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Abstract

Water is a politically sensitive resource in the Near East and water stress is increasing. It
is therefore vital that there is a strong understanding of past hydrological variability, so
that the drivers of change can be better understood, and so that the links between the
palaeoclimate and archaeological records in this key region in the development of
human civilisation can be investigated. To be of most use, this requires high resolution

records and a good understanding of palaeoseasonality.

A sediment sequence spanning ~14,000 years has been retrieved from Nar Goli, a lake
in central Turkey. This thesis presents isotope data from carbonates, diatoms and bulk
organic matter, in particular focussing on oxygen isotope (6%0) analysis of carbonates
(which detailed monitoring of the modern lake system shows to be a strong proxy for
water balance) and comparing 6®0carbonate @nd 6Ogistom data in order to examine
palaeoseasonality. Improved techniques for the interpretation of carbonate isotope
records of mixed mineralogies and the mass balance correction of diatom samples

contaminated with minerogenic material are also proposed.

Due to the high resolution 50 arbonate data, it was possible to show that the rapidity of
the Younger Dryas to Holocene transition at Nar Goli was similar to that seen in North
Atlantic records and that centennial scale arid events in the Holocene seem to occur at
the time of cold periods in the North Atlantic. Taken together, this suggests a strong
teleconnection between the two regions. However, the longer duration of the aridity
peaks ~9,300 and ~8,200 years BP at Nar Golli, compared with the more discrete cooling
events at this time in the North Atlantic, suggest that there are additional controls on
Near East hydroclimate. There is a multi-millennial scale trend of increasing 50 carbonate
values from the early to late Holocene. This ‘Mid Holocene Transition’ has previously
been identified in the Near East, however here it is demonstrated that water balance
and not a shift in the seasonality of precipitation was the primary cause. Finally, for the

first time, the stability of Near East climate in the early Holocene is robustly



demonstrated, suggesting that this could have been a key enabler of the development of

agriculture at this time.
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Chapter 1 | Introduction

1.1 Importance of understanding past hydrological variability in the Near East

Water in the Near East” is a politically sensitive resource (e.g. Issar and Adar, 2010)
and water stress in the region is projected to increase during the 21° century (Cruz et
al.,, 2007). Rain-fed agriculture is already impossible across most of the region and
the Fertile Crescent, the area of land that can be irrigated by the Jordan, Tigris and
Euphrates rivers and one of the first parts of the world in which plants and animals
were domesticated (e.g. Bellwood, 2005, Brown et al., 2009), is projected to
disappear this century (Kitoh et al., 2008). Turkey has seen increased drought in
recent decades (Turkes, 2003, Sonmez et al., 2005, Toros, 2012) and this trend is
likely to continue in the coming decades (Arnell, 2004), with one regional climate
model suggesting a 5-6°C increase in mean annual temperatures and a 40% fall in
precipitation in central Turkey by the end of this century compared to the late 20th
century (Demir et al., 2010). Therefore, an improved understanding of hydrological
variability over long timescales is required, in order to put the magnitude of recent
climate shifts into context and to identify the drivers of climate in the region. This is
vital to assist in the sustainable management of water resources into the future.
Moreover, the Near East is the key region in the development of human civilisation,
where agriculture and city-based civilisations first developed (e.g. Bourke, 2008,
Zohary et al.,, 2012). It has been proposed that changes in water availability
influenced the rise and fall of civilisations in the region (e.g. Issar and Zohar, 2007,
Rosen, 2007). In particular, a series of major, decadal- to centennial-scale drought
events have recently been identified from ~7,000-3,000 years BP (Bar-Matthews and
Ayalon, 2011). Some occur at the same time as major transitions in the
archaeological record, such as the end of the Early Bronze Age ~4,100 years BP
(Weiss, 1993, Rosen, 2007), suggesting that environmental stress or opportunity

could have operated as a pacemaker for societal change (Roberts et al., 2011a).

* The term Near East as used in this thesis refers to the region encompassing modern day Turkey,
Israel, Palestine, Syria, Lebanon, Jordan, Iraq and Iran.



1.2

Gaps in knowledge of Near East palaeoclimatology

There remain three main gaps in our knowledge of Near East palaeoclimatology

(discussed in more detail in chapter 2):

There is a requirement for improved chronological precision and high
resolution climate records in the late glacial, especially through the Younger
Dryas* to Holocene transition (Robinson et al.,, 2006), so that comparisons
with other regional and global climate records can be made, and so the
drivers of Near East climate can be better understood.

Although several oxygen isotope (6'0) records from lake carbonates from
the region have been published in the last decade and regional patterns
identified (Roberts et al., 2008), the interpretation of the records is debated.
While most records are interpreted as responding to changes in water
balance (Jones and Roberts, 2008), the influence of other factors need to be
considered more thoroughly. In particular, Stevens et al. (2006) have
suggested that changes in the seasonality of precipitation may have been
important. Given the marked seasonality of Near East climate (Turkes, 2003),
its important implications for human societies (Rosen, 2007) and the fact that
shifts in seasonality are anticipated globally in a warming world (Meehl et al.,
2007), this factor needs to be investigated further.

Other than the recently produced record from the Soreq Cave in Israel for the
mid Holocene (Bar-Matthews and Ayalon, 2011), there are no records of a
sufficiently high resolution to be able to investigate decadal to centennial
scale climate events thoroughly. Understanding rapid, high magnitude
climate shifts in the past is increasingly important given the concern than
human forcing of climate may increase the probability of such events
occurring in the future (Alley et al., 2003), potentially leading to catastrophic

economic and ecological turmoil (Adger et al., 2007).

" While the term Younger Dryas was originally a term used to refer to a cold period identified in
European pollen records (~12,900-11,700 years BP), the term is now widely applied to describe the
last cold period at the end of the last glacial seen in records from around the world. So in this thesis,
the terms Younger Dryas (and Bglling-Allergd) are used in reference to Near East records.



1.3 Justification for site choice and methods

To produce a new palaeoclimate record and attempt to address these gaps in our
knowledge, Nar Golli, a maar lake in central Turkey (Figure 1.1), was chosen as the
study site. This was because previous work on a shorter, 1,720 year sequence (e.g.
Jones et al., 2006, England et al., 2008, Woodbridge and Roberts, 2011) showed its
potential for the production of well-dated, high resolution records due to its varved
sediments. Nar Goli is close to Eski Acigol, from where a late glacial-Holocene record
has already been produced (Roberts et al., 2001). Duplicate records from the same
area are necessary to check that proxies are in fact recording regional climate and
not responding to lake-specific changes (Fritz, 2008) and sediments with a higher
deposition rate than Eski Acigél’s were required to allow for high resolution analysis.
Additionally, these lakes are in an important region for archaeologists, close to the
important Neolithic sites of Catalhoyik and Asikli Hoyuk (Figure 1.1), and it is
important to have climate records from close to archaeological sites when

investigating the links between climate and societal change (Jones, 2013).
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Figure 1.1 Key topographical features of the Near East and location of Nar Gélii, Eski
Acigél and selected archaeological sites (map from

http://commons.wikimedia.org/wiki/File:Near_East_topographic_map-blank.svg).



The long history of human activity in the Near East means it is difficult to
discriminate between climatic and non-climatic influences on proxy records such as
pollen and diatom species (Roberts et al., 2010), but Jones et al. (2005) had already
shown that the 5180carbonate record from Nar Go6lu is a good proxy for regional water
balance. Climate has an influence on the stable isotope composition of lake waters
and this is recorded in, for example, carbonates and diatoms that precipitate and
grow in the lake waters (chapter 3). Therefore, because the main intention of this
thesis is to produce a robust palaeoclimate reconstruction, 50 carbonate analysis of
the new sequence is undertaken. 5180diatom data are also produced and compared to

50 arbonate data in order to reconstruct palaeoseasonality (Leng et al., 2001).

Unlike the shorter core sequence taken from Nar Goli in 2001/2 (Jones et al., 2006),
not all of the longer core sequence taken in 2010 is varved. The chronologies of most
non-varved lake cores are provided by radiocarbon dating. However, Jones (2004)
has already shown that due to an old carbon source in Nar Go6l, this is not possible.
Therefore, an additional dating method is required and it was decided to use
uranium-thorium (henceforth U-Th) dating. U-Th dating of lake sediments is
predicated on the assumption that uranium is incorporated into carbonates but
thorium is not because it is less soluble, and since uranium decays into thorium at a
known rate, the time since deposition can be calculated (Edwards et al., 2003).
However, this can be complicated by the presence of detrital and hydrogenous
thorium (Haase-Schramm et al.,, 2004, Torfstein et al., 2013) and/or the loss of
uranium due to open system behaviour (Lao and Benson, 1988), which increase the

calculated age away from the real age (chapter 4).

1.4 Aims and objectives

The aim of this thesis is to address the gaps in the literature outlined in section 1.2,
specifically to produce a high resolution record through the Younger Dryas to
Holocene transition so that the rapidity of the shift in the Near East can be compared
to other records, to establish what is driving the general trend towards higher

oxygen isotope values in Near East lake carbonates through the Holocene (Roberts et



al., 2008) (in particular the influence seasonality might have on the records) and to
produce a high resolution record of changes in water balance through the Holocene
so that decadal and centennial scale climate shifts can be investigated. This should
allow for a better understanding of the drivers of Near East climate in the past and

any possible links with societal change.

These aims are addressed, using the methods outlined in section 1.3, through a

number of objectives:

e The analysis of contemporary waters and sediments to better understand the Nar
Golu isotope system and better interpret the palaeo record, including the
establishment of the likely times of year of carbonate precipitation and diatom
growth and the investigation of the transference of the 50 signal from the
waters to the core sediments.

e The use of 6180carbonate data (supported by 613Ccarbonate, 6180diatom, 613C0rgamc,
lithology and carbonate mineralogy data) to produce a reconstruction of changes
in water balance through the Holocene and late glacial.

e Exploration of whether comparing 580 from diatoms and carbonates can
provide insights into seasonality.

e The use of uranium-thorium dating to provide a chronology for the core.

e Comparison of 50 record from Nar Goli to other palaeoclimate records from

the Near East and beyond.

1.5 Thesis outline

Chapters 2, 3 and 4 outline the present state of knowledge of Near East
palaeoclimatology, the use of stable isotope analysis to produce palaeoclimate
reconstructions and U-Th dating to provide chronologies. Chapter 5 introduces the
site and chapter 6 discusses the methods used and the methodological
developments achieved as part of this thesis. Chapter 7 uses data from
contemporary waters and sediments to attempt to better understand the Nar Goliu
system. Chapter 8 presents the major results of this thesis: down-core oxygen and

carbon isotope data. Chapter 9 shows the U-Th results thus far produced, and the



best estimate of chronology at the time of writing is used in chapter 10 to compare
the records to others from the region and beyond, and to the archaeological record
where appropriate, to consider the drivers of Near East climate and any potential
links between societal and climate change. The implications of this thesis for the
stable isotope community and Near East palaeoclimatology are discussed in chapter

11.



Chapter 2 | Climate of the Near East

The current understanding of palaeoclimatology in the Near East needs to be
considered, to contextualise and explore in more detail the gaps in knowledge
outlined in section 1.2. First, however, the contemporary regional climate needs to
be understood, to provide a benchmark against which past climates can be

compared and to appreciate what the key drivers of climate are in the present.

2.1 Contemporary climate

2.1.1 Climate dynamics

Precipitation is highest in the coastal and mountainous areas of the region (Figure
2.1). Areas near to the Mediterranean coast, such as Jerusalem, have cool, wet
winters and hot, dry summers, whereas in continental areas, such as the Anatolian
plateau and the Zagros Mountains (Figure 1.1), precipitation patterns are more
characteristic of continental climates, with wet springs as well as winters (Figure 2.2).
In Turkey, because of the influence of mountain ranges, the Anatolian plateau and
the Black and Aegean Seas, only the southern coast has a truly Mediterranean
climate, with precipitation peaking in continental areas in the spring (Tlirkes, 1996,
1998). Most precipitation falling on the Near East is ultimately from Atlantic sources,
although there is some cyclogenesis in the Mediterranean creating the Genoa and
Cyprus low pressure systems (Harding et al., 2009, Turkes et al., 2009). In winter, the
Inter-Tropical Convergence Zone (ITCZ) moves southwards (Ziv et al., 2006) and
hence storms can track from the North Atlantic through the Mediterranean, whereas
in the summer the ITCZ moves north, which leads to high pressure systems blocking
westerly depressions. Central Turkey, and the Near East as a whole, experiences
drier winters during more positive North Atlantic Oscillation (NAO) years and vice
versa (Cullen and deMenocal, 2000, Tan and Unal, 2003, Tirkes and Erlat, 2003,
2005, Gil et al., 2006, Harding et al., 2009). The North Sea-Caspian Pattern Index is

also considered to have an important influence on winter climate (Kutiel and



Benaroch, 2002, Jones et al., 2006). A relationship has been demonstrated between

summer Turkish climate and the Indian monsoon, with enhanced monsoon rainfall

linked with dry summers (Jones et al., 2006).
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Figure 2.1 Distribution of annual precipitation values (in mm) across the Near East

(data from WMO, 2011). More details for selected sites given on Figure 2.2.
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2.1.2 Recent trends and predictions for the future

As the Mediterranean is in the transition zone between tropical and mid latitude
processes, any shifts in global circulation patterns will have significant effects on the
climate of the region (Giorgi, 2006, Giorgi and Lionello, 2008, Dormoy et al., 2009). In
the Near East as a whole, average temperatures rose by 1.5°C-4°C during the 20th
century (Alpert et al., 2008). Annual and winter precipitation have decreased over
most of Turkey since early 1970s (Turkes, 2003, Toros, 2012). By 2100, it is projected
that Near East mean precipitation will have fallen by 25% and mean temperature
increased by 4.5°C compared to 1961-1990 (Suppan et al., 2008). Specifically for
Turkey, the Hadley Centre RCM (based on A2 scenario) forecasts a 5-6°C increase in
mean temperature for interior Turkey by 2071-2100 compared to 1961-1990 and a
40% reduction in precipitation (Demir et al., 2010), putting it in the water stressed
category (Arnell, 2004). The decrease in precipitation is likely because of a projected
poleward shift of the North Atlantic storm track leading to a weakening of the
Mediterranean winter storm track (Evans, 2009). These projections of increased
aridity make it even more important to consider how and why climate changed in the

past, particularly the conditions during more arid intervals than now.

2.2 Palaeoclimatology

This section is split into three that review the current state-of-knowledge of the
three gaps in our knowledge of Near East palaeoclimatology identified in section 1.2.
(All dates in this thesis, whether they be calibrated radiocarbon, U-Th, varve counts
or ice layer counts, are given in years BP (i.e. years before 1950), in order to aid

comparison between records.)

2.2.1 Late glacial: form and timings

Based on previous studies, the general form of the late glacial in the Near East is

fairly well understood. At the time of the so called Mystery Interval, ~17,500-14,700

years BP, seen as a cooling in North Atlantic records and possibly initiated by
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Heinrich Event 1 (Hemming, 2004, Denton et al., 2006, Barker et al., 2009), there
seems to have been a cooling and drying of the Near East, based on geochemical and
isotope evidence from the Black Sea (Kwiecien et al., 2009), pollen from the northern
Aegean (Kotthoff et al., 2011), geochemical proxies from the Nile Delta (Castaneda et
al., 2010), isotopes from Soreq Cave in Israel (Bar-Matthews et al., 1999) and
sedimentary evidence from the Dead Sea (Stein et al., 2010) (the locations of key
Near East palaeoclimate archives are shown on Figure 2.3). This was followed by
increased temperatures and wetter conditions in the region in the Bglling-Allergd
~14,700-12,900 years BP, based on a pollen record from the Aegean (Kotthoff et al.,
2008a, Dormoy et al., 2009), geochemical proxies from the Nile Delta (Castaneda et
al., 2010), the Black Sea (Bahr et al., 2008) and the Red Sea (Arz et al., 2003, Essallami
et al.,, 2007), pollen evidence from the Balkans (Aufgebauer et al., 2012), isotope
records from Lake Van (Lemcke and Stiirm, 1997), Eski Acigol (Roberts et al., 2001),
Soreq Cave (Bar-Matthews et al., 1997) and Iran (Stevens et al., 2012) and ostracod,
pollen and diatom evidence from Greece (Frogley et al., 2001, Lawson et al., 2004,

Wilson et al., 2008, Jones et al., 2013),

The Younger Dryas, ~12,900-11,700 years BP, was the last cold period of the last
glacial and is often linked with meltwater outbursts and a slowdown in North Atlantic
circulation (Broecker et al., 1989, Tarasov and Peltier, 2005, Teller, 2012), but is also
seen by some as the response to a large comet or meteorite impact event that has
been dated to the start of the Younger Dryas (e.g. Firestone et al., 2007, LeCompte et
al., 2012). In the Near East, the period was cooler and drier than the Bglling-Allergd
and early Holocene, as seen in geochemical records from the Nile Delta (Castaneda
et al., 2010), the Red Sea (Arz et al., 2003) and the Black Sea (Bahr et al., 2008),
pollen records from the Balkans (Bordon et al., 2009, Aufgebauer et al., 2012) and
the Aegean (Dormoy et al., 2009, Kotthoff et al., 2011), diatom evidence from Greece
(Jones et al., 2013) and isotope records from Lake Van (Lemcke and Stirm, 1997,
Wick et al., 2003), Iran (Stevens et al., 2001, Stevens et al., 2012), Soreq Cave (Bar-
Matthews et al., 1997) and Eski Acigol (Roberts et al., 2001, Jones et al., 2007).
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referred to in this thesis.
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be referred to in this thesis.
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In terms of the connection between changes in the North Atlantic and Near East
hydroclimate, many authors show that a cooling of the North Atlantic changes the
path of, and reduces the frequency of, winter storms that travel from the Atlantic
through the Mediterranean and provide the Near East with much of its precipitation.
Thus, when the North Atlantic cools, as in the Younger Dryas, the Near East becomes
drier (Cullen and deMenocal, 2000, Tiirkes and Erlat, 2005, Harding et al., 2009,
Rowe et al., 2012).

However, there is some debate in the literature about the form of the shifts in the
late glacial in the Near East, namely with the Dead Sea record being interpreted the
opposite way to all other records from the region as showing the Younger Dryas was
wetter than the Bglling-Allergd and early Holocene (Stein et al., 2010). Kolodny et al.
(2005) and Stein et al. (2010) argue that 50 arbonate Values in the Soreq Cave record
in the Younger Dryas were high not because of negative water balance (as argued by
Bar-Matthews et al., 1997) but because of increased 50 of the Eastern
Mediterranean and hence of Near East precipitation. As well as that debate, another
that needs to be addressed is the issue of the rapidity of the Younger Dryas to
Holocene transition in the region compared to in the rest of the world. Records from
Ammersee in Germany (von Grafenstein et al., 1999), Cariaco off Venezuela (Hughen
et al.,, 1996) and NGRIP, the latest Greenland ice core (Rasmussen et al., 2006,
Vinther et al., 2006, Steffensen et al., 2008), see Figure 2.4 for locations, show the
transition occurring in less than a century, whereas records further away from the
North Atlantic, such as Dongge Cave in China (Dykoski et al., 2005), Socotra in Yemen
(Shakun et al., 2007), the Nile Delta (Castaneda et al., 2010) and the Red Sea (Arz et
al., 2003), see a much longer transition taking many centuries. However, in the Near
East, poor chronologies have hampered comparison to these records. In Eski Acigdl a
large transition believed to be the Younger Dryas to Holocene is dated to ~12,000
years BP, the transition in Lake Van is dated to 10,500 years BP and the Soreq Cave
chronology is also not secure at this time. Additionally, a lack of high resolution

records has made investigation of the rapidity of the transition difficult (Figure 2.5).
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Figure 2.5 Selected isotope records from the Near East: Eski Acigdl (Roberts et al.,
2001), Gélhisar Gélii (Eastwood et al., 2007), Soreq Cave (Bar-Matthews et al., 1997,
Orland et al., 2009, Bar-Matthews and Ayalon, 2011), Lake Van (Wick et al., 2003)

and Lake Zeribar (Stevens et al., 2001) (see Figure 2.3 for locations).

2.2.2 The Holocene: general long terms trends

The second gap in our knowledge is understanding what caused the millennial scale
shift to more positive 6"0rbonate Values in Near East lake records in the mid
Holocene. (Following the recommendations of Walker et al. (2012), when talking
about ‘early’, ‘mid’ and ‘late’ Holocene, the early-mid Holocene boundary is defined

at 8,200 years BP and the mid-late Holocene boundary at 4,200 years BP.) Unlike in
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North Atlantic region records, where the last major climate shift was the Younger
Dryas to Holocene transition, in records from the Near East, Africa and Asia there
was a large shift in hydroclimate in the mid Holocene. Many studies have divided the
Holocene in the Near East into a wet early Holocene, a transition phase in the mid
Holocene and a late Holocene that was more arid than the early Holocene. This is
seen in lake isotope records from Turkey including Eski Acigdl (Roberts et al., 2001,
Jones et al., 2007), Goélhisar Golu (Eastwood et al., 2007), Lake Siinnet (Ocakoglu et
al., 2013) and Lake Van (Lemcke and Stirm, 1997) and isotope records from
speleothems from Sofular Cave in Turkey (Gokturk et al., 2011), Jeita Cave in
Lebanon (Verheyden et al., 2008) and Soreq Cave in Israel (Ayalon et al., 1999, Bar-
Matthews et al., 1997, 2003) (Figure 2.5). Many other studies from Israel also
suggest a wet early Holocene and dry late Holocene (Neev and Emery, 1995,
Goodfriend, 1999, Frumkin et al., 1999, Frumkin et al., 2000, Gvirtzman and Wieder,
2001, Mclaren et al., 2004) as do marine records with the S1 sapropel layer in the
Eastern Mediterranean Sea, seen to be caused by increased Nile discharge from
increased precipitation (Fontugne et al., 1994), dated to ~10,800-6,100 years BP
(Ariztegui et al., 2000, Calvert and Fontugne, 2001, De Lange et al., 2008, Rohling et
al., 2009), and the isotope record from Lake Yammo(neh in Lebanon (Develle et al.,
2010). The development of agriculture in the early Holocene in the Near East has
been linked to these more positive water balance conditions (Gupta, 2004, Bellwood,

2005, Willcox et al., 2009).

Near East lake isotope records are interpreted as showing maximum wetness ~7,900
years BP with a shift to drier conditions (known as the Mid Holocene Transition)
starting ~7,000 years BP and aridity peaking ~3,000-2,000 years BP (Roberts et al.,
2008, 20114, Finné et al., 2011). When the Near East lake records are combined, they
suggest a Holocene precipitation change of <7% (Roberts et al., 2011a), although site
specific reconstructions at Soreq Cave and Eski Acigol (Table 2.1) suggest larger shifts
(Bar-Matthews et al., 1997, Jones et al., 2007). The end of the African Humid Period,
a time when much of North Africa was apparently wetter than now, occurred in the
mid Holocene, seen as an abrupt rise in wind-blown sediments to the Mauritanian

coast 5,500 years BP (deMenocal et al., 2000) or as a more gradual decrease in the
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flow of the Nile 8,000-4,000 years BP (Blanchet et al., 2013). The decrease in
precipitation turned the ‘Green Sahara’ into the desert seen today and had a major
impact on human settlements (Kuper and Kropelin, 2006). Decreased intensity of
monsoon rains at Qunf in Oman (Fleitmann et al., 2003, 2007) and Dongge in China
(Dykoski et al., 2005) are also seen at this time. This increased aridity from the Near
East to Africa to Asia has been linked to a decline in summer insolation (e.g.
deMenocal et al., 2000, Fleitmann et al., 2007) and a southward shift in the ITCZ, and
specifically in the Near East to a decline in winter rains (Tzedakis, 2007, Brayshaw et

al., 2011a, Roberts et al., 2011b).

Table 2.1 Precipitation values calculated for Eski Acigél (Jones et al., 2007) and Soreq
Cave (Bar-Matthews et al., 1997).

Period Estimated precipitation (mm) % difference from late Holocene
Eski Acigol Soreq Cave Eski Acigol Soreq Cave

Modern 320 +40 515+65 - -

Early 390 +60 812 +137 +22% +58%

Holocene

Younger 240 +60 -25%

Dryas

Bolling- 450 £50 +41%

Allergd

However, while the increases in 618063rb0nate in Near East lake records, and from the
Soreq Cave, are generally interpreted as indicating a shift to drier conditions (Jones
and Roberts, 2008) and thus showing the transition from a wet early Holocene to a
dry late Holocene (Roberts et al., 2008, 2011a), there are debates in the literature.
At first glance, Near East pollen records seem to contradict the isotope records, with
a delay of several thousand years between the beginning of the Holocene and
increases in arboreal pollen. At Eski Acigol, for example, while non-arboreal pollen
(e.g. Pistacia) did rapidly increase, Quercus (oak) did not reach a maximum until

~5,300 years BP (Woldring and Bottema, 2003). At Lakes Van, Mirabad and Zeribar,
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the early Holocene pollen record was dominated by steppic indicators such as
Gramineae and Pistacia, with Quercus gradually increasing to a maximum ~6,700
years BP (van Zeist and Bottema, 1977). Van Zeist and Bottema (1991) and Roberts
and Wright (1993) suggested that low arboreal pollen seen in the early Holocene
Near East compared to earlier advances in Europe (Berglund et al., 1996) and Syria
(Yasuda et al., 2000) meant the climate was dry. However, as discussed, most lake
isotope records from the Near East have been interpreted otherwise. Roberts et al.
(2011a) and Roberts (in press) suggest four main explanations for the divergence
between isotope and pollen records. Firstly, the pollen record may not accurately
reflect the actual vegetation of the area at the time; there may be an
underrepresentation of key vegetation types such as insect-pollinated Rosaceae
(Woldring and Cappers, 2001). Secondly, slow dispersal rates could have meant that
trees were simply unable to respond rapidly to changing climate and so they spread
slowly from refugia back to parts of the Near East (Hillman, 1996, Van Zeist and
Bottema, 1991). Although the Sofular Cave record suggests limited lag between
climate and vegetation at the onsets of the Bglling-Allergd and the Holocene with a
rapid decrease in 6C suggesting fast revegetation by C3 plants (Fleitmann et al.,
2009, Gokturk et al., 2011), this may have been because of the presence of refugia
in the mountains near to this site (Leroy and Arpe, 2007). Thirdly, high wildfire
intensity until 9,000 years BP (Wick et al., 2003, Turner et al., 2010, Vanniere et al.,

2011) would have made it difficult for trees to establish (Roberts, 2002).

Fourthly, the seasonality of precipitation may have been important. Alkenone-
derived sea surface temperatures (Emeis et al., 2000, Triantaphyllou et al., 2009),
speleothem fluid inclusions (McGarry et al., 2004) and glacial evidence from Anatolia
(Sarikaya et al., 2009, Zreda et al., 2011) suggest early Holocene temperatures were
several degrees cooler than now. However, the prominence of Pistacia in the pollen
record suggests winters were milder than today, with temperatures not falling below
freezing (Rossignol-Strick, 1999). Therefore, the inferred drops in annual
temperature must have been concentrated in the summer. There may also have
been a shift in the seasonality of precipitation. An increase in winter-dominated

precipitation, especially in the form of large storm events, is inferred from the large
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amount of detrital material in the Soreq Cave record at this time (Ayalon et al.,
1999). The lack of Quercus brantii, today associated with spring-season precipitation,
suggests a seasonality shift to winter precipitation and drier springs and summers
(Djamali et al., 2010). Summer drought conditions are also suggested by pollen
records from the Aegean (summer precipitation estimated at just 60-80 mm (Peyron
et al., 2011)) and fire history reconstructions (Wick et al., 2003, Turner et al., 2010,
Vanniere et al., 2010, Vanniere et al., 2011). Modelling suggests an increase in winter
precipitation during the early Holocene possibly caused by a southward shift in the
North Atlantic storm track due to insolation changes (Brayshaw et al., 2010), but no
increase in summer precipitation (Dormoy et al.,, 2009, Brayshaw et al., 2011a).
Therefore, even though the early Holocene was ‘wetter’ than the late Holocene (i.e.
more positive water balance), as indicated by the isotope records, summer drought
would have meant soil moisture was not high enough to allow for the spread of

forests (Tzedakis, 2007).

While the importance of changes in precipitation seasonality in the Near East during
the Holocene are well recognised, Stevens et al. (2001, 2006) take this one step
further and argue that seasonality was the key driver of 6180C3rb0nate records from
Lake Zeribar and Lake Mirabad and that the increase in 60bonste in the mid
Holocene was mainly due to a shift from winter- to spring-dominated precipitation.
They use pollen records (van Zeist and Bottema, 1977, Bottema, 1986), as well as
ostracod and diatom records (Griffiths et al., 2001, Wasylikowa et al., 2006), to
suggest that the early Holocene was in fact drier than the late Holocene, rather than
a wetter early Holocene wi