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ABSTRACT 

    MAP is the causative agent of a wasting disease in ruminants and other animals 

called Johne’s disease. Culture of the organism can take months and in the case of 

some sheep strains of MAP, culture can take up to a year. It can take several years 

for an animal infected with MAP to show clinical symptoms of disease. During this 

subclinical stage of infection, MAP can be shed into the environment contaminating 

their surroundings and infecting other animals. As well as this Johne’s disease is 

particularly difficult to diagnose during the subclinical stage of infection.  

    Culture is very difficult and takes too long to be a viable method to diagnose 

Johne’s disease. Microscopic methods can be used on histological samples to detect 

MAP, however common acid-fast stains used are not specific for MAP and other 

mycobacteria and acid-fast organisms can be detected. Molecular methods, such as 

PCR, exist to rapidly detect the signature DNA sequences of these organisms, 

however they have the disadvantage of not being able to distinguish between live 

and dead organisms. Other methods immunological methods, such as ELISA tests, 

exist and are routinely used to diagnose Johne’s disease, however their sensitivity 

is very poor especially during the subclinical stage of disease. 

    The aim of these studies was to develop novel rapid methods of detecting MAP to 

act as an alternative to methods already available. Sample processing using 

magnetic separation was carried out to allow good capture of MAP cells and to allow 

efficient phage infection. Using the phage assay, a specific, sensitive phage based 

method was developed that could detect approximately 10 cells per ml of blood 

within 24 h in the laboratory with a sensitive, specific plaque-PCR.  

    This optimised detection method was then used to determine whether MAP cells 

could be detected in clinical blood samples of cattle suffering from Johne’s disease. 

The results suggest that animals experimentally and naturally infected with MAP 

harboured cells in their blood during subclinical and clinical stages of infection.  

    A novel high-throughput method of detecting mycobacteria was also developed. 

Using phage D29 as a novel mycobacterial DNA extraction tool, viable MAP cells 
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were detected within 8 h and the format of the assay means that it can be adapted 

to be used in a high-throughput capacity.  

    Factors affecting phage infection and phage-host interactions were investigated 

to make sure the phage based methods of detection were as efficient as possible. It 

was found that periods of recovery were often necessary to not only make sure the 

phage were not inhibited but to also allow the host cells to be metabolically active 

as it was found that phage D29 can only infect mycobacteria cells that are 

metabolically active. 

    A fluorescent fusion-peptide capable of specifically labelling MAP cells was also 

developed to be used as an alternative to acid-fast staining. Peptides that were 

found to specifically bind to MAP cells were fused with green fluorescent protein and 

cells mounted on slides were specifically labelled with the fluorescent fusion protein. 

This resulted in a good alternative to the generic acid-fast staining methods. 

    The blood phage assay has shown that viable MAP cells can be found in the blood 

of animals suffering from Johne’s disease within 24 h and this can be confirmed 

using a MAP specific plaque-PCR protocol. A novel faster method to detect MAP was 

also developed, to cut down the time to detection of viable MAP cells to 8 h, which 

can be formatted to be used in a high-throughput capacity. The phage assay was 

used as a tool to determine different metabolic states of mycobacteria, and helped 

investigate optimal detection conditions when using the phage assay. Finally a 

novel fluorescent label was developed to detect MAP as an alternative to insensitive 

acid-fast staining. The development of these novel methods to rapidly, specifically 

and sensitively detect MAP will push further the understanding of Johne’s disease 

and help control it.  
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1.1. PROLOGUE 

    Some pathogenic members of the Mycobacterium genus are part of a group of 

organisms that are very difficult to culture and detect rapidly with any reliability. 

The tendency for these organisms to lie dormant for years within their host adds 

to the difficulties in detection. Novel tools are needed to be able to detect and 

understand mycobacterial infection fully so that diseases caused by these 

organisms can be controlled. 

 

1.2. MYCOBACTERIA 

    The Mycobacterium genus consists of many G+C rich, aerobic, non-motile 

species (Gutierrez et al., 2009). They are classified as Gram positive, but have a 

distinctive acid-fast cell wall made up of mycolic acid that resists the Gram stain. 

Mycobacteria can be divided into two groups; fast and slow growing (Wayne and 

Kubica, 1986). The fast growing mycobacteria can produce visible colonies in 

less than 7 d and the slow growing ones grow after 7 d of incubation. The 

pathogenic mycobacteria are generally found in the slow growing group. 

Members of the mycobacterium tuberculosis complex (MTC) group cause major 

disease in humans and animals, such as; Mycobacterium tuberculosis (the 

causative agent of tuberculosis) and Mycobacterium bovis (the causative agent 

of bovine tuberculosis). Other mycobacteria part of the mycobacterium avium 

complex (MAC) group of organism can also cause significant disease such as; M. 

avium, M. intracellulare, M. marinum, M. kansasii, M. chelonae and 

Mycobacterium avium subspecies paratuberculosis (Rezwan et al., 2007).  

    MAC organisms can be grouped based on Runyon’s Classification of 

mycobacteria which places members of non-tuberculosis causing bacteria into  

classifications based on their ability to produce pigments under different light 

conditions (Runyon, 1959). This was an important way of diagnosing diseases 

caused by different mycobacterial pathogens. 
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1.2.1. The Mycobacterium cell wall 

    Mycobacteria are a peculiar group of organisms because, although genetically 

they fall into the Gram-positive group, they have a lipid-rich cell wall that is 

different to that of other Gram-positive organisms (Figure 1.1). The thick waxy 

cell wall (‘Myco’ is from the Latin meaning waxy) is resistant to conventional 

Gram staining techniques and gives rise to their typical acid-fast characteristic 

which is used to identify the organism. Hence the Ziehl-Neelsen (ZN) method 

(amongst others) is used to stain acid-fast organisms and forms bright red cells 

on a blue background (Barksdale and Kim, 1977; Figure 1.2). 

    The cell wall is made up of a covalently-linked complex of mycolic acids, 

heteropolysaccharide arabinogalactans and peptidoglycans (Lederer, 1977; 

Figure 1.1). The peptidoglycan is covalently attached to arabinogalactan, which 

in turn is attached to the mycolic acids (Brennan, 2003). The low permeability 

and a thick cell wall means that the cells can survive the antimicrobial challenge 

of the macrophage during host infection (Gao et al., 2003) as well as helping the 

bacterium to persist in the environment by resisting desiccation (Whittington et 

al., 2004). The low permeability of the mycobacterial cell wall, and its unusual 

structure, is also known to be a major factor contributing to antibiotic resistance 

in the organisms. Indeed mycobacteria show a high degree of intrinsic resistance 

to many common antibiotics and chemotherapeutic agents (Jarlier and Nikaido, 

1994). This is partly due to limitations of drug penetration but also due to the 

presence of enzymes that actively degrade antibiotics such as the β lactams (see 

Da Silva and Palomino, 2011). However, research into the unique pathways used 

to synthesise the cell wall of mycobacteria has also allowed the development of 

novel drugs that target the components of the cell wall biosynthetic machinery, 

although there are now reports of drug resistance to these new drugs (Da Silva 

and Palomino, 2011). 
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    Chatterjee (1997) produced a comprehensive review of what was, at the time, 

the latest knowledge of drug targets found in the mycobacterial cell wall. These 

include some of the most effective anti-tuberculosis drugs, isoniazid (INH) and 

ethambutol that affect mycolic acid and arabinan biosynthesis, respectively 

(Winder, 1982). Rifampicin is a lipophilic antibiotic that targets the RNA 

polymerase of mycobacteria and inhibits the synthesis of mRNA. However 

varying degrees of drug resistance, including extensively drug-resistant (XDR) 

TB, have been described. Today multidrug therapy is fundamental for control of 

the disease (Da Silva and Palomino, 2011) and a deeper understanding of the 

physiology these bacteria is needed to develop novel drugs to combat problems 

of drug resistance. The sequencing of several mycobacterial genomes has 

allowed significant advances in the understanding of the unique cell wall 

features, which are often thought as the best candidate targets for anti-

mycobacterial treatment. These advances in knowledge can now be used to gain 

a better understanding of the molecular basis of drug action in mycobacteria 

(Brown-Elliott et al., 2012).  
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Figure 1.1. Comparison of different bacterial cell wall structures 

 

Box 1: typical Gram-positive cell wall structure with the thick peptidoglycan 

layer attached to the cytoplasmic membrane by lipoteichoic acids. 

Box 2: typical Gram-negative cell wall structure with the cytoplasmic membrane 

surrounded by a thin peptidoglycan layer. The outer leaflet of the outer 

membrane includes lipopolysaccharides (LPS).  

Box 3: typical acid-fast cell wall structure with the cytoplasmic membrane 

surrounded by a thin peptidoglycan layer and then the unique waxy layer 

containing a high proportion of mycolic acid (~60%).  Porin proteins are 

essential for transport of small molecules across this barrier (Images sourced 

with permission from Kaiser, 2010). 

3 

2 1 
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Figure 1.2. Typical Ziehl-Neelsen stain of the acid-fast bacteria M. 

tuberculosis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ZN stains the mycolic acid rich cell wall of the mycobacteria purple. If 

histopathological samples were taken, the background tissue would stain blue, 

which adds better contrast the acid fast cells (Swift, 2013). 
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1.2.2. An overview of pathogenic mycobacteria 

   The genus Mycobacterium is typically split into two distinct groups; fast- 

growing and slow-growing. Those in the fast growing group are defined as those 

that will form colonies within seven days, whereas the slow growers take more 

than seven days to from visible colonies (Wayne, 1986). This slow growing 

attribute is normally associated with pathogenic mycobacteria (Chacon et al., 

2004) and this characteristic poses the greatest threat to treating and controlling 

diseases due to the difficulties it creates for rapidly diagnosing infections by 

these bacteria using conventional culture techniques. 

 

1.2.2.1. Mycobacterium tuberculosis 

    Mycobacteria are responsible for a wide range of human and animal diseases. 

The most notable human pathogen in this genus is Mycobacterium tuberculosis 

(Mtb), which is the causative agent of tuberculosis (TB) in humans. It claims 

over two million lives a year, especially in patients with HIV in the African 

continent. One in 10 people are thought to be asymptomatic carriers of the 

disease, especially in urbanised areas (Gomez and McKinney, 2004). In the UK 

there are reported to be 9000 new cases each year (HPA, 2013). The disease 

causes the classic symptoms of a chronic cough with blood-tinged sputum, fever, 

night sweats, and weight loss. It is normally spread by coughing and diagnosed 

by culture of the organism in the sputum of patients although X-rays can identify 

the extensive scarring of lungs characteristic of TB infection. A feature of many 

mycobacterial infections is the ability to lie dormant for years. Mtb is capable of 

remaining dormant for prolonged periods in their host tissues, and it is these 

dormant bacilli that are responsible for latency of the disease (Wayne, 1994). 

This transition into dormancy renders the bacteria resistant to host defences and 

also to drug treatments where the targets are associated with cell wall synthesis 

(Gengenbacher and Kaufmann, 2012). The bacteria can then reawaken from this 
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dormant state into an active growth phase when the host’s immune system is 

compromised, resulting in reactivated TB infection. 

 

1.2.2.2. Mycobacterium bovis 

    Mycobacterium bovis (Btb) is the cause of a zoonotic disease; Bovine 

tuberculosis (bTB). It infects a variety of animals and humans, although this 

occurs relatively rarely in the UK, it is by far a bigger problem in the developing 

world. Milk pasteurisation was developed and introduced to prevent the infection 

of humans with bTB. In the United Kingdom where pasteurisation of milk is 

routine, only about 1% of clinically diagnosed cases of TB are subsequently 

proven bacteriologically to be attributed to M. bovis (Drobniewski et al., 2003). 

However, in the developing world M. bovis is still a cause for concern. For 

example, in most countries in Africa where effective disease control by methods 

such as regular milk pasteurisation are absent, bTB is still prevalent compared to 

developed nations. This situation is exacerbated by the presence of multiple 

additional risk factors in the population such as the high prevalence of HIV 

infection and consequently high numbers of adults with a compromised immune 

system (Muller et al., 2013).  

    The annual losses worldwide for agriculture attributed to M. bovis was 

estimated to be to $3 billion in 2004 (Stermann et al., 2004). In 2009 the UK 

government spent £63 million trying to reduce losses to the industry and contain 

the spread of disease in the national herd. In the next decade, the UK 

Government predict that £1 billion will be spent on this problem (DEFRA, 2013). 

Most recently pilot badger culls have been introduced in the UK to try and control 

the spread of Btb among cattle populations. This highly contentious practice has 

been introduced primarily due to the difficulties in detecting Btb infection by 

conventional tests, which leads to the use of immunological tests which cannot 

differentiate between vaccinated and naturally infected animals.  
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    It is believed that the best long-term prospect for Btb control in British herds 

is the development of a cattle vaccine against M. bovis (Vordermeier et al., 

1999). A vaccine to prevent TB infection of humans was developed based on a 

live attenuated strain of M. bovis (Bacillus Calmette-Guérin; BCG) and this has 

subsequently been used to vaccinate cattle with variable results (Buddle et al., 

2011). However the use of this vaccine can interfere with the current widely 

used tuberculin skin test, which measures a host’s immune response to purified 

tuberculin protein. As bTB in the UK is a notifiable disease, animals with positive 

skin test reactions are culled and so if animals are vaccinated with the BCG 

vaccine, false-positive skin test results are given and this renders the vaccine 

unusable as the skin test cannot differentiate between vaccinated and naturally 

infected animals and currently no alternative to this test is available. 

 

1.2.2.3. Mycobacterium leprae 

    Leprosy (also known as Hansen disease) is a serious disease caused by 

Mycobacterium leprae that results in irreversible nerve and skin damage. The 

organism is extremely fastidious and incapable of growth in vitro using 

conventional laboratory culture techniques. The main sources of M. leprae 

available for research have been isolated directly from infected human tissue or 

grown in two specific animal models (mouse foot pad tissue and the nine-banded 

armadillo; Hunter and Brennan, 1981). Due to the inability to readily culture the 

organism, identification of the disease in patients relies on clinical symptoms 

alone, which can make diagnosis difficult. The World Health Organisation (WHO) 

classifies leprosy according to the number of lesions and the microscopic 

detection of the presence of bacilli in a skin smear. Paucibacillary leprosy is 

characterized by five or fewer lesions with absence of organisms on smear and 

multibacillary leprosy is marked by six or more lesions with possible visualization 

of bacilli on smear (World Health Organisation, 2011). It is very difficult to treat 
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leprosy, with outbreaks occurring in remote areas of the developing world where 

access and medical supplies are limited. This also hinders information about the 

epidemiology of the disease since reporting of cases is sporadic.   

 

1.2.2.4. Mycobacterium avium 

    Mycobacterium avium and Mycobacterium intracellulare are part of the MAC 

group of organisms. These slow growing organisms are known to infect humans 

and animals. The prominence has mainly risen with HIV and AIDS epidemic, 

where immuno-compromised individuals have significantly higher mortality rates 

when co-infected with HIV and MAC (Inderlied et al., 1993). Disseminated 

infection normally occurs late on in the progression of AIDS in individuals, where 

MAC co-infection is diagnosed but detecting the organism in the blood is very 

difficult. Similar treatments can be used to treat MAC infection in humans, to 

those used with TB infected individuals (Bermudez et al., 1999). Although, like 

the treatment for people with active TB infection, the course of treatment can 

take several months.  

 

1.2.2.5. Mycobacterium avium subspecies paratuberculosis affecting animals 

    Mycobacterium avium subspecies paratuberculosis (MAP) is a pathogen that 

affects ruminants and has been proposed to cause disease in humans. It is the 

slowest growing member of the Mycobacterium genus that can be cultured in the 

laboratory and this feature makes it difficult to both detect and study. It causes 

an inflammatory bowel disease and gastroenteritis in ruminants known as 

Johne’s disease. The disorder (also known as paratuberculosis) was first 

described in 1895 by Johne and Frothingham (1895) and results in reduced meat 

and milk yields. MAP is found throughout the world and is considered endemic in 

some countries where infected animals have been imported and the disease has 

spread (Greig et al., 1997, Fridriksdottir et al., 1999). Despite the disease being 
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notifiable in countries such as currently in Australia and formally (before 2009) 

in the Republic of Ireland, the subclinical nature of the disease can result in 

underreporting and inconsistent data about the incidence of Johne’s disease. 

Indeed it has been reported that within Europe herd prevalence of the disease 

ranges from 7% to 55%, in Australia herd infection rates range between 9% and 

22% and in the UK prevalence rates were reported to be 35 % (Manning and 

Collins, 2001, Beasley et al., 2011). MAP cells have the ability to survive in the 

environment for up to 55 weeks (Whittington et al., 2004). Coupled with 

underreporting, this then allows MAP to spread throughout a herd easily and 

undetected. 

 

1.2.2.6. Mycobacterium avium subspecies paratuberculosis affecting humans 

    There is an on-going debate among the research community as to whether 

MAP can also cause Crohn’s disease in humans, the symptoms of which are 

similar to those of Johne’s disease. Crohn’s disease is one cause of inflammatory 

bowel disease (IBD). It was first discovered and described as a chronic low-

grade inflammation of the terminal ileum (Crohn et al., 1932). It is now known 

that Crohn’s disease can occur anywhere along the gastrointestinal tract. 

Patients afflicted with this disorder generally suffer from chronic weight loss, 

abdominal pain, diarrhoea or constipation, vomiting, and general malaise 

(Chiodini, 1989). These symptoms can arise throughout the sufferer’s lifetime 

and may be severe or mild. There are many factors involved in contracting 

Crohn’s disease. Environmental factors (geography, cigarette smoking, 

sanitation and hygiene), infectious microbes, ethnic origin, genetic susceptibility, 

and a poor immune system can result in mucosal inflammation (Baumgart and 

Carding, 2007). It is generally thought that several of these factors are involved 

in causing Crohn’s disease.  
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    MAP is considered as the leading infectious cause for Crohn’s due to the 

similarity of the symptoms and aetiology of the disease in animals (see Figure 

1.3). An individual with an autoimmune disorder would be more likely to develop 

Crohn’s disease than a separate individual if they are both exposed to MAP 

(Chamberlin et al., 2001).   

    The role of MAP in causing Crohn’s is debated. Initially Koch’s postulates 

(Table 1.1) needed to be fulfilled before MAP can be confirmed as a cause for 

Crohn’s disease. However it is difficult to identify MAP from patients with Crohn’s 

disease every time due to many reasons, indeed Koch himself had to dismiss 

some of his postulates with regards to Mtb latent infection. Mycobacteria are not 

visualised using standard mycobacterial cell wall staining techniques which may 

be due to changes in the organism’s cell wall during infection. Cell wall deficient 

forms (CWD, spheroplasts) genetically indistinguishable from MAP have been 

isolated from patients with Crohn’s disease (Hines and Styer, 2003). As well as 

this in most antibiotic clinical trials, Crohn's disease has not been cured using 

routine antibiotics known to kill MAP in Johne’s disease infected animals 

(Greenstein, 2003).  

 

Koch’s postulates: 

 

1 

 

The microorganism must be found in abundance in all organisms 

suffering from the disease, but should not be found in healthy 

organisms. 

 

2 The microorganism must be isolated from a diseased organism and 

grown in pure culture. 

 

3 The cultured microorganism should cause disease when introduced into 

a healthy organism. 

 

4 The microorganism must be re-isolated from the inoculated, diseased 

experimental host and identified as being identical to the original 

specific causative agent. 

 

 

http://en.wikipedia.org/wiki/Cell_culture
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    There is however more and more evidence suggesting that MAP has a 

significant role in Crohn’s disease (Feller et al., 2007). Naser et al. (2004) 

cultured MAP from patients with Crohn’s disease, and they have also been 

isolated from breast milk of mothers suffering from Crohn’s disease (Naser et al., 

2000). MAP has also been shown to survive in synthetic gastric juice and bile 

(Dalton and Hill, 2013), so it has the ability to reach the human gut intact.  

Whether MAP plays a causal role or whether it is as an opportunistic pathogen 

that infects the host’s gastrointestinal tract when weakened is still 

undetermined.  

    However, as there is no appropriate animal model to facilitate studies and due 

to a failure in routinely isolating this organism from infective human tissues, 

Koch’s postulates have not been satisfied. Thus there is great difficulty in 

confirming or disproving the role of MAP in causing Crohn’s disease. There is 

however an association between this disease and MAP that has been revealed by 

a number of reviews and meta analyses (Chiodini, 1989, Feller et al., 2007, 

Abubakar et al., 2008) and therefore the debate continues.  

    Clearly what is needed are more tools to facilitate the detection of the 

organism so that this, and other questions about Johne’s disease, can be 

answered. The remainder of this thesis will focus on developing such technology 

and MAP will constitute the main organism of research described in this thesis. 
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Figure 1.3. Pathology of Crohn’s disease and Johne’s disease  

 

 

Images showing the pathophysiology of Crohn’s disease (A) and of Johne’s 

disease (B) on human and bovine intestinal samples, respectively. Note the very 

similar ‘cobbling’ effect on the surface of the gut lining (white arrows) and fat 

deposits (black arrow). Image sourced from Greenstein (2003). 
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1.3. MAP AND JOHNE’S DISEASE 

1.3.1. Establishment of infection transmission of MAP 

    MAP is the causative agent of Johne’s disease. It has been isolated from the 

ileum, milk, blood and faeces of animals suffering from Johne’s disease. In the 

clinical stages of infection it causes wasting in ruminants such as cattle, sheep, 

goats, deer, and bison. During the clinical stage of the disease, animals exhibit 

extreme weight-loss around the time of calving and profuse diarrhoea containing 

bubbles (Eddy, 2004). On the lead up to clinical infection in milking animals, milk 

yield begins to drop significantly (Giese and Ahrens, 2000).  

    The main pathological features of the disease are gross lesions of MAP cells 

(internalised by macrophages) and mucosal thickening of the distal ileum giving 

rise to a corrugated appearance (Buergelt et al., 1978, Eddy, 2004) (Figure 1.3). 

During early infection MAP, like other mycobacteria, preferentially infect 

macrophages, found in the Peyer’s patches in the ileum. Unlike Mtb and Btb, 

MAP is ingested rather than inhaled and causes infection of the gut and hence 

the organism can be shed in the faeces of infected animals. Although the sites of 

infection are different, there are parallels that can be made between the 

pathophysiology of MAP and Btb. For example both MAP and Btb can persist 

within macrophages, although MAP is phagocytised by the macrophages via the 

M cells in the gut and Btb typically enters alveolar macrophages (Knechel, 

2009). The natural response of the immune system is to recruit more 

macrophages and lymphocytes which in turn signal for cytokines to increase the 

killing power of the macrophages. It is generally agreed that either the 

mycobacteria will be killed by the initial host response preventing clinical 

infection (Gonzalez et al., 2005) or the mycobacteria will survive persisting 

within the macrophages (Zurbrick et al., 1988). 

    The MAP cells that are able to survive and proliferate within these 

macrophages manage to do so, by evading and even redirecting the host’s 
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immune response (Coussens, 2001). The MAP cells can then lie in a dormant 

state or they slowly proliferate attracting more macrophages and lymphocytes to 

the site of infection. Over time this increase in macrophages causes thickening in 

the intestine wall, which in turn reduces the ability to absorb nutrients which can 

then lead to clinical symptoms of Johne’s disease (Sweeney, 2011).Although it is 

not known how the MAP cells become systemic and move around the 

bloodstream, research has been carried out with Mtb. It is postulated that the 

Mtb cells that are able to survive, proliferate, and kill their macrophage. In 

patients with normal immune systems, more macrophages are recruited and 

granuloma is formed, where there is low oxygen availability and a low pH to limit 

the growth of the mycobacteria leading to latent infection (Dheda et al., 2005). 

In immunocompromised patients, the granuloma formation is less robust. The 

tissues surrounding the mycobacteria undergo liquefaction, resulting in drainage 

into a bronchus or nearby blood vessel (Knechel, 2009). A similar process may 

be involved within animals that are unable to control MAP infection, resulting in 

systemic infection. 

    How the MAP cells are able to survive the harsh environment of the 

macrophage is not completely known (Sweeney, 2011). However, recent 

research has shown that MAP cells can up-regulate sigma factors involved in 

resisting oxidative stress as well as preventing the macrophage’s phagosome 

maturation, to reduce their acidification (Ghosh et al., 2013). Mtb has been 

found to avoid macrophage destruction by blocking the delivery of the 

bacteriocidal lysosomes to the mycobacterial phagosome, and to dampen the 

acidity of the macrophages vacuole (Jayachandran et al., 2007). Thus MAP may 

have the ability to avoid macrophage destruction using some of these strategies. 

The infected macrophages, unable to kill them, then harbour the MAP cells and 

the cells are able to persist within the host during a latent, sub-clinical phase of 

infection. During this incubation period MAP cells may be shed in low numbers 
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into the environment intermittently before clinical signs of infection are seen 

(Raizman et al., 2004) 

    Similar to the observations made with TB patients, where only 1 in 10 people 

infected, as defined by the tuberculin skin test, are likely to produce clinical 

manifestations of the disease, not every animal may go on to exhibit clinical 

symptoms. There are many factors that have been proposed to determine 

whether or not an animal will become infected with MAP and develop Johne’s 

disease. Specifically, age of infection and genetic susceptibility seem to be key 

elements to determine whether MAP will establish clinical infection in a particular 

host animal (Mcleod et al., 1995, Larsen, 1975). Stresses during lactation in 

dairy herds have been linked to increases in clinical presentation in cattle 

(Kimura et al., 2006).  

    In cattle it is known that MAP can be transmitted vertically by contaminated 

colostrum and milk or horizontally by contaminated food sources, such as 

pasture. As MAP cells are very hardy organisms, they have been known to 

persist in pasture, slurry and water sources for up to a year (Whittington et al., 

2004, DARDNI, 2006). Over time, low levels of shedding during the subclinical 

phase of infection can lead to significant contamination of the environment and 

an insidious spread of infection throughout the herd (Whittington and Sergeant, 

2001, Stabel, 1998). Hence the ability of the MAP cells to remain undetected for 

such long periods as a sub-clinical infection is a very significant factor 

contributing to the current lack of success in achieving good control of the 

disease. However in red deer, there is a high risk of transmission of MAP from 

clinically affected hinds to their foetuses during pregnancy. The mechanism for 

intra-uterine transmission has not been identified; but there is a theory that 

macrophages carrying MAP cells may be able to migrate through small gaps 

between cells lining the placenta. However, this migration would require the 

macrophages to travel across a six-layer thick barrier between the dam and the 
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foetus. (van Kooten et al., 2006). If this is also possible in cattle, it would also 

be a factor that makes disease control difficult to achieve. 

 

1.3.2. Impact of Johne’s disease 

    Given the absence of a fail-safe method of prevention or cure, Johne's disease 

can inflict significant economic losses on the agricultural sector. In the US dairy 

industry estimated losses of over $200 million a year are associated with Johne’s 

disease (Cho et al., 2012). Johne’s disease is endemic and poses a worldwide 

threat. In the UK, Johne’s disease was only notifiable in Northern Ireland, 

however this is now not the case. Due to potential underreporting it is difficult to 

determine how widespread the organism is throughout the country. This coupled 

with the dormant nature of the MAP and the lack of symptoms in the sub-clinical 

phase of infection and the lack of reliable diagnostics, the control of the disease 

has proved to be almost impossible. With improved diagnostics and good herd 

management, the disease could be controlled. However there has been limited 

improvements in diagnostic methods (Collins et al., 2006), and also a recognised 

reluctance among farmers to introduced the necessary good management and 

hygiene schemes, so that control of the disease has remained limited (Cho et al., 

2012).  

    Ideally a vaccine would be the best way to prevent or control this animal 

pathogen. Attenuated strains of MAP have been developed as possible vaccine 

candidates. However their efficacy as vaccine proved to be poor in reducing 

Johne’s disease and resulted in severe side effects for the animals (Patterson et 

al., 1988, Heinzmann et al., 2008, Kohler et al., 2001). Another issue that has 

influenced the development and use of a MAP vaccine are reports that its use 

can affect the results of the tuberculin skin test used to detect Btb in cattle. Any 

cross reactivity of a  MAP vaccine with the Btb test is not acceptable due to the 

greater importance and economic implications resulting from a failure to control 
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Btb (Waters et al., 2004). Thus to date the main methods of control are to cull 

any animal that has tested positive to Johne’s disease and is showing clinical 

signs (see Section 1.3.2). 

    The Cattle Health Certification Standards body (CHeCS) has defined the 

industry standard screening and control programme for the control of Johne’s 

disease. Calves that are born to animals suspected to have Johne’s disease are 

immediately separated from their dams and are reared separately from the adult 

herd (Eddy, 2004). Hence it is vital to identify any clinical signs as early as 

possible to prevent the disease from being transmitted. As part of this scheme, 

vaccination can be used in herds where there is a high prevalence of Johne’s 

disease and is administered to calves under one month in an attempt to break 

the cycle of infection (Eddy, 2004). As MAP can persist in the environment 

strategies such as removing animals from pasture that had Johne’s infected 

animals on would be recommended. However limitations with space on farms 

may reduce the efficacy of this strategy to break the Johne’s disease cycle. 

    

 1.3.3. Detection of Mycobacterium avium subsp. paratuberculosis  

    Due to the long incubation period and fastidious nature of the organism, MAP 

is extremely difficult to culture. However currently, the cultivation of MAP from 

faecal samples or tissue specimens is considered to be the most definitive 

method for determining whether an animal has Johne’s disease and is still 

considered the Gold-standard in the diagnosis of Johne’s disease (Nagata et al., 

2013). The procedure requires 8–16 weeks of incubation of samples on Herrold’s 

Egg Yolk Medium (HEYM) (Stabel, 1997), although faster liquid culture methods 

have been developed (see Section 1.3.3.2). When culturing slow growing 

mycobacteria, decontamination is often required to prevent overgrowth of 

competing microflora, however this can further reduce the number of viable cells 

in a sample and thus the sensitivity of the culture method (Grant et al., 2003, 
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Gumber and Whittington, 2007). Although Bower et al. (2010) has indicated that 

some decontamination methods may affect certain MAP strains more than 

others.    

    As well as the practical difficulties of culture, the long length of time required 

before results are gained makes control of the disease difficult. In the months it 

takes for MAP colonies to form, animals that may be infected could be shedding 

the organism into the environment. This results in more animals coming into 

contact with contaminated feed and potentially becoming infected with MAP.  

 

1.3.3.1. Ziehl-Neelsen staining 

    The fact that mycobacteria have a relatively high proportion of mycolic acid in 

their cell wall means that they are  resistant to conventional staining techniques 

(Glickman et al., 2000) and this means acid-fast stains are needed to identify 

them microscopically. The Ziehl-Neelsen stain (ZN; Fig. 1.2) is used routinely to 

confirm the presence of MAP in faecal samples or in tissue samples during the 

post-mortem examination of suspected cases of Johne’s disease. The ability to 

retain dye after washing with acid (acid-fastness) is a relatively rare attribute for 

bacterial cells, thus the ZN stain can act as a good marker of Johne’s disease 

infection if an animal is displaying characteristic symptoms of the disease. 

However there are limitations to the use of this stain, since all other species of 

mycobacteria are acid-fast the detection of acid-bacteria is not a definitive 

confirmation of the presence of MAP. For instance, members of the Nocardia 

genus, which can cause problems in lungs of cattle and invade macrophages in 

much the same way as MAP and other pathogenic mycobacteria (Lerner, 1996), 

are also acid-fast. Thus the acid-fast characteristic is not even completely 

specific for the genus Mycobacterium and therefore the ZN stain should not be 

relied upon on its own as a diagnostic tool and it also is limited by the same 

sensitivity issues that exist for all methods that require microscopic visualisation 
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of bacterial cells. Zimmer et al. (1999) reported this problem when they found 

that only the ZN stain had a sensitivity of 37 %, when compared to faecal 

culture when detecting MAP in clinically and subclinically infected cattle. 

 

1.3.3.2. Improved culture methods 

    Faster methods for detecting MAP have been developed and sold commercially 

by companies such as Becton Dickenson who developed a radiometric method 

for detecting growth of MAP called BACTECTM (which is now discontinued). This 

measured the release of 14C-labelled CO2 as an indicator of the growth of 

mycobacteria in selective liquid media. Using the BACTECTM system according to 

the manufacturer’s literature, MAP growth and identification could be obtained 

from one to ten cells within seven weeks. Becton Dickinson also developed the 

Mycobacteria Growth Indicator Tube (MGIT) which is seen as a follow on to the 

radiometric BACTECTM. Due to the added complications of using radioactive 

materials a fluorescent system was developed. The MGIT culture system uses a 

proprietary medium (MGIT Para TB medium), that contains a fluorescent 

compound that is quenched in the presence of oxygen. Actively respiring 

microorganisms consume the oxygen leading to fluorescence  and when MGIT 

tubes are placed on an UV transluminator (365 nm wavelength) growth-positive 

tubes emit a vivid orange fluorescent at the tube base and at the meniscus, 

whereas growth-negative tubes show negligible or no fluorescence (Grant et al., 

2003). Time to results according to the manufacturers is up to 21 days. Both of 

these rapid methods can detect pure cultures of mycobacteria quickly and 

sensitively. However the use of radioactive material in the BACTECTM system 

meant that special disposal of materials was required. The BACTECTM system also 

required expensive machinery to read and analyse the results, whereas the MGIT 

system that replaced it does not require expensive machinery and does not use 

radioactive materials. In addition (Fyock et al., 2005) found that MGIT proved to 
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be a robust culture system for bovine faecal samples. However it has also been 

noted that the radiometric BACTECTM culture system remains the best alternative 

for the culture MAP from sheep compared to strains cultured from cows (Gumber 

and Whittington, 2007). Although the liquid culture systems have been shown to 

decrease the time it takes for MAP to grow (Grant et al., 2003), using them with 

faecal samples still requires the use of decontamination which can reduce the 

number of viable cells present and reduces the sensitivity of the method. 

    One problem of both the liquid culture-based system compared to growth of 

colonies on solid media, is that the identification of all strains of the organism in 

liquid media can be more difficult. The appearance of colonies and mycobactin-J 

dependence are not observable, and the growth of other organisms needs to be 

distinguished which again needs an end-point PCR (Whittington, 2009). 

    The use of these liquid culture assays allows vital time to be saved when 

using culture as the ‘gold standard’ method to identify the presence of viable 

MAP in a sample. An improved method has been developed that allows the more 

rapid confirmation of the presence of MAP in faeces (two weeks) and tissue 

samples from clinically affected animals (one week) using MGIT liquid culture. 

This represents a substantial improvement on traditional culture and 

identification methods (Cousins et al., 1995). However this was achieved by 

coupling a MAP-specific polymerase chain reaction (PCR) at the end of the 

culture period.  

 

1.3.3.3. Use of ELISAs to detect host responses to MAP 

    Enzyme Linked Immunosorbent Assays (ELISA) have also been developed 

commercially as a diagnostic tool for detecting MAP in animal samples. The MAP 

ELISA can be used to indirectly detect MAP infection based on analysis of blood, 

and milk samples by detecting the presence of antibodies raised against MAP by 

the animal. The ELISA test provides a high-throughput rapid turnaround time 
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when compared to the ‘gold standard’ method of culture. Its ability to detect 

MAP in different matrixes allows testing to be tailored to the farms and their 

practices and ELISA tests are inexpensive and can be easily automated for 

processing large numbers of samples (Juste et al., 2005).  

    The levels of sensitivity achieved by the commercial ELISA assays are variable 

and it is generally accepted that their sensitivity for the detection of infection in 

animals is only about 50% (Fig.1.5; Meylan et al., 1994). Sensitivities of both 

the milk and blood ELISA tests are highest for those animals in the later stages 

of the disease, usually when the animals develop clinical signs, however blood 

ELISA sensitivity for animals in the early stages of infection will be very low 

(<10%; where milk is generally not available for testing early in the dairy 

cattle’s life). In fact, because of its low sensitivity, the blood ELISA test is rarely 

positive in animals under 2 years of age and frequently fails to detect individuals 

in the early phases of infection (Juste et al., 2005, Whitlock et al., 2000).  

    The performance of these tests are compromised by the variability of the 

immune response depending on the immunopathological form of the 

paratuberculosis infection, which is believed to occur due to the dormant nature 

of the organism (Juste et al., 2005; Table 1.1 and Figure 1.4). Although a study 

carried out by Pinedo et al. (2008) determined that the ELISA test was 

consistently better at detecting Johne’s disease compared to faecal culture and 

faecal-PCR individually, only when the ELISA test was combined with the faecal-

PCR was the overall sensitivity was improved.  
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Figure 1.4. Relative sensitivities of ELISA tests during different phases  

of Johne’s infection 

 

Graph showing percentage of cows testing positive using the Pourquier ELISA 

relative to the time they started shedding either high (red), low (yellow), 

intermittent (turquoise) or transient (purple) levels of MAP cells.  Results for 

animals that never shed MAP are shown in green (Nielsen, 2009).  

 

 

Figure 1.4. Probability of Johne’s infected cows testing positive using 

milk ELISA 

 

 

 

 

 

 

 

 

Graph showing the performance of a commercial ELISA kits demonstrating how 

the sensitivity of the assay increases as the age of cows increases. However 

even in older cows overall sensitivity is still very low and only around 50% are 

screened as positive (Nielsen, 2009). 
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1.3.3.4. PCR-based methods  

    The identification of the MAP-specific insertion element IS900 by Green et al. 

(1989) that occurs in multiple copies in the genome has enabled this organism 

that is notoriously difficult to culture to be detected rapidly using molecular PCR 

methods. Many primer sets have been described in the literature that target this 

MAP-specific insertion element and, compared to ‘gold standard’ culture-based 

testing, has allowed extremely rapid and specific detection of MAP in a variety of 

samples. However, like all PCR-based identification methods for bacteria, some 

cross-reactivity can be recorded and several studies have reported that PCR 

assays that target this IS900 element have given positive results with non-MAP 

cells. For instance Englund et al. (2002) isolated a Mycobacterium isolate that 

was IS900 PCR-positive but  further investigation proved that it was not MAP. 

Similarly Cousins et al. (1999) also found that a Mycobacterium spp. isolated 

from the faeces of three clinically normal animals in two Australian states were 

also suspected to be MAP on the basis of IS900 PCR but classical identification 

methods indicated that they were not MAP. 

    To overcome this problem, other MAP-specific genes have been identified. A 

single-copy gene sequence named F57 has been shown to have no resemblance 

to other known genes and was specifically found in the genome sequence of MAP 

(Poupart et al., 1993). In addition the sequence of a  gene named hspX was 

found to be M. paratuberculosis-specific and distinguished from related 

mycobacteria, including all closely related members of the MAC (Ellingson et al., 

1998). Most recently ISMav2 was identified as another MAP-specific insertion 

sequence that shows no similarity to other known mycobacterial insertion 

elements (Strommenger et al., 2001).  

    All of these unique sequences have been used as a basis of a variety of 

methods to rapidly detect and identify MAP. However a review by Mobius et al. 

(2008) determined that, despite possibly being not as specific as other MAP 
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specific loci, nested-PCR assays based on IS900 insertion sequences were the 

better target for MAP-specific amplification detection. Indeed many studies have 

optimised the primers sequence used for IS900 PCR so that the region targeted 

is unique to MAP. This, combined with the increased sensitivity achieved when 

targeting a multi-copy gene, means that the IS900 PCR is more widely used for 

MAP detection than any other gene target. Researchers have also extended the 

use of this region for use in quantitative real time-PCR (qRT-PCR) assays to 

allow quantification of the multi-copy element as well as detection (Moravkova et 

al., 2012). 

    Like the ELISA tests, specific-MAP PCR assays have been developed to be 

applied to testing many different matrixes including milk, blood and faecal 

specimens (Millar et al., 1996, Buergelt and Williams, 2004, Collins et al., 1993). 

However there are limitations associated with the use of PCR. First the viability 

of the cells detected is always questionable when using PCR to detect the cells, 

since DNA can be extracted from a cell whether or not it is viable and therefore 

PCR alone cannot differentiate between DNA extracted from live or dead cells. 

Although the issue of PCR and detecting viable cells is currently being addressed, 

for example Kralik et al. (2010) used propidium monoazide (PMA) treatment on 

cells to help differentiate between live and dead cells when using PCR. PMA will 

enter the cells with damaged membranes (I.e. dead cells) and bind to DNA. On 

exposure to light, the dye is photoactivated, which leads to irreversible 

modification of the DNA, which strongly interferes with subsequent PCR 

amplification. However limitations with MAP cells clumping, limit the ability to 

definitively distinguish between all the live and dead cells.  

    The amount of material used to extract DNA is a significant problem with PCR. 

In blood often low numbers of cells are present and without a large volume to 

test, the PCR sensitivity can be very limited. PCR inhibitors are also a major 

problem with using this molecular method, inhibitors present in faeces include 
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phytic acid and polysaccharides that can lead to false-negative results by 

inhibiting the amplification of DNA (Monteiro et al., 1997, Thornton and Passen, 

2004), causing significant drops in the sensitivity of the test (Table 1.1). Often 

rigorous sample preparation is needed, especially with faecal samples, to remove 

inhibitors. A critical step in any direct PCR is the extraction method, but with a 

matrix such as faeces and an organism such as MAP (due to complicated cell 

wall), efficient extraction is particularly challenging (Leite et al., 2013).  
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Table 1.1. Summary of the different costs and sensitivities of Johne’s 

disease diagnostic tests 

  

Test    Sensitivity Cost Comments 

Faecal 

smear 

10-30% £12.00 Rarely useful due to prohibitively low 

sensitivity, although short turnaround time 

may occasionally be useful. 

Serology 

(ELISA) 

20-90% £6.90 Cheaper and more sensitive than faecal 

smear. 

Faecal 

culture 

30-65% £40.00 Considered the ‘gold standard’ pre-mortem.  

Faecal PCR 35-65% £24.65 8-12 day turnaround time, cheaper than 

culture. 

 
Table gives figures for available diagnostic tests for Johne’s. Costs are based on 

the Animal Health Veterinary Laboratories Agency (AHVLA) estimates (Hudson, 

2008). 
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1.3.4. Bacteriophage 

    Bacteriophage (phage) are viruses that infect bacteria and are thought to be 

one of the most abundant organisms on Earth. The name bacteriophage literally 

translates as bacteria eater (phage is from the Greek ‘to eat’). Phage have a 

very specific host range which can be either narrow and restricted to just a few 

cell types or broader and restricted to either specific species or genera. For 

example, the well-studied bacteriophage Lambda only infects members of the 

Escherichia coli species (Appleyard et al., 1956) whereas the phage which is 

used in this study, D29, infects many member of the genus Mycobacterium 

(Rybniker et al., 2006). Bacteriophage are generally grouped into families 

depending on three characteristics: capsid structure, absence/presence and 

structure of the tail and nucleic acid type. These features are used as the basis 

of morphological characterisation of phage and the majority of phage used to 

develop diagnostic methods fall into two morphological groups: the Myoviridae 

and the Siphoviridae. Both of these groups have double-stranded DNA genomes 

packaged into an icosahedral capsid. Ninety-six percent of all bacterial viruses 

possess tails and various tail structures have been described (Brussow and 

Hendrix, 2002). The Siphoviridae have simple, long, non-contractile tails, and 

the Myoviridae possess rigid, contractile tails and additional tail fibres. Phage 

structure is not indicative of either host range or life cycle (see Section 1.2.4.1 

below); for instance both Lambda and D29, are members of the Siphoviridae 

family but infect completely different types of host cell (Gram negative and acid-

fast, respectively; and phage Lambda is lysogenic whereas D29  is a lytic phage.   

The two main mycobacteriophage used in this study are both well described lytic 

Siphoviruses specific for members of the Mycobacterium genus: D29 and TM4 

(Figure 1.5). 
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Figure 1.5. Structure of Bacteriophage 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

Upper diagram: generalised structure of Myovirus and Siphovirus (taken from 

Rees et al., in press).  Shown below are EM images of two Siphoviridae 

bacteriophage, used in this project. Images A (B. Swift) and B (PhagesDB.org) 

are bacteriophage D29 and image C is phage TM4 (PhageDB.org) where the 

genetic material is encased in a protein capsid (or head). Structures in the tail 

baseplate attach to specific receptors on the host’s cell surface. The Siphoviridae 

have non contractile tails and the genetic material travels through the tail sheath 

as it enters the host. 
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1.3.4.1. Phage life cycles     

    Bacteriophage can also be separated into two groups according to their life 

cycle. The simplest are lytic bacteriophage. Like many eukaryotic viruses, these 

phage take over their host cell and use its cellular machinery to replicate 

themselves many times and eventually the progeny phage are released from the 

cell by inducing cell lysis (hence they term lytic phage; Fig. 1.6). Once obligate 

lytic phage comes into contact with their host cell, they are committed to the 

lytic replication pathway. After inserting their genomic material into the host 

cells, the first step is to produce additional copies of the phage genome. Next the 

structural proteins for the head and tail are then made, and the phage DNA is 

then packaged into the capsids and the mature phage is assembled. Finally the 

bacteriophage then expresses proteins required for them to lyse the host cell 

(holins and lysins). The expression of these proteins is controlled, so that they 

act like a molecular clock for the phage, to enable them to keep their host intact 

until all the new phage particles are formed and can be released at the right time 

(Shi et al., 2012). Holins, as their name suggests, create holes in the membrane 

that allow the lysins to access the cell wall and break open the cell. Lysins are 

enzymes that attack the host cell peptidoglycan and generally consist of cell wall 

binding domain and a cutting domain (Hagens and Loessner, 2007). The cell wall 

binding domain directs the cutting domain to the correct site of action in their 

host’s cell wall allowing rapid destruction and lysis of the host. The number of 

phage particles released is variable, but generally up to a hundred progeny 

phage are released per infected host cell. The time taken for the phage, once 

inside their host, to replicate and lyse is known as the eclipse phase. 

    The second are temperate or lysogenic bacteriophage that can either act as 

lytic phage and lyse their host cell after replication or can become dormant 

within the cell, forming a prophage (Fig. 1.6). In the prophage state, the phage 

does not harm the host cell and the phage genome is replicated along with that 
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of the host so that more copies of the virus are produced at each cell division of 

the host. This relationship can be beneficial to the host by aiding bacterial 

survival, giving it immunity against infection by similar phage, as well as 

increasing virulence (e.g. botulinum toxin) by providing additional genes that 

allow the bacterium to infect new animal hosts (Jackson et al., 2011). 
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Bacteriophage life cycle: (A) path to lytic 

cycle (red box) and (B) path to lysogenic life 

cycle (blue box) (adapted from Botsaris et 

al., 2013). 

Figure 1.6. The lytic and lysogenic life cycle of bacteriophage 
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1.3.4.2. Bacteriophage-based detection 

    The discovery of bacteriophage at the turn of the 20th century has led to many 

applications for phage being developed. Initially they were applied as 

therapeutics, but their use in the western world was eclipsed by the discovery of 

antibiotics and further research in the area was limited. However recently, 

mounting concerns about drug-resistant pathogenic bacteria have rekindled 

interest in alternative treatments of bacterial infections (Bull et al., 2002).    

    More promising has been the use of bacteriophage as novel agents to detect 

bacteria. The ability to specifically bind to cells and infect them has led to many 

technologies being developed that have provided a wide range benefits to be 

generated from phage. The first application to be developed was phage typing.  

Here the specific host range of phage has been shown to be beneficial for 

developing a system of identifying different strains of bacteria from within the 

same species or genus. Although laborious with the need to use agar plates and 

to maintain phage stocks, phage typing for many years has proved invaluable in 

epidemiological studies, and has been used extensively to map certain strains of 

M. tuberculosis and to help determine contamination potential within reference 

laboratories (Jones et al., 1982, Snider et al., 1984). Although a very powerful 

tool, the use of phage typing and other phenotypic typing methods have become 

overshadowed by molecular tools used to type bacteria, and even now with cost 

reduction of DNA sequencing it is possible that this will become the sole 

laboratory diagnosis (Schurch and van Soolingen, 2012). 

 

1.3.4.3. Reporter phage technology 

    Reporter bacteriophage detection uses phage that have been engineered to 

carry a reporter gene, this produces a signal that can be measured. A variety of 

different reporter genes have been used, including luciferase, fluorescent 

proteins, and more common enzymatic reporter genes, such as beta-
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galactosidase (Goodridge and Griffiths, 2002). Generally the technology works 

on the principal that when the reporter-engineered bacteriophage infects their 

target it will express the reporter gene to indicate that infection has occurred. If 

the phage are able to replicate, they will reproduce and the signal should be 

amplified as the number of phage increases thus increasing the sensitivity of the 

result. The system will only work on viable hosts, which is why much of the 

technology has been used to target food borne pathogens (live-dead 

differentiation is vital to determine efficacy of food safety processing). However, 

there are draw-backs to using the technology. The signal to noise ratio will 

always have to be optimised to distinguish infected hosts and many substrates 

produce background levels of fluorescence that reduce the sensitivity of the 

tests.  

    Several different species of bacterium have been detected by reporter phage 

technology, such as: Listeria (Loessner et al., 1996), E. coli (Goodridge et al., 

1999), Salmonella (Turpin et al., 1993) but the majority of studies have been on 

developing reporter phage to detect mycobacteria (Riska et al., 1999, Sarkis et 

al., 1995). The LRP developed for the detection of mycobacteria contained firefly 

luciferase as the reporter gene (Jacobs et al., 1993). The lytic phage TM4 was 

initially used, however the limit of detection was only 1 x 104  mycobacterial cells  

(Jacobs et al., 1993). A LRP based on the temperate phage L5 (where D29 is 

genetically derived from), prolonged expression and accumulation of the 

luciferase protein which improved the sensitivity of detection to 1 x 102 cells 

after a 40 h incubation period. This is because of the temperate nature of L5, 

where it’s genome (along with the reporter gene) are integrated and 

subsequently amplified allowing an increase in the light signal (Sarkis et al., 

1995). The LRP assay when optimised (removal of phage inhibitors and 

improving L5 stability within their host) has been shown to successfully detect 

mycobacteria in smear-positive sputum samples within 24-48 hours as well as 
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being able to detect the mycobacteria as sensitively as standard microbiological 

testing methods such as MGIT (Riska et al., 1997, Bardarov et al., 2003). 

 

 1.3.4.4. Phage amplification detection 

    Phage amplification technology is based on the ability of the bacteriophage to 

increase in number after infecting their target cell. However unlike the reporter 

phage, in this case the phage particles are detected rather than genes expressed 

by the infected phage. In the phage amplification assay, a positive indication of 

the presence of bacteria is the formation of plaques (zones of clearing) at the 

end of the assay, and in theory each plaque represents one target bacterium 

originally infected. The use of phage amplification has been used to detect 

antibiotic resistant Staphylococcus aureus form blood cultures (MicroPhage 

KeyPath MRSA/MSSA Blood Culture test). The test works by detecting the 

amplification of S. aureus specific bacteriophage in the presence of an antibiotic. 

If the phage are detected the bacteria is resistant to anitbiotics as they are 

metabolically active (phage can only infect and replicate within an active host; 

Bhowmick et al., 2013).  

    One particular form of phage amplification technology was developed to 

detect mycobacteria, as a commercial product, the FASTplaqueTBTM (FPTB) assay 

and, as this forms the basis of the research described in this thesis, this assay 

will be reviewed in more detail.    

    The FPTB assay was originally developed to detect Mtb cells in the sputum of 

individuals suffering from tuberculosis. It is a rapid test that can detect viable 

mycobacteria within 48 h and does not require a skilled operator or specialised 

equipment, making it an ideal assay to use in developing countries where TB is 

still a major problem. 

    This assay uses mycobacteriophage D29 (Fig. 1.5) and this phage is closely 

related to a well-documented temperate phage L5 (Hatfull and Sarkis, 1993). 
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However deletions in the D29 genome mean that its ability to enter the lysogenic 

cycle has been lost (Ford et al., 1998). Thus mycobacteriophage D29 is an 

obligate lytic phage that infects both fast and slow-growing mycobacterial 

species (Ford et al., 1998). An interesting attribute of phage D29 is that it has 

the ability to infect a wide range of organisms from the genus Mycobacterium 

(Rybniker et al., 2006) and this has been exploited when developing the FPTB 

assay. As Mtb grows so slowly, forming a lawn to support the growth of phage 

plaques to detect the infection event is not practicable. Since phage D29 is also 

able to infect fast growing species of mycobacteria, such as M. smegmatis, this 

is used to form lawns of bacteria on agar plates to detect infected Mtb cells 

within 24 h.  

    The FPTB assay (Fig. 1.7) is performed by firstly mixing a sputum sample 

suspected to contain Mtb with mycobacteriophage D29 and then incubating to 

allow phage infection. After this any extracellular phage that have not infected a 

susceptible host bacterium, are destroyed by a virucide (in the case of the FPTB 

assay ferrous ammonium sulphate is used, however other virucides have been 

described for use in such assays; de Siqueira et al., 2006). The sample 

containing an infected Mtb cells is then diluted, which reduces the concentration 

of the virucide to below the effective concentration, and then pour plated with M. 

smegmatis cells that will form the mycobacterial lawn to support the growth of 

phage plaques. If Mtb cells are present in the sample, they will lyse that cell and 

infect the growing M. smegmatis cells in the lawn, such that plaques are 

produced, indicating that an infected Mtb cell was present (a positive result; Fig. 

1.7). If no viable Mtb cells are present in the sample, no plaques are formed.  

The FPTB assay proved to be a sensitive, low cost relative to the PCR offering 

more rapid diagnosis in comparison with culture-based methods (Marei et al., 

2003). 
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    The assay has been adapted to perform a range of different functions other 

than just detection of Mtb. With drug resistant Mtb becoming more prevalent, 

the need to identify these strains quickly is extremely important. Resistance to 

rifampicin (a frontline bactericidal antibiotic used to treat TB) involves alterations 

of the rpoB gene that codes RNA polymerase (Telenti et al., 1993) and the 

resistance to rifampicin is considered as a surrogate marker for the identification 

of multi-drug resistant Mtb (Lemus et al., 2005). The FPTB assay has been 

modified to produce a rapid test for identifying rifampicin resistance, enabling 

rapid and appropriate management of patients with drug-resistant TB (Albert et 

al., 2004). The principal is the same as that for the Microphage MRSA S. aureus 

test. The Mtb cells were exposed to rifampicin, and if resistant would remain 

metabolically active, whereas if they were sensitive they would die. Only the 

metabolically active cells support phage replication so if original Mtb cells are 

resistant plaques will form at the end of the assay. The antibiotic resistance 

assay only works with bactericidal antibiotics, and does not work well for 

bacteriostatic antibiotics such as isoniazid (INH) as only the mycobacterial cell 

growth is arrested, so phage will infect both sensitive and resistant strains.
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Figure 1.7. Overview of the FASTPlaqueTBTM assay 

The FASTPlaqueTBTM assay was originally designed for the identification of Mtb from human sputum samples. It is executed by firstly 

inoculating a suspected sample with mycobacteriophage D29 [1]. This is incubated for 1 h at 37 oC. A virucide is then added to destroy any 

extracellular phage [2]. Phage that have infected their host are protected by the cell wall. The virucide is then neutralised by the addition of 

Media Plus [3]. The sample is then plated with sensor cells (M. smegmatis) and FASTPlaqueTB-AgarTM [4]. This is then left to set and 

incubated at 37 oC for 24 h. Mtb cells infected with phage will lyse and progeny phage will infect the sensor cells forming plaques on the 

lawn [5]. Samples with no Mtb cells will not form plaques and a lawn of sensor cells is seen [6]. 

1 2 3 

4 

6 5 
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1.3.4.5. The FASTPlaqueTBTM Assay and MAP 

    The broad host range of mycobacteriophage D29 allows the assay to be 

adapted for use with other pathogenic mycobacteria such as M. bovis and MAP. 

The use of the assay to detect viable MAP in a veterinary setting has been 

investigated. However due to the broad host range of D29, when testing samples 

especially from a farm setting, detectable environmental mycobacteria may 

present, more so than in a sputum sample of an individual with TB. Thus an 

additional step had to be taken introduced to confirm the identity of cell being 

detected. A MAP specific PCR has been used routinely to determine the identity 

cell detected from the phage assay when testing milk and cheese (Stanley et al., 

2007, Altic et al., 2007, Botsaris et al., 2010). Stanley et al. (2007) described a 

plaque-PCR, which involves picking a plaque that has formed from the FPTB 

assay, extracting the DNA and subjecting it to PCR. The plaque formed would 

have the DNA of the original mycobacteria infected preserved in the middle. The 

FPTB assay with the PCR was able to detect and specifically identify viable MAP 

cells within 48 h.  

    Further developments to the assay have been on going and there have been 

many improvements. Rees and Botsaris (2012) described how the FPTB assay 

can be used to enumerate MAP to be used as a tool in the laboratory and in the 

field, giving investigators valuable insight into the viable bacterial load of MAP 

infected samples, which is especially useful in potentially identifying super 

shedders in a herd. By being able to detect the number of viable cells released in 

to their milk could help control the vertical spread of the disease (Aly et al., 

2012).  

    The FPTB assay has also been developed to be used in conjunction with a 

specific peptide mediated magnetic separation (PMMS) to remove MAP cells from 

a phage inhibitory environment to one where phage infection is supported. 

Peptides initially identified by Stratmann et al. (2002, 2006) using phage display 
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have been bound to magnetic beads, the beads were then mixed with samples to 

capture MAP cells in them. MAP cells had then been taken from milk and faecal 

samples gently, using a magnet and resuspended in a better environment. This 

enables the vast majority of contaminating microorganisms and inhibitors to be 

removed and the phage amplification assay enables rapid enumeration of viable 

MAP cells within 24 h (Foddai et al., 2010). The great benefit of using the 

magnetic beads, means that decontamination of samples does not need to 

happen, as cells bound to the beads can be washed to remove as much 

background microflora as possible. What is more, the ability to capture cells on 

beads allows samples to be concentrated (Foddai et al., 2011). This is important 

when it comes to the sensitivity if tests, as by having more sample to test 

increases the chances of detecting cells in low numbers. 

    In combination these very different methods of detection offer novel ways to 

rapidly detect MAP in many different matrices. These advances have allowed the 

identification of viable MAP to be made rapidly and can potentially be used to 

control the spread of the disease on farms. However the fact remains the tests 

used on their own are poor at identifying sub-clinically infected animals. Fast and 

early identification is required to combat this endemic disease and reduce its 

impact on agriculture. Therefore more work into better, sensitive diagnostics 

needs to be carried out. 

 

1.4. AIM 

    From a survey of the literature, one of the main problems with MAP is that is 

it very difficult to detect with a high sensitivity. The long incubation period 

between infection and clinical disease means MAP cells can be contaminating the 

environment for years before detection, possibly infecting a large proportion of 

the herd. The financial losses from lower milk yield, meat quality and general 

price per head can be detrimental to a farmer. Therefore a rapid reliable test for 
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Johne’s disease is required. It is known that MAP cells can be shed in milk and 

can become systemic and can be cultured from blood (Bower et al. 2010). The 

best way of testing for MAP cells is by using a combination of tests.  

    Thus the first aim is to develop a rapid test to detect viable MAP within 48 h 

that will offer a better alternative method for detecting Johne’s disease, as the 

phage assay will detect whole viable cells rather than an immune response by 

way of ELISA testing. We aim to initially optimise the FPTB assay for use on MAP 

cells combined with a plaque-PCR to rapidly, sensitively and specifically detect 

the organism experimentally in blood. Once optimised, the assay will be used to 

determine whether MAP cells are circulating in blood samples of clinically 

infected cattle and if so determine how early, at what stages of the disease and 

how many MAP cells can be detected. By using a phage assay we hope to be 

able to detect viable cells within 24 h and confirm their identity with a PCR within 

48 h.  

   The second aim is to use the MAP-specific peptides used for PMMS to construct 

recombinant fluorescent fusion peptides that will specifically label MAP cells so 

they can be visualised with fluorescent microscopy. The hypothesis we wish to 

test is that the fluorescent peptides will bind to the MAP cells specifically and not 

interact with other mycobacteria, whereas insensitive acid-fast staining methods 

such as the ZN stain with detect all acid-fast mycobacteria.  
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CHAPTER 2 

MATERIALS, METHODS AND STANDARD PROCEDURES 
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2.1. GENERAL MEDIA AND REAGENTS 

2.1.1. Culture and growth conditions 

2.1.1.1. In house Herrold’s Egg Yolk Media (HEYM) 

    One litre of this media was made by; dissolving 9 g of peptone (Oxoid, UK), 

4.5 g sodium chloride (Fischer Scientific, UK), 1 ml of 10% sodium hydroxide 

(Fischer Scientific, UK), 2.7 g of Lab-lemco (Oxoid, UK), 25 ml of glycerol 

(Fischer Scientific, UK) and 9 g of agar (Fischer Scientific, UK) in 870 ml of 

sterile RO water. This was sterilised at 121 oC for 15 min. A 10 ml solution of 

400 g/l sodium pyruvate was made and sterilised at 121 oC for 15 min. The yolk 

of six eggs (approximately 150 ml) was mixed well with 5.1 ml of 2 % malachite 

green dye. This was slowly heated in a water bath to 56 oC and held at this 

temperature for 1.5 h. These components were all mixed together under sterile 

conditions at 56 oC. 

    Several supplements were prepared. Penicillin G (Duchefa Biochemie, 

Germany) at a final concentration of 200 units ml-1, Chloramphenicol (Sigma, 

UK) at final  a final concentration of 50 µg ml-1, Amphotericin B (Sigma, UK) at a 

final concentration of 50 mg ml-1 and Mycobactin J (Synbiotic  Corporation, 

France) at a final concentration of 2 µg µl-1. These were aseptically mixed 

thoroughly with the previously prepared media. To act as a control HEYM without 

Mycobactin J was made. MAP requires this supplement to grow and therefore if 

nothing grows on the HEYM without Mycobactin J but on the HEYM with 

Mycobactin J, then the organisms growing can be assumed confidently that they 

are MAP. 

    The supplements were mixed with the sterilised mixture. The molten HEYM, 

with all the components, with and without Mycobactin J was then dispensed into 

either vials at a slant to make up slopes or into Petri dishes and left to set. This 

was all carried out in a laminar flow cabinet. 
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2.1.1.2. Commercial HEYM (Becton Dickinson, France) 

    Quality tested HEYM slopes purchased from Becton Dickinson were also used 

as a comparison to the in-house made HEYM. This was to confirm the HEYM 

made in-house was made up to the right specification. This was because the 

potential 16 week incubation period where the organisms grow is a long time. 

Thus the media used would have to be at a good standard. 

 

2.1.1.3. HEYM inoculation 

    The prepared HEYM slopes were inoculated with 100 µl of MAP cells in a class 

2 biosafety cabinet under strict aseptic conditions. The caps of the slopes were 

loosely placed on the HEYM slopes and left in the 37 oC for one week. After this 

time if no colonies had formed contamination could be ruled out and the lids 

tightened and Nesco film placed around the lids to prevent dehydration of the 

media. The sealed tubes were placed back in the 37 oC incubator. After a month 

the slopes were removed every week within a 16 week period to check for 

growth. If small ‘cauliflower’ shaped colonies formed the sample was positive for 

MAP cells. 

 

2.1.1.4. Middlebrook 7H10 and 7H9 mycobacteria culture 

    All mycobacteria were sub-cultured and maintained every two months on 

Middlebrook 7H10 agar and Middlebrook 7H9 media (Becton Dickenson, France) 

by dissolving 9 g of media in 1 L of RO water and sterilised by autoclaving at 121 

oC for 15 min. When culturing MAP, the media was supplemented 2 mg ml-1 of 

Mycobactin J (Synbiotic Corporation, France). All cultures were incubated 

statically at 37 oC. 
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2.1.1.5. Slope wash  

    When trying to detect whether extremely slow growing organisms are present 

on agar, a slope wash and then PCR can be performed to detect the genomic 

DNA of any organisms that may be present. To perform the slope wash, 1.5 ml 

of PBS was added to the slope of the agar. Using a transfer loop, the surface of 

the agar was gently scraped. This was then vortexed 30 s. The liquid was 

removed and sample centrifuged at 16000 x g for 10 min. The pellet was then 

suspended in water for crude cell lysis and PCR. 

 

2.1.2. FASTPlaqueTBTM assay media and reagents 

2.1.2.1. Media Plus  

    The Media Plus (Middlebrook 7H9-based medium) was prepared by dissolving 

one sachet of FASTPlaqueTBTM Media Plus (MP) into 270 ml of RO water. This 

was sterilised by autoclaving at 121 oC for 15 min.  

 

2.1.2.2. Virusol 

    One tablet of Virusol (virucidal component is ferrous ammonium sulphate) 

was dissolved under aseptic conditions into 5 ml of sterile RO water. 

 

2.1.2.3. Actiphage 

    Free-dried mycobacteriophage D29 was reconstituted by adding 1.1 ml sterile 

MP. This was agitated until a uniform suspension of phage was achieved.  

 

2.1.2.4. Sensor cells 

    Free-dried Sensor cells (M. smegmatis) were reconstituted with 11 ml of 

sterile MP. This was agitated until a uniform suspension of cells was achieved. 

This resulted in a final concentration of 108 cfu ml-1 and pfu ml-1. 
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2.1.2.5. FASTPlaqueTBTM Agar 

    One sachet of FASTPlaqueTBTM agar was dissolved into 60 ml of RO water. 

This was sterilised at 121 oC for 15 min. The molten agar was stored at 50 oC 

until used. The FASTPlaqueTBTM agar was cooled to hand temperature before 

use. 

 

2.1.3. The FASTPlaqueTBTM assay  

2.1.3.1. Controls 

    Using the reconstituted Sensor cells, a series of 10-fold dilutions was carried 

out aseptically into sterile MP to gain a final Sensor cell concentration of 10-6 cfu 

ml-1. This was used as the positive control. The negative control was 1 ml of 

sterile MP (Fig 2.1). 

 

2.1.3.2. FASTPlaqueTBTM assay 

     Sample of 1 ml were used for each FPTB test and samples were placed in 

reaction vessels. One-hundred micro litres of reconstituted Actiphage (Section 

2.1.2.3) was directly added to each sample aseptically to infect any 

mycobacteria that may have been in the sample, as well as being added to 

negative and positive control vessels (Section 2.1.3.1). The reaction vessels 

were incubated for one hour at 37 oC. After the incubation period, 100 µl of 

Virusol (Section 2.1.2.2) was added to the sample to neutralise any phage in the 

sample that had not infected any Mycobacteria. The samples were incubated at 

room temperature whilst rotating to cover the surfaces of the reaction vessel for 

5 min. To neutralise the Virusol, 5 ml of MP was added to each sample. After the 

Virusol neutralisation, each sample was inoculated with 1 ml of reconstituted 

Sensor cells (Section 2.1.2.4) and these were poured into sterile labelled petri 

dishes. The samples were mixed gently with 6 ml of FPTB agar (Section 2.1.2.5) 
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and were left to set at room temperature. The plates were inverted and 

incubated for 24 h at 37 oC.  

    To determine whether the assay and its reagents had worked, the positive 

control after incubation should have more than 20 plaques (Fig 2.2). The 

negative control should have less than 10 plaques (Fig 2.2). The number of 

plaques from the samples was accepted as true and positive if over 20 plaques 

had formed on the plates. For a schematic representation of the Assay, see 

Figure 2.3. 
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Figure 2.1. Schematic diagram of the preparation of controls used in the 

FASTPlaqueTBTM assay

 

The negative control was prepared by adding 1 ml of FPTB+ into a reaction 

vessel. The positive control was prepared by diluting down reconstituted sensor 

cells by factor of 10-7. One millilitre was then used as the positive control. 

Diagram sourced from FASTPlaqueTBTM manual. 

 

Figure 2.2. An example of positive and negative control plates 

 

Less than ten plaques must form on the negative control plate and greater than 

20 plaques must form on the positive control plate for the results from the assay 

to be accepted. Diagram sourced from FASTPlaqueTBTM manual. 
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Figure 2.3. Schematic diagram of the FASTPlaqueTBTM assay  

 

 

 

Each sample is inoculated with 100 µl of Actiphage. The sample is then incubated 

for 1 h at 37 oC. Virusol (100 µl) is  added to the sample and incubated at room 

temperature whilst spinning for 5 min. 5 ml of MP is  added to neutralise the 

virucide and 1 ml of Sensor cells added to the sample. This is poured into a petri 

dish with cooled molten FPTB agar, mixed and left to set. The plates were 

incubated for 24 h (48 h if needed) at 37 oC. Diagram sourced from 

FASTPlaqueTBTM manual. 
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Figure 2.4. Interpretation of the results from the FASTPlaqueTBTM assay 

 

Each plate represents different results that may be gained from the assay. With 

more than 20 plaques meaning a positive result, less than 20 plaques is a 

negative result. Diagram sourced from FASTPlaqueTBTM manual. 
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2.1.3.3. Mycobacteria enumeration using the FASTPlaqueTBTM assay 

    An enumeration step was worked into the protocol to allow the plaque forming 

units (pfu ml-1) to roughly determine the amount of Mycobacteria originally in a 

sample. This was achieved by either diluting the sample either before carrying 

out the assay, or after adding the 5 ml of Media plus to the sample to neutralise 

the Virusol. A series of 10-fold dilutions were carried out to gain a countable 

amount of plaques (20-100) on one plate. Then using the equation (see below) 

the pfu ml-1 was calculated. 

 

          
                                  

                  
 

 

    This calculation makes the assumption that each plaque that forms on a plate 

is made from the one cell (similar to cfu ml-1). However it is only estimate as 

cells may be overlapping or clumping together (which mycobacteria tend to do) 

thus it was treated as a guide to the cell number. 
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2.1.4. Bacteria strains 

Table 2.1. Table of bacteria strains used during this project 

Bacteria Strain Ref 

Mycobacterium avium 

subsp. paratuberculosis 

ATCC 19851 Type Strain 

 DVL 943 National Veterinary 

Lab, Denmark 

 B4 Field Isolate NI 

 K10 Type Strain 

Mycobacterium bovis BCG Glaxo Glaxo Vaccine Strain 

 Pasteur Type Strain 

Mycobacterium 

smegmatis 

FPTB strain Lab21 

Escherichia coli Top10 (Invitrogen) Cloning Strain 

 

 

BL21 (DE3) 

 

Expression Strain 

 BL21 (DE3) pLysS Controlled 

Expression Strain 
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2.2. MAGNETIC SEPARATION OF MAP 

2.2.1. Preparing magnetic beads 

    Magnetic beads (Dynabeads - MyOne Tosylactivated, Invitrogen) were 

prepared and coated with either of the two peptides (supplied by Cambridge 

Peptides Ltd, UK); aMp3 and aMptD (Stratmann, 2002; 2006 respectively). I.e. 

half of the beads were coated with aMp3 and the other with aMptD.  

    The Magnetic beads were stored at 2-8 oC until required. The peptides were 

kept stored at -20 oC. To coat the beads, 50 mg (final concentration 500 µl/ml) 

of the uncoated beads were placed in a sterile microcentrifuge tube. The beads 

were washed with 1 ml of 0.1 M sodium borate, pH 9.5. Using a magnetic rack 

the beads were separated from the sodium borate for 2 min and sodium borate 

was removed. This wash step was then repeated. The washed beads were 

suspended in 100 µl of 0.1 M sodium borate pH 9.5 and mixed thoroughly by 

vortexing for 30 s. A further 735 µl of 0.1 M sodium borate, pH 9.5 was added to 

the beads and this was mixed again for a further 30 s. After mixing, 2 mg of 

biotinylated peptide suspended in 60 µl of sterile distilled water was added to the 

beads. This was mixed briefly using a vortex. 415 µl of 3 M ammonium sulphate 

was added to the sample and mixed. The final solution was placed on a Dynal 

MPC-5 magnetic particle concentrator rotating mixer at 10 rpm at 37 oC for 24 h. 

After incubation the coated beads were washed twice with 1 ml of PBS pH 7.4 

and separated using the magnetic rack. The washed coated beads were finally 

suspended in 1 ml of PBS pH 7.4. 

 

2.2.2. Peptide mediated magnetic separation (PMMS) 

    This method was adapted from Grant et al. (2000). Sterile microcentrifuge 

tubes were filled with 1.5 ml of sample for testing. 10 µl (5 µl of peptide aMp3 

and 5 µl of peptide aMptD) of freshly peptide coated magnetic beads (Section 

2.2.1) were added to the sample. The sample was incubated in an Invitrogen 
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Dynal MPC-5 Magnetic particle concentrator, rotating at 18 rpm at room 

temperature for 30 min.  

    The microcentrifuge tubes were placed on magnetic rack for 10 min to recover 

the beads. The racks were agitated after five minutes to improve separation. The 

supernatant was gently removed; being careful to not disturb the beads adhered 

to the side of the microcentrifuge tube. The beads were suspended in 1 ml of MP 

and mixed by vortexing. The tubes were placed on the magnetic rack and the 

beads separated and supernatant removed again. Finally the beads were 

suspended in 1 ml of Media Plus and ready to be used in further downstream 

applications.  

 

2.2.2.1. Magnetic separation from blood 

    A modification of magnetic separation method was used when capturing MAP 

cells in blood. Blood samples (1 ml) were diluted with 9 ml of MP. 10 µl (5 µl of 

peptide aMp3 and 5 µl of peptide aMptD) of freshly peptide coated magnetic 

beads (Section 2.2.1) was added to the sample. This was centrifuged (15 min; 

4500 x g). The supernatant was removed and the pellet was resuspended in 9 

ml of MP. The sample was centrifuged again (4500 x g for 15 min). The 

supernatant was removed and the pellet resuspended into 1 ml of MP. The 1 ml 

sample was placed on a magnetic rack and separation of the cells continued as 

with the original PMMS method (Section 2.2.2) or for culture (Section 2.1.1.3). 

 

2.3. PHAGE BASED DETECTION OF MAP 

2.3.1. Detecting MAP in milk 

    This method is adapted from Botsaris et al. (2010). Milk samples obtained 

were placed in a 10 ml centrifuge tube. They were centrifuged (2500 x g for 15 

min). A layer of cream then formed on the top of the sample. Very carefully this 

was removed using a sterile cotton swab. The supernatant was removed making 
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sure not to disturb the pellet. 2 ml of MP was used to suspend the pellet. At this 

point the samples could be refrigerated overnight.  

    The centrifuged milk samples were washed twice. This was achieved by 

centrifuging the samples for 15 min at 2500 x g. The supernatant was removed 

and the pellet was resuspended in 2 ml of MP (with 0.2 % glycerol). This was 

repeated and the pellet was finally resuspended in 1 ml of MP (with 0.2 % 

glycerol). This suspension could either be frozen at -20 oC or processed through 

the FPTB assay (Section 2.1.3). 

 

2.3.2. Detecting MAP in blood 

    In each case (where possible) heparinised blood was used. Samples of blood 

(1 ml) were diluted with 9 ml of MP into 15 ml Falcon tubes. The sample 

preparation and PMMS procedure on blood (Section 2.2.2.1) was then carried 

out. The washed separated 1 ml sample resuspended in MP was then processed 

through the FPTB assay (Section 2.1.3). 

 

2.3.2.1. Buffy coat isolation 

    The isolation of the white blood cells (buffy coat) from cattle blood was carried 

out using Ficoll-Paque Plus (GE Healthcare Life Sciences, UK). The buffy coat 

layer from 2 ml of whole heparinised blood was mixed with 2 ml of PBS.  Using 

aseptic technique, 3 ml of Ficoll-Paque Plus was added to 15 ml falcon tube. The 

4 ml of PBS-blood mixture was then carefully layered onto the Ficoll-Paque Plus, 

ensuring the samples did not mix. The samples were then centrifuged (400 x g, 

for 30 min at 18 oC). After centrifugation the upper layer (plasma) of the sample 

was drawn off using a clean 10 ml pipette and saved for later use. The buffy coat 

layer was then carefully removed ensuring the minimal amount of Ficoll-Paque 

Plus is removed. The buffy coat layer was then washed with 6 ml of PBS. The 

samples were then centrifuged (100 x g for 10 min at 18 oC). The supernatant 
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was removed and the pellet resuspended and centrifuged again. The supernatant 

was finally removed and the pellet resuspended in 1 ml of MP for the phage 

assay. 

 

2.4. MAP SPECIFIC POLYMERASE CHAIN REACTIONS (PCR) 

2.4.1. Genomic DNA preparation and purification 

2.4.1.1. Heat extraction 

    Under aseptic conditions, one colony was picked using a sterile loop. It was 

suspended into 200 µl of sterile RO water. The sample was heated at 95 oC for 

20 min, cooled and centrifuged (13,000 x g for 3 min). For each PCR reaction 10 

µl of sample was used as template reaction.    

 

2.4.1.2. DNEasyTM DNA extraction kit (Qiagen, UK) 

    Colonies of suspected MAP grown on HEYM agar were grown in MP to a 

concentration of approximately 106 pfu ml-1 (as defined by the FPTB assay). One 

and a half millilitre of this was placed in a microcentrifuge tube and centrifuged 

(11,000 x g for 60 s). The supernatant was removed and discarded. The pellet 

was suspended in 180 μl lysis buffer (25 mM Tris-HCl; pH 8.0, 10 mM EDTA and 

50 mM sucrose). Lysozyme was added at a concentration of 20mg ml-1 and 

incubated for 30 min at 37 oC. 

    After the incubation 25 μl of proteinase K and 200 μl of buffer AL (lysis buffer, 

no composition given) was added and mixed. The tube was incubated at 95 oC 

for 15 min and then 200 μl of ethanol was added to the solution and mixed. 

    The DNA was purified from the sample by pipetting the solution into a 

DNeasyTM mini spin column. The spin column was placed in a 2 ml collection 

tube. This was centrifuged at 4,000 g for 60 s. The flow through and collection 

tube were discarded. The column was placed in a new collection tube and 500 μl 

of buffer AW1 (composition not given) was added to the spin column. This was 
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centrifuged for 60s at 4,000 x g. The flow through and collection tube were again 

discarded.  The DNeasyTM spin column was placed in a new collection tube and 

buffer AW2 (composition not given) was added on top of the spin column. To dry 

the spin column membrane, the spin column was centrifuged (12,000 x g for 3 

min) and the flow through and collection tube were again discarded.  

    The spin column was placed in a new microcentrifuge tube and 200 μl of 

buffer AE (composition not given) was then placed on the spin column 

membrane. This was incubated for 60 s at room temperature. After incubation 

the sample was centrifuged for 60 s at 4,000 g to elute the DNA. This was 

repeated with 100 μl of buffer AE instead of 200 μl. Purified DNA was left in the 

microcentrifuge tube, and could be used as template for the PCR reactions. 

 

2.4.2. Plaque DNA preparation 

2.4.2.1. Plaque extraction  

    This method is adapted from a method described by Stanley et al. (2007). It 

was used to confirm the identity of the mycobacteria that had formed plaques 

from the FASTPlaqueTBTM assay (Section 2.1.3).  

    The central area of a plaque was picked out using a sterile plastic loop and 

placed in a 0.2 ml PCR tube. Ten micro-litres of sterile RO water was placed in 

the PCR tube and this was heated (~50 oC) in a PCR block until melted. The 

solution was pulse centrifuged to bring down any agar and cell debris to the 

bottom of the PCR tube. This was placed in a -80 oC freezer for 1 h. The sample 

was thawed at 37 oC and then centrifuged at 13,000 x g for 5 min. Ten micro-

litres of the supernatant was then used as template DNA in a PCR reaction. 

 

2.4.2.2. ZymoResearchTM Gel DNA extraction 

    To gain a higher quality of DNA yield from the plaques the ZymoResearchTM 

Gel DNA Recovery Kit was used. Buffers in the kit first had to be prepared. To 
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the ‘DNA wash Buffer’, 24 ml of absolute ethanol was added, which gave the 

final concentration needed in the DNA wash buffer solution (composition not 

given). To purify DNA from the plaques, the central area of five plaques were 

picked out using a sterile plastic loop. This was placed in a microcentrifuge tube. 

A ratio of three to one of the amount of the Agarose Dissolving Buffer (ADB; 

composition not given) was added to the amount of agarose removed from the 

plate.  This was briefly mixed and left in an incubator at 37 oC until the agar had 

dissolved. The solution was placed in a Zymo-Spin ITM Column which was in a 

collection tube. This was centrifuged at 10,000 x g for 60 s. The flow through 

was discarded and 200 µl of Wash Buffer was added to the spin columns and this 

was centrifuged again at 10,000 x g for 30 s. This wash step was repeated. The 

column was then placed into a new sterile microcentrifuge tube and 10 µl of 

sterile water was placed in it. This was centrifuged at 10,000 x g for 60 s. Pure 

DNA was in the water, ready to be used in PCR reactions. 

 

2.4.2.3. ZymoResearchTM DNA concentration 

    Samples containing DNA were mixed with DNA binding buffer (ratio of 2:1 – 

DNA binding buffer : sample) in a microcentrifuge tube. The mixture was then 

transferred into a Zymo-Spin Column which was then placed in a collection tube. 

The samples were centrifuged (30 s; 13000 x g) and the flow-through was 

discarded. DNA wash buffer (200 µl) was added to the spin column and 

centrifuged (30 s; 13000 x g). This wash was then repeated. After washing 10 µl 

of DNA elution buffer or water was placed directly on top of the column matrix 

and incubated at room temperature for at least 1 min. The spin column was 

finally placed into a fresh microcentrifuge tube and sample was centrifuged (30 

s; 13000 x g) to elute the purified concentrated DNA. 
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2.4.3. DNA molecular weight marker 

    Five micro-litres of 100 base pair (bp) DNA ladder (New England BioLabsTM 

Inc.) was placed in a well on the gel. The ladder ranges from 100 to 1,500 bp. 

The ladder consists of eleven fragments that range in size from 100–1,000 bp in 

100 bp increments (Fig. 2.5), plus an additional fragment at 1,500 bp. The 500 

bp fragment is present at increased intensity to allow easy identification. A Blue 

Loading Dye is provided to visualise the migration.  

    Each gel that required a larger marker was loaded with 5 µl of the 1 kilo base 

(kbp) DNA ladder (New England BioLabsTM Inc.). This was used as a molecular 

weight marker for larger DNA products. The ladder ranged from 10 kbp to 0.5 

kbp (Fig. 2.5). The 3 kbp band is at a higher intensity to allow easy identification 

of the sizes.   
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Figure 2.5. Molecular DNA markers         

 

 

 

 

 

 

 

 

 

 

Example of 100 bp and 1 kbp DNA ladder. The bands have formed on a 2% 

agarose gel after 1 h of separation. The 100 bp has the bands 1000 and 500 bp 

at higher intensities to aid in identifying the size of bands. The 1 kbp ladder has 

the band at 3 kb at a higher intensity to aid in the identification of the size 

bands. 
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2.4.4. Primers used in PCR reactions 

Table 2.2. Primer sequences 

 

 

 

 

 

 

 

Primer 

Name 
Primer Sequence Target DNA 

f57f 5’-GGTCGCGTCATTCAGAATC-3’ MAP f57 gene 

f57r 5’TCTCAGACAGTGGCAGGTG-3’ MAP f57 gene 

P90 5’-GAAGGGTGTTCGGGGCCGTCGCTTAG-3’ 
MAP IS900 

Sequence 

P91 5’-GGCGTTGAGGTCGATCGCCCACGTGAC-3’ 
MAP IS900 

Sequence 

TJ1 5’-GCTGATGCGCTTGCTCAT-3’ 
MAP IS900 

Sequence 

TJ2 5’-CGGGAGTTTGGTAGCCAGTA-3’ 
MAP IS900 

Sequence 

TJ3 5’-CAGCGGCTGCTTTATATTCC-3’ 
MAP IS900 

Sequence 

TJ4 5’-GGCACGGCTCTTGTTGTAGT-3’ 
MAP IS900 

Sequence 

M56 5’-GCGTGAGGCTCTGTGGTGAA-3’ 
MAP IS1311 

Sequence 

M94 5’-CAGCGATCGTCGACAGTGTG-3’ 
MAP IS1311 

Sequence 
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2.4.5. PCR reactions 

2.4.5.1. IS900-PCR 

    This method used the primers P90 and P91 (Table 2.2) It was described by 

Whittington et al. (1998). The PCR reaction amplified DNA specific for M. 

paratuberculosis. DNA (10 µl) extracted from cells or plaques (Sections 2.3.2. 

and 2.3.1) was used in each of the PCR reactions. The 25 µl reaction mixture 

consisted of: 12.5 µl of Qiagen HotStarTaq Master Mix plus (Qiagen, UK), 250 ng 

of each primer; P90 and P91 (Table 2.2) and sterile molecular grade water to top 

up to the final 25 µl reaction volume. 

    The mixture was briefly pulse centrifuged to bring all the contents to the 

bottom of the 0.2 µl PCR tubes and placed in a thermo-cycler (Techne TC-3000). 

The parameters of the thermo cycler were set at an initial denaturing step of 94 

oC for 5 min. This was followed by 37 cycles of; 94 oC for 30 s, 62 oC for 30 s 

and 72 oC for 60 s. This was followed by a final extension step of 72 oC for 4 min.  

    The PCR products were resolved on a 2 % agarose gel containing 5 % (v/v) 

ethidium bromide. Two micro-litres of 5 x loading dye (25 mg bromophenol blue, 

4 g of sucrose, and H20 to 10 ml) was added to each PCR product and 15 µl of 

each dyed product was placed in separate wells on gel. The products were 

separated for 1 h using 70 V. The gels were visualised under ultra-violet (UV) 

light. The expected product size was a single 400 bp band. 

 

2.4.5.2. Nested IS900-PCR  

    This nested-PCR was adapted from (Bull et al., 2003). Two 25 µl PCR reaction 

volumes were used for this nested PCR. The initial PCR mixture consisted of 10 

µl of template plaque DNA (see Section 2.3.2). The 25 µl reaction mixture 

consisted of: 12.5 µl of Qiagen HotStarTaq Master Mix plus (Qiagen, UK), Each 

primer used in this reaction was reconstituted to 100 pmol (Section 2.3.4 for 

primer list). 2 µM of primers TJ1 and TJ2 were used in the first round. Sterile 
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molecular grade water was placed in the tube to top up the reaction mixture to 

25 µl.  

    The mixture was pulse-centrifuged and the tubes were placed in thermo 

cycler (Techne TC-3000). The initial cycling conditions were as follows; 94 oC for 

5 min, ten cycles of; 94 oC for 1 min, 59 oC for 1 min and 72 oC for 3 min. This 

was followed by a final extension of 72 oC for 7 min. 

    For the nested step, 10 µl of the PCR product from the first round of PCR was 

placed in a new 0.2 µl PCR tube. The 25 µl reaction mixture consisted of: 12.5 µl 

of Qiagen HotStarTaq Master Mix plus (Qiagen, UK), 4 µM of primers TJ3 and TJ4 

(Table 2.2) was placed in the tube. Two units of Taq DNA polymerase was placed 

in the PCR tube. Sterile molecular grade water was placed in the tube to top up 

the reaction mixture to 25 µl.  

    The PCR cycling conditions was the same as the first round parameters; 

however there were 30 cycles instead of ten and the annealing temperature was 

60 oC and not 59 oC. 

    The PCR products were resolved on a 1.5 % agarose gel containing 5 % (v/v) 

ethidium bromide. Two micro-litres of 5 x loading dye (25 mg bromophenol blue, 

4 g of sucrose, and H20 to 10 ml) was added to each PCR product and 15 µl of 

each dyed product was placed in separate wells on gel. The products were 

separated for 1 h using 70 V. The gels were visualised under ultra-violet (UV) 

light. The expected product size was a single 294 bp band. 

 

2.4.5.3. MAP-specific F57 PCR 

    This method used the primers f57f and f57r (Table 2.2) It was described by 

Coetsier et al. (2000). The PCR reaction amplified DNA specific for MAP. DNA (10 

µl) extracted from cells or plaques (Sections 2.3.2. and 2.3.1) was used in each 

of the PCR reactions. The 25 µl reaction mixture consisted of: 12.5 µl of Qiagen 

HotStarTaq Master Mix plus (Qiagen, UK), 250 ng of each primer; f57f and f57r 



65 

 

(Table 2.2) and sterile molecular grade water to top up to the final 25 µl reaction 

volume. 

    The mixture was briefly pulse centrifuged to bring all the contents to the 

bottom of the 0.2 µl PCR tubes and placed in a thermo-cycler (Techne TC-3000). 

The parameters of the thermo cycler were set at an initial denaturing step of 94 

oC for 5 min. This was followed by 37 cycles of; 94 oC for 30 s, 58 oC for 30 s 

and 72 oC for 60 s. This was followed by a final extension step of 72 oC for 7 min. 

    The PCR products were resolved on a 1.5 % agarose gel containing 5 % (v/v) 

ethidium bromide. Two micro-litres of 5 x loading dye (25 mg bromophenol blue, 

4 g of sucrose, and H20 to 10 ml) was added to each PCR product and 15 µl of 

each dyed product was placed in separate wells on gel. The products were 

separated for 1 h using 70 V. The gels were visualised under ultra-violet (UV) 

light. The expected product size was a single 329 bp band. 

 

2.4.5.4. Quantitative real-time PCR 

     A commercial assay developed TetracoreTM was used called VetAlert Johne’s 

Real Time PCR. The 1 ml sample of bacteria separated during the IMS procedure 

(Section 2.2.2) was placed in a Disruption tube that contained glass beads, this 

was thoroughly mixed by vortexing. The sample was bead-beated (MagNa-Lyser, 

Roche) for 5 min at 4800 rpm. The sample was centrifuged for 10 minutes at 

16,000 x g. The supernatant was placed in a sterile microcentrifuge tube. The 

DNA from the cells was now extracted and ready to be used with the real-time 

PCR. 

    The TetracoreTM system uses a primers targeted at the specific HspX gene 

found in MAP cells (see Section 1.2.3.4). The probe (TaqMan) was used to 

generate the fluorescent signal which was detected during the real-time PCR 

process.  
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    A master mix supplied in the kit was used during the PCR reaction. It 

contained the necessary primers, probes, DNA polymerase and PCR reaction 

mixture (dNTP’s, buffer, MgCl2). An inhibition control and positive control was 

also supplied with the kit. The inhibition control is used in each reaction to 

determine whether there are any inhibiting substances in the sample that could 

give rise to false results. The positive control contains a non-infectious synthetic 

portion of the HspX gene of MAP. It contains 25000 gene copies per 2.5 µl. A 

positive control was used in each of the reactions. A negative control was not 

supplied with kit, thus sterile RO water was used as the template.   

    For each 25 µl reaction, 2.5 µl of inhibition control was combined with 20 µl of 

the master mix into separate wells of the 48-well plate. 2.5 µl of each sample 

was added to each well. The plate was pulse-centrifuged and inspected to ensure 

there were no bubbles. The samples were placed in a real-time thermo cycler 

(ABI PRISM). The cycling parameters were: an initial 95 oC for 10min then 45 

cycles of; 95 oC for 15 s, and 62 oC for 60 s. The thermo cycler settings were set 

as: no quencher, reference dye as ROX, FAM as dye layer and exposure time 

was 10-25 ms. If no inhibition was found in the samples the samples were put 

through the PCR. 

    A series of two-fold dilutions were carried out on the positive control. This was 

carried out to be able construct a standard curve. In a 25 µl reaction, 22.5 µl of 

master mix was placed into separate wells on the 48-well plate. Triplicates of the 

2.5 µl samples, the serially diluted positive control and a negative control were 

added to each appropriate well. The plates were covered and pulse centrifuged. 

They were then placed in real-time thermo cycler (ABI PRISM). The same cycling 

conditions as the inhibition assay were used.  
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2.5. GENERAL CLONING, TRANSFORMATION AND EXPRESSION OF 

PROTEINS IN E. COLI 

    The mycobacteria and E. coli strains used in this study are listed in Table 2.1. 

The plasmids used to clone and express proteins are listed in Table 2.3. E. coli 

were grown at 37 oC and 30 oC in LB-broth (Fisher BioReagents, UK) for growing 

cells after transformation and during protein expression respectively. Ampicillin 

(Sigma; 100 µg ml-1) was used to select for cells containing the appropriate 

plasmid.  
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Table 2.3. Plasmids 

Plasmid Ref 

pET-23a* Novagen, Expression Vector 

pCR -2.1Topo* Novagen, Cloning Vector 

pET -101DTopo* Novagen, Expression Vector 

 

*plasmid maps can be found in the Appendix 
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2.5.1. PCR amplification of GFP-fusion peptides 

    The GFP-fusion peptides were initially amplified using a PCR mastermix 

(Qiagen, UK). The PCR reaction (25 µl reaction volume) consisted of designed 

primers (Section 7.2) and GFP template DNA (from the plasmid pDONOR-P4-

P1R). The PCR reaction was carried out on a Techne Thermocycler 3000. The 

PCR parameters were; one cycle of 95 oC for 3 min, 30 cycles of 95 oC for 30 s, 

55 oC for 30 s, 72 oC for 1 min and a final extension of 72 oC for 7 min.  

 

2.5.1.1. Amplifying gfp-peptide fusion 

    The four primers (Table 7.2) used for cloning were diluted to 100 pmol. On 

ice, 1 µl of each primer was added to a PCR tube corresponding to different n 

and c-terminal fusions (Table 7.3). Template gfp DNA (1 ng/µl) was put into the 

PCR tube. Dimethyl sulfoxide (DMSO) was added at a concentration of 3 % to 

the final PCR reaction volume. Finally 10 µl of the proof-reading enzyme, Phusion 

– High Fidelity DNA Polymerase mastermix (New England Biolabs) was added to 

each PCR tube. Each PCR reaction was topped up with nuclease free water to a 

volume of 25 µl. 

    Each PCR reaction was placed in a thermo-cycler (Techne TC-3000). The PCR 

cycling conditions were as follows: an initial denaturing step of 95 oC for 30 s. 

Then 30 cycles of 95 oC for 10 s, 53 oC for 30 s and 72 oC for 30 s. There was a 

final extension step of 72 oC for 10 min.  

    A small sample of each PCR product was visualised using electrophoresis on a 

1% agarose gel and compared to a positive gfp control. A band at around 800 bp 

confirmed the PCR was successful.  

 

2.5.1.2. Gel-DNA extraction and Restriction Digests 

    The bands on the gel were placed on a transilluminator. At long ultra-violet 

(UV) wavelength the bands were visualised and cut with a sterile scalpel. The cut 
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out gel fragments were placed in microcentrifuge tubes and the DNA was 

extracted using the ZymoResearch Gel DNA extraction kit (2.4.2.2). The 

concentration was measured using the Nano-drop (Section 2.5.2). The plasmid 

vector (pET 23a, Novagen) was also digested. 

    A double restriction digest was carried out using the enzymes; BamHI and 

NdeI. In a reaction volume of 50 µl, 1 µg of extracted DNA was placed into a 0.2 

µl PCR tube. Five microlitres of NEB Buffer number 3 (100 mM NaCl, 50 mM Tris-

HCl, 10 mM MgCl2, 1 mM Dithiothreitol, pH 7.9) was added to the tube. Bovine 

Serum Albumin (BSA) was added to a concentration of 100 µg ml-1. 10 units of 

each restriction enzyme was added. Finally nuclease free water was used to top 

up the reaction volume to 50 µl. The restriction digest reaction was carried out 

at 37 oC for one hour. 

    The restriction digests were visualised by agarose gel electrophoresis. A slight 

shift in the bands suggested the digest had been a success. The bands were cut 

out and the DNA extracted (see Section 2.4.2.1). 

 

2.5.1.3. Ligation Reaction 

    The concentration of the digested PCR products and vector was measured 

using the Nano-drop. A ratio 1:3 vector to insert was then prepared and placed 

in a 0.2 ml PCR tube. One micro-litre of Ligase buffer (50 mM Tris-HCl, 

10 mM MgCl2, 1 mM ATP, 10 mM Dithiothreitol, pH 7.5; New England Biolabs) 

was placed in the PCR tube. One unit of T4 DNA Ligase (New England Biolabs) 

was added. Then sterile nuclease free water was used to top the reaction volume 

up to 10 µl. The samples were incubated at 15 oC overnight. 

 

2.5.1.4. Preparing chemically competent E. coli 

    E. coli was grown up overnight in 20 ml of LB broth at 37 oC. Fresh LB broth 

was then inoculated with the overnight culture to an optical density (OD) A600nm 
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0.05. The cells were then grown at 37 oC in an incubator, shaking at 200 rpm. 

The cells were diluted further with 20 ml of pre warmed LB broth. This was then 

incubated at 37 oC for 20 min in an incubator shaking at 200 rpm. 

    After incubation the culture was cooled on ice for 10 min. The culture was 

placed in a cooled 50 ml centrifuge tube. The cells were recovered by 

centrifuging at 3000 x g for 10 min at 4 oC. The supernatant was removed and 

the cells resuspended in 10 ml of ice-cold 0.1 M MgCl2. This was incubated on ice 

for 1 h. The cells were recovered by centrifugation as before and the pellet 

resuspended in 1 ml of ice-cold CaCl2. The cells were packed in ice and incubated 

overnight. 

 

2.5.1.5. Transformation of chemically competent cells 

    Four microlitres of the ligation reaction (Section 2.5.1.3) was placed into the 

fresh chemically competent E. coli cells (Section 2.5.1.4). The mixture was then 

incubated in ice for 1 h. The sample was then heat shocked for 1 min in a static 

42 oC water bath. The tubes were then immediately transferred onto ice for five 

minutes. Two-hundred and fifty microlitres of room temperature LB broth was 

added to the cells carefully. The tubes were then placed in a 37 oC incubator 

shaking at 200 rpm for 1 h. 50 µl and 100 µl of each transformation was spread 

onto pre warmed selective amp and Isopropyl β-D-1-thiogalactopyranoside 

(IPTG)-LB plates. The plates were inverted and incubated at 37 oC for 24 h.   

    White or light blue colonies that formed were considered positive were picked 

and patch plated on an amp-LB plate. These were inverted and incubated at 37 

oC for 24 h. In parallel a sample of 10 white or light blue colonies were picked 

and placed in 10 µl of nuclease free water. This was then used as template DNA. 

The PCR carried out in Section 2.5.1.1 was then carried out using the GFP 

primers (see Table 7.2). The patch plate was then placed under blue light to 

determine whether any of the colonies fluoresced green. 
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2.5.1.6. Protein extraction 

    Induced E. coli containing an expressed protein of interest was centrifuged 

(10,000 x g; for 10 min) and the supernatant removed. The pellet was 

resuspended in 1 ml of ice cold 20 mM Tris-HCl (pH 7.4) and transferred to 

microcentrifuge tube. The sample was then centrifuged (13,000 x g; for 3 min) 

and the supernatant was removed and the pellet was washed again in fresh 20 

mM Tris-HCl (pH 7.4). The sample was then placed in a 15 ml Falcon Tube and 

0.5 g of glass beads (106 µm; Sigma, UK) was added into the sample. The 

mixture was vortexed at max-speed for 4 min. The tube was placed on ice for 5 

min to allow the glass beads to settle. The supernatant was transferred to a 

fresh microcentrifuge tube and centrifuged (13,000 x g; 3 min). A sample (20 µl) 

was removed as crude extract for SDS-page analysis (Section 2.5.1.8). The rest 

of the sample was removed for purification (Section 2.5.1.7). 

 

2.5.1.7. Protein purification  

    The crude protein extracted in Section 2.5.1.6 was purified using ion 

exchange chromatography. A 5 inch chromatography column (Evergeen, UK) 

was washed with 1.5 ml of 70 % ethanol. The column was then loaded with 

DEAE-Sepharose (Sigma, UK) and left to settle, with excess buffer left to drain 

off the column. The column was equilibrated with 20 mM Tris-HCl (pH 7.4). The 

crude protein extracted from Section 2.5.1.6 was carefully loaded onto the 

column and left to drain through the column. The column was then washed twice 

with 1 ml of 20 mM Tris-HCl (pH 7.4). Specific proteins were then eluted off the 

column using 1ml of 20 mM Tris-HCl (pH 7.4) buffers with increasing salt 

concentrations (50, 100, 150, 200 and 250 mM – NaCl2). Each fraction was 

collected and analysed by SDS-page, to determine purity of the protein 

extracted and by the Bradford Assay to quantify the amount of protein 

expressed. 
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2.5.1.8. SDS-page analysis 

    To analyse the purity of extracted proteins SDS-page analysis was carried 

out. Protein samples were mixed with 2 x protein sample buffer (laemmeli 

buffer, Biorad; supplemented with 1 % 2-βmercaptoethanol). The samples were 

mixed by vortexing and then boiled for 10 min at 100 oC. After boiling the 

samples were then centrifuged (16000 x g; 1 min) and supernatant was used for 

analysis. 

    The SDS-page gels (Mini-PROTEAN® TGX™ Precast Gels; 4-20 %) were 

removed from the packaging and placed in a clamping frame. The gels were 

placed in an electrophoresis tank with SDS-running buffer (10 x: 30 g Tris-base,  

144 g glycine, 10 g SDS; TGS, Biorad). Protein markers (Fig 2.6) were placed in 

the initial and final well of the gel and the boiled samples (20 µl) were loaded 

into the gel and subjected to electrophoresis (200 V; 40 min). After 

electrophoresis the gels were removed from the clamp and stained with 

Coomassie blue staining solution (10 % glacial acetic acid, 0.006 % Coomassie 

Blue dye, 90 % RO water) for 30 min on an orbital shaker. The stain was then 

removed and the gels were treated with a destaining solution (10 % glacial 

acetic acid, 90 % RO water) for 5 min on an orbital shaker. The destaining 

solution was removed and fresh solution was poured over the gels and this was 

incubated at RT overnight. The destaining solution was then removed after 

incubation and analysed.  

 

 

 

 

 

 

 



74 

 

 

 

 

 

Figure 2.6. Protein markers 

 

Protein markers (Biorad) used with SDS-page gel analysis to determine the 

approximate size of extracted proteins. 
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2.5.1.9. Bradford Assay 

    To quantify the amount of protein purified from Section 2.5.1.7, the Bradford 

assay was performed. Initially a protein standard was made using a stock (0.1 

mg ml-1) of bovine serum albumin (BSA; Sigma). Protein samples (20 µl) from 

Section 2.5.1.7 were mixed with 1580 µl of water and a series of 2-fold dilutions 

were carried out to give a final volume of 800 µl. Bradford Reagent (200 µl; 

Sigma) was added to every samples (diluted protein and BSA standards) and left 

to equilibrate for 5 min. After the incubation period the absorbance (595 nm) of 

the samples were measured. A standard curve of the BSA standards was then 

created and the quantity of protein sample plated on the linear part of the 

standard curve to determine the approximate quantity of protein in the sample. 

 

2.5.2. TOPO-Cloning (Invitrogen) 

    A TOPO Cloning Kit (Invitrogen) was used to clone PCR products generated by 

Taq polymerase for sequencing. PCR products were generated with the required 

single base 3’-A overhang by Taq polymerase. The PCR products were gel-

purified using Zymo-Gel DNA Recovery (Section 2.5.1.2). The vector supplied in 

the TOPO TA Cloning Kit (pCR2.1-TOPO® vector) was supplied linearized with a 

single 3’-T overhang and has a topoisomerase covalently bound to the vector. 

The TOPO TA Cloning Kit vector together with the One Shot® Chemically 

Competent E. coli were used in accordance with manufacturer’s instructions. 

Briefly, 1 μl of PCR product was mixed with 1 μl of TOPO salt solution, 3 μl of 

SDW and 1 μl of TOPO plasmid vector. The mixture was incubated at RT for 5 

min and stored on ice. For the transformation 2 μl of the cloning reaction 

mixture was mixed with one vial of One Shot® Chemically Competent E. coli and 

incubated on ice for 15 min. The reaction mixture was heat shocked for 30 s at 

42 ºC and transferred onto ice. To the reaction 250 μl of SOC medium was 

added and the sample incubated at 37 ºC for 1 h (200 rpm). To screen for 
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putative clones 40 μl X-gal (40 mg ml-1) was spread onto each LB agar plate 

(containing 50 μg ml-1 of ampicillin) and 50 μl of the sample was spread onto the 

selective agar and incubated overnight at 37 ºC. Putative clones were identified 

by their white to pale blue colony pigment and their DNA extracted using a 

QIAprep® Spin Miniprep Kit (Qiagen) (Section 2.9.7). 

 

2.5.3. Plasmid DNA extraction 

    Plasmid DNA was extracted from E.coli using Zymo Plasmid-MiniPrep Kit 

(ZymoResearch). 600 µl of fresh overnight culture of E. coli grown in LB media 

was placed into a 1.5 ml microcentrifuge tube. The bacterial culture was 

centrifuged for 30 seconds at 16,000 x g. The supernatant was removed and 

more culture was placed and the centrifuge step repeated. Water (600 µl) was 

added to the pellet and resuspended completely. 100 µl of 7X Lysis Buffer was 

then mixed into the sample by inversion (4-6 times). After the solution changed 

from opaque to clear blue, which indicated complete lysis, 350 µl of chilled 

Neutralisation Buffer was mixed with the sample. The sample was inverted to 

ensure complete neutralisation of the lysis buffer. The sample was then 

centrifuged at 16,000 x g for 4 min. The supernatant was then removed and 

placed into a Spin-column.  The column was the placed into a collection tube and 

centrifuged for 15 seconds. The flow-through was discarded and column was 

placed back into the collection tube. Endo-Wash Buffer (200 µl) was then added 

to the column. This was centrifuged for 30 s. Zyppy™ Wash Buffer (400 µl) was 

then added to the column and was centrifuged for 1 min. The spin columns were 

then transferred to a clean microcrentifuge tube and the 30 µl of elution buffer 

was added to the column. The column was left to stand for 1 min at room 

temperature before being centrifuged for 30 s at 16,000 x g. The eluted plasmid 

DNA could then be used for downstream processing. 
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2.5.4. DNase I (NEB) treatment 

    Samples (10 µg) were mixed with n 1X DNase I Reaction Buffer (NEB, UK) in 

a final volume of 100 µl. Two units of DNase I, was then added to the sample 

and mixed thoroughly. This was then incubated at at 37°C for 10 minutes. To 

inactivate the DNase I enzyme, either 1 µl of 0.5 M EDTA (to a final 

concentration of 5 mM) was used or simply diluting the enzyme with MP to 

inactivate it. 

 

2.6. PREPARATION OF CELLS FOR SCANNING ELECTRON MICROSCOPE 

(SEM) 

    Cells (1 ml) were mixed onto a polymer scaffold in (or enough to cover 

scaffold; Millipore 0.22 µm filter) with 3% glutaraldehyde (Sigma) and this was 

left overnight at 4 oC in a sealed container. To further fix the samples the 

glutaraldehyde was removed and the samples washed with PBS three times for 

15 minutes. 1% osmium tetroxide solution was then placed on the samples and 

incubated at RT for 2 h. After incubation the samples were washed three times 

for 15 minutes with SDW. The samples were then dehydrated using a series of 

ethanol concentrations (25, 50, 70, 90, 95 and 100 % for 10 min). To chemically 

dry the samples HMDS (hexamethyldisilizane) was added and incubated for 5 

min and then washed with SDW. The samples were left to dry overnight at RT. 

Samples were then sputter-coated with gold nanoparticles and ready for SEM. 

 

2.7.1. GFP-fusion peptide binding protocol 

    MAP strain K10 was used as the standard strain and M. smegmatis as a 

negative control. Approx. 1 x 104 pfu ml-1 of each organism was harvested from 

liquid culture in MP by centrifugation (13,000 x g for 3 min). Cells were 

resuspended in 100 µl of PBS-T (pH 8.0, 0.01 % Tween 20). The cells were then 

vortexed for 3 min to reduce their clumping. Cells suspended in PBS-T were 
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treated with BSA (4 % w/v) to block non-specific protein binding. This was then 

incubated whilst mixing at 18 rpm for 20 min. Each GFP-peptide fusion peptides 

were then added and incubated with the sample and agitated on an orbital 

shaker for 10 min. The cells were then recovered by centrifuging at 16,000 x g 

for 1 min. The supernatant was removed and residual GFP levels determined 

using a fluorimeter (Genios Pro, Tecan). Labelled cells were resuspended in 50 µl 

of PBS-Tween and 20 µl samples were mounted onto a microscope slide. The 

slides for microscopy were then air dried and fixed by glutaraldehyde. The 

sample was flooded with PBS to sustain the GFP fluorescence and a cover slip 

was placed on top. Cells were then washed with DAPI stain (0.2 ng ml-1; Sigma) 

and incubated for 5 min. Excess stain was then removed by washing twice with 

PBS. Samples were visualised by Confocal fluorescence microscopy and images 

manipulated using Leica software. 

 

2.7.2. Cell capture assay 

    The streptavidin coated black 96-well microtitre plates (Nunc) were prepared 

by coating the wells with biotinylated peptides (5 µg ml-1) in a solution of 0.2 M 

sodium carbonate (pH 9.4). Peptides used for capture were placed into the wells 

and incubated for 37 oC for 1 h. After incubation the samples were washed three 

times with 300 µl of PBS-T (0.05 % Tween-20). Bovine Serum Albumin (BSA; 4 

%) was used to block the samples and incubated for 30 min at 37 oC. After 

blocking PBS-T (0.05 % Tween-20) was used to wash the samples three times.  

    Dilutions of cells for capture were then diluted in PBS-T (0.05 % Tween-20) 

and placed in the wells and incubated for 60 min at 37 oC. After incubation GFP-

fusion peptides (20 ng ml-1) were added to the sample and incubated for 60 min. 

After incubation, samples were washed with PBS three times. The prepared 

microtitre plates were then analysed using a fluorimeter (Tecan, Genios Pro). 
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2.8. ZIEHL-NEELSEN (ZN) STAINING 

    The ZN stain was carried out using the Kit Quick-TB cold stain kit (RAL 

Diagnostics, France). Carbolic Fuchsin was covered on to heat-fixed smears of 

mycobacteria on microscope slides for 5 min. Tap water was then used to rinse 

away the initial stain and the slide was covered with Armand Solution for 1 min. 

After 1 min the slide was rinsed with tap water and left to dry. The samples were 

then visualised with a x100-immersion objective to look for pink stained cells on 

a blue background. 

 

2.9. DETECTION AND ENUMERATION OF MAP USING PHAGE TM4 

INSTEAD OF D29 

    When using mycobacteriophage TM4 in the phage detection assay instead of 

D29 and new virucide was needed as TM4 was resistant to FAS. Gunpowder 

Green Tea (Whittards of Chelsea, UK) was prepared, by adding sufficient RO 

water to the tea solids (7 % w/v) and the sampled were boiled for 10 min. The 

infusion was then filtered (Whatman Grade No. 2 Filter Paper, Whatman 

International Ltd.), autoclaved and stored at 4 °C. The phage was then treated 

with 100 μl of tea infusion and incubated for 15 min. The FPTB assay was then 

carried out (Section 2.1.3). 

 

2.10. INDUCING STATIONARY PHASE IN MYCOBACTERIA 

    To induce stationary phase in MAP, cells were incubated in screw capped glass 

vial (25 mm diameter; 10 ml volume) in liquid culture with a ratio of head space 

: liquid volume = 0.5, and allowed to grow whilst gently shaking at 80 rpm for 

six months using the method described by Wayne and Hayes (1996). Cells were 

aerated by opening the cap and increasing the speed of rotation (200 rpm) 

allowing oxygen to diffuse through the culture. For M. smegmatis, cells were 
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treated in the same way however cells only required 10 d incubation to reach 

stationary phase – as defined by the bacteria growth curve.  

 

2.10.1. Phage attachment assay 

    The effect of phage attachment on mycobacteria in the oxygen deprived 

phase was performed using a method by Spears et al (2008). Briefly cells (105 

pfu.ml-1) were harvested by centrifugation (13000 x g for 3 min) and 

resuspended in 900 µl of MP. The samples were then inoculated with 100 µl 

phage D29. Samples were then incubated at 37 oC. After, 0, 30 and 60 min, the 

samples were removed and centrifuged (1300 x g for 4 min). The supernatant 

(containing unbound phage) were titrated. The pfu ml-1 at time point zero was 

taken as 100 % of the number obtained over time. As a control, phage were 

incubated in the presence of no bacteria. 

 

2.10.2. Effect of inhibition of RNA synthesis on phage infection 

   The effect of the mycobacteria’s ability to synthesise RNA after phage infection 

was determined by centrifuging (13000 x g for 3 min) the MAP cells grown in 

anaerobic and aerobic environments, and resuspending them in rifampicin (Mast 

Diagnostics, UK; 5 µl ml-1). The cultures were incubated whilst shaking at 200 

rpm at 37 oC in an aerobic environment. At daily intervals starting at day zero, 

samples were taken and washed twice with fresh MP by centrifugation (13000 x 

g for 3 min) to remove the rifampicin. The cells were then resuspended in 1 ml 

of MP and the FPTB assay with enumeration was carried out.     

 

2.11. STATISTICAL ANALYSIS 

    All statistical analysis was carried out using SPSS (Version 16) or Excel 

(2007). The mean and median average was carried out for each set of data. If 

these values equalled the same or were similar, the data was considered to have 
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a normal distribution. The standard deviation was carried out for all the data. 

However the mean and median average were different from one another, the 

data was considered to have a not normal distribution. 

    When comparing two groups of data the t-test was used. The t-test enabled a 

comparison between the means of the two sets of data (control against 

variable). The t-test performed a calculation that yielded a ‘t’ number. 

Depending on the degrees of freedom within the data, the computer programme 

determined whether there was a significant difference between the means or not 

using a confidence interval of 95% (P=0.05). 

    If analysing more than two sets of data a one-way analysis of variance 

(ANOVA) was used. This was where each set of data was compared to one 

another. The calculation was made to determine whether there was a significant 

difference between their means. The confidence interval was again set at 95% 

(P=0.05). If a significant difference was detected within the data set and post-

hoc test was carried out. If there was a control data set to compare the variables 

against then a Dunnett’s post-hoc test was executed. This allowed the 

identification of variable(s) that were significantly different to the control. Where 

no control group was used the Tukey’s post-hoc test was carried out. This test 

compared the means of all the data sets to each other and determines where the 

differences were.  
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CHAPTER 3 

DEVELOPMENT AND EVALUATION OF A RAPID PHAGE-BASED METHOD 

FOR DETECTION OF VIABLE MYCOBACTERIUM AVIUM SUBSP. 

PARATUBERCULOSIS IN BOVINE BLOOD 
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3.1. INTRODUCTION 

    The current ‘gold standard’ method for detection of MAP requires cultivation of 

viable organisms from faeces or intestinal tissue on Herrold’s Egg Yolk Medium 

(HEYM), but this requires long periods of incubation (8–16 weeks; Stabel, 1997).  

As an alternative, organisms present in faeces have been detected by PCR-based 

methods, but these methods only detect DNA of the organism and give no 

indication of the viability of the cell detected. Using faeces to test for Johne’s 

disease has benefits as it is a universal sample, however on the downside, PCR is 

susceptible to  inhibitors that may be present in faeces that act as a barrier to 

PCR detection without rigorous DNA extraction methods (Chui et al., 2004).  

Commercial ELISA tests that detect sero-conversion of animals have been 

developed for milk and blood as a rapid alternative method to culture-based 

techniques. These tests are inexpensive and can be easily automated for 

processing large numbers of samples (Juste et al., 2005). The ELISA tests have 

a better sensitivity in animals that have entered the phase of infection where 

high numbers of organisms are being shed in the faeces (75% detection rate), 

however the sensitivity of the assays is poor for animals still in the subclinical 

phase (15% detection rate; Whitlock et al., 2000). Hence diagnosis of Johne’s 

disease is often based on repeat test results, increasing both costs and the time 

taken before infection is confirmed. It can also increase the number of false 

positive results, due to the limited specificity of the assays. Despite these 

limitations it has been shown that the ELISA tests are consistently better at 

detecting Johne’s disease than faecal culture or faecal-PCR (Pinedo et al., 2008).  

    The identification of MAP in the blood of animals susceptible to Johne’s 

disease has been carried out using techniques such as PCR and culture (Gwozdz 

et al., 2000, Naser et al., 2004, Whittington et al., 2010). However, inhibitors 

present in the blood have limited the effectiveness of these methods to detect 

MAP cells. As described in Chapter 1, The FASTplaqueTBTM assay (FPTB; Lab21, 

UK) is a phage-based detection method originally developed to detect M. 
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tuberculosis cells in human sputum samples for the diagnosis of tuberculosis.  

The use of the assay to detect viable MAP in milk and cheese has already been 

reported (Stanley et al., 2007, Altic et al., 2007, Botsaris et al., 2010). It was 

found during the development of these new assay formats that the samples can 

contain inhibitors that reduced the efficiency of phage infection, and therefore 

sample processing is required to ensure that these are removed. Magnetic 

separation is a very simple method of capturing and concentrating cells from a 

matrix using a magnet beads coated with a specific binding agent (either 

antibody or peptide). MAP-specific binding peptides coupled to magnetic beads 

have been described by Stratmann et al (2002, 2006) and have been used to 

recover MAP cells from milk samples (Foddai et al., 2010) and therefore this 

method is a good candidate for separating MAP cells from the different matrices 

before performing the FPTB assay.  

    The FPTB assay use the broad host range phage D29 that can infect both the 

target slow growing organism (in this case MAP) and also the fast-growing 

members of the groups, such as M. smegmatis, that are used to form the lawn 

for plaque growth (Monk et al., 2010). Thus the plaque result alone does not 

indicate the presence of MAP since the presence of any other viable 

mycobacteria can lead to plaque formation. When the FPTB assay is used to test 

human sputum a cut off value (20 plaques) is applied and only samples 

producing more plaques than this are considered to be positive, as sputum does 

not normally contain high levels of other mycobacteria. However when using the 

FPTB assay to detect mycobacteria in samples other than sputum, other non-

pathogenic mycobacteria may be present and hence identification of the cell 

detected is achieved by amplification of genomic signatures sequences from the 

plaques that form at the end of the assay (plaque PCR assay; Stanley et al., 

2007). In previous studies, this has been achieved by amplification of the multi-

copy IS900 element from individual plaques, although amplification of the f57 

single copy gene has also been demonstrated (Botsaris, 2010). 
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    The limitations of using milk samples with the FPTB assay are that only 

animals that can be milked can be sampled, in cattle, beef herd testing is reliant 

on faecal and blood testing. In sheep, milk may not be routinely tested and 

again, only milking animals can be tested with the FPTB milk assay. Hence the 

aim of this study was to develop a novel methodology that would allow the 

isolation of viable MAP cells from blood for detection by the FPTB assay. If 

successful, the next aim was to develop an optimised, robust plaque-PCR 

method to confirm the identity of the detected cells.    

 

3.2. RESULTS 

3.2.1. Initial detection of MAP in blood 

    As the FPTB assay has been found to be inhibited by milk, the first experiment 

was designed to determine whether blood has similar inhibitory effects on the 

assay. Throughout this study, titres of MAP cultures used for the inoculum were 

determined using a modification of the FPTB assay described in Section 2.1.3.3 

that allows enumeration of the number of viable MAP cells present in a culture 

and hence values are expressed as pfu ml-1. To determine if blood inhibited 

phage infection, 1 ml of horse blood (Oxoid, UK) was inoculated with 1 x 104 pfu 

ml-1 of MAP (K10) and the FPTB assay was performed to detect the cells present 

in the sample. Unspiked blood samples were used as negative controls in 

addition to the standard FPTB assay controls (Section 2.1.3.2). The results 

showed no plaque formation on the spiked or any of the negative controls plates 

indicating that the presence of blood inhibited phage infection in some way. 

    To overcome the inhibition of phage infection  when developing the phage 

assay for milk samples, centrifugation and subsequent washing steps were 

introduced to separate the cells from the inhibitory components in the sample 

matrix (Botsaris, 2010). The same logic was applied to the development of a 

method to test blood samples. That is, the cells needed to be separated from 

inhibitory components of the blood before the phage assay was performed. In 
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this experiment samples (1 ml) of both horse and sheep blood were inoculated 

with 1 x 104 pfu ml-1 MAP (K10) and then the sample was centrifuged (15 min at 

2500 x g) and the pellet washed twice with FPTB Media Plus (MP). Finally the 

recovered cells were resuspended in 1 ml MP and the FPTB assay performed. 

Once again control unspiked blood samples were prepared and the standard 

positive and negative FPTB controls were also carried out. Again no plaques were 

formed from the spiked samples, whereas the positive control which did not 

contain any blood did produce plaques, indicating that the assay components 

were all working. Thus that whatever may have inhibited the FPTB assay in 

whole blood was carried over during the centrifugation and washing steps. 

 

3.2.2. Optimising bead capture efficiency in Media Plus 

    Although methods have been developed to remove MAP cells from a milk 

sample using magnetic beads and then using the FPTB assay to detect the 

recovered cells (Foddai et al., 2010), this method had not been attempted before 

using blood samples. Hence two types of commercially available paramagnetic 

beads, Pathatrix (Invitrogen, UK) and MyOne Tosylactivated Dynabeads 

(Invitrogen, UK) that have been previously evaluated for capture of MAP from 

milk (Foddai et al., 2010) were tested for their ability to capture MAP from blood 

samples. To capture the MAP cells, magnetic beads coated with the MAP-specific 

peptides (Section 2.2.1) were added to the blood samples and incubated (10 

min) for them to bind to their targets. Using a magnetic rack, the beads (with 

MAP attached) were gently separated from the rest of the blood and 

resuspended in MP before the FPTB assay was carried out.  

    Initially to compare the capture efficiency of each type of magnetic bead, MAP 

cells (K10; 1 x 104 pfu ml-1) were prepared and recovered using the peptide-

mediated magnetic separation (PMMS) method (Section 2.2.2) in triplicate. After 

the final wash stage, each sample was resuspended in 1 ml MP. The FPTB 

enumeration method (Section 2.1.3.3) was used to detect the recovered cells 
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and the results showed that the Dynabeads were able to capture approximately 

1 log10 more MAP cells compared to the Pathatrix beads (Table 3.1). However 

the Dynabeads were still not very efficient at capturing cells and were only able 

to capture 28% of the MAP cells initially inoculated into the MP. 

    One possible reason for the low capture efficiency may have been that the 

MAP cells in the sample may have saturated the available binding sites on the 

beads, resulting in lower numbers of cells being detected as plaques. To 

determine whether more beads would improve the capture efficiency, the 

number of beads used in the PMMS procedure to capture the MAP cells was 

increased from 10 µl to 20 µl and 50 µl. The results showed that increasing the 

amount of beads actually had an adverse effect on the capture efficiency of the 

Pathatrix beads. In contrast there was no change in the capture efficiency of the 

Dynabeads (Table 3.2). This suggested that the beads were not saturated and 

also indicated that the Dynabeads were the most suitable magnetic bead to use 

for further assay development.  

  



88 

 

 

 

Table 3.1. Capture efficiency of Pathatrix and Dynabeads after the FPTB  

assay 

 

Confluent: Denotes confluent lysis of the lawn 

a n= 3 

 

 

 

 

 

 
Table 3.2. Effect of increasing beads concentration on the capture 

efficiency of Pathatrix and Dynabeads 

 

 
Average No. of Plaques 

Amount of Beads (µl) Pathatrix Dynabeads 

10 2.6 x 103 TNTC 

20 2.1 x 103 TNTC 

50 1.6 x 103 TNTC 

 
TNTC: indicates that the number of plaques that formed on the lowest dilution 

was greater than countable range (>300 x 103) but lysis was not confluent. 

     

 

 

 

 

 
Average No. of Plaquesa 

Approx. No. of 

MAP cells 

in inoculum (pfu) 

Pathatrix Dynabeads 

100 260 Confluent 

10-1 15 279 

10-2 0 42 

10-3 2 0 



89 

 

    To confirm that the drop in recoverable MAP cells was not due to bead 

saturation, 1 x 108 pfu ml-1 MAP cells were captured on beads and visualised 

using Scanning Electron Microscope (SEM). Figure 3.1 shows false-colour images 

of MAP cells bound to beads. Figure 3.1A clearly shows that the beads were not 

saturated with MAP cells. In both images it is also shown that many cells can 

attach together around only a few beads. MAP cells are known to form clumps 

(Grant et al., 2003), therefore the reduced plaque number recorded after 

capture could be due to the clumping of cells. As the cells are held close 

together, in this case bacteriophage infection of a clump of cells would only lead 

to the formation of one plaque.  

    Since the SEM figures confirmed that the beads were not becoming saturated 

by the MAP cells, the optimal binding time for the beads to bind to the MAP cells 

was then investigated. The standard protocol recommended 10 min incubation of 

the beads with the sample. This time was increased from 10 min to 20 min or 30 

min to determine if this improved the capture efficiency of the MAP cells. The 

results show that increasing the capture time did not improve capture efficiency 

significantly (P>0.05) as the time was increased from 10 to 30 min. However, 

although the differences were not statistically significant, there was a slight 

increase in the number of plaques that had formed from the FPTB assay when 30 

min capture time was used (Fig. 3.2). Therefore a 30 min incubation period was 

adopted as the standard time for the cell capture protocol. 
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Figure 3.1. SEM of MAP cells bound to paramagnetic beads 

 

 

 

 

 

False colour images show MAP cells (1 x 108 pfu ml-1) bound to magnetic beads following 

the magnetic separation method (Section 2.2.2.1) and prepared for SEM (Section 2.6). 

Images on panel A and B show the 1 µm magnetic Dynabeads beads (red). Panel A shows 

the large number of beads that suggest they do not become saturated by MAP cells 

(green/blue). Panel B is a higher magnification showing the clumping MAP cells (blue) and 

beads. 

 

 

A 

B 
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Figure 3.2. Effect of capture time on capture efficiency of MAP cells 

 

 

 
Graph showing plaque numbers recovered after performing the PMMS and phage 

assay on approx. 1 x 104 pfu.ml-1 MAP cells incubated with the magnetic beads 

for 10, 20 or 30 min. A One-way ANOVA was carried out to analyse the 

significance of any differences in the results. Error bars represent the standard 

deviations of the means of number of plaques recovered from the phage assay 

(n=3). 
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3.2.3.  Optimising PMMS-MAP detection in blood 

    The optimised PMMS process adopted was rotation of the blood samples with 

beads for 30 min before twice separating and washing the beads on a magnetic 

rack, then finally suspending the sample in 1 ml of MP (Section 2.2.2.1). This 

was then used as a basis to further investigate the factors affecting the efficiency 

of the assay and to improve the use of the method to detect MAP in blood. The 

MAP cells were inoculated into samples of commercially available blood (horse 

and sheep). To determine the efficiency of the PMMS recovery, 3.5 x 101 pfu ml-1 

MAP K10 was inoculated into 1 ml of horse and sheep blood (Oxoid, UK). Both 

bloods were used as they were readily available in the laboratory and the sheep 

blood was used as it is clinically relevant to Johne’s disease. Magnetic recovery 

of beads directly from undiluted horse and sheep blood samples was found to be 

inefficient (0% and 33% of the cells were recovered, respectively; Fig 3.3). 

Assuming that some component of the blood was inhibiting either the peptide 

binding or the phage assay, it was clear that some sample processing was 

needed to either remove or reduce the concentration of the inhibitor.  

    Therefore the magnetic recovery step was preceded by recovery of cells by 

centrifugation (4500 x g for 15 min), after which the pellet was washed and 

resuspended in MP and the centrifugation step carried out again. As horse blood 

was not clinically relevant to Johne’s disease, only sheep’s blood was used going 

forward for the optimisation experiments. After dilution, the magnetic separation 

step was carried out. The number of MAP cells detected from samples was 

significantly higher (P<0.01) than that recovered from the undiluted blood, 

resulting in 92% recovery of MAP for a 1 in 10 dilution and 73% when a 1 in 50 

dilution of the sample was used (Fig. 3.3).  Accordingly, a 1 in 10 dilution was 

adopted as the standard method as it resulted in the most efficient recovery of 

MAP cells.    
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Figure 3.3. Effect of blood on detection of MAP by PMMS-phage assay 

 
Graph showing plaque numbers recovered after performing the PMMS and phage 

assay on: Sample 1; MAP in 1 ml Media Plus. Sample 2; MAP in 1 ml of horse 

blood. Sample 3; MAP in 1 ml of sheep blood. Sample 4; MAP in 1 ml of sheep 

blood diluted 1:10 Media Plus. Sample 5; MAP in 1 ml of sheep blood diluted 

1:50 Media Plus. A One-way ANOVA, followed by the Dunnett’s test was used to 

analyse significance (*p<0.001) in the reduction in plaque number detected 

when compared to results gained for Sample 1. Error bars represent the 

standard deviations of the means of number of plaques recovered from the 

phage assay (n = 3). 
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3.2.4. Determining limit of detection of PMMS-phage method 

    After optimising the protocol to recover MAP cells from blood for detection 

using the FPTB reagents, the next step was to determine the limit of detection of 

the complete assay protocol. The number of MAP cells in a liquid culture was first 

determined using the modified FPTB assay (Section 2.1.3). These cultures were 

then diluted and inoculated into sheep blood at different levels in the range of 

approximately 1 x 104 pfu ml-1 to 1 MAP pfu ml-1. The optimised method, 

incorporating the optimised bead capture and sample preparation, was then 

carried out. Briefly, MAP cells were inoculated into sheep blood and the whole 

sample was then diluted 1:10 with MP. The samples were centrifuged (4500 x g 

for 15 min) and resuspended into 1 ml of MP. This was step was then repeated 

and the optimised PMMS method was then carried out (Section 2.2.2.1). Using 

this protocol it was found that the new assay procedure was able to reproducibly 

detect 10 MAP cells per ml of blood (Table 3.3).   
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Table 3.3. Limit of detection of phage assay in spiked sheep blood 

 

 

a Confluent: lysis of 80 to 90% of the lawn of M. smegmatis cells. 

b TNTC: Too numerous to count; merging of plaques. 

c n = 3  

 

 

 

Approx. No. of MAP cells 

in inoculum (pfu) 

Average number of MAP 

detected (pfu)c 

104 Confluent a 

103 TNTC b 

102 151 

101 9 

100 0 
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3.2.5. Molecular identification of MAP 

    Since the FPTB assay uses a broad spectrum mycobacteriophage, the plaques 

from the blood assay may arise from other mycobacteria present in the clinical 

blood samples. This is addressed by using the MAP-specific plaque-PCR method 

that was developed to determine the identity of the cell detected by the phage 

assay in when testing milk samples by Stanley et al. (2007). There are several 

MAP specific DNA sequences that can be detected by PCR. MAP cells harbour a 

specific multi-copy genetic element named IS900. This insertion sequence occurs 

in the MAP genome between 14-18 times (Bull et al., 2000) which makes it an 

ideal target for PCR detection. There are other MAP-specific single copy genetic 

elements within the genome which have been used as targets for PCR and the 

F57 and HspX genes are routinely used to specifically detect MAP. However they 

are only single-copy genetic elements, which make the detection of very low 

levels of DNA difficult and reduces the sensitivity of the PCR assay. Other 

insertion elements similar to IS900 have been found in other Mycobacterium 

subsp. (Englund et al., 2002), which had led to questions about the specificity of 

using this as a MAP-specific PCR test. However simple methods have since been 

used by researchers to ensure the specificity of the PCR is maintained. 

Therefore, as the IS900 signature sequence offers the best chance of very 

sensitive detection of genomic DNA extracted from plaques, this PCR assay was 

chosen for the further optimisation to detect MAP DNA in plaques. 

 

3.2.5.1. Detection of MAP specific DNA from plaques 

    Initially in this study an IS900 PCR was carried out using the primers, P90 and 

P91 (Section 2.4.4) and PCR thermo-cycler parameters described by Miller et al. 

(1996). DNA was extracted from MAP cells (K10, ATCC 19851, B4 and DVL 943) 

by the crude boil lysis method (Section 2.4.1.1) and this was used as template 

DNA for the amplification of IS900 by PCR and the Qiagen PCR mastermix was 

used to prepare the PCR reaction (Section 2.4.5.1). However using this method 
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no MAP genomic DNA was detected from any of the samples (Figure 3.4A). This 

suggested that either the PCR failed, or there was a problem with the PCR 

reaction.  

    The crude method for extracting the MAP DNA may have been the limiting 

factor since PCR inhibitors may have been present in the crude DNA preparation. 

Therefore DNA was extracted using the boil and lysis method, and then the DNA 

samples were centrifuged twice and washed in nuclease free water (Qiagen).  

The DNA was then diluted 1 in 100 for use as a DNA template. In the initial 

experiment it was also noted that there was a lot of primer dimer in the PCR 

samples, including in the negative control sample that only contained water 

rather than template DNA. This could be indicative of too high a primer 

concentration in the reaction mixture, therefore the primers concentration in the 

PCR reaction was reduced to 0.2 µM. The PCR was then carried out again and 

this time the results show that there was good amplification of the 400 bp 

product indicating successful detection of the MAP specific IS900 sequence from 

the DNA of each of strains tested (Figure 3.4B). This experiment confirmed that 

all of the PCR reagents were working correctly and formed a base line for further 

development of the plaque PCR method used following the phage assay to 

confirm the identity of the cell detected by the phage assay.  
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Figure 3.4. Development of the IS900 PCR amplification assay 
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PCR amplification products were analysed using a TAE agarose gel (2 %) which 

was run for 1 h at 70 V. The MAP IS900 band was expected to be approximately 

400 bp. Panel A; Amplification of the IS900 PCR on four strains of MAP DNA was 

performed using method described by Miller et al. (1996). Panel B; PCR was 

performed using a modified DNA extraction method (section 2.x) and a lower 

primer concentration.  Lane 1 contains the 100 bp molecular weight marker; the 

position of the 500 bp and 400 bp bands is indicated by the arrows (see Figure 

2.5 for marker details).  Lanes 2-5 the template added to the PCR reaction was 

(1) MAP DNA; (2) K10; (3) ATCC 19851; (4) B4; and (5) DVL 453. Lane 6 is 

negative control sample where the template DNA was replaced with RO water.  
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    In the method described by Stanley et al. (2007), and later by Botsaris et al. 

(2010), a single plaque was picked and the DNA extracted using a simple 

manual squeeze-freeze method (Qian and Wilkinson, 1991) and the DNA 

extracted from the plaque used as the template for the MAP specific IS900-PCR 

assay. The theory of this method is that one MAP cell leads to the formation of 

one plaque and therefore the PCR needs to be sensitive enough to detect one 

cell.  

    To establish this method, the FPTB assay was carried out using MAP K10 cells 

and DNA extraction carried out on the plaques that formed (Section 2.4.2). The 

P90 IS900 PCR described by Stanley et al. (1997) was then used to detect MAP 

DNA extracted from one plaque. Two samples of DNA extracted from MAP-

plaques, along with a negative (water) control and a positive control containing 

genomic MAP DNA (K10 or ATCC 19851) prepared as described above. However 

only genomic MAP DNA was detected, producing a band at 400 bp (Figure 3.5) 

whereas no amplification of the IS900 element occurred from the DNA extracted 

from one plaque, suggesting that the PCR assay was not sensitive enough to 

detect one MAP cell from one plaque. The freeze squeeze DNA extraction method 

may result in some DNA loss in the agar pellet and this may limit the sensitivity 

and robustness of the PCR identification assay.  

    There are different methods that can be used to extract DNA from an agarose 

gel-based sample. Gel-DNA recovery kits are used frequently to purify DNA from 

agarose gels after separation by electrophoresis. The principle of these kits is to 

dissolve the agar (by chemical or enzymatic treatments) and then using affinity 

spin-columns, extract, clean and concentrate the DNA. Although the agar used in 

petri dishes is a cruder form of agarose, and potentially of lower quality, the 

same purification method can be applied to the extraction of DNA within agar 

extracted from the centre of plaques. The spin columns generally need large 

amounts of ‘carrier DNA’ to improve the efficiency of extraction. As each plaque 

arising from the assay mainly contains the DNA from lysed M. smegmatis cells, 
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there would be a sufficient amount of carrier DNA present to be compatible with 

the use of these spin columns. Hence to improve the efficiency of DNA 

extraction, plaques were picked from plaques derived from infected MAP cells 

formed using the FPTB assay. The DNA was extracted using Gel-DNA recovery 

spin columns (ZymoResearch, Cambridge Biosciences, UK; Section 2.4.2.2). The 

MAP-specific PCR was then carried out to compare the DNA extracted by the spin 

columns with DNA extracted by the ‘freeze and squeeze’ method. Genomic MAP 

K10 DNA was as a positive control. The results show however, that once again 

no bands were visualised on the agarose gel (Figure 3.6).  
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Figure 3.5. Establishing the P90-P91 plaque-PCR assay 

                                     1            2         3         4         5 

 

PCR amplification products of IS900 were analysed on a 1.5 % agarose gel 

separated for 1 h at 70 V. Lane 1 is the 100 bp molecular weight marker (Figure 

2.5). The template DNA used in each PCR reaction was Lane 2; MAP 

chromosomal DNA, lane 3 and 4; MAP plaque DNA (strains K10 and ATCC 

19851, respectively) and lane 5; negative control (water). 

 

Figure 3.6. Developing DNA extracted method using Zymo-spin columns  

 

                                      1         2        3         4         5 

 

PCR amplification product specific for MAP (IS900), which were expected to be 

approximately 400 bp, were analysed on a 1.5 % TAE agarose gel separated for 

1 h at 70 V. Lane 1 is the 100 bp molecular weight marker (Figure 2.5). The 

template DNA used in each PCR reaction was Lane 2;  MAP chromosomal DNA 

(K10), Lane 3; MAP DNA extracted using the manual ‘freeze and squeeze’ DNA 

extraction method (Section 2.4.2.1), Lane 4; DNA extracted from a plaque using 

Zymo-spin columns and Lane 5; negative control (water).  

500 bp 

400 bp 

500 bp 

400 bp 
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    To determine the sensitivity of the PCR reaction, the concentration of a 

sample of chromosomal MAP DNA was measured using the Nano-drop (Section 

2.5.2). The concentration of the DNA was 36.4 ng µl-1, and from this a series of 

10-fold dilutions were prepared until the DNA concentration was less than 10 fg 

µl-1 to represent the amount of target DNA predicted to be present in one cell 

(the minimum amount that would be present in one plaque). The IS900 PCR 

assay was then repeated (Section 2.4.5.1). The results showed that the PCR, 

prior to optimisation could only detect around 30 pg of DNA (Figure 3.7), which 

was not sensitive enough for this application.  

 

3.2.5.2. Nested-PCR amplification of signature MAP DNA  

    Nested PCRs can be used to sensitively and specifically detect regions in DNA 

that may be hard to amplify. The principle of the nested-PCR is that the PCR 

reaction is split into two rounds of amplification. The initial round amplifies a 

region of DNA that contains the specific PCR target of interest. This results in 

amplification of the amount of template DNA containing that PCR target 

sequence, and this is then further amplified in the second round of the PCR using 

primers that target a sequence that lies within (or are nested within) the original 

amplicon.  

    In this study the nested-PCR described by Bull et al. (2003) was used to 

amplify the same IS900 element found in MAP DNA (Section 2.4.5.2). 

Experiments were first performed using dilutions of purified MAP genomic DNA to 

determine whether the nested-PCR would be sensitive enough to detect the 

IS900 target sequence present in one MAP cell. The results showed that the 

nested-PCR method was more sensitive than the IS900 PCR that had been used 

before and that around 300 fg of DNA could be detected (Figure 3.8).  
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Figure 3.7. Determining the sensitivity of the IS900 PCR assay 

  

 

 

 

 

 

 

 

 

 

 

 
A MAP (K10) chromosomal DNA preparation was diluted in 10-fold steps from 

36.4 ng µl-1 to 3.6 fg µl-1. This was used as template for the PCR amplification of 

IS900 product specific for MAP using primers P90/91. The expected PCR product 

was approximately 400 bp and the products were analysed on a 1.5 % TAE 

agarose gel separated for 1 h at 70 V. Lane 1 contains the 100 bp molecular 

weight marker (Figure 2.5), In lane 2 to 9 is the concentration MAP 

chromosomal DNA (K10) reduced from 36.4 ng.µl-1 to 3.6 fg.µl-1. In Lane 10 the 

template DNA was replaced by water (negative control). 

 

 

Figure 3.8. Determining the sensitivity of the nested IS900-PCR assay 

 

 

 

 

 

 

 

 

 

 

 

 

 

A MAP (K10) chromosomal DNA preparation was diluted in 10-fold steps from 

36.4 ng µl-1 to 3.6 fg µl-1. This was used as template for the PCR amplification of 

IS900 product specific for MAP using nested primers TJ1-TJ4. The expected PCR 

product was approximately 300 bp and the products were analysed on a 1.5 % 

TAE agarose gel separated for 1 h at 70 V. Lane 1 contains the 100 bp molecular 

weight marker (Figure 2.5), In lane 2 to 9 is the concentration MAP 

chromosomal DNA (K10) reduced from 36.4 ng.µl-1 to 3.6 fg.µl-1. In Lane 10 the 

template DNA was replaced by water (negative control).  
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    However this was still not sensitive enough to be able to reliably detect MAP 

DNA if only one cell is present in the sample. The MAP K10 genome is 4,829,781 

bp (Li et al., 2005) and given that the average weight per base pair is 652 

Daltons and 1 Dalton is equal to 1.67 x 10-24 g, the weight of the MAP K10 strain 

genome can be calculated to about 5.26 fg (Botsaris, 2010). In addition the PCR 

the protocol  described by Bull et al. (2003) was extremely time consuming, 

taking around nine hours to complete, which was not ideal when the aim was to 

develop a rapid identification method. Hence the PCR parameters described by 

Bull et al. (2003) were re-optimised to reduce the amount of time required for 

each cycle. Section 2.4.5.2 describes the final set of conditions that were 

established as being optimal to achieve sensitive amplification of the DNA 

sequence. By optimising the PCR thermo-cycling parameters, the time taken to 

carry out the PCR was reduced from 9 h to 3 h, thus increasing the speed of the 

assay. A greater volume of PCR product from the initial round of the PCR was 

also used in the nested portion of the PCR (10 µl instead of 5 µl). The results 

demonstrated that using these optimised PCR conditions that the method was 

now sensitive enough to detect extremely low concentrations of DNA equivalent 

to that present in one MAP cell (Figure 3.11). 

    In the studies by Stanley et al., (2007) and Botsaris et al., (2013), DNA was 

extracted from individual plaques. It was often the case that not all plaques 

proved to be IS900 positive (as to be expected when sampling milk, since it is 

known that non-pathogenic mycobacteria will be present in the sample). For the 

purposes of developing a blood assay, it was less likely that non-pathogenic 

mycobacteria would be present and therefore the ratio of pathogen to non-

pathogen plaques was of less concern. Therefore to increase the sensitivity and 

robustness of the PCR identification step, multiple plaques were picked and 

pooled together and then the DNA was extracted from this pooled sample.  

    To evaluate the effectiveness of this method and to determine the optimum 

number of plaques that could be pooled together and still allow efficient DNA 
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extraction, different numbers of plaques (five, ten and fifteen) were picked 

following detection of  MAP cells using the FPTB assay. The DNA from the 

plaques was then extracted using the spin-column DNA extraction method 

(Section 2.4.2.2). The modified nested-PCR was then carried out and the 

signature IS900 MAP DNA was detected for all samples tested (Figure 3.9). This 

suggested that the optimised nested-PCR was able to detect plaque DNA. 
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Figure 3.9. Optimised nested-PCR sensitivity (A) and its ability to detect   

MAP plaque DNA (B) 

 

                      1      2       3       4       5       6       7       8       9      10     11     12    13     

     A          B 

 

 

A MAP (K10) chromosomal DNA preparation was diluted in 10-fold steps from 

36.4 ng µl-1 to 3.6 fg µl-1. This was used as template for the PCR amplification of 

IS900 product specific for MAP using nested primers TJ1-4. The expected PCR 

product was approximately 300 bp and the products were analysed on a 1.5 % 

TAE agarose gel separated for 1 h at 70 V. Lane 1 contains the 100 bp molecular 

weight marker (Figure 2.5), In lane 2 to 9 Section A) is the concentration MAP 

chromosomal DNA (K10) reduced from 36.4 ng.µl-1 to 3.6 fg.µl-1. In lanes 10-12, 

DNA from 5, 10 and 15 MAP plaques were present. In lane 13 the template DNA 

was replaced by water (negative control). 
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    There are no good estimates of numbers of cells present in the blood of an 

infected animal, but the general consensus is that it is likely to be low (for 

instance see Bower et al., (2011). To confirm that it was still possible to detect 

the DNA from a single MAP plaque within this sample, agar extracted from one 

MAP-positive and four MAP-negative (M. smegmatis only) plaques were mixed 

together. Even at this low concentration of target DNA, the nested PCR assay 

was able to detect the MAP DNA after extraction even in samples that contained 

the lowest MAP DNA concentration (1 plaque MAP: 4 M. smegmatis plaques) 

(Figure 3.10).  

    Since the FPTB assay will detect any mycobacteria present in a sample, it is 

possible that some plaques in the sample may arise from non-MAP cells. It is 

also possible that inefficient inactivation of the bacteriophage by the virucide can 

lead to some plaques being formed due phage that are not inactivated and 

replicate on the M. smegmatis again leading to plaques that do not contain MAP 

DNA. Thus by increasing the number of plaques picked, this decreases the 

likelihood of performing the PCR assay on a MAP-negative plaque and simplifies 

the assay by reducing the number of PCR assays needed, while at the same time 

retaining the sensitivity of being able to detect the DNA arising from a single 

MAP cell.    
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Figure 3.10.  Sensitivity of the optimised nested-PCR using mixed MAP  

and M. smegmatis plaques 
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Nested-PCR amplification of the 300 bp IS900 DNA region specific for MAP. Lane 

1; DNA extracted from 5 M. smegmatis plaques. Lanes 2; DNA extracted from 5 

MAP plaques. Lane 3; 4 MAP plaques mixed with 1 M. smegmatis plaque. Lane 4; 

3 MAP plaques mixed with 2 M. smegmatis plaques. Lane 5; 2 MAP plaques 

mixed with 3 M. smegmatis plaques. Lane 6; 1 MAP plaque mixed with 4 M. 

smegmatis plaques. 
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3.2.5.3. Quantitative Real-Time PCR 

    Once the optimal method for the PMMS-plaque-PCR method had been 

established, a method was needed to be able to compare the efficiency of the 

assay with another method for detecting MAP cells. Ideally this would be culture, 

but the high failure rate of culturing MAP from clinical samples meant that this 

could not be relied upon. Therefore to act as a comparison for the PMMS-phage 

assay being developed, a quantitative real-time PCR (qRT-PCR) method was 

established using the commercial assay produced by Tetracore (Section 2.4.5.4) 

which is reported to be designed to rapidly detect MAP cells in faecal, tissue and 

liquid samples.  

    The target MAP DNA sequences targeted by the Tetracore assay is the MAP-

specific, single copy gene hspX. Provided in the kit is a positive control that 

contains the equivalent of 2.5 x 104 copies of the MAP genome. To establish the 

method, and determine the limit of detection of the PCR assay, the control, DNA 

sample from the Tetracore kit was diluted in 2-fold steps to allow a standard 

curve to be constructed (Figure 3.11).  

    To determine the limit of detection of this kit, DNA was extracted from cells 

using the manufactur’s protocol (Section 2.4.5.4). The number of cells in each 

sample was estimated using the enumeration modification of the phage assay 

(Section 2.1.3.3). This culture was diluted into sheep blood to give an initial 

inoculum of 1 x 104 to 1 x 101 pfu ml-1, to give samples with the lowest inoculum 

of approximately 10 cells per ml. The PMMS-phage assay was then performed on 

these samples to determine the number of cells that were recovered from the 

blood sample. 

    The results showed that the limit of detection of the qRT-PCR was lower (741 

cells per ml) than that of the phage assay alone (10 cells per ml) when the qRT-

PCR results were plotted on the standard curve (Figure 3.11), and that of the 

combined optimised nested-PCR used after PMMS and phage detection which 

was able to detect the genomic DNA from single cells. This difference may have 
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been due to fact that the hspX gene was used as the target for the qRT-PCR 

assay. Although highly specific to MAP, the hspX gene is found only in single 

copies in the genome, whereas the target for the nested PCR, IS900, can be 

present in between 14 and 20 copies in the MAP genome (Enosawa et al., 2003). 

Although the ability to detect and enumerate the MAP cells present in samples by 

applying the qRT-PCR assay as confirmation of the results gained using the FPTB 

assay would be an advantage, the limited sensitivity of the Tetracore qRT-PCR 

when it was used in this study limits its usefulness when trying to validate the 

results gained using the FPTB assay. 
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Figure 3.11.  Sensitivity of the Tetracore qRT-PCR MAP detection assay 

Graph of different concentrations of the positive control MAP genomic DNA 

supplied in the Tetracore kit (red diamonds) against Ct value used to construct a 

standard curve.  Blue marker diamonds indicate Ct values gained for dilutions of 

MAP K10 DNA recovered from a culture of cells that was enumerated using a 

modification of the phage detection assay to determine the limit of detection of 

the qRT-PCR assay. 
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3.3. DISCUSSION 

    During the development of the phage-based detection method it was found 

that inhibitors in the blood prevented the FASTPlaqueTBTM assay from detecting 

MAP cells. The use of PMMS to recover cells from the sample has two benefits; it 

allows concentration of cells and does not affect the viability of MAP. Initially 

optimising the cell capture method was required. There are many different 

magnetic beads and binding protocols that could be used and many factors 

which may affect the binding of MAP cells present in a blood samples. Two types 

of beads; Pathatrix and Dynabeads (Invitrogen, UK) were tested in this study. It 

was found that the Dynabeads reproducibly captured more cells that the 

Pathatrix beads, but the number of cells detected was always lower than the 

original inoculum. Differences in the characteristics of the beads can affect cell 

capture, such as: composition, size, concentration, and surface modification 

(Foddai et al., 2010). Dynabeads being smaller (1 µm) and tosylactivated may 

have resulted in less bead clumping and resulted in a greater available  surface 

area to bind MAP compared to the Pathatrix beads which are larger(>5 µm) and 

coated with antibodies. The SEM images also may help explain the apparent loss 

in capture efficiency, as the MAP cells tended to clump around the beads. Thus in 

the phage assay, a clump of infected cells constrained on the bead surface would 

give rise to just one plaque after the phage assay. When this is applied to blood 

samples from infected animals, it is unlikely that cell concentrations in these 

clinical blood samples would be high enough to result in clumping, so this result 

– which may be an artefact of the high cell numbers achieved in the inoculum 

culture (~ 108) – may not be significant when the assay is applied to real blood 

samples.    

    In addition to the different properties of the beads it was seen that the 

properties of the sample affected the efficient capture of MAP cells in the blood 

sample. When using horse blood no recovery of MAP was achieved whereas low 

levels of recovery was achieved using sheep blood. The viscosity of horse’s blood 
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is much higher than that of sheep and cattle blood (Windberger et al., 2003) and 

therefore limitation of bead movement in the sample may have hindered capture 

of MAP cells. Diluting the sample using modified Media Plus (modified 7H9 

media) improved recovery of MAP cells from spiked blood samples. This may be 

because the beads could then move more easily through the sample or perhaps 

inhibitors that interfered with the peptides binding to the cells may have been 

diluted below a critical concentration. Diluting the sample more than 1 in 10 

reduced the capture PMMS efficiency, presumably due to the fact that the low 

number of cells in the sample became more dispersed. Interestingly it was noted 

that the addition of Media Plus to the blood samples induced lysis of the blood 

cells. While this was not important during the development of the assay using 

samples inoculated with cultured MAP, it would be important when using the 

assay to test clinical blood samples, since the MAP cells are believed to be mainly 

intracellular when they are present in blood and therefore would be inaccessible 

for both PMMS and phage infection.   

    Once capture had been achieved, it was found that further washing of the 

captured cells was required to remove any bacteria that were not tightly bound 

to the beads and to remove inhibitors of the phage assay. This is consistent with 

observations made during the development of  other assay formats for use with 

other sample types (Botsaris et al., 2010). 

    MAP has been detected in blood samples by PCR-based methods (Gwozdz et 

al., 2000, Naser et al., 2004, Whittington et al., 2010). However the limitation of 

these PCR methods is that the viability of the MAP cells cannot be determined. 

Although viable cells can be cultured, the time taken makes this of limited 

diagnostic value, since the need for decontamination before culture may reduce 

the number of viable cells present in a sample (Gumber and Whittington, 2007, 

Grant et al., 2003, Reddacliff et al., 2003). The results gained here indicated 

that the combined PMMS-FPTB-PCR assay can achieve rapid and sensitive 

detection of viable MAP in spiked blood samples within 24 h to overcome this 
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problem. The next step is to determine whether it would be possible to detect 

viable MAP in the blood of clinically infected Johne’s diseased animals.  
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CHAPTER 4 

APPLICATION OF THE PHAGE ASSAY ON FIELD SAMPLES 
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4.1. INTRODUCTION 

    In Chapter three, the development of a phage-based method was described 

which was able to successfully detect MAP in blood with a limit of detection 

estimated to be 10 pfu ml-1. A robust plaque-PCR method was also developed 

using pooled plaques that allowed the IS900 element to be routinely identified in 

DNA extracted from these samples. The next natural step was to determine 

whether the assay could be used to detect viable MAP cells in clinical blood 

samples. Generally blood testing for mycobacteria revolves around tests that 

measure the immune response, with detection of either antigens to MAP or 

antibodies as either ELISA or interferon-gamma tests (Robbe-Austerman et al., 

2006). The last reported use of culture of mycobacteria as a diagnostic of 

infection was by (Kiehn et al., 1985). Blood cultures were used to diagnose 

Mycobacterium avium complex (MAC) infection, and it was shown using this 

method that it had the ability to cause disseminated infection in AIDs patients. 

The method was found to be most reliable when detecting MAC following a cell 

lysis step (Kiehn et al., 1985). 

    Generally the use of MAP cell detection by blood culture to confirm disease is 

no longer used. Most recently, Naser et al. (2010) attempted to culture MAP 

from patients suffering from ulcerative colitis (UC) and Crohn’s disease (CD).  

Despite some variability in the results gained from different sites of testing, 

individuals suffering from CD and UC did give rise to positive blood cultures, 

suggesting a role of MAP in human infection. However there is no definitive 

diagnosis that can be gained from the culture alone, as the presence of the 

organism has not yet been proven to be an indicator of Crohn’s disease. With 

MAP, the only study based on culture from blood reported in the literature (in 

this case of experimentally infected animals) is that reported by Bower et al. 

(2010 and 2011), but here again the ability to culture MAP in blood is only taken 

to be suggestive of disseminated infection and is not used as a definitive 

diagnosis of disease. 
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    As explained in Chapter three, the time it can take for MAP to form colonies 

severely limits the information that can be gained about disseminated MAP 

infection using culture-based methods of diagnosis. The ability to be able to 

detect MAP cells in blood samples from animals and get results within days 

(rather than within months), may aid the understanding of disseminated 

infection with regards to immune responses during disease progression and 

development of clinical disease. 

    The aim of this investigation was to apply the phage assay to clinical blood 

samples to determine whether MAP cells could be detected in the animals and 

then compare this with results gained from standard ELISA test results. In 

addition, as it can be assumed that presence of this organism in the blood of the 

animal indicates that it has crossed the gut and disseminated infection has been 

established, the results would be used to try and determine if evidence of 

disseminated infection correlates with the immune response of an animal. 

 

4.2. ETHICAL APPROVAL FOR THE COLLECTION OF BLOOD SAMPLES 

    Blood samples were provided as superfluous material collected under the 

Veterinary Surgeons Act as part of an on-going herd health screening 

programme. The study protocol was approved by the School of Veterinary 

Medicine and Science ethical review panel prior to sample usage.  

 

4.2.1. Initial trial of the phage assay using field samples 

    As an initial evaluation of the ability of the assay to detect MAP in clinical 

samples rather than in spiked laboratory samples, the phage assay was used to 

test samples from cattle that were most likely to be infected with MAP based on 

recurrent positive milk-ELISA test results. Blood samples were obtained from 

nine cows which had produced positive Johne’s milk ELISA test results on the 

last three separate occasions of testing as part of a herd health monitoring 

programme (Set A; Table 4.1). To act as a negative control for the assay, blood 
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samples were also obtained from five cows that belonged to an accredited 

Johne’s disease-free herd (Set B; Table 4.1). Before sampling, the site of 

venipuncture was cleaned twice with alcohol. So that the results from the phage 

assay could be compared to the blood ELISA status of the animal, blood was 

drawn into sterile sodium heparin Vacutainer tubes (BD, UK) for the phage assay 

and into plain Vacutainer tubes (BD, UK) for blood ELISA. The Johne’s disease 

blood ELISA, which detects the presence of antibodies that cross react with MAP, 

was performed by the Animal Health and Veterinary Laboratories Agency 

(AHVLA). 

    To give an indication of the reproducibility of the phage assay methodology, 

the assay was repeated twice, independently, on parallel 1 ml blood samples. As 

an independent test to detect the presence of MAP cells, samples of the blood 

were also screened for the presence of MAP DNA using a commercial real-time 

PCR kit (Tetracore; Section 2.4.5.4).  

    The results from the initial study yielded encouraging results. Eight out of the 

nine animals from Set A gave a positive blood ELISA test result, while the 

remaining animal (#8), despite the fact that it had previously given three 

positive milk ELISA tests, produced a negative blood ELISA result (Table 4.1) but 

indicated that the majority of the animals chosen for the study in this group 

were likely to be infected with MAP. Interestingly the results from the phage 

assay detected viable mycobacterial cells in all of the blood samples from the 

animals in Set A (nine animals, 18 duplicate tests), including animal #8 that 

gave a negative blood ELISA assay result (Table 4.1). The number of plaques 

formed using the phage assay ranged from 7 to 32 pfu ml-1, indicating that only 

low numbers of cells were detected in each sample. There was a good 

agreement (r2 = 0.81)  between the number of plaques generated for the two 

independently tested  samples indicating that the phage assay method was able 

to reproducibly detect the mycobacterial cells present in each sample.   
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    Since plaque number alone only indicates the presence of viable 

mycobacteria, to determine the identity of the cells detected by the phage assay 

the optimised MAP specific-PCR detection method was used. DNA was extracted 

from five combined plaques and in each case the PCR assay detected IS900 DNA 

sequences in the samples from the animals in Set A, indicating that they 

contained viable MAP cells (Fig. 4.1). This result confirmed that the sample from 

animal #8 did contain detectable levels of MAP in its circulating blood, despite 

the fact that the blood ELISA result was negative and the sample to positive 

ratio (S/P) value (S/P = 1.47) well below the cut off value defined for a positive 

result (S/P= >55). Hence this was not a marginal ELISA test result. In contrast 

to the phage assay and blood ELISA results, the commercial quantitative real 

time-PCR assay was unable to detect MAP DNA in any of these blood samples 

(Table 4.1), however the plaque numbers indicated that the number of cells 

present in these samples was below the detection limit previously determined for 

this assay (Section 3.2.6.3). 

    The five negative control samples from an accredited Johne’s disease-free 

herd (Set B) were also all negative for Johne’s disease when tested using the 

blood ELISA assay (Table 4.1). When using the phage assay three of these 

samples produced no plaques (i.e. no mycobacteria detected), however one 

sample produced two plaques and another produced one plaque. PCR analysis of 

DNA extracted from these plaques indicated that they did not contain MAP 

genomic DNA (Figure 4.1). As described in Section 3.2.6, the PCR assay using 

DNA extracted from combined plaques was known to be able to routinely detect 

DNA extracted from only one plaque, so this negative result would not be due to 

the low number of plaques used. Hence this negative PCR results indicated that 

these plaques arose either as phage ‘break through’ and contained only M. 

smegmatis DNA or were due to the presence of other viable mycobacterial cells 

in the sample (although this seems less likely). 
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Table 4.1. Results of phage, milk & blood ELISA and real-time PCR 

assays from Set A and B 

 

Cow Number 

 

Milk ELISA 

Status 
(3 tests) 

Blood ELISA 

Statusa 
Phage 

Assayb 
 

IS900 

Plaque 
PCR 

Blood 

Q-RT-
PCRc 

Set 
A 

1 + + (190) 35 27 + - 

2 + + (>227) 15 13 + - 

3 + + (221) 19 25 + - 

4 + + (111) 31 31 + - 

5 + + (>227) 11 25 + - 

6 + + (>227) 10 10 + - 

7 + + (>227) 35 29 + - 

8 +       - (1.47) 10 18 + - 

9 + + (193) 5 9 + - 

         

Set 

B 

10 -      -  0 0 NR - 

11 -      -  2 0 - - 

12 -      -  0 0 NR - 

13 -      -  1 0 - - 

14 -      -  0 0 NR - 

 

Numbers 1-9 represent Set A, numbers 10-14 represent Set B. 

NR - ‘not required’ shows there were no plaques formed, therefore no PCR 

required. 

a Numbers in brackets give ELISA S/P values recorded; positive value cut off = 

  >50 

b Values show the numbers of plaques obtained in two independently tested 

  samples.  

c See Section 3.2.6.3 for the details of the lab optimisation of this 

  commercial test. 
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Figure 4.1. Detection of IS900 by nested PCR from plaque DNA 

 

 

 

   
The nested-PCR of Bull et al. (2003) that amplifies a 300 bp DNA region from 

IS900 was used.  Lanes 1 and 11 contain the 100 bp ladder. Lanes 2-10; plaque 

PCR results for cows 1-9 (Set A).  For these samples 5 plaques were picked and 

combined together before DNA extraction using a Zymo DNA gel extraction kit 

(section 2.5.1.2). Lanes 12-14 contain the results for samples from animals 11 

and 13 (Set B) and contain DNA extracted from 2 plaques and 1 plaque, 

respectively.  Lane 15 is the negative control (DNA template replaced with sterile 

water). Lane 16 is the positive PCR control sample (DNA template is MAP K10 

genomic DNA).  
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As expected all the blood samples from animals in Set B were also negative 

when tested for MAP DNA using the real-time PCR assay, but this was not 

surprising giving the failure of this method to detect the presence of MAP DNA 

from those samples which were known to contain viable MAP cells.   

 

4.2.2. Use of the phage assay on Johne’s milk ELISA positive, negative 

and inconclusive animals   

    The animals in Set A (Section 4.2.1) were chosen for a first trial of the new 

phage assay results based on three consecutive repeat-positive milk ELISA test 

results that suggested that they were highly likely to have disseminated MAP 

infection, and hence it was encouraging - but not surprising - that the phage 

assay was able to detect MAP in these blood samples. As a more critical 

evaluation of the test, blood samples from a different herd to those used in 

Section 4.2.1 were examined using the phage assay (Set C). In this case the 

animals selected included individuals that (1) had given positive milk ELISA test 

results over the last three times of testing (Red), (2) those that had given 

positive, negative and inconclusive milk ELISA test results over the last three 

tests (Amber) and (3) those animals that had given three negative milk ELISA 

test results (Green; Table 4.2). Again, to allow comparison with the phage assay 

results, samples were also commercially tested using the blood ELISA, but given 

the failure of the commercial qRT-PCR assay to detect any MAP in the previous 

blood samples, this test was not performed in this trial. Instead, culture of 

samples (both whole blood and isolated buffy coated) was performed using the 

method described in section 2.2.2.1. 

    The results from the blood ELISA showed that antibodies for MAP were 

detected in 4 out of the 10 animals (Table 4.2). In contrast, eight out of the ten 

samples gave a positive result for MAP using the phage assay, indicating that 

there was a poor agreement (r2 = -0.2) between the two assay results.  
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Table 4.2. Results of analysis of blood samples from animals with  

different milk ELISA status  

 

 
Cow 

Number 

Milk ELISA 
Status a 

 

Blood 
ELISA 
Status 

Plaque Number  Plaque 
PCR 

Culture 
(WB & 
BC)c Whole Blood b Buffy Coat b 

1 Red - 20 25 38 42 + - 

2 Red + 3 7 22 21 + - 

3 Red + 22 15 28 32 + - 

4 Red + 12 3 17 12 + - 

5 Red - 13 23 15 5 + - 

6 Red + 8 6 9 5 + - 

         

7 Amber - 21 11 32 31 + - 

         

8 Green - 22 26 22 22 + - 

9 Green - 1 1 2 0 - - 

10 Green - 3 5 2 5 - - 

 

a Based on most recent three Milk-ELISA results.  

Red: Individual animals that had tested milk ELISA positive over the last 

three times of testing. 

Amber: Individual animals that had tested positive, negative and inconclusive 

over the last three tests. 

Green:  Individual animals that had three negative milk ELISA readings. 

 

b Values show the numbers of plaques obtained in two independently tested 

  samples.  

c WB denotes ‘whole blood’; BC denotes ‘buffy coat’  

Set C   
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    While none of the samples from the milk ELISA-negative (Green) or milk 

ELISA-inconclusive (Amber) animals gave positive blood ELISA test results, two 

of the milk ELISA-positive (Red) samples (animal # 1 and 5, Set C) gave 

negative blood ELISA test results (Table 4.2), showing that these two 

commercial assays also did not produce results with complete agreement. 

    The phage assay detected MAP in all of the Red animals, but also detected 

MAP cells in the blood of the one Amber animal; this animal (#7) was scored as 

inconclusive based on the results of the milk ELISA test and negative based on 

the Blood ELISA test results. MAP was also detected using the phage assay in 

one of the Green animals that was both milk- and blood ELISA- negative (animal 

#8). Animals 9 and 10 gave negative test results for all three assays (Table 4.2).    

    

4.2.3. Comparison of MAP detection from whole blood and the buffy coat 

    The method developed for isolation of the MAP cells using PMMS (Section 

2.2.2) includes the fortuitous lysis of the host cells in the blood sample, enabling 

any intracellular bacteria to be exposed to the peptides and allowing capture by 

the magnetic beads. However by treating whole blood in this way it was possible 

that some MAP cells located inside the white blood cells (WBC) may not be 

efficiently detected. Hence it was thought that isolation of the WBC’s prior to 

lysis for the PMMS step may increase the number MAP cells detected by the 

phage assay.  

    To determine whether the number of MAP cells detected could be improved by 

isolation of the buffy coat layer, parallel blood samples obtained from animals in 

Set C were processed to isolate the buffy coat layer (Section 2.3.2.1). The buffy 

coat was then diluted into MP (200 µl buffy coat into 800 µl of MP) and the PMMS 

cell capture and phage assay then carried out. The results (Table 4.2) show that 

there was no significant difference (P>0.05) between the number of plaques 

isolated for the same sample from whole blood or from the buffy coat layer, and 

accordingly there was no difference in the interpretation of the phage assay 
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result in terms of which animals were MAP-positive (Table 4.2). When isolating 

the buffy coat, the plasma fraction and red blood cells are also isolated. The 

PMMS-phage assay was also performed on these fractions after dilution into 

Media Plus to determine whether any detectable MAP remained in these 

fractions. No plaques were detected in any of these other fractions (data not 

shown), confirming that the majority of the MAP cells were present in the buffy 

coat layer. 

 

4.2.4. Culture of MAP following PMMS of blood 

    Culture of the MAP cells from the Set C blood samples was performed to 

provide a definitive comparison of the phage test results with a recognised gold 

standard method of detecting viable MAP cells. If successful this would also have 

provided useful information by allowing the MAP strains that were causing 

infections in these particular animals to be typed. For culture, both the whole 

blood and the buffy coat samples were treated in the same way as the samples 

prepared for the phage assay by first diluting them into Medial Plus to lyse the 

host cells. However after the PMMS was carried out, the beads were finally 

resuspended in 0.1 ml of MP instead of the 1 ml volume used for the phage 

assay samples. The liquid (including the beads) was transferred onto HEYM 

slopes supplemented with Mycobactin J (Section 2.1.1). To decrease the chance 

of reducing the number of viable MAP cells in the samples, no chemical 

decontamination was performed. A caveat of using this approach is that 

contamination of samples might occur, leading to sample loss. Despite the fact 

that in this case no contamination was observed of any of the samples tested, no 

growth of MAP occurred on any of the slopes after 30 weeks of incubation (Table 

4.2). The absence of any detectable MAP growth was confirmed using the slope-

wash method described by Williams and Monif (2009; Section 2.1.1.5) followed 

by a direct IS900 PCR of the cell suspension (Section 2.4.5) so that even any 

growing cells in microcolonies would be detectable. 
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4.2.5. Statistical analysis of results 

    For the four animals that gave positive blood ELISA test results in set C, the 

average plaque number was 20.1 (SD = 5.4), and for the four animals that gave 

negative blood ELISA test results (irrespective of milk ELISA status) the average 

plaque number was 9.5 (SD = 6.5; the two samples [#9 and #10] where 

plaques were obtained but no MAP DNA was detected were excluded from this 

analysis). This result shows a general trend that samples with a higher plaque 

number occur in those animals that are blood ELISA-positive.  

    If this analysis is extended to include all samples tested (including animals in 

Sets A and B, but still excluding phage-PCR negative samples) the same general 

trend is seen. The average plaque number for tests performed on blood samples 

from animals that were blood ELISA-positive was 20.5 (SD = 8.8, n = 24), and 

for the animals that were blood ELISA-negative the average plaque number was 

10.4 (SD = 6.3, n =10) and these values are significantly different (P<0.01).  

    Despite this correlation, within the blood ELISA-negative group in Set C (#8), 

one sample contained 22 plaques and in Set A one animal (# 9) that was blood 

ELISA-positive only produced low numbers of plaques (5 and 9 plaques).  

Therefore although a general correlation can be seen between the number of 

MAP cells detected by the phage assay and the likelihood that an animal is blood 

ELISA-positive, plaque number alone does not seem to be a completely reliable 

predictor of the blood ELISA status of the animals.     

    Similarly, a comparison of plaque number results and milk ELISA status for all 

of the tests performed (Sets A, B and C) shows that the average plaque number 

for Red animals is 17.2 (SD = 9.6, n = 30) and for Green animals is 3.8 (SD = 

8.8, n = 16) showing an overall significant (P<0.01) trend for higher number of 

MAP cells detected in the blood of Red animals, but the SD values are large due 

to the fact that each group contains samples with either very low or very high 

plaque results, so again plaque number alone does not show a direct correlation 

with milk ELISA status.   
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4.2.6.  Use of the phage assay on blood samples from experimentally 

infected animals 

    From the data presented in Section 4.2.2 it has been shown that MAP can be 

detected in clinical blood samples using the phage assay. However the only 

positive animals tested in both Sets A and C were those from a farm with a 

known Johne’s disease problem. All of these animals on the farm may have come 

into contact with MAP being shed by animals in the clinical stage of the disease 

and may be sub-clinically infected. Thus, from these results, it could not be 

deduced how early during infection MAP can be detected in blood samples. 

Hence a lack of information about the infection of the animals (when infected, 

how much the animals were challenged with, what strain, what age they were 

infected at etc.) limits the analysis that one can carry out from these results 

collected in terms of the use of the method to monitor disease progression. 

Therefore the next stage of the experiments was to use the phage assay to test 

samples from experimentally infected animals, and also from control groups, so 

that these specific questions may be addressed. 

 

4.2.7. Detection of early infection in experimentally infected calves 

    In 2012, a trial was being undertaken by Dr Jayne Hope (Roslin Institute, UK) 

and Dr Tim Bull (St. George’s, University of London, UK) to investigate 

adenovirus vectors expressing MAP-specific antigens as a potential vaccine 

candidate for protection of calves against MAP infection. A cohort of eleven 

calves (Set D) were experimentally infected with a cattle strain of MAP. Six were 

treated with an experimental viral vaccine and five were not treated, as a control 

group. Six months post-infection, for a period of three months, blood samples 

were obtained for parallel testing with the phage assay and by a direct MAP-

specific PCR assay (Scanu et al., 2007). After nine months the animals were 

culled to determine whether any MAP lesions could be detected post-mortem.  
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    In month six the direct blood-PCR assay detected MAP DNA in samples from 

animals 4, 7, 10 and 11.  In contrast the phage assay detected viable MAP cells 

only in samples from animals 2, 3, 4 and 11 (Figure 4.2). At month seven, the 

blood-PCR detected MAP in five samples; 5, 7, 9, 10 and 11 whereas the phage 

assay detected MAP in seven samples; 2, 3, 4, 5, 7, 10 and 11 (Figure 4.2). 

Hence only 4 samples gave positive results for both assays, but the results for 

another three animals (1, 6, and 8) both gave negative test results using both 

methods.  In month eight (the final month of testing) the blood-PCR detected 

MAP in five samples; 5, 7, 9, 10 and 11 and the phage assay also detected MAP 

in three of these (7, 10 and 11). The phage assay however also detected MAP in 

a further two samples (2 and 3) (Figure 4.2).  

    Overall the tests agreed with each other 61 % of the time each for all parallel 

tests performed. However the results show some discrepancies and discontinuity 

between the blood-PCR results and the phage assay results. Sample eleven was 

the only one to give positive results with both tests at all 3 sampling points. 

Samples 7 and 10 consistently gave positive PCR results but the phage assay 

results were only positive in months 7 and 8.  Samples 1 and 8 both gave 

consistently negative blood-PCR and phage results. However in samples 2 and 3, 

the phage assay consistently detected MAP, whereas the blood-PCR did not. In 

sample 6 MAP was not detected at any time by either assay. 

  



129 

 

 

 

Figure 4.2. Detection of MAP by direct blood-PCR and the phage assay in 

blood samples from experimentally infected calves 

 

Set D Month 6 Month 7 Month 8 

Sample 

Number 

Blood-

PCR 

Phage 

Assay 

Blood-

PCR 

Phage 

Assay 

Blood-

PCR 

Phage 

Assay 

1 
      

2   
    

3 
      

4 
      

5 
      

6 
      

       
7 

      
8 

      
9 

      
10 

      
11 

      
 

All animals were infected with MAP but animals 1-6 were given a trial vaccine, 

whereas animals 7-11 were not vaccinated.  

Blue:  negative MAP test result 

Red:  Positive MAP test result 

 

 

Table 4.3. Comparison of test results by the phage assay and direct PCR 

 

PCR 

test 

result 

Phage 

test 

result 

Number 

of 

samples 

 % 
% agreement/ 

disagreement 

-ve -ve 12  33.4 
60.7% 

+ve +ve 9  27.3 

+ve -ve 5 (4 UV /1 V) 15.2 
36.4% 

-ve +ve 7 (all V) 21.2 

 Total 33    

 

UV  = unvaccinated 

V  = vaccinated  
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    If the overall number of times this latter pattern of results is compared (i.e. 

PCR –ve, phage +ve result; Table 4.3) it is interesting to note that this pattern 

occurred 7 times in total, but only in the vaccinated group of animals. Similarly 

the preponderance of test results where the blood-PCR consistently detected 

MAP DNA but the phage assay did not was in the unvaccinated group (4/5 cases; 

Table 4.3). Animal nine (unvaccinated group) consistently gave this result and 

hence accounted for 3/5 times this pattern was seen.   

    With regards to plaque number, generally the number of cells detected was 

low (<14 pfu ml-1) and this is within the range expected for blood ELISA-

negative animals determined in section 4.2.5 (10.4 ± 6.3). However 63 plaques 

were detected in the blood sample from animal #7 after 8 months, and this was 

well above the average number of plaques recorded for blood ELISA-positive 

animals (20.5 ± 8.8). Interestingly, when this animal was culled, many lesions 

were seen and it was the only animal that histopathologically positive signs of 

the disease.  

 

4.2.8. Use of the blood assay on experimentally infected subclinical 

cattle 

    Cattle infected with MAP may not show clinical signs of infection until years 

after exposure. Sub-clinical animals may shed MAP cells into the environment in 

their faeces and MAP cells can also be present in their milk, but both milk and 

blood ELISA testing on sub-clinical animals is notoriously insensitive (Whitlock et 

al., 2000). It is also true that an immune response may not be indicative of 

active infection, rather just that the animal has been exposed to the organism, 

and it is not known whether all animals that give a positive ELISA test result will 

go on to develop clinical Johne’s disease. This is especially pertinent since the 

results in this study show that naturally infected animals with variable blood 

ELISA status can harbour viable MAP in their blood. Hence it is clear that more 
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data is required to better understand the relationship between the immune 

response and disease progression.   

    A collaboration with the University of Sydney, Australia, who were 

undertaking a MAP infection trial, was used to investigate the ability of the phage 

assay to detect MAP cells in the blood of cattle that were experimentally exposed 

to MAP (Set E).  In this trial 30 calves (aged 2 - 4 months) were age matched 

then randomly allocated into a group of 20 to be experimentally infected 

(Numbers; 11 – 30, Table 4.4) along with a group of 10 animals that were used 

as uninfected controls (Numbers; 1-10, Table 4.4). Control animals were housed 

separately from the inoculated animals, in paddocks where no MAP infected 

livestock cattle had been housed in the past. The animals were not used for dairy 

produce and raised in a manner that minimised stress. The blood samples taken 

for the experiments described here was at a time point 3.5 years after the 

animals had been infected and at this stage they were not showing clinical signs 

of Johne’s disease, although at the time of testing animal #23 had previously 

been found to be shedding MAP in its faeces (Dr K. Plain, University of Sydney, 

pers. comm.).     

    All the tests described here were performed in Australia using reagents that 

were prepared and tested on site before being used to test the clinical samples. 

Unfortunately, due to the time constraints of the visit, it was not possible to 

optimise the efficiency of the PMMS bead capture fully (data not shown) and thus 

for all these experiments the sensitivity of the assay was not as high as the 

optimised assay procedure used for other experiments in this thesis. In addition, 

a modified PCR detection assay was used, based on a published real-time PCR 

assay for MAP IS900 routinely used at the University of Sydney (Plain et al., 

2014). 

    The phage assay was used to test blood samples taken from animals in Set E.   

The results (Table 4.4) show that two of the control animals (animals #3 and 

#10;) produced plaques after the phage assay was performed, however none of 
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these gave a positive result when the IS900 PCR was performed, indicating that 

these plaques represented either breakthrough or detection of a mycobacteria 

other than MAP. Therefore the phage results agreed with all other tests 

performed. Thus none of the control (not exposed to MAP) animals were positive 

for viable MAP by the phage assay. 

    There was no correlation between when the phage assay detected MAP in 

blood and when the PCR detected MAP DNA in faeces or the positive serum 

ELISA animals. Seven out of the twenty (35 %) of the inoculated subclinical 

animals gave positive phage-PCR results indicating that MAP cells were detected 

in their blood, although only very low numbers of plaques (2-5) were produced 

from these assays.     

    Two animals were found to be shedding MAP in their faeces by culture (#17 

and 23) and this result was confirmed by a faecal PCR assay (Plain et al., 2014). 

Animal 23 was also positive for Johne’s disease by serum ELISA and animal 17 

was suspected as having Johne’s disease as the OD value of the serum ELISA 

was just below the cut-off value for a positive test result. However MAP was not 

detected in the blood using the phage assay of these animals that were shedding 

MAP and had evidence of systemic immune response to the disease, but this 

does not mean that the disease was systemic (or disseminated) as a localised 

infection can lead to this. 

    Based on their serum ELISA results, none of the other animals were classed 

as infected or suspected of having clinical Johne’s disease, however animals 20 

and 27, which were positive for the presence of MAP in their blood according to 

the phage assay, had relatively high (although classed as negative) ELISA 

readings.  
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Table 4.4. Results for sub-clinical, experimentally infected cattle  

 

 Results 

 
Tag # Breed 

MAP 
exposure 
statusa 

Phage 
assayb 

Faecal 
culture 

Faecal 
PCRc 

Serum 
Ab ELISA 

(%)d 

1 614 Holstein Control - (0) - - 1.00 

2 618 Holstein Control - (0) - - 29.34 

3 623 Holstein Control - (2) - - 3.85 

4 625 Holstein Control - (0) - - 5.92 

5 630 Holstein Control - (0) - - 5.42 

6 634 Holstein Control - (0) - - 3.14 

7 638 Holstein Control - (0) - - 17.49 

8 641 Holstein Control - (0) - - 10.49 

9 717 Red/Holstein Control - (0) - - 3.50 

10 734 Red/Holstein Control - (3) - - 4.57 

11 615 Holstein Inoculated - (0) - - 2.57 

12 616 Holstein Inoculated + (2) - * 3.28 

13 617 Holstein Inoculated - (0) - - 5.00 

14 620 Holstein Inoculated #e #e #e #e 

15 621 Holstein Inoculated - (5) - - 14.49 

16 624 Holstein Inoculated + (5) - - 3.28 

17 626 Holstein Inoculated - (0) + + 48.68 

18 627 Holstein Inoculated + (2) - - 8.57 

19 628 Holstein Inoculated - (0) - - 6.21 

20 629 Holstein Inoculated + (2) - - 35.62 

21 631 Holstein Inoculated - (2) - - 12.63 

22 632 Holstein Inoculated - (0) - - 3.50 

23 635 Holstein Inoculated - (0) + + 118.77 

24 636 Holstein Inoculated - (0) - - 6.50 

25 637 Holstein Inoculated - (0) - * 4.64 

26 779 Red/Holstein Inoculated + (4) - - 5.21 

27 640 Holstein Inoculated + (5) - * 41.11 

28 642 Holstein Inoculated - (0) - - 2.00 

29 722 Red/Holstein Inoculated + (3) - - 13.28 

30 755 Red/Holstein Inoculated - (0) - * 1.50 

 
a  Inoculated – animals experimentally exposed to MAP; Control – animals not 

   exposed to MAP 
b (+/-) indicates result of combined PMMS-phage –PCR assay.  Plaque numbers 

  for each sample given in brackets.   
c (*) indicates inconclusive test result 
d Serum Ab ELISA (IDEXX); Positive value > 55%, suspected value 45 - 55% 
e (#) Animal 14 was culled due to other illness unrelated to Johne’s disease 

  before sample collection. 

Set 
E 
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4.2.9. Using the phage assay on experimentally infected sheep 

    Cattle are not the only animals that are affected by Johne’s disease, and 

sheep are also susceptible to MAP infection. Sheep generally show clinical signs 

of disease faster than cattle, suggesting the pathogenesis of the disease in sheep 

may be different (Begg and Whittington, 2010). Sheep strains of MAP have also 

been found to differ from cattle strains, showing a much slower rate of growth in 

culture and a tendency to be pigmented. It is known that viable MAP cells can be 

cultured from the blood of infected sheep, but it is not known whether sheep 

strains of MAP can be captured using PMMS or whether they are as efficiently 

infected using the bacteriophage D29. The phage based blood assay was 

originally optimised in commercially supplied sheep’s blood (Section 3.2), so 

when planning to test clinical samples from sheep no optimisation of the 

methodology of the assay procedure was needed. 

    Frozen blood samples of culled animals from a previous trial carried out at the 

University of Sydney involving sheep experimentally infected with MAP were 

available for testing. Recovery of MAP cells after freezing had been carried out 

and is reviewed in Chapter 6. The results show that a 3 d recovery period is 

required to recover all the MAP cells in sample after freezing. However due to 

time restraints, only a recovery period 24 h at 37 oC was carried out for the MAP 

cells, which limited the effectiveness of the phage assay. In this study samples 

from twenty-eight sheep (Set S1) were tested; eight had been experimentally 

infected with between 1 x 107 and 1 x 108 cfu ml-1 MAP (Telford Sheep Strain; 

Marsh et al., 2006; according to a validated model by Begg et al., 2010). 

Samples from twenty other sheep were used as the unexposed control animals; 

these animals had been kept on adjacent pasture, separate from the infected 

animals, in groups in small paddocks where no MAP-infected sheep were kept or 

had been kept in the past. Five of these 20 animals were vaccinated with 

GudairTM paratuberculosis vaccine (inactivated strain of MAP; Dr K. Plain, pers. 

comm.). 
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    Twelve months post-infection each animal was culled and faecal culture, 

faecal PCR and sheep serum ELISA’s assays were carried out to detect the 

presence of, or exposure to, MAP (data summarised in Table 4.5). During the 

trial one unexposed, unvaccinated animal (# 3; Set S1) gave a positive MAP 

serum ELISA test result, suggesting the group of control animals (numbered 1-

5) may have been exposed to low levels of MAP from the environment, however 

at the time of culling none of them showed any clinical signs of MAP infection 

after post-mortem.  

    In all the other groups the unexposed sheep gave negative faecal culture and 

serum ELISA test results, apart from the vaccinated control animals which - as 

expected - gave a positive serum ELISA result. In contrast, all eight of the 

exposed animals were positive for MAP by faecal PCR and five of the samples 

(excluding the vaccinated samples; # 6-10) were positive for MAP by serum 

ELISA. 

    At the end of the trial the animals were culled and at that time whole blood 

samples were taken and frozen at -80 oC and the collaborative visit to the group 

in Australia occurred three months after culling. To test these samples using the 

phage assay, the blood samples were first thawed at room temperature and left 

for a further 24 h at 37 oC to allow as many MAP cells to recover as possible 

from the freeze injury. After this the blood samples were diluted into Media Plus 

and the (un-optimised) PMMS-phage assay was performed. The results show 

(Table 4.5) that out of the twenty-eight samples tested, only 5 gave positive 

results using the phage assay; 3 from the exposed animals and 2 from the 

unexposed animals (highlighted in red in Table 4.5). 

    The fact that two of the control animals (#4 and #10) gave positive results 

for MAP using the phage-PCR assay was unexpected. However, as mentioned 

above, the group of animals numbered 1-5 (Set S1; blue text Table 4.5), had 

given some positive indications of MAP infection during the trial and #4 that 

gave a positive phage-PCR blood test result belonged to this group. However 
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both faecal culture and serum ELISA test results were negative. The other 

unexposed animal that gave a positive test result (#10) came from a vaccinated 

flock (inactivated MAP strain), hence although these animals gave positive serum 

ELISA test results (due to the vaccine), they consistently gave negative faecal 

culture test results for MAP. Hence the positive phage assay test result for this 

animal is difficult to explain.   

    Three of the eight sheep exposed to MAP produced positive phage-PCR 

results, however only very low numbers of MAP cells were detected (1-3 

plaques). All of the animals in this group were positive for MAP by faecal culture, 

and therefore the phage assay agreed with the faecal PCR for three samples 

exposed to MAP. Interestingly only four of the group gave positive serum ELISA 

results (>55 %) although another two gave test results in the range designated 

as being suspect samples (45-55 %). In this case one of the serum ELISAs test 

results agreed with the phage assay results. 

    Hence the failure to detect MAP in the blood of all of these exposed animals 

may indicate that there was a problem with the methodology. Lack of recovery 

of the MAP cells from the effects of freezing may have caused low bacteriophage 

infection efficiency. Alternatively, as the coating of the beads with the peptides 

was not fully optimised, inefficient PMMS capture may have occurred. 

Alternatively the ability of the peptides used to coat the beads to bind to sheep 

strains of MAP has not been fully characterised and this may have affected the 

results gained. 

    Despite the limitations of this study, the fact that the majority of positive 

results were achieved in the exposed group is encouraging, since if these results 

all represented a random problem with the test it would be expected that an 

equal number of positive results would have been seen when testing the samples 

from the other negative control animals.    
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Table 4.5. Results of MAP detection for experimentally infected sheep 

Sheep Results 

 Tag # Breed 
MAP 

exposure 
status 

Phage 
assay 

Faecal 
culture 

Serum 
Ab 

ELISAa 
(%) 

 1b 405 Merino Unexposed - (0) - 0.31 

 2b 406 Merino Unexposed - (0) - 0.05 

 3b 407 Merino Unexposed - (0) - 0.36 

 4b 408 Merino Unexposed + (2) - 0.1 

 5b 409 Merino Unexposed - (2) - 9.88 

6 124 Merino Unexposed - (0) - 132.5* 

7 125 Merino Unexposed - (2) - 163.3* 

8 126 Merino Unexposed - (0) - 165.8* 

9 128 Merino Unexposed - (6) - 149.5* 

10 129 Merino Unexposed + (1) - 150.7* 

11 167 Merino Infected + (2) + 35.47 

12 181 Merino Infected - (0) + 145.09 

13 186 Merino Infected - (0) + 36.3 

14 187 Merino Infected - (0) + 55.02 

15 188 Merino Infected - (1) + 110.92 

16 193 Merino Infected - (0) + 45.81 

17 195 Merino Infected + (1) + 61 

18 198 Merino Infected + (3) + 100.26 

19 2176 Merino Unexposed - (0) - 1.02 

20 2177 Merino Unexposed - (0) - 0.28 

21 2178 Merino Unexposed - (0) - 0.19 

22 2197 Merino Unexposed - (2) - 0.74 

23 2180 Merino Unexposed - (0) - 0.19 

24 2181 Merino Unexposed - (0) - 0.09 

25 2182 Merino Unexposed - (0) - 0.83 

26 2183 Merino Unexposed - (0) - 0.46 

27 2184 Merino Unexposed - (0) - -0.09 

28 2185 Merino Unexposed - (1) - 0.87 

 

* - High ELISA result is due to vaccination not exposure 
a Serum Ab ELISA (IDEXX) - Positive value > 55%, Suspected value 45 - 55%.  

  Positive test results in Bold 
b Animals number 1-5 (blue text) had potentially been exposed to MAP as MAP. 

  was detected in a faeces sample from one animal (#3) by PCR during the trial. 

 

 

Set 
S 
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4.3. COMPARISON OF OVERALL TEST RESULTS 

    There are shortcomings when it comes to comparing efficacy of the phage 

assay to detect Johne’s disease with other tests like ELISAs and PCR due to the 

variability in sensitivity and specificity of these assays. As the number of animals 

tested in all of the experiments was also quite low, this limits the power of the 

tests performed and the significance of any analysis that can be carried out. 

Finally Johne’s disease is chronic disease and in this study a longitudinal 

examination of the phage assay compared to other the tests has not been 

carried out in a defined experimentally controlled way due to limitations in 

sample collection, thus any analysis that is carried out will have limited power.  

However, while recognising these limitations, it is worth comparing the results 

gained for all of the field trials to see if any patterns emerge that might inform 

future studies.  

    The data from tables 4.1, 4.2 and 4.3 for the phage assay results and the 

blood ELISA assays gave the largest number of samples for comparison. When 

examining the samples that were MAP-positive by any one of the assay results, 

Figure 4.3 shows that the phage assay detected viable MAP in the blood of 24 

out of the 55 (44 %) of the samples, whereas the blood ELISA was positive in 

only 13 of these samples (24 %), suggesting a lower sensitivity for the blood 

ELISA assay. Interestingly, when the blood ELISA was positive the phage-PCR 

test results agreed 92 % of the time. However when the phage assay positive 

results was compared with the positive ELISA results, MAP infection was only 

detected 50 % of the time by the blood ELISA assay (Fig. 4.3), which may 

suggest the phage assay is more sensitive than the blood ELISA.  

    When all the data is analysed (comparison between detection of MAP and no 

detection of MAP), there is a very significant difference (P<0.001) between 

detection rate using the phage-PCR assay and that given by the blood ELISA test 

(Table 4.6). However to reiterate, there are limitations with using these sample 

sets comparison. The blood ELISAs have highly variable sensitivity and 
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specificity, especially in animals with subclinical MAP infection, which the 

majority of the animals tested were, thus the blood ELISA tests are not a reliable 

gold standard for comparison of tests. If however, the phage assay is used as 

the gold standard, the sensitivity of the ELISA tests is seen to be 50 % and the 

specificity 96 %. Interestingly, these results are very similar to the published 

sensitivities and specificities of the blood ELISA assay (Table 4.6; Whitlock et al., 

2000) and suggest that the phage-PCR assay has a similar detection rate to 

other methods used as the Gold standard for such analyses.  
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Figure 4.3. Comparison of the distribution of positive results using 

phage-PCR assay and the blood ELISA tests 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Venn diagram showing the relationship between positive phage-PCR test results 

and blood ELISA test results based on data in Tables 4.1, 4.2 and 4.4. 

 

  

n = 55 

Phage Assay 
(Positive) 

Blood ELISA 
(Positive) 

12 

12 1 
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Table 4.6. Contingency table of phage assay and the blood ELISA test 

results for comparable cattle samples  

 

 

Phage Assay 

+ve 

Phage Assay  

-ve 
Total 

Blood ELISA 

+ve 
12 1 13 

Blood ELISA 

 -ve 
12 30 42 

Total 24 31 55 

 

 

Variable Value 
95% Confidence 

Interval 

Sensitivity 0.50 0.29  to  0.70 

Specificity 0.96 0.83  to  0.99 

Positive Predictive 

Value 
0.92 0.63  to  0.99 

Negative Predictive 

Value 
0.71 0.55  to  0.84 

Likelihood Ratio 15.50  

 

The two-sided P value is < 0.0001, considered extremely significant. 

The row/column association is statistically significant. 

 

Sensitivity: The fraction of those with the disease correctly identified as 

positive by the test.  

Specificity: The fraction of those without the disease correctly identified as 

negative by the test.  

Positive predictive value:  The fraction of subjects with positive tests who 

actually have the condition.  

Negative predictive value: The fraction of subjects with negative tests who 

actually don't have the condition.  

Likelihood ratio:  If positive, it is how many times more likely are you to have 

the disease. i.e. the likelihood ratio equals 15.5, then an 

animal with a positive test is 15.5 times more likely to have 

the disease than an animal with a negative test.  
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    The smaller data set (30 samples) generated from the collaborative work 

using samples from experimentally infected cattle (Set E; Table 4.4) were 

analysed to see if there was a correlation between the results gained using any 

of the tests used (i.e the phage assay, Blood ELISA and faecal PCR). Again 

although a very small sample set was used, seven out of the 19 surviving 

challenged animals (37 %) gave a positive result with the phage assay. This 

indicated the presence of MAP cells in the blood, but none of these samples 

came from animals that gave a positive faecal PCR result and or a positive blood 

ELISA test result. Indeed agreement between the different test results was only 

seen for one sample that was blood ELISA positive and faecal PCR positive (Fig. 

4.7). 
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Figure 4.4. Relationship between positive phage assay, faecal PCR and 

blood ELISA results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Venn diagram showing the relationship between positive results gained from the 

phage assay, blood ELISA and faecal PCR for samples in Set E (Table 4.3). 

Overlapping areas show the agreements from each test. 

 

 

 

 

 

 

 

 

n = 19 (Inoculated) 

Phage Assay  

(Positive n=7) 

Blood ELISA 
(Positive - n=1) 

Faecal PCR 
(Positive - n=2) 1 

0 

0 0 

7 

0 1 
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4.4. DISCUSSION 

    The initial task in this study was to try and detect viable MAP in animals from 

a farm with a known Johne’s disease problem. The first set of animals were 

selected using standard current diagnostic criteria for Johne’s disease which 

requires repeat testing over a period of six months, and an animal is only 

considered positive if it has given three consecutive positive milk ELISA test 

results in that time. As a control, five animals from a different herd that had 

been accredited as Johne’s disease-free were tested. To validate the phage test 

results in this initial trial, blood ELISA tests were carried out in parallel to 

determine whether the detection of MAP antibodies in the blood corresponded to 

the detection of MAP cells using the phage assay. 

    The blood ELISA results for the initial nine presumed infected animals agreed 

with the diagnosis of the milk ELISA’s in all but one case (animal #8; Set A) 

which gave an indeterminate test result. Discrepancies between milk and blood 

ELISA’s have been reported before and do not always correspond with one 

another (Hardin and Thorne, 1996). In contrast the phage assay detected viable 

organisms in blood samples from all of the infected animals (Set A; Table 4.1), 

and this result agreed with the milk ELISA results. In the presumed Johne’s 

negative herd (Set B; Table 4.1), two samples (animals #11 and 13) produced 

MAP DNA-negative plaques, which may be because the virucide did not destroy 

all the phage before the sample was plated on the lawn of M. smegmatis. Break-

through has been reported before when performing the FPTB assay (Botsaris et 

al. 2013), but the introduction of the PCR identification step overcomes this 

problem (Stanley et al. 2007). Hence in this study samples were not scored as 

MAP-positive unless the IS900 sequence can be amplified from the plaque. 

    In the second set of animals from a separate Johne’s disease-affected farm, 

the animals tested were chosen with variable milk ELISA statuses (Set C). Three 

of the animals from Set C gave negative milk and blood ELISA test results and 

two of these were also negative for MAP using the phage assay. However the 
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phage assay detected viable MAP in the blood from one animal (Set C; animal 

#22), and the plaque numbers were equivalent to those of the majority of the 

other milk ELISA-positive animals. This indicates that results gained using a 

method that directly detects the viable organism can differ from test results 

based on the immune response of the animal to infection. This is a phenomenon 

that has been described before with MAP cell detection being followed by a spike 

in the immune response seen by ELISA tests six months post infection in cattle 

(Kawaji et al., 2012). Further work is now needed to understand the relationship 

between the immune response of the animal and the presence of viable 

organisms in the blood.   

    When phage assay-MAP positive samples were cultured, no growth was 

detected. Since the plaque number indicates that there were fewer than 42 MAP 

cells per ml in all of these samples, the lack of growth is to be expected as this 

number is below the limit of detection for the culture method used. MAP has 

been detected in blood samples by PCR-based methods and by culture (Gwozdz 

et al., 2000, Naser et al., 2004, Bower et al., 2010, Bower et al., 2011).  

Although viable cells can be cultured from these samples, the  time required 

makes this of limited practical value and the need for decontamination before 

culture may reduce the number of viable cells present in a sample (Reddacliff et 

al., 2003). Interestingly here, following PMMS of blood samples, no 

contamination of cultures was seen suggesting that the selectivity of the PMMS 

followed by the extensive washing used in this method is sufficient to remove 

contaminating microflora from the sample without the need to apply chemical 

decontamination.   

    The phage assay was next carried out on calves experimentally infected with 

MAP (Set D). This was to determine how early during infection the phage assay 

could detect MAP compared to a blood-PCR. Early immune response has been 

detected before as early as four months post-infection when using interferon-

gamma tests (Waters et al., 2003). Sensitivities and specificities of milk and 
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blood ELISA’s in the early stages of MAP infection have been reported as being 

poor (Nielsen and Toft, 2008). The results in this study showed that both the 

phage assay and the direct blood-PCR were able to detect MAP six months post-

infection but this was not as early as the reported interferon-gamma test. 

However the measurement of interferon-gamma is an indicator of exposure to 

MAP or its antigens and does not differentiate between dormant infection and 

active infection, thus it is difficult to identify those animals that may go onto 

clinical disease compared to those that would not (Jungersen et al., 2011).  

    Some of the discrepancies between the phage assay and PCR assay may be 

explained by the ability of bacteriophage D29 only to infect viable, actively 

growing cells (see Chapter 6). Therefore when the direct blood-PCR assay used 

in the study of Set D detected MAP DNA in a sample (e.g. set D samples 5, 7, 9 

and 10); the DNA detected may have been from dead/non-viable MAP cells 

which would not have been detected by the phage assay. However in samples # 

2, 3 and 4 from Set D the phage assay detected the presence of viable MAP cells 

whereas the blood-PCR gave negative results, which cannot be explained in the 

same way. Limitations to the sensitivity to both the blood-PCR and the phage 

assay may have resulted in the discrepancies between the tests, especially as 

only small volumes (1 ml) were available for sampling which then can limit the 

sensitivity of detection. 

    Analysing the data for Set C (Table 4.2), MAP infection was detected in 

animals with both inconclusive and negative blood and milk ELISA test results. 

Many of the animals tested were not exhibiting clinical manifestations of Johne’s 

disease, but MAP was still detected circulating in their blood using the phage 

assay. In Set E, the animals were infected 3.5 years before blood samples were 

taken for testing and were not showing clinical symptoms for Johne’s disease. 

The results showed that although plaques were detected in two of the unexposed 

animals in these studies, no positive MAP DNA was detected. In the MAP-

exposed animals, 35 % (7/20) had viable MAP in their blood that was detectable 
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by the phage assay. In this set, two animals were shedding MAP in their faeces, 

however no MAP was detected in the blood of these animals. This was interesting 

as it would have been assumed, if the disease had progressed to shedding, the 

animals would be more likely to have viable MAP in their blood. However the 

results gained suggest that this was not the case. In infected sub-clinical animals 

especially, faecal shedding is intermittent (Crossley et al., 2005). If the failure to 

detect MAP using the phage assay was a true result it may in fact reflect the fact 

that the phage assay was not carried out over several time points and the 

presence of viable MAP cells in the blood may also be intermittent relative to 

when the animals are found to be shedding MAP in their faeces. Another factor 

that may have affected the results gained when testing the experimentally 

infected animals compared to those obtained with commercial dairy cattle (Sets 

A-C) is that the animals in Set D were not exposed to the same stresses that 

dairy animals are exposed to, and the effect of this on the progress of the 

disease means that perhaps the results gained would be different to those 

obtained with naturally infected dairy herds (Mortensen et al., 2004). However, 

despite these differences, the ability to detect viable MAP in these animals is an 

encouraging step forward for this novel assay. A longitudinal study testing the 

blood, milk and faeces of animals would allow us to gain a better understanding 

of disease progression and to determine when systemic infection becomes 

established in animals and how this relates to the milk ELISA and faecal culture 

or PCR results.  

    The results obtained using the phage assay could not be compared 

statistically with any power to those gained using faecal culture, PCR or milk 

ELISA, due to the lack of number of samples and difference in size of samples in 

each test group. However in total 55 samples were tested using both with the 

phage assay and blood ELISA, so basic statistical comparisons can be made 

between them. Within these 55 samples, when the phage assay gave a positive 

result, only half as many blood ELISA results were also positive. However when 
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the phage assay did not detect any viable MAP cells in the blood samples, the 

majority of the blood ELISA results were also negative. These differences were 

statistically significant (P<0.001) and, interestingly, when the phage assay was 

used as the Gold Standard test result, the sensitivity and specificity values of the 

blood ELISA test were very similar to previously published values (Table 4.6; 

Whitlock et al., 2000). The blood ELISA test is notorious for having variable 

sensitivity, especially when testing sub-clinically infected animals where the 

sensitivity has been found to be as low as 26 % (Alinovi et al., 2009). The pool 

of samples from Sets A, B, C and E where blood ELISA results were available 

represent animals at completely different stages of infection and, in two cases 

(Sets A and C), it was not known how much MAP they were infected with or 

challenged with, or what strains they were infected with. These variables further 

reduce the power of the analysis carried out on the small sample set, but the 

overall pattern of results gained was encouraging. To really evaluate the 

performance of the phage assay, and to better understand what the results tell 

us about disease progression, ideally a longitudinal study needs to be carried 

out, testing a cohort that has been experimentally infected with MAP and 

performing all the different diagnostic tests (ELISAs, PCR and culture) so that 

the results can be compared to those gained using the phage assay with a 

greater degree of power. 

    MAP can affect many different animals other than cattle. Sheep, camelids, 

rabbits, deer and many others have all been found to be affected by MAP 

(Nielsen and Toft, 2009). Although Johne’s disease has a larger impact on cattle 

farms in the UK, throughout the world, the effect of Johne’s of disease can have 

a bigger role on the economics of farming other animals. In Australia, for 

example, the impact of Johne’s disease on sheep farming is by far a bigger issue 

than its effect on cattle farming (Reddacliff et al., 2003). Developing a test that 

can detect MAP in different species is very important. During the work described 

in Chapter 3 to optimise the phage assay, sheep blood was used. With this 
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knowledge it was known that the phage assay could be used for detection of MAP 

in clinical samples of sheep blood, so no further optimisations of the 

methodology was needed before a trial was initiated. There were, however, other 

variables in the samples provided for the work here that had to be considered. 

Previously MAP had been detected using the phage assay in milk samples from 

sheep and goats in milk and in cheese made from these animals (Botsaris et al., 

2010), so – despite their different culture characteristic - there was evidence 

that the bacteriophage should be able to detect the sheep strains of MAP. 

However the PMMS method has never (to date) been used to recover sheep 

strains of MAP and the ligand recognised by the peptide may be different to that 

found on cattle strains of MAP. 

    The results gained when testing the blood from sheep experimentally infected 

with MAP were variable. Out of the five animals that gave positive MAP test 

results using the phage assay, only three had been experimentally infected with 

MAP. The animals in this group were clinical for ovine Johne’s disease and had 

positive faecal culture, but despite this, only five gave positive (definitive or 

suspect) serum ELISA test results. One animal that gave a positive MAP test 

result using the phage assay was from a small group of animals held together 

that had given a positive MAP ELISA test result in the past, and so could have 

encountered the organism in the environment. However in the other control 

cohort (animals 19-28; Set S1), none of these animals had encountered MAP 

and had shown no positive reactions in any of the other tests performed 

throughout the experiment. This suggests that either the test was detecting 

viable MAP in the blood of the sheep through natural infection that was not 

detected by any of the other tests, or some sort of contamination had occurred, 

resulting in a false-positive result. As these animals were already culled by the 

time the phage assay was performed, determining whether they would go on to 

develop Johne’s disease cannot be determined. However, as emphasised 

previously, a larger study over a long period time is really required to determine 
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how effective the phage assay can be in identifying infection compared to the 

other tests, and also to provide a better understanding of disease progression; 

perhaps low level infection can be cleared by some animals and therefore the 

presence of MAP in the circulating blood at any one time point may not be 

indicative of established infection. 

    Overall in all of these trial studies, the number of samples tested was too low 

to be able to develop powerful analysis of the performance of the phage assay 

and its ability to detect and diagnose Johne’s disease. Using Mead’s Resource 

Equation (Appendix 4.1), the number of samples used in the initial experiments 

was adequate to get preliminary data on the phage assay as a detection method 

for MAP. However as mentioned before, a larger cohort of animals, with many 

parallel tests are needed to be able to test the efficacy of the phage assay as a 

detection method or diagnostic for Johne’s disease. However the results gained 

to date suggest that the test has promise to be a good tool for rapidly detecting 

disseminated MAP infection, to allow more information about the pathogenesis of 

Johne’s disease to be gained.   
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CHAPTER 5 

DEVELOPMENT OF A NEW HIGH-THROUGHPUT ASSAY FORMAT FOR THE 

DETECTION OF VIABLE MAP  
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5.1. INTRODUCTION 

    The results presented in Chapters 3 and 4 have demonstrated that MAP cells 

can be detected in the blood of animals exposed to MAP, even in those that are 

suffering from the sub-clinical stage of Johne’s disease. The rapid and reliable 

detection of this organism within a herd is very important to controlling this 

disease (Benedictus and Kalis, 2003). The existing FASTPlaqueTBTM assay format 

can detect and enumerate viable MAP in blood within two days (Swift et al., 

2013). However although the blood assay is cheap and relatively easy to 

perform and does not require specialist equipment, the method is labour 

intensive and therefore it is difficult to test large numbers of samples. In a 

veterinary setting, where samples from a whole herd need to be taken, often 

over hundreds of animals would need to be tested and would require the 

capacity of a high-throughput assay format, as using a labour intensive method 

would become challenging. If the blood assay can be shortened and 

concentrated by using just one tube, the process can be automated. 

    The use of peptide-mediated magnetic separation (PMMS) in developing the 

phage based blood detection method (Chapter 3) was introduced to isolate MAP 

cells from the sample matrix, which was potentially inhibitory for phage 

infection, so that further downstream assay steps could be carried out. PMMS 

allowed MAP cells to be captured and placed in a medium that enables 

bacteriophage infection of the cells to occur. However the binding of multiple 

cells to the surface of the beads (Fig. 3.1) reduces the ability of the assay to 

accurately enumerate the number of MAP cells present in the sample. This type 

of method has been described before when MAP cells were isolated from milk 

using Immuno-Magnetic Separation (IMS) and subsequently lysed to release 

DNA which was then detected using MAP-specific IS900 PCR (Grant et al., 2000). 

But in this case the assay result just reported on the presence or absence of MAP 

and did not quantify the number of cells detected.   
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    There are several published methods for enumerating MAP cells using 

quantitative real-time PCR (qRT-PCR; Rodriguez-Lazaro et al., 2005). However 

this cannot easily be applied to the standard phage assay format after plaque 

formation and a drawback of using qRT-PCR is that you cannot determine the 

viability of the cells detected. In the food industry especially, the ability to 

differentiate between live and dead cells is very important.  

    The aim of these experiments was to develop a specific and sensitive method 

of detecting viable MAP, quickly and in a ‘single-tube’ format that had the 

potential to be automated. Bacteriophage are natural predators of bacteria and 

lytic phage have evolved the ability to routinely and efficiently break open cells, 

hence it was hypothesised that if PMMS was used to isolate MAP cells from blood, 

the concentrated cells could then be lysed using the lytic mycobacteriophage 

D29 and then the DNA released from on the infected cells could be detected by 

PCR. This combination of methods would allow rapid, sensitive detection and 

provide a method to distinguish between live and dead cells, as the phage will 

only lyse cells that are able to support phage replication. In addition if combined 

with qRT-PCR the assay would retain the ability to enumerate the number of 

cells detected.   

    

5.2. RESULTS 

5.2.1 Determining the time taken for bacteriophage D29 to release DNA 

from MAP 

    To be able to detect the DNA from MAP lysed by the bacteriophage, 

knowledge about the life cycle of phage D29 is required. If a sample of the lysis 

mixture to be used as a template for PCR is removed too early before the cells 

have lysed, no cells would be detected. In contrast, if left too late, DNA may 

start to become degraded by nucleases released from the lysed MAP cells. 

Therefore determining when exactly the cells are lysed by the phage, will enable 
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successful recovery of template DNA to be used for PCR amplification of 

signature sequences.  

    Standard protocols exist to measure bacteriophage growth and replication 

within a host. Generally the burst size and determining the length of the eclipse 

phase has to be carried out by a series of dilutions. To measure the eclipse 

phase of the phage, both host and phage would normally be diluted to a 

countable and detectable range and both cell number and phage titres monitored 

over time, which is time consuming and uses a lot of material. As an alternative 

to this, FAS was used to inactivate extracellular bacteriophage, so that the 

eclipse phase of D29 could be determined. Briefly; countable MAP or M. 

smegmatis cells (1 x 102 pfu ml-1) were infected with phage D29 (m.o.i. 10) and 

left to infect for 30 min. The virucide was then added and the sample was plated 

out over different time points. 

    Figure 5.1 shows that the eclipse phase of D29 when infecting M. smegmatis 

was around 90 min. However when the eclipse phase was determined for phage 

D29 when infecting the MAP, the eclipse phase was longer at 120 min. From this 

it was determined that after infection the samples should be left for at least 160 

min to allow bacteriophage to break open their host cell so that the released 

DNA could be detected. 
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Figure 5.1. Use of FAS to determine the eclipse phase of bacteriophage  

D29 infecting M. smegmatis and MAP 

 

Graph showing the time taken for new D29 bacteriophage virions to be released 

from M. smegmatis (Red) and MAP (Blue). Samples were taken after an initial 

incubation of 40 min to allow phage adsorption to the host cells. Error bars 

represent the standard deviations of the means of number of plaques recovered 

from the phage assay performed in quadruple. The eclipse phase is defined as 

the time taken for new particles to be released from the cells after infection, thus 

the period when no phage are detected outside of the host cell.  
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 5.2.2. Isolating MAP and extracting DNA using bacteriophage     

    To facilitate MAP cell capture prior to cell lysis, two peptides, aMP3 and 

aMptD, that bind specifically to MAP, were used as described previously in 

Chapters 3 and 4. To capture the cells the PMMS method described in Section 

2.2.2, was used initially to recover MAP cells (1 x 104 pfu ml-1) from 1 ml of MP. 

After PMMS, one sample was inoculated with bacteriophage (100 µl of 

reconstituted FPTB bacteriophage) and one sample was not (100 µl of MP added 

as a control). Each sample was then incubated at 37 oC to for 3 h, to allow for 

adsorption, replication and release of new bacteriophage from the MAP cells.  

After incubation the cells were pulse centrifuged to bring the beads and the MAP 

to the bottom of the tube, and the samples were then placed onto a magnet to 

separate any intact cells from the MAP chromosomal DNA released by the phage 

into the supernatant.  

    Carefully (to avoid picking up any unlysed cells attached to the beads) 100 µl 

of the supernatant was transferred into a fresh microcentrifuge tube. Ten 

microlitres of the sample was then used as template DNA for the MAP specific 

F57 PCR assay (Section 2.4.5.3) to determine whether any released MAP DNA 

could be detected. However in this case no PCR products were detected. It was 

possible that resuspending the MAP cells attached to the beads after PMMS in 1 

ml of MP may have diluted the DNA too much, therefore reducing the probability 

that the PCR assay would be able to detect any released DNA. In addition the 

F57 PCR only targets a single copy gene, also reduces the sensitivity of the PCR 

assay compared to the PCR assays that target the multicopy IS900 PCR assay 

and this could also have resulted in no DNA being detected.  

    Taking these factors in to account, the experiment was repeated, however 

after PMMS, the samples were resuspended in just 100 µl of MP and the amount 

of phage added was then reduced accordingly to maintain the same final pfu ml-1 

concentration. After the 3 h incubation, again the samples were centrifuged to 

remove the beads and any cells remaining attached to them and to also separate 
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out any cell debris present in the phage-infected sample. The tubes were then 

placed on a magnet. Samples (10 µl) of the supernatant were removed and were 

again used as template DNA for the MAP specific F57 PCR. 

    The results show where the phage were added a strong band of the expected 

size was present at around 400 bp. However in the negative control, where the 

phage were not added, although there was less PCR product indicating a lower 

amount of starting template there was still a faint band visible (Figure 5.2). This 

suggested there could be contaminating free MAP DNA in the sample (although 

this is unlikely as the water control did not produce a PCR product. Alternatively 

some MAP cells present in the sample were lysed even though no phage were 

present. Although the cells were captured on beads, some intact MAP cells may 

have been released into the supernatant and acted as template DNA for the PCR 

since the heating during the denaturing step of the PCR may have been lysed the 

cells and therefore released their DNA for further amplification. 
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Figure 5.2. Detection of MAP DNA following lysis by bacteriophage  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCR amplification of the 400 bp F57 DNA region specific for MAP following 

capture of cells by PMMS and lysis by bacteriophage D29. Lane 1, 100 bp DNA 

ladder (Fig 2.5). Lane 2, template DNA following bacteriophage lysis of MAP 

cells; lane 3, template DNA from sample without bacteriophage; lane 4, negative 

control (SDW replaces MAP DNA as template). Lane 5, positive control (purified 

genomic MAP K10 DNA used as template). 
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5.2.3. Optimising bacteriophage mediated cell lysis PCR-detection 

   One of the advantages of the phage-based detection is that it is able to 

distinguish between the live and dead cells, and it was important to retain this 

feature of the assay when developing the rapid, one tube format. Since a PCR 

product occurred in the sample to which no bacteriophage was added further 

method development was required to overcome this. 

 

5.2.3.1. Removing potential free MAP DNA 

    Bacterial cultures grown to high cell density can contain free DNA from cells 

that have lysed, and this may have resulted in the amplification of the PCR 

product in the sample that no phage was added to. To investigate this, before 

repeating the experiment described in Section 5.2.2 cultures of MAP strain K10 

and ATCC 19851 were subjected to DNase I (NEB, UK) treatment (Section 2.5.4) 

to degrade any DNA that may have been carried from the pure cultures into the 

assay. The washing step used during PMMS would then remove the DNase I from 

the sample so that after phage lysis only template DNA from viable cells would 

be present. In this case the P90 IS900 PCR (Section 2.4.5.1) was carried out to 

increase the sensitivity of the PCR step and to negate the impact of low levels of 

DNase I remaining in the samples.  

    The results showed that once again a stronger band was seen when the 

bacteriophage was used to release the MAP DNA from the strains K10 and ATCC 

19851 (Fig. 5.4) indicating that DNase I was not having an adverse effect on the 

PCR amplification. However a band was still seen on both non-bacteriophage 

controls suggesting free DNA in the original sample was not the cause of the 

problem. The use of the more sensitive IS900 PCR also resulted in a much 

stronger signal from the uninfected sample, which was not desirable. This result 

suggested the cells were still lysing, either because of bacteriophage 

contamination or because free cells were released into the supernatant and were 

being detected during the denaturation steps of the PCR.       
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    No matter how good the laboratory practice and hygiene are, bacteriophage 

contamination can occur (Los et al., 2004). To rule out bacteriophage 

contamination, the experiment above was repeated using fresh pipettes, pipette 

tips and was performed on a different bench where mycobacteriophage had not 

been used before. New reagents and equipment were also used. Four samples of 

MAP cells (K10) ranging from 1 x 106 to 1 x 103 pfu ml-1 were tested but in this 

case no phage were used to lyse the cells. The IS900 PCR was used again to 

make sure any DNA released from the MAP cells during the PCR would have been 

detected. The results show that when no bacteriophage were added, strong PCR 

signals were still detected in each of the samples (Fig. 5.5). This suggested that 

the false-positive results were not due to bacteriophage being inadvertently 

introduced into the negative control samples, and that free cells in the sample 

may be responsible for the signals from the uninfected controls. 
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Figure 5.4. The effect of DNase I treatment to remove potential DNA 

contamination  

 

 

 

 

 

 

PCR amplification of the approximately 300 bp IS900 DNA region specific to MAP. 

Lane 1 and 8, 100 bp DNA ladder (Fig. 2.5). Lanes 2 and 4, template DNA from 

MAP cells lysed using bacteriophage D29 (K10 and ATCC 19851, respectively); 

lanes 3 and 5, template MAP cells with no bacteriophage added (K10 and ATCC 

19851, respectively); lane 6, positive control (template used was purified 

genomic MAP K10 DNA); lane 7, negative control (SDW replaced template DNA 

in PCR reaction). 

 

 

Figure 5.5. Experiment to rule out bacteriophage contamination of 

uninfected MAP cells 

 

 

 

    

 

 

 

 

 
PCR amplification of the approximately 300 bp IS900 DNA region specific to MAP. 

Lane 1, 100 bp DNA ladder (Fig. 2.5). Lanes 2 to 5, template DNA from intact 

MAP cells (K10) added into the PCR tubes. Number of cells added ranged from 1 

x 106 to 1 x 103 pfu ml-1. Lane 6, negative control (SDW replaced template DNA 

in PCR reaction) and lane 7, positive control (template used was purified 

genomic MAP K10 DNA).   
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5.2.3.2. Improving peptide-mediated magnetic capture efficiency 

    As bacteriophage contamination and DNA carry over from the pure cultures 

had been ruled out as the causes of the strong bands seen in the uninfected 

control, the capture efficiency and stability of the captured cells was 

investigated. The FPTB assay was used to determine whether MAP cells may be 

dissociated from the magnetic beads during PMMS and if so, how many.   

    The original protocol developed for capturing MAP cells from blood by PMMS 

only required MAP cell capture for 30 min, and subsequent washing only takes 

an extra 20 min. Thus MAP cells would only be required to remain on the 

magnetic beads for a maximum of 1 h. During the one day assay, the cells are 

required to remain on the beads for almost 4 h, which may give the cells enough 

time to begin dissociating from the peptides binding them. Therefore an 

experiment was designed to determine the number of cells that could be 

detected being released from the beads during a 3 h incubation during which the 

bacteriophage were lysing the cells.   

    To do this, approximately 1 x 106 pfu ml-1 of MAP cells (K10) were mixed with 

the magnetic beads for 15 min and PMMS was carried out. The samples were 

placed at 37 oC and at 30 min intervals the samples were placed on magnetic 

racks and 100 µl was taken from the supernatant. The number of free MAP cells 

in this sample was then determined using the FPTB assay. During the 3 h 

incubation used, as the time increased the number of cells detected in the 

supernatant almost doubled from the sample taken at time point zero to that 

taken after 180 min. The highest number of cells was detected at 150 min, when 

8.1 x 102 pfu ml-1 was detected, however this fell to 6.7 x 102 pfu ml after 180 

min (Figure 5.6) 
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Figure 5.6. Number of dissociated MAP cells detected in the supernatant 

during 3 h incubation on magnetic beads 

 

Graph showing the number of plaques numbers recovered from the supernatant 

of media containing MAP cells bound to magnetic beads by PMMS. Samples were 

taken every 30 min for 3 h. The trend-line represents the general increase over 

time in the number of MAP cells dissociating from the beads detected by the 

FPTB assay. 

 

 
Figure 5.7. Number of MAP cells dissociated from the magnetic beads 

during incubation  

 

 

 

 

 

 

 

 

 

Graph showing log10 of the plaque numbers recovered from the supernatant 

during PMMS every 30 min for 3 h (blue bars) and from the beads after 3 h of 

incubations (red bar).     
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The results from Figures 5.6 and 5.7 show that captured MAP cells can fall off 

the beads, and these may be detectable by PCR once they are free in the 

supernatant. Several parameters such as pH, temperature and length of time, 

can be altered that can increase or decrease the rate of dissociation between 

binding partners. In this case the length of time is difficult to change as the 

bacteriophage require a certain amount of time to release their host’s DNA 

(Section 5.1). 

    Hence changing the pH of the buffer was initially chosen as a parameter that 

could be optimised. The original PMMS methods described by Stratmann et al. 

(2002) used PBS (pH 7.4) to isolate the MAP cells. In the modified protocol used 

during the blood-phage assay, MP is used instead which has a pH of 6.6. This 

shift in pH may alter the dissociation constants which resulted in the release of 

the MAP cells into the supernatant after the magnetic separation. To compare 

the effect of these two buffers. The experiment described above (Section 5.2.2) 

was repeated, however this time cells were suspended in either PBS or MP and 

samples of the supernatant taken every hour. The number of free MAP cells 

present in these samples was then determined using the FPTB assay. The results 

(Fig. 5.8) show that when PBS was used virtually no MAP cells were detected in 

the supernatant at each time point and this was significantly different to the 

result gained when the cells were in MP (P<0.001). Therefore the pH of MP was 

adjusted using sodium hydroxide to pH 7.4 and the experiment repeated. In this 

case the results (Fig. 5.9) showed that there was no significant difference 

between the number of MAP cells detected in MP at either pH 7.4 or 6.6.    
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Figure 5.8. MAP cell dissociation in PBS compared to Media Plus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Graph showing the number plaques recovered from the supernatant of MAP cells 

isolated and suspended in either MP (red bars) or PBS (green bars). Unpaired T-

test was used to determine significance of difference between MAP detection in 

PBS and MP. Error bars represent the standard deviations of the means of 

number of plaques recovered from the phage assay performed in triplicate. 

 

 

 

Figure 5.9. MAP cell dissociation in MP with pH 7.4 compared to 6.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Graph showing the number plaques recovered from the supernatant of MAP cells 

isolated and suspended in either MP pH 6.6 (red bars) or MP pH 7.4 (blue bars). 

Unpaired T-test was used to determine significance of difference between MAP 

detection in PBS and MP. Error bars represent the standard deviations of the 

means of number of plaques recovered from the phage assay performed in 

triplicate. 
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    Since this result showed that pH alone did not result in a tighter binding of the 

MAP cells to the beads, it was possible that resuspending the cells in PBS made 

them less infectable by the phage and this would account for the reduced 

number of cells detected and account for the fact that seemingly no dissociation 

of MAP cells from the beads when PBS was used as the buffer. To investigate 

this, the experiment was repeated, however the number of cells remaining on 

the beads was also determined using the FPTB assay. The results show that 

when the beads were tested, again no MAP was detected suggesting that PBS 

does not support efficient phage infection  and therefore the difference in pH did 

not affect the rate of dissociation. However this result did highlight the 

importance of using a buffer that is compatible with phage infection when using 

the FPTB assay to detect MAP cells.  
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5.2.3.3. Preventing detection of unlysed MAP cells by limiting thermal lysis  

    The above experiments indicated that uninfected free MAP cells dissociating 

from the magnetic beads were being detected by the PCR assay. The initial 

denaturing step at 95 oC during the PCRs is known to lyse bacterial cells and this 

fact is used when performing direct colony PCR. If the dissociation of the MAP 

cells from the beads could not be prevented this lysis was not desirable for 

development of the one tube assay format. To try and reduce cell lysis, the 

denaturation temperature was reduced. Samples (10 µl) containing 102 pfu ml-1 

MAP cells (K10) were prepared as template for a PCR reaction. The MAP cells 

were initially washed with MP by centrifugation to remove as much free DNA in 

the culture as possible, before being used as template. A non-Hot Start PCR 

master mix (Qiagen) was used for the PCR reaction. A temperature gradient PCR 

was used to change the denaturing temperature from 94 oC, to 85.1, 74.8 and 

70 oC. Control samples containing Genomic MAP DNA (K10) were prepared to 

ensure that at the modified temperatures the PCR was still able to amplify the 

correct PCR products.  

    The results (Fig. 5.10a) show that only the genomic MAP DNA and the intact 

MAP cells produced a good PCR product after the MAP-specific F57 PCR when 94 

oC was used as the denaturation temperature but no PCR products were 

produced when lower denaturation temperatures were used. The experiment was 

repeated using a smaller range of temperatures for denaturation: 95, 92.6, 89.6, 

83.1 and 80 oC (Fig. 5. 10b). The results show that the PCR products were only 

amplified when temperatures of 95 and 92.6 oC were used for the denaturation 

step, but again both the genomic DNA and whole cell samples gave a positive 

result showing that altering the denaturing temperature could not be used to 

overcome the problem of thermal cell lysis.   
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Figure 5.10. Effect of reducing the denaturation temperature on PCR 

amplification and cell lysis 
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PCR amplification of the 400 bp F57 DNA region specific for MAP. Lane 1 and 10, 

100 bp DNA ladder (Fig 2.5). In lanes 2, 4, 6 and 8 the template was purified 

genomic MAP (K10) DNA. In lanes 3, 5, 7 and 9 intact MAP cells (K10) were 

added as template. The denaturation temperatures used were lanes 2 & 3, 94 

°C; lanes 4 & 5, 85.1 °C; lanes 6 & 7,  74.8 °C and lanes 8 & 9 70 oC. 

 

 

 

 

B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
PCR amplification of the 400 bp F57 DNA region specific for MAP. Lane 1 and 10, 

100 bp DNA ladder (Fig 2.5). In panel A the template was purified genomic MAP 

(K10) DNA. In panel B intact MAP cells (K10) were added as template. The 

denaturation temperatures used were lane 2, 95 °C; lane 3, 92.6 °C; lane 4,  

89.6 °C, lane 5, 83.1 oC and lane 6, 80 oC. Lane 7 is a negative control (SDW 

added as template). 
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 5.2.3.4. Preventing detection of unlysed MAP cells by separation  

    The next approach tried to prevent the detection of the uninfected cells was to 

try and remove the dissociated MAP cells from the sample. When performing the 

PCR identification during the blood assay, spin columns are used to isolate and 

concentrate DNA. It was hoped that by applying the free DNA from the lysed 

cells to a spin column these may act as a barrier to the free cells in the 

supernatant whilst still binding and concentrating the free DNA that would be 

released from the cells after phage infection.  

    To investigate this MAP K10 cells (1 x 104 pfu ml-1) were inoculated into MP 

and recovered using the PMMS protocol (Section 2.2.2). The cells attached to the 

beads were resuspended in 1 ml of MP and incubated for 3 h at 37 oC with or 

without the addition of bacteriophage (final concentration - 108). After incubation 

10 µl was removed from the supernatant of each sample and the rest was 

passed through the DNA concentrator spin column (ZymoResearch; Section 

2.4.2.3). The eluted DNA and the sample were taken directly from the phage 

lysis tube (10 µl) and were used as template for the MAP-specific F57 PCR 

(Section 2.4.5.3). In this case neither of the samples taken directly from the 

lysate gave a positive PCR result indicating that the number of cells released 

from the beads directly into the supernatant was below the limit of detection of 

the PCR assay (Fig. 5.11). However the DNA that had been concentrated via the 

spin column from the sample that had been infected with phage gave a very 

strong band. Unfortunately the concentrated sample from the non-phage 

infected sample also gave a band, although it was much weaker. 
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Figure 5.11.  Use of spin column to separate out intact MAP cells  

 

 

 

 

 

 

 

 

 

 

 

 
 

PCR amplification of the 400 bp F57 DNA region specific for MAP. Lane 1, 100 bp 

DNA ladder (Fig. 2.5). Lane 2 was sample removed from the bacteriophage lysis 

tube before the spin columns were used to concentrate the DNA; lane 3, 

template from non-bacteriophage lysed MAP cells before spin column 

concentration. Lane 4, concentrated template DNA removed from bacteriophage 

lysed MAP cells. Lane 5, concentrated template from non-bacteriophage lysed 

MAP cells. Lane 6, positive control (purified genomic MAP K10 DNA).  
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    As this result was encouraging, the experiment was repeated using M. 

smegmatis as well as SDW as negative experimental and PCR controls. The 

results showed that, as expected, both M. smegmatis and the SDW negative PCR 

control did not support amplification of the F57 band. However both this time the 

phage-infected and uninfected MAP sample gave strong positive bands, even 

after purifying the sample using the spin columns (Figure 5.12) suggesting 

continued contamination by whole cells.  

    Therefore it was decided to use the beads again after the cell lysis step to try 

and remove any intact cells from the supernatant. The experiment was repeated, 

however after the time had been allowed for phage lysis, the beads (and any 

remaining intact cells) were removed (by pulse centrifugation and magnetic 

separation) and then the supernatant was transferred into a tube containing 

fresh magnetic beads. The samples were then incubated at room temperature 

with rotation for 30 min to allow any free MAP cells to bind to the beads. The 

samples were then placed back on the magnetic rack and the supernatant was 

then removed processed through the spin columns and the PCR assay 

performed.  

    The results show that after the first round of PMMS there was a brighter band 

from the phage infected sample compared to the uninfected sample. However 

after the second round of PMMS and DNA concentration, there was still a strong, 

although fainter, band from the uninfected sample suggesting MAP cell DNA was 

still finding its way into the columns and being detected by the MAP specific PCR 

(Figure 5.13). 

  

 

  



172 

 

 

 

Figure 5.12. Effect of using spin column to remove intact MAP cells 

 

 

 

 

 

 

 

 

 

 

 

 

 
PCR amplification of the 400 bp F57 DNA region specific for MAP. Lane 1, 100 bp 

DNA ladder (Section 2.5). Lane 2, concentrated template DNA removed from 

bacteriophage lysed MAP cells. Lane 3, concentrated template DNA removed 

from non- bacteriophage infected MAP cells. Lane 4, concentrated template DNA 

removed from bacteriophage inoculated M. smegmatis cells. Lane 5, 

concentrated template from non-bacteriophage lysed M. smegmatis cells. Lane 

6, positive control (genomic MAP K10 DNA). Lane 7, negative control (SDW).   

 
 

Figure 5.13. Effect of using spin columns and PMMS to remove intact 

MAP cells  

 

 

 

 

 

 

 

 

 

 

 

PCR amplification of the 400 bp F57 DNA region specific for MAP. Lane 1, 100 bp 

DNA ladder (Fig. 2.5). Lane 2, concentrated template DNA removed from 

bacteriophage lysed MAP cells. Lane 3, concentrated template DNA removed 

from non-bacteriophage infected MAP cells after one round of PMMS. Lane 4, 

concentrated template DNA removed from bacteriophage infected MAP cells after 

two rounds of PMMS. Lane 5, concentrated template from non-bacteriophage 

infected MAP cells after two rounds of PMMS Lane 6, negative control (SDW). 

Lane 7, positive control (genomic MAP K10 DNA). 
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    Once again the PCR amplified signature MAP DNA sequences from the sample 

containing uninfected MAP cells, even after two rounds of PMMS were used to 

remove the intact cells. The DNA concentrator uses a DNA binding buffer which 

may induce lysis of the bacterial cells. Since the components of the kit are not 

given in the kit MSDS it was difficult to predict the effect of the buffers from their 

chemical composition, therefore the hypothesis that the buffer may induce cell 

lysis was investigated empirically. To do this MAP cells (K10) were 10-fold 

serially diluted from 1 x 104 pfu ml-1 to 1 x 101 pfu ml-1. The samples were then 

subjected to DNA concentration using the spin columns without any previous cell 

lysis step and the eluted template amplified using MAP-specific IS900 PCR to 

determine whether using the spin columns induced MAP cell DNA lysis. DNA was 

detected from each of the dilutions tested, apart from the sample that contained 

102 pfu.ml-1 MAP cells, (Figure 5.14). This result appeared to be an anomaly as 

DNA was detected in the sample that contained 10-fold fewer cells. Therefore it 

seems that the buffers in the DNA concentrator kit can induce lysis of the intact 

MAP cells, resulting in release of the genomic DNA, which may explain why PCR 

products were still being produced from samples that were not infected with 

bacteriophage. 

    The experiment with two rounds of PMMS was repeated using 1 x 104 pfu ml-1 

of MAP cells (K10). However, this time the spin-columns were not used to 

concentrate the DNA. The PMMS was carried out to capture the MAP cells then 

the beads were finally resuspended in 100 µl of MP. The sample was then pulse 

centrifuged and placed on a magnetic rack. A 10 µl sample of the supernatant 

was taken as a sample of the unpurified template DNA and the rest of the lysis 

mixture was placed in a fresh microcentrifuge tube. Fresh magnetic beads were 

mixed with this and the samples incubated with rotation for 30 min. Finally the 

beads were separated on a magnetic rack along with any captured intact cells 

and 10 µl of the supernatant was used as template DNA for the MAP-specific 

IS900 PCR reaction.  
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    As before, MAP DNA was detected strongly when bacteriophage was used to 

lyse the cells both in the original lysis mixture after the first round of PMMS and 

in the second sample after the second round of PMMS to remove any remaining 

intact cells. However in the uninfected sample only a faint PCR product was 

amplified after the first round of PMMS and no amplification was seen at all when 

testing the lysis mixture after the second round of PMMS  (Figure 5.15). 
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Figure 5.14. Determining if spin column buffer can cause the release of 

MAP DNA from intact cells 

 

 

 

 

 

 

 

 

 
PCR amplification of the approximate 300 bp IS900 DNA region specific to MAP. 

Lane 1, 100 bp DNA ladder (Fig. 2.5). Lane 2 to 5, MAP cells (K10) diluted from 

1 x 104 pfu.ml-1 to 1 x 101 pfu.ml-1. Lane 6, positive control (genomic MAP K10 

DNA). 

 

 

 

 

 
Figure 5.15.  Effect of removing intact MAP cells from the phage lysis 

supernatant by PMMS without DNA concentration 

 

 

 

 

 

 

 

 

 

 
 

PCR amplification of the approximate 300 bp IS900 DNA region specific to MAP. 

Lane 1, 100 bp DNA ladder (Fig. 2.5). Lanes 2 and 3 used template DNA after 

one round of PMMS. Lanes 4 and 5 used template DNA after two rounds of 

PMMS. Lanes 2 and 4 were phage infected MAP cells (K10) Lanes 3 and 5 were 

uninfected MAP cells. Lane 6 was negative control (SDW). 
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    The experiment with two rounds of beads was repeated using 1 x 104 pfu ml-1 

of MAP strains K10 and also a second strain of MAP (strain B4). In addition the 

less sensitive MAP-specific F57 PCR assay was used rather than the more 

sensitive IS900 PCR. The results show positive results for the samples lysed with 

the phage. However for the non-lysed control samples once again after the first 

round of PMMS some intact cells remained in the supernatant since a PCR 

product was amplified (Figure 5.16). After the second round of PMMS however, 

only the MAP cells infected with bacteriophage were detected and no PCR 

products were produced from the uninfected samples. 

    To determine how reproducible this result was the experiment was repeated a 

third time using another MAP strain, ATCC 19851. However in this case the 

results show that the MAP DNA was detectable in the uninfected samples even 

after the second round of PMMS to remove the intact cells, although the band 

was less intense than that seen in the phage-lysed sample (Figure 5.17). This 

result indicated that further work was required to fully optimise the one tube 

assay format.   
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Figure 5.16. Detection of MAP cells after one or two rounds of PMMS 

  

 

 

 

 

 

 

 

 

 

 

 

 
PCR amplification of the 400 bp F57 DNA region specific for MAP. Lane 1, 100 bp 

DNA ladder (Fig. 2.5). Lanes 2 to 5, one round of PMMS; Lanes 6 to 9, two 

rounds of PMMS. Lanes 2, 3, 6 and 7 were strain K10. Lanes 4, 5, 8 and 9 were 

strains B4.  Phage were added to samples in lanes 3, 5, 7 and 9.  Lane 10 was 

negative control (SDW). 

 

 

 

 

 

Figure 5.17. Detection of MAP ATCC 19851 after two rounds of PMMS  

 

 

 

 

 

 

 

 

 

 

 

 

 

PCR amplification of the 400 bp F57 DNA region specific for MAP. Lane 1, 100 bp 

DNA ladder (Fig. 2.5). Lane 2, MAP (ATCC 19851) infected with bacteriophage. 

Lane 3, MAP not infected with bacteriophage. Lane 4, positive control (genomic 

MAP K10 DNA). Lane 5, negative control (SDW). 
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5.2.4. Discussion of development of the one tube assay format 

    The initial experimental design used here was to determine whether MAP DNA 

could be detected from MAP cells lysed using bacteriophage creating a PCR-

based assay that was novel in that only viable cells would be detected. The initial 

results using cells capture on magnetic beads and simply removing the 

supernatant for PCR analysis showed that while the phage-lysed samples gave a 

strong band, a faint MAP specific PCR product was also amplified from the 

uninfected sample. The possible causes for this (presence of free MAP DNA in the 

sample, bacteriophage contamination or intact MAP cells dissociating from the 

beads) were investigated and it was concluded that the problem was caused by 

MAP cells dissociating from the magnetic beads. 

    Several factors can affect the binding of ligands, such as time, temperature 

and buffer composition (Origene Development Guide, USA). As this assay uses 

bacteriophage, the temperature and time could not be easily altered. When 

buffer composition was investigated initial results suggested that PBS was a 

superior buffer compared to MP for capturing and holding the MAP cells over the 

3 h period. However, this result proved to be an artefact since it was found that 

the phage were not able to efficiently infect the cells when resuspended in PBS. 

Certain components such as calcium ions are required to allow bacteriophage 

D29 (and other phage) to infect their host (Rees and Botsaris, 2012). Although 

not generally required for adsorption, the calcium ions are thought allow the 

phage to approach the cells surface by neutralising negative charge of cell 

surface molecules and for some phage to be involved in DNA injection to their 

host (Watanabe and Takesue, 1972). As MP supports bacteriophage infection, 

the pH was altered to 7.4 to mimic that of PBS. However the difference in pH did 

not make a difference on the capture efficiency or rate of dissociation.  

    Being able to distinguish between viable and non-viable host MAP cells is 

vitally important for the detection assay. In a clinical case of Johne’s disease and 

other general infections caused by mycobacteria, the organisms are taken up by 
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macrophages and either the cells are killed or survive and persist in the cells. 

During PCR, temperatures at 95 oC are used to denature DNA and to, if used, 

activate hot-start Taq DNA polymerases. Colony PCR’s, that do not use prepared 

template DNA but intact cells as the template DNA source can be amplified, due 

to the denaturing step that can release DNA from whole cells (Tsuchizaki et al., 

2000). Whole cells free in the sample that are not removed may therefore be 

detectable. To try and overcome the problem of thermal lysis of the uninfected 

cells, the denaturing temperature was reduced however it was found that the 

minimum temperature required for successful amplification of the genomic MAP 

DNA (92.6 oC) was still hot enough to lyse the whole MAP cells and release DNA 

that then acted as a template for PCR amplification. 

    Hence the assay format was modified to try and prevent the detection of the 

uninfected cells. Physical barriers in the form of DNA purification spin columns 

were used to separate the whole cells from the released MAP DNA. However the 

results showed that the DNA binding buffer supplied with the kit lysed intact MAP 

cells, which again resulted in their detection by PCR. It was noted that although 

initial binding of MAP to the peptide-coated beads was quite efficient, over time 

the number of cells dissociating from beads increased. Hence it was decided to 

use this efficient capture profile to remove any intact cells from the supernatant 

after bacteriophage lysis of the viable cells. The initial results demonstrated that 

this method was successful in allowing detection of just the DNA from MAP cells 

that had been lysed following infection with bacteriophage. While the results 

were encouraging when using two different cattle strains of MAP (K10 and B4), 

when the experiment was repeated using a different MAP strain, a faint band 

was detected indicating that some residual intact cells were not removed by the 

PMMS. Physical parameters such as the size of the bead and time to capture can 

affect the efficiency of capture (Kell et al., 2008). For recovery of MAP cells from 

blood, this had already been optimised (Chapter 3) and thus the choice of small 

diameter (1 µm) superparamagnetic beads and the time left for bacteria to bind 
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to these beads was already known to be optimal. However the fact that all of the 

MAP ATCC 19851 cells were not removed by the second round of PMMS could be 

due to the fact that different MAP strains bind to the peptides with different 

affinity and therefore the second round of PMMS did not efficiently capture all of 

the ATCC 19851 cells from the supernatant.   

    Therefore it was clear that further optimisation of the method was needed to 

increase the reliability of the assay. However the assay development work was 

carried out using pure cultures of MAP grown to high cell number which is known 

to induce clumping (McDonald et al., 2003). This also means that the beads were 

capturing more cells than would be expected to be found in clinical blood 

samples where the number of MAP cells per ml would be very low. Hence, 

although the assay procedure had not been fully optimised, it was felt that the 

results were promising enough to allow the assay to be tested on clinical blood 

samples when they became available.    

 

5.2.5. Testing the non-fully optimised one day assay on experimentally 

infected calves 

    The blood samples from the calves in Set D (Chapter 4) were tested using the 

final test method described in section 5.2.3.4. Surplus blood (1 ml) from the 

samples were diluted in MP and then subjected to PMMS. Bacteriophage D29 was 

added to the sample (108) and incubated for 3 h. The beads were separated 

from the samples by pulse centrifugation and then by resting on a magnet and 

then resuspended in 100 µl of MP. The supernatant was placed into a new 

microcentrifuge tube and fresh magnetic beads added before  incubating for 30 

min with rotation at room temperature to remove any intact cells. Finally the 

beads were separated from the lysis mixture by pulse centrifugation and resting 

the samples on a magnet. Ten microlitre samples were then used as template 

DNA for MAP specific IS900 PCR as low numbers of MAP are likely to be present 



181 

 

therefore the more sensitive PCR was used (See Fig. 5.18 for a schematic of the 

one assay).  
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Figure 5.18. Schematic diagram of the one day – one tube format assay 
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    Table 5.1 shows the results gained using the one tube assay compared to the 

results gained using the original blood phage-PCR assay described in Section 

4.2.7. Looking at the overall pattern of results, for 22 out of the total of 33 

samples tested, there was agreement between the new one day assay and the 

phage assay. Of the 11 cases where there was no agreement between the 

results of the two assay methods, 8 of these were when the phage assay gave a 

negative result, but the one day tube test gave a positive result. This would 

suggest that the one tube method is more sensitive. In the plate-based method 

the lysed MAP DNA has to be extracted from agar after overnight incubation, and 

there is a possibility that some DNA losses will occur, leading to a negative PCR 

result. In contrast, in the one tube format all the lysed DNA remains in the lysis 

mixture and the contaminating intact cells are removed from it before it used as 

template for the PCR reaction. Therefore this method is less prone to sample 

loss. In only 3 cases did the plate-based phage-PCR assay give positive results 

when the one day tube test did not. In these samples the plaque numbers 

recorded were low (between 3 and 12). Generally these results suggest that the 

phage-based test results (irrespective of the method) are reproducible (67% 

agreement of results), and that the one tube method may be more sensitive 

than the plate-based method.    

    Interestingly the largest number of results where the test did not agree again 

fell in the vaccinated group (9 tests did not agree in the vaccinated group, 2 

tests did not agree in the unvaccinated group). This was the same pattern seen 

in the analysis of the results in Section 4.2.7 and suggested that something 

about these samples was interfering with the assays – irrespective of the test 

method. 
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Table 5.1. Comparison of the one tube assay results with conventional 

phage-PCR results.  

 

 

 

 

 

 

 

 

 

 

 

 

*  indicates tests where the one tube assay gave a positive result and the plate-

based method gave a negative result 

#  indicates tests where the one tube assay gave a negative result and the plate-

based method gave a positive result 

Blue shading – denotes no MAP was detected.   

Red shading - denotes that MAP was detected. 

 

 

Plate-

based 

method 

One 

Tube 

assay 

Number 

of 

samples 

 % 
% agreement/ 

disagreement 

-ve -ve 9  27.3 
66.7% 

+ve +ve 13  39.4 

+ve -ve 3 (2 V, 1 UV) 9.1 
33.3% 

-ve +ve 8 (7 V, 1 UV) 24.2 

 Total 33    

 

UV  = unvaccinated 

V  = vaccinated   

  Month 6 Month 7 Month 8 

  Phage One 

Tube 
Phage One 

Tube 
Phage One 

Tube 

1 * * * *   

2   # #   

3       

4   # # * * 

5 * *   * * 

6 * * * *   

 
       

7       

8       

9 * *     

10   # #   

11       



185 

 

    If the results of the one tube assay are compared alone with the results of the 

direct PCR, the percentage agreement or disagreement between to two test 

results is 48.5% and 51.5%, respectively, indicating that there is now little 

correlation between the two test results (Table 5.2). However the same pattern 

of discordance of the results for the vaccinated group is seen (11 samples from 

vaccinated animals, only 1 from the unvaccinated group).   

    The results from the non-fully optimised one tube assay cannot not be used to 

definitively confirm the presence of viable MAP cells in the blood of the animals 

tested. Although anything else concluded from the results would be conjecture, a 

positive phage-based test result would be indicative of the presence of a MAP 

cell. Given this limitation, the results gained with both phage-based assays were 

next compared with the results gained using direct blood-PCR described in 

section 4.2.7.  This analysis (Table 5.3) again suggested that the PCR detection 

was less sensitive than the phage-based methods (largest group is where the 

phage results were positive but the PCR results were negative). However the 

overall agreement between the two tests dropped to 43%. This analysis also 

revealed a striking pattern where the results for the vaccinated animals were 

consistently positive for the phage assay but negative for the PCR assay. This 

result is unexpected but suggests that some interference with the test methods 

is occurring. This could either be (a) the PCR reaction is being inhibited by 

something in the blood samples from the vaccinated animals or (b) the phage 

assay is giving false-positive results. However as both test methods rely on 

viable cells to support the replication of the phage and then detection of the 

released genomic DNA by a specific PCR reaction, this latter suggestion is hard 

to explain. 
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Table 5.2. Comparison of the one tube assay results with direct-PCR 

results 

 

 

 

 

 

 

 

 

 

 

 

Blue shading – denotes no MAP was detected.   

Red shading - denotes that MAP was detected. 

 

 

 

PCR 

test 

result 

One 

Tube 

assay 

Number 

of 

samples 

 % 
% agreement/ 

disagreement 

-ve -ve 7  21.2 
48.5% 

+ve +ve 9  27.3 

+ve -ve 5 (5 UV) 15.2 
51.5% 

-ve +ve 12 (11 V, 1 UV) 36.3 

 Total 33    

 

 

UV  = unvaccinated 

V  = vaccinated 

 

 

  

  Month 6 Month 7 Month 8 

  
Blood-

PCR 

One 

Day 

Blood-

PCR 

One 

Day 

Blood-

PCR 

One 

Day 

1       

2       

3       

4       

5       

6       

 
      

7       

8       

9       

10       

11       
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Table 5.3. Comparison of the phage assays results with direct-PCR 

results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blue shading – denotes no MAP was detected.   

Red shading - denotes that MAP was detected. 

 

All results 

PCR 

test 

result 

Phage 

Assays 

Number 

of 

samples 

 % 
% agreement/ 

disagreement 

-ve -ve 5  15.2 
45.5% 

+ve +ve 10  30.3 

+ve -ve 4 (4 UV) 12.1 
54.5% 

-ve +ve 14 (13 V, 1UV) 42.4 

 Total 33    

 

Unvaccinated group only (#7-#11) 

PCR 

test 

result 

Phage 

Assays 

Number 

of 

samples 

 % 
% agreement/ 

disagreement 

-ve -ve 3  20.0 
66.7% 

+ve +ve 7  46.7 

+ve -ve 4  26.6 
33.3% 

-ve +ve 1  6.7 

 Total 15    

  

  Month 6 Month 7 Month 8 

  
Blood-

PCR 

Phage 

Assays 

Blood-

PCR 

Phage 

Assays 

Blood-

PCR 

Phage 

Assays 

1       

2       

3       

4       

5       

6       

 
      

7       

8       

9       

10       

11       
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    Irrespective of the reason for this pattern, it suggests that the results from 

the vaccinated group are not appropriate for comparison of the performance of 

the phage-based methods and PCR. Hence the performance of the two assays 

was again compared but using only the results for the unvaccinated animals, and 

comparing the combined phage-assay results with direct PCR (Table 5.4). This 

analysis showed that there was now a 67% agreement between the test results 

and – interestingly – the largest group of test results that did not agree were 

PCR positive, phage-test result negative (4 samples), however the number of 

samples in this analysis is now too small to draw any strong statistical 

conclusions.    

    If the pattern of detection is now considered in the unvaccinated group, the 

results would suggest infection is never established in animal #8, whereas 

infection is established in animal #11 so that detectable levels of MAP are 

present in the blood at all sampling points. The number of MAP cells in the blood 

of animals #7 and #10 appear to be low at month 6 (hence variable test results) 

but infection is clearly established by months 8 and 9. Animal #9 only gives 

positive phage results in month 6, but thereafter the PCR assay can detect DNA 

but no viable cells are detected. If the results in the vaccinated group are 

compared to this it might suggest that vaccinated animals maintain low numbers 

of MAP cells in their blood for a long time, hence the positive phage assay 

results, but the levels are below the limit of detection of the PCR assay, although 

the progression seen in animal #5 suggest that a slow infection is developing.   

 

5.3. DISCUSSION 

    The aim of these experiments was to develop a novel robust method for 

detecting and enumeration viable MAP within one day, in a format that could be 

automated. There is commercially available equipment that allows the separation 

and washing of cells using bead capture technology (Tecan Group; Te-MgS, Life 

Technologies; Dynabeads-Invitrogen). As long as the detection part of the assay 
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was kept within a one-tube format, automation would be possible. Capturing and 

detecting bacteria has been carried out many times before on E. coli, 

Helicobacter pylori, L. monocytogenes and many more (Nakamura et al., 1993, 

Su and Li, 2004, Enroth and Engstrand, 1995, Uyttendaele et al., 2000). 

However the majority of these methods use PCR as an end-point identification 

which does not differentiate between live and dead cells. It is important to 

assess the viability status of organisms to determine whether they pose a threat 

to public health (Keer and Birch, 2003). There are several stains that can be 

used to determine bacteria viability, however due to the unusual cell wall of 

mycobacteria these tests tend to be less efficient. Culture is the ideal method for 

determining viability, however with slow growing mycobacteria such as MAP, it 

can take several weeks to form colonies and even rapid liquid culture-based 

methods require up to 40 days incubation (Rees and Botsaris, 2012). 

    The novelty of the one tube assay format was that MAP cells can then be 

infected in situ with bacteriophage following isolation from a medium (such as 

blood) on magnetic beads. Since only viable MAP cells will support bacteriophage 

replication and MAP genomic DNA is released at the end of the lytic cycle, if the 

DNA is then detected by PCR the assay retains the ability to differentiate 

between live and dead cells. Lytic bacteriophage infect and break open bacteria 

efficiently within hours. The FPTB assay was used to determine how long it takes 

for phage D29, once it had infected the cells, to release progeny phage (eclipse 

phase) from MAP and M. smegmatis. There have been differences in the reported 

eclipse phase of D29 when infecting different mycobacteria. When using the 

FPTB assay the eclipse phase of D29 in M. smegmatis was 90 min, which is 

similar to the eclipse phase found by McNerney et al. (1998). In M. tuberculosis 

and M. aurum however it has been noted that the length of D29’s eclipse phase 

is much longer at around 120 min (David et al., 1980, McNerney et al., 2004). 

This corresponds to the 120-135 min eclipse phase found here using the FPTB 

assay when D29 was infecting MAP cells.  
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    Although further optimisations were required to make the assay reproducible, 

the results gained were sufficiently encouraging to test the blood samples from 

calves infected with MAP. The results showed that as the months progressed 

agreement between all the tests increased, except for the plate-based phage 

assay and the direct blood PCR, where agreement remained the same at 64 % 

(Table 5.4). In month 8 the one tube assay agreed with the plate-based phage 

assay for 82 % of tests. Assuming the assays had that same sensitivity, the two 

discrepancies in this set of results could be attributed to the one tube assay 

detecting non-viable MAP that may be present in the blood as it had not been 

fully optimised, however this cannot be proven outright due to the need for 

further robust optimisations of the one day assay.  
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Table 5.4. Agreement between test results over time 

 Agreement between each tests (%) 

 One Tube 

 Vs 

Phage Assay 

One Tube  

Vs 

 Blood PCR 

One Tube  

vs  

PCR and Phage 

Phage 

Assays  

vs  

PCR 

Month 6 64 27 27 64 

Month 7 55 55 36 64 

Month 8 82 64 55 64 
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    Although the early results on clinical experimentally infected animals are very 

interesting and detection of MAP using a new method of cell extraction from 

blood is promising, further work is needed to confirm the efficacy of the assay 

with regards to the differentiation between viable and non-viable cells. To create 

a fully automatable, high-throughput assay, further work would also requires 

conversion of the DNA detection method into a quantitative real-time PCR assay. 

This could be used to enumerate the number of MAP cells present (Sidoti et al., 

2011) in the sample since in its current format the one tube assay simply gives a 

presence/absence result. By introducing qRT-PCR the assay results would be 

both rapid and would have more power for researchers in the field. 
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CHAPTER 6 

AN INVESTIGATION OF FACTORS AFFECTING BACTERIOPHAGE D29 

INFECTION 
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6.1. INTRODUCTION 

    Mycobacteria are peculiar organisms, grouped into fast- and slow-growers 

that can take weeks to form colonies (Wayne, 1986). This slow growing attribute 

is linked to many pathogenic members of the Mycobacterium genus (Chacon et 

al., 2004) and poses one of the greatest threats to treating and controlling 

diseases due to difficulty in achieving rapid diagnosis of infection by these 

bacteria. Culturing MAP can take up to 16 weeks (Zimmer et al., 1999) and in 

some cases it can take up to six months for certain sheep strains to form 

colonies. Because of these difficulties, several technologies exist that exploit 

bacteriophage in the detection of mycobacteria. The FPTB assay has been used 

as a tool to enumerate slow growing mycobacteria as well as determining 

whether or not they are antibiotic resistant (Rees and Botsaris, 2012). 

Rifampicin is an antibiotic used regularly in the treatment of mycobacterial 

infections. Its reversible role in inhibiting RNA synthesis is well known 

(Nakamura and Yura, 1976). The FPTB-ResponseTM antibiotic resistance assay 

works on the principle that if a sample contains rifampicin sensitive 

mycobacteria, plaques will not form if the antibiotic is added to the sample 

before performing the phage assay, however if the cells are resistant, plaques 

will still be formed. In addition to being able to report on the antibiotic resistance 

of the host cell, mycobacteriophage have also been postulated to be used to 

provide insights into genetics and physiology of their pathogenic hosts (Hatfull, 

2012). Due to a high degree of genetic diversity among sequenced 

mycobacteriophage, many genes’ functions remain unknown. Understanding 

what they do may provide insight into the host physiology. 

    Some mycobacteriophage, such as D29, TM4, L5 and Bxz2, have been 

isolated that have a very broad host range and therefore must bind to receptors 

found on many different mycobacterial cell types, however there are others that 

have been found to only infect one host (Rybniker et al., 2006). While 
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mycobacteriophage host preferences are expected to be strongly dominated by 

the availability of specific cellular receptors, few have been identified or studied 

(Hatfull, 2010) therefore it is difficult to make predictions about the growth 

conditions needed to ensure that these receptors are expressed to promote good 

phage infection.   

    There is little known about of the effect of different metabolic states of the 

host cells on the ability of bacteriophage to infect mycobacteria. The first 

observations that led to this study were that, when testing liquid MAP cultures 

that had been stored over a long period of time (>6 months) with the FPTB 

assay, the results suggested that no viable MAP cells were detected. However 

the same phenomenon was observed when this was repeated with fresh 

cultures, and ZN stain and PCR showed that the cells in the culture were indeed 

MAP. An initial suggestion was made that the reason that the MAP cells were 

undetectable by the phage assay was because the MAP cells had been grown in 

an oxygen limiting environment for long periods of time (>6 months) and that 

this resulted in some change in the MAP cells which made them uninfectable. 

Hence the aim of this investigation was to use the phage amplification assay as a 

tool to investigate how different growth and storage conditions of mycobacteria 

can affect the host cell-phage interaction and thereby affect the efficiency of 

mycobacteriophage D29 infection.  

 

6.2. RESULTS 

6.2.1.  Ability of phage D29 to infect mycobacteria in different growth 

phases 

    These experiments asked the question why the MAP cells were uninfectable 

and how the cells became infectable. Using M. smegmatis as a fast-growing 

model organism so that cfu values could be determined as well as pfu the 

implications on the FPTB assays as a tool for looking at mycobacteria was 
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investigated. First M. smegmatis cells were grown aerobically and in conditions 

where oxygen would become self-limiting as growth occurred. The M. smegmatis 

was grown in glass vials with a screw top lid filled to leave a head space ratio of 

1 : 2 (air : liquid) and the tops sealed finger tight. As a control M. smegmatis 

cells were also grown aerobically (with the lid loose) so that the effect of oxygen 

on the ability of phage D29 to infect mycobacteria could be compared.  

    The M. smegmatis cells (grown to 1 x 107 cfu ml-1) were sub cultured either 

under oxygen limited conditions mentioned earlier or aerobically for 10 d in a 37 

oC incubator shaking at 200 rpm. Each day, samples (100 µl) were removed and 

the cfu (using Miles and Misra) and the FPTB enumeration assay was carried out.  

    The initial results show that there was no difference (P>0.05) in the pfu ml-1 

and cfu ml-1 results for the culture of M. smegmatis when they were cultured 

aerobically (Fig. 6.1). However after 10 d over the time course, when the M. 

smegmatis was grown in oxygen limiting conditions the pfu ml-1 values were 

almost one log10 lower than the cfu ml-1 value recorded (Fig. 6.1). When the 

same M. smegmatis culture was further incubated for over one month, no M. 

smegmatis cells were detectable using the phage assay, whereas the number of 

M. smegmatis cells detected by cfu ml-1 remained constant (data not shown). 

The data shows that the FPTB enumeration compares well with traditional culture 

when used on aerobically growing M. smegmatis cells. However when cultured 

under self-limiting oxygen conditions, the phage assay is unable to detect the M. 

smegmatis cells efficiently even though the culture method shows the cells are 

alive. 
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Figure 6.1. Comparison between the number of M. smegmatis cells 

detected by phage and viable count following growth under self-

inducing hypoxia conditions 

 

 

Graph showing the results of the phage assay (pfu ml-1; green and purple) viable 

count (cfu ml-1; blue and red) for M. smegmatis cultured under self-limiting 

oxygen conditions (red and purple) or under conditions where free oxygen 

exchange occurred (blue and green) over 10 d. 
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6.2.2. Determining whether the phage-resistant state is reversible  

    From the last experiment, where it was found that extended growth under 

self-limiting oxygen conditions induced an uninfectable state in M. smegmatis, 

but the question remained of whether the uninfectable state in self-induced 

oxygen limiting conditions was reversible. To answer this, both the oxygen 

limited uninfectable and infectable aerobic M. smegmatis cells from the previous 

experiment (Section 6.2.1) were inoculated separately into 1 ml of fresh MP and 

incubated aerobically (37 oC; shaking at 200 rpm). A sample (100 µl) from each 

test was removed each day to determine if the number of M. smegmatis cells 

detected by the phage increased after exposure to oxygen.  

    Around 104 pfu ml-1 of M. smegmatis cells were detected at time point 0. The 

phage assay was able to detect nearly 107 pfu ml-1 after 1 d of aerobic 

incubation and after 3 d there was no difference (P>0.05) in pfu ml-1 values 

obtained for both cultures (Fig. 6.2). This suggested that after exposure to air in 

an uninfectable state, the M. smegmatis must change to allow successful phage 

infection and subsequent detection with the phage assay.  

    As M. smegmatis was used as a model for the phage infection, the experiment 

was repeated using three strains of MAP (K10, DVL 453 and ATCC 19851) which 

had been grown under the same conditions as the M. smegmatis except for a 

longer time (1 month) to induce the undetectable state (i.e. no MAP cells 

detected with phage D29) and these were then inoculated into fresh MP at a rate 

of approximately 1 x 105 pfu ml-1. No Mycobactin-J was added to the media to 

determine only when recovery has taken place and not growth. 

    After the MAP cells were allowed to recover for one day with aeration, only 

cells in the DVL 453 strain was detectable (1.5 x 101 pfu ml-1), while the other 

two strains did not give any plaques using the FPTB assay (Fig. 6.3). On day 2, a 

2-3 log10 increase in the number of cells detected by the phage assay was seen 

for each strain of MAP tested. This number increased again – but more slowly - 
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for all strains on day 3 of sampling and after 7 days for the number of MAP cells 

detected by the phage assay was between 102 to 105 pfu ml-1. Only for strain 

ATCC 19851 did the increase in detectable number of cells seem to plateau (Fig. 

6.3). The most important conclusion from these results is that the increase in 

plaque number detected was faster than a predicted growth rate for MAP 

cultures (as no Mycobactin-J was added), confirming that these results 

suggested an increase in infectivity rather than an increase in cell number.  
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Figure 6.2. Recovery of phage D29 infectivity by M. smegmatis cells 

 

 

Graph showing the number of M. smegmatis cells detected using the FPTB assay 

(pfu ml-1). Prior to dilution into fresh medium the M. smegmatis cells were either 

grown under self-limited oxygen conditions (red bars) or aerobic conditions (blue 

bars).  Samples were taken from the fresh cultures over a 3 d period. Error bars 

represent the standard deviations of the means of number of plaques recovered 

from the phage assay performed in triplicate. 
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Figure 6.3. Recovery of phage D29 infectivity by three strains of MAP 

 

Graph showing the number of MAP cells detected using the FPTB assay (pfu ml-

1). Prior to dilution into fresh medium the MAP cells were grown under self-

limiting oxygen conditions and then samples were taken from the fresh cultures 

over a 7 d period. The three strains of MAP used were K10 (blue), DVL 453 

(purple) and ATCC 19851 (red). Error bars represent the standard deviations of 

the means of number of plaques recovered from the phage assay performed in 

triplicate. 
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6.2.3. Infection with a phage TM4 

    It has been reported that physical changes in the cell surface of M. smegmatis 

as a result of increased expression of a multi-copy phage resistance gene (mpr), 

may prevent bacteriophage D29 infection, by blocking cell receptors or cell 

penetration (Barsom and Hatfull, 1996). Phage TM4 is another broad spectrum 

mycobacteriophage, capable of infecting M. smegmatis and MAP. It has the 

ability to infect stationary phase mycobacteria by being able to penetrate the cell 

wall when it is in a stationary phase (Piuri and Hatfull 2006). The ability to infect 

cells in different states suggests that phage TM4 may have different binding sites 

or can activate the dormant cells in some way to allow successful infection and 

replication within the host. The differences between TM4 and D29’s tail may 

explain why D29 is unable to infect the cells. Hence experiments were designed 

to replicate the phage infection experiments using phage TM4 instead of D29. 

    The key to the FPTB assay is the inactivation of the phage with a virucide. 

When tested, phage TM4 was found to be resistant to Ferrous Ammonium 

Sulphate (FAS; the virucidal compound provided in the FPTB assay kits). Tea 

infusions have been used to inactivate other bacteriophage when FAS was not 

effective (de Siqueira et al., 2006), and therefore a tea infusion was prepared 

and TM4 was found to be sensitive to this virucide (Section 2.8), producing a 6-

log10 kill within 15 min. Another crucial attribute of a good virucide, is that it 

does not have an adverse effect on the host cell, and it was found that the tea 

infusion did not affect the viability of the MAP or M. smegmatis cells (data not 

shown).  

    Once an appropriate virucide had been established M. smegmatis and MAP, 

cells were grown under oxygen limiting conditions (Section 2.9) and were then 

infected with TM4 before the FPTB assay was performed.  As a control, samples 

of the M. smegmatis oxygen limited culture were also then grown with aeration 

for 3 d before being tested.    
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    The results in Figure 6.4 show that TM4 was able to infect M. smegmatis 

grown under both conditions – although with reduced efficiency (1.58 x 102 pfu 

ml-1 detected) - whereas D29 was not able to infect the cells grown under 

limiting oxygen conditions at all. The viable count of the two different M. 

smegmatis cultures were very similar (both approx. 1 x 104 cfu ml-1) confirming 

that the difference in the results obtained was not due to a difference in the 

number of cells in the cultures grown under different conditions. Interestingly, 

for the cells growing in the presence of oxygen, the number of cells detected by 

D29 was not significantly different from the viable count (1.6 x 104 cfu ml-1) of 

the culture (P>0.05). In contrast the number of cells detected by TM4 was 

significantly lower (P<0.05), suggesting for cells grown with good aeration, D29 

is more efficient at infecting M. smegmatis cells. 
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Figure 6.4. Difference in infectivity of M. smegmatis by D29 and TM4 

 

 

 

Graph showing the number of plaques recovered following the phage assay when 

using phage TM4 and D29. The M. smegmatis cells tested were either grown 

with limiting oxygen (blue bars) or after these cells had been grown with 

aeration (red bars). In addition to the phage assay the viable count (cfu ml-1) of 

both cultures was determined. Error bars represent the standard deviations of 

the means of number of plaques and colonies recovered from the phage assay 

and viable count, respectively, performed in triplicate. 
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    The experiment to compare infection of stationary-phase mycobacteria with 

phage TM4 and D29 was then repeated using MAP cells (K10) but in this case 

colony counts were not performed due to difficulty of MAP culture. The results 

show (Fig. 6.5) that for cells grown under oxygen limiting conditions phage TM4 

detected 1.8 x 103 pfu ml-1 MAP whereas, once again, D29 did not detect any 

MAP cells. As seen with the M. smegmatis experiment, when these cells were 

exposed to air for 9 d, phage D29 was able to detect significantly more MAP cells 

(1.5 log10 pfu ml-1; P<0.01) compared to TM4, confirming that phage D29 

seemed able to infect the mycobacteria more efficiently than TM4 when the cells 

are well aerated and in a more metabolically active state. In contrast when the 

cells are not actively growing, TM4 was better able to infect both species tested.  
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Figure 6.5. Difference in infectivity of MAP cells by D29 and TM4  

 

 

 
Graph showing the number of plaques recovered following the phage assay when 

using phage TM4 and D29. The MAP cells tested were either grown with limiting 

oxygen (blue bars) or after these cells had been exposure to air for 9 days (red 

bars). Error bars represent the standard deviations of the means of number of 

plaques recovered from the phage assay performed in triplicate. 
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6.2.4. Phage attachment to non-infectable MAP cells 

    It has been reported that mycobacteria can change their cell shape and 

thickness of their cell wall as they adapt to anaerobic growth conditions. From 

the results in the last experiments it was not clear whether the D29 phage were 

not able to attach to the cells surface or whether they were unable to complete 

the infection process once they had attached to the cells surface. To address 

this, a phage attachment assay (Section 2.9.1) was carried out to determine 

whether a change in the cell wall of the MAP cells was preventing the 

bacteriophage from attaching to the surface. Briefly MAP cells were grown into a 

stationary phase or cultured to a metabolically active state (Section 6.2.2; 

Spears et al, 1998). Phage was then added to each samples and left for 0, 30 

and 60 min to bind to their host. The samples were then centrifuged to remove 

the MAP cells from any unbound phage. Phage titres on the supernatants were 

carried out to determine how many phage particles were bound the MAP cells. 

    The results show that there was an approximate 20% drop in the number of 

free phage particles present in the culture supernatant after 60 min of infection 

for both cell cultures (Fig. 6.6) and there was no statistical difference (P>0.05) 

in the level of attachment of phage to cells detected for cells grown under 

oxygen limiting conditions compared to those grown aerobically. As a control the 

number of bacteriophage present in a sample when they were added to media 

alone that contained no MAP cells was also monitored and no reduction in phage 

number was detected, confirming that the reduction of free phage particles in 

the experiment was due to attachment of the phage to the cells. This result 

suggests that the receptors that D29 binds to are not altered or lost when the 

mycobacteria are grown under oxygen limiting conditions, but productive 

infection is blocked. 
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Figure 6.6. Effect of stationary phase bacteria on the attachment of 

phage D29 to MAP cells 

 

Graph showing the number of unbound phage particles to MAP cells that are 

infectable (aerobic) and uninfectable (hypoxic) after 0 min (blue bars), 30 min 

(red bars) and 60 min (green bars). Error bars represent the standard deviations 

of the means of number of bacteriophage detected after each time point in 

triplicate. 
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6.2.5. Role of RNA synthesis inhibition on phage infection 

    As phage D29 was able to attach to the cells of the stationary phase 

mycobacteria, this suggested that there was no physical barrier to phage 

infection, and therefore there was something else blocking productive phage 

infection other than receptor expression. This could be due to other adaptive 

changes that are occurring in the cells when the conditions become less aerobic 

or it could be due to restructuring of existing materials. To determine whether 

gene expression of proteins was required to allow the phage to infect the 

mycobacteria after aeration, antibiotics were used to transiently inhibit RNA 

synthesis in the host mycobacteria. Before the effect of the antibiotic on 

resuscitation of hosts was investigated, the MAP cells were initially tested to 

determine their sensitivity to rifampicin (RIF) and then experiments were 

designed to ensure that the antibiotic could be washed from a sample (i.e. that 

the RIF inhibition of RNA polymerase was reversible).  

    As described in the literature review, the FPTB assay can be used to 

determine whether mycobacteria tested are resistant to bacteriocidal antibiotics 

using a format of the assay called FPTB-ResponseTM (Rees and Botsaris, 2012). 

The samples are treated the same when infecting them with phage, however 

after the virucide is neutralised, RIF is added. When the mycobacterial cell is 

resistant to RIF, the phage are able to replicate and lyse their host cell forming 

plaques on a plate. When the mycobacteria cells are sensitive, the RIF then kills 

the host, preventing the phage from replicating and lysing their host, which 

results in no plaque formation. When aerobically grown MAP cells were treated 

with rifampicin for 1 d, no cells were detected using the FPTB assay. To 

determine whether the effect of the RIF was reversible the treated cells were 

centrifuged (13000 x g; 3 min) and the pellet washed with 1 ml of fresh MP. The 

wash step was then repeated and the cells resuspended in 1 ml of MP so that the 

FPTB could be carried out. The results showed that the number of MAP cells 
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detected after RIF treatment was not significantly different (P<0.05) to the 

number of MAP cells detected before RIF treatment.  

    Now knowing RIF could be removed from the MAP cells, to determine whether 

RNA synthesis is needed for the mycobacteria to regain infectivity when exposed 

to air, uninfectable MAP cells (1 x 104 pfu ml-1; K10; Section 2.9) were treated 

with RIF. Before exposure to air, (time zero), very few MAP cells were detected 

in either the RIF treated or untreated samples. After one day aeration, there was 

a significant (P<0.01) three-log10 increase in the number of MAP cells detected 

from the untreated sample (Fig. 6.7), however no MAP cells were detected from 

the RIF treated sample when the RIF was washed away. This suggests that there 

is a role in gene expression, which prevented the bacteriophage from 

successfully infecting the MAP cells.   
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Figure 6.7. Investigation of role of gene expression on recovery of 

sensitivity of MAP to phage D29  

 

 
 

Graph showing the number of MAP cells detected by the FPTB assay, after 

uninfectable MAP cells were treated with RIF (blue bars) and without RIF (red 

bars) before exposure to oxygen (t – 0) and after exposure to oxygen (t – 1). 

Error bars represent the standard deviations of the means of number of plaques 

recovered from the phage assay performed in triplicate. 
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6.2.6. Effect of freezing on phage infection 

    Freezing MAP cells for storage can have adverse effect on their viability. Ice 

crystal formation can kill bacteria and stresses on macromolecular structures 

during thawing the cells can lead to damage that prevents growth (Collins, 

2003). However, freezing is often necessary to avoid sample degradation, thus 

preservation by freezing is very important especially if transport from a farm to a 

laboratory is not easy and takes a long time (Hasonova et al., 2009). Hence for 

future applications, freezing of samples for use with the phage assay would 

probably be necessary and it was not clear what effects this would have on 

phage infectivity of the host cell. Therefore experiments were carried out to 

determine the best methods to use when freezing cells to improve the viability of 

cells post-freezing and to optimise the enumeration and detection of cells when 

using phage-based assays. 

    Freezing at different temperatures has been shown to have an effect on the 

viability of mycobacteria when cultured. The FPTB assay can be used to 

enumerate the number of detectable mycobacteria present in a sample (Section 

2.1.3.3), and this assay format was used to determine whether freezing affected 

the number of cells detected by the phage-based blood assay.  

    To perform the experiments, samples of MAP K10 (1 x 104 pfu ml-1) were 

spiked in triplicate into 1 ml of sheep blood (Oxoid, UK). The samples were 

frozen at -20 oC and -80 oC and incubated overnight, but the rate of freezing was 

not controlled. One control sample was left at room temperature. The samples 

were removed from the freezer and left to thaw at RT and then the MAP cells 

were recovered from the blood using PMMS. Finally the number of detectable 

cells was determined using the blood phage detection assay method (Section 

2.3.2). 

    The results (Fig. 6.8A) show that there was a significant drop (P<0.05) of 

approximate 1.5 log10 in the number of plaques detected in the samples after 



213 

 

freezing compared to those left at room temperature, but there was no statistical 

difference between the samples frozen at -20 °C or -80 °C. The experiment was 

repeated, but this time the samples that were frozen were left to recover for 24 

h at room temperature. The results show that after 24 h, the number of MAP 

cells detected by the assay increased compared to those without recovery 

although this difference was not significant (p>0.05; Fig. 6.8B) and again there 

was no difference seen between cells frozen at the different temperatures.  
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Figure 6.8. Effect of freezing on MAP cell detection  
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Graph shows the number of plaques recovered by the FPTB assay. MAP cells 

were frozen in sheep blood over night at -20 and -80 oC. In graph A, MAP cells 

were frozen in sheep blood over night at -20 and -80 oC and as a control one 

sample was left at room temperature (RT). In graph B, One set of MAP cells 

(blue) were tested with the phage blood assay straight away. The other set (red) 

were kept at RT for 1 day before being processed through the blood phage 

assay. Error bars represent the standard deviations of the means of number of 

plaques recovered from the phage assay performed in triplicate. 
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    The number of MAP cells detected increased when left at room temperature, 

this still did not compare well to the number of MAP cells detected when the 

blood samples were not frozen. The experiment was repeated again freezing the 

samples at -20 oC and the length of recovery time was increased further. The 

samples were then left for 3 d at room temperature after freezing, the cells were 

recovered by PMMS and the number of detectable cells determined using the 

phage assay. The results showed that the number of MAP cells detected by the 

phage assay increased after each day of recovery, and the number of MAP cells 

detected after 2 and 3 d was not statistically different from the number of MAP 

cells detected in the samples that were not frozen (Fig. 6.9). To ensure the 

PMMS was not the factor affecting the recovery of the MAP cells, beads frozen 

overnight at -20 oC and thawed at RT were used to capture liquid cultures of 

MAP. The results showed that freezing the magnetic beads did not affect their 

ability to capture MAP cells (Fig 6.9). This suggested that the MAP cells survived 

freezing, but were in an uninfectable state, until recovery had occurred. 
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Figure 6.9. Effect of longer recovery periods on number of MAP cells 

detected after freezing at -20 oC 

 
Graph shows the number of plaques recovered by the FPTB assay. MAP cells 

were frozen in sheep blood overnight at -20 oC and left to recover at RT for 1, 2 

or 3 d before processed through the phage assay. Beads also frozen at -20 oC 

overnight were thawed as a control to determine the effect of freezing on their 

capture efficiency of MAP cells. The initial sample was not frozen. Error bars 

represent the standard deviations of the means of number of plaques recovered 

from the phage assay performed in triplicate. 
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6.3. DISCUSSION  

    The FPTB assay is a powerful tool that can detect, enumerate and determine 

the antibiotic sensitivity of mycobacteria. However a lack of information about 

phage-host interactions may lead to inaccurate interpretation of results. Phage 

D29 was found to be unable to infect both MAP and M. smegmatis cells when 

they were induced into a non-growing phase when oxygen became self-limiting 

in the growth tubes as described by Wayne and Hayes (1996). However when 

the cells were reintroduced to oxygen, the ability of the phage to infect the cells 

was restored almost completely although the time required to achieve this was 

different for the two organisms tested; three days for M. smegmatis and over 

one week for MAP. This result probably reflects the extremely different growth 

rates of these two bacterial species.  

   M. smegmatis, M. bovis and M. tuberculosis have all been reported to have the 

ability to enter a ‘non-replicating’ stationary phase during hypoxic stress (Dick et 

al., 1998, Hutter and Dick, 1999, Wayne and Hayes, 1996). Hypoxia is predicted 

to be a key host-induced stress limiting growth of the pathogen in vivo. However 

many studies have indicated that M. tuberculosis adapts to oxygen limitation by 

entering into a metabolically altered state while awaiting the opportunity to 

reactivate (Rustad et al., 2009). For MAP, Whittington et al. (2004), presented 

evidence that this organism could enter a dormant stage, similar to that 

described for M. tuberculosis, M. bovis and M. smegmatis. They also suggested 

the ability to lie dormant may also aid in the survival of this organism in the 

environment. A protein, DosR, has been reported to be the primary transcription 

factor involved in mediating the genetic response to reduced oxygen tension in 

M. tuberculosis and it has been shown to induce expression of nearly all the M. 

tuberculosis genes that respond powerfully to a hypoxic signal (Park et al., 

2003). The gene encoding DosR is present in the MAP genome suggesting that 

MAP also has the ability to respond strongly to hypoxia, although structural 
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homology does not always infer functional relatedness. However a study by 

Gumber et al. (2009) confirmed  that MAP can enter a dormant, non-replicating 

phase when exposed to a stressful environment such as hypoxia, and this can 

involve the regulation of up to fifty proteins, one of which could be the DosR 

protein.  

    Due to the many physiological gene expression changes reported when 

mycobacteria enter their non-replicating phase, the ability of MAP to resist D29 

phage infection during hypoxia may be purely coincidental rather than an 

adaptive resistance to phage D29. It is known that adsorption of D29 to M. 

tuberculosis is more efficient when the bacteria are in exponential phase of 

growth (David et al., 1980). The reduction in the adsorption efficiency observed 

by David et al. (1980) was thought to be due to structural changes on the cell 

wall of the host which occur when they are not in the exponential growth phase, 

and this in turn may affect the accessibility of D29 to specific phage receptor 

sites. Structural changes, such as cell wall thickening due to the accumulation of 

alpha-crystallin chaperone protein, have been reported in M. tuberculosis 

(Cunningham and Spreadbury, 1998, Wayne and Hayes, 1996). Most recently 

some MAP strains have been reported to have the ability to form spores (Lamont 

et al., 2012); cell wall thickening due to the accumulation of protein or 

sporulation could prevent phage D29 from attaching to the cell surface and 

therefore binding. However the phage attachment assay described in Section 

6.2.4 suggests there is no change in the ability of the phage to bind to MAP cells, 

rather that there could be a barrier to the DNA being delivered into the cell or for 

productive phage replication to occur inside the host cell. 

    When MAP - in the non-replicating stationary phase - was treated with 

rifampicin to prevent de novo protein synthesis, the cells were unable to fully 

revert to an infectable state, suggesting what is affecting productive D29 

infection of MAP is not a physical barrier, but rather, they require gene 
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expression and RNA synthesis. Whittington et al. (2004) found that a homologue 

of the DNA binding-like protein (Dps), which was first identified in M. smegmatis 

and confers protection by binding to DNA during nutritional and oxidative stress 

in other bacteria, is present in the M. avium genome. Dps has been shown to 

confer resistance to bacteriophage that infect E. coli. Some E. coli cells exposed 

to environmental bacteriophage, isolated from sewage water, were found to be 

tolerant to phage infection after culture for 24 h. The E. coli cells, when sub 

cultured in liquid media began to clump. Dps was found to be present in the cell 

wall membranes of the phage tolerant cells and was thought to the reason for 

the phage resistance. This was confirmed when Dps mutants were created, as 

the environmental bacteriophage were able to infect the E. coli again (Lacqua et 

al., 2006). Thus resistance to D29 phage infection may be due to an 

accumulation of proteins such as Dps which would bind to the replicating phage 

DNA and prevent productive phage replication. What is also interesting is the 

role of Dps and the clumping in E. coli, which may have similar effects in the 

clumping of mycobacteria. However arguing against this model is that other 

bacteriophage have been reported to be able to infect stationary phase 

mycobacteria. This was reported for phage TM4 by researchers exploiting 

luciferase reporter phage (LRP) technology (Foley-Thomas et al., 1995, 

Dusthackeer et al., 2008). The ability of phage TM4 to infect cells that D29 

cannot has been postulated to be due to a peptidoglycan hydrolase motif found 

on the tape measure protein of TM4 that is not present on the tail of D29. This 

motif is thought to act in a similar way to resuscitation protein factors (Rpfs) 

which can induce stationary phase mycobacteria cells into an active growth state 

(Piuri and Hatfull, 2006). The breakdown of the mycobacteria cell wall 

peptidoglycan may mimic the signal generated by the Rpfs leading to 

mycobacteria resuscitation and therefore allowing TM4 phage infection of a 

metabolically active cell. In this study, although TM4 was able to infect 
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stationary phase mycobacteria, when infecting aerated metabolically active 

mycobacteria (defined by phage D29 infection), it was not as efficient at 

infecting compared to D29 and therefore it would not be a suitable phage to use 

routinely in the FPTB assay since the ability of phage detection assay to infect all 

cells present in a sample efficiently is important for use as an enumeration tool 

(Swift et al., 2013). 

    Freezing is often used for sample preservation when transporting substances 

from field to laboratory. However, freezing has been shown to have an adverse 

effect on mycobacteria viability (Richards and Thoen, 1977, Raizman et al., 

2011). This was found to be the case in this study when trying to detect MAP 

cells in blood samples that had been frozen, where over a 1 log10 drop in the 

number of MAP cells detected was recorded. While some MAP cells may have 

died as a result of freeze-thaw injury, others appeared just to not be detectable 

by the bacteriophage. When Foddai et al. (2009) optimised the phage assay, 

they determined that an extra day of incubation of MAP cells in media prior to 

performing the phage assay allowed greater number of MAP cells to be detected. 

Therefore the idea of introducing a pre-incubation step after thawing was 

investigated to allow the cells that may be stressed by the freezing and thawing 

to recover.  It was hoped that this would optimise the number of MAP detected 

after freezing, especially as it had already been demonstrated that when cells 

are oxygen stressed, phage D29 infection was prevented in a reversible manner. 

The number of cells detected after just one day resuscitation in media (without 

Mycobactin-J, therefore no growth) increased significantly, and after two days 

there was no significant difference to the number of cells detected before 

freezing. Hence by adding a simple recovery step for frozen samples by 

incubating the samples for 48 h under conditions that do not allow cell growth 

would enable sensitive detection of the MAP cells in frozen blood samples. This is 

very important especially when using the blood assay as very low numbers of 
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cells would be present. If the blood phage assay was carried out on frozen 

clinical samples of blood, which have been found in from clinical blood samples 

from animals tested in Chapter 4 to contain very low numbers of MAP cells, a 

drop of 1 log10 would be enough to give negative results based on the number of 

plaques formed.   

    Many factors can affect the ability for phage to infect their host. Generally 

bacteria have evolved to avoid or limit infection by bacteriophage, and as a 

consequence, bacteriophage have co-evolved to overcome barriers to infection. 

By entering the dormant stationary phase the mycobacteria are able to persist in 

many harsh environments, including inside their host. Their evolution to enable 

this survival may or may not have included resistance to bacteriophage infection, 

but regardless of this, phage TM4 had evolved a mechanism to allow it to infect 

dormant MAP cells where phage D29 had not. The implications for the FPTB 

assay when detecting cells from different environments is great, as it may not be 

able to infect all the cells in a sample if they are lying dormant. Equally when 

infecting active cells, D29 is much more efficient in infecting mycobacteria than 

TM4. So a balance could be struck between the two, however unfortunately the 

same virucide cannot be used for both of these phage that makes the 

incorporation of TM4 into the assay along with D29 problematic. Fortunately, the 

studies using the clinical blood samples indicate that the MAP cells inside the 

macrophage are in a state that allows D29 infection. For the one tube assay 

format, where all that is required is cell lysis, these results indicated that a 

combination of both bacteriophage could result in very efficient cell lysis and 

therefore extend the number of viable cells detected by the assay. 
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CHAPTER 7 

DEVELOPMENT OF A NOVEL FLUORESCENT PROTEIN FOR LABELLING 

MYCOBACTERIUM AVIUM SUBSP. PARATUBERCULOSIS 
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7.1. INTRODUCTION 

    The unique mycolic acid-rich cell wall characteristic of all mycobacteria 

described in Chapter 1 (Fig. 1.1) means that traditional staining techniques that 

rely on the penetration of water soluble dyes, such as the Gram stain, are not 

effective. A standard method for staining such acid-fast organisms for 

microscopy is the Ziehl-Neelsen (ZN) stain which differentiates the acid-fast 

bacteria from bacteria with other cell wall structures that are resistant to the 

Gram-stain (Fig. 1.2). The use of the ZN stain alone as a method to detect 

mycobacteria in samples has very low sensitivity as well as limited specificity 

since the method will stain all members of the genus (Zimmer et al., 1999). In 

addition the mycolic acid-rich cell wall is not restricted to  mycobacteria; other 

bacteria such as species of Nocardia, Corynebacterium, and Rhodococcus may 

stain acid-fast (Thoresen et al., 1994). Fluorescent acid-fast stains have been 

shown to have a limit of detection of 104 cfu ml-1 (Hendry et al., 2009), but 

again these lack specificity and can be less sensitive than other microscopic 

methods. Therefore, other than revealing cell shape, this method of detecting 

acid-fast bacteria in a sample is not sufficient to identify the organism (Section 

1.2.3.1).  

    Despite this, because of the limitations of culture methods also described in 

Chapter 1, microscopy is a commonly used tool to identify mycobacterial 

infections. Hence researchers have developed alternative methods for staining 

cells to overcome the limitations of the ZN stain. The Avidin–Biotin Complex 

peroxidase (ABC) technique uses a primary antibody to bind to the target 

antigen (MAP cell). A biotinylated secondary antibody, with specificity against the 

primary antibody is added to bind to the primary antibody. A biotinylated 

peroxidase is then mixed with free avidin to form large avidin-biotin-peroxidase 

complex. This solution is then added to the tissue sample, and any remaining 

biotin-binding sites on the avidin bind to the biotinylated antibody which has 

already been bound to the target organism. This method is used as it creates a 



224 

 

greater concentration signal at the original antibody and therefore an increase in 

signal intensity and results in more sensitive detection of mycobacteria when 

compared to results using the ZN stain (Cancela and Marin, 1993). However the 

ABC method is more laborious and time consuming compared to the ZN stain 

(Kheirandish et al., 2009) but its increased sensitivity means that it can be used 

on very old tissue samples that have been stored for a long time, increasing the 

type of samples that can be analysed. However, the performance of this 

technique as a diagnostic still does not rival the use of culture (Martinson et al., 

2008, Huntley et al., 2005). Hence, despite the fact that they are routinely 

applied as diagnostic methods, existing staining techniques for MAP prior to 

microscopic analysis to identify infection are quite poor.   

    Fluorescent proteins, like green fluorescent protein (GFP), can be used to 

label and visualise cells instead of detecting reporter enzymes such as 

peroxidase. Generally GFP-fusion proteins are created to provide the binding 

specificity for the GFP moiety, for instance the cell wall binding domains found on 

some listeriaphage fused to GFP have been used to specifically label and detect 

Listeria monocytogenes (Schmelcher et al., 2010).  

    The aim of the experiments described in this Chapter was to develop a 

recombinant Gfp protein with the ability to bind to MAP cells to produce a 

fluorescent MAP-specific label that was far simpler than the ABC method. To do 

this the MAP-specific peptides described by Stratmann et al. (2002 and 2006) 

were fused to Gfp to try and develop a new microscopic detection and 

identification method that would enable MAP specific labelling of cells on a 

microscope slide. The aim was to create a reagent which could be used as quick 

and simple method to simultaneously detect and identify the organism and 

provide a significant advantage over the ZN stain in terms of specificity. 
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7.2. CONSTRUCTING FLUORESCENT PEPTIDES 

7.2.1. Primer Design  

    To initiate the work, the sequences of the peptides described by Stratmann et 

al. (2002 & 2006) were converted into codon optimised (for E. coli) DNA 

sequences (Table 7.1). Optimising the codon sequences helps to achieve faster 

translation rates of the preferred sequences for certain amino acids in E. coli. 

These optimised sequences were then incorporated into the primer sequences 

that could be used for the amplification of the Gfp protein (Table 7.2). Different 

primers were designed so that MAP-specific peptides could be joined to either 

the N- or C-terminal end of Gfp. To facilitate cloning two restriction sites, SmaI 

and NdeI, were inserted upstream of the start codon on the forward primers and 

SmaI and BamHI restriction sites were inserted upstream of the stop codon on 

the reverse primers (sites highlighted in primer sequences in Table 7.2). The 

sites NdeI and BamHI were included to allow directional cloning of the fusion 

construct in the vector, so that the insert would be in the correct orientation with 

respect to the promoter to ensure expression of the recombinant gene. 
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Table 7.1. Codon optimisation of MAP specific peptides 

Peptide - aMP3  N Y V I H D V P R H P A 

Codon Optimised AAT-TAT-GTG-ATT-CAT-GAT-GTG-CCG-CGT-

CAT-CCG-GCG 

Peptide - aMptD  G K N H H H Q H H R P Q 

Codon Optimised GGT-AAA-AAT-CAT-CAT-CAT-CAG-CAT-CAT-

CGT-CCG-CAG 

 
Codon usage optimisation for E. coli was determined using the table adapted by 

Malloy et al. (1996) shown in Appendix 7.1. 

 

Table 7.2. Sequences of primers use to create Gfp fusions  

Primer Sequence (5’ – 3’) 

GFP-Forward ATGAGTAAAGGCGAAGAAC 

GFP-Reverse GACACATTTATTTGTATAGTTC 

aMptD-N-Forward 

(N-aMptD) 

CCCGGGCATATGAATGGTAAAAATCATCATCATCAGCATC

ATCGTCCGCAGATGAGTAAAGGCGAAGAAC 

aMP3-N-Forward 

(N-MP3) 

CCCGGGCATATGAATTATGTGATTCATGATGTGCCGCGTC

ATCCGGCGATGAGTAAAGGCGAAGAAC 

N-Reverse CCCGGGATCCTTAGACACATTTATTTGTATAGTTC 

aMptD-C-Reverse  

(C-MptD) 

CCCGGGATCCTTACGCTGCGGACGATGATGCTGATGATG

ATGATTTTTACCGACACATTTATTTGTATAGTTC 

aMP3-C-Reverse    

(C-MP3) 

CCCGGGATCCTTACGCCGATGACGCGGCAGATCAATCAC

ATAATTGACACATTTATTTGTATAGTTC 

C-Forward CCCGGGCATATGATGAGTAAAGGCGAAGAAC 

Green: GFP forward and reverse primers (sequence based on Gfp cloned into the 

plasmid pDONOR-P4-P1R) 

Blue:  Codon optimised amino acid sequence coding for MAP specific peptide 

aMptD 

Red:  Codon optimised amino acid sequence coding for MAP specific peptide 

aMP3. 

Restriction sites are shown as Purple: SmaI; Gold: NdeI; Grey: BamHI.  
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Figure 7.1. Schematic of fusion protein construct orientation 

 

  

  

  

  

A schematic of the cloning strategy to enable the two MAP specific peptides to be 

bound on the N-terminal (N-aMptD & N-MP3) and C-terminal (C-aMptD & C-MP3) 

end of the Gfp protein. 
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7.2.2. PCR of GFP-fusion peptide 

    The primers described in Section 7.2.1 were used to amplify GFP-fusion 

peptide using a proof reading DNA polymerase (Phusion Taq; NEB, UK), using 

plasmid pDONOR-P4-P1R (Qazi et al., 2001) as template DNA which encodes the 

gfp gene. The expected size of the PCR product was approximately the same as 

that as the wild type gfp gene (800 bp) as the primers only increased the size of 

the gene product by ~50 bp. Initial attempts to amplify the GFP gene were 

unsuccessful. Several parameters were changed to try and overcome this 

problem, including reducing the template DNA concentration and changing the 

DNA polymerase. Phusion Taq DNA polymerase has been reported to have a 

lower PCR yield compared to non-proof reading polymerases, therefore the 

ability of the proof-reading DNA polymerase to amplify the GFP-peptide fusions 

was compared to a non-proof reading DNA polymerase (Qiagen HotStart-Taq 

DNA polymerase, UK). The results show that the GFP gene was amplified when 

the non-proof reading DNA polymerase was used with two of the GFP-fusion 

peptides (N-aMptD and C-MptD), however no amplification was seen when the 

proof-reading polymerase was used (Fig 7.2), indicating that for these particular 

primers the proof-reading DNA polymerase was not sufficiently efficient.   

    Despite changing the polymerase, a PCR product was not produced using all 

primer pairs, hence a temperature gradient PCR was carried out for all of the 

primer pairs using the Phusion Taq DNA polymerase to determine whether the 

annealing temperature was affecting the amplification of the GFP-fusion 

peptides. The temperature gradient used ranged between 50 °C and 60 °C, but 

once again this did not improve amplification of the GFP fusion peptide (data not 

shown). The Phusion Taq DNA polymerase information sheet recommends using 

dimethyl sulphoxide (DMSO), which encourages DNA denaturing and can inhibit 

non-specific primer binding. Therefore the temperature gradient experiment was 

repeated this time including 3 % DMSO in the PCR reaction mixtures. In this 

case all four GFP-peptide fusion sequences were amplified consistently over a 
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range of different annealing temperatures (56.3 °C to 60 °C; Fig 7.3). Once the 

correct Gfp-peptide fusion sequences had been successfully amplified, the next 

step was to clone them into E. coli.   
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Figure 7.2. Comparison of PCR of GFP amplification using a proof-

reading and non-proof reading DNA polymerase 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Results of amplification of the GFP gene from plasmid pDONOR-P4-P1R (800 bp) 

using different polymerases and conditions. Image shows the comparison of 

results gained when using NEB Phusion Taq DNA polymerase and Qiagen 

HotStart Taq DNA polymerase. Lane 1 and 12; 100 bp Ladder (Section 2.4.3). 

Lane 2 is a positive control using non-fusion GFP primers (GFP Forward and 

Reverse; Table 7.2). Lanes 3 to 6 shows results of amplification of GFP using 

primers: N-aMptD & N-MP3 with reverse primer N-reverse and C-aMptD & C-MP3 

with the forward primer C-Forward (Table 7.2) using a proof-reading 

polymerase. Lanes 7 to 10 show results of amplifying GFP using primers: N-

aMptD & N-MP3 with reverse primer N-reverse and C-aMptD & C-MP3 with the 

forward primer C-Forward (Table 7.2) with Qiagen HotStart Taq DNA 

polymerase. Lane 10 is a negative control (SDW replaced the plasmid template 

DNA). 
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Figure 7.3. Effect of DMSO and annealing temperature on PCR 

amplification of the GFP-peptide fusion sequence 

 

 

 

 

 

 

 

 

 

 

 

Results of gradient PCR for the amplification of the gfp gene from plasmid 

pDONOR-P4-P1R (800 bp) with addition of DMSO. Panel A; primer N-aMptD with 

reverse primer N-reverse,  Panel B; primer C-aMptD with the forward primer C-

Forward, Panel C; primer N-MP3 with reverse primer N-reverse  and Panel D; 

primer C-MP3 with the forward primer C-Forward. Lanes 2 to 9 annealing 

temperatures were; 50, 50.7, 52.0, 53.9, 56.3, 58.3, 59.4 and 60 oC, 

respectively. Lane 10; negative control (SDW replaced the plasmid template 

DNA). In panels C and D: Lanes 2 to 6 annealing temperatures were; 60, 59.4, 

58.3, 56.3, 53.9, respectively. Lane 7 is a negative control (SDW replaced the 

plasmid template DNA). Marker lanes contain 100 bp Ladder (Section 2.4.3). 

Poor Amplification of the gfp gene in lanes 3-5; panel B, are anomalous results.  
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7.2.3. Cloning and Analysis of GFP-fusion PCR products     

    The PCR products were excised from the gel and the DNA was purified and 

concentrated using a gel recovery spin column (Section 2.5.1.2). The 

concentration of the DNA was determined using the Nanodrop (Table 7.3). The 

site for the enzyme NdeI had been designed to allow directional cloning into the 

vector, and an attempt was then made to directionally ligate the insert into the 

plasmid, however no green colonies formed.  Subsequent restriction digest 

analysis of the plasmid showed that there was an extra unexpected band on the 

gel (data not shown) indicating that the insert fragment may have been cut 

more than once. The whole GFP gene was analysed using the NEB-restriction 

mapping tool (http://tools.neb.com/NEBcutter2/) and an additional NdeI 

restriction site was found in the Gfp gene used as a DNA template (Figure 7.4).   

    However the primer design also included SmaI that created blunt ends which 

could be used. While using this site negated the need to redesign the primers, 

the orientation of the insert could not be controlled during the cloning, but 

correct cloning of the gfp gene would produce a detectable green fluorescence 

phenotype which simplified the screening of clones. To clone the PCR products 

from Section 7.2.2, the purified DNA and the plasmid pET23a (Appendix 7.2) 

was cut with the restriction enzyme SmaI (Section 2.5.1.2). These restriction 

fragments were then mixed to give an vector : insert ratio of 3:1 and ligated 

together (Section 2.5.1.3). The ligation mixture was analysed by agarose gel 

electrophoresis to show that the fragments had been ligated together 

successfully (data not shown) and were then transformed into chemically 

competent E. coli Top10 (Table 2.1) using the heat-shock method (Section 

2.5.1.5). The transformed cells were plated onto ampicillin (100 µg ml-1) 

selective LB-agar. Colonies were isolated and patched onto ampicillin selective 

agar and colony-PCR targeting the gfp-fusion DNA sequence were carried out to 

confirm that the selected colonies contained the correct gene structure. Colonies 
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that were positive for the gfp-fusion peptide DNA were taken forward for further 

study. 
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Table 7.3. Concentration of the purified GFP-fusion PCR amplicons 

Primer Pair DNA concentration (ng.µl-1) 

N-aMptD & N-Reverse 470 

N-MP3 & N-Reverse 675 

C-aMptD & C-Forward 419 

C-MP3 & C-Forward 403 

 

The primer pairs used to generate these PCR amplicons are those presented in 

Table 7.2. The DNA concentration was measured using a Nanodrop. 

 

 

Figure 7.4. Predicted restriction enzyme sites in GFP gene 

 

Diagram shows the restriction enzyme sites present in the GFP sequence (NEB 

online restriction-mapping tool, http://tools.neb.com/NEBcutter2/) in plasmid 

pDONOR-P4-P1R. The red ring shows restriction site NdeI which was introduced 

into the GFP-fusion peptide primers. 

 

 

 

 

 

http://tools.neb.com/NEBcutter2/
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7.2.4. Transformation and expression of GFP-fusion peptides 

    Plasmid DNA was extracted from colonies with the correct phenotype and 

gene structure using a ZymoResearch mini-prep kit (Section 2.5.3). The 

concentration and purity of the extracted plasmid DNA was measured using the 

Nanodrop. The plasmids were then transformed into a chemically competent 

expression strain of E. coli (BL21 DE3; Table 2.1), which was selected due to its 

ability to express high quantities of recombinant proteins. After transformation, 

the cells were plated onto selective LB agar supplemented with ampicillin (100 

µg ml-1) and IPTG (0.5 mM) and incubated overnight at 30 oC. Using a blue light 

to excite the Gfp, colonies that fluoresced green were selected. These were 

inoculated into 10 ml of LB media containing ampicillin (100 µg ml-1) to prepare 

the fusion protein. After growth to mid log phase (OD600nm = ~0.5), IPTG was 

added (0.5 mM) to induce protein expression. The liquid cultures where then 

incubated for 4 h shaking at 37 oC when they were again visualised using a blue 

light to confirm that GFP was being expressed.  

    Cell lysis and ion exchange chromatography purification (Sections 2.5.1.6 & 

2.5.1.7, respectively) were used to purify the GFP-fusion proteins. Samples from 

each fraction of the purification column were removed and fluorescence levels 

measured using a microtitre plate reader (Genios Pro, Tecan). The results 

showed that for all four constructs the fractions eluted from the columns with 

200 and 250 mM NaCl yielded the highest fluorescent activity (Figure 7.5). These 

samples were also analysed by SDS-PAGE (Section 2.5.1.8) to determine the 

purity of the fraction containing the GFP-fusion peptide and the Bradford assay 

was used to determine the concentration of the purified protein (Section 

2.5.1.9).  
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Figure 7.5. Fluorescence of purified GFP fusion-peptides 

Relative fluorescent units (RFU) of fractions eluted using different NaCl 

concentrations containing the GFP-fusion peptides. Blue bars represent peptide 

N-aMptD. Red bars represent peptide N-MP3. Green bars represent peptide C-

aMptD. Purple bars represent peptide C-MP3. Error bars represent the standard 

deviations of the mean (n=3). 

 

Figure 7.6. SDS-Page analysis of GFP-fusion samples  

 

 

 

 

 

 

 

 

SDS-PAGE analysis of the GFP-fusion protein samples on a 4-20 % gradient 

acrylamide gel stained with Coomassie Blue. Lane 1 is the protein marker (Fig. 

2.6). Lane 3, 5 7 and 9 contain crude protein extracts of N-aMptD, N-MP3, C-

aMptD and C-MP3, respectively. Lanes 2, 4, 6 and 8 are purified GFP-fusion 

fractions eluted using pooled 200 and 250 mM NaCl. Lane 10 is the positive 

control containing purified native Gfp protein (28 kDa). 
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The concentration of each fusion peptide was found to be; 0.17, 0.23, 0.18 and 

0.24 mg ml-1 for; N-aMptD, N-MP3, C-aMptD and C-MP3, respectively, and Figure 

7.6 shows that all the different the GFP-fusion proteins were successful purified. 

 

7.2.5. Evaluating the ability of the GFP-fusion peptides to bind to MAP 

cells 

    To determine whether the purified proteins retained the property of the 

peptides to bind to MAP cells, a cell binding protocol was developed (Section 

2.7.1). Since the peptides were used in pairs to achieve efficient binding of MAP 

cells when used for PMMS, they were evaluated as mixtures (i.e. mixtures of the 

two N-terminal peptide fusions or the two C-terminal peptide fusions were 

prepared before their ability to bind to MAP cells was evaluated). Briefly MAP and 

M. smegmatis cultures were enumerated using the phage amplification protocol 

(Section 2.1.3.3) and the concentration of cells in the cultures adjusted to 1 x 

104 pfu ml-1. To determine which orientation (GFP at the N- or C- terminal end) 

had better binding capacity and the optimal concentration of the GFP-fusion 

peptides, the cells were then centrifuged and resuspended PBS (Section 2.7.1) 

before mixing with the GFP-peptides mixtures  (N-aMptD + N-MP3 or C-aMptD + 

C-MP3) at concentrations of 100, 10 and 1 µg ml-1. The results showed that the 

highest concentration (100 µg ml-1) of both N-terminal peptide fusions (N-aMptD 

& N-MP3), when mixed with the different cell types had a significantly (P<0.05) 

better ability to bind to MAP compared to the C-terminal peptide fusions (C-

aMptD & C-MP3), which exhibited little binding capability at all concentrations 

tested (Fig. 7.7). Even in this first experiment, comparison of the results for the 

N-terminal fusions binding to the same number of MAP or M. smegmatis cells, a 

relatively low signal to noise ratio was seen indicating that the binding to the 

MAP cells had some specificity.  
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Figure 7.7. Binding of mixed GFP-fusion peptides to Mycobacteria  

 

Graph showing relative fluorescent units (RFU) of the GFP-fusion peptides (N-

aMptD + N-MP3 or C-aMptD + C-MP3) diluted to different concentrations to bind 

to MAP (Blue) and M. smegmatis (Red).  
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7.2.6. Optimising GFP-fusion peptide binding assay    

     To try and improve the signal to noise ratio, the mixture of N-terminal 

peptide fusions (N-aMptD & N-MP3; 100 µg ml-1) was tested again, but this time 

Tween-20 was including in the wash buffer to try and reduced non-specific 

binding (Section 2.7.1). An additional negative control sample containing no cells 

(PBS only) was also included in this experiment as well as the M. smegmatis 

negative control sample. The Gfp fluorescence was again determined and the 

results show that the GFP fluorescence remaining associated with the MAP cells 

was now significantly greater (P<0.001) than the level of fluorescence detected 

associated with either of the negative controls. In addition there was no 

difference between the level of fluorescence detected in the M. smegmatis and 

the PBS negative control samples suggesting that the non-specific binding of the 

fusion proteins to M. smegmatis seen in the last experiment that resulted in the 

background level of fluorescence was completely suppressed (Fig. 7.8). 

 

7.2.7. Using GFP-fusion peptides to visualise MAP cells 

    Using the same protocol in described above (Section 7.2.6), MAP cells were 

labelled with the mixture of N-terminal GFP-fusion peptides and images of the 

labelled MAP cells were obtained using a Confocal microscope (Lecia, SP5). The 

fluorescence images were compared to brightfield images of the same cells to 

ensure the GFP-fusion proteins were in bound to cells and not to artefacts in the 

sample or non-specific binding. The results show that the GFP-fusion peptides 

bound well to the MAP cells, when compared to the brightfield images (Fig. 7.9). 

However there was an issue with results as there was a lot of background 

fluorescence from panel A of Figure 7.9, which may have been due to non-

specific binding of the fluorescent peptides, or the washing steps were not 

thorough enough. 
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Figure 7.8. Specificity of GFP-fusion peptide binding  

Graph showing relative fluorescent units (RFU) of the GFP-fusion peptides (N-

aMptD + N-MP3) after binding to samples containing MAP (Blue), M. smegmatis 

(Red) or no cells (PBS; Green). Error bars represent the standard deviations of 

the means (n = 3). A t-Test assuming equal variances was carried out to analyse 

significance (***p<0.001) in the difference between RFU levels from the 

samples containing MAP and M. smegmatis.  
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Figure 7.9. Comparison of fluorescent confocal and brightfield images of 

MAP cells labelled with N-terminal Gfp peptide fusions  

 

Images of MAP cells labelled with the N-terminal GFP-peptides fusions taken 

using the confocal microscope (x700). Images show (A) fluorescence and (B) the 

same field using brightfield microscopy (B). The scale bar in each panel 

represents 10 µm. 

  

A 
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    Next the N-terminal Gfp peptide fusions were tested to determine whether 

they could differentiate between M. smegmatis and MAP present within one 

sample. The cells were prepared and the labelling with the GFP-fusion peptides 

N-aMptD + N-MP3 was carried out as described before (Section 2.7.1) but this 

time a sample of M. smegmatis was mixed with MAP cells at a ratio of 1 : 1 . To 

confirm that the brightly fluorescing objects in the images were cells, DAPI 

staining (Section 2.7.1) was used to identify the DNA within the cells and to 

allow unlabelled M. smegmatis cells to be located when imaged using 

fluorescence microscopy. The results show that the MAP cells were specifically 

labelled with the Gfp-fusion proteins whereas the M. smegmatis cells were not 

(Fig. 7.10 & 7.11). This was reinforced by the DAPI stained image which clearly 

showed the location of the MAP and M. smegmatis cells (Fig. 7.10 & 7.11).   
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Figure 7.10. Comparison of fluorescent confocal and brightfield images 

of MAP cells labelled with N-terminal Gfp peptide fusions and DAPI  

 
 

Images of the MAP sample taken using the Confocal microscope (x700). Panel A 

shows DAPI stained image (chromosomal DNA detected) of the MAP cells 

showing that cells are present in the field of view. Panel B shows Gfp 

fluorescence from cells labelled with Gfp-peptide fusions. Panel C shows the 

bright field of the image showing some small clumps of cells and individual cells 

on the surface.  Panel D is the over lay image of Panels A, B and C. The scale bar 

in each panel represents 10 µm. 
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Figure 7.11. Comparison of fluorescent Confocal and Brightfield images 

of M. smegmatis cells labelled with N-terminal Gfp peptide fusions and 

DAPI  

 

Images of the M. smegmatis sample taken using the confocal microscope 

(x700). Panel A shows DAPI stained image (chromosomal DNA detected) 

showing that cells are present in the field of view. Panel B shows no Gfp 

fluorescence detection, where no cells are Gfp-labelled with Gfp-peptide fusions. 

Panel C shows the bright field of the image showing (some small clumps of cells 

and individual cells on the surface visible) and panel D is the over lay image of 

Panels A, B and C. The scale bar in each panel represents 10 µm. 
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7.2.8. Ziehl-Neelsen staining on fixed MAP samples 

 

    When the Ziehl-Neelsen (ZN) stain is routinely using to detect and visualise 

acid-fast organism under the microscope, specifically on histology samples, they 

are usually first fixed with glutaraldehyde. To determine the effect of this 

treatment on Gfp-fusion binding, samples of MAP and M. smegmatis were 

prepared by fixing the samples on glass microscope slides with glutaraldehyde 

and these samples were then labelled with the mixture of N-terminal GFP-

peptide fusions (Section 7.2.6). Samples were then visualised by fluorescent 

microscopy to determine whether any mycobacteria could be detected. The 

results show that the MAP cells were detected routinely and, once again, M. 

smegmatis was not detectable under the fluorescent microscope even though 

cells were clearly visible in the same field using bright field microscopy (Fig. 

7.12; panels A-D). The same slides treated with the GFP-fusion peptide were 

treated with the ZN stain (Section 2.8). In this case both types of mycobacteria 

were visible after the ZN stain (Fig. 12; panels C and F), showing that the GFP-

fusion peptides were equally able to detect the fixed MAP cells but provided a 

degree of specificity compared to that provided by the routinely used ZN stain.    
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Figure 7.12. Comparison of fluorescent, Brightfield and ZN stained 

images of M. smegmatis and MAP cells 

Images of MAP cells (A-C) and M. smegmatis cells (D-E) stained by red after ZN 

(Arrows; C and F) after labelling with GFP-Fusion peptide (B and E) and 

corresponding brightfield images (B and E). The scale bar in panels C and F 

represents 2 µm. The scale bar in panels A, B, D and E represents 10 µm. False-

colour fluorescent images were manipulated using GIMP2. 
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7.2.9. Development of fluorescent cell capture MAP detection assay 

    The peptides described by Stratmann et al. (2002 and 2006) were shown to 

bind strongly to MAP (association constant of 1 x 109). It was now proposed to 

use the peptides used for PMMS to capture cells from liquid samples, and then to 

detect them using the Gfp-fusion proteins (Fig. 7.13). Both the orientations of 

peptides were used in this study to investigate whether the N- terminal fusions 

superior binding capacity was consistent when binding to MAP cells fixed to a 

surface.  

    To do this the peptides were biotinylated and bound to the surface of an 

avidin-coated 96-well microtitre plate (Section 2.7.2). Three 10-fold dilutions of 

MAP and M. smegmatis cells estimated to contain 1 x 104 to 1 x 102 pfu ml-1 

using the phage enumeration assay (Section 2.1.3.3) were then added into the 

wells of the prepared microtitre plate (Section 2.7.2.1). Samples were washed 

twice with PBS-Tween. A sample (100 µg ml-1) of both the N- terminal GFP-

peptide fusion mixtures (N-aMptD + N-MP3; Fig. 7.1) and the C- terminal GFP-

peptide fusion mixtures (C-aMptD + C-MP3; Fig 7.1) were then added to the 

wells and incubated for 1 h at 37 oC. As controls MAP and M. smegmatis cells 

were bound to the surface of the peptide coated 96-well plate, and no GFP-

fusion proteins added to determine whether the MAP cells contribute to the 

fluorescent signal (Fig. 7.13). The fluorescence level of each sample was then 

determined using a fluorimeter (Genios Pro, Tecan). 
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Figure 7.13. Schematic of the ELISA-like cell capture assay 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schematic shows the design of the cell capture assay: (1) a MAP-specific 

biotinylated peptide-coated well, being washed with MAP (blue) and M. 

smegmatis (purple). (2) MAP cells adhering to the MAP specific peptides, whilst 

M. smegmatis gets washed away. (3) GFP-fusion proteins binding to the bound 

MAP cells (positive signal). (4) M. smegmatis does not bind to the MAP specific 

peptides and GFP-fusion proteins do not bind (no signal).  
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    The results (Fig. 7.14 A) show that there was significantly higher (P<0.05) 

fluorescence signal from the highest concentration of MAP cells tested (1 x 104 

pfu ml-1) compared to the equivalent sample of M. smegmatis cells when the N-

terminal fusion peptides were tested. However there was also significant 

(P<0.05) signal from the sample tested which contained 1 x 104 pfu ml-1 M. 

smegmatis cells when compared to the signal from the sample containing lower 

numbers of MAP cells (Figure 7.14 A). When the C-terminal GFP-fusion proteins 

were used, there was no significant difference (P>0.05) between the signal from 

the highest concentrations of MAP and M. smegmatis (Figure 7.14 B). The results 

also showed that again the N-terminal GFP-fusion proteins were far superior at 

labelling captured MAP cells compared to the C-terminal proteins. However as 

there was still a lot of signal from M. smegmatis cells, further optimisations 

would be required to reduce the non-specific binding detected when using this 

assay format. 
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Figure 7.14.  Microtitre plate cell capture and fluorescent identification 

with GFP-fusion peptides 

 

 

 

 

 

 
Graphs showing relative fluorescent units (RFU) produced by the GFP-fusion 

peptides mixtures N-aMptD + N-MP3 (Panel A) and C-aMptD + C-MP3 (Panel B) 

to binding to 104, 103 and 102 pfu ml-1 of MAP and M. smegmatis captured on the 

surface of a microtitre dish. Error bars represent the standard deviations of the 

means (n=3). A t-Test assuming equal variances was carried out to analyse 

significance (p<0.05) in RFU from the MAP sample compared to M. smegmatis. 
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7.2.9.1. Optimising the cell capture assay 

    To improve the specificity of the binding of the Gfp-peptide fusion, a higher 

concentration of BSA (4 % instead of 2 %) was used in the blocking step 

(Section 2.7.2) of the cell capture assay to help block non-specific binding sites. 

In addition a small amount of the detergent (Tween-20; 0.05 %) was included in 

the wash buffer, to help expose the peptide binding sites, to improve the amount 

of the fusion-peptide actually getting to their target binding site and to inhibit 

non-specific binding. Once again control samples were prepared containing 

either M. smegmatis or no cells (PBS only). In addition, samples in which MAP 

cells that were not then labelled with the GFP-fusion peptides were included to 

determine the background fluorescence levels contributed by the cells 

themselves. The results (Figure 7.15) shows that there was significantly 

(P<0.001) more signal from the sample containing the labelled MAP cells 

compared to the sample containing the captured M. smegmatis cells. There was 

also no difference in the signal from the M. smegmatis sample and that 

containing only PBS and the sample in which the captured MAP cells were not 

labelled with the fluorescent protein, suggesting that no non-specific binding was 

occurring. However the signal from the positive MAP control was still not very 

high, suggesting that either the GFP-fusion peptide was not able to find the right 

binding sites, or that they were falling off during the washing steps. 
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Figure 7.15. Effect of BSA concentration on blocking non-specific GFP-

fusion peptide binding to MAP and M. smegmatis 

Graph showing relative fluorescent units (RFU) following binding of the GFP-

fusion peptides (N-aMptD + N-MP3) to MAP and M. smegmatis after blocking 

with BSA (4%). As controls samples containing only PBS and MAP cells that were 

not labelled with GFP-fusion peptides were used. Error bars represent the 

standard deviations of the means of RFU performed in triplicate. A One-way 

ANOVA, followed by the Dunnett’s test was used to analyse significance 

(*P<0.001) in the RFU’s between each sample. 
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    To determine the specificity of the assay, the assay was performed using 

samples of other mycobacteria that are more closely related to MAP than M. 

smegmatis is. To do this the experiment described in Section 2.7.2 was 

repeated, using cultures of M. avium and M. intracellulare in addition to M. 

smegmatis. The results show that although there was a significantly higher 

signal (P<0.05) from MAP compared to the other mycobacteria (Figure 7.16), 

the signal to noise ratio was much lower compared to the signal to noise ratio 

from the results shown in Figure 7.17. This suggests that again the GFP-fusion 

peptides are not binding sufficiently tightly to MAP.    

    When developing a fluorescent cell capture assay, the signal to noise ratio 

needs to be as high as possible. The maximum signal to noise ratio currently 

achieved was 4:1, hence experiments were designed to try and increase the 

efficiency of the binding of the peptides to the MAP cells. One factor that can 

affect peptide binding interactions is temperature. An increase or decrease in 

temperature can affect the association and dissociation rates of binding which 

may affect the strength, persistence or specificity of the signal compared to the 

background noise of the cell capture assay. Thus the temperature that the GFP-

fusion peptides were allowed to bind to the MAP cells was changed to 4 oC, 20 oC 

(room temperature), 25 oC, 30 oC and 37 oC. The results show that the lower 

temperatures resulted in a lower signal. Only at 30 oC did the signal increase, 

but at 37 oC the signal was highest. 

    Another factor that can affect the binding of proteins to their targets is ionic 

concentration (Pasupuleti et al., 2009). Hence to try and improve the signal to 

noise ratio from the capture experiments, the concentration of NaCl in the 

binding buffer was altered from 0 to 0.1, 0.2 or 0.4 M. The cell binding assay 

was then carried out (Section 2.7.2) using MAP cells. The results (Figure 7.18) 

show that the increasing concentration of NaCl had an adverse effect on the 

GFP-fusion peptide binding in that the highest level of fluorescence detected was 

when no extra NaCl was added and any increase in the salt concentration in the 



254 

 

binding and wash buffers reduced the signal detected from samples containing 

the same number of captured cells. 
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Figure 7.16. Specificity of GFP-fusion peptide binding to MAP and other 

closely related mycobacteria 

 

Graph showing relative fluorescent units (RFU) following binding of the GFP-

fusion peptides (N-aMptD + N-MP3) to MAP, M. smegmatis, M. avium and M. 

intracellulare cells. As controls samples containing only PBS and MAP cells that 

were not labelled with GFP-fusion peptides were used. Error bars represent the 

standard deviations of the means of RFU performed in triplicate. A One-way 

ANOVA, followed by the Dunnett’s test was used to analyse significance 

(*P<0.05) in the RFU’s between each sample. 
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Figure 7.17. Effect of temperature on GFP-fusion binding to MAP cells 

 

 

 
Graph showing relative fluorescent units (RFU) following binding of the GFP-

fusion peptides (N-aMptD + N-MP3) to MAP at different temperatures (4, 20, 25, 

30 and 37 –C). Error bars represent the standard deviations of the means of RFU 

performed in triplicate. 

 

Figure 7.18. Effect of increasing NaCl concentrations on GFP-fusion 

binding 

Graph showing relative fluorescent units (RFU) of the effect different NaCl 

concentrations (0, 0.1, 0.2 and 0.4 M) on the binding of GFP-fusion peptides to 

MAP. Error bars represent the standard deviations of the means of RFU 

performed in triplicate. 
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7.3. DISCUSSION 

7.3.1. GFP-fusion tag expression and purification 

    Acid-fast stains are used when detecting and diagnosing mycobacteria, in 

tissue or sputum samples under the microscope. However this method of 

identification only allows, at best, a genus level of identification. The ability to 

fuse a fluorescent protein onto to a peptide specific for certain species, would 

allow differentiation of the different species. The use of fluorescent peptides as 

labels to specifically target bacteria has been demonstrated many times. In 

particular fusion proteins have been used to differentiate many species of 

Listeria using fluorescent proteins fused to cell-wall binding domains (CBD) 

isolated from lysins encoded by listeriophage (Kretzer et al., 2007, Schmelcher 

et al., 2010). The two MAP-specific peptides described by Stratmann et al. 

(2002, 2006), had been shown to have a good binding capacity for MAP cells 

allowing them to be separated from an inhibiting environment by PMMS, and 

transferred to an environment more suited for downstream processing. Hence 

these were good candidates to try and created Gfp fusions with specific binding 

properties. 

      The results from the studies using microscopy to detect individual cells 

showed that the GFP-fusion peptides were able to consistently differentiate 

between MAP and M. smegmatis once the blocking steps were optimised.  

    

7.3.2. Cell capture assay development 

    When visualising the cells looking at the fluorescent image, like the brightfield 

images, the GFP-fusion peptides did not differentiate between individual cells 

and clumps of cells (Figure 7.9). This would be a problem when trying to 

enumerate cells, or to determine how many cells may be present in the clump. 

The ability to use the microtitre plate enables a relative unit to be given to the 

number of MAP cells present, which could give an indication of the number of 

cells present, if a standard-curve was constructed each time the experiment was 
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carried out. However when observing histological samples, disease status can be 

categorised on whether there are multibacilliary or paucibacillary lesions or a 

positive or negative observation in the certain tissue samples (Gonzalez et al., 

2005). 

    There are many different strategies that can be used to prevent non-specific 

binding. Bovine serum albumin (BSA) can be used at varying concentrations to 

block non-specific binding sites, whereas non-ionic detergents such as Tween, 

can expose specific binding sites to encourage correct binding. However 

sometimes when BSA and Tween are used together, they can work against each 

other resulting in non-specific binding, as Tween can remove the BSA from 

binding to the cells, so BSA was used at a relatively high concentration (4%) to 

prevent this (Steinitz, 2000). This resulted in a significant signal to noise ratio 

when MAP was compared to M. smegmatis and PBS (Figure 7.8). 

    Other ways to increase cell binding were investigated. Peptide and antibody 

binding can be influenced by the salt concentration (NaCl) of buffers used 

(Pasupuleti et al., 2009). The results show that a significant signal to noise ratio 

can achieved using the cell capture assay format. However optimisations would 

be needed to produce a more robust system of detection. 

 

7.3.3. Conclusion 

    As an attempt to make a label that is more specific than the classic ZN stain, 

the GFP-fusion peptides have shown to be a good alternative for cells from pure 

cultures, fixed onto microscope slides. The next important step in evaluating the 

use of this reagent would be to test it on real histology samples, and to 

determine whether it is possibly to specifically identify mycobacteria as MAP cells 

in these samples. An important part of histology is the ability to maintain tissue 

samples for a long period of time, and to return to them if needed. So the length 

of time a sample remains stained for is an important factor. Fluorescent proteins 

can become bleached and unusable if exposed to too much light (Chalfie et al., 
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1994). However if stored correctly, GFP has been known to last for long time, 

with ability to fluoresce still (Tsien, 1998), therefore it may be possible to store 

tissue samples for a long time. Other barriers to using the GFP-fusion peptides 

are that they may not be able to bind effectively onto fixed samples used for 

histology, as some fixing agents such as the ‘aldehydes’ cross link proteins to fix 

them reducing the sensitivity. Other potential problems with the fluorescent 

peptides binding are that the different components of the tissue being stained 

may results in non-specific binding, so rigorous optimisation of blocking steps 

would need to be carried out. 

   The great potential benefits of the fluorescent probes would be other peptides 

specific to different mycobacteria could be found and labelled in the same way. 

Simple phage display and biopanning resulted in the discovery of the MAP 

specific peptides, and already researchers have found novel peptides that can 

bind to M. bovis (Stewart et al., 2012). Although the efficacy of the peptides 

alone at capture M. bovis cells was poor. However there is definite potential to 

create different coloured probes that bind to different mycobacteria to rapidly 

differentiate between them using this method of making a fluorescent fusion 

peptide. 

    The attempt to develop a fluorescent cell capture assay was less successful. 

The signal to noise ratio was quite poor, and the specificity was not as strong 

compared to labelling the cells in situ on a microscope slide. However there was 

still a significantly stronger signal from MAP, compared to the other 

mycobacteria used as test samples. Fluorescent detection methods are 

susceptible to several parameters that can affect the signal output. Detection of 

fluorescence is susceptible to changes in pH, temperature, ion concentration, 

detergent concentration, drying, and the solid matrix (Gibbs et al. 2001) 

although GFP is a very stable, other proteins are not (Tsien, 1998). Further 

optimisations of these parameters may affect the binding of peptides, which may 

increase the signal from the MAP cells.  
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CHAPTER 8 

GENERAL DISCUSSION AND FUTURE WORK 
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   Mycobacterial diseases represent some of the most important and ancient 

diseases known to infect humans and animals. M. tuberculosis was the first 

organism that was definitively shown to be associated with human disease by 

Koch – given the problems that exist cultivating this organism, this was quite 

remarkable as it might be expected that it would have been easier to 

demonstrate this with V.  cholera or Shigella, which were also big killers at the 

time of Koch. Despite many years of research, ways to improve the detection of 

viable slow-growing mycobacterial cells, other than liquid culture systems, have 

not been found. Not only does the difficulty in culturing these organisms hinder 

diagnosis, it also handicaps research because determining the number of viable 

cells is still the most routinely used method to quantify cells in studies of 

infection and survival in the host. 

    The FPTB assay was developed to utilise the ability of bacteriophage to infect 

and replicate faster than their hosts doubling time. Originally developed for the 

rapid detection of M. tuberculosis in human sputum samples, the FPTB assay was 

a major breakthrough in the detection of viable mycobacteria. However due to 

the advent of molecular methods such as PCR around the same time, the FPTB 

assay fell out of favour. The assay in its original format, to detect TB, did not 

reach its full potential, however as the phage used in the assay can infect a wide 

range of mycobacteria (Rybniker et al., 2006), work was carried out to 

determine whether other pathogenic mycobacteria could be detected. 

    MAP is the causative agent for significant animal disease, called Johne’s 

disease. The economic impact of Johne’s disease is of great importance, as 

Johne’s disease is thought to be endemic in many countries around the world 

(Pradhan et al., 2009). MAP is another organism that is difficult to work with as 

it can take months to form colonies on agar. The bacteriophage used in the FPTB 

assay can be used to infect MAP as well as TB. The ability to detect MAP in the 

blood of animals suffering from Johne’s disease could be a crucial step in 

understanding and controlling the spread of the disease. Johne’s disease has a 
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major economic impact on the dairy and meat industry where significant losses 

in milk production are seen (Losinger, 2005). The limitations of culture, ELISA 

and PCR based tests and the difficulties complexities of the different stages of 

disease, means that there is a definite need for alternative tests.  

 

8.1. THE BLOOD PHAGE ASSAY 

    The FPTB assay has been applied in a variety of ways to rapidly detect viable 

MAP in milk and dairy products (Botsaris et al., 2010, Stanley et al., 2007, 

Foddai et al., 2009). In dairy herds, milk is one of the easiest samples to obtain 

for Johne’s screening as there are no ethical ramifications or other issues to 

overcome for collection. However a problem with faecal contamination has 

always been thought to be an issue when using milk to detect viable MAP cells as 

an indication of disseminated disease. Animals can be passively transmitting MAP 

cells in their faeces without becoming infected with Johne’s disease (Whittington 

and Sergeant, 2001). This can contaminate milk being tested leading to a false 

representation of MAP being found in milk. In contrast the use of aseptically 

collected blood samples reduces this concern about contamination. The site 

where the blood is removed can be thoroughly cleaned, reducing the likelihood 

of faecal contamination. In addition, the use of blood as a test sample makes the 

method applicable to animals of all genders, all ages and all stages of 

production, rather than being limited to those animals that are producing milk. 

Having a good blood test that detects whole-viable MAP cells also allows 

questions about the pathophysiology of disease to be asked. Information about 

when the MAP cells become systemic and how they get into the milk can be 

determined leading to a greater understanding of the disease.    
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8.1.1. Developing phage assay protocols 

   Whenever new applications of the phage assay have been developed, sample 

processing has been found to be crucial to allow as efficient phage infection as 

possible. Pragmatically the approach that has been taken is to use methods that 

have already been shown to be successful for the culture of mycobacteria for 

that sample type. This has two benefits; first to speed up the time taken for 

method development by utilising the knowledge of other experts in the field and 

second the methods are familiar to other workers which, makes them more likely 

to be accepted and also allows others to easily compare the results gained to 

their own. In this case to capture the MAP cells, PMMS that had previously been 

used to capture MAP cells from milk was used, however variability in the assay 

with regards to capture and detection rates were found when different animal 

blood types were used. When PMMS was used on horse blood, cell capture was 

very poor, however when carried out in sheep blood, cell capture was improved. 

It was hypothesised that as different animals have different viscosities of blood, 

bead movement was being impeded (Windberger et al., 2003), and several 

dilution steps were needed to allow efficient capture of the MAP cells in the 

blood. Fortuitously, diluting the blood resulted in the lysis of the red and white 

blood cells; although this was not an intentional part of the method design it 

meant that any MAP cells in clinical samples, that are believed  to be intracellular 

(Bower et al., 2011), were then accessible to the phage in the FPTB assay. 

Bower et al. (2012) optimised the macrophage cells lysis step when MAP culture 

was being optimised from blood.  

    When developing the original blood assay the emphasis was on establishing 

the conditions required to make sure the sample would not inhibit phage 

infection. However, not much thought was given to the state of the cells being 

detected. It was found in Chapter 6, that mycobacteria cells that are in a 

stationary non-replicating, dormant phase would resist phage infection with D29. 

Whether or not this was an evolved strategy by the cells or a coincidence 
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suggested that the phage assay potentially may not be detecting all of the cells 

present in this sample and potentially in others that have been tested. 

    It had been reported before that phage D29 could not infect dormant 

mycobacteria, but another mycobacteriophage TM4 could (Piuri and Hatfull, 

2006). When the mycobacteria were induced into the non-replicating phase, 

detection of the cells with D29 was arrested. Interestingly this gave information 

about the metabolic state of the mycobacteria detected in the blood in Chapter 

4, as D29 could infect the cells it was suggested that the MAP cells were 

metabolically active. Furthermore, by changing the components of the FPTB 

assay to work with TM4 instead of D29, a method to differentiate between 

dormant and metabolically active mycobacteria was developed, which could be 

used to gain information about different metabolic states of the cells. Phage TM4 

could also be used in the high-throughput assay as a cocktail with D29 or on its 

own to detect a wider range of mycobacteria cells that may be dormant in 

different sample types. This would lead to the detection of MAP cells that may be 

in an unculturable state, improving the whole cell detection sensitivity. It would 

also give information about the metabolic state of the cells in the blood, and 

whether some are actively growing whereas others may be dormant, which is all 

very important information to understand the pathophysiology of Johne’s 

disease. 

    When testing clinical samples only 1 ml of blood was tested due to ethical 

sampling reasons. As low numbers of MAP was detected in such small samples, it 

was thought that the detection method was at the limit of its sensitivity. In 

Chapter 4, from the sample Set C of animals, the question was asked; where in 

the blood are the MAP cells. It was hypothesised that because of the intracellular 

nature of MAP (Ghosh et al., 2013) the cells were most likely to be inside blood 

macrophages, thus the buffy coat was isolated to concentrate macrophages and 

therefore the MAP cells. It was found that all the detectable MAP cells were in the 

concentrated buffy coat layer. This means that when blood sampling, although it 
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will add another processing step, if more blood is obtained and if the buffy coat 

is isolated first, there would be a greater concentration of MAP cells from a 10 ml 

sample, increasing the efficiency of detection by theoretically 1 Log10. 

Furthermore, by removing other phage inhibitory components in the blood, such 

as the red blood cells, the magnetic separation step may not be necessary. 

Therefore reducing the cost and time associated with the PMMS method.  

    Finally the effect of freezing mycobacteria and the implications of detection 

with the phage assay were investigated. It has been reported that freezing can 

reduce the viability of MAP (Richards and Thoen, 1977). However, cells that are 

frozen and thawed may well be sub-lethally damaged and actually still alive, but 

unable to be cultured. A pre-enrichment step has been used by other 

researchers to increase the efficiency of the phage assay (Foddai et al., 2009). 

Thus the effect of a recovery steps for the MAP cells after freezing and thawing 

was investigated, and it was found that the number of viable MAP cells detected 

by the phage assay after freeze-thawing was not significantly different after 3 d 

recovery to the sample before freezing. This finding could have worked well for 

frozen blood samples from sheep experimentally infected with MAP that had 

been culled after one year and were showing clinical signs of infection. Again 

using the sub-optimised phage assay the blood samples were tested. The results 

showed that three exposed animals harboured viable MAP in their blood, 

however two animals that were not exposed to MAP also tested positive. The 

assay showed that there is the potential to detect MAP in sheep blood, but a lot 

of further optimisations were required with sample preparation and getting the 

phage assay fully optimised. Because of the slower growing nature of sheep 

strains of MAP, further recovery from the freezing may have been needed to 

detect all the MAP cells potentially in the sheep blood.  

    When the blood phage assay was then carried out on artificially spiked blood 

samples, it was found that there was a good limit of detection of 10 cells per ml 

of blood. A good limit of detection was needed as it was anticipated that the 
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number of MAP cells present in the blood of clinical animals would be low (Bower 

et al., 2010). By optimising the processing of the samples with different types of 

blood, this now means that a wide range of different blood types can now be 

tested with the phage assay and not just cattle. There are many other animals 

where Johne’s disease is a problem, as mentioned before sheep can be infected 

by MAP. Sheep can suffer from Johne’s disease which also had a significant 

impact on the farming industry, especially in countries like Australia and New 

Zealand (Begg and Whittington, 2010). If using the phage assay to detect other 

mycobacteria such as M. bovis, other animals could be tested, such as camelids, 

badgers and now even cats (Garcia-Bocanegra et al., 2010, Tomlinson et al., 

2012, Roberts et al., 2014).   

 

8.1.2. Using the phage assay on clinical samples 

    The development of a robust blood assay meant that new questions could be 

asked about when and how many MAP cells could be found in the blood of 

animals. As the phage assay has been shown to detect MAP in the blood of 

animal with Johne’s disease future work will focus on what can be done with the 

new information. Being able to detect viable MAP cells in blood within 24 h 

means that an almost real time assessment of the progression of Johne’s disease 

in animals can be carried out. A longitudinal study with a large cohort of animals 

is required to determine what it means with regards to disease progression when 

an animal has bacteraemia, how this relates to current tests such as PCR and 

ELISA, and whether the phage assay could be used as a diagnostic of Johne’s 

disease. Chapter 4 investigated whether the phage assay could detect MAP in 

clinical blood samples. The results showed great promise in detecting MAP in 

blood in a number of animals at different stages of the disease. However the 

number of samples tested was too low to draw too many conclusions, or perform 

any powerful statistical analyses with. As well as this, the relationship between 

measuring an immune response and detecting whole viable MAP cells is not 
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known, that is if an animal has whole MAP cells in their blood does that mean 

they will go on to develop clinical symptoms of Johne’s disease. There has 

always been variability in the immune response form animals suffering from 

Johne’s disease, especially in those in the subclinical phase of infection (Dennis 

et al., 2011). Using the rapid phage assay, the relationship between the bacterial 

load in the blood and the immune response of an animal could be mapped over a 

period of time, allowing greater understanding of the disease. 

    In the first investigations described here the animals tested were all naturally 

exposed to MAP, there was no information about when they were exposed or by 

how much, limiting the amount of information one could gain about the disease 

progression. Fortunately samples were obtained from several trials working with 

experimentally infected animals. A major question asked was how early the 

phage assay can detect MAP in the blood of experimentally infected animals. The 

phage assay detected MAP within 6 months which was comparable to when 

testing experimentally infected calves. Interestingly Kawaji et al. (2012) found 

that calves infected with MAP launched an innate immune response to after 30 

weeks of infection, which may make sense if it takes 6 months for MAP to be 

found in the blood, the immune response is likely to occur after. This was again 

encouraging because by detecting the MAP cells sooner, may result in better 

understanding and therefore control of the disease (Schillinger et al., 2013).  

    Another major problem with controlling Johne’s disease, is that it can take up 

to 5 years post exposure to MAP for any clinical symptoms to manifest (Collins, 

2003). Being able to detect Johne’s disease during subclinical infection is very 

difficult as the diagnostic sensitivities of ELISAs are very poor and can range 

from 17 to 56 % at an individual animal level (Nielsen and Toft, 2008). The 

phage assay was used on experimentally infected cows that were not showing 

any clinical signs of disease and yielded conflicting results compared to the blood 

ELISA tests. If the phage assay is compared to the blood ELISA as a Gold 

Standard, it could suggest that the phage assay is not specific and is yielding 
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more false-negative results. However it should be noted that if a more sensitive 

test is developed than the existing Gold Standard, one issue is that the new test 

appears to give rise to a large number of false positive results. Hence all tests 

should also be evaluated as stand-alone assays compared to the development of 

clinical symptoms so that the value of the test in terms of diagnosis and 

management of the disease can be established. 

    Chapter 6 described factors that affected phage infection. It was found that 

dormant mycobacteria resisted successful phage D29 infection; however another 

broad spectrum mycobacteriophage, TM4, was able to infect dormant 

mycobacteria. This led to a method capable of determining when mycobacteria 

were lying dormant, by simply changing the phage used in the FPTB assay. MAP 

and tuberculosis causing mycobacteria have similar characteristic subclinical 

phases of infection (Buergelt and Williams, 2004). Being able to detect 

mycobacterial dormancy is hugely important in understanding and ultimately 

controlling the diseases caused by mycobacteria. Using the blood phage assay 

with TM4, mycobacteria lying dormant in blood cells could be detected, thus 

allowing animals in the subclinical stages of infection to be identified and 

monitored to allow good control of Johne’s disease (Lybeck et al., 2011). 

 

8.1.2.1. Future applications for the detection of MAP and other mycobacteria 

    As the original FPTB assay was developed for the detection of M. tuberculosis 

Complex bacteria, the blood assay would be applicable for the detection of the 

zoonotic pathogen M. bovis which causes bovine tuberculosis (Btb). Interest in 

Btb has been increasing lately with the implementation of badger cull that has 

led to a renewed effort to develop novel detection methods for Btb in badgers 

and the environment (Broughan et al., 2013). A novel blood test that detects the 

whole Btb cell could be of use as an alternative to the dated skin-test currently 

used. By simply changing the primers in the end-point PCR, the test can be 

adapted to detect M. bovis. Additionally a major economic issue with bTB is that 
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vaccines cannot be used on animals that are to be exported. Restrictions on the 

movement of bTB vaccinated cattle means that UK farmers are not allowed to 

export to Europe as there is not a reliable test that can differentiate between 

vaccinated and naturally infected animals (DIVA test). As the phage assay 

detects most viable mycobacteria, both BCG vaccinated and naturally infected 

animals with bTB would be detectable. Simply by changing the end-point PCR to 

a method that can differentiate between M. bovis and BCG means that the phage 

assay could be used as a DIVA test. 

    As a notifiable disease, when bTB is detected in a cow, the animal is culled 

and a post mortem is carried out to determine whether the animal had bTB. 

Often lymph node cultures are taken and these are sent for culture. The long 

length of time and the expense of culture means that a lot of money is spent 

determining whether a substandard test has detected bTB infection or not. By 

using the phage assay on lymph tissue, the time for culture can be reduced from 

several weeks to a 24 h saving time, space and money. 

 

8.2. DEVELOPMENT OF A HIGH-THROUGHPUT MAP DETECTION 

PLATFORM 

    The original FPTB assay was developed to be used as a cheap, low tech assay 

for use in the developing world. The assay format is laborious as it uses petri 

dishes and pipettes. For the phage assay to be developed for use, especially in a 

veterinary setting, where many samples would be taken, the present format is 

not practical. One of the main benefits of the ELISA based assays is that they 

can be carried out in large numbers (Schillinger et al., 2013). The basis of the 

novel one tube high-throughput assay is that the phage are used as a very 

efficient DNA extraction agent. Lytic phage such as D29 will enter their host cell 

take over their molecular machinery replicating before lysing the cell. As phage 

D29 will only infect viable mycobacteria, only viable cells will lyse, resulting in 

the release of the mycobacterial DNA from a sample which can then be tested 
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using an end-point method such as PCR. As with the original phage assay sample 

preparation was key to allow as efficient phage infection as possible. Getting the 

target mycobacteria cells in a good media for detection is crucial, and so the 

PMMS method employed during the phage assay was vital to remove the MAP 

cells from phage inhibiting blood to media. Once this had been achieved the 

phage the sample can inoculated with phage, and if mycobacteria were present 

they would lyse releasing their DNA for detection. Enumeration can be carried 

out with the original phage assay by counting plaques. Enumeration could still be 

used with the one tube format of the assay, if the end point detection method 

uses qRT-PCR. When the assay was tested on clinical samples it yielded more 

positive results than both the phage assay and a blood PCR (Section 5.2.5). By 

cutting down the amount of steps required to detect the cells, the one tube 

format speeds up the process of testing compared to the phage assay (results 

within 8 h rather than 24 h) and allows the testing to be carried out in a high-

throughput capacity. This novel assay has been subsequently protected by a 

patent (Patent Number: GB Patent 1317392.7) to be exploited commercially.  

 

8.2.1. Future developments of the high-throughput MAP detection assay 

    As the technology is in its infancy it needs to be optimised and developed 

further so that it can be fully automated. Platform technologies already exist for 

performing automated magnetic separation and sample processing (Dynabead 

Automated Separator, Life Technologies and Vidas, Biomerieux respectively), 

thus incorporating the novel DNA lysis technology would not be difficult.  

    The next stage of development would be optimising the assay for other 

mycobacteria. The PMMS method used specifically binds MAP cells, no others. 

Therefore other methods of cell capture would be required. Novel peptides have 

been sequenced and produced by phage-display that bind to all mycobacteria 

(Ngubane et al., 2013). Although this limits the specificity of the PMMS cell 

isolation, once the mycobacteria cell has been lysed by the phage, the specificity 
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of the assay would depend on the design and specificity of the end-point PCR 

being carried out. As with the original phage assay, further studies could be 

carried out to detect other pathogenic mycobacteria, such as M. tuberculosis or 

M. bovis.  

 

8.3. NOVEL MAP-SPECIFIC FLUORESCENT FUSION PEPTIDES 

    The ZN stain is method commonly used to detect acid-fast organisms such as 

mycobacteria when looking for M. tuberculosis in sputum samples. However the 

specificity and sensitivity of the method is often very low compared to culture, 

PCR and the FPTB assay (Marei et al., 2003). The development of a MAP specific 

fluorescent stain increases the specificity of microscopic methods to detect MAP, 

however further work needs to be carried out to determine whether the stain will 

work on histological samples, where microscopic analysis routine takes place.  

    Other fluorescent peptides that have been found and sequenced that could 

also be used in the same way as the MAP specific peptides. Future work would 

be involved in finding novel species specific peptides and using them in the same 

way as the MAP specific peptides. For example peptides derived from phage 

display libraries that bind specifically to M. bovis have been found (Stewart et 

al., 2012), which could be used in the same way as the MAP-specific peptides to 

create a specific fluorescent M. bovis stain. 

 

8.4. CONCLUSION 

    Phage have proved to be a powerful tool to understand other bacteria, and 

again here the phage are providing us with tools to study this most 

unmanageable of bacteria. By being able to understand the interaction between 

the phage and the host, the phage will lead us to develop new insights about the 

organism and is allowing us now to develop new tools to help combat the 

diseases caused by mycobacteria. 



272 

 

CHAPTER 9 

BIBLIOGRAPHY  



273 

 

ABUBAKAR, I., MYHILL, D., ALIYU, S. H. & HUNTER, P. R. 2008. Detection of 

Mycobacterium avium subspecies paratuberculosis from patients with Crohn's 

disease using nucleic acid-based techniques: A systematic review and meta-

analysis. Inflammatory Bowel Diseases, 14, 401-410. 

 

ALBERT, H., TROLLIP, A. P., MOLE, R. J., HATCH, S. J. B. & BLUMBERG, L. 2002. 

Rapid indication of multidrug-resistant tuberculosis from liquid cultures using 

FASTPlaqueTB-RIFTM, a manual phage-based test. International Journal of 

Tuberculosis and Lung Disease, 6, 523-528. 

 

ALBERT, H., TROLLIP, A., SEAMAN, I. & MOLE, R. J. 2004. Simple, phage-based 

(FASTPlaque) technology to determine rifampicin resistance of Mycobacterium 

tuberculosis directly from sputum. International Journal of Tuberculosis and Lung 

Disease, 8, 1114-1119. 

 

ALINOVI, C. A., WARD, M. P., LIN, T. L., MOORE, G. E. & WU, C. C. 2009. Real-

time PCR, compared to liquid and solid culture media and ELISA, for the 

detection of Mycobacterium avium ssp paratuberculosis. Veterinary Microbiology, 

136, 177-179. 

 

ALTIC, L. C., ROWE, M. T. & GRANT, I. R. 2007. UV light inactivation of 

Mycobacterium avium subsp paratuberculosis in milk as assessed by 

FASTPlaqueTB phage assay and culturev. Applied and Environmental 

Microbiology, 73, 3728-3733. 

 

ALY, S. S., ANDERSON, R. J., WHITLOCK, R. H., FYOCK, T. L., MCADAMS, S. C., 

BYREM, T. M., JIANG, J. M., ADASKA, J. M. & GARDNER, I. A. 2012. Cost-

effectiveness of diagnostic strategies to identify Mycobacterium avium 

subspecies paratuberculosis super-shedder cows in a large dairy herd using 

antibody enzyme-linked immunosorbent assays, quantitative real-time 

polymerase chain reaction, and bacterial culture. Journal of Veterinary Diagnostic 

Investigation, 24, 821-832. 

 

APPLEYARD, R. K., MCGREGOR, J. F. & BAIRD, K. M. 1956. Mutation to Extended 

Host Range and the Occurrence of Phenotypic Mixing in the Temperate Coliphage 

Lambda. Virology, 2, 565-574. 

 

BARDAROV, S., BARDAROV, S., PAVELKA, M. S., SAMBANDAMURTHY, V., 

LARSEN, M., TUFARIELLO, J., CHAN, J., HATFULL, G. & JACOBS, W. R. 2002. 

Specialized transduction: an efficient method for generating marked and 

unmarked targeted gene disruptions in Mycobacterium tuberculosis, M-bovis BCG 

and M-smegmatis. Microbiology-Sgm, 148, 3007-3017. 

 

BARKSDALE, L. & KIM, K. S. 1977. Mycobacterium. Bacteriological Reviews, 41, 

217-372. 

 

BARSOM, E. K. & HATFULL, G. F. 1996. Characterization of a Mycobacterium 

smegmatis gene that confers resistance to phages L5 and D29 when 

overexpressed. Molecular Microbiology, 21, 159-170 

 

BAUMGART, D. C. & CARDING, S. R. 2007. Gastroenterology 1 - Inflammatory 

bowel disease: cause and immunobiology. Lancet, 369, 1627-1640. 

 

BEASLEY, L., TRUYERS, I. G. R., MELLOR, D. J., NORQUAY, R., DUTHIE, S. & 

ELLIS, K. A. 2011. Prevalence of Johne's disease among cattle in Orkney. 

Veterinary Record, 169, 50A 

 



274 

 

BEGG, D. J., DE SILVA, K., DI FIORE, L., TAYLOR, D. L., BOWER, K., ZHONG, L., 

KAWAJI, S., EMERY, D. & WHITTINGTON, R. J. 2010. Experimental infection 

model for Johne's disease using a lyophilised, pure culture, seedstock of 

Mycobacterium avium subspecies paratuberculosis. Veterinary Microbiology, 141, 

301-11. 

 

BEGG, D. & WHITTINGTON, R. 2010. Paratuberculosis in sheep. In: BEHR, M. A. 

& COLLINS, D. M. (eds.) Paratuberculosis: organism, disease, control. 

Wallingford: CABI 

 

BENEDICTUS, G. & KALIS, C. J. H. 2003. Paratuberculosis: Eradication, control 

and diagnostic methods. Acta Veterinaria Scandinavica, 44, 231-241. 

 

BERMUDEZ, L. E., KOLONOSKI, P., WU, M., ARALAR, P. A., INDERLIED, C. B. & 

YOUNG, L. S. 1999. Mefloquine is active in vitro and in vivo against 

Mycobacterium avium complex. Antimicrobial Agents and Chemotherapy, 43, 

1870-1874. 

 

BHOWMICK, T., MIRRETT, S., RELLER, L. B., PRICE, C., QI, C., WEINSTEIN, M. 

P. & KIRN, T. J. 2013. Controlled Multicenter Evaluation of a Bacteriophage-

Based Method for Rapid Detection of Staphylococcus aureus in Positive Blood 

Cultures. Journal of Clinical Microbiology, 51, 1226-1230. 

 

BOTSARIS, G. 2010. Development and Evaluation of a Rapid Phage-PCR Assay to 

Detect Mycobacterium avium subsp. paratuberculosis in Dairy Products. PhD, 

University of Nottingham. 

 

BOTSARIS, G., SLANA, I., LIAPI, M., DODD, C., ECONOMIDES, C., REES, C. & 

PAVLIK, I. 2010. Rapid detection methods for viable Mycobacterium avium 

subspecies paratuberculosis in milk and cheese. International Journal of Food 

Microbiology, 141, S87-S90. 

 

BOTSARIS, G., SWIFT, B. M. C. & REES, C. E. D. 2013. Bacteriophage-based 

techniques for detection of foodborne pathogens. Encyclopedia of Food 

Microbiology. Second Edition.  

 

BOWER, K., BEGG, D. J. & WHITTINGTON, R. J. 2010. Optimisation of culture of 

Mycobacterium avium subspecies paratuberculosis from blood samples. Journal 

of Microbiological Methods, 80, 93-99. 

 

BOWER, K. L., BEGG, D. J. & WHITTINGTON, R. J. 2011. Culture of 

Mycobacterium avium subspecies paratuberculosis (MAP) from blood and extra-

intestinal tissues in experimentally infected sheep. Veterinary Microbiology, 147, 

127-132. 

 

BRENNAN, P. J. 2003. Structure, function, and biogenesis of the cell wall of 

Mycobacterium tuberculosis. Tuberculosis, 83, 91-97. 

 

BROWN-ELLIOTT, B. A., NASH, K. A. & WALLACE, R. J. 2012. Antimicrobial 

Susceptibility Testing, Drug Resistance Mechanisms, and Therapy of Infections 

with Nontuberculous Mycobacteria. Clinical Microbiology Reviews, 25, 721-721. 

 

BRUSSOW, H. & HENDRIX, R. W. 2002. Phage genomics: Small is beautiful. Cell, 

108, 13-16. 

 

 



275 

 

BUDDLE, B. M., ALDWELL, F. E., DE LISLE, G. W., VORDERMEIER, H. M., 

HEWINSON, R. G. & WEDLOCK, D. N. 2011. Low oral BCG doses fail to protect 

cattle against an experimental challenge with Mycobacterium bovis. 

Tuberculosis, 91, 400-405. 

 

BUERGELT, C. D., HALL, C., MCENTEE, K. & DUNCAN, J. R. 1978. Pathological 

evaluation of paratuberculosis in naturally infected cattle. Veterinary Pathology, 

15, 196-207. 

 

BUERGELT, C. D. & WILLIAMS, J. E. 2004. Nested PCR on blood and milk for the 

detection of Mycobacterium avium subsp paratuberculosis DNA in clinical and 

subclinical bovine paratuberculosis. Australian Veterinary Journal, 82, 497-503. 

 

BULL, T. J., HERMON-TAYLOR, J., PAVLIK, I., EL-ZAATARI, F. & TIZARD, M. 

2000. Characterization of IS900 loci in Mycobacterium avium subsp. 

paratuberculosis and development of multiplex PCR typing (vol 146, pg 2185, 

2000). Microbiology-Uk, 146, 3285-3285. 

 

BULL, T. J., LEVIN, B. R., DEROUIN, T., WALKER, N. & BLOCH, C. A. 2002. 

Dynamics of success and failure in phage and antibiotic therapy in experimental 

infections. BMC Microbiology, 2, 35. 

 

CANCELA, M. M. G. & MARIN, J. F. G. 1993. Comparison of Ziehl-Neelsen 

Staining and Immunohistochemistry for the Detection of Mycobacterium-Bovis in 

Bovine and Caprine Tuberculous Lesions. Journal of Comparative Pathology, 109, 

361-370. 

 

CHACON, O., BERMUDEZ, L. E. & BARLETTA, R. G. 2004. Johne's disease, 

inflammatory bowel disease, and Mycobacterium paratuberculosis. Annual 

Review of Microbiology, 58, 329-63. 

 

CHALFIE, M., TU, Y., EUSKIRCHEN, G., WARD, W. W. & PRASHER, D. C. 1994. 

Green Fluorescent Protein as a Marker for Gene-Expression. Science, 263, 802-

805. 

 

CHAMBERLIN, W., GRAHAM, D. Y., HULTEN, K., EL-ZIMAITY, H. M. T., 

SCHWARTZ, M. R., NASER, S., SHAFRAN, I. & EL-ZAATARI, F. A. K. 2001. 

Review article: Mycobacterium avium subsp paratuberculosis as one cause of 

Crohn's disease. Alimentary Pharmacology & Therapeutics, 15, 337-346. 

 

CHATTERJEE, D. 1997. The mycobacterial cell wall: structure, biosynthesis and 

sites of drug action. Current Opinion in Chemical Biology, 1, 579-588. 

 

CHIODINI, R. J. 1989. Crohn's disease and the mycobacterioses: a review and 

comparison of two disease entities. Clinical Microbiology Reviews, 2, 90-117. 

 

CHO, J., TAUER, L. W., SCHUKKEN, Y. H., GOMEZ, M. I., SMITH, R. L., LU, Z. & 

GROHN, Y. T. 2012. Economic analysis of Mycobacterium avium subspecies 

paratuberculosis vaccines in dairy herds. Journal of Dairy Science, 95, 1855-

1872. 

 

CHUI, L. W., KING, R., LU, P., MANNINEN, K. & SIM, J. 2004. Evaluation of four 

DNA extraction methods for the detection of Mycobacterium avium subsp 

paratuberculosis by polymerase chain reaction. Diagnostic Microbiology and 

Infectious Disease, 48, 39-45. 

 



276 

 

COLLINS, D. M., STEPHENS, D. M. & DE LISLE, G. W. 1993. Comparison of 

polymerase chain reaction tests and faecal culture for detecting Mycobacterium 

paratuberculosis in bovine faeces. Veterinary Microbiology, 36, 289-99. 

 

COLLINS, M. T., GARDNER, I. A., GARRY, F. B., ROUSSEL, A. J. & WELLS, S. J. 

2006. Consensus recommendations on diagnostic testing for the detection of 

paratuberculosis in cattle in the United States. Javma-Journal of the American 

Veterinary Medical Association, 229, 1912-1919. 

 

COUSINS, D. V., EVANS, R. J. & FRANCIS, B. R. 1995. Use of BACTEC 

radiometric culture method and polymerase chain reaction for the rapid 

screening of faeces and tissues for Mycobacterium paratuberculosis. Australian 

Veterinary Journal, 72, 458-462. 

 

COUSINS, D. V., WHITTINGTON, R., MARSH, I., MASTERS, A., EVANS, R. J. & 

KLUVER, P. 1999. Mycobacteria distinct from Mycobacterium avium subsp 

paratuberculosis isolated from the faeces of ruminants possess IS900-like 

sequences detectable by IS900 polymerase chain reaction: implications for 

diagnosis. Molecular and Cellular Probes, 13, 431-442. 

 

COUSSENS, P. M. 2001. Mycobacterium paratuberculosis and the bovine immune 

system. Anim Health Res Rev, 2, 141-61. 

 

CROHN, B. B., GINZBURG, L. & OPPENHEIMER, G. D. 1932. Landmark article Oct 

15, 1932. Regional ileitis. A pathological and clinical entity. By Burril B. Crohn, 

Leon Ginzburg, and Gordon D. Oppenheimer. JAMA, 251, 73-9. 

 

CROSSLEY, B. M., ZAGMUTT-VERGARA, F. J., FYOCK, T. L., WHITLOCK, R. H. & 

GARDNER, I. A. 2005. Fecal shedding of Mycobacterium avium subsp 

paratuberculosis by dairy cows. Veterinary Microbiology, 107, 257-263. 

 

CUNNINGHAM, A. F. & SPREADBURY, C. L. 1998. Mycobacterial stationary phase 

induced by low oxygen tension: Cell wall thickening and localization of the 16-

kilodalton alpha-crystallin homology. Journal of Bacteriology, 180, 801-808. 

 

DA SILVA, P. E. A. & PALOMINO, J. C. 2011. Molecular basis and mechanisms of 

drug resistance in Mycobacterium tuberculosis: classical and new drugs. Journal 

of Antimicrobial Chemotherapy, 66, 1417-1430. 

 

DALTON, J. P. & HILL, C. 2013. Survival of Mycobacterium avium subsp 

paratuberculosis in Synthetic Human Gastric Juice and Acidified Porcine Bile. 

Applied and Environmental Microbiology, 79, 1418-1420. 

 

DARDNI. 2006. Guidance on the control of Johne's disease in dairy herds 

[Online]. Belfast: DARDNI.  [Accessed 11 May 2011 2011]. 

 

DAVID, H. L., CLAVEL, S. & CLEMENT, F. 1980. Adsorption and Growth of the 

Bacteriophage-D29 in Selected Mycobacteria. Annales De Virologie, 131, 167 

 

DE SIQUEIRA, R. S., DODD, C. E. R. & REES, C. E. D. 2006. Evaluation of the 

natural virucidal activity of teas for use in the phage amplification assay. 

International Journal of Food Microbiology, 111, 259-262. 

 

DEFOIRDT, T., BOON, N., SORGELOOS, P., VERSTRAETE, W. & BOSSIER, P. 

2007. Alternatives to antibiotics to control bacterial infections: luminescent 

vibriosis in aquaculture as an example. Trends in Biotechnology, 25, 472-479. 

 



277 

 

DEFRA. 2013. Bovine TB Research Programme. DEFRA. 

https://www.gov.uk/government/policies/reducing-bovine-

tuberculosis/supporting-pages/research-and-evidence-about-bovine-tb. Last 

accessed 12th May 2014.  

 

DHEDA, K., BOOTH, H., HUGGETT, J. F., JOHNSON, M. A., ZUMLA, A. & ROOK, 

G. A. W. 2005. Lung remodeling in pulmonary tuberculosis. Journal of Infectious 

Diseases, 192, 1201-1210. 

 

DICK, T., LEE, B. H. & MURUGASU-OEI, B. 1998. Oxygen depletion induced 

dormancy in Mycobacterium smegmatis. FEMS Microbiology Letters, 163, 159-

64. 

 

DROBNIEWSKI, F. A., GIBSON, A., RUDDY, M. & YATES, M. D. 2003. Evaluation 

and utilization as a public health tool of a national molecular epidemiological 

tuberculosis outbreak database within the United Kingdom from 1997 to 2001. 

Journal of Clinical Microbiology, 41, 1861-1868. 

 

DUSTHACKEER, A., KUMAR, V., SUBBIAN, S., SIVARAMAKRISHNAN, G., ZHU, G. 

F., SUBRAMANYARN, B., HASSAN, S., NAGAMAIAH, S., CHAN, J. & RAMA, N. P. 

2008. Construction and evaluation of luciferase reporter phages for the detection 

of active and non-replicating tubercle bacilli. Journal of Microbiological Methods, 

73, 18-25. 

 

DWORKIN, M. & FOSTER, J. W. 1958. Experiments with Some Microorganisms 

Which Utilize Ethane and Hydrogen. Journal of Bacteriology, 75, 592-603. 

 

EDDY, R. G. (ed.) 2004. Bovine Medicine, Oxford: Blackwell Publishing Company. 

 

ELLINGSON, J. L. E., BOLIN, C. A. & STABEL, J. R. 1998. Identification of a gene 

unique to Mycobacterium avium subspecies paratuberculosis and application to 

diagnosis of paratuberculosis. Molecular and Cellular Probes, 12, 133-142. 

 

ENGLUND, S., BOLSKE, G. & JOHANSSON, K. E. 2002. An IS900-like sequence 

found in a Mycobacterium sp other than Mycobacterium avium subsp 

paratuberculosis. FEMS Microbiology Letters, 209, 267-271. 

 

ENOSAWA, M., KAGEYAMA, S., SAWAI, K., WATANABE, K., NOTOMI, T., ONOE, 

S., MORI, Y. & YOKOMIZO, Y. 2003. Use of loop-mediated isothermal 

amplification of the IS900 sequence for rapid detection of cultured 

Mycobacterium avium subsp. paratuberculosis. Journal of Clinical Microbiology, 

41, 4359-4365. 

 

ENROTH, H. & ENGSTRAND, L. 1995. Immunomagnetic Separation and Pcr for 

Detection of Helicobacter-Pylori in Water and Stool Specimens. Journal of Clinical 

Microbiology, 33, 2162-2165. 

 

FELLER, M., HUWILER, K., STEPHAN, R., ALTPETER, E., SHANG, A., FURRER, H., 

PFYFFER, G. E., JEMMI, T., BAUMGARTNER, A. & EGGER, M. 2007. 

Mycobacterium avium subspecies paratuberculosis and Crohn's disease: a 

systematic review and meta-analysis. Lancet Infectious Diseases, 7, 607-613. 

 

FENTON, M., ROSS, P., MCAULIFFE, O., O'MAHONY, J. & COFFEY, A. 2010. 

Recombinant bacteriophage lysins as antibacterials. Bioengineered Bugs, 1, 9-

16. 

 



278 

 

FISCHETTI, V. A. 2005. Bacteriophage lytic enzymes: novel anti-infectives. 

Trends in Microbiology, 13, 491-496. 

 

FODDAI, A., ELLIOTT, C. T. & GRANT, I. R. 2009. Optimization of a Phage 

Amplification Assay To Permit Accurate Enumeration of Viable Mycobacterium 

avium subsp paratuberculosis Cells. Applied and Environmental Microbiology, 75, 

3896-3902. 

 

FODDAI, A., ELLIOTT, C. T. & GRANT, I. R. 2010. Maximizing Capture Efficiency 

and Specificity of Magnetic Separation for Mycobacterium avium subsp 

paratuberculosis Cells. Applied and Environmental Microbiology, 76, 7550-7558. 

 

FOOD STANDARDS AGENCY. 2002. Food hygiene: MAP results. 

http://www.food.gov.uk/safereating/microbiology/mapinmilk/MAP_results. Last 

Accessed on 2nd April 2014. 

 

FOLEY-THOMAS, E. M., WHIPPLE, D. L., BERMUDEZ, L. E. & BARLETTA, R. G. 

1995. Phage Infection, Transfection and Transformation of Mycobacterium-Avium 

Complex and Mycobacterium-Paratuberculosis. Microbiology-Uk, 141, 1173-

1181. 

 

FORD, M. E., SARKIS, G. J., BELANGER, A. E., HENDRIX, R. W. & HATFULL, G. F. 

1998. Genome structure of mycobacteriophage D29: Implications for phage 

evolution. Journal of Molecular Biology, 279, 143-164. 

 

FREGNAN, G. B. & SMITH, D. W. 1962. Description of Various Colony Forms of 

Mycobacteria. Journal of Bacteriology, 83, 819 

 

FRIDRIKSDOTTIR, V., GUNNARSSON, E., SIGURDARSON, S. & 

GUDMUNDSDOTTIR, K. B. 1999. Paratuberculosis in Iceland: Epidemiology and 

control measures, past and present. Proceedings of the Sixth International 

Colloquium on Paratuberculosis, 105-108. 

 

FYOCK, T.L., SWEENEY, R.W. & WHITLOCK, R.H. 2005. MGIT, liquid culture 

system for detection of MAP in bovine faecal samples, Proceedings of the Eighth 

International Colloquium on Paratuberculosis Copenhagen, Denmark, p. 554. 

  

GAO, L. Y., LAVAL, F., LAWSON, E. H., GROGER, R. K., WOODRUFF, A., 

MORISAKI, J. H., COX, J. S., DAFFE, M. & BROWN, E. J. 2003. Requirement for 

kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and 

intracellular survival: implications for therapy. Molecular Microbiology, 49, 1547-

1563. 

 

GENGENBACHER, M. & KAUFMANN, S. H. E. 2012. Mycobacterium tuberculosis: 

success through dormancy. FEMS Microbiology Reviews, 36, 514-532. 

 

GHOSH, P., WU, C. W. & TALAAT, A. M. 2013. Key Role for the Alternative Sigma 

Factor, SigH, in the Intracellular Life of Mycobacterium avium subsp 

paratuberculosis during Macrophage Stress. Infection and Immunity, 81, 2242-

2257. 

 

GIBBS J. 2001. Selecting the detection system-colorimetric, fluorescent, 

luminescent methods. Corning Life Sciences ELISA Technical Bulletin 2001:14. 

 

GIESE, S. B. & AHRENS, P. 2000. Detection of Mycobacterium avium subsp 

paratuberculosis in milk from clinically affected cows by PCR and culture. 

Veterinary Microbiology, 77, 291-297. 

http://www.food.gov.uk/safereating/microbiology/mapinmilk/MAP_results


279 

 

GIL, F., GRZEGORZEWICZ, A. E., CATALAO, M. J., VITAL, J., MCNEIL, M. R. & 

PIMENTEL, M. 2010. Mycobacteriophage Ms6 LysB specifically targets the outer 

membrane of Mycobacterium smegmatis. Microbiology-Sgm, 156, 1497-1504. 

 

GLICKMAN, M. S., COX, J. S. & JACOBS, W. R. 2000. A novel mycolic acid 

cyclopropane synthetase is required for cording, persistence, and virulence of 

Mycobacterium tuberculosis. Molecular Cell, 5, 717-727. 

 

GOMEZ, J. E. & MCKINNEY, J. D. 2004. M-tuberculosis persistence, latency, and 

drug tolerance. Tuberculosis, 84, 29-44. 

 

GONZALEZ, J., GEIJO, M. V., GARCIA-PARIENTE, C., VERNA, A., CORPA, J. M., 

REYES, L. E., FERRERAS, M. C., JUSTE, R. A., MARIN, J. F. G. & PEREZ, V. 2005. 

Histopathological classification of lesions associated with natural paratuberculosis 

infection in cattle. Journal of Comparative Pathology, 133, 184-196. 

 

GOODRIDGE, L., CHEN, J. R. & GRIFFITHS, M. 1999. The use of a fluorescent 

bacteriophage assay for detection of Escherichia coli O157 : H7 in inoculated 

ground beef and raw milk. International Journal of Food Microbiology, 47, 43-50. 

 

GOODRIDGE, L. & GRIFFITHS, M. 2002. Reporter bacteriophage assays as a 

means to detect foodborne pathogenic bacteria. Food Research International, 35, 

863-870. 

 

GRANT, I. R., HITCHINGS, E. I., MCCARTNEY, A., FERGUSON, F. & ROWE, M. T. 

2002. Effect of commercial-scale high-temperature, short-time pasteurization on 

the viability of Mycobacterium paratuberculosis in naturally infected cows' milk. 

Applied Environmental Microbiology, 68, 602-7. 

 

GRANT, I. R., KIRK, R. B., HITCHINGS, E. & ROWE, M. T. 2003. Comparative 

evaluation of the MGIT (TM) and BACTEC culture systems for the recovery of 

Mycobacterium avium subsp paratuberculosis from milk. Journal of Applied 

Microbiology, 95, 196-201. 

 

GREEN, E. P., TIZARD, M. L. V., MOSS, M. T., THOMPSON, J., WINTERBOURNE, 

D. J., MCFADDEN, J. J. & HERMON TAYLOR, J. 1989. Sequence and 

Characteristics of IS900, an Insertion Element Identified in a Human Crohns-

Disease Isolate of Mycobacterium-Paratuberculosis. Nucleic Acids Research, 17, 

9063-9073. 

 

GREENSTEIN, R. J. 2003. Is Crohn's disease caused by a mycobacterium? 

Comparisons with leprosy, tuberculosis, and Johne's disease. Lancet Infectious 

Diseases, 3, 507-514. 

 

GREIG, A., STEVENSON, K., PEREZ, V., PIRIE, A. A., GRANT, J. M. & SHARP, J. 

M. 1997. Paratuberculosis in wild rabbits (Oryctolagus cuniculus). Veterinary 

Record, 140, 141-143. 

 

GUMBER, S. & WHITTINGTON, R. J. 2007. Comparison of BACTEC 460 and MGIT 

960 systems for the culture of Mycobacterium avium subsp paratuberculosis S 

strain and observations on the effect of inclusion of ampicillin in culture media to 

reduce contamination. Veterinary Microbiology, 119, 42-52. 

 

GUMBER, S., TAYLOR, D. L., MARSH, I. B. & WHITTINGTON, R. J. 2009. Growth 

pattern and partial proteome of Mycobacterium avium subsp. paratuberculosis 

during the stress response to hypoxia and nutrient starvation. Veterinary 

Microbiology, 133, 344-57. 



280 

 

GUTIERREZ, M. C., SUPPLY, P. & BROSCH, R. 2009. Pathogenomics of 

Mycobacteria. Microbial Pathogenomics, 6, 198-210. 

 

GWOZDZ, J. M., THOMPSON, K. G., MURRAY, A., WEST, D. M. & MANKTELOW, 

B. W. 2000. Use of the polymerase chain reaction assay for the detection of 

Mycobacterium avium subspecies paratuberculosis in blood and liver biopsies 

from experimentally infected sheep. Australian Veterinary Journal, 78, 622-624. 

 

HAGENS, S. & LOESSNER, M. J. 2007. Application of bacteriophages for 

detection and control of foodborne pathogens. Applied Microbiology and 

Biotechnology, 76, 513-519. 

 

HARRIS, N. B. & BARLETTA, R. G. 2001. Mycobacterium avium subsp. 

paratuberculosis in Veterinary Medicine. Clinical Microbiology Reviews, 14, 489-

512. 

 

HATFULL, G. F. & SARKIS, G. J. 1993. DNA-Sequence, Structure and Gene-

Expression of Mycobacteriophage-L5 - a Phage System for Mycobacterial 

Genetics. Molecular Microbiology, 7, 395-405. 

 

HATFULL, G. F. 2010. Mycobacteriophages: genes and genomes. Annual Reviews 

of Microbiology, 64, 331-56. 

 

HATFULL, G. F. 2012. The secret lives of mycobacteriophages. Advances in Virus 

Research, 82, 179-288. 

 

HPA (2013) Incidents of TB in UK. 

http://www.hpa.org.uk/topics/infectiousdiseases/infectionsaz/tuberculosis/. Last 

Accessed Online on 1st April 2014.  

 

HEINZMANN, J., WILKENS, M., DOHMANN, K. & GERLACH, G. F. 2008. 

Mycobacterium avium subsp paratuberculosis-specific mpt operon expressed in 

M. bovis BCG as vaccine candidate. Veterinary Microbiology, 130, 330-337. 

 

HENDRY, C., DIONNE, K., HEDGEPETH, A., CARROLL, K. & PARRISH, N. 2009. 

Evaluation of a Rapid Fluorescent Staining Method for Detection of Mycobacteria 

in Clinical Specimens. Journal of Clinical Microbiology, 47, 1206-1208. 

 

HINES, M. E. & STYER, E. L. 2003. Preliminary characterization of chemically 

generated Mycobacterium avium subsp paratuberculosis cell wall deficient forms 

(Spheroplasts). Veterinary Microbiology, 95, 247-258. 

 

HUDA, A., JUNGERSEN, G. & LIND, P. 2004. Longitudinal study of interferon-

gamma, serum antibody and milk antibody responses in cattle infected with 

Mycobacterium avium subsp paratuberculosis. Veterinary Microbiology, 104, 43-

53. 

 

HUDSON, C. 2008. An outbreak of Johne's disease in a dairy herd. UK Vet, 13, 

1-4. 

 

HUNTER, S. W. & BRENNAN, P. J. 1981. A Novel Phenolic Glycolipid from 

Mycobacterium-Leprae Possibly Involved in Immunogenicity and Pathogenicity. 

Journal of Bacteriology, 147, 728-735. 

 

HUNTLEY, J. F. J., WHITLOCK, R. H., BANNANTINE, J. P. & STABEL, J. R. 2005. 

Comparison of diagnostic detection methods for Mycobacterium avium subsp 

paratuberculosis in North American bison. Veterinary Pathology, 42, 42-51. 

http://www.hpa.org.uk/topics/infectiousdiseases/infectionsaz/tuberculosis/


281 

 

HUTTER, B. & DICK, T. 1999. Up-regulation of narX, encoding a putative 'fused 

nitrate reductase' in anaerobic dormant Mycobacterium bovis BCG. FEMS 

Microbiology Letters, 178, 63-9. 

 

INDERLIED, C. B., KEMPER, C. A. & BERMUDEZ, L. E. M. 1993. The 

Mycobacterium-Avium Complex. Clinical Microbiology Reviews, 6, 266-310. 

 

JACKSON, R. W., JOHNSON, L. J., CLARKE, S. R. & ARNOLD, D. L. 2011. 

Bacterial pathogen evolution: breaking news. Trends in Genetics, 27, 32-40. 

 

JARLIER, V. & NIKAIDO, H. 1994. Mycobacterial Cell-Wall - Structure and Role in 

Natural-Resistance to Antibiotics. FEMS Microbiology Letters, 123, 11-18. 

 

JAYACHANDRAN, R., SUNDARAMURTHY, V., COMBALUZIER, B., MUELLER, P., 

KORF, H., HUYGEN, K., MIYAZAKI, T., ALBRECHT, I., MASSNER, J. & PIETERS, J. 

2007. Survival of mycobacteria in macrophages is mediated by coronin 1-

dependent activation of calcineurin. Cell, 130, 37-50. 

 

JOHNE, H. A., AND J. FROTHINGHAM 1895. Ein eigenthuemlicher fall von 

tuberculose beim rind. Dtsch. Z. Tiermed. Pathol, 21, 438-454. 

 

JONES, W. D., GOOD, R. C., THOMPSON, N. J. & KELLY, G. D. 1982. 

Bacteriophage Types of Mycobacterium-Tuberculosis in the United-States. 

American Review of Respiratory Disease, 125, 640-643. 

 

JUNGERSEN, G., MIKKELSEN, H. & GRELL, S. N. 2011. Use of the johnin PPD 

interferon-gamma assay in control of bovine paratuberculosis. Veterinary 

Immunology and Immunopathology, 10.1016. 

 

JUSTE, R. A., GARRIDO, J. M., GEIJO, M., ELGUEZABAL, N., ADURIZ, G., 

ATXAERANDIO, R. & SEVILLA, I. 2005. Comparison of blood polymerase chain 

reaction and enzyme-linked immunosorbent assay for detection of 

Mycobacterium avium subsp parataberculosis infection in cattle and sheep. 

Journal of Veterinary Diagnostic Investigation, 17, 354-359. 

 

KAISER, A. D. & JACOB, F. 1957. Recombination between Related Temperate 

Bacteriophages and the Genetic Control of Immunity and Prophage Localization. 

Virology, 4, 509-521. 

 

KAWAJI, S., NAGATA, R., WHITTINGTON, R. J. & MORI, Y. 2012. Detection of 

antibody responses against Mycobacterium avium subsp paratuberculosis stress-

associated proteins within 30 weeks after infection in cattle. Veterinary 

Immunology and Immunopathology, 150, 101-111. 

 

KEER, J. T. & BIRCH, L. 2003. Molecular methods for the assessment of bacterial 

viability. Journal of Microbiological Methods, 53, 175-183. 

 

KELL, A. J., SOMASKANDAN, K., STEWART, G., BERGERON, M. G. & SIMARD, B. 

2008. Superparamagnetic nanoparticle-polystyrene bead conjugates as pathogen 

capture mimics: A parametric study of factors affecting capture efficiency and 

specificity. Langmuir, 24, 3493-3502. 

 

KHEIRANDISH, R., TAFTI, A. K. & HOSSEINI, A. 2009. Classification of lesions 

and comparison of immunohistochemical and acid fast staining in diagnosis of 

naturally occurring paratuberculosis in goats. Small Ruminant Research, 87, 81-

85. 

 



282 

 

KIEHN, T. E., EDWARDS, F. F., BRANNON, P., TSANG, A. Y., MAIO, M., GOLD, J. 

W. M., WHIMBEY, E., WONG, B., MCCLATCHY, J. K. & ARMSTRONG, D. 1985. 

Infections Caused by Mycobacterium-Avium Complex in Immunocompromised 

Patients - Diagnosis by Blood Culture and Fecal Examination, Antimicrobial 

Susceptibility Tests, and Morphological and Seroagglutination Characteristics. 

Journal of Clinical Microbiology, 21, 168-173. 

 

KIMURA, K., REINHARDT, T. A. & GOFF, J. P. 2006. Parturition and hypocalcemia 

blunts calcium signals in immune cells of dairy cattle. Journal of Dairy Science, 

89, 2588-2595. 

 

KNECHEL, N. A. 2009. Tuberculosis: Pathophysiology, Clinical Features, and 

Diagnosis. Critical Care Nurse, 29, 34-43. 

 

KOHLER, H., GYRA, H., ZIMMER, K., DRAGER, K. G., BURKERT, B., LEMSER, B., 

HAUSLEITHNER, D., CUSSLER, K., KLAWONN, W. & HESS, R. G. 2001. Immune 

reactions in cattle after immunization with a Mycobacterium paratuberculosis 

vaccine and implications for the diagnosis of M. paratuberculosis and M. bovis 

infections. Journal of Veterinary Medicine Series B-Infectious Diseases and 

Veterinary Public Health, 48, 185-195. 

 

KRALIK, P., NOCKER, A. & PAVLIK, I. 2010. Mycobacterium avium subsp 

paratuberculosis viability determination using F57 quantitative PCR in 

combination with propidium monoazide treatment. International Journal of Food 

Microbiology, 141, S80-S86. 

 

KRETZER, J. W., LEHMANN, R., SCHMELCHER, M., BANZ, M., KIM, K. P., KORN, 

C. & LOESSNER, M. J. 2007. Use of high-affinity cell wall-binding domains of 

bacteriophage endolysins for immobilization and separation of bacterial cells. 

Applied and Environmental Microbiology, 73, 1992-2000. 

 

LACQUA, A., WANNER, O., COLANGELO, T., MARTINOTTI, M. G. & LANDINI, P. 

2006. Emergence of biofilm-forming subpopulations upon exposure of 

Escherichia coli to environmental bacteriophages. Applied and Environmental 

Microbiology, 72, 956-959. 

 

LAMONT, E. A., BANNANTINE, J. P., ARMIEN, A., ARIYAKUMAR, D. S. & 

SREEVATSAN, S. 2012. Identification and Characterization of a Spore-Like 

Morphotype in Chronically Starved Mycobacterium avium Subsp Paratuberculosis 

Cultures. Plos One, 7. 

 

LARSEN, A. B., R. S. MERKAL, AND R. C. CUTLIP 1975. Age of cattle as related 

to resistance to infection with Mycobacterium paratuberculosis. American Journal 

of Veterinary Research, 36, 225-257. 

 

LEDERER, E. 1977. The mycobacterial cell wall. Pure Applied Chemistry. 25:135–

165. 

 

LEITE, F., STOKES, K., ROBBE-AUSTERMAN, S. & STABEL, J. 2013. Comparison 

of fecal DNA extraction kits for the detection of Mycobacterium avium subsp 

paratuberculosis by polymerase chain reaction. Journal of Veterinary Diagnostic 

Investigation, 25, 27-34. 

 

LEMUS, D., MARTIN, A., MONTORO, E., PORTAELS, F. & PALOMINO, J. C. 2005. 

Rapid Alternative Methods for Detection of Rifampicin Resistance in 

Mycobacterium tuberculosis. International Journal of Antimicrobial Agents, 26, 

S96-S96. 



283 

 

LERNER, P. I. 1996. Nocardiosis. Clinical Infectious Diseases, 22, 891-903. 

LOEFFLER, J. M. & FISCHETTI, V. A. 2003. Synergistic lethal effect of a 

combination of phage lytic enzymes with different activities on penicillin-

sensitive and -resistant Streptococcus pneumoniae strains. Antimicrobial Agents 

and Chemotherapy, 47, 375-377. 

 

LOESSNER, M. J., REES, C. E. D., STEWART, G. S. A. B. & SCHERER, S. 1996. 

Construction of luciferase reporter bacteriophage A511::luxAB for rapid and 

sensitive detection of viable Listeria cells. Applied and Environmental 

Microbiology, 62, 1133-1140. 

 

LOSINGER, W. C. 2005. Economic impact of reduced milk production associated 

with Johne's disease on dairy operations in the USA. Journal of Dairy Research, 

72, 425-432. 

 

LYBECK, K. R., STORSET, A. K., DJONNE, B., VALHEIM, M. & OLSEN, I. 2011. 

Faecal shedding detected earlier than immune responses in goats naturally 

infected with Mycobacterium avium subsp paratuberculosis. Research in 

Veterinary Science, 91, 32-39. 

 

MANNING, E. J. B. & COLLINS, M. T. 2001. Mycobacterium avium subsp 

paratuberculosis: pathogen, pathogenesis and diagnosis. Revue Scientifique Et 

Technique-Office International Des Epizooties, 20, 133-150. 

 

MAREI, A. M., EL-BEHEDY, E. M., MOHTADY, H. A. & AFIFY, A. F. M. 2003. 

Evaluation of a rapid bacteriophage-based method for the detection of 

Mycobacterium tuberculosis in clinical samples. Journal of Medical Microbiology, 

52, 331-335. 

 

MARSH, I. B., BANNANTINE, J. P., PAUSTIAN, M. L., TIZARD, M. L., KAPUR, V. & 

WHITTINGTON, R. J. 2006. Genomic comparison of Mycobacterium avium subsp 

paratuberculosis sheep and cattle strains by microarray hybridization. Journal of 

Bacteriology, 188, 2290-2293. 

 

MARTINSON, S. A., HANNA, P. E., IKEDE, B. O., LEWIS, J. P., MILLER, L. M., 

KEEFE, G. P. & MCKENNA, S. L. B. 2008. Comparison of bacterial culture, 

histopathology, and immunohistochemistry for the diagnosis of Johne's disease 

in culled dairy cows. Journal of Veterinary Diagnostic Investigation, 20, 51-57. 

 

MCDONALD, W. L., O'RILEY, K. J., SCHROEN, C. J. & CONDRON, R. J. 2003. Heat 

inactivation of Mycobacterium avium subsp paratuberculosis in milk. Proceedings 

of the Seventh International Colloquium on Paratuberculosis, 312-316. 

 

MCLEOD, R., BUSCHMAN, E., ARBUCKLE, L. D. & SKAMENE, E. 1995. 

Immunogenetics in the Analysis of Resistance to Intracellular Pathogens. Current 

Opinion in Immunology, 7, 539-552. 

 

MCNERNEY, R., KAMBASHI, B. S., KINKESE, J., TEMBWE, R. & GODFREY-

FAUSSETT, P. 2004. Development of a bacteriophage phage replication assay for 

diagnosis of pulmonary tuberculosis. Journal of Clinical Microbiology, 42, 2115-

2120. 

 

MCNERNEY, R., WILSON, S. M., SIDHU, A. M., HARLEY, V. S., AL SUWAIDI, Z., 

NYE, P. M., PARISH, T. & STOKER, N. G. 1998. Inactivation of 

mycobacteriophage D29 using ferrous ammonium sulphate as a tool for the 

detection of viable Mycobacterium smegmatis and M-tuberculosis. Research in 

Microbiology, 149, 487-495. 



284 

 

MEYLAN, M., NICOLET, J., OPPLIGER, A., BURNENS, A. & MARTIG, J. 1994. 

Evaluation of 2 Techniques of Elisa for the Diagnosis of Bovine Paratuberculosis. 

Schweizer Archiv Fur Tierheilkunde, 136, 377-381. 

 

MILLAR, D., FORD, J., SANDERSON, J., WITHEY, S., TIZARD, M., DORAN, T. & 

HERMON TAYLOR, J. 1996. IS900 PCR to detect Mycobacterium paratuberculosis 

in retail supplies of whole pasteurized cows' milk in England and Wales. Applied 

and Environmental Microbiology, 62, 3446-3452. 

 

MOBIUS, P., HOTZEL, H., RASSBACH, A. & KOHLER, H. 2008. Comparison of 13 

single-round and nested PCR assays targeting IS900, ISMav2, f57 and locus 255 

for detection of Mycobacterium avium subsp paratuberculosis. Veterinary 

Microbiology, 126, 324-333. 

 

MONK, A. B., REES, C. D., BARROW, P., HAGENS, S. & HARPER, D. R. 2010. 

Bacteriophage applications: where are we now? Letters to Applied Microbiology, 

51, 363-9. 

 

MONTEIRO, L., BONNEMAISON, D., VEKRIS, A., PETRY, K. G., BONNET, J., 

VIDAL, R., CABRITA, J. & MEGRAUD, F. 1997. Complex polysaccharides as PCR 

inhibitors in feces: Helicobacter pylori model. Journal of Clinical Microbiology, 35, 

995-998. 

 

MORAVKOVA, M., BABAK, V., KRALOVA, A., PAVLIK, I. & SLANA, I. 2012. 

Culture- and quantitative IS900 real-time PCR-based analysis of the persistence 

of Mycobacterium avium subsp. paratuberculosis in a controlled dairy cow farm 

environment. Applied Environmental Microbiology, 78, 6608-14. 

 

MORTENSEN, H., NIELSEN, S. S. & BERG, P. 2004. Genetic variation and 

heritability of the antibody response to Mycobacterium avium subspecies 

paratuberculosis in Danish Holstein cows. Journal of Dairy Science, 87, 2108-

2113. 

 

MULLER, B., DURR, S., ALONSO, S., HATTENDORF, J., LAISSE, C. J., PARSONS, 

S. D., VAN HELDEN, P. D. & ZINSSTAG, J. 2013. Zoonotic Mycobacterium bovis-

induced tuberculosis in humans. Emerging Infectious Diseases, 19, 899-908. 

 

NAGATA, R., KAWAJI, S. & MORI, Y. 2013. Use of enoyl coenzyme A hydratase 

of Mycobacterium avium subsp. paratuberculosis for the serological diagnosis of 

Johne's disease. Veterinary Immunology Immunopathology, 155, 253-8. 

 

NAKAMURA, N., BURGESS, J. G., YAGIUDA, K., KUDO, S., SAKAGUCHI, T. & 

MATSUNAGA, T. 1993. Detection and Removal of Escherichia-Coli Using 

Fluorescein Isothiocyanate Conjugated Monoclonal-Antibody Immobilized on 

Bacterial Magnetic Particles. Analytical Chemistry, 65, 2036-2039. 

 

NASER, S. A., SCHWARTZ, D. & SHAFRAN, I. 2000. Isolation of Mycobacterium 

avium subsp paratuberculosis from breast milk of Crohn's disease patients. 

American Journal of Gastroenterology, 95, 1094-1095. 

 

NASER, S. A., GHOBRIAL, G., ROMERO, C. & VALENTINE, J. F. 2004. Culture of 

Mycobacterium avium subspecies paratuberculosis from the blood of patients 

with Crohn's disease. Lancet, 364, 1039-1044. 

 

NIELSEN, S. S. & TOFT, N. 2008. Ante mortem diagnosis of paratuberculosis: A 

review of accuracies of ELISA, interferon-gamma assay and faecal culture 

techniques. Veterinary Microbiology, 129, 217-235. 



285 

 

NIELSEN, S. S. 2009. Use of diagnostics for risk-based control of 

paratuberculosis in dairy herds. In Practice, 31, 150-154. 

 

NIELSEN, S. S. & TOFT, N. 2009. A review of prevalences of paratuberculosis in 

farmed animals in Europe. Preventive Veterinary Medicine, 88, 1-14. 

 

O'FLAHERTY, S., ROSS, R. P. & COFFEY, A. 2009. Bacteriophage and their lysins 

for elimination of infectious bacteria. FEMS Microbiology Reviews, 33, 801-819. 

 

ORIGENE TECHNOLOGIES. 2012. Origene development guides: ELISA 

development guide. 

http://www.origene.com/assets/documents/Assays/ELISA_Luminex_Developme

nt_Guide.pdf. Last accessed on 2nd April 2014.  

 

PARK, H. D., GUINN, K. M., HARRELL, M. I., LIAO, R., VOSKUIL, M. I., TOMPA, 

M., SCHOOLNIK, G. K. & SHERMAN, D. R. 2003. Rv3133c/dosR is a transcription 

factor that mediates the hypoxic response of Mycobacterium tuberculosis. 

Molecular Microbiology, 48, 833-843. 

 

PASUPULETI, M., SCHMIDTCHEN, A., CHALUPKA, A., RINGSTAD, L. & 

MALMSTEN, M. 2009. End-Tagging of Ultra-Short Antimicrobial Peptides by W/F 

Stretches to Facilitate Bacterial Killing. Plos One, 4. 

 

PATTERSON, C. J., LAVENTURE, M., HURLEY, S. S. & DAVIS, J. P. 1988. 

Accidental Self-Inoculation with Mycobacterium-Paratuberculosis Bacterin 

(Johnes Bacterin) by Veterinarians in Wisconsin. Journal of the American 

Veterinary Medical Association, 192, 1197-1199. 

 

PAYNE, K., SUN, Q. A., SACCHETTINI, J. & HATFULL, G. F. 2009. 

Mycobacteriophage Lysin B is a novel mycolylarabinogalactan esterase. Molecular 

Microbiology, 73, 367-381. 

 

PINEDO, P. J., RAE, D. O., WILLIAMS, J. E., DONOVAN, G. A., MELENDEZ, P. & 

BUERGELT, C. D. 2008. Association among results of serum ELISA, faecal culture 

and nested PCR on milk, blood and faeces for the detection of paratuberculosis in 

dairy cows. Transboundary and Emerging Diseases, 55, 125-133. 

 

PIURI, M. & HATFULL, G. F. 2006. A peptidoglycan hydrolase motif within the 

mycobacteriophage TM4 tape measure protein promotes efficient infection of 

stationary phase cells. Molecular Microbiology, 62, 1569-1585. 

 

PLAIN, K. M., MARSH, I. B., WALDRON, A. M., GALEA, F., WHITTINGTON, A. M., 

SAUNDERS, V. F., BEGG, D. J., DE SILVA, K., PURDIE, A. C. & WHITTINGTON, R. 

J. 2014. High-throughput direct fecal PCR assay for detection of Mycobacterium 

avium subsp. paratuberculosis in sheep and cattle. Journal of Clinical 

Microbiology, 52. 

 

POHANE, A. A., JOSHI, H. & JAIN, V. 2014. Molecular dissection of phage 

endolysin: An interdomain interaction confers host specificity in Lysin A of 

Mycobacterium phage D29. Journal of Biology and Chemistry. 

 

POUPART, P., COENE, M., VANHEUVERSWYN, H. & COCITO, C. 1993. Preparation 

of a Specific Rna Probe for Detection of Mycobacterium-Paratuberculosis and 

Diagnosis of Johnes Disease. Journal of Clinical Microbiology, 31, 1601-1605. 

 



286 

 

QAZI, S. N. A., REES, C. E. D., MELLITS, K. H. & HILL, P. J. 2001. Development 

of gfp vectors for expression in Listeria monocytogenes and other low G+C gram 

positive bacteria. Microbial Ecology, 41, 301-309. 

 

QIAN, L. & WILKINSON, M. 1991. DNA Fragment Purification - Removal of 

Agarose 10 Minutes after Electrophoresis. Biotechniques, 10, 736-8. 

 

RAIZMAN, E. A., WELLS, S. J., GODDEN, S. M., BEY, R. F., OAKES, M. J., 

BENTLEY, D. C. & OLSEN, K. E. 2004. The distribution of Mycobacterium avium 

ssp paratuberculosis in the environment surrounding Minnesota dairy farms. 

Journal of Dairy Science, 87, 2959-2966. 

 

REDDACLIFF, L. A., VADALI, A. & WHITTINGTON, R. J. 2003. The effect of 

decontamination protocols on the numbers of sheep strain Mycobacterium avium 

subsp paratuberculosis isolated from tissues and faeces. Veterinary Microbiology, 

95, 271-282. 

 

REES, C. R. & BOTSARIS, G. 2012. The Use of Phage for Detection, Antibiotic 

Sensitivity Testing and Enumeration. In: CARDONA, P.-J. (ed.) Understanding 

Tuberculosis - Global Experiences and Innovative Approaches to the Diagnosis. 

Rijeka: InTech. 

 

REZWAN, M., GRAU, T., TSCHUMI, A. & SANDER, P. 2007. Lipoprotein synthesis 

in mycobacteria. Microbiology-Sgm, 153, 652-658. 

 

RICHARDS, W. D. & THOEN, C. O. 1977. Effect of freezing on the viability of 

Mycobacterium paratuberculosis in bovine feces. Journal of Clinical Microbiology, 

6, 392-5. 

 

RISKA, P. F., SU, Y., BARDAROV, S., FREUNDLICH, L., SARKIS, G., HATFULL, G., 

CARRIERE, C., KUMAR, V., CHAN, J. & JACOBS, W. R. 1999. Rapid film-based 

determination of antibiotic susceptibilities of Mycobacterium tuberculosis strains 

by using a luciferase reporter phage and the Bronx box. Journal of Clinical 

Microbiology, 37, 1144-1149. 

 

ROBBE-AUSTERMAN, S., KRULL, A. C. & STABEL, J. R. 2006. Time delay, 

temperature effects and assessment of positive controls on whole blood for the 

gamma interferon ELISA to detect paratuberculosis. Journal of Veterinary 

Medicine Series B-Infectious Diseases and Veterinary Public Health, 53, 213-217. 

 

RODRIGUEZ-LAZARO, D., D'AGOSTINO, M., HERREWEGH, A., PLA, M., COOK, N. 

& IKONOMOPOULOS, J. 2005. Real-time PCR-based methods for detection of 

Mycobacterium avium Subsp paratuberculosis in water and milk. International 

Journal of Food Microbiology, 101, 93-104. 

 

RUNYON, E. H. 1959. Anonymous Mycobacteria in Pulmonary Disease. Medical 

Clinics of North America, 43, 273-290. 

 

RUSTAD, T. R., SHERRID, A. M., MINCH, K. J. & SHERMAN, D. R. 2009. Hypoxia: 

a window into Mycobacterium tuberculosis latency. Cellular Microbiology, 11, 

1151-1159. 

 

RYBNIKER, J., KRAMME, S. & SMALL, P. L. 2006. Host range of 14 

mycobacteriophages in Mycobacterium ulcerans and seven other mycobacteria 

including Mycobacterium tuberculosis - application for identification and 

susceptibility testing. Journal of Medical Microbiology, 55, 37-42. 

 



287 

 

SARKIS, G. J., JACOBS, W. R. & HATFULL, G. F. 1995. L5 Luciferase Reporter 

Mycobacteriophages - a Sensitive Tool for the Detection and Assay of Live 

Mycobacteria. Molecular Microbiology, 15, 1055-1067. 

 

SCANU, A. M., BULL, T. J., CANNAS, S., SANDERSON, J. D., SECHI, L. A., 

DETTORI, G., ZANETTI, S. & HERMON-TAYLOR, J. 2007. Mycobacterium avium 

subspecies paratuberculosis infection in cases of irritable bowel syndrome and 

comparison with Crohn's disease and Johne's disease: Common neural and 

immune pathogenicities. Journal of Clinical Microbiology, 45, 3883-3890. 

 

SCHMELCHER, M., SHABAROVA, T., EUGSTER, M. R., EICHENSEHER, F., 

TCHANG, V. S., BANZ, M. & LOESSNER, M. J. 2010. Rapid Multiplex Detection 

and Differentiation of Listeria Cells by Use of Fluorescent Phage Endolysin Cell 

Wall Binding Domains. Applied and Environmental Microbiology, 76, 5745-5756. 

 

SCHOOLNIK, G. K., SUMMERS, W. C. & D WATSON, J. 2004. Phage offer a real 

alternative. Nature Biotechnology, 22, 505-506. 

 

SCHURCH, A. C. & VAN SOOLINGEN, D. 2012. DNA fingerprinting of 

Mycobacterium tuberculosis: From phage typing to whole-genome sequencing. 

Infection Genetics and Evolution, 12, 602-609. 

 

SHI, Y. B., YAN, Y. X., JI, W. H., DU, B., MENG, X. P., WANG, H. G. & SUN, J. H. 

2012. Characterization and determination of holin protein of Streptococcus suis 

bacteriophage SMP in heterologous host. Virology Journal, 9. 

 

SIDOTI, F., BANCHE, G., ASTEGIANO, S., ALLIZOND, V., CUFFINI, A. M. & 

BERGALLO, M. 2011. Validation and standardization of IS900 and F57 real-time 

quantitative PCR assays for the specific detection and quantification of 

Mycobacterium avium subsp paratuberculosis. Canadian Journal of Microbiology, 

57, 347-354. 

 

SMITH, G. P. & PETRENKO, V. A. 1997. Phage display. Chemical Reviews, 97, 

391-410. 

 

SNIDER, D. E., JR., JONES, W. D. & GOOD, R. C. 1984. The usefulness of phage 

typing Mycobacterium tuberculosis isolates. American Reviews of Respiratory 

Diseases, 130, 1095-9. 

 

SPEARS, P. A., SUYEMOTO, M. M., PALERMO, A. M., HORTON, J. R., HAMRICK, T. 

S., HAVELL, E. A. & ORNDORFF, P. E. 2008. A Listeria monocytogenes mutant 

defective in bacteriophage attachment is attenuated in orally inoculated mice 

and impaired in enterocyte intracellular growth. Infection and Immunity, 76, 

4046-4054. 

 

STABEL, J. R. 1997. An improved method for cultivation of Mycobacterium 

paratuberculosis from bovine fecal samples and comparison to three other 

methods. Journal of Veterinary Diagnostic Investigation, 9, 375-380. 

 

STABEL, J. R. 1998. Johne's Disease: A Hidden Threat. Journal of Dairy Science, 

81, 283-288. 

 

STANLEY, E. C., MOLE, R. J., SMITH, R. J., GLENN, S. M., BARER, M. R., 

MCGOWAN, M. & REES, C. E. D. 2007. Development of a new, combined rapid 

method using phage and PCR for detection and identification of viable 

Mycobacterium paratuberculosis bacteria within 48 hours. Applied and 

Environmental Microbiology, 73, 1851-1857. 



288 

 

STEINITZ, M. 2000. Quantitation of the blocking effect of tween 20 and bovine 

serum albumin in ELISA microwells. Analysis of Biochemistry, 282, 232-8. 

 

STERMANN, M., SEDLACEK, L., MAASS, S. & BANGE, F. C. 2004. A promoter 

mutation causes differential nitrate reductase activity of Mycobacterium 

tuberculosis and Mycobacterium bovis. Journal of Bacteriology, 186, 2856-2861. 

 

STEWART, L. D., MCNAIR, J., MCCALLAN, L., THOMPSON, S., KULAKOV, L. A. & 

GRANT, I. R. 2012. Production and Evaluation of Antibodies and Phage Display-

Derived Peptide Ligands for Immunomagnetic Separation of Mycobacterium 

bovis. Journal of Clinical Microbiology, 50, 1598-1605. 

 

STRATMANN, J., DOHMANN, K., HEINZMANN, J. & GERLACH, G. F. 2006. Peptide 

aMptD-mediated capture PCR for detection of Mycobacterium avium subsp 

paratuberculosis in bulk milk samples. Applied and Environmental Microbiology, 

72, 5150-5158. 

 

STRATMANN, J., STROMMENGER, B., STEVENSON, K. & GERLACH, G. F. 2002. 

Development of a peptide-mediated capture PCR for detection of Mycobacterium 

avium subsp paratuberculosis in milk. Journal of Clinical Microbiology, 40, 4244-

4250. 

 

STROMMENGER, B., STEVENSON, K. & GERLACH, G. F. 2001. Isolation and 

diagnostic potential of ISMav2, a novel insertion sequence-like element from 

Mycobacterium avium subspecies paratuberculosis. FEMS Microbiology Letters, 

196, 31-37. 

 

SU, X. L. & LI, Y. 2004. Quantum dot biolabeling coupled with immunomagnetic 

separation for detection of Escherichia coli O157:H7. Analysis of Chemistry, 76, 

4806-10. 

 

SULAKVELIDZE, A. 2005. Phage therapy: On attractive option for dealing with 

antibiotic-resistant bacterial infections (vol 10, pg 808, 2005). Drug Discovery 

Today, 10, 877-877. 

 

SWEENEY, R. W. 2011. Pathogenesis of Paratuberculosis. Veterinary Clinics of 

North America-Food Animal Practice, 27, 537-540. 

 

SWIFT, B. M., DENTON, E. J., MAHENDRAN, S. A., HUXLEY, J. N. & REES, C. E. 

2013. Development of a rapid phage-based method for the detection of viable 

Mycobacterium avium subsp. paratuberculosis in blood within 48 h. Journal of 

Microbiological Methods, 94, 175-179. 

 

TELENTI, A., IMBODEN, P., MARCHESI, F., LOWRIE, D., COLE, S., COLSTON, M. 

J., MATTER, L., SCHOPFER, K. & BODMER, T. 1993. Detection of Rifampicin-

Resistance Mutations in Mycobacterium-Tuberculosis. Lancet, 341, 647-650. 

 

THORESEN, O. F., FALK, K. & EVENSEN, O. 1994. Comparison of 

immunohistochemistry, acid-fast staining, and cultivation for detection of 

Mycobacterium paratuberculosis in goats. Journal of Veterinary Diagnostic 

Investigations, 6, 195-9. 

 

THORNTON, C. G. & PASSEN, S. 2004. Inhibition of PCR amplification bovine 

fecal specimens with by phytic acid, and treatment of phytase to reduce 

inhibition. Journal of Microbiological Methods, 59, 43-52. 

 



289 

 

TSIEN, R. Y. 1998. The green fluorescent protein. Annual Review of 

Biochemistry, 67, 509-544. 

 

TSUCHIZAKI, N., ISHIKAWA, J. & HOTTA, K. 2000. [Colony PCR for rapid 

detection of antibiotic resistance genes in MRSA and enterococci]. Japan Journal 

of Antibiotics, 53, 422-9. 

 

TURPIN, P. E., MAYCROFT, K. A., BEDFORD, J., ROWLANDS, C. L. & 

WELLINGTON, E. M. H. 1993. A Rapid Luminescent-Phage Based Mpn Method for 

the Enumeration of Salmonella-Typhimurium in Environmental-Samples. Letters 

in Applied Microbiology, 16, 24-27. 

 

UYTTENDAELE, M., VAN HOORDE, I. & DEBEVERE, J. 2000. The use of immuno-

magnetic separation (IMS) as a tool in a sample preparation method for direct 

detection of L-monocytogenes in cheese. International Journal of Food 

Microbiology, 54, 205-212. 

 

VAN KOOTEN, H. C. J., MACKINTOSH, C. G. & KOETS, A. P. 2006. Intra-uterine 

transmission of paratuberculosis (Johne's disease) in farmed red deer. New 

Zealand Veterinary Journal, 54, 16-20. 

 

VORDERMEIER, H. M., COCKLE, P. C., WHELAN, A., RHODES, S., PALMER, N., 

BAKKER, D. & HEWINSON, R. G. 1999. Development of diagnostic reagents to 

differentiate between Mycobacterium bovis BCG vaccination and M-bovis 

infection in cattle. Clinical and Diagnostic Laboratory Immunology, 6, 675-682. 

 

WARD, L. R., DESA, J. D. H. & ROWE, B. 1987. A Phage-Typing Scheme for 

Salmonella-Enteritidis. Epidemiology and Infection, 99, 291-294. 

 

WATANABE, K. & TAKESUE, S. 1972. The requirement for calcium in infection 

with Lactobacillus phage. Journal of General Virology, 17, 19-30. 

 

WATERS, W. R., MILLER, J. M., PALMER, M. V., STABEL, J. R., JONES, D. E., 

KOISTINEN, K. A., STEADHAM, E. M., HAMILTON, M. J., DAVIS, W. C. & 

BANNANTINE, J. P. 2003. Early induction of humoral and cellular immune 

responses during experimental Mycobacterium avium subsp paratuberculosis 

infection of calves. Infection and Immunity, 71, 5130-5138. 

 

WATERS, W. R., NONNECKE, B. J., PALMER, M. V., ROBBE-AUSTERMANN, S., 

BANNANTINE, J. P., STABEL, J. R., WHIPPLE, D. L., PAYEUR, J. B., ESTES, D. M., 

PITZER, J. E. & MINION, F. C. 2004. Use of recombinant ESAT-6 : CFP-10 fusion 

protein for differentiation of infections of cattle by Mycobacterium bovis and by 

M. avium subsp avium and M. avium subsp paratuberculosis. Clinical and 

Diagnostic Laboratory Immunology, 11, 729-735. 

 

WAYNE, L. G. 1994. Dormancy of Mycobacterium-Tuberculosis and Latency of 

Disease. European Journal of Clinical Microbiology & Infectious Diseases, 13, 

908-914. 

 

WAYNE, L. G., AND KUBICA G. P. 1986. The Mycobacteria. In: GIBBONS, E. B. A. 

N. E. (ed.) Bergey's manual of determinative bacteriology. 9 ed. Baltimore: The 

Williams & Wilkins Co. 

 

WHITLOCK, R. H., WELLS, S. J., SWEENEY, R. W. & VAN TIEM, J. 2000. ELISA 

and fecal culture for paratuberculosis (Johne's disease): sensitivity and 

specificity of each method. Veterinary Microbiology, 77, 387-398. 

 



290 

 

WHITTINGTON, R. J., BOWER, K. & BEGG, D. J. 2010. Optimisation of culture of 

Mycobacterium avium subspecies paratuberculosis from blood samples. Journal 

of Microbiological Methods, 80, 93-99. 

 

WHITTINGTON, R. J. 2009. Factors Affecting Isolation and Identification of 

Mycobacterium avium subsp paratuberculosis from Fecal and Tissue Samples in 

a Liquid Culture System. Journal of Clinical Microbiology, 47, 614-622. 

 

WHITTINGTON, R. J., MARSHALL, D. J., NICHOLLS, P. J., MARSH, A. B. & 

REDDACLIFF, L. A. 2004. Survival and dormancy of Mycobacterium avium subsp 

paratuberculosis in the environment. Applied and Environmental Microbiology, 

70, 2989-3004. 

 

WHITTINGTON, R. J. & SERGEANT, E. S. G. 2001. Progress towards 

understanding the spread, detection and control of Mycobacterium avium subsp 

para-tuberculosis in animal populations. Australian Veterinary Journal, 79, 267-

278. 

 

WINDBERGER, U., BARTHOLOVITSCH, A., PLASENZOTTI, R., KORAK, K. J. & 

HEINZE, G. 2003. Whole blood viscosity, plasma viscosity and erythrocyte 

aggregation in nine mammalian species: reference values and comparison of 

data. Experimental Physiology, 88, 431-40. 

 

WINDER, F. G. 1982. Mode of action of the antimycobacterial agents and 

associated aspects of the molecular biology of the mycobacteria, p. 417–521. 

In C. Ratledge and J. Stanford (ed.), The biology of the mycobacteria, vol. 1. 

Academic Press, London. 

 

WORLD HEALTH ORGANISIATION (WHO). 2011. Leprosy elimination: the 

microbiology of leprosy. http://www.who.int/lep/microbiology/en/index.html. 

Last accessed online on 2nd April 2014. 

 

WRIGHT, A., HAWKINS, C. H., ANGGARD, E. E. & HARPER, D. R. 2009. A 

controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis 

due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of 

efficacy. Clinical Otolaryngology, 34, 349-357. 

 

ZIMMER, K., DRAGER, K. G., KLAWONN, W. & HESS, R. G. 1999. Contribution to 

the diagnosis of Johne's disease in cattle. Comparative studies on the validity of 

Ziehl-Neelsen staining, faecal culture and a commercially available DNA-Probe 

(R) test in detecting Mycobacterium paratuberculosis in faeces from cattle. 

Journal of Veterinary Medicine Series B-Infectious Diseases and Veterinary Public 

Health, 46, 137-140. 

 

ZURBRICK, B. G., FOLLETT, D. M. & CZUPRYNSKI, C. J. 1988. Cytokine 

Regulation of the Intracellular Growth of Mycobacterium-Paratuberculosis in 

Bovine Monocytes. Infection and Immunity, 56, 1692-1697. 

http://www.who.int/lep/microbiology/en/index.html


291 

 

CHAPTER 10 

APPENDICES  



292 

 

Appendix 1. Manuscript in production for submission to Journal of 

bacteriology 

 

Title: Induction of pigment production in cattle strains of Mycobacterium 

avium subsp. paratuberculosis  

 

INTRODUCTION 

     The research of mycobacterial pigments has often been limited taxonomic 

and identification purposes. Mycobacterial pigments, especially carotenoids have 

been clearly associated with cellular photoprotection and survival, the regulation 

of their production and their physiological role have been largely unstudied 

(Robledo et al., 2011). Thus any Mycobacterium’s ability to produce 

pigmentation is of clinical interest for identification and diagnostic purposes as 

well as understanding causative of infection. Saviola and Felton (2011) have 

previously found that pigmentation can be induced in non-pigmented strains of 

mycobacteria by growth on acidic agar. 

    Different strains of MAP can infect different hosts. Marsh et al (1996) 

developed a simple REA-PCR to differentiate between cattle (C) and sheep (S) 

strains of MAP. Where broadly speaking; C strains generally infect cattle and S 

strains generally infect sheep, although there have been cases of C strains 

infecting sheep and vice versa as well as there being evidence of strains being 

shared between wild and domesticated animal species (Motiwala et al. 2004).   

    MAP can take several months to culture. The general colony morphology 

during early growth are small smooth and convex, and most importantly not 

pigmented (Merkal and Curran, 1974), however as the cultures age the colonies 

can become differentiated, with rough edged, crenulated colonies described 

(Fregnan and Smith, 1962). Although MAP is not in the pigmented classes in 

Runyon’s classification, sheep strains of MAP have been reported to be 

pigmented based on the pathological representation of Johne’s disease affected 

sheep intestine, which appears yellow and orange (Stevenson et al, 2002). 

These organisms are difficult to culture and they generally take longer to form 

colonies. There are no reported pigmented cattle strains of MAP. 

    Observations made in laboratory had shown that cattle strains of MAP 

cultured on solid agar for over six months in plastic Universal vessels became 

pigmented whereas those cultured in glass Universal vessels did not.  

    These investigations were based on whether the pigmented organisms were 

MAP and if they were previously unknown pigmented cattle strains of MAP. The 

conditions required for pigment induction was then investigated, on two cattle 
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strains of MAP, M. avium, M. intracelluare, M. bovis BCG and M. smegmatis. 

Resistance to bacteriophage infection was also investigated as it was found that 

changes in culture conditions in mycobacteria can result in phage infection 

resistance (see Chapter 6). 

 

RESULTS 

Original observations and molecular analysis 

    The original pigmented observations were made with MAP cells (K10; 

reference cattle strain) slopes cultured in 30 ml plastic Universals (Sterilin, UK) 

for over 3 years. Orange pigmentation can clearly be seen, compared to those 

cultured in glass at the same time (Fig. 1). Colonies from the slope were 

subcultured to rule out contamination from other potential pigment causing 

bacteria. The colonies were also subjected to a MAP specific PCR. The results 

show that each pigmented colony was positive for the MAP-specific f57 gene, as 

well as this no contamination was seen from the subculture. 

    As the organisms were confirmed as MAP, further analysis was carried out to 

determine whether they were cattle strains or the known potentially pigmented 

sheep strains of MAP. REA-PCR analysis has been shown to be able to 

differentiate between and cattle and sheep strains of MAP by the point mutations 

in the IS1311 sequences (Marsh et al., 1999) found in the MAP genome. The 

results show that the pigmented cells were from cattle strains of MAP and not 

sheep (Fig. 2). 
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Figure 1. Original pigmented MAP 

 

Image shows the original pigmented presumptive MAP colonies cultured on 

Middlebrook 7h10 (Becton Dickenson) for over 2 years. 
 

 

 

Figure 2. REA-Analysis of unknown MAP isolate 

 

REA-PCR analysis of the amplified IS1311 gene, from two pigmented cattle MAP 

strains (presumptive K10 and ATCC 19851; lanes 2 and 3 respectively), after 

treatment with the restriction enzyme Hinf1. . Lane 3 is confirmed MAP K10 

genomic DNA. Lane 5 is genomic DNA extracted from a pigmented sheep strain 

DNA (Kindly donated by K. Stevenson). Lane 6 is negative control (SDW). Bands 

at 285 bp show the presence of the IS1311 element in all MAP strains. Bands at 

218 bp show the point mutation in the insertion element found only in cattle 

strains of MAP. 

  

         1            2            3            4           5           6 

285 

218 
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Carotenoid operon in cattle strain of MAP (K10) 

    Many mycobacteria have the ability to produce pigments in response to light 

or stresses. The carotenoid biosynthesis pathway has been established for a long 

time in a lot of organisms, including the operon responsible for its synthesis in 

mycobacteria. Pigment synthesis genes found in M. tuberculosis were used to 

find homologues in the MAP K10 genome using BLAST. The results show that 

MAP K10 has a same operon for creating carotenoid pigments as M. tuberculosis 

(Figure 3). This shows that the cattle strains of MAP have the genes present to 

produce pigments, however having the genes does not necessarily mean that are 

able to use them. 

 

Role of stress on pigmentation in M. smegmatis and MAP 

    The initial observations of pigmentations in MAP could have been because of 

the length of time since culture. Old cultures of mycobacteria have been known 

to become pigmented over time (Dworkin and Foster, 1958). To ensure this was 

not the case, M. smegmatis  was used as a fast-growing model organisms to 

determine whether they have the ability to become pigmented. It has already 

been described by Saviola and Felton (2011) that M. smegmatis can produce 

pigments when grown on acidic agar. When the MAP cells produced pigments, 

that only did so in plastic universals and not in glass.  

    Differences between the glass and plastic were postulated, such as 

permeability to air and what light is let through. If the plastic let more air in, the 

cells would be less likely to go completely into a dormant state (as seen in 

Chapter 6). Thus slow steady growth when oxygen is present may result in a 

drop in pH in the bacterial colonies as they grow, replicating the acidic conditions 

seen by Saviola and Felton (2011). 

    Initially the ability of M. smegmatis and MAP to produce pigmentation was 

investigated by repeating the experiments by Saviola and Felton (2011). M. 

smegmatis and MAP were cultured on 7h10 agar slopes, at pH 6.5, pH 5.5 and 

pH 5. The results show that both MAP and M. smegmatis did not produce 

pigments at pH 7, but did at pH 6 (Fig. 4). No growth was seen by either of the 

cells at pH 5 (data not shown). 
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Figure 3.Beta-carotene biosynthetic pathway in mycobacteria 

 

 

Consensus biosynthesis pathway of beta-carotene in mycobacteria. Genetic 

precursors found in the MAP K10 genome are listed on the left and the enzymes 

they make are on the right (Robledo et al., 2011).  
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Figure 4. Culture of MAP and M. smegmatis on 7h10 agar adjusted to pH 

6.5 and pH 5.5 

 

 

 

 

 

 

 

 

 

 

 

Figure shows M. smegmatis (FPTB strain; panel A and B) and MAP (K10; panel C 

and D) grown on 7h10 agar adjusted to pH 6.5 (panel A and C) or pH 5.5. 

Orange colonies can clearly be seen after 4 d and 2 weeks incubation at 37 oC 

for M. smegmatis and MAP respectively.   

A B 

D C 
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    As both MAP and M. smegmatis have the ability to produce pigments on acidic 

agar, M. smegmatis was carried forward as a model organisms to determine 

what physical stresses (that may or may not result in a pH drop) are involved in 

pigment production. Thus aerobic, anaerobic and limited oxygen liquid cultures 

of M. smegmatis were prepared to determine if a reduction in oxygen decreases 

the pH. The results show that when grown aerobically there is a drop in pH to 

6.3, but there is no pigment production, similarly when the M. smegmatis  was 

cultured with less oxygen available, pigmentation did occur, but the pH dropped 

to the same level as the aerobic culture (Fig. 5). This suggested that pH is not 

the only factor in pigment production. 

    As some mycobacteria can form pigment as a response to light, the 

experiment above was repeat in the light and in the dark, and there was no 

difference in the results seen (data not shown). 

 

Future Work 

    The novel observation of MAP being able to produce pigments goes against 

the Ruyoun classification. As the ability to produce pigments can be used as a 

diagnostic tool, ensuring culture conditions and the environment is controlled is 

vitally important. Further work will be carried out in identifying if there is any 

difference in expression of the pigment biosynthesis genes qRT-PCR. 

 

Figure 5. Effect of oxygen, no oxygen and limited oxygen on pigment 

production  

 

Image shows the effect of limited oxygen availability (1), no oxygen (2) and 

oxygen (3) on the ability of M. smegmatis to produce pigments. 

  

1 3 2 
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Appendix 2. Manuscript in production for submission to Journal of 

Applied Microbiology 

 

Title: Cloning and expression of bacteriophage D29 lysins and their 

application in lysing mycobacteria 

 

INTRODUCTION 

    The life-cycle of a lytic bacteriophage involves, the phage binding to specific 

cell receptors on their host, injecting their genetic material and using their host’s 

machinery to replicate themselves. Once the progeny phage are produced, 

generally a combination of holins and lysins are produced. The holins create 

holes in the membrane to allow lysins to reach their target to break open the cell 

wall.  

    Lysins are highly evolved enzymes produced by the phage to digest the 

bacterial cell wall for phage progeny release (Fischetti, 2005). They accumulate 

in the cytosol during late stage of infection and hydrolyse the bacterial hosts cell 

wall (Fenton et al., 2010). Lysins generally need the holin protein to allow them 

to get to their cell wall target. Bacteriophage lysins are highly specific for their 

host cells. The basic structure of phage lysins consist of two domains; a catalytic 

domain, which is involved in the breakdown of the host cell wall, and the highly 

specific binding domain, which brings the catalytic side to the specific site of 

action for their host (Schmelcher et al., 2010). 

    In Gram-positive organisms, bacteriophage lysins have been used externally 

to lyse cells. As the peptidoglycan layer of Gram-positive cell walls are found on 

the outside of the cell, expressed recombinant lysin proteins are able to reach 

their target without the need of the holin protein. This has been carried out on 

pathogenic Gram-positive organisms such as; Listeria monocytogenes (Loessner 

et al., 1996), Staphylococcus aureus (O'Flaherty et al., 2009) and Streptococcus 

pneumoniae (Loeffler and Fischetti, 2003). However the effects of phage lysins 

on Gram-negative bacteria have not been fully exploited, due to outer 

membrane, creating a barrier for the lysins to interact with the peptidoglycan 

cell wall (Fischetti, 2005).  

    There are two lysin genes in bacteriophage D29; Lysin A and Lysin B (Pohane 

et al., 2014). The unusual mycolic acid rich cell wall of mycobacteria means that 

the phage, not only have to get through the peptidoglycan layer, but also 

penetrate the mycolic acid outer membrane. It has been postulated that Lysin A 

has the ability to degrade the peptidoglycan layer, whereas Lysin B cleaves 

mycolyarabinogalactan to release the mycolic acids (Payne et al., 2009). Where 
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Lysin A is involved directly with cell lysis, Lysin B is thought to aid in the 

efficiency of lysis by disrupting the outer membrane sufficiently to allow the 

progeny phage release (Payne et al. 2009). 

    Lysin B from mycobacteriophage Ms6 has been found to have activity on the 

outside of the cell. The function of Lysin B from Ms6 has similar functions to the 

D29’s Lysin B, where they both have sites of action on mycolyarabinogalactan -

peptidoglycan complex (Gil et al., 2010).  

    The aim of these investigations was to clone and over express both Lysin A 

and Lysin B from phage D29 and to determine whether they had the ability to 

inhibit the growth of different mycobacteria. 

 

RESULTS 

Cloning and expressing phage D29 lysins 

    Primers were designed to amplify both Lysin A and B from DNA extracted 

from phage D29 and to allow directional cloning into the plasmid pET 23a 

(Invitrogen, UK). Both genes were initially processed through the NEB Cutter 

online software to determine what restrictions sites might be present within the 

gene. The results show that none of the restriction sites present in the pET23a 

plasmid sequence were present in either of the lysin gene sequences. Thus each 

primer for each gene was designed to carry BamHI on the 5’ end and NheI on 

the 3’ end. SmaI was also added to each end of the gene. The stop codon was 

removed from each sequence and added after 6 x His sequence to allow the 

protein to be His-Tag purified. The two lysin genes were amplified and cloned 

into the plasmid (pET 23a; Fig 1). The plasmid was then transformed into 

chemically competent E. coli (Top10) and grown overnight on ampicillin selective 

LB agar. Colonies that had grown on the plates were then picked and patch 

plated and in parallel screened by PCR for the correct inserts. The successful 

clones were mini-prepped and thetransformed into an expression strain (E. coli 

BL21 DE3).  

    A pilot expression experiment was then carried out. The plasmid was 

transformed into the expression strain of E. coli and was incubated overnight at 

37 oC. The samples were then split and one induced with IPTG (0.5 mM) and one 

was not. The cells were incubated for 5 h and every hour, starting at time point 

zero, samples were taken and analysed using SDS-page. The results show that 

no extra bands were detected from the protein prep of Lysin A or Lysin B (data 

not shown). This may be due to the proteins being insoluble. Indeed if the lysins 

are meant to interact within the lipid rich, cell wall of the mycobacteria, being 

insoluble would be likely. Thus the insoluble protein fraction was extracted from 
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the cells. The results show, however that once again no significant bands were 

present, suggesting no expression of soluble or insoluble recombinant proteins.  

     

 

 

 

 

 

Figure 1. Amplification of the lysin A and B 

 

Image shows lane 1; 100 bp ladder. Lane 2 amplification of lysin A DNA from 

cloned plasmid, lane 3; amplification of lysin B DNA from cloned plasmid, lane 4, 

amplification of lysin A and B DNA from DNA extraction from phage D29 and lane 

5, negative control (SDW).  
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The cells, left over from the pilot protein expression were used to determine 

whether the Lysin DNA was still present in the E. coli. Lysin specific PCR’s were 

carried on DNA extracted from the E. coli using a crude boiling method. The 

template DNA was diluted 1 in 100 and the PCR carried out. The results show 

that there was no Lysin DNA present in either of the lysin preparations. 

    As mentioned in the introduction, lysin proteins generally have two domains, 

a highly specific binding domain and a catalytic domain, which is generally more 

broad ranging in activity. The lysin proteins are therefore likely to be toxic to the 

E. coli host, and ‘leaky’ expression of the protein, by the BL21 strain of E. coli 

may have resulted in the gene not being expressed. As well as this, expression 

into a high copy-number plasmid such as pET23a may result in over expression 

of this toxic gene. Therefore the cloning strategy was altered to adjust for toxic 

gene expression.  

    The primers of the lysin gene were altered for TOPO directional cloning into a 

commercial linearised expression plasmid, pET101-D (Invitrogen, UK). The lysin 

primers were designed to have a four nucleotide sequences on the 5’ end of the 

gene to clone into the compatible ends of the linearised plasmid. The cloned 

plasmid was transformed into chemically competent E. coli (TOP10). The 

samples were then plated onto ampicillin selective LB agar and incubated 

overnight. Colonies that formed were in parallel; patch plated and screened by 

PCR for the Lysin genes. The successful clones’ plasmids were screened again for 

the inserts, to ensure the lysin DNA was still present in the sample, the results 

show that the both were. 

    The plasmids were then transformed into an expression strain of E. coli - BL21 

(DE3) pLysS - that is under the control of IPTG, and has a T7 lysozyme that 

lowers the background expression level of target genes under the control of the 

T7 promoter, but does not interfere with the level of expression following 

induction with IPTG. By having a tighter control on the expression of potentially 

toxic proteins, leaky expression causing the gene to be knocked out will be less 

likely to occur. The samples were expressed fractions were analysed every hour 

by SDS-page and results show that once again there was no expression of the 

recombinant protein. 

 

Optimising lysin protein expression 

    No recombinant protein was seen in both of the pilot protein expression 

experiments. Proteins can take some time after expression to correctly fold and 

express. The time for expression was therefore increased from a maximum of 5 

h to 8 and 10 h. the temperature the E. coli was induced and grown at was also 
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reduced to 25 oC. The results show that both Lysin A and Lysin B produced a 

new band in the soluble and insoluble fraction (Fig. 2). 

    As the lysin looked to be expressed after IPTG induction, colonies harbouring 

the successful clone were plated onto plates containing IPTG and incubated 

overnight. The cells were then killed and lysed with chloroform to expose any 

lysin expressed by the cells. As a control, colonies were also plated on media 

without IPTG so that no lysin proteins would be expressed. A soft agar overlay 

was plated onto the lysed cells after overnight incubation containing 1 x 107 cfu 

ml-1 M. smegmatis and this was incubated at 37 oC for 24 h. 

    The results show that there were zones of clearing from where E. coli was 

expressing the lysin genes (Fig. 3). On the negative control, there was no 

inhibition of growth from the lysin genes.  

 

 

 

 

 

 

Figure 2. SDS-page analysis of lysin gene expression 

 

 

 

 

 

 

 

 

 

SDS-page analysis of protein expression of lysin A (Panel A) and lysin B (Panel 

B). Arrows mark areas of increase band intensity after protein induction with 

IPTG. 

 

 

 

 

A 

B 
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Figure 3. Crude cell lysis on lysin A and B test 

 

 

 

 

 

 

 

 

 

Figure showing the inhibition (arrows) of growth on M. smegmatis using a 

chloroform crude cell lysis method on cultures expressing lysin A (picture A), 

lysin b (picture B) and a mixture of unexpressed colonies containing genes that 

encode lysin A and lysin B (picture C). 

 

 

Future Work 

    The initial results show that it was possible to clone in both phage lysins into 

strains of E. coli. Although the plasmids were not stable within the E. coli host, it 

was possible to have active protein expressed and in a crude method to inhibit 

the growth of M. smegmatis. Further work will be carried out on trying to purify 

the phage lysins, using the His-tags and to characterise their mode of action and 

their optimal conditions for lysis.  

  

C 

B A 
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Appendix 4.1. Mead’s resource equations  

Obtained from: Mead R. 1988. The design of experiments. Cambridge, 

New York: Cambridge University Press. 620 p 

The Resource equation method (Mead 1988) of determining sample size is 

appropriate for experiments which can be analysed using the analysis of variance 

such as: 

The method depends on the law of diminishing returns. Adding one experimental 

unit to a small experiment gives good returns, while adding it to a large 

experiment does not do so. In the general experimental situation the total 

variation is divided into  three components, each serving a different function."  

These three components consist of: 

1. The treatment component, T, corresponding to the questions being asked 

2. The blocking component B, representing environmental effects allowed 

for in the design 

3. The error component E, being used to estimate the variance, S2 which is 

used for calculating the standard errors for treatment comparisons. 

The method equation is: 

E=N-B-T,  

Where E is the error degrees of freedom (df) and should be between 10 and 20, 

N is the total df, B is the blocks df, and T is the treatments df. 

Example: suppose an experiment is planned with four treatments, with eight 

animals per group (32 rats total). In this case N=31, B=0, T=3, so E=28. 

Conclusion: this experiment is a bit too large, and six animals per group might 

be more appropriate. 
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Appendix 7.1. CODON optimisation table for E. coli – Malloy et al. (1996) 

Amino Acid Abbreviation Codon Total number Fraction 

Glycine  G GGG 17628.00 0.15 
Glycine  G GGA 12696.00 0.11 
Glycine  G GGT 39862.00 0.34 
Glycine  G GGC 47212.00 0.40 

Glutamate  E GAG 28529.00 0.31 
Glutamate  E GAA 63484.00 0.69 
Aspartate  D GAT 51670.00 0.63 
Aspartate  D GAC 30559.00 0.37 

Valine  V GTG 42097.00 0.37 
Valine  V GTA 17443.00 0.15 
Valine  V GTT 29487.00 0.26 
Valine  V GTC 24406.00 0.22 

Alanine  A GCG 53984.00 0.36 
Alanine  A GCA 32529.00 0.21 
Alanine  A GCC 40914.00 0.27 
Serine  S AGT 13976.00 0.15 
Serine  S AGC 25716.00 0.28 
Lysine  K AAG 16370.00 0.23 
Lysine  K AAA 53920.00 0.77 

Asparagine  N AAT 28256.00 0.45 
Asparagine  N AAC 34752.00 0.55 
Methionine  M ATG 44539.00 1.00 
Isoleucine  I ATA 6866.00 0.07 
Isoleucine  I ATT 48766.00 0.51 
Isoleucine  I ATC 40097.00 0.42 
Threonine  T ACG 23056.00 0.27 
Threonine  T ACA 11267.00 0.13 
Threonine  T ACT 14303.00 0.17 
Threonine  T ACC 37495.00 0.44 

Tryptophan  W TGG 24553.00 1.00 
Cysteine  C TGT 8306.00 0.45 
Cysteine  C TGC 10330.00 0.55 
Tyrosine  Y TAT 26180.00 0.57 
Tyrosine  Y TAC 19675.00 0.43 

Phenylalanine  F TTT 35930.00 0.57 
Phenylalanine  F TTC 26609.00 0.43 

Serine  S TCG 14305.00 0.15 
Serine  S TCA 11438.00 0.12 
Serine  S TCT 13633.00 0.15 
Serine  S TCC 13783.00 0.15 

Arginine  R CGG 8631.00 0.10 
Arginine  R CGT 33711.00 0.38 
Arginine  R CGC 35311.00 0.40 
Arginine  R AGG 1949.00 0.02 
Arginine  R AGA 3291.00 0.04 

Glutamine  Q CAG 46256.00 0.65 
Glutamine  Q CAA 24787.00 0.35 
Histadine  H CAT 20686.00 0.57 
Histadine  H CAC 15595.00 0.43 
Leucine  L CTG 84714.00 0.50 
Leucine  L CTT 17707.00 0.10 
Leucine  L TTG 22000.00 0.13 
Leucine  L TTA 22279.00 0.13 
Proline  P CCG 37316.00 0.52 
Proline  P CCA 13664.00 0.19 
Proline  P CCT 11291.00 0.16 
Proline  P CCC 8861.00 0.12 
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http://openwetware.org/wiki/Glycine
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http://openwetware.org/index.php?title=Glutamate&action=edit&redlink=1
http://openwetware.org/index.php?title=Aspartate&action=edit&redlink=1
http://openwetware.org/index.php?title=Aspartate&action=edit&redlink=1
http://openwetware.org/index.php?title=Valine&action=edit&redlink=1
http://openwetware.org/index.php?title=Valine&action=edit&redlink=1
http://openwetware.org/index.php?title=Valine&action=edit&redlink=1
http://openwetware.org/index.php?title=Valine&action=edit&redlink=1
http://openwetware.org/index.php?title=Alanine&action=edit&redlink=1
http://openwetware.org/index.php?title=Alanine&action=edit&redlink=1
http://openwetware.org/index.php?title=Alanine&action=edit&redlink=1
http://openwetware.org/index.php?title=Serine&action=edit&redlink=1
http://openwetware.org/index.php?title=Serine&action=edit&redlink=1
http://openwetware.org/index.php?title=Lysine&action=edit&redlink=1
http://openwetware.org/index.php?title=Lysine&action=edit&redlink=1
http://openwetware.org/index.php?title=Asparagine&action=edit&redlink=1
http://openwetware.org/index.php?title=Asparagine&action=edit&redlink=1
http://openwetware.org/index.php?title=Methionine&action=edit&redlink=1
http://openwetware.org/index.php?title=Isoleucine&action=edit&redlink=1
http://openwetware.org/index.php?title=Isoleucine&action=edit&redlink=1
http://openwetware.org/index.php?title=Isoleucine&action=edit&redlink=1
http://openwetware.org/index.php?title=Threonine&action=edit&redlink=1
http://openwetware.org/index.php?title=Threonine&action=edit&redlink=1
http://openwetware.org/index.php?title=Threonine&action=edit&redlink=1
http://openwetware.org/index.php?title=Threonine&action=edit&redlink=1
http://openwetware.org/index.php?title=Tryptophan&action=edit&redlink=1
http://openwetware.org/index.php?title=Cysteine&action=edit&redlink=1
http://openwetware.org/index.php?title=Cysteine&action=edit&redlink=1
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http://openwetware.org/index.php?title=Leucine&action=edit&redlink=1
http://openwetware.org/index.php?title=Leucine&action=edit&redlink=1
http://openwetware.org/index.php?title=Proline&action=edit&redlink=1
http://openwetware.org/index.php?title=Proline&action=edit&redlink=1
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http://openwetware.org/index.php?title=Proline&action=edit&redlink=1


307 

 

Appendix 7.2. Plasmid maps 

 

Sourced from pET expression manual. 
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Sourced from Invitorgen TOPO cloning manual. 
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Sourced from Invitorgen TOPO cloning manual. 
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The aim of this study was to develop a methodology to rapidly detect viable Mycobacterium avium subsp.
paratuberculosis (MAP) in clinical blood samples. MAP cells spiked into commercially available blood were re-
covered using optimised peptide-mediated magnetic separation (PMMS) and detected using a phage-based
method, and the identity of the cells detected confirmed using nested-PCR amplification of MAP signature se-
quences (IS900). The limit of detection was determined to be 10 MAP cells per ml of blood and was used to
detect MAP present in clinical bovine blood samples. Using the PMMS-phage method there was no difference
when detecting MAP from whole blood or from isolated buffy coat. MAP was detected in animals that were
milk-ELISA positive (15 animals) by PMMS-phage and no MAP was detected in blood samples from an
accredited Johne's disease free herd (5 animals). In a set of samples from one herd (10 animals) that came
from animals with variable milk ELISA status, the PMMS-phage results agreed with the positive milk-ELISA
results in all but one case. These results show that the PMMS-phage method can detect MAP present in
naturally infected blood. Total assay time is 48 h and, unlike PCR-based detection tests, only viable cells
are detected. A rapid method for detecting MAP in blood could further the understanding of disseminated in-
fection in animals with Johne's disease.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Mycobacterium avium subsp. paratuberculosis (MAP) is the causa-
tive agent of Johne's disease which is a wasting disease of cattle and
other ruminants that results in lower meat and milk yields, and sig-
nificant financial losses to both the dairy and beef industries
(Raizman et al., 2009). Paratuberculosis occurs throughout the
world and is considered endemic in many countries (Fridriksdottir et
al., 1999). MAP is transmitted vertically through contaminated milk
and colostrum or horizontally via contaminated feed (Whittington and
Sergeant, 2001). The disease can be controlled but early detection and
reliable diagnostics are paramount in stopping transmission between
animals. In Europe herd prevalence ranges from 7% to 55% but the sub-
clinical nature of the disease and the limitations of available diagnostic
tests can result in underreporting (Manning and Collins, 2001).

The identification of MAP in the blood of animals susceptible to
Johne's disease has been carried out using techniques such as PCR
and culture (see Bower et al., 2010 for a review). The use of PCR,

although rapid does not distinguish between live and dead organ-
isms. Culture is extremely slow and can take up to 16 weeks to
form colonies and in some cases requires decontamination, which
can reduce the number of viable cells in a sample (Grant et al.,
2003; Gumber and Whittington, 2007). Although Bower et al.
(2010) has indicated that some decontamination methods may affect
certain MAP strains more than others. Most recently Bower et al.
(2010) has described an optimised method for culture of MAP
from decontaminated erythrocyte-lysed washed buffy coat, with a
reported sensitivity of 10 MAP per ml of spiked whole blood, but
this still required up to 12 weeks incubation. Hence this long time re-
quired for culture can hamper efforts to understand different phases
of disease and determining when an animal develops disseminated
infection.

The FASTplaqueTB™ assay (FPTB; Lab21, UK) is a phage-based de-
tection method for human tuberculosis that has been adapted for the
detection of viable MAP in milk and cheese (Altic et al., 2007; Botsaris
et al., 2010; Stanley et al., 2007). To increase the specificity of the
method the phage-based assay was combined with PCR amplification
of the multi-copy IS900 element. During the development of the
phage-based assay it was noted that substances present in the sample
matrix can inhibit phage infection. Sample processing was required to
ensure these are removed. Magnetic separation is a very simple
method of capturing and concentrating cells from a matrix using
magnet beads coated with a specific binding agent (either antibody
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Abbreviations: PMMS, Peptide mediated magnetic separation; FPTB, FASTplaqueTB
assay; MP, Media Plus.
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or peptide). MAP-specific binding peptides coupled to magnetic
beads described by Stratmann et al. (2006), have been used to recov-
er MAP cells from milk samples (Foddai et al., 2010).

The aim of this study was to combine existing technologies to de-
velop a novel protocol that could be used to rapidly detect MAP cells
in blood using a combined phage-PCR approach, and then to test
whether this could be used to detect viable MAP in clinical blood
samples.

2. Materials and methods

2.1. Bacterial strains, bacteriophage and growth media

MAP strains K10 and ATCC 19698 were used in the initial experi-
ments to optimise the phage assay. The Mycobacterium smegmatis
strain and the bacteriophage used (Actiphage) were those supplied
in the FASTPlaqueTB™ kit. All cultures of MAP were prepared using
FASTPlaqueTB™Media Plus (modified 7H9/OADCmedia) supplemented
with Mycobactin J (2 μg μl−1; Synbiotics Corporation, France).

To culture frombeads, 100 μl of each sample, after PMMS(Section2.3)
were inoculated on Herrold's egg yolk medium (HEYM) slopes sup-
plemented with Mycobactin J (BD, France). After inoculation, tubes
were incubated slanted with the caps lightly screwed at 37 °C. After one
week of inoculation slopes were examined for growth of contaminating
organisms. After two weeks the caps were sealed and the slopes incubat-
ed up right. The slopeswere then examined everyweek for 16weeks, and
every month up to six months after for growth. After six months, if there
was no visible growth, a slope wash detection method was carried out.

2.2. Slope wash detection of MAP growth

The slope wash was based on a method by Williams and Monif
(2009). Briefly, 1 ml of sterile reverse osmosis (RO) water was
added to a slope with no visible growth. Using a sterile loop, the sur-
face of the agar was gently scraped to loosen any cells present. The
slopes were vortexed for 30 s and the liquid transferred to 1.5 ml
centrifuge tube and centrifuged (15 min, 17000 ×g). The supernatant
was removed, frozen at −80 °C and then rapidly thawed before boil-
ing for 10 min to induce cell lysis. The samples were then centrifuged
for 3 min (17000 ×g) and the supernatant (10 μl) used as template
DNA for PCR amplification of IS900 (Section 2.6).

2.3. Preparation of peptide-coated magnetic beads

Biotinylated peptides were supplied by Cambridge Peptides Ltd.
Magnetic beads (Dynabeads - MyOne Tosylactivated, Invitrogen) were
individually coated with peptides aMp3 and aMptD (Stratmann et al.,
2006) according to the manufacturers' instructions.

2.4. Sample preparation and recovery of MAP cells from blood

For development of the assay, MAP cells were added to commer-
cial horse or sheep's blood (Oxoid, UK). To recover MAP cells, 1 ml
blood samples were diluted with 9 ml of Media Plus. Peptide mediat-
ed magnetic separation was performed using an adaptation of the
method described (Foddai et al., 2010) by adding 10 μl of peptide
coated beads (5 μl each of aMp3- and aMptD-coated beads) to each
sample and mixing at 18 rpm for 30 min (Dynabeads-MX mixer,
Invitrogen). Beads and bound MAP cells were recovered by centrifu-
gation at 4500 ×g for 15 min. The supernatant was removed and
the beads washed using 9 ml of fresh Media Plus. The beads were
again recovered by centrifugation (4500 ×g, 15 min) and finally
resuspended in 1 ml of Media Plus before being transferred into a
microcentrifuge tube for PMMS. Finally, the beads resuspended in 1
ml of Media Plus and Mycobacteria cells present detected using the
FPTB assay reagents.

2.5. Detection and enumeration of MAP using the FASTPlaqueTB™ (FPTB)
assay

The FPTB (Lab21, Cambridge, UK) assay was carried out according
to the manufacturer's instructions. To perform the assay, samples
containing MAP are mixed with a broad spectrum mycobacteriophage;
D29. After the infection period any extracellular phage are inactivated
using a virucide; only phage that have successfully infected a cell are
protected from the virucide. The virucide is then neutralised by dilution
and infected cells are then plated in a lawn of fast growingM. smegmatis
using soft agar. Lysis of the infected cells releases new phagewhich then
infect theM. smegmatis cells and leads to the formation of a plaque in the
lawn. Hence each plaque formed represents oneMAP cell in the original
sample. Standard FPTB assay positive and negative controls were used
each time the assaywas performed. Enumeration ofMAP cells in inocula
wasdetermined using themodification of the FPTB assay as described by
Rees and Botsaris (2012) which involves diluting samples until count-
able numbers of plaques are obtained (data reported as pfu ml−1).

2.6. PCR for the identification of MAP cells

When a MAP cell is present in the initial sample, its DNA is pre-
served in the centre of the plaque (Stanley et al., 2007). Identification
of the cell detected within single plaques was achieved by PCR ampli-
fication of IS900 signature sequences from this DNA using a modifica-
tion of the plaque-PCR method described by (Botsaris et al., 2010). In
this study DNA was extracted from five plaques and concentrated
from plaque agar using Zymo-Gel DNA Recovery Spin Columns™,
(ZymoResearch, USA). IS900-specific nested PCR (Bull et al., 2003)
was performed using a 5 μl sample of DNA as template. Purified
MAP K10 DNA was used as a positive PCR control and DNA extracted
from plaques only containing M. smegmatis cells (the FPTB positive
control samples) as a negative control.

2.7. Detection of MAP in clinical blood samples

Blood samples were provided as superfluous material under the
Veterinary Surgeons Act as part of an on-going herd health screening
programme. The study protocol was approved by the University of
Nottingham, School of Veterinary Medicine and Science ethical re-
view panel prior to sample usage. Blood samples were collected
from nine cows, which had produced positive Johne's milk ELISA
test results on three separate occasions (Set A). Blood samples were
collected from five cows that belong to an accredited Johne's
disease-free herd (Set B). Before sampling, the site of venipuncture
was cleaned twice with alcohol. Blood was drawn into either sterile
sodium heparin Vacutainer tubes (for phage assay) or plain
Vacutainer tubes for blood ELISA. The blood ELISA was performed
by a commercial laboratory (Nationwide Laboratories, Leeds, UK).

2.8. Isolation of buffy coat and plasma

The isolation of the buffy coat from cows blood was carried out
using Ficoll-Paque Plus (GE Healthcare Life Sciences, UK). The buffy
coat layer from 2 ml of whole blood was isolated according to the
manufacturer's instructions. The plasma layer was also taken and
resuspended after the final centrifugation in MP. The samples were
then processed as whole blood in Section 2.4.

3. Results

3.1. Optimisation of PMMS and sample preparation

To develop the method, MAP cells were spiked into commercially
available blood. To determine the efficiency of the PMMS recovery,
3.5 × 101 pfu.ml−1 was spiked into blood. Magnetic recovery of
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beads directly from blood samples was found to be inefficient (over
90% loss of sample). Therefore magnetic recovery was replaced by
centrifugation which improved bead capture. Using this method,
when MAP was spiked into horse blood, still no cells were detectable.
However when sheep blood was used, 33% of the cells were recovered
(Fig. 1). Assuming that the blood was inhibiting either the peptide
binding or phage assay, the blood was diluted using FPTB Media
Plus. After dilution the number of MAP cells detected from samples
was significantly higher (P b 0.01) than that recovered from the
undiluted blood, resulting in 92% recovery of MAP for a 1 in 10 dilu-
tion and 73% when a 1 in 50 dilution of the sample was used
(Fig. 1). Accordingly, a 1 in 10 dilution was adopted as the standard
method as it resulted in the most efficient recovery of MAP cells.

3.2. Determining limit of detection of PMMS-phage method

The number of MAP cells in a liquid culture was first determined
using the modified FPTB assay (Section 2.5). These cultures were
then diluted and spiked into sheep blood at different levels, down
to approximately 1 MAP cell per ml. Using these samples, it was
found that the optimised PMMS-phage method was able to reproduc-
ibly detect 10 MAP cells per ml of blood (Table 1).

3.3. Optimisation of nested-IS900 plaque-PCR

To confirm the detection of MAP by the phage assay, Stanley et al.
(2007) extracted DNA from individual plaques and carried out a MAP
specific PCR. In this study DNA was extracted from 5 plaques using a
gel extraction kit and a nested-PCR (Bull et al., 2003) was used to am-
plify IS900 signature sequences. Using this approach IS900 DNA was
always amplified from DNA extracted from the five plaques. To con-
firm that it was still possible to detect the DNA from a single MAP
plaque within this sample, agar extracted from one MAP-positive
and four MAP-negative plaques were mixed together. Even at this
low concentration of target DNA, IS900 DNA was routinely detectable
(Fig. 2).

3.4. Detection of MAP in clinical blood samples

To determine whether the test developed in the laboratory was
applicable to clinical blood samples, the optimised method was
used to test bovine blood samples. Samples from a farm with a
known Johne's disease problem were obtained from nine animals

that had given three positive milk-ELISA test results (Set A). In
addition five samples were obtained from an accredited Johne's
disease-free herd (Set B). For comparative purposes, blood ELISA as-
says were performed in parallel with the PMMS-phage method. All
of the animals in Set B gave negative blood ELISA results whereas all
animals in Set A gave a positive blood ELISA result, except cow 8
(Table 2).

The results from the PMMS-phage method showed viable MAP
cells were detected in all nine of the samples from Set A and no
MAP was detected in any samples from Set B (Table 2). Two of the
samples from Set B produced plaques (animal 11 and 13), but the
IS900 PCR did not detect any MAP DNA in these plaques indicating
that no MAP cells were detected.

3.5. Comparison of MAP detection from whole blood and the buffy coat

To determine whether the number of MAP cells detected could be
improved by isolation of the buffy coat layer, blood samples were
obtained from a second set of ten animals, which now included
cows that have given strong, intermediate or negative milk ELISA
test results at the last time of testing (Set C). Blood ELISA tests were
again performed, and antigens against MAP were detected in 4 out
of the 10 animals (Table 3).

Each blood sample was tested using the PMMS-phage method
both using whole blood and after buffy coat preparation. PCR-
positive MAP plaques were detected in eight of the ten blood samples
irrespective of the method of sample preparation, and there was no
significant difference (P N 0.05) between the number of plaques iso-
lated from whole blood or from the buffy coat layer (Table 3). After
buffy coat isolation, the plasma fraction was recovered, but MAP
was not detected using the PMMS-phage method in these samples
(data not shown).

3.6. Culture of MAP following PMMS of blood

For the blood samples from Set C, culture was performed after
PMMS of both whole blood and buffy coat layers using 0.1 ml samples
plated onto Mycobactin J HEYM slopes. No chemical decontamination
was performed, and no loss of samples to contamination was seen.
However no growth was seen in any of the samples and the absence
of any detectable MAP growth was confirmed using slope-wash and
direct IS900 PCR.
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Fig. 1. Effect of blood on detection of MAP by PMMS-phage assay. Graph showing
plaque numbers recovered after performing the PMMS and phage assay on: Sample
1; MAP in 1 ml Media Plus. Sample 2; MAP in 1 ml of horse blood. Sample 3; MAP in
1 ml of sheep blood. Sample 4; MAP in 1 ml of sheep blood diluted 1:10 Media Plus.
Sample 5; MAP in 1 ml of sheep blood diluted 1:50 Media Plus. A One-way ANOVA,
followed by the Dunnett's test was used to analyse significance (*P b 0.001) in the re-
duction of plaque number when compared to Sample 1. Error bars represent the stan-
dard deviations of the means of number of plaques recovered from the phage assay
performed in triplicate.

Table 1
Limit of detection of phage assay in spiked sheep blood.

Approx. number of MAP
cells in inoculum (pfu)

Number of MAP
detected (pfu)

104 Confluent a

103 TNTC b

102 151
101 9
100 0

a Confluent: lysis of 80% to 90% of the lawn of M. smegmatis cells.
b TNTC: Too numerous to count; merging of plaques.

Fig. 2. Confirming detection of MAP DNA from mixed plaque samples. Nested-PCR
amplification of the 300 bp IS900 DNA region specific for MAP (Bull et al., 2003).
Lane 1; DNA extracted from 5 M. smegmatis plaques. Lanes 2; DNA extracted from 5
MAP plaques. Lane 3; 4 MAP plaques mixed with 1 M. smegmatis plaque. Lane 4; 3
MAP plaques mixed with 2 M. smegmatis plaques. Lane 5; 2 MAP plaques mixed with
3 M. smegmatis plaques. Lane 6; 1 MAP plaque mixed with 4 M. smegmatis plaques.
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3.7. Reproducibility of the PMMS-phage method

To give an indication of the reproducibility, the phage assay was
repeated for all blood samples twice, independently. There was a
good agreement (r2 = 0.73) between the two independent test re-
sults for each blood sample tested. The results gained for the
MAP-positive samples (Sets A and C) ranged from 3 to 35 pfu ml−1,
indicating that only low numbers of cells were detected. For MAP-
negative samples (defined as plaques that were IS900-PCR negative)
the number of plaques was 5 or below (Tables 2 and 3).

4. Discussion

The use of PMMS to recover cells from the sample has two bene-
fits; it allows concentration of cells and does not affect the viability
of MAP. The main obstacle for development of the assay was to
achieve efficient capture of MAP cells in blood samples. Diluting the
blood sample 1 in 10 using modified Media Plus (modified 7H9
media) gave the best improvement in recovery of MAP cells from
spiked blood samples. The viscosity of horse blood is much higher
than that of sheep blood (Windberger et al., 2003) and therefore lim-
itation of bead movement in the sample may have hindered capture
of MAP cells. Interestingly, the addition of Media Plus to the blood

samples induced lysis of the blood cells. This may have contributed
to the success of the assay when using clinical blood samples, since
any intracellular MAP cells would be released into the medium and
available for both PMMS and phage infection. This may also explain
why no difference was seen in the efficiency of MAP detection in
whole blood compared to isolated buffy coat layer. Thus negating
the need to prepare the buffy coat layer before testing blood samples
using this phage detection method.

The cows from Set A were selected using standard current diag-
nostic criteria for Johne's disease which requires repeat testing over
a period of six months. The blood ELISA results for these animals
agreed with this diagnosis in all but one case (cow #8) which gave
an indeterminate test result. In contrast the PMMS-phage method
detected viable organisms in blood samples from all animals in Set
A, and this result agreed with the milk ELISA results. In Set B, two
samples (animals 11 and 13) produced MAP DNA negative plaques,
which may be because the virucide did not destroy all the phage be-
fore plating in the lawn of M. smegmatis. Break-through has been
reported before when performing the FPTB assay but the introduction
of the PCR identification step overcomes this problem. Hence in this
study samples are not scored as MAP-positive unless the IS900 se-
quence can be amplified from the plaque.

In Set C, three of the animals gave negative milk and blood ELISA
test results and two of these were also negative for MAP using the
PMMS-phage method. However the PMMS-phage method detected
viable MAP in the blood from one animal (cow #22), and the plaque
numbers were equivalent to those of the majority of the other milk
ELISA-positive animals. This indicates that results gained using a
method that directly detects the viable organism can differ from
test results based on the immune response of the animal to infection.
Further work is now needed to understand the relationship between
the immune response of the animal and the presence of viable organ-
isms in the blood.

When PMMS-phage MAP-positive samples were cultured, no
growth was detected. Since the plaque number indicates that there
were fewer than 42 MAP cells per ml in all of these samples, the
lack of growth is to be expected as this number is below the limit of
detection for the culture method used. MAP has been detected in
blood samples by PCR-based methods and culture (Bower et al.,
2010, 2011; Gwozdz et al., 2000; Naser et al., 2004). Although viable
cells can be cultured from these samples, the time required makes
this of limited practical value and the need for decontamination be-
fore culture may reduce the number of viable cells present in a sam-
ple (Reddacliff et al., 2003). Interestingly here, following PMMS of
blood samples, no contamination of cultures was seen suggesting
that the selectivity of the PMMS followed by the extensive washing

Table 2
Results of analysis of blood samples from animals in Sets A and B.

Cow
Number

Milk ELISA Status
(3 tests)

Blood ELISA
Status
(OD Readings)

Plaque
Number a

IS900
Plaque
PCR

Set A 1 + + (190) 35 27 +
2 + + (N227) 15 13 +
3 + + (221) 19 25 +
4 + + (111) 31 31 +
5 + + (N227) 11 25 +
6 + + (N227) 10 10 +
7 + + (N227) 35 29 +
8 + − (1.47) 10 18 +
9 + + (193) 5 9 +

Set B 10 − − 0 0 NR
11 − − 2 0 −
12 − − 0 0 NR
13 − − 1 0 −
14 − − 0 0 NR

Numbers 1–9 represent Set A, Numbers 10–19 represent Set B and Numbers 10–14
represent set B.
NR - ‘not required’ shows there were no plaques formed, therefore no PCR required.

a – Values show the numbers of plaques obtained in two independently tested
samples.

Table 3
Results of analysis of blood samples from Set C animals.

Cow Number Milk ELISA Status
(most recent a)

Blood ELISA Status Plaque Number Plaque PCR Culture

Whole Blood b Buffy Coat b

15 Red − 20 25 38 42 + −
16 Red + 3 7 22 21 + −
17 Red + 22 15 28 32 + −
18 Red + 12 3 17 12 + −
19 Red − 13 23 15 5 + −
20 Red + 8 6 9 5 + −
21 Amber − 21 11 32 31 + −
22 Green − 22 26 22 22 + −
23 Green − 1 1 2 0 − −
24 Green − 3 5 2 5 − −

Red – denotes a strong positive Milk ELISA reading.
Amber – denotes an inconclusive Milk ELISA reading.
Green – denotes a negative Milk ELISA reading.

a Represents the most recent Milk-ELISA status.
b Values show the numbers of plaques obtained in two independently tested samples.
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used in this method is sufficient to remove contaminating microflora
from the sample without the need to apply chemical decontamination.

In contrast to culture, PCR-based MAP detection methods are more
rapid but they do not determine the viability of the cell detected. The re-
sults gained here show that the combined PMMS-phage-PCR assay can
achieve rapid detection and identification of viable MAP in clinical sam-
pleswithin 48 h, and in addition provides an indication of the number of
cells present in the sample. The limit of detection determined here is in
agreement with an optimised MAP blood culture method reported by
Bower et al (2010) but this method requires a 12 week incubation be-
fore results are available.

5. Conclusion

Here we have shown that we are able to detect viable MAP cells
from spiked blood samples within 48 h, with a limit of detection of
101 cells per millilitre of blood which can be combined with a sensi-
tive PCR assay that specifically identifies the organism detected. The
method was also tested using clinical blood samples, by selecting an-
imals that were presumptively identified as having Johne's disease on
the basis of repeated milk ELISA test results. Although this study was
limited to small sample set, this is the first demonstration of a new
method that can directly detect viable organisms in blood. This
assay will allow researchers to better understand the development
of disseminated infection, and may therefore lead to a better under-
standing of the pathogenesis of the disease and the immune response
of the animal (Bower et al., 2010). In addition we believe that the
assay could also be applied to blood samples from all susceptible an-
imal species.
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Detecting mycobacteria in 
cattle blood
Benjamin M. C. Swift, Catherine E. D. Rees

The standard tests used to identify bovine 
TB in cattle rely on monitoring the immune 
response as an indicator of infection. While 
the skin test provides a simple and cost-
effective assay, it cannot differentiate between 
infected animals and those that have been 
vaccinated against infection. In countries 
where the disease is endemic, vaccination – of 
both cattle and potential wildlife reservoirs – 
is considered to be the best long-term strategy 
to reduce the threat of bovine TB. however, 
introducing routine vaccination negates 
the value of the current standard diagnostic 
tests. There is therefore a real need for new 
tests that can differentiate between naturally 
infected and vaccinated animals (termed 
DIVA). One approach would be to directly 
detect Mycobacterium bovis, the main causative 
agent of bovine TB, in samples from infected 
animals. While this approach can be used for 
many bacterial infections, it is problematic 
when working with mycobacteria.

The slow growth of some pathogenic 
mycobacteria makes detection by traditional 
culture extremely difficult. For instance, 
culture results for M bovis can take up to 
eight weeks. Similarly, Mycobacterium avium 
subspecies paratuberculosis (MAP), which 
causes Johne’s disease, can take up to 16 
weeks to culture. even rapid, automated 
culture methods for bovine TB take up to 
15 days. The lengthy incubation times and 
poor levels of sensitivity achieved when 
culturing mycobacteria from blood limits the 
diagnostic power of this method and it has 
not been used for many years.

Molecular methods are often used 
to detect bacterial DNA as an alternative 
to culture. Blood assays based on PCR 
amplification of genomic signature 
sequences from Mycobacterium have been 
described, but these do not differentiate 
between living and dead cells. When trying 
to confirm infection, it is important that 
only viable cells are detected rather than 
residual DNA from cells that have been 
inactivated, either by the host immune 
system or by treatment. Unfortunately, 
PCR-based bovine TB detection methods 
have been found to be limited both by 
specificity and sensitivity (Parra and others 
2008).

These difficulties have led to the use 
of the intradermal skin test as the standard 
method of identifying bovine TB-infected 
cattle. The sensitivity of the skin test is 
known to be highly variable and results 
are affected by factors such as the stage and 
severity of disease and cross-reactions to 
other mycobacterial infections. hence a 
positive skin test always requires further 
tests to confirm the diagnosis; this may be 
visible lesions in the carcase or culture of 
lymph node material. Interferon-γ tests can 
also be used to confirm infection; however, 
false-positives can occur when animals are 
infected with other pathogenic mycobacteria 
and, again, this test does not differentiate 
between infected and vaccinated animals. 

The licensed vaccine for both human 
and bovine TB is Bacillus Calmette-Guérin 
(BCG), an attenuated strain of M bovis, 
but the level of protection achieved is 
variable (hope and Vordermeier 2005). 
More importantly, use of the BCG vaccine 
in cattle is incompatible with the current 
diagnostic tests for bovine TB. Research is 
being undertaken to identify recombinant 
vaccines based on specific antigens that 
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prevent cross-reaction with the skin test, 
but this is in its early stages (Whelan and 
others 2010). PCR-based methods have been 
described that can differentiate between M 
bovis and BCG cells (huard and others 2003), 
but their usefulness in the clinical setting is 
also limited by issues of sensitivity and an 
inability to differentiate between living and 
dead cells.

Bacteriophage-based detection
Bacteriophages are viruses that infect 
bacterial cells. They have a specific host 
range and will only replicate within a viable 
cell. These features have been exploited for 
the development of many bacteriophage-
based detection methods (Monk and 
others 2010). A commercial phage-based 
detection platform has been developed for 
the detection of M tuberculosis in sputum 
samples as a diagnostic test in people (Albert 
and others 2002). For the past six years we 
have been working on new applications of 
this assay, specifically focusing on methods 
to detect and enumerate viable MAP in milk 
and bovine blood samples (the RapidMAP 
assay). This has led to a range of assay 
formats that can report on the presence of 
viable mycobacterial cells in a sample within 
two days (Stanley and others 2007, Botsaris 
and others 2010, Swift and others 2013). 
Rather than waiting for the growth of the 
mycobacterial cells, the assay monitors the 
replication of the bacteriophage in a viable 
host cell. The identity of the cell detected 
is then confirmed by PCR (Fig 1). This can 
be done as a species-specific test (Swift and 
others 2013) or multiplex PCR assays have 
been developed that will simultaneously 
report on the presence of a range of different 
pathogenic mycobacteria (bovine TB and 
MAP) (Stanley and others 2007). These 
phage-based assays are low cost and do not 
need investment in specialist equipment or 
expensive reagents, and results are available 
within 48 hours.

RapidMAP uses mycobacteriophage 
D29 that has a broad host range within the 
Mycobacterium genus, including the faster 
growing non-pathogens. The assay has 
been successfully used to detect viable MAP 
in the blood of cattle with Johne’s disease 
(Swift and others 2013). Results show that 
it is able to reproducibly detect low numbers 
of viable cells with better sensitivity than 
direct PCR and it even detected bacteria 
in the early stages of infection in blood 
eLISA-negative animals. having developed 
a method to identify viable mycobacteria 
in blood, this opens up the possibility 
of creating a bovine TB DIVA test using 
the PCR step to distinguish between 
wildtype bovine TB and BCG, or other 
vaccine strains. There is a good prospect 
that the assay can be applied to sensitively 
detect low levels of bovine TB in blood 
samples and hence the development of a 
rapid bacteriophage-based DIVA test that 
differentiates between viable and non-viable 

cells is a real possibility.
In its current format, 

the RapidMAP test is 
labour intensive; the need to 
incubate plates determines 
the test time and is not 
readily automatable so the 
existing technology would 
be challenging if applied 
on a national herd level. 
Recently we have patented 
a tube format that is able to 
detect viable mycobacteria 
within eight hours which 
removes the need for 
agar plates and could be 
automated. The method 
retains the advantages of 
the RapidMAP technology 
in that it still detects only 
viable cells and incorporates 
a species-specific PCR to 
identify the cell detected.

We are now starting 
to further develop this 
technology, not only as a 
potential DIVA test but as 
a method to rapidly detect 
and enumerate viable 
mycobacteria in a range 
of samples, from blood to 
milk (Rees and Botsaris 
2012). This technology 
therefore has potential to be 
applied in a number of ways 
to facilitate future bovine 
TB research, including 
significantly shortening 
the period required for 
confirmatory culture of 
samples from positive skin 
test animals. 
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FIG 1: Assay for 
detecting viable MAP in 
milk and bovine blood. 
Specimens that may 
contain mycobacteria (1) 
are mixed with phage 
D29 for one hour (2) 
to allow the virus to 
infect its target cells. 
Any extracellular phage 
that have not infected a 
host cell are chemically 
inactivated using a 
virucide (3) that does 
not affect the viability of 
mycobacterial cells in 
the sample. Only phage 
that have infected their 
host are protected from 
the virucide and continue 
to replicate (4). The new 
phage released from 
these infected target cells 
are then detected using a 
plaque assay. This uses 
a fast growing non-
pathogenic mycobacteria 
(M smegmatis) that 
phage D29 also infects. 
Zones of lysis in the 
bacterial lawn (or 
plaques) (5, 6) indicate 
the position of one 
original phage-infected 
Mycobacterium in the 
test sample. The number 
of mycobacteria in the 
specimen is represented 
by the number of 
plaques formed. The 
time it takes from blood 
collection to plaques on 
a plate is 24 hours. To 
determine the identity 
of these cells, DNA is 
extracted from the centre 
of the plaque (6) and 
PCR is used to amplify 
diagnostic signature 
sequences present in the 
mycobacterial genome 
(7)
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s0005 Introduction

p0015 When testing food products, the limitation of traditional
culture-based methods is the requirement for results to be
rapidly available. These are needed to either confirm successful
application of critical control point treatments during
production or to confirm the microbiological quality of food
products before release. Hence, methods that rely on extended
periods of culture are either (1) too slow to be of benefit during
production or (2) reduce the shelf life of products that require
test results before release (positive-release). When tests take
days, or even weeks, to complete (e.g., confirming the absence
of Listeria monocytogenes in samples of ready-to-eat products
that will support growth of the organism takes a minimum of
5 days; ISO 11290-1-1998), products often have to be released
before the test results are available. This can lead to product
recalls that may have a negative impact on customer confidence
and ultimately may affect the long-term viability of food
producers. Hence, there is a drive to find methods that will
allow for the rapid detection of bacterial pathogens that has
focused on novel technologies that circumvent the need for
culture-based methods.

p0020 The challenge for applications in food microbiology is not
developing a robust method that can identify the organism; it is
developing methods that can sensitively detect a single cell
present in a complex matrix. Many researchers have described
polymerase chain reaction (PCR)-based methods for the direct
detection of bacteria in food samples, but often these cannot
routinely achieve the detection of a single cell in a 25 g sample
of the food. An additional concern is that the cost of the test
should not be prohibitive. Unlike in the field of medical
diagnostics, the cost per test must be kept to a level that is
economically sustainable when large numbers of tests need to
be performed on a low-unit-value product. Given these
constraints, bacteriophage seem to be a good candidate to form
a basis of rapid methods for the detection of bacterial patho-
gens in food.

p0025 Bacteriophage are viruses that infect bacterial cells. They
were first discovered in the early part of the nineteenth century
by Twort and d’Herelle and quickly were applied as antimi-
crobial agents. Their use in the treatment of infections,
however, fell out of favor following the discovery of antibiotics;
however, in the postantibiotic era, interest has revived in the
use of phage as specific antimicrobial agents. Like all viruses,
phage will only infect their specific host cells, and after infec-
tion, they replicate rapidly inside the bacterial cells. The host
cell specificity has evolved over millions of years of coexistence
and either can be relatively broad within a group or can be
quite specific. This has to be exploited to develop phage-based
tests that either detect all members of a group or subtypes of an
organism. The rapid growth of the virus inside the host cell can
be exploited to replace the slower replication of the host cell,

so rather than requiring long periods of time for a single cell to
reach detectable levels, growth of the phage can be monitored
(Figure 1).

p0030The bacteriophage-based methods reported to date fall into
two main types; first is the use of unmodified phage as specific
lysing agents and the detection of bacteria by release of specific
cellular components. This may be achieved by using intact
phage or by applying phage-encoded enzymes that induce cell
lysis. The second approach detects only the growth of the
bacteriophage on a specific host cell. This can be achieved
either by engineering the phage to express reporter genes to
indicate that a specific target cell has been infected or by directly
detecting bacteriophage growth (termed ‘phage amplification’).

s0010Bacteriophage Characteristics

p0035Bacteriophage are viral parasites that infect bacteria. Like all
viruses, when outside the host, they are metabolically inactive
and therefore are described as obligate parasites. The virus
structure consists of the nucleic acid surrounded by a protein
coat (called a capsid), and in some instances, the capsids may
contain lipid layers or even be surrounded by a lipid envelope.
The nucleic acid most commonly consists of double-stranded
DNA, but some phage have single-stranded DNA genomes.
Others have RNA genomes, and phage with both ssRNA and
dsRNA have been identified. Unique among viruses is the
presence on some bacteriophage of a complex tail structure that
is involved in recognition of the host cell surface and delivery of
the nucleic acid into the host cell during the first stage of
infection. The length and complexity of the tail structure is
variable, however, and some phage do not possess tail struc-
tures at all. These three characteristics (capsid structure, tail
structure/presence, and nucleic acid type) are used as a basis for
morphological characterization of phage. The majority of
phage described to date and used to develop diagnostic
methods fall into two morphological groups – the Myoviridae
and the Siphoviridae – both of which have double-stranded
DNA genomes packaged into an icosahedral capsid. The
Siphoviridae have simple, long, noncontractile tails, and the
Myoviridae possess rigid, contractile tails and additional tail
fibers and complex base plate structures are seen (Figure 2).

p0040Bacteriophage particles have evolved to be relatively robust
and are capable of existing for long periods of time between
release from the parent cell and contact with new host cells. In
the presence of an appropriate host cell, the phage becomes
attached to the cellular surface and the viral nucleic acid enters
the cell (Figure 3). When this happens, the phage enters what is
known as the eclipse phase – this is the time during which the
phage DNA is not packaged into a capsid but rather is repli-
cating inside the host cell and new phage particles have not yet
been formed. During this period, the bacteriophage takes over
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the host’s metabolic machinery to replicate the viral genome
and synthesize new capsids and tails. The phage also encodes
a number of proteins required for the assembly of these
components into new mature phage particles, which then need
to be released from the infected host cell. This normally is
achieved by phage-induced breakdown of the bacterial pepti-
doglycan layer, resulting in loss of the structural integrity of the
cell wall, causing the cell to rupture and release progeny
bacteriophage. This process often is mediated by a two-
component system, composed of a peptidoglycan digesting

enzyme (lysin) and a transport protein (holin). This system is
required to allow the lysin protein to cross the inner membrane
of the cell and access the peptidoglycan present in the peri-
plasm of Gram-negative bacteria or in the outer layer of the cell
wall of Gram-positive bacteria. Not all phage require specific
genes to achieve phage lysis, however. Some, such as ØX174,
weaken the cell wall and induce lysis by interfering with host
cell wall synthesis pathways. Others, such as the filamentous
phage M13 or Fd, create a persistent infection and extrude
phage particles from the host cell in an adenosine triphosphate

f0010 Figure 1 Graph showing difference in theoretical rate of change of bacterial cell number per generation or bacteriophage particles produced per round of
replication. Two lines are shown for the bacteriophage, representing phage with different burst sizes: either low (10 phage particles per infection) or
high (100 phage particles per infection). The dashed line represents the limit of detection achieved by many rapid methods (102 cells). For one cell to reach
this threshold, eight generations of growth is required, whereas phage numbers increase far more rapidly. The time taken to complete one round of
infection is similar to the generation time of the bacterium, although it can be longer as normal host cell growth normally is inhibited when a cell is infected
by a bacteriophage.AU5
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f0015 Figure 2 Bacteriophage structure.
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(ATP)-dependent manner, and in this case, the host cells do not
lyse. These examples are the exceptions, however, and the
majority of phage encode lytic enzymes that can be exploited as
biocontrol agents or to develop detection methods (see the
following section).

s0015 Applications of Bacteriophages for the Identification
of Bacterial Pathogens

s0020 Phage Typing

p0045 One of the most established uses of bacteriophage is for the
differentiation of subtypes of a bacterial species. Robust and
widely adopted phage-typing schemes exist for both Gram-
negative bacteria and Gram-positive bacteria, and in this case,
bacteriophage are chosen that have a relatively limited host
range. Thus, the phage chosen for inclusion in phage-typing
sets will not be those that can infect all members of the group,
but rather those that only infect a subset of the species are
selected. A number of such phage with different host ranges
are used to form a phage-typing panel, and then a bacterial
isolate is infected separately with each of the phage. The results
are recorded as either phage sensitivity (lysis of the bacterial
cell) or resistance (no infection occurs) and the pattern of
results is used to determine the phage type. Many host cell

factors affect the ability of a bacteriophage to infect host cells
and the methodology has been developed carefully to create
a simple test that accommodates any biological variation in
results obtained. The typical reaction patterns for a variety of
phage are published and both public health agencies and
commercial companies routinely use these methods for the
subtyping of a range of foodborne pathogens, such as Salmo-
nella enterica, Escherichia coli O157, and Vibrio cholera. Phage
typing is both rapid and low cost, which explains why the
method still is used routinely for subtyping bacterial isolates,
despite the fact that much finer discrimination between strains
can be achieved using DNA-based subtyping methods.

s0025Phage-Based Detection Methods

p0050When selecting phage for detection tests, phage with the widest
host range are selected, preferably those that can infect all
members of the genus, species, subspecies to be detected. There
are many examples of such broad host range phage, including
Salmonella phage Felix O1, which infects more than 95% of
Salmonella isolates, phage A511 and P100 that can infect
a broad range of Listeria isolates, and phage D29, which can
infect a wide range of species within the Mycobacterium genus.
All of these have been used to develop rapid phage-based
methods for the identification of bacterial pathogens in food
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samples (see the following section). In addition, broad host
range phage such as these have been used as biocontrol agents
to control levels of pathogens in food products. Using these
broad host range phage, many different phage-based assay
formats have been developed, but generally they can be divided
into phage lysis–based methods and phage replication–based
methods.

s0030 Phage Lysis-Based Methods

p0055 Many rapid detection methods rely on detection of cellular
components and a limitation of these methods often is
achieving efficient cell lysis. The advantage of using bacterio-
phage to lyse cells as part of a detection assay is that they have
evolved over millions of years to be both host specific as well as
efficient at lysing open cells to allow phage release. ATP has
been adopted widely in the food industry as a molecule that
can be used to indirectly detect the presence of microbes. This is
the basis of several commercially produced, rapid, hygiene
tests. As the level of ATP produced by all bacterial cells is
approximately the same, measuring ATP provides an indication
of the numbers of bacterial cells present in a sample. The
reagents used to measure the ATP will not freely permeate cell
membranes. Therefore, to detect the ATP, they must be first
lysed open. In general hygiene tests, this is achieved using
a chemical lysing agent, but this does not specifically lyse one
cell type. To add specificity to these hygiene tests, phage – or
phage components – have been used to allow specific cell types
to be detected.

p0060 Such pathogen-specific ATP assays have been described for
rapid and sensitive detection of bacterial pathogens, such as
Salmonella, E. coli O157, and Listeria in food samples, and
a commercial assay, marketed as FastrAK, was made available.
All of these assays require some time for pre-enrichment,
however, so that cells can reach a detectable level and also
include other rapid method technologies to increase both
specificity and sensitivity. For instance, the FastrAK assay
included four stages; (1) an 8 h pre-enrichment, (2) immu-
nomagnetic separation and concentration of cells from the pre-
enrichment broth, (3) specific phage-mediated lysis, and (4) an
ATP assay to detect the presence of target cells. Using this
combination of methods, the assay was able detect less than 10
bacterial cells in under 11 h, even in the presence of a highly
competitive microflora. Therefore, this method achieved a level
of sensitivity as good as conventional culture methods. When
using intact phage to achieve phage lysis, however, time is
required to complete the phage replication cycle, including
synthesis and assembly of new phage particles, before the cells
will lyse open. This extends the time required for a detection
assay to be performed.

p0065 Hence, purified bacteriophage lysins have been used to
replace phage as lysing agents, as these retain both host speci-
ficity and can efficiently lyse cells rapidly. For instance, purified
phage lysin isolated from a was foundAU1 to be specific for the type
of peptidoglycan found in Listeria cell walls and was incapable
of digesting the peptidoglycan from other bacterial genera
(except two strains of its close genetic relative, Bacillus).
Extensive studies of the structure and function of the phage
lysins have revealed that this specificity comes from their
structure, whereby the module with enzyme activity is linked to

a specific substrate-recognition module (termed CBD for
carbohydrate-binding domain). Extensive research has been
undertaken to produce recombinant forms of these enzymes
with both enhanced activity and extended substrate specificity,
although this research has focused mostly on generating
biocontrol agents rather than agents that can be used to detect
bacterial pathogens.

p0070The limitation of phage lysins is that they are most effective
against Gram-positive bacteria since their substrates (cell wall
carbohydrates and peptidoglycan) are exposed on the outer
surface of the cells. In Gram-negative bacteria, the presence of
the outer membrane prevents the enzyme reaching its target
site. Although modifications of lysozyme have been used to
improve the activity of a lytic enzyme against Gram-negative
bacteria, this has not been attempted using other phage lysins
and no commercial detection assay have been developed to
date that take advantage of the specificity of these phage lysins.

s0035Phage Replication–Based Methods

p0075Phage replication–based methods also can be split into two
different types; those that use genetically engineered phage that
carry a reporter gene that is expressed when the host cell is
infected and those that simply detect the replication of the
bacteriophage. When using engineered phage – generically
termed ‘reporter phage’, the assays utilize the fact that bacte-
riophage are metabolically inert until they infect their host cell.
Hence, the gene for a protein with a detectable characteristic
(the reporter gene) is not expressed until the phage infects
a suitable host, and therefore induction of measurable protein
production signals the fact that a host cell is present in a sample
(Figure 4). In contrast, assays that monitor phage growth can
take a variety of formats. Traditional culture techniques rely on
the exponential doubling of bacterial cells, whereas replication
of bacteriophage particles results in the release of many phage
particles per cell, and so they can reach detectable levels within
a much shorter time frame. For example, bacterial growth over
30 min will result in a doubling of cell numbers (assuming
a doubling time of 30 min), whereas the replication of bacte-
riophages would generate a twenty- to a hundred-fold increase
in phage particles (see Figure 1). The liberation of progeny
phage can be detected in a variety of ways, either by plaque
formation on lawns of susceptible bacteria (visualization is
possible after 4 h on lawns of Salmonella) or by lysis of liquid
cultures, but one of the best developed is the phage amplifi-
cation assay, which has been produced as a commercial assay
(see the following section).

s0040Reporter Phage

p0080The key characteristic of a reporter phage is that the bacterio-
phage has been engineered to carry a reporter gene that
produces a signal that can be measured. A variety of different
reporter genes have been used, including both bacterial and
firefly luciferases (lux and luc, respectively), ice nucleation
(ina), fluorescent proteins, such as green fluorescent protein
(gfp), and more common enzymatic reporter genes, such as b-
galactosidase (lacZ). This list, however, is not exhaustive and
more examples of reporter phage that have been engineered to
carry different reporter genes continually are appearing in the
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literature. For instance, recently, a reporter phage incorporated
a hyperthermostable glycosidase from Pyrococcus furiosus
(celB), which can be detected using either chromogenic, fluo-
rescent, or chemiluminescent substrates.

p0085When developing a reporter phage, there are two main
considerations. The first is the issue of packaging constraint
(defined as the maximum amount of genetic material that can
be packaged into a bacteriophage capsid). All development of

f0025 Figure 4 Panel a. Schematic showing general principles of reporter phage technology. Panel b. Application of the lux reporter phage. The phage is added
to a sample that can contain a mixture of different bacterial cell types (represented by the different gray shaded shapes). Within this complex mixture,
the reporter phage can infect only the cell type for which it is specific, removing the need for selective enrichment or capture before the detection event.
After phage infection, the target cell synthesizes the lux genes (represented by the green shaded cell) and the signal is detected without the need for
culture. The accompanying equation shows the bacterial luciferase reaction used in many of the reporter phage developed for food applications. The image
of phage shows light produced from bacterial cells expressing the bacterial lux genes. Light produced is blue green (peak emission at 490 nm).
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engineered bacteriophage is limited by the amount of addi-
tional information that can be introduced into the phage
genome before the size of the genome exceeds the packaging
constraint. For this reason, the smaller reporter genes such as
gfp (750 bp) and luc (Renilla (Rluc) ¼ 936 bp, Firefly
(Fluc) ¼ 1650 bp) have been favored over the longer reporter
genes such as lux (two genes – luxA and luxB – are required,
which together are approximately 2 kbp). If a reporter gene
does exceed the packaging constraints of the phage, then
compensatory deletions of nonessential bacteriophage genes
are required. Although this is possible with well-studied
bacteriophage (such as bacteriophage Lambda), it is in practice
difficult to achieve for a phage that has not been extensively
genetically characterized and would make the cost of devel-
oping the reagent for a food application prohibitive.

p0090 The next factor that must be considered is the promoter
chosen to control expression of the reporter gene. To achieve
sensitive detection, high-level expression of the reporter gene is
required, preferably during the early stages of phage infection
to reduce the time to detection (if the genes are expressed only
late during the phage infection, a longer incubation time will
be required). Hence, the promoter chosen (1) needs to allow
high-level expression of the gene, (2) is functional during
phage infection (some phage specifically repress expression of
host genes during infection), and (3) is ideally expressed early
during phage infection.

p0095 One specific advantage of using reporter phage that should
be remembered is that the cells detected must be viable for
a signal to be generated, because the infected cell must still
allow transcription and translation of the reporter gene before
the signal is detected. This is also true for phage replication-
based assays (see the following section), and this is a major
difference between these phage-based methods, and those that
either sensitively detected DNA sequences (e.g., PCR) or
proteins found on cells (e.g., ELISA assays). Most reporter
phage described to date have been developed with a clinical
application in mind – for example, bacteriophage specific for
Mycobacteria carrying the Fluc gene have been extensively
evaluated for the rapid diagnosis of human tuberculosis. The
examples described here, however, focus on those developed
specifically for food analysis.

s0045 Reporter Phage Carrying the lux Genes
p0100 The luxAB genes encode a dimeric enzyme (luciferase), which is

responsible for the bioluminescence produced by a number of
marine bacteria. In the production of light in this reaction,
aldehyde (R.CHO) is converted to carboxylic acid (R.COOH).
The reaction also requires both the reducing agent flavin mono-
nucleotide (FMNH2) and oxygen (Figure 4). The aldehyde
substrate is produced by a complex of three genes encoded by
luxC, luxD, and luxE. Although all five genes are found in the
native lux operons found in naturally bioluminescent bacteria,
the size of the complete operon approaches 7 kbp, and hence
to meet the requirements of the packaging constraint, bacte-
riophage normally are engineered to contain just the luxAB
genes and light is produced following the addition of exoge-
nous aldehyde substrate to the sample, because many of
these aldehydes will freely permeate bacterial cells. The light
produced can be detected by using either sensitive cameras
or luminometers, and many such instruments have been

developed for use in routine testing and diagnostics. Modern
light detection equipment is capable of detecting the light
produced from single cells within an hour.

s0050Listeria lux Phage
p0105One well-studied example of a lux reporter phage is the Listeria

A511::luxAB phage. In this case, the luxAB genes from Vibrio
harveyi were introduced into the A511 genome downstream of
the major capsid protein gene, cps, without exceeding the
packaging constraints for this phage. The promoter of the cps
gene is highly induced during the later stages of the bacterio-
phage replicative cycle, such that luciferase expression and light
production is detected 20 min postinfection. The ability of this
reporter phage to detect L. monocytogenes in food samples was
evaluated, but it was found that the maximum sensitivity
approximately 100 cells ml�1, which is insufficient to allow
direct testing of food samples. The incorporation of standard
broth enrichment procedures before infection with the reporter
phage improved the sensitivity of the test. For example,
L. monocytogenes was detected in food samples seeded at
0.1 cfu g�1 (cabbage), 1 cfu (milk), and 10 cfu (Camembert
cheese). The variability in the cell detection limits observed in
different foods is thought to a reflection of the complexity of
the foodmatrices and the level of competitive microflora found
within the food. Applying these reporter phage after enrich-
ment stages allows the presence of Listeria to be confirmed after
just 24 h in contrast to conventional culture-based techniques,
which take up to 4 days for presumptive detection of Listeria.

s0055Other Reporter Phage for Detection of Foodborne Bacteria
p0110In addition to the two examples described previously, reporter

phage have been developed for the identification of the whole
E. coli species (bacteriophage Lambda), Salmonella species
3(bacteriophage Felix-01), and specific serovars of S. enterica
(Typhimurium and Enteritidis). In most cases, these have used
lux genes as the reporter because the background levels of
natural bioluminescent produced by food substances is very
low. Unfortunately, many foods – especially those that contain
either large amounts of plant material or are vitamin rich – do
contain components that are naturally fluorescent, and this
limits the sensitivity with which a fluorescent signal can be
detected. Recently, a Listeria reporter phage containing the celB
reporter gene (A511::celB) was described, which was able to
detect low numbers of Listeria (10 cfu g�1 or fewer) in spiked
samples of chocolate milk and salmon within 6 h. In this case,
the heat-resistant properties of the enzyme are used to reduce
levels of background noise in the sample and increase the
sensitivity of the test. Similar modifications of protocol, or
combinations with immunomagnetic capture, have been
described to produce reporter phage that are sensitive enough
to be of value to the food industry, but despite this large body
of work, no commercial application of the reporter phage for
food applications has yet been developed.

s0060Phage Amplification

p0115The phage amplification technique for detecting bacteria relies
on two key characteristics; the specificity of bacteriophages
to target cells, and the ability of a potent virucidal agent to
rapidly inactivate free (extracellular) phage, while remaining
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nondestructive to bacterial cells. These attributes permit the
detection of specific groups of bacteria on the basis of their
ability to protect the phage from the destruction by the virucide
once they have infected a host cell and then allow for the
production of new (progeny) phage particles. A variety of
compounds can be used as the virucide, including chemicals,
such as ferrous ammonium sulfate, and plant extracts, such as
tea and pomegranate rind.

p0120 In the phage amplification assay, a positive indication of
the presence of bacteria is the formation of plaques at the end
of the assay (Figure 5). The sample containing the target cell is
first infected with the bacteriophage. An incubation period then
follows to allow time for cell infection and for the phage to
enter the eclipse phase. At this point, any exogenous phage are
destroyed by the addition of a virucide, which does not affect
the viability of the host strain but that will inactivate any phage
that have not infected a target bacterium. Hence the assay is in
essence a phage-protection assay; only those that have infected
an appropriate host cell will avoid inactivation and can repli-
cate inside the host cell. To detect the phage released from
this primary infection, a phage-susceptible, nonpathogenic
variant is used as a host strain (termed the ‘sensor strain’);
a nonpathogenic variant is used to increase the safety of those
working in the laboratory performing the assays. The sensor

strain is added to the sample after the virucide treatment, and
the whole sample is mixed with soft agar and poured into Petri
dish. The sensor cells will grow on the agar and form a lawn of
phage-sensitive cells that will support phage replication. So, if
any target cells are present in the original sample, these will lyse
at the end of the lytic cycle, new phage will be released, and
these then will infect the surrounding cells. This will result in
the formation of plaques (areas of cell lysis) in the bacterial
lawn.

p0125The phage amplification assay can be tailored to the detec-
tion of specific bacterial genera by the choice of bacteriophage
used in the assay. Visualization of plaques in lawns of Salmonella
and Pseudomonas is possible within 4 h, permitting detection
of these pathogens within a working day. Phage amplification
has been applied successfully to the specific detection of
Campylobacter, Listeria, Pseudomonas, Salmonella, Staphylococcus,
and Mycobacterium cells, the latter has been developed as a
commercial diagnostic test for human tuberculosis.

s0065Detection of Mycobacteria by Phage Amplification
p0130FASTplaqueTB� (FPTB) is a commercially available test

produced for the detection of Mycobacterium tuberculosis in
human sputum samples. The commercial test uses the lytic
mycobacteriophage D29 to infect the target mycobacteria cells

f0030 Figure 5AU6
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in human sputum samples. It also has been shown that the
components of the FPTB assay can be used for detection of
Mycobacterium avium subspecies paratuberculosis (MAP) in raw
milk and cheese samples. Unlike human sputum, raw milk is
a sample that is more likely to contain other environmental
mycobacteria in addition to the pathogens that are being tar-
geted. Hence, infection by a broad host range phage alone is
not sufficiently discriminating to allow for identification of the
bacterium detected. This has led to the development of a PCR
identification test that is used following the phage assay. The
PCR assay can be species specific, or it can have amultiplex PCR
format for the simultaneous identification of different species.
The combination of phage amplification with PCR has been
shown to deliver a high specificity and is very sensitive, with
less than 10 cells per sample being detected routinely detected.

s0070 Detection of Mycobacterium avium subspecies
paratuberculosis in milk

p0135 MAP is the infective agent responsible for paratuberculosis
(Johne’s disease), a chronic enteritis that can cause production
losses and mortal diarrhea in cattle and other ruminants.
Detection of MAP in milk has become a food microbiological
issue because of the fact that MAP has long being suspected as
a contributing agent to the development of Crohn’s disease,
and its presence in milk is a potential source of human expo-
sure. Detection of MAP in milk currently relies on culture,
immunoassays, and molecular techniques. The culture-based
techniques require a long incubation period of about
3 months and therefore immunoassays also have been devel-
oped. These have a low sensitivity in milk, however, and no
other reliable molecular-based detectionmethod exists that can
detect viable cells without requiring extensive culture.

p0140 With the application of a combined phage-PCR assay,
detection of viable MAP cells is possible after only 18 h, with a
higher sensitivity compared with the conventional culture

method. The test only identifies viable organisms, and therefore
it is of use if trying to confirm the inactivation of the organism
by pasteurization, which cannot be determined by enzyme-
linked immunosorbent assay (ELISA), and only by the use of
qPCRmethods. An important feature of this assay is that despite
the fact that the method requires several sample preparation
steps, it still retains good reproducibility (Figure 6). An assay
also has been described for the detection of MAP in milk that
uses a lateral flow device to detect the growth of the bacterio-
phage. This is similar to theMicrophage commercial technology
(see the following section), although the cost of a lateral flow
device may be more acceptable within a clinical environment.

p0145An advantage of phage amplification technology is its
adaptability. It can be adapted for use in detection of many
bacteria, taking advantage of the specificity of the bacterio-
phage that will be applied. Very important is the selection of
the selection of the propagating strain (‘sensor cells’), which is
better to be from a fast-growing nonpathogenic organism
within the infection spectrum of the phage. Of critical impor-
tance is the cost, which is low compared with other rapid
phage–based methods used.

s0075Conclusion

p0150Currently, no commercial tests for food applications are avail-
able; although some commercial tests have been launched,
they have not proved to be long-term commercial successes,
often failing due to issues surrounding either cost or sensitivity
(e.g., Alaska Foods Diagnostics’ fastrAK� system; Anon, 2002 AU2).
Recently, however, a commercial bacteriophage-based test for
the detection of Staphylococcus aureus in clinical samples has
been developed successfully by the U.S. company Microphage
(KeyPath� Pathogen Tests). These tests combine a bacterio-
phage amplification assay with a lateral flow detection device

f0035 Figure 6 Reproducibility of phage assay results. Comparison of plaque results (pfu per 50 ml sample) for the 44 duplicate BTMAU7 samples that were tested
independently using the phage amplification assay. Values were arbitrarily assigned to either group A or B (r2 ¼ 0.897). Taken from Botsaris et al. (2013)AU8 .
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and were approved by the U.S. Food and Drug Administration
in 2011 for the rapid detection and discrimination between
MRSA and MSSAAU3 in clinical settings. Microphage also reports
evaluating the same technology for food applications, and
developments in biosensor technology mean that it is likely
that bacteriophage-based tests will become more practical and
cost effective.
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