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ABSTRACT 
 

EFFECT OF OZONE ON ANTHRACNOSE, PHYSICOCHEMICAL 
RESPONSES AND GENE EXPRESSION IN PAPAYA  

(CARICA PAPAYA L.) 
 

 
By 

 
ONG MEI KYING 

 
August 2014 

 

 

Chairman :  Associate Professor Asgar Ali, PhD 
 
Faculty :  Science 
 

 

A study was conducted to investigate the effects of varying levels of ozone (0, 

1.5, 2.5, 3.5 or 5.0 ppm) for 96 h on 1. the in vitro and in vivo growth of 

Colletotrichum gloeosporioides, the causal organism of anthracnose; 2. the 

reactive oxygen species generation and spore mitochondria of C. 

gloeosporioides using transmission electron microscope, fluorescence 

microscope and laser scanning confocal microscope; 3. the production of 

defence-related enzymes in papaya; 4. microbiological analysis on ozone-

treated and non-treated papaya; 5.  the biochemical, physiological, gas 

exchange and sensory characteristics of papaya fruit during storage (25 ± 

3 °C, 70 ± 5 %RH) for 14 days; 6. the changes in total phenols, total 

carotenoids and antioxidant activity; and 7. gene expression of ozone-

fumigated papaya fruit.  Data were analyzed using analysis of variance and 

differences among treatment means were separated by Duncan Multiple 

Range Test (DMRT).  The results of antifungal studies showed that mycelial 
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growth of C. gloeosporioides was reduced significantly (p < 0.05) at all 

concentrations compared to the control.  The maximum inhibition in mycelium 

growth (41.2 %) was obtained at 5.0 ppm ozone. Similarly, conidial 

germination inhibition was 100 % for 5 ppm ozone.  In vivo analysis revealed 

that 2.5 ppm ozone was the optimal concentration for controlling anthracnose 

disease incidence (72.5 %) and disease severity after 10 days of storage, 

showing that a moderate concentration of ozone is effective in the reduction of 

C. gloeosporioides in artificially inoculated papaya fruit without affecting the 

quality aspect of the fruit.   

 

The results of scanning electron microscopy (SEM) also confirmed that ozone 

fumigated fungus at levels above 3.5 ppm deformed and disintegrated spore 

and mycelia structure.  Further to that, transmission electron microscopy 

(TEM) illustrated that the mitochondria of ozonized fungus was disintegrated 

and had ruptured membrane.  In spores treated with 3.5 ppm ozone, 

mitochondrial cristae were distorted, whereas the mitochondria were almost 

completely degraded in spores treated with 5.0 ppm.  Meanwhile, the results 

from microscopy studies using laser scanning confocal microscope and 

fluorescence microscope showed that ozone treatment caused production of 

reactive oxygen species (ROS) in mitochondria of C. gloeosporioides.  With 

increased concentration of ozone, higher levels of ROS were induced in the 

spores.  

 

Besides its direct antifungal activity, the study strongly suggested that ozone 

induces a series of defense reactions through production of compounds such 
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as total phenols, polyphenol oxidase (PPO), peroxidase (POD) and 

phenylalanine ammonia-lyase (PAL) in ozone-fumigated papaya.   Likewise, 

content of ascorbic acid, β-carotene, lycopene and antioxidant activity of 

papaya increased as fruit ripened and was further enhanced by exposure to 

ozone for 96 hours from day 4 until day 8.  Twenty-four hours of ozone 

treatment at the level of 0.5, 2, 3.5 and 5.8 ppm reduced the total mesophilic 

microorganism counts of fruit with initial values of 4.48 to 2.18 log cfug-1.  In 

addition, no coliform bacteria were initiated after 24 hours at all levels of 

ozone exposure.  

 

In addition, 2.5 ppm ozone treated fruit showed maximum beneficial effects in 

reducing weight loss, maintaining firmness, reduced rate of respiration, 

delaying changes in peel colour and containing the highest soluble solids 

concentration (SSC) as compared to the control. The titratable acidity 

declined throughout the storage period with slower rate in ozone-fumigated 

fruits.   Overall sensory assessment of quality after ripening showed fruit were 

significantly better in quality when fumigated with 2.5 ppm ozone which were 

assigned highest sensory score in terms of appearance, sweetness, pulp 

colour, texture, aroma and overall acceptability than the control.   

 

The discovery of the gene expression of papaya in defense response induced 

by ozone fumigation has further clarified the understanding on how specific 

gene involved in controlling its expression when the plant changes during 

stress or in any plant lifecycle event.  Among those genes, some involved in     

ethylene biosynthesis, generation of reactive oxygen species and stress 
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responses of plant defense were found (mitochondrion, chloroplast, heat 

shock proteins, polygalacturonase-inhibiting protein, hydroxyproline-rich 

glycoprotein, ethylene responsive factor and acyl-CoA oxidase).   

 

Thus, the findings from all the experiments carried out during this study 

showed that 2.5 ppm ozone reduced anthracnose incidence and extended the 

storage life for up to 12 days while maintaining acceptable quality of papaya 

fruit.   Ozone exposure at 1.5 ppm resulted in poorer quality fruit as compared 

to 2.5 ppm ozone treated fruit.  Higher concentration of ozone exposure at 3.5 

ppm and 5 ppm ozone seems non-physiological and caused phytotoxic effect 

on the quality of papaya fruit.   As a non-toxic, biodegradable product, eco-

friendly and safe sanitizer, ozone has the potential to become a natural 

preservative for prolonging the shelf life and retaining quality of papaya by 

combating fungal disease, particularly fungus C. gloeosporioides, thus 

promoting the marketability of the crop and minimizing postharvest losses in 

the papaya industry.  
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