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ABSTRACT 

Stepwise regression routines are rapidly 

becoming a standard leature of large-scale computer 

statistical packages. They provide, in particular, a 

certain degree 01 flexibility in the selection of 

'optimum' regression equations when one has available 

a large set of potential regressor variables. 

A major probler.· in the use of such routines is 

the determination of appropriate 'cut-oll' criteria 

for terminating the procedures. There is a tendency 

in practice for standard F or t - statistics to be 

calculated at each step 01 the procedure, and for this 

value to be compared with conventional critical values. 

In this thesis an attempt has been made to provide 

a more satisfactory rationale for (single-step) 

stepwise procedures. The approach taken is to assume 

that a 'true' model exists (the regressors in which 

are a subset of those available) and to investigate 



the distribution of statistics which, at each 

stage, seem relevant to the termination decision. 

TIlis leads to the consideration of alternative 

tests at each step to those usually employed. 

In the presence of considerable analytical 

complexity a simulation approach is used to obtain 

a comparison of the relative performances of various 

procedures. This study encompasses the use of 

forward, backward and mixed forward/backward 

procedures in both orthogonal and non-orthogonal 

set-ups. Procedures are evaluated both in terms of 

the 'closeness' of the finally selected model to the 

true one, and also in terms of prediction mean 

square-error. 

The study ends with an investigation into the 

usefulness of stepwise regression in identifying 

and estimating stochastic regression relationships 

of the type encountered in the analysis of time series. 
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INTRODUCTION 

The initial motivation for this thesis stems 

from an attempt to obtain practical content for 

some ideas on 'causality' which were put forward by 

Granger [28]. A promising approach to that problem 

seemed to be offered by the technique of 'stepwise 

regression'. In particular it was felt that the application 

of such a procedure to time series data might reveal the 

underlying lag structure relating bbservations on several 

different series. However, on trying to find information 

on the practical use of stepwise regression, it became 

evident that little work had been done in establi.shing 

its validity or usefulness. Indeed there seemed to be a 

proliferation of stepwise procedure variants with hardly 

any indication, theoretical or empirical, of their relative 

merits. It was for these reasons that a closer look at 

stepwise regression itself became the main interest. 

The thesis begins with a summarized account of some 

basic results from the field of classical regression 

analysis, followed in chapter 2 by a brief account of 

stepwise regression itself in relation to other existing 

procedures of a comparable nature. In chapter 3 some 



extensions are made to the classical theory which 

are required in the later di scussion. Cpater 4 is 

concerned with the problem of establishing a formal 

framework for stepwise regression in terms of 

both the identification and prediction objectives 

which are postulated there. This is followed in 

chapters 5 and 6 by a fairly detailed look at the 

situation of orthogonal regression, ending in 

chapter 7 with the presentation and discussion of the 

results of a fairly extensive simulation study. Chapters 

8 and 9 are similar to the previ.ous three chapters 

except t at the discussion is now turned to the non­

orthogonal case. In the final main chapter, chapter 10, 

the investigation is extended to that of stochastic 

regression with special emphasis on:mtoregressi ve 

relationships, the chapter culminating in comparative 

studies with some other suggested approaches. 
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Chapter 1 Some Basic Results in Regression Analysis 

1.1 Definition of model 

In this section a model is defined which will 

serve as the basic framework for a large section of the 

subsequent discussion. 

Suppose n observations are available on each of 

the variables Y,X, , ••••• X
k

• The classical linear 

regression model (or linear hypothesis model) which 

relates the regressand Y to the k regressor variables 

X.,j = l, •••• k, is: 
J 

Y. = f3,X. 1 + ~2 X i2 + ••• + !3 x. + E. , 
1 1· n 1n 1 

i = l, •••• n. 

The following assumptions are also made: 

Each E.(i = l, •••• n} is a random 
1 

variable with zero mean, variance 0 2 , 

and is uncorrelated with E. for j , 1. 
J 

(ii) The observations on the X-variables are 

regarded as fixed numbers. 

(iii) No exact linear relationships exist amongst 

(iv) 

the X-variables. 

The E. are normally distributed. 
1 

Assumption (ii) stems from the early applicati.on of 

regression analysis to the results from controlled 

experiments. In such circumstances one is justified 

in attempting to make inferences about the, conditional 

distribution of Y with the X's held fixed since one can 
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contemplate experimental replication. The assumption 

is of course untenable in non-experimental situations 

of the kind encountered in the field of economics, 

for example. In this latter case it is necessary for 

the X-variables to be regarded as stochastic, i.e. 

the model becomes a stochastic regression model. 

Complications then arise according to the nature of 

the joint distribution of E with the set of regressors. 

Such problems are discussed later in Chapter 10. 

There is however a class of stochastic 

regression relationship which can, in a certain sense, 

be included within the fixed regressor model. This 

occurs when the error terms E. are statistically 
~ 

independent of the X-variables in all n equations. 

One can then consider a conditional model using the 

set of X's actually observed. Inferences made on this 

conditional model can then be applied to the more 

general unconditional model. Of special interest is 

the case in which Y and the XiS are joint observations 

from a (k+l)-dimensional normal distribution. In 

this case one can then properly identify many of the 

distribution problems of regression with those of 

correlation analysis for normal random variables. 

The assumption (iv), though not essential for 

much of classical regression analysis, becomes 

necessary for performing tests on estimated 

coefficients (at least for small samples) and is 

needed later in the treatment of stepwise regression. 
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1.2 Matrix formulation of model 

Before proceeding further it 'rill be useful to 

reformulate our model in matrix notation. 

Matrices (and vectors) will be denoted by 

underlined letters, e.g. h, b. 

The transpose of a matrix A will be denoted by A'. 

The matrix inverse of a square, non-singular 

-1 
matrix h will be denoted by A • 

The expectation of a matrix whose elements are 

random variables will be taken to mean the corresponding 

matrix of expectations, and will be denoted by E[hJ, 

for example. 

We now let 

~1 Y1 €1 

~2 Y2 €2 

• • • 

~ = • I = • ~ = • 

• • • 

• • • 

~k Y c n n 

Xll···X12····Xln 

X21 • 

• • 

and ~ = • • 

• 

• 
X nl 
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Our model then becomes 

where 

X=~.a+£ 

( i) E [~J = 51, E [~~ 'J = (j2 1; 

(ii) X is a matrix of fixed constants 

(iii) The rank of X is equal to k (k < n). 

(i.e. our model is of full-rank) 

(iv),£ has mul tivariate normal distribution ,... 

i • e .€ is N ( 0 , (j2 J) • .... .... 

In the above speoifications g represents a vector whose 

elements are all zero, 1 is the identity matrix, i.e. all 

diagonal terms are unity, all off-diagonal terms are 

zeros. 

It should be noted that our model specification 

allows a constant term to be included in the equation. 

This is achieved by taking the first column of e to 

consist entirely of elements equal to 1. Throughout 

the later analysis it will be assumed that a constant 

term is automatically fitted in a regression equation 

(and hence will not enter into the stepwise selection 

process). 

1.3 Statistical inference in regression 

A first step in the inferential problem is 

to obtain estimates of the unknown ~ coefficients 

having desirable properties. The accepted estimation 



procedure for classical regression is that of least 

squares. If we let 

b1 

b2 
• 
• 

;e = • , 
• 
• 
• 

b k 

the least squares principle then implies that we 

minimize, with respect to the elements of ~, the sum 

of the squared deviations of the Y observations from 

the fitted equation. 

In matrix terms we have to minimize 

with respect to R. 
Differentiating partially with respect to the elements 

of ;e and equating to zero the resulting expressions we 

obtain the normal equations 

X 'Xb = Y'Y ~ N,..., ,.,.,."" 

and hence the least squares solution 

This estimator can be shown to have the optimal property 

of being best linear unbiased. (This is the well-known 

Gauss-Markov result. For references see the end of 

this section.) It also follows, using assumption (iv) 

of the basis model, that b is the maximum likeliho.od 
IV 
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estimator of~. In the stochastic version of our ,.., 

model in which the X-variables are mUltivariate normal 

(see section 1.1) it can be shown that» is in fact 

minimum variance unbiased. 

The other main result concerning» is that its 

covariance matrix y is given by 

If we then use assumption (iv) it follows that 

( 3) 

This result then allows significance tests on null 

hypotheses of the form 

H ==~. = ~~ 
o J J 

(l < j < k) for some specified 13~. 
J 

If v .. is the jth diagonal element of y then the quantity 
JJ 

b·-I3~ 
'J J 

Vv .. 
JJ 

will be distributed as N(O,l) if H is true. o 

Since v .. requires knowledge of cr2 0ne has to estimate 
JJ 

where RSS is the residual sum of squares from the 

estimated regression equation. It can be shown, using 

standard results for the distribution of quadratic 
Ito 

forms in normal variables that RSS, and hence cr2 , is 



distributed independently of each b. (j = l, ••• k). 
J 

(n-k) 0-2 
Further, 2 is distributed as chi-square with 

(J 

(n-k) degrees of freedom. Hence it follows that, 

defining v .. as the jth diagonal term of &2(X'X)-l 
JJ '" <"'oJ , 

the statistic 

t = 
* b.-f3. 

J J 

V t. .. 
JJ 

is, under H , distributed as Student's t with (n-k) o 

degrees of freedom. 

The use of the above test for investigating the 

significance of (partial) regression coefficients can 

lead to a problem of interpretation when applied to 

more than one b .• This is particularly so in~­
J 

orthogona1 regression situations. A regression model 

is orthogonal if 

n 
.L.l X. X. = 0 for p t q. 
l.= l.p l.q 

Many simplifications arise in such a case. In particular 

one is able to isolate sum of squares "contributions" 

for each of the k regressor variables, the presence of 

the other regressors having no influence on the 

"explanatory power" of any individual variable. In 

non-orthogonal set-ups (i.e. in which the regressors ,. 
possess some degree of multicollinearity) the explanatory 

power of regressors does depend very much on which other 

variables have also been fitted. Consequently, when 



performing more than one test of a regression 

coefficient, the equation should be re-estimated 

each time a non-significant result leads to the 

dropping off of one regressor. 

A more general, and more fruitful, approach to 

the testing of regression coefficients is prOVided 

by the Analysis of Variance technique. This emphasizes 

the aspect of decomposing a total sum of squares into 

components attributable to specific "factors". We 

shall see that stepwise regression can in fact be 

thought of as a method for performing this decomposition 

in a meaningful way. 

The analysis of variance approach provides 

the following important generalization of the t-test 

above (4):-

Suppose we partition X as 

where ~* is n x (k-q) t !** is n X q. 

Corresponding to this, partition] as 

Consider the hypothesis Ho = ~** = o. (This being a 

special case of the more general hypothesis that ~** takes 

any prescribed value.) Let 

RSS = Residual sum of squares after fitting X ... 
RSS* = Residual sum of squares after fitting X only. -* 



The statistic 
(RSS*-RSS) (n-k) 

F = RSS (q) 

will in general be distributed as a non-central F, 

collapsing to a central F under H. This test can be 
o 

shown to be the likelihood-ratio test of the specified 

hypothesis. We may note the following points: 

1. In the case in which q = 1 the test statistic F is 

computationallY the square of the t value calculated 

at (4) (with ~~ = 0). Since F(l,V) is distributed 

exactly as (t(v»2, the two tests are equivalent. 

2. Again with q = 1 but allowing ~ to be stochastic 

and normal (as described in (1.1» the test is 

identical to that of a partial correlation coefficient. 

In fact, if X** is the variable corresponding to 

!**, we are testing H = PYX** = 0, where Pyx** •. * 
o .!* ~ 

is the correlation between Y and X** holding fixed 

the set of regressors contained in !*. Whilst 

significance tests in the two basically different 

situations of fixed and stochastic regressors are 

performed in essentially the same way, with the same 

levels of significance holding, the powers of 

the tests will differ. 

This concludes a very brief summary of only 

a small part of statistical inference in regression. 

Many of the results, and others, will appear again 

in the more general stepwise context, and for this 

reason it does not seem necessary to enter into 

explicit derivations at this stage. There are 

many excellent references on this topic. Among those 

which have been found particularly useful are 

Graybill [30] , Johnston[35J and Goldberger[27] 
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1.4 The basic stepwise regression algorithm 

Before presenting a description of the 

computational "mechanics" of stepwise regression a 

very brief introduction to the context of its use 

is perhaps appropriate. The sort of problem envisaged 

can be said to be that which precedes the classical 

analysis which has been described in the previous three 

sections. For the discussion up to now' assumes that 

one l~nows, or has a pretty good idea, as to which 

regressor variables should be included in the regression 

equation. In practice it is not unusual, how'ever, to 

have available a large number of possible explanatory 

variables, a decision having to be made as to which 

ones to select. Stepwise regression is a procedure 

which attempts to aid such a decision by generating a 

sequence of calculated regression equations, and 

terminating when a subset of "optimal" regressors 

has been found. Much of the subsequent discussion in 

this thesis is concerned with the problems of specifying 

the optimality criterion in an acceptable way, and in 

steering the stepwise sequence towards this optimal 

objective. 

The origins of stepwise regression can be said 

to lay more in the field of computational theory than in 

statistics. Indeed, most of the published work on 

stepwise and related methods is also predominantly 

orientated towards computational aspects. This is 



1.11 

certainly true of the pioneer paper for the technique 

due to Efroymson[24 J. In that paper no attempt was 

made to impose any particular underlying structure on 

the observed data, nor were any precise objectives 

formulated apart from the vague one of finding an 

"optimal" predictive equation. 

The algorithm underlying the stepwise technique 

will now be described, along with its implications in 

what should, at this stage, properly be referred to as 

"descriptive" regression. The algorithm itself can be 

identified with the Gaussian elimination method for the 

inversion of a square, non-singular matrix (see 

Orden [64]) • 

We begin by writing 

• 

i.e. ~ is the augmentation of ~ and Xt and therefore 

has dimensions n X (k ... l). 

We suppose, here and henceforth, that a constant 

term is always fitted automatically in the regression 

equation, our interest being focussed entirely on the 

fitting of "true" regressor variables (these being the 

k variables present in X). This assumption is in no ,... 

way essential but it facilitates the subsequent 

algebraic treatment. With this in mind we lose no 
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generality by supposing the n observations on each 

of the k + 1 variables in lJ are measured in terms of 

deviations from their corresponding sample means. 

The stepwise regression algorithm consists of 

a sequence of pivotal operations performed successively 

on a matrix, starting with ~'~. At any particular stage 

we are able to identify the elements of this matrix, 

h say, with quantities relevant to a certain set of 

fitted regression equations. That this is true will 

be demonstrated below using an inductive argument. 

The regressions referred to above will be on a subset 

of the so-called eligible variables which for our 

purposes will always be taken to be the complete set ~. 

The variable Y, for reasons which become obvious, will 

always be regarded as ineligible. 

For the moment suppose that at a certain stage 

we can write 

where 

and 

b = 

-1 =-h21 = (~/~1) ~~~2 

-1 = ~i~2 - ~i~1 (~1'~1) ~.1'£2 

(ii) ~ = ~1: ~2 J, where ~1 is n X q 
• 
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and where it is supposed throughout that Y 

is the last column of Z t 
'""2 • 

We note the following facts concerning ~ and the k + 1 - q 

different regression equations obtainable by regressing 

each member of £2 against the whole ~1 set:-

(a) ~ll is, up to a multiplying constant cr2 , the 

covariance matrix for the regression coefficients 

in these regressions. 

(b) ~12 contains the estimated regression coefficients. 

(c) ~22 is, apart from a divisor n, the sample 

partial covariance matrix for the set f2 
holding fixed £1 • 

For each of the k + 1 - q such regressions it is then 

possible to calculate from ~ the following quantities:-

1. The estimated regression coefficients, estimated 

standard errors and the t (or F) values for each 

the set of so-called 

included variables. 

t Throughout much of the subsequent analysis use is 

made of inverses of various sub-matrices of Z'Z which 

are centred on the main diagonal. That these inverses 

exist is guaranteed by the presupposition that no 

exact linear relationship exists amongst the data, 

together with the positive definiteness of moment 

matrices. 
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2. The partial correlation coefficientbet\veen 

Y and each other member of ~2 (with ~1 fixed), 

the t (or F) value for each eligible variable 

in Z2 \vhich would result if this variable 
~ 

were to be included in the regression, and a 

so~alled "tolerance" value for each eligible 

variable. This tolerance value is in fact 

one minus the partial correlation coefficient 

between the variable concerned and Y, and is 

checked as a precaution against the inversion 

of an ill-conditioned matrix. The set of 

eligible variables in Z2 will be referred to 
~ 

as the excluded variables. 

It was asserted previously that a certain pivotal operation 

produced a sequence of matrices typified by~. In fact . 
this operation, to be defined below, will either introduce 

an excluded variable into the regression or remove an 

included one depending on the pivotal element chosen. 

That this operation produces the appropriate matrix ~ 

for the new regressions is the essence of the stepwise 

algorithm. 

The pivotal operation: 

(i) Select an element a cc of~, (l < c < k). 

Form a new matrix A* as follows: ,..., 



a~. = 
~J 

a . ....sw. 
a cc 

a. 
-~ 

a cc 

_1_ 
a cc 

a cc 

1.15 

if i, j ~ c 

if i = c, j ~ c 

if i ~ c, j = c 

if i = j = c 

Two theorems are now stated which are sufficient to 

establish the main stepwise property. Since the proofs 

of these theorems in a statistical context do not seem 

to be readily available in the published literature 

they are given in Appendix I at the end. (A paper by 

Lutjohann[53] presents similar results for a more general 

algorithm in which sets of regressors are pivoted into 

or out of the equation. However, the proofs given seem 

unnecessarily lengthy). 

Before stating these theorems another theorem 

which is essential to their proofs (and is also used 

extensively later) is given. 

Theorem 1.4.1 

Suppose a square, non-singular matrix B is partitioned 

in the form 

B [: ~r where E and H are square. 
= ,.., ,.., 

,..., 



Then B- 1 = 

assuming E- l and H- l exist, and where D = H - GE-1F. 
"....,,..., I""V ,....,"" ,...., 

Proof. Using the usual rules for the multiplication 

of partitioned matrices we immediately obtain 

BB- l = I as required. 
,....'" '" 

Theorem 1.4.2. 

If the pivotal element a is selected such 
ce 

that 1 < c < q then A* has the same properties as ~ 

but related to 

~~ = ~1 with the column corresponding to Xc 

excluded. 

Zr = Z2 with the X column inserted. 
'" '" c 

Theorem 1.4.3. 

If q + 1 < c .:5. k then ~* has the same properties 

as A but related to 
#"W 

with the X column inserted. 
c 

zr = Z2 with the X column excluded. 
~ #"W C 

Since the first pivotal operation, performed on ~t~, 

is easily shown to yield the appropriate matrix ~ the 

stepwise algorithm is thereby verified. 

In practice it is customary to perform stepwise 

proceduresusing the correlation matrix initially 

instead of Z'Z. By normalizing in this way the matrix 
'" ..... 
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elements will be of a similar order of magnitude, 

thus minimizing the extent of round-off error in 

calculation. When printing out the various quantities 

of interest at any stage a simple re-scaling is needed 

using the original standard deviations. 

There is of course no need to rearrange the 

matrix A to conform to the partition used above at 
~ 

each stage. A vector of Boolean variables can, for 

example, be used to carry the information on the 

included/excluded regressor sets. 
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Chapter 2 

P~act~Eal Proc~du~_for SeJec~~~ptimal Regression 

Equations. 

2.1 The Variants of stepwise regression 

In Chapter 1 the basic stepwise algorithm was 

presented in its simplest form. There are several 

ways in which this algorithm Can be incorporated into 

a sequenti'al procedure for selecting a regression 

equation. However, one can distinguish three 

fundamental types of procedure which can be said 

to generate most of the others, and these are now 

considered 

(a) The Forward Selection Procedure 

In this procedure the equation is built up one 

variable at a time. At each pivotal step the partial 

F values for each excluded eligible variable are 

calculated and the maximum such value determined. This 

is then compared with a pre-selected critical va1ue 

which, if exceeded, causes the appropriate regressor 

to be pivoted into the equation. Otherwise the 

procedure terminates. 

(b) The Backward Elimination Procedure 

Here one first calculates the complete equation 

involving all k regressors. At each subsequent stage 



of the procedure the minimum partial F value amongst 

the included variables is compared with a critical 

value. If this value is not attained the corresponding 

variable is excluded from the equation, otherwise the 

procedure terminates. 

(c) The General Stepwise Regression Procedure 

This is the procedure envisaged by Efroymson 

in his original paper, and is also the one most 

commonly encountered in statistical computer packages. 

In particular the widely used 'BIOMED' stepwise routine 

[ II ] is of this type. The procedure begins like a 

forward procedure, but at each stage variables are first 

checked for possible deletion against an appropriate 

critical value. If no variable qualifies for deletion 

the excluded variables are searched for the one yielding 

the maximum F value. This is then compared with another 

critical value as in a forward procedure. The whole 

procedure terminates when no more variables can be 

deleted or entered. 

The general procedure is motivated by the fact 

that it is possible for previously entered variables to 

become 'insignificant' at a later stage when further 

variables hav,e been introduced. This is really just 

a consequence of the presence of multicollinearity 

amongst the regressors, and could not occur in an 

orthogonal regression set-up for example. 
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A particularly disturbing feature of the 

procedures described above is that, notwithstanding 

the problem of choosing suitable critical levels, 

the procedures cannot in general be expected to 

produce the same finalequations. This is so even 

in the relatively more manageable situation of 

orthogonality. Discussions in the literature on 

the relative merits of the various procedures tend 

to place more emphasis on the amounts of computation 

needed rather than on the attainment of properly 

formulated objectives. There is also a notable lack 

of discussion on the problem of the choice of critical 

values for the F values calculated. Mostly, when the 

subject is referred to at all, it is merely to imply 

that conventional critical values are appropriate i.e. 

as for regression tests in a non-sequential situation. 

The validity of this approach (or rather its invalidity) 

underlies much of the later discussion. 

We now briefly look at a few other procedures which, 

whilst they are not based on the stepwise algorithm, 

relate to the problem of choosing optimal regression 

equations. For further discussion on the use of stepwise 

regression variants in practice see Draper and Smith [20 J. 

2.2. Other methods for selecting optimal regression 

equations. 

Although the centre of interest of the present 

investigation is concerned with procedures stemming from 

the basic stepwise algorithm a brief review of some 
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alternative approaches is perhaps not out of place. 

(i) Stagewise Regression 

In this procedure one obtains the residuals from 

the regression equation at any stage and correlates 

these with each of the excluded variables. The variable 

having maximum correlation is then entered. A theoretical 

treatment of this method is to be found in Goldberger [27 ] 

under the heading of 'stepwise' regression. The main 

disadvantage of the method is that the resulting least 

squares coefficient estimates will be biased. From the 

point of view of constructing a meaningful inferential 

basis for such a procedure this drawback would seem to 

be insurmountable. It might be remarked however that the 

preliminary removal of trend or seasonal components by 

regression methods applied to time series data is in 

fact an application of stagewise regression. The subsequent 

analysis of the residuals thus obtained is often carried 

out as though no such prior adjustment had been performed. 

If the residuals analysis just involves the fitting of a 

regression equation of some kind then both phases of the 

analysis could be incorporated into a single stepwise run. 

Any variables which on a priori grounds are thought 

to be essential members of an equation can easily be 

forced into the regression initially before the stepwise 

selection process is initiated~ The introduction of these 

variables will of course have to be accompanied by the 

corresponding operations on the matrix A. 



All possi ble __ regr_essions 

The feasibility of performing all possible 

regressions involving k variables is obviously 

going to depend on the availability of large computing 

facili ties. Since there are 2k - 1 possible equations 

a value of k as small as 10 will involve as many as 

102J different models. A paper by Garside [26] gives 

a simplified procedure for calculating all possible 

regressions Which even then is only practicable for 

values of k up to about 12. Because of this limitation 

Beale, Kendall and Mann [10] developed a computational 

algorithm Which eliminates the calculation of regressions 

which cannot possibly be better (in terms of R2) than 

other previously calculated equations of the same order. 

Since there is no guarantee as to the amount of time 

this saves in any particular situation it is su~gested that 

the procedure is terminated after a pre-determined number 

of regressions have been calculated. A final decision 

is then made from this subset on purely subjective 

grounds. 

An almost identical procedure for computing optimal 

regression subsets is given by Hocking and Leslie [34]. 

They also suggest the use of Mallows Cp statistic as a 

decision criterion for the final equation (this 

statistic is discussed later). 
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A further paper, by Schatzoff, Tsao and Fienberg 

[71 ], described a more efficient algorithm for the 

calculation of all possible regressions on the lines 

of Garside's paper. 

In each of the above approaches the emphasis 

is very definitely on the computational rather than 

the inferential side of the problem. Whilst they have 

the advantage over stepwise techniques of yielding, for 

a given order of equation, the regression with highest 

R2 they do not admit to a sequential decision treatment 

so easily. For this reason, and also because the use of 

these more general techniques is as yet nowhere near as 

widespread as that of stepwise methods,they will not be 

pursued further in this study. 

(iii) The Newton and Spurrell Method 

The problem of selecting multiple regression 

relationships is attacked in a direct way by Newton and 

Spurrell [62] by a proposed disentanglementof the effect 

on the regression of correlations between the regressors. 

'nley sug-gest that a prime objective, whether in a 

prediction or control context, is to seek regressors 

which have strong 'independent' effects on the regressand. 

This gives rise to the consideration of so-called 

'elements' which can be interpreted as being representative 

of the amounts of individual information which variables 

bring into the model. 
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To illustrate their approach we Can consider the 

simple model 

where ~ and ~ are possibly highly correlated. 

It is well-known that a test of the hypothesis 

H == 01 = ~2 = 0 o 

can be found to be significant while, at the same time, 

the two sub-hypotheses 

H' - 01 = 0 
0 

H" - 02 = 0 
0 

are individually not significant. 

The Newton-Spurrell method involves calculating 

the Primary Elements, xt and x2 say, where xt is the 

extra sum of squares due to ~ given ~ has been fitted 

and similarly for x2. If ~ alone is fitted one gets 

the so-called Secondary Element xt x2' where xt + Xi X2 

is the sum of squares due to ~ alone, omitting ~ • 

This generalises to higher order regressions 

in which any non-primary element ~s referred to as a 

secondary element. Newton and Spurrell suggest a 

heuristic procedure in which one looks for variables 

with small secondary elements compared with primary 

ones. Whilst it is recognised that such an approach 

could possibly be very useful when carried out by 

experienced users, it does not readily lend itself 

to routine application. The two authors do indeed 

admit that an objective statistical treatment of the 

procedure seems out of the question. 
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The use of principal components 

The use of principal components is especially 

appealing in regression situations due to the 

otho~onality present. There have been some 

suggestions made for performing regression analysis 

along these lines, and these will be discussed more 

conveniently later on. 

j 
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Chapter 3. 

Some Extensions of Classical Regression Theory 

3.1 Development of main results 

The whole of this section is devoted to the 

extension of results of classical regression to a 

wider conte~t than is usually considered in the 

literature. These results will be of fundamental 

interest in the development of sequential tests in 

stepwise regression. 

We consider again the basic underlying model 

(1) 

Where in particular ~ is a k-dimensional vector of 

unknown coefficients. We suppose that the model has 

a t true t order p in the sense that k - P of the 

elements of ~ are zero. We correspondingly partition 

~ in the form 

where ~ = 2, and wi thout loss of generality the p true 

regressor variables are taken to be the first p columns 

of X. We can therefore partition X in the form - ,... 

X = [~ ~] 

Wh ere ~ is n X p 

~ is n X (k-p) 
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Suppose that, using a stepwise procedure, the stage 

has been reached at which r regressors have been 

includedin a fitted model. We will later be concerned 

with investigating the hypothesis that all the true 

variables have already been entered but for the time 

being we will derive some results of a more general 

nature. 

Corresponding to the1r included variables is 

a matrix ~ consisting of a subset of r columns of X. 
~ ,... 

We can then write, again after a suitable re-ordering 

of the columns of X, .... 

where ~ is n x r 

~ is n X (k-r) 

Suppose that, for each of the k - r variables in '!:J' 
we calculate the partial regression coefficient of Y 

on this variable, holding fixed the b variables. We 

will denote these calculated values by d., i = 1, ••• ,(k-r). 
~ 

It follows immediately from standard least squares 

theory that 

and where we use the notation that B( ),B(q) denote ,... q ,... 

respectively the qth row and column of a matrix B. ,... 
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Substituting! from (1) gives, recalling i?J = 2, 

d. = [( z*' Z*) -1 Z*' (~R~ + E) ] ( 1) 
~ ,." N ~ ~ ~ ~ r+ 

Now 

Z*'Z* = .... .... 

Using Theorem 1.4.1 it follows that 

1] () 

where the scalar f. = Z(i)' [I- ~ (?!,~ )-1 7.-'J7~(i) 
~ :;:) ........,." ,." Zl;:::, 

(4) 

Note that f. 
1 

Z(i) 'M'M7Ji) . = ~ fl/IJ IW;::I. ,5J.nee ~ is symmetric and 

idempotent. Writing u = M 7Ji) it - -~ 
follows that f. = 0 

1 

if and only i£ u = 0 which implies that 
,." ,." 

This contradicts the full-rank assumption for the 

matrix X, hence it follows that f. > o. In fact 
,." 1 

fi is, up to a factor n, just the residual variance 

of ~i) taking out the effect of ; • 

It now follows that, using (3), we can rewrite 

d i = £;:1 (_'!:1i) I ~ (b' ~ )-1 'bl (~~1 +~) + ~i) , (~I?,1 +~)} 

= fi1 1t2(i) I~(~ ~ + EJ 
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If we let d be the vector such that 
"'" 

then 

where F-1 is the diagonal matrix with ith diagonal 
"'" 

term f -1 i . 

(5) 

We now turn to consideration of the properties of d. 
,.; 

In the most general sense the distribution of d will 
,.; 

depend very much on how the various fitted regressions 

are arrived at. In particular we are only really 

justified in regarding d as being mUltivariate normal 
"'" 

in the case where r = k. However while it is conceded 

that stepwise regression, being a sequential solution to 

a multiple decision problem, should properly involve 

considerations of this type the practicality of the 

problem forces on us a more restricted approach. The 

approach used is in fact to treat the stepwise process 

as a sequence of conditional hypothesis tests. Within 

this framework it is argued later (in context) that the 

normality assumption for d is reasonable. For the purposes 
"'" 

of the remainder of this chapter we should regard the 

r fitted regressors as having been chosen arbitrarily 

from the full set of k regressors available. 

Since EE~ = 0 it follows from (5) that 
I'tI 

E[s!J = ~, say. 
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Also, the covariance matrix of d is given by ,.., 

since M is symmetric and 
"'" 

indempotent. It follows that the d. are uncorrelated, and 
~ 

hence independent, if and only if, 

v* ,.., 

is diagonal. 

Since the matrix V* is, apart from a multiplying 
f'W 

constant, the sample partial covariance matrix of the 

~ variables holding fixed ~ it will be convenient to 

refer to the above condition as'partial orthogonality'. 

It has been established above that ~ is N(~d'~) 

where 

It will now be determined under what conditions 

= o. 
f'¥ 

the form 

Suppose that we sub-partition ~ and ~ 

( 6) 

in 
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i.e. ~2 and ~ represe~t the 'true' regressor variables 

belonging to the fitted set ~ and unfitted set ~ 

respectively. 

[~~ ;&2 
Wri ting ~'~ = 

~ ~2 

and using Theorem 1.4.1 we obtain 

= ~ ~*" say. 

After factorisation this reduces to 
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= ~*(!._~-1 ~ )M*, since M* is idempotent. 

Now suppose that ~ incorporates all the columns of ~ , 

i.e. all the true variables have been fitted. Then 

~2 = ~, and 

= 0 

and, from (6), it follows that ~d = Q. 

Converselyp now suppose that not all the true variables 

have been included i.e. ~1 exists. Noting that 

~d = !,-1 ~~ ~ = 0 if and only if ~'M~.l2.1 = 0 we can 

partition.l2.1 in the form 

(8) 

where ~ contains the regression coefficients corresponding 

to ~1' and ~2 corresponds to ';2· 

We can then write 

Ii ~~ =[:J ~[~ ~2 J~ l 
Now ~[~~2] = [~1 ~2]. Further, from (8), 
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Hence, 

multiplying constant, the sample partial covariance 

matrix for the ~1 variables holding fixed ~2 and ~. 

It follows that this matrix is non-singular, and since 

.a.11 ~ Q, we have 

Thus the elements of ~d corresponding to the excluded 

set of variables ~1 are not all zero. It is important 

(10) 

to note that some such elements of ~d can in fact be 

zero, as is illustrated by the following simple example: 

Suppose x = -

and take 131 = 13 It = 0, 132 = - 1, 133 = ~ • Then, taking 

~ to consist of the single variable X1, we obtain 
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The expression (10) in this case is equal to 

The implications of this result (in its generality) 

will be discussed later in relation to stepwise 

regression applied to a non-orthoginal set of regressors. 

With regard to the other component in (9), the 

matrix ~ ~1 is not so easily dealt with. For it is 

in fact the matrix of (calculated) partial covariances 

between the sets ~ and 2S1' holding fixed the b set, 

and is not even square in general. That the vector 

itself given by (9) is not necessarily null is 

easily demonstrated using the above example. Perhaps more 

importantly some or all of its elements can exceed any 

of those in the vector at (10). We find, indeed, 

that in the above example 

We return to a discussion of this point in a later 

chapter. 

'11) 

One final point can be made concerning the expression 

at (9). This is that it is quite easy to show that, in 

the special case in which the columns of ! are mutually 

orthogonal, the component expressions of (9) are 

given by 



We therefore merely obtain the standard result for 

orthogonal regression, 

E[.!!J ~ ~-l~~!:! JS, A1 = [Jl.~'1 

It will be useful at this stage to standardize each 

d. by dividing by its standard error. Noting that, 
1.. 

from (7), the variance of d. is 
].. 

cr1f:". 2 Z(i) 'M z(i) 
= 'U. 1,-..J2 ,..., "",,2 

~ 

then 

We can then write 

d. ,..., 

We see that 

Var[d*] = Ft [-1 ZlM Z2 F-1 ,..., ,..., ,..." ,...,,...,,,...,,...,,, 

F-i 1 

= Z' M ~2 F-'2 ,..., ,...,2 ,.., ,.., 

= 0, say ,..., 

F~ ,..., 

It is shown presently that selection of the ~5i) 

( 13) 

variable having largest contribution to explained 

sum of squares is equivalent to selecting the variable 
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with highest d~ in modulus. It turns out easier, at 
J.. 

least in the orthogonal case, to work in terms of 

the maximum d~2, but the results developed above 
J.. 

will be of fundamental importance to most of the 

subsequent discussion. 

We return now to consideration of the increase in 

sum of squares due to a ~Ji) variable being pivoted 

into the regression equation. 

First, consider the residual sum of squares 

after ~1 has been fitted. If we let C be the vector 
~ 

of estimates of the coefficients in this equation we 

can write the residual sum of squares as 

(!-~1f) I (!-~1f) = EIE, say, 

where E = (!1l1 +£-~1 (£I' ~1 ) -1~~ (~1 ~1 +£» 

Heuce the residual surn of squares is 

In the same way the residual surn of squares after 

fitting ~1 and ~~i) is 

where M** = I - Z* (Z*' Z*) -lZ* I, and Z* is as defined ,.,., ~,...,,....,,...,,,,.., ,..., 

previously. 
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lbc cxtrn sum or s~uares contribu~cd by ~~i) is then 

Using the parti U.uncd rOr{;l of Z* and Theorem I.lf.I ,,'C 

H- ~t** = Z*(7*'Z*)-1 Z*' - z. (Z-IZ. )-1 'l' - - ~ - ~ - _. -'-' ~ 

f -.' (z. (7"7)-' z'Z(i)z_(i) 'z (Z'Z )-i Z' = .1. #_~ ~ ~ ~ .!:.2 ;::;t. _1 -, ... ...1 _"1 -=. 

Z (i)z(i) IZ (Z'Z )-1 Z' z(Uz(i)'} 
~ !.:.2 ~ ~I .~1 _'1 +.'..2 _..:2 

E. , 
-1. 

Ray. 

Hcvc'rtil1~ to cxpr(J!JRion (12) for d~ 'H~ soc t.hat 
~ 

i .0. 

rt (d~)2 it'! the cxtrCl Hlill of snl.W)-0S d\ll..' to fi ttin(' :t ' I 

_z~(i), = S~, !'Illy. 
" '-A, 

Wn llt'C' 110'" in IJ posit.ion to \lI'rit.(> dO,,'l the· joint 

flcnl'Jity function or th" si. for i = 1, ••• , (It-v). 

in ton""'e.{' the l~llo"n distriblltion of d*. In p[lt'tic1l1dl~ 

w<' elln not.e IHllllf" Flpcci n1 rc~ul ts :-

If Eld. J ~ 0 tll/'Il S~ iR (l.i.stril>llif'd <IS 
I. l 

c1 'V(l). ('\11C)'t~ ¥~\I) dcnotc~s a J'i\llIlol1l v,u"i"lJl (> 
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(ii) If E[d.] = E[d.] = E[d.d.] = 0 then S~ 
~ J ~ J ~ 

(iii ) 

and 52. are independent random variables each 
J 

being distributed as if ~l) • 

If E[d.] = 0 then s~/cr2 is distributed as a 
~ ~ 

non-central chi-square random variable. 

3.2 Estimation of the error variance 

Before bringing together the main results 

developed in the previous section, and interpreting their 

relevance to stepwise regression, it is apparent that any 

test of the hypothesis that E[d.] = 0 will require knowledge 
~ 

of cr2, or at least a sui table estimate of it. We now show 

that such an estimate is provided by the residual variance 

V
k 

obtained from fitting all k regressors. 

The actual distribution of vk is known from s~andard 

theory to be that of if ~ (n_k-l)/{n-k-l) • 

We now show that v k and 51 are independent (i = 1, ••• ,{k-r); 

r • 0, ••• , (k-l». Again thi s result is virtually immediate 

from standard regression theory, but it is felt that a more 

general proof is not out of place here. 

It is sufficient to show that the explained sum of 

squares due to fitting any subset ~ of columns of X is 



independent of vk- The increase in sum of squares 

due to fitting ~i) will then be independent of vk since 

it can be written as the difference between the explained 

sums of squares due to ~ and ~* respectively_ 

Without loss of generality we again use the partition 

The sum of squares due to ~ is then 

Using the aboye partition for! we obtain 

Therefore 

- -
• 0 

Hence, by Craig's Theorem on idempotent quadratic forms 

in normal variables, it follows that v k and Si are independent-
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J.J Some fundamental distributions 

To conclude this chapter the main results developed 

above are brought together in a form relevant to stepwise 

regression applications. The basic procedure structure 

described below will be discussed further in later 

chapters, our interest here being of a preliminary nature. 

It will be convenient to assume that only a strict 

uni-directional procedure is being considered, i.e. either 

forward or backward. The distributional aspects which 

arise will however be seen to carryover to the context 

of mixed forward/backward procedures of the general type. 

In the case of a forward procedure suppose that the 

stage has been reached at which r variables have been 

fitted. The fundamental problem is regarded as being 

one of making the decision as to either 

1. Enter another variable 

or 2. Terminate the procedure. 

If decision 1. is made then, in line with conventional 

stepwise procedures, the excluded variable which yields 

the maximum increase in explained sum of squares will be 

pivoted into the regression equation. As shown in section 1 

(i) I I above, this variable will be ~ for which El~ is a maximum. 
1. 

Altern"ltively, in.a backward procedure, decision 1. 

now becomes 'Delete another variable', it being natural 
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to then sslect the variable which results in the least 

decrease in the explained sum o~ squares. Suppose that 

this variable is pivoted out o~ the equation, and consider 

the now enlarged set o~ excluded variables. We now immediately 

see a di~~iculty which could easily be expected to arise 

in the case o~ a non-orthoginal regression. This is that 

the variable just excluded will not necessarily be the one 

which would then yield the maximum contribution to the 

regression sum o~ squares i~ it were to be re-entered. This 

will however be so in the case o~ an orthogonal regression 

situation. In such a case the decision problem involved 

can be identi~ied exactly with that arising in a ~orward 

procedure. 

The distinction between the orthogonal and non­

athogonal cases, alluded to above, will continue to be 

necessary throughout the whole o~ the remaining discussion. 

This re~lects both the theoretical complexity involved, and also 

perhaps the di~~erent degrees o~ ~aith one should have in 

using single-step procedures in the two cases. For the 

time being we restrict the discussion to uni-directional 

procedures applied to athogonal regressor variables or 

~orward procedures in non-orthogonal situations. 

We suppose that r variables have been ~itted, and 

consider the problem o~ whether any excluded variables 

are worth entering. Within the conditional decision 

framework being contemplated the relevant in~ormation 
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for making our decision is summarised by the vector d* 

and its correlation matrix~. Under the assumption that no 

further variables are worth entering (either in isolation 

or in groups) the results of section 1 above imply that 

d* has zero mean. The decision - to proceed or not can then 

be identified wi th the test of the hypothesis that ~d = o. 

The tendency of the resulting complete procedure to 

incorrectly identify the underlying model will then depe~tl 

on the power and significance levels of the tests employed. 

It is apparent therefore that the distribution of 2*' 

under the hypothesis that ~d = Q, will be of' fundamental 

interest. This distribution will in fact be one of two types: 

1. If a2 is known, or at least can be estimated 

accurately by vk (implying n - k is large), then 

~* will be multivariate normal with correlation 

matrix ~. Correspondingly, the set of dt2 , 

i = 1, ••• , k - r, will have a joint density which 

is termed in the literature as the Multivariate 

Chi-Square Distribution. (e.g. see Krishnaiah[41]) 

Such a distribution is characterised by its degrees 

of freedom (in our case unity) and the correlation 

matrix of the associated multivariate normal 

distribution (i.e. ~). 

2. If a2 is unknown and is estimated by an independent 

quantity 52, say, with V degrees of freedom, 
o 

then the d'lr have a Multivariate t- Distribution 
1. 
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(2. g. see Krishnaiah [41], Dunnett and Sobel [22]). 

Again the distribution of the d*2 will be the 
~ 

Multivariate F- Distribution, with 1 and V degrees 

of freedom. 

Further discussion on these distributions is more 

conveniently postponed till a later chapter. 
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Chapter 4 Formalisation of the Problem 

4.1 Basic objectives 

While we have already gone some way towards 

specifying formal oDjectives for stepwise regression 

by postulating the existence of a 'true' underlying 

model it is necessary at this junctUre to give the matter 

rather more thought. Before doing this a few comments 

will be made relating to some remarks made by Anscombe 

[ 6) on the stepwise regression technique in general. 

Anscombe takes the view that stepwise regression 

should be regarded entirely as a descriptive procedure, 

and one which should be contemplated only if ample computing 

resources are available. He suggests that as much computer 

output as possible is obtained at each step, and that several 

different regression paths should be explored by over-riding 

any automatic pivotal mechanism present in the program being 

u •• d. The final decision as to the 'best l equation i. then 

ba.ed on such devices as the examination of residuals using 

data plots against excluded variables, Durbin-Watson or 

periodogram testa tor serial correlation, and also 

subjective arcuments, as to the reasonableness of the 

regressors obtained. 

Whilst being indisputable on general statistical 

grounds Anscombels suggestions would seem to rule out the 



possibility of anyone but an experienced statistician 

from using such a procedure. Given that stepwise 

regression is an increasingly widely used technique, it 

does seem worthwhile investigating Whether currently 

used automatic stopping criteria can be improved 

upon in any way. Whenever possible of course as much 

auxiliary knowledge and diagnostic checking should be 

brought to bear on the problem as the situation 

warrants. With these points in mind we now tur.n to 

a rather more formal treatment of stepwise regression. 

4.2. Stepwi.e rearession as a multiple decision problem 

It is true to say that much of the standard theory 

of in£er~ce in regression is restricted in application 

to two-decision (or hypothesis test) problems. Amongst 

the various tests available of this type possibly the 

most commonly used are tho •• Cor the multiple correlation 

coeCCicient and the individual (partial) regres.ion 

coefficients. It is usual for a .equence of such tests 

to be perCormed on the .ame data .et without paying much 

heed to either the induced overall level or sisnificance 

or to the power in picking up various alternatives. When 

we al.o reClect that in st.pwi •• recre •• ion the 

particular .equence o£ te.ts performed is dictated by 

the actual .ample data we ••• that the problem calls for 

clo.er inve.tigation. 

A genera1 way of £ormu1atins the .tepwi.e recre •• ion 

problem is in term. of : 
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1. A parameter space' for the unknown vector ~ 

(i.e. the ttr.ue state of nature'). For our purposes 

this space will throushout be taken to be k-dimensional 

Euclidean space Rk. 

2. A sample space JI: on which is defined, for each 

element l! E;', a probability distribution F qP. y 

The sample space will in f'act consist of' all possible 

values of the n-dimensional regressand vector Y and 

is theref'ore taken to be~. The probability 

structure on "f has already been implied by the model 

specification in Chapter 1. 

J. A decision class D consisting of decision rules 

d(Y) mapping Y into an action space A. D will 

throughout be restricted to be the class of' what will 

be termed 'stepwise procedures'. By this is meant 

procedures using the basic pivotal algorithm and 

involving a decision at each step of' either introducing 

or deleting a regre.sor on the grounds of its re.pective 

lDaxilllWll or minilDWD contribution to explained sum of 

.quare •• The action .pace A will of' course depend on 

the particular motivation f'or using the procedure. 

4. A 10 •• £unction L(a,~) deCined on the product 

space A x ,. This repre.ent. tbe cost incurred in 

taking action a when ~ i. the true coefficient vector. 

For each deciaion procedure dE D a probability di.tribution 

is induced over A f'or each J E, by identif'ying actions 
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with decisions dey) and then invoking F (~). This leads 
y 

to a re-characterization of L( ) which now becomes a 

random variable depending on~. The expectation of this 

stochastic loss, 

is called the risk function, and is of prime interest 

in decision theory. 

Leaving aside for the moment the non-trivial matter 

of the evaluation of Rd(~) for stepwise-type procedures 

there remains the problem of how to use such a measure 

in the pursuit of an optimal procedure. Two concepts 

of a very general nature which occur in the theory of 

decision making are those of admissibility and completeness, 

which are now defined. 

Definition 1 A decision rule dE: D is said to be 

Admissible if (in the present context) there is no 

other rule d'E D such that 

Rd (~) > Rd' (Ii) , 
wi th stri ct inequali ty holding for some Ii E ~. 

Definition 2 A class C of decision rules (C c D) is 

Complete if for any decision rUle d' E D - C t there 

.xiata d S C such that 

Rd(~) ( Rd' (~) 

with strict inequality holding for some ~ E , 

l' D- C d.notes the .,....tric differ.nce between the sets 

D and C. 



Definition J A class C of decision rules (C c D) is 

Minimal Complete if no proper subset of C is 

complete. 

While it is possible to use these notions in special 

restricted classes of problem to arrive at optimal 

decision rules ( see for example Ferguson [25]) the form 

of the decision class D of stepwise procedures would 

appear to rule out such an approach here.' Instead, 

we restrict our attention now to the problem of making 

objective comparisons between procedures which are 

suggested on intuitive (but arbitary) grounds, with 

a view to obtaining a meaningful ranking criterion. 

Two basic principles which occur in decision 

theory £or the determination o£ ranking orders for decision 

rules are those of Mi.nimax and Bayes. On the minimax 

basis a decision rule d is preferred to another rule d' if 

Using this criterion it is then 80metimes possible 

(depending on the P.ature of D) to obtain a Minimax Rule 

dO' say, £or the complete class D. 

would be given by 

Such a procedure d o 

sup Rd (~) • in£ sup Rd(~) 
§,E' 0 dED ~Efl 

The u.. o£ the principle of Baye. in evaluating 

decision rule. require. recour.e to a completely different 

, A .ituation where this approach ia possible is that 

of orthosonal reare •• ion using a multiple decision class 

discussed lIy Leh.ama [so]. This is discus.ed l.ter. 
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and controversia1 phi1osophica1 approach to the 

c1assica1 concept o£ probabi1ity. The essentia1 point 

inso£ar as it impinges on the present discussion is 

that one can contemp1ate a probabi1ity distribution 

de£ined over~. This can be interpreted as either 

re£1ecting nature's own mechanism £or choosing its 

particular state or, perhaps more rea1istica11y, this 

'prior' distribution can re£1ect the statistician~own 

be1ie£s (objective or subjective) as to the true state. 

With this generalisation o£ the prob1em the risk 

£unction itself becomes a random variab1e £or each d E D. 

Using a Bayes formulation, and with a utility 

interpretation o£ the loss £Unction, procedures can be 

ranked entirely on the basis o£ expected risk (Bayes Risk) 

i.e. decision rule d is preferred to d' if 

In analogy with minimax procedures it may be possible 

to find a decision rule d E D possessing Minimum Bayes 
o 

Risk, i.e. if there exists d E D such that 
o 

We have outlined abOve a formal framework for stepwise 

regression, and mentioned some basic techniques and criteria 

whioh ari.e at a ,eneral level in decision theory. 

Apart from • particular c.se to be discussed below no 

attempt .tIl be made to develop an optimal stepwise prooedure 

on suoh a formal b.sis. 



As far as the use of the minimax and Bayes 

principles is concerned the former of these at least 

does not seem to have any outstanding claim to be the 

appropriate one for ranking purposes. Although no use is 

made of Bayesian philosophy either in the subsequent analysis 

it is appreciated that its use would be helpful in overcoming 

some of the formal difficulties of interpretation which 

arise. However, from the viewpoint of finding reasonable 

practical procedures the added difficulties of specifying 

prior information for specific applications will be 

avoided. In any case it will become evident that for 

purposes of ranking procedures ,overwhelming computational 

problems are faced for the sequential types of procedure 

envisaged. -In passing we do however mention a Bayesian 

treatment of the general problem of choosing variables 

for regression given by Lindley [51] using a prediction 

mean square-error los. function. Th. decision class 

considered in that paper is however of a much broader 

nature than the class of stepwise procedures at present 

being studied. 

We now conclude this section by aescribing briefly 

a class of decision problem for which Lehmann [SO] gave 

an optimal solution. Each decision procedure in this class 

derives from the simultaneous application of a set of 

two-decision (or hypothesis ~est) procedures. Within this 

cla.s the proviso i. of cour.e made that no inconsistencies. 

can occur regarding the actions to be taken, i.e. the 

component te.t. must lead to compatibility. Using an 
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extended definition of Neyman-Pearson unbiasedness 

for significance tests, and assuming a certain additive 

property for the loss function (specifically, the losses 

for each component test are additive), Lehmann derives 

a procedure Which uniformly minimizes the risk amongst all 

such unbiased procedures. A particularly relevant feature 

of this approach is that it allows one to cJe.terllline the 

optimal set of (in general) different significance levels 

to apply to each component test. 

The possibility of formulating stepwise regression 

• 
in this way is looked into later when the two distinct 

situations of orthogonal and non-orthogonal regressors are 

examined. A major impediment towards this end arises from 

the data-induced nature of the sequence of hypothesis tests, 

especially in the non-orthogonal case. One can however 

handle .ituations :iinhich an a priori .equence of tests is 

known as', for example, when a natural orderins ot: the 

resre •• or variable. exi.t.. Such a .election procedure 

was looked at by Ander.on [ 3] in determining the degree 

ot: a polynomial resre •• ion relation.hip. 

It.). 'lbe aaulti.ple oogertson. approach 

An iaaportant fiel.d of .tudy w.l.tbin the area of 

siaaultaneoua stati.tical inferenoe i. that ooncerning 

.ultiple coaaparison probl ..... Thi. can be .aid to bave had 

its origins in atteaapts to detect the presence of outl.iers 

in sample data. Later work, much of it attributable to 



Duncan, Scheffe and Tukey in particu~ar, was s~anted 

towards ana~ysis of variance type app~ications. As 

pointed out by Mi~~er [56] an under~ying constraint in the 

derivation of such procedures is that of protection 

for a certain nu~l hypothesis. In terms of overa1~ procedure 

optima~ity this in turn imposes a specific loss structure 

which might not a~ways be the right one. In order to compare 

the merits of completing procedures under various 

a~ternative hypothesis Duncan proposed the use of so-ca~~ed 

p - mean significance 1eve~s. To i~~ustrate the meaning 

of these consider a prob~em invo~ving the unknown parameters 

.1'.2' ···'.m· Denoting these by a vector!, suppose there are 

available a number of simi~ar tests of the hypothesis 

Now let. be the vector representing a given (arbitrary) 
-p 

* set of p of the parameters, and let. be the vector of 
-p 

the remaining m-p elements of -e. 'lbe p-mean significance -
level for !p is then defined as 

* sup Prob (D(e ~ 0)/. .0,.) 
-p - -p --p 

~ 
where D(. '. 0) denotes the decision that. lit O. 

-p - -p -

While .uch criteria could, at least in theory, be 

applied to a .equentia1 decision procedure such as stepwise 

regression (indeed Duncan did so in substantiating his 

sequential multiple-range procedure) we will not 

formally do so here for two main reasons. Firstly, 
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although it is apparent that the evaluation 

of such quantities amounts to only a small part 

of the larger problem of risk evaluation the 

computation involved is still exceedingly formidable, 

This is particularly so in the case of general forward/ 

backward procedures applied to non-orthogonal regressions. 

Secondly, such criteria are designed for protection against 

only a testricted class of incorrect decisions which are 

not necessarily the appropriate ones to consider in 

stepwise regression. 

Although stepwise regression procedures will not be 

evaluated formally as multiple comparison procedures 

the various procedures put forward later, alb~it mostly 

cnthe basis of intuition combined with the results of 

Chapter ), have close similarity with such teChniques. It 

.eems difficult to avoid this approach to stepwise regression 

due to its very nature of construction. 

Sefore proceeding to a discussion of the two types 

of loss structure mentioned earlier we briefly take a 

look at the similarity between stepwise regression and the 

seemingly unrelated problem of detectins the presence of 

outliers in an observed sample. 

4.4 Relationship of stepwise r8sression to the problem 

at testing for outliers. 

For simplicity we will suppose that the value of 

the error variance ~ is known in the stepwise regression 
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context, and also assume the regressors are orthogonal. 

Referring to the results of Chapter J we note that we 

initially have available k quantities d~2 which in 
1 

general are indep~ndently distributed with different 

non-central chi-square distributions. The stepwise 

regression problem then is equivalent to the detection 

of which, if any, of these variables have central 

chi-square distributions (or zero non-centrality 

par~eters). In other words, we wish to detect the 

non-central chi-square outliers in a random sample 

from a central chi-square distribution. It therefore, 

seems worth investigating if the theory or outlier 

detection is of help to us. 

Most of the theory of tests for outliers relates 

to normally distributed variables for which means and 

variances are Wlknown. In stepwise regression we do 

know these two quantities (in the sense that the mean 

should be zero and we can at least obtain an independent 
. 

estimate of a2), and the situation falls into the first 

of four categories discussed by David [18 , Chapter 8]. 

It i. of interest to note that the two main types 

of stepwise procedure cons~dered later use test statistics 

which are virtually equivalent to the two which David 

.usse.ts as being appropriate for outlier detection in 

either direction in normal sample •• 

Li':ttlework has been carried out on the power 

properti •• of outlier detection procedures. Even then 
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what has been done-relates almost exclusively to 

the case in which only one outlier at most is 

suspected of being present. David does however 

suggest that tests based exclusively on extremes 

should be expected to be more efficient. This 

assertion will be examined later in the context of 

some proposed stepwise regression procedures. The 

problem of detecting an unknown number of outliers 

has received very little attention in the published 

literature. The suggestion by David (p.l9l) that 

sequential tests should be performed on samples 

of reducing size till insignificance is first 

obtained is in agreement with the philosophy underlying 

the stepwise procedures developed later (and indeed 

concurs with most multi-stage multiple comparison 

procedures). 

Although a very special situation was examined 

above for illustrative purposes the ideas carryover 

to more general regression set-ups. In particular the 

seneral non-orthogonal case leads to consideration of 

the detection of outliers in a non-random sample with 

a known dependence structure. As far as is known no 

work ba. been done on this latter problem. 

We now turn to a di.cussion of the two basic 

types of stepwise regre •• ion objective referred to 

earlier. 
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4.50 The identification problem 

By this will be taken to mean the problem of 

deciding which regressor variables enter into the 

true model with a non-aero regression coefficient. 

The action space A is then of finite dimension 2k, the 

number of different model formulations possible. Each 

action in fact corresponds to a decision that ~ lies in a 

set B
i

, where the sets 

partition of fJ. 

It is important here to differentiate between the 

two different objectives of identification and control 

insofar as a single stepwise regression analysis is 

contemplated for both situations. If by 'control' is meant 

the evaluation of the marginal effects due to controllable 

regressor variables the nature of the action space, and 

also the associated loss function, will be considerably 

changed. In particular it should be noted that although 

stepwise regression has a least squares basis none of the , 
standard re.ults, such as the Gauss-Markov properties 

for example, can be expected to hold. This point is 

returned to below when the prediction problem is 

discussed. One possib1e interpretation of the 

identification problem as considered here is as a 

data-reducing technique in a regression situation. One 

might for instance carry out sucb an analysis as a 

preliminary to the estimation of a regre;sion model using 

a further set of data. In this sense our aims can perhaps 
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best be described as those of model specification. 

Reverting to the formal framework established 

earlier we can express the risk :function, for 

~ E Bi and dE D, in the form 

2k 

Rd <.§) = L Cij Probd {a ./~} 
j-l J -

where Cij is the cost involved in taking action a j 

(corresponding to 1! E ijj) when ~ E Bi • The actual :form 

the cost :function can be considerably simplified by 

s~pposing that only the underfitting and ~verfitting 

o:f 

characteristics of procedures are involved. However, 

one still has to resolve difficulties such as whether 

(1) 

or not the two shortcomings are equally disadvantageous, 

and also the manner in Which the loss increases with the 

degree of under and overfit. Xn the subsequent 

comparison of various procedures using a similation 

approach no attempt is made to impose such a strict 

cost structure. Instead, evaluations are made on 

more general grounds of ·c10sene •• ' to the underlying 

true model. 

4.6 The prediction problem 

The identification problem as described above 

lead. to regarding .tepwi.e regression as only an 

exploratorY teChnique, the main emphasis being placed 

on trying to identif'y the true underlying model strucill.re. 
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In this section we will be looking at the d~erent 

objective of minimization of the mean square-error 

of prediction(MSEP) with regard to a further set of 

regressor values. More specifically, if ~ is a 

(K+1)-dimensional vector of regressor values (including 

the mean element), and if ~ is the estimator of ~ 

obtained from the stepwise procedure used, we wish to 

minimize 

where y = ~'~, y • ~'~ + e. 

Rewri ting ,(I.) as 

MSEP • E[ {.!, (.k-ft)-e}2 ] 

and noting that e is (by assumption) independent of ~ 

with zero mean, we obtain 

() 

where B • E[.!·~] - ~.~ is the bias in the estimation 

Since a2 is a constant for all procedures the 

problem is equivalent to the minimization of the mean 

square-error of .!'~ as an •• timator of ~'~. 

V.ins (2) we •• e that 

I[ (~, (r~) }2 J • I[!' (.2-~) (!:~) ,~] 

• ~I[<,!:~) (E-~) 'J~ 

• x'Px, say, -- (4) 
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where P = E[(~~)(~~)I] 
In terms oC the risk Cunction as deCined in 

section 2 abOve we can write 

(5) 

where risk now depends on the value oC ~ as well as ~. 

Consider now the possibility oC using (5) as a ranking 

criterion for stepwise procedures in a preduction 

context. A procedure ~ is uniformly as good as 

d2. iC, Cor all ~ E f} and all ~, 

From (4) this implies we require 

~'(E2-~).25~O 

Cor all ~ and all ~ (where!1 and Ez have obvious 

meanings). 

Hence the required condition is that 

12 -!1 is positive semi-deCinite Cor all §... 

Since, as will later become evident, the 

theoretical evaluation of l2 -~ i. intractable <at 

least for the procedures to be considered) one is forced 

to resort to less objective means. Such an approach, 

that of using simulation methods, is leCt over to a later 

chapter. We can however throw a little light on the 

situation by considerins a very simple example. This will 

also .erve in examining a conjecture made by Allen [ 2 ] 

in a more general paper on the determination oC optimal 

prediction models. On the basis oC some numerical work 
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(not presented in his paper) Allen suggests that 

different subsets of regressors are optimal at the 

least squares estimation stage depending on the 

variables which appear in the ~ vector used at the 

prediction stage. In particular he offers, by way 

of explanation, the argument that if one is interested 

in estimating ~ for example (i.e. ~ a [100 ••• 0]) 

then one feels, a priori, that ~ should appear in the 

subset of regressors at the estimation stage. The 

plausibility of this intuitive argument will in fact 

be shown to be questionable. 

Consider the model 

where the usual assumptions are made. Let bYl and b
Y2 

be the calculated regression coefficients obtained by 

regressing Y on ~ and ~ respectively in single 

regressor models, and let b and b be the 
y~.2 y2.1 

estimators obtained from the full model. Consider then 

the estimation of a linear function A, ~ + Az I3z of the 

true regression coe££icients using each o£ the £ollowing 

estimators. 

1. A, bY1 

2. Az bY2 

J. A, by1 • 2 + Az bY2 .1 

Wenow derive the mean s~uar.-error values for each 

of the •• in turn. In each case we need only determine 
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the matrix f as in (4). We do so in terms of the 

(k) (k) 
elements Pij for k = 1,2,3, where Pij is the (i,j)-

element of ~. 

1. 

= E(X, 13, + ~ (32 + e) X. /r.X,2 

= 13, + f32 r.xa Xe If-Xl + r:x, e/Ex,2 • 

Hence we obtain, on taking expectations. and letting 

~2 be the calculated (non-stochastic) regression 

coefficient Cor Xe on X, , 

and 

2. By symmetry we have immediately 

3. Xn this ca •• b
yl

•
a 

and bya • l are unbiased estimators 

and l3 i. just the usual covariance matrix Cor least 

square. e.timators i.e. 
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~J) = a2 /O:X,Z(l-rfz)}, where r12 is the calculated 

corre1ation coefficient between X, and ~ 

(using raw moments). 

p~J) = p~J). _ dl bw'{EX,Z(l-rfz)} 

p~J) • dl /{EXI (l-ril) }. 

We first take a look at Allen's assertion referred to 

previously. In particular, suppose we put Az = o. Using 

the above results it follows that Method 2 is preferable 

to Method 1 iC 

(6) 

i • e. in order to e.timate ~ l3, (for any ~) it may be 

better to ignore X, completely at the estimation stage. 

It is .een that, except perhaps in the case where X, 

and It are orthogonal, this re.ult doe. not in general 

add weight to Allen'. reasoning. 

Without going into explicit detail it can ea.ily be 

demonstrated using the above results that, whilst a 

condition like (6) holds for partioular value. of ~ 

and ~2' the oondit1on is not that for positive-

detini teness oC 1I-1i over all values of l3, and f32 • 

In taot there are values ot (~ .Aa ) tor which, even for 

tixed values oC ~ and ~, both Method 1 and Method J 

are optimal with condition (6) still holding. Since, 

tor tixed values ot~, stepwise regression procedure. 

will have ditterent associated probabilities ot 

tena1natinl at the various possi ble model structures it 

tollows that procedure optimality will depend on ~. 
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A natural way to overcome this dependence is to 

select a representative set of such values x.,i:l, ••• ,q, 
-1 

say, and then consider a straightforward average 

This does at least permit a ranking of procedures 

t for fixed values of~. Alternatively one might perhaps 

be prepared to specify a probability structure for~, i.e. 

* treat it as a stochastic quantity! say, and then use 

Where the expectation is now with respect to the joint 

* distribution of ! ,! and ~ ( and where we now sensibly 

also assume! is stochastic). A particular case of interest 

is that of forecasting using time series models, in which 

case (8) leads to the standard criterion of forecast 

mean square-errpr. In this most general situation we 

* must acknowledge the joint dependence of X ,X and € and - - -
rewrite (8) as 

Of course in each of (7).(8) and (9) one is still 

faced with the problem of obtaining a ranking criterion 

not dependent on~. Again, as in the identification 

case looked at earlier, ~ will be retained as a nuisance 

parameter in the simUlation investigations conducted 

+. . 
We may note that by selecting ~i,i=l ••• ,k, to be 
the k columns of the k-dimensional identity matrix 

then we convert the problem to one of mean square error 

estimation of ~. 
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later. 

Before concluding this section a brief look 

will be taken at the problem of evaluating the matrix 

P which occurs in (4). We first note that P can 

be written in the form 

P = Var (b) + B - -
where Var(£) i8 the coveriance matrix of the estimator 

£ and! is what can perhaps be termed a generalized 

bias matrix, having (i,j)-element equal to 

for i, j = 1, ••• , k. 

A natural approach is then to consider separately the 

bias and variance properties of stepwise estimation 

procedures. 

The first study of the effects of performinc 

preliminary tests of significance in a situation of what 

has come to be termedin the literature an incompletely 

!pecified model seems to be that of Bancroft [7 J. In 

his paper Bancroft considered the standard practice of 

performing t-~ests sequentially on an estimated 

regression model, and, in particular, pointed out that the 

usual unbiasedness property of least squares n4 longer 

holds. Xi togava [40 J developed the argument by obtaining, 

for a simple tvo regressor model, the cumUlative distribution 

function and associated moments for the coefficient of the 

variable re.aining after such a variable deletion. 
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In two papers La'rson and Bancroft E46, 4.7] and 

also later Kennedy and Bancroft [39], extended the 

argument to estimates obtained specifically at the 

termination of sequential procedures using mean 

square-e~ror of prediction as the criterion of interest. 

In all cases however the study was restricted to 

situations in which there exists a natural order of 

importance for the regressors involved. Such prior 

knowledge might arise, it is suggested, from theoretical 

considerations or from previous experience in similar 

applications. ~lthgugh one would concede there might well 

be situations in which some variables seem more realistic 

as regressors than others it would be unusual if such 

a complete ordering were to be available. There are also 

occasions in which what might seem to be a natural ordering 

is not in fact so. An example of this occurs in the 

determination of the lag structure of autoregressive models. 

It haa been implied by some authors (e.g. Kendall and 

Stuart [J8,p.476]) that a natural ordering is obtained 

by as.uming that variables decrease in importance in 

inverse relation to the length of their associated time 

lag. This does however impose severe restrictions on the 

underlying 'causal' structure of the system, and could 

give rise to misleading conclusions in a dynamic control 

set-up_ 

AlthouSb the three papers referred to above restrict 

the analytical treatment to the situation of orthogonal 



regressors the point is made that the results still 

apply to non-orthogonal set-ups. The essential 

argument is that the order of introducing variables 

into t~e equation is still fixed and determines the 

extra sum of squares decomposition of the total. 

explained variation. Since this is identical to 

performing an orthogonalizing transformation on the 

original set of regressors one only has to show that 

one can re-transform the finally selected equation 

back to this original set without affecting the values 

obtained for bias and variance. The truth of this is 

demonstrated quite easily (e.g. see Allen [2,p.1282]). 

The restricted nature of the class of sequential 

decision procedures considered in the three studies 

referred to above considerably simplifies the analysis involved 

In particular it is reasonable in such a situation to apply 

a fixed critical valueto the F-statistic obtained at 

each stage, i.e. since there is no data-induced order 

for variable entry one does not have to deal with the 

more complicated aspect of order statistic distributions. 

Further, the non-orthogonal case is uniquelY orthogonalized 

once a natural priority ordering is given for the 

regressors. Whilst orthogonalization is a desirable 

'feature and is still.possible in the more general class 

of stepwise procedures being considered the non-uniqueness 

of this giv •• ri •• to fUrther difficulties. Suggestions 

bave been made (e.g. see Kandall [36],Daling and 

Tamura [17] and Wickens and Ord [63]) that an appropriate 



transformation is provided by the principal component 

transformation of the regressor set. Although this has 

the advantage of being widely available as a computer 

procedure it seems difficult to regard it, in a general 

sense, as anything but an arbitrary transformation. This 

point is not however pursued any further ~or now since 

it is more conveniently discussed in the light of some 

ideas developed later. 

To conclude this section we now obtain formal 

expressions for Rd(~) on the lines of that given in 

(5.1). Consider again the general case given by (9), 

which can be rewritten in the form 

E {X* E [(~~)(~~)./!,!*]!*} 
~,! !I!*,! , 

In the case of non-stochastic X*, or the stochastic ... 
case in which! is independent of ! and !*, the 

inner expectation is with respect to the unconditional 

normal distribution of ~. In the general stochastic 

case however the inner expectation, whilst being over 

a normal distribution (at least if ~ and ! are jointly 

normal), is no longer spherical normal. In such a 

situation one has to resort to a simUltaneous evaluation 

(10) 

with respect to the overall joint distribution as in (9). 



Restricting our. interest to the former of the 

two situations described above, and using the notation 

as in (4), we can consider the evaluation of the inner 

expectation. This essentially reduces to the 

determination of the first two moments of ~'~,i.e. 

Er~'~] and E(~'~)2]. Conditional on ~ and X we then have, 

using the action space A of section 5 above, 

E[x'b] • x'E[b] - - - ...... 
E[b/a. ]P(a .) 

- J J 

E[bb'/a .]P(a .)}x 
- J J--

It will be apparent that the formal evaluation of both 

theP(a
j

) and the conditional expectations is a 

formidable task. Even in the considerably more simple 

situation which is contemplated by Bancroft,Larson 

and Kennedy (see earlier) one is still faced with 

intractable expressions. Again, as in the identification 

case above, the approach will be taken of constructing 

procedures on what appear to be reasonable grounds within 

the basic stepwise structure. 

Finally it should be remarked that throughout 

this section it has been assumed that the underlying 

cost structure is adequately represented by the mean 

square-error of prediction. It must however be recognised 

that in practice other criteria might be relevant. In 

particular one might well be prepared to forego some 



predictive efficiency if data co11ection or processing 

costs can be reduced enough by way of compensation. This 

point is especia11y significant in the comparison of 

procedures which inv.w1ve the ca1cu1ation of the 

complete (k-variable) equation ~th those that do not. 

Such cost considerations cou1d quite easily be 

incorporated into the previous formulations but would 

not of course make them any more susceptable to so1ution. 

One must however pay heed to them in any conclusions which 

may be drawn on less formal grounds such as the empirica1 

studies performed later. 



Chapter 5 Identification with Orthogonal Regressors 

5.1 Special features of orthogonality 

In any attempt to determine acceptable stepwise 

regression procedures a sensible starting point would 

seem to be that of orthogonal regressors. This will 

of course restrict the application to data obtained 

from controlled experiments, but hopefully some light 

will also be thrown on the more complex situation of 

non-orthogonality which is discussed later. In any 

event the orthogonal situation is of some interest in 

its own right. 

A major simplication which arises is that partial 

contributions to explained sums of squares are also 

overall contributions. This ensures that the equation 

sequences produced by any of the basic stepwise 

teChniques will be identical provided they are carried 

out for all k stages. In particular no real motivation 

exists for performing general forward/backward routines. 

Indeed the problem can in fact be treated entirely as 

one of non-sequential simUltaneous inference, such an 

approach being considered later. We can throughout 

confine our interest to the independently distributed 

quantities 

which,in 
2 2d* . a ,J 

j 

s~ ,S~ , ••••• ,S~ 

the notation of Chapter 3, are the quantities 

= l, •••• ,k. It follows from the results 



of that chapter that each S2 is distributed as non­
j 

central chi-square with one degree of freedom and 
n 

non-centrali ty parameter 13 2• E X~ ./202 

J i=l 1J 

(i.e. X2 (1,13 2
. E X~ ./2(2 ». In addition to these 

J . 1 1J 1= 

k quantities we also have the residual sum of 

squares 

S2 = (n-k-l)v 
o k 

calculated from the complete equation. As demonstrated 

in Chapter 3 S2 is also distributed independently of 
o 

each S~, j = l, •••• ,k. 
J 

5.2. Expected order of variable entry 

Before proceeding to the consideration of a 

suitable conditional hypothesis structure for stepwise 

procedures it is important to look at the expected 

order of entry (deletion) of variables to (from) the 

fitted equation. We shall throughout continue to 

assume that the order of variable entry is determined 

by the magnitudes of the S2., j = 1, ••• ,k. Since each 
J 

2 n 2 S2 can be written as b. ~ X .. (where b. is just 
j J i=l 1J J 

the simple regression coefficient estimate for Y on X.), 
J 

and since aiso b. is, with suitable general restrictions 
J 

on the X values selected, a consistent Bstimator of 

~j' then the order of entry is essentially determined 
n 

by the values of 1. = ~~ E X: J , j = l, •••• ,k. 
J J i=l 

More specifically we have 



Using the fact that b. is distributed as 
J 

N(~j,aZ;liIl X~ .) it follows that 
l.J 

XZ .. , 
l.J 

and hence 

Further, considering the variance of s~, we have 
J 

Var [SZ. J = (. ~l X~ .)ZVar [bZ. J 
J 1= 1J J 

Now Var[bZ.J = E(blt.J - E2 [b2.J. Using the moment 
J J J 

generating function for b. we find that 
J 

E[blt.] = 30lt If.~ X .. )2 + 6~20'21 ¥ X~. + ~It. 
J /\1=1 1J i=l l.J J 

Combining this with the expression above for E [b2.] 
J 

we obtain 

n 
L: 

i=l 
X~ . 

1J 

While from (1' it follows that the values of X. 
J 

determine the order of variable entry from an 

( 2) 

expectation standpoint, the form of (2) is not very 

informative as to the probability of such an ordering 

being obtained. To this end let us consider the 

regressor variables Xj and Xjf such that 



Then 

n 
Prob [52. _52.. < 0 J = Prob [b2. 2: X~. - b 2. , 

J J J i=l 1J J 

= Prob[pb~-b~, < OJ, 
J J 

n 
2: 

i=l 
x~ ., < OJ 

1J 

where, for all n, we take p = ~ x~.j ~ x~.,. 
i=l 1J i=l 1J 

Putting U 

E[U] 

= b 2 b 2 P . - ., 
J J 

2 _ 2 = p~. f3. , 
J J 

we see that 

= ("'. -h . , )/ ~ x~. I < 0 
J J i=l 1J 

Also, Var [U] = p2 Var [b2. J + Var [b2. , J. 
J J 

( 4) 

On using a slight modification of (2), and with some 

simplification, we find that 

Var[U] = 2crlt (1+1/~ x~.,)( ¥, x~., + 4f32.cr2 p/ r. x~., 
i=l 1J i=l 1J J i=l 1J 

Hence, as 

that 
n 

.2: 
1=1 

n ~ :00 and imposing the realistic 

X~ ./~ X~., = p, we see that 
1J i=l 1J 

Var[U] ~ 0 

constraint 

(6) 

Using (4) and (6) in conjunction with Chebychev's 

Inequality it follows that 

Lim Prob [pb2
j

_b2., < 0] = 1 
n~(I) J 

for all j, j' such that (3) is true. 



Hence we can now assume, with confidence which 

increases with n, that "true" regressors will be 

entered first, the actual order being governed by the 

magnitudes of X, X., j = l, •••• ,k. This provides 
J 

the basis for treating stepwise regression as a series 

of conditional hypothesis tests, as will now be 

described in more detail. 

5.3. Hypothesis structure for stepwise regression 

Suppose, without loss of generality, that the 

r variables included in the equation at the stage in 

question are Xt , ••••• ,X. Then for a forward 
r 

procedure we can formulate the null hypothesis 

{ ~ 0 
H == 13. 

o J = 0 

(j = l, •••• ,r) 

(j = r+l, •••• ,k) 

with the alternative hypothesis 

(j = l, ••••• ,r) 

{ 

13·:\0 
lit == J 

Not all 13. = 0 (j = r+l, •••• ,k) 
J 

Acceptance of H then corresponds to the decision 
o 

to terminate the procedure while H1 implies that 

not all significant variables have yet been included. 

Conversely, in a backward procedure, a possible 

hypothesis test is 

" ~.{ ~ 0 
H 

0 J = 0 

Its IE {some 13 j = 0 

13. = 0 
J 

(j = l, •••• ,r) 

(j = r+l, •••• ,k) 

(j = l, •••• ,r) 

(j = r+l, ••• ,k) 

H1 here implies that further variables can still 

be deleted. 



While no such basic formal structure is 

specified in the existing literature on stepwise 

regression it certainly seems to be implicit in 

most instances. Having established this framework 

we now turn to the problem of the appropriate choice 

of test statistic to use. This is done by looking 

first of all at quantities which arise in the context 

of completely specified regression models. Modifications 

of such statistics are then suggested as being 

appropriate in stepwise regression contexts. The 

discussion will throughout relate on1y to the 

identification problem defined at 4.5. While there 

is the added restriction of orthogonality of regressors 

many of the points made are equally valid in the more 

general non-orthogonal case. 

5.4. Possible test statistics for stepwise regression 

We suppose the stage has been reached at which r 

regressors appear in the fitted equation, and therefore 

q :: k - r variables are excluded. Various test 

statistics are considered in the light of both their 

conditional and overall implications when incorporated 

into stepwise regression procedures. 

(a) The conventional F statistic 

By this is meant the square of the t-value 

calculated for a regressor in a completely specified 

model. In such a context this statistic gives the 

likelihood ratio test for the regression coefficient 



involved. When used within a stepwise set-up we 

can write 

= 2 ( 0(q-l 5 +5 2 ) F 5 ( ) v.+ q-l ,1: 
( l' ) 0 q ~=l 

where 5( i) is the ith smallest of the set of values 

5 2, (1' 1 k) = , •••• , and v = n - k - 1. Evidently this 
~ 

quantity can in no way be regarded as having standard 

F-distribution with 1 and v + q - 1 degrees of freedom 

(see Pope and Webster [66 ], who have independently 

investigated the problem). The actual distribution 

of F was investigated by Draper, Guttman and 

Kanemasu [19] who attempted to find critical points 

of F for various values of q. Making the assumption 

that S(i);!cr2 (i = l, •••• ,q) is an ordered random 

sample from a X(l) distribution these authors derive 

a recurrence relation for determining these critical 

values. However, since this still requires the by 

no means simple task of evaluating 2 q- l (q-l)-fold 

integrals of incomplete beta functions, the authors 

were only able to present results for q = 1(1)4. 

Although they do not investigate the effectiveness 

of the use of: F in practice, the authors do admit to 

two objections against its use. These are that: 

(i) in the early stages (of forward procedures) 

the numerator will be a biased estimator 

(ii) in general regressors are not orthogonal. 



Point (ii) is of course of fundamental importance, 

and is discussed in more detail later. In regard to 

objection (i), the numerator S~q) is necessarily 

biased as an estimator of 0 2 since it is at best the 

maximum of a 02 Y(I) random sample. But, even allowing 

for such bias, one still expects bias under the 

alternative hypothesis that the corresponding variable 

is significant. The extent of this bias will in fact 

determine the "power" of the overall procedure. It 

is possible that the authors really mean to refer to 

the denominator as being biased in early stages since 

5(k_l)' 5(k_2)'· ••• ·, etc., will in general have 

(different) non-central chi-square distributions. 

Whilst intuitively one feels this could lead to 

premature truncation of procedures in certain instances 

such conclusions would seem difficult to establish on 

a theoretical basis. 

Turning to backward stepwise procedures suppose 

that the stage has been reached where r + 1 variables 

appear in the fitted equation. On removing the 

variable which yields the smallest contribution to 

explained sum of squares we are then in essentially 

the same situation as in the forward case. The sum 

of squares due to the regressor involved can now be 

denoted by 5(q) and can be combined with the previously 

obtained values of 5(i)' i = l, •••• ,(q-l). A 

different kind of problem can now be seen to arise. 



For suppose the true order of equation is p( < k) 

and that q < k - p. Then strictly we should regard 

the test statistic in (1) as being distributed like 

where S2(. k ) is the ith smallest observation of a 
~, -p 

random sample of size k - P from a (12X( 1) distribution. 

Since it is assumed that p is unknown one could not of 

course hope to use critical levels from such a 

distribution even if such values could be determined. 

Again one is left to conjecture as to the effects of 

using critical levels derived from (1) instead of the 

appropriate form of (2). 

(b) The residual variance estimate 

An intuitively reasonable procedure, at least 

when used in conjunction with a forward approach, is 

to plot the residual variance estimate at each stage. 

One feels that a flattening out of the graph thus 

obtained indicates correct model identification. 

If r variables have been fitted then we have 

where RSS is the residual sum of squares from the r 

fitted equation. We can write v in the form 
r 

q 2 2 
(n-r-l)v = r: S(.) + So 

r . 1 ]. 
J.= 

from which we can infer that in general only when 

r = n can vr be regarded as an unbiased estimator 



of 0 2 • We can however say that asymptotically 

(i.e. conditional on the p true regressors being 

entered first) V ,~ill also be an unbiased estimator 
p 

of 0 2 • Thus a rough practical approach would be 

to plot v against r and choose the equation order r 
r 

such that vr approximately equals vk • We can in 

fact be more precise than this by noting that under 

these stated conditions 

k-p 
L: S2(i). 

i=l 

It follows that, dividing this quantity by (n-k-l)vk , 

we have the ratio of independent chi-square variates 

with (k-p) and (n-k-l) degrees of freedom respectively. 

Hence the statistic 

( n-p-l) ~ _ (n-k-l~ 
k-p vk (k-p ( J) 

will be distributed as central F with «k-p) and 

(n-k-l) degrees of freedom. For all values of r less 

than p this quantity will be inflated according to the 

non-central F distribution which then holds. 

Conversely, for r > p, the statistic can be seen to be 

what is in a sense a negatively biased central F 

variate. The statistic is in fact the same one as is 

used in the likelihood ratio test for~a subset of 

regression parameters in a completely specified model. 

In that conditional sense it can be shown to possess 

uniform maximum power for alternatives specified in 



terms of the overall non-centrality parameter of 

the excluded variables i.e. 

k 
A = l:: 

j=r+l 

To distinguish this statistic being contemplated 

from the standard calculated value of F given in 

(1) we will denote it by F', i.e. 

(n-r-l~ 
(k-r ( 4) 

The incorporation of F' into a forward procedure 

seems straightforward, one merely stops the procedure 

as soon as a test is found to be insignificant. 

Likewise, in a backward procedure one stops at the 

first significant result. Even in the orthogonal 

regression situation being considered it is evident 

that the final equations obtained will in general be 

different in the two cases, a backward process being 

expected to retain more variables. The backward case 

is in fact equivalent to stopping at the ~ non-

significant step of the corresponding forward procedure. 

To resolve this ambiguity one needs to have in mind 

the overall implications. If one uses a fixed 

percentage level of a for all the significance tests 

then, in a forward procedure, one is building in this 

degree of protection against overfitting. If r1is 

the number of variables occurring in the finally 



selected equation then we have 

Prob[r1 > PJ < a (5) 

To demonstrate the validity of (5) consider the k 

"d d t tOt· 52 5~,····,5k2 as defined in 1n epen en quan 1 1es 1 , 2 

section 1. These quantities, on division by a2 , 

can be regarded as being the union of p independent 

observations from each of p possibly different non-

central chi-square distributions, together with a 

random sample of size k - P from a central chi-square 

distribution with one degree of freedom. Denote 

this latter sample by the random variables 

W1 , W 2 , • • •• , Wk • -p 

Since we have 

ial, •••• ,k-p i=l, ••• ,k-p 

and 
k-p k-p 

l: 5~i) < L: 
i=,l i=l 

w. 
1 

(where 5(i) denotes, as before, the ith smallest value 

in the 52 sample, j = l, ••• ,k) 
j 

it follows that 

Prob [Max 5( i) jV
k 

< FMAXa. ] ~ Prob [Max W JVk i=l, ••• ,k-p V· i=l, ••• ,k-p 

< FMAX ] = a a 

( 6) 



where v k is the independent estimate of 0 2 based on 

(n-k-l) degrees of freedom and given by 

and FMAX, F' denote respectively the a-level critical 
a a. 

values for FMAX and F' appropriate to the stage where 

p variables have been entered. 

Hence it follows from the statements at (6) 

that, even if the procedure succeeds in entering p 

variables, the probability of proceeding further is 

bounded by the value of a.. 

Further to the result at (5), since the tests 

involved at each step are consistentt, strict equality 

will be obtained in this expression as the sample 

size n becomes large, i.e. 

Lim Prob[r1 > PJ = a 
n-+en 

(7 ) 

More specifically the consistency property ensures a 

zero asymptotic probability of omitting "tr.ue" 

regressors (i.e. underfitting) i.e. 

Lim Prob[r1 < pJ = 0 n.;;jen 
(8) 

TThis in turn follows from the consistency of least 

squares estimators in the linear model. Lehmann 

refers to this property as procedure consistency. 



Back,,,"ard procedures are more difficult to 

evaluate in this way_ It is no longer possible to 

relate the value of a to the final order of equation, 

r2 say, as in (5) or (7). The consistency property does 

however carryover so that 

Lim Prob[r2 < PJ = 0 
n-+oo (9) 

and hence large sample protection against underfitting 

is obtained. 

The above points do serve to illustrate the 

sort of limitations imposed on the use of stepwise 

regression procedures in general. It is argued 

however that, in view of the scope of the problem 

being faced, even some kind of asymptotic optimality 

is better than the unpredictable consequences resulting 

from the conventional use of stepwise regression. 

Proceeding along these lines it would seem that, 

at least in the orthogonal case, forward procedures 

have more to recommend them than backward ones if 

n is large (or, strictly, if n-k is large). In the 

finite case the situation is by no means as clear-

cut. Further discussion on these general lines is 

however more conveniently postponed till after some 

other possible stopping criteria have been discussed. 

(0) The goodness of fit statistic 

By this is meant the calculated value of the 

square of the multiple correlation coefficient, R2. 

This is merely the ratio of the explained to the total 



sum of squares. Denoting this quantity at the rth 

stage by R2 it is evident that its distribution 
r 

will depend on the values of the non-zero ~ 

coefficients, i.e. 

Direct use of this statistic does not therefore seem 

a promising possibility. 

For the same reason the so-called "Corrected" 

defined by 

R2 = 1 - ( n-l
l

) (l-R2 ) , 
r n-r- r 

does not seem to be very useful either. We might 

note however that we can write 

_2 (v ) 
Rr = 1 - \V

r 

o 

from which it follows that the underlying distributional 

theory can in fact be discussed in terms of that of 

(d) The Mallows C Statistic r 

v • 
r 

In two unpublished papers [54 ,55 ] C.L. Mallows 

proposed the use of the "Standardized Total Squared 

Error" for the comparison of two regressions. As an 

estimate of this quantity he suggested 

where r is the number of fitted variables. 



RSS is the residual sum of squares 
r 

cr2 is an estimate of cr2 , and is usually 

taken as the residual variance estimate v
k

• 

Mallows demonstrates that regressions with "small 

bias" have C approximately equal to r. Hence a 
r 

possible criterion is the nearness of C to r together 
r 

with the actual magnitude of C • 
r 

It might be noted that, in a non-stepwise 

context, 

E[RSS J = (n-r-l)cr2 
r 

(provided r > p) from which it follows that 

E[C J ~(n-r-l) - (n-2r-I) = r. 
r 

In fact we may also write 

Cr = (n-r-l)vr/vk - (n-2r-I) 

which is essentially the F' statistic given in (3). 

(e) Change in R2 

We now consider the quantity 

i.e. the change in R2 which results by including 

the variable with highest contribution. In the 

previous notation we have 

AD2 __ S2 I( ~ S2 +S2) 
'-\on () '-' (i) 0 

r q i=l 

or, alternatively we can write 

~2 = {<n-r-l)v -(n-r-2)v }/TSS r r r+1 

where TSS is the overall sample sum of squares. 
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To avoid the complexities arising from the denominator 

in these expressions it is better to consider 

b.R2 • TSS 
r 

which is just the quantity S~q). The conventional F 

statistic described in (a) above is essentially based 

on this quantity but, notwithstanding the objections 

to its use on more general grounds, the appropriate 

tables for its implementation were in any case stated 

to be not readily available. A natural way round the 

problem is to use a similar approach to that of F' 

in (b). This leads directly to the quantity 

which, when multiplied by n - k - 1, gives the statistic 

We leave aside the problem of the distribution of 

FMAX until the next section but one. The incorporation 

of FMAX into both types of stepwise procedure will 

follow the lines used for F'. Again only constant 

significance levels are contemplated thus avoiding 

the admittedly more flexible but nevertheless more 

complicated possibilities of varying levels. The 

expressions (5), (7), (8) and (9) will still hold but 

with different stochastic quantities r1 and r2. 

The main difference will arise out of (6), (7) and 

(8) in terms of the rate of the stochastic convergence. 



This in turn can be expected to depend on, amongst 

other things, the value of the elements of ~. 

5.5. F' and FMAX as test statistics of a 
conditional hypothesis 

The two most plausible test criteria arising 

out of the previous section, F' and FMAX, ca~ be 

compared in general terms with respect to their 

expected performance by using the framework of 

Chapter 3. For in the notation of (3.1.6) and (3.1.7) 

we are essentially contemplating a test of the 

conditional hypothesis 

against the alternative 

using the information contained by the values of ~. 

The conditional basis arises from the assumption that 

the regressors already fitted are "true" ones *.e. 

they appear in the underlying model with non-zero 

coefficients. The orthogonality property considerably 

simplifies the covariance matrix Yd of ~ by making 

it diagonal. 

Little work has been done on the power of the 

statistic FMAX apart from that of Ramachandran [6&1 

who showed that the power function is monotonic in 

each element of~. The power of the F' test is of 

course well established and was discussed in section 

2 part (b) above. The main difference between 



the two tests can be illustrated using the simple 

two-dimensional case. If we write 

~ = [::J 

then the acceptance region for F' is circular as in 

diagram (a) below, whilste that for FMAX is square 

as in diagram (b). {Note: These diagrams relate to 

the standardized vector d*. The appropriate regions 
'" 

for d will be, respectively, elliptical and rectangular}. ,., 

________ -r __ -; ____ +-____ ~dl 

(a) 

Although these regions generalize in a straightforward 

way to hyperspheres and hypercubes respectively it is 

not easy to come to precise conclusions for when 

these tests are used in stepwise regression. 
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It is interesting to note that the use of F' 

is also, like fllAX, equivalent to a test of a 

maximal quantity, namely (in the general case) 

Max 
~ 

q 
~ 

i=l 
* ~.d. 

1 1 

where ~ is the space of (~1 '~2' ••• '~ ) subject to 
q 

the normalizing constraint 

~2 = C, an arbitrary constant. 
i 

This is in fact just a special case of a more general 

result concerning tests on linearly independent 
I 

estimable functions, a proof being given by Scheffe 

[72 , p.70]. A similar interpretation will also 

apply in the non-orthogonal regression situation which 

is discussed later. 

We can perhaps gain some kind of qualitative 

feeling for the potential relative performances of F' 

and FMAX by comparing (1) with the corresponding 

expression for F't i.e. 

Max 
i=l, ••• ,q 

\d*\ 
i 

In the orthogonal case at lease one might, in later 

stages, expect FMAX to be more sensitive in detecting 

the relativel~ few true regressors which remain among 

the excluded set. In the non-orthogonal situation 

however even this possible slight advantage of FMAX 

over F' would seem to be lost. Again we shall have to 

rely on the results of empirical investigation to 

throw some light on the problem. 



5.6. The distribution of FNAX 

We return now to consider the distribution of 

the statistic FMAX defined at (2.9). FMAX is just 

the largest of the q quantities 

i = l, ••••• ,q. 

The underlying distribution is the quasi-independent 

form of the multivariate F-distribution, the dependence 

only arising out of the common presence of the 

denominator vk • The problem of the distribution of 

the extremum was first looked at by Hartley [33J who 

investigated the case where one has q independent 

estimates of 0 2 , S~ (i = l, ••• ,q), each having m 
1 

degrees of freedom. Given a further independent 

estimate S2 with v degrees of freedom Hartley derived 
o 

an iterative method for the distribution function of 

i = l, ••• ,q. 

The approximation was not too good however in the 

upper tails, especially when m = 1. This is of course 

the case of interest here. 

Nair [58 ] used a more efficient approximation 

procedure and tabulated the upper 5~ and l~ points of 

FMAX for q = 1(1)10 and V = 10,12,15,20,30 ,60,00 • 

These tables are perhaps more readily available in 

Pearson and Hartley's Biometrika tables [65 J. Some 
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slightly more extensive tables have been produced by 

Krishnaiah and Armitage [~2 J covering values of 

q = 1(1)12 and v = 5(1)45. There are a few differences 

between these latter tables and Nair's on the over-

lapping sections but on the whole these appear to be 

negligible. 

It might be noted that the case V = roproduces 

a multivariate chi-square distribution, corresponding 

to knowledge of a2 • The critical points for a fixed 

value of q are then easily determined using another 

approach, i.e., 

implies 

and hence 

2 
Prob[Largest X(l) ~ cJ = a 

l/q 
[2 t (VC) = O. 5a 

where t(x) is the area enclosed between 0 and x (> 0) 

by a standard normal curve. Using a standard Algol 

procedure [16 ] which gives ~(x) to 11 decimal places 

the l~ and 5% critical values of FMAX were determined 

by interpolation from a fine grid of values of c. 

Values for q = 2{l)40 are presented in Appendix 2. 

There is complete agreement with Nair's results 

on the overlapping section. 



5.7. A simultaneous inference approach 

It was mentioned earlier in Chapter 4 

that Lehmann [SoJ has developed the general theory 

for arriving at optimal procedures in a certain class 

of multiple decision problems. Since the basic 

structure of the stepwise identification problem 

for orthogonal regressors lends itself to a treatment 

in this way it is worthwhile investigating this 

further. Substituting our established notation into 

Lehmann's more abstract formulation we can list the 

main requirements of the class considered: 

(i) The decision procedure must consist 

of the simultaneous application of a 

number of different hypothesis tests, 

each of the form 

H 
o == ! E B~, 

J 
j=l, •••• ,m, 

where B* is a subset of the parameter 
j 

space'. In each case the alternative 

hypothesis involves the entire complement 

* set of B .• 
J 

(ii) The individual tests must be compatible, 

i.e., they must not lead to conflicting 

decisions. 

(iii) The overall loss function is defined 

additivelx over the m component tests. 

(iv) Only unbiased procedures are contemplated, 

i.e. procedures for which 



E[L(d**,~)J > E[L(d·*,~*)J 

for all d* and d**, and all ],* , where 

d* is the deCision that ~ = ,@,* 

d** " " " " " = ,@,** 

and ~* is the true value of ~. 

This definition of procedure unbiasedness 

is again due to Lehmann [49 J. Descriptively 

it amounts to the requirement that one should 

come closer to the correct decision on average 

than any incorrect one. 

For problems falling within the above class Lehmann 

presents the general theory for arriving at a procedure 

which uniformly minimizes the risk. 

We now consider the possibility of using such a 

decision structure for the stepwise identification 

problem. The natural hypotheses to employ in (i) are 

the set 

H -~. = 0 
o J 

with alternatives "" == ~. , °t j = It····,k. 
J 

The simultaneous application of such tests will 

certainly satisfy the compatibility requirement (ii). 

With regard to the loss structure we need to specify, 

for each j = l, ••• ,k, the losses a. and b. incurred 
J J 

in falsely rejecting or accepting H e~. = O. If, 
o J 

a priori, all regressors are valued equally, and if 

over- and under-fitting are regarded as being equally 
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disadvantageous, then we can take a. = b. = 1 for 
J J 

j = 1, •••• ,lc. 

With this particular specification it follows 

(see Lehmann [So,p.72]) that the individual tests must 

also be unbiased. This in turn requires that each such 

test must be carried out at the level of significance 

a. = b./(a.+b.), 
J J J J 

j = l, •••• ,k. 

In the case where a. = b. = 1 it follows that each test 
J J 

is performed at the 50% level. This amounts in fact 

to the use of FMAX with a constant critical value. 

We might in fact more profitably consider the general 

class of procedure which use FMAX with some constant 

critical value. To each such value will correspond 

a constant marginal significance level a. = a, say, 
J 

for the individual tests. While this class of procedures 

will of course be biased in general they do possess 

the advantage of avoiding the ambiguity associated with 

forward and backward approaches based on other stopping 

criteria. Thus we may now write r1 = rz = r, say. 

Although it is no longer possible to make simple 

probability statements for the case of finite n as in 

(2.5 ) the consistency property of least squares 

estimation still ensures that 

L~ Prob[r < p] = 0 (1) 
n CD 

as in ( 2.8) • The analogous expression to (2.7) is 

however not so readily obtainable. In fact, if c 



is the upper ~1 critical value for the F-distribution 

wi th 1 and n -k - 1 degrees of freedom, then 

Lim Prober > PJ = Y 
n-+w 

where y is the probability that FMAX exceeds c, and 

where the q parameter of FMAX has the value k - p. 

A procedure characteristic which it is possible 

to find in the class being considered is that of the 

expected number of redundant variables appearing in 

the selected equation. For if U., i = l, ••••• ,k-p, 
:1. 

are indicator variables associated with each of the 

k - p variables concerned then the required expectation 

is immediately given by 

k-p 
~ E[U.J = (k-p)a 

i=l :1. 
( 3) 

For reference purposes we henceforth refer to the 

above-described use of FMAX as F*. 

5.8 • Sununary 

In this chapter have been discussed various possible 

test statistics for incorporation in stepwise regression 

procedures, and it has been seen that the particular 

quantities FI, FMAX and perhaps F* offer some degree 

of plausibility. Whilst ideally one would now like 

to investigate the relative performance characteristics 

in terms of the analytical framework of chapter 4, it 

has already been remarked that it is not possible to 

follow through at such a level of rigour. Instead 

of this approach, therefore, some less objective evaluations 

will be attempted later based on the results of emp~rical 

studies. 
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Chapter 6 Prediction with Orth~gonal Regressors 

6.1 §eneral considerations 

Having examined possible test cr~ria for the 

identification problem we now turn to the much more 

ambitious task of prediction which was discussed in 

general terms in Chapter 4. Again the decision rules 

considered will be constrained by the basic one-step 

stepwise algorithm, decisions being made at each stage 

as to Whether to terminate or proceed to enter (or 

delete)another variable. We will restrict the discussion 

to that of prediction in the context of the classical 

linear model thus avoiding many of the not inconsiderable 

difficulties mentioned in{4.6). It is in any case 

unrealistic to impose the orthogonality condition in a 

stochastic regression set-up. rn particu1ar we wi11 be 

concerned, at least initial1y with the predi.ction of the 

'response' to a single set of regressor values ~. 

We suppose the stage has beenreached at Which r 

regressors have been Citted. We are then Caced with the 

decision as to whether it is worth adding extra variables 

when judged in terms of the expected change in mean 

square prediction error which would result. A major 

difCicu1ty which arises is that the vector estimator 

.E.{r) corresponding to the r included variables will 

not have the classical least squares properties oC 



unbiasedness and normality. This is because the 

induced distribution is conditioned by the fact 

th that the r stage has actually been reached. More 

particularly, even in the orthogonal case being 

considered, we cannot in general regard the elements 

of £(r) as being distributed independently either of 

each other or of coefficient estimates obtained at 

later stages. The consequences of this will become 

apparent below. 

Corresponding to the vector ~(r) will be a set of r 

of the k possible regressors. To avoid what appear 

to be complexities of an intractable nature it will now be 

assumed that the r variables entered correspond to the 

first r largest values of [32, ~ X~" j = l, ••• , k. We 
J i=l ~J 

will also suppose that these r values are non-zero 

(i.e. [3, ~ 0), and wi thout loss of generali'ty the 
J 

corresponding regressors 

* 
wi 11 be taken to be ~ , ••• ,X • 

r 

If we denote by ~(r) the augmented estimator obtained 

by setting the remaining k-r regression coefficients 

equal to zero, i.e. 

b -(r) 

o 

then the mean square-error of prediction associated 

th with the r stage is given by 
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* Where B(r) = ~'E[£(r)-~]. 
Although a Cormal veriCication would be diCCicult it does 

seem reasonable to suppose that, Cor large n, the vector 

estimator b(r) converges in distribution to the 

marginal (non-sequential) estimator b oC classical 
-r 

least squares. Such a conclusion is in Cact suggested 

by the discussion in (5.2). With such an assumption we 

can then write (1) in the Corm 

r 
,; cr + E~. Var[b

J
.] + a2(r) 

j=l J 

k 
= - E x.!3 .• 

j=r+l J J 

We might just pause to note an important diCCerence 

between the identiCication problem previously looked at 

and the prediction problem now under investigation. 

For in addition to the 'nuisance' aspect oC deciding on 

an appropriate value of~, a fUrther major difficulty 

is the non-additive contributions oC individual regressors 

to the overall bias component B~r). Hence one is no 

longer able to evaluate regressors in isolation Crom 

the remaining ones as in the identiCication case. 

A point of crucial importance Which has to be 

considered is whether the order oC variable introduction 

or deletion is justifiably related to the 52, quanti ties. 
J 

To examine this supp1se, without loss oC generality, 
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that X I is introduced into the regression equation. r+ 

The resulting change in mean square prediction error is 

given by 

k k 
MSE(r}- MSE(r+l)~ ( I: x.f3 .)2 - ( I: X.f3.)2 - r 1 Var[b 1] 

j=r+l J J j=r+2 J J r+ r+ 

k 

= x2 (.l2 + 2x (.l E x.(.l. - x2 Var[b J 
r+l~r+l r+l~r+l. 'J~J r+l r+l 

J=r+2 

It is now that we come up against the difficulty of 

choosing~. For suppose that Xr+2 were to be entered 

th ( at the r stage instead of Xr+l which is now also 

assumed to correspond to the maximum 52., j=r+l, ••• , k) 0 

J 

The corresponding expression to (3) is then 
k 

(3) 

x2r+2f32
r +2+ 2Xr +2 f3r +2 E x.f3.-x2 2Var [b 2] (4) 

j=r+l J J r+ r+ 
j~r+2 

Forming the difference between (3) and (4) we obtain 

k 
(5) 

+ 2 [xr +l f3 r +1 - x r +2 f3r +2 J E 
j=r+3 

x.f3. 
J J 

It is evident that, unless some severe restrictions are 

imposed on~, there are no grounds for supposing (5) 

to be a positive definite quadratic form in the x's. 

Although, for a specific choice of~, one could 

contemplate introducing regressors according to their 



maximum contribution in terms of (3) it does not 

in fact seem a realistic course to pursue. In any 

case the distributional problems are of a much greater 

order of complexity than in the analogous use of FMAX 

for the identification situation. We might however 

attempt to circumvent the nuisance aspect of ~ by 

relating our prediction objective to a typical set 

of such values. We are then effectively led into 

dealing with expectations (over ~ values) of quantities 

like (1), (3), (4) and (5). In the absence of more 

specific information we mighttben be prepared to assume 

that 

(i) over the area of interest for ~ the individual 

regressors are orthogonal (or independent). 

and(ii) the sample ranges of variation at the fitting 

stage reflect potential future ranges. 

n 
E[xi

J
.] = A E ~ . 

i=l 1J 

(where A is an arbitrary positive constant of proportionality) 

we can rewrite(l) a8 

r n n 
MSE (r ) = '" + A E ( E ~ .) (a2 / E Xi .) 

j=l i=1 1J i=1 J 

+ A 
k n 
E S2. ( E X~ .) 

j=r+l J i=1 1J 

k 
• "a (I+Ar) + A I: A.. 

j=r+l J 
(6) 
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n 
where we retain the notation A. = 132. I: x~ . 

J J i=l .1.J 

Consider now the reduction in expected prediction 

square error resulting from the extra inclusion at 

the fitting stage o£ an arbitrary regressor X , say, 
s 

to an equation already containing r arbitrary regressors. 

From (6) we have 

We can regard (7) as representing the predictive 

contribution offered by the use of X at the fitting s 

stage. Further, if we consider the total predictive 

contribution obtained be using all k regressors, we 

have 

(8) 

Hence we obtain a decomposition of the 'total predictive 

potentia1' into contributions from individual regressors. 

We might consider for a moment whether the expected 

order of entry, which Crom (5.2.1.) is govenned by the 

magnitudes oC the A. values, is in agreement with the 
J 

prediction objective. That this is so C01lows immediately 

Crom the result at (7). 

Having thus presented some degree of justification 

Cor continuing to use the maximum sum oC squares 

criterion we can now turn to the prob1em of choosing 

an appropriate test structure. Thus will now be 
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approached by way of seeking analogues to the 

statistics FMAX andF' which arose in the 

identification situation. 

6.2. The FMAX approach 

The reasonableness of testing, for a single specific 

determination x of the regressor variables, the extra -
predictive contribution obtained by including another 

variable has already been seriously questioned. But 

even apart from such considerations one is still faced 

with a non-trivial problem of distribution theory. 

For the expression at (6.1.3), on substitution of 

sample estimates for the unknown regression coefficients, 

does not yield a distributional form which is in any 

sense recognisable. 

We might instead, however, consider the possibility 

of using the simplified version of (6.1.3) given at 

(6.1.7), especially since the implications of this 

were shown to be more consistent with the use of the 

sj criterion £or variable entry. We are thus led to 

consider the hypothesis: 

H • X a2 /_< 1 
o r+l /' 

On substituting b r +l for Pr +l and vk for 

the test quantity 

a2 we obtain 

r 
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Whi1e computationa11y this is just the conventiona1 

F-va1ue for the estimate b r +1 its nuL1 distribution 

(taking equa1ity in (1» is, in a marginal sense, 

non-centra1 F(1,n-k-1, 1). Hence, in order to 

implement such a statistic at the rth stage of a 

stepwise procedure, one would require the use of 

Studentised 1argest non-centra1 chi-square statistics. 

It can be said with some degree of certainty that such 

tables do not at present exist. 

What we are ab1e to infer from the above 

considerations is that treatment of the quantity 

FMAX(p) (or equiva1en~y FMAX)as though it were 

distributed as FMAX in an identification context wi11 

lead to non-conservative conditiona1 tests. Whi1e 

admitted1y this mayor may not be serious in the 

context o~ a complete procedure (in the sense that 

the optimum significance 1eve1s to emp1y are not 

known in any case) it does indicate that an 

underfitting tendency in an identification procedure 

ma7 be desirable from a prediction viewpoint. This 

is something which again wil1 have to be examined 

in the light of the empirical results to be presented 

later. 

6.3 The F' approach 

We now turn to the possibility of adapting the 

F' statistic to the prediction case. The natural 

quantity to consider here is, in the case of 



prediction for a single determination x of the ,.., 

regressors, then given by 

(where we note that B(k) =' 0 by assumption). 

The quantity given in (1) is in fact essentially 

the same as that considered by Toro-Vizcarrondo 

and Wallace [74]. These authors are concerned 

with the different problem as to whether the imposition 

of a given set of linear restrictions is desirable 

in terms of the mean square-error estimation of any 

(and all) linear functions of A. If however we 

continue to assume that the order of variable entry 

is conditioned by the magnitudes of ~2j f X~., and if 
i=l 1J 

we also assume that b( ) is distributed as b , the 
"" r ""r 

two problems are basically the same. Hence, making 

use of the orthogonality present, we may write (1) as 

( 
k )2 k 

MSE( ) -MSE(k) = E x.~. - E x2.Var[b.J (2) 
r jar+l J J j=r+l J J 

The relevant criterion which determines whether it 

is worth adding extra variables at the rth stage can 

be written as 

( ~ xjP j)2/. ~ xjvar[b jJ ~ 1 
jar+l Jar+l 

Un1ike in the case of FMAX(p) , substitution of 

least squres est~ates of the unknown regression 

parameters does now yield a fairly reasonable 



distribution. For 
k 
I: 

j=r+l 
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x.b. will be distributed as 
J J 

N( ~ x.~., ~ x~Var[b.J) 
j=r+l J J j=r+l J J 

Thus we can form the test statistic 

( ~ F'(p) = t... 

j=r+l 
X.b.)'/(Vk . ~ J J J=r+l 

Taking equality to hold in (), and noting the 

independence of vk and~, it follows that F'(p) 

(4) 

is distributed as non-central F(l,n-k-l, 1). Although 

tables of this distribution do exist (see for example 

Toro-Vizcarrondo and Wallace [74 J) its use in stepwise 

algorithms will not be investigated in this study. 

This is because it is considered more realistic and 

useful to investigate the effect of taking expectations 

over ~ in the sense described in the opening section 

of this chapter. On doing this the resulting 

modification of () becomes 

~ p2 ~ Xl /( ~ 
j.r+l j i=l ij j=r+l 

• 

Substitutina the estimates of the p parameter.s and 

02 we recognize the numerator as the usual explained 

sum of squares quantity due to the k - r fitted 

regres.ors. The stati.tic which results is in fact 

computationally identical to F' in the identification 

cas.. The difference now is that, under the relevant 
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null hypothesis, we need to refer to tables of the 

non-central F(k-r, n-k-l, k-r) distribution. While 

again the lack of tabulated critical values precludes 

the use of such a test at present we might infer, as 

in the case of FMAX(p) , that F' identification procedures 

which tend to underfit may be desirable for 

prediction purposes. 

At this juncture we might pause to notice a 

change in the underlying hypotheses which FMAX and 

F' are testing as compared with the identification 

case. For in the latter situation the null hypotheses 

are identical in that they specify all the Aj 

(j • r+l, ••• ,k) to be aero. In the present situation 

of prediction we see that, while the n~l hypothesis 

for FMAX(p) is that 

for j III r + 1, ••• ,n, 

from (5) we see that the corresponding n~l hypothesis 

'£or F' (p) requires that the avera,. ~ j is less than cr. 
The null hypothe.is parameter space for FMAX(p) is thus 

a strict subset of that for FI(p). The difference 

ari ••• out of the fact that F'(p) is concerned with 

the decision whether or not to enter .!YJ.. the k - r 
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excluded variables, and thereo£e involves a balancing 

out o£ large and small predictive contributions. 

FMAX(p) on the other hand concentrates on the most 

promising single potential new entrant to the 

equation. However, despite this seeming advantage 

o£ the FMAX(p) approach, one has also to take 

into account the relative power characteristics 

of the two test quantities involved. We must again 

await the outcome of the simulation studies in order 

to pass any kind of judgment on this. 

It is interesting to note another type o£ 

conditional hypothesis which leads to the same test 

statistic given at (5) but whose null distribution 

is non-central F(k-r, n-k-l, 1). For suppose we seek 

a condition on ! such that the expression at (2) is 

negative semi-definite, or equivalently that (3) holds 

for all~. If we let 1* and ~* represent the 

sub-vectors consisting of the last k - r elements 

of ! and ~ respectively, and also if !* is the sub­

matrix of the last k - r columns of X, we can write -
the left-hand side of (3) as 

(6) 
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This expression satisfies the conditions of a form 

of the Cauchy-Schwarz Inequality, from which it follows 

that a maximum is attained when 

(See Rao[69 ,p.48]). 

Substituting (7) into (6) it follows that (2) is negative 

semi-definite if and only if 

(8) 

Replacement of the unknown quantities by the usual 

estimates leads to the non-central F(k-r,n-k,l) 

distribution (i.e. when the estimated left-hand side 

ot (8) is divided by (k-r). 

As is reasonable on intuitive grounds the resulting 

procedure will tend to overfit in comparison with the 

previous version based on (5). It is questionable 

however as to whether the particular hypothesis structure 

is appropriate from an overall viewpoint. One could 

for instance argue equally well for a test of the 

positive definitenes8 of (2), though such a test is not 

80 readily available. 
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6.4 Limitations of the approach 

Since, in an identification context, the choice 

of significance level ~ was seen to furnish some kind 

of asymptotic control over procedure performance we 

might consider whether such guidelines are available 

in the prediction case. It must however, be remarked 

that the Whole character and scope of the problem is 

different to that of identification, especially from 

an asymptotic viewpoint. For the consistency property 

of least squares when applied to the complete regression 

equation ensures that, with r = k in (6.1.1) 

One must first of all, therefore, be prepared to judge 

procedure performance placing more emphasis on non-

asymptotic relative efficiency criteria. 

In endeavouring to optimise in some way the 

choice of~, or at least in trying to establish the 

precise nature of its role, we immediately come up 

asainst some major difficulties. For suppose we look again, 

for example, at the application at each procedure step 

of the FMAX(p) criterion given at (6.2.1) and (6.2.2). 

We must of course retain the assumption of large samples 

in order that the orthogonality property of the stepwise 

induced elements of the estimator ~(r) is still 

approximately tenable. This asymptotic framework then 

carries with it the almost certain inclusion of all 
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regressors with non zero coefficients. This will occur 

as a consequence of the monotonically increasing 

component 
n 
~ 

i=l 
~. 

1J 
of the associated non-centrality 

parameter ~.. The success with which this is achieved 
J 

will however, for moderate and small sample sizes 

at least, depend a great deal on the level of a. At 

the same time of course onestill wishes to guard against 

too high a level of a causing regressors to enter which 

will have a negative net contribution to future predictive 

performance. 

Although it will not be pursued here there is 

again the possibility of using a simultaneous decision 

approach along the lines of F*. Such a procedure cou~d 

presumably be derived from the simu~taneous application 

of Don-central F tests on hypotheses based on (6.~.7). 

However, it does seem preferable, for the rest of this 

study at least, to concentrate on the more easily 

applioable test criteria such as conventiona~ F, FMAX 

and Ft. This is especially desirable in the more general 

situation of non-orthogonal regression in which the 

ooncept of simultaneous testing would seem to have little 

place. 

Xn the next chapter we proceed to describe an 

empirical study of various procedures whioh have 

arisen for use with orthogonal regressor set-ups. 



Chapter 7 An Empirical Study of the Ortho§onal Case 

7.1 Scope of study 

The motivation for carrying out empirical 

investigations using simulated data has already been 

established in much of the preceding discussion. 

However, despite the advantages of being able to 

avoid considerable analytical complexity, the 

"nuisance" parameter space is still such as to 

prevent anything but a cursory examination of the 

relative performances of procedures. The scope of 

the study will in fact be restricted to a comparison 

only of the FMAX, F' and conventional F sequential 

procedures, and will be directed mainly at the 

relatively less demanding objective of identification 

as described in chapter 4. Predictive performances 

will however also be examined in the light of some of 

the results of chapter 6. Procedures ~ased on a 

simultaneous inference approach are not looked at 

since they are contrary to' the basic conditional 

test philosophy which seems to underly stepwise 

regression (a feature which is perhaps more apparent 

in the non-orthogonal case to be discussed later). 

Since the three test statistics investigated 

can each be u.ed in both a forward and backward 

manner we have six different procedures in all. 



For reCerence purposes we number these procedure 

as follows: 

1. Forward procedure using FMAX 

2. Forward procedure using F' 

3. Forward procedure using conventional F 

As 1, 2 and 3 but using a backward approach 

Another procedure which was brieCly entertained 

was that oC using conventional F-tests with a critical 

value oC unity. The motivation Cor this stems Crom 

the fact that it can be shown that an equation oC 

order r has larger corrected a2 (equivalent to smaller 

residual variance) than the (r+l)th order model obtained 

by adding another variable iC and only if the (partial) 

F-value of this new variable is less than unity (see 

Haitovsky [31 ]). It was asserted by Lott [52 ] 

that econometricians use largest corrected R2 as an 

optimality criterion in model selection, and this 

author goes on to use it in a stepwise regression 

analysis with orthogonal regressors. The results 

obtained in the simulation runs using such a criterion 

resulted, as expected, in extreme overfitting and were 

not thought to be worth reporting in any detail. 

We can now turn to the problem of deciding on 

appropriate model formulations to use in the investig~ion. 



The main factors which would seem to influence procedure 

performance (within the framework envisaged) are:-

( i) The significance level a 

(ii) The value of n-k 

(iii) The value of k 

(iv) The values of I ~i I , or 2 
t3 i , for i = l, •••• k. 

(v) The sample variance of each X variable 

(vi) The error variance r!. 

One could perhaps incorporate the last three of these 

into the non-centrality parameter ~ = t3 2 ~ X2/a2 which 

is relevant to the conditional tests used. However, 

it is not absolutely clear that this follows for 

procedures involving the sequential use of an undetermined 

number of such tests. 

Since the basic aims of the exercise were to 

substantiate some of the arguments propounded in 

favour of FMAX and F' as opposed to the use of 

conventional F, and also to indicate possible areas 

for £urther study, a full grid coverage of values of 

the influencing parameters was not attempted. In 

particular on1y one level of a (5~) was used throughout 

the investigation. In the case of conventional F, 

although it is common to use a fixed critical value of 

4 throughout (i.e. the large sample 5~ point), the 

value. actually used were the ones taken from F tables 

oorre.pondins to the actual degrees of freedom. 



Another limitation arises in the choice of k 

due to the restricted nature of Studentised maximum 

chi-square tables. For this reason a value of k = 10 

was used in almost all cases. The main study then 

involved combinations of the three levels of n: 

31, 71, 150 

with five specifications of A 
( a) [0 0 0 0 0 0 0 0 0 0] , 

(b) [1 0., 0., 0.5 0.5 0.25 0.25 0 0 0]' 

(c) [3 3 3 0 0 0 0 0 0 OJ' 

(d) [10 9 8 7 6 5 0 0 0 0] 

(e) [3 3 0.125 0.125 0.125 0 0 0 0 0]' 

Fifteen different configurations were thus obtained, 

in each case both the regressor variances and error 

variance being taken as unity. Since it was not 

thought entirely realistic for the error variance to 

be as large as regressor variances three further models 

were determined by using the specification (b) for A 
with each of the levels of n, but with regressor 

variances equal to 9. For reference purposes this 

latter configuration is denoted by the letter (f). 

We thus have the six different set-ups (a), (b), (c), 

(d), (e) and (f) each investigated at the three given 

levels of n. It was felt that the six chosen 

.pecifications of ! covered a reasonable range of 

variation in the underlying model formulation. 

It might be remarked that case (e) is of espeCial 



interest from a prediction viewpoint. For, in the 

notation of the previous chapter, we see that the A 

values associated with each regressor variable are, 

in the case when n = 31, given by: 

279 279 0.48 0.48 0.48 0 0 0 0 0 

We thus see that that three of the non-zero A coefficients 

are less than the unit value taken for cr'-. Out of all 

the models considered theory suggests that in this 

case alone can we expect an underfitted model to yield 

smaller mean square prediction error than the estimated 

version of the true model. 

Finally, since tables are available for FMAX in 

the special case in which n - k is very large (see (5.6) 

and Appendix 2), four further simulation runs were 

performed for the case n • 180, k = 30 and regressor 

and error variances equal to unity. The four cases 

are distinguished according to the ! specification 

as follows: 

( g) ! • 0 
"" 

(h) l' • [10 10 10 5 5 5 5 5 1 1 1 1 1 

0.5 0.5 OJ 
"" 

( i) l' • [10 10 10 10 10 5 5 5 5 5 OJ -
(j) l' • [1 1 1 1 1 1 1 1 1 1 0.5 0.5 

0.5 0.5 0.5 0.25 0.25 OJ -
(where each vector is of dimension 30). 



7.2 Description of program for identification 

For the purposes of the study described in the 

previous section a computer program was written which 

began by generating a n X k matrix of regressor values. 

These were then held fixed for the succeeding iterations. 

By allowing a general linear transformation of this 

matrix it was possible (in theory) to impose an arbitrary 

"correlation" structure. The case of orthogonal 

regressors presented a problem in that variables 

generated completely randomly will not in general have 

diagonal sample correlation matrix. Since, for small 

values of n at least, this proved to be a serious 

problem a different approach was required. One possibility 

was to use the values of orthogonal polynomials given 

by Pearson and Hartley [ 65 J. However, this restricts 

the range of values of n which can be considered, and 

would also have involved a fair amount of data punching. 

The method actually used was the Gram-Schmidt orthogon-

ali.ation procedure applied to columns of a randomly 

senerated matrix of standard normal deviates.+ The 

fin this and all succeedins simulation studies the random 

numbers were generated usins Alsorithm G05ADA of the 

Nottinsham Alsorithms Library [60 J. This procedure employs 

two independent sequences generated by the multiple 

consruential method, normality beins obtained by using the 

standard"Box-Mu1ler" transformation (see Box and Muller 

[ I 5 J, N eave [, I J). 

The s~ulation. were mainly carried out on the 

Nottinsham Uni~er.ity ICL 1906A computer (a few initial 

run. beins performed on an English Electric KDF 9). All 

pr'osr". were written in Aisol 60. 



procedure incorporated the usual Gram-Schmidt practice 

of normalizing the matrix columns so that they had unit 

length and zero mean. 

Given the k-dimensional vector of regressor 

coefficients n "conditional" means were calculated 

and stored. At each subsequent iteration of the program 

independent standardized normal random variables were 

added to the means as residuals, thus generating the Y 

values. The actual number of iterations chosen for 

each run was taken as 500 in the identification case, 

this taking approximately 45 minutes of computing time 

on KDF9 in the case where n = 71. Whilst the choice of 

the number of iterations obviously has a bearing on the 

accuracy of the summary statistics to be described 

below it was felt that the exploratory nature of the 

exercise did not warrant the use of more rigour in 

choosing this number. In any case limitations of computer 

resources would have prevented a much larger study. 

A major problem was faced in deciding how best 

to summarize the simUlation results. Two types of 

summarization were in fact decided upon. The first 

of these was a table showing the number of times each 

regressor variable appeared in the final selected 

equation. The second type of summarization was a table 

for each of the six methods showing the percentage 

number of occasiona on which the method over- or underfitted 



the correct model, and by how many variables. This 

second type of table was thought to be the most 

informative, and will be used almost exclusively to 

describe the results obtained. In their full version 

each table is a (k+l) X (k+l) matrix in which the rows 

represent the number of variables overfitted and the 

columns the number underfitted. All entries in cells 

other than in either the first row or first column 

relate to what will be referred to henceforth as "mixed 

cases", i.e., cases in which incorrect variables are 

present at the expense of "true" ones. 

7.' Description of program for prediction 

As was stated previously predictive error of 

fitted equations depends very much on the value of ~ 

used at the prediction stage. It is therefore important 

that procedures be compared using the same ~, or more 

realistically using a set of ~ values which are typical 

of future applications. It was decided therefore to 

generate, in exactly the same way as for the original 

X matrix, a lOOX k matrix of regressor value. from 
~ 

which a hundred values of the (exact) conditional 

mean were calculated. For each model selected by 

the various .tepwise procedures a set of corresponding 

e.tt.ated conditional means was obtained, and a 

hundred values of squared error were thus determined. 

The.e value. were then averased, and again averaged 

over all iterations of the program to produce what 

should be fairly reliable figures with which to 

ca.pare procedure predictive efficiency. 
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Since the absolute values of mean square error 

thus obtained could be changed merely by a rescaling 

of the Y and X data it was thought best to record the 

results in percentage efficiency form. This was 

effected by taking the ratio of the optimal value 

(smallest mean square error) with each of the other values 

obtained and expressing these figures as percentages. 

Strictly speaking one should add the residual vaiance 

~ to each mean square error value to obtain genuine 

predictive measures. Though this would effect the 

actual absolute percentage values the ranking of 

procedures would be unchanged. The major reasons for 

leaving out the ~ contribution were, firstly, that it 

represents the inherently unpredictable component of 

variation in the regressand and, secondly, the wider 

range of prediction error ratios which results from 

its omission facilitates the subsequent evaluation of 

prodecures. 

Although the basic program structure needed is the 

.ame a. in the identification case it was decided to 

write a separate program for prediction evaluations. 

This ha. the effect of making both the! values and the 

number of iterations different in the two cases of 

identification and prediction. This was not however 

thought to be crucial in relation to the kind of 

inferences which were to be drawn from the results. 

The number of iterations obtained in each prediction 

run was in fact 250. 



7.4 Presentation of results 

Although the results obtained from the simulation 

runs were already in summarized form as described in the 

previous two sections, it is possible to draw up 

considerably more simplified tables Whilst still 

retaining most of the features of interest. Particularly 

noticeable was that there is a neligible difference in 

performance between forward and backward procedures of 

the same type. In fact the only occasions when a 

difference occurred at all were those for which n = 31. 

For this reason it was decided to focus attention on 

the three basic procedure types by looking only at those 

labelled 1, 2 and J in section 1. Also since, in this 

orthogonal case at least, the so-called 'mixed' cases 

account for a relatively small proportion of the 

equations £itted, it did not seem necessary to present a 

detailed breakdown of all such cases. 

The following Tables 7.1 to 7.6 relate respectively 

to the cases (a), (b), (c), (d), (e) and (f) as specified 

previously, and Table 7.7 presents the results for 

cases (g), (h), (i) and (j). Each table is sub-divided 

into separate tables labelled A and B, relating 

respectively to the identification and prediction criteria. 

Type A tables are essentially condensed versions of the 

identification tables of the second kind described in 

section 2 and show the percentage number of occasions 

(iterations) on which various final equations were selected. 
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Thus the type A tables indicate the distribution o~ 

the various degrees o~ under- and over~itting which 

occurred and also the proportion o~ mixed cases. The 

£inal column o~ the tables contains a 'score' which 

reelects the degree o£ departure o£ a ~itted equation 

£rom the correct one. At each iteration incorrectly 

omitted and included variables are counted, and these 

counts are averaged over all the iterations to give the 

score value recorded. 

The second kind o£ table, type B, records the 

percentage e£~iciency ratios based on the mean square 

prediction errors as described in the previous section. 

In addition to the three basic methods (1,2 and 3) re£erred 

to above two £urther ones are also £eatured in this 

prediction situation. These are: 

7. Prediction using the estimated complete 

equation (i.e. using all K regressors). 

8. Prediction using the estimated 'true' model 

(i.e. only estimating the (known) non-zero 

coe££icients).T 

Method 1 should provide an indication o£ the seriousness 

o£ the over£itting aspect associated with not attempting 

to reject non-in£ormative regressors. Method 8, on the 

oth.r hand, should indicate the consequences o£ the 

t.ror re£erenc. purpo... tbe various procedures used in 

this and subsequent simulation studies are listed in 

Appendix ,. 



underfitting tendencies which are anticipated for 

stepwise procedures based on FMAX and F' in particular. 

Figures 7.1 to 7.6 serve as a supplement to the 

type B tables in the evaluation of the predictive 

performances of procedures. Each graph shows, for each 

specification of A, how each of the five methods 

improves in predictive performance as the value of n 

increases. In order to construct these graphs the 
• 

underlying absolute predictive efficiency values of 

the type B tables were used. The smallest of the 

l5X k values obtained was then expressed as a percentage 

of each of the remaining values thus yielding overall 

percentage predictive efficiency ratios. 

7.5 Conclusions 

Considering firstly the identification aspect it 

would seem fair to say that the results just presented 

substantiate the theoretical arguments put forward 

earlier. In particular the use of FMAX and F' in 

methods 1 and 2 respectively demonstrates the asymptotic 

controlling effect of the choice of~. This is to be 

contrasted to the use 'of the conventional F approach, 

which clearly has no such property. It is remarkable 

that, in addition to the al_ost exact agreement 

between forward and backward procedures of the same 

type, hardly any difference is apparent between the 



TABLE 7.1 

(~ = 2; Regressor variances = 1) 

TABLE A 
.- . - ---~r--· -- -.- - -- - -

Meth od n Number of variables overfi t ted . score 
0 1 2 3 4 .... -- -.- --- ---'" .- .... '- -----

31 94.8 4.6 0.6 - - 0.06 

1 71 96.4 3.4 0.2 - - 0.04 

150 95.4 4.4 0.2 - - 0.05 .--
31 94.4 4.8 0.6 0.1 0.1 0.07 

2 71 95.8 3.6 0.6 - - 0.05 

150 94.8 4.6 0.6 - - 0.06, - .-
J1 56.4 29·2 12.0 2.0 0.4 0.60 ! 

71 59.6 Jo.8 7.8 1.6 0.2 
0.

54 1 
150 60.2 30.2 8.0 1.6 - 0·51 

3 

TABLE B 

Method n 

31 71 150 

1 80.6 100 100 

2 100 78.2 81.1 

3 10.0 9.2 12.9 

7 2.5 2.9 3.8 

8 - - -



. TABLE A 

Method n 

31 
1 71 

150 

31 
2 71 

150 

31 

3 71 
150 

TABLE B 

TABLE 7.2 
~'= [1 0.5 0.5 0.5 0.5 0.25 0.25 0 0 0]; 

Regressor variances = 1) 

Number of variables under-/overfitted Mixed 
-7 -6 -5 -4 -3 -2 -1 0 1 2 Cases 

0.4 15.8 25.4 25.0 18.2 8.6 3.2 0.8 0.2 - 2.4 

- - 0.2 2.0 14.8 37.4 33.4 10.2 0.2 - 1.8 

- - - - - 10.6 36.8 49.0 2.0 0.2 1.4 

0.2 5.6 14.0 27.4 25.4 13.2 s.6 1.0 0.4 - 7.2 

- - - 0.2 9.2 37.4 39-8 8.0 0.4 - 5.0 

- - - - - 7·0 45.0 41.4 2.4 0.4 3.8 

0.2 1.8 5.6 15.4 24.2 24.8 11.8 3.0 0.4 - 12.8 

- - - 0.2 1.0 21.2 37.8 26.2 5.0 0.4 8.2 

- - - - - 1.6 21.4 63.4 9.6 0.4 3.6 

Method n 
31 71 150 

1 29.2 50.6 67.(J 

2 34.1 53.3 63.7 

J 46.1 69.1 75.3 

7 75.4 69.5 68.0 

8 100 100 100 

Score 

4.1 
1.66 
0.63 

2.7 
1.57 
0.68 

2.7 
1.06 
0.4 



TABLE 7.3 

(]'= [3 3 3 0 0 0 0 0 0 0] 

Regressor variances = 1) 

TABLE A 

Method Number of variables 
n overfitted 

0 1 2 3 

31 93.4 6.4 0.2 -
1 71 95.8 4.2 - -

150 95.6 4.4 - --
31 94.4 5.4 0.2 -

2 71 95.6 4.2 0.2 -
150 95.4 4.2 0.4 -

31 65.4 28.6 6.0 -
3 71 70.0 25.4 4.4 0.2 

150 71.6 24.6 3.8 -

TABLE B 

Method n 
31 71 150 

1 87.3 79.1 87.5 

2 90.0 81.9 88.5 

3 61.6 53.2 63.5 

7 29.7 26.3 34.2 

8 100 100 100 

Score 

0.07 

0.04 

0.04 

0.06 

0.05 

0.05 

0.41 

0.35 

0.32 
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TABLE 7.4 

<,§' = [10 9 8 7 6 5 0 0 0 0]; 

Regressor variances = 1) 

TABLE A -
Method Number of' variables 

n 
ov!rCi t~ed J 0 

J1 94.8 4.8 0.4- -
1 71 95.0 4.8 0.2 -

150 96.0 4.0 - -
J1 95.2 4.0 0.6 0.2 

2 71 96.0 4.0 - -
150 96.8 J.2 - -

J1 81.4 16.8 1.6 0.2 

J 71 82.0 17.4 0.6 -
150 79.8 19.6 0.6 -

TABLE B 

Method n 

)1 71 11)0 

1 96.1 96.7 96.5 

2 95.8 97.0 98.) 

) 86.) 87.) 87.J 

7 61.9 69.0 69.4 

8 100 100 100 

Score 

0.06 

0.05 

0.04 

0.06 

0.04-

O.OJ 

0.20 

0.19 

0.21 
i 
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TABLE 7.5 

(~' = [3 3 0.125 0.125 0.125 0 0 0 0 0]; 

Regressor variances = 1) 

TABLE A 

- --
Method Number of variables under/ Mixed n overf'itted Cases ScorE 

-3 -2 -1 0 1 
- --

88.0 1 31 8.2 0.4 - - 3.4 2·5 

1 71 '84.0 10.0 0.8 - - 5·2 2·9 
150 67.0 25·0 4.2 0.4 - 3.4 2·7 --

31 89.4 6.6 0.4 - - 3.6 2·9 
2 71 81.8 10.0 1.2 - - 7.0 3.C 

150 61.0 26.2 7·0 0.4 - 5.4 2. E 
- - -

31 52.0 19.2 2.2 0.4 - 26.2 2·9 
3 71 41.4 28.2 7.0 0.8 - 22.6 2·7 

150 28.0 34.0 15·0 4.0 1.4 17.6 2.2 
-- -.. -

TABLE B 

-
Method n 

31 .z.1 _ ~!L 
1 100 74.8 55.9 
:2 96.6 73.1 54.8 

3 63.6 59.1 53.8 

7 37.4 43.9 52.2 
8 81.5 100 100 



.TABLE 7.6 

(~'= [1 0.5 0.5 0·5 0.5 0.25 0.25 0 0 0 ] 

Regressor variances =9) 

TABLE A 

:----.--

Nethod n i'iumber of variables under-/ Nixed Score l 

overfitted Case:: 
i -2 -1 0 1 2 3 
1 -
I 1.11 

' I , 31 13.2 80.2 4.4 0. 11 0.2 
I 

0.2 0.22 
I 

1 
! 

71 95.'1 Il, .ll: 0.2 0.05 , - - - -
1 1S0 - - 95.8 lJ:. 2 - - I - 0.04 I - ~--

1.0 12.4 81.0 4.6 0.6 0.2 0.4 0.22 I 31 
2 I 71 - - 95.6 4.2 0.2 - - 0.05 

I 150 - - 95·2 4.6 0.2 - - 0.05 I . 

31 0.2 3.4 82.2 12.1l, 1.2 0.2 0.4 0.20 

3 71 - - 85.8 13.2 1.0 - - 0.15 

1150 - - 85. 8
1
13.8 0.'1 - - 0.15 , , 

TADLE B 

)1ethodt n 
31 71 150 

1 66.1 84.3 81.7 

2 58.'i 84.5 81. 11 

3 71.3 79·2 76.1 

7 59.8 59.8 60.0 

8 100 100 100 
- i 
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* TABLE 7.7 

(For speci~ication of cases see the end o~ section 1) 

TABLE A 

Number of variables under-/ 
Method Case qverfitted Mixec 

-2 ~1 0 1 2 3 4 5 Case:! 

g - - 94.6 5.4 - - - -
h - - 95.6 4.4 - - - -

1 i 90.2 8.8 1.0 - - -- -
j 14.2 34.8 42.6 5.4 - - - - ' 

g - - 92.6 3.2 4.2 - - -
h - - 96.8 3.2 - - - -

2 
i 92.4 - - 5.4 1.2 1.0 - -
j 14.2 47.8 34.8 1.2 - - - -
g - - 18.2 3L2 27.0 14.0 8.6 1.0 

h - - 46.6 36.6 1L2 5.6 - -3 
i - - 33.6 32.6 17.4 12.0 4.4 -
j 1.2 4.4 41.4 34.8 10.8 1.2 - -

TABLE B 

Method 
Case 

g h i j 

1 36.5 97·2 90.8 69.4 

2 100 99·2 93.8 65.9 

3 2.5 71.8 61.4 90.3 

7 0.8 47.6 34.5 57.1 

8 - 100 100 100 

* Tables A and B are based on 90 and 50 iterations 
respectively. 

- I 

-
-

3.0 

-
-
-

2.0 

-
-
-

6.2 

Score 

0.05 
0.04 

0.11 

0.75 

0.12 

0.03 
0.11 

0.83 

1.67 
0.76 
1.21 
0.81 
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FIGURE 7.3: Prediction Efficiencies for case (c) 
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FIGUHE 7.h: Pred~ction Efficiencies for case (d) 
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FIGUHE 7.5: Prediction Efficiencies for case (e) 
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performances of FMAX and F'. Neither of these criteria 

can be said to demonstrate a definite superiority 

over the other. For while F' (method 2) appears 

marginally better in the situation of Table 7.2, 

for example, the similar configuration of case (j) 

in Table 7.7 can be said to be more favourable to 

the use of FMAX. 

If we turn to the performance of the procedures 

using conventional F one can only really find support 

again in the two similar situations of Table 7.2 and 

case (j) of Table 7.7. In such instances the seemingly 

inherent tendency to overfit of such procedures appears 

to compensate for the small magnitudes of the A. 
J 

parameters, this same characteristic causing the FMAX 

and F' criteria to have reduced power. The situation 

of case (j) does however also indicate that even in 

such instances this compensation can ultimately (as n 

gets large) be undesirable. What is perhaps one of the 

most dangerous aspects of the conventional F approach 

is revealed very clearly in Table 7.1 and case (g) of 

Table 7.7. For in such circumstances one would often 

be led to conclude that significant regressors do exist 

whereas in fact the contrary is true. This characteristic 

of conventional F will be encountered again later when 

time series situations are investigated. One consequence 



there will be that an autocorrelation structure is 

likely to be deduced for what is in fact a completely 

random process. 

While it is obviously impossible to arrive at 

completely hard and fast conclusions on the basis of 

what are only exploratory investigations, methods 1 

and 2 do certainly demonstrate a desirable asymptotic 

property. If, in a particular application, one also has 

a priori knowledge as to the number of regressors 

possessing non-zero coefficients there is then scope 

for improving procedure effiCiency in the general (finite 

sample) case. In a situation like that of Table 7.2, 

for example, this might be achieved by automatically 

fitting the first few variables without invoking test 

criteria. Alternatively the same effect could be 

achieved by using a higher level of significance at 

each testing stage. Much will depend of course on the 

kinds of situation one expects to meet in the pr~cal 

field of study. 

The above discussion has related to the problem 

of identification of regression models an~ as was 

mentioned before, one is faced with difficult problems 

concerning the specification of an appropriate loss 

structure. When we turn to the prediction aspect 

procedure evaluation is considerably simplified. If 

we look firstly at the performance of method 8 we find 



that knowledge of the true model specification does, in 

general, lead to optimal predictive equations. The only 

exception to this is when n = 31 in Table 7.5, and this 

is precisely the situation where theory leads us to expect 

such an occurrence. It is interesting to note that, 

although the best procedures in this circumstance 

(methods 1 and 2) are associated with an underfitting 

tendency as expected, the procedure based on conventional 

F does not do as well as method 8. The explanation would 

seem to be that while conventional F does tend to 

underfit, in so far as it omits true regressors, it 

does also give rise to a large proportion of mixed cases. 

Looking now at the performance of method 7 we 

find, as might be expected, that the use of all 

available potential regressors is certainly not desirable. 

Such a procedure does in fact only avoid being worst 

in the situation of Table 7.2, and even then its 

performance can be seen to be declining relative to 

the other methods as the s~ple size increases. In 

what i8 perhaps a more realistic version of this same 

situation we see in Table 7.6 (or from Fig.7. 6) that 

method 7 becomes firmly entrenched at the bottom of the 

overall rankine. 

There remains the problem of evaluating the 

three variants of the stepwise approach. If we slance 

at Figs.7.1 to 7.6 we can see that our conclusions have 
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to be essentially as they were £or the identification 

case, except that there is slightly more evidence now 

in favour of F' and FHAX. Again it is hard to detect 

any real difference in per£ormance between the use o£ 

FMAX and F' (the striking result in case (g) o£ 

Table 7.7 being accounted £or as perhaps not an 

unexpected value of the ratio of two very small 

quantities). Although faring well in situations 

in which there is a large proportion of regressors 

with small associated non-centrality parameters 

~ = 132 I: Xi / rf 

this advantage is eroded as we either increase the 

regressor variances or allow the sample size n to increase. 

In overall conclusion it seems that, on asymptotic 

grounds at least, the use of either FMAX or F' as test 

criteria is to be preferred to that of conventional F 

both from an ~dentification and prediction viewpoint. 

While one cannot be so definite in the finite (small) 

sample situation, there is still much evidence in 

support of the former two procedures. Further to this, 

one always has the knowledge that at worst the final 

selected equation will most likely be an underfitted one unlike 

in the us. of conventional F. 

Havine investigated the orthogonal regreSSion 

situation in SOBle detail. in chapters 5, 6 and the present 

one we So on in the next chapter to broaden our discussion 

to the non-orthoaonal situation. 
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Chapter 8 Stepwise Regression with Non-Orthogonal Regressors 

8.1. Special features of the non-or.thogonal case 

The discussion so far has mainly related to situations 

in which orthogonal regressors are available, and this has led 

to considerable simplification in our argument. This has not 

however reflected the area of application of stepwise 

regression in practice. For indeed the very existence of mixed 

forward/backward routines must suggest its intended use in the 

more general non-orthogonal case. Particularly noticeable 

in this direction has been the recent use of the stepwise 

approach in a number of econometric studies, and in the 

associated field of time series analysis. We therefore now 

take a look at the extra difficulties which arise in this 

more general situation of non-orthogonality. Specifically, in 

this chapter we shall be generalising some of the points made 

and proposals suggested in the previous chapters, ), 5 and 6. 

Initially the discussion will relate mainly to the objective 

of identification i.e. the determination of which regressors 

occur in the underlying model with non-zero coefficients. 

The concluding section will however deal with the aspect of 

prediction. 

We will continue to assume that the regressor can be 

regarded as a set of fixed constants. This means that the 

circumstances are either such as to permit replication of 

these values, or at least that they are stochastically 
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independent of the errors in the underlying model. 

The main point of depar~ure is that the matrix X'X --
is now no longer assumed to be strictly diagonal. 

The first point to emphasize is that, in general, 

different equation sequences will now be produced 

by forward and backward procedures. One can in fact 

construct examples in which the first variable to enter 

in a forward procedure is also the first to be deleted 

in a backward approach. This stems from the fact that, 

unlike in the orthogonal case, the contributions due to 

particular regressors depend very much on which other 

variables have already been entered. Hence one can, for 

a fixed order of equation r, obtain two vastly different 

sets of regressors and two different residual sumsof 

squares values. Further, neither of these residual sums 

of squares beed be smallest possible amongst all fitted 

equations involving r regressors. This contrasts sharply with 

the orthogonal case previously considered and is a feature 

to be taken into account when comparing single-step 

procedures with 'all equation' procedures of the kind 

described in chapter 2. It is nevertheless still 

constructive to examine the source of these limitations and 

ambigni ties wi thin a theoretical framework if only so that 

stepwise regression results are regarded with appropriate 

caution in practice. 

8.2 Comparison of forward and backward approaches 

The choice between using a forward or backward approach 

now has an added dimension in the non-orthogonal case. 
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For whilst previously in the orthogonal case 

interest could be centered on the underfitting/ 

overfitting characteristics of procedures, we now 

have to face the very real possibility of spurious 

relationships leading to what can be described as severe 

mixed cases. This can occur when a particular regressor, 

although not present in the true model, has a high 

correlation with a set of regressors which are. It is 

then quite possible, in a forward approach at least, 

for such a regressor to be fitted at the complete 

exclusion of the set concerned. This was in fact an 

argument put forward by Mantel [67] in favour of the 

use of backward approaches. TIle same kind of argument 

was however also employed by Beale [9 ] in support 

of the forward approach. Beale argues'that a regressor 

which could considerably decrease the residual sum of 

squares if added to the final equation selected might 

already have been irretrievably lost due to a nonsense 

correlation with variables which are later eliminated. 

While this kind of occurence can indeed be demonstrated 

to be plausible on theoretical grounds (though being less 

likely to occur as n increases) it is precisely this 

eventuality Which mixed forward/backward procedures 

are designed to overcome. 

'!be above points can be more properly demonstrated 

using the theoretical basis developed in chapter J. 

In particular we can, as in the orthogonal ~ase,consider 
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the expected order of entry or deletion of variables 

to the fitted equation. Again, at the stage where r 

variables have already been fitted, the decision to 

enter or delete a variable will still be based on the 

k - r extra sum of squares quanti ties 

52. = a2 (d*) 2 
J i 

where d! = di/ad as at (3.1.12). 
i 

Continuing to use the notation of chapter 3, 

we first consider the expected values of these k - r 

random variables in a marginal sense (i.e. disregarding 

for the moment the fact that a stepwise procedure induces 

a conditional distribution at each step.). Thus, 

recalling from (3.1.12) that d* = cr-lFt d, it follows - - .... 
that we can focus attention on the diagonal elements 

of the matrix 

On substituting for ~d and !d in terms of the 

expressions given at (3.1.6) and (3.1.7) we can 

write (1) as 

Th. first term of this expression is immediately 

•• en to have all its diagonal elements equal to a2 • 

This follows from the definition of F given at (3.1.4) -
and (3.1.5). The diagonal terms of the second matrix 

in (2) are seen to be just the squares of the elements 



-i f of the vector! ~2~J!1' the magnitudes of which 

were investigated in some detail in the latter part 

of section 1 of chapter 3. In the light of the 

results obtained there some comments of a general 

nature can be made concerning the expected behaviour 

of various procedure types. 

Firstly, with regard to purely forward 

procedures, (3.1.11) indicates that we can no longer 

necessarily expect variables with non-zero true co-

efficients to be entered before those whose true 

coefficients are zero. This is essentially the 

"spurious correlation"aspect referred to earlier. 

However (3.1.10) does suggest we can expect, subject 

to the sensitivity of the test criterion used, that 

procedures will continue to enter variables until all 

the correct ones have been included. When such a 

stage has been arrived at the fact that ~d - 2 should 

then have the effect of terminating the procedure 

quite quickly. We note that the facility of allowing 

variable deletions to take place is still desirable 

in order to el±minate variables whose earlier 

spurious significance has ultimately disappeared. 

Although this could admittedly sometimes cause true 

regressors to be deleted it can be argued that on 

balance the overall effect of allowing deletions to 

occur should be advantageous. 
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I£ we turn to consideration o£ a strict 

backward approach we can now expect procedures to 

begin by deleting the truly redundant ones. The 

extent to which true regressors are then also deleted 

is very dependent on the associated test sensitivity. 

Again a substantial case can be put £orward £or 

invoking a mixed procedure approach by allowing, in 

this instance, a variable entry £acility to be present. 

Although the details will not be given here 

we can, as in the orthogonal case at (5.2), strengthen 

the above arguments £or large sample sizes with a 

procedure consistency property. The essential point 

in the argument is that, as we increase the sample 

size n, the corresponding moment matrices X'X must bear 
,... I'V 

a scalar proportionality to each other. This ensures 

that we preserve the expected equation sequences which 

are produced irrespective o£ the value o£ n. 

Finally, although we have not yet investigated 

possible test criteria for use at each step o£ a 

procedure in the non-orthogonal case, we might brie£ly 

contemplate the possibility o£ making statements 

.~ilar to those in (5.4) concerning control on 

under- or overfitting. As £ar as a strict £orward 

procedure is concerned we can obviously no longer 

expect protection against over£itting as is implied by 
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(5.4.5) and (5.4.7) in the orthogonal case. Indeed 

the best that we can say for any reasonable procedure 

will be that there will be a zero asymptotic probability 

that underfitting occurs. This is again just a 

consequence o£ the consistency property re£erred 

to above. 

In the £ollowing two sections we consider the 

possibility o£ again using the test criteria o£ F' 

and FMAX respectively. The use o£ a simultaneous 

in£erential approach along the lines of F* will not 

be entertained. For such an approach cannot, by its 

very nature, utilize the extra sensitivty obtained by 

making decisions conditionally on the outcomes of 

previously tested hypotheses. Thus, hence£orth we 

concentrate exclusively on the class o£ stepwise 

decision procedures. 

8.) The use o£ F' 

It was stated earlier in (5.4) that the statistic 

v 
F' :::a (n-r-l)-L _ n-k-l 

k-r v k k-r 

is distributed as F(k-r,n-k-l) under the hypothesis 

that the included variables are the true ones and 

the excluded variables are the unwanted ones. That 

this result continues to hold in the non-orthogonal 

situation is a standard result o£ regression theory. 



g.g 

However we can demonstrate the validity of this in 

a way which also throws light on the connection 

between F' and the composite hypothesis Ho = ~d = 0 

which was discussed in (3.3). 

We take as our starting point the result that, 

if S is distributed as N(~,y), then 

is distributed as chi-square with k - r degrees of 

£reedom (where k-r is the number of excluded variables 

at the rth stage). We will suppose that the p "true" 

regressors are included in the r that have already 

been entered i.e. that in the notation of chapter 3 

~2 consists only of unwanted variables. Since ~ = 2, 
we have 

Q • S'X-IS = !1~2!(a2!Z;~Z2!}-1f!;tl! 

where ( ' -1, ~ = ! -!, !1!1) ~1 

Since Q involves the unknown value of a2 it is 

necessary to use the independent estimate given 

by v
k

• As v
k 

in turn is distributed as a2 (n-k-l)-l 

times a chi-square variable with n - k - 1 degrees 

of freedom it follows that 

is distributed as F[k-r, n-k-l]. Moreover, 



and hence (" CDll b(~ calcl'.1 ntcd i.'l"Onl t,j-1C c." 1 1 (. .,(u:.p .. e 

data. I t now- remains to fjho,v thn t Q' = F'. 

To see this 'We ,,,ri to 

(n-r-l)v - (n-h:-l)v 
r Ie 

F' _ 
O<-r) v

k 

Further, from clwptcr 3, 've have 

Using the partitioned form of! = [~1 ~2J we can 

wri.te this as 

Z (7'Z )-lZ'Z E- 1z' 7 E- 1Z'7 (2 Z )-lZ ' -,..,1 ~1N1 .....,1.....,2,~.....,2 -~2"':' ~2~1 ~1,.;!1 ,....1 

-1' , -1' 
+~2~ ~2~1(~1~1) ~1J~ 

where § = Y [,f-.b (~'~ )-1.b' J.b 
This simplifies to 

, ( , . )-1 , t:" 

E'~~2 ~2~~2 ~2~~ 

• e;'fNZ2F(FZ;NZ2F)-lFZ;NE 
,-..J ,...,,"" ,...., f"'otH"W ,.....,,....,,....., f""oJ"'''''';'''''' 

* The required result is obtained by putti.ng! =- ~1 Q1 + f:.-

in (l) hlhere ~f = [t J), D.nd shol'1ing equality \if th (2) -
r-J 

We may again, as in the orthogonal case 

at (5.5.1), observe that the use of 1'" is equivalent 

to the test of a maximal quantity_ Again, fol10ldng 

., 
Scheffe [72 ], we are essentially testing the hypothesis 

II 
o 
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where in this non-orthogonal situation ~ is the space 

of vectors ~ = [¢, ... ~ ]' subject to the normalizing 
q 

constraint 

2' E 2 = c , 

and where C is arbitrary (but fixed) constant. 

In a corresponding manner the acceptance region 

for F', which in the orthogonal case was spherical, 

now becomes ellipsoidal. 

8.4 The use of FMAX 

Some remarks have already been made in section 

J of Chapter J concerning the distribution of FMAX 

in the general case. It was stated there that the 

relevant distribution theory is that of certain 

multivariate generalizations of the chi-square, t 

and F distributions. The study of such distributions 

might be said to have begun with a paper by Krishnamoorthy 

and Parthasarathy [46J who looked at what is generally 

referred to as the mUltivariate gamma or mUltivariate 

chi-square distribution. The purpose of their paper 

was to obtain an expression for the joint density 

function of what are essentially the diagonal elements 

of a Wishart distributed matrix. This they managed 

to achieve in terms of an infinite series of Laguerre 

polynomials, the validlty of such a representation 

depending on certain convergence conditions on the 
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correlation matrix of the underlying associated 

normal distribution. 

Of more direct relevance to the problem 

at hand are studies concerned with the actual evaluation 

of probability integrals of Studentised versions of such 

multivariate distributions. Since the expression derived 

by Krishmamoorthy and Parthasarathy is not sufficiently 

tractable to permit such computations other approaches 

have been suggested. A starting point in this direction 

consists of two papers by Dunnett and Sobel [21 ,22 ] 

in which they defined what is referred to as the 

mUltivariate t distribution. This distribution is in 

fact obtained by Studentising the mqltivariate chi-

square variates referred to above, thus leading to a 

distribution having probability density function given 

by : 

f(t 1 , ••• t ) = 
q 

I Ol-ir[i( V 0 +q)] 

(\) ox) Cih T[V
2oJ 

where 0 is the correlation matrix of the underlying 
". 

multivariate normal ~stribution (and corresponds to 

* () as defined at (3.1.13», w . . is the (i, j) - element 
1,; l.J 

of 0-1 and V are the degrees of freedom of the 
- 0 

denominator estimator of a2 • 

Dunnett and Sobel then proceed to look at the 

evaluation of the general probability integral: 
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Prob[t. < h.; i =1, ••• ,q] 
1. 1. 

• • • Jh q f ("t.t , • • • ,t ) d t1 , ..., d t • •• ( 2 ) 
-00 q q 

While such evaluations are possible (but by no means 

straightforward) in the case where q = 2, severe 

difficulties are faced in the general case when q > 2. 

However, in the secondQf their two papers referred to above 

Dunnett and Sobel suggested a transformation whereby, in 

the special case in which w • . = c. c. for i, j = 1, ••• , q 
l.J 1. J 

(and 0 < c. > 1), the problem can be 
- 1. 

converted to one 

involving q + 1 independent standard normal variables. 

This transformation has subsequently been exploited in 

several other investigations into related problems. 

It might be noted at this point that the problem 

as far as stepwise regression is concerned is the 

determination of h such that, for given a, 

, ••• , dt 
q 

~ We are here supposing that equi-co-ordinate 

probability points are the right ones. While this was 

probably the correct approach in the orthogonal case 

the situation is now less clear. For, given a specified 

alternative hypothesis, it is very likely that a more 

general acceptan~e region.should be determined from 

h2 h 
S • •• s q f( ~ , • • ., t ) d~ , ••• , dt = 1- (t 

-h2 -h q q 
q 

where the hi' i-I, t •• q, are now dependent on n. 
Problems of specification of appropriate hypothes.es will 

however preclude further investigation of this point in 

this study. 
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Evaluation of the integral on the left-hand side of (J) 

is seen in fact to correspond to finding 

Pro b [ Max It. \ < hJ 
. 1 ~ 
~= , ••• , q 

or equivalently, 

Prob [ Max 
i=l, ••• , q 

While it is true (e.g. see Krishnaiah [ 43]) that 

evaluation of the integral at (3) depends only on the 

absolute values of the elements of n ' one is still 

faced with the same basic difficulties which occur in 

the more general case given at (2). Thus, as far as is known, 

the most extensive tabulations of integrals which are 

relevant to our proposed use of FMAX are those given by 

Krishnaiah [4J,44,45]+ 

The first of these sets of tables (i.e. Krishhaiah [43]) 
presents the values of h 2 in (3) corresponding to 

V = 5 (I), 35, q = 1(1)10 and ex = 0.10,0.05,0.025 and 0.01. o 

An equi-correlation structure is assumed throughout with 

Wij = p taking the values 0.05 (0.05) 0.,. In Krishnaiah 

[ 45 ] the roles of h and ex are interchanged and q 

taken to be 2, thus giving values of ex corresponding to 

h = 1.0(0.1)5.5 and the same grid of values for v and p 
o 

+ Krishnaiah has produced a number of (joint) reports 

which comprise mainly tabulations of various multivariate 

probability integrals useful in simultaneous inference 

applications. His motivation seems to stem from 

Krishnaiah [41] in Which the main interest is in post 

analysis of variance tests in a particular experimental 

design set-up. These reports contain many references to the 

published literature on the evaluation of mUltivariate 

probability integrals of the type considered above. 



as above.Finally, in Krishnaiah [44], tables similar to 

the two described above are presented for the case when 

v = roi.e. in the case where the multivariate F 
o 

distribution is equivalent to the multivariate chi-square. 

Having examined the situation regarding the 

distribution of FMAX it must be remarked that the prospects 

of its implementation within stepwise procedures in the 

general non-orthogonal case are pretty daunting. For it is 

extremely implausible that the correlation matrices 

encountered in practice will be anything like the 

equi-correlated versions for which tables of FMAX are 

available.Nor is it at all feasible to contemplate 

probability evaluations corresponding to the actual 

correlation structures actually obtained. At best only 

some kind of approximation might be attempted. One 

possibility is to take the average of the q(q-l)/2 

different values of w •. and to use this as if it were a 
l.J 

common correlation coefficient. However, there seems 

to he no theoretical justification at all for doing this 

and its implementation would be rather cumbersome. 

A technique which is often of use in similar 

situations in which there is a dependent structure is 

that of the Bonferroni Inequalities. If we let A. 
1. 

denote the event that Itil > h then we have, using 

Boole's fundamental equal~ty, 
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q q q 
Probe U A.] = 

. 1 ~ 
L: Prob[A. J - L: L: Prob [A. n A. ] + 

. 1 ~ .<. ~ J ~= ,q ~= ~ J 

q-l + (-I) Prob [ n 
i=l, ••• , q 

It follows from (4) that 

Probe Max Itil < hJ = 
1=1, ••• q 

1 - Pro b [ U A. ] 
. 1 ~ 
~= , ••• , q 

q q q 
= 1- L: Prob [A.) + L: L: 1?rob[A. n 

i=l ~ i<j ~ 
A . J ••• + (-1) qPro b 

J 

A. ] 
~ 

(4) 

[ n A.J (5) 
. 1 ~ 
~= , ••• q 

The partial sums obtained by including successively more 

of the terms on the right-hand side of (5) give successively 

sharper upper and lower bounds to the required probability 

and are known as the Bonferroni Inequalities. One such 

inequality is immediately obtainable using the fact that 

where P1 is the marginal probability that a t - variate 

with ~ degrees of freedom falls outside the interval 
o 

[-h,h]. One can then proceed to obtain an upper bound to 

the required probability on the left-hand side of (5) by 

again invoking Boole's Eqality on each of the terms 

Prob[A. n A.], i.e., 
1 J 

Prob[A. n A.] = 2 P1 - Prob [A. U A.] 
~ J ~ J 

= 2 P1 - 1 + P2 ( • . ) 
~,J 
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where P2 (. .) = Prob [ A. U A.] 
~,J ~ J 

= Pro b [1 t, 1 ' 1 t ,1 < h; w. ,]. 
~ J - ~J 

The q(q-1)/2 such values of P2 (. ') which are 
~,J 

required can then be obtained from the tables of 

Krishnaiah for each of the values of w. ,. Thus, 
~J 

from (5), we have the inequality 

Probe Max I t. I < h] ~ 1 q(q - 1)/2 + q(q - 2)P1 . 1 ~ 
~= , ••• , q 

A way in which the above procedure could be implemented 

in a stepwise regression context would be to find the 

particular upper bound associated with the observed 

maximum value Of' I t. I, 
~ 

i = 1, ••• ,q. Using a desired 

rejection level of ~ this then leads to an actual 

rejection level which is greater than~. The subsequent 

effect on procedure performance will be a tendency to 

introduce further variables into the regression equation 

( 6) 

than is consistent with the desired significance level (X. 

An attempt was made to gauge the accuracy of the 

upper bound at (6) by making comparisons in a situation 

in which the correct probabilities are known. Such a 

situation is that of' the equi-correlated case where, in 

order also to allow comparisons to be made with the 

effect of' ignoring the correlation structure altogether, 

the particular case was chosen in which the denominator 

degrees of freedom are infinite. Using Krishnaiah's 
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tables [44 ] for the distribution of the maximum of 

correlated chi-square variates the true critical values 

h on the lef~hand side of (6) were found for p = 0.0(0.1)0.8, 

q = 10 and for a fixed probability of 0.95. Then, for each 

such value of h, the upper bound for the probability was 

found as on the right-hand side of (6), the resulting 

values being given in column 2 of Table 8.1. Finally, in 

column 3 of the same table are recorded the probabilities 

corresponding to each value of h but this time supposing 

the correlations w • . (i, j=l, ••• ,10) are all zero. 
~J 

Table 8.1 

(Evaluation of accuracy of Bonferroni 

Inequality approximation) 

p 

0.0 

0.1 

0.2 

0.3 

0.'* 

0.5 

0.6 

0·7 

0.8 

Bonferroni 
Upper Bound 

0.95000 

0.95000 

0.95008 

0.95133 

0.9':5,'*15 

0.95721 

0.972'*1 

1.00069 

1.06673 

Probability 
taking n = .! 

0·95000 

0.94971 

0.94836 

0.9'*628 

0.9'*188 

0.93588 

0.92678 

0.91249 

0.88859 

Table 8.1 cannot be said to be very encouraging towards 

the use of the Bonferroni bound. Although there is still 

the possibility that the approximation might be more 

worthwhile in the more general case where correlations are 
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not all equal the indications are that one might 

equally as well suppose the correlations are all zero. 

The main point is of course as to whether it is thought 

worthwhile to go to a great deal of trouble in 

incorporating extensive tables in a stepwise routine 

in order to achieve what promises to be only a very crude 

probability bound. The main purpose of the above exercise 

has been to demo~rate in fact that there are now 

overwhelming advantages in favour of the use of the Ft 

approach of the previous section. Further, the 

experiences in the orthogonal case (which should be no 

less favourable to FMAX) seem to indicate that even 

precisely evaluated probabilities for FMAX would be an 

unnecessary luxury. Thus our concentration will 

henceforth be mainly focussed on procedures using the 

Ft criterion. 

8.5 A general procedure using Ft 

It has been seen that a characteristic of the 

general non-orthogonal situation is that a variable 

which contributes the minimum to the explained sum of 

squares, when included in an equation does not in general, 

when deleted, yield the maximum such quantity amo~ the 

resulting excluded set. This will in fact be so irrespective 

of whether the variable concerned is a ttrue' one or not. 

In the same way the excluded variable which gives the 

largest contribution will not, in general, give the smallest 
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contribution amongst the included set when it is 

entered. As a consequence of this some care needs to 

be taken in specifying the practical implementation of 

the mixed forward/backward procedure now appropriate in 

non-orthogonal contexts. 

Our proposed procedure will be 'backward orientated' 

in the sense that the full equation involving k variables 

will be fitted initially. The reason for choosing this 

backward bias, rather than beginning from a zero order 

equation, is motivated by the observed tendency of procedures 

to underfit in the orthogonal case. A backward approach 

aso has the property that the variables which are delated 

first are more likely than not to be truly unwanted ones. 

This cpntrasts with a procedure which starts out with a 

forward approach where we have seen that entering variables 

may very well be ones which we eventually wish to delete. 

The procedure will be described in general terms to allow 

for the possible implementation of FMAX- type test 

criteria. 

The procedure begins by testing for a variable 

deletion in the usual way. At each subsequent stage one 

then first of all tests whether introduction of an 

excluded variable is significant. If this is so then 

the variable with largest contribution is entered, 

and the same question is asked again. If no variable 

is entered in this way a search is then made of the 

included variables for the one giving smallest explanatory 
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sum of squares, this variable then being automatically 

deleted. A test is again made for possible variable entry. 

If this test if not significant one continues to look for 

another possible deletion. If however the test is 

significant one enters the variable yielding the largest 

contribution as before except that now if this entering variable 

is also the one which has just been automatically deleted, 

the procedure then terminates. The question arises of 

course as to whether ultimate termination is certain. 

It would seem that one could pbssibly construct cases in 

which the termination exit is never encountered. However, 

such an eventuality could not in any case be ruled out 

in the use of mixed stepwise procedures based on conventional 

F. In view of the fact that cycling has never occurred 

in any of the numerous stepwise applications which have been 

performed in this study, both on artificial and real data, it 

would seem that this feature constitutes an extremely remote 

possibility. 

To aid understanding of the mixed procedure 

described above a flow diagram is given in Figure 8.1. The 

procedure is henceforth referred to as Method 10,and is 

described again in Appendix J for ease of reference. 

8.6 Prediction with_~on-orth~gonal regress~ 

We conclude this chapter by generalizing some 

results obtained in Chapter 6 relating to the prediction 

objective for stepwise procedures. We continue to use the 
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'Z' notation whereby Z denotes the n x r matrix 
- -r 

corresponding to the r included variables and ~ ";:'k-r 

similarly relates to the excluded set. Again we will 

be forced to assume that the sequentially obtained 

coefficient estimators behave as they would in the 

estimation of. the corresponding completely specified 

model (albeit a possibility mis-speciCied model). The 

consistency property referred to earlier in section 2 

does in fact at least provide an asymptotic justification 

for such an assumption. As before our objective is to 

obtain a final equation which minimizes the subsequent 

prediction mean square-error when applied to a future set 

of regressor values. Initially we relate the problem to 

prediction of a single future value of Y given a single 

dltermination ,! of regressors (where,! is a k x 1 vector). 

We begin, as at (6.l.l),with the mean square error 

of prediction which results from using the equation 

th ( obtained at the r stage or more accurately the stage 

when r regressors occur in the equation). As before we have 

* where B(r) = ,!'E [~(r)-..§]' and where the notation 

follows that of (6.1). We now obtain expressions for 

the last two components on the right-hand side of (1). 

Firstly, consider the variance component 

* * Var[x'b( )J = Var[b(~)x] ....... --r -r--
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Recalling that £~r) = [!<r)] and noting that, 

with ourassumption that £(r) can be regarded as the 

ordinary least squares estimator b , 
-r 

(z Z ) -1 Z' .! 
£(r) = -'r -r -r 

we can then write (2) as 

E[E'Z (Z' Z )-1 x x'(Z'Z )-lZ' _s1 
- -r r r -r -r -r-r -r 

(Here x represents the vector of those elements in x 
-r 

which correspond to the r included variables). 

A similar expression can also be derived for the bias 

component B~r) in (1). We have in this case 

Noting that, on using (3), we have 

(Z'Z )-lZ'Z R. I 
-r-r -r-l<.-r~-r 

-~-r 

--
then (5) becomes, after some simplification (and also 

using the partitioning of ~ ~' which results from 

writing ~' = [~; ~r])' equal to 

where M = I- Z (Z'Z )-lZ' • 
-r - -r -r-r -r 

(3) 

( 6) 
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Having thus obtained an expression for (1) in 

terms of a2, (4) and (6) we will now proceed to I average I 

the value of MSE(r) over a typical set of future x 

determinations. As in the orthogonal case we will now 

suppose that the fitting stage covariance matrix X'X - -
typifies the future covariance pattern of the elements 

of x. Hence we assume that 

E[x x'] = A(X'X) 
.--. -- .-... ...... 

where A is an arbitrary constant of proportionality. 

Using this assumption in (4) and (6), and not distinguishing 

between the now averaged version of MSE and the previous 
r 

version relating to a single specific~, we obtain 

+ A R I Z_' M Z R 
- ~k;-r-~r-r-k-r-t:::l~r 

Looking at the variance component on the right-hand 

side of (7) we have 

A E[gIZ (ZIZ )-lZIg] 
- -r -r-r -r-

= A a2 trace [Z (Z, Z )-lZ '] 
-r -r-r -r 

= A rI- trace [ZIZ (Z'Z )-1] 
-r-r -r-r 

= A r a2 

Hence, we finally obtain 

(8) 



Using (3) we can now proceed to obtain analogues 

for quantities already derived in chapter G specifically 

for the orthogonal case. ive do so by looking in turn at 

In this case lve see immediately that the 'total 

predictive potential', HSE(O) - r.ISE(l~)' is given by 

A(.@.'~'~ .@.- kif). 

Comparing this with (6.1.8) in ,'lhich ~r! was diagonal 

we see that 've can no longer effect a decomposition 

of this quantity into additive contributions from 

individual regressors. 

The main difficulty here is in finding a simple 

expression for the quantity 

which is essentially the change in subsequent expected bias 

due to including a further variable Zr+l in the equation 

at the fitting stage. 

l.ve nmv- let "Z 1 denote ti1e ::latrix of rcc;rcssor --r+ 

values obtained by uU.cmcntin,C; t~le matrix Z containillC: 
""-J -- -r .... .-



Using (3) we can now proceed to obtain analogues 

:for quantities already derived in chapter G specifically 

for the orthogonal case. ive do so by looking in turn at 

In this case we see i~nediately that the'total 

predictive potential r, HSE(O) - NSE(It) I is given by 

Comparing this with (6.1.8) in which !'! was diagonal 

we see that \~e can no longer effect u decomposi tion 

o:f this quantity into additive contributions from 

individual regressors. 

The main difficulty here is in finding a simple 

expression for the quantity 

R r Z ' \1 Z B - B r 7 r 1-1 z- B 
.t:::.}t-r-k-r.:..r:-k-:r--k-r --k- (r+l) AoIk_ (r+l) -r+l..q{- (r+l) ..... !c- (r+l) 

which is essentially the change in subsequent expected bias 

due to includiYlg a further variable Zr+l in the eCl'tution 

at the fitting stage. 

~"e no\\'" let "Z 1 denote the ::lutrix of' rC"Tessor --r+ .::> • 

values obtuined by uu,s;l11cllting tile lilatrix Z containin.; 
-r -
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the regressors already fitted with the observation 

vector zr+l corresponding to the newly entered 

regressor Z 1. Thus r+ 

z = [z z ] • 
-r+l -r -r+l 

FolloWing an identical argument to that which led 

to (J.l.B) we find that 

M = M (I- d- l z z' )M 
-r+l -r - -r+l-r+l -r 

Where d is the scalar quantity z, 1 M z 1. -r+ -r-r+ 

If we also partition gk-r and ~-r in the form 

Q,k-r = 

we find, on using the expression for M 1 at (6), that -r+ 

(9) can be written (with some simplification) as : 

-1 -r:P ~, M z [/3 +d z, M ~ R ] 
~-(r+l)~-(r+l)-r-r+l r+l -r+l-r~-(r+l)~-(r+l) 

It follows from (B) that a variable Z 1 will be worth r+ 

(11) 

entering on our mean square-error of prediction criterion 

provided the expression at (11) exceeds cr2. We now show 

that the introduction at the fitting stage of the 

variable Z 1 which maximizes the explained sum of squares r+ 

(out of the k-r possible choices) corresponds in 

expectation to the variable subsequently yielding the 

biggest decrease in mean square prediction error. Further, 



the same argument shows that the appropriate test 

statistic for the hypothesis implied above is in fact given 

by FMAX. The only difference in its use in the present 

context is that the appropriate null distribution will, 

in the general case, be a non-central multivariate F 

distribution. For obvious reasons the possible practical 

implementation of such a test criterion will not be 

-
pursued here. 

To verify the above statements we need to refer back to 

the general results of Chapter J. In particular we need the 

expression given towards the end of section 1 of that 

chapter for the extra explained sum of squares due to 

. t d . . bl 7J i ) . t th t . ""- . . ~n ro uc~ng a var~a e ~ ~n 0 e equa ~on. ~ll~S express~on 

was there given as 

In our present notation the matrix E. will be seen to 
-~ 

be identical to 

d-~ z z' M 
-r -r+l -r+l -r 

taking expectation (w.r.t. ~) in (12) we obtain, 

apart from a a2 term, an expression whi ch is the sum of 

9 terms similar to those in (11). Five of these 

terms combine to give exactly expression (11) while the 

other four terms embody either a M Z or Z'M matrix -r -r -r-r 

product. Such latter terms are therefore identically zero. 
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Hence we have demonstrated the validity of the previous 

assertion, which also completely generalizes a similar 

result obtained in the orthogonal case. 

It is interesting to note that we have also 

shown that, still retaining the assumptions made regarding 

future values of~, the introduction of any variable 

at any stage can be expected to improve the bias component 

of subsequent mean square error. However this still has to be 

weighed against the extra a2 contribution to instability 

which is incurred, and one also has to guard against variables 

included at an earlier stage becoming redundant. 

Finally, we briefly Xok at the quantity which essentially 

indicates whether there is any predictive capability left 

in the remaining set of excluded regressors at any stage. 

We have immediately from (8) that 

MSE(r) - MSE(k"l = AA' z..' M Z R - A(k-r)cr2 
~k-~k-I-r-K-~'\(-r 

It is easy to show that, replacing the ~ 

coefficients by their estimates (obtained from the complete 

equation), we arrive at exactly the test quantity F' 

discussed in the context of identification earlier. Again, 

as in the orthogonal case at (6.3.5), we need to refer this 

statistic to tables of non- central F[~-r,n-k-l,k-r]. 
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Having generalized much of the theory which 

was previously obtained strictly in the context of 

orthogonal regression we go on in the next chapter to present 

the results of some simulation studies relating to the 

non-orthogonal case. 
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Chapter 9 An Empirical Study of the Non-orthogonal Case 

9~1 Scope of study 

The reasons for carrying out an empirical investigation 

in a non-orthogonal situation are mainly twofold. Firstly, 

it is of interest to compare the performance of the proposed 

forward/backward procedure using F' (methodlO) with the 

three procedures based on conventional F which are now 

possible. Secondly, it will be informative to compare 

procedure performance in general with the results already 

obtained in the orthogonal case. 

Altogether five different procedures will be 

invesuigated. Firstly, we again include the procedures 

denoted as methods J and 6, which are just the forward and 

backward versions of stepwise procedures based on the use 

of conventional F. In addition we also include a general 

forward/backward procedure based on conventional F similar 

to that described under (c) in (2.1), except that now a 

backward orientation is imposed. Essentially, beginning 

with the complete fitted equation, the included variables 

are searched and tested for a possible deletion according 

to the conventional F criterion. If, at any stage, no 

deletions are indicated the excluded variables are then 

examined with a view to introducing a variable. The procedure 

terminates When no variables are deleted or entered at a 

particular stage. For reference purposes the procedure 

is henceforth referred to as method 9 and, like all other 

procedures contemplated in this study, is listed and 
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described in Appendix J. The fourth procedure looked at is 

the one based on F' which was fully described in (8.5), 

and is listed as method 10. 

The fifth procedure investigated (method 11) is identical 

to method 10 in all respects except that the FMAX criterion 

replaces that of F'. The FMAX critical values are however 

taken to be those strictly applicable to the orthogonal 

regression situation, i.e., the non-diagonality of n is 

completely ignored throughout. The two sets of probability 

approximations given in Table 8.1 do seem to indicate that 

the above procedure is as good an approximation to the exact 

use of FMAX as is afforded by recourse to the rather 

inelegant Bonferroni approximation. 

As a digression, we might just contemplate the 

possibility of using an exact FMAX approach by simulating 

a situation which exhibits an equi-correlation structure 

at all its stages. The actual~neration of such an initial set 

of regressors presents no problem using an observation 

made by Dunnett and Sobel [ 22 ]. Specifically, if 

V.(i = 0,1, ••• ,n) are a set of indepexdent random variables 
~ 

each having zero mean and unit variance, then (for p = 0) 

are a set of equi-corre1ated random variables with common 

correlation coefficient p. A similar transformation applies 

to the case where p is negative, such possibilities being 

limi ted by the restriction that p > - l/(n-l) 



(see David [18 ,p.8S]). There is however a major 

impediment to the usefulness of such an approach 

in a stepwise simulation study. For it is quite 

easy to show using roinductive argument that, beginning wi th 

n equally correlated random variables with correlation 

coefficients p and equal (arbitrary) variances, the 

common partial correlation coefficient between any n r 

variables, holding fixed the remaining r variables, is 

given by 

P{r) = 
P 

l+rp 

In the case where p is positive we see that p{r) 

declines monotonically to zero as r increases. For 

example, when p = 0.5 we obtain the sequence: 

0.5, 0.)), 0.25, 0.2, 0.16, ••• , 

and even for p as large as 0.8 we just obtain the 

sequence 

0.8, 0.44, 0.), 0.2), 0.19, •••• 

It is evident that, starting with a positive valued 

correlation coefficient, equi-correlation non-orthogonal 

designs converge very rapidly to orthogonal type configurations 

when used in a stepwise context. Thus we can expect little 

light to be thrown on the performance arising from the 

exact use of FMAX in the general non-orthogonal case. 

This view was supported by a few simUlation runs which were 

performed with p = 0.5, negligible differences being 

revealed between the operation of exact FMAX, approximate 



FMAX (taking p = 0) and F' criteria. Similar remarks 

apply to the case in which p is negative. For suppose 

we take the lowest possible value of p, p = - l/(n-l), 

corresponding to a sample size of n. Also, suppose we 

think that a subsequent value of Per) equal to- ~ is a 

desired correlation level in terms of exhibiting the 

potential use of FMAX. Then we easily find that such 

a value of Per) only occurs for r > n- 4:. Again such 

a configuration would be of little value for the use 

which we wish to make of it. 

The five different procedures described above 

(methods ),6,9,10 and 11) were investigated simultaneously 

for each of the 18 configurations generated by the 6 

specifications of ~ given in (7.1) each taken at the same 

three levels of n as before. In the present context the 

dimensionality of the space of influencing parameters is of 

course considerably increased by the non-orthogonality 

now permitted. It was however decided to select (arbitrarily) 

an initial! matrix exhibiting a reasonable degree of 

non-orthogonality at all of its stages in a stepwise 

sequence. To this end a transformation waS applied to an 

initial matrix Which was generated completely randomly from 

a normal distribution with zero mean and unit variance. By 

appropriately normalizing the columns of the post-multiplying 

transformation matrix the initial regressor variables still 

retained the variance values chosen in the orthogonal case. 
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Appendix 4 shows the sequence of expected partial 

correlation matrices generated by introducing variables 

into the equation according to their (known) magnitudes 

of S. This gives some idea of the degree of non­

orthogonality retained throughout a typical stepwise 

sequence. 

Unlike in the orthogonal case the empirical 

investigation here only covers the Cases for which 

k = 10. The main reason for limiting the study in this 

way was to avoid the handling of the cumbersome )0 x )0 

transformation matrices which would be necessary in 

situations like those designated as (g), (h), (i) and 

(j) in (7.1). The cases which are investigated should 

however be quite adequate for the type of inferences 

we wish to draw. 

9.2 Description of program and presentation of results 

The workings of the programs for both the 

identification and prediction studies have already been 

described fully in (7.2) and (7.3). The only alteration 

now arises in the generation of the initial X matrix, and 

this was described in the previous section. As before the 

number of iterations performed was fixed at 500 and 250 

in the two respective cases. 



While the form of the summarized tables which 

follow remains the same as in the orthogonal case in 

chapter 7 it must be remarked here that the columns 

for'mixed cases' now incorporate a much greater degree 

of summarization than before. In particular it 

frequently happens that the proportion of fitted 

equations falling into this category actually increases as 

the value of n gets larger. This is of course no more 

than is to be expected in situations which, for very 

small n, possess a strong tendancy to underfit. While a 

breakdown of mixed cases in such situations usually 

reveals a reassuring tendency for the 'quality' to 

improve (in the sense that they get closer to the true 

model), it was thought unnecessary here to present such 

a breakdown in detail. Instead it is felt that the 

'score' column effectively summarizes such features. As 

far as the prediction aspect is concerned there are really 

no new statements to be made. In these cases, as before, 

we also incorporate the 'control' procedures (methods 

7 and 8) into the study. 

We now present the results of the simulation study 

in Tables 9.1 ,to 9.6. As mentioned above these results 

run parallel to those already looked at in Tables 7.1 

to 7.6. 
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TABLE 9.1 

(..@. = ..Q; Regressor variances = 1 ) 

Table A 

Variables overfitted 
Method n 0 1 ~ 3 4 '5 6 7 I S 9 Score 

3 31 64.8 ~7.2 7.2 0.8 - - - - - - 0.44 

3 71 65.2 27.0 6.6 1.2 - - - - - - 0.44 

3 ~50 66.0 ~7.2 6.2 0.6 - - - - - - 0.41 

6 31 64.8 ~8.8 7.6 2.8 ~.2 ~.6 1.8 0.6 0.8 - 0.77 

6 71 67.6 19.6 5.8 2.6 p.S 1.4 1.2 0.6 0.2 0.2 0.64 

6 ~50 68.6 17.8 7.0 2.2 1.4 0.4 1.8 0.4 0.4 - 0.63 

9 31 59.2 23.0 8.8 3.0 1.2 1.6 1.8 0.6 0.8 - 0.84 

9 71 61.6 24.6 6.8 2.6 P.8 1.4 1.2 0.6 0.2 0.2 0.69 

9 tt50 61.4 23.6 7.8 2.8 1.4 0.4 1.8 0.4 0.4 - 0.72 

10 31 96.2 2.8 0.4 - 0.2 - - - 0.2 0.2 0.08 

10 71 93.8 4.6 0.4 0.6 - 0.2 0.4 - - - O.ll 

10 ~50 96.0 2.6 0.6 0.4 - - 0.4 - - - 0.07 

11 31 94.0 5.2 0.2 - 0.2 - 0.2 - 0.2 - 0.09 

11 71 96.8 3.0 0.2 - - - - - - - 0.03 

11 ~50 92.6 6.6 0.4 - - - 0.4 - - - 0.10 

Table B n 
Method 31 71 150 

3 6.2 14.1 27.4 

6 4.1 10.8 22.5 

9 3.7 9.8 19.8 

10 1100 100 99.7 

11 91.6 67,,2 100 

7 1.0 2.7 6.1 



TABLE 9.2 

~, = [1 0.5 0.5 0.5 0.5 0.25 0.25 0 0 0] 
Regressor variances = 1 

Table A 

IMethod n Variables underjoverfitted Mixed 
ScorE -6 -5 -4 -3 -2 -1 o ' l. ~ Cases 

3 31 0.4 36.8 26.2 12.0 2.2 - - - - 22.4 4.29 
3 71 - 8.2 21.6 13.2 1l.2 0.8 - - - 45.0 4.48 

3 150 - 0.6 10.6 14.8 22.2 2.6 0.2 - - 49.0 3.85 

6 31 0.2 9.8 13.2 18.0 7.6 5.0 - 0.2 O.~ 45.6 ~~83 

6 71 - 2.8 6.6 8.6 H.E 6.2 0.4 0.2 - 63.4 3.58 
6 150 - 0.2 4.0 7.2 21.E 6.6 2.6 0.2 0.2 56.4 2.88 

9 31 - 10.4 13.0 17.2 7.6 4.8 - 0.2 O.~ 45.6 3.84 

9 71 - 2.4 7.2 6.4 12.E 5.8 0.6 0.2 - 64.6 3.60 
9 150 - 0.2 3.6 6.2 22.~ 6.2 3.0 0.2 O.~ 58.2 2.93 

10 31 6.2 51.4 17.0 6.8 1., 0.6 - - 0., 16.6 4.72 
10 71 - 16.6 21.4 14.6 7.E 3.0 - - - 36.8 4.17 
10 150 - 0.8 13.8 21.4 20.E 7.2 - - - 36.0 3.15 

II 31 3.6 49.0 18.2 7.8 2.~ 0.4 - - - 18.6 4.59 
11 71 - 17.4 18.2 1l.6 8.6 4.0 - - - 40.2 4.13 
11 150 - 2.2 14.4 15.6 23.2 7~0 0.2 - - 37.4 3.26 

Table B 

n 
Methoc 31 71 150 

3 68.0 54.5 54.4 
6 54.5 53.3 60.0 

9 56.5 55.6 62.4 
10 47.1 44.5 47.5 
H 50.6 45.6 50.9 

7 52.3 66.0 64.0 
8 100 100 100 



TABLE 9.3 

(i! ' = [3 3 3 0 0 0 0 0 0 0 ] 

Regressor variances = 1) 

Table A 

t , 
~lethod n 0 1 

3 31 30.6 11.6 

3 71 10.2 4.0 

3 15C 0.8 1.2 

6 31 65.0 15.8 

6 71 71.6 16.0 

6 150 71.0 18.6 

9 31 61.4 19.2 

9 71 68.6 18.8 

9 150 68.8 20.2 

10 31 90.6 3.4 

10 71 93.4 3.2 

10 150 94.0 3.8 

11 31 88.8 4.0 

11 71 91.8 4.0 

11 150 93.0 5.2 

Table B 

Variables overfitted 
2 3 4 5 6 7 

20.2 2.6 10.8 1.8 1.2 
7.6 2.2 1.4 _ 1.6 51.8 9.2 
0.6 - 63.4 6.2 26.4 1.4 

7.2 2.4 1.8 0.6 0.4 0.2 

5.8 2.0 1.8 1.6 0.2 -
4.4 3.2 0.4 1.6 0.8 -
7.4 2.4 1.8 0.6 0.4 0.2 

6.2 1.8 1.8 1.,6 0.2 -
5.0 3.2 0.4 1.6 0.8 -
0.4 0.4 0.2 - 0.2 0.2 

1.2 0.4 - 0.6 0 ... 2 -
0.8 - 0.2 0.8 0.4 -
1.2 - 0.2 - 0.2 0.2 
1.8 0.2 0.4 0.6 0.2 -
0.6 - - 0.8 0.4 -

I-----~====~~n~==~ , I I Method 31 I 71 150 

: 3 18.9: 19.0 32.8 i 

! 6 48. 7 49.1 60. 7 : 
47.6 47.9 58.4! 9 

I 
! 10 
:11 

7 
8 

I 1 

72.3; 76.6 86.6 i 
I I 

67.8 1 75.7 81.7 i 

23.5 '.
' 

24.5 29 51 • I 
100 : 100 100 I __ -' __ -I--____________ .. _+_ 

Mixec 
CaseE ScbrE 

21.2 2.47 

12.0 5.53 

- 4.55 

6.6 0.93 

1.0 0.58 

- 0.51 

6.6 0.97 

1.0 0.61 

- 0.54 

4.6 0.37 
1.0 0.18 

- 0.13 

5.4 0.42 

1.0 0.21 

- 0.13 
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TABLE 9.4 

@' = [10 9 8 7 6 5 0 0 0 0 J; 
Regressor variances = 1) 

Table A 

Variables overfitted Mixed Method n 0 1 2 3 4 Cases 

3 31 - - 10.8 32.8 46.2 10. 2 

3 71 7.6 1.6 0.2 83.6 7.0 -
3 150 - - 14.6 82.4 3.0 -
6 31 83.0 12.2 4.0 0.8 - -
6 71 83.2 1l.2 4.0 1.4 0.2 -
6 150 83.8 9.6 5.2 1.4 - -
9 31 82.2 13.0 4.0 0.8 - -
9 11 82.8 1l.4 4.2 1.4 0.2 -
9 150 83.8 9.6 5.2 1.4 - -

10 31 96.6 2.0 1.2 0.2 - -
10 11 94.4 3.8 1.2 0.4 0.2 -
10 150 94.4 3.0 1.8 0.8 - -
11 31 95.8 3.0 1.0 0.2 - -
11 11 94.2 4.4 0.8 0.4 0.2 -
11 150 94.2 3.6 1.4 0.8 - -

Table B 

Method n 
31 71 150 

3 11.5 55.1 85.6 

6 16.9 79.9 17.1 

9 16.9 79.7 77.0 

10 86.7 89.1 89.2 

11 85.9 88.8 88.6 

1 50.0 51.9 50.2 

8 100 100 100 

Score 

3.68 
2.81 

2.08 

0.23 
0.24 

0.24 

0.23 

0.25 
0.24 

0.05 
0.08 

0.09 

0.06 
0.08 

0.09 
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TABIE 9.5 

(Q' [330.1250.1250.1250000 OJ; 

Regressor variances = 1 ) 

Table A 

, 
Variables under loverfi tted 

!Method n -3 -2 -1 0 1 2 3 4 5 

3 31 58.2 21.2 1.8 - - - - - -
3 71 34.8 42.8 3.2 o.~ -, 150 l3./j ,3.6 12.4 - 0.2 

6 31 51.2 11.6 1.8 - 0.2 0.2 1.0 0.6 0.2 
6 71 37.4 25.2 3.2 - - 0.2 1.0 - -
6 150 13.6 37.6 13.2 - - 0.6 - 0.6 0.2 

9 31 48.2 14.8 2.0 - p.2 0.2 1.0 0.6 0.2 

9 71 30.0 31.0 3.8 - - 0.2 1.0 - -
9 150 11.0 39.0 14.2 - - 0.6 - 0.6 0.2 

10 31 88.4 2.2 - - - 0.2 - 0.2 0.2 

10 11 19.6 12.6 0.4 - - - 0.4 0.2 -
10 150 48.6 36.8 3.8 - - 0.2 - - 0.2 

11 31 85.6 4.4 - - - - 0.2 0.2 0.2 

11 11 73.4 11.6 0.4 - - - 0.4 - -
11 150 41.6 41.4 5.4 - - - - 0.4 0.2 , 

Table B 
" 

lMethod n 

'51 71 ISO 
-

3 69.1 64.9 62.0 

6 59.1 56.7 56.3 

9 57.5 56.8 58.4 

10 100 60.4 52.0 

11 91.2 60.1 52.6 

1 32.2 39.6 56.0 

8 63.0 100 100 

Mixed; S t 
Cases' core 

18.8 2.92 
19.0 2.61 

20.0 2.26 

33.2 3.31 

33.0 2.94 

34.2 2.63 

32.8 3.23 

34.0 2.83 

34.4 2.57 

8.8 3.11 
6.8 2.85 

10.4 2.65 

9.4 3.11 
8.2 2.9 

11.0 2.6 
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TABLE 9.6 

(l! I = D. 0.5 0.5 0.5 0.5 0.25 0.25 0 0 0 ] 
Regressor variances = 9) 

Table A 

r' 

Method n Variables under/overfitted Mixed' 
C !s Score 

-t) -4 -J -2 -1 U 1 2 ase 

3 31 1.6 3.8 3.6 34.4 1.8 1.0 0.6 - 53.2 3.32 

3 71 - - - 27.2 2.6 5.4 2.8 1.4 59.0 2.91 

3 150 - - - 1.6 0.2 8.2 19.8 2.2 68.0 1.96 

6 31 - 0.2 1.8 22.2 6.0 9.4 0.6 0.4 59.4 2.80 
6 71 - - - 15.4 4.6 32.6 2.8 0.4 44.2 1.71 
6 150 - - - 0.6 0.2 66.2 3.0 0.2 29.8 0.79 

9 31 - 0.2 1.4 23.8 4.8 10.2 0.6 0.4 58.6 2.76 

9 71 - - - 14.4 4.6 32.6 2.8 0.4 45.2 1.71 

9 150 - - - 0.6 0.2 66.2 3.0 0.2 29.8 0.79 

10 31 0.2 2.6 16.c 35.0 9.4 2.4 - - 34.4 2.96 
10 71 - - - 36.2 4.2 20.4 0.4 - 38.8 2.29 

10 150 - - - 3.2 2.0 63.8 0.8 - 30.2 0.87 

11 31 0.8 2.4 9.2 38.6 8.8 4.6 - - 35.6 2.82 

11 71 - - - 33.8 2.8 25.6 0.4 0.2 37.2 1.88 

11 150 - - - 3.4 0.4 65.2 1.2 - 29.8 0.82 

Table B 
n 

Method 31 71 150 

3 12.4 54.9 62.3 
6 21.7 62.1 75.5 

9 22.3 62.6 75.5 
10 14.9 54.8 68.7 

11 16.6 56.1 71.6 

7 23.6 72.6 70.1 

8 100 100 100 
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Figure 9.2 
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Figure 9.3 Prediction Ef£iciencies for case (c) 
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Prediction Efficiences for case (d) 
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Figure 9.5 Prediction Efficiencies for case (e) 
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Figure 9.6 
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9.) Conclusions 

If we begin, as in chapter 7, by looking at 

the results which relate to the identification aspect 

a very noticeable feature is the sharp increase in 

the proportion of mixed cases obtained. Indeed situations 

like those investigated in Tables 9.) and, to a lesser 

extent. 9.4 now exhibit this phenomenon for the first 

time. A general look at the type A tables reveals, not 

surprisingly, that the procedures based on the conventional 

F criterion (methods ), 6 and 9) have a greater tendency 

to result in mixed cases than do the other two methods. 

An explanation for this would seem to be the previously 

observed tendency of such procedures to overfit in 

comparison with the F' and FMAX procedures. While in the 

orthogonal situation such a characteristic Can be an 

advantage in the present circumstances it manifests itself 

in an inability to distinguish between true and spurious 

regressors. Unfortunately it seems that the hoped for 

ability of the general forward/backward method to 

eventually drop such spurious regressors in favour of 

true ones has not materialized. Thus the indications 

are that considerably larger sample sizes are required 

before asymptotic considerations hecome properly effective. 

It must be noted that a contributory factor to the above 

situation is the fact that the conditional variances of 

e.cluded variables holding fixed the included set, can be 

expected to decrease in non-orthogonal set-ups. This will 



be accompanied by a corresponding reduction in 

procedure sensitivity. 

We might now turn to an examination 01 the relative 

merits o~ the conventional F methods. Here it is somewhat 

surprising to note that there is hardly any difference in 

performance between the strict backward approach (method 6) 

and the general ~orward/backward version (method 9). 

However, it would be extremely dangerous to infer that this 

similarity should be expected to hold true in general. A 

more complicated correlation structure together with a 

considerably larger sample size might well lead to an 

increased disparity between these two approaches. A 

comparison of the performance of the strictly forward 

approach of method) with that of the other two methods 

using conventional F reveals some interesting features. 

In particular, on a strict 'score' basis, the former method 

comes out best only in Table 9.1 and (more marginally) 

in Table 9.5. In both cases this superiority can be 

attributed to the relative over~itting tendency of the 

latter two procedures. But it is then noted that methods 

6 and 9 do not consistently overfit in comparison with 

method ), prime counter-examples being the situations 

o~ Tables 9.) and 9.4. We can only remark once again on 

the extreme range and variability o~ the per~ormance 

characteristics o~ procedures based on conventional F. 



As f"ar as the F' and FNAX procedures are 

concerned the outstanding feature is again, as in 

the orthogonal case, their close similarity in 

performance. It is very unlikely too that this would 

have changed even if" FNAX could have been used with exact 

cri tical values. From the point 01 vie,,, of" findin:; a best 

overall procedure there continues to be a close agreement 

,n. th the orthogonal case. For only in Table 9.2 can a 

conventional F procedure be said to be better than F' on 

a pure score basis. However, in parallel with the 

orthogonal case, the very similar set-up of Table 9.6 

again demonstrates the cor.ling into play of" the desirable 

asymptotic properties of F'. 

Switching now to the prediction aspect our 

conclusions are now almost exactly as they were in the 

orthogonal set-up. For direct comparisons of" Figure 9.1 

to 9.6 with their counterparts Figures 7.1 to 7.6 reveals 

a stril..:ing similari ty in performance. The only change 

worth remarking on is the slightly greater efficiency 

of method7 in the similar situations 01 Figure 9.2 and 

9.6. This is entirely consistent ,nth the reduced 

sellsi ti vi ty of the other stepln se procedures in 

detecting regressor influences in the present non-

orthog'onal context. Finally, we again note in Fig. 9.· 5 thesmall.~il:1ple 

superiority of the F' procedure over that of method 8 

which uses l<:nOldedge of the specified model. 
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It cannot be overstressed, in overall summary 

of the investigations carried out here, that the results 

must relate very specifically to the correlation structure 

actually used, and one must not expect too much by way of 

generalization to other non-orthogonal situations. There 

does however seem to be sufficient evidence to suggest that 

the F' and FMAX approaches do behave in accordance 

with the underlying principles from which their use 

is derived. This contrasts with the other three approaches 

which, while they sometimes fortuitously appear to do 

slightly better, on the Whole suffer from having no 

underlying rationality for their use. 

In the next chapter we proceed to the possibly even 

more ambitious task of using stepwise routines in the 

detection of time series models. 
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Chapter 10 Stepwise Regression in Stochastic Regression 

Models. 

10.1 The independent stochastic regression model 

Up to this point our discussion has been based 

entirely on the assumption that the matrix X qonsists 
'" 

only of fixed constants. This is in fact the context 

in which classical regression theory is usually 

discussed, and is indeed in harmony with early areas 

of application of the technique. However in more 

recent times a demand has developed for techniques 

applicable to more general models than the classical 

version. This has been especially true in the field 

of non-experimental science which has been (and still 

is) undergoing what can almost be described as a 

"quantitative revolution". A prime example in which 

this has occurred has been in the study of economics. 

While it is true to say that quantitative formulations 

of economic theory have a long history the appropriate 

techniques of testing and verification for such models 

using actual data were not fUlly studied until 

comparatively recently. 

The main extension which we need to make regarding 

the model given at (1.2.1) is to allow the X variables 

to be stochastic in addition to~. The point is that 

since the deliberate selection of representative X 

values is often not practicable, and since also for 
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similar reasons replication o~ such values in an 

experimental sense is impossible, the in~erential 

basis has now to be generalised to incorporate an 

underlying population ~or~. The simplest ~orm of 

such an assumption which can be made is to suppose 

that the ~ matrix constitutes a sample o~ size n 

~rom a k-dimensional multivariate random variable 

with density function h(x), and also that the residual 
'" 

vector ~ is independent of~. With such an assumption 

it follows (e.g. see Goldberger [27 ,p27.0) that the 

least squares estimator of ~ in (1.2.1) is unbiased 

and also, under general conditions on h(~), consistent. 

With the slightly stronger condition that h(~) does 

not involve ~ or ~ it is easy to show (e.g. see Johnston 

[J5 ,p.29J) that the least squares estimator E is also 

the maximum likelihood estimator. Thus least squares 

retains the desirable properties o~ unbiasedness, 

consistency, efficiency and sufficiency in this more 

general formulation o~ (1.2.1), though of course the 

linearity of the estimator E is now lost. Finally, by 

stipulating that h(~) is the multivariate normal 

density, the stronger property of minimum variance 

then holds for b (see Graybill [ JO,p.l98J) • .., 

From the viewpoint of stepwise regression, so 

far as it has been £or~ated for model identification 

objectives, the crucial point (apart from the 

unbiasedness property) is that the hypothesis tests 
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used continue to be valid. That this holds true 

follows automatically from the independence assumption 

for ~ and ~ (see Johnston [35 ,p.)l]). The situation 

will however be changed regarding the power 

characteristics of the various tests used. For 

instead of requiring distributions of non-central 

F or t as in the case of fixed ! the necessary 

distribution theory becomes that of partial correlation 

analysis from normal samples (assuming X is multivariate 
'" 

normal). If we turn to the prediction objective 

which was discussed in chapters 6 and 8 things 

become less straightforward. For, apart from having 

to re-specify the forms of the various hypotheses, 

such as (6.2.1) for example, the relevant distribution 

theory even under these null hypotheses can be expected 

to be extremely forbidding. Since, in a stepwise 

regression context, the preCision that would result 

from such an exact treatment can only really be 

justified in asymptotic terms the matter is not 

thought to be worth pursuing here. In any case one 

expects the unconditional theory to converge to that 

of the conditional case as n gets large due to the 

consistency property of the sample covariance (see 

for example Kendall and Stuart [37 ,p.340J who demonstrate 

this result for the unconditional and conditional 

distributions of ~ in multivariate normal samples). 
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10.2 The application of stepwise regression to 

time series models 

In this section we briefly discuss the 

applicability of the stepwise regression technique 

to an important class of results arising in the 

analysis of time series. We follow this up in the 

next section with an exploratory simulation study 

of procedure performance in such applications. 

We are interested in obtaining models which 

tell us something about the behaviour of random 

variables Y
t 

which are observed at various discrete 

time points indexed by the parameter t. Data plots 

of time series samples more often than not reveal 

noticeable non-stationary + characteristics in the 

sense that there are evident deterministic time 

dependencies present. 

t It is not thought appropriate here to proceed with 

a detailed exposition of time series analysis. 

Thus terms will often be used without going into 

lengthy formal definitions and explanations of their 

meaning. Many excellent textbooks now exist which 

deal with the various concepts referred to above. 

Amongst those found to be particularly useful are 

Anderson [ 5 ], Box and Jenkins [ 14 ] and Hannan [32] 



However such deterministic components can very 

often be effectively eliminated leaving a stationary 

residual component. Unless these non-deterministic 

residuals are already in the form of an uncorrelated 

process it will be advantageous to reduce their 

apparent unpredictability by attempting to fit 

some kind of explanatory model. The most general 

class of model which might be considered here is 

the moving average model. For it was shown by Wold 

[ 77 ] that any purely non-deterministic stationary 

process {Yt } can be represented as: 

m 
>: ~. E t . 

J -J j=O 

where the sequence {~j;j = 
m 

constants satisfying ~ 
j=O 

O,l, ••••• } is a set 

~2. < m , and where 
J 

of 

(e
t

, t = 0, tl, ••••• ) is a sequence of zero mean 

uncorrelated random variables with common variance 

(12 (i.e. (E;t}) is a "white noise" process. Defining 

a generating function G(Z) = ~ ~j zj for the {~j} 
j=O 

sequence it then follows that, provided G-l(Z) is 

convergent for lzi < I, an alternative autoregressive 

representation exists for Yt , i.e. 

m 
l': a. j Y t- j + E t 

j=l 
( 2) 
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The uncorrelated nature of the {E t } sequence can 

be used to demonstrate that in (2) St is uncorrelated 

wi th Yt . for j = 1,2,..... • 
-J 

We shall, henceforth, concentrate on models 

of the form of (2) since, unlike models of type 

(1), they lend themselves to the application of linear 

least squares stepwise regression routines. In 

practice of course one has to truncate the infinite 

limit on the number of lags involved in (2) but, 

provided the truncation point is chosen sufficiently 

large to inClude all potentially important terms, 

such an approximation should be of little c,onsequence. 

Thus, given a sample of observations Yt , t = 1, •••• ,T, 

and deciding on a maximum lag p, the model at (2) 

can be formally used to obtain a standard set of 

equations as represented by (1.2.1). 

Hence, proceeding with the relationship 

~ ex .Yt . + E t 
J -J j=l 

we write 

Y p+l Y Y 1 •••••• Y1 
P p-

Y p+2 Yp+l 
Y •••••• Y2 

P 

• • • • 
Y = , X = ,..,. • ,." • • • , 

• • • • 

• • • • 
Y

T YT- I YT-2 •••••• YT- p 

( 3) 



0.1 8 
p+l 

0.2 

• • 

~ = • and 8 = • -.J 

• • 

• • 
0. .8 T 

P 

whereby we are then enabled to write the estimation 

problem in the form 

(4 ) 

similar to (1.2.1). The problem now is to justify 

the use of ordinary least squares in obtaining an 

estimator of $ in (4). 

We might note first of all that the stochastic 

regression relationship ,at (4) violates the assumption 

made in the previous section with regard to the complete 

independence of ~ with £. For the jth element of ~ 

will necessarily be correlated with elements in the 

(j+l)th and succeeding rows of the matrix~. The 

resulting effect on the usual least squares estimator 

a is that bias is obtained. For we have -
,! = (~I~P -l~ IX = (~'~) -l~, (!~+f.) 

= fY. + (Xly)-lX'e;, 
1JC #"V~ ".,.,,..,,, 

and, on taking expectation with respect to ~ and ~, 

the second term on the right-hand side will now no 
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longer vanish. Though the presence of this bias 

element alone is sufficient to seriously undermine 

the validity of stepwise regression procedures this 

is not the only difficulty that has to be contended 

with. For the usual testing procedures of the classical 

approach which were discussed in (1.3) will also no 

longer apply. One way of viewing why this is so is 

to recognize that the classical decompositions of 

sums of squares will not now behave as independent 

chi-square variates. While this problem can be 

effectively side-stepped in the independent stochastic 

regression model discussed in section 1 such 

simplifications are not now available to us. 

In view of the above considerations the only 

hope left to us is that ordinary least squares will 

at least be viable in an asymptotic sense. That this 

is indeed so is a consequence of what Goldberger 

[27 ] refers to as the "contemporaneous uncorre1ation" 

property possessed jointly by ~ and~. For provided 

the error term E. in the jth equation of (4) is 
J 

uncorrelated with regressors occurring in the same 

and preceding equations it follows, by taking 

probability limits in (5), that ~ is a consistent 

estimator of~. This is in fact a general result 

for stochastic regression models where, in the 

general case, we would need to make appropriate 

stationarity assumptions about the form of the 



distribution of the regressor variables. Despite 

the consistency property referred to above we still 

need to consider the asymptotic distribution of the 

estimator ~ in order to arrive at appropriate 

asymptotic test procedures. The definitive paper 

dealing with this problem is that of Mann and Wald 

[ 56 J. These authors showed that, with a normality 

assumption for the distribution of ~ in (4), the 

conditional maximum likelihood estimator of ~ obtained 

by holding fixed the sample values Y1 ,Yz , ••••• ,Y 
P 

is the same as the ordinary least squares estimator 

~. Moreover, they demonstrated the important result 

that the asymptotic distribution of ~ converges to the 

fUll (unconditional) maximum likelihood estimator. 

The consequence is that the least squares estimator 

of ~ is, asymptotically, efficient and normally 

distributed with the standard least squares covariance 

t
o t proper 1es. 

tAnderson [5 • Chapt.5] gives a full account of the 

derivation of these results, which he also generalizes 

to models involving general stochastic regressors 

in addition to the lagged dependent variables. The 

same conclUsions are shown also to apply when the 

error terms have some general distribution other than 

the normal, although the efficiency property in this 

case no longer holds. 
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Having satisfied ourselves at least as to the 

asymptotic validity of least squares in the estimation 

of autoregressive models, we must now see where this 

leaves us in relation to the intended use of stepwise 

regression procedures in this context. It is evident 

that we shall find ourselves in the same situation 

as descri bed in chapter 8 relating to non-orthogonal 

set-ups. The only difference here is that we can 

now interpret the n matrix which arose in that chapter 

as exhibiting the partial autocorrelation structure 

of the excluded lagged variubles, holding fixed the 

included lagged values. 

Before proceeding with the presentation of an 

empirical study relating to the present situation 

some comments should perhaps be made concerning the 

motivation for applying stepwise regression~all 

in such circumstances. Perhaps the major justification 

for doing so is to identify which lagged terms really 

are directly related to the present value of a variable. 

Much consideration has been paid in the published 

literature on determining the 'order' of an auto­

regressive process, in the sense of finding the highest 

lagged term having a non-zero coefficient. Such 

procedures Which have been presented then usually proceed 

to fit successively higher order equations until the 

result of some decision process 
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implies one should terminate (see for example 

Quenouille [ 67 ], Bartlett and Diananda. [8J 

Whittle [ 75 ] and Anderson [ 4 J). While this 

approach has certain desirable as.pectst we have 

already seen that it is quite possible to end up 

with an equation implying a very spurious lag 

structure. 

10.3 An empirical stUdy 

In parallel with the orthogonal and non-

orthogonal cases of classical regression previously 

looked at it was decided to gauge the effectiveness 

of the various stepwise regression procedures when 

applied to data generated from known time series 

models. A change did of course have to be made to 

the simulation program previously described to allow 

for the different data generation procedure which is 

now required, and also to deal with the different way 

in which the initial correlation matrix has to be 

constructed. As far as the identification case is 

concerned everything else remains as before. In the 

prediction case however (which should perhaps now be 

referred to as forecasting) a further 50 observations 

were generated at each iteration on top of each 

TA particular simplifying feature is that one does not 

encounter problems arising from the data-induced 

selection of the maximum sum of squares regressors. 

Also, simple recursive procedures are available for 

calculating the particular partial autocorrelation 

coefficients which are needed in such approaches 

(e.g. see Durbin [23]) 
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fitting set obtained, and one-step forecast errors 

were evaluated using these extra values. 

Altogether five different models were 

investigated, these being as follows:-

(a) Y
t = E t 

(b) Yt = 0.125 Yt - l + ~ t 

(c) Yt = 0.5 Yt - l + E t 

(d) Yt = 0.25 Yt - 3 + 0.5 Yt - 7 - 0.125 Yt - 10 +E t 

( e) Yt = 0.8 Yt - l - 0.8 Yt - 2 + !;:t 

All of these models can be shown to satisfy the 

stationarity condition for an autoregressive process 

(i.e. that the roots of the characteristic polynomial 

A(Z) = 
p 
~ 

j=O 
a.Z j (a =1) fall outside the unit circle 

J 0 

in the complex plane).t 

Each of the above models was then used in 

simUlation investigations corresponding to sample 

tIt should be pOinted out that although none of the 

models investigated incorporated a constant (mean) term 

allowance was in fact made for such a term in forming 

the correlation matrix. This should not however seriously 

effect the subsequent comparative performances of the 

various procedures used. 
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sizes T = 41,81 and 200 respectively. Since in all 

cases the lag truncation point p was taken as before 

to be 10 this means that the effective sample sizes 

were in fact 31,71 and 190 respectively. 

The procedures themselves which were investigated 

were exactly the same as those looked at for the 

classical non-orthogonal case in chapter 9, i.e., 

methods 3,6,9,10 and 11. In addition, in the prediction 

studies, the control methods 7 and 8 were again 

incorporated. 

In all cases the first twenty observations 

produced by the generation procedure were discarded 

in order to avoid possible influences arising from 

starting up effects. One further change from the 

previous studies is in the number of iterations 

produced for each configuration, it being found 

convenient to choose 150 and 250 iterations in 

the identification and prediction cases respectively. 

The following Tables 10.1 to 10.5 summarize the 

simulation results in exactly the same way as in the 

previous empirical studies. Thus tables of type A 

show the distribution of the various equations 
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arrived at by the various procedures, the score 

value being the average number of variables 

incorrectly included or omitted at each iteration. 

Similarly the type B tables show, for each value 

of T, the ratio of mean square prediction (forecast) 

errors using as a base the procedure yielding the 

smallest such value. As before the prediction errors 

used exclude the common ~ component associated with 

the residual terms St. The tables are followed in 

the usual way by graphs illustrating the comparative 

predictive performances as the sample size T increases. 

In this case the overall optimum observed mean square 

prediction error for any T is used as base. 

Finally, although the various stepwise methods 

~re described collectively in Appendix J, it might 

be of some help to give here a brief reminder that 

methods 3, 6 and 9 are the forward, baCkward and 

forward/backward procedures using conventional F whilst 

methods 10 and 11 in~olve the forward/backward use 

of F' and FMAX respectively_ 



Table A 

/Method: 
i , 

I 
3 

6 

9 

10 

! 

11 

Table B 
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TA3LE 10.1 

T Variables overfitted 
0 1 2 3 A 

41 69.3 25.3- 4.7 0.7 -
81 69.3 23.3 5.3 1.3 0.7 

200 60.0 31.3 6.7 2.0 -
41 68.7 23.3 6.7 0.7 0.7 
81 68.7 22.7 5.3 1.3 2.0 

200 60.0 30.0 6.7 3.3 -
41 68.0 24.0 6.7 0.7 0.7 
81 68.0 23.3 5.3 1.3 2.0 

200 60.0 30.0 6.7 3.3 -
41 98.7 1.3 - - -
81 94.7 4.0 0.7 0.7 -

200 94.0 6.0 - - -
41 98.0 2.0 - - -
81 96.0 4.0 - - -

20C 95.3 4.7 - - -

T 

Method 41 81 200 

3 4.0 10.1 21.2 

6 2.9 9.0 20.2 

9 2.9 8.8 20.2 

10 100 100 100 

11 38.7 57.3 84.4 

7 
I 

0.6 2.3 5.91 

! 

Score 

0.37 
0.41 
0.51 

0.42 

0.45 

0.53 

0.42 

0.46 

0.53 
0.01 

0.08 

0.06 

0.02 

O.O~ 

o.o~ 

, 
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TABC 10.2 

Table A 

I,:et~:od : SCOYC: 
I 

I i I I 
i 

3 81; 59.6 Ill.2! 2.2 ~ - - 26.4 I 1.1~ i 
1200 I /22.0 ho.o I 43.6 7. .., 0.0 20.4 I 1.081 .;. L. 

i 
, , I I 

1.3~ I I 41) 60.0 I 5. 6/ 2.ft 1.2 - 30.8 

6 81) 58.4 10.81 2.8 0.4 0.4 27.2 1.27 

200 42.8 22.01 9.6 3.6 1.2 20.8 1.1 
, , I 

i 411 59.6/ 5.6 2.·t 1.2 31.2 1.30 -
9 81 58.0 /10.8 2.8 0.4 C.4 27.6 1.23 

200
1 

42,SI 22.0 9.6 3.6 1.2 20.8 1.10 
! 

41 96.0 I 0.8 0.4 - - 2.8 1.C2 

10 81 96.8 1.2 0.4 - - 1.6 1.0e 

200 83.6 9.6 1.6 - - 5.2 0.96 
I 

411 95. 2 / I - 0.4 - - 4.4 1.06 

I I 
11 81

1 

92• 8 1 3.2 0.4 - - 3.6 l.oe 
I I , ! 200: 81.6' 14.0 0.4 4.0 O.9C , - -, ! 

r:2able 3 

t!',ret!:od T 
,1.1 I 01 200 

I 

3 I 30.6 28.8 ; 23.9 
6 23.5 27.5 1 23.2 

, 

9 23.1 27.5 i 
I 

23.2 

10 100 6:f.4 : 32.5 
I 

11 93.8 :;8.3 3::'.5 

7 1 ~ 9.1 9.7 I "r' , 

8 I 71.5 I 2.00 2.00 , 
J 
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TABLE 10.3 

Table A 

I 
., 

Method T 
I 

Variables underLoverfitted [Mixec Score 
-1 

, 0 i 1 2 I 

3 : 4 Case~ j I 
! I 

41 i 17.6 . 44.0 14.8/1.,6 i - 22.0 0.84 
; - I 

3 81 ! 1.6 ; 68.4 21.6 6.0 0.41 - 2.0 0.40 I I 
200 I - ! 67.2 27.2 4.8 0.8 - - 0.39 

I 41118.0 39.2 14.4 4.4 2.0 0.4 21.6 1.00 

6 81 1 1.2 65.2 20.0 8.8 2.~ - 2.4 0.52 
200 I I 

64.0 1.6 0.4E - 25.2 9.2 - -
41 17.~ 39.6 14.4 4.4 2.C 0.4 22.0 1.0C 

9 81 1.2 64.8 20.4 8.8 2.~ - 2.4 0.53 
200 - 63.6 25.6 9.2 I.E - - 0.49 

41 79.6 14.4 0.8 0.4 - - 5.2 0.92 

10 81 23.6 70.8 3.6 - - - 2.0 0.32 
200 - 95.6 4.0 0.4 - - - 0.05 

41 59.2 31.2 1.6 - - - 8.0 0.77 
11 81 9.6 84.4 4.0 0.4 - - 1.6 O.lE 

200, - 95.6 : 4.0 0.4 - - - 0.05 
I 

Table B 
-

/Method T 
41 81 200 

3 17.5 24.9 26.8 

6 15.6 24.0 24.5 

9 15.6 24.0 24.5 

10 14.0 14.4 65.1 

11 16.0 23.7 57.€ 

7 7.8 8.7 8.7 

8 100 100 100 
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TABLE 10 .. 4 

Table A 

Method) T 
, 

Var "abIes under/overfi tted Waxed' scord l I -3 -2 I -1 I 0 1 2 ,Cases; 
, 

! I i 
I I I 36•012 .. 44 ! 41 13 .. 2 30.8 : 20.0 ' - - -

3 81 - 14.0 50.4 5 .. 2 0.4 - 30•011.58 

200 - - 45.2 19.2 10.4 0.4 24.8 1.09 

41 12.0 25.6 14.8 - - - 47.6 2.76 
6 81 - 12.8 46.4 2.4 0.4 - 37.8 1.78 

200 - - 44.4 17.2 10.0 .2.4 26.0 1.16 

41 11.6 24.4 16.4 - - - 47.6 2.73 

9 81 - 12.8 45.6 2.8 0 .. 4 - 38 .. 0 1 .. 80 

200 - - 44.4 17.2 10.0 2.4 26.0 1.16 

41 52.0 29.6 4.0 - - - 14.4 2.76 
10 81 5.6 50.4 36.0 - - - 8.0 1.78 

200 - 2.8 84.0 6.8 0.8 - 5.6 1.02 

41 43.2 32.8 8.0 - - - 16.C 2.67 
11 81 3 .. 2 43.2 46.8 - - - 6.8 1.64 

200 - 1.6 86.8 3.2 0.4 - 8.0 1.06 

Table 13 

Method T 
41 81 200 

3 30.6 24.6 41.6 

6 18.0 22.9 39.6 

9 19.6 23.0 39.5 
lO 19.1 18.7 43.3 
11 20.4 23.6 41.5 

7 12.5 13.7 24 .. 1 

8 100 100 100 
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TABLE 10.5 

(Yt = 0.8 Yt - l - 0.8 Yt-2 + ~ t) 

Table A 

~Iethod! T , Variables under/overfitted Mixed Score i 

i -2 i -I) 0 1 2 3 4 I 5 I 6 Cases I 
I 

41 - :0.41 8.8 20.81 8.4 0.8 - I - i - 60.8 2.43 
3 -! - I 0.8 56.81 23 •2 j 81 4.4 - - 14.8 1.65 

200 - ! - - 73.2 23.2 2.4 - - - 1.32 
I 70.0 12.0 6.0 3.6 2.0 0.4 5.6 0.62 41 - I 0.4 -
I 

6 81 - - 73.2 15.6 7.2 2.8 0.8 0.4 - - 0.44 

200 - - 72.4 13.2 7.6 4.8 1.2 0.8 - - 0.52 

41 - 0.4 66.8 14.8 6.0 3.2 2.4 - 0.4 6.0 0.66 

9 81 - - 68.4 19.2 8.4 2.8 0.8 0.4 - - 0.5e 

200 - - 71.2 14.4 7.2 5.2 1.2 0.8 - - 0.53 

41 3.2 3.6 82.0 0.8 - 0.4 - - 0.4 9.6 0.41': 

10 81 - - 97.6 1.6 0.4- 0.4 - - - - 0.04 
200 - - 97.6 1.2 0.4 0.4 0.4 - - - 0.0; 

41 2.~ 1.2 86.8 1.6 - 0.4 O.~ - 0.4 6.8 0.34 
11 81 - - 97.2 2.4 - 0.4 - - - - 0.04 

200 - - 94.0 3.6 2.0 0.4 - , - - - 0.09 

Table B 
Method T 

41 81 200 

3 10.7 12.5 74.4 

6 36.6 35.9 45.9 

9 35.7 35.4 45.( 

10 29.7 83.2 86.E 

11 46.1 59.1 86. 

7 15.5 15.7 12.5 

8 100 100 100 
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Conclusions 

Starting with an overall view we see that, with 

the particular models investigated, the F' and FMAX 

procedures (methods 10 and 11) are almost always superior 

to the other three procedures based on conventional F. 

This statement is equally true in the two situations 

of identification and prediction. We also note that, 

similar to the classical non-orthogonal case studied in 

chapter 9, the backward and forward/backward versions based 

on conventional F (methods 6 and 9) again behave almost 

identically. Because, however, the different model 

specifications individually reveal features of special 

interest each situation will now be loo~ed at case by case. 

Looking first at the white noise model, case (a), we 

see as expected that F' and FMAX are far superior in performance 

to the other three procedures. Bearing in mind also the 

lack of theoretical support for least squares in smaller 

size samples the performances in these particular cases is 

especiallY encouraging. On the other hand the results for 

the conventional F approaches are very disturbing in that 

they are increasingly likely to pick up a spurious 

autoregressive structure. 

In case (b), which- represents a very slight 

departure from a white noise process, the F' and FMAX 

procedures only begi~ to detect the proper structure 
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in the large sample situation. Nevertheless the other 

three procedures can be said to be no more successful 

in the smaller sample cases insofar as they only 

succeed in producing a large proportion of mixed 

cases. Again this seems to be a consequence of the 

usual overfitting tendency of these procedures. Again it 

is noticeable from Fig. 10.2 that the underfitting bias of 

the F' and FMAX gives rise to a marginal advantage even 

over method 8 in terms of predUction efficiency, this 

being a result comparable to that obtained in the non­

orthogonal regression situation in Fig. 9.5. 

Case (c) which is represented by Table 10.), again 

relates to a first-order Markov process but this time with 

a stronger regressor relationship. The results obtained 

here are extremely consistent with theoretical expectations 

of the asymptotic performances of F' and FMAX. We note 

however, that, for the smaller sample sizes, these two 

procedures diverge in performance with FMAX seeming to be 

slightly better on a score basis. This perhaps indicates 

that the situation calls for F' to be tested at a higher 

level than 5~, but this of course being wise after the 

event. If a higher level were to be used in the situation 

oC Table 10.1, Cor example, the consequence then would be 

a higher propensity to overfit. The other three procedures 

based on conventional F now definitely begin to exhibit 

serious overfitting characteristics, this again conforming 

to our expectations. Again the predictive performances 
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indicated in Fig.lO.J are undoubtedly in favour of 

methods 10 and 11. 

Turning now to Table 10.4 we see a similar 

pattern to that in Table 10.2. For although methods 

10 and 11 show only a relatively slow reduction in 

underfitting as T increases, the other three procedures 

only suceed in generating more mixed cases in trying to 

overcome this effect. From a prediction viewpoint 

the outcomes of these two alternative effects seem, 

from. 10.4, to be roughly the same. 

Finally, lnking at Table 10.5, a very prominent 

feature is the weak performance of the forward F 

proc~dure (method J) as compared with the two other 

conventional F procedures of methods 6 and 9. The 

explanation for this lies in the form of the underlying 

autocorrelation function for Yt • For, on solving the 

first three Yule-Walker equations, we find 

~ = 0.44 

pz = -0.44 

~3 = -D.7 

Since stepwise procedures introduce lags according 

to the square. of these cor. elation coefficients it follows 

that lag J will usually be the first lag to enter. 

Procedure. which have a backward deletion facility, 

particularly if starting from a fully fitted idtial 

equation, will avoid the consequences of this since 

the partial autocorrelation coefficients for any lag at 

least a. great as J (holding fixed Yt - l and Yt - 2 ) will be 

zero. Thi. feature is sUbstantiated by the performances 



of nIl of the other methods investigated. Apart from Ulis 

aspect there are no other points to comment on here except 

that F' and FNAX a.~ain demonstrate a superiority over the 

other types of procedure. 

We have seen then that, at least for the 

admittedly restricted group of models investigated here, 

the F' and F:'JAX procedures perform very favourably in 

comparison with the conventional F procedures. It ,muld 

be dangerous however to extrapolate this apparent superiority 

to more general si tUations, especi ally those involving 

much more complicated lag structures. What Can be said 

though is that the F' and FNAX approaches do seem to keep 

within the limits of what information is available, while 

the other methods are not restrained in this way. The 

question of whether one should prefer a routi"le ",-]-lich has 

a tendency to Wlderfit rather than one which, while it 

gains on the underfi tt.i.ng cri terion, docs so at the eXFcnse 

ot: an increase in un,~al1ted variables calls for an ans,~er 

based on wore subjective considerations. \vnat Can be said 

is that on the ohjective criterion of prediction performance 

i t ,~ould appear that the former procedure charncteristi c 

is the more desirable one. 
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10.5 Some comparisons with other approaches 

In this concluding section o£ the present 

chapter the per£ormance o£ the step~se regression 

technique will be compared with that o£ other approaches 

which have been tried by other people in three 

particular instances. 

(a) AnalYsis o£ sunspot data 

Data on sunspot intensity has been subjected 

to several statistical investigations over the years 

since Schuster (73), using periodogram analysis, 

detected a periodicity o£ 11.125 years. The series 

is in £act particularly appealing £or analysis since 

it comprises a very long data record £rom what can 

be regarded as a fairly stable generating mechanism. 

The idea of a strict periodicity existing in the 

process, as implied by Schuster's approach, is however 

not entirely consistent with observed data plots. 

For while the series certainly does £luctuate with 

peaks occurring approximately every eleven years 

there is a noticeable variation about this £requency 

together with changes in the amplitudes attained by 

different cycle.. Such a phenomenon seems there£ore 

to imply a stationary but not strictly deterministic 

underlying structure o£ the type associated with 

autoregressive schemest for example. For this 

rea.on .everal attempts have been made to £it such 

model. usina both tia. and frequency domain techniques, 



10 .25 

and also employing various types of data series. 

One such analysis is that due to Whittle [76J who 

was particularly concerned with testing a hypothesis 
, 

postulated by H. AlfVen. This is the study which 

will be followed up here. 

Whittle's main concern was in deciding which 

of two competing autoregressive representations most 

adequately describes the observed process. On the 

one hand there is the second-order model fitted by 

Yule [78J which yielded a peak in the spectrum at a 

Crequency corresponding to a period oC about 10.6 years, 

such a process also implying what Yule described as a 

'dist~bed pendulum' efCect. On the other hand however 

is a model incorporating an eleven year lag term, this 

I 
relationship in turn beine in line with Al~en's 

'reClection' theory Cor sunspot activity. Using a 

serie. oC data collected Cor specific solar latitudes 

every six month. over the period 1886 to 1945 Whittle 

proceeded to fit a model of the form 

t 
We note that Whittle used the Yule-Walker equations 

in obtainina the •• estimates, these being asymptotically 

equivalent to the lea.t squares estimates. The overall 

.ean was first subtracted Crom the data in this and the 

later inve.tisations. 
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Using a test derived in Whittle [75] he then finds 

that a 22 is significant in (1) while a
2 

and a.
4

4 are 

not, thus ending up with a model containing lags 

1 and 22 (and thereby supporting Alfv'n l s theory). 

Since the above problem can be regarded as 

falling into the identification aspect of stepwise 

regression it seems a good idea to apply the general 

forward/backward procedure (method 10) which came out 

well in the simulation studies i.e. the procedure based 

on Fl. Before doing so however we note that a stepwise-

type procedure bas been applied to this data by 

SohaerC (70]. H.r approach has a stopping rule based 

on the partial autooorrelation coefficients between 

the .xoluded variable. and the r.gressand, and invokes 

the a.~totio independence property between these 

e.ti .. te. prov.d earlier in her paper, Schaerf then 

proceed. to apply the stepwise principle in a 

.triotlY (oE!J[d mann.r and obtains, to her admitted 

surpri •• , the .od.l: 

Sinoe it ••••• v.ry plausible that the lag oC order 9 

h.r. ari... .puriou.ly out oC the underlying auto­

oorr.la~ioD .truoture the application of method 10 

o~ tbi. paper .hould be able to overcome this. Using 

a aax~ laa o£ 25 this .ethod was duly applied and 

r •• ~t.d ~ the .qmation: 
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Although not actually producing a lag oC 22 the result 

obtained is certainly much more appealing than SchaerC's 

model at (2). In addition, the residual variances oC 

the three models (1), (2) and (3) (each now recalculated 

on the same effective sample of size 95 using ordinary 

least squares) turned out to be:-

( 1 ) 3. 08 X 1 <f 

( 2) 3.11t5 X 106 

( 3) 3.05 X 1<f 

Again what evidence there is here supports the 

approximate eleven year dependence structure oC the 

process. Thus, while all three models possess 

remarkably similar associated transfer €unctions, 

all havins pronounoed peaks around the eleven year 

frequency band, the FI stepwise procedure has selected 

the model whioh is most in agreement with conjectured 

theory. 

(b) A further prediction study 

In a research report based on a Ph.D. thesis 

([12) Shansa1i [1)J presents a Monte Carlo comparison 

of the prediction performances of autoregressive 

model. fitted by, respectively, frequency and time 

domain tec~que.. Using two Variations of a method 

which .-ploys the Fourier inversion of the 10g­

speotrua &hansa1i .ets out to demonstrate that, at 

lea.t in .ituationa in which the true order p of an 

autoresre •• ion ia unknown, better predictions can 
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thus be obtained than by using standard regression 

methods. This he succeeds in doing, albeit Cor a 

sample size T oC 1000, with the aid oC three selected 

model specificatioDs. A crucial point in his argument 

however is hi. dismissal of the stepwise regression 

approach to model identification (apparently on the 

grounds of im.precise stoppin,g criteria) in Cavour 

of the following procedure proposed by Akaike [1]. 

Akaike's method is based on the result that the one-step 

asymptotic mean square error of prediction using an 

th e.timated p order autoregressive model is given by 

(4) 

where T i. the sample size and a2 is the (unknown) 

error variance. Decidina on a value of L (which 

corresponds to the use of k in stepwise regression) 

Akaike sUS.ests that one then calculates L autoregressive 

e~ations havina suooessively increasing lagged terms, 

eaoh ti.e reoordiDf· the residual variance 'estimate 

(p • l,2 t •••• ,L). 

Th. value of p, Po say, which on substituting alp 

in (~) ,iv.s an overall ainimum is then taken as 

the true order of autorearession. 
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Two particu1ar comments can be made concerning 

the above procedure. Firstly, it ignores completely 

the possibility that some intermediate lags of order 

less than p might be unnecessary. Secondly, as is 

demonstrated by Bhansali's results, the approach is 

exceedingly likely to produce serious overfittingt. 

Though Bhansali presents a very detailed description 

of his investigations we shall only be concerned here 

~th comparing the performances of the F' and 

conventional F procedures (methods 10 and 9 respectively) 

with three of the procedures looked at by Bhansali. 

The particular procedures concentrated on are those 

referred to by Bbansali as 

(i) The Regression - Akaike method (R.A) 

(ii) The Suggested - Akaike method (S.A) 

(iii) The Jones-Aka1ke method (J.A). 

Th. first of th.s. involves the standard use of Akaike's 

approach tn conjunction with the estimates from the Yule­

Walker equations. For details of the other two (spectral) 

approaches the reader is referred to Bhansali's original 

paper. 

fA model with true order p • 2, for example, produceB 

(usiDa 100 iterations) an average fitted order of 10.6 

uaiq L • 25 
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The three model structures investigated by 

Bhansali are as follows:-

Experiment I 

Yt III 0.55Y
t

_
l 

+ 0.05Yt
_

2 
+ £t 

Experiment II 

Y t = O. 5& t-l + o. 5£ t- 2 + £ t 

Experimen tIll 

Yt • O·5Yt _l - 0. 06Yt_2 + 0.45Yt _15 + £t 

Experiment II here is especially interesting since it 

corresponds to an infinite order autoregressive model. 

For each of these three cases Bhansali generated samples 

of size 1100, the first 1000 observations being used 

for estimation purposes and the last 100 serving as a 

prediction set. In all cases the residual variance 

was taken a. unity. As well as the three estimation 

procedures referred to above (R.A., S.A. and J.A.) 

estimates were also obtained for the true order 

equations in the case of Experiments I and III. We 

ahall refer to these non-identification procedures as 

merely R, S and J. 

Sinoe the above described field of application 

obviously lends it.elf to a stepwise regression 

approaoh it was decided to replicate Bhansali's 

experiments aa closely as possible, but this time using 

the F' aDd oonventional F stepwise procedures. Thus 
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proceeding exactly as is described in Bhansali's report 

mean square prediction errors were obtained Cor one, 

two and three-step :"bead Corecasts Cor each oC the three 

model speciCications. A maximum lag k equal to 25 was 

chosen in all cases, corresponding to the value oC L 

used in the Akaike approach. Table 10.6 below presents 

the results obtained. Tables 10.7 and 10.8 are 

reproduced £rom Bhansa1i's report Cor comparison 

purpo.... Table 10.8 also includes the expected mean 

.quar •• rror. as given in Bbansa1i [13J Cor the case 

wh.r. knowl.dge oC p is used in the estimation. Apart 

Crom .uch .xpect.d values all Cigures are av.rages over 

100 iterations. 

Table 10.6: Mean .quare error oC prediction using 

the F' and conventional F procedures 

Step Bxperiment I Bxp.riment II Experiment III 
ahead F' Conv.F F' Conv.F F' Conv.F 

1 0.99 1.00 1.03 1.03 1.01 1.01 

2 1.)0 1.)0 1.28 1.28 1.25 1.26 

) 1.42 1.1i) 1.55 1.56 1.28 1.29 

Table 10.7: Heap .quare error oC prediction using Akaike's 

,dtpti(ic,tion proc.dure with the R t S and J 

.. tho'. 

Step Bxperiment I Bxperiment II Experiment III 
aha,d 

R.A. S.A. J.A. R.A. S.A. J.A. R.A. S.A. J.A. 

1 1.17 0.90 0.89 0.91 0.93 0.91 1.05 1.01 0.97 

2 1.6, 1.60 I." 2.05 1.66 1.47 2.,6 1.47 1.52 , 2.2, 2.69 2.41 2.98 2.21 2.21 2.86 1.53 1.54 
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Table 10.8: Mean square error of prediction by fitting 

the true order model 

EXPERDmNT I EXPERDlENT III 
Step R S J J!ixpectea K S J Expected ahead 

1 0.88 0.90 0.89 1.002 0.96 1.02 0.99 1.015 

2 1.51 1.50 1.50 1.31 1.51 1.50 1.51 1.27 

3 1.58 2.07 2.06 1.1t3 1.52 1.51 1.53 1.31 

A particularly striking feature of Bhansali's results 

which calls for comment is the degree of divergenoe 

in Table 10.8 for the case of Experiment I between 

the observed and expected prediction variances. For 

some reason Bhansa1i chooses to comment only on the 

three-step ahead cases where he states that the observed 

differences are significant at the one percent level 

usins the chi-square distribution. By way of explanation 

he aUSaesta that the theoretical expression for the 

expected value 'may tend to underestimate' the actual 

value for small values of p. The evidence of the 

result. obtained in Table 10.6 for the present study 

does however .eem to rule out this possibility, there 

beiDa an almo.t exact agreement be~een observed and 

expected valu... In any ca.e an inspection of Bhansa1i's 

re.ult. in the one and two-step ahead cases of Table 

10.8 Alain reveala a .ignificant departure o£ observed 

from expected. Searing in mind that in each case the 

£isure. for R, S and J were obtained independently o£ 
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each other one is led to conjecture that something is 

amiss in Bhansali's simulation program. 

The point which can be made here regarding the 

results Cor the stepwise approaches is that they agree 

very closely with the optimum values obtainable. If 

we ignore the suspiciously low values obtained by Bhansali 

in the one-step ahead cases we see also that the rate 

oC increase o£ prediction variance (as a £unction o£ 

the step-ahead Corecast) is much lower in the case o£ 

Table 10.6 than in either o£ Tables 10.7 or 10.8. 

From this one may still draw the tentative conclusion 

that a stepwise identiCication procedure is much 

preCerable to the Akaike approach (at least in the models 

investigated). 

As a Cinal remark here it must be stated that 

the results obtained Cor the stepWise application do 

not tell us anything relevant to the question o£ 

whether the sp~ctral approach is preCerable to the 

rearession one Cor such a large sample size. In order 

to be in a position to answer this one would need to 

use the spectral estimates corresponding to the step­

wise identiCied model. It is Celt however that the 

obvious tendency oC Akaike'. approach to produce 

overCitted equations, and its ~ssociated inclUsion 

of unnecessary lass of order lower than the true order 

oC eqaatioD p, must weight more heavily against the 
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regression approach than the spectral one. For the 

problem of unstable estimates due to the underlying 

multicollinearity of regressors is known to be more 

predominant in time domain approaches to estimation 

rather than frequency domain alternatives. 

(c) A comparisop between stepwise regression and the 

Box:Jenkins approach to forecasting 

In an extensive empirical study into a number of 

univariate forecasting teChniques Granger and Newbold 

[29J make comparisons between several competing 

approaches requiring various degrees of sophistication 

in their operation. One such procedure which was 

looked at and ob.erved to perform quite well, especially 

when used in coabination with other methods, was that 

of stepwise regression. It is the intention in this 

section to investigate whether the particular stepwise 

version whioh was used in the above-mentioned study is 

in tact oapable ot any improvement. We shall do SO 

by again oomparinc, as do Granger and Newbold, the 

stepwi.e predictive performance against the yardstick 

ot the Box-Jenkins approach. No attempt will be 

a.de here to give specific details of the 106 sets 

ot real data which were used in the original study, 

nor will detail, be given as to how the samples 

were divided into the two separate parts required 

tor the respeotive purposes of fitting and forecasting. 
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A £U11 discussion on all these aspects is in any case, 

to be found in the original source. It suffices to say 

that the samples used were from a wide field of seasonal 

and non-seasonal series at both micro- and macro-economic 

levels. 

In both the Box-Jenkins and stepwise applications 

of the original study the data were all initially first­

differenced to eliminate the presence of any non­

stationary random walk type of behaviour such as often 

occurs with economic series. In the case of the Box­

Jenkins procedure a further differencing operation was 

often carried out when a seasonal component was evident 

£rom the data plot. As far as the Bo~Jenkins approach 

is concerned a standard type of analysis was followed 

by Granser and Newbold, as much as is allowed by the 

subjective element of course. In particular a constant 

term was only very occasionally included in the general 

ARIMA model being entertained, such as a decision being 

made entirely on the basis of first-difference data 

plots over the fitting period. In the case of the 

stepwi.e regression procedure, which was in fact a 

strict forward approach based on the conventional 

F criterion, any seasonality which might be present 

was lett in the data for the possible detection by 

the procedure itself of the appropriate lacged terms. 
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The most surprising aspect of the procedure used, 

apart from its strict forward orientation, was 

however that a constant term was fitted on all but 

a few occasions. Since such terms were not usually 

thought to be called for in the Box-3enkins applications 

(nor indeed do Box and 3enkins expect the presence 

of such terms in general - see [14, p.93]) it seemed 

likely that the inclusion of such terms might be a 

disadvantage on two possible counts. For, firstly, 

one has to take into account the stability of such a 

, term when estimated from only a moderate sized (non­

random) time series sample. And secondly, and perhaps 

even more importantly, the automatic inclusion of a 

constant is tantamount to a considerable assumption 

being made as to the existence of a deterministic 

trend structure in the original undifferenced series. 

In view of the doubts expressed above concerning 

the stepwise approach used in the Granger/Newbold 

study it was decided to re-run the investigations 

using instead now the stepWise approach based on F' 

(.ethod 10) and, in addition, only incorporating a 

constant term whenever this was thought to be necessary 

for the Bo~Jenkins procedure. Thus the 104 series 

which were still readily available from the original 

set of 106 were re-run with this alternative stepwise 

pro.r am , and the corresponding one-step ahead forecast 

mean square-errors were duly obtained. We can thus 
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make a direct comparison of these results with those 

for the Bo~Jenkins forecasts, and in this way we 

can, at the same time, see if an improvement has 

been made on the original stepwise results. We 

find in fact that the number of occasions on which 

Bo~Jenkins has smaller forecast variance than stepwise 

now fall. from 70 to 63 out of the 104 cases being 

considered. Further, the (geometric) mean of the 

ratios of mean square forecast errors of Box-Jenkins 

relative to stepwise now increases: from 0.86 to 0.90. 

The increase is particularly high in the case of the 

25 quarterly series which were investigated, the mean 

ratio here changing from 0.87 to 0.94. It would however 

be rash to try to generalize on the basis of this 

result which is based on a fairly small number of cases. 

The main point then that arises out of these 

£orecast procedure evaluations is really a point which 

is made in the Granger/Newbold study i.e. that stepwise 

regression can do exceedingly well even in comparison 

with a relatively more ambitious approach such as 

that of Box and Jenkins •. The above investigation does 

however de.onstrate that it is still possible to 

achieve albeit marginal improvements using a stepwise 

procedure based on something more than just an 

ad hoo arcument. 
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Chapter 11 Summary and Conclusions 

11.1 

It is at this juncture that one has to stand back and 

assess what has been achieved in terms of the original 

objective, namely that of investigating whether one can 

fruitfully impose a formal structure on what has so far 

tended to be regarded as a rather 'rule-of-thumb' type of 

procedure. In common with several other techniques Which 

have undergone rapid escalations in popularity over recent 

years stepwise regression can be~id to have created a 

sizeable foothold in the armoury of the applied statistician 

without there having occurred a comparable growth in the 

understanding of its theoretical basis. As often happens when 

one strives to establish a plausible formal framework for such 

procedures, this particular study has encountered many 

unforeseen complexities which have sometimes made it necessary 

to resort to tactios involving a reduction in the desired level 

of rigour. A prime example of this has been the recourse which 

has had to be made to a simulation approach in demonstrating 

some facets of the theory which has been presented. Despite 

these problems, however,it is felt that the exercise has been 

useful in indicating both the capabilities and limitations 

of the Whole concept of stepwise regression. 

By looking at situations of an increasing degree of 

complexity, from the relatively simple situation of 

orthogonality to the considerably more demanding and ambitious 
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app1ications in time series analysis, it is felt that the 

theoretically viable approaches of the F' and FMAX procedures 

in particu1ar have been shown to perform in accordance with 

the expectations of that theory. On the other hand the 

conventiona1 use of the stepwise regression technique, 

using what has been referred to throughout this thesis as the 

conventional F criterion, has been shown to be inconsistent 

with any reasonable underlying theoretical basis. Whi1e it 

is not of course an essential prerequisite that any statistica1 

technique must behave well in accordance with some idealised 

formal structure, only that it should in fact provide fair1y 

consistent answers of a useful kind, it is nonetheless of 

interest to be able to judge how far such answers might depart 

from reality. It is in this sense then that the F' and, to a 

lesser extent, the FMAX procedures are considered to be 

superior to the other approaches. Whether or not other factors 

enter into a particular proposed application, such as 

considerations of computational cost for examp1e, is something 

else which has to be taken into account of course. 

Possible areas of further investigation 

In this final section of the discussion one must raise 

the natural question as to what remains to be done by way 

of extending the results so far obtained. The short answer 

to this is that a very considerable amount remains to be done, 

not only in stepwise regression but also in the whole field 

of similar techniques Which contain an element of data­

induced model formulation. As far as stepwise regression 



11.3 

is concerned some possible generalisations have 

already been alluded to previously. Foremost o~ these 

is perhaps the possibility of using varying significance 

levels in accordance with such prior in~ormation Mlich 

might be available regarding the underlying model. 

In such a situation involving a partially specified model 

it might however still be pre~erable to treat stepwise 

regression entirely as an automatic objective procedure, 

only invoking subjective information at the end stage in 

the light o~ the regression sequences which have been 

obtained. 

Apart from the above considerations there is 

however still the unsettled problem, even if one decides 

to use a fixed significance level throughout, as to what 

this level should be. For while the choice of level has been 

demonstrated (at least in the cases of F' and FMAX) to provide 

an asymptotic controlling effect on the degree of overfitting 

obtained the finite sample size case presents some 

difficulties. For although the empirical studies showed 

that a 5% level was fairly reasonable for models containing 

only a small number of non-zero regression coefficients, 

considerable underfitting could occur in more complicated 

situations. Thus a lower significance ievel might 

possibly have led, in such instances, to an improvement 

in the selection performance. However, particularly in 

situations exhibiting non-orthogonality, one needs to be 



careful not to merely be substituting an underfitted 

model by one which is just what has been termed previously 

as a mixed case. Such problems do however admit to an 

extended investigation of the type that has~ready been 

carried out. 

Another more specific area which calls for a closer 

study is that which was briefly entered in part (c) 

of (10.5), namely that of obtaining forecasting models 

for economic time series. Now it must be stated first of 

all that a great attraction of the stepwise approach, 

like that of Box and Jenkins for example, is its easy and 

almost automatic mode of application. With this in mind 

though it was seen that even a simple qualitatively 

determined adjustment of not fitting a constant term in such 

models could lead to a measurable improvement in forecast 

performance. It might therefore be possible to find other 

qualitative elements, possibly depending on some specific 

characteristics of the type of series being investigated, 

which l.ads to further impro~ements. While in the context 

of forec •• ting we might just remark that, in principal, 

there is no reason why one should not comtemplate using 

stepwise regression for models incorporating lagged terms 

oC other potentially useCul series as well as those of 

the regressand, i.e. general distributed lag models. An 

incentive for perCorming such investigations is that, 

in such a multivariate situation, there are fewer existing 

competitive procedures than in the univariate case. 
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Finally, a mention should be made regarding the 

possibility of using an a priori othogonalizing 

transformation on the regressrr matrix! in order to 

overcome some of the extra difficulties encountered in the 

non-orthogonal situation. Thus we can contemplate 

re-writing the model at (1.2.1) in the form 

where! is a square non-singular matrix of dimension 

k chosen such that T'X'XT is strictly diagonal. Such an ---
approach seems to have first been put forward by Kendall 

[36J, who suggested that one chgse the particular transformation 

matrix used in obtaining the principa1 components of the 

regressor variables in!. In fact stepwise regression itse1f 

can be shown to correspond to using an upper triangu1ar 

matrix T to ultimately orthogonalize X, but such a - -
transformation is of course only induced in an a posteriori 

manner by the sequence of decisions made. It must of course 

be noted that the possibility of using the above approach 

at all really only arises in the prediction context. For, 

denoting the new regressor matrix X T by U, the set of - - -
regressors 

Which is subsequently selected will in general transform 

back into an equation involving all k original X variables. 

This does seem to rule out such a procedure for the purpose 

of mode1 identification as was specified earlier in this study. 
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Concentrating therefore on the prediction aspect 

alone one must question the relevance of using the 

principal component transformation in preference to any 

other orthogonalizing matrix. For although some authors 

(e.g. Wickens and Ord [6)], Daling and Tamura [17]) 

conjecture that one can safely omit orthogonalised 

regressors having small variances there really seems to be 

no a priori grounds for making such an assumption- Neither 

in fact has there been any real evidence presented in 

support of this theory. The point is however not of 

direct relevance in any case to stepwise regression 

since such a procedure is itself designed to detect 

which is the set of significant regressors. Indeed the 

use of principal component regressors might in fact be 

said to be desirable since it provides a readily available 

method for producing such an initial set of orthogonal 

variables. This again is something which calls for further 

investigation. 



Appendix 1 

The proofs are given here o~ Theorems 1.4.2. and 

1.4.3. Without loss of generality we can take c to be 

q and q + 1 respectively in the two theorems, in which 

case the following partition of A can be used throughout, 

,i!11 

! = J!21 

where a22 is a scalar. Suppose the stepwise pivotal 

operation is performed with a22 as pivotal element. 

This will transform A into A* where, with the same ,.,. ,.., 

partitioning structure, 

-1 
.sf1 - J!11 - a22 .!I 2 J!2 1 

.sf2-
-1 -822 .!I 2 

* .e·" = ,!1J - 8il .!I 2 ,!2J 

J!t1= 
-1 

a22 A21 

RJ12- ail 

.at, = ail ,e2, 
-1 1611 = .aJ 1 - a2 2 .aJ 2 .a2 1 

* -1 ~ 2 = -a2 RJJ 2 

J J = RJJ J - ail .!J 2 .a2 J 

Consider Theorem 1.4.2. 

w. have to .how:-

• 



(The results for ~r1 and ~1 will then follow immediately 

from symmetry considerations.) 

* -1 
Consider ~ 1 = ~11 - a2 2 ~ 2 J!21. 

Writing .e1 

find that 

.911 

where 

Now!!11 = 
[

J!11 

• [z* • = _1 : 
• 

J!Z1 

x ] and using Theorem 1.4.1. we -q 

and az 2 d - 1 = • 

Since .9Z1 • ~2 it follows directly that 

~1 • (~; 'zt )-1. 

(ii) First note that, using the above results, 

~ 2 • -ail .... ~ 2 = (!f '~r) -1!f' '!q. 

Hence we must show that 

it follows that 

* .!2 J = (.9Z 1!1 • + a2 2!ci ) ~Z ' 

ThereCore ,eU =.&11 !f'!z +J!12~;f2 - d!12~Z1~t'!Z - dJ!12a2Z!~ 

which, using the results obtained in (i), reduces to 



(iii) First consider ar2 = a2"a = d 

= d-~~ (.!-~r(~f ,~tyl~t, )~2 

and there£ore ~tJ= ail ~J 

It only remains to show that 

-1 
N ow !if J IS .!J J - a22 .!J Z ,e2 J. Bu t .!J J = ~2 2 = ~. 

(.!-~1(~~!1)-1!~)!2. Writing!1 = [!t ~ !q]' using Theorem 

1.4.1 and recalling that (!l!1)-1 = !::a 1 we obtain 

!1 (!l!1)-1~,l • ~t .!11~r' +!r .!12!~+~~21!r' +~q a22~~. 

+ X a2 2 X' ) Zl» • -q -q ,..... 

• On substituting £or ~11 t .!12 and ~2 in terms o£ !1 , !~ 

and d a direct (but lengthy) calculation shows that 

Hence Theorem 1.4.2. is proved. 

To prove Theorem 1.4.). it is only necessary to re­

pivot on ,:, and show that A* is trans£ormed back to 

~ (i.e. that the resulting trans£ormation is in fact 

the inverse of the previous one. This is immediate 

** * .-1. _ 'ic -1 e.g • .911 • ,!11 -.!2-2 ,!II ,521 = (,e11-aaa ,!12 ,eZ1) + 



Appendix 2· 

Critical Values for Studentized Maximum Chi-Square Distribution 

q a.=0.05 a.=0.01 q 0.=0.05 a.~O.Ol 

2 5.002 7.875 22 9.271 12.284 

, 5.701 8.609 23 9.352 12.,67 

4 6.205 9.134: 24: 9.4:30 12.447 

5 6.598 9.542 25 9.505 12.52, 

6 6.922 9.877 26 9.577 12.596 

7 7 .• 197 10.161 27 9.646 12.667 

8 7.4,6 10.407 28 9.712 12.735 

9 7.64:8 10.624: 29 9.777 12.801 

10 7.8,8 10.819 ,0 9.839 12.864 

11 8.010 10.996 ,1 9.899 12.925 

12 8.167 11.157 ,2 9.958 12.985 

1,3 8.,31,3 11.,305 33 1~.014: 1,3.042 

14 8.446 11.44,3 ,34 10.069 1,3.098 

15 8.572 11.571 35 10.12, 13.153 

16 8.689 11.691 ,36 10.175 1,3.205 

17 8.800 11.804 37 10.225 1,.257 

18 8.901t 11.911 ,8 10.275 13·,307 

19 9.002 12.011 ,39 10.,322 1,3.,355 

20 9.096 12.107 Ito 10. ,69 1,3.4:03 

21 9.185 12.198 



Appendix 3 

This appendix brings together the procedures used 

in various parts of the discussion. 

Method 1: 

Method 2: 

Method 

Method 

Method 

Method 

J: 

Method 7: 

Method 8: 

Method 9: 

Strictly forward procedure using the FMAX 

stopping criterion. 

Strictly forward procedure using the F' 

stopping criterion. 

Strictly forward procedure using the 

conventional F criterion. 

As I, 2 and J but using a strict backward 

approach 

Estimation of the complete equation 

involving all k regressors. 

Estimation of the equation containing 

only the regressors having true non-zero 

coefficients. 

General forward/backward procedure using 

the conventional F criterion. The procedure 

.tructure is the same as for Method lO(below) 

except that, at each stage. the included 

variables are examined first for a possible 

deletion. 

Method 10: General forward/backward procedure using 

the V' criterion. The procedure starts 

by fitting the complete equation (i.e. is 



backward orientated) and at each subsequent 

stage first tests for possib~e inclusion 

of an extra variable. If such a test is 

negative a variable deletion is contemplated. 

(For a full description see (8.5) and 

Fig.B.l). 

Method 11: General forward/backward procedure using 

the FMAX criterion. In all other respects 

this procedure is identical to Method 10. 



APPENDIX 4: 

This appendix shows, for the given initial regressor 

matrix X as discussed in (9.1), the sequence of partial 

correlation matrices pertaining to the excluded variables 

at each stage of a forward stepwise application. 

Stage 1 (upper triangular sections only are recorded). 

1.0 0.2 0.0 0.0 0.0 0.0 -0.2 0.3 -0.3 -0.3 

1.0 0.3 0.3 0.3 -0.3 -0.2 -0.1 0.1 0.3 

1.0 0., 0.5 0.5 0.0 0.0 0.0 0.3 

1.0 0.3 -0.5 0.3 0.0 0.3 0.0 

1.0 0.0 0.3 0.0 0.0 0.0 

1.0 0.6 0.0 -0.3 0.3 

1.0 0.2 0.6 -0.6 

1.0 0.3 0.0 

1.0 0.5 

1.0 

stage 2 

1.0 0.3 0.3 0.3 -0.3 -0.2 -0.2 0.7 0.3 

1.0 0.3 0.5 0.5 0.0 0.0 0.0 0.3 

1.0 0.3 -0.5- 0.3 0.0 0.3 0.0 

1.0 0.3 0.0 0.0 0.0 0.0 

1.0 0.6 0.0 -0.3 0.3 

1.0 0.1 0.6 -0.7 

1.0 0.2 -0.1 

1.0 0.5 

1.0 

Stage 3 

1.0 0.2 0.7 0.4 -0.1 -0.1 0.0 0.4 

1.0 0.2 -0.4 0.4 0.1 0.2 -0.1 

1.0 0.1 0.4 0.1 0.0 -0.1 

1.0 0.7 -0.1 -0.2 0.4 

1.0 0.1 0.6 -0.6 

1.0 0.0 0.0 

1.0 0.6 

1.0 



Stage 4 

1.0 0.4 -0.4 

1.0 0.3 

1.0 

Stage 5 

1.0 0.1 0.5 

1.0 0.7 

1.0 

Stage 6 

1.0 0.7 0.0 

1.0 0.0 

1.0 

stage 7 

1.0 0.0 0.9 

1.0 0.0 

1.0 

Stye e 

1.0 0.2 0.1 

1.0 0.7 

1.0 

Stage 9 

0.4 0.1 0.2 0.0 

0.6 0.2 -0.1 -0·5 
0.8 0.0 -0.3 0.2 

1.0 0.1 0.6 -U.7 
1.0 0.0 0.0 

1.0 0.6 

1.0 

0.1 -0.2 -0.5 

0.0 -0.2 0.3 

0.1 0.6 -0.7 

1.0 0.0 0.0 

1.0 0.6 

1.0 

-0.2 0.2 

0.8 -0.6 

0.0 0.1 

1.0 0.8 

1.0 

-0.7 

0.1 

0.8 

1.0 
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