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Abstract 

 

Water is a politically sensitive resource in the Near East and water stress is increasing. It 

is therefore vital that there is a strong understanding of past hydrological variability, so 

that the drivers of change can be better understood, and so that the links between the 

palaeoclimate and archaeological records in this key region in the development of 

human civilisation can be investigated. To be of most use, this requires high resolution 

records and a good understanding of palaeoseasonality. 

 

A sediment sequence spanning ~14,000 years has been retrieved from Nar Gölü, a lake 

in central Turkey. This thesis presents isotope data from carbonates, diatoms and bulk 

organic matter, in particular focussing on oxygen isotope (δ18O) analysis of carbonates 

(which detailed monitoring of the modern lake system shows to be a strong proxy for 

water balance) and comparing δ18Ocarbonate and δ18Odiatom data in order to examine 

palaeoseasonality. Improved techniques for the interpretation of carbonate isotope 

records of mixed mineralogies and the mass balance correction of diatom samples 

contaminated with minerogenic material are also proposed. 

  

Due to the high resolution δ18Ocarbonate data, it was possible to show that the rapidity of 

the Younger Dryas to Holocene transition at Nar Gölü was similar to that seen in North 

Atlantic records and that centennial scale arid events in the Holocene seem to occur at 

the time of cold periods in the North Atlantic. Taken together, this suggests a strong 

teleconnection between the two regions. However, the longer duration of the aridity 

peaks ~9,300 and ~8,200 years BP at Nar Gölü, compared with the more discrete cooling 

events at this time in the North Atlantic, suggest that there are additional controls on 

Near East hydroclimate. There is a multi-millennial scale trend of increasing δ18Ocarbonate 

values from the early to late Holocene. This ‘Mid Holocene Transition’ has previously 

been identified in the Near East, however here it is demonstrated that water balance 

and not a shift in the seasonality of precipitation was the primary cause. Finally, for the 

first time, the stability of Near East climate in the early Holocene is robustly 
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demonstrated, suggesting that this could have been a key enabler of the development of 

agriculture at this time. 
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Figure 8.6 δ13Corganic vs C/N plot with boxes representing ±1σ from mean 

δ13Corganic and C/N values. The major trend in the record, the increase in 

δ13Corganic and decrease in C/N from zones 4-5 to zone 9, is shown. Typical 

values for lake algae and C3 terrestrial plant material (Meyers and Teranes, 

2001) are shaded. Typical C/N values for C4 plants are >35 and plot off the 

scale here.  

Figure 8.7 δ18Ocarbonate, C/N and Ti data from ITRAX (Allcock, 2013). There 

seems to be little relationship between the peaks in C/N and peaks in Ti, 

suggesting the former cannot be used as a proxy for inwash events. 

Figure 8.8 δ18Ocarbonate data compared to diatom inferred conductivity and 

% benthic diatoms (Woodbridge and Roberts, 2011, Woodbridge et al., 

unpublished data) and δ18Odiatom data, with % contamination of diatom 

isotope samples shown. 

Figure 8.9 δ18Ocarbonate and preliminary pollen data (Eastwood et al., 

unpublished data). 

Figure 9.1 Osmond plot for sample at 1355 cm showing the poor spread 

between the 5 sub samples, leading to a large error.     

Figure 9.2 δ18Ocarbonate from Nar Gölü plotted against depth and compared 

to δ18O from Eski Acıgöl  plotted against age (Roberts et al., 2001), showing 

the similarities between the transition defined as the Younger Dryas to 

Holocene in Eski Acıgöl and that from 1989 to 1957 cm in Nar Gölü, 

matched by dotted lines. After this there are continuing similarities 

between the two records record, with a general trend to more positive 

values the middle section, shown by the arrows. 

Figure 9.3 Osmond plot for sample at 1947 cm, with a much better spread 

between the 5 sub samples leading to much reduced error. 
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Figure 9.4 A: core at 1355 cm from where an unsuccessful sample was 

taken for U-Th, showing homogeneity of sediments, whereas in B from 

1949 cm the sediments are more homogenous which meant there was 

greater variability between sub samples and the isochron correction was 

more robust. 

Figure 9.5 Chronology applied to Nar Gölü core sequence, with dates given 

in years BP, V = varved, V* = varved but difficult to count, B = banded, i.e. 

laminations assumed to be non-annual and NL = non-laminated. 0-598 cm 

is dated by varve counting and 1161-1965 cm by varve counting from U-Th 

date at 1949 cm. 

 Figure 9.6 Age-depth plot for the NAR01/02 and NAR10 master  sequences. 

The parts of the sequence that were non-varved and where a linear 

accumulation rate had to be assumed, between 598-1161 cm and 1965-

2053 cm, are highlighted. The steeper the gradient of the line, the greater 

the amount of sediment per unit time, which is probably linked to a 

combination of accumulation rate and compaction over time. 

Figure 9.7 Wiggle matching Nar Gölü record with NGRIP in the late glacial; 

2053 cm in Nar Gölü is fixed at 12,810 years BP, during the Bølling-Allerød 

to Younger Dryas transition in NGRIP, and varve counting is used to extend 

the Nar Gölü chronology down from this point. There is a gap in the core 

sequence 2023-2037 cm. 

Figure 10.1 Locations of major palaeoclimate archives in the Near East that 

will be referred to in this thesis. 

Figure 10.2 Locations of major palaeoclimate archives from around the 

world that will be referred to in this thesis. 

Figure 10.3 δ18Ocarbonate record plotted against time as well as depth, 

making zones 1 and 2 part of the Bølling-Allerød, 3 the Younger Dryas, 4 

and 5 the early Holocene, 6, 7 and 8 the mid Holocene and 9, 10 and 11 the 

late Holocene, using the Holocene sub-divisions proposed by Walker et al. 

(2012). The bottom 9 samples in zone 1 are not included, as discussed in 

section 9.2. 
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Figure 10.4 Nar Gölü δ18O compared to temperature proxy records from the 

North Atlantic region arranged in order of increasing distance from Nar 

Gölü: δ18O from Ammersee in Germany (von Grafenstein et al., 1999), TEX86 

from Lake Lucern in Switzerland (Blaga et al., 2013) and δ18O from NGRIP 

(Rasmussen et al., 2006, Vinther et al., 2006). The Younger Dryas is shaded 

grey. Shifts at the time of the Gerzensee Oscillation are matched by the 

dotted line.  

Figure 10.5 Nar Gölü δ18O data for the late glacial and early Holocene, 

compared to records arranged in order of distance from Nar Gölü: Soreq 

Cave (Bar-Matthews et al., 1997), Ammersee (von Grafenstein et al., 1999), 

Qunf (Fleitmann et al., 2003, 2007), NGRIP (Vinther et al., 2006, Rasmussen 

et al., 2006), Dongge (Dykoski et al., 2005) and Heshang (Hu et al., 2008, 

Liu et al., 2013). 

Figure 10.6 Detail of the δ18Ocarbonate record for the Younger Dryas to 

Holocene transition at Nar Gölü, with the varved section analysed at a very 

high resolution, demonstrating the rapidity of the latter part of the 

transition. 

Figure 10.7 δ18Ocarbonate record from Near East lakes arranged in increasing 

distance from Nar Gölü, with more positive values indicating drier 

conditions: Eski Acıgöl (Roberts et al., 2001), Gölhisar Gölü (Eastwood et al., 

2007), Soreq Cave (Bar-Matthews et al., 1997, Orland et al., 2009, Bar-

Matthews and Ayalon, 2011), Lake Van (Wick et al., 2003) and Lake Zeribar 

(Stevens et al., 2001). See Figure 10.1 for locations. 

Figure 10.8 A: Precipitation distribution 1935-2010 from Niğde, B: 

hypothesised early Holocene precipitation regime assuming an extreme 

shift to winter-dominated.  
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Figure 10.9 δ18Ocarbonate (A) and δ18Odiatom (B) trends, with data converted to 

δ18Olakewater assuming a temperature range of +15-20°C for the time of 

carbonate precipitation and +5-15°C for the time of diatom growth (C) and 

the measure of how much more positive δ18Olakewater was at the time of 

carbonate precipitation than diatom growth (top line +20°C minus +5°C i.e. 

maximum temperature difference and bottom line +15°C minus +15°C i.e. 

minimum temperature difference (D). 

Figure 10.10  δ18O from Nar Gölü, Qunf (Fleitmann et al., 2003, 2007) and 

Dongge (Dykoski et al., 2005) and % terrigenous material from a core off 

Mauritania (deMenocal et al., 2000) compared to insolation changes for 

38°N (the latitude of Nar Gölü, trends similar at latitudes of Qunf and 

Dongge) calculated from Laskar et al. (2004). δ18Olakewater calculated for the 

times of year of carbonate precipitation and diatom growth, and 

differences between June and May, and July and January, insolation also 

shown (Laskar et al., 2004).  

Figure 10.11 Early Holocene δ18O records from Nar Gölü, Qunf (Fleitmann 

et al., 2003, 2007)  and NGRIP (Vinther et al., 2006, Rasmussen et al., 

2006). The aridity ~9,300 years BP in Nar Gölü (and Qunf)  lasts significantly 

longer than the cooling in NGRIP at this time and the anomaly centred 

~8,200 years BP could be the peak of a longer term aridity trend, as 

highlighted by the blue lines. 

Figure 10.12 Close up on the mid and late Holocene, compared to the Soreq 

Cave record (Bar-Matthews et al., 1997, Orland et al., 2009, Bar-Matthews 

and Ayalon, 2011). 

Figure 10.13 Spectral analysis conducted on δ18Ocarbonate data using PAST 

program, with the 3,175 year peak rejected because the isotope record is 

too short to pick this up, leaving the two major peaks at 1,529 years and 

897 years. 

Figure 10.14 Combination of NAR10 and NAR01/02 (Jones et al., 2006) 

records, plotted against years BP (where -60 = AD 2010). 
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Figure 10.15 Holocene δ18O records from Nar Gölü, Soreq Cave (Bar-

Matthews et al., 1997, Orland et al., 2009, Bar-Matthews and Ayalon, 

2011), Qunf (Fleitmann et al., 2003, 2007)  and Dongge (Dykoski et al., 

2005).  

Figure 10.16 Evidence of cultivation from archaeological sites (Zohary et al., 

2012), showing that cereal agriculture first developed in modern day 

Jordan, Syria and central Turkey at Asikli Höyük close to Nar Gölü.  

Figure 10.17 Nar Gölü and Soreq Cave (Bar-Matthews et al., 1997, Orland 

et al., 2009, Bar-Matthews and Ayalon, 2011) δ18O data plotted with 

Turkish archaeological periods separated by the dashed lines (Allcock, 2013 

and references therein) (EBA = Early Bronze Age, MBA = Mid Bronze Age 

and LBA = Late Bronze Age) and major events in Turkish human history (see 

text for references).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

170 

 

 

 

174 

 

 

175 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxv 

 

List of Tables 

 

Table 2.1 Precipitation values calculated for Eski Acıgöl (Jones et al., 2007) 

and Soreq Cave (Bar-Matthews et al., 1997). 

Table 3.1 The predominant controls of δ18Olakewater depend on the size of the 

lake and its degree of hydrological closure (modified from Leng and 

Marshall, 2004). 

Table 6.1 Conversion factors from mg/L to meq (Hem, 1970). 

Table 6.2 Breakdown of number of carbonate samples analysed from the 

NAR10 core sequence by the three different reaction methods. 

Table 6.3 Sources of error associated with new mass balance correction of 

δ18Odiatom data. 

Table 6.4 Breakdown of the samples prepared for diatom isotope analysis 

and the numbers that had to be rejected due to contamination. 

Table 7.1 Major ion concentrations in Nar Gölü surface waters. 

Table 8.1 Summary statistics for the 11 zones defined from the combination 

of the NAR01/02 and NAR10 sequences (statistics only given for zones with 

three or more samples).   = mean, σ = standard deviation. 

Table 9.1 U-Th elemental data, with uncertainty given at 2 standard error. 

Table 9.2 U-Th dates derived from data in Table 9.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

16 

 

29 

 

 

54 

61 

 

71 

 

73 

 

89 

112 

 

 

130 

131 

 

 



1 

 

Chapter 1 | Introduction 
 

1.1 Importance of understanding past hydrological variability in the Near East 

 

Water in the Near East is a politically sensitive resource (e.g. Issar and Adar, 2010) 

and water stress in the region is projected to increase during the 21st century (Cruz et 

al., 2007). Rain-fed agriculture is already impossible across most of the region and 

the Fertile Crescent, the area of land that can be irrigated by the Jordan, Tigris and 

Euphrates rivers and one of the first parts of the world in which plants and animals 

were domesticated (e.g. Bellwood, 2005, Brown et al., 2009), is projected to 

disappear this century (Kitoh et al., 2008). Turkey has seen increased drought in 

recent decades (Türkeş, 2003, Sonmez et al., 2005, Toros, 2012) and this trend is 

likely to continue in the coming decades (Arnell, 2004), with one regional climate 

model suggesting a 5-6°C increase in mean annual temperatures and a 40% fall in 

precipitation in central Turkey by the end of this century compared to the late 20th 

century (Demir et al., 2010). Therefore, an improved understanding of hydrological 

variability over long timescales is required, in order to put the magnitude of recent 

climate shifts into context and to identify the drivers of climate in the region. This is 

vital to assist in the sustainable management of water resources into the future. 

Moreover, the Near East is the key region in the development of human civilisation, 

where agriculture and city-based civilisations first developed (e.g. Bourke, 2008, 

Zohary et al., 2012). It has been proposed that changes in water availability 

influenced the rise and fall of civilisations in the region (e.g. Issar and Zohar, 2007, 

Rosen, 2007). In particular, a series of major, decadal- to centennial-scale drought 

events have recently been identified from ~7,000-3,000 years BP (Bar-Matthews and 

Ayalon, 2011). Some occur at the same time as major transitions in the 

archaeological record, such as the end of the Early Bronze Age ~4,100 years BP 

(Weiss, 1993, Rosen, 2007), suggesting that environmental stress or opportunity 

could have operated as a pacemaker for societal change (Roberts et al., 2011a).  

 

                                                 

 The term Near East as used in this thesis refers to the region encompassing modern day Turkey, 

Israel, Palestine, Syria, Lebanon, Jordan, Iraq and Iran. 
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1.2 Gaps in knowledge of Near East palaeoclimatology 

 

There remain three main gaps in our knowledge of Near East palaeoclimatology 

(discussed in more detail in chapter 2):  

 There is a requirement for improved chronological precision and high 

resolution climate records in the late glacial, especially through the Younger 

Dryas* to Holocene transition (Robinson et al., 2006), so that comparisons 

with other regional and global climate records can be made, and so the 

drivers of Near East climate can be better understood.  

 Although several oxygen isotope (δ18O) records from lake carbonates from 

the region have been published in the last decade and regional patterns 

identified (Roberts et al., 2008), the interpretation of the records is debated. 

While most records are interpreted as responding to changes in water 

balance (Jones and Roberts, 2008), the influence of other factors need to be 

considered more thoroughly. In particular, Stevens et al. (2006) have 

suggested that changes in the seasonality of precipitation may have been 

important. Given the marked seasonality of Near East climate (Türkeş, 2003), 

its important implications for human societies (Rosen, 2007) and the fact that 

shifts in seasonality are anticipated globally in a warming world (Meehl et al., 

2007), this factor needs to be investigated further.  

 Other than the recently produced record from the Soreq Cave in Israel for the 

mid Holocene (Bar-Matthews and Ayalon, 2011), there are no records of a 

sufficiently high resolution to be able to investigate decadal to centennial 

scale climate events thoroughly. Understanding rapid, high magnitude 

climate shifts in the past is increasingly important given the concern than 

human forcing of climate may increase the probability of such events 

occurring in the future (Alley et al., 2003), potentially leading to catastrophic 

economic and ecological turmoil (Adger et al., 2007).  

 

                                                 
*
 While the term Younger Dryas was originally a term used to refer to a cold period identified in 

European pollen records (~12,900-11,700 years BP), the term is now widely applied to describe the 
last cold period at the end of the last glacial seen in records from around the world. So in this thesis, 
the terms Younger Dryas (and Bølling-Allerød) are used in reference to Near East records. 
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1.3 Justification for site choice and methods 

 

To produce a new palaeoclimate record and attempt to address these gaps in our 

knowledge, Nar Gölü, a maar lake in central Turkey (Figure 1.1), was chosen as the 

study site. This was because previous work on a shorter, 1,720 year sequence (e.g. 

Jones et al., 2006, England et al., 2008, Woodbridge and Roberts, 2011) showed its 

potential for the production of well-dated, high resolution records due to its varved 

sediments. Nar Gölü is close to Eski Acıgöl, from where a late glacial-Holocene record 

has already been produced (Roberts et al., 2001). Duplicate records from the same 

area are necessary to check that proxies are in fact recording regional climate and 

not responding to lake-specific changes (Fritz, 2008) and sediments with a higher 

deposition rate than Eski Acıgöl’s were required to allow for high resolution analysis. 

Additionally, these lakes are in an important region for archaeologists, close to the 

important Neolithic sites of Çatalhöyük and Asikli Höyük (Figure 1.1), and it is 

important to have climate records from close to archaeological sites when 

investigating the links between climate and societal change (Jones, 2013). 

 

 

Figure 1.1 Key topographical features of the Near East and location of Nar Gölü, Eski 

Acıgöl and selected archaeological sites (map from 

http://commons.wikimedia.org/wiki/File:Near_East_topographic_map-blank.svg). 
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The long history of human activity in the Near East means it is difficult to 

discriminate between climatic and non-climatic influences on proxy records such as 

pollen and diatom species (Roberts et al., 2010), but Jones et al. (2005) had already 

shown that the δ18Ocarbonate record from Nar Gölü is a good proxy for regional water 

balance. Climate has an influence on the stable isotope composition of lake waters 

and this is recorded in, for example, carbonates and diatoms that precipitate and 

grow in the lake waters (chapter 3).  Therefore, because the main intention of this 

thesis is to produce a robust palaeoclimate reconstruction, δ18Ocarbonate analysis of 

the new sequence is undertaken. δ18Odiatom data are also produced and compared to 

δ18Ocarbonate data in order to reconstruct palaeoseasonality (Leng et al., 2001). 

 

Unlike the shorter core sequence taken from Nar Gölü in 2001/2 (Jones et al., 2006), 

not all of the longer core sequence taken in 2010 is varved. The chronologies of most 

non-varved lake cores are provided by radiocarbon dating. However, Jones (2004) 

has already shown that due to an old carbon source in Nar Gölü, this is not possible. 

Therefore, an additional dating method is required and it was decided to use 

uranium-thorium (henceforth U-Th) dating. U-Th dating of lake sediments is 

predicated on the assumption that uranium is incorporated into carbonates but 

thorium is not because it is less soluble, and since uranium decays into thorium at a 

known rate, the time since deposition can be calculated (Edwards et al., 2003). 

However, this can be complicated by the presence of detrital and hydrogenous 

thorium (Haase-Schramm et al., 2004, Torfstein et al., 2013) and/or the loss of 

uranium due to open system behaviour (Lao and Benson, 1988), which increase the 

calculated age away from the real age (chapter 4). 

 

1.4 Aims and objectives 

 

The aim of this thesis is to address the gaps in the literature outlined in section 1.2, 

specifically to produce a high resolution record through the Younger Dryas to 

Holocene transition so that the rapidity of the shift in the Near East can be compared 

to other records, to establish what is driving the general trend towards higher 

oxygen isotope values in Near East lake carbonates through the Holocene (Roberts et 



5 

 

al., 2008) (in particular the influence seasonality might have on the records) and to 

produce a high resolution record of changes in water balance through the Holocene 

so that decadal and centennial scale climate shifts can be investigated. This should 

allow for a better understanding of the drivers of Near East climate in the past and 

any possible links with societal change. 

 

These aims are addressed, using the methods outlined in section 1.3, through a 

number of objectives: 

 The analysis of contemporary waters and sediments to better understand the Nar 

Gölü isotope system and better interpret the palaeo record, including the 

establishment of the likely times of year of carbonate precipitation and diatom 

growth and the investigation of the transference of the δ18O signal from the 

waters to the core sediments. 

 The use of δ18Ocarbonate data (supported by δ13Ccarbonate, δ18Odiatom, δ13Corganic, 

lithology and carbonate mineralogy data) to produce a reconstruction of changes 

in water balance through the Holocene and late glacial. 

 Exploration of whether comparing δ18O from diatoms and carbonates can 

provide insights into seasonality. 

 The use of uranium-thorium dating to provide a chronology for the core. 

 Comparison of δ18O record from Nar Gölü to other palaeoclimate records from 

the Near East and beyond. 

 

1.5 Thesis outline 

 

Chapters 2, 3 and 4 outline the present state of knowledge of Near East 

palaeoclimatology, the use of stable isotope analysis to produce palaeoclimate 

reconstructions and U-Th dating to provide chronologies. Chapter 5 introduces the 

site and chapter 6 discusses the methods used and the methodological 

developments achieved as part of this thesis. Chapter 7 uses data from 

contemporary waters and sediments to attempt to better understand the Nar Gölü 

system. Chapter 8 presents the major results of this thesis: down-core oxygen and 

carbon isotope data. Chapter 9 shows the U-Th results thus far produced, and the 
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best estimate of chronology at the time of writing is used in chapter 10 to compare 

the records to others from the region and beyond, and to the archaeological record 

where appropriate, to consider the drivers of Near East climate and any potential 

links between societal and climate change. The implications of this thesis for the 

stable isotope community and Near East palaeoclimatology are discussed in chapter 

11.   
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Chapter 2 | Climate of the Near East  

 

The current understanding of palaeoclimatology in the Near East needs to be 

considered, to contextualise and explore in more detail the gaps in knowledge 

outlined in section 1.2. First, however, the contemporary regional climate needs to 

be understood, to provide a benchmark against which past climates can be 

compared and to appreciate what the key drivers of climate are in the present. 

 

2.1 Contemporary climate 

 

2.1.1 Climate dynamics 

 

Precipitation is highest in the coastal and mountainous areas of the region (Figure 

2.1). Areas near to the Mediterranean coast, such as Jerusalem, have cool, wet 

winters and hot, dry summers, whereas in continental areas, such as the Anatolian 

plateau and the Zagros Mountains (Figure 1.1), precipitation patterns are more 

characteristic of continental climates, with wet springs as well as winters (Figure 2.2). 

In Turkey, because of the influence of mountain ranges, the Anatolian plateau and 

the Black and Aegean Seas, only the southern coast has a truly Mediterranean 

climate, with precipitation peaking in continental areas in the spring (Türkeş, 1996, 

1998). Most precipitation falling on the Near East is ultimately from Atlantic sources, 

although there is some cyclogenesis in the Mediterranean creating the Genoa and 

Cyprus low pressure systems (Harding et al., 2009, Türkeş et al., 2009). In winter, the 

Inter-Tropical Convergence Zone (ITCZ) moves southwards (Ziv et al., 2006) and 

hence storms can track from the North Atlantic through the Mediterranean, whereas 

in the summer the ITCZ moves north, which leads to high pressure systems blocking 

westerly depressions. Central Turkey, and the Near East as a whole, experiences 

drier winters during more positive North Atlantic Oscillation (NAO) years and vice 

versa (Cullen and deMenocal, 2000, Tan and Unal, 2003, Türkeş and Erlat, 2003, 

2005, Gil et al., 2006, Harding et al., 2009). The North Sea-Caspian Pattern Index is 

also considered to have an important influence on winter climate (Kutiel and 
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Benaroch, 2002, Jones et al., 2006). A relationship has been demonstrated between 

summer Turkish climate and the Indian monsoon, with enhanced monsoon rainfall 

linked with dry summers (Jones et al., 2006). 

 

 

 

Figure 2.1 Distribution of annual precipitation values (in mm) across the Near East 

(data from WMO, 2011). More details for selected sites given on Figure 2.2. 
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Figure 2.2 Different precipitation and temperature patterns are seen across the 

region (data from WMO, 2011), particularly influenced by differences in 

continentality. Locations of these sites are shown on Figure 2.1. 
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2.1.2 Recent trends and predictions for the future 

 

As the Mediterranean is in the transition zone between tropical and mid latitude 

processes, any shifts in global circulation patterns will have significant effects on the 

climate of the region (Giorgi, 2006, Giorgi and Lionello, 2008, Dormoy et al., 2009). In 

the Near East as a whole, average temperatures rose by 1.5°C-4°C during the 20th 

century (Alpert et al., 2008). Annual and winter precipitation have decreased over 

most of Turkey since early 1970s (Türkeş, 2003, Toros, 2012). By 2100, it is projected 

that Near East mean precipitation will have fallen by 25% and mean temperature 

increased by 4.5°C compared to 1961-1990 (Suppan et al., 2008). Specifically for 

Turkey, the Hadley Centre RCM (based on A2 scenario) forecasts a 5-6°C increase in 

mean temperature for interior Turkey by 2071-2100 compared to 1961-1990 and a 

40% reduction in precipitation (Demir et al., 2010), putting it in the water stressed 

category (Arnell, 2004). The decrease in precipitation is likely because of a projected 

poleward shift of the North Atlantic storm track leading to a weakening of the 

Mediterranean winter storm track (Evans, 2009). These projections of increased 

aridity make it even more important to consider how and why climate changed in the 

past, particularly the conditions during more arid intervals than now. 

 

2.2 Palaeoclimatology 

 

This section is split into three that review the current state-of-knowledge of the 

three gaps in our knowledge of Near East palaeoclimatology identified in section 1.2. 

(All dates in this thesis, whether they be calibrated radiocarbon, U-Th, varve counts 

or ice layer counts, are given in years BP (i.e. years before 1950), in order to aid 

comparison between records.) 

 

2.2.1 Late glacial:  form and timings 

 

Based on previous studies, the general form of the late glacial in the Near East is 

fairly well understood. At the time of the so called Mystery Interval, ~17,500-14,700 

years BP, seen as a cooling in North Atlantic records and possibly initiated by 
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Heinrich Event 1 (Hemming, 2004, Denton et al., 2006, Barker et al., 2009), there 

seems to have been a cooling and drying of the Near East, based on geochemical and 

isotope evidence from the Black Sea (Kwiecien et al., 2009), pollen from the northern 

Aegean (Kotthoff et al., 2011), geochemical proxies from the Nile Delta (Castaneda et 

al., 2010), isotopes from Soreq Cave in Israel (Bar-Matthews et al., 1999) and 

sedimentary evidence from the Dead Sea (Stein et al., 2010) (the locations of key 

Near East palaeoclimate archives are shown on Figure 2.3). This was followed by 

increased temperatures and wetter conditions in the region in the Bølling-Allerød 

~14,700-12,900 years BP, based on a pollen record from the Aegean (Kotthoff et al., 

2008a, Dormoy et al., 2009), geochemical proxies from the Nile Delta (Castaneda et 

al., 2010), the Black Sea (Bahr et al., 2008) and the Red Sea (Arz et al., 2003, Essallami 

et al., 2007), pollen evidence from the Balkans (Aufgebauer et al., 2012), isotope 

records from Lake Van (Lemcke and Stürm, 1997), Eski Acıgöl (Roberts et al., 2001), 

Soreq Cave (Bar-Matthews et al., 1997) and Iran (Stevens et al., 2012) and ostracod, 

pollen and diatom evidence from Greece (Frogley et al., 2001, Lawson et al., 2004, 

Wilson et al., 2008, Jones et al., 2013),  

 

The Younger Dryas, ~12,900-11,700 years BP, was the last cold period of the last 

glacial and is often linked with meltwater outbursts and a slowdown in North Atlantic 

circulation (Broecker et al., 1989, Tarasov and Peltier, 2005, Teller, 2012), but is also 

seen by some as the response to a large comet or meteorite impact event that has 

been dated to the start of the Younger Dryas (e.g. Firestone et al., 2007, LeCompte et 

al., 2012). In the Near East, the period was cooler and drier than the Bølling-Allerød 

and early Holocene, as seen in geochemical records from the Nile Delta (Castaneda 

et al., 2010), the Red Sea (Arz et al., 2003) and the Black Sea (Bahr et al., 2008), 

pollen records from the Balkans (Bordon et al., 2009, Aufgebauer et al., 2012) and 

the Aegean (Dormoy et al., 2009, Kotthoff et al., 2011), diatom evidence from Greece 

(Jones et al., 2013) and isotope records from Lake Van (Lemcke and Stürm, 1997, 

Wick et al., 2003), Iran (Stevens et al., 2001, Stevens et al., 2012), Soreq Cave (Bar-

Matthews et al., 1997) and Eski Acıgöl (Roberts et al., 2001, Jones et al., 2007).  
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Figure 2.3 Locations of major palaeoclimate archives in the Near East that will be 

referred to in this thesis. 

 

 

 

Figure 2.4 Locations of major palaeoclimate archives from around the world that will 

be referred to in this thesis. 
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In terms of the connection between changes in the North Atlantic and Near East 

hydroclimate, many authors show that a cooling of the North Atlantic changes the 

path of, and reduces the frequency of, winter storms that travel from the Atlantic 

through the Mediterranean and provide the Near East with much of its precipitation. 

Thus, when the North Atlantic cools, as in the Younger Dryas, the Near East becomes 

drier (Cullen and deMenocal, 2000, Türkeş and Erlat, 2005, Harding et al., 2009, 

Rowe et al., 2012). 

 

However, there is some debate in the literature about the form of the shifts in the 

late glacial in the Near East, namely with the Dead Sea record being interpreted the 

opposite way to all other records from the region as showing the Younger Dryas was 

wetter than the Bølling-Allerød and early Holocene (Stein et al., 2010). Kolodny et al. 

(2005) and Stein et al. (2010) argue that δ18Ocarbonate values in the Soreq Cave record 

in the Younger Dryas were high not because of negative water balance (as argued by 

Bar-Matthews et al., 1997) but because of increased δ18O of the Eastern 

Mediterranean and hence of Near East precipitation. As well as that debate, another 

that needs to be addressed is the issue of the rapidity of the Younger Dryas to 

Holocene transition in the region compared to in the rest of the world. Records from 

Ammersee in Germany (von Grafenstein et al., 1999), Cariaco off Venezuela (Hughen 

et al., 1996) and NGRIP, the latest Greenland ice core (Rasmussen et al., 2006, 

Vinther et al., 2006, Steffensen et al., 2008), see Figure 2.4 for locations, show the 

transition occurring in less than a century, whereas records further away from the 

North Atlantic, such as Dongge Cave in China (Dykoski et al., 2005), Socotra in Yemen 

(Shakun et al., 2007), the Nile Delta (Castaneda et al., 2010) and the Red Sea (Arz et 

al., 2003), see a much longer transition taking many centuries. However, in the Near 

East, poor chronologies have hampered comparison to these records. In Eski Acıgöl a 

large transition believed to be the Younger Dryas to Holocene is dated to ~12,000 

years BP, the transition in Lake Van is dated to 10,500 years BP and the Soreq Cave 

chronology is also not secure at this time. Additionally, a lack of high resolution 

records has made investigation of the rapidity of the transition difficult (Figure 2.5).  
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Figure 2.5 Selected isotope records from the Near East: Eski Acıgöl (Roberts et al., 

2001), Gölhisar Gölü (Eastwood et al., 2007), Soreq Cave (Bar-Matthews et al., 1997, 

Orland et al., 2009, Bar-Matthews and Ayalon, 2011), Lake Van (Wick et al., 2003) 

and Lake Zeribar (Stevens et al., 2001) (see Figure 2.3 for locations). 

 

 

2.2.2 The Holocene: general long terms trends  

  

The second gap in our knowledge is understanding what caused the millennial scale 

shift to more positive δ18Ocarbonate values in Near East lake records in the mid 

Holocene. (Following the recommendations of Walker et al. (2012), when talking 

about ‘early’, ‘mid’ and ‘late’ Holocene, the early-mid Holocene boundary is defined 

at 8,200 years BP and the mid-late Holocene boundary at 4,200 years BP.) Unlike in 
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North Atlantic region records, where the last major climate shift was the Younger 

Dryas to Holocene transition, in records from the Near East, Africa and Asia there 

was a large shift in hydroclimate in the mid Holocene. Many studies have divided the 

Holocene in the Near East into a wet early Holocene, a transition phase in the mid 

Holocene and a late Holocene that was more arid than the early Holocene. This is 

seen in lake isotope records from Turkey including Eski Acıgöl (Roberts et al., 2001, 

Jones et al., 2007), Gölhisar Gölü (Eastwood et al., 2007), Lake Sünnet (Ocakoglu et 

al., 2013) and Lake Van (Lemcke and Stürm, 1997) and isotope records from 

speleothems from Sofular Cave in Turkey (Gokturk et al., 2011), Jeita Cave in 

Lebanon (Verheyden et al., 2008) and Soreq Cave in Israel (Ayalon et al., 1999, Bar-

Matthews et al., 1997, 2003) (Figure 2.5). Many other studies from Israel also 

suggest a wet early Holocene and dry late Holocene (Neev and Emery, 1995, 

Goodfriend, 1999, Frumkin et al., 1999, Frumkin et al., 2000, Gvirtzman and Wieder, 

2001, McLaren et al., 2004) as do marine records with the S1 sapropel layer in the 

Eastern Mediterranean Sea, seen to be caused by increased Nile discharge from 

increased precipitation (Fontugne et al., 1994), dated to ~10,800-6,100 years BP 

(Ariztegui et al., 2000, Calvert and Fontugne, 2001, De Lange et al., 2008, Rohling et 

al., 2009), and the isotope record from Lake Yammoûneh in Lebanon (Develle et al., 

2010). The development of agriculture in the early Holocene in the Near East has 

been linked to these more positive water balance conditions (Gupta, 2004, Bellwood, 

2005, Willcox et al., 2009).  

 

Near East lake isotope records are interpreted as showing maximum wetness ~7,900 

years BP with a shift to drier conditions (known as the Mid Holocene Transition) 

starting ~7,000 years BP and aridity peaking ~3,000-2,000 years BP (Roberts et al., 

2008, 2011a, Finné et al., 2011). When the Near East lake records are combined, they 

suggest a Holocene precipitation change of <7% (Roberts et al., 2011a), although site 

specific reconstructions at Soreq Cave and Eski Acıgöl (Table 2.1) suggest larger shifts 

(Bar-Matthews et al., 1997, Jones et al., 2007). The end of the African Humid Period, 

a time when much of North Africa was apparently wetter than now, occurred in the 

mid Holocene, seen as an abrupt rise in wind-blown sediments to the Mauritanian 

coast 5,500 years BP (deMenocal et al., 2000) or as a more gradual decrease in the 
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flow of the Nile 8,000-4,000 years BP (Blanchet et al., 2013). The decrease in 

precipitation turned the ‘Green Sahara’ into the desert seen today and had a major 

impact on human settlements (Kuper and Kropelin, 2006). Decreased intensity of 

monsoon rains at Qunf in Oman (Fleitmann et al., 2003, 2007) and Dongge in China 

(Dykoski et al., 2005) are also seen at this time. This increased aridity from the Near 

East to Africa to Asia has been linked to a decline in summer insolation (e.g. 

deMenocal et al., 2000, Fleitmann et al., 2007) and a southward shift in the ITCZ, and 

specifically in the Near East to a decline in winter rains (Tzedakis, 2007, Brayshaw et 

al., 2011a, Roberts et al., 2011b). 

 

 

Table 2.1 Precipitation values calculated for Eski Acıgöl (Jones et al., 2007) and Soreq 

Cave (Bar-Matthews et al., 1997). 

Period Estimated precipitation (mm) % difference from late Holocene 

 Eski Acıgöl Soreq Cave Eski Acıgöl Soreq Cave 

Modern 320 ±40 515±65 – – 

Early 

Holocene 

390 ±60 812 ±137 +22% +58% 

Younger 

Dryas 

240 ±60  –25%  

Bølling-

Allerød 

450 ±50  +41%  

 

 

However, while the increases in δ18Ocarbonate in Near East lake records, and from the 

Soreq Cave, are generally interpreted as indicating a shift to drier conditions (Jones 

and Roberts, 2008) and thus showing the transition from a wet early Holocene to a 

dry late Holocene (Roberts et al., 2008, 2011a), there are debates in the literature. 

At first glance, Near East pollen records seem to contradict the isotope records, with 

a delay of several thousand years between the beginning of the Holocene and 

increases in arboreal pollen. At Eski Acıgöl, for example, while non-arboreal pollen 

(e.g. Pistacia) did rapidly increase, Quercus (oak) did not reach a maximum until 

~5,300 years BP (Woldring and Bottema, 2003). At Lakes Van, Mirabad and Zeribar, 
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the early Holocene pollen record was dominated by steppic indicators such as 

Gramineae and Pistacia, with Quercus gradually increasing to a maximum ~6,700 

years BP (van Zeist and Bottema, 1977). Van Zeist and Bottema (1991) and Roberts 

and Wright (1993) suggested that low arboreal pollen seen in the early Holocene 

Near East compared to earlier advances in Europe (Berglund et al., 1996) and Syria 

(Yasuda et al., 2000) meant the climate was dry. However, as discussed, most lake 

isotope records from the Near East have been interpreted otherwise. Roberts et al. 

(2011a) and Roberts (in press) suggest four main explanations for the divergence 

between isotope and pollen records. Firstly, the pollen record may not accurately 

reflect the actual vegetation of the area at the time; there may be an 

underrepresentation of key vegetation types such as insect-pollinated Rosaceae 

(Woldring and Cappers, 2001). Secondly, slow dispersal rates could have meant that 

trees were simply unable to respond rapidly to changing climate and so they spread 

slowly from refugia back to parts of the Near East (Hillman, 1996, Van Zeist and 

Bottema, 1991). Although the Sofular Cave record suggests limited lag between 

climate and vegetation at the onsets of the Bølling-Allerød and the Holocene with a 

rapid decrease in δ13C suggesting fast revegetation by C3 plants (Fleitmann et al., 

2009, Gokturk et al., 2011), this may have been because of the presence of refugia 

in the mountains near to this site (Leroy and Arpe, 2007). Thirdly, high wildfire 

intensity until 9,000 years BP (Wick et al., 2003, Turner et al., 2010, Vanniere et al., 

2011) would have made it difficult for trees to establish (Roberts, 2002).  

 

Fourthly, the seasonality of precipitation may have been important. Alkenone-

derived sea surface temperatures (Emeis et al., 2000, Triantaphyllou et al., 2009), 

speleothem fluid inclusions (McGarry et al., 2004) and glacial evidence from Anatolia 

(Sarıkaya et al., 2009, Zreda et al., 2011) suggest early Holocene temperatures were 

several degrees cooler than now. However, the prominence of Pistacia in the pollen 

record suggests winters were milder than today, with temperatures not falling below 

freezing (Rossignol-Strick, 1999). Therefore, the inferred drops in annual 

temperature must have been concentrated in the summer. There may also have 

been a shift in the seasonality of precipitation. An increase in winter-dominated 

precipitation, especially in the form of large storm events, is inferred from the large 
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amount of detrital material in the Soreq Cave record at this time (Ayalon et al., 

1999). The lack of Quercus brantii, today associated with spring-season precipitation, 

suggests a seasonality shift to winter precipitation and drier springs and summers 

(Djamali et al., 2010). Summer drought conditions are also suggested by pollen 

records from the Aegean (summer precipitation estimated at just 60-80 mm (Peyron 

et al., 2011)) and fire history reconstructions (Wick et al., 2003, Turner et al., 2010, 

Vanniere et al., 2010, Vanniere et al., 2011). Modelling suggests an increase in winter 

precipitation during the early Holocene possibly caused by a southward shift in the 

North Atlantic storm track due to insolation changes (Brayshaw et al., 2010), but no 

increase in summer precipitation (Dormoy et al., 2009, Brayshaw et al., 2011a). 

Therefore, even though the early Holocene was ‘wetter’ than the late Holocene (i.e. 

more positive water balance), as indicated by the isotope records, summer drought 

would have meant soil moisture was not high enough to allow for the spread of 

forests (Tzedakis, 2007).  

 

While the importance of changes in precipitation seasonality in the Near East during 

the Holocene are well recognised, Stevens et al. (2001, 2006) take this one step 

further and argue that seasonality was the key driver of δ18Ocarbonate records from 

Lake Zeribar and Lake Mirabad and that the increase in δ18Ocarbonate in the mid 

Holocene was mainly due to a shift from winter- to spring-dominated precipitation. 

They use pollen records (van Zeist and Bottema, 1977, Bottema, 1986), as well as 

ostracod and diatom records (Griffiths et al., 2001, Wasylikowa et al., 2006), to 

suggest that the early Holocene was in fact drier than the late Holocene, rather than 

a wetter early Holocene with an increased summer drought. This clearly puts their 

interpretation at odds with those of other Near East records. Stevens et al. (2006) 

suggest that the discrepancy could be explained by storm tracks flowing over Turkey 

that then went north over the Caspian Sea instead of over Iran. However, it is 

considered doubtful that the climate changed from wet to dry in Turkey and dry to 

wet in western Iran, since the pollen and stable isotope records are so similar (Jones 

and Roberts, 2008). The interpretation of the δ18Ocarbonate records by Stevens et al. 

(2001, 2006) is complicated. For example, Stevens et al. (2001) had interpreted a 

δ18Ocarbonate peak at 5,400 years BP at Lake Zeribar as showing a peak in spring rainfall 
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as the continental climate was re-established after the mid-Holocene transition. 

However, Stevens et al. (2006) argued that Sr/Ca values and pollen data suggest that 

the δ18Ocarbonate record at this time should not actually be interpreted as responding 

to changes in seasonality but rather as responding to changes in water balance and 

thus indicating a drought.  

 

Another source of contention is the interpretation of the Dead Sea record. As 

discussed in section 2.2.1, the Younger Dryas is seen as wetter than the early 

Holocene (Stein et al., 2010). Additionally, based on pollen data, the early Holocene 

is seen to be drier than the mid and late Holocene, specifically with the period 6,300-

3,500 years BP seen as receiving more than 650 mm of precipitation per year and the 

period 9,700-6,500 years BP less than 350 mm/year (Litt et al., 2012). Again, this runs 

contrary to most of the interpretations of Near East records outlined above, 

including the Soreq Cave record from Israel. Again, Frumkin et al. (2000), Kolodny et 

al. (2005), Enzel et al. (2008), Stein (2010) and Litt et al. (2012) argue that the Soreq 

Cave δ18Ocarbonate record should be seen as a proxy for changes in the δ18O of source 

waters. 

 

2.2.3 The Holocene: centennial scale climate changes 

 

It is now well established that the Holocene, as well as seeing the multi-millennial 

scale trends discussed in section 2.2.2, saw abrupt centennial scale shifts (Mayewski 

et al., 2004, Wanner et al., 2008). In the early Holocene, three key cooling events, 

the Pre Boreal Oscillation (PBO), the 9.3 ka event and the 8.2 ka event, ~11,300 

years BP, ~9,300 years BP and ~8,200 years BP respectively, have been linked to 

slowdowns of North Atlantic thermohaline circulation due to glacial outburst floods 

(Barber et al., 1999, Fisher et al., 2002, Clarke et al., 2004, Alley and Agustsdottir, 

2005, Ellison et al., 2006, Hillaire-Marcel et al., 2007, Thomas et al., 2007, Fleitmann 

et al., 2008, Yu et al., 2010, Hoogakker et al., 2011, Hoffman et al., 2012). In records 

from the North Atlantic region, these events are seen to last 100-200 years. They are 

expressed in many other parts of the Northern Hemisphere as cool/dry events, for 

example at the time of the PBO in Yemen (Shakun et al., 2007) and Tuscany (Magny 
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et al., 2007), at the time of the 9.3 ka event in isotope records from Dongge Cave in 

China (Dykoski et al., 2005) and Qunf Cave in Oman (Fleitmann et al., 2003, 

Fleitmann et al., 2007) and at the time of the 8.2 ka event at Lake Van (Landmann 

and Kempe, 2005), Sofular Cave (Gokturk et al., 2011), in the Balkans (Bordon et al., 

2009, Aufgebauer et al., 2012), Greece (Pross et al., 2009), Soreq Cave (Bar-

Matthews et al., 2003, Almogi-Labin et al., 2009), Eski Acıgöl where wildfire intensity 

increased (Turner et al., 2008) and in the Eastern Mediterranean where Sapropel S1 

was interrupted (Kotthoff et al., 2008b). While the 8.2 ka event is a short and well 

defined event in most records from the North Atlantic region (Daley et al., 2011), in 

other parts of the Northern Hemisphere climate anomalies at this time last longer 

and are less well defined (Rohling and Palike, 2005). 

 

The major issue with Near East isotope records (for example Eski Acıgöl, Lake Van 

and Soreq Cave) for the early Holocene is that they are not at a high resolution and 

well-dated enough to properly investigate these centennial scale climate anomalies, 

meaning it is unclear in particular whether the PBO and the 9.3 ka event have so far 

not been seen in Near East records because there were no climate changes in the 

region at these times, or simply because the records thus far produced are too low 

resolution to pick up the changes. 

 

However, for the mid and late Holocene in the Near East there are more records of a 

high enough resolution to investigate centennial scale climate changes. Three key 

centennial scale drought periods have been identified in Near East lake isotope 

records, from ~5,300-5,000, ~4,300-3,900 and ~3,100-2,800 years BP (Roberts et al., 

2011a). These are of particular interest as they coincide with the ends of the Late 

Chalcolithic, Early Bronze Age and Late Bronze Age respectively. ~5,200 years BP, 

aridity can be seen in records from Lake Van (Lemcke and Stürm, 1997), the Gulf of 

Oman (Cullen et al., 2000), Syria (Fiorentino et al., 2008), SE Arabia (Parker et al., 

2006), Lake Tecer (Kuzucuoglu et al., 2011) and east Africa (Thompson et al., 2006). 

Higher resolution analysis of the Soreq Cave isotope record has suggested that 

rather than there being one dry period, there were three separate wet-dry 

fluctuations each lasting 150-250 years (Bar-Matthews and Ayalon, 2011). In the 
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archaeological records at this time, although there is evidence that the late Uruk 

period society in Mesopotamia ‘collapsed’ (Weiss, 2003), in other areas civilisation 

continued to flourish (Kuper and Kropelin, 2006). A wet phase has been identified at 

the time of the Early Bronze Age II to Early Bronze Age III transition at Soreq Cave 

~4,800-4,700 years BP (Bar-Matthews and Ayalon, 2011), followed by another 

~4,500-4,300 years BP (Bar-Matthews and Ayalon, 2011) also seen at Lake Tecer 

(Kuzucuoglu et al., 2011) and in Syria (Fiorentino et al., 2008, Roberts et al., 2011a).  

 

~4,200 years BP, there was period of increased aridity and climate variability 

(Roberts et al., 2011a), seen in records from the Gulf of Oman (Cullen et al., 2000), 

the Indus delta (Staubwasser et al., 2003), the Red Sea (Arz et al., 2006), NW Turkey 

(Ulgen et al., 2012), the Nile Delta (Bernhardt et al., 2012), Eski Acıgöl (Roberts et al., 

2001), Gölhisar Gölü (Eastwood et al., 2007), Lake Tecer (Kuzucuoglu et al., 2011) and 

the Dead Sea (Migowski et al., 2006, Stein et al., 2010, Litt et al., 2012). At Soreq 

Cave, the period consisted of three dry events from 4,300-4,150, 4,050-4,000 and 

3,900-3,850 years BP, with a ~20-30% reduction in precipitation (Bar-Matthews and 

Ayalon, 2011), again highlighting the importance of high resolution analysis in really 

disentangling the form of these centennial scale events. The increased aridity ~4,200 

years BP could help explain a sharp decline in population, or a change in population 

distribution and socioeconomic activity, seen in the archaeological record at this time 

(Dalfes et al., 1997, Cullen et al., 2000, deMenocal, 2001, Algaze and Pournelle, 2003, 

Kuzucuoglu and Marro, 2007). The dry period is hypothesised to have been a major 

cause of the ‘collapse’ of the Akkadian civilisation ~4,110 years BP in Mesopotamia 

(Weiss, 1993), with a volcanic ash layer providing a direct temporal link between the 

‘collapse’ and an increase in aridity inferred from Mesopotamian dust blown into the 

Gulf of Oman (Cullen et al., 2000). Increased aridity at this time has also been linked 

with the decline of the Old Kingdom of Egypt (Stanley et al., 2003) and the Harappan 

civilisation in the Indus valley (Possehl, 1997, Staubwasser et al., 2003). 

 

Following a generally humid period 3,900-3,500 years BP (Roberts et al., 2011a), 

there was a significant drought centred on ~3,100 years BP seen at Eski Acıgöl 

(Roberts et al., 2001), the Sea of Galilee (Langgut et al., 2013), Lake Zeribar (Stevens 
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et al., 2001), the Eastern Mediterranean Sea (Emeis et al., 2000, Schilman et al., 

2001), Jeita Cave (Verheyden et al., 2008), the Dead Sea (Migowski et al., 2006, Stein 

et al., 2010, Litt et al., 2012) and Lake Tecer (Kuzucuoglu et al., 2011). As with the 

aridity increases ~5,200 and 4,200 years BP, high resolution analysis suggests the 

drought ~3,100 years BP actually comprised several drought episodes interspersed 

within decades of wetter climate (Kuzucuoglu, 2009). The Hittite civilisation declined 

at the end of the Bronze Age, with their capital Hattusa destroyed ~3,180 years BP 

(Weiss, 1982). Hittite texts referred to drought at this time (Akurgal, 2001) and there 

were also crop failures in Syria (Kaniewski et al., 2010).  

 

2.3 Summary 

 

The Near East is in the transition zone between Atlantic- and monsoon-influenced 

climate systems and the connections between Near East hydroclimate and North 

Atlantic climate, the Indian Monsoon and the North Sea-Caspian Pattern Index have 

been identified in contemporary climate. While over the last couple of decades many 

palaeoclimate records have been produced for the Near East, there are still debates 

and unanswered questions, namely the form, timing and rapidity of the Younger 

Dryas to Holocene transition, the general form of the Holocene (specifically whether 

isotope records should be interpreted as showing a Mid Holocene Transition from 

wet to dry conditions or whether they should be interpreted in terms of a change in 

the seasonality of precipitation) and the identification of centennial scale climate 

changes in the Holocene. Addressing these gaps in the literature, through the 

production of high resolution and well-dated records and work to better constrain 

the drivers of δ18Ocarbonate in Near East lake isotope records, will help in the 

investigation of the drivers of Near East climate and the link between the climate and 

archaeological records. 
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Chapter 3 | Stable isotope analysis of lacustrine sediments 

 

As discussed in section 1.3, stable isotope analysis of lake sediments (especially 

δ18Ocarbonate) was selected as the best way of addressing the knowledge gaps 

discussed in section 1.2 and chapter 2. Here, the use of stable isotope analysis in the 

lacustrine environment is reviewed. 

 

3.1 Using lake sediments as archives of environmental change 

 

Lakes can have a variety of origins, from volcanic, to tectonic, to glacial. Over time, 

lakes become infilled with sediment and these sediments can be useful records of 

environmental change (Lowe and Walker, 1997). Lake sediments are formed of 

allochthonous (not formed in the lake) and autochthonous (formed within-lake) 

organic and inorganic material. If there is a seasonality in the precipitation of 

sediment fractions, for example carbonate precipitated in the summer and darker 

organic material throughout the rest of the year, and if the conditions are right 

(usually stratification of lake waters and anoxic conditions at the bottom to limit 

turbidity and biological activity), annually laminated/varved sediments can form and 

be preserved (O’Sullivan, 1983, Ojala et al., 2012). Varved sediments are particularly 

useful for palaeoenvironmental work as they allow a robust chronology to be derived 

and for the investigation of annual to sub annual changes in lake conditions. 

 

Lake sediments are composed of a number of components. There are a number of 

types of carbonate that can form in lakes, the most common being calcite and 

aragonite, which are chemically the same (CaCO3) but have different crystal 

structures, and dolomite (CaMg(CO3)2). While calcite and aragonite are often 

endogenic, precipitating directly from lake waters (e.g. Romero-Viana et al., 2008, 

Sondi and Juracic, 2010, Viehberg et al., 2012), the formation of dolomite is more 

variable, with many studies suggesting a diagenetic origin (Kelts and McKenzie, 1982, 

Mazzullo, 2000, Vasconcelos et al., 2005). Shifts from precipitation of calcite to 

aragonite are often linked to evaporatively-driven increases in the Mg/Ca ratio 
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(Muller et al., 1972, Kelts and Hsu, 1978, Ito, 2001), and dolomite is almost 

exclusively found in lakes with high Mg/Ca ratios (Last, 1990). Precipitation of 

endogenic carbonate may be initiated by algal blooms, which draw down CO2, 

thereby raising the pH of the lake water and leading to carbonate supersaturation 

(Siegenthaler and Eicher, 1986, Bronmark and Hansson, 2005, Deocampo, 2010). 

Biogenic carbonates (the calcareous skeletons and shells of organisms) and detrital 

carbonate material washed in from the catchment can also be found in lake 

sediments. Non-carbonate components include diatom silica, organic matter from 

plants and detrital silicates washed into the lake from the catchment. The isotopic 

composition of these different components of lake sediments change as variables 

such as temperature, the isotopic composition of lake waters and catchment 

vegetation change, and looking at this variability over time can allow for the 

reconstruction of environment and climate. 

 

3.2 Stable isotope analysis theory 

 

An isotope of an element differs from another by having a different number of 

neutrons. For example, oxygen has three naturally occurring isotopes: 16O with 8 

protons and 8 neutrons, 17O with 8 protons and 9 neutrons and 18O with 8 protons 

and 10 neutrons. Different isotopes have slightly different physical and chemical 

properties, and this means the relative proportion of the different isotopes can 

change in a process known as fractionation.  

 

It was first suggested by Briscoe and Robinson (1925) that physical chemical 

processes could cause isotopic fractionation of elements. There are two types of 

processes that can cause fractionation: equilibrium and kinetic effects. In equilibrium 

fractionation, the forward and backward reaction rates of an isotope are identical: 

there is no net reaction (Hoefs, 2009). For example, during condensation, the 

isotopic composition of the liquid and gas phases will change, but the isotopic 

composition of the liquid and gas phases as a whole will be constant, with 

fractionation dependent entirely upon temperature. In kinetic fractionations, 

forward and backward reaction rates are not identical: they are incomplete and 
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potentially unidirectional processes (Hoefs, 2009). Evaporation is generally a kinetic 

process, with lighter isotopes preferentially evaporated because their bonds are 

more easily broken, and air flow removing the evaporated water vapour from the 

system. Most biological processes are kinetic, with organisms preferentially utilising 

lighter isotopes because it requires less energy to break their bonds. 

 

Isotope ratios are measured on mass spectrometers. The substance from which 

isotope data are required is converted to gas (carbonates for example are reacted 

with acid to produce CO2), which is then ionised and accelerated through a magnetic 

field that deflects ions according to their ratio of charge to mass. Light ions are 

deflected more strongly than heavier ones of the same charge. Multiple collectors 

are used to collect ions of different masses at the same time (for example for CO2 

masses 44, 45 and 46), and measurements are made by passing the ions through 

resistors and measuring the intensity of the electrical current produced. The isotopic 

composition of a sample is measured relative to the isotopic composition of a 

reference gas in a mass spectrometer. In order for data produced in different 

laboratories to be compared, references gases are produced relative to an 

international standard. Carbonate and organic isotope data are given relative to the 

isotopic composition of Vienna Pee Dee Belemnite (VPDB) and water and diatom 

silica relative to Vienna Standard Mean Ocean Water (VSMOW). Relative differences 

in isotopic ratios can be determined far more precisely than absolute isotopic ratios 

so the delta (δ) notation is used: 

 

    
         –           

         
                  3.1 

where R is the ratio of the heavy isotope to light isotope, reported in per mil (‰). A 

positive δ means the ratio of the heavy to light isotope is higher than in the standard.  

 

3.3 Controls on δ18O of lake waters 

 

The oxygen isotope composition of lake waters depends on two key factors: the 

isotopic composition of the input (precipitation) and any modifications to this within 
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the lake (Leng and Marshall, 2004). The oxygen isotopic composition of precipitation 

(δ18Oprecipitation) is a function of a number of factors. The initial influence is δ18O of the 

moisture source, as well as sea surface temperature, the relative humidity of the 

atmosphere and wind regime when the initial water mass evaporates (Darling et al., 

2006). Once evaporated, other factors become important, including temperature.  

 

As temperature decreases, δ18Oprecipitation becomes lower for two reasons. Firstly, 

heavier isotopes are preferentially condensed, so the colder it gets the more 

isotopically depleted the precipitation will be. Secondly, the isotope fractionation 

factor is temperature dependent. These two factors combined mean that, generally, 

δ18Oprecipitation/T is roughly equal to +0.2-0.7‰°C-1 (Dansgaard, 1964), averaging 

+0.6‰°C-1 in mid to high latitudes (Rozanski et al., 1992) (Figure 3.1).  

 

As distance from the moisture source increases, δ18Oprecipitation becomes more 

depleted, because heavier isotopologues (2H1H16O and H2
18O) are preferentially 

rained-out. The lowering of temperature with increased altitude additionally leads to 

progressive isotopic depletion. The type of precipitation is also important. While the 

isotopic composition of rainfall near the ground surface is close to isotopic 

equilibrium with near-ground water vapour because raindrops continuously re-

equilibrate with the surrounding moisture after leaving the cloud, snow and hail do 

not and instead reflect equilibrium conditions in the cloud so are more isotopically 

depleted (Darling et al., 2006). Finally, the amount of precipitation can be important 

(Dansgaard, 1964). Usually heavier isotopologues are rained-out first but in intense 

storms even lighter isotopologues will quickly be rained-out, so δ18Oprecipitation will be 

lower than would otherwise be expected.  
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Figure 3.1 Data from Ankara GNIP station 1964-2009  (IAEA/WMO, 2013) showing 

the strong relationship between δ18Oprecipitation and temperature (r2 = 0.55), with 

δ18Oprecipitation values for June, July and August (JJA) ~5‰ higher than December, 

January and February (DJF) values and an overall δ18Oprecipitation/T relationship of 

+0.32‰°C-1. 

 

 

The average isotopic composition of precipitation varies globally. Craig (1961) 

surveyed the isotopic composition of precipitation worldwide and suggested a best 

fit line, termed the Global Meteoric Water Line (GMWL): 

 

δD = 8 x δ18O + 10            3.2 

 

Deviations from the GMWL are found in many regions, leading to Local Meteoric 

Water Lines (LMWL; Figure 3.2). 
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Figure 3.2 Data from Ankara GNIP station 1964-2009 showing the difference 

between the Ankara Meteoric Water Line and the Global Meteoric Water Line 

(IAEA/WMO, 2013). 

 

 

The isotopic composition of precipitation that has made its way into a lake may be 

further modified as the result of within-lake processes, such as evaporation, which 

are influenced by lake size and the degree of hydrological closure (Table 3.1). Since 

δ18Oprecipitation is variable on short time scales (Darling, 2004), in very small lakes, with 

short residence times, δ18Olakewater will not be averaged out sufficiently to reflect 

mean annual precipitation and seasonal influences will be important (Leng and 

Marshall, 2004). However, in larger, well-mixed lakes, δ18Olakewater should be less 

sensitive to seasonal variations. In hydrologically open lakes, where there is 

substantial inflow and outflow, δ18Olakewater tends to plot near the LMWL and values 

are often assumed to reflect δ18Oprecipitation (Leng et al., 2006). In closed lakes, where 

there is limited inflow and outflow, δ18Olakewater will plot off the GMWL/LMWL on a 

local evaporation line. Therefore,  δ18Olakewater in closed lakes is more related to the 

balance between the isotopic composition of inputs and outputs than to 
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δD = 7.21δ18O + 4.29 
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δ18Oprecipitation (Leng et al., 2006). The degree to which δ18Olakewater is enriched 

depends on the precipitation:evaporation ratio and the residence time of the lake.  

 

 

Table 3.1 The predominant controls of δ18Olakewater depend on the size of the lake and 

its degree of hydrological closure (modified from Leng and Marshall, 2004). 

 Very small lake Small/medium 

open lake 

Small/medium 

closed lake 

Large lake 

Residence time <1 year 

 

>1 year Decades Centuries 

Main forcing Seasonality, 

temperature, 

δ
18

Oprecipitation 

Temperature, 

δ
18

Oprecipitation 

Precipitation-

evaporation ratio 

Precipitation-

evaporation ratio 

 

 

3.4 Controls on δ18O of lake carbonates 

 

If carbonate is precipitated in equilibrium with lake waters, δ18Ocarbonate is dependent 

entirely upon temperature (with a fractionation factor of ~–0.24‰°C-1) and 

δ18Olakewater. However, disequilibrium effects (known as vital effects in biogenic 

materials), where carbonates do not precipitate in equilibrium with the lake water, 

can alter δ18Ocarbonate values. For example, almost all freshwater ostracods exert a 

small vital effect, increasing δ18O in comparison to equilibrium precipitates (Holmes 

and Chivas, 2002). Also, where mineral precipitation rates are especially high, kinetic 

fractionation may mean that δ18Ocarbonate values are 2-3‰ below that expected for 

equilibrium fractionation (Fronval et al., 1995). Another problem that may be 

encountered is in-wash of old carbonates from the catchment (Leng et al., 2010). 

 

Issues also arise when attempting to produce isotope records from lake cores that 

contain different types of carbonate because they have different mineral-water 

fractionation factors, meaning changes in mineralogy can distort the δ18O signal and 

make it more difficult to accurately discern climate shifts. As will be discussed in 

more detail in section 6.3.5, aragonite is ~0.7‰ more positive than calcite formed 
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under the same conditions and dolomite ~2.7‰ more positive than calcite formed 

under the same conditions (Hays and Grossman, 1991, Vasconcelos et al., 2005, Kim 

et al., 2007a). Another issue is that if carbonates form at different times or in 

different parts of the lake, there will be an additional offset to apply because of 

differences in temperature and δ18Olakewater at the times and locations of their 

formation (e.g. Leng et al., 2013). 

 

3.5 Controls on δ18O of diatom silica 

 

Diatoms are siliceous algae and their frustules are composed of two layers: a 

tetrahedrally bonded silica (-Si-O-Si) layer and an outer hydrous (-Si-OH) layer. The 

former contains oxygen incorporated during silicification, on which oxygen isotope 

analysis can be carried out (Leng and Swann, 2010). The controls on δ18Odiatom are 

very similar to those on δ18Ocarbonate (Leng and Barker, 2006). The diatom silica-water 

fractionation factor is ~–0.2‰°C-1 (Brandriss et al., 1998, Moschen et al., 2005, 

Crespin et al., 2010). While Swann et al. (2007, 2008) suggested there could be 

significant isotope offsets between different (marine) species formed under the 

same conditions, other studies (Brandriss et al., 1998, Schmidt et al., 2001, Moschen 

et al., 2005, Schiff et al., 2009) suggest no disequilibrium effect within or between 

individual diatom taxa. Diatom samples need to be cleaned sufficiently so that 

minerogenic contamination does not significantly influence δ18Odiatom, or mass 

balance corrections need to be applied to account for the effect of the 

contamination on δ18Odiatom (e.g. Brewer et al., 2008, Mackay et al., 2011). 

 

3.6 Reconstructing seasonality 

 

Reconstruction of the seasonality of climate, as opposed to annual average 

conditions or of one season, is increasingly being attempted. Reconstructions of 

seasonality using isotope analysis of lake sediments have recently been published 

(e.g. Henderson et al., 2010, Anderson, 2011, Barker et al., 2011, Aguilera et al., 

2012, Masi et al., 2013). Orland et al. (2009, 2012) investigated seasonality using 

oxygen isotope analysis of speleothems from the Soreq Cave, Israel. Pollen has been 
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used to reconstruct seasonality (e.g. Dormoy et al., 2009, Milner et al., 2012) but 

because of long history of human occupation in Near East, this proxy often does not 

provide a clear signal (Peyron et al., 2011). 

 

It was first proposed by Leng et al. (2001) that if carbonates and diatom silica are 

precipitated at different times of the year, comparing δ18O from the two hosts could 

provide information on seasonality. Working on a sediment sequence from 

hydrologically open Lake Pinarbaşi in Turkey and assuming carbonates were 

precipitated in the summer and diatoms grew throughout the year but especially in 

the spring and autumn, they suggested δ18Ocarbonate was a proxy for mean summer 

temperature and δ18Odiatom a proxy for spring snow melt, accounting for the 

substantial differences between δ18O trends from the two hosts. Large differences 

were also seen in the record from Lake Gościąż in Poland (Rozanski et al., 2010), 

again seemingly because of differences in the time of year of diatom growth and 

carbonate precipitation. In contrast, a study by Lamb et al. (2005), using the 

sediments of Lake Tilo in the Ethiopian Rift Valley, found that while δ18Odiatom was 

more variable (interpreted as being the result of tephra contamination) and did not 

pick up two arid events seen in the δ18Ocarbonate record, the general trends were the 

same because diatom growth and carbonate precipitation occur at similar times of 

the year. Therefore, with knowledge of the times of year of diatom growth and 

carbonate precipitation, and if contamination in diatom isotope samples can be dealt 

with, comparison of δ18O from the two hosts can provide insights into seasonality. 

 

3.7 Controls on δ13C of lake carbonates and organic matter 

 

δ13C of dissolved inorganic carbon (DIC) in lake waters is controlled by three main 

factors, with the typical changes in δ13C through the system summarised on Figure 

3.3. Firstly, the isotopic composition of inflowing waters is important. Groundwaters 

and rivers typically have δ13C values for calcite between –10 and –15‰. Most of the 

carbon flowing into lakes comes from plants and soils, and δ13C will be influenced by 

plant type since C4 plants have higher δ13C values than C3 plants (Figure 3.3). 

Secondly, in closed lakes there is sufficient time for CO2 exchange between the 
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atmosphere and the lake water and as 12C is preferentially degassed δ13CDIC can 

increase. Atmospheric CO2 has a δ13C value of ~–7.8‰ and under isotopic 

equilibrium δ13CDIC in a lake will be ~+2‰ (Leng and Marshall, 2004). Thirdly, there is 

preferential uptake of 12C by aquatic plants during photosynthesis, meaning that as 

these plants die and take their 12C to the bottom of the lake, δ13CDIC increases. 

Conversely, if organic material on the lake bottom is then oxidised, 12C will be 

released back into the lake carbon pool (Leng and Marshall, 2004). Preferential draw 

down of 12C by sulphate-reducing bacteria (Kelts, 1988, Komor, 1994, Fenchel et al., 

1998) and methanogens (e.g. Aloisi et al., 2000) in the sediment can decrease δ13CDIC, 

although methanogenesis can often result in very positive δ13CDIC values if the CH4 

produced escapes into the lake water (Talbot and Kelts, 1986, Gu et al., 2004, Leng et 

al., 2013).  

 

During the precipitation of carbonate from lake waters, there is a only a small and 

predictable fractionation effect, meaning δ13Ccarbonate is ~1‰ more positive than 

δ13CDIC (at 16°C) (Leng and Marshall, 2004). Consequently, δ13Ccarbonate can provide 

insights into past changes in δ13CDIC. δ13Ccarbonate is also influenced by changes in 

carbonate mineralogy. Less is known about the effect on carbon isotopes than on 

oxygen isotopes, but it has been estimated that aragonite δ13C values are ~1.8‰ 

more positive than equivalent calcite values (Rubinson and Clayton, 1969, Grossman, 

1984). An important use of δ13Ccarbonate data is to support the interpretation of 

δ18Ocarbonate data. If δ13Ccarbonate and δ18Ocarbonate co-vary (r>0.7), then a lake is seen to 

be hydrologically closed (Talbot, 1990), although it is now recognised that the 

relationship is more complex than this, with covariation only apparent in lakes that 

have attained hydrological closure over extended time frames (Li and Ku, 1997). 
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Figure 3.3 δ13C values for the major carbon sources in lakes and examples of resulting 

δ13CDIC. Modified from Leng and Marshall (2004). 

 

 

δ13C is also measured on lacustrine organic matter. It is dependent on DIC, as 

discussed above, from which aquatic plants fix their carbon, and on differences in 

δ13C between types of organic matter (Meyers and Teranes, 2001, Leng and 

Marshall, 2004). δ13Corganic data are interpreted in conjunction with C/N ratios (Figure 

3.4). C/N values of <10-12 are typical of lacustrine algae, 10-20 of submergent and 

floating aquatic macrophytes and >20 of emergent macrophytes and terrestrial 

plants. C3 plants typically fractionate CO2 (~–7.8‰) into δ13C values of ~–27‰ and 

C4 plants into values of ~–13‰ (Meyers and Teranes, 2001). When most of the 

carbon is from terrestrial sources, δ13Corganic will mainly reflect changes in the type of 

vegetation, with an increase suggesting increases in C4 plant growth and hence 

increased aridity. When most of the carbon is from aquatic sources, δ13Corganic can be 

used as a reliable palaeoproductivity proxy. Even small changes in the type of 

vegetation can make interpretation of bulk δ13Corganic in terms of palaeoproductivity 

problematic, so δ13C is being increasingly carried out on specific biomarkers and on 

diatoms (Street-Perrott et al., 2004, Barker et al., 2013, Leng and Henderson, 2013). 

 

 



34 

 

 

Figure 3.4 Typical δ13C and C/N ratios of terrestrial and lake-derived organic matter. 

δ13C of terrestrial C3 plants and lake algae can be very similar, but the two sources 

can be distinguished using C/N ratios (Meyers and Teranes, 2001). 

 

 

3.8 Summary 

 

Isotope analysis of lake sediments can be used to reconstruct past climate changes, 

but careful consideration of the controls of the isotope signal is required. In open 

lakes, δ18Ocarbonate often reflects δ18Oprecipitation, whereas in closed lakes it is often used 

as a proxy for changes in water balance. It has been proposed that δ18Ocarbonate and 

δ18Odiatom data can be compared to provide insights into palaeoseasonality. δ13C from 

bulk organic matter is difficult to interpret but can be used to investigate changes in 

the sources of organic matter and productivity. Because isotopic records are 

dependent on multiple climatic and non-climatic variables that will differ between 

sites, each lake isotope record must be interpreted within its own isotopic setting: an 

understanding of the modern system is vital if sediment core records are to be 

properly interpreted (chapter 7). 
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Chapter 4 | Uranium-thorium dating of lacustrine sediments 

 

U-Th dating was selected as the best potential method to produce age-estimates for 

the Nar Gölü sequence, to supplement the varve chronology, because radiocarbon 

dating had been shown to be difficult (Jones, 2004) and there is carbonate present 

that could be analysed. In this chapter, the application of U-Th dating to lacustrine 

sediments and the potential issues that may be encountered are discussed. 

 

4.1 Principles of U-Th dating 

 

U-Th dating is a radiometric technique used on carbonates from sediments spanning 

the time period from hundreds to over 500,000 years (Walker, 2005). It does not 

measure the accumulation of stable isotopes, like U-Pb dating, but rather calculates 

age by measuring the extent to which equilibrium has been restored between 230Th 

and 234U, nuclides that are part of a longer decay series beginning at 238U and ending 

at 206Pb (Figure 4.1). At a time equal to ~7 half-lives of 230Th, in a closed system, the 

decay series 238U to 234U to 230Th should reach near secular equilibrium (Bourdon et 

al., 2003, Zhao et al., 2009), with the activity (number of disintegrations per unit time 

per unit weight of material (Walker, 2005)) of all nuclides in the decay series equal 

(i.e. [234U/238U] and [230Th/234U] = 1). Fractionation, which resets this decay sequence 

and causes disequilibrium, is the premise behind U-Th dating. In the lacustrine 

environment, because uranium is more soluble than thorium, the former tends to be 

precipitated with calcium and incorporated into calcite and aragonite crystals as a 

trace element whereas the latter is very insoluble so tends to be found in lower 

quantities in lake waters (Edwards et al., 2003). Therefore, in lake sediments there is, 

theoretically, an initial state of disequilibrium, with [230Th/234U] at zero. As 234U 

decays, the amount of 230Th in the calcite will increase. Over time, the system will 

progress towards secular equilibrium, and the predictability of this allows the age 

since fractionation to be established. The basic 230Th age equation, originally from 

Broecker (1963), was re-expressed by Haase-Schramm et al. (2004) as: 
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4.1 

where square brackets symbolise activity ratios, λ = decay constant and t = age. The 

equation is solved for age iteratively or graphically (Figure 4.2). Initial [234U/238U] 

disequilibrium, due to the preferential weathering of 234U, also needs to be taken 

into account, using the equation expressed by Haase-Schramm et al. (2004) as: 

 

 
    

    
 
       

   
    

    
                     4.2 

 

 

 

Figure 4.1 238U and 232Th decay series, with half lives taken from Bourdon et al. (2003) 

and references therein. α signifies alpha decay and β beta decay.  
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Figure 4.2 Graph from Isoplot software (Ludwig, 2012) used to calculate U-Th age. 

 

 

Eq. 4.1 should only be used when two key assumptions are met: (1) that the system 

has been closed, i.e. that there has been no addition or removal of nuclides since 

deposition, and (2) that initial [230Th/238U] = 0 (Walker, 2005). 

 

4.2 Open system behaviour 

 

The first assumption may be violated if calcite or aragonite undergoes 

recrystallisation (Lao and Benson, 1988) and strategies for checking this assumption 

has not been violated include verification by an independent dating source and 

petrographic and geochemical evidence for a lack of alteration (Placzek et al., 2006). 

The unpredictability of open system behaviour and the resultant uranium loss (which 

could lead to an increase in U-Th age from actual age) means it is presently not 

possible to correct for the effect of this. 
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4.3 When initial [230Th/238U] ≠ 0: detrital contamination and hydrogenous 

thorium 

 

Ideally for U-Th dating, there would be a complete fractionation of uranium and 

thorium when sediments are laid down, with only uranium incorporated into 

carbonates. However, initial thorium can come from detrital material (detrital 

thorium) or from the water column (hydrogenous thorium), and without correction 

leads to age-estimates older than the date the sediment was actually deposited.  

 

Firstly, a situation where hydrogenous thorium is negligible is considered. It is 

difficult to separate the carbonate and detrital components physically or chemically 

so it has to be corrected for after analysis (Bischoff and Fitzpatrick, 1991). If the 

amount of detrital material is small, initial 230Th can be corrected for using the 

[230Th/232Th] ratio (e.g. Fritz et al., 2007). However, usually the total sample 

dissolution isochron approach (Bischoff and Fitzpatrick, 1991, Luo and Ku, 1991) 

needs to be used when working with lake sediments (e.g. Rowe et al., 1999, Roberts 

et al., 2001, Haase-Schramm et al., 2004, Sakaguchi et al., 2009, Shanahan et al., 

2013, Torfstein et al., 2013). Here, samples are assumed to be comprised of two 

components, the carbonate and detrital fractions. By analysing three or more sub 

samples with varying proportions of the two components from the same level in the 

core, it is possible to extrapolate to an end-member that only contains 230Th 

produced from radioactive decay (Edwards et al., 2003).  

 

The presence of hydrogenous thorium, in addition to detrital thorium, complicates 

the correction, because the isochron approach assumes that initial [230Th/232Th] is 

the same between sub-samples. If there are variable mixtures of detrital and 

hydrogenous components with different [230Th/232Th] ratios, there will be different 

initial [230Th/232Th] values between sub samples. Hydrogenous thorium could be 

incorporated into carbonates from the water column after attaching to particles that 

are then incorporated into carbonates or directly from the water into carbonates (Lin 

et al., 1996). If hydrogenous thorium is absorbed by detrital particles with a constant 

water-particle partition coefficient and if detrital thorium is constant, then the 
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hydrogenous thorium to detrital thorium ratio will be the same among sub samples 

(Lin et al., 1996) (Figure 4.3). 

 

Figure 4.3 Effect of detrital thorium and hydrogenous thorium absorbed by detrital 

particles on zero age isochron (modified from Lin et al., 1996). 

 

 

If the uptake of hydrogenous thorium is by direct inclusion of dissolved thorium into 

the carbonate crystal structure in constant proportion to the amount of authigenic 

uranium, the zero age isochron will have a positive slope (Lin et al., 1996) (Figure 

4.4). 

 

Figure 4.4 Effect of detrital thorium and hydrogenous thorium directly included into 

carbonates on zero age isochrons (modified from Lin et al., 1996). 
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Where there is hydrogenous thorium from both detrital-absorption and direct 

incorporation, the situation is more complicated, with different mixing slopes 

between hydrogenous and detrital thorium. If there is a significant amount of direct 

incorporation of hydrogenous thorium into carbonates and/or if [232Th/234U] of the 

carbonate phase is significantly greater than zero, there will be a positive slope on 

the zero age isochron (Figure 4.5). 

 

 

Figure 4.5 Effect of detrital thorium and hydrogenous thorium both directly included 

into carbonates and absorbed onto detrital particles on zero age isochrons, with zero 

age isochrons varying at one end along a mixing line between hydrogenous and 

detrital thorium and pivoted at the other end at the value of directly incorporated 

hydrogenous thorium (modified from Lin et al., 1996). 

 

 

Haase-Schramm et al. (2004) and Torfstein et al. (2009, 2013) have established the 

state-of-the-art for dealing with hydrogenous thorium, based on their work on the 

Dead Sea sediments. Modern aragonite found precipitating on driftwood was 

analysed and after the isochron correction the ages were still 340 years too old. 

Therefore, all other isochron ages were adjusted by simply subtracting 340 years, 

assuming the offset was constant through time. This offset is fairly small, because 
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there was not much difference in [230Th/232Th] between the detrital and hydrogenous 

thorium components. 

 

4.4 Developments in mass spectrometric methods 

 

In the 1980s, thermal ionisation mass spectrometry (Edwards et al., 1987, Ludwig et 

al., 1992, Stirling et al., 1995) replaced alpha counting as the way to measure 

uranium and thorium activity ratios, allowing ratios greater than 105 to be measured 

(Goldstein and Stirling, 2003). More recently, multi-collector inductively coupled 

plasma mass spectrometers (MC-ICP-MS) (Halliday et al., 1995, Hellstrom, 2003, 

McCulloch and Mortimer, 2008, Shen et al., 2012) have increased the speed and 

sensitivity of measurements. The advantages of ICP-MS include the efficient 

ionisation of most elements and effectively a constant mass discrimination of the 

plasma source that can be precisely corrected for and is considered to be 

independent of the chemical properties of the element (Goldstein and Stirling, 2003). 

 

4.5 Summary 

 

In lakes, because uranium is more soluble than thorium, the former is more readily 

incorporated into carbonates, hence causing fractionation and disequilibrium in the 

uranium decay series. U-Th dating is based on the calculation of the extent to which 

equilibrium has been restored between 230Th and 234U. Potential issues include open 

system behaviour and the presence of detrital and hydrogenous sources of thorium, 

meaning that U-Th dating of lake sediments is in general more difficult and less 

accurate than U-Th dating of speleothems. 
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Chapter 5 | Site description and previous work at Nar Gölü 

 

This chapter provides an introduction to the site and gives details of the previous 

work undertaken. 

 

5.1 Overview 

 

Nar Gölü is a small (~0.7 km2) but relatively deep (>20 m) lake in the Cappadocia 

region of central Turkey (Figures 5.1 and 5.2). It is a maar lake (Gevrek and Kazanci, 

2000), formed by water infilling of a crater produced by an explosion resulting from 

groundwater-magma interaction (Cohen, 2003). As described in Woodbridge and 

Roberts (2011), the lake is weakly alkaline and oligosaline to mesosaline, with 

sodium and chloride the major ions. The lake is thought to be monomictic. 

 

 

Figure 5.1 Location of Nar Gölü (38°20'24.43"N, 34°27'23.69"E, 1363 m.a.s.l.) in 

central Turkey, with Niğde (37°58’N, 34°41’E, 1300 m.a.s.l.; site of the nearest 

meteorological station) and Ankara (39°52’N, 32°52’E, 940 m.a.s.l.; site of the nearest 

GNIP station) also shown. 

 

 

Nar Gölü lies within the Göllüdağ volcanic complex, with the crater itself dated to 

around 1.6-1.3 million years BP (Gevrek and Kazanci, 2000). The east and west sides 



43 

 

of the crater are comprised mainly of basalt, with the southern side dominated by 

ignimbrite (visible as lighter deposits on the far side of the lake on Figure 5.2A) 

(Gevrek and Kazanci, 2000). The volcanic geology means there is plenty of silica 

available for diatom growth and the pH of ~8 means both carbonates and diatoms 

are preserved in sediments. The lack of carbonate in the catchment removes the 

potential for problems associated with detrital carbonate contamination (Leng et al., 

2010).  

 

 

 

Figure 5.2 A: Nar Gölü in July 2010, looking south at ignimbrite outcrops, taken 

during the main coring period during the hottest July on record. B: In February 2012, 

the lake surface was partly frozen and snow >50 cm deep blanketed the catchment. 

 

 

The small surface area compared to depth and the anoxic conditions at the bottom 

of the lake lead, presently, to the preservation of varved sediments (section 3.1). At 

the southern end of the lake there is an alluvial fan (but with no stream activity 

observed during any of the field seasons) as well as hot springs assumed to be 

heated by geothermal processes. Two cold springs have also been found in the 

southern wall of the crater, which are seasonal. There is no surface outflow, but 

A 

B 
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there is probably a significant amount of groundwater throughflow. Jones et al. 

(2005) estimated that only 24-33% of the water entering the lake comes from direct 

precipitation or surface runoff. Evaporation is estimated to account for 43-58% of 

the water leaving the lake, with the rest from groundwater outflow (Jones et al., 

2005). There is little vegetation on the north, east and western slopes apart from 

deciduous oak (Quercus cerris). Pine trees have been planted on the alluvial fan. 

Phragmites and other emergent macrophytes grow around the lake, apart from 

around the hot springs (England et al., 2008).  

 

5.2 Regional climate 

 

The climate of the region is continental Mediterranean (Kutiel and Turkes, 2005) with 

annual precipitation at Niğde, 45 km from Nar Gölü, averaging 339 mm between 

1935 and 2010. July, August and September are very dry, receiving only 6% of the 

total precipitation, while April and May are the wettest months, accounting for 27% 

of the total (Figure 5.3). The hottest months are July and August, when temperatures 

average +23°C, while from December to February temperatures average +0.7°C. 

Measured evaporation at Niğde between 1935 and 1970 was 1547.6 mm per year 

(Meteoroloji-Bulteni, 1974). 

 

 

Figure 5.3 Climate of Niğde showing monthly minimum and maximum temperatures 

and precipitation totals averaged from 1935-2010. The location of Niğde relative to 

Nar Gölü is shown on Figure 5.1. Data collected by the Turkish Meteorological Service 

and supplied by Murat Türkeş.  
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5.3 Previous work at Nar Gölü 

 

5.3.1 Coring and monitoring work 

 

Following pilot coring in 1999, sediment cores taken in 2001/2, using Glew (Glew et 

al., 2001), Mackereth (Mackereth, 1958) and Livingstone (Livingstone, 1955) corers, 

produced a 3.76 m sequence (NAR01/02 sequence) used for stable isotope, pollen, 

microcharcoal and diatom analysis (Jones et al., 2005, Jones et al., 2006, England et 

al., 2008, Turner et al., 2008, Woodbridge and Roberts, 2010). A further core was 

taken in 2006 using a Glew corer and used for diatom analysis. The 2001/2 and 2006 

cores are laminated throughout and 210Pb and 137Cs dating on the top 50 cm of the 

NAR01/02 sequence and the analysis of modern sediment from traps indicates the 

couplets are annual (Jones et al., 2005). Analysis of sediment traps and thin sections 

suggested organic material (which includes diatom silica) is deposited throughout the 

year and is darker in colour than carbonate material, which is deposited in the late 

spring/early summer sometimes following the spring algal blooms (Woodbridge and 

Roberts, 2010). The varve cycle is sometimes interrupted by grey clastic layers: 

allochthonous material originating from catchment erosion. The varves meant 

counting could be used to date the cores. A maximum counting uncertainty of 2.5% 

was calculated, although true dating precision is likely to be much more reliable 

(Jones et al., 2005). There is no evidence of benthic life in any of the cores. The lake 

has a residence time of 8-11 years (Jones, 2004), meaning any inter-annual signal in 

δ18O will be smoothed. Additionally, as detailed in section 6.1.1, water samples were 

taken, geochemical measurements made and sediments traps deployed, in order to 

understand the modern limnology of the lake. 

 

5.3.2 Stable isotope analysis of the NAR01/02 sequence 

 

The varved sediments of the NAR01/02 cores meant accurate proxy data-climate 

calibrations could be derived. Jones et al. (2005) compared the oxygen isotope 

record for 80 years to instrumental records of temperature, precipitation, wind 

speed, relative humidity and calculated values of evaporation, and found significant 
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relationships between the δ18O record and summer temperatures and evaporation, 

which suggested these were the main controls on the isotope hydrology of the lake. 

However, modelling showed that although the dominant controls on δ18O seem to 

be summer temperatures and evaporation, these two factors cannot explain the 

magnitude of the change seen in the δ18O records. For example, a large shift to more 

positive δ18O values in the 1960s (–10 years BP) is associated with a reduction in 

summer temperatures and an increase in relative humidity, however additional 

factors, such as the amount of precipitation, would be required to amplify the 

observed δ18O change. The Nar Gölü δ18Ocarbonate record was therefore taken as a 

proxy for regional water balance (Jones et al., 2006). δ18O and δ13C analyses were 

carried out on the carbonates from each of the top 900 varves, and then on the 

following 825 varves at 5 year intervals. Increased aridity was inferred 1,650-1,450 

years BP and 550-0 years BP and increased wetness 1,390-1,200 years BP and 950-

600 years BP (Figure 5.4). Increased δ18O values occur at the same time as shifts in 

carbonate mineralogy from calcite to aragonite, which supports the interpretation of 

shifts to a more evaporative system (Kelts and Hsu, 1978, Jones et al., 2005). As 

outlined in section 2.1.1, Jones et al. (2006) demonstrated links between Turkish 

climate and the NAO index in winter and the Indian monsoon in the summer.  

 

 

Figure 5.4 δ18O of the NAR01/02 record, as published in Jones et al. (2006). 

 

 

5.3.3 Diatom species work on the NAR01/02 sequence 

 

Diatom-inferred conductivity showed a good correspondence with the δ18O record 

(Jones et al., 2006) for most of the record, when the freshwater bloom species were 

-6 

-4 

-2 

0 

2 

4 

-50 150 350 550 750 950 1150 1350 1550 

δ
1

8 O
ca

rb
o

n
at

e
 ‰

 V
P

D
B

 

Years BP 



47 

 

left out of calculations (Figure 5.5) (Woodbridge and Roberts, 2011). From the Little 

Ice Age onwards, the two records became decoupled, with increased bloom events 

possibly related to human disturbance in the catchment. The majority of diatom 

species were found to be represented in both the modern and palaeo environments, 

suggesting dissolution is not a significant issue (Woodbridge and Roberts, 2010). 

Freshwater species Nitzschia paleacea, Synedra acus and Stephanodiscus parvus 

were identified as bloom species (Woodbridge and Roberts, 2010, 2011). Based on 

sediment trap data and thin section analysis, N. paleacea and S. parvus probably 

bloom immediately prior to carbonate formation, while S. acus blooms in the 

autumn or early spring (Woodbridge et al., 2010). In contrast, Cyclotella 

meneghiniana dominates biovolume calculations before 1,150 years BP (Woodbridge 

and Roberts, 2011). An endemic diatom genus (species Clipeoparvus anatolicus) has 

been identified in Nar Gölü (Woodbridge et al., 2010).  

 

5.3.4 Pollen and charcoal work on the NAR01/02 sequence 

 

England et al. (2008) suggested the landscape around Nar Gölü has been ‘open’ for 

the past 2,000 years. Most pollen deposited in Nar Gölü is probably regional, rather 

than local, in origin, since there are relatively high levels of pine pollen over the last 

2,000 years, yet pine trees do not naturally grow in Cappadocia (England et al., 

2008). From 1,650-1,170 years BP, a strong cultural imprint is indicated by cereal 

pollen such as rye, wheat and barley. Charcoal influx was low. From 1,170-1,000 

years BP, there was an increase in tree pollen and a decrease in anthropogenic 

indictors, which corresponds with a period of major societal change in the Byzantine 

world (Figure 5.5), followed by a decrease in tree pollen and an increase in cereal 

pollen indicting a return to anthropogenic domination of the landscape 1,000-120 

years BP. From 120 years BP to present there were sustained decreases in grass 

pollen, probably reflecting the destruction of steppe grasslands for cereal production 

with the intensification of agriculture. Changes in the pollen record do not coincide 

with changes in the isotope record.  
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5.4 Summary 

 

Nar Gölü is a closed lake, with waters evaporatively enriched in 18O. Carbonates and 

diatoms are both preserved in its sediments. The climate of the area is very seasonal, 

in terms of temperature and precipitation. Previous work has suggested δ18Ocarbonate 

from Nar Gölü sediments is a good proxy for regional water balance and that, over 

the past 1,720 years at least, varves have formed. 
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Chapter 6 | Methodology 

 

In an attempt to address the aims outlined in section 1.5, a number of methods were 

used. Firstly, field work was carried out to retrieve longer cores than those previously 

analysed from Nar Gölü and to collect more water samples so that inter- and intra-

annual changes in the oxygen isotope composition of Nar Gölü could be investigated, 

in order to better interpret the palaeo record. Secondly, since Jones et al. (2005) had 

already shown that δ18Ocarbonate from Nar Gölü sediments is a good proxy for regional 

water balance, δ18Ocarbonate analysis was carried out at a high resolution through the 

record. δ13Ccarbonate and δ13Corganic data were produced to support the interpretation 

of δ18Ocarbonate. Thirdly, following the proposal of Leng et al. (2001) that comparing 

δ18O from diatoms and carbonates can provide insights into seasonality if the two 

hosts form at different times of the year, and because of the marked seasonality of 

Near East climate (sections 2.1.1, 5.2), δ18Odiatom analysis was carried out through the 

record. Fourthly, since Jones (2004) had shown that radiocarbon dating was not 

possible at Nar Gölü, U-Th dating was combined with varve counting in an attempt to 

provide a chronology. The methods used, and the methodological development 

achieved as part of this thesis, are detailed in this chapter. 

 

All stable isotope analyses were carried out at NIGL under the direction of Prof. 

Melanie Leng. The preparation of all samples, other than some of the diatom isotope 

samples, was carried out by the author. The majority of the carbonate isotope 

analyses were carried out by the author. Water, organic and diatom isotope analyses 

were carried out by NIGL staff. U-Th dating was undertaken at NIGL under the 

supervision of Dr. Stephen Noble. 
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6.1 Field work 

 

6.1.1 Water and sediment trap sampling 

 

Unlike proxies such as pollen and diatoms, it is not possible to apply modern 

analogue or transfer function techniques to stable isotope records because of their 

dependence on multiple climatic and non-climatic variables (Tian et al., 2011). 

Therefore, it is essential to understand the isotope hydrology of each individual site 

and the first stage of this is monitoring of the modern lake system. Consequently, on 

each visit to the lake by members of the Nar Gölü project team (including those led 

by the author in September 2011 and February 2012), samples for stable isotope 

analysis were taken, to monitor changes in the isotopic composition of the lake 

through time and to investigate the relationship between this and changes in lake 

level, as measured using a weighted tape and/or a Garmin® Fish Finder. Lake waters 

were also sampled for pH, conductivity and temperature, measured on a Myron® 

meter, to monitor changes in the general lake state through time. When weather 

permitted, depth profiles were taken from the deepest part of the lake through the 

water column using a Van Dorn bottle or a Glew corer to investigate the stratification 

of the lake. Lake surface samples were taken at 0.5 m depth to remove any direct 

effects of exchange with the atmosphere. Where it was not possible to go out on the 

lake (for example in February 2012 due to blizzards and ice cover), samples had to be 

taken from the lake edge. Lake edge samples were also taken by members of the 

local community between March and June 2012. Spring waters were sampled as 

these are seen to be representative of precipitation isotope values (Jones et al., 

2005). Water samples were brought back to the UK in sealed plastic bottles that had 

been washed three times in the sample and completely filled to prevent isotopic 

exchange with any air bubbles. Snow samples were taken in February 2012 by 

packing fresh snow into a sample bag, which was sealed airtight until the snow had 

melted and then transferred into sample bottles. Where possible, the samples were 

refrigerated until analysis could be undertaken.  
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Simple sediment traps (Jones, 2004) have been deployed to monitor the timing of 

sedimentation processes in the lake and to investigate how the isotope signal is 

transferred from the water to carbonate and diatoms deposited in the sediments. 

Traps were secured onto a rope with a float on the surface and an anchor on the 

bottom, with traps at a variety of depths. 

 

6.1.2 Coring 

 

The author participated in the main coring season in July 2010 that retrieved the   

21.5 m NAR10 core sequence that formed the basis of this thesis. While the deepest 

part of the lake had already been identified using a Garmin® Fish Finder before the 

NAR01/02 cores were taken, a seismic survey of the lake was carried out to produce 

a more detailed bathymetric map (Figure 6.1) and from this a location in the deepest 

part of the lake with the least disturbed sediments, furthest away from the alluvial 

fan, was chosen for the coring site (Figure 6.2).  

 

 

Figure 6.1 1m gridded lake bathymetry data showing lake depth variability in Nar 

Gölü in July 2010, with dark blue indicating the deeper waters where the cores were 

taken from. Map taken from Smith (2010).  
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Figure 6.2 Nar Gölü catchment (shaded grey) showing locations of NAR01/02 coring 

(red circles), NAR10 coring (orange circle; the three drives were just 2 metres apart) 

and of the two catchment cold springs (blue circles). Map modified from Jones (2004). 

 

 

Since Nar Gölü was more than 20 m deep in 2010 and the aim was to retrieve many 

more metres of sediment than had been retrieved by Livingstone and Mackereth 

corers in 2001/2, a UWITEC hammer-piston coring system was used, operated by the 
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CNRS EDYTEM team based at Chambéry in France. The coring took place from a 

floating aluminium platform (Figure 6.3) with core drives being 2 or 3 m long and 6.3 

or 9 cm in diameter. Three parallel drives were made in an attempt to retrieve as 

continuous a sequence as possible. In total, 55 m of sediment was returned to the UK 

with the tubes packed either end with Oasis to keep sediments in place. Since 

monitoring data were available for over a decade, a Glew core was also taken so that 

sediments from the last decade could be compared to lake water isotope data and 

depth measurements in order to better understand the drivers of the isotope 

records and hence better interpret the palaeo record. 

 

 

 

Figure 6.3 UWITEC coring system on Nar Gölü in July 2010. 

 

 

6.2 Analysis of waters 

 

6.2.1 Stable isotope analysis of waters 

 

Water samples were analysed at NIGL for isotopes using an equilibration method for 

oxygen (Epstein and Mayeda, 1953) and a zinc-reduction method for hydrogen 
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(Coleman et al., 1982, Heaton and Chenery, 1990) on a VG SIRA mass spectrometer. 

Isotopic ratios were defined in relation to the Vienna Standard Mean Ocean Water 

(VSMOW) international standard, and analytical reproducibility was 0.05‰ for δ18O 

and 2‰ for δD. Total dissolved inorganic carbon (TDIC) was precipitated from 

lakewater samples using barium chloride and washed three times in distilled water 

and δ13C measured in the same way as for sediment core carbonates, as discussed in 

section 6.3.4.  

 

6.2.2 Water chemistry 

 

Water samples were also brought back to be analysed for major ions, in order to 

investigate whether the lake waters were chemically stratified and to look at changes 

in the Mg/Ca ratio (which is of particular importance when working with carbonates). 

Chloride, nitrate, phosphate, sulphate, sodium, potassium, magnesium and calcium 

concentrations were measured on samples as soon as possible after returning from 

the field on a Metrohm ion chromatogram in the School of Geography, University of 

Nottingham. This produced data in mg/L. So that unit concentrations of all ions are 

chemically equivalent they were converted to milliequivalents per litre (meq/L) 

(Table 6.1). 

 

 

Table 6.1 Conversion factors from mg/L to meq (Hem, 1970). 

Ion Conversion factor 

Ca+2 x 0.04990 

Cl- x 0.02821 

Mg+2 x 0.08226 

NO3
- x 0.01613 

PO4
-3 x 0.03159 

K+ x 0.02557 

Na+ x 0.04350 

SO4
-2 x 0.02082 
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6.3 Analysis of sediments: stable isotope analysis of carbonates 

 

6.3.1  Initial laboratory work 

 

In September 2010, the cores were cut in half lengthways, cleaned, described and 

photographed. Some sediments were laminated, some were not. The cores from the 

three drives were matched by looking for similarities in the lithology (as illustrated by 

Figure 6.4), with the cores with the best preserved sediments chosen to make up a 

master sequence (Figure 6.5). One half was sampled for isotopes and other proxies 

and the other half kept as an archive. 

 

 

 

Figure 6.4 Glew core P1 matched to core 01A by lining up turbidites and varve 

patterns. 

 

 



56 

 

 
 

Figure 6.5 NAR10 master sequence and the individual core sections. The sequences 

were matched at tie-points (Tp) and the least disturbed core sections chosen to make 

up the master sequence. Diagram modified from Allcock (2013). 
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6.3.2 Sample selection 

 

δ18Ocarbonate was selected as the main proxy to be used in this thesis because as 

discussed in section 1.3 it had already been shown to be a good proxy for regional 

water balance. In order to address the gaps in the literature identified in section 1.2, 

in particular the investigation of the Younger Dryas to Holocene transition and 

decadal and centennial scale changes in the Holocene, high resolution sampling was 

required. Previously, the highest resolution lake isotope record from the Near East 

was from Eski Acıgöl (Roberts et al., 2001) where there was a mean sampling interval 

for the last 9,000 years of 85 years. In laminated sections of the NAR10 cores, 

samples were taken every 20 varve years. In the unlaminated sections, samples were 

taken every 4 cm, as this was the average spacing that 20 varves took up in nearby 

sections.  

 

6.3.3 Carbonate mineralogy 

 

The aim of using stable isotope analysis of carbonates to extend the reconstruction 

of water balance changes cannot be achieved without first investigating the 

mineralogy of the carbonates being analysed (i.e. calcite, aragonite, dolomite, 

ankerite, siderite, etc.), because under the same conditions (i.e. δ18Olakewater and 

temperature) different types of carbonate will acquire different δ18O and δ13C values  

due to different mineral-water fractionation factors (Tarutani et al., 1969, Land, 

1980) (section 3.4). Mineralogy was investigated by X-ray diffraction (XRD) in the 

Faculty of Engineering, University of Nottingham. In an XRD, x-rays are fired at the 

sediment at an angle, and by measuring how they diffract as they pass through the 

sediment and matching this pattern to a database of recorded patterns, the mineral 

being analysed can be identified. Samples were disaggregated in 5% sodium 

hypochlorite in 500 ml beakers for 24 hours to remove organic matter and then 

sieved at 75 µm to remove any shells, ostracods, etc., in order to be confident that 

the XRD data (and isotope data to be produced later) were just for authigenic 

carbonate. The beakers were then filled with distilled water, the carbonate left to 

settle for 24 hours and the water poured off (repeated three times) to displace the 
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sodium hypochlorite solution. After drying at 40°C, the carbonate was homogenised 

in an agate pestle and mortar. Where sufficient material was available, cavity mounts 

were prepared, whereas smaller samples were smeared onto a glass mount (Hardy 

and Tucker, 1988). The scanning range used was 5-65° 2θ and the scan rate was 2° 2θ 

per minute with a step size of 0.05. The TRACES program by Diffraction Technology 

was used to identify which minerals were present. Not all samples run for carbonate 

isotopes could be analysed for XRD due to the high costs of using the equipment. 

Where two or more minerals were present, the proportions of each were 

(semi)quantitatively determined by calculating the area under the peaks (which were 

assumed to be regular triangles) and the percentage of aragonite compared to 

calcite was estimated from experimentally calibrated conversion curves (Hardy and 

Tucker, 1988).  

 

As discussed in section 6.3.5, accurate determinations of the proportions of calcite to 

aragonite are not required because it is not necessary to correct for differences in 

their mineral-water fractionation factors in Nar Gölü data. However, the XRD picked 

up dolomite in some samples, so further testing using a PANalytical X’Pert Pro 

diffractometer at the British Geological Survey, Keyworth (scanning from 4.5-85° 2θ 

at 2.76° 2θ per minute) was carried out because of the requirement for accurate 

quantitative determinations of the proportion of this mineral, which was achieved by 

Rietveld analysis, using PANalytical HighScore Plus software. Scanning Electron 

Microscopy (SEM) was also used to provide images of the carbonate crystals to help 

investigate how they formed and an Energy Dispersive x-ray Spectroscopy (EDS) 

probe to provide elemental information to aid in mineral identification. 

 

6.3.4 Stable isotope analysis of carbonates 

 

~10 mg of those samples containing 100% calcite and/or aragonite, prepared as 

outlined in section 6.3.3, were weighed into a glass vial and placed in a reaction 

vessel with anhydrous phosphoric acid, which was then pumped to create a vacuum 

(Figure 6.6A). The carbonate was reacted with the phosphoric acid: 
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3CaCO3 + 2H3PO4 → Ca3(PO4)2 + 3CO2 + 3H2O     6.1 

 

and left for a minimum of 16 hours at 25°C (McCrea, 1950, Craig, 1957). The 

liberated CO2 was pumped through a cold trap to remove the remaining water. The 

CO2 was frozen in collection vessels using liquid nitrogen, while other gases were 

pumped away. Stable isotope measurements were made on a dual inlet (VG Optima) 

mass spectrometer (Figure 6.6B), where the collected CO2 was compared to a 

standard. The 44 (assumed to comprise 12C16O2), 45 (13C16O2) and 46 (12C16O18O) mass 

fractions were measured and δ13C and δ18O calculated relative to the Vienna Pee Dee 

Belemnite (VPDB) international standard. As can be seen from Eq. 6.1, all of the 

carbon from the CaCO3 remains in the gas measured by the mass spectrometer but 

only two thirds of the oxygen does. Therefore, a correction needs to be applied to 

the δ18O data to account for the acid-gas fractionation (Sharp, 2007). The acid-gas 

fractionation factor used here was 1.01025 for both calcite and aragonite (Sharma 

and Clayton, 1965). It is acknowledged that, particularly for aragonite, other acid-gas 

fractionation factors are available (Kim et al., 2007b), however 1.01025 is used for all 

data from calcite and aragonite produced at NIGL. Repeat measurements were made 

on 33 samples giving an analytical reproducibility of 0.09‰ for δ18O and 0.04‰ for 

δ13C (1σ). 

 

Dolomite, however, does not fully react at 25°C for 16 hours and, as discussed in 

sections 6.3.5 and 8.2.2, substantially different mineral-water fractionation factors 

and different modes of formation mean δ18O data from dolomite will not be easily 

comparable to calcite or aragonite data. Al-Aasam et al. (1990) previously showed 

how carbonates with mixed mineralogies could be reacted selectively to overcome 

some of these issues. Experimental work at NIGL (Sloane, 2004) showed how 

samples containing <20% dolomite (i.e. >80% calcite or aragonite) could be reacted 

at 16°C for 1 hour to release enough CO2 from the calcite and aragonite parts 

without a fractionation factor, but limit the amount of CO2 liberated from dolomite 

(Figure 6.7), meaning δ18O data comparable to those from 100% calcite/aragonite 

can be produced, albeit with analytical reproducibility slightly increased to 0.2‰ 

(although for the samples analysed from the Nar Gölü cores, the analytical 
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reproducibility was lower at 0.08‰ for δ18O and 0.13‰ for δ13C, 1σ, n=6). There are 

no published acid-gas fractionation factors for a calcite or aragonite reaction at 16°C 

so the correction was adjusted so gas δ18O values at 16°C were converted to those 

expected at 25°C before the Sharma and Clayton (1965) acid-gas fractionation factor 

was used to convert to solid values. Samples containing 20-80% dolomite were not 

run for isotopes, since too much dolomite would be liberated for them to be run at 

16°C for 1 hour (error exponentially increases to unacceptable levels) and dolomite 

levels were not high enough for them to be treated as dolomites and reacted at 

100°C. Samples containing >80% dolomite (as determined by the PANalytical X’Pert 

Pro diffractometer) were reacted at 100°C for 16 hours to ensure a complete 

reaction before running for isotopes, with the acid-gas fractionation factor of 

1.00913 used (Rosenbaum and Sheppard, 1986). A breakdown of the number of 

samples reacted in the three different ways and the number of samples that could 

not be run for isotopes is shown in Table 6.2. 

 

 

 

Figure 6.6 A: Offline CO2 extraction at NIGL. Ground carbonate samples are placed in 

vial with phosphoric acid, a vacuum is created and the reaction vessel is sealed. Once 

at the desired reaction temperature (25°C for 100% calcite/aragonite), the vessel is 

shaken so that carbonate powder comes into contact with and reacts with the acid. 

The vessels are then put onto the extraction line and CO2 pumped into collection 

vessel. The sealed collection vessels are then attached to the mass spectrometer (B), 

unsealed, and the CO2 released for isotope analysis. 

A B 

Reaction 
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Collection 
vessel Mass 
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Figure 6.7 δ18O of samples reacted at 16°C for 1 hour containing mixtures of dolomite 

and calcite standards, showing how the offset from the actual δ18O value of calcite 

increases as the proportion of dolomite in the sample increases (Sloane, 2004). 

 

 

Table 6.2 Breakdown of the number of carbonate samples analysed from the NAR10 

core sequence by the three different reaction methods. 

Reaction details Mineralogy n 

25°C 16 hours 100% calcite/aragonite 337 

16°C 1 hour >80% calcite/aragonite, <20% dolomite 131 

100°C 16 hours > 80% dolomite 5 

Not run 20-80% dolomite 29 

 

 

6.3.5 Mineral-water fractionation factors 

 

Calcite, aragonite and dolomite formed under the same conditions will have different 

δ18O values due to differing mineral-water fractionation factors. Aragonite is typically 

seen to be more positive than calcite formed under the same conditions (Tarutani et 

al., 1969, Grossman and Ku, 1986, Kim et al., 2007a) and dolomite is more positive 
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than aragonite and calcite formed under the same conditions (Vasconcelos et al., 

2005). To quantify the offsets, palaeotemperature equations for the different 

minerals are presented here; the offsets differ very slightly from those stated in the 

literature because different acid-gas fractionation factors are used in different 

studies. Here, the Sharma and Clayton (1965) acid-gas fractionation factor is used 

and the calcite and aragonite equations are corrected for this (H. Wierzbowski, pers. 

comm.). The calcite palaeotemperature equation of O’Neil et al. (1969) was 

expressed by Hays and Grossman (1991) as: 

 

T = 15.7 – 4.36 x (δ18Ocalcite – δ18Olakewater) + 0.12 x (δ18Ocalcite – δ18Olakewater)
2  6.2 

 

where δ18Ocalcite is expressed against VPDB, δ18Olakewater against VSMOW and T in °C. 

Another calcite palaeotemperature equation was derived by Kim and O’Neil (1997): 

 

  
     

       
                 

                   
        

        

 

where δ18Ocalcite and δ18Olakewater are expressed against VSMOW and T in °C. VSMOW 

can be converted to VPDB using the Coplen et al. (1983) equation: 

 

δ18OVPDB = 0.97002 x δ18OVSMOW – 29.98        6.4 

 

Eqs. 6.2 and 6.3 are used in this thesis because they are derived from experiments on 

inorganic carbonates, rather than on biogenic carbonates (e.g. Epstein and Mayeda, 

1953, Anderson and Arthur, 1983, Erez and Luz, 1983). Values produced by these 

equations differ slightly so data from both are presented to provide a comparison. 

The aragonite palaeotemperature equation of Kim et al. (2007a) is used instead of, 

for example, Grossman and Ku’s (1986), because the former study was on 

inorganically precipitated aragonite: 
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where δ18Oaragonite and δ18Olakewater are expressed against VSMOW and T in °C. 

 

Vasconcelos et al. (2005) produced a palaeotemperature equation for bacterially 

mediated dolomite precipitation at +25-45°C: 

 

   
       

       
                  
                   

       
        

where δ18Odolomite and δ18Olakewater are expressed against VSMOW and T in °C.  

 

Using a fixed δ18Olakewater and varying temperatures, these equations are plotted on 

Figure 6.8. At 20°C, aragonite δ18O is 0.7‰ more positive than calcite δ18O 

precipitated under the same conditions when calculated using Eq. 6.2 or 0.9‰ more 

positive when calculated using Eq. 6.3. Dolomite δ18O is 2.7‰ more positive than 

calcite precipitated under the same conditions calculated using Eq. 6.2 or 2.8‰ more 

positive using Eq. 6.3. 

 

 

Figure 6.8 Comparison of different equilibrium calculated δ18Ocarbonate values for 

different temperatures for calcite, aragonite and dolomite. Here, a constant 

δ18Olakewater value of –1‰ was used, although the offsets are independent of 

δ18Olakewater. 
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The offset between aragonite and calcite (0.7-0.9‰) is smaller than the large shifts 

seen in the Nar Gölü record (section 8.1.3), and indeed probably even smaller than 

this because of the presence of high-magnesium calcite in Nar Gölü (Jones et al., 

2005). At six levels of the NAR10 sequence, three individual calcite crystals were 

analysed by EDS and the average Ca:Mg ratio was 18.2 mol%, which based on the 

definition of Gierlowski-Kordesch (2010) means Nar Gölü calcite is high-magnesium. 

The offset in δ18O between aragonite and high-magnesium calcite formed under the 

same conditions is even less than 0.7-0.9‰ (Tarutani et al., 1969, Jimenez-Lopez et 

al., 2004). Consequently, δ18O values are not corrected for changes in mineralogy 

between calcite and aragonite. This is consistent with the previously published 

carbonate isotope record from Nar Gölü (Jones et al., 2006). However, dolomite is 

~2.7‰ more positive than calcite formed under the same conditions, so this did 

need to be corrected for: 

 

                                         –   
         

   
            6.7 

 

6.4 Analysis of sediments: stable isotope analysis of diatom silica 

 

6.4.1 Sample selection 

 

It was not possible to analyse samples for δ18Odiatom at the same resolution as those 

analysed for δ18Ocarbonate because the preparation and analysis is much more time-

intensive and costly. Regardless, the reason for producing δ18Odiatom data was to 

investigate whether comparison with δ18Ocarbonate data could offer insights into 

seasonality and help address the gap in our knowledge of the general form of the 

Holocene, so high resolution data were not required. Samples from the NAR01/02 

cores were already sampled and analysed for δ18Odiatom at a 10 year resolution (Dean 

et al., 2013). From the NAR10 cores, after the production of the δ18Ocarbonate data, it 

was apparent that the general millennial scale trends could have been picked up at a 

resolution 8 times lower, so this resolution was selected as the base for the δ18Odiatom 

analysis (Figure 6.9). However, samples from what is assumed to be the late glacial 
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period (1957-2169 cm depth) were taken at a resolution only twice as low since it is 

assumed sampling for δ18Ocarbonate was at a lower temporal resolution here because 

of lower deposition rates. Also, samples were taken at only a x2 lower resolution 

from 1507.2-1547.7 cm depth and at the same resolution as δ18Ocarbonate from 831.7-

1077.7 cm depth because these periods see large scale fluctuations in the 

δ18Ocarbonate record and it was deemed interesting to produce two high resolution 

isotope records for these periods.  

 

 

Figure 6.9 Comparison of δ18Ocarbonate data at full resolution (A) and 8 times lower (B). 

 

 

6.4.2 Cleaning of samples for diatom isotope analysis 

 

It is important that samples for δ18Odiatom analysis are as free as possible of 

contamination as the method liberates oxygen from other components of the 

sediment as well as diatoms. The cleaning process used in this study was similar to 

that of Morley et al. (2004), although modified by the addition of a nitric acid stage 

(Tyler et al., 2007) because of the high organic content of some of the Nar Gölü 

samples.  
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Firstly, samples were left in beakers for 24 hours in 10% hydrochloric acid to remove 

carbonates. The samples were then transferred to centrifuge tubes and washed 

three times with distilled water, before 63% nitric acid was added for 24 hours to 

remove organics. After washing, 30% hydrogen peroxide was added to complete the 

removal of organic material, with tubes heated to 75°C in a water bath for ~48 hours 

or until reaction had ended, and again washed. Additional stages were required to 

remove minerogenic material, which cannot be dissolved by these chemical stages. 

This tends to settle out faster than diatom frustules, so it was sometimes possible to 

pipette the latter off into fresh centrifuge tubes, leaving contaminants behind. 

Samples were then sieved at 10 μm, which meant that small diatom frustules, 

including the endemic species Clipeoparvus anatolicus (Woodbridge et al., 2010), 

were lost from the sample, but EDS showed that unsieved samples were on average 

43% more contaminated than sieved samples because of the presence of clay-sized 

minerogenic material. Finally, sodium polytungstate (SPT) was used on the samples 

prepared by the author (not on NAR01/02 samples not prepared by the author); 

diatom frustules should float in a specific gravity of ~2.3 whereas silt-sized 

minerogenic material will remain at the bottom of the tube. This stage can be 

problematic as SPT needs to be removed from the samples otherwise it will itself 

become a contaminant. Here it was flushed from samples by filtering them with 

distilled water at 0.45 μm. 

 

6.4.3 Stable isotope analysis of diatom silica 

 

As described by Leng and Sloane (2008), cleaned samples were dehydrated by 

outgassing at room temperature, following which BrF5 was used at low temperature 

to remove the hydrous outer layer of diatom silica (Labeyrie and Juillet, 1982) which 

readily exchanges with any water it comes into contact with. The samples were then 

reacted with BrF5 at a higher temperature (450°C) to separate silicon and oxygen. 

The oxygen was converted into CO2 by exposure to graphite (Clayton and Mayeda, 

1963), which was separated from other gases using cold traps. 18O/16O was 

measured on a Thermo Finnigan MAT 253 and values reported against VSMOW. This 
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method has been verified through an inter-laboratory comparision exercise 

(Chapligin et al., 2011). 

 

6.4.4 Mass balance correction of diatom isotope data 

 

The process described in 6.4.2 can sometimes yield samples of a sufficient purity that 

contamination is not an issue. However, even when SPT is used, diatom samples can 

remain contaminated, especially when minerogenic material is attached to diatoms 

by electrostatic charges or trapped within diatoms (Figure 6.10) and where there is 

not a significant density contrast between diatoms and the contaminants (Brewer et 

al., 2008). Even the samples from NAR06 and NAR10 on which SPT was used 

contained an average of 10% non-diatom silicate material. Contamination in samples 

from Lake Baikal, initially analysed by Morley et al. (2005) and reanalysed by Mackay 

et al. (2011), averaged 29.2% despite the use of SPT. In sediments like these, mass 

balancing has to be used to account for the effect of contamination on δ18Odiatom. 

Morley et al. (2005) and Mackay et al. (2008) estimated percentage contamination 

using light microscopy on randomly selected areas. However, point counting gives a 

surface area, not volume, and only a semi-quantitative assessment of contamination. 

Lamb et al. (2007) and Brewer et al. (2008) used X-ray Florescence Spectroscopy 

(XRF), Chapligin et al. (2012) used Inductively Coupled Plasma Optical Emission 

Spectroscopy and Swann and Patwardhan (2011) used Fourier Transform Infrared 

Spectroscopy to provide more accurate contamination estimates. The abundance of 

elements such as aluminium is typically used to reflect the level of contamination 

(Brewer et al., 2008).  

 

For Dean et al. (2013), the samples from the NAR01/02 core sequence were analysed 

by EDS, because an XRF was not available at the time. X-rays are fired at the sample 

which excites electrons and the number and energy of x-rays emitted is measured 

and can be used to quantify the elements present in the sample. Prepared samples 

were viewed at 100x magnification under SEM (so a large area could be analysed), 

and EDS was used to detect O, Na, Mg, Al, Si, P, S, K, Ca, T, Mn and Fe. Since most 

clay-sized minerogenic material should have been removed by sieving at 10 μm and 
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carbonates and organics by chemical processes, most of the contamination in ‘clean’ 

samples was assumed to be from minerogenic material presumably washed in from 

the catchment and similar in size, shape and specific gravity to the diatoms. To test 

the accuracy of the EDS in measuring contamination, a series of samples with known 

mineralogy were analysed. The aluminium content of 8 samples from Lake Baikal, 

previously analysed for δ18Odiatom and XRF (Mackay et al., 2011), and 10 samples with 

known mixtures of mica, montmorillonite, kaolinite and chlorite, were compared to 

aluminium measured on the EDS. This showed a similar underestimation of 

contamination to that found by Chapligin et al. (2012), so measured contamination 

values were divided by 0.64 to compensate. However, this correction led to a slight 

overestimation of error, with some samples reporting over 100% contamination, 

which is obviously impossible, so an additional correction was applied to reduce the 

contamination range from 0 to 100% (Dean et al., 2013). 

 

The amount of contamination in samples as a percentage of overall content was 

calculated by Brewer et al. (2008): 

 

                  
        

               
              6.8 

 

where sampleAl is the measured aluminium concentration in each sample analysed 

for δ18Odiatom and contaminationAl is the average percentage of aluminium in Nar 

Gölü silt samples (in Dean et al., 2013: 8.6% ±0.5, n=7) that were prepared and run in 

the same way as δ18Odiatom samples. A mass balance correction, also used by Mackay 

et al. (2011) for Lake Baikal samples, was used to account for the impact of 

contamination on the δ18O values: 

 

                      
            –                      

              
   

 

       
   

    6.9 

 

where δ18Odiatom is the original isotope value of the ‘cleaned’ diatom sample, 

%contamination and %diatom are estimated by EDS and δ18Ocontamination is the isotope value 
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of contamination. The latter can be estimated in a number of ways. Measuring the 

contamination directly is difficult, as much of the minerogenic material is removed 

during processing of the diatom samples, such that the end member contaminant 

left in the diatom samples is the minerogenic material that has been through the 

chemical and physical separation processes. Therefore, in Dean et al. (2013), a 

modified version of the linear regression method of Chapligin et al. (2012) was used, 

which gives an estimated end member contamination δ18O value for Nar Gölü 

sediments of 16.5‰ (Figure 6.11).  

 

 

 

Figure 6.10 SEM image of Campylodiscus clypeus highlighting the difficulties of 

producing a contaminant-free diatom sample when minerogenic matter attaches to 

diatoms. 
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Figure 6.11 δ18Odiatom plotted against %diatom; the intercept value at 0% diatom (i.e. 

100% contamination) can be used in Eq. 6.9 to represent the δ18Ocontamination. 

 

 

Samples for diatom isotope analysis were also carried out on samples from the 

NAR10 core (this time all prepared by the author and with the addition of an SPT 

stage), and the mass balance correction was carried out with a few modifications. 

Since the analysis of the NAR01/02 diatom isotope samples and the use of EDS to 

assess their contamination, the School of Geography had purchased an XRF (a 

Panalytical εpsilon 3 XL). An issue with the work of Dean et al. (2013) was the large 

uncertainties associated with the assessment of contamination using EDS. Therefore, 

the more accurate and precise (analytical reproducibility of 0.03% (1σ) compared to 

0.5% on EDS) XRF was used on all NAR10 samples and also, so that data were directly 

comparable, on NAR01/02 samples with sufficient material remaining. The XRF works 

on the same principles as the EDS and it was set up to quantify the proportions of Na, 

Mg, Al, Si, P, S, K, Ca, T, Mn and Fe using the Panalytical Omnion program, although 

the XRF calculated oxide % rather than elemental %. To establish whether the mass 

balance modelling of Dean et al. (2013) is still valid with the more reliable 

contamination assessments, data for samples measured by both the EDS and XRF are 
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compared. Firstly, Al% values from the EDS were converted to Al2O3 values to allow 

for comparison: 

 

Al2O3 wt% = Al wt% x 1.8895                       6.10 

 

Figure 6.12A shows that the EDS significantly underestimates Al2O3 wt% compared to 

the more reliable XRF, highlighting the necessity for the correction used in Chapligin 

et al. (2012) and Dean et al. (2013). Indeed when this correction is applied, 

contamination values from the EDS and XRF are more in line with each other (Figure 

6.12B), although a significant difference is the underestimation of contamination by 

the EDS at low Al2O3 levels. In addition to the use of XRF to assess contamination, 

another difference in the mass balance correction approach used in this thesis 

compared to that used in Dean et al. (2013) is that instead of using Figure 6.11 to 

calculate the δ18O of contamination, 9 turbidites from along the core were prepared 

and run in the same way as the diatom isotope samples, giving a mean value of 

16.0‰ (±1.0‰ (1σ)) which was very close to the value of 16.5‰ from the intercept 

on Figure 6.11. Errors from individual components of the mass balancing are outlined 

in Table 6.3 and were combined to calculate the overall error associated with the 

correction. The error associated with the variability in δ18Ocontamination is increased 

here compared to that in Dean et al. (2013), but overall error is reduced because of 

the more accurate XRF (samples that were mass balance corrected for Dean et al. 

(2013) averaged ±2.7‰ error whereas when those same samples were re-analysed 

by XRF and the new mass balance correction applied as outlined above, errors 

averaged ±1.9‰).  

 

Table 6.3 Sources of error associated with new mass balance correction of δ18Odiatom 

data. 

Source of error Magnitude of error 

Diatom isotope measurement analytical reproducibility  (1σ) 0.3‰ 

Al2O3 measurement analytical reproducibility (1σ) 0.03% 

Variance in Al2O3 composition of turbidites (from    of 14.56%) (1σ) 1.6% 

Variance in δ18O value of turbidites from    of 16.0‰ (1σ) 1.0‰ 
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Figure 6.12 Comparison of data produced by EDS and XRF, A: Al2O3 values and B: 

contamination values after correction applied to EDS data. 

 

 

The breakdown of the diatom samples that could and could not be run for isotopes, 

because they were too contaminated or because the preparation was not successful, 

is shown in Table 6.4. In Dean et al. (2013) 129 samples were included in the analysis, 

but fewer from the NAR01/02 sequence are included here in the re-analysis because 

some samples had insufficient material left for XRF. No samples from the NAR10 core 

0 

2 

4 

6 

8 

10 

12 

0 2 4 6 8 10 12 

ED
S 

A
l 2

O
3 

XRF Al2O3 

0 

10 

20 

30 

40 

50 

60 

70 

80 

0 10 20 30 40 50 60 70 80 

%
 c

o
n

ta
m

. f
ro

m
 E

D
S 

% contam. from XRF 

A 

B 



73 

 

were seen to have >60% minerogenic contamination, however some of the samples 

were rejected before XRF because they had large undissolvable lumps of concreted 

carbonate that could not be separated from diatom silica, and this was another end 

member that would have been difficult to correct for. Additionally, some samples 

had insufficient material for isotope analysis. More samples to those selected using 

the sampling strategy in 6.4.1 were prepared from the late Holocene section in an 

attempt to produce a more continuous isotope record, however again these samples 

yielded insufficient material and/or were contaminated with concreted carbonate. 

 

 

Table 6.4 Breakdown of the samples prepared for diatom isotope analysis and the 

numbers that had to be rejected due to contamination. 

Sample Action n 

NAR01/02 samples >60% contamination or insufficient 

material remaining to XRF 

Reject 57 

NAR01/02 samples <60% contamination after XRF Accept 95 

NAR10 samples >60% contamination after XRF Reject 0 

NAR10 samples <60% contamination Accept 90 

NAR10 silt end member samples Accept 7 

NAR10 samples with insufficient material and/or too 

contaminated with concreted carbonate 

Not run for isotopes 33 

NAR10 samples lost because of tube explosion in centrifuge Not run for isotopes 2 

 

 

Diatom isotope data are presented fully in section 8.1.3, however here data from the 

NAR01/02 cores are shown to demonstrate the implications of changing the method 

of mass balance correction from that in Dean et al. (2013) to the new method 

outlined above. Figure 6.13 shows the original mass balance corrected data from the 

NAR01/02 cores published in Dean et al. (2013) compared to re-calculated values 

using the modifications to the mass balance approach described above. Although the 

actual values are slightly different, the general trends are very similar, with periods 

of low δ18O (+20 to +25‰) ~1,450, 1,250 and 120 years BP, although the period of 
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fairly low values ~1,000 years BP is not seen using the new mass balance method. 

The overall similarities mean the general interpretations of Dean et al. (2013) are still 

valid.  

 

 

 

 

 

 

 

 

Figure 6.13 The difference between NAR01/02 diatom isotope trends in this thesis (A) 

and published in Dean et al. (2013) (B). Not all samples originally run and mass 

balance corrected could be included in A because many did not have sufficient 

material left to allow for XRF analysis. However, the general trends are very similar. 

 

 

Despite the improvement in the accuracy and precision of estimating the amount of 

aluminium in diatom samples, it is still likely that %contamination is overestimated 

because some minerogenic material will be removed by the first fluorination stage 

before δ18O is measured (Swann and Leng, 2009) and diatom frustules can 

incorporate aluminium, so Al% in the samples does not just reflect minerogenic 

contamination (Beck et al., 2002, Koning et al., 2007, Swann, 2010, Ren et al., 2013). 

To investigate the latter effect, SEM was used to identify individual clean diatoms 

(i.e. with no detrital material visible at all, example shown in Figure 6.14) and the 
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Al2O3 wt% of the individual diatoms was measured by EDS, averaging 1.0% ±0.4 (1σ) 

across 16 samples. This suggests that there are significant amounts of diatom-bound 

aluminium. A correction was applied to account for this. 14.56% Al2O3 still represents 

100% contamination but 1‰ Al2O3 now represents 0% contamination, because it is 

suggested here that diatom-bound aluminium would lead to 1‰ Al2O3 in pure 

diatom samples. A sample containing 100% diatoms and 0% contamination would 

have 1% removed from the Al2O3 measurements, a sample containing 50% diatoms 

and 50% contamination 0.5% removed from the Al2O3 measurement, and so on, and 

the mass balance correction re-applied. The validity of this correction could be 

questioned due to the uncertainty in the actual amount of diatom-bound aluminium 

and whether this varies between samples, but while this correction reduces the 

values of the data, it has no effect on the trends (Figure 6.15). 

 

 

 

 
 

Figure 6.14 Sample from 1507.2 cm viewed under SEM, shown by XRF to contain 

0.38% Al2O3 but with no detrital material visible, taken to suggest diatom-bound 

aluminium could account for a significant proportion of the Al2O3 in diatom samples. 
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Figure 6.15 The effect of reducing Al2O3 values to correct for the influence of diatom-

bound aluminium on the NAR01/02 diatom isotope record. A: without a reduction in 

measured Al2O3 values. B: with a reduction in Al2O3 values. Although δ18O values are 

lower in B because contamination is calculated to be lower and therefore less of a 

correction is made (average δ18Ocorrected values of +36.0‰ in A and +34.7‰ in B), the 

trends very similar. 

 

 

6.4.5 Diatom palaeotemperature equation 

 

Where estimations of δ18Olakewater need to be made, the equation of Crespin et al. 

(2010) is used: 

 

T = 245.3 – 6.25 x (δ18Odiatom – δ18Olakewater)                 6.11 

 

where δ18Olakewater and δ18Odiatom are expressed on the VSMOW scale and T in °C.  
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6.5 Palaeorecord: analysis of organics 

 

6.5.1 Carbon isotope and C/N on bulk organics 

 

Although carbon isotopes and changes in the productivity of the lake through time 

were not the major focus of this thesis, it was decided to undertake some analyses at 

a low resolution to provide another proxy record that could help with the 

interpretation of the carbonate isotope record. Samples were disaggregated in 

hydrochloric acid for 24 hours in 500 ml beakers to remove carbonates. The beakers 

were then filled with distilled water, the organic material left to settle for 24 hours 

and poured off (repeated twice more) to displace the hydrochloric acid. Dried 

samples were homogenised in an agate pestle and mortar. Samples containing 1-2 

mg of material were weighed into tin cups and analysed for C/N and δ13C in a Carlo 

Erba NA1500 and a VG Optima mass spectrometer. Samples were carried into a 

furnace by helium gas and fully combusted, with excess oxygen and water removed 

by passage through hot copper and magnesium perchlorate. The remaining N2 and 

CO2 were passed through a thermal conductivity detector to calculate the C/N ratio 

by calibration to the laboratory standard. The CO2 was then frozen at –170°C and N2 

and helium removed, after which the CO2 entered the mass spectrometer and δ13C 

values were calculated relative to VPDB. Analytical reproducibility was 0.1‰. C/N 

values are given in wt%. 

 

6.5.2 Oxygen isotope analysis of cellulose 

 

An attempt was also made to isolate aquatic cellulose from the Nar Gölü sediments. 

Cellulose is hypothesised to record δ18Olakewater without a temperature effect 

(Edwards and McAndrews, 1989, Wolfe et al., 2005) so it can be combined with δ18O 

values of diatom silica and/or carbonates to calculate lake water temperatures (e.g. 

Rozanski et al., 2010). The cleaning method used followed that of Wolfe et al. (2001, 

2007). Firstly, samples were added to 125 ml glass screw top jars (rather than 

centrifuge tubes because of the toxicity of the chemicals used) and 10% hydrochloric 

acid was added and left for 24 hours to remove carbonates. Samples were then 
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frozen and freeze dried. 100 ml 2:1 toluene:ethanol mix was added, the lid screwed 

firmly on and stirred and left for 48 hours to remove lipids, resins and tannin. This 

was decanted after 48 hours, 100 ml of acetone added, decanted after 24 hours and 

left to air dry. Sodium chlorite, acidified to pH 4-5 with concentrated acetic acid, was 

then added to samples and left for 10 hours, after which the solution was decanted 

and refilled and left for another 10 hours, to remove lignin. 17 g sodium hydroxide 

was then mixed with 100 ml distilled water and added to samples for 15 minutes to 

remove xylan, mannan and other polysaccharides. 35 g sodium hydrosulphite, 52 g 

ammonium citrate and 14 g hydroxylamine hydrochloride were added to 1 L distilled 

water, and then 75 ml of this added to samples which were left in a water bath at 

60°C for 2 hours and at room temperature for 24 hours, to remove oxyhydroxides. 

Between each of these stages, the chemical solutions were decanted off and the 

sample washed with distilled water three times. Finally, samples were transferred to 

centrifuge tubes and SPT of 1.9-2.0 specific gravity was added, to separate the 

cellulose from minerogenic matter. Finally, the SPT was flushed from samples by 

filtering them with distilled water at 0.45 μm. However, the samples were still 

contaminated (mainly with diatoms) and there was very little, if any, cellulose (Figure 

6.16). Other researchers following this method have had similar issues (J. Tyler, pers. 

comm.). While another method (Wissel et al., 2008) could have been followed, since 

it seems that limited cellulose material was available and the method is time-

consuming and requires the use of expensive and dangerous chemicals, it was 

decided to not proceed with cellulose oxygen isotope analysis. 

 

 

Figure 6.16 Sample prepared using 

the Wolfe et al. (2001, 2007) method, 

with significant contamination and 

limited organic material. 
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6.6 U-Th dating 

 

Some of the NAR10 core sequence has varves (chapter 9), so counts were made of 

these sections independently by two people and recounted until agreement (to 

within 5 varve years) was reached (Allcock, 2013). However, there were sections that 

were not varved and U-Th dating (chapter 4) was used in an attempt to provide an 

absolute chronology for the core (as discussed in section 1.3, radiocarbon dating was 

not possible). 

 

6.6.1  Laboratory methods and data handling 

 

Samples were weighed into savillex beakers. 16M HNO3 was added, which dissolved 

the carbonate fraction, and then the contents of the beaker was poured into 

centrifuge tubes and centrifuged. The carbonate fraction was pipetted off back into 

the beaker and spiked with 236U-229Th tracer solutions, and the samples left overnight 

at 110°C. The silicate fraction was left in another beaker in 16M HNO3 at 100°C for 12 

hours, then 16M HNO3 and 30% H2O2 were used to oxidise organics, followed by 

29M HF and 16M HNO3 to remove the silicon. Finally, 12M HClO4 and 16M HNO3 

were added and the beakers connected to an Evapoclean Telfon distillation elbow, 

which with heating allowed the acids to be distilled across the elbow leaving the 

sample dry. HClO4 was used to ensure a complete dissolution of the silicate fraction, 

as used in other studies (Luo and Ku, 1991, Lin et al., 1996, Blard et al., 2011). 

Samples from the silicate fraction were then rehydrated in HNO3 and added back to 

the carbonate fraction.  

 

1M HCl and FeCl were added to the recombined mix and Fe was co-precipitated with 

uranium and thorium by adding ammonia solution to create FeOH2, which contains 

the uranium and thorium. Samples were then centrifuged and the supernatant 

discarded. 16M HNO3 and H2O2 were added to the precipitate to aid oxidation of 

organics. The solution was then added, with HNO3, to anion-exchange columns filled 

with resin which trapped the uranium and thorium. The latter was released and 
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collected by washing 8M HCl through the resin (uranium remained trapped), and 

afterwards uranium was released from the resin and collected below by washing 

with 0.2M HCl. The process was repeated for thorium in a final clean-up stage and 

both fractions were then left in 16M HNO3 and 30% H2O2 a final time before drying 

down.  

 

Samples were analysed on a Thermo Neptune Plus MC-ICP-MS. Samples were 

dissolved in 0.2M HCL and 0.05M HF, sampled using an auto-sampler which was 

thoroughly washed in acid between runs and carried through the MC-ICP-MS using 

high purity Ar and trace N2 gas. For uranium measurements, 233U, 235U, 236U and 238U 

beams were measured on Faraday detectors, while the 234U beams were measured 

on more sensitive secondary electron multiplier detectors. 100 measurements were 

made for uranium isotopes and 75 for thorium isotopes.  

 

Corrections needed to be made to the measured isotope values. Firstly, instrumental 

mass fractionation (preferential early vaporisation of lighter isotopes by the ICP) was 

corrected for by comparison to a standard, spiked with a 233U-236U tracer solution. 

Secondly, some values were derived from Faraday detectors and some (where 

beams were smaller and a more sensitive detector was required) from the secondary 

electron multiplier detector and equivalent values were derived from measurements 

of the un-spiked CRM 112a standard. Data were also corrected for on-peak zeros 

measured on pure acid solutions, for hydride interferences and for down-mass ion 

scattering due to ion collisions in the MC-ICP-MS flight tube. Final data reduction to 

uranium and thorium activity ratios and ages was done on a NIGL-developed Excel 

spreadsheet using the Isoplot 3.0 (Ludwig, 2012). 

 

6.6.2 Correcting for detrital and hydrogenous thorium 

  

To correct for detrital thorium, the isochron approach was used. Isochron ages are 

calculated in a [232Th/238U] vs. [234U/238U] vs. [230Th/238U] plot (Ludwig and 

Titterington, 1994, Ludwig, 2012) (Figure 6.17). In the Isoplot program, they are 

visualised in 2D in Osmond-type diagrams, where the correction for initial 
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[230Th/238U] ratio is derived from the y-intercept of a [232Th/238U] vs. [230Th/238U] plot 

and the correction for initial [234U/238U] values is derived from the y-intercept on a 

[232Th/238U] vs. [234U/238U] plot (Osmond et al., 1970). Corrected [230Th/238U] and 

[234U/238U] can then be inserted into Eq. 4.1, assuming the assumptions of a closed 

system and that all initial 232Th and 230Th are from detritus and [234U/238U] and 

[230Th/232Th] of detritus is the same in all samples.  

 

An attempt was made to establish if hydrogenous thorium was an issue in the Nar 

Gölü sediments by running core sediments from the top, varved part of the sequence 

that were of a known age, as was done with the Dead Sea sediments (Haase-

Schramm et al., 2004, Torfstein et al., 2009, 2013) (section 4.3). Once the isochron 

approach has been used to correct for detrital thorium, any offset from zero age 

(sediment trap material) or varve age (core sediments) would be due to the presence 

of hydrogenous thorium. If this offset of U-Th isochron age from actual age can be 

assumed to be constant through the rest of the record, then this offset can simply be 

subtracted from the U-Th isochron age.  

 

 

 

Figure 6.17 Hypothetical 3D isochron plot (modified from Ludwig and Titterington, 

1994). 
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6.7 Summary 

 

The main focus of this thesis is δ18Ocarbonate because it has already been shown to be a 

good proxy for regional water balance in Nar Gölü (Jones et al., 2005) and can 

therefore be used to investigate the aims of this thesis (section 1.4). δ13Ccarbonate, 

δ18Odiatom, δ13Corganic, C/N, lithology and carbonate mineralogy data were also 

produced, as summarised in Figure 6.18, to assist in its interpretation. A chronology 

was provided by varve counting and U-Th dating. Methodological issues had to be 

overcome, namely how to deal with dolomite in carbonate isotope samples, mass 

balance correction of diatom isotope samples contaminated with minerogenic 

material and U-Th dating of dirty carbonates.  
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Chapter 7 | Results and interpretation of contemporary 

waters and sediments 

 

Since the work outlined in chapter 5 was carried out, monitoring of the lake has 

continued and with the taking of the NAR10 cores (section 6.1.2) it has been possible 

to compare δ18Olakewater, sediment trap δ18Ocarbonate and core δ18Ocarbonate, to 

investigate the transference of the isotope signal through the system, with the 

objective of being able to better interpret the palaeo record in chapters 8 and 10. In 

particular, two issues are addressed: 

 Inter-annual variability in δ18Olakewater and δ18Ocarbonate from sediment cores 

and sediment traps: making comparisons with lake depth and other data to 

investigate the drivers of oxygen isotopes in the Nar Gölü system, building on 

the work of Jones et al. (2005).  

 Intra-annual variability in δ18Olakewater and the timing of carbonate 

precipitation and diatom growth: attempting to understand whether there 

are differences in the time of year carbonate precipitates and diatoms grow 

in Nar Gölü and if so whether lake conditions are significantly different at 

these times, and whether comparing δ18O from the two hosts may provide 

insights into seasonality. This builds on the work of Jones et al. (2005), 

Woodbridge and Roberts (2010) and Dean et al. (2013). 

 

7.1 Inter-annual variability 

 

7.1.1 Oxygen isotopes 

 

As discussed later in section 7.2, water samples have been taken from the lake at 

different times of the year. However, this section aims to understand inter-annual 

variability, so values from around the same time of year in multiple years were 

required. Most field work has been carried out at Nar Gölü in July, so data from this 

month are presented here. Sometimes it was possible to take samples from the 

middle of the lake, but sometimes only edge samples could be taken. Although 
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samples from the centre may be considered more representative of overall lake 

conditions, as edge samples from shallow water may be more affected by 

evaporation, in years where both centre and edge samples were taken the difference 

is only ±0.3‰ (1σ, n=4), which is small considering the size of the inter-annual 

isotopic shifts seen in the record. Therefore, edge samples in 2000 and 2005 have 

been combined with centre samples from the other years in order to provide a more 

complete record. 

 

Jones et al. (2005) had shown through calibration with the meteorological record and 

modelling that the major driver of δ18Ocarbonate at Nar Gölü is water balance, which is 

what would be expected from a closed lake with a long residence time (Leng and 

Marshall, 2004). However, these conclusions were based on a water isotope record 

of limited temporal resolution. Here, more data are presented which support the 

assertion that water balance is the key driver of δ18Ocarbonate at Nar Gölü. Firstly, it is 

possible to show that the effect of factors other than water balance on δ18Ocarbonate in 

Nar Gölü over the last decade has been limited. As discussed in section 3.4, 

δ18Ocarbonate is dependent upon temperature and δ18Olakewater at the time of carbonate 

precipitation (Leng and Marshall, 2004). The importance of the former can be ruled 

out, since the fractionation factor is –0.24‰°C-1 and Figure 7.1 shows that 

temperatures have actually risen over the past decade, which means if this was the 

main driver of δ18Ocarbonate, δ18Ocarbonate values would have fallen. δ18Olakewater can 

therefore be seen to be the main influence on δ18Ocarbonate.  

 

The main influences on δ18Olakewater can be split into two factors. Firstly, δ18Oprecipitation 

will be considered. Spring waters at Nar Gölü are assumed to reflect local 

precipitation as they fall on the Ankara meteoric water line (Figure 7.2). There has 

not been a substantial increase in δ18O of spring waters over the decade (from           

–10.54‰ in August 2001 to –10.57‰ in April 2013), which suggests changes in 

δ18Oprecipitation have not been large enough to drive the increase in δ18Olakewater 

observed over the past decade (Figure 7.1). Therefore, the second main influence on 

δ18Olakewater, modification within-lake, seems the likely explanation, with δ18O 

recording changes in water balance. 
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Figure 7.1 δ18Olakewater (from July surface samples), δ18Ocarbonate from core and 

sediment traps, δ18Odiatom from core and sediment traps (x-axis error bars show the 

years the core samples represent and y-axis error bars the uncertainties associated 

with isotope measurements and mass balance correction) and conductivity (from July 

surface water samples), plotted with changes in maximum lake depth and 

meteorological data from Niğde showing rises in temperature and precipitation in the 

2000s (data collected by the Turkish Meteorological Service). 
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Figure 7.2 δD-δ18O plot with data from the Ankara GNIP station 1964-2009 

(IAEA/WMO, 2013) defining the LMWL. Lake waters plot off the LMWL suggesting 

evaporative enrichment. 

 

 

There are a number of factors that support the interpretation of water balance being 

the main driver of δ18O in the Nar Gölü system. Firstly, Figure 7.2 shows the hot and 

cold spring water δ18O values plot on the local meteoric water line, suggesting they 

represent a weighted average of precipitation, whereas the lakewater δ18O values 

plot off the line, suggesting evaporative enrichment within-lake. Secondly, 

δ18Olakewater and δ18Ocarbonate trends seem to follow changes in the depth of the lake. 

July δ18Olakewater values have become more positive over the last decade (from              

–3.20‰ in 2000 to a peak of –0.24‰ in 2010 and –0.34‰ in 2012 (Figure 7.1), 

suggesting that evaporation is currently exceeding precipitation and groundwater 

inflow. δ18Ocarbonate values increased from –3.7‰ in 2000 to –0.5‰ in 2010 and there 

is a very strong, positive and significant relationship between δ18Olakewater and 
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δ18Ocarbonate (r = +0.99, n=8, p<0.005). As δ18Ocarbonate and δ18Olakewater values have 

fairly consistently increased over the last decade, the maximum depth of the lake has 

fallen from ~25 m to ~22 m (Figure 7.1). Nar Gölü has a residence time of 8-11 years 

(Jones, 2004), which means the response of the lake to changes in climate will be 

delayed and smoothed, so δ18O data from the last decade should be viewed in the 

context of what was going on in the years before. Figure 7.1 shows that since the 

mid-1990s precipitation has actually increased slightly (average 352 mm 2001-2010 

compared to 339 mm 1935-2011), however DJF precipitation has decreased (average 

91 mm 2001-2010 compared to a mean of 108 mm from 1935-2011). Annual 

temperatures have risen since 1992 to an average of +12.0°C 2001-2010 compared 

to +11.1°C 1935-2010, and JJA temperatures average +22.8°C 2001-2010 compared 

to 21.4°C 1935-2010. Of the 10 hottest months on record as measured by average 

temperature, 8 were in the 2000s. Higher temperatures will have meant more 

evaporation and the shift of precipitation away from DJF to other months when 

temperatures are higher will likely have meant less of this precipitation made its way 

into the lake due to evaporation on route, and these factors can explain the 

observed fall in lake levels.  

 

Thirdly, water chemistry data also suggest the lake is closed and experiences 

significant evaporation. Conductivity has increased over the past decade, which 

supports the argument that water balance has become more negative (Figure 7.1). 

The trend in conductivity is less clear than the increase in δ18O, although there has 

been a gradual upwards trend from 3300 μScm-1 in July 2001 to 3370 μScm-1 in July 

2009 to 3433 μScm-1 in July 2010 and 3500 μScm-1 in July 2011. Table 7.1 shows an 

increase in the concentration of some major ions from 1999, 2010 and 2012, 

although the gap in water chemistry data between these times means it is difficult to 

investigate trends reliably. The increase in the Mg/Ca ratio, caused by concentration 

of magnesium due to evaporation and loss of calcium due to precipitation of calcium 

carbonate (Kelts and Talbot, 1990), is of particular significance as it seems to have 

had an influence on the mineralogy of the carbonates precipitated in the lake. There 

was a shift from calcite precipitation 1987-2010 to aragonite precipitation in 2011 

and 2012, seen in sediment traps, surface precipitates (Figure 7.3) and sediment 
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cores. This sort of mineralogical shift is seen to be caused by an increase in the 

Mg/Ca ratio of the lake (Muller et al., 1972, Kelts and Hsu, 1978, Ito, 2001), which 

favours the precipitation of aragonite over the calcite, because the presence of Mg2+ 

ions decreases calcite precipitation rates while having no effect on aragonite 

formation (Berner, 1975, De Choudens-Sanchez and Gonzalez, 2009). 

 

Table 7.1 Major ion concentrations in Nar Gölü surface waters. 

  Concentration meq/L 

 SO4
-2

 Cl
-
 Na

+
 K

+
 Mg

2+
 Ca

+2
 Mg/Ca 

August 1999 3.2 27.4 16.5 3.7 8.5 3.0 2.9 

July 2010 3.8 22.7 16.2 3.6 15.4 1.0 16.2 

July 2012 4.1 23.9 16.9 3.8 16.5 1.2 13.3 

  

 

 

Figure 7.3 A: sediment trap material from 2011 showing ‘rice’ shaped aragonite 

crystals as well as diatoms. B: ‘white-out’ around the edges of Nar Gölü lake in July 

2012 and inset an SEM image identifying this as aragonite.  

A 

B 
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δ18Odiatom is seen to have similar drivers to δ18Ocarbonate (Leng and Barker, 2006, Leng 

and Swann, 2010), so following the logic outlined above δ18Odiatom should also be a 

proxy for water balance. However, single varves do not yield sufficient diatom silica 

for δ18Odiatom analysis (5 year bulk samples had to be used) and there are errors 

associated with the mass balance correction. Consequently, there are only two 

δ18Odiatom samples for the period covered by the monitoring data and there is no 

difference between the two values outside of error (Figure 7.1). This prevents a 

comparison with lake depth and highlights the difficulties of δ18Odiatom interpretation 

compared with δ18Ocarbonate interpretation in Nar Gölü (Dean et al. 2013). However, 

the similarity of sediment trap values to sediment core values does suggest 

diagenetic/dissolution/maturation effects (e.g. Moschen et al., 2006) are not 

significantly altering the isotope signal between diatom growth and deposition. 

Woodbridge and Roberts (2010) also showed that the vast majority of diatom 

species are present in both the modern and palaeo records. 

 

7.1.2 Carbon isotopes 

 

There is less of a clear increase in δ13Ccarbonate values from the core sediments (Figure 

7.4), although values do increase from +12.4‰ in 2000 to +14.4‰ in 2010. July 

δ13CTDIC values increased from +10.8‰ in 2000 to +12.1‰ in 2012, although values 

fell to a minimum of +9.8‰ in 2010. While δ13CTDIC values 1-2‰ lower than 

δ13Ccarbonate core values are expected (Leng and Marshall, 2004), the lack of a 

relationship between the two variables is difficult to explain.  

 

Hot spring waters have similar δ18O values to waters in the cold springs, which as 

discussed are seen to represent precipitation, and these values are enriched by 

evaporation once the waters make their way into the lake (Figure 7.5). However, the 

hot spring waters have δ13C values significantly higher than the cold springs (mean 

+4.1‰ compared to –11.6‰ respectively). It is difficult to account for such positive 

δ13C values in the hot springs. Preferential degassing is considered an unlikely 

explanation, as this would lead to enrichment in δ18O as well. The mean value of the 

hot springs 2000-2013 is –10.30‰, similar to the mean of the cold springs of               
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–10.62‰. One hypothesis is that the hot springs are composed of meteoric waters 

that have fallen to depth and interacted with so far unidentified carbonate rocks 

with high δ13C values. δ13CTDIC values in the lake waters are even higher than in the 

hot springs, with a mean of +10.5‰ 1997-2012. As discussed in section 3.7, three 

main factors influence TDIC in lake waters: isotopic composition of inflowing waters, 

exchange with the atmosphere and changes due to organic processes and diagenesis. 

Such high δ13CTDIC values in the lake waters are probably due to a combination of the 

originally high δ13CTDIC coming into the lake from the hot springs, and then further 

modification due to exchange with the atmosphere with preferential degassing of 

12C, preferential uptake of 12C by aquatic plants and the locking away of 12C in the 

anoxic sediments, and potentially methanogenesis where CH4 is preferentially 

produced using 12C leaving the remaining TDIC pool with more positive δ13C values 

(Talbot and Kelts, 1986, Gu et al., 2004, Leng et al., 2013). A more detailed discussion 

of the carbon isotope system at Nar Gölü is beyond the scope of this thesis, as it 

would not significantly contribute to the aims outlined in section 1.4. 

 

 

 

Figure 7.4 δ13CTDIC from July waters and δ13Ccarbonate from core sediments. 
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Figure 7.5 δ13C-δ18O plot showing the similarity of hot and cold spring δ18O values but 

significant enrichment in δ13C in the hot springs, and even higher δ13C and δ18O 

values in the lake compared to in the springs. 

 

 

7.2 Intra-annual variability 

 

7.2.1 Isotopic variability 

 

Figure 7.6 shows the variability in oxygen and carbon isotopes and water chemistry 

from edge samples taken between June 2011 and July 2012. δ18O values reach a 

peak of –0.13‰ in mid-September 2011 before falling to –1.76‰ in mid-March 2012 

and then increasing to –0.39‰ in mid-July 2012. Conductivity values also reach a 

peak in mid-September 2011 at 3539 μScm-1, before declining to 2190 μScm-1 in late 

February 2012 and rising again to 3522 μScm-1 by July 2012. δ13CTDIC values were 

higher in June 2011 (+10.9‰) than September 2011 (+10.6‰), although as with the 

δ18O values there is a decline to lower values in early 2012 (+6.9‰ in late February) 

before an increase to +12.1‰ by July 2012. Magnesium concentrations decline from 

a peak of 15.6 meq/L in June 2011 to a minimum of 3.2 meq/L in late February 2012 

and then rising again to 16.5 meq/L by July 2012, whereas calcium concentrations 
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show the opposite trend, shifting from 1.4 meq/L in June 2011 to 4.0 meq/L in late 

February 2012 to 1.2 meq/L in July 2012. 

 

There are three explanations for the lowering of δ18Olakewater and salinity in the winter 

and its increase in the summer. Firstly, the water in the lake as a whole could 

become more isotopically depleted in the autumn, winter and spring due to 

precipitation entering the lake, which is fresh and isotopically depleted relative to 

the lake water (average δ18O of cold springs, assumed represent precipitation, was    

–10.62‰ 2000-2013). Although not quantified, lake levels were visibly higher in 

February 2012 than they had been in September 2011 suggesting this factor might 

be important. It is not surprising that δ18Olakewater is lowest in mid March, since Figure 

7.7 shows this is around the time the snow from the catchment was melting and 

would have entered the lake and Figure 5.3 shows precipitation is greatest in the 

spring. Secondly, stratification of lake waters in the summer leads to more positive 

δ18O values in surface waters. Figure 7.8 shows that in the summer the waters of Nar 

Gölü are thermally, chemically and isotopically stratified, with warmer and 

isotopically more positive waters in the epilimnion, followed by a shift at ~7 m to 

colder and isotopically more depleted values (although conductivity trends are 

ambiguous). Comparisons of the depth profiles from April, June, July and September 

(although note these profiles are from different years) show that the thermo- and 

iso-clines become more enhanced as the year progresses, with a 1.00‰ difference 

between surface and bottom water δ18O values in September 2011 compared to a 

0.75‰ difference in July 2010, 0.24‰ in June 2011 and 0.23‰ in April 2013. It was 

not possible to take samples through the water column during the February visit of 

2012 due to adverse weather conditions, but tiny tag temperature loggers suggest 

that, at least thermally, the lake is mixed from late November to early March 

(Eastwood et al., unpublished data). The third explanation for differences in δ18O 

between seasons is snowmelt (which is very isotopically depleted: a snow sample 

taken from the catchment in February 2012 had a value of –16.98‰) forming a 

freshwater lid due to the density contrast with underlying saline waters. This is 

observed in Greenland and Canada (McGowan et al., 2003, Willemse et al., 2004, 

McGowan et al., 2008, Pieters and Lawrence, 2009). In Dean et al. (2013) it was 
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suggested that this might have occurred in Nar Gölü in the past, in order to explain 

how δ18Olakewater values calculated from δ18Odiatom in parts of the core were so low. 

δ18Olakewater values for March 2012, when Figure 7.7 shows the snow was melting, are 

not as low as would be expected if a freshwater lid had formed. However, this is not 

to say a freshwater lid may not have occurred in the past if there was more snowfall, 

as will be discussed in section 10.4. Therefore, in the present, intra-annual variability 

in δ18O of surface waters seems to be driven by both summer stratification and 

changes in the isotopic composition of the lake as a whole resulting from seasonal 

precipitation:evaporation variability.  
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Figure 7.6 Isotope and chemistry data from June 2011 to July 2012 from lake edge 

samples taken during field visits and by members of the local community. 
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Figure 7.7 Nar Gölü through the spring of 2012, showing snow starting to melt and 

ice disappearing from lake by 19 March, snow completely melted from the catchment 

by 11 April and a ‘greening’ of the lake on 1 May. 
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Figure 7.8 Depth profiles showing changes in temperature, isotopic composition and 

chemistry with depth and how this varies between different times of the year. 
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7.2.2 Timing of carbonate precipitation 

 

In Dean et al. (2013) it was suggested that diatom growth was weighted towards the 

spring and carbonate precipitation to May-June. Here this can be investigated 

further. Carbonate precipitation in surface waters is supported by the fact that 

sediment traps at 5 m depth tend to be covered in carbonate, whereas deeper ones 

do not. In the summer, calcium values at the surface are lower than at depth, 

suggesting draw down of calcium carbonate from the surface waters at this time 

(Reimer et al., 2009). Analysis of the stratigraphy of sediment traps collected in July 

in the early 2000s shows carbonate deposited on top of organic matter (Jones, 2004). 

The topmost sediments from Glew cores retrieved in April 2013 were composed of 

organic material, not carbonates, and calcium concentration was still higher in 

surface waters than at depth. This all suggests that carbonate precipitation peaks 

sometime after April but before July. Thin section analysis shows that Nitzschia 

paleacea bloom layers directly precede carbonate layers on average 1 year in 5 

(Woodbridge and Roberts, 2010), suggesting carbonate precipitation may in some 

years be initiated by the diatom blooms drawing down CO2 and raising pH which can 

lead to carbonate supersaturation (Siegenthaler and Eicher, 1986, Bronmark and 

Hansson, 2005, Deocampo, 2010). In other years, non-diatom algae may initiate the 

carbonate precipitation. Carbonate may precipitate through a large proportion of the 

year, and Jones (2004) showed variance in δ18Ocarbonate with depth in the sediment 

trap suggesting this was the case, but δ18Ocarbonate measured in the palaeo record 

from a whole-year varve will be weighted towards the time of maximum 

precipitation, which as discussed from observations appears to be between May and 

July. Modelling using Eqs. 6.2 and 6.3 can be used to better investigate the timing of 

carbonate precipitation, but before the equations are used it needs to be shown that 

carbonate is precipitating in isotopic equilibrium with lake water and that there are 

no dissolution/diagenetic effects. 

 

At Nar Gölü, whole lake white-outs have been described by local villagers and in July 

2012, aragonite was seen precipitating around the edges of the lake in a ‘white-out’ 

event (Figure 7.3), as has been documented in many other lakes (e.g. Romero-Viana 



99 

 

et al., 2008, Sondi and Juracic, 2010, Viehberg et al., 2012). The δ18Ocarbonate value of 

the precipitate (–1.3‰) is below that expected based on the trend over the last 

decade to more positive values (Figure 7.1), which suggests this precipitate is not 

typical of the δ18Ocarbonate values derived from the analysis of a whole carbonate varve 

from core sediments or sediment trap samples which would be representative of the 

whole year (although core and trap sediments are not yet available for 2012). 

Average temperature at the mean time of carbonate precipitation is likely to be 

lower than the temperature of +25.6°C recorded when the aragonite was 

precipitating, which would result in a higher δ18Ocarbonate from samples containing 

carbonate from the whole year. However, because the temperature, δ18Ocarbonate and 

δ18Olakewater (–0.39‰) are all known, it is possible to use Eq. 6.5 to show that the 

surface precipitate formed in equilibrium within error (actual value –1.3‰; 

equilibrium predicted value –1.8‰, ±0.1‰ analytical reproducibility, ±0.9‰ error 

from the equation (Kim et al., 2007a)).  

 

Investigation of the possible influences of dissolution and diagenesis on the isotope 

signal is also required. SEM images of calcite and aragonite from the core (e.g. calcite 

in Figure 7.9) have the characteristics of primary precipitates with no features such 

as rounding or etching of calcite crystals suggesting diagenetic alteration (as seen in 

e.g. Kelts and Hsu, 1978, Talbot and Kelts, 1986, Katz and Nishri, 2013). Also, the fact 

that there are only limited differences in δ18Ocarbonate between sediment traps at 

different depths and between sediment traps and core sediments suggests the δ18O 

signal is preserved (Figure 7.1). 
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Figure 7.9 Rhombic calcite crystals from the early Holocene, showing minimal etching 

or rounding which would be indicative of dissolution or formation through diagenetic 

processes. 

 

 

Therefore, since it seems carbonate forms in equilibrium (at least in July 2012) and 

the influence of dissolution and diagenesis on the isotope record is minimal, it is 

possible to run Eqs. 6.2 and 6.3 using various δ18Olakewater and temperature values and 

compare calculated equilibrium values to measured core δ18Ocarbonate values through 

the monitoring period, in an attempt to better determine the time of year to which 

carbonate precipitation is weighted. Based on the observations and analysis of 

sediment outlined above, it was assumed that most carbonate precipitated after 

diatom growth, probably sometime between May and June, and in surface waters. 

Therefore, likely surface water temperature and δ18O values for these times are 

used. Temperatures clearly vary from year to year, but data loggers suggest 

temperatures change from ~+12.5°C in the beginning of May to ~17.5°C in mid-June 

and ~22.5°C by mid-July (Eastwood et al., unpublished data). In 2012, δ18Olakewater 

values were 0.7‰ lower in May compared to July, while in 2009 δ18Olakewater was 

0.6‰ lower. Consequently, in this modelling exercise, temperatures ranging from 

+12.5°C to +22.5°C and δ18Olakewater values from measured July values and back at 

0.2‰ intervals to those likely in the beginning of May (0.8‰ lower) were used. All 

varves 2001-2010 were composed of calcite and both Eqs. 6.2 and 6.3 were used and 

values compared (Figures 7.10 and 7.11). Using both equations, predicted 
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δ18Ocarbonate values hit measured δ18Ocarbonate values at temperatures of ~+15-17.5°C. 

At +17.5°C, in most years, δ18Olakewater values found in July are required to predict 

δ18Ocarbonate accurately, but actual temperatures in July are likely several degrees 

higher than this. At +15°C, particularly using Eq. 6.2, δ18Olakewater values predicted for 

early May are required in most years to accurately predict actual δ18Ocarbonate, but at 

this time temperatures are likely to have been lower than that. However, at ~+16°C 

and a δ18Olakewater value –0.4‰ lower than July, the actual δ18Ocarbonate values are hit 

by the predictions. These δ18Olakewater values and temperatures are representative of 

conditions around early to mid-June. Although there are considerable uncertainties 

associated with the equations, this estimation is in line with the observations 

outlined above. Therefore, it is assumed carbonate precipitation in Nar Gölü, at least 

over the last decade, has been weighted towards early to mid June.  
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Figure 7.10 Predicted δ18Ocalcite values (Eq. 6.2) compared to measured δ18Ocalcite. 
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 Figure 7.11 Predicted δ18Ocalcite values (Eq. 6.3) compared to measured δ18Ocalcite. 



104 

 

7.2.3 Timing of diatom growth 

 

As discussed, the majority of diatom growth seems to occur before carbonate 

precipitation, based on examination of sediment trap stratigraphy and thin sections 

(Jones et al., 2005, Woodbridge and Roberts, 2010). If diatom growth occurred just 

before carbonate precipitation, then there will not be much variation in lake 

conditions between then and the time of year to which carbonate precipitation is 

weighted. In an attempt to better constrain the time of year of growth, the same 

modelling exercise as carried out for carbonate isotopes in Figures 7.10 and 7.11 was 

carried out using Eq. 6.11 (Figure 7.12). The only way to make predicted δ18Odiatom 

values even come close to hitting most of the corrected δ18Odiatom values is to use 

temperatures <10°C and δ18Olakewater values from late July or September (July 

δ18Olakewater +0.2‰) which is clearly impossible. However, as outlined in section 6.4.5, 

it is suspected that some of the Al2O3 in diatom samples is due to diatom-bound 

aluminium and not detrital contamination. While an attempt was made to correct for 

this (section 6.4.4), it is possible that 1% Al2O3 was an underestimation of the 

amount of diatom-bound aluminium in pure diatom samples and the mass balance 

correction is still over-correcting. Consequently, the raw δ18Odiatom values may be 

closer to the true value than the corrected value. The sample from 2006-2010 has 

the lowest Al2O3 value (1.5‰) of the samples plotted on Figure 7.12 and when 

viewed under SEM did not appear to have much, if any, detrital contamination, 

suggesting it is the least contaminated. Therefore, its raw measured δ18Odiatom value 

is used here. Predicted δ18Odiatom values hit this value at a temperature of +15°C and 

a δ18Olakewater value 1.0‰ lower than July, which could represent conditions in the 

lake in early May; or a temperature of 17.5°C and a δ18Olakewater value 0.8‰ lower 

than July, representative of conditions in late May to early June; or a temperature of 

22.5°C and a δ18Olakewater value 0.2‰ higher than July, representative of conditions in 

September. The first two would support the observations outlined above that 

suggest growth is weighted towards the spring. The last of these shows that growth 

in the autumn is also possible. Therefore, while it is still not possible to reliably 

conclude which time of the year diatom growth is weighted to, by combining 
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observations and modelling the best guess would be in the spring up to several 

months before carbonate precipitation. 

 

 

 

  

Figure 7.12 Predicted δ18Odiatom values from Eq. 6.11 compared to measured 

δ18Odiatom (mass balance corrected and raw). 
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7.3 Summary 

 

New data presented here support the work of Jones et al. (2005), who suggested 

that water balance is the major driver of δ18Olakewater and δ18Ocarbonate in Nar Gölü. 

δ18Odiatom has the same drivers as δ18Ocarbonate (Leng and Barker, 2006), however not 

enough data are available from the last decade to investigate this specifically for Nar 

Gölü. Intra-annual variability in δ18O of surface waters, from which carbonate 

precipitates and some diatom species grow, appears to be driven by changes in the 

overall isotopic composition of the lake due to autumn, winter and especially spring 

precipitation, and stratification of waters in the summer. It is tentatively assumed 

that carbonate precipitation, at least over the last decade, has been weighted 

toward June. It is harder to determine the time of year to which diatom growth is 

weighted, but here it is estimated that it is weighted to the spring up to several 

months earlier than carbonate precipitation. This means that their δ18O should be 

recording water balance at different times of the year, and it has been shown that 

there is substantial intra-annual variability in δ18O in Nar Gölü. Hence, comparison of 

the two records could provide insights into seasonality. Now that a better 

understanding of the contemporary Nar Gölü system has been developed, it will be 

possible to better interpret the palaeo record. 
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Chapter 8 | Results and interpretation of palaeo stable 

isotope records 

 

This chapter presents the data from the NAR10 core sequence and preliminary 

interpretations are made. 

 

8.1 Results 

 

8.1.1 Lithology 

 

There are three main types of lithology found in the NAR10 core sequence (Figure 

8.1). 68% of the sequence has mm-thick laminations: alternating carbonate and 

organic layers (0-598, 1161-1755, 1762-1965 and 2053-2133 cm) sometimes 

interrupted by grey turbidite layers. 18% of the sequence has larger cm-thick 

laminations (754-1139 cm). 12% is non-laminated, sometimes consisting of hard, 

concreted layers (598-754, 1965-2023, 2037-2053 and 2133-2169 cm). As discussed 

in sections 5.3.1 and 9.2, the mm-thick laminations are annual laminations (varves), 

whereas the bands are not believed to be annual as they are thicker and are not 

simply alternating carbonate and organic layers.  

 

 

 

 

 

 

 

 

Figure 8.1 Photographs of cores after opening showing different lithologies found in 

the sequence. A and B show the mm-thick laminations. C shows the cm-thick bands 

and D the hard, concreted non-laminated sediments. 
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It is estimated, based on drive depths recorded during coring, that 43 cm is missing 

from the sequence in three places, totalling 2% of the record (1139-1161, 1755-1762 

and 2023-2037 cm). Despite taking three parallel cores, there was not a good enough 

overlap in these places (Figure 6.5). 

 

8.1.2 Core overlap 

 

Rather than producing new data from the most recent 1,720 years of the record, 

data from the NAR01/02 sequence were used. The NAR01/02 and NAR10 sequences 

were matched by eye (using the NAR01/02 photo archive) at tie-points where 

terbidites or distinctive varve patterns allowed correlation (as detailed in Allcock, 

2013), however to confirm that the cores were overlapped in the right place and that 

the different core sequences were representative of each other, δ18Ocarbonate data 

were produced from the NAR10 record and compared to the NAR01/02 data (Jones 

et al., 2006). There is a very strong match for the period of overlap 1,300-1,500 years 

BP (Figure 8.2). The δ18Ocarbonate values from the matched points are very similar, 

suggesting the δ18Ocarbonate values from the two core sequences are analogous. Any 

offset in ages is small and within the expected counting error (Jones, 2004). 

 

 

Figure 8.2 δ18Ocarbonate data from NAR10 and NAR01/02 cores through a major 

transition showing a 8-13 year offset based on wiggle matching of the isotope 

records.  
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8.1.3 Isotope data through the whole sequence 

 

Figure 8.3 shows all isotope data (δ18O and δ13C from carbonates, δ18O from diatoms, 

δ13C from bulk organics, plus C/N on bulk organics; summary statistics given in Table 

8.1) plotted against depth, along with carbonate mineralogy and lithology data. 

Carbonate mineralogy data are not given quantitatively because, as outlined in 

section 6.3.3, the XRD and the process of manually calculating the area under peaks 

is not that accurate, so in calcite/aragonite zones >50% calcite is defined as calcite 

and >50% aragonite is defined as aragonite, although most samples were actually 

one or the other and not mixtures of the two. Where dolomite is present, samples 

are shown as containing <20% dolomite (those samples that were reacted for isotope 

analysis at 16°C as outlined in section 6.3.4) and those containing >20% dolomite 

(those samples that could not be run for carbonate isotopes). In the sections where 

dolomite is present, more often than not the other form of carbonate is aragonite, 

although some calcite is present at times in small quantities. While these samples 

contain dolomite, the δ18O data produced from these samples using the 16°C 

reaction will be just from the aragonite/calcite fractions. Not every sample run for 

isotopes could be analysed by XRD because of financial constraints, but from the 

data that were available, and combined with looking at changes in the colour of 

carbonate varves in the core (aragonite is noticeably lighter than calcite), robust 

estimates are believed to have been made.  

 

The data have been zoned, largely based on major changes in the δ18Ocarbonate trends 

since these data are the highest resolution of all the isotope records, to allow 

discussion of the results. The trends in δ18Ocarbonate, δ13Ccarbonate, δ13Corganic and 

δ18Odiatom are broadly similar through the record (Figure 8.3). Starting from the 

bottom of the core and working up to the present day, δ18O and δ13C values from 

carbonates decrease from means of –1.5‰ and +13.9‰ respectively in zone 1 to –

2.8‰ and +13.4‰ in zone 2, before increasing once more to –0.7‰ and +15.6‰ in 

zone 3. These changes are matched by a shift from non-laminated aragonite-rich 

sediments throughout most of zone 1 to laminated and more calcite-rich sediments 
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in zone 2 and back to non-laminated and aragonite- and dolomite-rich sediments in 

zone 3. δ18Odiatom values change less between zones 1 and 2. 

 

δ18O and δ13C from carbonates then decrease to means of –3.5‰ and +13.0‰ in 

zone 4. This is the least variable of all the 11 zones with standard deviation values of 

0.6 and 0.4 for δ18Ocarbonate and δ13Ccarbonate respectively (Table 8.1). Zone 5 

δ18Ocarbonate values are much more variable and on average higher, with aragonite in 

parts of the record where δ18Ocarbonate values are higher and calcite where δ18Ocarbonate 

is lower. δ13Corganic also increases slightly, but average δ18Odiatom does not increase 

significantly, although a lack of samples from zone 5 is an issue. The shift from a 

mean δ18Ocarbonate value of –2.1‰ in zone 5 to the largest zone mean for the record 

of +1.5‰ in zone 9 seems to occur in two phases, in zones 6 and 8. Zone 7 has highly 

variable isotope values but overall there appears to be no increase in δ18Ocarbonate 

from beginning to end. In zone 6, as δ18Ocarbonate values are increasing, there is still 

calcite and varved sediments, and it is at the switch to zone 7 that the varves 

disappear and there is a shift to first aragonite, then aragonite with <20% dolomite 

and then aragonite >20% dolomite. In parts of zone 9, where the highest δ18Ocarbonate 

values are seen, there are non-laminated sediments and dolomite. There is an 

increase in δ13Ccarbonate from zone 4 to 9 but it is less clear cut than the increase in 

δ18Ocarbonate. δ13Corganic increases while the C/N ratio shows a steady decrease from 

mean values of 24.4 in zone 4 to 11.0 in zone 9. δ18Odiatom increases from zone 4 and 

the maximum value is seen in zone 7, not zone 9 like with δ18Ocarbonate, probably 

because of the gaps in the record in zone 9 when many samples could not be run 

(section 6.4.4), and because δ18Odiatom decreases before the end of zone 9, whereas a 

sharp decrease in δ18Ocarbonate, δ
13Ccarbonate and δ13Corganic occurs slightly later, into 

zone 10. All isotope records then show an increase into zone 11 and there is an 

increase in number of C/N peaks. 
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Table 8.1 Summary statistics for the 11 zones defined from the combination of the 

NAR01/02 and NAR10 sequences (statistics only given for zones with three or more 

samples).   = mean, σ = standard deviation. 

  Carbonates   Organics  Diatoms 

Zone Depth 

(cm) 

δ
18

O  ‰ 

VPDB 

δ
13

C ‰ 

VPDB 

Co-variance 

(r) 

δ
13

C ‰ 

VPDB 

C/N δ
18

O ‰ 

VSMOW 

11 0-204     = –0.6 

σ = 1.0 

    = +14.5 

σ = 0.7 

0.71     = –22.1 

σ =1.3 

    =12.3 

σ = 2.8 

    = +35.6 

σ = 2.4 

10 204-354     = –2.6 

σ = 0.9 

    = +13.4 

σ = 0.7 

0.79     = –23.0 

σ = 1.1 

    =11.3 

σ = 1.6 

    = +33.9 

σ = 2.9 

9 360-807    = +1.5 

σ = 1.1 

    = +15.9 

σ = 1.0 

0.51     = –19.0 

σ = 1.5 

    =11.0 

σ = 1.6 

    = +35.5 

σ = 3.8 

8 812-894     = +1.0 

σ = 1.1 

 

    = +14.8 

σ = 0.5 

0.42       = 35.6 

σ = 0.3 

 

7 902-1165     = +0.4 

σ = 0.9 

    = +14.3 

σ = 0.8 

0.24     = –22.7 

σ = 1.1 

    = 

12.8 

σ =2.1 

    = 36.4 

σ = 0.2 

6 1169-

1316 

    = –1.0 

σ = 1.1 

    =+13.4 

σ = 0.7 

0.70      =15.8 

σ = 1.0 

    = +36.1 

σ = 0.1 

5 1320-

1632 

    = –2.1 

σ = 1.0 

    = +13.8 

σ = 0.9 

0.59     = –23.1 

σ = 1.2 

    =17.5 

σ = 1.7 

    = +33.6 

σ = 0.2 

4 1638-

1957 

    = –3.5 

σ = 0.6 

 

    = +13.0 

σ = 0.4 

 

0.63     = –23.8 

σ = 1.1 

 

    =24.4 

σ = 8.0 

 

    = +33.6 

σ = 0.2 

 

 

3 1961-

2053 

   = –0.7 

σ=0.9 

 

    = +15.6 

σ = 1.4 

 

0.77     = –21.4 

σ = 3.3 

 

    =18.1 

σ = 1.2 

 

 

2 2057-

2093 

    = –2.8 

σ = 1.2 

    = +13.4 

σ = 1.1 

0.96       = +34.5 

σ = 0.03 

1 2097-

2161 

    = –1.5 

σ = 0.8 

    = +13.9 

σ = 0.8 

 

0.74 

      = +34.9 

σ = 0.4 
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8.2 Interpretation  

 

8.2.1 Lithology 

 

Varves form in lakes because of seasonal variation in sedimentation. In Nar Gölü, as 

discussed in section 7.2.2, carbonate precipitation seems to be concentrated in the 

summer (forming the light varves) and diatom and other algal growth in other times 

of the year (forming the darker varves). The reason that varves are preserved in Nar 

Gölü in the present is probably because of its deep waters in relation to its surface 

area. This limits turbidity and re-suspension of sediment and favours the formation 

of anoxic bottom waters, limiting bottom-dwelling organisms and resulting 

bioturbation, although changes in wind speed and temperature as well as simply lake 

depth may also influence the preservation of varves (O’Sullivan, 1983, Ojala et al., 

2000, Zolitschka, 2007, Ojala et al., 2012). In the present day, cores taken from 15 m 

water depth are still laminated, and if wind speed, temperature, etc. stayed the same 

then lake levels presumably would have had to have fallen below this level in the 

past for non-laminated sediments to have formed. So, a shift from varved to non-

varved (i.e. banded or non-laminated) could be seen to indicate a shift to lower lake 

levels. Therefore, varved sediments are taken to indicate when lake levels were 

highest and non-laminated when they were lowest. The presence of banded 

sediments in zones 4-6 in the transition from varved to non-laminated sediments is 

interesting as in the rest of the sequence there are simply changes between varved 

and non-laminated. Looking at Figure 8.3, it can be seen that the banded sediments 

appear in a gradual transition in the δ18Ocarbonate values, in zones 7 and 8, which are 

intermediate between the low δ18Ocarbonate values of zones 4 and 5 and the high 

δ18Ocarbonate values in zone 9. The δ18Ocarbonate transition seen e.g. 1989-1957 cm when 

there was simply a shift from non-laminated to varved is a lot more rapid. Therefore, 

banded sediment may form when the lake is stuck in a state between stratified every 

year (leading to varved sediments) and never stratified (leading to non-laminated 

sediments), and in rapid transitions the shift from stratified every year to never 

stratified occurs too quickly for this intermediate to occur.  
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8.2.2 Carbonate mineralogy 

 

As discussed in section 7.1.1, shifts from calcite to aragonite in Nar Gölü are believed 

to be due to a change in the Mg/Ca ratio of the lake (Muller et al., 1972, Kelts and 

Hsu, 1978, Ito, 2001), which favours the precipitation of aragonite over calcite 

(Berner, 1975, De Choudens-Sanchez and Gonzalez, 2009), and therefore carbonate 

mineralogy changes can be used as proxy for water balance. Figure 8.3 shows there 

is a link with lithology, for example a transition to aragonite ~1139 cm occurs at the 

same time as a shift from varved to banded sediments. Towards the bottom of the 

core, changes from calcite to aragonite coincide with changes from varved to non-

laminated sections. 

 

In addition to calcite and aragonite, there is another type of carbonate present in the 

sequence. XRD peaks were initially interpreted as suggesting the non-

calcite/aragonite crystals seen in Figure 8.4 were ankerite because the main peaks 

were at ~2.9 angstroms (dolomite is usually at 2.889, Fe-dolomite at 2.895 

and ankerite at 2.906). However, EDS analysis of these individual crystals showed 

very little Fe (average 0.07 at%, a Mg/Fe atomic ratio of 218). Since ankerite is seen 

to contain much more Fe than this, for example one definition giving an Mg/Fe ratio 

of <4 (Howie and Broadhurst, 1958), the samples were defined as dolomite. The 

difference in peak locations from those of stoichiometric (ideal) dolomite were likely 

caused by the high Ca/Mg ratio of the dolomite in these samples, which can shift the 

main peak location close to that expected of ankerite (Lumsden, 1979). Indeed EDS 

data show the average Ca:Mg ratio based on analysis of three crystals from six 

different samples containing dolomite was 2.3, whereas ‘ideal’ dolomite would have 

a ratio of 1.  

 

Unlike calcite and aragonite, dolomite has not been observed forming in Nar Gölü in 

the recent past so its precipitation dynamics have to be inferred by careful 

consideration of the palaeo record. Dolomite in lake sediments can originate from 

the detrital inwash of old dolomite (Leng et al., 2010), from primary precipitation or 

from diagenetic precipitation in sediments. The former mode can be discounted, as 
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the crater geology is dominated by basalt and ignimbrite (section 5.1). Primary  

dolomites are rare in lake sediments, however where they do occur they have 

rhombic crystals (Sabins, 1962). The crystals in Figure 8.4 are not rhombic.  

 

It is possible that dolomite formed authigenically within the sediments, replacing 

calcite or aragonite during early diagenesis. Studies have demonstrated the 

importance of microbes in dolomite precipitation, both sulphate-reducing bacteria 

(e.g. Vasconcelos and McKenzie, 1997) and methanogens (e.g. Kelts and McKenzie, 

1982). The processes of sulphate-reduction and methanogenesis create conditions 

such as increased pH and total alkalinity and decreased calcium and magnesium 

hydration (Mazzullo, 2000, Armenteros, 2010) that allow kinetic constraints on 

dolomite formation to be overcome, producing what is termed organic-diagenetic or 

organogenic dolomite. As well as this passive role, it is possible that bacteria may be 

actively involved in dolomite precipitation, perhaps acting as a nuclei for 

precipitation (e.g. Warthmann et al., 2000). Sulphate-reducing conditions tend to 

leave the DIC pool (from which carbonates form) depleted in 13C (Kelts, 1988, Komor, 

1994, Fenchel et al., 1998); while the same can be true of methanogenesis (e.g. Aloisi 

et al., 2000), if the CH4 produced escapes from the system the DIC pool will become 

very enriched in 13C (Talbot and Kelts, 1986, Gu et al., 2004, Leng et al., 2013). Since 

Nar Gölü carbonates have high δ13C values (dolomite average in the late Holocene of 

~+14.5‰ and TDIC value from surface waters averaging +10.5‰ 1997-2012), 

methanogenesis is considered the most likely. Methanogenesis requires anoxic 

conditions, and while dolomite in Nar Gölü is found in non-laminated sections when 

the lake waters were likely not stratified, Vasconceleos and McKenzie (1997) found 

dolomite forming in an anoxic ‘black sludge layer’ above the sediment and below a 

totally mixed water column, so anoxic conditions could have existed in Nar Gölü 

sediments even with lower water levels. As well as the high δ13C values of dolomite, 

an organogenic origin is favoured by a number of other factors. Firstly, as discussed, 

the Nar Gölü dolomite is calcium-rich, which is characteristic of early diagenetic 

dolomites, including those associated with methanogenesis (Vasconcelos and 

McKenzie, 1997, Armenteros, 2010). Secondly, the crystals do bear some 

resemblance to dolomite crystals interpreted elsewhere to be associated with 
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organogenesis; for example Deng et al. (2010) described abundant microstructures 

and pores, and these can be seen on Figure 8.4.  

 

 

 

Figure 8.4 Dolomite crystals viewed under SEM, showing non-rhombic shapes and 

microstructures, suggesting a diagenetic origin. 

 

 

Dolomite formation requires sufficient magnesium (Mazzullo, 2000), so the 

appearance of dolomite in the sediments suggests magnesium was even more 

concentrated than at times when aragonite formed. Although there are issues of 

linking carbonate mineralogy and Mg/Ca ratio (Bristow et al., 2012) and Mg/Ca ratio 

and aridity (Shapley et al., 2010), the occurrence of dolomite in Nar Gölü sediments 

is associated with other markers of aridity, as has been suggested elsewhere (Last, 

1990, Deocampo, 2010). 

 

As discussed in section 6.3.5, whereas the difference between the mineral-water 

fractionation factors of calcite (especially the high-magnesium calcite in the Nar Gölü 

sequence) and aragonite is so small (especially given the size of the isotopic shifts 

seen in the record) that it does not need to be corrected for, the difference between 

dolomite and calcite/aragonite formed under the same conditions is a lot greater. 

Additionally, since it has been argued that the dolomite in Nar Gölü sediments is 

organogenic, this means it will have formed under different conditions (temperature, 
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δ18Olakewater) to calcite and aragonite, which are seen as endogenic, forming in surface 

waters.  For this reason, where there was <20% dolomite the 16°C reaction was used 

and where there was >20% dolomite no δ18Ocarbonate data were produced (section 

6.3.4). However, 5 samples containing >80% dolomite were run using the 100°C 

reaction temperature to ensure all dolomite reacted, to establish if any sense could 

be made of the results. When the values were corrected for mineralogy (Eq. 6.7), the 

samples at 566 and 571 cm in particular appear lower than the δ18Oaragonite/calcite 

values nearby in the sequence (Figure 8.5). Since high amounts of dolomite are seen 

to have formed in the most magnesium-concentrated waters, it is difficult to explain 

why δ18Odolomite was not high at this time. This supports the argument that dolomite 

formed under different conditions from calcite and aragonite, however these 

differences in temperature and δ18Olakewater are difficult to correct for, especially as 

dolomite is not likely to form at a discrete time of the year like calcite and aragonite, 

but rather over a much longer period of time (Kelts and McKenzie, 1984). So while 

δ18Odolomite data cannot be used, carbonate mineralogy change, in itself, is useful for 

supporting palaeoclimate interpretations. 

 

 

 

Figure 8.5 Comparison of δ18O data from calcite and aragonite (black) to δ18O from 

dolomite corrected for mineralogy (orange). 
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8.2.3 Carbon isotopes and δ18Ocarbonate-δ13Ccarbonate covariation 

 

While it is beyond the scope of this thesis to discuss in detail the controls on δ13C 

trends in Nar Gölü, some understanding of the carbon isotope system is required to 

aid the interpretation of the δ18O data. Covariation between δ13Ccarbonate and 

δ18Ocarbonate is traditionally used to investigate changes in lake hydrology over time. In 

a closed lake, while evaporation preferentially removes 16O, increasing δ18Olakewater as 

evaporation increases, outgassing of CO2 also preferentially removes 12C from the 

system, increasing δ13CDIC and hence δ13Ccarbonate (Li and Ku, 1997). Where there is a 

strong co-variance between δ13Ccarbonate and δ18Ocarbonate, this indicates that the lake 

has remained closed and the two records are being controlled by a related 

mechanism (Talbot, 1990, Leng and Marshall, 2004). For the NAR01/02 and NAR10 

records as a whole there is a strong positive covariation (r=0.85) indicating the lake 

has been closed. However, Table 8.1 shows changes in the r-value between zones, 

with zones 7, 8 and 9 in particular having lower values. Such values could be 

interpreted as showing the lake was more hydrologically open at this time. However, 

a closer examination of Figure 8.3 shows ‘flatter’ isotope trends in zones 7 and 9 and 

the small size of zone 8, which would have meant the r-values were reduced 

compared to other zones where there were larger shifts and more data (Li and Ku, 

1997, Leng et al., 2006). This means there need not have been a more open, fresh 

lake at this time. Indeed, this is supported by the carbonate mineralogy data: in 

zones 7, 8 and 9 there is dolomite in the sediments, which is interpreted as indicating 

a lake enriched in magnesium, i.e. not fresh. While δ18O-δ13C covariation is complex 

and not a simple record of changes in the hydrology of a lake (Li and Ku, 1997), it 

does appear that Nar Gölü has been a hydrologically closed lake through the period 

represented by the NAR10 sequence.  

 

It is suggested, therefore, that the major control on δ13Ccarbonate has been changes in 

the residence time of the lake, linked to changes in water balance. The δ13Corganic 

record shows similar trends to the δ13Ccarbonate record. Both are influenced by δ13CDIC 

but δ13Corganic can be strongly influenced by changes in the type of organic matter 

(Meyers and Teranes, 2001) and δ13Ccarbonate by carbonate mineralogy shifts. The 
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increase in δ13Corganic from zones 4 to 9, if interpreted solely in terms of changes in 

the source of organic matter, would suggest an increase in the proportion of C4 

vegetation in the lake sediments away from C3 vegetation or lake algae. However, 

C/N values, which are mainly influenced by the source of organic matter (Meyers and 

Teranes, 2001), indicate actually there was an increase in the proportion of organic 

matter from lake algae (Figure 8.6). This shift in C/N could be because of a decrease 

in catchment vegetation (linked to increased human activity and deforestation in the 

region over the past couple of millennia as seen in the pollen record (England et al., 

2008)), increased algal productivity due to increased temperatures in the late 

compared to the early Holocene (Jones et al., 2007) or a decrease in the inwash of 

catchment vegetation. This, and the strong similarity between the δ13Corganic and 

δ13Ccarbonate trends, suggests that changes in the source of organic matter are not the 

key influence on δ13Corganic and that residence time is likely the main control. 

 

Large peaks in C/N can sometimes be due to major inputs of terrestrial organic 

matter due to intense precipitation events (e.g. Meyers and Teranes, 2001, Panizzo 

et al., 2008). However, comparison of the C/N data with the Ti ITRAX record (Allcock, 

2013), which is seen as a more reliable proxy for inwash events (linked to human 

disturbance or tectonism) because unlike the C/N ratio it is not affected by other 

factors such as changes in catchment vegetation composition, shows there is not a 

strong relationship (Figure 8.7). This suggests the peaks in C/N cannot be used as a 

proxy for increased inwash. 
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Figure 8.6 δ13Corganic vs C/N plot with boxes representing ±1σ from mean δ13Corganic 

and C/N values. The major trend in the record, the increase in δ13Corganic and decrease 

in C/N from zones 4-5 to zone 9, is shown. Typical values for lake algae and C3 

terrestrial plant material (Meyers and Teranes, 2001) are shaded. Typical C/N values 

for C4 plants are >35 and plot off the scale here. 
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Figure 8.7 δ18Ocarbonate, C/N and Ti data from ITRAX (Allcock, 2013). There seems to be 

little relationship between the peaks in C/N and peaks in Ti, suggesting the former 

cannot be used as a proxy for inwash events. 
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8.2.4 Diatom species and δ18Odiatom data 

 

The interpretation of the δ18Odiatom record is hampered by the lack of samples that 

could be successfully run, in particular from zones 3 and 9. As discussed in section 

6.4.4, part of the reason for this was contamination, however the other reason was 

that many samples from these zones had insufficient diatom silica. There were still 

diatoms growing in the lake at this time, but there must have been a preservation 

issue. Woodbridge and Roberts (2010) showed there is limited dissolution in the 

present day, with only one species found in sediment trap samples and not in core 

sediments. However, if pH was higher in the past than the values shown on Figure 

7.6, which is not unlikely given that the lake level was probably lower to account for 

the non-laminated sediments, then there may have been more diatom dissolution, 

especially if pH values rose above 9 (Iler, 1979, Barker et al., 1994, Leng and Barker, 

2006). This adds further support to the assertions that these zones saw the most 

negative water balance. The preliminary diatom assemblage data also support this 

(Woodbridge et al., unpublished data). There is an increase in % benthic from zones 5 

to 9 (Figure 8.8). Such an increase is often seen as an indicator of a lake level fall 

because this will initiate a movement of the benthic zone towards the centre of the 

lake, closer to where cores are generally taken from, meaning more benthic species 

will be incorporated into the core sediments (e.g. Laird et al., 2011). Additionally, 

diatom-inferred conductivity values are higher between ~350 and 1,600 cm than at 

the beginning and end of the record, indicating that the lake waters were the most 

saline in this period.  

 

Despite the gaps in the diatom isotope record, it appears that overall there is a 

general similarity between the δ18Odiatom and δ18Ocarbonate trends, with higher values 

in zone 3 than zones 1 and 2, low values in zones 4 and 5 and higher values in zones 

7, 8 and 9, then a fall to zone 10 and a rise again into zone 11. This is not surprising 

given the drivers of both are the same (Leng and Barker, 2006). Changes in δ18Odiatom 

in this record should not be the result of contamination, since mass balancing has 

been used to correct for the effect of this, and there is not a strong relationship 

between % contamination and δ18Odiatom, with high levels of contamination found in 

18 23 28 33 38 43 

δ18O diatom ‰ VSMOW 
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samples that have both high and low δ18Odiatom values (Figure 8.8). Moreover, 

temperature can be excluded as a key driver of δ18Odiatom because of the size of the 

shifts in the record: it would take an unrealistic temperature change of 62°C, for 

example, to explain the 12.4‰ shift between 366 and 355.6 cm, assuming a 

temperature coefficient of ~–0.2‰ (Brandriss et al., 1998, Moschen et al., 2005, 

Crespin et al., 2010). While species vital effects in diatoms have been shown to be of 

limited importance in influencing δ18Odiatom (Brandriss et al., 1998, Schmidt et al., 

2001, Moschen et al., 2005, Swann et al., 2006, Schiff et al., 2009), changes in the 

time of year diatoms grow in Nar Gölü could influence δ18Odiatom because of 

differences in temperature and δ18Olakewater between seasons. However, the general 

similarity with the δ18Ocarbonate record suggests this may not be the case: the fact that, 

as with δ18Ocarbonate, δ18Odiatom values are higher when there is aragonite and/or 

dolomite in sediments, there are non-laminated sediments, % benthic diatoms is 

highest and δ13C is high, suggests the main driver is water balance.  

 

There are some small differences in the δ18Ocarbonate and δ18Odiatom trends at certain 

times. For example, δ18Odiatom values begin to decline before δ18Ocarbonate values at 

the end of zone 9 and unlike in the δ18Ocarbonate record there seems to be no 

significant difference between values in zones 1 and 2 in δ18Odiatom. To compare the 

two records properly, they really need to be viewed on the same scale by conversion 

to δ18Olakewater values. However, this requires knowledge of the likely temperature 

changes over time, and since there is no temperature proxy from the Nar Gölü 

record, this will be undertaken in chapter 10 once a chronology has been established 

and independent temperature records can be used. 
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Figure 8.8 δ18Ocarbonate data compared to diatom inferred conductivity and % benthic 

diatoms (Woodbridge and Roberts, 2011, Woodbridge et al., unpublished data) and 

δ18Odiatom data, with % contamination of diatom isotope samples shown. 
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8.2.5 Comparison of isotope and pollen records 

 

A preliminary pollen record has been produced from the NAR10 sequence (Figure 

8.9). While there is an increase in arboreal pollen in zone 4, it is much slower than 

the decrease in δ18Ocarbonate, and maximum arboreal pollen (and also specifically 

Quercus robur and Q. cerris) values are reached in zone 7 when the other proxies 

suggest increasingly arid conditions. The possible reasons for the differences 

between pollen and isotope records in the region are outlined in section 2.2.2. 

However, Poaceae abundance does increase rapidly into zone 4 as δ18Ocarbonate 

decreases, supporting the assertion there was a rapid shift to wetter conditions. 

 

Figure 8.9 δ18Ocarbonate and preliminary pollen data (Eastwood et al., unpublished 

data). 
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8.3 Summary 

 

Lithology (shifts between varved, banded and non-laminated) is believed to change 

in Nar Gölü particularly in response to variations in lake level, which will influence 

whether the lake is stratified and hence whether varves can be preserved. Carbonate 

mineralogy (shifts between calcite, aragonite and dolomite) is seen to respond to 

changes in the magnesium concentration of the lake, with high levels of magnesium 

leading to aragonite and/or dolomite precipitation. It is argued that in Nar Gölü, 

dolomite has an organogenic origin, and therefore δ18Odolomite values are not easily 

comparable to those from calcite and aragonite, which are endogenic and form in 

surface waters. While there is generally a strong relationship between δ18Ocarbonate, 

lithology and carbonate mineralogy, there are slight differences in how they each 

respond. For example, during the transition 1989-1957 cm, while there is a shift from 

non-laminated to varved at 1965 cm, there is not a shift to calcite until ~1900 cm 

~390 varves later. Similarly, varved sediments appear at 598 cm but dolomite only 

disappears from the sediments ~497 cm. This demonstrates that different proxies 

respond at different rates. However, the fact δ18Ocarbonate is higher when sediments 

are non-laminated, aragonite/dolomite is present and the benthic:planktonic diatom 

species ratio is higher and δ18Ocarbonate is lower when sediments are varved, calcite is 

present and the benthic:plankonic diatom species ratio is lower, coupled with the 

strong covariation of δ18Ocarbonate and δ13Ccarbonate as well as the work on the recent 

past in section 7.1.1 and of Jones et al. (2005), all suggests the major driver of 

δ18Ocarbonate in the sequence has been water balance. This will be investigated 

further, using independent temperature and δ18Osource records, once a chronology is 

established. However, it appears that, combining the interpretations of the proxies, 

zone 3 was drier than zones 1 and 2, there was a rapid transition to wetter 

conditions in zone 4 and a gradual increase in aridity during zones 6-8 to a peak in 

zone 9, before another rapid transition to wetter conditions in zone 10 and then a 

gradual increase in aridity to the present day. 
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Chapter 9 | Chronology 

 

A chronology needs to be established before the record can be compared to other 

palaeoclimate and archaeological records. This chapter will outline the progress 

made with U-Th dating so far and, combined with the varve counts made and 

detailed in Allcock (2013), produce a working chronology for this thesis.  

 

9.1 U-Th dating 

 

First, 4 samples (from 549, 1779, 1978 and 2058 cm depth) were run using the 

standard U-Th method (Edwards et al., 2003), however the [230Th/232Th] ratio was 

low, indicating lots of detrital thorium, and there were very large errors (Tables 9.1 

and 9.2). Consequently, all subsequent samples were run using the total sample 

dissolution isochron approach as detailed in section 6.6.2. Samples from 1355 and 

1852 cm depth were initially selected to be run but the errors were still unacceptably 

large. As demonstrated in the Osmond plot for sample 1355 cm (Figure 9.1), there 

was insufficient variability between the individual sub samples to be able to fit a line 

through the data with a good degree of certainty. 

 

 

Figure 9.1 Osmond plot for sample at 1355 cm showing the poor spread between the 

5 sub samples, leading to a large error.     
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However, of more concern is the fact the dates are far older than expected for the 

depths in the core, for example 29,900 ±3,600 years BP for the sample at 1852 cm. 

The δ18Ocarbonate record can be matched to the lower resolution but dated record 

from nearby Eski Acıgöl. Figure 9.2 shows that the trends are very similar, with the 

transition in Nar Gölü at 1989-1957 cm to very low values and then a quick recovery 

to slightly higher values seeming to match the form of the transition in Eski Acıgöl 

dated to ~12,000 years BP: the Younger Dryas to Holocene transition. Through the 

Holocene in Eski Acıgöl there is a gradual increase to more positive values and there 

is a very similar trend in the Nar Gölü record. This all points towards the transition 

~1989-1957 cm in Nar Gölü being the Younger Dryas to Holocene transition. 

Additionally, between the top of the Nar Gölü sequence and the middle of this 

transition, 8,005 varves had been counted, in addition to 563 cm of non-varved 

sediments. To get a date of 29,900 years BP would require the non-varved section to 

have a deposition rate of just 0.02 cm/y and this is difficult to imagine in Nar Gölü 

since the average deposition rate (as discussed in more detail in section 9.2) for the 

varved sections is estimated to be 0.18 cm/y. If the deposition rate were the same in 

the non-varved section, this would give a more realistic estimate of 3,128 years, or 

assuming a lower deposition rate of for example 0.13 cm/y, 4,330 years. Using these 

deposition rates and added to the 8,005 years seen in the varved sections, it can be 

estimated that the sequence from the present day to 1963 cm represents between 

11,133 and 12,335 years. The only large-scale climate transition seen in Near East 

records from dry to wet (as a transition to lower δ18Ocarbonate in Nar Gölü is seen to 

represent; section 8.3) in the period 11,000 to 12,500 years BP is the Younger Dryas 

to Holocene transition (Figure 2.5) (Roberts et al., 2008), which again suggests that 

the shift 1989-1957 cm in Nar Gölü is just that. 
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Figure 9.2 δ18Ocarbonate from Nar Gölü plotted against depth and compared to δ18O 

from Eski Acıgöl  plotted against age (Roberts et al., 2001), showing the similarities 

between the transition defined as the Younger Dryas to Holocene in Eski Acıgöl and 

that from 1989 to 1957 cm in Nar Gölü, matched by dotted line. After this there are 

continuing similarities between the two records record, with a general trend to more 

positive values the middle section, shown by the arrows. 

 

 

Since the dates derived from the first two samples analysed by the isochron 

approach were deemed to be substantially older than comparison with other records 

and varve counting suggested, it was thought possible that hydrogenous thorium 

might be an issue (section 4.3). To investigate this, samples were analysed for U-Th 

from the top section where the varves provided an independent dating technique, to 

attempt to establish the offset of U-Th age from the actual age (Haase-Schramm et 

al., 2004, Torfstein et al., 2009, 2013). Specifically, a carbonate crust from a sediment 

trap float (standard method) as well as core sediments and sediments dated to 1,000 
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Table 9.2, again the errors on these three samples were too large for the dates to be 

useful, with low uranium and high [230Th/232Th] ratios. 

 

Table 9.1 U-Th elemental data, with uncertainty given at 2 standard error. 

Sample U ppm 
232

Th ppm 
234

U/
238

U 
230

Th/
232

Th 
230

Th/
238

U δ
234

U 

549 cm  0.74 0.71 1.35±14.02 0.87 0.02±1532.76 261.10 

1779 cm  0.12 0.06 1.27±6.62 1.76 0.18±57.96 232.34 

1978 cm  0.09 0.12 1.36±22.35 1.46 0.43±76.14 229.86 

2058 cm  0.10 0.20 1.32±52.51 0.88 0.08±1113.96 138.62 

1355 cm A 0.06 0.10 1.35±31.42 1.08 0.24±214.21 193.49 

 B 0.06 0.10 1.36±31.47 1.07 0.23±224.63 198.03 

 C 0.06 0.12 1.39±43.09 0.94 0.14±519.14 184.64 

 D 0.06 0.10 1.36±31.85 1.08 0.24±211.13 197.92 

 E 0.07 0.11 1.36±34.46 1.06 0.24±233.64 191.28 

1852 cm A 0.21 0.33 1.27±31.30 1.17 0.31±150.21 150.61 

 B 0.26 0.43 1.29±34.25 1.17 0.34±150.44 156.78 

 C 0.24 0.40 1.29±34.74 1.17 0.35±148.57 157.74 

 D 0.20 0.32 1.27±33.52 1.17 0.33±151.12 147.09 

 E 0.25 0.44 1.30±38.52 1.13 0.34±168.80 151.64 

 F 0.26 0.46 1.28±37.46 1.15 0.35±155.49 146.73 

Zero age float  0.07 0.07 1.18±16.05 0.91 0.04±715.58 127.66 

Zero age core A 0.13 2.01 0.98±67.17 0.83 0.01±11137.51 53.74 

 B 0.98 4.08 1.00±408.31 0.83 0.00±222131.76 0.55 

 C 0.61 2.30 0.66±2316.49 0.83 0.14±13875.16 12.28 

 D 0.47 1.57 1.33±431.80 0.84 0.08±9745.17 27.78 

 E 1.02 4.20 1.00±431.70 0.82 0.12±4850.71 -0.15 

1ka core A 0.70 2.07 1.75±161.32 0.84 0.04±7148.02 136.45 

 B 0.38 1.11 1.66±156.26 0.83 0.00±409470.62 123.29 

 C 0.41 1.23 1.70±166.86 0.84 0.02±17205.96 123.81 

 D 0.40 1.24 1.78±199.06 0.83 -0.04±-10138.77 118.10 

 E 0.87 2.75 1.97±221.82 0.84 0.07±6108.87 133.46 

1949 cm A 0.44 0.13 1.30±3.50 2.24 0.15±38.86 279.58 

 B 0.47 0.12 1.31±3.12 2.37 0.14±35.73 283.22 

 C 0.30 0.13 1.30±5.14 1.81 0.15±55.84 267.14 

 D 3.18 1.50 1.31±5.93 1.69 0.15±63.44 270.09 

 E 0.33 0.16 1.31±6.17 1.68 0.16±64.33 268.53 
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Table 9.2 U-Th dates derived from data in Table 9.1. 

Sample depth/age Age (ka) Error (ka) Isochron age 

(ka) 

Isochron error 

(ka) 

549 cm  1.3 20.4 - - 

1779 cm  16.6 10.2 - - 

1978 cm  40.8 36.0 - - 

2058 cm  6.8 77.8 - - 

1355 cm A 20.7 47.6 51 16 

 B 19.7 47.5   

 C 11.6 63.0   

 D 21.2 48.2   

 E 20.7 52.0   

1852 cm A 30.2 50.1 29.9 3.6 

 B 32.7 55.0 

 C 33.5 55.8 

 D 32.1 54.1 

 E 32.7 61.7 

 F 34.7 60.7 

Zero age (float)  3.4 24.5 - - 

Zero age  

(core top) 

A 0.9 103.5 0.9 8.3 

 B 0.3 628.4 

 C 26.0 3794.0 

 D 6.4 637.6 

 E 13.7 688.5 

1ka core A 2.7 198.8 -2.0 53 

 B 0.0 200.9 

 C 1.2 210.6 

 D - - 

 E 3.9 245.8 

1949 cm A 13.0 5.3 11.77 0.57 

 B 12.6 4.7 

 C 13.3 7.8 

 D 13.5 8.9 

 E 13.8 9.3 
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However, one sample, from 1949 cm depth, was the first sample which had 

acceptable errors and an apparently sensible date. This sample differs from those 

run previously in that the uranium concentration is higher, there is strong variability 

between sub samples leading to more of a spread on the isochron diagram (Figure 

9.3) and the [230Th/232Th] ratio is higher indicating detrital thorium makes up less of 

the total thorium than was the case in the other samples. The former point could be 

related to the fact this sample was composed of aragonite whereas all the other 

samples were composed of calcite, and some studies have suggested less favourable 

uptake of uranium into calcite compared to aragonite (Reeder et al., 2001, Ortega et 

al., 2005). The strong variability in the amount of detritus between sub samples is 

because this section had large organic and carbonate varves so it was possible to 

produce sub samples composed of different types of material, in comparison to the 

sub samples from 1355 and 1852 cm which were more homogenous (Figure 9.4). 

Within the error of the date, ±570 years, there is only one major transition: the one 

from 1989-1957 cm that as outlined above, based on varve count estimations and 

matching with the Eski Acıgöl record, is the Younger Dryas to Holocene. 

 

 

Figure 9.3 Osmond plot for sample at 1947 cm, with a much better spread between 

the 5 sub samples leading to much reduced error. 
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Figure 9.4 A: core at 1355 cm from where an unsuccessful sample was taken for U-

Th, showing homogeneity of sediments, whereas in B from 1949 cm the sediments 

are more heterogeneous which meant there was greater variability between sub 

samples and the isochron correction was more robust. 

 

 

9.2 Combination of U-Th date with varve counts to produce a working 

chronology 

 

A summary of how the varve chronology and the U-Th date were combined to 

provide a chronology for the whole Nar Gölü sequence is shown on Figure 9.5. The 

record is varved from the present day back 2,626 varves (598 cm), i.e. from –60 to 

2,566 years BP (all dates for the new sequence are given in years BP (i.e. before 

1950) to aid comparison with other studies). Jones et al. (2005) showed that the 

laminations were annual (varves) using 137Cs and 210Pb dating. Laminations which 

have a similar appearance to those in this top section are seen from 1161-1965 cm 

and 2053-2133 cm, so here it is assumed these are annual as well. From the U-Th 

date of 11,707 ±570 years BP at 1949 cm, it was therefore possible to count back to 

1965 cm (11,870 years BP; or a range of 11,300 to 12,440 years BP using the U-Th 

date error) and up to 1161 cm (6,488 years BP, range 5,918 to 7,058 years BP), 

although the varves from 1161-1427 cm are harder to count so the chronology for 

this period is less certain. Above 1161 cm the sediments have laminations but these 

do not appear to be annual as they are much thicker than the other laminated 

sections and they are not simple alterations of carbonate and organic material, and 

A B 
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the section from 598-753 cm is non-laminated. Therefore, the only way to provide a 

rough chronology for the period 598-1161 cm (2,566 to 6,488 years BP) was to 

assume a linear deposition rate of 0.14 cm/y (although using the maximum and 

minimum errors the deposition rate could be between 0.13 and 0.17 cm/y). The age-

depth plot (Figure 9.6) shows that the estimated deposition rate for this time is not 

too dissimilar from the deposition rate for the varved sections where the deposition 

rate can be reliably calculated, suggesting that the estimated chronology that was 

applied to this section is sensible. 

 

The dating of the late glacial section is the most difficult, with no U-Th dates and only 

a floating varve chronology. The records from Eski Acıgöl (Roberts et al., 2001) and 

Soreq Cave (Bar-Matthews et al., 1997) are interpreted as suggesting that the 

Younger Dryas in the Near East was dry and was preceded by a wetter Bølling-

Allerød, which is taken to suggest that zone 3 in the Nar Gölü record is the Younger 

Dryas and zones 1 and 2 the Bølling-Allerød. However, as Figure 2.5 shows, these 

other records are too low resolution to be able to identify subtle changes and they 

have unreliable chronologies, which means it is not possible to wiggle match the Nar 

Gölü δ18O record to these. Another option was to use the NGRIP isotope record and 

the GICC05 chronology (constructed from the NGRIP, GRIP and DYE-3 ice cores 

(Rasmussen et al., 2006, Vinther et al., 2006)), because of its high resolution and 

robust chronology. (Maximum counting error for the late glacial in the GICC05 

chronology is ~140-170 years (Rasmussen et al., 2006), and although actual error 

may be greater due to bias in annual layer identification, and there are differences of 

a few decades between the GICC05 and GISP2 chronologies in the late glacial, the 

dating is more robust than any record from the Near East in this period.) A date is 

assigned to top of the varved section at 2053 cm by wiggle matching with the NGRIP 

δ18O record: it appears to be ~12,810 years BP, in the transition from the Bølling-

Allerød to the Younger Dryas (Figure 9.7). The varves were counted down from this 

point to 13,506 years BP. Past this point, a chronology was not estimated because 

there were no varves to be counted and there was no potential for wiggle matching, 

meaning the last 9 samples shown on Figure 9.7 are not included on plots against age 

shown in chapter 10. 
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Figure 9.5 Chronology applied to Nar Gölü core sequence, with dates given in years BP 

and errors based on U-Th date uncertainty, V = varved, V* = varved but difficult to 

count, B = banded and NL = non-laminated. 0-598 cm is dated by varve counting and 

1161-1965 cm by varve counting from U-Th date at 1949 cm. 
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Figure 9.6 Age-depth plot for the NAR01/02 and NAR10 master  sequences. The parts 

of the sequence that were non-varved and where a linear accumulation rate had to 

be assumed, between 598-1161 cm and 1965-2053 cm, are highlighted. The steeper 

the gradient of the line, the greater the amount of sediment per unit time, which is 

probably linked to a combination of accumulation rate and compaction over time. 
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Figure 9.7 Wiggle matching Nar Gölü record with NGRIP in the late glacial; 2053 cm 

in Nar Gölü is fixed at 12,810 years BP, during the Bølling-Allerød to Younger Dryas 

transition in NGRIP, and varve counting is used to extend the Nar Gölü chronology 

down from this point. There is a gap in the core sequence 2023-2037 cm. 
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9.3 Summary 

 

The combination of the one successful U-Th date and the varve counts has yielded a 

working chronology. Since the sequence is varved from the U-Th date through the 

early Holocene, the chronology of this part of the Nar Gölü sequence is considered 

fairly secure, although not as secure as the varved section from the top down to 

2,566 years BP. The chronology of the mid to late Holocene section in between these 

varved sections is even less secure because a linear deposition rate had to be 

assumed. The chronology of the late glacial section is considered to be the most 

insecure.  
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Chapter 10 | Discussion 

 

The provision of a working chronology means it is possible in this chapter to 

tentatively use temperature and δ18Osource reconstructions from elsewhere to 

attempt to model water balance changes, and more robustly investigate the drivers 

of the δ18Ocarbonate record. Then, the isotope trends from Nar Gölü can be compared 

to other records to investigate the controls on Near East hydroclimate and any 

potential links with the archaeological record. For ease, the location maps from 

chapter 2 of these other palaeoclimate archives are reproduced here (Figures 10.1 

and 10.2). 

 

 

 

Figure 10.1 Locations of major palaeoclimate archives in the Near East that will be 

referred to in this thesis. 
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Figure 10.2 Locations of major palaeoclimate archives from around the world that 

will be referred to in this thesis. 

 

10.1 The late glacial 

 

10.1.1 Overview of trends 

 

There appears to be a two stage Bølling-Allerød at Nar Gölü, with higher δ18O values 

in zone 1, falling to much lower values in zone 2, suggesting that the time just before 

the transition into the Younger Dryas was the wettest of the Bølling-Allerød at Nar 

Gölü (Figure 10.3). The shift from varved to non-laminated sediments and from 

calcite to aragonite to aragonite/dolomite, which as discussed in chapter 8 is 

interpreted as indicating a shift to more negative water balance, supports the 

interpretation of increasing aridity from the Bølling-Allerød to the Younger Dryas. 

While there are currently no other records at the same resolution as Nar Gölü from 

the Near East for this time, the Bølling-Allerød is seen to be wetter than the Younger 

Dryas based on records from the Aegean (Kotthoff et al., 2008a, Dormoy et al., 

2009), the Nile Delta (Castaneda et al., 2010), the Black Sea (Bahr et al., 2008), the 

Red Sea (Arz et al., 2003, Essallami et al., 2007), the Balkans (Aufgebauer et al., 

2012), Lake Van (Lemcke and Stürm, 1997), Eski Acıgöl (Roberts et al., 2001), Greece 

Equator 

Tropic of Cancer 

Tropic of Capricorn 



141 

 

(Frogley et al., 2001, Lawson et al., 2004, Wilson et al., 2008, Jones et al., 2013), 

Soreq Cave (Bar-Matthews et al., 1997) and Iran (Stevens et al., 2012). As in the Nar 

Gölü record, in high resolution temperature records from the North Atlantic region 

(von Grafenstein et al., 1999, Rasmussen et al., 2006, Vinther et al., 2006, Blaga et 

al., 2013) a two stage Bølling-Allerød is apparent, with the warmest part just before 

the transition into the Younger Dryas (Figure 10.4), separated from the cooler earlier 

period by a peak in coolness called the Gerzensee Oscillation that occurred 300 years 

before the end of the Bølling-Allerød in NGRIP (Rasmussen et al., 2006, Vinther et al., 

2006). An aridity peak occurs 375 varves before what seems to be the end of the 

Bølling-Allerød in Nar Gölü, and given the chronological uncertainty it is possible 

these peaks occurred at a similar time.  

 

One of the debates outlined in section 2.2.1 is whether the Younger Dryas in the 

Near East was drier or wetter than the early Holocene. Most isotope records are 

interpreted as showing the former, for example those from Lake Zeribar (Snyder et 

al., 2001, Stevens et al., 2001), Lake Van (Wick et al., 2003), Eski Acıgöl (Roberts et 

al., 2001) and Soreq Cave (Bar-Matthews et al., 1997), with Jones et al. (2007) 

suggesting from the Eski Acıgöl record that the Younger Dryas in central Turkey saw 

180-300 mm of precipitation per year compared to 330-450 mm per year in the early 

Holocene (see Figure 10.1 for locations of Near East palaeoclimate archives). 

However, estimates of the level of the Dead Sea suggest the Younger Dryas was 

wetter than the early Holocene, based on a salt unit 11,000-10,000 years BP on top 

of an erosional unconformity (Stein et al., 2010). Kolodny et al. (2005) and Stein et al. 

(2010) argued that δ18O values in Soreq Cave in the Younger Dryas were high not 

because of negative water balance but because of the increased δ18O of the Eastern 

Mediterranean Sea and hence of Near East precipitation. Shifts in Nar Gölü from 

non-laminated to varved and from aragonite/dolomite to calcite (Figure 10.3), a 

rapid increase in the abundance of Poaceae and a decrease in the benthic:planktonic 

diatom species ratio (Figure 8.8) suggest there was actually a change from dry to 

wet, at least in central Turkey. 
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Figure 10.4 Nar Gölü δ18O compared to temperature proxy records from the North 

Atlantic region arranged in order of increasing distance from Nar Gölü: δ18O from 

Ammersee in Germany (von Grafenstein et al., 1999), TEX86 from Lake Lucern in 

Switzerland (Blaga et al., 2013) and δ18O from NGRIP (Rasmussen et al., 2006, 

Vinther et al., 2006). The Younger Dryas is shaded grey. Shifts at the time of the 

Gerzensee Oscillation are matched by the dotted line.  
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need to be taken into account. The shift from the maximum δ18Ocarbonate value of 

zone 3 in the Younger Dryas (a mean value for this period cannot be used as so many 

samples from this time could not be run), +0.5‰, to the mean of –3.5‰ for zone 4 in 

the early Holocene, represents a –4.0‰ shift. Firstly, the potential for temperature 

to explain this shift needs to be considered. Jones et al. (2007), based on Eastern 

Mediterranean sea surface temperature reconstructions (Emeis et al., 2000), 

estimated that the Younger Dryas in central Turkey was 4°C cooler than the early 

Holocene, which is within the range estimated by Sarıkaya et al. (2009) from glacial 

evidence from continental Turkey and similar to the estimate of Triantaphyllou et al. 

(2009) from U37
k analysis of cores from the Aegean Sea. The temperature effect on 

δ18Ocarbonate is expressed in two ways: when carbonate precipitates there is a 

decrease of 0.24‰ for every 1°C rise in temperature and opposing this there is an 

increase in δ18Oprecipitation with increasing temperature (+0.32‰°C-1 based on GNIP 

data from Ankara 1964-2009 (Figure 3.1) (IAEA/WMO, 2013) and assuming this 

relationship held true in the past). Combined, this means there will be a 0.08‰ 

increase in δ18Ocarbonate for every 1°C temperature rise. This means an increase of 4°C, 

by itself, into the early Holocene would have led to a rise in δ18Ocarbonate of 0.32‰, 

whereas actually there was a fall of 4‰. Even though there is uncertainty in the 

temperature values used here, it is clear that temperature could not have forced 

δ18Ocarbonate shifts of the magnitude actually seen. Secondly, the shift from aragonite 

to calcite could only account for up to ~0.7‰ of the fall in δ18Ocarbonate due to 

changing fractionation factors. Thirdly, the shift in the δ18O of the Eastern 

Mediterranean Sea is estimated to have been –1.5 to –3‰ from the Younger Dryas 

to the Holocene (Kolodny et al., 2005), while the shift to more negative values in the 

North Atlantic Ocean was likely even smaller than –1.5‰ (Elderfield and Ganssen, 

2000). In calculations here, the median value for the Eastern Mediterranean Sea is 

used (–2.25‰), although with the acknowledgment this may be an overestimation 

since some of the precipitation will have originated in the North Atlantic.  

 

Therefore, in total, adding the temperature effect (+0.32‰), the carbonate 

mineralogy effect (–0.7‰) and the δ18Osource effect (–2.25‰) together, 2.6‰ of the 
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shift to lower values can be explained, leaving 1.4‰ unexplained and potentially due 

to a shift to more positive water balance. 

 

However, a change in the seasonality of precipitation and the type of precipitation 

may have had some effect and also need to be considered. A lack of δ18Odiatom data 

for the Younger Dryas means palaeoseasonality cannot be investigated by comparing 

these data with δ18Ocarbonate at this time, as will be done for the Holocene in section 

10.2.2. However, it is fairly likely that since there is some snow in the winter in 

central Turkey nowadays, if temperatures were ~5°C cooler than now in the Younger 

Dryas (Emeis et al., 2000) then snow would have made up a greater proportion of the 

overall precipitation total than in most of the Holocene. Snow δ18O is significantly 

lower than rain δ18O (a fresh snow sample taken in late February 2012 from the Nar 

Gölü catchment had a δ18O value of –16.98‰) because it reflects equilibrium 

conditions in the cloud rather than being in isotopic equilibrium with near-ground 

water vapour (section 3.3) (Darling et al., 2006, IAEA/WMO, 2013). So, opposing the 

trends to more negative δ18Ocarbonate due to any shift to more positive water balance 

from zone 3 to 4 would be a move to less snowfall which would have the opposite 

effect on δ18Ocarbonate. Were it possible to take this latter effect into account, it could 

mean that more than –1.4‰ of the δ18Ocarbonate shift is unexplained and therefore 

due to water balance change. 

 

This could help explain why the δ18Ocarbonate values in zone 3 in the Younger Dryas are 

not as high as zone 9 in the late Holocene, despite the fact lithology and carbonate 

mineralogy suggest lake levels were roughly as low in both zones (Figure 10.3). The 

mean value of δ18Ocarbonate in zone 9 in the late Holocene is +1.0‰ higher than the 

maximum zone 3 (Younger Dryas) value. The temperature shift of +5°C from the 

Younger Dryas to late Holocene (Emeis et al., 2000) would have led to a rise in 

δ18Ocarbonate of 0.4‰ (mineral-water fractionation effect and T/δ18Oprecipitation effect), 

the carbonate mineralogy is the same (aragonite and dolomite, but only δ18Oaragonite 

was measured because of the special reaction outlined in section 6.3.4) and δ18Osource 

is estimated to have declined by 2.25‰ as discussed above. This means that if these 

variables alone were influencing δ18Ocarbonate, values in zone 9 would be 1.85‰ 
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lower, not 1.0‰ higher, than the zone 3. This unexplained 2.85‰ could suggest that 

zone 9 of the late Holocene had less snowfall than zone 3, which would lead to 

higher δ18Ocarbonate. Additionally, the discrepancy could be explained by the fact that 

lower temperatures in the Younger Dryas compared to the Holocene would have 

meant less evaporation, so while lake levels would have dropped in the Younger 

Dryas because of less precipitation (Jones et al., 2007), there would not have been as 

much evaporative enrichment of δ18Olakewater as in zone 9.  

 

Therefore, changes in temperature, carbonate mineralogy, δ18Osource and the 

seasonality/type of precipitation could not have accounted for the magnitude of the 

δ18Ocarbonate shift from the Younger Dryas to the early Holocene, so it was probably 

mainly due to a shift to more positive water balance. This is supported by other 

proxy data, especially carbonate mineralogy, lithology and the benthic:planktonic 

diatom species ratio (Woodbridge et al., unpublished), which all suggest drier 

conditions in the Younger Dryas, compared to the early Holocene (chapter 8).  

 

10.1.2 Rapidity of transitions 

 

The rapidity of the transition at Nar Gölü from the Bølling-Allerød to the Younger 

Dryas is difficult to estimate because of the poor chronology (based on wiggle 

matching with NGRIP) and a gap in the sequence. However, based on the working 

chronology, it appears that it takes just over 200 years for the transition from the low 

δ18Ocarbonate values of zone 2 to the high values of zone 3 to occur (Figure 10.5). For 

the Younger Dryas to Holocene transition, the latter part of the transition is varved 

and has been analysed at a very high resolution. The magnitude of the entire 

transition is 5.1‰ and takes ~180 years, but over half of the transition (2.9‰) occurs 

in just 9 varve years (Figure 10.6). After this, there is a shift back to more positive 

δ18Ocarbonate values, in an excursion that lasts 27 years, before more negative 

δ18Ocarbonate values are reached once more. This shows the Younger Dryas to 

Holocene transition, as recorded in Nar Gölü, was not a simple, linear shift from one 

state to another. 
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Figure 10.5 Nar Gölü δ18O data for the late glacial and early Holocene, compared to 

records arranged in order of distance from Nar Gölü: Soreq Cave (Bar-Matthews et 

al., 1997), Ammersee (von Grafenstein et al., 1999), Qunf (Fleitmann et al., 2003, 

2007), NGRIP (Vinther et al., 2006, Rasmussen et al., 2006), Dongge (Dykoski et al., 

2005) and Heshang (Hu et al., 2008, Liu et al., 2013). 
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Figure 10.6 Detail of the δ18Ocarbonate record for the Younger Dryas to Holocene 

transition at Nar Gölü, with the varved section analysed at a very high resolution, 

demonstrating the rapidity of the latter part of the transition. 

 

 

As in records from the North Atlantic region, such as NGRIP (Rasmussen et al., 2006, 

Steffensen et al., 2008), Ammersee (von Grafenstein et al., 1999), Cariaco (Hughen et 

al., 1996) and southern France (Genty et al., 2006), the Bølling-Allerød to Younger 

Dryas transition in Nar Gölü is more gradual than the transition from the Younger 

Dryas to the Holocene. In these records, the former takes >200 years, whereas the 

latter takes <100 years in the North Atlantic and slightly longer in Nar Gölü (but still 

<200 years). In records further away from the North Atlantic that are responding to 

changes in the intensity of the Asian monsoon, such as the δ18O speleothem records 

from Dongge (Dykoski et al., 2005), Hulu (Wang et al., 2001) and Socotra (Shakun et 

al., 2007) (Figure 10.2), the Bølling-Allerød to Younger Dryas transition is much more 

gradual, taking many hundreds of years (Figure 10.5). Likewise, the Younger Dryas to 

Holocene transition in Dongge (Dykoski et al., 2005) and, although the transition is 

not covered in its entirety, seemingly also in Qunf (Fleitmann et al., 2003, 2007), is 

more gradual than in Nar Gölü and records from the North Atlantic. Shakun et al. 
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(2007) suggest this could be because the Asian monsoons are driven by the 

temperature contrast between the ocean and the continent, so records will be 

influenced by the Southern Hemisphere as well as changes in North Atlantic 

circulation, compared to records from Greenland, Europe and the Near East which 

will mainly have been influenced by the latter. 

 

10.1.3 Summary 

 

The Younger Dryas in Nar Gölü appears to have been significantly drier than the 

Bølling-Allerød and the early Holocene and at least as dry as zone 9 in the late 

Holocene, supporting the interpretations of other records from the region including 

the Soreq Cave isotope record (Bar-Matthews et al., 1997) but contrary to the 

interpretations of the Dead Sea record (Stein et al., 2010, Litt et al., 2012). While it is 

not possible to determine whether the transitions were synchronous with those in 

other parts of the world because of the U-Th dating error (it can only be said that the 

Younger Dryas to Holocene transition occurred sometime between ~11,200 and 

12,300 years BP), rapidity can be considered. The rapid nature of the transitions in 

Nar Gölü into the Younger Dryas and Holocene, as is seen in records from the North 

Atlantic region, and in contrast to records from further east in the Northern 

Hemisphere, suggests a strong teleconnection between changes in the circulation of 

the North Atlantic, which are considered by many to have been the cause of the 

Younger Dryas cooling (Broecker et al., 1989, Tarasov and Peltier, 2005, Teller, 2012), 

and Near East hydroclimate. Since a significant amount of the precipitation that falls 

in central Turkey has North Atlantic origins (section 2.1.1), a reduction in 

cyclogenesis during the Younger Dryas is likely to have reduced the frequency of and 

changed the path of Mediterranean storm tracks and led to less precipitation falling 

in the Near East, a conclusion reached in previous studies of Near East 

palaeoclimatology (Bartov et al., 2003, Prasad et al., 2004, Rowe et al., 2012).   
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10.2 General trends through the Holocene 

 

10.2.1 Comparison to other records 

 

The overall similarity with the Eski Acıgöl record (Figure 10.7), while not surprising 

given their geographical proximity, is useful in confirming that the isotope records 

are recording regional palaeoclimate variations and not just responding to lake-

specific factors (Fritz, 2008). The overall trends of the Nar Gölü δ18Ocarbonate record 

through the Holocene are similar to those seen in lake isotope records from across 

the region (Roberts et al., 2008, 2011a), with low values in the early Holocene and a 

gradual rise in the mid Holocene to a peak ~3,000-2,000 years BP (Figure 10.7). More 

specifically, the other records suggest maximum wetness ~7,900 years BP and a shift 

to drier conditions beginning ~7,000 years BP, and although the chronology weakens 

after zone 6 with the disappearance of the varves, similar trends are seen in the Nar 

Gölü record (Figure 10.7). There is initially a steep and sustained increase in 

δ18Ocarbonate in zone 6 (beginning at ~7,400 years BP based on the working 

chronology, or taking into account the U-Th dating error sometime between 6,850 

and 7,994 years BP) lasting just over 800 varve years. There is then a period where 

there was no overall rise (zone 7), before the transition is completed with the rise in 

zone 8, ending ~4,000 years BP. Although harder to discern because of the low 

resolution of the records, it could also be inferred from the Eski Acıgöl and Gölhisar 

Gölü records that the Mid Holocene Transition was not steady but was divided into 

at least two phases of increasing δ18Ocarbonate values (Figure 10.7). There are some 

differences with other records, for example a large negative anomaly in δ18Ocarbonate 

in Gölhisar Gölü ~3,500 years BP and the increase in δ18Ocarbonate beginning only 

~6,000 years BP in Lake Van. This is probably due to a combination of variability in 

climate changes between different parts of the region and differences in hydrology 

between lakes (for example the large size of Lake Van will probably have made it less 

responsive to climate change (Roberts et al., 2011a)). 
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Figure 10.7 δ18Ocarbonate record from Near East lakes arranged in increasing distance 

from Nar Gölü, with more positive values indicating drier conditions: Eski Acıgöl 

(Roberts et al., 2001), Gölhisar Gölü (Eastwood et al., 2007), Soreq Cave (Bar-

Matthews et al., 1997, Orland et al., 2009, Bar-Matthews and Ayalon, 2011), Lake 

Van (Wick et al., 2003) and Lake Zeribar (Stevens et al., 2001). See Figure 10.1 for 

locations. 
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10.2.2 The drivers of δ18Ocarbonate in the Mid Holocene Transition 

 

As discussed previously, an issue of contention is the interpretation by Stevens et al. 

(2001, 2006) of the δ18Ocarbonate records from Lakes Zeribar and Mirabad in terms of 

the seasonality of precipitation, with the rise in δ18Ocarbonate through the Mid 

Holocene Transition seen to reflect a shift from winter- to spring-dominated 

precipitation. They suggested the early Holocene was drier than the late Holocene, 

based on pollen evidence, despite the fact other δ18Ocarbonate records from the Near 

East are interpreted as showing an increase in aridity. To better constrain the drivers 

of δ18Ocarbonate in the Nar Gölü record, modelling is undertaken. 

 

It has been suggested, based on evidence from pollen (Djamali et al., 2010), 

microcharcoal (Turner et al., 2008), modelling (Brayshaw et al., 2010) and δ18O of 

freshwater mollusc shells from Çatalhöyük (Bar-Yosef Mayer et al., 2012), that the 

early Holocene Near East saw dry summers and springs, but wetter winters. To 

investigate the influence that this might have on δ18O, the present seasonal 

distribution of precipitation at Niğde (Figure 10.8A), used to represent late Holocene 

conditions, is shifted to a situation where precipitation is winter- not spring-

dominated (DJF precipitation twice that in the spring and autumn and no JJA 

precipitation) (Figure 10.8B). Using the average δ18O of precipitation from each 

month from the Ankara GNIP record (1964-2009) (IAEA/WMO, 2013), corrected for 

1°C colder temperatures in the early Holocene (Emeis et al., 2000) and assuming the 

δ18Oprecipitation/T was the same as in the present (+0.32‰°C-1), the annual weighted 

average δ18Oprecipitation is calculated. In the present day, the weighted average is           

–8.2‰. In the early Holocene, with the 1°C lower temperatures and the shift in 

precipitation distribution, the weighted average is –9.8‰, 1.6‰ lower. Assuming the 

precipitation distribution was the same in zone 9 as it is now, this suggests only a 

small proportion of the 5‰ rise from the mean of zone 4 to the mean of zone 9 can 

be explained by a change in the seasonality of precipitation in central Turkey. 
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Figure 10.8 A: Precipitation distribution 1935-2010 from Niğde, B: hypothesised early 

Holocene precipitation regime assuming an extreme shift to winter-dominated.  

 

 

This modelling, however, clearly involves a lot of assumptions, such as the 1°C 

cooling occurring in every month, a δ18Oprecipitation/T relationship the same as in the 

present and a precipitation distribution the same throughout the late Holocene (i.e. 

the same in zone 9 and in the present). Therefore, more investigation using a proxy 

for palaeoseasonality is required. In Dean et al. (2013), it was suggested that 

comparing δ18Ocarbonate and δ18Odiatom data from Nar Gölü could provide insights into 

seasonality because the two hosts form at different times of the year, as was further 

demonstrated in section 7.2. Here, this work is built upon by extending the diatom 

isotope record back through the new NAR10 cores. Because δ18Ocarbonate and 

δ18Odiatom data are produced on different scales (VPDB and VSMOW respectively) and 

because of their different fractionation factors with lakewater, in order to compare 

them properly they need to be converted to δ18Olakewater using Eqs. 6.2, 6.5 and 6.11. 

While the accuracy of the δ18Olakewater values produced will be limited due to issues 

with the equations, errors with the mass balancing, etc., it is the only way to 

compare the data directly. As in Dean et al. (2013), a temperature range of +15-20°C 

is given for the time of carbonate precipitation and +5-15°C for the time of diatom 

growth, based on the estimates from the present (Dean et al., 2013). Figure 10.9 

shows the estimates of δ18Olakewater, with Δδ18Olakewater (a measure of how much more 
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positive δ18Olakewater was at the time of carbonate precipitation compared to the time 

of diatom growth) also plotted. Δδ18Olakewater could be increased by amplified intra-

annual variability in δ18Olakewater (for example caused by increased winter snowmelt 

leading to a freshwater lid at the time of diatom growth that had disappeared by the 

time of carbonate precipitation (Dean et al., 2013)) and/or by a larger difference in 

the time of year of carbonate precipitation and diatom growth (which may or may 

not be related to climate). So while it is difficult to interpret, an increase in 

Δδ18Olakewater may indicate increased seasonality. Due to the errors involved, the 

δ18Odiatom record is much noisier than the δ18Ocarbonate record, so it is best to look at 

general trends and ignore short term fluctuations in Δδ18Olakewater. The very low 

δ18Olakewater values at the time of diatom growth and the large Δδ18Olakewater seen 

~1,500-1,100 years BP were interpreted as indicating that diatoms grew in a 

freshwater lid after significant snowmelt (Dean et al., 2013), as will be discussed in 

more detail in section 10.4. Such low values are not seen in the early Holocene, 

suggesting there was not enough snow to form a freshwater lid at this time. 

δ18Olakewater at the time of carbonate precipitation increases at a greater rate from 

zones 4 to 9 than δ18Olakewater at the time of diatom growth: Δδ18Olakewater is smaller in 

the early Holocene than in zones 8 and 9. This suggests there was less intra-annual 

variability in δ18Olakewater (reduced seasonality), and/or a smaller difference in the 

time of year of carbonate precipitation and diatom growth, in the early Holocene 

compared to the mid to late Holocene. Even if a freshwater lid did not form in most 

of the late Holocene, it is possible there was more snow in the late Holocene 

compared to the early Holocene and this accounted for the increase in Δδ18Olakewater. 

 

Since the modelling suggests only +1.6‰ of the change in δ18Ocarbonate could be 

explained by evoking changes in the seasonality of precipitation and Δδ18Olakewater 

suggests that in fact seasonality was reduced in the early Holocene compared with 

the late Holocene, changes in the seasonality and type of precipitation are 

considered unlikely to have been the main cause of the Mid Holocene Transition in 

Nar Gölü to higher δ18Olakewater. Other factors are also likely to have had only minimal 

influence on δ18Ocarbonate between the early and late Holocene. As discussed, while 

the shift from the Younger Dryas to the Holocene in δ18Osource is seen to have been  



155 

 

 

Figure 10.9 δ18Ocarbonate (A) and δ18Odiatom (B) trends, with data converted to 

δ18Olakewater assuming a temperature range of +15-20°C for the time of carbonate 

precipitation and +5-15°C for the time of diatom growth (C) and the measure of how 

much more positive δ18Olakewater was at the time of carbonate precipitation than 

diatom growth (top line +20°C minus +5°C i.e. maximum temperature difference and 

bottom line +15°C minus +15°C i.e. minimum temperature difference (D). 
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substantial, the change between the early and late Holocene was probably far less. 

Also, if temperature alone was responsible for the 5‰ shift, a 62.5°C rise would be 

required, suggesting this is not the major cause of the shift: in fact, there is believed 

to have been a 1°C rise (Emeis et al., 2000). Even if the temperature rise was a few 

degrees greater, as has been suggested by some studies (e.g. McGarry et al., 2004), it 

would not be sufficient to explain the increase in δ18Ocarbonate. While there is a change 

from calcite in most of zone 4, to aragonite in most of zone 9, the effect this would 

have had on δ18Ocarbonate is again small. Therefore, combining the effects of the 

seasonality of precipitation plus the temperature effect on δ18Oprecipitation (+1.6‰), 

temperature on carbonate precipitation (–0.24‰) and carbonate mineralogy 

(~+0.7‰), only 2.1‰ of the shift in δ18Ocarbonate from zone 4 to zone 9 can be 

explained (and less than this if the Δδ18Olakewater data really are showing reduced 

seasonality in the early Holocene). The rest of the rise in δ18Ocarbonate was likely 

caused by a trend to more negative water balance, and this interpretation is 

supported by the shift from varved to non-laminated sediments, the change from 

calcite to aragonite/dolomite, the rise in δ13C and the increase in benthic relative to 

planktonic diatom species (chapter 8), proxies that will not have been affected by a 

change in δ18Oprecipitation due to a shift in the seasonality of precipitation.  

 

This all supports the assertion that water balance is the key driver of Near East lake 

isotope records (Jones and Roberts, 2008) and runs contrary to the interpretations of 

Stevens et al. (2001, 2006). It also calls into question the interpretation of the Dead 

Sea pollen record in the Holocene: namely that the period 6,300-3,500 years BP was 

wetter (with precipitation exceeding 650 mm per year) than the period 9,700-6,500 

years BP (less than 350 mm per year) (Litt et al., 2012). As introduced in section 

2.2.2, the Soreq Cave record (Bar-Matthews et al., 1997, Bar-Matthews et al., 2003, 

Bar-Matthews and Ayalon, 2011) was interpreted as showing the opposite: that the 

early Holocene was drier than the late Holocene, in line with the interpretation of 

most other records from the region. While the climate of Turkey and Israel do differ, 

the fact the δ18O trends of Nar Gölü and Soreq Cave are so similar (Figure 10.7) and 

that in Nar Gölü it has been shown the early Holocene was very likely wetter than 

the late Holocene, and the fact other proxy records from the rest of Israel (Neev and 
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Emery, 1995, Goodfriend, 1999, Frumkin et al., 1999, Frumkin et al., 2000, Gvirtzman 

and Wieder, 2001, McLaren et al., 2004) also show this, supports the arguments of 

the Soreq Cave researchers. While δ18Osource will be influencing lake and speleothem 

δ18O records, the modelling and multi proxy approach presented here demonstrates 

that water balance has been the key control on the Nar Gölü record. Similar 

conclusions were reached based on modelling of the Lake Yammoûneh record from 

Lebanon (Develle et al., 2010): after accounting for changes in δ18Osource, increased 

rainfall is necessary to explain the low δ18Ocarbonate values in the early Holocene. 

 

10.2.3 Examining the drivers of the Holocene aridity trend 

 

The general Holocene trends at Nar Gölü seem to be more similar to those seen in 

the African (e.g. deMenocal et al., 2000, Adkins et al., 2006, Renssen et al., 2006) and 

Asian monsoon (e.g. Fleitmann et al., 2003, Dykoski et al., 2005) records, with an 

increase in aridity through the Holocene of a similar magnitude as the Younger Dryas 

to the Holocene shift, than to North Atlantic region records where Holocene changes 

were of a much smaller magnitude (Figure 10.10). This trend has been linked to high 

summer insolation in the early Holocene and the subsequent decline through the 

mid Holocene in the Northern Hemisphere (deMenocal et al., 2000, Braconnot et al., 

2007, Fleitmann et al., 2007, Renssen et al., 2007, Roberts et al., 2011b) (Figure 

10.10). Increased precipitation in Saharan Africa in the early Holocene was caused by 

a northward movement of the monsoon rains, but the direct influence of the 

summer monsoon is not thought to have reached the Near East (Arz et al., 2003, 

Brayshaw et al., 2011b) and as discussed in section 2.2.2 summer drought seems to 

have persisted for several millennia into the Holocene in the region. Rather, the wet 

early Holocene in the Near East seems to have been the result of increased 

precipitation in other seasons, especially the winter (Brayshaw et al., 2011a), made 

possible because of the increased residual heat left in the oceans as a result of the 

higher summer insolation (Tzedakis, 2007). Modelling has shown how, through the 

Holocene, insolation and greenhouse gas concentration changes led to a weakening 

and poleward shift of the Mediterranean storm track (Black et al., 2011, Brayshaw et 

al., 2011b), and hence increased aridity in the Near East. 
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Figure 10.10  δ18O from Nar Gölü, Qunf (Fleitmann et al., 2003, 2007) and Dongge (Dykoski 

et al., 2005) and % terrigenous material from a core off Mauritania (deMenocal et al., 

2000) compared to insolation changes for 38°N (the latitude of Nar Gölü, trends similar at 

latitudes of Qunf and Dongge) calculated from Laskar et al. (2004). δ18Olakewater calculated 

for the times of year of carbonate precipitation and diatom growth, and differences 

between June and May, and July and January, insolation also shown (Laskar et al., 2004).  
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Interestingly, while based on the comparison of δ18Ocarbonate and δ18Odiatom data there 

was an increase in intra-annual variability in δ18Olakewater, i.e. increased seasonality, 

from the early Holocene to the late Holocene, Figure 10.10 shows that the difference 

in insolation between June (when carbonate precipitation is believed to occur) and 

May (the time of year diatom growth is estimated to be weighted to), as well as the 

difference between summer and winter insolation, actually decreases over this time. 

Modelling has also shown how air temperature seasonality was greater in the Near 

East in the early Holocene compared to the late Holocene (Brayshaw et al., 2011a). 

Therefore, it appears that something other than insolation and temperature 

seasonality caused this increase in intra-annual δ18Olakewater variability, which as 

discussed could be due to an increase in snowfall in the late Holocene. 

 

10.2.4 Summary 

 

Modelling suggests the majority of the 5‰ shift from zone 4 in the early Holocene to 

zone 9 in the late Holocene probably cannot be explained by a change in the 

seasonality of precipitation, and this is supported by the Δδ18Olakewater comparison, 

which suggests if anything intra-annual variability was limited in the early Holocene. 

Even combining potential seasonality changes with changes in temperature, 

δ18Osource and carbonate mineralogy, it is estimated that less than half of the 

magnitude of the shift can be explained. Therefore, it appears that the Holocene 

δ18Ocarbonate record is mainly responding to water balance and that the hypothesis of 

changes in the seasonality of precipitation being a major control on Near East lake 

isotope records (Stevens et al., 2001, 2006) can be rejected, at least for Nar Gölü. 

The increase in aridity through the Holocene is likely to be linked to a decline in 

summer insolation, which led to a weakening and poleward shift in the 

Mediterranean storm track. 
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10.3 Holocene centennial scale climate shifts 

 

10.3.1 Early Holocene 

 

In the North Atlantic region records, three main centennial scale climate change 

events have been identified in the early Holocene: the Pre Boreal Oscillation (PBO), 

the 9.3 ka event and the 8.2 ka event (Rasmussen et al., 2006). Climate changes at 

these times have been identified in some Near East records (Bar-Matthews et al., 

2003, Landmann and Kempe, 2005, Turner et al., 2008), however a lack of high 

resolution and well-dated records means investigation of Holocene decadal and 

centennial scale changes in the region has been limited. Despite the lack of strong 

chronological control (only one sensible U-Th date) in the Nar Gölü sequence, which 

means it not possible to investigate whether the three early Holocene events 

occurred at the same time in Nar Gölü and NGRIP, it is possible to count up through 

the varved sediments from the start of the Holocene to establish whether or not 

there were any changes in Nar Gölü that occurred the same amount of time from the 

start of the Holocene as the three major early Holocene events in NGRIP. 

 

There appear to be increases in aridity in Nar Gölü at around the same number of 

years from the start of the Holocene as the PBO, 9.3 ka and 8.2 ka cooling events. 

Drying in Nar Gölü at the time of the PBO is the least well defined, but there are two 

samples outside of ±1σ from the zone 4 mean (Figure 10.11). There is similarly a 

trend to increasing aridity in Nar Gölü ~2,336 varve years after the start of the 

Holocene, very close to the 2,340 years after the start of the Holocene the 9.3 ka 

event cooing trend starts in NGRIP. However, whereas the cooling in NGRIP and 

other records from the North Atlantic region such as Ammersee (von Grafenstein et 

al., 1999) lasts ~100 years, in Nar Gölü there is a dry interval that lasts ~340 years. 

Aridity at this time also lasts longer in other records away from the North Atlantic, 

for example Qunf in Oman (Fleitmann et al., 2003, 2007) and Dongge in China 

(Dykoski et al., 2005). 

  



161 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.11 Early Holocene δ18O records from Nar Gölü, Qunf (Fleitmann et al., 

2003, 2007)  and NGRIP (Vinther et al., 2006, Rasmussen et al., 2006). The aridity 

~9,300 years BP in Nar Gölü (and Qunf)  lasts significantly longer than the cooling in 

NGRIP at this time and the anomaly centred ~8,200 years BP could be the peak of a 

longer term aridity trend, as highlighted by the blue lines. 
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In terms of the 8.2 ka event, while there is a peak in aridity around this time in Nar 

Gölü (at 8,155 years BP based on the working chronology, or using the U-Th date 

error, between 8,725 and 7,585 years BP), it actually appears to be the peak of a 

longer term drying trend lasting ~800 years (Figure 10.11). The 8.2 ka event is seen 

across the Northern Hemisphere (Alley et al., 1997, Alley and Ágústsdóttir, 2005, 

Morrill and Jacobsen, 2005) but while in NGRIP it is defined as lasting 160 years 

(Thomas et al., 2007) and in other isotope records from the North Atlantic region 

~150±30 years (Daley et al., 2011), away from the North Atlantic region the effects 

are often spread over a longer time period (Rohling and Palike, 2005, Wiersma and 

Renssen, 2006, Thomas et al., 2007). Also, away from the North Atlantic, the 

magnitude of the change is often lower. For example, the estimated temperature 

drop in the Balkans from a lake pollen record is 2°C (Bordon et al., 2009), 3°C in the 

Alboran and Aegean Seas (Dormoy et al., 2009) and 4°C in NE Greece (Pross et al., 

2009, Peyron et al., 2011), compared to 6-7°C in Greenland (Alley et al., 1997, 

Leuenberger et al., 1999). Furthermore, other than the recently published record 

from Heshang Cave in China showing a drying indistinguishable in duration and 

evolution from the 8.2 ka event seen in Greenland (Liu et al., 2013) (Figure 10.5), 

anomalies outside of the North Atlantic region often span 400-600 years forming 

part of a longer trend since ~8,600 years BP with more sudden changes at 8,200 

years BP superimposed on longer term cooling/drying trends (Rohling and Palike, 

2005). Specifically, dry events are seen in records from across tropical Africa ~8,500-

7,800 years BP (Gasse, 2000), the Black Sea coast of Turkey ~8,400-7,800 years BP 

(Gokturk et al., 2011), off the Somali coast starting at ~8,500 years BP (Jung et al., 

2004, Ivanochko et al., 2005), ~8,400-8,000 years BP in an Aegean pollen record 

(Kotthoff et al., 2008b), ~8,600-7,900 years BP in Qunf (Fleitmann et al., 2003, 2007) 

and ~8,500-8,000 years BP in Soreq Cave (Bar-Matthews et al., 1997) (although this 

record is hampered by a low resolution of analyses at this time) (Figure 10.5). 

Interestingly, an arid event in between those centred on ~9,300 and 8,200 years BP is 

seen in both Nar Gölü and Qunf (Figure 10.11); more high resolution records are 

required to identify whether this is another widespread aridity event. 
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Slowdowns of North Atlantic thermohaline circulation due to glacial outburst floods 

have been suggested as the causes of the PBO (Fisher et al., 2002), 9.3 ka (Fleitmann 

et al., 2008, Yu et al., 2010) and 8.2 ka (Barber et al., 1999, Clarke et al., 2004, Alley 

and Agustsdottir, 2005, Ellison et al., 2006, Hillaire-Marcel et al., 2007, Thomas et al., 

2007, Hoogakker et al., 2011, Hoffman et al., 2012) cooling events. A cooling of the 

North Atlantic Ocean may lead to increased aridity in the Near East for the reasons 

discussed in section 10.1.3. The spatial pattern seen at these events, namely a 

cooling in high latitudes and a drying in parts of the Northern Hemisphere tropics, is 

consistent with that expected following a slowdown of North Atlantic circulation 

(Alley and Agustsdottir, 2005, Rohling and Palike, 2005). However, whilst this could 

account for peak aridity in Nar Gölü at these times, it does not explain why the 

aridity events ~9,300 and 8,200 years BP last longer in Nar Gölü and other records 

outside of the North Atlantic region (Rohling and Palike, 2005) than the cooling 

events in NGRIP. The fact that the Nar Gölü record does not perfectly match NGRIP is 

not surprising given the geographical distance between the sites. Whilst changes in 

the North Atlantic are seen as a key driver of Near East hydroclimate in the present 

and past, it has been demonstrated that other teleconnections are also important, 

such as Indian monsoon dynamics (Jones et al., 2006, Ziv et al., 2006) and the North 

Sea-Caspian Pattern Index (Kutiel and Turkes, 2005, Jones et al., 2006), as discussed 

in section 2.1.1.  

 

For the aridity centred on ~8,200 years BP, solar variability has been proposed as the 

underlying cause, with Δ14C production rates showing three broad maxima 

(indicating solar output minima) 8,400-7,900 years BP (Muscheler et al., 2004, 

Muscheler et al., 2005). Marshall et al. (2011) have suggested that because the 

aridity trend is seen in the Northern Hemisphere tropics and sub tropics ~8,600 years 

BP, this could be seen to be the driver of the 8.2 ka event in the North Atlantic. 

Potential tropical drivers of change at higher latitudes, linked for example to 

methane emissions and ENSO changes, are reviewed in Barker et al. (2004). 

Alternatively, seasonality could be confusing the interpretation of records. For 

example, while in the Cariaco basin record there is a peak in aridity from a winter 

proxy (greyscale) 8,250-8,100 years BP (Hughen et al., 1996), proxies for summer 
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conditions (Fe and Ti concentrations) show a much longer anomaly 8,400-7,750 years 

BP (Haug et al., 2001). Additionally, the Holzmaar record from Germany is 

interpreted as showing there were ~75 years of cool, dry winters in the middle of a 

~175 year period of summer cooling (Prasad et al., 2009). For this time period, more 

proxies of winter conditions are therefore required, as are more high resolution and 

well-dated records from around the world. 

 

10.3.2 Mid to late Holocene 

 

As discussed in section 10.2.1, there was a gradual trend to drier conditions in Nar 

Gölü that peaked ~3,000-2,000 years BP. Figure 10.12 shows this period was also 

punctuated by numerous centennial scale climate fluctuations. While the chronology 

of the Nar Gölü record for this period is not yet good enough to assign dates 

accurately to these events, based on the current chronology there is an arid period at 

the end of zone 7 (inferred from >20% dolomite content) that could be synchronous 

with the arid interval ~5,300-5,000 years BP seen in Soreq Cave (Bar-Matthews and 

Ayalon, 2011), Lake Van (Lemcke and Stürm, 1997), the Gulf of Oman (Cullen et al., 

2000), Syria (Fiorentino et al., 2008), SE Arabia (Parker et al., 2006), Lake Tecer 

(Kuzucuoglu et al., 2011) and east Africa (Thompson et al., 2006). The period of high 

δ18Ocarbonate at the beginning of zone 9 may be coincident with the arid event seen 

from ~4,200-3,900 years BP in records from the Gulf of Oman (Cullen et al., 2000), 

the Indus delta (Staubwasser et al., 2003), the Red Sea (Arz et al., 2006), NW Turkey 

(Ulgen et al., 2012), the Nile Delta (Bernhardt et al., 2012), Eski Acıgöl (Roberts et al., 

2001), Gölhisar Gölü (Eastwood et al., 2007), Lake Tecer (Kuzucuoglu et al., 2011) and 

the Dead Sea (Migowski et al., 2006, Stein et al., 2010, Litt et al., 2012). It is difficult 

to compare the magnitude of this arid event to the one centred ~5,200 years BP 

because the high levels of dolomite meant δ18Ocarbonate data could not be produced 

for the latter. However, the fact that ~5,200 years BP there was >20% dolomite 

whereas ~4,200 years BP there was <20% dolomite in itself suggests the former may 

have been more arid, and indeed in Soreq Cave the former drought period was more 

extreme (Bar-Matthews and Ayalon, 2011). There is also >20% dolomite in Nar Gölü 

~3,100 years BP in the middle of zone 9, apparently at the same time as a dry event 
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at Eski Acıgöl (Roberts et al., 2001), the Sea of Galilee (Langgut et al., 2013), Lake 

Zeribar (Stevens et al., 2001), the Eastern Mediterranean Sea (Emeis et al., 2000, 

Schilman et al., 2001), the Dead Sea (Migowski et al., 2006, Stein et al., 2010, Litt et 

al., 2012), Jeita Cave (Verheyden et al., 2008) and at Lake Tecer (Kuzucuoglu et al., 

2011). This may be the driest time of the Holocene at Nar Gölü; as with the drought 

~5,200 years BP there is >20% dolomite, but at this time δ18Ocarbonate data either side 

of the gap in the isotope record are higher and sediments are non-laminated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.12 Close up on the mid and late Holocene, compared to the Soreq Cave 

record (Bar-Matthews et al., 1997, Orland et al., 2009, Bar-Matthews and Ayalon, 

2011). 
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Again, as with changes in the late glacial (section 10.1.3) and early Holocene (section 

10.3.1), it appears that when the North Atlantic is cooler, the Near East is drier. The 

increases in aridity ~4,200 and 3,100 years BP occur at the same time as cooling 

events in the North Atlantic: Bond events 3 and 2 (Bond et al., 1997). Unlike in the 

early Holocene, when large inputs of freshwater from the melting Laurentide ice 

sheet are hypothesised to have caused North Atlantic coolings known as the PBO, 9.3 

ka and 8.2 ka events (Bond events 8, 6 and 5), Bond events 3 and 2 must have been 

caused by another underlying factor because there were no large freshwater 

outbursts at this time (Bond et al., 2001). Whilst it is beyond the scope of this thesis 

to investigate this, the identification of cyclicity in records can assist in the analysis of 

the drivers of climate, so spectral analysis was performed on the data using the PAST 

program (Hammer et al., 2001). Only the period from the start of the Holocene to 

the bottom of the NAR01/02 section was chosen for analysis because the chronology 

is less secure in the late glacial and the resolution of the record was significantly 

higher in the NAR01/02 sections. The insolation trend was removed by fitting a third 

order polynomial through the data before analysis. Ignoring the ~3,000 year cycle 

because it is over a third of the length of the record being analysed, the two major 

cycles picked up are at ~1,500 and ~900 years (Figure 10.13). A ~1,500 year 

periodicity was identified in the flux of ice-rafted debris in North Atlantic ocean cores 

(Bond et al., 1997) and subsequently in many other records from around the world as 

reviewed in Wanner et al. (2008), including in the Eski Acıgöl microcharcoal record 

(Turner et al., 2008) where fire frequency and magnitude increased at times the δ18O 

record suggested it was wet and in the Soreq Cave record (Bar-Matthews and 

Ayalon, 2011). The cycle was hypothesised to be linked to solar variability (Bond et 

al., 2001), although Debret et al. (2007) argue that the origin of the cycles is yet to be 

determined. The other most significant cycle is ~900 years, and similar periodicities 

are seen in Greenland temperatures (Schulz and Paul, 2002), in turbidite records 

from off west Africa (Zuhlsdorff et al., 2008) and in a forest vegetation record from 

the western Mediterranean (Fletcher et al., 2013). These too have been linked to 

solar variability (Debret et al., 2007). Two other cycles, at 1,032 and 1,197 years, are 

significant at the 0.01 level. Once a firmer chronology is established, it will be 

possible to draw firmer conclusions. 
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Figure 10.13 Spectral analysis conducted on δ18Ocarbonate data using PAST program, 

with the 3,175 year peak rejected because the isotope record is too short to pick this 

up, leaving the two major peaks at 1,529 years and 897 years. 

 

10.3.3 Summary 

 

Whilst there are aridity peaks in Nar Gölü at the same times as the PBO, 9.3 ka and 

8.2 ka event coolings seen in the North Atlantic region, the aridity in Nar Gölü around 

the time of the latter two events lasted longer, as is also apparent in Qunf (Fleitmann 

et al., 2003, 2007) and Dongge (Dykoski et al., 2005). In particular, the drying ~8,200 

years BP starts several centuries before the cooling in the North Atlantic and it is 

likely that the aridity trend was initially caused by another factor. However, the fact 

that the peaks in aridity occurred around the times of the PBO, 9.3 ka and 8.2 ka 

events perhaps suggests changes in North Atlantic circulation did still have significant 

impacts on Near East hydroclimate, exacerbating the underlying aridity trend. 

Furthermore, aridity at Nar Gölü ~4,200 and 3,100 years BP also occurs at around the 

time of North Atlantic cold periods (Bond events 3 and 2) (Bond et al., 1997).  So, as 
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in the late glacial, it appears that in the Holocene the Near East became drier when 

the North Atlantic cooled. 

 

10.4 The large shift in the 6th century AD 

 

Figure 10.14, which shows a part of the record which is securely dated by varve 

counting from the top of the core (section 9.2), shows the large transition in the 6th 

century AD in detail. The shift to more negative δ18Ocarbonate occurs 1,475-1,402 years 

BP and the period of low values lasts until ~550 years BP at the end of zone 10, 

interrupted by a temporary rise to higher values peaking ~1,090 years BP. This large 

shift had already been seen in Jones et al. (2006), but it is only now that the NAR10 

record has been produced that this shift can be put into a long term context. Other 

than the multi-millennial Mid Holocene Transition, it is the largest δ18O shift seen in 

the entire record, larger than the Younger Dryas to Holocene transition. Increased 

wetness is inferred around the 6th century AD in Soreq Cave (Orland et al., 2009) 

(Figure 10.15), Lake Tecer (Kuzucuoglu et al., 2011), the Eastern Mediterranean Sea 

(Schilman et al., 2001) and the Dead Sea (Neumann et al., 2007) and Bond Event 1 is 

dated to ~1,400 years BP (Bond et al., 1997). Moreover, there seems to be a shift in 

the intensity of the Asian monsoons around the time of the shift in Nar Gölü. While 

in the mid Holocene there is a gradual drying trend seen in Nar Gölü, Qunf and 

Dongge (Figure 10.15), after 1,500 years BP there is a gradual wetting trend in Qunf 

and Dongge and a gradual drying trend in Nar Gölü.  

 

Whilst there are these indications of climate changes from many records at this time, 

only in Nar Gölü is the shift of such a high magnitude, dwarfing the Younger Dryas to 

Holocene transition. So whilst it was not one of the original aims of the thesis to 

investigate this period, it has emerged as one of the most intriguing periods of the 

record. It could be that there was a climate shift that affected central Turkey more 

than other parts of the Near East, or that the Nar Gölü system was more sensitive to 

change than at other times, or a combination of these two factors. 
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Figure 10.14 Combination of NAR10 and NAR01/02 (Jones et al., 2006) records, 

plotted against years BP (where -60 = AD 2010). 
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Figure 10.15 Holocene δ18O records from Nar Gölü, Soreq Cave (Bar-Matthews et al., 

1997, Orland et al., 2009, Bar-Matthews and Ayalon, 2011), Qunf (Fleitmann et al., 

2003, 2007)  and Dongge (Dykoski et al., 2005).  
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in precipitation in central Turkey 1,475-1,402 years BP, its impact may have been 

enhanced by increased run-off into the lake. Increased sensitivity of the lake is 

supported by data from the last few decades, with a rise in δ18Ocarbonate (with no 

change in mineralogy) of 4.3‰ over the past 25 years, which is nearly as large as the 

Younger Dryas to Holocene shift. This suggests that in the present, for a given change 

in lake depth, there is a larger shift in δ18Ocarbonate than at times in the past. If the lake 

was more sensitive at the time of the 6th century AD transition as well, that could 

explain why it was of such high magnitude.  

 

Another explanation that could help account for the magnitude of the δ18Ocarbonate 

shift is a change in the seasonality and type of precipitation. A comparison with 

δ18Odiatom is used to investigate this further. As discussed in section 8.2.4, the low 

δ18Odiatom values and the large shifts are not considered to be due to temperature, 

contamination or species assemblage shifts. The other potentially significant variable 

driving δ18Odiatom is δ18Olakewater, which could be driven by changes in the source of 

precipitation, δ18Osource, the type of precipitation and water balance. There is not 

thought to have been a shift in the source of precipitation at this time in the region 

and δ18Osource is not likely to have changed so much, so fast, in this part of the 

Holocene. Where δ18Ocarbonate and δ18Odiatom and estimated δ18Olakewater from the two 

hosts follow similar trends, they are likely both responding to water balance, with 

the small differences in Δδ18Olakewater just the result of intra-annual differences in 

δ18Olakewater and differences in the time of year of diatom growth and carbonate 

precipitation. However, around the 6th century AD transition, Δδ18Olakewater increases 

to values of ~7-15‰ because δ18Olakewater at the time of diatom growth decreases to 

a much greater degree than δ18Olakewater at the time of carbonate precipitation. 

δ18Olakewater values estimated for the time of diatom growth of ~–15‰ are the lowest 

for the record, suggesting unique conditions in the lake at this time. Changes in the 

type of precipitation could account for such low values. As discussed in sections 7.2.1 

and 10.1.1, snow δ18O is significantly lower than rain δ18O. Normally in closed lakes, 

changes in the type of precipitation would be expected to be far outweighed by 

evaporative effects (Leng and Marshall, 2004). However, large inputs of low δ18O 

water may not immediately mix with the rest of the lake water. Large amounts of 
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spring snowmelt could form a freshwater lid on the lake surface because of the 

density contrast with the underlying saline waters, and if the majority of diatom 

growth occurred in this freshwater lid, and if by the time of carbonate precipitation it 

had mixed with the rest of the lake water, there could have been large differences in 

the δ18O of the surface lakewaters in which the two hosts formed.  

 

The freshwater lid hypothesis is complicated and difficult to test, with a threshold 

required above which there is sufficient snowmelt to form a freshwater lid. However, 

there is some support for increased snowfall at this time from archival sources, with 

the people of Cappadocia in the first half of the first millennium AD describing as 

“reeking of snow” and roads being impassable until Easter (Van Dam, 2002). 

Significant snowfalls were reported across Anatolia at this time (Stathakopoulos, 

2004). From 1935-2010 AD, Niğde (45 km from Nar Gölü) saw on average only 33 

snowy days per year, perhaps explaining why a significant freshwater lid does not 

seem to have formed over the past few decades, with ∆δ18O closer to zero. Even if 

this freshwater lid had disappeared by the time of carbonate precipitation, the 

lakewater as a whole would have been isotopically more depleted than at times 

when there was less snowfall, so δ18Ocarbonate would have been lowered.   

 

However, even if the sensitivity of the system and increased snowfall exaggerated 

the magnitude of the δ18Ocarbonate transition in relation to, for example, the Younger 

Dryas to Holocene transition, there must have been a shift to wetter conditions to 

evoke the response in δ18Ocarbonate and the other proxies in the first place. Therefore, 

in summary, based on multi-proxy analysis, the transition in the 6th century AD seen 

in Nar Gölü is likely due to a rapid shift to more positive water balance. A shift to 

wetter conditions is seen in other records from Turkey and the wider Near East at 

this time, although it is unclear whether the shift was as high magnitude elsewhere 

as it was at Nar Gölü. 
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10.5 Examining potential links with the archaeological record 

 

As discussed in sections 1.1 and 2.2.3, since the Near East is arguably the key region 

in the development of human civilisation and connections between climate and 

society has previously been postulated, the links between the climate record 

presented in this thesis and the archaeological record need to be examined. 

 

10.5.1 The origins of agriculture 

 

Present knowledge suggests that whilst there may have been some cultivation of 

wild grains in the Near East in the Bølling-Allerød and Younger Dryas, it was not until 

the early Holocene that they became a major means of subsistence (e.g. Willcox et 

al., 2009, Zeder, 2011). By 10,500-10,000 years BP, there is evidence of domesticated 

plants at Asikli Höyük (20 km west of Nar Gölü), Tell Aswad near modern day 

Damascus and ‘Ain Ghazal in Jordan (Figure 10.16) (Zohary et al., 2012). A wetting 

and warming in the early Holocene is seen by some to have supported the 

development of farming (Gupta, 2004, Bellwood, 2005, Willcox et al., 2009) and a 

major population expansion (Migowski et al., 2006, Weninger et al., 2009, Maher et 

al., 2011). The new data from Nar Gölü, with zone 4 (11,700 to 9,400 years BP) 

showing a sustained period of low δ18O values, interpreted as indicating wet 

conditions (Figures 10.3 and 10.18), are particularly important in supporting the 

findings of these previous studies. Nar Gölü is now the closest climate archive to the 

important archaeological site of Asikli Höyük and it is vital to have climate records 

from close to archaeological sites if links between the two are to be made (Jones, 

2013). Increased wetness (i.e. more precipitation, less evaporation) would clearly 

have assisted in the development of agriculture, as it would have meant that there 

was less water stress. Even in the present day, which seems to be wetter than zone 9 

in the late Holocene, central Turkish agriculture is dependent upon irrigation, so in 

the Younger Dryas, for example, when precipitation was likely to have been lower 

(section 10.1), rain-fed agriculture by less technologically advanced peoples would 

have been very difficult.  
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Figure 10.16 Evidence of cultivation from archaeological sites (Zohary et al., 2012), 

showing that cereal agriculture first developed in modern day Jordan, Syria and 

central Turkey at Asikli Höyük close to Nar Gölü.  

 

 

It has been hypothesised that the stability of hydroclimate, as well as overall 

wetness, may have been important (Bellwood, 2005, Willcox et al., 2009), but this 
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from the Near East that allowed climate variability to be investigated. The 
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recognised, as it is harder for societies to adapt to an increase in variability/extreme 

conditions than to a change in the average climate state (Hanson et al., 2012, 
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any zone (Table 8.1), and Ca/Sr ITRAX data (used as a water balance proxy) were also 

less variable in this part of the core sequence than in the late Holocene (Allcock, 

2013). Combined with increased wetness, increased stability of climate is likely to 

have assisted in the development of agriculture: it would clearly have been easier to 

domesticate, experiment and grow crops if the hydroclimate did not change from 

year to year and if early farmers did not have to continuously adapt to variability by 

changing the time of year they planted crops or the types of crops they grew. 

Additionally, as discussed in section 10.2.2, it appears there was less of a marked 

seasonality of precipitation in zone 4 compared to zone 9, and reduced seasonality 

would also have made it easier for rain-fed agriculture to develop (Feng et al., 2013). 

 

 

 

Figure 10.17 Nar Gölü and Soreq Cave (Bar-Matthews et al., 1997, Orland et al., 

2009, Bar-Matthews and Ayalon, 2011) δ18O data plotted with Turkish archaeological 

periods separated by the dashed lines (Allcock, 2013 and references therein) (EBA = 

Early Bronze Age, MBA = Mid Bronze Age and LBA = Late Bronze Age) and major 

events in Turkish human history (see text for references).  
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10.5.2 Societal change ~8,200 years BP 

 

The aridity peak in Nar Gölü centred on ~8,200 years BP (Figure 10.17) and an 

increase in the variability of climate in zone 5 compared to the earliest Holocene 

(Table 8.1) coincides with major societal change in the Near East. ~8,200 years BP, 

the settlement of Çatalhöyük (160 km SW of Nar Gölü) moved, at a time when 

geoarchaeological investigations suggest river flooding stopped (Roberts and Rosen, 

2009). Across the Eastern Mediterranean, from Greece, Sardinia and southern Italy 

(Berger and Guilaine, 2009), to Cyprus (Weninger et al., 2006), the Sahara (Fagan, 

2004, Burroughs, 2005, Gonzalez-Samperiz et al., 2009) and Jericho (Migowski et al., 

2006), there was an abandonment of settlements. Based on DNA studies, it has 

been shown that ~8,200 years BP many early farmers left Anatolia and settled in SE 

Europe, spreading agriculture to mainland Europe for the first time (Weninger et al., 

2006, Berger and Guilaine, 2009, Bramanti et al., 2009, Haak et al., 2010, Zohary et 

al., 2012) (Figure 10.16). Weninger et al. (2006) suggested that aridity may have 

forced this migration and it can be seen from Figure 10.17 that there was a peak in 

aridity ~8,200 years BP in both the Nar Gölü and Soreq Cave records. Combined with 

an increase in the variability of climate, this would have made agriculture more 

difficult and could have pushed communities into Europe in search of more 

hospitable farmland. 

 

10.5.3 Civilisation ‘collapses’ in the mid and late Holocene  

 

Whilst the chronology of the mid and late Holocene part of the sequence is less 

secure than the early Holocene, based on the current chronology there do appear to 

be arid events at Nar Gölü at the times of the three major arid events seen in other 

records from the region, at ~5,200, 4,200 and 3,100 years BP, which occur at the 

times of major transitions in the archaeological record (the end of the Late 

Chalcolithic, of the Early Bronze Age and of the Late Bronze Age) (Figure 10.17). The 

drought ~5,200 years BP occurred at the same time as the ‘collapse’ of the late Uruk 

period society in Mesopotamia (Weiss, 2003). Aridity ~4,200 years BP has been 

linked with the decline of the Old Kingdom of Egypt (Stanley et al., 2003) and the 
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Harappan civilisation in the Indus valley (Possehl, 1997, Staubwasser et al., 2003), as 

well as the Akkadian civilisation ~4,110 years BP (Weiss, 1993). The Akkadians 

depended on rain-fed agriculture on the northern Mesopotamian plain (Cullen et al., 

2000), so a decrease in precipitation could have made farming unsustainable. As 

discussed in section 10.3.2, the most arid period in the Nar Gölü record in the 

Holocene is likely to have been ~3,100 years BP, which within dating error coincides 

with the ‘Bronze Age Collapse’. The Hittite civilisation in Anatolia saw significant 

change at this time, with their capital Hattusa destroyed ~3,180 years BP (Weiss, 

1982) (Figure 10.17). Hittite texts referred to drought before their ‘collapse’ (Akurgal, 

2001). At this time there were also crop failures in Syria (Kaniewski et al., 2010) and 

Egypt suffered its 3rd Intermediate Period (Dodson, 2001). The invasion of the ‘sea 

peoples’ (an unidentified group of people) had previously been blamed for societal 

change at this time, however this population movement could have itself been 

caused by the climate change (Burroughs, 2005, Gallet et al., 2006).  

 

So whilst the poor chronology of Nar Gölü record at this time precludes robust 

investigation of the synchronicity of droughts and civilisation ‘collapses’, in general 

the period from 4,200 to 1,500 years BP (zone 9) had high δ18Ocarbonate values, non-

laminated sediments and aragonite/dolomite so is likely to have been substantially 

drier than central Turkey today and in the early Holocene. Agriculture in central 

Turkey is presently dependent on irrigation, so if it was drier in zone 9 of the late 

Holocene and yet people were less technologically advanced, then agriculture would 

have been even more difficult for that period as a whole. Rapid, short-term 

fluctuations may have more of a significant impact on societies that are already 

weakened by longer-term climate change (Parry, 1978), so the rapid increases in 

aridity seen ~5,200, 4,200 and 3,100 years BP could have pushed civilisations, 

especially those that failed or refused to adapt (Roberts et al., 2004, Rosen, 2007), 

over the edge. The more variable climate in the mid to late Holocene compared to 

zone 4 in the earliest Holocene, seen from the increased standard deviation values of 

δ18Ocarbonate (Table 8.1) and again also in increased Ca/Sr variability (Allcock, 2013), 

would also have made it more difficult to farm (Sandweiss and Quilter, 2012). 
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10.5.4 Summary  

 

It is for archaeologists to attempt to establish whether or not climate changes could 

have been important in the development and decline of civilisations, and it is likely 

that climate would not have been the sole cause of societal shifts (e.g. Coombes and 

Barber, 2005). However, in this section it has been shown that there could 

potentially be climatic explanations for societal change. In the early Holocene when 

people were first domesticating plants and establishing farming communities, the 

hydroclimate was substantially wetter and more stable than most of the mid and late 

Holocene, which would probably have made it easier for people to farm. ~8,200 

years BP, arid conditions are inferred at the time of change at the major settlement 

of Çatalhöyük and a major population movement from Anatolia into Europe. In the 

late Holocene, the climate was highly variable and arid, with droughts potentially 

coinciding with major transitions in the archaeological record. 

 

10.6 Overall summary 

 

In this chapter, the working chronology has allowed the interpretations of chapter 8 

to be built upon by enabling temperature and δ18Osource data from other records to 

be used in order to attempt to model the drivers of δ18Ocarbonate in Nar Gölü. Water 

balance was shown to be its key driver, supporting the interpretations made in 

chapters 7 and 8. It was then possible to compare to other records, initially from the 

Near East to investigate how widespread changes were across the region, and then 

from further afield in an attempt to establish the key drivers of Near East 

hydroclimate through the late glacial and early Holocene. Potential links between 

climate and societal change were also considered. The major palaeoclimate 

implications of this thesis are summarised in section 11.2. 
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Chapter 11 | Conclusions 

 

Using U-Th and varve counting to provide a working chronology and the highest 

resolution (average <25 years) δ18Ocarbonate record from the Near East to date, for the 

first time it has been possible to investigate in detail the Younger Dryas to Holocene 

transition in central Turkey as well as centennial scale changes in the early Holocene. 

Unique insights into palaeoseasonality have been provided by combining δ18Ocarbonate 

and δ18Odiatom data. 

 

11.1 Methodological implications 

 

The isotope record derived from the NAR10 sequence could only be reliably 

interpreted after a significant amount of limnological monitoring. While Nar Gölü is a 

closed lake in a semi-arid region and δ18Ocarbonate is therefore likely to be a proxy for 

water balance, monitoring of the lake was still vital (chapter 7). Firstly, comparison of 

changes in lake depth to δ18Olakewater to sediment core δ18Ocarbonate confirmed this 

assumption. Secondly, comparison of δ18Olakewater to sediment trap δ18Ocarbonate to 

sediment core δ18Ocarbonate data showed that carbonate was precipitating in 

equilibrium and that the signal was not altered by diagenesis. Thirdly, it was shown 

that diatom growth likely occurs earlier in the year than carbonate precipitation so 

theoretically differences in δ18O between the two hosts could be used to investigate 

palaeoseasonality.  

 

In the analysis of core material, there were three main issues that needed to be 

overcome. Firstly, because its mineral-water fractionation factor is not well 

constrained and it forms under different conditions to endogenic calcite and 

aragonite, the presence of dolomite in parts of the sequence had to be dealt with 

using a quick reaction (section 6.3.4). It is argued that the investigation of carbonate 

mineralogy is absolutely vital when working with carbonate isotopes and studies that 

interpret the latter without consideration of the former will be limited in their 

reliability. Secondly, building on the work of other researchers, the method of mass 
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balance correcting diatom isotope data was refined, for example showing the 

importance of determining the δ18O of contamination and the potential for down-

core variability. Thirdly, it has once again been demonstrated that U-Th dating of 

lacustrine sediments is complicated, but it has been suggested which types of 

sediments are more likely to be successful than others. 

 

It was confirmed using δ18O-δ13C co-variance, modelling to account for the influences 

of factors such as temperature and δ18Osource on δ18Ocarbonate, and δ18Odiatom data to 

investigate palaeoseasonality, that the major driver of δ18Ocarbonate in the past in Nar 

Gölü was water balance, as has been the case in the recent past. The combination of 

δ18Ocarbonate and δ18Odiatom data in order to reconstruct seasonality has been done 

before, but Dean et al. (2013) and the work presented here are the first times that 

there has been a thorough consideration of the effect of contamination on δ18Odiatom 

and extensive limnological monitoring to establish the drivers of δ18O and the times 

of year of carbonate precipitation and diatom growth.  

 

11.2 Implications for Near East palaeoclimatology 

 

Previously, a lack of high resolution and well-dated records from the Near East has 

hampered attempts to compare the Younger Dryas to Holocene transition in the 

Near East to the rapid shifts seen in the North Atlantic. Here, it has been possible to 

estimate that the transition occurred in central Turkey in <200 years (the majority of 

it in just 9 years), a rapidity much more similar to North Atlantic region records than 

to records from further east in the Northern Hemisphere (section 10.1). Likewise, the 

Bølling-Allerød to Younger Dryas transition in Nar Gölü seems to have been of a 

similar rapidity to that seen in the North Atlantic. The earliest Holocene in central 

Turkey saw very stable hydroclimate conditions. There seems to be a drying in 

central Turkey at the same time as the three key early Holocene coolings seen in 

Greenland (the PBO, 9.3 ka and 8.2 ka events) (section 10.3). However, the drying 

events are not short, discrete events as in Greenland. In particular, aridity ~9,300 

years BP lasts ~340 varve years in Nar Gölü compared to ~100 years in North Atlantic 

region records and while there is a peak of aridity ~8,200 years BP in Nar Gölü at the 
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time of the 8.2 ka event, it appears to be part of much longer term drying trend 

starting ~8,600 years BP and ending ~7,800 years BP. Other records from outside of 

the North Atlantic have found similar, multi-centennial scale anomalies.  

 

The Mid Holocene Transition to drier conditions occurred in two phases ~7,400-6,500 

and ~4,700-4,000 years BP (although the exact timing is unknown due to the 

chronological uncertainties in this part of the record). Peak Holocene aridity is 

reached ~3,000-2,000 years BP (section 10.2). Although gaps in the isotope record 

~5,000 and 3,000 years BP due to high dolomite mean that the isotope record is 

incomplete, the very fact that there were high levels of dolomite forming at this time 

is taken to indicate aridity. The δ18Ocarbonate transition in the 6th century AD, 

interpreted as a rapid and high magnitude shift to wetter conditions, is larger than 

the Younger Dryas to Holocene transition in Nar Gölü, but unlike the latter such a 

large climate shift is not seen elsewhere in the world at this time (section 10.4).  

 

The interpretation of the Younger Dryas as being drier than the early Holocene at 

Nar Gölü supports the interpretation of most records from the region, for example 

from Eski Acıgöl (Roberts et al., 2001, Jones et al., 2007), Lake Van (Lemcke and 

Stürm, 1997), Lake Zeribar (Stevens et al., 2001) and Soreq Cave (Bar-Matthews et 

al., 1997). It also appears to show an increase in aridity from the early to late 

Holocene, again supporting the interpretation of many records, for example Eski 

Acıgöl (Roberts et al., 2001, Jones et al., 2007), Lake Van (Lemcke and Stürm, 1997), 

Soreq Cave (Bar-Matthews et al., 1997) and Gölhisar Gölü (Eastwood et al., 2007). 

However, the Dead Sea pollen and sedimentological records are interpreted as 

showing the Younger Dryas was wetter than the early Holocene and that the early 

Holocene was drier than the late Holocene (Stein et al., 2010, Litt et al., 2012). Some 

researchers had suggested that the Soreq Cave δ18O record was being misinterpreted 

as a water balance signal whereas actually it was recording changes in δ18Osource. The 

demonstration that water balance is the key influence on δ18Ocarbonate in Nar Gölü, 

the fact the δ18O trends of Nar Gölü and Soreq Cave are so similar, and the fact other 

proxy records from Israel also suggest a transition from wet to dry in the Holocene, 

seems to support the arguments that the Soreq record may be recording water 
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balance. The interpretation of the δ18O records from Lakes Zeribar and Mirabad in 

terms of the seasonality of precipitation (Stevens et al., 2001, Stevens et al., 2006), 

partly due to the interpretation of the pollen records, is also called into question in 

this thesis, supporting the assertion of Jones and Roberts (2008) that the key driver 

of Near East lake isotope records in the Holocene was water balance. This again 

highlights the discrepancy between the interpretation of the pollen records from the 

Dead Sea (Litt et al., 2012) and Iran (van Zeist and Bottema, 1977, Bottema, 1986) 

and the isotope records. It has been shown here, using a multi-proxy approach and a 

very careful consideration of the drivers of δ18Ocarbonate, that there was almost 

certainly a shift from a wet early Holocene to a dry late Holocene, at least at Nar 

Gölü. The differences between the pollen and isotope records at Nar Gölü were 

discussed in section 8.2.5: whilst there is an increase in the percentage of arboreal 

pollen at the beginning of the Holocene, the increase is much slower than the 

decrease in δ18Ocarbonate and does not reach a maximum until ~5,700 years BP. 

Therefore, palynologists working in the Near East need to take into consideration the 

limitations of pollen and why it may not be responding to climate (Roberts et al., 

2011a, Roberts, in press), as well as considering the limitations of isotope records. 

 

The fact that Nar Gölü is drier when the North Atlantic is colder (during the Younger 

Dryas, around the times of the PBO, 8.2 ka and 9.3 ka events and ~4,200 and 3,100 

years BP) and wetter when the North Atlantic is warmer is taken to suggest changes 

in the North Atlantic have been a key driver of Near East hydroclimate, as is the case 

in the present day and discussed in section 10.1.3. The similarity in the rapidity of the 

Bølling-Allerød to Younger Dryas and Younger Dryas to Holocene transitions between 

Nar Gölü and North Atlantic region records highlights the strength of the 

teleconnection. However, particularly during the Holocene, other factors must have 

been important as well. Unlike in the North Atlantic where the last high magnitude 

shift was the Younger Dryas to Holocene transition, in the Nar Gölü record, as in 

records from Africa and of the Asian monsoons, there was a major shift during the 

mid Holocene: an increase in aridity linked to declining summer insolation. Also, the 

fact that the aridity trends at Nar Gölü at the times of the 9.3 ka and 8.2 ka events 
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last longer than in the North Atlantic region suggests additional processes such as 

the Indian monsoon were having an influence on Near East hydroclimate. 

 

Potential links between climate and societal change have also been considered. In 

this regard, perhaps the most significant finding from this thesis is what the 

hydroclimate of central Turkey was like at the time agriculture developed. Whilst 

other studies had shown that the Near East was wetter in the early Holocene than 

now, because of the lack of high resolution records it was not possible to investigate 

the stability of climate. Here, it was possible to show that for over two millennia at 

the start of the Holocene, when agriculture developed and spread to sites such as 

Asikli Höyük near to Nar Gölü by 10,000 years BP, the climate was wet and stable. 

These favourable climate conditions would have made it easier for people to 

cultivate crops and may explain why agriculture developed at this time. A more 

variable and arid climate is found from 9,400 years BP until the end of the early 

Holocene, which could potentially have helped initiate the migration of Near East 

farmers to Europe. At the moment, the chronology for the mid to late Holocene 

during peak aridity is not sufficiently constrained to allow for a correlation of decadal 

and centennial scale climate changes to shifts in the archaeological records. 

However, three major dry periods, centred on ~5,200, 4,200 and 3,100 years BP, may 

coincide with major transitions in the archaeological record.  

 

11.3 Future work 

 

Results from this thesis are contributing to work led by other members of the Nar 

Gölü team including high resolution analysis on the 6th century AD transition period 

and potential links to the spread of the Justinian Plague, and consideration of the 

carbon isotope system of Nar Gölü. 

 

In terms of future work on the Nar Gölü record, firstly an improved chronology is 

required. The U-Th date allows the transition 1989-1957 cm to be identified with a 

high degree of certainty as the Younger Dryas to Holocene transition and the varve 

chronology from this point through the early Holocene allows the identification of 
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centennial and decadal scale droughts. However, whilst this allows it to be shown 

that the Younger Dryas to Holocene transition was roughly as rapid as in North 

Atlantic region records and that there were arid events at roughly the same number 

of years from the start of the Holocene as the PBO, 9.3 ka and 8.2 ka cool events 

occurred in NGRIP, it is not possible to say whether the changes in Nar Gölü occurred 

synchronously with those in the North Atlantic, or if there was some sort of lag. 

Additionally, the lack of varves and U-Th dates in the mid to late Holocene means 

that it has not been possible to accurately establish whether centennial scale 

droughts seen in the Nar Gölü record occurred at the same time as previously 

identified Near East droughts and as the ‘collapse’ of civilisations. Also, only once the 

chronology is more secure can spectral analysis be used to reliably identify if there is 

any cyclicity in the record. The strategy is to run more samples for U-Th that are 

similar to the one sample that worked: in sections composed of aragonite (which 

takes up more uranium than calcite) and that are sufficiently heterogeneous that a 

good spread in detrital contamination between the sub samples can be achieved (to 

reduce the error when using the isochron approach). 

 

More work could also be undertaken to even better constrain the drivers of 

δ18Ocarbonate. Firstly, if an accurate, independent temperature reconstruction was to 

be produced from the same samples as the δ18Ocarbonate record was produced, it 

would be easier to account for the influence of temperature on δ18Ocarbonate. It has 

been proposed that δ18Ocellulose can be used to this end but cellulose extraction from 

Nar Gölü sediments proved unsuccessful (section 6.5.2). The potential of using a 

technique such as TEX86 analysis (e.g. Powers et al., 2010, Woltering et al., 2011, 

Blaga et al., 2013) is being explored. Furthermore, whilst a seasonality reconstruction 

has been attempted, because of the seemingly small difference in the time of year of 

carbonate precipitation and diatom growth and potential changes in the time of year 

the two hosts form in the lake, the interpretation of the Δδ18O record has been 

difficult. An addition to the approach used here would be to use sediment traps that 

are automated to capture weekly samples to identify diatom species that grow in the 

lake at set times of the year and then to use micro-manipulation to separate out the 

diatom species (Snelling et al., 2013) and undertake species-specific diatom isotope 
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analysis on the palaeo record (e.g. Swann et al., 2013). Finally, the gaps in the 

carbonate isotope record due to the presence of dolomite mean the record is not 

continuous and the driest periods in the record cannot be properly investigated. As 

with the issue of seasonality reconstruction, there is no simple way of dealing with 

this, although perhaps the same method could be applied whereby calcite and 

aragonite crystals are separated from dolomite crystals by micro-manipulation. 

 

Some of the outstanding gaps in our knowledge of Near East palaeoclimate over the 

late glacial and Holocene require more studies on other sites in the region. Perhaps 

the biggest unanswered question centres around the transition to wetter conditions 

as seen at Nar Gölü in the 6th century AD. While shifts to wetter conditions at this 

time are seen in other records, it is unclear whether the shifts were as high 

magnitude as inferred from the Nar Gölü δ18Ocarbonate record. It is possible Nar Gölü 

was more sensitive to change at this time, which made the transition appear to be 

higher magnitude than the Younger Dryas to Holocene shift. Continuous, high 

resolution lake isotope records are required to answer this, and perhaps the best 

place to start would be the re-coring and analysis of the Eski Acıgöl sequence for this 

time period. Furthermore, when the political situation allows, Lakes Zeribar and 

Mirabad should be re-cored and a modern limnological monitoring programme 

established so that a higher resolution record with a more robust chronology can be 

produced and so that the drivers of δ18Olakewater in the present day can be better 

understood. This would help to further test the hypothesis of Stevens et al. (2001, 

2006). More data-model comparisons (e.g. Black et al., 2011) are also required to 

help disentangle the drivers of Near East climate. Further investigation of the Dead 

Sea record is required to establish if the differences in reconstructed hydroclimate 

from Soreq Cave (and Nar Gölü) are real or simply down to misinterpretation of the 

record. The ongoing ICDP project may assist in this regard. Finally, further high 

resolution records are also required in order to investigate whether droughts at the 

times of the PBO and 9.3 ka events are seen elsewhere in the Near East; in the words 

of Alley and Ágústsdóttir (2005) let the anomaly-hunting continue. 
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