

Ong, Mei Kying (2014) Effect of ozone on anthracnose physicochemical responses and gene expression in papaya (carica papaya I.). PhD thesis, University of Nottingham.

Access from the University of Nottingham repository: http://eprints.nottingham.ac.uk/14234/2/COVER_%282014%29_OMK.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may be reused according to the conditions of the licence. For more details see: http://eprints.nottingham.ac.uk/end_user_agreement.pdf

For more information, please contact eprints@nottingham.ac.uk

EFFECT OF OZONE ON ANTHRACNOSE, PHYSICOCHEMICAL RESPONSES AND GENE EXPRESSION IN PAPAYA (*CARICA PAPAYA* L.)

ONG MEI KYING

DOCTOR OF PHILOSOPHY THE UNIVERSITY OF NOTTINGHAM MALAYSIA CAMPUS

2014

EFFECT OF OZONE ON ANTHRACNOSE, PHYSICOCHEMICAL RESPONSES AND GENE EXPRESSION IN PAPAYA (CARICA PAPAYA L.)

Ву

ONG MEI KYING

Thesis Submitted to The University of Nottingham Malaysia Campus, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

August 2014

Dedication of love and gratitude to:

My caring parents and loving husband whose endless support, understanding and timely encouragement inspired me to strive and fulfil this goal.

ABSTRACT

EFFECT OF OZONE ON ANTHRACNOSE, PHYSICOCHEMICAL RESPONSES AND GENE EXPRESSION IN PAPAYA (CARICA PAPAYA L.)

By

ONG MEI KYING

August 2014

Chairman : Associate Professor Asgar Ali, PhD

Faculty : Science

A study was conducted to investigate the effects of varying levels of ozone (0, 1.5, 2.5, 3.5 or 5.0 ppm) for 96 h on 1. the *in vitro* and *in vivo* growth of *Colletotrichum gloeosporioides*, the causal organism of anthracnose; 2. the reactive oxygen species generation and spore mitochondria of *C. gloeosporioides* using transmission electron microscope, fluorescence microscope and laser scanning confocal microscope; 3. the production of defence-related enzymes in papaya; 4. microbiological analysis on ozone-treated and non-treated papaya; 5. the biochemical, physiological, gas exchange and sensory characteristics of papaya fruit during storage (25 \pm 3 °C, 70 \pm 5 %RH) for 14 days; 6. the changes in total phenols, total carotenoids and antioxidant activity; and 7. gene expression of ozone-fumigated papaya fruit. Data were analyzed using analysis of variance and differences among treatment means were separated by Duncan Multiple Range Test (DMRT). The results of antifungal studies showed that mycelial

iii

growth of *C. gloeosporioides* was reduced significantly (p < 0.05) at all concentrations compared to the control. The maximum inhibition in mycelium growth (41.2 %) was obtained at 5.0 ppm ozone. Similarly, conidial germination inhibition was 100 % for 5 ppm ozone. *In vivo* analysis revealed that 2.5 ppm ozone was the optimal concentration for controlling anthracnose disease incidence (72.5 %) and disease severity after 10 days of storage, showing that a moderate concentration of ozone is effective in the reduction of *C. gloeosporioides* in artificially inoculated papaya fruit without affecting the quality aspect of the fruit.

The results of scanning electron microscopy (SEM) also confirmed that ozone fumigated fungus at levels above 3.5 ppm deformed and disintegrated spore and mycelia structure. Further to that, transmission electron microscopy (TEM) illustrated that the mitochondria of ozonized fungus was disintegrated and had ruptured membrane. In spores treated with 3.5 ppm ozone, mitochondrial cristae were distorted, whereas the mitochondria were almost completely degraded in spores treated with 5.0 ppm. Meanwhile, the results from microscopy studies using laser scanning confocal microscope and fluorescence microscope showed that ozone treatment caused production of reactive oxygen species (ROS) in mitochondria of *C. gloeosporioides*. With increased concentration of ozone, higher levels of ROS were induced in the spores.

Besides its direct antifungal activity, the study strongly suggested that ozone induces a series of defense reactions through production of compounds such

iv

as total phenols, polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonia-lyase (PAL) in ozone-fumigated papaya. Likewise, content of ascorbic acid, β -carotene, lycopene and antioxidant activity of papaya increased as fruit ripened and was further enhanced by exposure to ozone for 96 hours from day 4 until day 8. Twenty-four hours of ozone treatment at the level of 0.5, 2, 3.5 and 5.8 ppm reduced the total mesophilic microorganism counts of fruit with initial values of 4.48 to 2.18 log cfug⁻¹. In addition, no coliform bacteria were initiated after 24 hours at all levels of ozone exposure.

In addition, 2.5 ppm ozone treated fruit showed maximum beneficial effects in reducing weight loss, maintaining firmness, reduced rate of respiration, delaying changes in peel colour and containing the highest soluble solids concentration (SSC) as compared to the control. The titratable acidity declined throughout the storage period with slower rate in ozone-fumigated fruits. Overall sensory assessment of quality after ripening showed fruit were significantly better in quality when fumigated with 2.5 ppm ozone which were assigned highest sensory score in terms of appearance, sweetness, pulp colour, texture, aroma and overall acceptability than the control.

The discovery of the gene expression of papaya in defense response induced by ozone fumigation has further clarified the understanding on how specific gene involved in controlling its expression when the plant changes during stress or in any plant lifecycle event. Among those genes, some involved in ethylene biosynthesis, generation of reactive oxygen species and stress

۷

responses of plant defense were found (mitochondrion, chloroplast, heat shock proteins, polygalacturonase-inhibiting protein, hydroxyproline-rich glycoprotein, ethylene responsive factor and acyl-CoA oxidase).

Thus, the findings from all the experiments carried out during this study showed that 2.5 ppm ozone reduced anthracnose incidence and extended the storage life for up to 12 days while maintaining acceptable quality of papaya fruit. Ozone exposure at 1.5 ppm resulted in poorer quality fruit as compared to 2.5 ppm ozone treated fruit. Higher concentration of ozone exposure at 3.5 ppm and 5 ppm ozone seems non-physiological and caused phytotoxic effect on the quality of papaya fruit. As a non-toxic, biodegradable product, eco-friendly and safe sanitizer, ozone has the potential to become a natural preservative for prolonging the shelf life and retaining quality of papaya by combating fungal disease, particularly fungus *C. gloeosporioides*, thus promoting the marketability of the crop and minimizing postharvest losses in the papaya industry.

ACKNOWLEDGEMENTS

My special and utmost appreciation and gratitude to my supervisor, Associate Professor Dr. Asgar Ali, Director of Centre of Excellence for Postharvest Biotechnology, School of Biosciences, The University of Nottingham Malaysia Campus, for his compassionate and scholastic guidance and mentor. His ceaseless patience, encouragement and constructive criticism have inspired me into a researcher full of high spirit and inner strength.

My heartfelt gratitude to my Co-supervisor, Associate Professor Dr. Feroz Kabir Kazi, Department of Chemical and Environmental Engineering, The University of Nottingham Malaysia Campus for his kindness, patience and continuous motivation to excellence. I am also indebted and wish to express my humble appreciation to my internal assessor, Dr. Susan Azam Ali, Assistant Professor, School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus for her pleasing temperament, inspiring guidance and precious suggestions throughout the course of my research.

My appreciation and sincere is also extended to all staff members of biosciences, pharmacy and chemistry laboratories, especially Mr. Wan Ghani, Ms. Siti Norazlin, Ms. Shankari, Ms. Sharmila and Ms. Nurul for their willing assistance and help during my studies. Besides, all the lab comrades and in time of woe and joy companions especially Dr. Mehdi Maqbool, Ms. Noosheen, Ms. Menaka, Ms. Janet, Ms. Nurul Alyaa Alwi, Ms. Maysoun,

vii

Mr. Wei Keat and Ms. Carmen for their ever ready help and support. I would also like to thank all Faculty Office Staff members especially Ms. Sabariah, Ms. Zabidah, Ms. Salma, Ms. Radha, Ms. Ovivi and Ms. Carol for their assistance and help during my PhD programme.

I am certainly grateful to Professor Matthew Dickinson, Department of Plant and Crop Science, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK for approving and supporting my research internship on molecular biosciences at main campus in United Kingdom. Moreover, my appreciation and sincere gratitude to Ms. Christina, Assistant Professor, School of Biosciences, Faculty of Science for her valuable guidance and assistance during my research particularly on molecular work. My special appreciation to Dr. Rachael Symonds, Associate Professor, School of Biosciences, Faculty of Science for her helpfulness in qPCR data analysis and timely guidance related to genetic work.

The most profound thanks go to MedKlinn International Sdn. Bhd. and Ministry of Higher Education, Government of Malaysia (MOHE), represented by The University of Nottingham Malaysia Campus, for providing me the Research Assistantship (RA), MyBrain scholarship and financial support under the project grant (MOO.51.54.01) and (M0007.54.02), respectively.

The completion of this research work would not be possible without the love, care, support, sacrifices and faith I receive from my dearest parents, my loving husband, my caring mother in law and my daughters, Annrose and viji

Brendaly. My deepest and heartfelt thanks and gratitude to each and everyone of you for being there whenever I needed your support. Lastly but not the least, to all my dedicated teachers, friends, family members, relatives and to those unnamed, I would like to present this thesis as testimony of each and everyone's unique loving kindness, endless support and contribution directly and indirectly.

SUPERVISORY COMMITTEE

The thesis submitted to the School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Asgar Ali, PhD

Associate Professor School of Biosciences Faculty of Science The University of Nottingham Malaysia Campus (Principal Supervisor)

Feroz Kabir Kazi, PhD

Associate Professor Department of Chemical and Environmental Engineering Faculty of Engineering The University of Nottingham Malaysia Campus (Co-supervisor)

DECLARATION

I hereby declare that the thesis is based on my original work except for the quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at the University of Nottingham Malaysia Campus or other institutions.

ONG MEI KYING

Date:

TABLE OF CONTENTS

	Page
DEDICATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	vii
SUPERVISORY COMMITTEE	х
DECLARATION	xi
LIST OF TABLES	xvii
LIST OF FIGURES	xviii
LIST OF APPENDICES	xxiii
LIST OF ABBREVIATIONS AND NOTATIONS	xxiv

CHAPTER

1	INTR	ODUCTION	1
2	LITE	RATURE REVIEW	8
	2.1	Papaya (<i>Carica papaya</i> L.)	8
		2.1.1 Origin and distribution	8
		2.1.2 Nutritional composition	10
		2.1.3 Papaya production and postharvest handling	11
	2.2	Papaya anthracnose (Colletotrichum gloeosporioides)	13
		2.2.1 Morphology of C. gloeosporioides	16
		2.2.2 Control of papaya anthracnose 2.2.2.1 Physical control 2.2.2.2 Chemical control 2.2.2.3 Biological control	17 17 19 20
	2.3	Ozone	20
		2.3.1 Definition, source, structure	20
		2.3.2 Properties and application of ozone	22
		2.3.3 Mode of action of ozone	25
		2.3.4 Antifungal properties of ozone	26
		2.3.5 Physiological and biochemical plant defense	26
		response of ozone	
		2.3.6 Effect of ozone on spore mitochondria	28
	2.4	Scanning electron microscopic (SEM) studies	30
	2.5	Transmission electron microscopic (TEM) studies	31

	2.6	Gene expression 2.6.1 cDNA-AFLP 2.6.2 Quantitative analysis of gene expression (qPCR) Summary and concluding remarks	33 34 37 39
	2.1	Summary and concluding remarks	00
3.0	GEN	ERAL MATERIALS AND METHODS	42
	3.1	Plant material	42
	3.∠ 2.2	Ozone rumigation	44
	ა.ა	Experimental design and statistical analysis	40
4.0	EFFE gloe	ECT OF OZONE ON ANTHRACNOSE CAUSED BY <i>C.</i> osporioides	46
	4.1	Introduction	46
	4.2	Materials and methods	48
		4.2.1 Isolation and identification of C. gloeosporioides	48
		from papaya	
		4.2.1.1 <i>C. gloeosporioides</i> source, collection and fungal isolation	48
		4.2.1.2 Preparation of <i>C. gloeosporioides</i>	48
		inoculums on PDA	
		4.2.1.3 Microscopic identification of <i>C</i> .	48
		gloeosporioides	
		4.2.2 In vitro antifungal assay of ozone against C.	48
		gioeosporioides	40
		4.2.2.1 Antifungal assay	48
		4.2.2.2 Radial mycella growin 4.2.2.3 Conidial cormination tost	49
		4.2.2.5 Conidial germination test	49 50
		4 2 3 <i>In vivo</i> antifundal assav of ozone against C	50
		aloeosporioides	00
		4.2.3.1 Pathogen inoculum preparation	50
		4.2.3.2 Disease incidence	51
		4.2.3.3 Disease severity	51
		4.2.4 Scanning electron microscopy (SEM)	52
		4.2.4.1 SEM on <i>C. gloeosporioides</i> spore structure	52
		4.2.4.2 SEM on <i>C. gloeosporioides</i> mycelial structure	52
		4.2.4.3 SEM on papaya fruit surfaces	52
		4.2.5 Effect of ozone on reactive oxygen species	53
		generation in C. gloeosporioides	
		4.2.6 Effect of ozone on spore mitochondria of C.	54
		gloeosporioides	
		4.2.6.1 Laser scanning confocal microscopy	54
		4.2.6.2 Transmission electron microscopy (TEM)	54
	4.3		55
		4.3.1 In vitro antitungal assay of ozone against C.	55
		4311 Radial mycalia growth	F F
			55

xiii

		4.3.2	4.3.1.2 4.3.1.3 <i>In vivo</i> an	Conidial germination test Morphology studies ntifungal assay of ozone against <i>C.</i>	58 60 63
			4.3.2.1	Disease incidence	63
			4.3.2.2	Disease severity	64
		4.3.3	Scanning papaya	g electron microscopy on spore, mycelial and surfaces	66
		4.3.4	Effect of generation	ozone on reactive oxygen species on	72
		4.3.5	Effect of 4.3.5.1	ozone on spore mitochondria Effect of ozone on distribution of mitochondria	73 73
			4.3.5.2	Effect of ozone on mitochondria analysed by TEM	75
	4.4	Discu	ssion		77
5.0	EFFI INDU	ECT OF JCIBLE	OZONE (ENZYME	ON PRODUCTION OF PLANT DEFENSE S IN PAPAYA	84
	5.1	Introdu	uction		84
	5.2	Materia	als and m	ethods	87
		5.2.1	Enzymati	c assays	87
			5.2.1.1 5.2.1.2	Crude enzyme preparation Polyphenol oxidase (PPO)	87 87
			5040	activity	00
			5.2.1.3 5.2.1.4	Extraction and assay of phenylalanine	88 88
	5.3	Result	s and Disc	cussion	90
	010	5.3.1 I	Production indicator c	o of plant defense inducible enzymes as an of disease resistance in papaya	90
6.0	EFFI DUR	ECT OF	OZONE (ORAGE	ON MICROBIAL FLORA OF PAPAYA	98
	6.1	Introdu	uction		98
	6.2	Materi	als and m	ethods	101
		6.2.1	Microbia	l evaluation	101
			6.2.1.1	Standard plate counts	101
			6.2.1.2	Yeast and mould counts	101
			6.2.1.3	Total coliform counts	101
	6.3	Results	and Disc	ussion	102
		6.3.1	Microbia	al evaluation	102
7.0	EFFI BEH	ECT OF AVIOUF	OZONE (R OF PAP	ON QUALITY AND PHYSIOLOGICAL AYA DURING STORAGE	106
	7.1	Introdu	uction		106
	7.2	Materi	als and m	ethods	108
		7.2.1	Determin	ation of physical quality	108

		7.2.1.1 Weight loss percentage	108
		7.2.1.2 Fruit firmness	108
		7.2.1.3 Peel colour	109
		7.2.2 Determination of chemical quality	109
		7.2.2.1 Soluble solids concentration	109
		7.2.2.2 I III alable aciulty	110
		7.2.3 Gaseous excitative analysis	110
		7.2.3.2 Determination of ethylene evolution	111
		7.2.4 Sensory evaluation of ripe papaya	111
	7.3	Results and Discussion	112
		7.3.1 Physical quality changes in papaya	112
		7.3.2 Chemical quality changes in papaya	122
		7.3.3 Gaseous exchange analysis	125
		7.3.4 Sensory evaluation of ripe papaya	131
8.0	EFFE	ECT OF OZONE ON MAJOR ANTIOXIDANT COMPONENTS	135
	0 Г Г 8 1		135
	82	Materials and methods	138
	0.2	8.2.1 Determination of major antioxidant components	138
		8.2.1.1 Ascorbic acid (Vitamin C)	138
		8.2.1.2 β-carotene and lycopene content	139
		8.2.1.3 Extraction of polyphenols	140
		8.2.1.4 Total phenolic content	140
		8.2.1.5 Determination of total antioxidant activity	141
		8.2.1.5.1 FRAP assay	141
		8.2.1.5.2 DPPH assay	143
	8.3	Results and Discussion	145
		8.3.1 Major antioxidant components	145
		8.3.1.1 Ascorbic acid (Vitamin C)	145
		8.3.1.2 β-carotene and lycopene content	14/
		8.3.1.3 I otal phenolic content	151
		8.3.1.4 Total antioxidant activity	154
9.0	GEN TO C	E EXPRESSION IN PAPAYA FRUIT IN RESPONSE DZONE	159
	9.1	Introduction	159
	9.2	Materials and methods	162
		9.2.1 Plant materials and ozone fumigation	162
		9.2.2 RNA isolation	162
		9.2.3 cDNA synthesis	162
		9.2.4 Amplified Fragment Length Polymorphism (AFLP) analysis	163
		9.2.4.1 Preparation of DNA digests and adapter- ligated fragments	163
		9.2.4.2 Pre-amplification	163
		9.2.4.3 Selective amplification	164

			9.2.4.4	Analysis identificati products	by on of	electro the	phoresis AFLP-am	and plified	165
		9.2.5	Quantitat	ive analysis	s of gene	expres	sion by qP	CR	166
			9.2.5.1	Primers of sequence	design a for aPC	and sel R	ection of	target	166
			9.2.5.2	PCR-amp	lification				168
			9.2.5.3	Data analy	/sis				168
	9.3	Resul	ts		,				169
		9.3.1	Possible papava b	gene ex v cDNA-AF	ression LP	n of a	ozone-treat	ed	169
		9.3.2	Gene ex qPCR	pression of	of ozone	e-treated	d papaya	by	172
	9.4	Discus	sion						175
40.0									404
10.0	G	DENERA		_USION					181
REFE	RENC	ES							185
APPE	NDIC	ES							213
BIOD	ATA (AUTHOR						218
LIST	OF PL	JBLICA	TIONS						220

LIST OF TABLES

Table 2.1	Major postharvest disease of papaya	Page 15
6.1	Effect of exposure time and ozone concentration on microorganism count in 'Sekaki' papaya fruit (log cfug ⁻¹).	103
7.1	Effect of ozone concentration on titratable acidity of 'Sekaki' papaya after treated for 4 days and later stored up to 14 days under ambient conditions (25 ± 3 °C, 70 ± 5 %RH).	125
7.2	Sensorial parameters of ozone treated and untreated 'Sekaki' papaya after treated for 4 days and later stored up to 12 days under ambient conditions (25 ± 3 °C and 70 \pm 5 %RH).	132
9.1	AFLP selective primers (E_1 and M_1).	165
9.2	Nucleotide sequences used in qPCR analyses.	167
9.3	Differentially expressed transcripts of papaya fruit identified in response to ozone fumigation.	171

LIST OF FIGURES

Figure 2.1	Papaya tree, flower and fruit	Page 9
2.2	Basic morphology of Colletotrichum gloeosporioides	17
2.3	Ozone structure	21
2.4	Ozone formation reaction	22
2.5	Reaction of ozone with ethylene	24
3.1	Maturity indices of papaya	43
3.2	Ozone chamber	45
4.1	Percentage of inhibition in radial mycelia growth of <i>C. gloeosporioides</i> in all ozone treatments as compared to control following an 8 d incubation period at room temperature ($25 \pm 3 \degree$ C). Values are mean \pm SE.	56
4.2	Effect of different concentrations of ozone on mycelial growth of <i>C. gloeosporioides</i> after eight days of incubation at 28 ± 2 °C. Control (A), 1.5 ppm (B), 2.5 ppm (C), 3.5 ppm (D) and 5 ppm (E) ozone.	57
4.3	Effect of different concentrations of ozone on conidial germination inhibition (%) of <i>C. gloeosporioides.</i>	58
4.4	Conidial germination of <i>C. gloeosporioides</i> in control plates (A); Ungerminated spores of <i>C. gloeosporioides</i> in treated plates with ozone exposure (5 ppm) after 24 h incubation in the dark (B).	59
4.5	Effect of different concentrations of ozone on morphology of <i>C. gloeosporioides</i> after 24 h incubation in the dark. Formation of appresoria in control (A), Ungerminated spores in treated plates with 5 ppm ozone exposure (B).	61
4.6	Disintegration of spore structure with crooked spores (A) and ruptured (lysis) spores (B) when treated with 5 ppm ozone exposure after 24 h incubation in the dark.	62

xviii

- 4.7 Effect of different concentrations of ozone with 96 h 64 exposure on anthracnose disease incidence (%) on inoculated and non-inoculated papaya fruit during ambient storage ($25 \pm 3 \degree$ C, $70 \pm 5 \%$ RH) for 14 days. Values are the means \pm SE.
- 4.8 Effect of different concentrations of ozone with 96 h 65 exposure on anthracnose disease severity (score) on inoculated and non-inoculated papaya fruit during ambient storage (25 ± 3 °C, 70 ± 5 %RH) for 14 days. Values are the means ± SE.
- 4.9 SE micrographs (30μm) of untreated spores (A) and C. 67 gloeosporioides spores treated with 1.5 ppm (B), 2.5 ppm (C), 3.5 ppm (D) and 5 ppm (E) ozone after 24 h exposure (25 ± 3 °C, 70 ± 5 %RH).
- 4.10 SE micrographs (50 μm) of untreated mycelial (A) and 69 mycelial treated with 1.5 ppm (B), 2.5 ppm (C), 3.5 ppm (D) and 5 ppm (E) ozone after 24 h exposure (25 ± 3 °C, 70 ± 5 %RH).
- 4.11 SE micrographs (100 μ m) of untreated papaya fruit surface 71 (A) and fruit surfaces treated with 1.5 ppm (B), 2.5 ppm (C), 3.5 ppm (D) and 5 ppm (E) ozone after 24 h exposure (25 ± 3 °C, 70 ± 5 %RH).
- 4.12 Effect of ozone on the accumulation of reactive oxygen 72 species in spores of *C. gloeosporioides*. Values are the means \pm SE.
- 4.13 Effect of ozone on the distribution of mitochondria in spores 74 of *C. gloeosporioides*. Control spores (A) and spores treated with ozone at 1.5 ppm (B), 2.5 ppm (C), 3.5 ppm (D) and 5.0 ppm (E) were stained with MitoTracker®.
- 76 4.14 Effect of ozone on the mitochondria in spores of C. gloeosporioides by TEM. (A) Untreated spore with normal cvtoplasm, mitochondria (M), vacuole (V), Golgi equivalents (G), endoplasmic reticula (ER) and nucleus (N). (B) Spore treated with 1.5 ppm ozone appeared slightly unusual with many small vacuoles. (C) Spore treated with 2.5 ppm and (D) spore treated with 3.5 ppm ozone show degraded (VD) cvtoplasm with empty spaces and irregular mitochondria. (E) Spore treated with 5 ppm ozone shows disintegrated cytoplasm with degraded organelles and many voids (VD).

- 5.1 Effect of various concentrations of ozone on the changes of
 91 PAL activity of 'Sekaki' papaya during ambient storage (25 ± 3 °C, 70 ± 5 %RH) for 14 days. Each value is the mean of four replicates ± SE.
- 5.2 Effect of various concentrations of ozone on the changes of 93 PPO activity of 'Sekaki' papaya during ambient storage (25 ± 3 °C, 70 ± 5 %RH) for 14 days. Each value is the mean of four replicates ± SE.
- 5.3 Effect of various concentrations of ozone on the changes of 94 POD activity of 'Sekaki' papaya during ambient storage (25 ± 3 °C, 70 ± 5 %RH) for 14 days. Each value is the mean of four replicates ± SE.
- 7.1 Effect of ozone concentration on weight loss of 'Sekaki' 112 papaya after treated for 4 days and later stored up to 14 days at ambient storage ($25 \pm 3 \degree$ C, $70 \pm 5 \%$ RH). Each value is the mean of four replicates \pm SE.
- 7.2 Effect of ozone concentration on firmness of 'Sekaki' papaya 115 after treated for 4 days and later stored up to 14 days at ambient storage (25 ± 3 °C, 70 ± 5 %RH). Each value is the mean of four replicates \pm SE.
- 7.3 Effect of ozone concentration on development of lightness 117 (L*) of 'Sekaki' papaya after treated for 4 days and later stored up to 14 days at ambient storage (25 ± 3 °C, 70 ± 5 %RH). Each value is the mean of four replicates ± SE.
- 7.4 Effect of ozone concentration on development of hue angle 118 (h°) of 'Sekaki' papaya after treated for 4 days and later stored up to 14 days at ambient storage ($25 \pm 3^{\circ}$ C, 70 $\pm 5^{\circ}$ RH). Each value is the mean of four replicates \pm SE.
- 7.5 Effect of ozone concentration on development of chroma 119 (C*) of 'Sekaki' papaya after treated for 4 days and later stored up to 14 days at ambient storage (25 ± 3 °C, 70 ± 5 %RH). Each value is the mean of four replicates ± SE.
- 7.6 Papaya inoculated with spore suspension of *C.* 121 gloeosporioides as control (A), and after treated for 96 h with 1.5 ppm (B), 2.5 ppm (C), 3.5 ppm (D) and 5 ppm (E) ozone during eight days of ambient storage (25 ± 3 °C, 70 ± 5 % RH).

- 7.7 Effect of ozone concentration on soluble solids concentration 123 of 'Sekaki' papaya after treated for 4 days and later stored up to 14 days at ambient storage ($25 \pm 3 \degree$ C, $70 \pm 5 \%$ RH). Each value is the mean of four replicates \pm SE.
- 7.8 Effect of ozone concentration on CO_2 production of 'Sekaki' 126 papaya during ambient storage (25 ± 3 °C, 70 ± 5 %RH) for 14 days. Each value is the mean of four replicates ± SE.
- 7.9 Effect of ozone concentration on ethylene production of 129 'Sekaki' papaya during ambient storage (25 ± 3 °C, 70 ± 5 %RH) for 14 days. Each value is the mean of four replicates ± SE.
- 8.1 Effect of various concentrations of ozone on ascorbic acid 146 content of 'Sekaki' papaya during ambient storage (25 ± 3 °C, 70 ± 5 %RH) for 14 days. Each value is the mean of four replicates ± SE.
- 8.2 Effect of various concentrations of ozone on β-carotene 148 content of 'Sekaki' papaya during ambient storage (25 ± 3 °C, 70 ± 5 %RH) for 14 days. Each value is the mean of four replicates ± SE.
- 8.3 Effect of various concentrations of ozone on lycopene 149 content of 'Sekaki' papaya during ambient storage (25 ± 3 °C, 70 ± 5 %RH) for 14 days. Each value is the mean of four replicates ± SE.
- 8.4 Effect of various concentrations of ozone on total phenolic 152 content of 'Sekaki' papaya during ambient storage (25 ± 3 °C, 70 ± 5 %RH) for 14 days. Each value is the mean of four replicates ± SE.
- 8.5 Effect of various concentrations of ozone on antioxidant 155 activity through FRAP of 'Sekaki' papaya during ambient storage ($25 \pm 3 \degree$ C, $70 \pm 5 \%$ RH) for 14 days. Each value is the mean of four replicates \pm SE.
- 8.6 Effect of various concentrations of ozone on antioxidant 156 activity through DPPH of 'Sekaki' papaya during ambient storage ($25 \pm 3 \degree$ C, $70 \pm 5 \%$ RH) for 14 days. Each value is the mean of four replicates \pm SE.
- 9.1 Partial result of cDNA-AFLP analysis in ozone-treated and 170 untreated papaya fruit.

- 9.2 Expression of papaya transcripts namely (A) ENOL, (B) 173 AACT, (C) SPS, (D) MDAR, (E) INV and (F) HSP. Real-time quantitative PCR (qPCR) was used to analyze TDF expression patterns for ozone-treated and untreated fruit.
- 9.3 Expression of papaya transcripts namely (A) PGI, (B) ACX, 174
 (C) HRP, (D) PME, (E) MET and (F) ERF. Real-time quantitative PCR (qPCR) was used to analyze TDF expression patterns for ozone-treated and untreated fruit.

LIST OF APPENDICES

Appendix		Page
А	Hedonic scale rating	213
В	Standard curve	214
B1	Standard curve for total phenolic contents illustrating the linear regression between absorbance at 765 nm and gallic acid concentration (μ gml ⁻¹).	214
B2	Standard curve for FRAP assay illustrating the linear regression between absorbance at 593 nm and ferrous sulphate concentration (μ M).	215
В3	Standard curve for DPPH assay illustrating the linear regression between absorbance at 517 nm and Trolox concentration (μ M).	215
С	Relative expression report	216

LIST OF ABBREVIATIONS AND NOTATIONS

ANOVA	Analysis of Variance
°C	degree centigrade
DMRT	Duncan's Multiple Range Test
h	hour (s)
HPO ₃	metaphosphoric acid
NaOH	sodium hydroxide
H_2O_2	hydrogen peroxide
DCPIP	2,6-dichlorophenol-indophenol
I	litre
V	volt
М	Molar
mM	miliMolar
μg	microgram
min	minute
sec	second
ml	millilitre
μΙ	microlitre
cm	centimetre
mm	millimetre
nm	nanometre
μm	micrometre
μΜ	micromolar (10 ⁻⁶ M)
%	percentage

mt	metric ton
ft	feet
Ν	Newtons
O ₃	ozone
C_2H_4	ethylene
CO ₂	carbon dioxide
CV.	cultivar
ppm	part per million
ppb	part per billion
SAS	Statistical Analysis System
UPM	Universiti Putra Malaysia
UV	ultraviolet
UV/Vis	ultraviolet / visible
v/v	volume per volume
w/v	weight per volume
RH	relative humidity
FRAP	ferric reducing antioxidant power
DPPH	2,2-diphenyl-1-picrylhydrazyl
TPTZ	2,4,6-tripyridyl-s-triazine
PVPP	polyvinyl polypyrrolidone
GAE	gallic acid equivalent
APHA	American Public Health Association
EPA	Environmental Protection Agency
PCR	polymerase chain reaction

RT-PCR	reverse transcriptase PCR
qPCR	real time quantitative PCR
bp	base pair
L*	Lightness
h°	hue angle
C*	Chroma
SSC	soluble solids concentration
GRAS	generally recognized as safe
CA	controlled atmosphere
EDTA	Ethylene Diamine Tetra Acetic acid
SEM	scanning electron microscopy
TEM	transmission electron microscopy
cfu	colony forming unit
Ct	threshold cycle
ABA	abscisic acid
GC	gas chromatography
TE	Trolox equivalent
TCD	thermal conductivity detector
FID	flame ionization detector
AFLP	amplified fragment length polymorphism
PAL	phenylalanine ammonia lyase
POD	peroxidase
PPO	polyphenol oxidase
PDA	potato dextrose agar

- ROI reactive oxygen intermediates
- ROS reactive oxygen species
- RAPD random amplified polymorphic DNA
- SSR simple sequence repeat
- RFLP restriction fragment length polymorphism