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ABSTRACT
The behaviour of gas-liquid two-phase flow has been studied extensively in the

past at near atmospheric pressure in small diameter pipes. However, the

industrial reality is the utilisation of large diameter pipes at elevated pressures

and there is significantly less information available in this area due principally

to the cost of investigating large diameter pipes. This research relied on using

large-scale laboratory facilities at the University of Nottingham, and on using

newly developed state of the art multiphase instrumentation. This study tested

and applied the wire mesh sensor (WMS). The work included in this thesis

utilised the two variants of the WMS; the already established Conductivity

WMS and the recently developed Capacitance WMS and the two sensors were

compared against each other. The Capacitance WMS was recently supplied by

HZDR (Research Institution, Germany) to the University of Nottingham.

Extensive experimental campaigns were carried out with this novel sensor. The

WMS was initially tested and validated against several other instruments such

as high speed camera and gamma densitometry. It was subsequently applied to

a large diameter bubble column and large diameter pipe with two phase flow.

The aims of this project was to gain a better understanding of the flow patterns

and their transitions in large diameter pipes and to provide real experimental

data to assist researchers and engineers in producing relevant and physically

sound models for use in larger diameter pipes. As a result of this study, novel

and interesting structures which have been labelled as wisps were discovered in

large diameter pipes. In addition the WMS was used extensively for the first

time on bubble columns in order to assess its suitability for such an application.
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1. CHAPTER 1: INTRODUCTION

1.1. Multiphase flows

Multiphase flows are ubiquitous, which makes them arguably more important than

single phase systems. However, they must be treated as an entirely separate subject as

they are significantly more complex than single phase systems. Examples of

multiphase systems can be found in many fields and applications, some of which are

obvious, and others less so. Volcanoes, weather systems and fizzy drinks are all

examples of multiphase systems. Study of multiphase flow has been described as a

black art, where challenges include the mechanisms of multiphase flow propagation

along a pipe, how to pump a mixture comprising gas and liquid and how to measure

the mixture's flowrate (King, 1990).

It is possible to have two, three or even four phase systems and this is not to be

confused with the traditional physics based definition of phases of matter. In this case,

a phase is a macroscopic state of matter which is homogeneous in chemical

composition and physical structure (Corradini, 1998). The three main phases are solid,

liquid and gas (ignoring plasma as a phase). For example a four phase gas-liquid-

liquid-solid system, consisting of gas-water-oil-sand, is common in the oil and gas

industry. This project is focused on investigating two-phase gas-liquid flow, which

again has many important industrial applications, such as in the chemical, nuclear and

petroleum industries. Within two phase flows it is possible to have several

combinations, which are gas-solid, gas-liquid, liquid-liquid and liquid-solid. It is also

possible to have multi-component flow, for example in blood flow the plasma/platelet

corpuscles can be described as two phase/multi-component flow (Corradini, 1998).

Table 1.1 shows a summary adapted from Crowe (1998):
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Phase
Component

Single Phase Flow M ultiphase Flow

Single Single-phase, Single component Two-phase, Single component

Flow of water, oil and O2• Flow of water and steam.

Multiple Single-phase, multi component Multi-phase, multi component

Flow of air and liquid polymer mixture. Flow of air, water and

particles.

Table 1.1- Single phase vs. multiphase, single vs. multi component, Crowe (1998).

A map describing how multiphase flow breaks down into separate constituents is

shown in Figure 1.1. Several terms shown in this map under the two-phase subheading

will be defined and used throughout this research study.

Surfoce and

'T~~~~?/~~7 E==-:r

Figure 1.1- Multiphase flow Schematic (Source: www.thermpedia.com. 2011)
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1.2. A brief historical note

Examples of two-phase flows can be found throughout the history of science and

technology. Hero's Turbine, or 'Aeolipile', as shown in Figure 1.2 was invented

around two thousand years ago by the Greek scientist Hero of Alexandria.

IV! ......

r
'JlCIIft
uQII ..

Figure J .2-Early examples of two-phase flows: (Left) Hero's Turbine, (Right) 17th
Century Compressor.

Hero's turbine was primarily a toy, where a ball was suspended on a pivot and a flame

heated a small reservoir of water underneath the ball until it turned to steam. The

steam was then directed to exit from nozzles located on the ball, which caused the ball

to rotate due to Newton's laws. This principle was initially used to open temple doors

and was also the precursor to the jet and steam engines. It is interesting to note that

Akagawa et al. (1984) studied this device two thousand years later. Chisholm (1983)

discussed a more recent example of a two-phase system, wh ich was an air compressor

used in the 1th century AD for application in metal smelting (Figure 1.2). The earliest

publication regarding two-phase flow according to Chisholm (1983) was by Theremin

(1830), and two-phase flow was first mentioned by Kosterin in 1943. This was

followed by Martinelli et al. (J 944), and Gouse (1966) published a bibliography of

3



Chapter 1: Introduction

two-phase flow research comprising 8000 references. Useful textbooks in this field

include Wallis (1969), Hewitt (1978), Whalley (1987), Collier (1994), Levy (1999),

Kleinstreuer (2003), Crowe (2006) and Azzopardi (2006).

Gas-liquid flow is still a relatively new subject area, with around half a century of

research behind it. It is also a fairly specialised field of engineering, with many

avenues that have not yet been explored. However, this is changing with the rapid

advancement of technology, computational power and modern instrumentation.

1.3. Applications and problems

This project was motivated by the requirements of the oil and gas industry and it

addresses the vital issue of the prediction of the behaviour of multi phase flows in large

diameter vertical pipes in onshore and offshore production facilities. Multiphase flow

can occur in various locations in an offshore facility, such as in the bottom of the well,

in the pipelines along the sea bed and up the riser to the separator (Figure 1.3). It can

be seen from this figure that the pipes can be horizontal, inclined or vertical, and flow

assurance engineers are tasked with ensuring continuous and maximum oil production

in the most cost effective way.

Slugcatcher Design
Piping Layout
Separator perf"(l18nCe

Reliefand
Blowdown

Pressure Loss

Gas and Dense
'------''-' rase Export

Slugging
Effect of Flowrate Chal'\ge
Pigging
Drag Reduction

Pressure Loss

Fiow assurance and production chemistry

impact all parts of a development

Interacti .illl Reservoir Pe nce

Figure 1.3- Schematic of an offshore oil facility (Azzopardi, 2006).
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Selecting a riser or a well tube below the sea bed with an incorrect diameter could

have a significant impact on the rate of oil/gas extraction and hence production and

profitability, due to it being too small or too large. The pipes must also be designed

correctly for example with the right amount of insulation to ensure temperatures don't

allow the formation of hydrates and wax, which can block the pipe and stop

production. The costs from rectifying these problems and replacing pipelines after the

rig is built can run into many millions of dollars, meaning it is vital that the engineers

get it right at the design stage. The recent oil spillage in the Gulf of Mexico

demonstrated the need for accurate predictions in this field and the prevention of

equipment failures; otherwise the financial and environmental costs of clean up

operations are huge and potentially catastrophic.

Multiphase flow in pipelines is very complex and difficult to predict as it exhibits

many phenomena that aren't encountered in single phase flow, such as backflow,

phase change, phase mixing and different flow patterns. Some flow patterns can result

in serious problems such as slugging (severe or hydrodynamic). With some pipe

lengths running up to several kilometres, more than one flow pattern may be present in

the same pipe. For example, an oil pipe may just have oil flowing at the bottom,

whereas higher up the pipe, the pressure drops and bubbles start to form, creating a

multiphase mixture. Therefore, another important consideration is the prediction of

this pressure drop. As the oil is extracted, reservoirs will drop in pressure and in the

amount of oil they produce over time. The amount of water -watercut- will increase as

the oil decreases. Flow assurance engineers are required to ensure the economic

viability of a well, and to ask whether it is still profitable to extract oil from a well

with a watercut of99% for example. Surprisingly, often it is.

5
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drainage
boundary Example:

pressure losses in a
well-flowline -riser

separator

well
,head flow line

Pwh

Figure 1.4-Pressure drop, from the well to the pipeline to the riser
(Source: Olga Training documentation).

Figure 1.4 shows an example of the variation In pressure drop in a full offshore

system, starting from the well, through to the pipeline, and finally going up the riser.

The pressure is constantly dropping, and applying single phase pressure drop

predictions will result in errors. It is clear from the gradients of the lines that the

vertical pipes have bigger pressure drops than the horizontal pipes. This is due mainly

to gravity, which would have less of an impact on horizontal pipes. Large diameter

pipes are being used in offshore oil and gas rigs to minimise these pressure drops in

particular due to frictional losses and turbulence in order to maximise flowrates and

hence oil production. Multiphase flow in pipes can be transient, i.e. time varying as

well as steady state, meaning that different modelling techniques are required.

Examples of transient flow conditions include shut down/re-start of wells, slugging,

variable flow rates, pigging, blow-down, tube ruptures, valve failures and tripping of

pumps/compressors. In this research study it is assumed that conditions are constant or

steady-state. The riser is essentially a vertical or near-vertical pipe, connecting the sea-

bed collection pipe network (the flowlines) to a sea-surface installation, which is

typically a floating receiving and processing vessel, sometimes known as an FPSO

6
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(Figure l.5). These are often used for extracting oil and gas from wells if the depth is

too great to build a platform cost effectively.

Figure 1.5-0ffshore oil/gas extraction (Source: www.marinelog.com. 2010)

The oil and gas industry is currently operating in extremely challenging economic

conditions, with the oil price having experienced significant fluctuations over the past

few years. A recent article (The Engineer, 2009) stated that each person in the UK

uses around 125kWhr of energy every day. This is equivalent to 125 40 Watt light

bulbs on around the clock. If half of the available UK land space was covered with

wind farms, this would generate around 800W per person, or 20kWhr per day, which

is still significantly less than recent demand. The trend in this demand is upwards.

This is the scale of the energy crisis globally, and it is believed that in the short to

medium term, the reliance on oil and gas for energy will continue until viable

alternative energy sources are commercially tapped. These energy alternatives are

essential, as oil and gas are finite resources. Investments in oil and gas offshore

systems have been, and will continue to be, huge (around $35 billion up to 2005), with

the riser systems accounting for around 20% of the costs (Azzopardi, private

communication).

7
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Current multiphase research methods have been based on measurements from smaller

diameter tubes (typically 25-75 mm) and on the interpretation of these measurements

in terms of the flow patterns occurring in such tubes. However, the limited amount of

data available shows that the flow patterns in larger tubes may be quite different, and

that the detailed phenomena may also vary within a given flow pattern. For example,

there is some evidence to suggest that slug flow of the normal type, with liquid slugs

separated by Taylor bubbles of classical shape, may not exist in large pipes. This can

be seen in Figure 1.6 (Prasser et ai, 2007a), which also shows the difference in wave

structures (Azzopardi et ai, 1983).

Figure 1.6-Differences between large diameter (>lOOmm) and small diameter pipes
«lOOmm). Taylor bubbles not evident in tube on left. Also shown are wave profiles.

Bubble size distributions measured by Prasser et al. (2004) also displayed significant

differences for small diameter and large diameter pipes (Figure 1.7). The second peak

for 200mm diameter pipes is broader and less prominent than for 50mm pipes as

shown in Figure 1.7 below. Offshore risers were relatively short and had modest

diameters. However, as the oil and gas fields are being depleted, and as demand for oil

and gas continues to grow globally, the oil and gas companies are being forced to look

further afield for replacement reserves with the potential for economic development.
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Figure 1.7- Comparison of bubble size distributions for 50mm and 200mm diameter
pipes, superficial gas/liquid velocities of 0.53 m/s and I m/s respectively.

This has led to an increased interest in deeper waters, harsher environments and more

remote locations, most notably in the Gulf of Mexico, the Brazilian Campos basin,

west of the Shetland Isles and the Angolan Aptian basin.

Many of the major deepwater developments are located in water depths exceeding

lkm, for example Elf's Girassol exploration field at l300m and Petrobras' Roncador

project at 1500-2000m. To transport the fluid produced from systems such as these

with the available pressure driving forces has led naturally to the specification of risers

of much greater diameter (typically 300 mm) than those used previously (typically 75

mm). Shell recently broke the record for the deepest drilling and production facility in

the world with the Perdido project, located in the Gulf of Mexico. This facility will be

operating in waters over 2200m deep, and drilling a further 2400m below the sea bed,

as shown in Figure 1.8. Therefore, the trend for the oil and gas industry is clear, with a

shift towards longer and larger diameter pipes in deeper waters.
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Figure 1.8-Deepwater Milestones (Source: www.Shell.com. 201 t)

1.4. Aims and objectives

This project continues the research conducted at the University of Nottingham in the

area of gas-liquid flow. It will build on the recent studies by Ombere-Iyari (2006),

Hernandez-Perez (2007) and Kaji (2008). This research will address both scientific

and industrial needs as outlined above in helping researchers and engineers understand

gas-liquid flow in large diameter risers in offshore production facilities. This will be

achieved by undertaking direct experimental investigations on a moderately large

diameter pipe built at the University of Nottingham, which avoids the necessity for

conducting experiments on smaller diameter pipes and then applying inaccurate

upscaling calculations. Experiments will be performed in which the phase distribution

about the pipe cross section will be measured using novel instrumentation in the form

of a wire mesh sensor. The University of Nottingham is the first institute in the world

to acquire a capacitance wire mesh sensor from the inventors HZDR (formerly FZD),

based in Dresden, Germany. This follows ongoing collaboration between the

University of Nottingham and HZDR over several years, during which a number of

joint papers have been published. Churn flow is a flow regime that has been the

subject of little research to date and is not well understood and will therefore be

further investigated in this project.

10
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Therefore the main scientific objectives set for this project are:

• Test and validate the two variant wire mesh sensors. This can be done by

comparing this type of sensor with several other multiphase instruments.

• Apply the wire mesh sensor to bubble columns and investigate the effect of

different fluids, injectors and diameters on the hydrodynamics.

• Apply the wire mesh sensor to large diameter pipe and collect data,
,

investigating in particular chum flow and structures within this flow pattern.

1.5. Outline of Thesis

As the title of the thesis suggests, this study is split into two parts. The project is

primarily experimental in nature and a large amount of novel data will be presented

and analysed. The first part of the thesis describes the testing of the specialist

instrument (wire mesh sensor, which will often be abbreviated as WMS), and the

second part discusses the implementation of the sensor. The two applications that will

be covered in this study are two phase gas-liquid mixtures in bubble columns and the

flow of two-phase gas liquid mixtures in large diameter pipes. The following gives a

succinct breakdown of the order and content of chapters in this thesis.

Chapter 1:A brief background and the rationale for carrying out this work.

Chapter 2: This Chapter contains the literature survey and a critical review of the

relevant published work on gas-liquid flows. This does not include a discussion of

bubble columns, material for which is presented in Chapter 5.

Chapter 3: This Chapter contains detailed information about the various rigs that are

used in this project, in addition to a comprehensive background and explanation of the

WMS. There are two variants of this sensor that have both been used in this project.

11
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Chapter 4: This Chapter describes the tests carried out to determine the accuracy and

limitations of the WMS, which makes use of the work that was carried out by the

author during a placement at HZDR in the summer of2009. Both variants of the wire

mesh sensor were tested and compared with gamma densitometry. The capacitance

WMS is a fairly new instrument that has not yet been used extensively. Therefore this

is a necessary activity, which forms the testing phase of the sensor and improves the

confidence in the results gathered during this project.

Chapter 5: This chapter presents and analyses the data collected from both variants of

the WMS on a number of bubble columns of various diameters and with various

liquids. This is the first of two chapters on the application of the WMS to two-phase

flow systems. Some modelling work is conducted and included in this section.

Chapter 6: This chapter contains the extensive data set obtained on the 127 mm

diameter rig with the WMS. The processed data is presented, analysed and compared

with that gathered with other instruments. New insights are formed into the behaviour

of two-phase flows in large diameter pipes. This chapter also contains a CFD

simulation that is compared with the experimental results.

Chapter 7: This chapter contains a summary of the main findings from this research

project, and makes several suggestions and recommendations for future work.

It is not possible to include all the data collected during this research project in the

thesis. Therefore a DVD is attached with the thesis, which contains significant amount

of the novel data that has been collected, in particular for Chapter 6 for the large

diameter pipe. It is highlighted in each Chapter, where extra material is available for

review on the DVD. The way the DVD is organised is self-explanatory and requires

no special software in order to operate it.

12
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2. CHAPTER 2: LITERATURE REVIEW

2.1. Introduction to Gas-Liquid flow

Gas-liquid flow is arguably the most complicated system to analyse out of the four

possible combinations of two-phase flow, due to the infinitely deformable interface

between the gas and liquid phases. There is the added complication that the gas phase

is also compressible. Gas-liquid flows can occur in horizontal, vertical and inclined

pipes, where each of these orientations will have its own characteristics, pressure

drops and flow patterns. This research primarily investigates vertical gas-liquid flow,

with both the gas and liquid "mixture" travelling upwards against gravity, which is

known as co-current flow. It is important to note that this is on the "macro" scale, and

that in the "micro" scale in vertical gas-liquid flow, the term "micro-gravity" is often

used to indicate that in very small diameter pipes the gravity is negligible.

Gas-liquid two-phase flow is encountered in many important industrial applications in

the oil, gas, chemical and nuclear industries. Applications include (Chisholm, 1983):

• Water tube boilers and reboilers.

• Water reactors in the nuclear industry (*).

• Gas lift pumps and oil wells; geothermal wells and volcanoes.

• Oil and gas transportation pipes and processing equipment.

• Refrigerators and process condensers.

(*) Boiling water reactor "BWR" exhibits two phase steam-water flow in normal

operating conditions, whereas with pressurised water reactor "PWR" steam-water flow

occurs in accident situations.

13
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2.2. Flow Patterns

When two fluids with different physical properties flow simultaneously in a pipe,

there is a wide range of possible resulting flow patterns. The surface tension and

gravity are the crucial physical parameters in determining the flow pattern in the pipe.

The surface tension keeps the pipe walls wet, and it also encourages small liquid drops

and small gas bubbles to be spherical in nature. The result of the gravitational force is

that the liquid tends to be pulled to the bottom of the pipe (Ghajar, 2005).

The multiphase flow may be classified as diabatic or adiabatic, which means it occurs

with or without heat addition or removal at the channel wall. An example of adiabatic

flow without heat transfer would be gas-oil or air-water flow in pipelines, which is the

type of flow that will be investigated and analysed in this project. In this type of flow,

the flow patterns change as the inlet mass flow rates of the gas or liquid are altered or

as the velocity and void distributions develop along the channel. This is in contrast

with diabatic flow, where boiling, dryout and phase change can occur (Corradini,

1998). Many different names have been given to these various patterns, with as many

as 84 having been reported in the literature (Rouhani et ai, 1983). The variations in

nomenclature are partly due to the subjective nature of flow pattern definitions, and

partly due to the variety of names given to what are essentially the same geometric

flow patterns. However, these classifications can be reduced to five main flow patterns

as shown in Figure 2.1, which is in contrast to one-phase flow, where their

characterisation as laminar, transitional or turbulent is much simpler. For two-phase

flow, bubbly and annular flows are often labelled as "continuous flow" whereas slug

and churn flow are termed as "intermittent flow". These flow patterns are dependent

on various parameters, which are volumetric flow rate of each phase, pressure,

14
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density, viscosity and surface tension of the phases, pipe inclination and pipe diameter

(Delhaye et ai, 1979).

Bubble Flow

Bubbly

Slug or Plug Flow

Slug

Churn Flow

Churn

Annular Flow

Annular

Wispy Annular Flow

Wispy

Figure 2.1-Two-phase flow patterns; gas flow rate increasing from left to right
(Sources: www.thermapedia.com. 2011 & Rhodes (1980))

Bubble Flow

Many bubbles can be observed as the gas is dispersed in the form of discrete bubbles

in the continuous liquid phase. These bubbles vary in size and shape and generally are

non-uniform in size and concentration. However, they are much smaller than the

diameter of the tube itself and they rise inside the liquid due to buoyancy, which

promotes collisions. In some circumstances, they congregate at the pipe centre, and in

others, they are distributed near the pipe walls. The sizes of the bubbles and the

15
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distribution of their sizes are important parameters that need to be considered. The

importance of bubble size has only been recognised comparatively recently (Song et

ai, 1995). In any bubble flow, two opposing processes are at work, which are bubble

coalescence as a result of bubble collisions, and bubble break up as a result of

turbulence in the liquid phase. At low liquid velocities when turbulence is small,

bubble coalescence dominates and the equilibrium bubble size is large. These larger

bubbles have distorted, constantly varying shapes, and they rise with a spiral or zigzag

trajectory, which promotes collisions. At higher velocities turbulence is increased, and

the equilibrium bubble size is smaller. These smaller bubbles are essentially spherical,

and they rise rectilinearly, reducing the number of collisions. This leads to the two

sub-regimes described above being termed as "discrete bubble" (low turbulence) and

"dispersed or poly-dispersed bubble" (high turbulence).

Slug or Plug Flow

With an increasing gas void fraction, the proximity of the bubbles becomes closer

such that bubbles collide and coalesce to form larger bubbles, with the bubble size

tending towards that of the channel (cross-section of the pipe). These bubbles have a

characteristic shape similar to a bullet, with a hemispherical nose and a blunt tail end.

They are commonly referred to as "Taylor bubbles" or sometimes "Dumitrescu

bubbles", and are considered as the "plugs". The Taylor bubbles are separated from

one another by "slugs" of liquid and small bubbles may be present. Small bubbles

may also be present in the wake behind the slug regions. The behaviour of the

entrained gas travelling in between the Taylor bubbles is not well understood. Taylor

bubbles are surrounded by a thin liquid film, situated between them and the tube wall,

which may flow downward due to the force of gravity even though the net flow of

fluid is upward. Therefore, slug flow displays intermittency in the flow direction,
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which results in a significant change in the shear stress/frictional pressure gradient,

resulting in negative values that are not consistent with some correlations.

Churn flow

Increasing the superficial gas velocity results in the structure of the flow becoming

unstable after the break down of the Taylor bubbles. The gas-liquid mixture travels up

and down in an oscillatory or churning motion, but with a net upward flow. The

instability is the result of the relative parity of the gravity and shear forces acting in

opposing directions on the thin film of liquid surrounding the Taylor bubbles. This

flow pattern is in fact an intermediate pattern between the slug flow and annular flow

regimes (Figure 2.2).

Plug/Slug
Intermittent

- Churn
Intermittent"I,

t
t~

Annular
Continuous

....,. t., -'
Source(s)-AERE Harwell, Watson & Hewitt(1999)

1

Figure 2.2-SJug/Churn/AnnuJar in a cross-section of pipe

Churn flow is an important pattern, which often covers a fairly wide range of gas flow

rates. At the lower end of the range, churn flow may be regarded as a broken-up form

of slug flow, with occasional bridging across the tube by the liquid phase. At the

higher end of the range of gas flow rates, churn flow may be considered as a

degenerate form of annular flow, with variation in the direction of the film flow and
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very large waves being formed on the interface as shown in Figure 2.2. In this higher

range, the term 'semi-annular flow' has sometimes been applied. A mechanistic

description of the gas-liquid interaction in the chum flow regime is very difficult.

Chum flow is the flow pattern that is the focus of research in this project, and it will

be investigated in more detail.

Annular Flow

Once the interfacial shear of the high velocity gas on the liquid film becomes

dominant over the gravitational force, the liquid is expelled from the centre of the tube

and flows as a thin film on the wall, which forms an annular ring of liquid, "wetting"

the wall. The gas flows together with the liquid as a continuous phase up the centre of

the tube, as shown in Figure 2.2. The interface between them is disturbed by high

frequency waves and ripples. Waves are formed on the surface of the liquid film and

the amplitude of the waves increases as the gas velocity increases. In addition, liquid

may be entrained in the gas core as small droplets, and the fraction of liquid that is

entrained may be balanced by the re-deposition of droplets from the gas core onto the

liquid film. The liquid phase is always moving upwards, whether as droplets or a film,

which is what distinguishes annular flow from chum flow, although in both flow

patterns there is a continuous gas core. Pure annular flow, without any entrained

droplets present at all, is probably not realisable in practice for most gas-liquid

applications.

Wispy-Annular Flow

This unusual flow pattern was first identified by Bennett et al. in 1965. If the liquid

flow rate is increased further, large liquid objects may be observed within the gas core.

These have been termed 'wisps'. Their appearance has been compared to ectoplasm.
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This has been classified as a separate flow pattern by Hewitt-Roberts (1969) although

several other flow maps don't refer to it. Hawkes et al. (2000, 2001) have suggested

that the wisps arise from agglomeration of the drops that must be present in large

concentrations within the gas core. Under some circumstances, bubbles of gas may be

entrained in the liquid film. This flow pattern is important in a wide range of industrial

applications, such as in nuclear reactors and power station boilers.

2.3. Gas Fraction

The void or gas fraction 6g is a dimensionless quantity that varies between 0 to 1, or

is sometimes expressed as a percentage between 0-100%, which indicates the fraction

of a geometry or temporal domain occupied by the gas phase. It is probably the most

significant quantity that could be measured in two-phase flow (Bertola, 2003). It is

sometimes referred to as "liquid hold-up", which is equal to 1- 6g. Void fraction is a

function of many parameters, such as the fluid physical properties, pipe dimensions,

angle of inclination, phase flow rates and system pressure. It is an important quantity

in two-phase pressure drop prediction, flow pattern transitions, heat transfer and sizing

of process and control equipment, such as slug catchers, separators, two-phase pumps

and control valves. The gas fraction will change progressively along the pipe length,

due to the change in fluid pressure and temperature (Saleh 2002). The void fraction

will determine the two-phase density, two-phase viscosity and the relative average

velocity between the two phases. Understanding where the liquid or gas is located

inside the pipe and how it is distributed (the phase distribution) is of great importance

to many industries.

A local time-averaged void fraction may be determined by measuring the cumulative

residence time of the gas phase over a total time interval t. Such a measurement may
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be made using electrical or optical probes (Hewitt 1978). Alternatively, at any instant

of time, a line passing through the channel normal to the channel axis will lie partly in

the liquid phase and partly in the gas phase. An instantaneous line-averaged or

chordal void fraction may be defined as the length of the line submerged in the gas

phase over the total length of the line within the channel. Such a measurement may be

made using the attenuation of an x-ray or y-ray beam (Hewitt 1978). Similarly, an

instantaneous area (or volume) averaged void fraction may be defined as the area (or

volume) of the channel occupied by the gas phase divided by the cross sectional area

(or total volume) of the channel. The volume averaged gas fraction may be measured

using quick-closing valves at the entrance and exit of the channel (Hewitt 1978). The

space and time averaged gas fractions will be equal only in the circumstance when the

flow is steady and one-dimensional. These definitions are summarised in Figure 2.3

(Thome, 2004).

Figure 2.3- The different definitions of void fraction, Thome (2004)

It is important to differentiate between the different types of void fraction, as it is

occasionally the case that they are treated as being the same in some literature, which

is clearly not correct. In this report, all four types of void fraction will be encountered
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as they have been defined above. A general expression for the void fraction can be

derived as follows (Azzopardi, 2003, 2006), where the flow rate and cross-sectional

area can be eliminated:

1
(2.1)6g = ---p-(::-l_-x"'7'")

I+U g g
R p,Xg

(2.2)

(2.3)

From equation (2.1), the higher the quality x, the bigger the void fraction will be. UR is

known as the slip ratio or velocity ratio, which is a dimensionless quantity. In this

report, 6g is generally the cross-sectional void fraction. Note that ug and UI are the true

phase velocities in equation (2.2). When Ug=UI then UR=1in equation (2.1) and this is

known as the homogeneous flow model. The homogeneous void or gas fraction is

given as (Azzopardi, 2003, 2006):

1 1 (2.4)6gH = --- =
1+ Uis
u;

1+ (1 - x, ) Pg
Xg PI

The gas phase tends to travel faster than the liquid phase, for example in annular flow

the gas core would flow faster than the liquid film on the pipe wall. This is because

PI>Pg. which implies UR >1and this will be known as the separated flow model.

At this stage 6, is unknown, therefore U» and Ugscan be calculated, and these are

known as the phase superficial velocities. These are the theoretical velocities each

phase would possess if it flowed on its own within the entire pipe cross-section, and

they can be calculated as long as the flow rate of each phase is known. The mixture
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velocity is defined as the sum of these two superficial velocities, which are given for

the gas and liquid as:

•
U = Qg = mxg;
gs Ag +A, Pg

•
(2.5)

The quality can also be expressed in terms of the superficial velocities as follows:

(2.6)

In order to calculate eg' it is first necessary to determine UR when UR >I.

2.4. SlipRatioUR••

Several correlations have been reported for UR• Some of these are empirical, and some

analytical. Examples of these can be found in works by, Zivi (1964), Zuber (1967),

CISE (1970), Smith (1971), Chisholm (1972) and HTFS. Details of two of these

correlations by Chisholm and CISE are given below.

Chisholm Correlation

Chisholm's correlation provides a very simple, reasonably accurate result, and is

useful for determining a quick estimate of UR:

(2.7)

CISE Correlation

Premoli et al. (1970), also known as the CISE correlation, yielded a more complicated

expression for UR• CISE correlation is generally the most accurate applicable

correlation (Whalley 1987,Hills et al 1997), and it is summarised in Appendix A.
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HTFS at Harwell have generated another correlation for UR in terms of three empirically

chosen parameters, and based on a large experimental database (Azzopardi, 2003):

(2.8)

Computer programs for designing heat exchangers, such as MTasc, use equations such

as equation 2.8 in a commercial context. HTFS correlation has been shown to be very

accurate; however, details are proprietary and only available to subscribers.

Correlations have in general been derived from data obtained from small diameter

pipes. The important question is can they be applied to larger diameter pipes with

minimal errors? This thesis will test some of these engineering methods and compare

them with experimental values.

2.5. Pressure Drop

Apart from the void fraction, the next important quantity that requires definition for

two-phase flow is the pressure drop. There are several methodologies for calculating

the pressure drop, and these will be explained in this section. Calculating the pressure

drop is a major requirement for two phase flow, which is involved in the calculation of

flow rates under a given head loss, and of pumping requirements for a given flow rate.

More information about the pressure drop can be found in Appendix A.

2.6. Homogeneous Flow

The simplest approach to analysing two-phase flow is homogeneous flow, where the

liquid and gas are replaced by a theoretical single phase fluid travelling with one

velocity (equivalent to the liquid and gas phases travelling with equal velocities). The

phase temperatures and pressures are also assumed to be equal. The corresponding

pressure drop for homogeneous flow is (Whalley, 1987 and Hewitt, 1998):
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Change in momentum= Wall Shear Stress+Gravitational Force+Pressure Force

dp _ (dP) (dP) (dP)
- dz - - dz Irldlon - dz grovilollar - dz o=lerallon

(2.9)

dp - P . • 2 d ( 1 J--=T-+PHgsmp+m - --
dz S dz PH

(2.10)

2.7. SeparatedFlow

For separated flow, the two phases are no longer assumed to flow with same

velocities. Essentially, this is a ID approach i.e. all changes occur along the pipe. A

"generalised" equation is given by (Hewitt 1998, Azzopardi 2006):

[ .]dp - P . • 2 d n x;
--=T-+PMpgsmp+m - L--
dz S dz s ..1 Pscs

(2.11)

The pressure drop equation can also be written as (see Appendix A for more details):

(2.12)

In vertical flow the majority of pressure loss will be due to the gravity or head of

liquid at low quality values. It should be noted that for higher velocities and quality,

frictional and accelerational losses contribute a greater part to the total pressure drop,

and therefore cannot be neglected at the higher flow rates (Saleh, 2002, Takacs, 2005).

The accelerational term tends to be important when there is a phase change in the form

of evaporation or condensation. In this research, the accelerational term will be

assumed to be small and can be neglected; hence equation (2.12) can be simplified to:

(2.13)
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From equation (2.13), the gravitational pressure drop can be seen to be dependent on

eg and therefore as eg is increased, the gravitational pressure drop decreases. This is

behind the use of artificial gas lift in vertical facilities in the oil industry. As the gas is

injected into the system, the void fraction is increased, therefore the gravitational

pressure drop decreases, and this subsequently reduces the pumping power

requirements.

2.8. Frictional Pressure Drop

The two phase frictional pressure drop can be considered as the product of a single

phase frictional pressure gradient multiplied by a two phase multiplier ;:0:
• 2 .2

Zt4 /10 m 2 d. 4 /10 m Zt 2
- !l.Pfriaional = J---- tPlo Z = -- -- J tPlo dz

ZI d 2 PI d 2 PI ZI

(2.14)

It is not possible to measure the frictional pressure drop directly, so this term is

obtained by subtracting the measured acceleration (unless this is neglected) and

gravity components from the measured total pressure drop. There are many frictional

pressure drop correlations presented in the literature, for example Martinelli-Nelson

(1948), Lockhart-Martinelli (1949), Bankoff (1960), DuckIer (1964), Thorn (1964),

Baroczy (1966), Chawla (1968), Gronnerud (1972), Beggs and Brill (1973), Chisholm

(1973), Friedel (1979), Muller-Steinhagen and Heck (1986).

Hewitt (1998) reported that Whalley (1980)' made an extensive comparison and

evaluation between various published correlations and the HTFS proprietary database

(which consisted of over 25,000 data points). The following recommendations were made:

• !JL < 1000 and ;" < 2000 kg/m2s, then Friedel (1979) correlation should be used .
77g
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• !l!_ > 1000 and rn > 100 kglm2s, then Chisholm (1973) correlation should be used .
1}g

• !l!_ > 1000 and m < 100 kglm2s, then Lockhart-Martinelli (1949) should be used .
1}g

Friedel, Chisholm and Lockhart-Martinelli correlations will be introduced below.

Lockhart-Martinelli/ Chisholm Correlations
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Figure 2.4-Lockhart-Martinelli Graph, Azzopardi (2010).

Lockhart-Martinelli (1949) produced a value for the multiplier in graphical form as

shown in Figure 2.4. Two sets of four lines are plotted based on each phase being

either laminar (viscous) or turbulent at local conditions, which can be calculated using

Re number. For turbulent flow, Re > 2000. Chisholm (1973) determined equations to

fit this graph in order to generate equation 2.15. The C values for equation 2.15 are

given in Table 2.1 as ¢:=1+!2 +_!_
X X2

(2 ..15)

C 20 12 10 5

Gas t t v v

Liquid t v t v

Table 2.]-C Values, Azzopardi (20]0).
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Friedel Correlation

For most fluids, !J..L < 1000. For example, for the two-phase air-water mixture then:
17g

!J..L =53.867 (at normal pressure).
17g

The Friedel (1979) correlation is therefore recommended, which is a fairly

complicated expression that is given in Appendix A. HTFS at Harwell (Azzopardi,

2003) have also published correlations for ;,!, which are of the form

( J
O.2

;,! = !(:nTP,A,X), where A is the Baroczy property index: A = Pg !l.L. and X
PI 17g

is the Lockhart-Martinelli parameter. The equation is proprietary and only available to

subscribers to HTFS. Levy (1999) reported that the EPR! correlation is also being

used, which was developed by Chexal et al. (1986).

Pressure Gradient

The pressure will vary from one flow pattern to another. The onset of slug flow is

accompanied by a sharp decrease in the pressure gradient down to a minimum value

(Owen 1986). As the gas velocity is further increased, the pressure gradient initially

increases significantly with the onset of churn flow. It reaches a maximum and then

drops, subsequently passing through a minimum value. Eventually the pressure

gradient increases again with the onset of annular flow as the gas flow rate increases,

as shown in Figure 2.5. T-hefigure also shows how the various correlations described

earlier compare with experimental data from Owen (1986). Most perform well except

for the homogeneous approximation.
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Figure 2.S-Pressure gradient of air-water mixture in a vertical tube. Azzopardi (2010)

A similar graph to Figure 2.5 was recently presented by Duang Praset et al. (2008).

The downward part of the curve will be dominated by gravity as the flow rate is low,

and hence flow-dependent frictional losses will also be low. This continues up to a

minimum value, and then the frictional pressure drop will exceed the gravitational

forces at the higher flow rates. From an industrial perspective, some flow patterns are

considered to be more beneficial than others depending on the situation and

application. For example, bubbly flow is desirable in chemical reactors and in the oil

and gas industry. The reason for this slug and churn flows can cause pressure

fluctuations, hence significant vibration and potential damage to equipment and

pipework, meaning in some cases expensive solutions such as slug catchers may be

required. However, slug and churn flows may be favoured over bubbly/mist flows

which are difficult to deal with by separators due to the presence of very small bubbles

and drops. Slug flow can also assist in cleaning up pipes by acting as a virtual "pig",

and can also aid solid transportation. Annular flow is a particularly stable type of flow

and can be found in many industries. For example it may be applied to cool down

pipes through the formation of the liquid film on the pipe wall. It also occurs in more

applications than any other type of flow (Rhodes, 1980).
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2.9. Signatures of the flow (PDF & PSD)

PDF

Direct observation through a transparent pipe section, particularly through a high

speed camera, can allow visual and qualitative interpretation of the flow inside the

pipe. However, this is very subjective, and in early projects such as Bennett et al.

(1965), researchers formed a consensus through anonymous voting. Visual

observations are also problematic, because the flow at the pipe wall is often obscured

by bubbles, particularly at higher velocities, meaning that it is difficult to know what

is happening deep inside the pipe through this approach alone. A more objective

approach is to gather signals from instruments and then interpret those signals

quantitatively. What becomes obvious is that certain signatures are observed for

particular types of flow, for example through the time series of void fraction and

through the probability density function or PDF. The PDF is a histogram or amplitude

variation of the frequencies of the void fractions. Researchers who applied this

approach include Jones et al. (1975) and Costigan et al. (1997).

,.. 0.151t~D: ~~I· _..j
·0 • • ~ ••!----"....-=----:1Ioot .. , __

Figure 2.6-Time series and PDF profiles (Costigan & Whalley, 1997)

Figure 2.6 shows typical PDF profiles for the flow patterns described earlier in this

section. It is interesting to note that for bubbly flow there is a single peak at low voids
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of 0.2-0.3, Slug flow contains two peaks (lst peak-liquid, 2nd peak-gas), churn occurs

at voids above 0.5-0.6, which has a single peak with a tail, and finally annular flow

has a single peak at high voids ofO.8-0.9.

PSD
Dominant frequencies can be obtained by using the Power Spectrum Density (PSD).

Hubbard and Dukler (1966) used the PSD of pressure fluctuations to identify three

different types of flow in horizontal pipes, which are separated flow, dispersed flow

and intermittent flow. Hawkes and Hewitt (1995) measured the power spectral density

of pressure gradient fluctuations in wispy annular flow, and their results are shown in

Figure 2.7. Two peaks appear in the spectrum, one at ~5 Hz and a second at ~ 16 Hz.
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Figure 2.7-Flow identification by PSD for Wispy Annular Flow.

Geraci (2005), Ombere-lyari (2006), Hernandez-Perez (2007) and Kaji (2008) have all

used the PDF together with the PSD approach in their work, and this will also be used

in this project. Kaji (2008) uses a fairly novel PSD method, with a cosine windowing

function to filter the signal, particularly at higher frequencies. It can be concluded

from the PDF and PSD that most flow patterns are characterised by periodic

structures. In addition, it can be seen there is a variation in void fraction as well a

pressure gradient from one flow pattern to another.

30



Chapter 2: Literature & Technical Review

2.10. Structures in the flow

Sun et al. (1999) reported that Zuber (1965) and Wallis (1969) put forward the

concept of kinematic or void waves in two-phase flow, which considered that the void

fraction waves played an important role in gas-liquid two-phase flow. Sekoguchi and

Mori (1997) used multiple point probes to extract further information about the flow,

and they identified that Taylor bubbles and liquid slugs occurred in slug flow "S",

huge waves "H" in churn flow and disturbance waves "0" in annular flow. Their work

was pioneering in identifying that several different structures can occur

simultaneously. For example, slugs "S" and huge waves "H", or huge wave "H" and

disturbance waves "D" occurring together for the same flow condition can be seen in

Figure 2.8. Since the plot expresses distance (y-axis) against time (x-axis), the

gradients of the lines represent the velocities. Huge waves have steeper gradients than

disturbance waves, and hence higher velocities.
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Figure 2.8-Structures as identified by Sekoguchi et al. (1997)

Similar structures were reported by Oamsohn et al. (2009). The disturbance waves for

small (0.032m) and large (0.125111)diameter pipes were captured by Azzopardi and

Gibbons (1983) (Figure 1.6 in Chapter I). Tt is interesting to note that the waves in

small diameter pipes are coherent around the tube circumference, whereas for large

diameters, there is no circumferential identity and the waves are localised to fairly

small areas. They are not perpendicular to the main flow, but curve as bow waves.
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2.11. Flow Pattern Maps

Flow pattern data are often represented on an x-y map, where common variables for x

and yare liquid and gas superficial velocities. There are numerous maps of this kind

published in the literature; however, these are specific to a particular combination of

fluids and geometry. The most common method for constructing a flow map is to

identify the flow pattern at a set of conditions covering the field and then to sketch in

the boundary lines separating the different patterns (Azzopardi 2003).

One of the most popular flow pattern maps for vertical flow is that of Roberts-Hewitt

(1969), as shown in Figure 2.9. This map was constructed using data from a 0.032m

diameter pipe for air-water at 0.4-4.5 bar(g), and from steam-water data by Bennett et

al. (1965) for a 0.0127m diameter pipe at elevated pressures of 35 and 70 bar(g). The

map uses the momentum flux for gas (pgUg/) against liquid (p,Ut/) instead of the

superficial velocities of liquid against gas to cover a wider variety of fluids and

geometries, in order to take into account the densities of the phases.
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Figure 2.9-Hewitt and Roberts flow pattern map (1969).
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To utilise this map, the superficial velocities for the gas and liquid need to be

calculated using the gas quality. Then, the flow pattern can be identified from the map.

However, this map is quite subjective, because the results were generated using visual

observations as mentioned earlier. A new version of the Hewitt and Roberts map with

the same axes but different boundaries was generated by Owen, which appears to give

better results, particularly for evaporating flows. It is shown in Figure 2.10:

Figure 2.10-Empirical flow-pattern map (Owen, 1986)

Taitel and DuckIer (1980) have also produced a popular map for vertical flow using a

semi-empirical approach. This is shown in Figure 2.11.
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Figure 2.11-Flow map by Taitel et al. (1980)
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Most of the flow maps in the literature have been constructed for small to medium

diameter pipes, and no reliable universal flow map has yet been produced (Azzopardi

2003). This is illustrated by the map in Figure 2.12, extracted by Azzopardi et al.

(2004), where there is an apparent lack of agreement among the different flow maps.
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Sekoguchl: Slug, Huge
waves, disturbance waves.
Wave frequency of HID is
the same.

Figure 2.12-Combined Flow Map (Hewitt-Roberts, Duns-Ros, Kaya and Sekoguchi)

There does not appear to be a consensus among researchers on the best co-ordinate

system for these maps, and many dimensional and dimensionless numbers have been

proposed for the x-y axis. Duns-Ros (1963) used the following two dimensionless

groups to describe the flow patterns:

Liquid velocity Number N = u,.. ~ p, = I.938 u,.. Jp;
gcy, V-;;;

Gas Velocity Number RN = u", ~ p, = 1.938u", Jp;
so, V-;;;

(2.16)

(2.17)

The corresponding flow pattern map IS shown 111 Figure 2.13. This map IS fairly

popular in the oil and gas industry.
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Figure 2.13 -Vertical flow pattern map according to Duns-Ros (1963).

Taitel and Duckier (1976) have also produced a flow pattern map for horizontal flow

using several dimensionless numbers that include the density and viscosity of the

phases, as well as the pipe diameter and angle of elevation. Using dimensionless

groups is popular in single phase flow, and it is certainly a powerful approach, because

a flow map with dimensionless parameters can allow it to be used for pipes of

different diameters and fluid properties. Therefore the important question is could a

new dimensionless map be proposed using popular dimensionless numbers? For

example, Reynolds (Re), Froude (Fr) and Weber (We) numbers could be considered.

Expressing these groups mathematically:

puDRe=--
77

(2.18)

gFr=
D

(2.19)

(2.20)

The Froude number expresses the ratio of the inertial force to the gravitational force.
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The effect of using pu2 was shown by Hewitt-Roberts (1969). The Weber number

multiplies pu2 by Dzo, and the Weber number basically expresses the ratio of the

inertial force to the surface tension force. An exercise was carried out to investigate

the use of the We number for both the x and y co-ordinates. Figure 2.14 shows the

familiar momentum flux flow map for air-water by Hewitt-Roberts, together with the

conversion of this map to the Weber number shown in Figure 2.15. Figure 2.16 and

Figure 2.17 represent a similar exercise for steam-water using Bennett et ai's data. It

can be inferred from comparing these flow pattern maps qualitatively that the We

number flow pattern maps generate similar boundaries to the momentum flux maps.

Table 2.2 explains why this is the case, and it can be seen that the ratio of the diameter

to the surface tension is the same for air-water and steam-water at 35 bar, and only

55% larger for steam-water at 70 bar.

Air-H20 (4.5bar) Steam-Hjf) (35 bar) Steam-H20 (70 bar)

D 0.032 0.0127 0.0127

G 0.072 0.0279 0.0179

DIG 0.44 0.45 0.7

Table 2.2-Comparison of DIG for three data sets
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Figure 2.16 -Momentum Flux flow map (Steam-Water 35 & 70 bar).
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2.12. What is churn flow?

Due to the complexity and instability (intermittency) of chum flow, with Azzopardi

(2009) postulating that this flow is "chaotic" in nature, it is probably the least well

understood flow pattern. Barbosa et al (2001a) made an attempt at modelling churn

flow in a small diameter pipe however there is currently no thorough and complete

model for chum flow (Azzopardi, 2006). Intriguingly Azzopardi (2008) also found

similarities between gas-solid flow patterns and chum flow in gas-liquid flow. A

number of leading researchers in this field have often stated that churn flow is a very

important flow pattern, perhaps even more so than the other intermittent flow patterns,

such as slug flow, which receive much more attention. This is because chum covers a

large area in the flow map between slug and annular flows. A simplistic explanation of

churn flow was given earlier in this report. This flow pattern is surrounded with

controversy, and some researchers argue that it does not even exist. For example, Mao

and Dukler (1993) published the paper "The myth of chum flow?", which Hewitt and

Jayanti (1993) responded to with "To chum or not to chum". Barbosa et al. (2001a)

presented "Churn flow: myth, mystery and magic". It is clear there is lack of

agreement on how to define chum flow.

Three ideas have been put forward for defining developed chum flow:

(a) Churn-turbulent flow (also in bubble columns) as proposed by Zuber et al (1965).

(b) Developing slug flow as proposed by Taitel et al. (1980).

(c) Individual flow region between slug and annular flow as proposed by Hewitt and

Hall Taylor (1970). The focus of this thesis will be on this final definition.

Jayanti and Hewitt (1992) reported that there are four major schools of thought for the

transition from slug to churn flow:
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(a) Entrance effect mechanism: Taitel et al. (1980) and Dukler and Taitel (1986)

considered churn flow as a developing slug flow, due to an entrance effect.

(b) Bubble coalescence mechanism: Brauner et al (1986) attributed the transition to

the entrainment of bubbles in the liquid slug and their subsequent coalescence.

(c) Wake effect mechanism: Mishima and Ishii (1984) attributed the transition to the

reduction of the liquid slug length, which would lead to a strong wake effect of the

Taylor bubble and the destabilisation and destruction of the slug itself.

(d) Flooding mechanism: Nicklin and Davidson (1962), Wallis (1962), McQuillan and

Whalley (1985a) and Govan et al. (1991) attributed the transition to the effect of

reduced local flooding of the liquid film due to gravity around the Taylor bubble and

flowing in counter-current to the gas. One of the crucial experiments on deciding the

mechanism for the onset of churn flow was the investigation of the effect of pressure

on the transition by Watson and Hewitt (1999). The flooding mechanism was the only

one to give a correct indication of the effect of pressure. Flooding is of considerable

industrial importance (Hewitt, 1996). It is the limiting condition for the operation of

reflux condensers, it is a controlling mechanism for critical heat flux in closed-end

channels, it limits the ingress of water in postulated loss-off coolant accidents in

nuclear reactors and, as described above, it governs the transition from slug to churn

flow. Consider the flooding mechanism shown in Figure 2.18, for counter-current flow

i.e. gas and liquid flowing in opposite directions.

(a) (b) (c) (d) (e) If) (g)

Liquid
(Constant

Rata)

.,. .,. .,.
Gas (Flooding)

t .,. .,.
(Flow Reversal)

Increasing Gas Rate Decreasing Ga. Rate

Figure 2.18-Flooding and Flow Reversal (Hewitt, Themopedia.com)
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Liquid is introduced in the middle of the pipe, which is allowed to fall under gravity as

a film. This is (a) in Figure 2.18. As the gas rate is increased, then flooding occurs in

(b) and the liquid starts to travel upwards. It then travels upwards and downwards in

(c) and (d), until case (e), when all the flow is flowing upwards. At this stage, if the

gas flow rate is reduced, liquid first hangs at the liquid inlet point. Then if the gas flow

is further decreased, liquid begins to fall below the injector (g), which is known as

flow reversal.

Detailed experimental work on flooding was carried out by Govan et at. (1991).

Flooding waves were found to be created in the Taylor bubbles as the transition to

chum flow is approached (Jayanti et al, 1993). Flooding waves do not exist in slug or

annular flow (Hewitt et al, 1985). Kaji et al. (2009) used several pairs of ring probes

and cross-correlated the data from several pairs. They focussed on the Taylor bubble

region and found that there were both positive and negative velocities around the

slug/chum transition. This shows that there clearly was flooding occurring at the film

around the Taylor bubble.

For small diameter pipes, McQuillan and Whalley (l985b) developed a theory that

embodied the Wallis (1969) correlation for flooding. Jayanti and Hewitt (1992)

extended the theory by introducing a new flooding correlation, which took into

account the length of the falling film.

D· . I fi . I I'· Ugs,jP;imensron ess super icia gas ve ocity Ug = 1/2
(g D,(P,-Pg») (2.21)'

D· . I rfi . II' 'd I'· UIS#,imension ess supe icia IqUI ve ocity Ur = 1/2
(g D, (p,- Pg})

(2.22)
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For flooding u; =1. These numbers are essentially a balance between the inertial

forces and the gravitational forces, normally known as the Fr number. u; and u; are

inter-related by the following equation:

(2.23)

c, = 0.1928+0.OJ08{~ )-3.754X JO-,(~),forUd,; 120 (2.24)

Cl ~ 1 forUd > 120 (2.25)

In the limiting case for zero downflow of liquid i.e. when flooding or flow reversal

occurs, then u; =1 and:

(2.26)

/12r: /. ( ,»)/12 (g D, (PI- Pg»)
Ugs V Pg = ,g D, PI - P g ~ Ugs = r::-

VPg
(2.27)

Equation (2.27) predicts an increase in flooding velocity with increasing tube

diameter. There is a large scatter observed when .J;7, is plotted against JJ (Govan

et ai, 1991).

In large pipes, a different mechanism to flooding was proposed, since the wave is not

continuous about the pipe as was seen earlier. Drops are formed off the more local

waves, as gas either drags the drop upwards or gravity drags it downwards. The

balance of drag up and gravity down depends on the size of a droplet, which cannot be

more than a critical diameter. As explained previously, the balance between the

inertial and surface tension forces is known as the Weber number or We. According to

Hinze (1955), if We>13, the droplet will break up in motion due to the inertial forces.

However, if We<13 the drop will survive due to surface tension. Azzopardi (1983)
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considered two key mechanisms for droplet break-up, namely "bag" and "ligament"

break-up, which are related to the We number.

Another dimensionless constant can be extracted:

2D 2 2 4PgUg I PgUg PgUg
WeFrg = a glO/ - Pg )DI = ga(p/ - Pg )

This is commonly referred to via (We Frgt·25 , which is called the Kutatdeladze

(2.28)

number or Kug• Pushkina et al. (1969) proposed that Kug=3.2 for large diameter pipes,

although We=l3 will give a KUgvalue of2.5 (Whalley, 1987).

(2.29)

(2.30)

(2.31)

(2.32)

It is interesting to note that here Ug& is independent of the diameter, or rather that

diameter has no effect. A similar equation to (2.23) can be written as:

(2.33)

McQuillan et al. (1985) obtained a value for u; of approximately 0.9, which covered

many experimental results. McQuillan and Whalley (1985b) carried out a systematic

comparison of flooding equations against a bank of 2762 experimental data points

available at the time. They concluded that a modified version of the equation of
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Alekseev et al. (1972) was the most accurate, due to the scatter with Wallis'

correlation.

Ku 0.286 BOO.26 Fr-0.22 (J .».yO.18
17w

(2.34)

Some researchers claim the amount of liquid travelling as drops or entrained liquid

varies with Ugs, in a decreasing then increasing manner. For example, Wallis (1962)

proposed this theory as displayed in Figure 2.19 (left). Barbosa et al. (2002) proposed

the following correlation for entrainment (Figure 2.19; right):

(2.35)
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Figure 2.19-The effect of gas superficial velocity on liquid entrainment

Azzopardi and Wren (2004) however casted doubts on this idea. They con idered data

collected from a T-junction, and concluded that the entrained fraction has a very weak

dependence on the gas flow rate. Azzopardi and Wren subsequently proposed a

simplified correlation, which is independent of diameter, where:

E = 0 47UOI6U°.35 for U < 5mlsJ . gs Is gs (2.36a)

E = 0 6U°.35J . Is for u, > 5mls (2.36b)
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Recently, Ahmad et al. (20] 0) published a new correlation for the entrainment rate,

shown in equation 2.37. Figure 2.20 shows the variation in entrainment at 2 bar.

EChurn = -8.73u; + 9.73
EAnnular,local

(2.37)

~:!:T_--G-L-=2-2-k9-1m"':'·/-se-c,....---------::(a:7")-...,

0.32 __ GL=46kglm'lsec
0.31) GL=126kgfm'lse .~ _~.
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Figure 2.20-Entrainment rate for churn and annular flow at 2 bar (Ahmad et ai, 2010)

2.12.1. Structures in churn flow

Hernandez-Perez et al. (20 10) recently reported the existence of unusual structures

present in a vertical air-water mixture at gas velocities of U1s=0.25m/s and Ugs=5.7m/s

in a 67mm diameter pipe. These were measured using the WMS. The structures occur

in the churn region and they have been labelled as "wisps". These are similar to the

wisps in wispy-annular flow reported by Hewitt-Roberts in a 32mm pipe (1969)

obtained with x-rays, and Prasser et al. (2002a), in a 51 mm pipe (Figure 2.21)

measured using the WMS. However, the gas velocity was lower than that observed by

HewittlPrasser. For example, Prasser et al. (2002) reported these structures occurring

at U1s=lm/s and Ugs=lOm/s in the annular region, and not for churn flow. The work of

Hernandez-Perez et al. (20 I0) indicates that the wisps might be a product of a process

of atomisation from the liquid film, which does not proceed to completion. This

phenomenon could be considered as a function of the fluid's inertia compared to its

surface tension, or rather the We number.
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[;J ~
Figure 2.21-Sausage like objects in the gas core: (a) Hernandez et al. (2010). (b) Hewitt et

al. (1969), (c) Prasser et al. (2002)

For the 67mm pipe (Hernandez et al), Weg was calculated as 36. For the 32mm pipe

(Hewitt-Roberts), Weg was 26, and for the 51 mm pipe (Prasser et al), Weg was 84.

Figure 2.22 shows the frequencies of the periodic structures reported by Sekoguchi

and Mori (1997). The frequencies fall and rise systematically with increasing gas

superficial velocity. The frequencies of huge and disturbance waves show similarities

)00.----------------------.

to those of wisps and disturbance waves reported by Hawkes et al. (2000).
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Figure 2.22-(Left) Frequencies of slug/huge waves/disturbance waves reported by
Sekoguchi et al (1997). Pipe= 26 mm, pressure = 2 bar, liq superficial velocity = 0.1 m/so

These frequencies are compared with those obtained by Hawkes et al (right)

The important questions to be answered in this thesis are do these structures also occur

in large diameter pipes in the churn region, and do they occur with other two phase

mixtures such as air-oil? How do wisps form and why? Why haven't they been

reported in the past? Are these structures caused by the WMS?
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2.13. Flow pattern models

For the main flow patterns, the available models in the literature were compared with

experimental data by Holt et al. (1999) and Azzopardi and Hills (2003). This exercise

was carried out for small diameter pipes, and involved using drift flux correlations for

bubble flow. Slug flow was dealt with by a mechanistic description involing separate

sections around and between the Taylor bubbles, and finally the de Cachard and

Delhaye model and an annular flow model were used for both churn and annular

patterns. The results are shown in Table 2.3.

Flow Data Correction Range
Model/ Correlation

pattern points factor factor

Bubbly flow model 181 1.003 1.162
Bubbly

Friedel/CISE L81 1.008 1.165

Slug flow model 1495 0.854 1.720
Slug

Friedel/CISE 1495 1.031 1.828

Churn flow model 524 1.155 3.370

Churn Annular flow moo€1
I

524
I

0.975
I

1.693

Friedel/elSE 514 0.809 1.861

Annular flow model 3556 0.540 5.010
Annular

Friedel/CISE 3545 1.0171 1.788

Table 2.3-Comparison of correlations with flow specific models, Azzopardi & Hills (2003)

Halt et al. (1999) concluded that the drift flux model performs very well. The

comparison of the model predictions with the churn flow data is somewhat

disappointing and it is interesting to note that the annular flow model performed better

than the churn model in predicting the churn flow pressure drops. This observation,

regarding the performance of annular models in predicting data from churn flow

systems, is consistent also with that of Whalley (1987).
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2.14. Flow pattern Transitions

The transitions between different flow patterns do not always occur as predicted by

the flow maps above. Often the transitions are gradual, and sometimes a few

experimental points lie on the wrong side of the transition lines. The lines should

therefore be considered as bands or zones of indeterminate width (Azzopardi 2003).

Typically for small diameter pipes, the void fraction of gas is between 25 and 30%

when the transition from bubble to slug flow occurs. The bubbles coalesce to form the

large Taylor bubble, and as the gas flow rate is increased, the pattern changes from

bubble, to plug, to churn, to annular and finally to wispy annular flow. The transitions

below are summarised by Azzopardi (2003, 2006). These results are mainly for small

diameter pipes.

Bubble to Slug Transition

As described earlier, potentially there could be two different transitions. The first is

discrete bubble to slug, and the second is dispersed bubble to slug.

Discrete bubble to slug

Taitel et at. (1980) used the concept of a critical void fraction to define the transition

in terms of superficial velocities.

(2.38)

( J
I14

Harmatty (1960) proposed Vr = Ug - UI =1.53 g~:p (2.39)

( J
I14

Setting e equal to the critical value of 0.25 gives U» = 3U gs -1.15 g~:p
(2.40)
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Dispersed bubble to slug

Brauner and Barnea (1986) considered the balance between dispersive forces and

surface tension forces, which results in the equation:

[ ]1/2 3/5[ ( )~2] ()1/12 O.4cr (PI) }_O.046 D, . (Vgs+Vls/12=O.725+4.15 Vg!
~pg er D, V, Vgs+V's

(2.41)

This can be solved for the slug-dispersed bubble boundary when:

Ve = gs = 0.52
g Ugs -u; (2.42)

There is an upper limit on the possible void fraction in bubbly flow due to the close

packing of bubbles. TaiteI et al. (1980) take this value to be 0.52. There is

insufficient published data that clearly identifies the dispersed bubble pattern for a

thorough test of these models (Azzopardi, 2006).

Hewitt (2005) believes this traditional view of the transition is possibly incorrect, and

more likely is due to the formation of void waves, which lead to bubbles packing more

closely and therefore the probability of them coalescing increases leading to plug

(slug) flow. Evidence for this can be found in Beisheuvel and Gorissen (1990).

Slug to Churn

Liquid slug results in chum flow rather than dispersed bubble flow if VI.,<O.92Vg.,

Watson and Hewitt (1999) have compared the predictions of several correlations with

some extensive air/water data at 1.2, 3 and 5 bar in a 32 mm tube. The main
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conclusion was that the equation by Jayanti and Hewitt (1992) presented earlier gives

the correct trend. A simple semi-empirical correlation has been developed by Porteous

(1969), which yields the following approximate criterion for the establishment of

chum flow:

(2.43)

Ombere-Iyari and Azzopardi (2007) found that the PDF method failed to predict the

slug to chum transition.

Churn to Annular

For the churn/annular transition, the approach employed by McQuillan and Whalley

(l985b) is used, based on Taitel et al. (1980). There is a critical gas flow rate for

which an increase ensures that the liquid flows upwards with the gas and for which a

decrease allows the liquid to fall under gravity. This flooding or flow reversal point

can be predicted using:

(2.44)

(2.45)

This transition is a gradual one. The flooding waves (with intermediate zones of

falling films) that are characteristic of chum flow gradually die out, the liquid films

between the waves begin to move upwards and disturbance waves are formed on them

that lead to further entrainment (extensive entrainment occurs also from the flooding

waves) (Pickering et al, 2001).
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If the flow is of the annular type (or the Taylor bubble aspect of slug flow) the film

thickness S is related to the void fraction by the following equation:

(2.46)

Van der Meulen et al. (2010) found that the two popular flooding equations given

above (the Wallis parameter and the Kutateladze number) do not accurately predict the

churn/annular transition for large diameter pipes. They found that the work of

Sekougchi and Mori (1997) gave a better estimate of the transition.

Annular to wispy Annular Transition

According to the Hewitt-Roberts map, this transition occurs at some critical gas and

liquid momentum flux. However, this is fairly subjective. Very little research has been

published in the annular to wispy annular transition (Rhodes, 1980). Hawkes et al.

(2000,2001) looked at this transition in more detail, and Collier et al (1994) gave an

equation proposed by Wallis (1969):

(2.47)

The wispy annular region usually corresponds to the case where u; is greater than

unity and u; is greater than 2.5 to 3 (i.e. for high mass fluxes). Here, the core

structures develop not unlike void waves (except that they are now concentration

waves) and these have a very strong influence on the flow behaviour (Hewitt, 1997).

McQuillan and Whalley (1985a) carried out a systematic comparison among the

published transition equations, and compared them with experimental data of 1399

points. Their findings are summarised in Table 2.4.
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Table 2.4-Comparison of experimental vs. transition models, McQuillan &
WhalJey(1985a)

It is interesting to note that most of the models perform well, except for churn flow, as

despite having the most data points, a significant number of those points fall into

either the Slug or Annular category.

2.15. Large Diameter Pipe Investigations

There is a general consensus that "large" diameter pipes can be considered to be

greater than 100mm in diameter, and a number of studies have been carried out on

pipe diameters in excess of 100mm in the vertical orientation. The majority of

published papers appear to be mainly for air-water and steam-water mixtures, and

there is very little published work on large diameter air-oil pipes. Ali (2009) carried

out a literature review ranging from 1976 to 2007. Table 2.5 gives a summary of the

investigations carried out on large diameter pipes, mainly for air-water, that has been

adapted from Ali (2009) and updated. Recently, Lucas et al. (2010) presented a new

database on air-water flows in a large diameter pipe of200mm.

An important consideration will be how some of the methods and models mentioned

in this chapter function when applied to large diameter pipes. 10 small diameter tubes,

churn flow may not develop at all and the flow changes from slug flow to annular.
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Several studies have shown the interesting absence of slugs in large diameter pipes,

where there is a direct transition from bubble to churn flow, for example Hills (1976),

Cheng et al. (1998) and Ohnuki and Akimoto (2000). Ohnuki and Akimoto (2000)

reported "churn-froth", "churn-slug" and "churn bubbly" regimes in their 200 mm

pipe, in conditions where traditional slug flow would be expected, and slug flow was

not observed in these bigger pipes. This has implications for industries that use large

diameter pipes and extrapolate data obtained from small diameter pipes to predict the

behaviour of large diameter pipes; clearly this approach is full of uncertainties.

Pickering et al. (2001) stated that it is unlikely that the mechanism of flooding in

counter-current flow described earlier, which is used to describe the transition from

slug to churn, can apply for large diameter pipes since the slug flow bubbles do not

exist in the same form as they do for smaller diameter pipes. Furthermore, direct

experiments on flooding in large diameter pipes (Watson, 1999) show that the

mechanism present is quite different. Thus, in small diameter pipes, flooding waves

are formed that are coherent around the tube periphery and which can be swept up the

tube as a result of forces on them by the gas core. Between these waves, there would

be a falling liquid film. However, in flooding experiments in large diameter pipes, the

waves are not coherent around the pipe, but are localised in short regions around the

circumference. These local flooding waves are not swept upwards by the gas phase as

the forces on them are insufficient, (Jayanti et ai, 1992). Instead, the non-coherent

waves are broken up into droplets, which are then levitated by the gas phase. This

process continues until the annular flow region is reached.
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Pickering et al. (2001) speculated on the transitions in large diameter pipes. Smaller

bubbles coalesce (either independently or within void waves) to form spherical cap

bubbles, which cannot in themselves grow to a large enough size to occupy the full

pipe cross section, as in the case for small diameter pipes. The spherical cap bubbles

formed will rise in concentration and may also form void waves. This will lead to

coalescence of these bubbles and the formation of large voids in the centre of the

channel. If the flow velocity is high enough, then the voids formed in the channel core

may become continuous to form a chum or annular type flow. In the chum flow case,

flooding waves will be locally formed, which would break up into droplets, the flow

falling partially downwards in the associated falling films. At high enough velocities,

the flow would become annular with no falling film regions. Another area of

importance is that of the transition from annular to wispy annular flow. The fraction of

liquid that is entrained increases with increasing diameter, in order to maintain the

balance between entrainment and deposition. In agreement with this, during the

experimental work conducted at the University of Nottingham it has been found that

for large diameter pipes, the entrained fraction is higher than for smaller pipes.

This research study will focus on some of the most recently published works on large

diameter pipes, for example Ombere-Iyari (2006). The experimental set-up used in

this work was similar to the one used by Ombere-Iyari with some modifications and

new instrumentation. Details of the rig and measuring instruments are given in the

next chapter. Schlegel et al. (2009) published a study on large diameter pipes with air-

deionised water (Figure 2.23). The paper was followed by another by Schlegel et al.

(20 I0) recommending a set of drift-flux models that were tested on various diameter

pipes.
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Figure 2.23-Sample data from Schlegel et al (2009). No double peak to indicate slug flow!

This project uses a pipe diameter of 127mm, which is 4 times bigger than the one used

by Hewitt-Roberts. An important question is what do flow maps for a small diameter

pipe look like for a large diameter pipe? Ombere-Iyari (2006, 2007) attempted to

answer this question by plotting his data obtained from a 189mm diameter pipe on the

Taitel and Hewitt-Roberts maps mentioned earlier (Figure 2.24). The gas-liquid

mixture used was Nitrogen-Naphtha (petrol) at 20 and 90 bar. Clearly the flow maps

are not performing well, even though in theory they should, as one map attempts to be

more generic in physical properties (Hewitt-Roberts), and the other is semi-empirical

(Taite Iet al).

Ombere-Iyari (2006) also concluded that for the churn-annular transition, the work by

McQuillan and Whalley (1985a) and Taitel et al. (1980) gave better predictions than

those provided by Barnea (1986) and Costigan et al. (1997). He also obtained poor

results when he applied the slug-to-churn transition criteria developed by Jayanti and

Hewitt (1992).
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Figure 2.24-Flow maps (Left) 20 bar, (right) 90 bar. Red lines are experimental transition

points, and black lines are theoretical, Ombere-Iyari, (2006).

2.16. Mechanistic vs. Empirical Modelling

Most of the above correlations and flow maps are empirical in nature. This is

obtaining relationships based on specific experimental data. To be applied correctly,

these correlations are normally limited to the same conditions and geometries used in

the experiments in which they were deduced. This may not always be practical for

industry, for example flow assurance engineers in the oil and gas sector. Mechanistic

models, which incorporate more of the underlying physics, are proving to be more

useful and reliable as they can be applied more generally to systems while obtaining

reasonably accurate results. Many models for vertical flow, both mechanistic and

empirical, have been developed and incorporated into steady-state industry code, such
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as in WELLFLO (SPT Group). Some of the popular models are listed below in Table

2.6 (Pickering et aI, 2001).

Model Year Mechanistic/Empirical Comments
Ansari 1990 Mechanise Developed as part ofthe Tulsa University Fluid Flow Projects (TUFFP).

Designed primarilv for well 0 ws.
Azlz et al 1972 Semi-Empirical Designed and tested for gas-condensate 0 ws In wells.
Duns & Ros 1963 Empirical Developed forverc alo w of gas and liquid mixtures In wells and based on

extensive experimental work using air and 011slmulants
Gray 1974 Empirical Developed by Shell for modelling verc al 0 ws of gas-condensate mixtures

in tubes up to 3.5 Inch
Hagerdorn & Brown 1965 Empirical Developed using data gathered from a 1500 experimental well but

restricted to tubing diameters of less than 1.51nch
OLGAS 1991, 2000 Mechanise Developed using data collected In the Blnch SINTEF 0 w loop which

Indudes a SOm riser.
Orklszewskl 1967 Empirical Developed for 0 ws In verc al and deviated wells

Table 2.6-Summary of popular MechanisticfEmpirical correlations.

Again most of these correlations were developed for small diameter pipes. Trick

(2003) carried out an extensive study comparing most of the above correlations, and

concluded that the OLGAS model appears to be the best method for predicting gas-

water and gas-condensate pressure losses. OLGAS was also constructed from large

diameter pipe data, adding to its advantage as the preferred mechanistic correlation for

large diameter pipes (Dr. K. Wade, private communication). Overall, several

approaches have been presented thus far in this report, such as 110- lip, slip, empirical

and mechanistic methodologies, which have all been employed in various indu tries.

2.17. Computational Modelling in two-phase flow

CFO or computational fluid dynamics is already an establi hed field in ingle pha e

fluid mechanics, which is based on solving the Navier-Stok equation. There are

various models for turbulence, for example the k-e model, where k is the turbulent

kinetic energy and s is the rate of dissipation of turbulence. D ha been pr ven t

be a fairly accurate tool, and is used effectively in many indu trie f r e ample t

optimise the designs of FI cars. Running CFO simulation c uld b UI ker than

conducting lengthy experimental campaigns. CFD vendor have been recently
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attempting to expand their code to simulate two-phase flow. Researchers have also

published papers using CFD techniques, for example Da Riva et al. (2009) used

FLUENT to investigate chum flow in a vertical pipe. It is worth noting that CFD in

two-phase flow uses slightly different methodologies to the ones described earlier in

this report, with the application of phenomenological models such as Eulerian and

Lagrangian models (Lo, 2008). It is worth mentioning that some references also give

details of a "Multi-fluid" model, which is a further development of the separated

model described earlier. Here, separate conservation equations are written for each

phase, which contain terms describing the interaction between the phases.

For dispersed flow such as bubble flow, the Lagrangian approach is used, which tracks

individual particles. For stratified flows, such as annular flow, Eulerian or VOF

(Volume of Fluid) is used, which tracks a volume and in particular the interface

between the phases. It produces plots such as the one in Figure 2.25 (Hernandez-Perez

et ai, 2011). These modelling techniques vary in terms of resolution, complexity and

also applicability to practical problems (Tomiyama, 1998).

WMS ECT

Gro

G60

CFD

Figure 2.2S-CFD modelling ill two-phase gas-liquid now.
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In general, the higher the resolution, the more expensive it becomes computationally

and hence the lower the applicability. In CFD, discretising a model into smaller

segments results in a higher cell or mesh count rate, which in general improves the

accuracy of the model. However, there is a time penalty for this. Complex flow

regimes such as chum flow will require a large number of grid cells and some thought

is needed in how to distribute the cells as the pipe may contain a film on the wall, as

well as an active gas core with or without drops. Using a fine mesh on the film alone

will be very costly computationally, as well as missing out any detail or structures that

may occur in the centre of the pipe. With improving technologies and multi-processor

computers, simulations are becoming faster. The attraction of CFD is clear; significant

cost savings in comparison to building large experimental rigs, and it can also consider

complex geometries. It is important to continue to conduct experimental work, which

will help CFD modellers to fine tune their models to match the experimental data

(Prasser, 2008). No doubt in the future, CFD will become a more reliable tool for two

and three phase flow.

The technical background on bubble columns can be found in Chapter 5.
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3. CHAPTER3: INSTRUMENTATION

AND FACILITIES

3.1. Two-phase instruments (Intrusive vs. non-intrusive)

A number of instruments have been developed over the years to investigate gas-liquid

two-phase flow, and a summary of these instruments is given in Table 3.1 (Adapted

from Da Silva, 2008). It can be seen from this table that there are a number of key

factors to consider with multi-phase instruments, which are temporal resolution,

spatial resolution, intrusiveness and cost. It is fair to say at this stage that there is still

no single instrument that can favourably meet all four of these criteria.

Ne...ueprob",
B IV Ye. local measurement only

(electrical, optical)

Optical probes
A m.rv SS No

low gas fraction only.

(PIV. LDA, HS Camera) optical access needed

Har d-fit'ld tomography
A m SSS No 'radiation protection

(x-ray*, g-ray'. PET, MRI)

Optical tom~phy B IV No
low gas fraction only and Iranspa-ent

walls and fluids

Cap:.citance'C .. lImctance
NlA IV No Cross-sectional. averaged void fraction

prob es

Ultrasotmd tomogl'aphy B 1II SS No Suitable forlow void fraction only

£1('(11"1.,,1tomogrnphy
C 1II No nonline .... ill-posed inverse problem

(ElT. ECT, ERT)

Wb'" IVles!t SetiSOl' (WMS) B IV Yes
Selection ofconductingvs c~acitive

sensor

C'FD (SbnllL~tloll Tool) B IV N/A Time consuming. PC based simulaion

Table 3.I-Review of the main experimental techniques in gas-liquid flow

Temporal (L-mlnute, If-second, Hl-milflsecond, Iv-microsecond)
Spatial (Ae-Imm, B-2-Smm, C>Smm).
Cost ($---Iow, $$---medium, $$$-high)
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Some of these instruments have been derived from the medical industry, for example

CT (computed tomography) and MRI (magnetic resonance imaging) scanners. The

latest development is the state of the art ultra-fast x-ray CT technology developed by

Fisher et al (2008, 2010), which produces extraordinarily detailed images (Figure 3.1).

The x-ray produces images at a high temporal and spatial resolution, and it is also non-

intrusive. The disadvantages of this technique at present are cost, the bulky nature of

the equipment and the safety considerations needed when working with x-ray.

Figure 3.l-Latest developments in multi-phase measurements: x-ray CT. Data taken on a
50mm diameter pipe. (Left): Cross-section for Urs=0.534ms·' and U's=1.017ms"' (Right):
Views for Ug• in the range from 0.004-0.534ms· for U's=] .0] 7ms·l; Fisher et al (2010)

6]
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It is important to distinguish between intrusive technologies (affects the flow) and

invasive (takes place inside the pipe). An instrument can therefore be invasive but not

necessarily intrusive. For example, ECT systems are non-intrusive and non-invasive,

ERT is invasive but non-intrusive, and WMS techniques are both invasive and

intrusive. The issue of intrusiveness is an important one. If the instrument is intrusive,

it limits the number of applications where it can be used in production facilities. For

example, the wire mesh sensor is unlikely to be used in an offshore oil and gas riser,

because it would be destroyed by the pigs that are used to clear the riser from

impurities. ECT would be a more appropriate choice for such an application.

Some of these instruments can also be used to examine other types of two-phase flow.

Work has been carried out in this project to compare the performance of the wire mesh

sensor to ECT and conductance probes. ECT and conductance probes will therefore be

described briefly in the next section.

3.2. ECT

Electrical capacitance tomography (ECT) is a non-intrusive technique that can be used

for imaging and velocity measurement in flows comprising mixtures of two non-

conducting materials (Azzopardi et ai, 2010c). ECT can be used to investigate

pneumatic conveying in a gas-solid mixture (Azzopardi et ai, 2008b), which is used in

the transportation of coal in power plants. ECT can also be used to measure Iiquid-

liquid flow (Hassan and Azzopardi, 2007). Developments over the past fifteen years

have resulted in fast, accurate measurement systems becoming available for laboratory

research. The original ECT systems, for example Tomoflow RIOO, were capable of

obtaining data at a rate of 200 Hz. However, recent technological advances have

allowed the development of more advanced ECT systems, such as Tomoflow RSOOO,
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which has a temporal resolution of 5000 Hz. In this system, a number of electrodes are

arranged around the outside of the non-conducting pipe wall (Figure 3.2) and all of the

unique capacitance pairs were measured using a Tomoflow flow imaging and analysis

system (Figure 3.2). A typical ECT sensor, for example for a 67mm diameter pipe, has

twin planes. Each of these planes contains eight measurement electrodes placed

radially around the pipe, with guard electrodes on either side of each measuring

electrode. These guard electrodes protect the field of the measuring electrodes.

The ECT system

~

Sensoring
system

PC/wS for accurate
reconstruction

D

Control
... Data acquisition ... reconstruction

system display

Figure 3.2-ECT system (Warsito et al, 2001), picture on the left showing the bare sensor
without a cover.

The mask for the ECT is manufactured in-house at the University of Nottingham,

which allows the flexibility of customising the instrument for any pipe diameter. In

addition, the ECT systems' use of a twin plane non-intrusive sensor gives them the

particular advantage of being able to measure structure velocities, by cross-correlating

signals from one plane of sensors to the next. The system is calibrated by taking sets

of readings with the pipe initially empty (gas only) and then full (liquid only). In one

measurement cycle, the electrodes are excited one by one, while maintaining the

others at a reference potential. The capacitance values are then collected between the

resulting electrode pairs. The capacitance measurement in ECT is converted to
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electrical permittivity using a look-up table Iinearisation, generated from calibration at

various permittivities. To transform this electrical measurement into a fluid-

mechanically useful measure of concentration or void fraction involves the use of a

physical model that links the two.

ECT is ideal for air-oil mixtures as it is suitable for non-conducting fluids; whereas the

equivalent ERT is suitable for air-water. However, with both ECT and ERT systems

the spatial resolution is low in particular near the centre of pipe. The visualisation is

best near the wall, where the sensors are located. The other main disadvantage with

ECTIERT is that they require the use of an image reconstruction algorithm, such as

LBP, or linear back projection. This is considered to be a qualitative, non-iterative

technique. There are other algorithms which are iterative and non-linear, however

those techniques are slower. Finally, a well known challenge with ECTIERT is the

inverse problem, which is ill-posed or non-linear, meaning that the output is not

proportional to the input. Further details and published works regarding ECT can be

found in Abdulkareem et al (2009, 2010).

.3.3. Conductance Probes

In gas-liquid annular-type flow, the instantaneous wall film thickness (and hence void

fraction) can be determined by taking measurements of the electrical conductance

between two electrodes in contact with the liquid film. Different types of electrodes,

such as parallel wires, flush-wires, flush-mounted pins and flush-mounted rings have

been adopted. In this study, three pairs of ring probes were flush mounted with the

pipe wall. These can be seen in Figure 3.3.
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Figure 3.3-Photo of conductance probes

The thickness of the rings is 3mm and the distance between the probes is 25mm,

which are insulated with non-conducting acrylic resin. This gives the electrode

separation distance (De) to pipe diameter (Dj) ratio of 0.20. The conductance probe

requires calibration before it can be employed for measurements. Annular-type flow is

usually simulated by placing a non-conductive rod inside the pipe, with the conductive

liquid being filled in the annulus between the rod and pipe wall. This is an "ideal"

situation where no bubbles exist in the liquid film, which in reality does not always

occur as air bubbles will usually be present. Van der Meulen et al (2009, 2010)

therefore proposed a novel way of calibrating conductance probes using beads of 3-

6mm. The advantages of using conductance probes are that they provide non-intrusive

measurements, they allow measurement of small impedances, they are relatively

cheap, and they allow the electric field to be efficiently confined. The disadvantages

are that they are measuring circumferentially averaged film thicknesses as opposed to

the whole-cross sectional void, they provide no visualisation of the flow, and finally

they are limited in this case to annular and transition to annular flow. It is possible

however, to calibrate conductance probes for other types of flows e.g. bubbly flow

(Ombere-Iyari,2006).
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3.4. Specialist Instrument Wire Mesh Sensor (WMS)

There are two variants of the wire mesh sensor (WMS), which are conductance and

capacitance WMS, often abbreviated in this thesis as CondWMS/CapWMS. Both of

these instruments were used in this project, therefore both variants will be described in

detail in this section. The WMS can be used to investigate both gas-liquid and liquid-

liquid flows, but this report will focus on the WMS applied to gas-liquid work only.

3.4.1. Historical Background

The historical background behind this novel instrument can be summarised by Figure

3.4 below:
Reineke et al (1996)

Johnson (1987)

Prasser et al ( 1998)
~I

f
1::'

I

A

Figure 3.4- The evolution of the wire mesh sensor.
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This design of the sensor first started with a patent filed by Johnson in 1987. This

consisted of a crude device that had two electrode grids, but contained no imaging

capability. This was followed by Reinecke et al (1996, 1998), who proposed a three

plane sensor; however, this had several limitations as it required a reconstruction

algorithm (Prasser et aI, 1998). A two plane conductivity (conductance) wire mesh

sensor with a superior temporal and spatial resolution was developed by Prasser et al

(1998). The design of this sensor formed the basis for the permittivity (capacitance)

wire mesh sensor recently developed by Da Silva et al (2007).

In order to operate the conductive WMS, it requires at least one continuous conductive

phase, therefore it has been exclusively used for air-water, or steam-water

investigations (Da Silva, 2007). However, many liquid substances are non-conducting,

for example organic liquids and crude oil in the oil and gas industry, this meant the

conductive WMS could not be used in such applications. Therefore, a new WMS was

developed based on the measurement of the electrical permittivity (capacitance), to

extend the sensor's capabilities to the detection of non-conducting fluids. A number of

papers have been published since 1998 using both variants of the wire mesh sensor.

For example, for the conductivity WMS, studies were completed by Prasser et al

(1998-2008), Richter et al (2002), Krepper et al (2005), Manera et al (2006) and

Azzopardi (2008a). For the capacitance WMS, Da Silva et al (2006, 2007a-c, 2008,

2010), Thiele et al (2008), Azzopardi et al (2010) and Szalinski et al (2010) presented

various research studies. High pressure (7MPa) and high temperature (290°C) Wire

Mesh Sensors have also been used, for example in Pietruske et al (2007) and Ombere-

Iyari et al (2008). The CapWMS has been used in air-silicone oil investigations, and

the reader is referred to Abdulkareem et al (2009, 20I0) and Abdulkadir et al (2010,

2011) for more information.
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3.4.2. Conductivity WMS and Capacitance WMS

Figure 3.5-Electrical Schematic of (left) conductivity WMS and (right) capacitance WMS

The WMS consists of two parts: The acquisition sensor that sits inside the pipe which

is connected with electrical leads to an electronics box that collects and stores the raw

data. Figure 3.5 shows an electrical schematic of the CapWMS and CondWMS. The

CapWMS has gone through a number of modifications in order to adapt to a higher

capacitance range, including a faster ADC and digital processing electronics (Thiele et

ai, 2008). In Figure 3.5, the electronics for a 4x4 section of the sensor are shown (Da

Silva et ai, 2007a-c, 2008). The design of the acquisition sensor for both the

conductive and capacitive WMS is the same, consisting of two arrays of wires,

stretched along chords of the pipe cross-section, with one array positioned

orthogonally to the other. There is a small gap between the two planes of wires.

The principle of both the conductive and capacitive sensors is the same i.e. two planes

of wires, where one transmits and one receives. During the measuring cycle, the

transmitter wires are activated in a successive order while all other wires are kept at

the ground potential. For each time frame, a transmitter wire is activated and the

receiver wires are sampled in parallel (Da Silva et ai, 2007a-c). Each crossing point of

the transmitter and receiver electrodes is scanned individually, generating a matrix in

the x-y plane depending on the size of the sensor. The conductance wire mesh sensor

has a DC input and DC output. The capacitance wire mesh sensor has an AC input and
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an AC output, which is subsequently converted to DC in order to digitise the signal

(ADC). This is similar to the principle of operation of Electrical Capacitance

Tomography (Da Silva et ai, 2007a-c); however, the WMS does not need any

reconstruction algorithm to process the data. This describes the two plane sensor that

is shown in Figure 3.4. However, in order to cross-correlate signals to determine for

example the bubble velocities, it is possible to use a three-plane WMS as investigated

by Krepper et al (2007), or alternatively to use two WMS placed at some specified

distance from each other (Figure 3.6).

Printod Ciccuit
D4atd:

Uppef
'l'lir_
Sensor

Figure 3.6-Velocity measuring WMS: (Left) 3-plane WMS, (right) two 2-plane WMS.

The CondWMS box is almost half the size of the CapWMS box (Figure 3.7). It can be

seen that the boxes are fairly portable, and can be easily connected to a pipe or bubble

column to conduct experimental investigations.

main supply (ACIOC)

data logger

receiver R1·R4

.,cJlalloo El·E4

DC voltage controller.

Figure 3.7-Electronic boxes: (Left) Conductance WMS; (Right) Capacitance WMS.
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The wires for the acquisition sensor that sits inside the pipe are made from uncoated

stainless steel, and they are 0.12 mm in diameter. The pressure drop across the sensor

is small (approximately 3%), because the wires are distributed across the pipe coarsely

and therefore will not obstruct or stop the flow. The sensor as mentioned previously is

intrusive, although this is minimal as the wires of the sensor occupy only 2-3% of the

cross-section of the pipe.

3.4.3. What is the WMS measuring?

This is a question that is often asked; whether the sensor is measuring undisturbed

flow or the disturbance caused by the WMS itself. Prasser et al (2001) have

investigated this by comparing WMS data with that from a high speed camera, and

despite the fragmentation and the deceleration of the bubbles caused by the WMS, the

structures generated by the WMS are represented in the measuring signal in their

previous shape. For example, in Figure 3.8, bubbles are displayed as they were before

they came into contact with the sensor. This issue is of little importance when a single

WMS is used, but it will become a factor if two WMS sensors are used together on

one pipe. The second sensor to some extent will be measuring flow that has been

disturbed by the first sensor.

Figure 3.8-HS video compared to WMS data. The WMS signal represents the
undisturbed image of the bubble.
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3.4.4. Operation of the WMS

Details will now be given on how to set-up, calibrate and operate both versions of the

WMS. Further information is given in the WMS documentation provided by HZDR.

Once the electronics have been set-up, it is possible to acquire a large amount of data

in a short space of time. The electronics box for the CapWMS is a 19" rack with active

cooling. It can be used to connect up to four excitation modules (labelled 'E I' ... 'E4')

using up to four SCSI-II cables (50 pins, 2m), and up to four receiver modules

(labelled 'RI ' ... 'R4') using up to four SCSI-III cables (68 pins, 2m). The use of these

type of cables is advantageous, as it avoids the need for using significant amounts of

cables that can be required for other types of sensors e.g. ECT. Each module contains

sixteen single channels for excitation or sixteen channels for reception. The send and

transmit modules for the CapWMS are different to those for the CondWMS and

therefore are not interchangeable. However, the sensor that sits inside the pipe can be

used by both the conductivity and capacitance electronics boxes.

In this project, a 16x16 two-plane wire mesh sensor was used on 50mm pipe(s), a

24x24 two-plane sensor was used on 67mm pipe(s), and a 32x32 two-plane sensor was

used on 127mm pipe(s).

16
11

"1<)
30

ra
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""n
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•0
820

Figure 3.9- Typical matrix for the sensor, shown is the 32x32 Matrix. Red cells are

excluded.
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For a 32x32 sensor, the matrix of data points at the crossing points can be seen in

Figure 3.9 (there exists a similar matrix for l6x16 and 24x24 sensors). The red cells

are outside of the pipe and therefore are discounted. In this example, for a 32x32

sensor In a l27mm pipe, there will be a spatial resolution of approximately 4mm or

820 pixels across the full diameter. Therefore the resolution of the sensor is

determined by the wire spacing, and clearly it is possible to have a higher resolution

with more wires. However, this comes with the penalty of increasing the disturbance

to the flow. The minimum current wire spacing is 0.5mmxO.5mm (Beyer et ai, 2010).

Potentially, the box could be used for a 64x64 wire mesh sensor covering even larger

pipe diameters of 200-250mm. In addition, the box could allow the installation of two

16x 16 or 32x32 sensors, and therefore allow cross-correlation of signals. However, for

the work conducted in this project, only one sensor was used at anyone particular

time. Jt is important to connect the correct modules on the sensor to the correct

connectors on the box. Otherwise, the error shown in Figure 3.10 will occur.
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I I
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f :
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I 'I; lot !
!~!
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;,Im.
h I

i

l
mi· .· .· .· .· ., .
! !
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II iII !· .:1 :
i1m: it'
~ot II

Figure 3.1 O-Incorrect connection of modules (left) vs. correct connection (right)

The CondWMS connects to a PC via an Ethernet cable with a dedicated LP address.

The ECT box has a similar set-up. The CapWMS was configured initially with a USB

connection, although as a result of the extensive testing conducted in this project, this

was found not to be stable. The connection regularly disconnects along with

72



Chapter 3: Instrumentation & Test Facilities

generation of error messages, which required resetting of the electronics. The

CapWMS connection was therefore changed to an Ethernet connection, which should

prove to be a more stable solution. Finally, it is worth noting that it is important to

allow the equipment to warm up for 10-15 minutes before commencing the

experiments.

Software Interface

The graphical user interface that controls the conductivity WMS can be seen in Figure

3.11. This is similar to the interface used to control the capacitance WMS, which has

undergone slight modifications over the past 2 years. The first version can be seen in

Figure 3.12, and the latest version can be seen in Figure 3.13.

WIre Mesh Syslcm V 7.0.1. (Bcla VerSJon) L;J§~

o 0.0000 $ _,_
>
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Frequency. 1- vIHz
p~ ~Il",
'MH. Duration 17 •

Ou&ion: ~,
F,.a1'J'B3: B5ID)

Con6ru.Iy mde

-.
ActuaivalUe
><- y
v, X V.._ \

Ell2!\!

Figure 3.II-Conductivity WMS Software screenshot
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Figure 3.12-First version ofCapWMS (Nov 2008-Dec 2010)
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Figure 3.13-Second version of CapWMS (Jan 2011-Present)

When the CapWMS is successfully connected to the PC, it displays the message

"device is ready for measurement". The CondWMS will show a green bar at the

bottom of its software interface. An important improvement to the second version of

the CapWMS is the addition of a progress bar to show the progress of data acquisition

when the sensor is triggered. This feature was absent from the previous version. One

advantage the conductivity WMS interface still has over the capacitance WMS is that
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acquiring and saving data is a one step operation. However, with the CapWMS, this
,

takes place in two steps, which is time consuming and sometimes means a test run

must be repeated, particularly if the connection fails, or 'drops'.

Calibration

For the CondWMS this is fairly straightforward, with one static calibration required

with the pipe or bubble column full of liquid that must cover the full cross-section of

the sensor. The transmit-voltage high, Pre-gain (pre-amplified) and main gain (main

amplifier) settings can then be adjusted to give a maximum indicator below 90%. The

. frequency can also be adjusted. Both types of the WMS are capable of frequencies up

to 10,000 Hz. However, the higher the frequency; the shorter the time the sensor will

operate due to memory limitations. In general, the time was selected to be between 30-

60 seconds, which was thought to be an adequate period time for data acquisition. The

CapWMS operates with an input frequency of 5 MHz, which enables it to successfully

scan the full cross-section of the pipe at the frequencies set by the researcher.

For the CapWMS, the calibration is a trickier process. Ideally the pipe needs to be

inclined at 45 degrees, so that the wires are half covered with liquid. However, in

reality this is not possible, and therefore the process requires several time consuming

exercises of filling up the pipe then emptying it. This is necessary to calibrate the

sensor between the two levels of permittivities it is measuring. For example, for air-

water, the permittivity is 1:80, and for air-silicone oil it is 1:2.7. For calibration, the

gain and offset bars must be adjusted such that when the pipe is empty, the minimum

is around 10% and when it is full of liquid, the maximum is around 90%. These limits

are chosen to prevent saturation in the electronics from taking place. Saturation is a

difficult condition to observe directly in the output screen; however, atypical
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structures or unusual oscillations can be giveaway signs. The mask also needs to be

loaded to discount the crossing points outside of the pipe cross-section. It is worth

noting that as the pipe is emptied and refilled during the calibration process, some

small droplets remain on the wires due to surface tension. These are difficult to

remove in a closed system, although pressurised air could be used in an open system

to remove them, for example in a bubble column.

Once the pipe IS calibrated, the same settings can be reused, although it IS

recommended that the researcher carries out two calibrations for every set of

measurements, at the start and at the end of the process. This is because the

temperature and conductivity may vary over time. The calibration menu for the

CapWMS has changed slightly, and the two versions can be seen in Figure 3.14 and

Figure 3.15. The latest version has been improved to include the excitation amplitude

setting, which was not previously obvious and located under the "advanced" menu.

The amplitude needs to be adjusted when using high conductivity liquids such as tap

water. Once the calibration is complete, it is possible to either acquire data that can

then be saved, or to observe the data in the "online" mode.
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Figure 3.14-0Jd Calibration menu for CapWMS (Nov 200S-Dee 2010)
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This is useful for demonstrations; however in online mode, the images observed are

quite small, raw and unprocessed.
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Figure 3.tS-New calibration menu for CapWMS (Jan 2011-Present)

Trigger

The CondWMS can trigger other instruments, and it can be triggered externally, which

makes it a flexible device. The CapWMS cannot currently be triggered by other

instruments, although it can be used to trigger other instruments, such as ECT. It is a

powerful methodology to have WMS and ECT sensor(s) in one pipe and triggered at

the same time to collect data simultaneously. This was carried out by Azzopardi et al

(20 I0). The triggering function can be controlled via the software interface.

Raw Data Files

The conductivity WMS generates two files for every run collected. The first file is the

*.inf file, which contains the settings used by the sensor. The raw binary file has a

*.mes extension. The capacitance WMS generates five files for every run collected.

The first file is denoted *.d64, which contains the settings used by the sensor. The
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other four files are binary files of the form *_A.bin, *_B.bin, *_C.bin and *_D.bin.
Clearly the capacitance file handling needs further refinement, as technically it should

be possible to generate one binary raw file in the same way as for the conductivity

WMS. The four files occupy more space, and they need to be checked for every run.

Generally, all four files are of the same size, which helps to see if the run was

completed successfully or not. This is because sometimes not all four files are present,

or one of the files is of a different size to the others, meaning the test run has to be

taken again. It was also noted the *.d64 file did not update if changes are made to the

settings of the sensor, unless the software is disconnected and restarted.

Data Viewer

An important step during the data acquisition is to perform regular checks while the

data is being collected. One of the checks is to open the raw files in the data viewer.

Sometimes the raw file cannot be opened as it is corrupted, and therefore the run must

be taken again.

Data Conversion

For the conductivity WMS, the data conversion can be carried out in batch mode in

DOS using the proprietary executable software supplied by HZDR. This will result in

the generation of several files, including the v. file. The output file structure for the

WMS is explained in Appendix B. For the capacitance WMS the v. file needs to be

generated first, which is done by loading the raw files into the converter shown in

Figure 3.16. The calibration files are also loaded, and the permittivity values and

model must be inputted. The converter .will then process one file at a time. Once all

the v. files are generated, these can then be processed in batch mode to generate the

other files.
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Figure 3.16-Processing raw files

3.5. Visualisation of the flow (Qualitative Data)

The disp.exe is a special viewer, which can be used to view the binary v. files as

images and videos for the capacitance and conductance WMS. Horizontal and vertical

sectional views can also be shown (Figure 3.17). The colour convention is generally

that blue represents a liquid, and red is a gas. Each frame or image is 1If Hz, for

example if the frequency f= 1000Hz, then each frame represents 0.001 seconds. In

other words, for every second, there wi II be 1000 frames.

Figure 3.17- Visualisation Software to display binary v. files
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It is possible to generate special images using the processing software supplied by

HZDR. The visualisations can show the pipe as if the observer is looking in from the

outside and it can also show flows in the middle of the pipe (Prasser et ai, 2005).

Frame 0-1000 (15)
Ugs:0.09ms-l

Frame 200 Frame SOD

Frame 1000

Figure 3.18-20 Images; longitudinal, and cross-sectional

It is worth noting that different sized sensors have their own individual display

Frame 400

software, for example it is not possible to open 24x24 sensor v. files using the 16x16

disp.exe file. From the 2D cross-sections in Figure 3.18, it is possible to generate a 2D

cross-sectional movie. It is also possible to generate 3D views of the data as shown in

Figure 3.19 using Matlab. This is generated from the v. file. These visualisations

obtainable with the WMS are one of the main advantages of this type of sensor ...• -••• ..... ..
'"

Figure 3.19-30 images showing detailed structures
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3.6. Quantitative Data

The wire mesh sensor gives direct measurements of local and cross-sectional void

fraction, and it does not require any special algorithm for this, which is an advantage

over ECT techniques. The WMS can also be used to deduce many other parameters,

which will be described below.

Time Series

The cross-sectional averaged void fraction can be extracted and plotted, as below in

Figure 3.20.
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Figu re 3.20- Time Series of void fraction

The PDF and other statistical data, as well as the PSD, can be derived from this data.

Local Voids

The time averaged local void matrix can be produced, an example of which is shown

in Figure 3.21.
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Figure 3.2l-Local voids (Time averaged)

In order to check the orientation of the matrix with respect to the sensor, the procedure

in Figure 3.22 must be followed.

Setup

J
r __ r""'".. .... r .........~

r- ~

Figure 3.22-Procedure to check orientation of matrix of voids

Radial voids

Radial profiles can also be extracted from the data of the WMS (Figure 3.23). These

are time and azimuth averaged gas fraction (for example inside forty ring-shaped

domains for a 32x32 sensor). The x-axis displays the distance in mm of the respective
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ring from the centre of the pipe. These profiles are similar to those measured by the

conductivity (point) probes by AI-Oufi et aI, (2010), however the point probes need to

be moved manually across the diameter of the pipe which is a time consuming

process. The radial profiles are however obtained relatively easily from the WMS

data, as the WMS scans the full cross-section of the pipe.
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Figure 3.23-Radial void fraction with integration area examples

Space resolved void fraction

Information regarding space resolved voids can be extracted as shown in Figure 3.24

(Azzopardi et aI, 2010a), which breaks down the void fraction data into the

appropriate bubble sizes.
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Figure 3.24-Space resolved void fraction
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Novel presentation of local voids

An example of the data contained in one frame in the v. file is shown in Figure 3.25.
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Figure 3.25-Matrix generated by a 32x32 sensor for one frame. Local voids expressed as
0/0 between 0-100%.

This can then be converted in Matlab into a 3D surface plot as shown In Figure 3.26.

Figure 3.26-A 3D image constructed from the 32x32 matrix shown above, z-axis is void

This IS a novel approach to handling WMS data, and videos can be constructed by

threading successive 3D images together. This technique can be applied to any size of

sensor, and examples of the visualisation of real data in 20 and 3D, both as images

and videos, can be found in the DVD included with the thesis. The video sizes can be

difficult to handle as they are several gigabytes each, so compression software can be

used to reduce the file size considerably.
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3.7. Bubble Size Distribution

One of the most useful parameters that can be extracted from the wire mesh sensor is

the bubble size distribution (Prasser et ai, 2000, 2001, 2002b). This is done by using

proprietary HZDR algorithm and software, with the code constructed in Delphi.

Further details are provided in Appendix B. The cross-sectional voids are broken

down, as shown in Figure 3.27 below.
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Figure 3.27-Decomposition of voids into bubble size distribution (Prasser et ai, 2002b)

Comparison of the bubble diameters obtained with the WMS to those obtained with

high speed video has shown there is a slight overestimation of the bubble diameters by

the WMS, which will translate into the bubble size distribution (Prasser et ai, 2001).

One of the limitations of the wire mesh sensor is the minimum size of bubbles which
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the sensor can detect, which is determined by the separation distance between the

transmit/receive wires. As a result, the sensor cannot detect bubbles smaller than 2mm

in diameter (Prasser et ai, 2002b).
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3.8. Test Facilities

Details of the facilities used onsite in Germany are given in the next Chapter.

3.8.1. Bubble Columns

Two bubble columns were used, which are illustrated in Figure 3.28 and Figure 3.29.

V5

liquid output

Figure 3.28-2 inch bubble column, position of 16x16 WMS is shown.
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Figure 3.29-5 inch bubble column, position of 32x32 WMS is shown.
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The two inch bubble column had a sintered glass injector at the bottom of the column,

and the five inch bubble column had two different injectors. The first was a

heterogeneous sparger with six legs, each leg having six holes of 02.0mm, spaced

5mm apart. The second was a homogeneous distributor, with a plate containing 121

00.5 mm holes (Figure 3.30).

Figure 3.30-5 inch bubble column injectors

The following is the typical set-up procedure that was applied on the bubble columns.

The procedure below is for the 5 inch column, and the procedure for the 2 inch is very

similar, with some minor differences with the valve numbers. Particular attention is

paid to the cleanliness of the bubble columns to ensure accurate measurements.

Cleaning/flushing/preparation of bubble column

I. Empty the bubble column and close all the valves. Carefully take apart

Plexiglas, gas sparger and the WMS. It is recommended that protective gloves are

used throughout.

2. Clean the Plexiglas and gas sparger using diluted ammonium based cleaner

that does not attack the Plexiglas (inspect MSDS for safety precautions). Use a brush

wetted with the cleaner for the removal of any contaminants.
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3. Rinse all the parts with tap water at least three times or more. Rinse down all

the parts with distilled or de-ionised water at least once. Reassemble the bubble

column.

Start up procedure for the bubble column

1. Examine the apparatus. Make sure all valves are closed (especially valve VS).

2. Open valves VI, V2 and V4 for gas supply. Open valve V3 to give a low flow

rate of air of 20 Llmin.

3. Fill the bubble column with the required liquid, ensuring the WMS is covered.

Set the gas flow rate for the required value (use V3) and wait for flow regime

stabilisation. Connect the data acquisition equipment and PC, then record the data. As

this is an open system, care is required so that the liquid does not overflow.

Closing procedure for bubble column when distilled or de-ionised water is used

1. Decrease the gas flow rate to the value of 20 Llmin (use V3). Open the valve

VS for drainage of liquid.

2. Increase the gas flow rate to 100 Llmin to dry the distributor and the walls.

After drying, close the valves V3, VI and VS.

Closing procedure for bubble column when other liquid is used

1. Decrease the gas flow rate to the value of 20 Llmin (use V3). Open the valve

VS for drainage of liquid. Close the valve VS. Fill the bubble column with tap water

with the volume IL higher as the working liquid. Let the liquid flow on the walls.

2. Repeat flushing at least two times. Open the valve VS for drainage of liquid.
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3. Close the valve VS. Fill the bubble column with distilled or de-ionised water

with the same volume as the tap water. Open the valve VS for drainage of liquid.

4. Increase the gas flow rate to 100 Llmin to dry the distributor and the walls.

After drying, close the valves V3, V 1 and VS.

3.8.2. 5 inch/127mm closed loop facility

This facility was first used by Ombere-Iyari (2006). The rig has since been modified,

and a more up-to-date rig schematic is shown in Figure 3.31 (Van der Meulen, 20 10).

~l1m
Position of
32x32
Wire Mesh
~ensQr

-9m

Figure 3.31- 5 inch pipe flow facility and design of the WMS used.
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This is a closed loop facility, with a pipe length that is nominally 11 metres, and the

pipe is kept in a vertical orientation, although it is possible to incline it. The injector

used at the bottom of the riser is an annulus type injector, which allows the generation

of a gas core with a liquid film to aid the establishment of chum and annular flow

regimes. The internal diameter of the annulus is 3" or 76mm. Although a heat

exchanger was not used, it was assumed the conditions were adiabatic, operating at

room temperature of 25°C. There is a transparent section in the middle of the pipe that

can be used for visual checks and high speed camera measurements. The pipe material

is plastic and it has an internal diameter of 127 mm and an external diameter of

approximately 140 mm.

Initially the rig is flushed a few times to remove any impurities that may be present. It

is worth noting that some of the internal parts of the pump and compressor are not

made from stainless-steel and therefore rust can build up over time, meaning that

flushing the rig is an essential operation. In addition, a filter is necessary to ensure that

large particulates will not damage the WMS, and fine meshing was used for this

purpose. The two compressors have part numbers TRSC-I00-700/X-CIF (T =

Pompetravaini construction, R = liquid ring vacuum pump, S = single stage pump, C =

design number, 100 = flange size, 700 = nominal capacity m31h, X = reinforced shaft,

C = mechanical seal, F = material of construction), and are driven by two 55KW

inverters. The water centrifugal pump is made by Flowserve, part number ERPN 65-

200. The liquid pump has a maximum capacity of 68m31hr. The range for the gas

superficial velocity Ugs was 0-17 ms" (at 1rns" increments), and the range for the

liquid superficial velocity Vis was 0-0.7ms·I (at 0.01 ms" increments; note that the

pump is capable of 2.4 ms", but this is limited by the range of the flow meters).
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FIowrate and conductance probe measurements are taken using a PC equipped with a

National Instrument (NI) DAQ card.

After the rig is flushed, it is emptied using the centrifugal pump. The pump is

powerful, and is capable of emptying the entire tank in a few minutes at a low setting.

Subsequently, the separator that has a capacity of 1600 litres and the pressure vessel

that has a pressure rating of lObar, are half-filled with tap water and then the rig is

pressurised to 2 bar (gauge pressure). The compressors are then started up to a

maximum RPM of 1500 RPM, which is then followed by the centrifugal pump.

Volumetric flow rates (and hence superficial velocities) are controlled using the

electronic controls and also using the graduated valves located close to the flow

meters. The inflow of air and water are measured using calibrated vortex and turbine

meters respectively. Ombere-Iyari (2006) calculated the maximum uncertainties in the

liquid and gas flow rate measurements as 0.5% and 2.79% respectively.

The total time averaged pressure drop is measured by an electronic differential

pressure detector/transmitter (Rosemount 1151 smart model), with a range of 0- 37.4

kPa and an output voltage from 1 to 5 V, (Le. with a resolution of 9.35 kPa per volt).

Two pressure tapings, separated by an axial distance of 12.9 pipe diameters, are

connected to the differential pressure device across the transparent section via

stainless steel tubes. The conductance probes (CP) are located at 62.7, 63.5 and 65.5

pipe diameters from the riser base, respectively. The WMS and CP are triggered at the

same time, and 30 seconds of data are collected per run, at a frequency of 1000Hz.

Both instruments are capable of operating at higher frequencies. In total 700 runs were

completed in this experiment, with fully calibrated instruments.
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In order to place the WMS onto the riser (and indeed to any pipe or bubble column)

the pipe needed to be flanged, and rubber seals or O-rings were used with the WMS

sensor to stop liquid leaking (Figure 3.32). Flanges were drawn using 3D CAD.

Ii liE Et iii II

Figure 3.32-Design of 127mm Flanges, using 3D CAD (Inventor)

The flanges of the pipe need to match the flanges on the WMS. A typical design

specification for a WMS can be found in Appendix B. One of the improvements to the

design is the way the modules are attached to the acquisition sensor. In the current

version of sensor, the modules require the use of supports, which must be

manufactured separately. The newest design of the sensor has the modules orientated

at 90 degrees and bracketed onto the PCB (Figure 3.33), and this is a better design.

Figure 3.33-(Left) Old design ofWMS and (right) new design ofWMS
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The wire mesh sensor was placed at a height of approximately 9.3 metres from the

injector for several reasons. First, as it is an intrusive sensor, it is best to place it after

any non-intrusive instruments such as the conductance probes, which were placed

lower down along the riser. The second reason was to put the WMS at a safe distance

from the 90 degree bend at the top. This was to stop the backflow that can sometimes

occur, which would affect the measurements. The third reason was to establish fully

developed flow. However, it is possible to flange the pipe at various axial positions to

install the sensor, a method that would enable the tracking of the flow and allow the

researcher to see how it develops along the vertical pipe.

The development lengths for establishing steady-state conditions of fully-developed

two-phase flow can be significantly in excess of 100 pipe diameters (Azzopardi,

2006). Therefore, for a 127mm diameter pipe, 12.7 metres of pipe length is

recommended. It is assumed in this work that steady state conditions have been

, attained and instabilities and transients will be ignored. Some experiments on vertical

pipes indicate that as much as 200 pipe diameters or more are needed to establish fully

developed flow, and such a length is rarely possible in experimental rigs due to the

cost. Offshore well tubes and risers can run for several kilometres in length, and there

have been proposals to build an experimental rig with a large diameter vertical pipe

running for several kilometres by placing the extended pipe in a deep mine; however,

the cost was found to be prohibitive. A summary of the properties of the liquids used

in this research are shown in Table 3.2. These are valid for both the bubble column

experiments and the two phase flow in the large diameter pipe. Therefore water was

the main conductive fluid that was used, and silicone oil was the main non-conductive

fluid that was used in this research study. Silicone oil is used extensively in various

industries although it is not cheap. It has a much lower surface tension than water.
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Parameter Tap water Silicone Oil tinit

Electr+ca! conductivity ~OO-500 0 ~S cm

Relative permftttvlry 80 n

Density 1000 9(lO kg.m'

Yiscosify 5.25 ml'_J!:.~

Surface tension 0.072 0.02 Nzrn

Table 3.2-Properties of Liquids

To conclude, the WMS has established itself as a valuable research tool that is clearly

capable of producing very powerful results, empowering researchers to look deeply

into the flow. It can give significant amount of data, both temporally and spatially.

The resolution of the sensor is superior to many other types of sensors in this field (for

example ECT); however, this comes with the associated disadvantage that the sensor

is intrusive. Another advantage of the WMS is its ability to look at all types of flow

regimes, whereas some of other instruments, such as conductance probes, require

special calibration techniques to inspect different flow regimes. A typical sensor that

has been used in this study, such as the 32x32 sensor, has 820 crossing-points acting

as local probes, which sit inside the pipe. This would be difficult to reproduce with

some types of intrusive sensors, for example optical probes. A 32x32 WMS has been

installed on large diameter facilities, substantial amount of novel data was acquired,

and results will be presented in subsequent chapters.
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4. CHAPTER 4: TESTING OFWMS

4.1. Introduction

Several instruments have been developed to investigate multiphase systems. A good

summary of the various techniques can be found in Hewitt (1978) and Crowe (2006).

A comprehensive guide on Gamma Densitometry (GD) can be found in Johansen et al

(2004), and a review of tomography was published by York (2001). The instruments

can be differentiated by cost, intrusiveness and resolution, both temporal and spatial

(Da Silva, 2008). The wire mesh sensor can be classed as intrusive, whereas the

gamma densitometer is considered non-intrusive. Every instrument has advantages

and disadvantages. While technology is constantly improving, there is no multiphase

measuring instrument at present that is cheap, non-intrusive and gives the best

resolution in one instrument; and compromise will always be necessary. It is also

possible to combine instruments to work together and obtain more information about

, the flow.

High energy radiations, such as beta, gamma and x-rays, have been used extensively

to investigate two-phase flows (Schrock, 1969). A number of papers have been

published in this area, for example Jiang et' al (1993), Kumar et al (1995),

Shollenberger et al (1997), Stahl et al (2004), Manera et al (2007) and Kumara et al

(2010). GD is used in industry, for example in two phase flow metering; however, it is

not as widely used in research as Gamma Ray tomography or multi-beam GD, due to

the ability of the latter to scan the full cross section of a pipe, as opposed to a single

beam or chord. GD measures the void fraction averaged over a chord and this can

place limitations on its applications. Gamma densitometry offers a more cost-effective
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solution than x-ray, as it produces mono-energetic rays without the intensity

fluctuations that might be present in x-rays (Stahl et aI, 2004).

The quantitative measurement of cross-sectional gas void fraction or liquid holdup

with wire mesh sensors is based on the averaging of the spatio-temporal gas

distribution in the sensor cross-section. The accuracy of this procedure is influenced

by at least two factors; a correct relation of the measured electrical values with the

local void fraction (sub-pixel resolution) and an accurate processing of data at the

sensor periphery. Assessing the quantitative accuracy of wire mesh sensor

measurements is difficult, since there are no directly comparable instruments to test

against them. However, as part of the ongoing campaign to test the WMS and check

its accuracy, the WMS has been compared with various instruments, for example with

Gamma Densitometry (Prasser, 2000), x-ray tomography (Prasser et aI, 2005a) and

Gamma-Ray tomography (Bieberle et aI, 2010). It has also been compared with ECT

, (Azzopardi et al, 201Oa) and with needle probes (Manera et al, 2009). Beyer et al

(2010) summarised the main findings. The gamma radiography of an air-water flow

for varying superficial velocities of both media resulting in a gas volume fraction

between 0% and 100% showed that the deviations between results from the wire mesh

sensor and gamma measurements are limited to :1:5%(Prasser et al; 1998, 2000,

2005b). The radiography of a steam-water flow at atmospheric pressure confirmed this

statement (Manera et al, 2007). Differences in the absolute void fraction were

determined (Prasser et aI, 2005a) to be ±1% for bubbly flow, and a systematic

underestimation of approx. -4% for slug flow. Therefore, notwithstanding the facts

that there are measurement uncertainties with both the WMS and the instrument it is

being compared against, and also the accuracy of the gas volume fraction averaged

over the flow cross-section depends on the two-phase flow pattern, these comparisons
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have shown good agreement between the WMS and the varIOUS instruments

mentioned.

4.2. Comparison between WMS and Gamma Ray

Integral measurements, such as with gamma densitometry, are useful in evaluating the

wire mesh sensor's accuracy. Such techniques were utilised in the past at HZDR to

test the accuracy of the WMS (Prasser et al 1998, 2005b). The work carried out by

Prasser et al (1998, 2000) was on a fixed arrangement, with the densitometer lined up

approximately across the centre of the pipe, which was compared with the

conductivity WMS. The set up is shown in Figure 4.1 .

Figure 4.I-Fixed Densitometer set-up. Graph on the right shows WMS (y-axis) vs. GD (x-
axis)

Gamma ray transmission measurements need integration periods longer than the

temporal resolution of the WMS, which gives instantaneous local void profiles.

Therefore, only time-averaged void fractions can be compared for the two instruments

(Prasser et ai, 2005b).

This work involved the design and manufacture of a moveable GD to enable the

investigation and scanning of the whole cross-section of pipe and the comparison with

WMS. Manera et al (2007) attempted a similar exercise with a steam-water mixture by

utilising two densitometers with 51Cr, which were placed 17 cm above and below a
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conductance WMS, and scanned one half of the pipe. This work was carried out on

air-water and allowed the comparison between the capacitance WMS and GO,

conductance WMS and GO, and finally between the capacitance WMS and

conductance WMS. While the two variants of wire mesh sensors are similar in design

and they can both use the same sensor type, which sits inside the pipe, the parameters

that each variant is measuring are different, the electronics are different and finally the

way the data is processed is also different. Therefore it was important to see how the

sensor performed by measuring parameters in the same two-phase mixture (in this

case air-water), but in two different ways; one using conductance and the second using

capacitance. In addition, comparing the performance of the capacitance WMS with the

conductance WMS has not been attempted in the past.

4.3. Experimental Methodology

The experimental arrangement can be seen in Figures 4.2 to 4.4. Water was circulated

in a closed loop (Figure 4.2) containing a vertical round pipe, approximately 1 m in

length with a 50 mm internal diameter. Pressurised gas (air) was injected at the bottom

of the vertical test section. The WMS and GD sensors were placed near the top of the

test section (Figure 4.3) to detect the gas-liquid mixture. The GO consisted of a

radiation source (l37Cs, half life: 30 years, activity: 430MBq) and an NaI scintillation

detector facing each other across the pipe. Collimators (material: tungsten, weight: 15

kg) were placed in front of the source and detector, which provided both protective

shielding and radiation collimation to a 5mm diameter pencil beam, which is close to

the equivalent measurement volume used by the WMS at the crossing points, therefore

a fair comparison is possible. The GD was placed approximately 1 cm below the

16x 16 sensor to avoid any obstacles. The WMS sensor was located approximately

80 cm above the injector. The alignment was executed by placing the collimator in
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line with a WMS flange screw, which was located approximately at the centre of pipe

(Figure 4.3).

The fundamentals of the wire mesh sensor were outlined in Chapter 3. In this study, a

16xl6 wire mesh sensor was employed. The separation of the sender and receiver

planes of wires was 2 mm and the diameter of the wires was 0.12 mm (stainless steel).

The spatial resolution of the sensor was calculated to be 3.1mm. A sampling rate or

temporal resolution of 1000 pipe cross-sections per second (1000 Hz) was employed.

This sensor generated a 16x16 matrix of local voids, with 208 pixels or data points

inside the pipe. Data was collected with both the WMS and OD triggered

simultaneously, with the OD positioned under each of the 16 wire positions. 224 runs

with different flow conditions were generated.

The experiments were conducted in the following two parts:

• RunOOI to RunII2; OD and permittivity WMS; 8 wire positions (1sI half of

pipe, triggered at same time, Figure 4.4).

• Run 113 to Run224; OD and conductivity WMS; 8 wire positions (2nd half of

pipe, triggered at same time, Figure 4.4).

For each run the OD was activated for 120 seconds and the WMS was activated for 60

seconds. Figure 4.5 gives a summary of the gas and liquid superficial velocities that

were used for each of the 16 positions. Conditions were chosen to be similar to those

during a study at Nottingham in 2007 on a 67 mm diameter pipe (Szalinski et aI,

2010).
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Vertical Test
Section

Gas Injection

Separator

Connecting
pipe-work

Figure 4.2- 3D schematic of the hydraulic test facility. Water is circulated in a closed
loop. Gas is injected at the bottom of the vertical test section then the gas-liquid mixture

passes the WMS and GD sensors placed near the top of the pipe.

Radiation Detector

Counter
Mechanism---

Pipe with
vV~1S

Radiation Source

Moving Platfonn

Figure 4.3-Side view of gamma densitometer on a moving platform. Placing both source
and detector on the same platform ensures alignment of the beam whenever the GO is

moved along the cross-section of pipe

Figure 4.4- Top view of the densitometer. It was lined up below each wire of the WMS, i.e.
forl6 positions in total.
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Air Flow Rate Air Velocity Uquld Flow Rate Uquld Velocity Time (GD) T1me(WMS) Frequency

(l/min) (mls) (I/min) (mls) (8) (s) (Hz)

Calibration Full 120 60 1000
Calibration Empty 120 60 1000

6.0 0.051 24.000 0.204 120 60 1000
18.0 0.153 24.000 0.204 120 60 1000
33.0 0.280 24.000 0.204 120 60 1000
55.0 0.467 24.000 0.204 120 60 1000
111.0 0.942 24.000 0.204 120 60 1000
165.0 1.401 24.000 0.204 120 60 1000
6.0 0.051 83.000 0.705 120 60 1000
18.0 0.153 83.000 0.705 120 60 1000
33.0 0.280 83.000 0.705 120 60 1000
55.0 0.467 83.000 0.705 120 60 1000
111.0 0.942 83.000 0.705 120 60 1000
165.0 1.401 83.000 0.705 120 60 1000

Figure 4.S-Matrix showing the gas and liquid superficial velocities for all16 positions

4.4. Data Processing and Calibration

The gamma chordal void fractions were calculated using equation C3 (see calculation

section in Appendix C). This equation relates the radiation intensity or count rate Iof

the gas-liquid mixture when flowing up the pipe to the void fraction c. In order to use

this equation. the densitometer was initially calibrated by collecting the count rate

with the pipe empty IE. and then with the pipe full of liquid IF. All sixteen wire

positions were calibrated with the densitometer in order to calculate the chordal void

for all the positions. To minimise errors. each wire was initially calibrated for the GO.

and then the matrix in Figure 4.5 was completed in full. Then the GO was shifted to

the next wire. calibrated again. and the matrix repeated and so on. until all 16 wires

were covered across the full cross section of pipe.

For the gamma count rate. trials were initially carried out at 14 minutes per run.

However. for each of the 224 runs. data was collected over 2 minutes and then

processed. which was also the length of time used by Prasser et al (1998. 2000) in
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their fixed gamma densitometer set-up that was used for comparison with the WMS.

Gamma photons interacting with the detector's scintillation crystal produce a light

pulse, which is converted into a voltage pulse by a photodiode and amplifier. The

pulse height is proportional to the gamma photon's energy deposition. A multi-

channel analyser connected to the detector performs the pulse counting for different

energy bins (channels or windows), which gives the typical distributions shown in

Figures 4.6 and 4.7. Only gamma photons are considered, which deposit their full

energy of 622 keV into the scintillator.

Photons with lower energy might have been scattered and therefore deviated from the

straight path, which would introduce an error to the calculated attenuation value. The

number of these photons is the integral under the photo-absorption peak that appears

in the right hand part of the energy spectrum in Figures 4.6 and 4.7. The broader

distribution of the energy values is due to the limited energy resolution of the detector .

.Figures 4.6 and 4.7 show the photon energy spectra for calibration measurements on

an empty and full pipe, as well as for different measurement durations of 14 minutes

and 2 minutes. As expected, the signal-to-noise ratio improves with the square root of

the total photon number. There is initially a small peak for background radiation,

which had been excluded from the calculations. Small changes in the spectra were

observed, but care was taken to keep the room temperature as constant as possible. In

addition, the source was protected to some extent from the elements inside the thick-

walled collimator.
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Calibrating the conductance WMS slightly differed from the capacitance WMS. For

the conductance WMS, only one calibration is required with the pipe full of liquid, as

it is detecting the conducting phase. This calibration covered all 16 positions at which

the GD was set. For the capacitance WMS however, two calibrations are required as it

is measuring the difference in permittivities, one with the pipe full, and the second

empty. In this case, the ratio of permittivities for air and water is I :80. In general, two

calibrations were carried out, one at the beginning of the day, and one at the end. A

discussion of how the conductance WMS and capacitance WMS collects and then

processes the data can be found in Appendix B. Further details can be found in Prasser

et al (1998) and Da SiIva et al (20 I0).
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For the WMS, time averaged local void fractions over 60 seconds can be visualised as

a 16x16 matrix. The local voids from the WMS for each wire position are then

averaged to generate a value that is used for comparison with the chordal void fraction

generated by the GO. Figure 4.8 shows a typical matrix generated by the WMS.

Shown are local voids for wire positions 5 and 12. Line averaged void fraction can be

deduced as shown and then compared with the chordal void fraction generated by the

GD.
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Figure 4.8-Time averaged local void fraction Position 5 left (capacitance), and Position 12
right (conductance). Line average is worked out in the highlighted rectangle. Dashed line

is the edge of the pipe. Zero voids lie outside of the pipe, therefore are disregarded.

4.5. Results

Using the high resolution imaging capability of the WMS, the flow patterns

investigated in these experiments were deduced. Figure 4.9 shows sections and side

projections obtained from the measurements with the capacitance WMS (the

conductance WMS produced similar images) using the data processing described in

detail by Da Silva et al (2010). Six pairs of sections and projections per liquid

superficial velocity are shown. From Figure 4.9 it is clear that the flow patterns were

bubbly, slug and churn.
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Figure 4.9-Visual plots of flow patterns. First row gives Ugs in mls and second row is Uls in
m/s. For each flow condition, two side projections are shown, first as if pipe is

transparent, and second in the middle of the pipe
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The 16x 16 WMS generated a 16x 16 matrix for every 1/1000 of a second for these

particular experiments. For 60 seconds, this meant that 60000 frames were generated,

which is a significant amount of data. This is used to construct the images above using

special processing software. It is also possible to show the local voids in the 2D cross-

sectional view, and to generate 3D surface plots to quantify the void fraction and track

the void fraction to see how it changes in time for all 16 crossing points. Videos

animating the variation of the 2D and 3D local void fraction against time are available

from the author.

Figure 4.10 shows how the count rate varied across the whole cross-section of the

pipe. It summarises all 224 count rates for all gas and liquid superficial velocities for

the 16 WMS wire positions. It also shows the calibration values for the pipe when it is

empty and full. As expected, there is a higher count rate for the gas-filled pipe, and the

difference decreases towards the sides due to the decreasing chord lengths inside the

pipe. The variations mainly come from structural elements, i.e. extra absorbers in the

ray paths; however, the gamma counts were almost symmetrical about the pipe centre-

line. All the results are between the two calibration lines, and there is a trend for the

count rate to shift upwards with increasing gas superficial velocity. The count rates

drop slightly as the liquid superficial velocity is increased from 0.2 to 0.7m/s.
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Figure 4.10-Gamma Densitometer count rates for all gas superficial velocities for all16
positions. (Left) U••=O.2m/s and (right) U1s=O.7m/s. Dashed line indicates the pipe centre-

line.
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From the count rates, the gamma chordal void fraction for all 16 wire positions were

extracted and these were subsequently plotted as shown in Figure 4.11, for U's=0.2m/s

(left) and U's=0.7m/s (right).

J J ~ (\ 4 8 9 If) II I: l.'t U t~ 16
w ~IS \\ h-tPu\iliu .. I·I'

Z t f ' 6 ' ~ v (6 II Il IJ ].I 11 16
\\,M~ \\tf'f' P-("lIlon 1~1'

Figure 4.Il-Gamma Densitometer count rates for all gas superficial velocities for all16
positions. (Left) U1.=O.2m/s and (right) U1.=O.7m/s. Dashed line indicates the pipe centre-

line.

The trends in the void fractions in Figure 4.11 follow those of the count rates in Figure

4.10. Consider two scenarios; two outermost wire position(s) I and 16, and two close

to the centre wire position(s) 5 and 12. The % difference in void values between OD

and WMS for the full experimental matrix generated in those positions as shown in

Figure 4.5 can be deduced, which is shown in Figure 4.12. It is clear there is a better

agreement between the OD and WMS in positions 5 and 12.

100

o o 8 8

A
<> <>--~-------------H---------~------·--

- - "t.- - ..? - - S - - -1/;- - - - - - - - - - ;: ~ __ ~ _

o
8

-150

o o
o8 8

o

o Position 1
o Position 16
6 Position S
<> Position 12

Mens urem en t Point

Figure 4.12-% Difference in void values between GO and WMS for positions 1/]6 and
5/12. 12 data points displayed per position i.e, 2 superficial liquid velocities and 6

superficial gas velocities (x-axis),
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Most of the values for positions 5 and 12 lie within a band of +/-10%, with several

values falling within a band of +/-5%. Taking the chordal void fraction data for

positions 5 and 12, and comparing it with the corresponding line averaged WMS void

fraction data from both variants of the WMS, this data can be plotted against the gas

superficial velocity. This is shown in Figure 4.13. There is a good agreement

displayed between both variants of the WMS and the GD.
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Figure 4.13-Mean void fraction vs. gas superficial velocity (gamma and WMS). (Left)
liquid superficial velocity ofO.2ms-1 and (right) liquid superficial velocity ofO.7ms-'

A better way to visualise the data in Figure 4.13 is to show the gamma chordal void

vs. the WMS line averaged void for wire position(s) 5 and 12, as shown in Figure

4.14. There is again a good agreement. Figure 4.14 shows two independent sensors

agreeing with the gamma densitometer in two different segments of the pipe. The

agreement between the two variants of WMS is also clear. Note also that Figure 4. I4

covers the full scale of gas and liquid superficial velocities as well as covering three

different patterns i.e. bubble to slug to churn flows. Similar plots can be generated for

other symmetrical wire positions; Figure(s) 4.15, 4.16 and 4.17 show wire positions

7110, 6/11 and 4/13 respectively. The agreement is again clear for all of these wire

positions.
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Figure 4.14-Chord Averaged void fraction (GD) vs. line averaged void fraction (WMS)
for positions 5 and 12. (Left) liquid superficial velocity ofO.2ms·1 and (right) liquid

superficial velocity of O.7ms·1
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Figure4.15-Chord Averaged void fraction (GO) vs. line averaged void fraction (WMS)
for positions 7 and 10. (Left) liquid superficial velocity of O.2ms'l and (right) liquid

superficial velocity ofO.7ms·1
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Figure 4.16-Chord Averaged void fraction (GO) vs. line averaged void fraction (WMS)
for positions 6 and 11. (Left) liquid superficial velocity of O.2ms·1 and (right) liquid

superficial velocity of O.7ms·1
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Figure 4.17-Chord Averaged void fraction (GO) vs. line averaged void fraction (WMS)
for positions 4 and 13. (Left) liquid superficial velocity of O.2ms-' and (right) liquid

superficial velocity ofO.7ms-'

4.6. Discussion

In general, there was a very good agreement between Gamma Densitometry and the

WMS in the central portion of the pipe. As the WMS was moved towards the edge of

the pipe however, there were large differences. One potential explanation for the large

difference in voids between GO and WMS readings, particularly near the pipe wall, is

due to the fact the GO has a lower "control volume" at the edge of the pipe, therefore

it sees less of the flow. The WMS has local measurements even at the periphery of the

pipe, with six crossing points. Near the edges of the pipe, there are geometrical

considerations that need to be taken into account, which will be obscuring and

affecting the path of the radiation for the densitometer, although in theory this should

be covered by the calibration process. If the pipe is divided into sections, the cross-

sectional shape of the pipe at the wall is almost trapezoidal, whereas it is a more

regular shape in the central part of the pipe. Kumara et al (2010) calculated the

geometrical factor to be approximately 1% at the pipe wall. Results in these

experiments suggest this is too low. Results by Manera et al (2007) also showed larger

differences between gamma and wire mesh sensor measurements at the wall than near

the centre of the pipe.
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The accuracy of the WMS is around +/- 5% (Prasser et ai, 2005b), but this does not

cover the large differences between the WMS and GO at the pipe wall. A number of

other errors could be contributing to the difference at the pipe wall. The local voids by

the WMS all around the pipe wall are significantly lower than the overall cross-

sectional averaged void fraction. There are possible inaccuracies in the gamma beam

location relative to the wires. A manual moving platform will be less accurate than a

servo-motor controlled set-up, which allows more precision in locating the GO. There

is a possibility that developing, as opposed to fully developed, flow was being

measured. In the set-up, there was 1 metre of pipe length for flow development, but

Azzopardi (2006) suggests pipe lengths of up to 100 times the pipe diameter could be

necessary to establish developed flow. Piper (1974), Hewitt (1978), Kumar et al

(1995), Stahl et al (2004) and Kumara et al (2010) list several issues in using Gamma

Densitometry. Some of these are discussed as follows:

(a) Radiation: Natural difficulties in handling radioactive material. A fairly strong

source I37Cswas used in these experiments; this required thick and heavy shielding,

and the wearing of a dosimeter throughout these experiments.

(b) Accuracy: There is a fundamental inaccuracy in the measurement of void fraction

due to radiation statistical fluctuations. This can be minimised using long counting

times, and strong sources. A number of different gamma sources are available; these

have varying photon energies, half-lives and emission ratios. With 137Cs,it has both a

high photon energy and emission ratio, which makes it a good all-round source to use.

Statistical and dynamic bias errors are discussed in Appendix C.
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(c) Influence of void orientation: There are two limiting cases and the equations used

in calculating the chordal void fraction implied the gas-liquid mixture exists in layers

perpendicular to the radiation source (vertical flow). A different equation is necessary

when the gas-liquid mixture exists in parallel to the radiation source (horizontal flow).

See Gamma Densitometry calculation (Appendix C) for further details.

(d) Effect of tube wall: In making void fraction measurements as were carried out in

this experiment, the beam passes through variable wall thickness. Using a single beam

to take an average over the whole tube, there is a stronger weighting for those parts of

the tube where the beam path lengths through the plastic wall are lower.

(e) Time fluctuation effects: Gas-liquid flows such as those encountered in these

experiments were time-varying. For example slug flow, where the void fraction

fluctuates periodically between 0 and 1 (or 0% to 100%). If the absorption is

exponential, then clearly the average signal does not represent the mean void-fraction

that the WMS measures. One way round this issue as suggested by Hewitt (1978) is to

use two gamma beams instead of one, but with different energies. The ratio of the

time-averaged intensities from the two beams gives a measure of void fraction, and the

use of the ratio gives a result for mean void fractions in a time-varying flow, which is

.closer to the true value than the equivalent mean obtained from a single beam.

This work suggests that using other newly developed instruments by HZDR, such as

the FMS (film measurement sensor) and the x-ray tomograph will be more suitable for

investigating voids at the pipe wall in detail. Needle probes that compared well with

WMS measurements and gave local void measurements to a high degree of accuracy

(Manera et al, 2009) are probably not suitable for pipe wall investigations, since flow
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disturbance of such a probe near the pipe wall can be high. Unpublished experimental

data acquired at HZDR comparing the WMS against ROFEX (ultrafast x-ray CT),

showed that the WMS overestimated the void fraction at the wall. Interestingly, the x-

ray scanner also showed zero voids at the wall in some cases. The ROFEX has a

higher resolution than the WMS, and small bubbles appear more round than in WMS

images. Other experimental approaches are also possible, for example the GD could

be moved so that it is aligned exactly with the WMS wires as opposed to being placed

1 cm below them. Finally, a gamma-ray tomograph could be used, which would give a

scan of the full-section of pipe as opposed to just a single chord that is produced by

the GO.

4.7. Comparison between CondWMS and CapWMS

4.7.1. 2D Visualisation

From the results of this work, a further exercise can be carried out comparing the

CondWMS with the CapWMS. This is based on the assumption that the flow is

symmetrical. This comparison can be done both qualitatively by inspecting the

visualisation generated from both sensors, and quantitatively by carrying out a

statistical analysis. To begin with, the flow regimes that the WMS generates can be

compared. Figure 4.18 shows the visualisation generated by the CondWMS for all gas

superficial velocities at the two liquid superficial velocities. This can be compared

with the one given earlier in this report in Figure 4.9, which was generated by the

CapWMS. Qualitatively, they look similar and predict similar flow regimes.
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Figure 4.18- Visual plots of flow regimes. First row Ug• in mis, second row Uls in m/s. For
each flow condition, two projections are shown; the first is transparent pipe, the second is

middle of pipe
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4.7.2. Three Dimensional Plots

This process can be taken one step further by converting the 2D images into 3D, to

improve the visualisation of the structures. Figure 4.19 shows the 3D plots for the

CapWMS and Figure 4.20 for the CondWMS. Qualitatively, there is a good

agreement, with the size and periodicity in the structures matching in many instances.
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Figure 4.19-Capacitance 3D visuals for Ugs=O.05-1.4m/s, at U1s=O.2m/s and O.7m/s
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Figure 4.20-Conductance 3D visuals for Ugs=O.05-1.4m/s, at U1s=O.2m/s and O.7m/s

4.7.3. Time Series

To continue with the quantitative comparison, the time series of cross-sectionally

averaged void fraction was plotted (Figure 4.21) to (Figure 4.26). Although there is

significant fluctuation in the void over time, the trend between the two sensors looks

similar. It can also be seen how the void shifts to a higher value with an increasing gas

superficial velocity. Both sensors exhibit this tendency.
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Figure 4.21-Time Series, capacitance WMS Ugs=0.051, 0.153m/s, U1s=0.2, 0.7m/s
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Figure 4.22- Time Series, conductance WMS Ugs=0.051, 0.153m/s, U1s=0.2, 0.7m/s
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Figure 4.23- Time Series, capacitance WMS Ugs=0.28, 0.467m/s, U1,=0.2, 0.7m/s
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Figure 4.24- Time Series, conductance WMS Ug,=0.28, 0.467m/s, U1,=0.2, 0.7m/s
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Figure 4.25- Time Series, capacitance WMS Ugs=O.942, 1.4m/s, U1s=O.2, O.7m/s
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Figure 4.26- Time Series, conductance WMS Ugs=O.942, 1.4m/s, U1s=O.2, O.7m/s

4.7.4. PDF

From the time series plots it is possible to quantitatively identify the flow regime using

the PDF, which gives a distinctive or characteristic footprint for each flow regime

(Whalley et ai, 1997). It also gives more meaning to the time series profile, which on

its own can be difficult to interpret. The PDF for the CapWMS can be seen in Figure

4.27 and for the CondWMS in Figure 4.28.

Figure 4.27- Capacitance WMS PDF plots for Ugs=O.05-1.4m/s, at U1s=O.2m/s and O.7m/s
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Figure 4.28- Conductance WMS PDF plots for Vgs=O.05-1.4m/s, at U1s=O.2m/s and O.7m/s

There is a reasonable agreement if the PDFs are compared, with both sensors

generating similar profiles for the same flow conditions. This is for the full range of

gas and liquid superficial velocities covering bubble-slug-churn flow patterns.

4.7.5. Statistical Analysis

From the time series plots it is possible to analyse and compare the variation in terms

of the Mean (I SI Moment), Standard Deviation (2nd Moment), Skewness (3rd Moment)

and Kurtosis (41h Moment) for the two sensors. Figure 4.29 shows these values for the

capacitance WMS and Figure 4.30 for the conductivity WMS, for the same gas and

liquid superficial velocities. There is a remarkable agreement between the two sensors.
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4.7.6. Time Averaged Local Void Fraction

The next comparison is using time averaged local voids. These are averaged over 60

seconds; therefore this yields an averaged 16x16 matrix over 60,000 data points.

Shown in Figures 4.31 to 4.36 are the absolute % differences between the two sensors

at each crossing-point. Colour code: Green: 0-10%, Orange: 10.1-20%, Red: >20%.

Figure 4.31-Local voids: (Left) u;0.051m/s Vis 0.2m/s (Right) u,O. 153m/s Vis0.2m/s
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In general there was good agreement between the two sensors, except on the periphery

and also when UJs=0.7m/s and Ugs=0.051 mis, where there were larger differences.

However, it is clear that most crossing points generated differences of less than 10%

with varying gas and liquid superficial velocities, which is within acceptable limits.

4.7.7. Radial Profiles

The next exercise was to extract the radial profiles for both sensors for the same flow

conditions, and again there is a very good agreement between the two. See Figure 4.37

for CapWMS results and Figure 4.38 for CondWMS results. The trend for the radial

void is that it increases as the superficial gas velocity is increased. This is true for the

two superficial liquid velocities investigated with both wire mesh sensors.
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Figure 4.38- Radial voids for CondWMS. (Left) U1s=O.2m/s, (right) U1s=O.7m/s

The graph shows the radial profile for one half of pipe, and assumes symmetry,

although in reality the other section of the pipe will not necessarily have the same

values.
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4.7.8. Bubble Size Distribution

A more advanced step is to compare the bubble size distribution (BSD) generated by

the two sensors. Figure 4.39 shows the BSD for the CapWMS and Figure 4.40 for the

CondWMS, again for the same gas and liquid superficial velocities.
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Figure 4.40- Bubble Size Distribution for CondWMS. (Left) U1s=0.2m/s, (right) U1s=0.7m/s

Both sensors show similar characteristics with respect to the variation in the size of

bubbles. It is interesting to note how the bubble size changes as the superficial gas

velocity is increased and as the flow pattern changes from bubbly to chum. It is worth

noting that these graphs display the "equivalent" diameter calculated from the volume,

and therefore may show diameters that exceed the diameter of pipe.
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4.7.9. Further comparisons

The cross-sectionally and time averaged void fractions for all the runs collected from

each sensor (6 Vgs per Vis per wire, 8 wires=96 runs=96 voids) were plotted in Figure

4.41, and it is clear there is very good agreement between the two sensors.
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Figure 4.41-Comparison between CondWMS and CapWMS for all the runs

It is also possible to show the local voids in a 2D cross-sectional view and 3D surface

plots to quantify the void fraction, and also track the void fraction and see how it

changes in time for all 16 crossing points.

Measurements were taken on a 50 mm bubble column (details of apparatus in Chapter

3) with both the CapWMS and CondWMS, with water that had various levels of

conductivity. This was in order to ascertain the conductivity limit for the CapWMS in

the build standard that was used for this project. The electrical output in Figure 4.42

showed that the CapWMS coped with conductivity levels lip to 1000 Il.s/cm; however,

as the conductivity increased past this point, the electronics started to saturate. A more
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conservative limit for the CapWMS is 100 ).is/cm. For higher conductivities than this,

the CondWMS is recommended.

deionized water tap water saline water

10' 10' 103

electrical conductivity water [lJS/cm)

Figure 4.42-Electrical output from the CapWMS for conductivities of 1-10000 J.1S/cm

A further exercise was carried out in collecting data using both the CapWMS and

CondWMS for different levels of conductivities for superficial gas velocities ranging

from 0.008 to 0.067 m/so Cross-sectional averaged void fraction values were extracted

from both instruments, and then compared. A graph of the results is shown in Figure

4.43. Very good agreement is again demonstrated between the two instruments for

varying levels of salinity and superficial gas velocities.
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Figure 4.43-Difference in void fraction between CapWMS and CondWMS. Conductivity
varied between 1-1000J.1S/cm
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4.8. Comparison between WMS and ECT

A number of experiments were conducted on an inclinable facility with a 67mm

diameter pipe using the WMS and several other instruments, including ECT and

Capacitance probes. The CondWMS was previously used for air-water experiments

(Azzopardi et ai, 2008a). The rig was subsequently modified and further studies were

carried out at various inclinations of the pipe using eapWMS, ECT and capacitance

probes with air-silicone oil as the two phase gas-liquid mixture. See Abdulkareem et al

(2009,2010,2011) for further information on the facility and experimental details. In

addition, recent experiments were carried out with the CapWMS and ECT to

investigate 90 degree horizontal and vertical bends; see Abdulkadir et al (2010, 2011)

for more information. Cross-sectionally averaged void fractions were extracted from

these experiments for both the CapWMS and EeT for various gas and liquid

superficial velocities with air-silicone oil, and were then plotted for comparison.

Figure 4.44 shows EeT vs. WMS results with the pipe at 0° (Horizontal) and 90°

(Vertical). Figure 4.45 shows ECT vs. WMS results with the pipe inclined at 10° and
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Figure 4.44-ECT vs. WMS. (Left) 0 Oeg inclination and (right) 90 Deg. inclination
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Figure 4.46 shows a plot for ECT vs. WMS with the pipe at 80°, and further data at

low gas superficial velocities at 90° (vertical). It is clear from the above six plots,

which contain a substantial number of runs, that there is very good agreement between

the ECT and CapWMS on the 67mm diameter facility. This data was extracted for air-

silicone oil as the two-phase mixture; however similar agreements can be expected

between the two sensors for other non-conductive fluids.
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4.9. Comparison between SOmmand 67mm pipe data

A final exercise was carried out to compare the time and space averaged voids

generated on the 50mm pipe presented earlier in this chapter, with the time and space

averaged voids generated on a 67mm diameter air-water vertical pipe (Azzopardi et ai,

2008a).

Here, the comparison between the time and space averaged voids can be seen for both

the CondWMS and CapWMS for a 50mm pipe, which is very good for liquid

superficial velocities of O.2m/s (Figure 4.47) and O.7m/s (Figure 4.48). The gamma

line voids were averaged across the whole cross-section. The gamma cross-sectional

voids do not show a good agreement with the WMS as was previously demonstrated

by comparing the chordal voids, and this could be again attributed to the disagreement

between the two measuring techniques at the pipe wall. The results between the

CapWMS and CondWMS are similar for the two pipe diameters for liquid superficial

velocity ofO.2m/s; however, the lines diverge for O.7m/s.
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Figure 4.47-CondWMS (67mm) vs. Cap/CondWMS (50mm) vs. GO (50mm);U1s=O.2m/s
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4.10. High speed camera testing of the WMS

The wire mesh sensor is often described as an intrusive device; however, it was

interesting to note the observations that were made during the filming of some high-

speed images of a Taylor bubble passing through the sensor (artificially created by

sudden injection of air) in a stagnant head of liquid inside a vertical pipe. These were

taken through a transparent section of the pipe. The films showed that the Taylor

bubble passed through the sensor before it momentarily split up, and then reformed a

short distance further up the pipe. This was observed in air-silicone oil in a 67mm

diameter column, and in air-water in a 127mm column (Figure 4.49) and (Figure 4.50)

respectively. Two videos showing this are also provided on the DVD with this thesis

and the videos provide better visualisation of the plug as it passes through the WMS.

The WMS was also operated to capture an artificially created slug (plug) in the

127mm diameter bubble column with air-tap water. The processed WMS images

captured the structure of the plug, and also showed bubbles in the liquid slug that

follows the plug. Cross-sectional images, as well as a side view (centre), are shown in

Figure 4.51. On the DVD, a video showing the variation of voids in 3D for the

plug/slug is included.
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•

•

Figure 4.49- Six images showing the Taylor bubble progressively passing through a 24x24
sensor (dotted line) in silicone oil-air in a 67mm pipe.

-

-
Figure 4.50- Six images showing the Taylor bubble progressively passing through a 32x32

sensor (dotted line) in air-distilled water in a 127mm diameter column.
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Figure 4.SJ-HS and WMS images of an artificially created plug. To save space, the last
image is rotated 90 degrees.
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4.11. Summary

It was shown that there is agreement in the void fraction measurements between the

GO and both variants of the WMS to within +/-10% if the comparison is carried out in

the central part of the pipe, which agrees with previous studies in this area. However,

it was also shown there can be significant differences between these two measuring

techniques at the edges of the pipe, due to inherent limitations in the instruments in

measuring void fraction at the pipe wall. Further research could be conducted in this

area. Comparing the conductivity WMS with the permittivity WMS gave

exceptionally good results, which perhaps validates both sensors as they

independently generated similar results, both qualitatively and quantitatively. This was

despite the fact they were not operating at same time, or triggered at same time, or

working in the same segment of cross-section of pipe. Itwas also shown that there was

very good agreement between the WMS readings and ECT. Therefore, the WMS is

validated and in agreement with two different instruments (ECT and GO). This work

reinforced the accuracy and strengths of the WMS, and the presented results should

contribute to the industrial needs of comparing the WMS with other instruments. GO

gave less information about the flow than the WMS. The WMS gives local void

fractions at each crossing point, from which cross-sectional voids can be deduced, and

hence visualisation of the flow. It is possible to use an image reconstruction algorithm

for the GO; however, the image resolution will be lower than that generated by the

WMS. Finally, these investigations contributed in the testing phase of the capacitance

WMS. The capacitance WMS is still a relatively new device, and it has not been

subjected to the same rigorous studies as the conductance WMS. Following these

tests, both the CapWMS and CondWMS were applied to two applications; which were

bubble columns of different sizes and with different fluids, and also a large diameter

pipe. These results will be presented in Chapters 5 and 6 respectively.
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5. CHAPTER 5: BUBBLE COLUMNS

5.1. Introduction

Bubble column reactors belong to the general class of multiphase reactors without

moving parts, which consists of three main categories; namely the trickle bed reactor

(fixed or packed bed), the fluidised bed reactor and the bubble column reactor. The

latter will be the focus of this Chapter. Deckwer (1991) presents a thorough

background on the subject, and more recent publications include Zehner et al. (2000)

[updated by Deen et al. (2010)], Jakobsen (2008) and Azzopardi et al. (2011).

Bubble columns are used extensively as multiphase contactors and reactors in the

chemical, petrochemical, biochemical and metallurgical industries (Kantarci et ai,

2005). Recent research carried out on bubble columns focussed on the following

topics (Kantarci et ai, 2005): gas hold-up studies, bubble characteristics, flow pattern

investigations and computational fluid dynamics studies, local and average heat

measurements, and mass transfer studies. Although a large number of studies exist in

the literature, bubble columns are not particularly well understood due to the fact that

. many of the studies are often orientated on only one phase, i.e. liquid or gas

hydrodynamics. Bubble column reactors have several advantages in terms of design

and operation compared to other reactors. They have excellent heat and mass transfer

characteristics, and they require very little maintenance and have low operating costs

due to the lack of moving parts. They can be fairly compact, depending on the size of

the column and measuring equipment.

Research interests in bubble columns have increased over the years (Zehner et ai,

2000). This has led to many empirical correlations and theoretical studies being
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published, thereby enabling mathematical modelling and simulations of bubble

columns. Some of these correlations will be compared against experimental results in

this work, and in addition, mathematical modelling of bubble columns will be

attempted using Matlab and also compared to experimental results. The fundamentals

of bubble columns will now be explained.

5.1.1. Bubble Column Design

There are several important parameters in the design of a bubble column, for example

column height, diameter, and the distribution, type and size of holes. These need to be

considered along with the gas and liquid densities, the liquid viscosity and the

presence and concentration of chemicals (surfactants), for example salts and alcohols.
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tGas liquidGas Gas

Figure S.l-Bubble Column configurations - S different types

Possible designs are shown in Figure 5.1 (Zehner et aI, 2000). A is a simple bubble

column with gas fed in at the bottom, which is the configuration used in this research

project. Other designs shown are B, which is a cascade bubble column with sieve

trays, C, which is a packed bubble column, D, which is a multi-shaft bubble column,

and finally E, which is a column with static mixers. The net liquid flow in the above
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systems can be co-current, or counter-current to the gas flow direction. The systems

can also be operated in batch mode with a stagnant pool of liquid, which is the

technique that was used in this work. This is a major difference to two phase pipe

flow, and Mudde et al. (2001) considered the hydrodynamic similarities between

bubble column and bubbly pipe flow. There are three different mixing methods, the

simplest being where the gas is sparged at the bottom as discussed above. It is also

possible to have a downflow bubble column, with both gas and liquid supplied from

the top. Finally, it is also possible to use ajet loop reactor.

5.1.2. InjectionMethods

There are two types of spargers; static and dynamic, which are used to disperse the gas

phase as bubbles into the liquid phase, and in this case, into a stagnant column of

liquid. This work will mainly use static spargers, so called as they require no

additional external energy for them to operate. There are four different types (Zehner

et aI, 2000) as shown in Figure 5.2. A is known as a dip tube and B shows a perforated

plate (C-ring plate) with N holes. These holes need to be sufficiently separated to

discourage coalescence of the bubbles. Perforated plates require a minimum gas flow

rate to achieve a uniform distribution and prevent the liquid from flowing back into

the sparger. A solution to this is to operate the gas flow first, before filling the bubble

column up with water (as explained in Chapter 3). Finally, the fourth type of injector

is a porous or sintered plate, which can generate very fine bubbles. However, this has

the disadvantage of the pores being easily blocked.
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Figure S.2-Static gas injectors; four different types.

Details of the design and size of the bubble column, and types of the spargers used, as

well as operation of the bubble column, were given in Chapter 3.

5.1.3. Flow maps and patterns in bubble columns

Three basic flow patterns exist in bubble columns; homogeneous or bubble flow,

churn-turbulent or heterogeneous flow and slug flow (Drahos et ai, 1989). At low gas

flow rates, the flow consists of small bubbles that are uniformly dispersed about the

column, which is normally referred to as homogeneous flow. This differs from the use

of this term in gas/liquid pipe flow, where equal gas and liquid velocities are implied

and in general the liquid velocity is greater than zero. In bubble columns it implies the

presence of well dispersed, small bubbles, where all the bubbles have the same

diameter. At higher gas velocities, larger bubbles that are interspersed between the

small ones appear. This is termed the heterogeneous flow pattern and all extra gas is

believed to go into the large bubbles. In small diameter columns at high gas velocities,

slug flow may also develop, with the large bubbles stabilised by the column wall.

Some references refer to the presence of annular flow in bubble columns; however,

this would require a closed system. From an industrial point of view, many bubble

columns operate in the heterogeneous flow regime (Mudde et al 2009); therefore this

regime is considered the most important.
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A typical flow map for bubble columns can be seen in Figure 5.3, which is

significantly different to the flow maps presented earlier in this report for pipe flow.

For example, the Hewitt-Roberts map showed that dispersed bubble flow in two-phase

flow only occurs at liquid velocities higher than 3 mis, which is clearly not the case

for bubble columns. There is a broad transition area due to various effects, for

example due to the type of injector used. The map shows the dependence on diameter

and gas velocity, but it is interesting to note that slug flow only prevails up to a

diameter of 100 mm (Shah et ai, 1982), which is similar to pipe flow. Is there a link,

and is Churn-turbulent flow in bubble columns the same as churn flow in pipes? It is

worth noting the prediction that the flow map makes for 67mm and 127mm diameter

bubble columns. For a 67 mm diameter column, it is showing homogeneous/slug flow

patterns. For a 127 mm diameter column, it is showing homogeneous flow at low

velocities, before mainly operating in a transitional region.

Figure 5.3-Flow map for bubble columns of various diameters. Several

references use this map; Shah et al (1982), Zehner et al (2000), Kantarci et al

(2005)

5.1.4. Void Fraction

A prime requirement for bubble column design is the void fraction (Azzopardi et ai,

2011) and an early example of measuring void fraction was conducted by Hills (1976,

1993). The void fraction governs the phase distribution inside the column, and the gas
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phase residence time. It also determines the gas-liquid interfacial area, which is crucial

for mass transfer between the liquid and gas phases. It is dependent on the gas

superficial velocity, and assumes a stagnant liquid in the column. It is defined in a

similar way as for two-phase pipe flow i.e. the ratio of the volume of the gas phase Vg

to the total volume of the dispersion (~ +~). This essentially defines the volumetric

void fraction as:

(5.1)

The volume averaged void fraction or "level swell" can be calculated using:

_ H finol - Hini/ial

Hfinal
(5.2)

where llj;nal is the height of the liquid column after it has been injected with gas from

the distributor and ~ni/ial is the stationary height of the liquid column before aeration,

assuming the liquid volume inside the bubble column remains constant. The level

swell is noted after steady state conditions are established in the experiments. In some

publications, the level swell is also termed as bed expansion. The WMS measures the

instantaneous local volumetric void fraction at every crossing point within the sensor,

which in turn can be converted to cross-sectional and time averaged void fraction.

This quantity can then be compared with the level swell measurements. This

methodology was used before by Costigan et al (1997) and AIOufi et al (2010). There

are numerous correlations published in the literature for the void fraction. Hikita et al.

(1980) list several correlations and also propose their own. It is preferable to use

physically-based or mechanistic models in a similar approach to pipe flow. For small

bubbles, Wallis (1969) suggested the following equations for a zero liquid flow rate:

(5.3)
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The drift flux model proposed by Zuber and Findlay (1965) can be applied:

(5.4)

where Vr is known as the "drift velocity" or "slug velocity" in pipe flow. Co is the

radial distribution parameter, which is given as: _(_£"'-.g_(r_)U_g:::._(_r_)_with brackets
(£g (r)(Ug (r)

signifying the cross-sectional averaging. Co has been found to take values between I

and 2.3. Hills (1976) suggested the following variation on the above equation:

e = Ugs
g 0931.35(Ugs+U/s)· +VT

(5.5)

The void fraction is also a function of the position in the bubble column, both axially

and radially. Three types of radial void fraction profiles have been reported (Serizawa

and Kataoka 1975, 1988), which are described as wall peak, intermediate peak and

centre peak. Wall peaks show maxima close to the wall, which is actually an annular

peak with a trough in the middle. This seems to be found only in columns/pipes with a

diameter of:::; 60mm. For large diameter pipes, the norm is for the void fraction to be a

maximum at the centre of the column, as determined by Hills (1974).

Figure S.4-Radial void pattern map for air-water flow in vertical pipes, obtained
by Serizawa and Kataoka (1988).
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A radial void map can be seen in Figure 5.4, from which it can be inferred that wall

peaks may occur at low superficial gas velocities and core peaks at higher values. The

radial correlation for void fraction proposed by Wu et al. (2001) will be used later in

this work. This correlation was also used by Abdulkadir et al. (2010c), and is

expressed as:

where Re, Fr and Mo are Reynolds, Froude, and Morton numbers respectively.

5.1.5. Homogeneous/Heterogeneous Transition

A typical curve of void fraction against gas superficial velocity is shown in Figure 5.5.

At low superficial gas velocities, the homogeneous regime (Line AB) mayor may not

form, depending on conditions, fluids and injectors. This is followed by a transition

region (Line BCD) where the transition commences before the main peak at point C.

At higher velocities, the heterogeneous flow regime (Line DE) sets in. The gradient of

the line is smaller in the heterogeneous region than in the homogeneous region.
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Figure 5.5- Representation of the void fraction profile and
homogeneous/heterogeneous transition region (Zahradnik et at, 1997)
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This transition region has been extensively studied, and further explanation can be

found in Ruzicka et al. (2001). A number of equations have been proposed for the

homogeneous!heterogeneous transition. Azzopardi et al. (2011) identified two

correlations in particular. The first, by Wilkinson et al. (1992), gave the following

equations for transition (tr) void and velocity:

( J(
3 )-0.273( )0.03_193cr°.lll1o.5p-061 C1'8gtr a P, PI

&gtr = O.Se I g and Utr = 2.25 -- --4- --
'71 g'7, Pg

(5.9)

The second, by Reilly et al. (1994), who proposed the following:

0.59.B1.SpgO.48(j0.06 0352 (1 ) 012d _. &gtr -&gtr (j .
&gtr = PIO.S an Utr - 004

Pg'
(5.10)

where B is a fluid dependent parameter (B~ air-water).

Letzel et al. (1999) gave a corrected correlation for the void fraction in the

heterogeneous region, derived by Krishna et al. (1996) and based on Reilly's

correlation for transitional void fraction and velocity as follows:

(5.11)

Letzel's correlation is capable of predicting the effect of system pressure on the void

transition region for air-water systems, although it does not perform well for other

liquids.

5.1.6. Bubble SizeDistribution

Methods for analysis of the bubble size in bubble columns must distinguish between

the bubble size at their creation at the injector, and the size distribution further away

from the injector. Due to the break-up and coalescence of the rising bubbles, the two

distributions can differ significantly. The bubble size can increase through
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coalescence, which would take place further away from the distributor, and this will

control the efficiency of the bubble column. The homogeneous flow regime is marked

by a narrow and uniform bubble size distribution (BSD), and bubbles are distributed

relatively uniformly over the cross section of the column, rising independently in the

liquid phase i.e. where there is little or no bubble coalescence/break-up. At higher

flow rates the void fraction increases, and hence so does the BSD; however, the

distribution is not uniform (Zehner et aI, 2000). With increasing gas velocity, bubbles

start to combine into clusters, and plugs (slugs) may be formed. The larger bubbles in

a heterogeneous flow move with higher velocities than the smaller bubbles in a

homogeneous flow, and both local and gross liquid circulations may appear. Larger

bubbles have a higher probability of being unstable, increasing their likelihood of

breaking up. For low viscosity liquids, the maximum bubble diameter is as follows

(Blap, 1988):

(5.12)

However, this expression is far too simplistic. Akita and Yoshida (1974) used

photographic methods to determine bubble size distributions for various systems, but

Deckwer (1991) identified several weaknesses with their correlation. Akita and

Yoshida (1973) also produced a correlation for the void fraction, although again this

was suitable to comparable systems. By considering the drag, surface tension,

buoyancy and momentum forces from first principles, it is possible to derive an

equation for the bubble volume (Ramakrishnan et aI, 1969). It is also possible to

derive the following simplified correlation for the bubble size at the sparger level or

the primary bubble size (Gaddis and Vogelpohl, 1986):

(5.13)

141



Chapter 5: Wire Mesh Sensor Application (I)-Bubble Columns

Equation 5.13 will be used below for bubble size estimation, the results of which will

be compared with the bubble size generated by the WMS. However, it is worth

emphasising that the WMS is not measuring the BSD at the creation point. The WMS

is measuring the BSD across the full cross-section at some distance from the sparger.

This can be considered as the equilibrium bubble size which is more relevant. The

equilibrium bubble size is crucial in determining the interfacial area in the bubble

column however it is influenced by the bubble coalescence and break-up. A general

equation for the bubble size does not appear to exist due to the complications of

bubble coalescence and break-up that occur in the middle of the column, particularly

during heterogeneous flow, and this is why researchers are focussing on CFD for this

the alternative to which is to measure the bubble size experimentally. The bubble rise

velocity is estimated for the WMS by dividing the gas superficial velocity by the

cross-sectional averaged void fraction. This value is then fed into the proprietary

software and algorithm from HZDR to deduce the bubble size distribution. More

details are given in the Appendices.

5.1.7. Bubble rise velocityand slip velocity

A number of different equations have been proposed for determining the bubble rise

or terminal velocity. By comparing several correlations with experimental results

(Azzopardi, 2011), it is possible to state two limits for the bubble rise velocity.

The Upper Limit (Mendelsohn (1967), Tomiyama et al. (1998» is given by:

(5.14)

The Lower Limit is given by Tomiyama et al. (2002) as:
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1
where E =>----------::-=

1+O,16{ gd2(p~-pg)r57
(5.15)

Harmathy (1960) proposed a simple equation, which is independent of the diameter:

(5.16)

According to Lapidus et at. (1957) the slip (relative) velocity Us can be defined as:

(5.17)

This is positive for counter-current flow, and negative for co-current flow. Therefore,

the slip velocity is a function of the bubble rise velocity and void fraction. For the

homogeneous region it is possible to use the Richardson and Zaki function (1954),

which considers the hindered rising of bubbles. The velocity of a bubble is lowered if

it is surrounded by other bubbles, which is analogous to the hindered settling that

Occurs in particle sedimentation. Zaki and Richardson proposed the following

correlation:

(5.18)

So, if equation (5.17) and equation (5.18) are combined:

(5.19)

By assuming Uts is zero in a stagnant level of liquid and rearranging equation (5.19), it

is possible to calculate the void fraction using iteration, where n is dependent on the

Reynolds no (Re). Therefore:

( n-I Ugs 08 1-8) --=
g g Vr (5.20)
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5.1.8. Published experimental work

To improve the understanding of the important parameters in column behaviour, it is

helpful to examine their effect on the relationships between void fraction, the fraction

of the two-phase mixture that is gas and the flow rate of the gas as gas superficial

velocity (Azzopardi et ai, 2011).

From experiments on columns of 150mm, 225mm and 400mm diameters, Groen

(2004) showed that there is little effect of the diameter on the overall void fraction/gas

superficial velocity relationship. The effect of the column height was studied by

Ruzicka et al. (2003), who showed that the void fraction decreased as the height of the

two-phase mixture increased. In contrast, in the heterogeneous pattern, little difference

is seen between the data of Letzel et al. (1999) (bubble column with two hundred

0.5mm holes, 1.2m height) and that of Cheng et al. (1998) (6mm holes, 10m high

column with measurements made at the 5 m level). Anderson and Quinn (1970)

measured the void fraction in a bubble column with various types of water (Figure 5.6

[left]). Tap water has more impurities than deionised/distilled water, which suppress

bubble coalescence and hence increase the void fraction.
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Figure 5.6-Experimental data of void fraction vs. Ugs for different types of water.
Source(s): Left - Anderson Quinn (1970), right - Ribeiro et al. (2007)

A similar experiment was conducted by Ribeiro et al. (2007) who varied the

concentration of salt in the water (Figure 5.6 [right]) and subsequently also reported an
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increase in void fraction as the salt concentration is increased. Similar homogeneous

injectors to the one used in this work have been investigated in the past, for example

Drahos et al. (1992) and Zahradnik et al. (1997). More recent work on a similar sized

bubble column and injector was reported by Harteveld (2005) and Mudde et al.

(2009). Figure 5.7 shows a comparison of void fractions obtained with the needle

sparger by Harteveld (2005) against data for a porous plate sparger (Groen, 2004) and

perforated plate spargers with two pore sizes (Drahos et ai, 1992). It is interesting to

note that Drahos et al. (1992) found that injectors with 0.5 mm holes produced

homogeneous flow, whereas injectors with 1.6 mm holes only produced a

heterogeneous flow pattern.
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Figure 5.7-Left: Void for various injectors. Right: Radial void (Harteveld 2005)

Figure 5.7 [right] also shows interesting wall peaks from readings taken at various

heights inside the bubble column (Harteveld, 2005) and (Mudde et al., 2009). In this

case, these appear to occur at certain values of void fraction and gas superficial

velocities. In the example shown here, wall peaks occurred at a void fraction of 6.1%

and a Ugs ofO.015m/s. Other studies, for example Wang et al. (1987), found this wall

peaking occurring at higher liquid flows. Hills (1974) conducted experiments using a

distributor with 61 holes of 0.4 mm in diameter. His work showed the bubble

frequency and radial profiles to be constant at low gas superficial velocities i.e. a

homogeneous regime with a constant value in the centre of the column and peaks in
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void fraction only near the pipe wall. A parabolic curve is formed at higher gas

velocities i.e. a heterogeneous regime, as a consequence of the bubbles being

concentrated and rising more in the centre of the pipe. There is a tendency for the

radial void fraction to increase as the superficial gas velocity is increased.

5.2. Experimental Techniques applied to bubble columns

Comprehensive papers on the measuring techniques used in bubble columns have

been published (Boyer et aI, 2002) and (Mudde, 2010), and from these it is clear there

are several instruments that may be used to study bubble columns, each with its own

advantages and disadvantages. AI-Oufi et al. (2010) used point probes to investigate

air-water in a column of 0.1 metres in diameter and height of 2.3 metres. Examples of

tomographic investigations on bubble columns include Jin et al. (2007) who used an

ERT system for air-water on a column of diameter 0.16 metres and height of 2.5

metres and AI Masry et al. (2010), who used an ECT system to investigate air-

kerosene in a 150mm diameter bubble column of height 5 metres. Schmitz et al.

(2000) used a resistance wire mesh sensor with air-water on a column of diameter

315mm and height of 2.1 metres, although the design of the sensor was different to the

one used in this work. Zaruba et al. (2005) and Krepper et al. (2007) carried out air-

water investigations on a rectangular bubble column using a dual layer wire mesh

sensor system. The wire mesh sensor has been used to investigate trickle bed reactors

(Llamas et al., 2008) and (Matusiak et al., 20I0) and stirred vessels (Prasser, 2008).

However, the WMS has not been extensively used to date on bubble columns (Mudde,

2010). Therefore, this Chapter will assess the suitability and limitations of this

instrument for use on bubble columns, and will present some important results to aid

in this evaluation. Bubble size can be determined from photography at low bubble

concentrations, point probes (usually two probes in line to measure transit times and
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contact times), multi-point probes and WMS tomography. For example, Lage et al.

(1999) and Harteveld (2005) measured bubble size using photographic techniques.

The mean void fraction can be measured using pressure drop techniques, and it can

also be obtained from point probes (electrical or optical), y or X-ray Computed

Tomography, ERT/ECT or WMS Tomography (Azzopardi et ai, 2011).

5.3. Experimental details for this work

The experimental facilities and procedures in this study were explained in Chapter 3.

Preliminary experiments were carried out by measuring the level swell, which showed

distinct trends but only gave one parameter, which was the void fraction. To get more

detailed information, the WMS was applied to the bubble columns, although care had

to be taken in applying the correct WMS electronics. Obviously for low conductivity

liquids, the CapWMS is suitable, and for higher conductivity liquids, the CondWMS

is more appropriate.

Therefore, an extensive amount of data for several bubble columns was collected with

both the CondWMS and CapWMS for a variety of different fluids and injectors. The

focus of analysis will be on the experiments conducted on a bubble column with a

diameter of l27mm and height of2 metres. This had a 32x32 WMS installed within it,

at a height of 1metre away from the static gas injection at the bottom. Emphasis was

placed on ensuring the bubble column was always clean, to minimise any

contamination that would affect the accuracy. The temperature and electrical

conductivity were monitored throughout the experiments using a calibrated

conductivity meter, model number WTW LF 340. The level swell was noted visually

throughout these experiments and was taken concurrently with every WMS

measurement. Any foaming was disregarded. Both variants of the WMS were

147



Chapter 5: Wire Mesh Sensor Application (I)-Bubble Columns

operated for between 30 and 60 seconds at a sampling frequency of 1000 cross-

sections per second. The effect of changing the fluid, the injector and the diameter was

directly observable. An exercise was also attempted to assess the impact of raising the

sampling frequency from 1000Hz to 2500Hz on the results. A high speed camera was

also used to record images for both types of injectors, and sample videos are provided

in the DVD with this thesis. Results were regularly relayed back to the sensor

designers at HZDR in Germany and as a result improvements were carried out on the

CapWMS, both in terms of software and hardware. Since conducting these

experiments, a mark II version of the CapWMS has been produced by HZDR. Five

novel WMS data sets will be presented in this chapter and a summary of the whole

experimental campaign can be seen in Figure 5.8. The gas superficial velocities for the

127mm bubble column were 0.004-0.047m1s for the spider and 0.02-0.145m/s for the

homogeneous injector.

No Fluid Sy,tem Column Diameter Injector WMSSy.tem WMS Suitable? Uti' (m/s) Data Prese nted
I Air-Water (Distilled) 127mm Spider (2mm holes) CapWMS Yes 0.004-0.047 WMS+Lswell
2 Air-Water (Tap) 127mm Spider (2mm holes) CapWMS No 0.004-0.047 Lswell Only
3 Air-Water (Distilled) 127mm Homogeneous CapWMS No 0.02-0.145 Lswell Only
4 Air-Water (De ionised) 127mm Homogeneous CapWMS No 0.02-0.145 LsweliOnly
5 Air-Water (Tap) 127mm Homogeneous CapWMS No 0.02-0.145 LsweliOnly
6 Air-Silicone Oil 127mm Homogeneous CapWMS Yes 0.02-0.145 WMS+LsweU
7 Air-Distilled (0.5% Butanol) I27mm Homogeneous CapWMS No 0.02-0.06 LsweliOnly
8 Air-Water (Deionised) 127mm Homogeneous CondWMS No 0.02-0.145 LsweliOnly
9 Air-Water (Tap) 127mm Homogeneous CondWMS Yes 0.02-0.145 WMS+Lswell
10 Air-Silicone Oil 67mm 3mm holes CapWMS Yes 0.047-4.7 WMSonly
11 Air-Water (Distilled) 50mm Porous Media CapWMS Yes 0.008-0.068 No
12 Air-Silicone Oil 50mm Porous Media CapWMS Ye. 0.008-0.068 No
13 Air-Salinated Water 50mm Porous Media CaP/CondWMS Yes 0.008-0.068 WMSonly

Figure 5.8-Table summarising the experiments using the CapWMS and
CondWMS with various bubble columns for different liquids and injectors.

The first set of results presented in this Chapter will be for the CapWMS with distilled

water and the spider injector, which in essence generated heterogeneous flow. A new

design of distributor with 121 holes of 0.5mm diameter, uniformly distributed to

encourage homogeneous flow, was des.igned and produced by the Institute of

Chemical Process Fundamentals (Czech Republic). The second set of results will be

for the CapWMS with air-silicone oil on the 127mm diameter bubble column with the
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homogeneous injector. It is interesting to note that there are many papers published on

bubble columns with air-water, but there is a dearth of data for low surface tension

liquids such as silicone oil. Data was also previously collected on a 67mm diameter

rig, and further details can be found in Abdulkareem et al. (2009). This was carried out

with air-silicone oil at various gas and superficial liquid velocities. This had a height

of 6 metres and a sparger with 100 holes of 3mm in diameter. The 67mm diameter

pipe therefore had a bigger aspect ratio than that for the 127mm diameter bubble

column. One set of results was obtained with the liquid superficial velocity maintained

at zero, but with gas superficial velocities of 0.047-4.7m1s. 28 runs in total were

carried out, which will be the third data set presented in this chapter. Comparisons will

be shown between the 67mm diameter column and 127mm diameter column with air-

silicone oil; assuming the effects from the different injectors are negligible. The

CondWMS was also applied to the 127mm bubble column with the homogeneous

injector and various types of water. Therefore a fourth set of results for air-tap water

will be presented for the CondWMS.

Two further trials were also carried out. The first was conducted on a 50mm bubble

column with a 16x16 WMS, with both the CondWMS and CapWMS, and with water

of varying levels of salinity (conductivity) with a porous injector. This will form the

basis of the fifth data set presented towards the end of this chapter. The results will

show how the salt concentration affected the void fraction as the superficial gas

velocity was changed. This is in addition to the comparison between the CapWMS and

CondWMS with this data set presented in the previous chapter. The second trial was

conducted with the CapWMS with distilled water and 0.5% Butanol. Due to the large

expansion in the liquid after aeration, this trial was limited and only the level swell

was recorded and will be presented in this Chapter.
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Therefore, an overall picture is conveyed regarding the level swell on the 127mm

diameter bubble column, followed by the five data sets from the WMS in order of

increasing level of complexity of the time series, PDF, dominant frequencies, cross-

sectional averaged voids, radial voids, bubble size distribution and visual output. This

last parameter incorporates 20 contour maps of the local voids and 2D/30

visualisation of the flow. The quantitative data will then be compared with some of the

correlations presented earlier in this chapter. The experimental matrices for the five

data sets can be found in the appendix. Due to the extensive quantity of data collected,

a large amount of it has been located in the appendix.

5.4. Results

5.4.1. Level Swell

The void fraction can be calculated from the level swell measurements as explained

earlier in this chapter. Figure 5.9 [left] shows the variation of the level swell with the

superficial gas velocity using the spider injector for air-distilled water and air-tap

water. It is interesting to note that the level swell for tap water was slightly higher, but

that changing the liquid had a minimal effect on the void fraction. Figure 5.9 [right]

shows the void fraction against superficial gas velocity for a variety of liquids with the

homogeneous injector. Here, the difference is much more pronounced, and both

homogeneous and heterogeneous flow can be observed.
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Figure 5.9-Level swell on the 127mm diameter column. (Left): Distilled/tap water
with Spider injector. (Right): Various liquids with homogeneous injector.
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5.4.2. Time Series and PDF

Figure 5.10 shows a selection of time series and PDF plots for the spider injector with

distilled water, on the 127mm diameter bubble column. For the same column, Figures

5.11 and 5.12 show a selection of time series and PDF plots for tap water and silicone

oil respectively, with the homogeneous injector. Figure 5.13 shows the time series and

PDF data for a 67mm column with air-silicone oil. It is interesting to note how the

PDP changes as the superficial gas velocity is increased. Initially, a single peak IS

observed before it develops a long tail similar to churn flow in a pipe.

,[c
o

~ 0.5

~ 0" I ,

o 2

'~'
i Ug,=O.D216 mI, I ~U9S=O.0396 mI,

'" 0.5 '" 0.5~ ~! !
'~!d • b"" Ir J ';0 00 2 4 6 8 10 00L-'---2-~4-~6'------'---"-8-~1O

Ugs=O.OO36 mls

time(s) 1ime(sj

0.4~ Ugs-0.OO36"'''/SI
!f 021\. _

°0~---~0~.5~--~'
Void f,.illldion

0.5
Void frnctlon

Ugs=O.0216 m/s

lime (5).e~l~""~~~'I
o 0.5 1

Void fraction
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Figure 5.13 -Low/MediumlHigh void fraction; air-silicone oil, 3mm holes (67mm)

The absence of the second peak is particularly striking. For the 67mm bubble column,

a second peak starts to develop around a value of gas superficial velocity of O.137m/s.

For higher superficial velocities, the second peak becomes more prominent, signifying

slug flow (more profiles can be seen in the appendix). It seems that no slugs develop

in the 127mm bubble column, and the flow patterns predicted by the flow map shown

earlier in this chapter are confirmed here. In addition, churn-turbulent flow in bubble

columns occurs at a lower void fraction than in two-phase pipe flow, however the PDF

profile of a peak with a long tail is maintained. It is possible to extract the

maximum/minimum from the time series for each run (Figure 5.14).
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Figure 5.14-Maximum/Mean/Minimum void fraction for (left) Air-Silicone Oil
and (right) Air-Tap water; both for homogeneous injector and a 127mm bubble

column

Water has a higher surface tension than silicone oil and air-water flow generated

higher mean void fractions than air-silicone oil.
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5.4.3. Frequencies (PSD)

The dominant frequencies from the silicone oil time series data were extracted through

spectral analysis using two different methodologies. The first data set was obtained

using Matlab after defining a PSD function within the code. The second and third data

sets were obtained using the visual basic program (YBA) developed by Kaji (2008),

which was coded with and without a cosine window function. The windowing facility

helps to smooth out the data particularly at higher frequencies. More details of this

methodology can be found in Van Maanen (1999). The results can be seen in Figure

5.15, where each data point was obtained with 10,000 void data points. Matlab was

much quicker in obtaining this data than YBA, as the data collected by the wire mesh

sensor was in a binary format, which Matlab can readily solve. However, the PSD

plots in Matlab were not as smooth as in VBA. Overall there is a reasonable

agreement between the two approaches.
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Figure S.IS-Frequencies for air-silicone oil (extracted from the time series). Data
obtained from the 127mm diameter bubble column with homogeneous sparger.

5.4.4. Cross-sectional averaged void

The cross sectional and time averaged void fraction can be extracted from the time

series presented above. This can then be compared with the level swell measurements.
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Figure 5.16-(Left) Air-Distilled Water level swell vs. CapWMS void fraction with
the spider injector on 127mm column. (Right) +/-10% added to level swell values

Figure 5.16 shows the comparison between the level swell and CapWMS void fraction

for air-distilled water. The spider injector is displaying heterogeneous flow. The level

swell was difficult to measure in air-water due to significant fluctuations at higher gas

velocities, and this therefore had to be estimated visually after several readings. This

may explain the increasing difference between the WMS and level swell readings as

the gas velocity is increased. The level swell fluctuation at the higher velocities was

approximately 10 cm, or +/- Scm, which equates to approximately 10% if the column

is filled with liquid to a height of 1 metre. Therefore, the minimum and maximum

values of void fraction can be estimated as shown in Figure 5.16 [right], with the

dotted lines showing the error range for the level swell measurements, which covers

most of the WMS values. Figure 5.17 [left] shows level swell vs. WMS void fraction

for air-silicone oil using the homogeneous injector, measured with the CapWMS. A

good agreement can be seen between the two sets of results.
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Figure 5.17-Hom. Injector on 127mm column: (Left) Air-silicone oil vs.
CapWMS void. (Right) Air-silicone oil corrected level swell vs. CapWMS void.
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It is possible to "correct" the level swell by calculating the swell where the WMS is

located using differences in pressure. It can be seen in Figure 5.17 [right] that a slight

improvement is obtained by performing this correction. It is interesting to note that

despite utilising the homogeneous injector, the profile is flat with no point of

inflection to signify transition from homogeneous to heterogeneous flow. Ruzicka et

al. (2003) found that the viscosity had an adverse effect on whether homogeneous

flow was developed or not with the void fraction in general decreasing with increasing

viscosity, which could explain what is being observed here, as silicone oil has a

viscosity that is five times higher than water. Finally, the level swell is compared with

the cross-sectional void fraction for air-tap water using the CondWMS measurements

of void fraction and the homogeneous injector. This is presented in Figure 5.18 [left].
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Figure 5.18- Homogeneous injector on 127mm diameter column:
(Left) Air-tap water with CapWMS vs. CondWMS void fraction.
(Right) Air-tap water level swell vs. CondWMS (IOOO/2500Hz).

It can be seen that the profile is initially homogeneous before changing to

heterogeneous flow. This is clearly different from the results in Figure 5.17 for air-oil.

In Figure 5.18 [left] it can be seen the CapWMS did not perform well with tap water

in comparison with the CondWMS, although it registered a similar trend. Finally, an

exercise was carried out to compare the void fraction against level swell for the WMS

with two different temporal resolutions of 1000Hz and 2500 Hz (Figure 5.18 [right]).

Increasing the acquisition rate of the sensor in this case did not have an impact on the

results.
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5.4.5. Radial profiles of void fraction

The time averaged radial profiles of void fraction can be extracted from the WMS

data. These can be thought of as annuli; measuring the void fraction all around the

pipe, starting in the centre and working outwards to the circumference. Figure 5.19

shows the radial profiles for air-distilled water measured using the CapWMS for

superficial gas velocities from 0.0036 to 0.0432 m/s. There is a general trend of

increasing radial void fraction with increasing superficial gas velocity. From this it can

be inferred that this is a centre peak with heterogeneous flow.
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Figure 5.19-Radial Profiles for air-distilled water on 127mm diameter column,
with spider injector and CapWMS.
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Figure 5.20- Radial Profiles air-silicone oil on 127mm diameter column, with
homogeneous injector and the CapWMS.
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The radial void fractions were also plotted for air-silicone oil in Figure 5.20, using the

homogeneous injector, and for superficial velocities ranging from 0.012 to 0.132 m/s.

The general trend is for increasing radial void fractions with increasing superficial gas

velocities i.e. centre peak, as again the flow was mainly heterogeneous. Radial profiles

were plotted for air-tap water using the homogeneous sparger (Figure 5.21) and

superficial gas velocities of 0.012 to 0.145 m/s. In this case, the data is much more

complex. Unlike the previous two cases, the profiles are not self similar, meaning they

cannot just be scaled with maximum void fractions. At low gas velocities, the radial

profiles are almost constant with small wall peaks, and it is only at higher velocities

that the radial profiles start to take the characteristic parabolic shape. This could be

explained by the flow pattern being homogeneous at lower gas flow rates and

heterogeneous at the higher gas flow rates. The difference between Figure 5.19 and

Figure 5.21 is clearly due to the change of injector.
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Figure 5.21- Radial Profiles for air-tap water on 127mm diameter column, with a
homogeneous injector and the CondWMS.

5.4.6. Bubble size distribution

Using HZDR's proprietary software, it rs possible to generate the bubble srze

distribution (BSD) from the WMS data, which can be plotted for varying gas

velocities. A particular strength of the WMS over other sensors in this area is that it
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measures the BSD across the whole cross-section as opposed to taking point

measurements. The WMS software can generate both area and volume based BSD.

The distribution of volumetric void fractions per bubble diameter classification,

written as l1&g / I1Dd and expressed as %/mm, will be used throughout this thesis.

Integrating the area under the curve generates the time and cross-sectional averaged

void fraction.
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Figure 5.22 - BSD for air-distilled water on 127mm diameter column, with a
spider injector and the CapWMS

Figure 5.22 shows the BSD for air-distilled water using the spider injector, for gas

superficial velocities from 0.004 to 0.04m/s. Initially there is a single peak, which

slowly decreases in height as the velocity is increased. The main peak then maintains

its shape, and a second peak slowly develops at larger diameters.
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Figure 5.23- BSD for air-silicone oil on 127mm diameter column, with a
homogeneous injector and the CapWMS
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A similar observation is made from the air-silicone oil data in Figure 5.23, using the

homogeneous injector for gas superficial velocities from 0.02 to 0.132 m/s. A more

complicated result can be seen in Figure 5.24 for air-tap water for gas superficial

velocities from 0.02 to 0.145 mis, where the size and height of the distribution

continues to change as the gas velocity is increased.
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Figure 5.24- BSD for air-tap water on 127mm diameter column, with a
homogeneous injector and the CondWMS.

Therefore, it can be concluded that at low superficial gas velocities mainly small

bubbles are observed. However, their size increases as the gas velocity is increased, as

does the formation of larger bubbles, which will contribute more to the overall void

fraction. The overall void fraction is dependent on the area under the curve.

5.4.7. Visualisation: Local voids

For a 127mm diameter bubble column, a 32x32 matrix can be extracted from the data

that gives a time averaged local void profile for each condition measured. 2D or 3D

surface plots can then be generated. In this section, novel 2D contour profiles were

plotted using Matlab. Figure 5.25 shows the plots for air-distilled water using the

spider injector, and Figure 5.26 shows the profiles for air-tap water using the

homogeneous injector. Figures 5.27 and 5.28 show the profiles for air-silicone oil

from the 127mm and 67mm diameter columns respectively. It can be seen that the

general trend is that the maximum local voids are in the centre of the pipe; however,
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the area in which these are found changes with the velocity. It can also be seen that for

the low velocities in air-water with the homogeneous injector, the maximum local

voids are occurring near the circumference of the pipe and not in the centre,

reinforcing the theory of the wall peaks that tend to occur in the homogeneous region

of the flow.

Figure 5.25-20 contour plots for air-distilled water with a spider injector
(127mm). (Left) u, 0.0036 mIs, (middle) u, 0.0216 mIs, (right) u, 0.0396 mls

Figure 5.26 -2D contour plots for air-tap water with a hom. injector (127mm).
(Left) u; 0.0197 mIs, (middle) u, 0.0658 mIs, (right) VgS 0.1316 mls

Figure 5.27- 20 contour plots for air-Silicone oil with a hom. injector (127mm).
(Left) Ves 0.0197 mIs, ~~iddle) Ves 0.0658 mis, (right) Ves 0.1316 mls

Figure 5.28-2D contour plots for air-Silicone oil with 3mm holes (67mm).
(Left) u; 0.0197 mIs, (middle) u, 0.0658 mIs, (right) u; 0.1316 mls
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5.4.8. Visualisation: Cross-sectional voids

Visualisation of the flow can be processed from the wire mesh sensor results in both

2D and 3D. The WMS is able to show individual bubbles and complicated structures

within the bubble column. It is possible to show two representations; the first is a

virtual representation of the flow as if the column was transparent, and the second is

the flow inside the column, which is generally chosen to be in the centre of the

column. Both representations are shown in the four figures below. Figure 5.29 shows

the visualisation for air-distilled water with the heterogeneous (spider) injector on the

127mm column. Figure 5.30 contains the visualisation of the flow for air-tap water

using the homogeneous injector in the 127mm column. Figures 5.31 and 5.32 show

the visualisation of the flow for air-silicone oil in the 127mm and 67mm columns

respectively. Novel qualitative comparisons can be made between the spider injector

and homogeneous injector, between the homogeneous injector with air-water and air-

silicone oil, and finally between the 127mm and 67mm diameter columns with

silicone oil.

High speed camera videos were recorded at a rate of 1000 frames per second for air-

tap water using the heterogeneous injector, and for air-deionised water with the

homogeneous distributor. Figure 5.33 shows the images captured for the latter with

gas superficial velocities ranging from 0.02 mls to 0.164 mls. These images compare

well qualitatively with those captured by the WMS for example in flow pattern

identification although as expected at higher velocities the view from the transparent

pipe is less clear, with the WMS identifying structures that are forming inside the

column. These are not visible with the naked eye. Sample HS and WMS videos are

provided on the DVD attached to this thesis. There is evidence from the HS videos

that recirculation is taking place at the higher gas velocities.
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Figure 5.29-2D Air-distilled water visualisation with increasing gas superficial velocity in

mis, for the 127mm diameter column and spider injector.
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Figure S.30-2D Air-tap water visualisation with increasing gas superficial velocity in mis,

for the 127mm diameter column and homogeneous injector
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Figure 5.31-2D Air-silicone oil visualisation with increasing gas superficial velocity in mis,

for the 127mm diameter column and homogeneous injector
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Figure 5.32-2D Air-silicone oil visualisation with increasing gas superficial velocity in mis,

for the 67mm diameter column and 3mm injector
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Figure 5.33-lmages extracted from high speed videos for air-deionised water, in the 127

mm bubble column with a homogeneous injector. The gas superficial velocity is indicated

above each image in m/s.
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5.5. Comparison between 67mm and 127mm columns
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Figure 5.34-Mean Void Fraction. (Left) 67mm column, (right) 67mm vs. 127mm

Figure 5.34 shows the mean void fraction against gas superficial velocity for both

67mm and 127mm columns with air-silicone oil. It is clear that the trend of the mean

void fraction for the larger diameter is lower than for the smaller diameter.
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Figure 5.35-Bubble size distribution in the 67mm column at UI.=O m/s

Figure 5.35 shows the bubble size distribution for the 67mm diameter pipe, which can

be compared to the bubble sizes in Figure 5.23 for the larger diameter column. An

exercise was carried out to extract values of the main peak (I Si peak) from the bubble

size distributions, which can be considered as the statistical mode (in this case

bimodal), for both 67mm and 127mm columns with air-silicone oil. These were

plotted against the gas superficial velocity, which can be seen in Figure 5.36. It is

interesting to note that there is a trend of increasing bubble size with increasing

superficial velocity, and that this trend is higher for the larger diameter column.
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Figure 5.36-WMS bubble size (first mode) against superficial gas velocity; 67mm

vs.127mm.

The radial profiles were plotted for the 67mm pipe, which is shown in Figure 5.37.
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Figure 5.37-Radial profiles for the 67mm column with air-silicone oil; superficial

gas velocities of 0.047 to 0.203 mls

The general trend is clear: the radial void fractions are increasing with rising

superficial gas velocity. This signifies a centre peak and heterogeneous flow. The

radial profiles of the 67mm and 127m'll columns were compared for the same gas

velocities. These results can be seen in Figure 5.38, and the radial void fractions for

the two diameters diverge as the superficial gas velocity is increased.
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Figure 5.38-Radial profiles for the 67mm vs. 127mm columns for the

corresponding gas velocities

Finally, the frequencies for the 67mm and 127mm pipes were plotted for similar gas

velocities (Figure 5.39). The dominant frequencies for the 67mm column are lower

than those for the 127mm column.
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Figure 5.39-Dominant Frequencies for 67mm and 127mm columns with Air-

Silicone Oil
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5.6. WMS experiments with aqueous saline solutions

Data collected using the CondWMS on the 50mm bubble column with the porous

injector was further analysed. Initially, the mean void fraction was plotted against the

superficial gas velocity for four different levels of conductivity (Figure 5.40). The

trend of increasing void fraction with rising conductivity is clear, which agrees

qualitatively with trends obtained by Anderson and Quinn (1970).
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Figure 5.40-Mean void fraction vs. superficial gas velocity for the CondWMS.

Conductivity varied between 1-1000 ~S/cm

The radial profiles were also plotted in Figure 5.41 and Figure 5.42. The trend is

generally the same; with a void profile that is flat at lower conductivities, turning into

centre peaks at higher conductivities. Again, there is a tendency for the radial void

fraction to increase with superficial gas velocity.
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5.7. Comparison of data with published correlations

Three exercises were carried out; first the level swell data was compared against

physical models, then the cross-sectional void correlation was compared against the

WMS data and finally the radial void correlation was compared against the WMS

data.

5.7.1. Level Swell

A comparison was initially made between the level swell measurements and physical

models for the 127mm column with the homogeneous distributor, as was also carried

out by Azzopardi et al. (2011). Models such as those by Zaki-Richardson (1954) and

Zuber and Findlay (1965) were chosen. This is shown in Figure 5.43. For the drift-flux

equation (5.4), Co = 2, Uls = 0, and equation (5.16) was applied, where Vr ~ 0.3 mls

for air-water and V/, ~ 0.2 mls for air-silicone oil. Clearly there is a trend of

increasing mean void fraction as the impurities in the water increases. A similar effect

is observed with the limited measurements taken with a surfactant (Butanol) which

also acts as an impurity to suppress coalescence. Silicone oil has a lower surface

tension and a higher viscosity than water and this may explain the fact it has lower

void fractions and the reason why no homogeneous flow is formed.
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Figure 5.43- Level Swell data for the 127mm bubble column compared against
published correlations. Zaki et ai/Drift flux lines for air-water.

Zahradnik et al. (1979) also used values of Co = 2 and VT ::::: 0.3 mls for air-water

systems. Values of n=2.39 (Re>500) for air-water and n=4.45Re01 (Re<500) for air-

silicone oil were determined. The Zaki-Richardson equation appears limited, as the

maximum value for UgslVTfor air-water is 0.19, and for air-oil the equation stopped

working for a value ofUgslVT higher than 0.165. Therefore, it can only be used for low

superficial velocities. The transition velocity for the homogeneous injector with air-

water was calculated using Reilly et al. as 0.02 mis, and the transitional void fraction

was calculated as 0.13. These values occur before the transitional peak as shown in

Figure 5.43. The Wilkinson et al. equations also underestimate the transitional velocity

and void fraction. Clearly for air-silicone oil, there is no transitional velocity as the

profile is entirely heterogeneous. Another interesting observation can be made by

inspecting Figure 5.43 and considering the bubble size data, in particular for air- tap

water with the homogeneous injector (Figure 5.24). The occurrence of the second peak

for the bubble size distribution seems to coincide with the transition point of the above

curve at approximately 0.09 m/s.

172



Chapter 5: Wire Mesh Sensor Application (I)-Bubble Columns

5.7.2. WMS cross-sectionally averaged void fraction

WMS void fraction data collected on the 127mm diameter bubble column with the

homogeneous distributor was compared with the drift flux using the Hills (1976) and

Letzel et al. (1999) correlations. This comparison was done for both air-water (Figure

5.44) and air-silicone oil (Figure 5.45), specifically for the heterogeneous part of the

WMS data.
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Figure 5.45 Void fraction correlations vs. WMS data for air-silicone oil

The Letzel correlation performed reasonably well in the heterogeneous part of the

curve, whereas the Hills and Drift flux correlations tended to overestimate the void

fractions if Tomiyama's correlation was used (equation 5.15) for the bubble velocity

(VT). If VT was fixed at 0.3 mls for air-water and 0.2 mls for air-silicone oil, the

agreement improved between the experimental data and the 2 correlations.
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5.7.3. WMS radial profiles

Wire mesh data for air-silicone oil was compared with the radial void correlation

(equations 5.6-5.8) by Wu et al. (2001) (Figures 5.46 to 5.48). The original equation

clearly does not fit; however, if the correlation is modified such that n is divided by 4

and c is multiplied by 2.8, a better fit is obtained as demonstrated in the six graphs. It

is interesting to note that Azzopardi et al. (2011) carried out similar adjustments to

Wu's correlation to fit it to their own experimental data. For example, for Mudde-

Saito radial profiles for a 149mm diameter column with air-water, n was divided by 4

and c multiplied by 2 to achieve a reasonable fit to the experimental data.
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5.7.4. Bubble size measured by WMS

An interesting result was found when the bubble size from the first peak (mode) was

extracted from the wire mesh bubble size distribution for the homogeneous distributor

for both air-water and air-silicone oil. These results were compared with the bubble

size generated by Gaddis and Vogelpohl's correlation, the results of which are shown

in Figure 5.49. The experimental data appears to track the values generated by Gaddis

et ai's correlation, and tends to converge at higher gas velocities. Lage et al (1999)

verified that models such as the one by Gaddis and Vogelpohl for the bubble

formation in orifices gave reasonable predictions of the mean bubble diameter inside

the bubble column. It is also worth noting that the bubble sizes are predicted to be

smaller in the air-silicone oil mixture, as the lower surface tension of the oil

suppresses bubble coalescence and hence smaller bubbles are formed.
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The bubble size equation (5.12) given earlier in this chapter predicts that the

maximum diameter will be approximately 8 mm for the air-water system. However, it

is clear from the plot above (Figure 5.49 [left]) that the bubble diameter exceeds this

value. Harteveld (2005) produced the bubble size distribution plot shown in Figure

5.50 [left]. It contains the elliptical diameters 2a and 2b, which were taken over

periods of I hour and 3 weeks respectively. The equivalent spherical diameter can be

calculated, plotted for both time frames, and then compared with the bubble diameters

calculated using the equation of Gaddis and Vogelpohl (Figure 5.50 [right]). The

agreement that can be observed with this correlation is encouraging.
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Figure 5.50-Data from Harteveld (left); comparison of the bubble size by
Harteveld with the equation of Gaddis and Vogelpohl (right)

It is interesting to note the trend predicted by Gaddis and Vogelpohl is a straight line

for data by Harteveld, whereas it curves slightly for the 127mm bubble column results

particularly at the low gas superficial velocities. This is a consequence of the number

of holes in the distributor, as the injector of Harteveld contained 559 holes (~5x more

holes). There are three terms in the equation of Gaddis and Vogelpohl. With the

injector of Harteveld, the first term initially dominates before the third term takes over

for higher velocities, However, with the homogeneous injector for both air-water and

silicone-oil, the third term always dominates.
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s.s. Bubble Column Modelling

Two-phase gas-liquid flow systems are complex, non-deterministic and difficult to

predict. The usual empirical approach is to take a set of measurement data and fit a

model around it. This chapter presents the comparison of empirical correlations with

experimentally generated results, which shows that there was good agreement between

them in several cases. However, these empirical models are restrictive, and normally

should only be applied to systems that are comparable to the ones for which they were

obtained. Other approaches are possible, which include the construction of a transfer

function that relates the dynamic change of an input to an output i.e. a disturbance is

applied to the input, and the response is then measured. This was carried out by

Gluszek et al. (1983) who constructed a mathematical model based on linearised

equations of continuity and motion relating the pressure variation above a distributor

plate against the change in the gas flow rate. Dominant frequencies were also deduced

for a bubble column of a diameter 0.14 metres and the model compared well with

experimental results. A complementary approach to using empirical models is to

construct a mathematical model that incorporates more physics about the system

(often known as mechanistic modelling), and then assess what can be inferred about

the system from the output of the model. Complex and coupled differential equations

are required to analyse two-phase flow, which requires tools such as CFD to solve

them in detail. The differential equations could be simplified into a first order or

second order systems to make them more easily solved analytically.

To gain an improved understanding of the physics inside a bubble column, a

simplified mathematical model representing a bubble column with a homogeneous

distributor was developed in this research, based on simple geometry and with certain

assumptions being made about bubble behaviour. Results were then compared with
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some of the experimental data presented earlier in this chapter. A number of different

scenarios were postulated and four different modelling methodologies are presented

and outlined below. The code was developed for this study in Matlab in order to run

the models, and simulations were carried out for both air-water and air-silicone oil.

Some simplifications were essential to minimise the computational effort and

complexity. The system was assumed to be operating at steady-state, although with the

natural fluctuations that are shown in the time-series plots for the mean void fraction.

The bubble size at creation was estimated using the work by Gaddis and Vogelpohl

(1986), and the bubble rise velocity was estimated using the equations of Mendelsohn

(1967) and Tomiyama et al. (1998), which were outlined earlier. The bubbles were

assumed to be spherical, either with constant diameters or a given size distribution.

The voidage was calculated from the sphere intersection with the sensor plane, as

shown in Figure 5.51, which also shows an example of how the void fraction varies

with time for one bubble. Bubble coalescence and break-up were disregarded, and the

first two models assumed that bubbles were travelling upwards with the same velocity

and in the same direction. In reality the bubbles tend to "drift" and recirculate;

however, again this was neglected. For models 3 and 4, the diameter and velocity of

the bubbles was allowed to vary.

A c~

Time

Figure 5.51-Voidage history for one bubble
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5.S.1. First modelling methodology

The first model assumed there was simultaneous generation of the same-sized bubbles

from the homogeneous distributor, which all crossed the wire mesh sensor at the same

time. Figure 5.52 shows a schematic.

WMS

I I
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I I I I

eOGO-eoe-o-
. .
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0-0-88·-·
PLANE

Figure 5.52- Modell: Bubbles aligned

This model basically considers the bubble that crosses the sensor, which was shown in

Figure 5.51. This was then multiplied by the number of holes in the distributor, which

in this case is 121. The main physical parameters that were varied can be seen in

Figure 5.53. The rows for the bubbles were equally spaced to match the required flow

rate.

rhog=l; %
rhol=1000; %

Inul=O.OOl; %
Qg=110; I %
DCol=0.127; %

Nholes=121; %

Dorifice=O.0005; %

g=9.81; %

, Specify physical properties (I-liquid, g-gas)
s igrna=O.073; % surface tens ion N/In

Gas densit.y kg/nr'3
Liquid de ne t t.y kg/ll'l"3
Liquid viscosity Pa.s
Gas flow rate l/ll'lin
DLamet er of co Lumn In
Number of holes in distributor
D iarneter of each or ifice in distr ibutor m
Gravity rn/s"2

Figure 5.53-Screenshot of the physical properties defined in the code for the

model. Qg is varied appropriately.
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The flow rate was varied from 15-1 10 IImin to match the experimental campaign. It

was assumed that the bubbles were all crossing the sensor at the same time with no

coalescence, which is an "idealised" situation and will deduce the maximum void

fraction obtained. The results of the simulations using model 1 can be seen in Figure

5.54 for both air-water and air-silicone oil. The homogeneous part of the experimental

curve for air-water matched well with the results from the simulation. However, there

was a poor agreement in the heterogeneous part of the curve, which was also the case

for air-silicone oil, because the flow was entirely heterogeneous.
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Figure 5.54- Modell vs. WMS data. Air-water (left), air-silicone oil (right)

5.8.2. Second modelling methodology

The second model assumed the array of bubbles to be of the same size, but instead of

being all in line, in this case they were made to be staggered (Figure 5.55). Bubble

spacing was again set-up in such a way to match the flow rate.
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Figure 5.55-ModeI2: Staggered bubbles
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A typical plot of the void fraction for this model is shown in Figure 5.56. The ends of

the time series were discounted and the mean voidage was calculated for 0.05 to 0.45s.
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Figure S.S6-An example of void fraction variation with time for model 2

Figure 5.57 shows a comparison of the air-water simulations carried out for model 2

with the experimental results. It can be seen that again this model worked well for the

homogeneous part of the curve, but that divergence is once more observed as the flow

moved into the heterogeneous region.
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Figure S.S7-Model 2 vs. WMS data with air-water,

5.8.3. Third modelling methodology

The third model introduced an element of randomness to the diameter and velocity of

the bubbles. This is based on the Monte Carlo method (Mackay, 1996), which is a

stochastic method as opposed to a deterministic approach. It iteratively evaluates a

deterministic model using sets of random numbers as inputs. This method is widely
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used in many fields, such as engineering, energy, research and development, oil and

gas, transportation, environment, risk in insurance, finance and project management. It

is often used when the model is complex or nonlinear. Each bubble diameter and

velocity was sampled from a normal distribution; where the mean was calculated from

estimates of maximum and minimum using the aforementioned correlations for the

bubble size and velocity, and the standard deviation was estimated to cover a 96%

probability from the mean. A schematic is shown in Figure 5.58 .
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Figure 5.58-ModeI3: Random bubbles with velocities (v) and diameters (d)

A typical plot of the void fraction from this model is shown in Figure 5.59. Here the

void fraction is more representative of the experimental data, with a fluctuating trend.

The mean voidage was calculated as before.
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Figure 5.59- Typical void fraction profile for model3.
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Figure 5.60 shows a comparison of the experimental data with the average void

fraction deduced from the simulations using model 3. Again, there is good agreement

between the two for the homogeneous part of the curve only.
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Figure 5.60-Model 3 vs. WMS data for air-water

5.8.4. Fourth modelling methodology

The fourth model was based on the third model; however, it was improved by

applying the bubble size distribution obtained experimentally as opposed to using an

assumed normal distribution. The WMS bubble size distribution is expressed in two

ways; the first approach is based on the surface area of the bubble, and the second

approach is based on the volume of the bubble. The experimentally generated

distribution was imported into Matlab and converted to a cumulative probability

curve, which was randomly sampled using linear interpolation. This is a semi-

empirical approach. The void fraction was then calculated with this model and

compared with the WMS data as shown in Figure 5.61. The model appears to track the

experimentally generated voidage very well.
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Figure 5.61-ModeI4: Void fraction vs. WMS data using area-based and volume-
based experimentally obtained bubble size distributions

Figure 5.62 shows that the bubble size sampling method adopted -Monte Carlo

method- for this model gave realistic size distributions when compared with the

experimentally generated distributions, which were either surface area or volume-

based.
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Figure 5.62- Distribution curves for the WMS vs. model4 for one run with air-
water. (Left): Area based BSD, (right): volume based BSD.

s.s.s. Bubble Shape

The above four models all considered the bubbles to be spherical, which in reality is

not always the case. Other bubble shapes could be present in a column, for example

ellipsoids (Figure 5.63). The following mathematical relationship can be derived

(Azzopardi et ai, 2011):

(5.21)
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D 2a

2b

Figure 5.63- Bubble shapes: (a) spherical and (b) elliptical

where de is the spherical equivalent diameter, E is the aspect ratio and dm is the

measured diameter. These are all based on the geometry. Therefore:

d = d El/3
e m (5.22)

A number of relationships have been proposed for the aspect ratio E as a function of

the equivalent diameter (Azzopardi et aI, 2011). For example:

(5.23)

Where values of Cl = 0.163 and C2 = 0.757 have been proposed. Eo is the E5tv5s

number, which is the ratio of gravitational to surface tension forces, written as:

Eo = gd;(p,-Pg)

a
(5.24)

Substituting equation (5.22) into equation (5.24):

(5.25)

Substituting equation (5.25) into equation (5.23):

(5.26)
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(

{d E 113 )2 ( ) J C2

E +Eel g~ In (j PI - Pg -1 = 0 (5.27)

Therefore solving for air-water, the following equation can be generated:

(
{ )2 Jo.757E+0.163E 9.81\dmE

I
/
3

(1000-1) -1=0
0.073

(5.28)

For different values of dm this equation can be solved by iteration e.g. if dlll=10mm,

then:

(

2/3 Jo.757
E + 0.163E 9.81xO.000 1* E (1000-1) -1 = 0

0.073
(5.29)

A similar equation can be generated for air-silicone oil.

E D.54 D.61 0.6g 0.79 E D.39 D.45 0.54 0.67
de(mm) &.l4 6.79 5.30 3.70 'de(mm) 7.28 6.11 4.87 3.49
dm(mm) 10.00 8.00 6.00 4.0D 'dm(mm) 1.0.00 MD 6.00 4.00
de/dm 0.81 0.85 0.8a D.92 de/dm 0.73 0.76 0.81 0.87

Figure 5.64-de/dm for air-water (left) and de/dm for air-silicone oil (right)

From Figure 5.64 it can be seen there is a 20% difference between the de and dill values

for air-water, with an even more significant difference in air-silicone oil of 30%. The

difference tends to increase as the diameter of the bubbles is increased. It can be

inferred that the bubble shape has an impact on the calculations.

5.8.6. Modelling conclusions and further modelling work

To conclude this section contained an introduction to modelling work on bubble

columns. A number of different analytical models were considered and compared with

experimental results. Agreement between the various models and experimental results

was found to be very good at low gas superficial velocities which meant the

assumptions used were reasonable. The agreement was mainly in the homogeneous

part of curve. However the agreement was not as good for the heterogeneous part of
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the curve. This was true for both air-water and air-silicone oil. Heterogeneous flow is

significantly more complicated than homogeneous flow, and the effect of bubble

coalescence and break-up, as well as the bubble shape need to be taken into

consideration for heterogeneous flow. Model 4 showed the best agreement out of the .

four models, although this was not surprising since it made use of some of the

experimental data as well as a physical model.

Therefore to build on the work presented in this section, Models 3 and 4 could be

further developed by modifying the code to account for variables such as the bubble

shape, which was demonstrated above to make an impact on the calculations. The

bubble shape could be specified as elliptical instead of spherical. In addition, the

bubble size distribution could be deduced using chords, as was demonstrated by

Langston et al. (2001). This could be compared with the distributions generated

experimentally, which were based on the area/volume of a sphere. Experiments with

the same bubble column could be set up such that an external disturbance is imparted

to the system to measure the change in output. In this way, the transfer function could

then be deduced. Other factors, such as bubble coalescence and break up, could also

be taken into account to improve the model performance, particularly for

heterogeneous flows. However, this will increase the complexity of the model(s)

significantly and CFD is probably a better tool for such analysis. However CFD will

require more time to set up the model and subsequently to run the simulations which

will be dependent on processor power. CFD has been used to study bubble columns in

the past and therefore this work could be extended by creating model(s) in a CFD

program similar to the bubble column used experimentally. The results from the CFD

could then be directly compared with those obtained experimentally for both air-water

and air-silicone oil.
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5.9. Summary

Both the CapWMS and CondWMS were applied for the first time extensively on

bubble columns and the results presented in this Chapter were for the experimental

campaigns with a high level of confidence. Each variant of the WMS produced good

agreement with the level swell. The agreement between the CapWMS and level swell

for air-silicone oil, was particularly noticeable. This gives a reassurance that while the

sensor is intrusive it does not have a significant effect on the flow. The WMS results

also compared well with some of the published correlations.

It can be confirmed that the CapWMS is suitable for low conductivity liquids such as

silicone oil, and the CondWMS is more appropriate for liquids with higher

conductivities such as tap or salinated water. These limitations are more noticeable

with no-flowing liquids, due to the additional factors that are discussed in the

Appendix. Some modelling work was also attempted, and the semi-empirical approach

of using some of the experimental data as part of the model proved the most effective

strategy.

It is possible to conclude that the WMS is a suitable instrument for bubble column

research and could be applied more extensively in a similar way to more established

instruments in this area, such as ECTIERT and point/optical probes. It is

recommended that level swell measurements are always taken simultaneously

whenever the WMS is used. This is a good way to compare and cross-check that the

data being acquired by the instrument is acceptable and accurate.
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6. CHAPTER 6: LARGE DIAMETER

PIPES

6.1. Introduction

A comprehensive background on two-phase gas liquid flow in vertical pipes was given

in Chapter 2, and Chapter 5 described the first application of the WMS to bubble

columns. This Chapter contains details on a further application of the WMS to large

diameter pipes, and a description of the five inch vertical facility was given in Chapter

3. The rig was originally designed with parameters supplied by industry that generated

realistic values for deepwater risers in particular erosion limits. The work conducted

here was for air-water on the 127mm (5 inch) riser.

This research extends the preliminary measurements taken by Ombere-Iyari (2006) on

the same facility and using conductance probes. Their work was carried out with air-

water, with gas and liquid superficial velocities of 1.1-15.3 mls and 0.032- 0.3m1s

respectively, at pressures of 1 and 2.2 bar(g). This author's work extended the range of

those velocities, with the gas and liquid superficial velocities ranging from 3-17 mls

and 0.01-0.7 mls respectively at 2 bar(g). A campaign of 700 runs was carried out

using both the CondWMS and the conductance probes, which were explained in detail

in Chapter 3. The measurements obtained with the WMS and presented in this chapter

are quite unique. The CondWMS and Conductance probe data will be compared with

the conductance probes being abbreviated by CP throughout this chapter. An

experimental matrix is given in section 6.2, and entrance effects are ignored. Ombere-

Iyari (2006) found that for this facility, the flow was fully developed at distances of

approximately 64 diameters or 8 metres from the mixer at the bottom of the riser. As

the WMS was placed at a height of 9.3 metres from the bottom of the pipe, the flow
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was assumed to be sufficiently developed for all the measurements that were taken 10

this campaign.

6.2. Experimental Matrix

The matrix of values for the gas and Iiquid superficial velocities that were used in this

research study IS shown 111 Table 6. .1. These values represent the limits of the

equipment, meaning that it was not possible to go lower or higher than these values

with the current experimental configuration. It is also important to note that as the

liquid superficial velocity was increased, it proved increasingly difficult to set up the

lower gas superficial velocities. This explains why some of the runs were missed out,

as the compressors struggled to operate under those conditions. Repeats of the runs

were carried out at the end of the experimental campaign to check for repeatability.

CO·III'U.or Rn.t.tio. 3,2~ 0" 10 I~ 10 2! 30 40 4!1 !IS ss , 10 ao ss ne I2.S lJn )60 180 200, WI l!lO 1110 !IS 3SO 38' 4l! 4ft!! ~l 'ftp jj.~;=~';~.
Spud (R'''O

"'T.;;-r.;;Tr.~~~";l,r;l"';iJrfJ:::' ~;~l:OOO
J, ",,11()'1400

Mi.11MJS(l
69.t4(VJ}OO

6'5 "'IZ50
." 1()1ll00
fi91~fl150
69a )lSIl!OO
6" 160'1050
100 )(1011000

Table 6.1-Experimental Matrix with run numbers. A crossed box indicates that a run was
not conducted

6.3. Results

Quantitative results will now be presented in order of increasing complexity. From the

matrix above it can be seen that 29 superficial liquid velocities were investigated. As

the data set is extensive, only a selection will be shown in this chapter, with much of

190



Chapter 6: Wire Mesh Sensor Application (II)- Large Diameter Pipes

the quantitative data being presented on the attached DVD. Towards the end of this

chapter, the results from a CFD simulation are also given.

6.3.1. Time series

A selection of the time series plots obtained using the WMS and displaying the cross-

sectionally averaged void fraction against time are shown in Figure 6.1. These are for

the highest and lowest values of gas and liquid superficial velocities, and they show

the data over a 10 second period. At low superficial liquid velocities the void fraction

fluctuated within a narrow band at a value greater than 0.9. As the liquid velocity was

increased, the fluctuations increased as did the range over which the fluctuations

occurred. The time series for all the runs can be found on the enclosed DVD.
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0.95 Q 0.9Q

> 0 5 10 > 0 5 10
Time (8) Time (8)

= 1 = 1
Q Q

~
C ~

~ 0.9 ~...... I.L.I.L. O.S"C "C 0.5._._
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> 0 5 10 > 0 5 10
Time (8) Time (8)

Figure 6.1 A selection ofWMS time series data for the 127mm pipe.
alb: gas superficial velocities=15.6 and 6.81 mis, liquid superficial velocity=O.013 mls

cid: gas superficial velocities=I1.7 and 3 m/s, liquid superficial velocity=O.66 mls

6.3.2. Time and space averaged void fraction

From the time series, the data for the WMS can be averaged over time. The mean void

fractions are plotted in Figure 6.2, and the film thickness is related to the void fraction

by equation 2.46. Using this equation, the mean film thickness was calculated for all
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700 runs, and these were then plotted in Figure 6.3. The trend is clear, which is that as

the superficial liquid velocity is increased; the mean void fraction tends to decrease,

which in turn causes the film thickness to increase.

1.00

0.95
c:
0 0.90.--+->o
~ 0.85l-.

f..Lj

:-g 0.80
~c 0.75
~
d) 0.70
~

0.65

0.60

0

Liquid Sup",ftrul Velocity (m .)

••
x O.OO~ .l'0.008 .0.014 .0.020 .0.027

+0.0].3 -0.040 0.0~3 -0.060 AO.0~3

.0.084 .0.093 .0.108 XO.130 :'0.148

.0.167 +0.187 .. 0.114 -0,239 .0':70

0.199 0334 CUB , (LollS. 0.466

O.j09 05~1 0613 O.6j9

5 10 15
Gas Superficial Velocity (m/s)

Figure 6.2- Effect of gas and liquid superficial velocities on the mean void fraction.
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Figure 6.3- Effect of gas and liquid superficial velocities on the mean film thickness.
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The experiments were conducted at 2 bar(g) i.e. 3 bar(abs), and therefore the density

of air was approximately 3.6 kg/rrr'. The equivalent data for the WMS was obtained

simultaneously using the conductance probes. Similar graphs to Figures 6.2 and 6.3

could therefore be produced for the conductance probes. The ratios of the mean void

fractions between the two measuring techniques are plotted against the superficial gas

velocity, as shown in Figure 6.4. This allows the comparison of the mean void fraction

as measured by the two different instruments. The data from the two instruments could

also be plotted as a scatter graph.
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Figure 6.4-Effect of gas and liquid superficial velocities on the ratio of void fractions
measured by the WMS to the void fractions measured by the conductance probes

There is a good agreement between the results from the two instruments at low film

thicknesses (high void fractions), implying that the two instruments performed well in

the annular flow regime. However, as the void fraction decreased and the flow

transitioned into churn, the data from the two instruments started to diverge.
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However, the above comparison only considered the mean values. A measure of the

variation of values obtained in any run can be represented by the PDFs, which were

extracted for all 700 runs for both the WMS and CP. A selection of these can be seen

in Figure 6.5 for the time series shown above in Figure 6.2. The PDFs for all the other

flow rates are provided on the DVD. Two main profiles can be seen in the PDF for the

WMS data. The first is a single peak at a high void fraction, which has the

characteristics of annular flow, and the second is a peak with a long tail, which

signifies churn flow. Anomalies between these two shapes signify the churn-annular

transition.

1 1

u. GJ ~ u, ~
Cl 0.5 Cl 0.5
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I 1c.. c.. r l
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0 00 0.5 1 0 0.5 1
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Figure 6.5-PDF profiles for the time series in Fig 6.1. Solid line: WMS; dotted line: CP
alb: gas superficial velocities=15.6 and 6.81 mis, liquid superficial velocity=O.013 mls

cid: gas superficial velocities=11.7 and 3 mis, liquid superficial velocity=O.66 mls

The WMS and CP did not always generate the same PDFs, both in terms of shape and

value. For example, in Figure 6.5(a), the PDFs for both instruments are almost

identical. However, as the gas superficial velocity is lowered, the output from the two

instruments starts to diverge, as shown in Figure 6.5(b). This is observed for other gas

and liquid velocities (again, see the enclosed DVD). The void fraction decreases as a
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consequence of the gas velocity being decreased, and in addition as the liquid flow

rates are increased, there is a significant shift to the left of the main peak of the PDF

for the WMS. For the highest liquid velocity of 0.66m/s, the PDFs for the two

instruments did not match for all 21 runs. This could be explained due to the different

methods of calibration for the conductance probes. To date, three methodologies have

been adopted. The first two methods were used by Ombere-Iyari (2006), where plastic

spheres of various diameters were inserted into the pipe to simulate bubble flow, and

subsequently a cylindrical plastic tube was placed inside the pipe to simulate annular

flow. The third calibration method was devised by Van der Meulen (2010). This novel

methodology placed a cylindrical tube of various thicknesses and beads in the film to

simulate annular type flow of a gas core with a liquid film. The film mayor may not

contain bubbles, and this calibration took account of that possibility. This set of

experiments was conducted entirely with this third type of calibration. At the lowest

gas velocities and higher liquid velocities, the conventional annular type flow for

which. the CP was calibrated for did not take place inside the pipe. The PDF

comparisons correlate well with the earlier data set that showed the comparison of the

mean void fraction results from both instruments (Figure 6.4), where an agreement

was observed at the higher void fractions, but as the void fraction reduced, the two

instruments started to diverge. Ombere-Iyari (2006) also made similar observations

regarding the PDFs for the CP results, as they did not agree with visual (high speed

camera) observations. In those tests, the CP showed annular flow when the visuals

displayed churn flow. A further statistical exercise could be carried out on the PDF

plots for both the WMS and CP by measuring the difference in the main peaks from

the PDF for both instruments. What can be concluded here is that the CP accurately

measures annular flow, but struggles with the churn flow regime, meaning that it

would be difficult to calibrate the CP for that flow pattern.
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6.3.3. Radial void profiles

The radial profiles can also be extracted, four examples of which are shown in Figures

6.6 to 6.9. The other profiles can be found on DVD. It can be observed that the radial

void fractions tend to get lower as the gas superficial velocity is decreased. It is also

interesting to note that the profile is flat for the lower liquid velocities, but it

transforms into a parabolic shape as the superficial liquid velocity is increased. This

could also be related to the flow pattern, with the flat profiles tending to occur for

annular type flow, whereas the parabolic shape is usually representing churn flow.
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6.3.4. Bubble size distribution/bubble size resolved voids

Volume based bubble size distributions (BSD) were extracted for all the runs. Three

examples are shown in Figures 6.10 to 6.12 and the remaining plots are on the DVD.

The data for a superficial liquid velocity of 0.013 m/s has not been shown as the

instrument did not detect any bubbles for this reading, because the flow was clearly

annular.
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Figure 6.10- BSD for 127mm pipe. Liquid superficial velocity 0.073 m/s

----A-U .. ...,.1'I.UV"13.Illl7
---6-l'p.(I.ll,U""IHl16
-4-Urc.n,Ur13.1W
8. lIIr-OJI.u~mml
e, U.....,ZI.U".. IJ~1'
.A. 11Ir(!.lI.Up"'I;l.o:wi

--e--ura.nUr llAm
--e--UlowCJI.U II.ClI'
--e-- u~.z;. u IO.?!I4J

o tT~.nU""lO.66IU
00 V-",,£'.lI.Up-10.:uu;
o UlowC n, u.,.. ~.9m

~UIPGJ7.U .... 93Y1J
---9- uro n.Up- ~9IOS
----&-ll\r-(o,Jl,Up-UJat

0- U.·O.l'l,urum
o Ur<J.1l,Ur 17:<7J

. 0 Up(lT.,U",,7;l3l)

-trJp(oJJ,i..Iv-6!f3.i.l
--UIJ-C.1J,Ur ~.ID7
-u.-c:n,Up""5J91'

'II UroJi.u...- 4:::6j)

'" U~ ~). U... 3~}

02

01

Dj'm~I'f(m1"l)

Figure 6.11- BSD for 127mm pipe. Liquid superficial velocity 0.27 m/s

------A-Ulooo(l,66,UlF"ll,1')S1
---6-tilo"llIiti,Ur lJ ..1l;4
---6-UIr(I-"!. U.,.. ll.:t)l

h. t.'JroI!.&s.U .... l0~
~ UIo-<l66.Up-IO.sll6
& tiPO.6Jl,Uv-l0.J12l

-a-UI.-(l.dl}.Up- iI.9)1
~l'W-O~U .... 9J1.H
~111o~~.u.- ~.lJO)

0, Ulr066,Uv- Otol3S
o U~c!6,Ura.1Jl
o Vlfo('.6'!.,tJr' tom

~UIo~U66,UP'"1.6Jl~
---&-UW-O.6d,U.,. Jons
---&- UIo-(l6tl, UP"' 'L'9:

O-·lllP(j.dl}.U ... 6,~
~. UPO{(I, Ur ~.G19~

"0-' UIoo(J.66,Up-'~
-Uo.-o~U .. HI66'
--UIo-(i.66,Ur4I.o4ll
--l1POM,Up- J.$IoS6

Figure 6.12- BSD for 127mm pipe. Liquid superficial velocity 0.66 m/s

..

198



Chapter 6: Wire Mesh Sensor Application (II)- Large Diameter Pipes

A single peak is evident in Figure 6.10 for a liquid velocity of 0.073 m/so A double

peak appears to form as the liquid velocity is increased, which is demonstrated in

Figures 6.11-6.12. The WMS appears limited in measuring the bubbles in the

chum/annular region. This is because it is not able to detect very small bubbles that

may be occurring, for example in the liquid film in annular flow. In addition to the

above plots, the bubble size resolved as a time series can also be generated. This was

processed for all the runs, and they are included on the DVD.

6.3.5. Visualisation (cross-sectional voids)

The strength of the WMS is its spatial resolution, hence its ability to visualise the

flow. Images made up of the time sequences of the phase distribution across a pipe

diameter have been created, which were processed for the central chord of the WMS

i.e. in the middle of the pipe. Four liquid velocities are shown below in Figures 6.13-

6.16.

Ugs= IS.6mJsn Ugs=6.8m/sn

Wisps
m
annular
flow

Decreasing Ugs

Figure 6.13-Flow Visualisation with the WMS in centre of pipe; Vis = O.013m/s; 24 runs
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Figure 6.14- Flow Visualisation with the WMS in centre of pipe; Vis = 0.073m/s; 24 runs
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Figure 6.15- Flow Visualisation with the WMS in centre of pipe; Vis = 0.27 m/s; 23 runs
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Figure 6.16- Flow Visualisation with the WMS in centre of pipe; Uls = 0.66 m/s; 21 runs

The rest of the images are on the DVD. Although they are difficult to detect from

these static images, when used in conjunction with the (.v files) movies that the WMS

generates, three of the recognised flow patterns are evident from these visualisations;

churn, annular and wispy-annular. It can be seen that the flow pattern moves from

annular to churn flow as the superficial gas velocity is reduced, for example in Figure

6.14. Churn flow is depicted clearly from the WMS, as it is possible to zoom in on one

run and inspect it in more detail. For example, run 689 was selected, which had the

highest flow of liquid and lowest flow of gas in the experimental campaign. Figure

6.17 shows the axial visualisation of the flow.
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Figure 6.17- Run 689. (Left): vertical and (right): horizontal sectional view in the centre
of the pipe

The complexity of churn flow is apparent. One limitation here is that the WMS will

not show whether the mixture is moving up and down, as would usually be expected

for churn flow. If the v.file (run 689 on DVD) is accessed using the display

programme, it will show the whole mixture moving upwards. It seems that the
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continuous gas core is not always evident. Sometimes the liquid bridges and virtually

covers the entire cross-section. It is also interesting to note the periodicity of this

bridging, which occurs approximately every 400 frames or 0.4 of a second. Churn

flow was previously described as "chaotic", however it has periodic structures.

6.4. Correlation of overall frequencies

The frequency of these periodic structures can be considered in terms of dimensionless

quantities. Azzopardi (2004) showed that the frequency data for bubbly and slug flow

may be correlated using a gas-based Strouhal (St) number, which is (jDIUgs), or a

liquid-based St number, defined as (jDIUts). The St number is plotted against the

Lockhart-Martinelli parameter, which is defined as ([dp/dz]t![dp/dz]g)o5.
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Figure 6.18-Effect of the Lockhart-Martinelli parameter on the gas and liquid based St
Numbers. Data from this experimental campaign on 127mm pipe and previously

obtained data on 67mm diameter pipe with air-water.
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Figure 6.19- Effect of the Lockhart-Martinelli parameter on the gas and liquid based St
Numbers (frequencies below O.5Hz ignored)
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The dominant frequencies for the WMS were extracted from the time series for each

experimental run using code in MatIab. Figure 6.18 shows the gas and liquid-based

Strouhal number plotted against the Lockhart-Martinelli parameter for the full data set

of 700 runs measured with the WMS. Some scattering in the data is evident, although

if frequencies of less than 0.5 Hz are neglected, less scattering is observed with

approximately half of the 700 data points filtered out. Even more data points are

filtered out if frequencies of less than 1 Hz are neglected (Figure 6.19). It could be

argued that the very low frequency scatter is noise from the equipment as opposed to

the actual frequencies of the void waves. However, from the above plots it is clear that

for the 67mm pipe, the slope is +1 for the gas-based St number, and for the 127mm

pipe, the slope is -1 for the liquid-based St number. The data set for the 67mm pipe

shows that the flow was mainly operating in the bubble-slug-chum region, whereas

the data set for the 127mm pipe demonstrated the flow was operating in the chum-

annular region.

6.5. Test of engineering methods with WMS data

The data from the WMS can be compared against published empirical correlations,

and can therefore be used to test the engineering methods commonly used in industry

for void fraction and total pressure gradient calculations. Two comparisons will

therefore be conducted; first for the pressure drop and second for the void fraction,

where correlations will be compared with the WMS data. As outlined in Chapter 2,

two of the most popular correlations are the Friedel and CISE methods, details of

which are given in the Appendix A.
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6.5.1. Test for pressure drop

The gravitational pressure drop can be calculated from the void fraction measured by

the WMS. It can then be compared with the gravitational pressure drop (GPD)

calculated by CISE's equation. The frictional pressure drop (FPD) can be determined

using the correlation suggested by Friedel (1979). Another test of the data can also be

carried out by calculating the overall pressure drop i.e. the GPD from the WMS added

to the FPD as determined by Friedel. This can then be compared with the pressure

drop obtained experimentally on the same rig by Zangana (2011). The dimensionless

gas velocity can be calculated using Equation 2.21. Sample comparisons generated by

following this procedure are shown in Figures 6.20 and 6.21, with the remaining plots

presented on the enclosed DVD. The agreement between the results from the WMS

and pressure drop (PD) transducer is very good, except for at the very low liquid

velocities (Figure 6.20, left).
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Figure 6.20-Comparison of pressure gradient obtained from Friedel/elSE equations and
from Friedel/WMS void fraction against experimental values obtained by Zangana

(2011). Liquid superficial velocities left: 0.013 m/s and right: 0.073 m/s
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Figure 6.21- Comparison of pressure gradient obtained from Friedel/elSE equations and
from Friedel/WMS void fraction against experimental values obtained by Zangana

(2011). Liquid superficial velocities left: 0.27 m/s and right: 0.66 rn/s

In addition, the agreement between the WMS and CISE equation results is again very

good except for the very low liquid velocities (Figure 6.20, left). This is probably due

to the CISE correlation being applied to a data range that is outside of the

experimental data range for which it was constructed. A comparison of the full data

set of the GPD for the WMS against the GPD calculated by CISE can be seen in

Figure 6.22. Additionally, the total pressure drop generated by the results of the WMS

plus the Friedel correlation was compared against the total pressure drop generated by

the CISE equation plus the Friedel correlation, which is also shown in Figure 6.22. It

can be seen that the agreement is very good in both cases.
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Figure 6.22-(Left): Gravitational pressure drop obtained using CISE against
gravitational pressure drop obtained by the WMS. (Right): Overall pressure drop

obtained using CISE/Friedel against overall pressure drop obtained by WMS/Friedel
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6.5.2. Test for void Fraction

The void fraction determined by the WMS can also be compared against a number of

published empirical correlations. Two of the most popular correlations are ClSE and

Chisholm. Figures 6.23 and 6.24 show a selection of plots to demonstrate how the

void fractions for the WMS compare with those generated by ClSE.
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Figure 6.23- WMS void fraction compared against void fraction predicted by ClSE.
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Figure 6.24- WMS void fraction compared against void fraction predicted by C]SE.
Superficial liquid velocities of (left): 0.27 mis, (right): 0.66 mls

On the same plots, the pressure drops that were presented in the previous section are

also shown. The GPD is approximately equal to gp/l-eg) which explains why the void

fraction curves are symmetrical to those of GPD about the horizontal. The agreement

in general is very good, again except for the very low liquid velocities (Figure 6.23,

left). The void fractions were calculated using the ClSE and Chisholm correlations for

the full data set, which were compared against the experimentally generated void

fractions from the WMS. This is shown in Figure 6.25, where it can be seen that both
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the CISE and Chisholm correlations perform well against the WMS data. An

important finding is that although Chisholm's correlation IS a much simpler

expression, it produces similar results to the more complicated CISE expression.
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Figure 6.25- (Left): Void fraction predicted by CISE compared against WMS void
fraction, (right): void fraction predicted by Chisholm compared against WMS void

Simulations were carried out using the industrial code WELLFLO and results were

subsequently compared with those generated experimentally by the WMS. WELLFLO

is a powerful software tool used mainly in the oil and gas industry to model wells and

the flow within tubes. It allows the generation of flow maps, and the determination of

the phase distribution and liquid content along the tube. It uses many different

correlations, which may be mechanistic or empirical. A model representing the

127mm pipe was constructed in WELLFLO and the OLGAS mechanistic

methodology was selected for the simulations. OLGAS is based on data obtained from

the SINTEF two-phase flow laboratory, which operates under conditions similar to

those experienced in the field. SINTEF's test loop was 800m long with a 203mm

diameter pipe, with operating pressures of between 20 and 90 bar(g). Gas superficial

velocities of up to 13 m/s and liquid superficial velocities of up to 4 m/s were

obtained. Over 10,000 experiments were conducted on the test facility, and the

OLGAS methodology outputs four flow regimes, which are stratified, annular, slug
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and dispersed bubble flow. This model is recommended for void fraction predictions

at all angles (i.e. horizontal and vertical). The results for four different simulations

representing four different liquid superficial velocities can be seen in Figure 6.26.
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Figure 6.26-Comparison between computational (WELLFLO) generated void fraction
and experimental (WMS) void fraction. Liquid superficial velocities of

(a) 0.013 mis, (b) 0.073 mis, (c) 0.27 mls and (d) 0.66 mls

The agreement between the WMS and WELLFLO is clear. WELLFLO is also able to

provide information on pressure drops, which is broken down into gravitational,

frictional and accelerational components. Further analysis can be performed by

comparing the WMS pressure drops presented earlier in this chapter with those

generated by WELLFLO. It is worth noting that some of the major software packages

used to simulate two-phase flow do not show churn flow on their flow maps, for

example LEDAFLO, WELLFLO and OLGA. This reinforces the fact that churn flow

is often entirely avoided as a flow pattern and it is poorly understood.
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6.5.3. Test for flowpattern

Both Ombere-Iyari (2006) and Van der Meulen (2010) acquired high speed camera

images from the 127mm pipe diameter facility. They identified that the pipe was

operating mostly in the churn-annular region, and Ombere-Iyari (2006) presented the

images from five runs using the high speed camera as shown in Table 6.2 below. The

WMS in this campaign confirmed the flow patterns for four out of these five runs.

BSVideo UKS Uis Pressure BSPaUern W1\ISRUl1 "(..7Ii[S 'lHs Pressure 'VMS Pattern
1 9.3 0.1 1.2 bar (g) Chum run315 9.2 0.11 2 bar (g) Wispv-Chum
1 6.5 0.035 2.2 bar (g) Chum runl12 6.8 0.033 2 bar (i:) Wisvv-annular
8 5.6 0.3 2.2 bar (g) Chum runS10 5.5 0.3 2 bar (g) Chum
10 16.1 0.1 1.2 bar (g) .4.mmIar nm300 14.9 0.11 1 bar (g) Annnlar
11 11.6 0.031 2.1 bar (g) Annnlar run150 1.5.9 0.033 2 bar (g) Annular

Table 6.2-Runs performed by Ombere-Iyarl taken on the 127mm pipe using a US
Camera compared with WMS results taken on the same rig with similar flow conditions.

By inspecting the data generated in this experimental campaign using the WMS, it is

clear that wisps were detected in both annular flow and in churn flow. As already

mentioned in Chapter 2, wisps were reported by Hernandez-Perez et al (2010) to occur

in a 67mm pipe in the churn flow regime, and prior to this, such wisps have not been

reported to occur in large diameter pipes. For some of the runs, in annular flow, the

frequency of wisps increases as the gas velocity is lowered, and sometimes the wispy

annular flow transitions into a wispy churn regime. It is interesting on examination of

video 1, that Ombere-Iyari (2006) labelled this as churn. However, for this run the

WMS detected structures were also forming, as shown in Figure 6.27. Predictably, the

wisps occurring within churn flow are fairly difficult to identify even using a high

speed camera, as it is records the flow as seen through the transparent section.
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Figure 6.27-Wisps in churn flow. (Left): WMS axial view in the centre of the pipe.
(Right): HS camera image taken by Ombere-Iyari (2006). Wisps were identified in the

WMS sequence

A sequence of wispy annular flow in a 32mm diameter pipe was shown in Figure 2.1

in Chapter 2 (Rhodes, 1980). Though this is not totally clear, it has a similar

appearance to Figure 6.27 (left), with structures occurring in the centre of the pipe.

6.6. Comparison between 67 and 127mm diameter pipes

As mentioned in Chapter 2, it is possible to represent data on different types of flow

map. The usual approach is to plot the data on a superficial velocity map, although an

improved approach is to use the momentum flux map as previously used by Hewitt-

Roberts, shown in Figure 6.28. This represents the full data set for this experimental

campaign expressed as gas or liquid velocities. This then allows the comparison of

different diameter pipes.
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Figure 6.28-Flow maps. (Left): superficial velocity map and (right): momentum flux map

The flow maps above also show the runs that were carried out by Hernandez-Perez

(2007) on a 67mm diameter pipe with air-water. Two runs that are close in value for

the two different diameters were identified on the momentum flux map, which are

run143 (67mm) for VtrO.27m/s and Ugs~3.1m/s, and run489 (127mm) for U,rO.25

m/s and Ugs~5.3m/s.

Run 143 was reported to be churn flow with wisps occurring In the flow pattern

(Figure 6.29, left). It is clear from Figure 6.29 (right) that wisps also occurred in Run

489 in the 127mm diameter pipe. A detailed comparison will now be made between

these two runs. First the time series, film thickness and the ratio of film thickness to

diameter are plotted in Figure 6.30. From Figure 6.30, the mean void fraction and

mean film thickness are extracted, which are summarised in Table 6.3. Evidence is

observed that the film thickness depends on the pipe diameter, as the 127mm diameter

is almost double that of the 67mm pipe, and the film thicknesses for the two diameters

show a similar ratio. This agrees with equation (2.46) where the film thickness for the

127mm diameter pipe is predicted to be approximately double that of the 67mm

diameter pipe.
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Figure 6.29- Two orthogonal diametric slices in the centre of the pipe. (Left): 67mm and
(right): 127mm
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Figure 6.30-Time series, film thickness and film to diameter ratio plots for 67mm and
127mm pipes

Pipe Diameter Mean Void Mean Film
Fraction Thickness

67mm (Run 143) 0.73 4.94mm

127mm (Run 489) 0.69 10.8mm

Table 6.3-Mean void fraction and mean film thickness for the two diameters

Further quantitative comparisons can be conducted on other parameters, for example

between the PDF and PSD (Figure 6.31). The PDF is showing a peak with a long tail

for both diameters, which implies churn flow. However, this is actually churn flow

with wisps; therefore the PDF methodology is clearly not able to differentiate between

churn flow with or without wisps. There is a similar observation for the PDF in the

annular flow region, where again wispy-annular flow has a similar PDF footprint for

annular flow alone, consisting of a single peak with a high void fraction. The PDF

methodology therefore cannot be used to identify the presence of wisps in the

experimental runs. The PSD shows a dominant frequency of approximately 1 Hz for

both diameter pipes.
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Figure 6.31-(Left): PDF and (right): PSD. Comparisons for 67mm and 127mm diameter
pipes

Figure 6.32 shows the parabolic profile of the radial void fraction for both diameter

pipes, along with the bubble size distribution that shows a double peak for both

diameters.
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Figure 6.32-(Left): Radial profile and (right): BSD for 67mm and 127mm diameter pipes

Figure 6.33 breaks down the bubble sizes for both diameter pipes as a function of

time, which can also be compared with the mean void fraction.
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Figure 6.33- Time series of cross-sectionally averaged void fractions resolved by bubble
size classes. (Left): 127mm and (right): 67mm

215



Chapter 6: Wire Mesh Sensor Application (IJ)- Large Diameter Pipes

As the wire mesh sensor collects pipe cross-sections of locals voids in a matrix form,

it is possible to plot the void fraction at each crossing point as a function of time.

Therefore, for a 32x32 sensor at a single condition, it is possible to generate 820 plots

in total for all the crossing-point(s). This can be useful in quantifying how much liquid

or gas there is in a particular part of the pipe. Therefore, for both the 67mm and

127mm pipe, the void fractions were extracted for the central part of the pipe. For the

67mm pipe, a 3x3 matrix, or 9 crossing points, and for the 127mm pipe, a 4x4 matrix,

or 16 crossing points were generated. Figure 6.34 shows a typical plot for one of those

crossing points for each diameter pipe, which is approximately in the middle of the

pipe for each. It is interesting to note the amount of liquid the sensor is detecting in the

centre of the pipe. These could be the wisps, which are tendrels of liquid covering

certain parts ofthe cross-section of the pipe.
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Figure 6.34- (Left): 127mm, point 16x16 and (right): 67mm, point 12x12

It is also possible to plot the mean local void fraction for both runs as a 2D contour

map, where each crossing point is averaged for the full 30 seconds. The local void

fractions for the full 700 runs on the 127mm pipe can be found on the DVD. Further

visuals can be created from the WMS data, for example axial slices of the wisp can be

generated, which are shown in Figure 6.35 (67mm pipe) and Figure 6.36 (127mm

pipe). The axial slices clearly show the structures that are present in the centre of the

prpe.
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Figure 6.35-2D axial slices of void fraction data for run 143 on the 67mm pipe. Red
represents the gas and blue is the liquid.

Figure 6.36-2D axial slices of void fraction data for run 489 on the 127mm pipe. Red
represents the gas and blue is the liquid.

It is also possible to represent the 2D plots shown above quantitatively as 3D surface

plots (Figure 6.37). This technique can be applied to both pipe diameters, and videos

animating these plots can be generated. Two sample videos are on the DVD enclosed
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with this thesis, one for the 67mm pipe and one for the 127mm pipe for the two

conditions being compared in this section.
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Figure 6,37-3D void maps for run 489 on the 127mm pipe.

It is also possible to use Matlab to display the wisps in 3D for both diameter pipes.

These are shown in Figure 6.38, where it is clear that the size of these wisps is

substantial.
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Figure 6.38-Wisps in 3D for (left): 67 mm pipe and (right): 127mm pipe

Experiments were conducted on the 67mm diameter pipe with air-silicone oil as

previously discussed in this thesis. For conditions similar to those of air-water, wisps

still occurred in the air-silicone oil mixture as shown in Figure 6.39, but they are not

as large as those formed in air-water. This could be explained by the fact that silicone

oil has a surface tension that is approximately four times lower than water, and

therefore these structures are more likely to be broken up in the silicone oil. It can be

concluded that for silicone oil the wisps are less likely to occur, their frequency is
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likely to be lower than that for water and finally the length and size of the wisps will

be smaller.

Figure 6.39- Comparison between air-water (left) and air-silicone oil (right) for the 67mm
pipe. Liquid superficial velocity is 0.25 mls and gas superficial velocity is 5.7 mls

Hewitt and Roberts (1969) reported that wisps were occurring in annular flow, but

they did not observe these structures in churn flow. If the range and conditions of data

from Hewitt-Roberts is inspected, it can be seen that there was no data collected for

the superficial liquid velocity range between 0.1 m/s and 0.7 mis, where the majority

of data was recorded in this experimental campaign. Therefore, not many researchers

have studied the flow conditions that were carried out in this research study. In

addition, previous studies did not have access to sensitive and high resolution

instruments such as the WMS, which has enabled the discovery of these structures in

churn flow. From the WMS images, it is clear that the wisp in the middle of the pipe is

sometimes linked to the liquid film on the pipe wall (Figure 6.27, left) and (Figure

6.29, right). This clearly challenges the idea that these structures occur from the

agglomeration or coalescence of drops entrained in the gas core as suggested by

Hawkes (2000). The wisp appears to be a continuous liquid object of at least 10 mm in

diameter, which is detached from waves on the wall film. It is hypothesised that the

mechanism for the formation of wisps is the same as that suggested by Azzopardi
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(1983), due to ligament/bag break-up (Figure 6.40). Ligaments tend to form at higher

gas and liquid velocities, and structures can be seen in Figure 6.40 (b) that occur in the

middle of the cross-section of the pipe. These structures are similar to those in the

cross-sections shown in Figures 6.35 and 6.36.
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Figure 6.40- Mechanisms of atomisation and drop break up (Azzopardi, 1983)

This means that what is occurring is part of an incomplete atomisation process

involving the gas shearing liquid off the film interface, which appears to take place at

a critical gas velocity. The wisps form, then hit the liquid film and become reabsorbed.

If the gas velocity is higher, complete atomisation occurs that creates a spray inside

the pipe. This could be linked to the entrained fraction of drops in the gas core, which

could also offer an explanation behind the occurrence of drops in annular flow. Some

researchers label this as mist flow. The surface tension force tries to keep the wisp

together, whilst the inertial force from the moving gas tries to break it apart. This is

where a critical Weber (We) number could be linked to the formation of wisps, as it

represents the ratio of those two forces. Azzopardi (1983) found that the boundary

between the two mechanisms above occurred at a Wew of25. Here the Weber number

is defined as Wew=pgUg/hl(J, where h is the wave height. If h/o=», it is possible to

calculate the Wew for run 489 shown earlier, which contained wisps. b was

approximated to be 0.01 m, and therefore Wew=3.6x3.12xO.0510.073=24. This is

almost the same value that Azzopardi (1983) reported. An important consideration is
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whether these wisps occur naturally in the flow, or if they are caused by the

intrusiveness of the WMS itself. The wisps have been observed in different flow

patterns, such as chum and annular, and also in different diameter pipes, for example

in 67mm as reported by Hernandez-Perez et al (2010). They have also been detected

using different techniques, including (a) visually through a transparent pipe section,

(b) with a WMS and (c) with x-ray photography. They have also been observed in

different fluids. By studying the data from the large number of cross-sections that the

WMS collects per second (Figure 6.35) and (Figure 6.36), it can be observed that the

wisps do not remain in the WMS cross-section and that no two images are the same.

Therefore, it can be concluded that these structures form independently of the WMS.

The wisp does not appear to be a unique object or to take a predefined shape, and the

wisps occur in different lengths and sizes anywhere along the cross-section of the

pipe. They also occur in different conditions, in different fluids and for different

diameters, both small and large.

6.7. Wisp frequencies in churn flow

Hernandez-Perez et al. (2010) reported that the wisps occurred at frequencies lower

than those determined from the Power Spectral Density analysis of the WMS signals

that pick up the void wave frequency. They also showed that the wisp frequency

increased with an increasing gas superficial velocity, whereas the overall frequency

decreased. This finding agrees with the earlier work carried out by Hawkes et al.

(2000) who considered higher liquid velocities in what they identified as wispy-

annular flow.

The overall and wisp frequencies have been extracted from the WMS data for the

127mmdiameter pipe for two liquid velocities of -0.2 and -0.25 mls. The wisps were
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counted visually over 30 seconds, which was a slightly subjective methodology. An

alternative approach to this could be to measure the lengths of individual wisps and

present a distribution. Both small and large wisps were included and the wisp

frequency was calculated. Overall frequencies for the l27mm pipe are plotted in

Figure 6.41 along with those reported by Hernandez-Perez et al. (2010) for the 67mm

pipe. The frequencies decrease with an increasing gas superficial velocity and given

the higher velocities for the 127mm pipe, the frequencies tend to be lower than those

for the 67mm pipe. The wisp frequencies for the 127mm diameter pipe were then

plotted together with the overall frequencies for liquid superficial velocities of 0.2 and

0.25 mis, as shown in Figure 6.42.
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Figure 6.41- Effect of gas and liquid flow rates on overall frequency. Data for 67mm
diameter pipe from Hernandez-Perez et al. and data for the 127mm pipe from the present

work

Here, the frequency of the wisps tended to increase as the velocity was decreased;

however, the wisp frequency was not always lower than the overall frequency, for

example as reported by Hawkes (2000). For the 67mm pipe the flow patterns were

slug and the lower end of the churn region, and for the 127mm pipe, the flow patterns

encountered were the upper end of churn and the annular region, which could provide

an explanation for the difference in wisp frequency versus overall frequency for the

127mm pipe.
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Figure 6.42- The effect of gas and liquid velocities on wisp and overall frequency for the
127mm diameter pipe. Liquid superficial velocities of (left): 0.2 m/s and (right): 0.25 m/s

The wisp frequencies for both the 67mm and 127mm pipes were plotted against the

gas superficial velocity (Figure 6.43, left) and against the Weber number (Figure 6.43,

right). Here the Weber number is defined as We=pgUg/ D/(J. The wisp frequency tends

to increase for the 67mm diameter pipe as the gas velocity increases.
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Figure 6.43-(Left): Effect of gas and liquid flow rate on wisp frequency. Data for 67mm
diameter pipe from Hernandez-Perez et al. and data for the 127mm pipe from the present
work. (Right): Effect of Weber number on wisp frequency. Data for 67mm diameter pipe

from Hernandez-Perez et al. and data for the .127mm pipe from the present work

This is the opposite of what is occurring in the 127mm diameter pipe, where the wisp

frequency tends to increase as the superficial gas velocity decreases. A similar trend

was presented in Chapter 2 (Figure 2.22), for the huge wave frequency as measured by

Sekoguchi and Mori (1997). Therefore, wisps may be what Sekoguchi and Mori were

labelling as huge waves, which was also hypothesised by Azzopardi et al. (2004).
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Figure 6.44-Wisp frequency plotted against a modified Weber number (left) and as a
dimensionless group map (right).

Another way to show the data presented in Figure 6.43 can be seen in Figure 6.44

(left), where the wisp frequency is plotted against a modified Weber number that was

multiplied by the film thickness J such that We(film thickness)=pgUg/Dla x JID=

PgUg/ J /a. An attempt was made to plot the wisp frequencies obtained from three

different diameters on a dimensionless map, which is shown in Figure 6.44 (right).

This incorporates the data from this experimental campaign for the 127mm pipe, data

from Hernandez-Perez et al. (2010) for a 67mm pipe and results from Hawkes et al

(2000) for a 32mm pipe. Similar trends are again observed to those in Figure 6.44

(left). Recently collected data can be seen in Figure 6.45, which presents the liquid

entrainment measured experimentally using Phase Doppler Anemometry (PDA) with

laser equipment on the 127mm diameter pipe. This was compared against the

published correlation outlined In Chapter 2 by Ahmad et al (2010), which was

developed using data from a 32mm diameter pipe. The experimental data was

collected at liquid velocities of 0.01-0.04 mls and gas velocities of 10-50 m/s. There is

good agreement between the experimental data collected on the 127mm diameter pipe

and the correlation, which is encouraging, considering that the experimental data was

collected on a pipe with a diameter that was four times larger. This shows the rate of

entrained fraction tending to increase as the superficial gas velocity is increased. It

decreases slightly if the liquid velocity is increased, and full atomisation appears to
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occur with an unusual peak in entrainment occurring at a certain superficial gas

velocity. With these higher velocities, the atomisation force becomes more powerful.

This implies that the probability of forming wisps decreases, whereas the probability

of drop formation increases.

c 0.8
.~
ti
<El 0.6

]
.~ 0.4

~ 02

- - Ahuwf er ~ 0.01
-Abmad.:t til O.O~
.... AhmRl1 et nJ G.O",
• J\zloparoi et w. O.O~
.. Alloprm1i ~1til. 0.01

o L-...........J_--'-_--L-_:::.:::,\c::· .. :::;:Oer:::'::ttcu:::;".:::o.o=.!'

o 20 40 60
Gas superficial velocity (m/s)

Figure 6.45-Entrainment fraction against gas superficial velocity 10-50 m/s

6.8. Flow pattern map(s) for the 127mm riser

An attempt was made to generate a flow map using the full data set. This was

achieved by inspecting the movies (.v files), the PDF profiles and also the 2D cross-

sectional images. Flow patterns were designated into four categories, which were

annular, wispy-annular, churn and wispy-churn flows. The data was plotted on both

the Hewitt-Roberts map, as well as the Weber number map that was derived from the

Hewitt-Roberts flow map as explained in Chapter 2. However the x and y-axis were

switched. The results of this can be seen in Figure 6.46. The dimensionless Weber

flow map generates a similar profile to the one by Hewitt-Roberts, but clearly the

boundaries need to be redefined. The data could be plotted on other flow maps as

outlined in Chapter 2. For example, the data could be presented on a mechanistic type

map (Shoham, 2006), which would have no slug/churn boundary, and therefore the

data would lie between bubble/slug and annular. Schlegel et al (2009) showed only a

straight line between churn-annular. Figure 2.] 2 in chapter 2 combined the flow maps
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devised by several researchers, for example Duns and Ros, and Sekoguchi and Mori.

The observations presented in this chapter reconcile the apparent differences between

the flow pattern maps of Hewitt and Roberts and those of the other researchers.
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Figure 6.46-Flow map for the 127mm diameter pipe. (Left): The data set plotted on a
Hewitt-Roberts map, (right): the data set plotted on a Weber map. The area of

uncertainty is the wispy churn/annular region

For example, Duns and Ros presented a single pattern covering the churn and wispy

annular regions that were designated as separate sections in the Hewitt and Roberts

map. In the above map, the churn and wispy annular/churn regions are almost lumped

together, and annular flow occupies a separate area of the map. However the boundary

lines as originally drawn clearly do not accurately predict the transitions.

6.9. CFD Simulation

The 127mm diameter pipe was modelled in a CFD package provided by CD-Adaptco.

A pipe of 10 metres was modelled with the meshing profile shown in Figure 6.47

using Star-CD. This is known as a "butterfly" mesh or grid. Though grid

independence has not been tested for this particular exercise, the work here closely

follows that of Hernandez-Perez et al (2011), who recommend this type of grid for

two-phase pipe flow simulations as it generates good results when compared with

experimental data. A measuring plane was placed in the model at a height of 9 metres,

to correspond with the experimental set-up where the WMS was placed at a height of

9 metres from the injector. However, once a CFD simulation is finished it is possible

to locate this measuring plane anywhere along the pipe. This is useful for creating
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PDFs along the pipe, and inferences can then be made regarding how the flow

develops along the pipe and whether the flow is developed or not. The Volume of

Fluid (YOF) method was used, with certain assumptions made, such as a uniform

velocity profile throughout the pipe. For the boundary conditions, the inlet was

defined with a mixture velocity and at the outlet the pressure was assumed to be zero.

The density of air was set at 3.6 kg/m ' to represent a system pressure of 3 bar (abs).

Run 489 was selected for the CFD simulation, and therefore the mixture velocity for

that run was estimated to be 3.27 m/s. The simulation was run in Star-CCM+ on a

desktop PC with 4 processors, and 3GB of RAM. It took approximately seven months

to solve, which can be attributed to the large number of 885,000 cells used in the

model. This was unavoidable considering the nature of the chum flow pattern, which

is a complex and turbulent regime that requires a dense mesh. The simulation was

deemed complete when the gas core reached the top of the pipe, which also passed the

measuring plane. From the simulation, useful information can be extracted; for

example, the area averaged void fraction showed a value of approximately 0.8. This is

slightly higher than the experimentally measured void fraction for this run, which was

approximately 0.7. The phase or void distribution along the pipe can be seen in Figure

6.48, and finally, the velocity profile along the pipe is shown in Figure 6.49. In

Figures 6.48 and 6.49, the areas along the pipe have been magnified to allow a more

detailed view of the flow. Liquid structures in the middle of the pipe can clearly be

seen in Figure 6.48. This simulation has provided additional confirmation of the

presence of wisps in chum flow.

Figure 6.47-Mesh profile used for the CFD simulation
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Figure 6.48 -CFD generated void fraction. Structures are clearly visible in the middle of
the pipe, and the liquid film on the pipe wall is also visible.

Figure 6.49-CFD generated velocity vectors
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6.10. Summary

This chapter contained a large amount of novel data obtained with the WMS on a

vertical large diameter pipe. The first level of analysis of this data considered the

testing of empirical correlations, such as Friedel/ClSE and mechanistic correlations,

which was conducted using the WELLFLO software. The second level of data

analysis looked deeper into the flow by considering and comparing runs from different

diameters that showed surprisingly similar characteristics. The third level of data

analysis was the CFD simulation of one of the runs that was considered numerically.

An important conclusion is the existence of wisps in the churn flow area in large

diameter pipes. This has not been reported previously, and it can be argued that it

should be labelled as wispy-churn flow in the same convention as wispy-annular flow

and allocated a specific area on the flow map with defined boundaries. It has been

demonstrated that these unusual structures exist in both 67mm and 127mm pipes,

which was confirmed with the CFD simulation carried out on the 127mm pipe.

While the WMS is an intrusive sensor, due to its high resolution it is able to identify

these difficult to detect structures, which few other instruments can directly observe.

For example, conductance probes are not able to measure structures such as wisps,

. which are not axi-symmetric or lie in the annulus, whereas the WMS can. These wisps

could be considered relevant both scientifically and industrially, for example, the oil

companies would be interested to know how these wisps could affect the pressure and

hence the flow of oil inside the pipe. By changing the physical properties, for example

the surface tension, the wisps appear to become smaller. To conclude, the WMS data

was verified extensively against empirical and mechanistic correlations, against other

instruments, and against CFD results. In general the agreement between the WMS

readings and other methods was very good, and the only noticeable differences were

for the lowest liquid velocities.
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7. CHAPTER 7: CONCLUSIONS AND

FURTHER WORK

7.1. Conclusions

During this research project a large number of experiments on two-phase gas-liquid

flow using two variant wire mesh sensors have been carried out in order to satisfy the

main scientific objectives set out in Chapter 1. The experimental campaign was

carried out in two parts; the first being the testing phase, where the wire mesh sensor

results were compared with gamma densitometry (GD) and ECT probes. The second

part was the application phase, where the WMS was applied to (a) bubble columns

and (b) large diameter vertical riser. It was shown that with this type of sensor, large

amount of data can be generated. Averaging techniques were shown to be an effective

methodology to deal with this data. The advantages of the sensor were demonstrated.

The first advantage was clearly shown to be the visualisation capabilities of the sensor,

due to its high resolution. The other strength of the sensor was the determination of the

bubble size, both as a distribution and time resolved broken down into bubble classes.

No other two-phase instrument available commercially is able to produce this kind of

information across the full cross-section of a pipe.

Conclusions from tbe Testing Pbase of tbe WMS

1. It was demonstrated that the WMS is accurate in measuring gas-liquid flow.

Comparisons were carried out between the CapWMS and CondWMS against gamma

densitometry as presented in Chapter 4. The agreement in results was shown to be

within +/-10% between the WMS and GD data, which confirm previous comparisons.

In addition, a large database of data from the WMS was compared with ECT

measurements, and again the agreement was very good.
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2. The capacitance WMS readings compared well with those obtained with the

conductance WMS on the same experimental facilities using similar experimental

conditions. This is an important finding, as the CapWMS is a newer instrument and to

date has not been as extensively tested as the CondWMS. These instruments work in a

similar way in principal; however, they are measuring different parameters. It is

therefore encouraging that the instruments have indirectly validated each other by

producing similar results.

Conclusions from the Application Phase of the WMS

1. The WMS was applied to bubble columns of various diameters with different fluids

in an extensive experimental campaign for the first time. A large amount of novel and

useful information about bubble columns has been extracted and presented in Chapter

5, including details on the bubble size distributions. The data from the WMS was

compared with the level swell readings to check the accuracy, and in general the

agreement was good. It can therefore be inferred that the WMS is suitable for

investigations on bubble columns, which is an important conclusion as up to now

research in bubble columns with this type of instrument has been limited. It is hoped

that researchers will feel more encouraged in the future to use this type of sensor on

bubble columns as a result of this work.

2. The WMS was applied to large diameter pipes in a substantial experimental

campaign that collected 700 runs of data, and these were presented and discussed in

Chapter 6. Novel structures (wisps) were discovered experimentally using the WMS,

which were found to occur in chum flow. These wisps were also captured in CFD

simulations, providing further evidence of their existence. These structures are similar

to those seen by Hernandez-Perez et al (2010) in smaller diameter pipes.
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3. Data from the WMS was compared with that from conductance probes. Interesting

differences were seen between the results from the two instruments, and it was shown

that the WMS was far superior to the conductance probes in operating in different

flow patterns.

4. Data from the WMS was compared with published correlations, and in general there

was a remarkable agreement between the WMS and correlations such as CISE. This

was true for both void fraction results and the overall pressure drop. As a further

check, experimental pressure drop data was also compared with the WMS results, and

again very good agreement was observed except for very low liquid velocities.

5. As a direct result of these investigations, the manufacturers of the WMS were able

to fine tune the capacitance wire sensor and produce a second version, which has been

improved in many areas (both in software and hardware) due to this research. The

latest version is easier to operate and calibrate with fewer error messages generated.

7.2. Future Work

. A substantial amount of experimental work could be carried out in the future using the

WMS on bubble columns and large diameter pipes. The WMS could be combined

with other instruments, which has been demonstrated to be a powerful methodology in

conducting multiphase flow experiments. Suggestions in this chapter will involve

simple modifications to existing facilities. Much of the equipment and instrumentation

required to do this has already been acquired by the University of Nottingham.

Therefore the experiments could be conducted effectively onsite within a reasonable

time frame and cost.
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Experimental work on bubble columns

1. It is possible to combine the CondWMSIERT or CapWMS/ECT together to collect

more information about the two-phase characteristics that occur inside a bubble

column. This methodology was used previously by Abdulkareem et al. (2009) on a 67

mm pipe. Similar techniques could be applied to expand the work presented in

Chapter 5, in order to investigate larger diameter columns for example by using a

127mm ECT sensor and combining it with a 32x32 CapWMS on a 127mm diameter

column, and taking measurements with air-silicone oil as the two-phase mixture.

2. In previous studies it was demonstrated that the WMS worked quite well in other

type of reactors, such as stirred vessels. It is recommended that further research is

carried out in this area in order to build on the work completed on bubble columns. In

addition investigations could be carried out with the WMS with various surfactants

such as alcohol as was done by Al-Oufi et al (2010) using conductance probes.

Experimental work on large diameter pipe flow

I. The limitations of both gamma densitometry and the WMS in measuring void

fractions at the pipe wall were clearly shown. This requires further investigations

using other instrumentation, such as the Film Measurement Sensor (FMS). The

University of Nottingham recently took delivery of a FMS from HZOR, which could

be installed on the 127mm closed loop facility in order to conduct several useful

experiments. The FMS is a powerful instrument capable of sampling 5000 cross-

sections per second, with a resolution of approximately 6mm (1Z' x 127mm/64

circumferentially placed probes).
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2. A new design of injector could be installed on the 127mm facility to investigate

bubbly flow using the WMS, which would allow the investigation of the low gas

superficial velocities of 0-3m/s that were not covered in this project. A design of

injector could be developed so that the same injector is used on both the 127mm

bubble column and the 127mm vertical facility, which will allow a direct comparison

between large diameter pipes and bubble columns. Another possibility is to use

injectors that have a similar design to those employed at HZDR. HZDR has a large

database of results from experiments conducted at TOPFLOW on 50mm and 200mm

diameter pipes with both air-water and steam-water, which also covered bubbly flow

and transitions from bubbly flow which again was not covered in this study. The

injectors used by HZDR are different in design to the ones applied in this study. The

127mm facility at Nottingham lies approximately in the middle of the 50mm and

200mm range, and therefore a three way comparison could be conducted. No doubt

important conclusions could then be drawn; for example ifthere is any evidence of up-

scaling as the diameter is varied from a small to a large diameter. It is important that

the same conditions that were applied in Germany are replicated at Nottingham if such

experiments are conducted there; i.e. the temperatures, pressures and the positions of

the WMS along the pipes all need to be the same. It is possible to install two WMS

sensors and cross-correlate signals between them to extract more information about

the flow, as was previously investigated in Germany. This author's research study was

entirely carried out using one WMS.

3. Other two-phase mixtures could be investigated with this facility, for example SF6-

water, air-Oil or SF6-Oil. The oil used could be silicone oil or high flash point

kerosene; both of which are non conductive, have the same permittivity of around 2.7

and will operate with the CapWMS. From the oil and gas industry perspective,
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experiments on fluids that have a low surface tension are preferred as these are

encountered in the field, hence the choice of silicone oil, which is also an inert non-

combustible fluid. SF6 is five times heavier than air (at atmospheric pressure) and as it

is a heavier gas, it is expected that interesting results will be generated. Another

possibility is to modify the 127mm rig to allow it to operate at higher pressures, for

example between 10 and 20 bar. With the higher pressure the air will be denser, which

could be an alternative approach to using SF6 as it has safety, cost and environmental

implications that must be considered. Another modification to the rig could be to

incline the pipe at up to 10 degrees from the vertical, and the rig was designed to allow

this to be possible. Comparisons could then be carried out against the 67mm rig,

which is also an inclinable facility. Investigations could be carried out with air-water

and air-silicone oil for the two diameters at different inclinations (up to 10 degrees

from the vertical). This could give further evidence of scaling-up in the data.

4. It is possible to install an ECT system on the 127mm facility. The sensor obviously

needs to be installed before the WMS along the pipe. The fluid mixture could be air-

silicone oil and SF6-silicone oil and a large experimental campaign is then possible to

compare ECT performance against the CapWMS on a large diameter pipe, in a similar

way to the campaign proposed above for bubble columns of the same diameter with

these two instruments. The ECT will only work with non-conductive fluids such as

silicone oil; however, it has the advantage of having two sensors and therefore the

researcher can cross-correlate signals. It is important to use the same conditions

applied in this research study, for example from the matrix in Chapter 6, using the

same pressures and temperatures. Then a comparison of air-water vs. air-silicone oil

for the 127mm diameter pipe will be possible.
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Other future work

Further developments could be carried out on the WMS itself. Already trials have

been conducted at HZDR in order to produce a temperature measuring WMS, and in

addition, consideration should be given to combining the CondWMS and CapWMS

into one electronics box. A diagnostic tool for the WMS could also be developed,

which would prove helpful in performing checks of continuity on the wires of the

sensor that sit inside the pipe. Trials could be carried out with the WMS on three-

phase gas-liquid-liquid flow, at facilities similar to those at Cranfield University.

Preliminary tests with the WMS have already been conducted in the past on three

phase flow, which showed promising results. Expanding the WMS for three-phase

flow will be of significant interest to several industries; in particular to the oil and gas

industry that regularly encounter it in the form of gas-water-oil. It is therefore

recommended that an experimental campaign is initiated in this research area.

From a modelling perspective an attempt to develop a 3D-flow pattern map would be

valuable as most of the maps in the literature appear to be in 2D. This could be

diameter dependent (z-axis) with the x-y axis using the dimensionless Weber numbers

or alternatively the momentum flux as explained in Chapter 2. A 3D flow pattern map

could be generated for both bubble columns and risers with two-phase flow. A more

concerted effort could be made on modelling wisps and indeed chum flow. Further

simulations of these could also be carried out in CFD. The potential for further

modelling work for bubble columns was discussed in Chapter 5. Finally the data

collected during this research study is substantial, and therefore further analysis,

processing and interpretation is possible. For example it is possible to derive the

bubble size from the WMS data decomposed radially as opposed to presenting the

bubble size as a distribution across the full cross-section as was done in this thesis.
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Nomenclature

NOMENCLATURE
Main symbols
A Area (m2)
AJ Friedel parameter (-)
A2 Friedel parameter (-)
Co Radial distribution parameter (-)
c Constant (-)
D Pipe diameter (m)
d Diameter (m)
E Entrainment rate (kg/rrr's)
El CISE parameter (-)
E2 CISE parameter (-)

f Friction factor (-)

f Frequency (Hz)
Fr Froude number (-)
g Acceleration due to gravity (mls2)

h wave height (m)
H Height of liquid in a column (m)
j CISE parameter (-)
Ku Kutataledze number (-)
L Length (m)
m Mass flux (kg/rrr's)
Mo Morton Number (-)
n Wu et al parameter (-)
P Pressure (k~ms2)
Q Volumetric flow rate (m Is)
r,R Pipe radius (m)
Re Reynolds number (-)
Slg Strouhal number based on gas superficial velocity (-)
SII Strouhal number based on liquid superficial velocity (-)
S Perimeter (m)
I Time (s)
T Temperature (OC)
U Velocity (mls)
UR Slip ratio (-)
u Velocity (mls)
• Dimensionless velocity (-)u

V Volumetric void fraction (-)
Vr Terminal velocity of bubbles (mls)
We Weber Number (-)
Xg Quality (-)
X Lockhart Martinelli parameter (-)
V Velocity (mls)
Vgd Drift velocity (mls)
z Axial distance (m)
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Greek symbols
p Inclination from horizontal (deg)
8 Mean film thickness (m)
8 Gas or void fraction (-)
8g Gas or void fraction (-)
e' Gas or void fraction (accelerational) (-)
~ Two phase multiplier (-)
T7 Dynamic viscosity (kg/ms)
u Dynamic viscosity (kg/ms)
v Kinematic viscosity (m2/s)
p Density (kg/m')
0- Surface tension (N/m)
r Shear stress (N/m2)

Subscripts
I liquid
10 all flow as liquid
Is liquid superficial
m mixture
g gas
gs gas superficial
H homogeneous
max maximum
min minimum
MP multiphase
r radial
s slip
TP two phase
Tr transition
w wave

Abbreviations
BSD Bubble Size Distribution
Cap Capacitance

- CFD Computational Fluid Dynamics
Cond Conductance
CP Conductance Probes
ECT Electrical Capacitance Tomography
ERT Electrical Resistance Tomography
FPD Frictional Pressure Drop
GD Gamma densitometer
GPD Gravitational Pressure Drop
HTFS Heat Transfer & Fluid Flow Service
HZDR Helmholtz-Zentrum Dresden-Rossendorf

(Research Institute in Germany, formerly FZD)
PDF Probability Density Function
PSD Power Spectral Density
TPD Total Pressure Drop
WMS Wire Mesh Sensor
VOF Volume of Fluid
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APPENDIX A

Some definitions used in Chapter 2 are expanded more mathematically in this section.

Homogeneous Flow

(
dP) - P
dz .friction = T S

(AI)

(
dP) 0

2
d ( 1 )

dz acceleraton = m dz PH
(A2)

where PH is the homogeneous density.

(A3)

(A4)

Xg is known as the quality, or dryness fraction or vapour mass fraction.

l-xg is known as the wetness fraction or liquid mass fraction.

(d
P) =PH gsinp
d Z gray

(A5)

dp -p o2d(l) .:.--=T-+m - -- +PHgsmP
dz S dz PH

(A6)

Heteregeneous Flow

For each of the above constituents of the pressure drop, it can be shown that

(Azzopardi, 2006):

_(dP) = !!..[;'2(2L + (1- Xg i J]
dz acceleratbn dz e g Pg (1 - e g) P,

(A7)

[

0 2(2 (1_ )2 J]%2_ = 2L+ Xg
~ Il P acceleratbnal m. (1_ .)«.», &g P,

Z/

(AS)
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The void fraction in the accelerational might not be the same as the one in the

gravitational term therefore the need to include 68, An alternative method for

calculating accelerational pressure drop in two-phase compressible gas-liquid flow has

also been developed by Barua et al (1992).

(dd
P) = t»,e,+(1- 6g) pd g sin P
Z grav

(A9)

Z

~ - ~ P gravitatknal = J[ 6g Pg + (1- 6g) pd g sin p dz
ZI

(AlO)

.2
_ - P _ 4 iTP mTP-T------

S d 2 PTP
(All)

Based on definition of single phase, changing subscripts to TP

(Al2)

(Al3)

Therefore an expression for the overall pressure drop can be written as:

(AlS)

A significantly more complicated expression than the homogeneous model with the

addition of the void fraction in the accelerational and frictional terms. Once 6 is
g

2S7



Appendix A

worked out, then the gravity term in the pressure drop equation can be deduced.

Together with the frictional pressure drop, the overall pressure drop can therefore be

calculated for vertical flow. In vertical or slightly inclined pipes, accelerational

pressure drop can be neglected (Takacs, 2005). This is only where there is no major

phase change. It is small even if condensation or evaporation is occurring (Azzopardi,

2003). Therefore:

(A16)

In horizontal flow p=oo and hence the gravitational term is zero. In vertical flow angle

P is taken to be 90°. Hence sin(90)=1. Therefore for vertical:

• 2

-f¥J= ZJ4:lo; ¢iodz + zJr6gpg+(1-6g)Pdgdz
z, PI Z,

(A17)

In vertical flow, if the frictional term is disregarded the pressure drop reduces to:

Z

- !::.p= Jr6g Pg + (1 - 6g) pd g dz
z,

(A18)

Other Pressure Drop Equations

Beggs and Brill (1973) published an alternative equation for the pressure drop based

on the homogeneous model, that includes an accelerational component:

•
. p [ + P (1 _ )17 + fTP m (U gs + Uls)cl g Sin Pg 6g I 6g J_Je= ~------2~D~I-----

dz 1 _ [ + /1 _ )17 (U gs + Uls) UgsPg 6g PI I' 6g J
P

(A19)

It is also possible to derive an alternative equation for the pressure drop using the

conservation of energy giving the following expression (Whalley, 1987):
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(A20)

Most correlations for frictional pressure drop, and void fraction are based on the

momentum approach not the energy approach, and hence this will be the approach

used in this work.

CISE Correlation

(A21)

UR = 1 for homogeneous flow (A22)

CHwhere j = g
l-cgH

(A23)

( J
O.22

El = 1.578 Re-O.
19

:~ (A24)

( J
-o.08

E2 =O.0273We Re-O·
SI

:~ (A25)

Re and Weber numbers used here are defined as

(• +·)Dmg m, tRe = _:i:.- __

17,
(A26, A27)

Friedel Correlation

Friedel (1979) proposed the following correlation:

(A28)

h /1)1 1p, Igowere A,=,· -Xg + Xg--e.110
(A29)
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( J
O.91 )019( )07

3.24 x~"(l-x.!'" ~ (~. l-~·

and A2 = F rO.045 W /.035
(A30)

for horizontal and vertically upward flow. In these equations, lio and/go are the single

phase friction factors if all the flow were liquid or gas respectively and

• 2

m D,
We = TP where PTPH is the homogeneous two-phase density

PTPH G'

_(Xg (1
PTPH- -+

Pg
(A31)

Drift Flux Model

The flow in this model is described in terms of a distribution parameter and an

averaged local velocity difference between the phases. Bubbles will rise in liquids.

How fast those bubbles are rising in the liquid is the drift flux velocity.

(A32)

(
( )

J

O.25
.. G' g PI - P

Drift velocity Vgd =K P; g (A33)

Commonly used value for Co is 1.2, and for K values of 1.4 or 1.53 are suggested. It is

interesting to note that this equation is predicting a lower eg as U's is increased.
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APPENDIXB

Background Information on the Wire Mesh Sensor

How the two variant wire mesh sensors process the data can be found in several

references. For the conductivity version, Prasser et al (1998, 2000, 2005) and for the

capacitance version Da Silva et al (2007, 20 I0). This summary is adapted from

Szalinski et aI, 2010. Let's consider one crossing point as shown in Figure B 1.

G -)- rr
C -)- £

Vo U
3._

G

Figure BI-One crossing point processing of wire mesh sensor

The impedance Z is the ratio of the voltage to the current in complex notation.

Admittance Y is the inverse of impedance Z.

y=_!_= v:Z i (B1)

The following mathematical relationships can be derived for Y where G is the

conductance in the real part and C is capacitance in imaginary part.

(B2)

The conductivity WMS measures the real part "G" or the conductance and then

converts it to conductivity. The capacitance WMS measures the imaginary part '~(J)C"

and converts this into permittivity. The capacitance C, is proportional to the relative

permittivity value of the fluid between the electrodes Er. Therefore:

(B3)
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Eo is the permittivity in a vaccum and kg is a geometrical constant. The equivalent

equation for conductance Ox where (J is the electrical conductivity:

(B4)

For conductivity measurements the transmitter electrodes are excited by a bipolar DC

voltage while for permittivity measurements AC voltage is applied. In both cases the

receiver currents are converted to voltages by a trans-impedance amplified circuit.

This is followed by a DC voltage detector in the conductivity-measuring electronics

and by a log demodulation circuit in the permittivity-measuring electronics. For

conductivity measurements the output voltages Vk of receiver circuits correspond to

the conductivity value K at the crossing points according to

(BS)

K is a proportionality factor which depends on electronic circuit constants. In this

way, conducting and non-conducting phases (e.g., air and water) can be discriminated

by evaluating the output voltage Vk- The permittivity-measuring electronics generates

- a voltage V10g which is proportional to logarithm of the rms-value of the transmitted

AC current which is itself proportional to the relative permittivity Er of the fluid

present at a crossing point (Da Silva et al., 2007). The relative permittivity is related to

the output voltage

(~oll-b)~Og = aln(Er) +b => Er = exp a (B6)

where a and b are constants determined by geometry and circuit parameters.
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The wire-mesh sensor produces sequences of cross-sectional images which are further

processed as a three-dimensional data matrix of electrical voltage values denoted by

V(ij,k)' They correspond to either conductivity or permittivity values in the crossing

points, as described above. Further, i and j are the spatial indices of the image pixels

(corresponding to the wire numbers) and k is the temporal index of each image.

Equations (BS) and (B6) hold for every crossing point in the wire grid. The constants

in these equations are different for all crossing points.

A calibration procedure is required to extract flow parameters from the raw data.

Calibration is performed by acquiring data from measurements in conditions of "pipe

completely filled with liquid" and "pipe completely filled with gas". Data is saved into

calibration matrices as described below. In the case of conductivity-based electronics,

due to the linear relationship between measured voltage and liquid conductivity, only

one reference point is required and the gas void fraction matrix can be obtained by

VK mix (i,j,k)
& Ok =1-_,.;.;.:.;;.;' ~--
',J, ~ ( •• )

K,waler I,J
(B7)

where Vk,mix represents the measured voltage of the two-phase mixture and Vk.water is

reference measurement with water. Eq. (B7) assumes a linear relationship between gas

phase fraction and conductivity values, as extensively used in earlier investigations

(Prasser et al. 1998).

There are various models that relate the permittivity to the void fraction Eg• The

simplest model is known as the parallel model and considers a linear relationship

between the mixture permittivity Em and gas or void fraction Eg• There are other
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models e.g. series and Maxwell models and the differences can be seen in Figure B2

(Hampel, 2009). The default is Parallel model (linear). Also possible to do log model.

Parallel Series Maxwell-Gamet

[ill] ~
=
~
1 10mix =-·v+-·(l-v)
°8 °L

D
{; . = (; 'V+{;L .(l-v)mix 8:

Log-Model

: : : : : -Paranal

08 ..•.. ~·::··:t::::::t:::::t::::t:::=~;~ies
. . . : : : -Maxwe/,Oarnel

i::[.••..,.·..:·+ •••[.FJ•••1
.~ 0.4 ······i ~······; ; ; j j -i-- .

> :: ::::::t::::::~:::::::::::..i:::::: ; ::::. :"::"1::::::]::::::
, . , , , . , ,

0.1 ~ ~ ~ ; ; ~.. .. , , , , .
, , I • , ,

°1L--l~:2--~1·4~~1.~·6~1~·8--~;--~2:~2~~~~~2.8
effective permittivity (.)

In ("mix) = In( 6g ). v + In (6L)' (1- v)

~og H - ~og
V= H L

~og - ~og

Figure B2-Capacitive models used for the CapWMS

The parallel model can be written as

H ( .. k)
C
· . k) - cr -cm l,j,cg i.], - H L

e, -cr (B8)

However, due to the logarithmic dependence of the measured voltage Vlog, with

relative permittivity values, calculating gas void fraction is not as simple as for

conductivity-based electronics. Thus, measured mixture permittivity is calculated by

C Ci . k)=e (V;Og'IIl(i,},k)-V;og'L(i'})ln(cH)J
III ,j , xp v. ( . .) v. ( ..) r

log,H l,j - log,L l,j
(B9)

where the subscripts 'mix' denotes the voltage measured of the two-phase mixture,

'H' for the condition of pipe filled with liquid, and 'L' for empty pipe. In this way, the
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measured mixture permittivity along with the known relative permittivity of water and

air are used in Eq. (12) to obtain the gas void fraction matrix in the case of air/water

experiments. A description of the calibration routine for permittivity-based electronics

is given by Da Silva et al. 2010. From gas void fraction matrix EI,J,k' axial and radial

gas fraction profiles as well as integral gas fraction values can be determined by

integration of the measured data over appropriate partial volumes. Further post-

processing of the matrix EI,J,k can be performed to identify single bubbles or

determine characteristic bubble or interfacial area parameters.

For the graphical presentation of the wire-mesh sensor data two different visualisation

techniques are used: axial slice images and virtual side projections. The first method

extracts the phase fraction distribution along a central chord of the cross-section. The

resulting two-dimensional image shows the phase distribution along the diameter (x-

axis) for successive temporal steps (y-axis), Virtual side projections are obtained from

application of a simplified ray-tracing algorithm as described by Prasser et al. (2005).

In this visualisation technique an illumination of the three-dimensional phase fraction

distribution by parallel white light is simulated and the light intensity emitted into the

direction of a virtual observer is calculated. This method gives an instructive pseudo-

3D view which is close to flow observations with a video camera through a

transparent test section. In both cases the vertical axis represents a virtual length which

is scaled according to the averaged gas velocity. This scaling allows the display of gas

structures in the flow and thus visualisations of different gas velocities can be directly

compared. The data processing software generates several "special" files that can be

imported into Excel for data manipulation and analysis.

A summary of the important electronic file is as follows:
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.epst file: This is ASCII file. It is the space averaged time series of the cross-sectional

void. In mathematical terms:

£k = B(t) = "" a .e .kL...L... I.J I.J.
i j

(BI0)

An example of how the weighting coefficient works is shown in Figure B4.

Figure B3-coefficient ai,j for averaging the void fraction, and aiJ,mfor radial gas fraction
profiles .

•epsxy file: This is an ASCII file. It is time averaged local void fraction. See Figure

B3. In mathematical terms:

1 kI£.=-- B.
I.J k I.J.k

mix k=1

(B11)

(812)

(813)

.epsrad 40: This is an ASCII file. It is the radial void fraction. In mathematical terms:

(BI4)

How the weighting coefficient works is explained In Figure B4, with a worked

example.
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Weighting coefficients
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Figure B4-Example of data handling to generate time/space resolved void fraction

The chordal void fraction Eimeasured by the wire-mesh sensor along the i-th wire is evaluated as the sum

of the void fraction Eij in each node belonging to the i-th wire weighted by a factor aij, that takes into

account whether the [ij]-mesh contributes totally (central mesh) or only partially (mesh at periphery) to

the total area intercepted by the sensor along the i-th wire (Manera, et ai, 2007).
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.p file: This is an ASCII file. This is a file generated by HZDR's proprietary software

to show the bubble size distribution .

.v file: This is a very important "binary" file. From it, visualisation using special

HZDR software can be done. V-Files are binary files and data are written byte-wise,

where every byte represents the void fraction of a crossing-point. Values are between

o and 100 representing directly the void fraction in percent. Values higher than 100

(normally 255) represent a crossing point outside of the pipe, and these points are

ignored in the data processing, as shown in Figure B5.

1.
lA

'"20
12

2'
2fi

21,.,.......
02
32..
32
32
aa
32
ra
30
30
21
2.
2.
2'
22
20
18

",..,.
Figure B5-Matrix of local voids generated by WMS, here example of 32x32

Local void file: This is an ASCII file, generated from the "v" file. It is readable in

Excel, however care is required as Excel 2007 can only read a maximum of 1,000,000

rows. Over 60 seconds, 32x32 sensor, will generate a 32x32 matrix, at 1000 Hz,

giving 60000 frames per minute. It therefore will generate an ASCII file with almost 2

million rows. Therefore for 32x32 sensor, the acquisition time was reduced to 30

seconds to enable the files to be handled in Excel. Both the v file, and the local void

file are powerful files, as they contain the local voids generated by the sensor.
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Bubble Size generated by the WMS (extracted from HZDR documentation)

First Stage-Bubble Identification

The bubble identification and the determination of important characteristics for the

bubbles can be done using special evaluation algorithms. Thereby, a bubble is defined

as a region of connected gas-containing elements in void fraction data £ij,kwhich is

completely surrounded by elements containing the liquid phase. To each element

which belongs to one bubble, the same identification number is assigned. Different

bubbles receive different identification numbers. These numbers are stored in the

elements bij,kof a second array that is saved in a binary file of the type • .b. This array

has the same dimension as the void fraction array. After the bubble recognition

algorithm is completed, each element bij,kcarries the number of the bubble to which

the given element with the indexes ij,k belongs.

Local instantaneous gas fractions can have values between 100 % (gas) and 0 %

(liquid), if the corresponding measurement volume formed by two crossing wires

contains both gas and liquid at the same time. Furthermore, signal noise may also lead

to such intermediate values. Consequently, a sharp distinction between elements filled

with gas and elements filled with water is not possible. To recognise the unique

bubbles even under these difficult conditions HZDR use a so called recursive extended

. decremental fill algorithm. It is based on the idea that the local gas fraction can only

decrease or remain equal if the identification is started at the point of the highest gas

fraction found inside a bubble. Before the identification starts all elements of bij,kare

set to zero (which means not assigned to any bubble) and a bubble counter n is set to

unity (i.e. bubble number one). Then, beginning with a void fraction of 100%, the

filling procedure starts with a search for an element (measurement volume) that is not

yet occupied by a bubble, which is the case, if bij,k= 0, if its indices are within the
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boundaries of the data array. If this check ends with a positive result (it means a seed

of a bubble was found), the corresponding element in the bubble identification array is

set to the current bubble number, i.e. bij•k= n. Now. all six neighbouring elements are

tested by calling the procedure itself with single indices (i, j. k) modified by ±1.

After the bubble recognition for the first bubble is finished. which happens if the test

condition is not fulfilled for none of the recursive calls of the fill procedure. the

program control returns from this routine. The bubble counter n is increased by one

and the search for the next starting point begins. The previously used start element is

no more available. since the element is now labelled by a non-zero bubble identifier.

That means the entire bubble identification loop can just be repeated until the gas

fraction in the last free maximum element falls below a chosen threshold. This

threshold - we call it initiation threshold - defines the minimum size of bubbles which

can be detected with the wire-mesh sensor. It should be greater than the noise level in

the signal. In our experience a good initiation threshold is 10 -12 %.

To avoid unrealistic fragmentations in case of presence of signal noise it is necessary

to allow for a certain increase of the local gas fraction in a fill step. On the other hand.

saddles in the gas fraction distribution are found at places where two bubbles are so

. close to each other that both of them contribute to the local instantaneous gas fraction

at the saddle point. A reasonable criterion has to be formulated that allows

distinguishing between those saddle points that are caused by noise and those that are

the result of a close approach of two bubbles. This criterion cannot be solely based on

local gradients of the gas fraction, since a local small positive gradient does not tell

anything about the trend at greater distance.
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In the adopted solution, a real saddle is defined as a point of contact between two

neighbouring bubbles that possesses a local gas fraction that is significantly lower than

the smaller of both maximum gas fractions of the pair of involved bubbles. The

maximum gas fractions may be found at a certain distance from the saddle point. For

this reason, the maxima are stored for each bubble number individually. Since the fill

process remains decremental, the gas fraction in the location where the fill is

initialised represents the maximum for the given bubble. This criterion is used to unite

a pair of unrealistic bubble fragments with the identifiers n1and n2 in case that the gas

fraction Bij,k at the point of contact is not significantly lower than the smaller of both

maximum gas fractions. A threshold Etr is defined that quantifies the condition for the

unification:

8".>min(8maxn 8maxn2)-8 k -v unite
, 1" tJ,

The repair process by unifying unrealistic fragments was implemented directly into

the bubble recognition algorithm. If the fill process for a bubble with the current

number n1 arrives at an element that has before already identified to belong to a

different bubble n2, the aforementioned condition is checked. If the condition fires the

fill process is terminated in this direction. In the opposite case, the currently identified

bubble acquires the identifier of the bubble that was found before and the bubble

identifier n1 can be distributed for the next bubble. Using the results of various tests

. with synthetic bubbles it was found that the optimal differential threshold Btr for the

repair mechanism of the extended decremental fill process is near the peak-to-peak

amplitude of the noise of the wire-mesh sensor. This value was defined at HZDR at

-15%. After successful completion of the bubble detection the results (bubble

identification matrix) are saved in the binary file ·.b. Using this new data together

with the information about the void fraction, now important parameters can be

determined for each bubble. They are stored in text files of the type • .a. It has to be
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noted that in the code the index i refers to the serial number of the frames, while j and

k, in this case, serve as indices in the measurement plane. This assignment of the

indices is' also used in the equations given in this section. The volume of a bubble with

the number n is obtained by integrating the local void fraction of all elements owning

the given bubble number:

Vb,n=tutlytltbwb LEj,j,k'v'[i,j,k]:bj,j,k =n
I,j,k

(BlS)

The sum of void fractions is multiplied by the measurement volume, which is the

product of the distance of the electrodes in x and y directions and the sampling period,

as well as the bubble velocity.

1
tlt=---

!sample
(B16)

Due to the fact that the individual velocity of bubbles is unknown, the gas phase

velocity obtained by cross-correlation is taken as an approximation at the location of

the centre of mass of the given bubble:

where (BI7)

The coordinates of the centre of mass can be obtained by averaging the measurement

coordinates of all elements belonging to the selected bubble using the local void

fraction values as a weight function:

(B18)XCMn= L' &I,j,k
I,j,k

LktlYEI,j,k
I,j,k (BI9)CM,n= '"

£..JEI,j,k
I,j,k
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L iAzc;,j,k
I,j,k (B20)ZCMn = L

' C;,j,k
I,j,k

V'[i,j,k]:b~j,k =n (B21)

After that, the equivalent diameter of the bubble can be determined, which is defined

as the diameter of a sphere that has the volume according to:

(B22)

Volume of Sphere V = i 7f r3
3

(B23)

For the evaluation of asymmetries of the bubble, moments for each bubble are

calculated. Likewise, the void fraction served as weight function:

5L(jLU-XCM,n)2
i,j,k

rmx,n = "Co Ok£..J I,J,
I,j,k

(B24)

rmy,n =
5 L(kAy- YCM,n)2
i,j,k

LC;,j,k
i,j,k

(B25)

5L(iAz-zcM,n)2
I,j,k

LCi,j,k
i,j,k

(B26)

From the moments for the coordinates x and y in the measurement plane of the wire-

mesh sensor, the radial moment results:

(B27)

Further information on the distortion of the bubble can be obtained by calculating the

maximum equivalent diameter in the x-y plane. For this matter, the area being
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occupied by the bubble in the x-y plane is added. The sum of the local instantaneous

void fractions of the measurement volumes belonging to the bubble is multiplied by

the area of the measurement volume in the x-y plane. This procedure is done for each

single sampling time characterised by index i:

Axy,n,i = L\xL\y ~::>'i,j,k
j,k

\i[i,j,k] :b;,j,k = n (B28)

Maximum area is found and converted into the diameter of an area equivalent circle:

Dxy,n =
4AxY,n,max with

1t
A =rnax(A.)xY,n,max x y.n.: (B29)

In addition to these bubble characteristics, the minimum and maximum coordinates of

the bubbles are determined. For the calculation of these values, it is necessary to

define a threshold value of the gas fraction which represents the bubble interface.

Experiences at HZDR show that for bubble sizes> 20 mm a threshold 50 % is a good

approximation. If bubble diameters are smaller this value is reduced to approx. 20 %.

The maximum of gas fraction in the bubble (starting at 100 % for large bubbles) also

reduces with decreasing bubble diameter. This reduction is observed for bubbles with

a diameter less than approx. 20 mm. This effect results from the limited spatial

resolution of the wire-mesh sensor which is e.g. 3 x 3 mm. Small bubbles cannot

'completely fill the associated measurement volumes. For this reason maximum gas

fractions lower than 100 % are observed. Taking these boundary conditions into

consideration, as a compromise, the gas fraction threshold representing the bubble

interface is taken as half of the maximum gas content of the bubble.

Another important parameter for the characterisation of gas bubbles is the volume

fraction of the bubble related to the total volume of the flow:

(B30)
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(B31)

Apart from the already mentioned parameters, the maximum gas fraction and the

number of measurement volumes per bubble are determined. All values are stored in

an ASCII file (*.a) as table for each identified bubble. The required geometrical data

in the bubble property table (*.a file) is converted into real 3D information, e.g. the

volume equivalent diameter of the bubble is converted from 32mm*ms into mm. If a

*.inf file exists, which contains information about the configuration of the wire-mesh

sensors and the electronic device, the routine gets the measurement time from this file.

If the *.inf file does not exist a constant value is used which can be changed in the

constant value block of the source code. Furthermore, it is necessary to set the inner

diameter of the sensor and the number of ring-shaped domains as constant values.

Second Stage-Bubble Size Distribution

After evaluation of the data, three-dimensional information for gas fraction

distribution and for bubble identification is available. Additionally, a list with

characteristics of each bubble is generated for each measurement. The combination of

this data makes it possible to obtain bubble size distributions. To do this, histograms

are calculated in which the void fraction per bubble class is summed. This is done

related to the volume equivalent diameter as well as related to the area equivalent

diameter of the gas bubbles. This information is available in a representation with a

linear bubble class width of 0.25 mm and also for a logarithmically increasing width

of the bubble classes. The smallest bubble size class for the logarithmic representation

has a lower boundary of 0.1 mm. The bubble size distributions are stored in ASCII

files with the extensions *.his_lin and *.his_log, respectively. The linear distributions

are preferably used for the numerical investigations and the logarithmic information
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for visualisation. In both types of bubble size distributions, the void fraction that is

related to the bubble class width is represented by (LlEI LlOb),which gives:

(B32)

In addition these distributions related to the total gas content (Ll£/LlDb/£all) are listed

in both files. Furthermore, the files contain the bubble number distributions with

which the absolute number of bubbles per bubble class is referred to the bubble class

width and the total measurement time. Further details can be found in Prasser et al

(2000-2002), Richter et al (2002), and Manera et al (2006).

Sample WMS Specification

inner diameter (I): 0127 ±0.2mm

outer diameter (2): o 254mm

standard 1 norm ISO 1302/1S02768/1S013715

flange material (steel, acrylic, POM) Acrylic

installation he ight (3): 39mm

pitch circle of holes (4): o 210mm

number of holes: 8

diameter of holes (5): o 17mm

inner diameter of mating surface (6): o 130±0.lmm

outer diameter of mating surface (6): 0165 ±O.I

wire separation: 2mm

operation pressure (max.): Atmospheric Pressure i.e. I bar (abs)

operation temperature (max.): 30"C

flow velocity (max.): 10 rn/s

electrical conductivity (min.! max.) 0-550 micro SiemenslCm
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APPENDIXC

Densitometric calculations

Void fraction determination: A suitable monoenergetic source of radiation is

collimated to a thin photon beam. This beam penetrates a pipe along a chord of length

d. Behind the pipe a detector records the radiation intensity I. For an empty pipe the

measured intensity is denoted as h. In case of two-phase flow the beam passes the

liquid phase on a length dL=(1-e)d, where s is the gas fraction along the chord, and

experiences attenuation. With ilL being the linear attenuation coefficient of the liquid

phase this gives the intensity

(Cl)

If ilL and d are known, the gas fraction can be determined directly. Otherwise one may

perform a reference measurement for a full pipe (dL=d, £=0) and gets the reference

intensity

(C2)

Combining equations (1) and (2) gives

(C3)

Note that this derivation only holds if the photon beam is very thin such that the

chordal void fraction is constant across the beam cross-section for a broader beam
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(Petrick & Swanson, 1958; Stahl et aI, 2004). This derivation also holds for

homogeneous and non-homogeneous flows.

Measurement uncertainty: For gamma densitometry, if properly applied, the main

source of error is photon statistics (Schrock, 1969). Let N be the number of photons

measured in a given time interval. The probability distribution for the sampled count

rate values in such an interval is given by the Poisson distribution, with expectation

value (N) and standard deviation a = J(N) .The signal-to-noise ratio is given by

SNR=(N)/u=JN . (C4)

The lowest count rate will occur when the pipe is full of liquid. Let us now require that

the noise power (a) should be in the same range as a count rate change due a certain

change in gas fraction. If there was a length dd changing from liquid to gas the

corresponding change in count rate expectation value would be

IlN = (NE )e-JlLd -(NE )e-JlL(d-M)

= (NF) ( 1- eJlLM )
(CS)

and consequently it can be stated that (NF) is large enough such that

(C6)

Rearranging (C6) gives
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(C7)

With J.lL=0.00846mm-1 for water and photon energy 662 keY and ~d=0.5mm (the

noise power in the count rate is in the same range as the count rate change cause by

1% gas fraction variation or in other words a bubble of 0.5mm diameter) this gives

gives an uncertainty smaller than 2% for the measurements in this work.

Bias error: A dynamic bias error occurs if the void fraction changes while the gamma

densitometer takes a single count rate sample over a certain time interval (Harms et ai,

1973). A simulation was performed to estimate this effect for the given geometry and

radiation. A virtual flow was considered consisting of elementary cells of size 50mm x

SOmm. In each cell there is a centred bubble of random diameter smaller than the

elementary cell edge length. A virtual gamma ray scans the flow every 1 mm. The

count rate is assumed sufficiently high such that statistical uncertainty can be

neglected. The simulation determines the given gas fraction (length of beam in bubble

150 mm) and the integral count rates for the virtual scans. With no loss of generality it

is assumed that No=O, and therefore NE = 1 and NF = e-JlLSOmm • For K samples with

instantaneous beam lengths in gas d, this gives a total count rate of

(C8)
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Note that the bias error comes from averaging of counts over K different chord lengths

in gas. Figure Cl shows the simulation results for the given scenario. The maximum

error is about 2% gas fraction overestimation.

o.25r----- __ ~ _+_"

0.2

..

I0.15

=E..g. 0.1

0.05

O~O--~0~.05----0-.1----0-.15----0-.2--~O.25
IpS g'IOI"

Figure Cl-Measured vs calculated gamma void fraction with dynamic bias error.
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AppendixD

Dl Experimental Matrix

Four experimental matrices are shown in Table 01 to Table 04.

Run No cond (JiS/cm) Teml'·C Flow rate llmin Ugs (m/s) U(lnitial)mm H(Finol)mm L. SllCil
watcr 1.0 22.2 0 0.000 119.50 119.50 0.000

runOO1 1.0 22.2 10 0.004 120.30 123.20 0.024

runOO2 2.0 22.2 20 0.007 121.20 127.70 0.051
rUIIOO3 2.0 22.2 30 0.011 121.60 132.20 0.080

runOO4 2.0 22.2 40 0.014 122.00 136.20 0.104

runOO5 3.0 22.2 50 0.018 122.40 140.20 0.127
rUIIOO6 3.0 22.3 60 0.022 122.80 141.20 0.130
rUIIOO7 3.0 22.2 70 0.025 123.00 145.20 0.153

runOO8 3.0 22.2 80 0.029 123.00 148.20 0.170
runOO9 3.0 22.1 90 0.032 123.00 151.20 0.187
rUII010 4.0 22.4 100 0.036 123.00 154.20 0.202

run011 4.0 22.3 110 0.040 123.20 157.20 0.216

run012 4.0 22.3 120 0.043 123.20 160.20 0.231

run013 4.0 22.3 130 0.047 123.40 164.20 0.248

Table Dl- CapWMS matrix for air-distilled water; Spider Injector; 127mm bubble

column

Run No cond (JiS/cm) Teml'·C Flow rate IImin Ugs (m/s) EI(lnitial) mm H(Finsl) mm L.SlICil
water 510.0 19.2 0 0.000 1091 1091 0.000

runOOl 509.0 19.1 15 0.020 1091 1208 0.097

rUIIOO2 510.0 19.1 20 0.026 1091 1253 0.129
rUIIOO3 517.0 19.1 25 0.033 1091 1318 0.172

runOO4 517.0 19.1 30 0.039 1091 1383 0.211

runOO5 519.0 19.1 35 0.046 1091 1468 0.257

runOO6 511.0 19.1 40 0.053 1091 1503 0.274
runOO7 513.0 19.1 45 0.059 1091 1483 0.264
ruuOO8 513.0 19.1 50 0.066 1092 1428 0.235

runOO9 518.0 19.0 55 0.072 1095.5 1368 0.199

run010 518.0 19.0 60 0.079 1098 1348 0.185
run011 514.0 19.0 65 0.086 1098 1338 0.179

runO.12 514.0 19.0 70 0.092 1100.5 1348 0.184
run013 513.0 19.0 75 0.099 1103 1358 0.188
rUII014 511.0 19.0 80 0.105 1103 1368 0.194
runOIS 511.0 19.0 85 0.112 1105.5 1378 0.198
rUIIOl6 515.0 18.9 90 0.118 1108 1383 0.199
runOl7 513.0 18.9 95 0.125 1108 1388 0.202
run018 507.0 18.9 100 0.132 1110.5 1393 0.203
run019 514.0 18.9 105 0.138 1108 1398 0.207
run020 519.0 18.9 110 0.145 1108 1408 0.213

Table D2- CondWMS matrix for air-tap water; Hom Injector; 127mm bubble column

281



Appendix D

Run No cond (JlS/cm) TempnC Flow rate I/min Ugs (m's) H(lnitial) mm H(Final)mm LS_II

water 0.0 19.2 0 0.000 905 905 0.000

runOOt 0.0 19.1 15 0.020 904.5 995 0.091

rllnOO2 0.0 19.1 20 0.026 904 1018 0.112

runOO3 0.0 19.1 25 0.033 904 1028 0.121

runOO4 0.0 19.1 30 0.039 904 1043 0.133

runOO5 0.0 19.1 35 0.046 904 1058 0.146

runOO6 0.0 19.1 40 0.053 904 1068 0.154

runOO7 0.0 19.1 45 0.059 904 1078 0.161

runOO8 0.0 19.1 50 0.066 904 1088 0.169

runOO9 0.0 19.0 55 0.072 903.5 1098 0.177

runOtO 0.0 19.0 60 0.079 903 1108 0.185

runOI1 0.0 19.0 65 0.086 903 1118 0.192

run012 0.0 19.0 70 0.092 903 1128 0.199

runOt3 0.0 19.0 75 0.099 903 1133 0.203

runOl4 0.0 19.0 80 0.105 903 1138 0.207

rllnOl5 0.0 19.0 85 0.112 903 1143 0.210

rlln016 0.0 18.9 90 0.118 903 1148 0.213

runOl7 0.0 18.9 95 0.125 903 1158 0.220

runOt8 0.0 18.9 100 0.132 903 1168 0.227

Table D3- CondWMS matrix for air-silicone oil; Hom Injector; 127mm bubble column

Run No cond (JIS/cm) TemlloC Flow rate l/min Ugs (m's)
runOOI 0.0 14.3 10 0.047
rllnOO2 0.0 13.4 15 0.07
runOO3 0.0 12.8 19.78 0.093
runOO4 0.0 12.6 24.4 0.115

runOO5 0.0 12.4 29.1 0.137
rllnOO6 0.0 12.2 33.8 0.159
runOO7 0.0 12.2 38.5 0.181

runOO8 0.0 12 43.19 0.203
runOO9 0.0 11.8 47.66 0.224

runOIO 0.0 11.6 5234 0.246

runOl1 0.0 11.5 56.8 0.267

run012 0.0 11.5 61.27 0.288

runO.13 0.0 11.4 61.9 0.31

run014 0.0 11.4 70.4 0.331

runO.15 0.0 11.3 74.89 0.352

run016 0.0 11.2 81.7 0.384

rlln017 0.0 11.1 87.23 0.41

rllnOl8 0.0 11.1 92.76 0.436

rllnO.19 0.0 11 98.5 0.463
run020 0.0 11.7 104 0.489

run02.1 0.0 12.2 11531 0.542

run022 0.0 16 150 0.7
rlln023 0.0 15.7 200 0.9

rlln024 0.0 15.5 300 1.4
run02S 0.0 15.4 400 1.9

run026 0.0 15.6 500 2.36
rlln027 0.0 15.9 600 2.83

run028 0.0 15.7 1000 4.7

Table D4-CapWMS matrix for air-silicone oil, 67mm vertical column, 3mm hole injector
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D2 Time Series

The corresponding time series plots are presented in Figure Dl to Figure D5.
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D3 Probability Density Function

The probability density function (PDF) can be extracted from the time series using

Matlab by using the hist or histc command. However, on comparison with the MS

Excel frequency command, which can also generate PDF profiles, it was noted that

histc gave more comparable results, and therefore will be used for this analysis.

Figure D6 shows the PDF for increasing superficial gas velocity for air-distilled water

using the spider injector. Figure D7 shows air-tap water with the homogeneous

injector. Figure D8 and Figure D9 show the PDF plots for air-silicone oil for 127mm

and 67mm columns respectively.
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Figure 07- PDF: air-tap water; Hom. Injector; 127mm column; CondWMS
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Figure D8- PDF: air-silicone oil; Hom. Injector; 127mm column; CapWMS
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Figure D9- PDF: air-silicone oil, hom. injector, 67mm column, CapWMS

D4 Local Void Profiles

Time averaged local fractions can be extracted and are presented Figures 010-013.

run006

runOlI

runOO2

runD07

runOI2

run005

runOlO

Figure DIO- Local voids: air-distilled water; Spider Inj; 127mm column; CapWMS
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Figure Dll- Local voids: air-tap water; Hom. Injector; 127mm column; CondWMS
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Figure D12- Local voids: air-silicone oil; Hom. Injector; 127mm column; CapWMS

288



Appendix D

,unOO!

run006

ruoai t

,unO!6

,un02!

run026

,unOO2

,unOO7

,unO!2

,unO!7

,un022

,un027

run003

,un008

,unO!3

,unOI6

,un023

,un026

run004

,un009

,unO!4

,unO!9

,un024

,unOO5

,unO!O

runO!5

,un020

,un025

Figure DB - Local voids: air-silicone oil; Hom. Injector; 67mm column; CapWMS
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D5 Limitations of the WMS

Bubble column limitations

The limitation of the wire mesh sensor in stagnant liquids resembling conditions

similar to those created by bubble columns were previously investigated by Prasser et

al (2001), Richter et al (2002), Wangjiraniran et al. (2003) and more recently by Ito et

al (2011). Due to surface tension, the bubbles may stick to the wires as previously

mentioned, which is particularly noticeable during the calibration process. In addition,

the moving bubbles can be decelerated by the wires. Prasser et al (2001) suggested a

minimum limit for the liquid superficial velocity of O.lmls, whereas Richter et al.

(2002) gave a minimum water mass flux of 100 kg/m2s for the bubble inertial forces to

overcome the surface tension forces. However, how rigid are these limits and what

about the gas superficial velocities? Visually, the swarm of bubbles at higher gas

velocities are able to force their way through the sensor in a stagnant head of liquid,

therefore the intrusiveness of the sensor is perhaps more of a problem at low gas

velocities.

Bubble size measurements using the wire-mesh sensors showed that even in stagnant

liquid, the WMS measures the undisturbed flow. This is independent of the bubbles

being broken up by the wires, which mayor may not occur, as has been demonstrated

with slug flow. The sensor is able to reconstruct the flow structures and measure the

void fraction fairly accurately when compared with the level swell. As mentioned in

Chapter 3, the sensor is only able to measure bubbles of a certain size, and therefore it

is not able to detect the very small (micro) bubbles that are often observed in bubble

columns. This is important, as it means the sensor will underestimate the measured

void fraction. Conversely, the sensor is not able to measure small drops, and the

minimum drop size is estimated to be the drop that can fill the gap between the send
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and receive wires to complete the circuit. It is worth mentioning that the sensor is not

able to detect solids, porous media, or even surfactants that can be present in bubble

columns. Other limitations include cross-talk, and the fact that the DC signal leads to

water electrolysis, although this last effect disappears in organic fluids such as oil. As

already mentioned, one WMS inside the pipe is not able to detect velocities. It also

assumes the flow is in one direction; however, as was demonstrated in this work, some

recirculation or flow reversal takes place in bubble columns, which clearly the WMS

isn't able to detect.

Viscous fluids

Highly viscous fluids are being used in novel experiments in collaboration between

volcanologists and chemical engineers at the University of Nottingham. "Idealised"

models of volcanoes are being simulated using large diameter bubble columns,

meaning that phenomena such as 'outgassing' that occur in volcanoes can then be

studied using glucose syrup, with viscosities up to 200,000 times that of water. This

viscosity is comparable to the viscosity of the lava/magma. This level of viscosity

presents considerable challenges to the instruments currently being used to study

multi phase flows. Clearly the intrusive nature of the WMS means that it struggles to

deal with this level of viscosity, with bubbles failing to clear the wires. Pressure builds

up and eventually the bubbles manage to pass through the sensor however causing the

liquid to overflow from the column. Investigations were conducted to ascertain the

viscosity limit for a 16x16 WMS in a 50 mm bubble column (using a liquid that can

also be used with ECT). Silicone oil of viscosity 30000 Cs was initially trialled, which

was found to be too viscous. Further trials of silicone oil with a viscosity of 5000 Cp

was again found to be too viscous. Glucose syrup was diluted with some distilled

water to reduce the viscosity to around 1000 Cp, and a viscosity meter was used to
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check the viscosities. The WMS operated successfully with 1000 Cp glucose syrup;

however, due to the fact that it was slightly conductive, the ECT electronics saturated.

A further test was made using golden syrup diluted with distilled water to reduce the

viscosity; however, ECT electronics again saturated. The ECT and WMS both worked

successfully with silicone oil with a viscosity of 1000Cp, and therefore this appears to

be the upper limit of viscosity for a WMS with a wire spacing of around 3-4 mm. A

model volcano with silicone oil that had a viscosity of 1000 Cp with both ECT and the

WMS was exhibited for the Royal Society's 350th anniversary. The author

demonstrated during that exhibition how the wire mesh sensor is being applied to

measure the void fraction in model volcanoes. A more systematic study could be

conducted to relate the viscosity to the wire mesh spacing; for example, a higher

viscosity liquid than 1000 Cp could be trialled on a 50 mm bubble column, but with

fewer wires on the WMS e.g. 8x8. This would however mean a lower resolution.

This type of investigation would be advisable if the sensor is to be used with viscous

fluids in the future, and little research has been carried out in this area to date. This has

direct industrial applications, for example some oil that is extracted from reservoirs is

extremely viscous, and theoil companies try to reduce the viscosity by using steam to

make the oil easier to extract. However, this can be a costly method of oil recovery. A

further study could also be carried out to investigate volcanoes directly using

multiphase instruments. However, they need to be developed to withstand the high

temperatures and pressures inside volcanoes. The wire mesh sensor is capable of

withstanding high pressures and temperatures up to around 300°C; however, there will

be the problem of expansion of the wires at higher temperatures. Further research

could be conducted in this area.
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