not shown). The slope term describing rate of increase in the 

asymptote of the TRL with [P]ext was 0.3 (data not show). To enable model convergence, the 

fitted model here did not incorporate an auto-correlation structure. The overall model fit 

(Figure 6.10) was satisfactory based on the normal Q-Q and residual plots (Appendix 7).  
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Figure 6.10: Plots of the fitted model (solid line) and observed values (open circles) for 6 B. rapa genotypes 
grown at low or high external P concentration (LP and HP) on soil-filled rhizoboxes for 21 DAS following 3 d 
germination.  

6.2.2.3 Tissue P-concentration in Experiment 2  
Increased P availability induced a strong increase in shoot [P] in all genotypes (p< 0.001, 

Figure 6.11A). There was also a significant interaction between the effect of [P]ext treatment 

and the genotype on Shoot [P] (p < 0.05). There was no clear effect of P availability on Root 

[P] (Figure 6.13A). Total root length (r = 0.84, p < 0.001), TLRL (r = 0.79, p < 0.05) and 

number of LRs (r = 0.58, p < 0.05) were strongly correlated with total [P] in plants grown at 

low [P]ext but not with plants grown at high [P]ext (Figures. 6.11B-D). 
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Figure 6.11 (A): Tissue P-concentration by Brassica rapa lines at 21 DAS in soil-filled rhizoboxes amended with 0 
(Low [P]ext) or 600 µM KH2PO4 solution (High [P]ext) and watered initially to 80% field capacity; B-D: relationship 
between total tissue P content and total root length (B), total tissue P content and total lateral root length (C) 
and total tissue P content and number of lateral roots (D) for plants grown with addition of 0 µM or 600 µM as 
KH2PO4 solution. Open and closed symbols are for low [P]ext and high [P]ext respectively. 
 

6.3 Discussion 
Plant adaptations to P limitation can be classified into two broad strategies: (i) strategies for 

the efficient use and conservation of P once it is obtained and (ii) strategies to maximise P 

uptake. Conservation strategies including increases in growth per unit P, re-sorption or re-

translocation and increased plant leaf life span, enable plants to survive under P-limiting 
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environments but do not necessarily address the issue of unexploited P resources which are 

available in the soil (Lajtha and Harrison, 1995; Vance, 2001). Strategies which actively 

enhance plant P-acquisition are the most beneficial to optimal crop growth and increased 

yield and represent targets for crop improvement. These strategies include increases in root 

growth and length, R:S, SRL, root surface area, branching density and insertion angle of LRs 

as well as increased elongation and density of root hairs (Lynch, 2011; Richardson et al., 

2009; Vance, 2001). With large amounts of P fertilizer required to achieve optimal crop 

productivity, the identification of genotypes that can efficiently access P in P-deficient 

environments and precise methodology to identify those genotypes is vital to crop 

improvement goals. It is critical to determine the differences in the root system among 

selected lines to provide basic architectural information and to detect its potential 

correlations with the observed differences in P uptake (Narang et al., 2000).  

6.3.1 Response of shoot and root biomass to external P  
In this study, response of seedlings for many traits to [P]ext was not consistent when 

seedlings were grown for shorter periods (up to 14 days after sowing) but for brevity these 

result are not shown here. Except for LAUZ, the analyses indicated that it is advantageous to 

maintain root growth at low P with reduced shoot growth.  Accumulation of biomass 

responded to [P]ext concentration when seedlings were grown both on paper and rhizoboxes 

up to 18 and 21 DAS, respectively. In both Experiments 1 and 2, genotypes assayed under 

differential [P]ext differed in shoot and root biomass (Tables 6.2 and 6.5) but differences in 

shoot dry weight of plants grown on paper was marginal. Shoot biomass accumulation on 

high [P]ext was higher than on low [P]ext, for all genotypes (Figures 6.4a & b; 6.9a). Root-to-

shoot ratio at low [P]ext regimes was much higher compared with at high P treatments 

(Figures 6.4j and 6.9b). These results are consistent with results obtained by Akhtar et al. 
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(2008a), Bolan et al. (1987) and Li et al. (2009). Increased R:S in nutrient limiting conditions 

is attributed to preferential assimilate distribution to the roots (Akhtar et al., 2008a; Bolan 

et al., 1987; Nielsen et al., 2001; Vance et al., 2003), which could be an adaptation of B. rapa 

to acquire more P under P-starvation.  

 

The effect of [P]ext on root biomass was not strong in both experiments (Figures 6.4b and 

6.9a). In Experiment 2, root biomasses of multiple genotypes grown in rhizoboxes 

containing un-amended soil (low [P]ext) were slightly greater than that of seedlings grown in 

soil amended with solution KH2PO4 (high [P]ext), but the effect was not consistent across all 

genotypes. There was a general decline in RDW with increasing [P]ext for seedlings grown on 

soil and non-soil media Figures 6.4b and 6.9a. For example, RDW (as percent of total plant 

biomass) decreased by 39% and 20% respectively for IMB211 and R500 as [P]ext was 

increased to 600 µM in Experiment 1. This result agrees with Nobel et al. (1989) who 

reported of 54% decrease in the in RDW of Agave lechuguilla plants when applied P was 

increased from 0 to 500 kg ha-1. The proportionally greater root growth relative to shoot 

growth in B. rapa in P-limiting conditions may lead to compensating increase in P 

acquisition.  

 

At the seedling stage, shoot biomass indicates economic yield and offers a reliable criterion 

for assessing performance under resource limiting conditions (Akhtar et al., 2006). The 

results here indicate that on low [P]ext, differences in biomass could be utilised in identifying 

efficient and inefficient genotypes. More importantly, significant variations in SDW due to 

[P]ext x genotype interaction (Tables 6.2; Figure 6.8) suggest that useful genetic variations 

exist among B. rapa for acquisition of P from limited P environments. Whilst such genotype 
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x environment interactions indicates high sensitivity of the trait to the environmental effect, 

it also has valuable implications for the development of genotypes conferred improved 

acquisition and use of P.  

6.3.2 Response of root system architecture to external P 
The concentration of soluble P in the soil affects root morphology of plants (Hajabbasi and 

Schumacher, 1994). In this thesis however, the effect of [P]ext was not consistently evident 

on RSA of plants grown for shorter periods (data not shown) and as a result growth periods 

had to be increased up to 21 DAS. This occurrence needs further investigation but it is 

possible that P concentration in the planting material, the seed, could have contributed to 

the non-response in the initial stages of growth. Seed P concentration can have a strong 

impact on P response at an early stage of the plant (White and Veneklaas, 2012). Seed P 

concentration of mustard seed is normally about 8.28 mg g-1 (http://ndb.nal.usda.gov/). 

Seeds used in this thesis contained relatively higher concentration of P (11.5 and 14.5 mg g-

1, respectively for R500 and IMB211, Figure 6.6). Such high P value could explain why plant 

response to [P]ext in the early developmental stage was not always strong. White and 

Veneklaas (2012) have suggested that seed P reserves are capable of sustaining maximum 

growth of maize seedlings for several weeks after germination, until the plants attain an 

extensive root system. For a characteristic RSA response to P nutrition, plant may thus have 

to be grown for relatively longer periods or P-starved seeds should be used.  

 

In this study, RSA response to external P nutrition could be observed after two weeks 

following germination. For example, effects of [P]ext in Experiment 1 were observed when 

seedlings were grown for 18 DAS. The results demonstrated differences in RSA between the 

two parental genotypes and RSA response variation to P availability. The two genotypes 
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showed significant and distinct RSA responses to reduced [P]ext, and these responses were 

similar to changes in RSA in other crop-plant species including Arabidopsis (Lopez-Bucio et 

al., 2002; Nacry et al., 2005), maize (Mollier and Pellerin, 1999), common bean (Liao et al., 

2001) and sorghum (Al‐Karaki et al., 1995). In Experiment 1, the plants growing on high [P]ext 

generally had bigger root than those on lower [P]ext and recorded higher TRL and TLRL (p 

<.001; 6Figure 6.4c). Whilst IMB211 consistently recorded smaller root systems than R500, 

R500 appear to show more plasticity that IMB211. For example, R500 recorded 63.3% 

greater TRL on high [P]ext than on low [P]ext, compared to 7.3% difference recorded by 

IMB211. Furthermore, many of the RSA traits that showed significant differences on 

differential [P]ext between the two genotypes also showed high broad-sense heritability 

values, similar to values reported by Ingram et al. (2012) in Brachypodium accessions grown 

under differential P supply. In contrast to results in Experiment 1, TRL of plants grown in low 

[P]ext soils in Experiment 2 rather seems to be greater (Figure 6.9c). This observation 

contrasts the report of Williamson et al. (2001) that TRL increase with increasing P. The 

authors however noted that the most significant effect of reduced Pi of root growth is 

reduced PRL, reduced internode length, and increased LRL.  

 

Increased LRL has been observed to correlate positively with P acquisition in P-starved 

environments and LR formation is profitable under P limitation because it has lesser 

production cost compared to other root types (Eissenstat, 1992; Ingram et al., 2012). Maize 

genotypes with increased lateral rooting, for example, had higher growth than genotypes 

with reduced lateral rooting (Eissenstat, 1992; Zhu et al., 2005a). In Experiment 1, both 

common and differential responses of the genotypes’ LR traits to [P]ext were observed. 

Whilst mean LRL of IMB211 seemed to increase to a point and then decline with increasing 
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P availability, that of R500 generally increased with increasing P availability (Figure 6.4i). A 

similar trend was also apparent with respect to number of LRs. This observation however 

appears inconsistent with the increased length and number of LRs typically observed in 

crops adapted to low P conditions and may have occurred due to experimental vagaries. 

Results obtained on soil however was generally typical of crops adapted to low P conditions 

with most genotypes including IRRI016 and IRRI201 showing increased lateral rooting at low 

P (Figure 6.9e).  

 

Phosphorus limitation induced a reduction in LAUZ for both experiments and an increase in 

LR insertion angle for Experiment 1 only (Figure 6.4g-h; 6.9d). Similar genotypic variations in 

the adaptive response of PR growth and hence LAUZ to low P have been observed (Jain et 

al., 2007; Linkohr et al., 2002; Lopez-Bucio et al., 2002; Pérez-Torres et al., 2008; Williamson 

et al., 2001). Plants grown in P-starved conditions adapt by investing into LR growth and 

altering LR insertion angle in favour of outward rather than downward growth, resulting in a 

shallower and broader root system capable of exploiting topsoil resources more efficiently 

(Lynch, 2011; Lynch and Brown, 2001; Woodfield and Caradus, 1990). Root angle is 

important to P acquisition and Bonser et al. (1996) for example, reported of a correlation 

between reduced root angle of bean cultivars in low-P soils and yield in P-poor soils. 

  

Root traits such as mean diameter, volume and surface area have been shown to influence P 

uptake in plants (Gahoonia and Nielsen, 2004b; Xie and Yu, 2003). Mean diameters of low P 

plants decreased by 3 to 19%, with IRRI201 and IRRI229 recording the lowest and highest 

reduction, respectively. Similar results have been reported by Xie and Yu (2003) in water 

hyacinth (Eichhornia crassipes). The results here suggest that the genotypic variation in 
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diameter of B. rapa in response to external P concentration can be considerable. Root 

diameter is an important trait for P uptake. It has been shown for example, that genotypes 

with small root diameter can be more effective in absorbing P (Xie and Yu, 2003). This is 

because finer or thinner roots have increased SRL and acquisition of immobile soil-based 

resources depends on length (Eissenstat, 1992). Variations of root diameter in response to P 

could be used for breeding because the trait has also high heritability (0.54) (Woodfield and 

Caradus, 1990). Broad sense heritability values obtained for root diameter in this thesis 

were however very weak (Tables 6.1 and 6.4). It is possible that procedures employed to 

extract geometric features were sub optimal for such fine root features.  

 

There are other traits associated with efficient occupation of space. In this study for 

example, the ratio of root surface area to root volume was influenced by P availability in 

three genotypes (cv. IRRI124, IRRI229 and R500). Under limited P availability, these 

genotypes can increase the root surface area to root volume ratio to maximise root soil 

contact area for a unit volume of root (Figs. 6.9g-h). Bolan et al. (1987) have for example 

reported increase of root volume with increasing external P in subterranean clover and 

ryegrass. Genotypes with roots of high root surface to root volume ratios have often high 

SRL too, so that such genotypes can also increase the volume of roots in addition to their 

ability to produce more fibrous root systems (Paula and Pausas, 2011).  

 

Another trait that reflects the cost for the plant to make large root systems is the root tissue 

density (RTD). Root tissue density is RDW per unit fresh volume. In this study, results show 

that RTD declined with increasing [P]ext in all genotypes but one (Figure 6.9h). Root tissue 

density has been related to the proportion of stele and the proportion of cell wall in the 
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stele. Increased RTD is associated with P stressed environments, partly because roots of 

stressed plants tend to have thick cell walls and a large proportion of stele and 

sclerenchyma (Wahl et al., 2001). My results are consistent with that of Zobel et al. (2006) in 

forage chicory cultivars (Cichorium intybus L.). A reduction in P availability mostly leads to an 

increased RTD and it has been suggested that plants adapted to a more nutrient rich 

environment normally have lower RTDs (Zobel et al., 2006). Moreover, lower RTD has been 

associated with faster growth rates and shorter root life spans (Ryser, 1996; Wahl and 

Ryser, 2000; Wahl et al., 2001).  

6.3.3 Temporal pattern of root architectural responses to [P]ext  

The effects of [P]ext on static traits described in previous sections were not observed on the 

dynamic traits. No significant effects of [P]ext were observed on the cumulative PRL, LRGR 

(not shown) and TRL through time. In Experiment 1, particle analyses employed to extract 

root length from time-lapses images may be sup-optimal. Although [P]ext did not have 

significant effect, it seemed that responses to changes in P availability manifested several 

days after sowing. Response of [P]ext on root growth dynamics have been reported in many 

crop plants including arabidopsis (Al-Ghazi et al., 2003; Linkohr et al., 2002; Lopez-Bucio et 

al., 2002; Williamson et al., 2001) and brassicas (Akhtar et al., 2008a). The non-response on 

root growth dynamics to [P]ext observed here therefore needs to be investigated further.  

6.3.4 Tissue P 
Significant genotypic variations in P-concentration and P-uptake were observed in this 

study. These results indicate the existence of useful genetic variations among genotypes for 

P acquisition from P-deficient environments. Although shoot P concentration of IMB211 was 

greater than that of R500 especially at higher [P]ext regimes, P-uptake of IMB211 was 

inferior to that R500. For all lines, TRL (r = 0.84, p < 0.001), TLRL (r = 0.79, p < 0.05) and 
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number of LRs (r = 0.58, p < 0.05) were highly correlated with total plant tissue P. This 

correlation was only evident in low [P]ext treatments but not in high [P]ext or across both 

treatments, indicating that efficient root systems are useful for low [P]ext. Correlations 

observed here agree with the results of Suriyagoda et al. (2012), who observed that that 

plant P uptake is mainly determined by root production.  

 

In the present study, growth parameters and tissue P increased significantly with increasing 

levels of soil P. RSA traits also responded to [P]ext supply, although at a later developmental 

stage, indicating that the soil used in Experiment 2 was appropriate for the scanner-based 

screening. One of the prerequisites of varietal screening for mineral stress is that the growth 

medium should be deficient and/or toxic in the nutrient under study (Fageria and Baligar, 

1993). In this study, not only was the soil deficient of P, but the amendment with Pi made P 

available to seedlings and the soil also provided physical impedance to root growth similar 

to soil conditions in the field . Although there were some disparities especially for certain 

root system traits, response of root biomass and the majority of other RSA traits on 

germination paper were generally similar to observations made using soil-filled rhizoboxes 

(Figures 6.4 and 6.9).  

6.4 Summary 
• Shoot biomass increased with increasing external P concentrations and root-to-shoot 

ratio was enhanced at lower P levels.  

• Length of the apical un-branched zone of the primary root (LAUZ) was significantly 

affected by external P concentration. LAUZ increased with increasing external P.  

• Root volume was higher at high [P]ext regimes; low [P]ext availability increased lateral 

root insertion angle, root tissue density and root surface area to volume ratio. 
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• Although static root traits generally responded to [P]ext two weeks after sowing, root 

growth dynamics did not respond to external phosphorus concentration.  

• Tested lines differed in P-concentration and also in P-uptake. Shoot P concentration 

of IMB211 was greater than that of R500 but P-uptake of IMB211 was inferior to that 

R500. 

• Total root length, total lateral root length and number of lateral roots highly 

correlated with total plant tissue P at low [P]ext but not at high [P]ext.  

• Relationship between the observed root system length and tissue P suggest that root 

system size is a driver of shoot P and hence P uptake in P-deficient conditions.  
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CHAPTER 7 : GENERAL DISCUSSION AND CONCLUSION 

7.0 General discussion 
Root systems of plants are responsible for acquiring water and nutrients from the soil for 

plant growth. Root system architecture (RSA, the natural arrangement of the root system at 

a given space and time) and root growth can, therefore, have profound influence on crop 

productivity and yield, particularly in low-input crop production systems. Although there is 

substantial information on the significant role of roots in crop response to abiotic and biotic 

stress conditions, the mechanisms underlying such responses are poorly understood 

(Herrera et al., 2013; Zhu et al., 2011). For example, the question of how the phenotype of 

the root system of a given crop genotype is influenced by the concentration of phosphorus 

in soil solution (the environment) has attracted research attention for a long time (Hajabbasi 

& Schumacher, 1994). While tremendous insights have been gained about such a question, 

research progress is still limited mainly by factors such as the time involved, the cost and the 

difficulty in studying and selecting genotypes with improved RSAs in their natural 

environments (i.e. the soil in the field). 

 

The availability of genomic and molecular tools has proved valuable in facilitating the 

identification and understanding of multiple genes and their alleles, gene expression, and 

the role of specific proteins in plant roots’ adaptation to stress (Cobb et al., 2013). It has 

been the expectation that modern genomic studies will enable the introduction of beneficial 

alleles into crop cultivars to improve adaptation to biotic and abiotic stresses (Moose and 

Mumm, 2008). However, this expectation has not yet been realised fully due to an 

incomplete understanding of the root phenotype and how genotype-environment 

interaction influences the evolution of the root phenotype. Prediction of root phenotypes 
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from genotypes has been challenging because most root phenotypes result from several 

genes and gene products acting jointly with complex and unpredictable environmental 

factors (NIFA-NSF- USDA. 2011). To bridge this gap between genomics and phenomics, 

considerable efforts have been made to develop different types of root phenotyping 

platforms (Furbank, 2009; Furbank and Tester, 2011; Zhu et al., 2011). Even so, the wide use 

of conventional root phenotyping platforms has been limited by the fact that they are often 

proprietary and hence expensive, complex, and have low resolution, throughput and 

adaptability (Tsaftaris and Noutsos, 2009). Root phenotyping methods need to be of high 

precision, throughput, resolution, economical and be very simple and accessible.  

7.1 A low-cost, high resolution optical scanner root phenotyping system 

Optical scanners have been used to study roots traits previously (Dannoura et al., 2008, 

2012; Dong et al., 2003; Dresbøll et al., 2013; Hund et al., 2009). In this thesis, however, 

detailed description is given about the development of the root phenotyping system 

(Chapter 2). The testing, the subsequent data validation using models (Chapters 3 - 6), and 

the potential to scale the system for higher throughput is novel. The system developed in 

this thesis enables remote image acquisition and is novel because it is coupled with a 

software interface for simultaneous management of multiple scanners. The root 

phenotyping system described in this thesis was sited in controlled environment (Chapter 2) 

but scanner setups are not unique to ex situ applications (Clark et al., 2011). The use of 

scanners in root imaging is also applicable to in situ protocols (Dannoura et al., 2012).  

 

Scanners, and other simple imaging devices such as digital cameras are most common in ex 

situ applications where they are usually combined with experimental systems in which 
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plants are grown or cultured on moist germination papers (Hund et al., 2009), in hydroponic 

systems (Chen et al., 2011) and in aeroponic systems (Waisel, 1996, 2002). Other 

experimental setups applicable to imaging with scanners or cameras include growing plants 

on agar in petri dishes (Bengough et al., 2004) or in small 2D rhizotrons (Devienne-Barret et 

al., 2006). For example, Bengough et al. (2004) used a scanner based 2D gel chambers to 

predict which barley seedlings in landraces would develop shallow and deep root 

distributions. Similarly, genetic loci associated with RSA traits in Brassica napus under 

contrasting phosphate supply have been identified in high-throughput root phenotyping 

screens employing trays and flatbed scanners (Shi et al., 2013).  

 

Scanners are becoming popular in high throughput root imaging because such devices are 

cheap and readily accessible. Image acquisition with scanners is technically simple. Scanners 

also provide opportunity for high-throughput imaging because of their image acquisition 

speed and their compactness so that many can be fitted into a small growth room (Ortiz-

Ribbing and Eastburn, 2003). Furthermore, scanners offer relatively large viewing or imaging 

area at high resolution which provides flexibility to study growth of root systems for 

extended period and also to study fine root features such as root hairs (Dong et al., 2003; 

Pierret et al., 2003a). In this thesis, the ArchiScan software enabled remote and time-lapse 

image acquisition, providing an added advantage of studying growth dynamics of 

undisturbed live roots. Breeding crops with improved RSA is currently constrained by 

difficulties associated with observing root traits. The scanner-based phenotyping system 

described in this thesis could have potential implications for selecting and developing crop 

root system ideotypes conferred with efficient resource acquisition and to screen several 

plants for multiple dynamic root traits, a vital requirement for breeding (Gregory et al., 
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2009; White et al., 2009). For example, if the scanner-based phenotyping system is a scaled 

up, it can be used to rapidly screen mapping populations of several lines for root growth and 

its response to various environmental stimuli such as phosphate starvation. Not only can 

this speed up the determination of candidate genes for a root growth QTLs but it can also 

aid in estimating the stability of these QTLs under single environmental differences such as 

low versus high P supply.  

 

The majority of previous root system studies have been carried out solely in non-soil rooting 

media, raising questions about their applicability to field conditions (Pacheco-Villalobos and 

Hardtke, 2012). It is difficult to study the effects of soil physical characteristics and soil biota 

on RSA and root growth in non-soil rooting media. These aforementioned limitations apply 

to studies presented in Chapters 3, 4 and part of Chapter 6 where plants were grown on 

seed germination paper. Root systems of seedling were also coerced to grow on flat 

surfaces and were therefore not typical of the inherent 3D form of root growth in natural 

environments. 

 

 However, it was useful to work with germination paper to develop the system because it is 

quicker than in soil and nutrient supply could be controlled. The data presented in Chapters 

5 and 6, demonstrate, however, that scanner-based phenotyping can be adapted to provide 

data on RSA from near-naturalistic environment, of soil-filled rhizoboxes. Similar results 

were observed when seedlings were grown on soil-filled rhizoboxes (Chapter 5) and on 

paper (Chapter 4), which points to the robustness of the phenotyping platform. For 

example, in both Chapters, root growth followed similar pattern. Data for most static root 

traits (traits measured ones at the end of experiments) also had high broad sense 
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heritability or repeatability suggesting that the system is robust and data produced were 

repeatable between runs. Besides, Dannoura et al. (2008, 2012) showed that scanners could 

be used in situ in the field to study roots but on a limited scale as image acquisition was by 

mouse clicks and field computer keyboard. Such methodologies could be coupled with the 

ArchiScan interface to automatically and remotely acquire images as well as manage 

numerous scanners simultaneously and thereby increase the throughput of data on RSA in 

the field. 

   

7.2 Root phenotyping through imaging may be constrained by time taken for 
image analyses, not image acquisition  

At a scanner resolution of 300 dots per inch (dpi), A4 size flatbed scanner system described 

in this thesis takes approximately 5 s to capture the images of up to 3 root systems. With 24 

scanners in operation, images of 72 root systems were captured per scan, with the 

possibility of capturing hundreds or even thousands of images per day depending on the 

operational number of scanners and scanning periodicity. For optimal performance, it must 

be noted, however, that increasing the operational number of scanners should be done in 

concert with increase in the number computers to manage them. Scanners employed in this 

thesis were managed by 3 computers but we also observed that 16 scanners could 

adequately be managed by a computer. In this thesis images were generally captured 12 

hourly, but time between successive image acquisitions by the scanners could be seconds, 

minutes, hours or days. Whilst short time span between sequential image acquisitions may 

be apt for observing transient changes in root growth, it can also significantly increase time 

and efforts required for image analyses and also increase the space and facilities required to 

store images.  
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After evaluating a number of root analysis software programmes, SmartRoot (Lobet et al., 

2011) was the most useful. Not only was installation of SmartRoot straightforward, a 

detailed manual accompanied the software and its developers almost immediately 

responded to queries (http://www.uclouvain.be/en-smartroot). Moreover, the software 

could be used to extract dynamic (growth measurements), static (single time-point 

measurements), global (measurements from the entire root system) and local 

(measurements from a section of the root system) traits from images with almost the same 

procedure. Even so, this software however could take up to 30 minutes to extract data from 

an image of the root system of a 14 d old seedling and even longer when the image was of 

poor quality. Approximately one week was needed to extract static root data from images 

captured in a single experiment. Time taken for image analysis was therefore the main 

limitation to throughput in root phenotyping.  

 

These observations are consistent with the results of a survey conducted by the National 

Science Foundation (USA) to determine the limitations of plant phenotyping 

(https://phenocept.discovery.wisc.edu/). In this survey, 56% of respondents (scientist 

involved in phenotyping) indicated that data analyses rather than data acquisition limit their 

phenotyping process. Over 52% of respondents also indicated that inadequacies in 

automation of image analysis rather than inadequacies in automation of acquisition impede 

their phenotyping. In this thesis, to automate and speed up extraction of data from time-

lapse images, an ImageJ macro was developed (Chapter 2). However, the macro was not 

robust enough to extract all fine root features.  
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Addressing constraints to root phenotyping requires a collaborative, multidisciplinary 

approach from plant physiology and agronomy, engineering, computer science, statistics 

and mathematics (Figure 7.1) (NRC, 2013; NIFA-NSF- USDA, 2011). Integration of disciplines 

allows bottlenecks at every level of the phenotyping pipeline to potentially be addressed. 

For example, computer scientists and software developers can partner with root 

researchers to develop robust software dedicated to root system analyses. Such software 

can incorporate algorithms capable of discriminating roots from soil or other media 

artefacts based on simple shape or texture descriptors other than pixel or voxel intensity 

gradients alone. Shape descriptor-based filters are capable of searching for geometrical 

structures which can be regarded as tubular and would be less affected by the presence of 

noise of different shape orientations (Frangi et al., 1998).  
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Figure 7.1: Schematic of different areas involved in root system phenotyping 
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(Lobet et al., 2011) are essential. It is also conceivable that tracing techniques can be 

improved so that the time required to characterise a root is reduced. Techniques such as 

Livewire or Intelligent Scissors algorithms which have been developed in medical sciences 

could for example be tested on root data (Falcao et al., 1998). In these algorithms, users 

initiate image segmentation by seeding points manually on the image and optimal shapes 

Software & 
Algorithms 

Image 
Acquisition 
Hardware  

  

Data 
Analyses & 
Integration 

  

Knowledge 
application & 

Scientific 
questions 

•Image acquisition 
•Image archiving 
•Pre-processing 
•Segmentation 
•Visualization & recognition 
•Geometric feature extraction  

 
•Predictive models 
•Knowledge 
•Data storage 

•Invasive 
•Non-invasive; 
•Field 
•Lab-based 

 
 

•Experimental Design 
•Constraints :(size, 

timing, scale, 
repeatability etc.) 

Agronomists;  
Breeders;  
Geneticists;  
Physiologists 

                Engineers 

         
 
 
 
          Computer  
           Scientists 

 
 
 

Mathematicians; 
Statisticians 

Root 
Phenotyping  

 

 

227 
 



are then derived from these points (Poon et al., 2007). These algorithms are usually 

improved by a pre-processing routine that utilises specialised filters (Poon et al., 2007). For 

example, livewire-assisted semiautomatic segmentation was recently employed to analyse 

root growth dynamics of Phaseolus vulgaris and Cicer arietinum from 2D time series images, 

from which spatio-temporal 3D structures were constructed to reveal multimodal transient 

growth zone in basal roots (Basu and Pal, 2012).  

 
7.3 Large replication is required to detect significant differences in RSA  

Root system phenotyping can be used to analyse trait variation within or between species or 

across environments. Given the constraints of cost, labour and time, this sometimes results 

in conflicts between scale and precision (Cornelissen et al., 2003). To reduce the inherent 

cost and time in screening roots, there is the tendency for scientists to minimise the number 

of samples (replicates) in root system studies. However, such tendencies must be tempered 

by statistical considerations essential to characterise variations in RSA between and within 

species. It is very vital that researchers check coefficients of variation (CVs) in their setups 

prior to undertaking any study (Pérez-Harguindeguy et al., 2013). Unfortunately, limited 

attention has been given to intra-genotypic variability (ITGV) for many crops. It has been 

argued that ITGV is negligible compared to interspecific or inter-genotypic variability, so 

plants of the same genotype can be characterised by mean trait values (Albert et al., 2010). 

Intra-genotypic variability could however be as large as inter-genotypic variation in some 

RSA traits and cannot be discounted as negligible (Peter et al., 2013). Identifying ITGV is 

particularly relevant to roots because roots tend to show more plasticity and their 

phenotypes are less stable than those of shoots (Garnier and Navas, 2012).  
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In this thesis, CVs of various root traits of a single B. rapa genotype R-o-18, ranged between 

5 and 103% (Chapter 3, Table 3.2). These variations represent environmental effects since 

plants were from a single genotype although all plants were grown in same environment. 

Lesser CV values (15 - 24%) have been reported for root system traits but these CV values 

were estimated from several studies involving a low number of replicates and are likely to 

increase with increasing replication (Cornelissen et al., 2003; Pérez-Harguindeguy et al., 

2013). The number of replicates to detect significant differences between means of root 

traits increases proportionally with CV to the power of two. Since the CVs for many root 

traits are large, large numbers of replicates are therefore required to detect differences in 

these traits between genotypes. Here, depending on the trait, 4 to 37 replicates would be 

sufficient to detect a 50% significant difference in trait means in a 2-sided 95% CI t-test 

(Table 3.3). For example, to detect a 50% difference in TRL between two genotypes would 

require 12 replicates (Table 3.3). In soil, and depending on the trait, between 4 and 48 

replicates would generally be required to detect a similar difference between two means at 

statistical power of 0.80 (Table 5.2). For some traits such as diameter and LR insertion angle, 

there was less ITGV and so the replication could be reduced. This low variability in LR 

insertion angle within a genotype may explain why root angle is one of the few root traits 

that has been successfully bred in crops, for enhanced topsoil foraging for P acquisition 

(Lynch, 2011).  

 

Employing the appropriate replication is particularly pertinent in studies aimed at detecting 

QTLs. To avoid the detection of false-positive QTLs, it is important that many individuals per 

line are screened from a population of numerous lines, particularly for traits that show high 

coefficient of variation in their phenotypic means. Large replication provides the 
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opportunity to observe recombinant events and facilitates the estimation of parameters 

with greater accuracy and, therefore, a greater ability to detect QTL (Doerge 2002).   

7.4 Low-cost optical scanner-based imaging provides reliable data for 
modelling root growth dynamics 

The results from this study show that scanner-based root phenotyping can be greatly 

beneficial to the construction of mathematical models of root systems. Using SmartRoot 

(Lobet et al., 2011), it was possible to generate root “nodes” (the intersection of successive 

segments of a segmented root axis) and their coordinates (Chapters 2 and 3), enabling the 

validation of a previously reported density-based root system model (Dupuy et al., 2005; 

Dupuy et al., 2010a; Dupuy et al., 2010b; Dupuy and Vignes, 2012). It was shown in Chapter 

3 that root length distributions between modelled and real root systems were similar. These 

results suggest that simple basic information taken from few root samples, as opposed to 

the measurement of complex topological data, could be employed to reconstruct a realistic 

root system (Dupuy et al., 2005). Also, because the model was density-based and root 

morphology is analysed aggregately, the same approach could be developed for plants 

grown in soil using densities such as biomass, volume or root length (Dupuy et al., 2005). 

 

The combination of modelling (both statistical and mechanistic) and data provided by 

scanners have the potential to deliver significant information on the functioning of soil 

systems, and enhance understanding of biological mechanisms and dynamics underlying 

root growth. The complementation of scanner-based imaging with density-based modelling 

approaches could generate relevant data describing not only root dynamics but also 

biological soil processes. Root growth cannot be easily visualised yet in the soil, so data 

generated from scanners could be used to train a set of elementary developmental rules to 
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reproduce the morphogenetic behaviour of individual roots and how it responds to various 

environmental factors (de Dorlodot et al., 2007). This can be used to simulate the inherent 

3D dynamic structure of RSA in the soil and improve the understanding of root-soil 

interactions and other soil processes, such as the effects of soil strength, water and nutrient 

availability on root system growth. With some modifications, it may be possible to couple 

optical imaging by scanners in two-dimensional soil-filled rhizoboxes, with luciferase 

reporter assays including bioluminescence-based reporters (Michelini et al., 2008) or plants 

that produce fluorescent proteins to identify specific genes or gene expression (Faget et al., 

2012; Faget et al., 2010; Federici et al., 2012; Kurup et al., 2005). For example, a root 

imaging platform was recently reported in Arabidopsis (GLO-Roots), using bioluminescence-

based reporters for simultaneous observation of root growth and biological activity in a 2-D 

soil-filled chamber (Rellán-Álvarez et al., 2013).  

7.5 RSA traits exhibit temporal dynamics  
The growth of a root system is an irreversible and ontogenetic change in its biomass 

measured in size, or form (Hunt, 2003; Paine et al., 2012). Growing root systems explore 

their local environment enabling acquisition of resources at different locations in the 

rhizosphere. Quantification of temporal changes in root growth provides important 

information about how root systems adapt to different biotic and abiotic stimuli (Basu et al., 

2007; Wells et al., 2012). Dynamic analyses of root systems have, for example, been 

employed to study the influence of phosphorus starvation on the elongation rate of the PR 

of Arabidopsis (Ma et al., 2003).  

 

It is generally believed that typical root growth in a productive environment is initially slow, 

and then accelerates to a maximum before slowing again when the plants mature followed 
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by senescence and decay (Hunt, 2003). This growth pattern reflects resource availability and 

also arises because the rate of biomass accumulation per total biomass slows as plants grow 

(Hunt, 2003). Paine et al. (2012) have, therefore, argued that analysing root system growth 

with assumptions of constant growth rate may be unrealistic because such assumptions 

indicate that resources are never limiting. Results obtained in this thesis are consistent with 

this assertion. Dynamic analyses performed on growth of the total root system, the primary 

and first order lateral roots showed that these exhibit temporal variation with significant 

effects of genotype (Chapters 4 and 5). Total length of the root system followed a logistic 

growth function. There was significant variation between genotypes in the total root length 

attained (asymptote) (Chapter 4 & 5) and in the symmetry of the predicted curves (Chapter 

5).  

 

One advantage of the logistic mixed-effects approach to analysing root growth is that the 

behaviour of the model is biologically plausible and is due to the nonlinear characteristics of 

root growth curves (Calegario et al., 2005; Guan et al., 2006; Paine et al., 2012). The 

experiments conducted in this thesis utilised seedlings and since there could be resource 

limitation and ontogenetic development in seedlings, parameters in the mixed-effects 

logistic model can be interpreted biologically. The asymptote in the model may represent 

root growth limitation due to either finite resources or changes in the seedlings’ ontogeny. 

In mature plants’, the asymptote may represent changes in the plants’ ontogeny such as the 

start of flowering or grain development and the inflection point may represents the age at 

which absolute root growth is maximised within a growing period. The scale parameter 

could indicate the time when root growth begins to slow down within a growing period 

(Calegario et al., 2005; Guan et al., 2006; Paine et al., 2012). Such information could be vital 
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in understanding the plant’s phenology and could facilitate predicting root growth limitation 

within a growing season. For example, genotypes with a bigger asymptotes but smaller 

inflection points and scale parameters could suggest that growth was limited in the initial 

stages of the plants’ life. Mixed-effects logistic modelling for example may answer 

biologically relevant questions such as the resource acquisition capacity of different lines at 

different position along the inflection point.  

 

Growth of primary roots also followed a logistic growth function, although the non-linearity 

was less pronounced (Chapter 4). Previous results have reported approximately linear 

growth of PRs over a period of time (Erickson, 1976; Torrion et al., 2012). Torrion et al. 

(2012) for example indicated that until the full-seed stage, PR growth of soybean (Glycine 

max L.) plants followed a linear function. Similarly, the PR of maize elongated in length 

linearly at approximately 2 mm hr-I for 3 d or more (Erickson, 1976). The analysis of LR 

growth is more complex than that of total and PR growth (Armengaud et al., 2009). This is 

because there are usually many LRs on each PR and individual LRs may show different 

growth rates depending on their time of emergence (Armengaud et al., 2009). In this thesis, 

growth rate of LRs generally increased quadratically to a maximum for all types of LRs 

(Figure 3.5). Older LRs generally had faster elongation rates than those that emerged later 

but the growth of all LRs seemed to peak roughly at the same DAS. Quadratic increase in LR 

growth observed (Chapters 3 and 4) may be attributable to steady increase in emergence of 

LRs on the PR. Hund et al., (2009) and McCully et al., (1999) have suggested that growth of 

LRs of a single root system follow an exponential function during the initial phase of its 

development. This growth pattern continues until the final length and densities of the oldest 
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proximal LRs are attained after which LRs growth may follow a linear function (Hund et al., 

2009; McCully et al., 1999).   

7.6 Genotypic variation in seedling root architectural traits and implications for 
phosphorus acquisition efficiency in Brassica rapa  

Genotypic variation in adaptive response to P stress and P-acquisition efficiency have been 

widely reported in many crops (Gahoonia and Nielsen, 2004a, b; Li et al., 2007; Lynch and 

Beebe, 1995; Lynch and Brown, 2008; Miller et al., 2003; White et al., 2005; White and 

Hammond, 2008b; Zobel et al., 2006) but has not been fully exploited in breeding (Lynch 

and Brown, 2012). This is because crop breeding has typically focused on crop adaptation to 

high-input systems and has not used root traits as selection criteria (Gahoonia and Nielsen, 

2004b; Lynch and Brown, 2012). Brassicas have been noted to be relatively more efficient at 

acquiring and utilising P in P-limiting environments than many crops (Hoffland, 1992; White 

et al., 2005). However, information on the genetic variability in their root systems is not 

common. Genetic diversity in Brassicas in response to phosphate limitation has been 

reported (Akhtar et al., 2007; Akhtar et al., 2008a, b; Akhtar et al., 2009; Akhtar et al., 2006; 

Hammond et al., 2009; Shi et al., 2013a; Shi et al., 2012).  

 

This thesis has determined the genetic variation in B. rapa for root system plasticity in 

response to external P availability. The genotypes studied showed differential biomass 

accumulation when grown on germination paper and on soil-filled rhizoboxes (Chapter 6). 

However, in the present study, shoot P concentration was not directly proportional to 

biomass accumulation. It has been suggested that shoot P concentration may not be a 

reliable criterion in assessing genotypes for P use efficiency (PUE) (Fageria and Baligar, 1999; 

Ozturk et al., 2005). This assertion however depends on how PUE is defined. Shoot P 
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concentration would be critical if PUE is defined as the equivalent of P efficiency ratio, (PER; 

g DM g-1 P; Table 1.1), calculated as yield divided by the amount of P in the plant. PER is 

equivalent to the reciprocal of tissue P concentration of a wholly harvested plant 

(Hammond et al., 2009; White et al., 2005). On the other hand, increased yield is a 

significant component of all measures of PUE (Table 1.1). Increasing yield, whilst 

maintaining or decreasing shoot-P will lead to increased PUE (Hammond et al., 2009). 

 

Variation in specific RSA traits and plasticity in response to P availability were observed 

among the studied genotypes in both soil and non-soil media (Chapter 6). Greater root 

system length enables greater exploration of the soil volume, and is thus associated with 

enhanced performance and improved P-acquisition of crop plants on P-limited soils (Brasil 

et al., 2003; Gahoonia and Nielsen, 2004b; Lambers et al., 2006; Lynch and Brown, 2001). 

Results presented in Chapter 6 from seedlings cultured on both germination paper and in 

rhizoboxes support this observation. Genotypes with bigger root system were superior in P 

uptake. Total root length has been found to correlate with seed yield in many crop plants 

including chickpea (Cicer arietinum L., Kashiwagi et al., 2006), wheat (Triticum aestivum, 

Barraclough, 1984), oats (Avena sativa) and barley (Hordeum vulgare, Léon and Schwarz, 

1992). In this thesis, analysis of correlations of correlation of quantitative RSA traits showed 

significant positive correlations between RSA traits and physiological growth indices such as 

shoot biomass (SDW) and root biomass (RDW) (Figures 3.4, 4.2, 5.5). Whilst trait 

correlations shown in Chapter 3 (Figure 3.4), represents only phenotypic correlations, those 

shown in chapters 4 and 5 (Figures 4.2 and 5.5) represents both phenotypic and genotypic 

correlations and may have greater significance in breeding. According to all the correlations, 

it can be concluded that shoot and root biomass and hence, total biomass increased with 
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the increase in TRL, TLRL and LR number (Figures 4.2 and 5.5). Given that P uptake increased 

with the increase TRL (Figure 6.7), cultivars with bigger roots with many and highly dense 

laterals are expected to acquire relatively more soil resources in deficiency soil conditions 

than cultivars with smaller RSAs with few and sparsely distributed laterals. So, in order to 

increase P acquisition and hence yield in breeding programs, breeders should opt for 

cultivars with bigger RSAs with many laterals. Thus, the differences in root system size 

observed in this thesis between the B. rapa genotypes suggest that selection and breeding 

of B. rapa genotypes conferred with larger root systems may contribute to more efficient 

use of soil P and lead to improved seed yield.  

 

Moreover, the strong positive correlations observed in this thesis between the root 

parameters are central to this type of analysis. For example, it suggests that selection for a 

trait such as PR length will not be detrimental to other traits such as number of LR (Seiler, 

2008). However, in some cases, low correlation between traits may also be beneficial in 

permitting independent manipulation of such traits without large predictive value for a 

change in other traits (Gifford et al., 2013). For example, weak relationships between LR 

insertion angle with TRL (r = - 0.35) or number of LRs (r = -0.29) observed in Chapter 3 

suggest that root angle could be independently changed without affecting TRL or number of 

LRs. 

 

Results in this thesis confirmed the observations of other researchers, on various plant 

species, that a decrease in LR insertion angle (Fig. 6.5h) is a root system response to P 

availability (Bonser et al., 1996; Ingram et al., 2012; Lynch and Brown, 2001). Both IMB211 

and R500 genotypes exhibited a reduced R:S and increased LAUZ with increasing P 
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availability (Figs. 6.5i & 6.9d). However, responses for traits including number of LRs and 

mean LR length to P nutrition on paper rooting media (Figs. 6.5d & 6.5e) were not 

consistent between the two parental genotypes. Similar results have been reported in 

Brachypodium by Ingram et al. (2012) and in Brassica napus by Shi et al. (2013b) who 

suggested that mapping QTL for LR growth in P deficient conditions could enhance our 

understanding of plant low-P adaptation. This is because the ability to reliably link 

phenotypic data on RSA under low P conditions to genotypic information would better 

explain the genetic basis of variation in RSA traits in response to P starvation.   

7.7 Effect of rooting media on the root phenotype  
The responses of several RSA traits to P nutrition on germination paper were generally 

similar to observations made using soil-filled rhizoboxes but some differences were also 

observed. The results presented in Chapter 6 indicated that the root system phenotype can 

be influenced by the rooting media, an observation made previously for LRs in maize RILs 

grown in sand culture (Zhu and Lynch, 2004). For example, in Chapter 2, characteristics of 

root system morphology and topological indices differed between the rooting media for the 

two parental genotypes. Moreover, in Chapter 4, mixed effect modelling of TRL indicated 

that the best-fit model for seedlings grown on paper required only one random effect 

parameter, the asymptote (∅1, Eqn. 4.4) to describe the effect of genotype (Figure 4.6). 

Two random effects parameters, the asymptote and inflection point (∅𝑖1, ∅𝑖2, Eqn. 5.2) 

were, however, required to describe the effects of genotype on TRL when plants were 

grown in soil-filled rhizoboxes (Chapter 5; Figure 5.8; Table 5.5). These suggest that root 

growth dynamics are affected by local environmental conditions. Indeed, seed germination 

papers and other non-soil growth media provide an effective rooting media to phenotype a 
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large number of plants, but root phenotypes must subsequently be evaluated and 

confirmed in soil media.  

7.8 Areas for future study 
The A4 size of scanning window of scanners employed in the experiments described in this 

thesis could restrict the platform to studying the root system of seedlings. This raises some 

concern because root traits of seedlings may not always be well correlated with those of 

mature plants (Abdel-Ghani et al., 2013; Arihara and Crosbie, 1982; Shipley et al., 1989; 

Watt et al., 2013; White et al., 2013b; Wojciechowski et al., 2009; Zhu et al., 2011; 

Šmilauerová and Šmilauer, 2007). The ability to image root systems of mature plants grown 

in soil is likely to improve the correlations between traits obtained in the phenotyping 

platform and measurements made in the field. The root systems of larger plants might be 

accommodated by growing plants in larger pouches, which might be imaged in overlapping 

sectors and these images combined to reconstruct an image of the entire root system as 

described by Lobet and Draye (2013).  

 

Further studies could also incorporate scanners with increased scanning window such as A3 

scanners (admittedly, these may be much expensive than A4 scanners) and determine if 

useful breeding material can be identified on the basis of seedling root traits recorded on 

the optical scanners. It is also important to determine if seedling traits are beneficial in 

detecting yield or yield stability in the field and so, seedling root traits recorded on the 

scanners should be correlated with yield of mature plants. The system could also be scaled 

up and employed to screen plants grown at varying P regimes to generate high throughput 

root growth data for dynamic modelling of root system response to P availability with 

density-based models. 
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7.9 Summary 
This thesis described the development of a low cost, high-resolution root phenotyping 

system (HRP) and its application to studying genotypic variations in RSA traits between 

Brassica rapa genotypes. The thesis also studied root system response of Brassica rapa 

seedlings to external P concentration. The low-cost scanner-based root phenotyping system 

allowed the acquisition of information, in a short period of time, about the complex root 

architecture of seedlings of Brassica rapa genotypes. Limited engineering and financial 

inputs were required. Assessment of various rooting media and its effect on RSA traits 

indicated that the type of rooting media could affect the RSA data that is generated from it. 

A non-soil rooting medium, seed germinating paper was a more suitable substrate for 

screening seedling root traits but root phenotypes must be validated in situ in the field, or 

failing that, in soil media in controlled environments.  

 

Significant differences were observed in RSA traits but replication must be high to identify 

differences in root architectural traits between Brassica rapa genotypes. Root traits showed 

temporal dynamics with strong genotypic effect. A logistic model adequately described total 

and primary root growth, and a quadratic model described temporal changes in growth rate 

of first order lateral roots of Brassica rapa seedlings. Density-based mechanistic model 

reproduced experimental results accurately by simulating PR length and cumulative length 

of all LRs.  

 

Many RSA traits that showed significant differences when plants were grown with different 

P supply between Brassica rapa genotypes also showed high broad-sense heritability and 

significant phenotypic correlations between shoot biomass and several other root traits. The 
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high genetic contributions and heritability observed are promising measures for the 

manipulation of various root system traits and presents great opportunity for developing 

crops with multiple desirable traits including improved P acquisition and yield. 

 

Overall, scanner-based phenotyping of RSA provides economical and readily available 

means of studying the mechanisms underlying the plant-soil interactions. Further 

developments in accurate and quicker means of images analyses and the extraction of 

geometric information from root images should permit more efficient RSA phenotyping with 

optical scanners and facilitate analyses of variations in RSA and root growth dynamics. 

Scanner-based root system phenotyping also provides a promising opportunity in 

generating high resolution root system data in developing models for predicting root 

phenotypes performance in breeding populations. 
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APPENDICES 

 
 Appendix1: Diagnostic plots for the simple linear regression model fitted on total root length vs DAS for 16 
Brassica rapa genotypes  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 2: Pairs plot relationship between intercept and slope fitted by genotype for non-centred total root 
length data; (b) Ninety-five percent confidence intervals on intercept and slope for each genotype to the 
centred total root length data. 
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 Appendix 3: Linear model structural adequacy assessments based on a hierarchical likelihood ratio test 

Model  df AIC BIC LogLik LR test (P value) 
Total root length 

1 11 158.3237 204.1433 -68.1618  
2 7 880.7606 909.9185 -433.3803 <0.0001 
3 7 260.7611 289.9191 -123.3806  
4 22 203.4312 295.0704 -79.7156 3 <0.0001 

Primary root length 
1 11 1256.469 1302.289 -617.2346  
2 7 1728.736 1757.893 -857.3678 <0.0001 
3 7 1449.513 1478.671 -717.7567  
4 22 1346.115 1437.754 -651.0574 <0.0001 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 4: Measured (circles) and predicted (lines) values from linear mixed-effects model for (a) total root 
length (data was square rooted ) and (b) primary root length of 15 DAS Brassica rapa seedlings of the parents 
and 14 recombinant inbred lines of the cross of IMB211 X R500 across two independent experimental runs.  
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Appendix 5: Normal plot of residuals by genotype from the linear model for (a) total root length and (b) 
primary root length  
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Appendix 6: Parameters estimates for the final model for Total and Primary root length 

Genotype 
Run 
# 

Fixed 
Intercept 

Random 
intercept 

Fixed 
Slope 

Random 
Slope 

Fixed 
Intercept 

Random 
intercept 

Fixed 
Slope 

Random 
Slope 

Total Root Length Primary Root Length 
IMB211 1 0.0505 1.3105 -0.2548 0.2302 0.1238 0.8040 -0.0232 0.8523 
IMB211 2 0.0505 1.0526 -0.2548 0.3277 0.1238 1.5068 -0.0232 0.6270 
IRRI 002 1 0.0505 1.3914 -0.2548 0.3897 0.1238 2.3329 -0.0232 1.0460 
IRRI 002 2 0.0505 1.6097 -0.2548 0.3586 0.1238 2.0537 -0.0232 0.8911 
IRRI 016 1 0.0505 1.5622 -0.2548 0.3063 0.1238 3.9904 -0.0232 0.6516 
IRRI 016 2 0.0505 1.6990 -0.2548 0.2802 0.1238 3.9922 -0.0232 0.5805 
IRRI 030 1 0.0505 0.9545 -0.2548 0.4429 0.1238 0.2422 -0.0232 0.9478 
IRRI 030 2 0.0505 1.2435 -0.2548 0.2238 0.1238 0.4483 -0.0232 1.1785 
IRRI 070 1 0.0505 1.6667 -0.2548 0.3153 0.1238 0.3208 -0.0232 1.0273 
IRRI 070 2 0.0505 1.2782 -0.2548 0.3785 0.1238 2.1500 -0.0232 0.6713 
IRRI 104 1 0.0505 1.1393 -0.2548 0.4528 0.1238 0.7207 -0.0232 0.7966 
IRRI 104 2 0.0505 1.1464 -0.2548 0.3122 0.1238 2.2881 -0.0232 0.6336 
IRRI 124 1 0.0505 1.0294 -0.2548 0.3801 0.1238 1.5821 -0.0232 0.6875 
IRRI 124 2 0.0505 1.2491 -0.2548 0.2893 0.1238 0.6332 -0.0232 1.0770 
IRRI 143 1 0.0505 1.7235 -0.2548 0.3887 0.1238 2.9464 -0.0232 1.0694 
IRRI 143 2 0.0505 1.9600 -0.2548 0.2617 0.1238 2.6795 -0.0232 1.2093 
IRRI 198 1 0.0505 1.3752 -0.2548 0.3716 0.1238 1.4445 -0.0232 1.4053 
IRRI 198 2 0.0505 1.5331 -0.2548 0.3160 0.1238 1.4041 -0.0232 1.3526 
IRRI 201 1 0.0505 1.1068 -0.2548 0.3588 0.1238 1.4679 -0.0232 1.2982 
IRRI 201 2 0.0505 1.5010 -0.2548 0.3335 0.1238 0.6898 -0.0232 1.0938 
IRRI 205 1 0.0505 1.0386 -0.2548 0.4460 0.1238 0.2627 -0.0232 0.9023 
IRRI 205 2 0.0505 0.7635 -0.2548 0.3970 0.1238 2.0595 -0.0232 1.0031 
IRRI 229 1 0.0505 1.3879 -0.2548 0.3579 0.1238 2.9506 -0.0232 0.7948 
IRRI 229 2 0.0505 0.9647 -0.2548 0.4808 0.1238 0.8131 -0.0232 1.1300 
IRRI 248 1 0.0505 1.4282 -0.2548 0.3334 0.1238 1.0797 -0.0232 1.0623 
IRRI 248 2 0.0505 1.1593 -0.2548 0.3549 0.1238 1.7259 -0.0232 1.0517 
IRRI 360 1 0.0505 1.5004 -0.2548 0.3820 0.1238 5.1101 -0.0232 0.5776 
IRRI 360 2 0.0505 1.4735 -0.2548 0.4265 0.1238 2.9043 -0.0232 0.8795 
IRRI 380 1 0.0505 1.1791 -0.2548 0.5212 0.1238 1.6013 -0.0232 1.0508 
IRRI 380 2 0.0505 1.7804 -0.2548 0.5835 0.1238 2.4937 -0.0232 1.0705 
R500 1 0.0505 1.5795 -0.2548 0.4231 0.1238 4.1206 -0.0232 1.4503 
R500 2 0.0505 0.9592 -0.2548 0.7758 0.1238 3.1344 -0.0232 1.1707 
 
 

269 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 7: Diagnostic plots for total root length: fitted values for standardised normal for Experiment 1 (a), Experiment 2 (b) and normal plot of residuals by genotype for 
Experiment 1 (c) and Experiment 2 (d) 
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Appendix 8 – Research article  
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