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Abstract 

Much is known about visual processing of chromatic and luminance 

information. However, less is known about how these two signals are 

combined. This thesis has three aims to investigate how colour and luminance 

are combined in edge detection. 1) To determine whether presenting colour 

and luminance information together improves performance in tasks such as 

edge localisation and blur detection. 2) To investigate how the visual system 

resolves conflicts between colour and luminance edge information. 3) To 

explore whether colour and luminance edge information is always combined 

in the same way. 

It is well known that the perception of chromatic blur can be 

constrained by sharp luminance information in natural scenes. The first set of 

experiments (Chapter 3) quantifies this effect and demonstrates that it 

cannot be explained by poorer acuity in processing chromatic information, 

higher contrast of luminance information or differences in the statistical 

structure of colour and luminance information in natural scenes. It is 

therefore proposed that there is a neural mechanism that actively promotes 

luminance information. 

Chapter 4 and Experiments 5.1 and 5.3 aimed to investigate whether 

the presence of both chromatic and luminance information improves edge 

localisation performance. Participant performance in a Vernier acuity 

(alignment) task was compared to predictions from three models; ‘winner 

takes all’, unweighted averaging and maximum likelihood estimation (a form 

of weighted averaging). Despite several attempts to differentiate the models 



 
 

we failed to increase the differences in model predictions sufficiently and it 

was not possible to determine whether edge localisation was enhanced by 

the presence of both cues. 

In Experiment 5.4 we investigated how edges are localised when 

colour and luminance cues conflict, using the method of adjustment. 

Maximum likelihood estimation was used to make predictions based on 

measurements of each cue in isolation. These predictions were then 

compared to observed data. It was found that, whilst maximum likelihood 

estimation captured the pattern of the data, it consistently over-estimated 

the weight of the luminance component. It is suggested that chromatic 

information may be weighted more heavily than predicted as it is more useful 

for detecting object boundaries in natural scenes. 

In Chapter 6 a novel approach, perturbation discrimination, was used 

to investigate how the spatial arrangement of chromatic and luminance cues, 

and the type of chromatic and luminance information, can affect cue 

combination. Perturbation discrimination requires participants to select the 

grating stimulus that contains spatial perturbation. If one cue dominated over 

the other it was expected that this would be reflected by masking and 

increased perturbation detection thresholds. We compared perturbation 

thresholds for chromatic and luminance defined line and square-wave 

gratings in isolation and when presented with a mask of the other channel 

and other grating type. For example, the perturbation threshold for a 

luminance line target alone was compared to the threshold for a luminance 



 
 

line target presented with a chromatic square-wave target. The introduction 

of line masks caused masking for both combinations. Introduction of an 

achromatic square-wave mask had no effect on perturbation thresholds for 

chromatic line targets. However, the introduction of a chromatic square-wave 

mask to luminance line targets improved perturbation discrimination 

performance. This suggests that the perceived location of the chromatic 

edges is determined by the location of the luminance lines. 

Finally, in Chapter 7, we investigated whether chromatic blur is 

constrained by luminance information in bipartite edges. Earlier in the thesis 

we demonstrated that luminance information constrains chromatic blur in 

natural scenes, but also that chromatic information has more influence than 

expected when colour and luminance edges conflict. This difference may be 

due to differences in the stimuli or due to differences in the task. The 

luminance masking effect found using natural scenes was replicated using 

bipartite edges. Therefore, the finding that luminance constrains chromatic 

blur is not limited to natural scene stimuli. This suggests that colour and 

luminance are combined differently for blur discrimination tasks and edge 

localisation tasks. 

Overall we can see that luminance often dominates in edge perception 

tasks. For blur discrimination this seems to be because the mechanisms differ. 

For edge localisation it might be simply that luminance cues are often higher 

contrast and, when this is equated, chromatic cues are actually a good 

indicator of edge location.  
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1. Introduction 

Edge recognition is a fundamental part of visual perception and is 

necessary to navigate and interact with the environment. We can easily and 

accurately localise edges under a variety of conditions including when vision is 

obscured for example, in low light conditions, in a crowded scene or through 

a rain soaked window. However, the majority of edges in natural scenes are 

comprised of both colour and luminance information. Colour and luminance 

information enter the cortex in separate pathways, but we do not see two 

overlaid percepts, therefore, this information must be combined. 

Furthermore, in situations when the two cues conflict, this must be resolved 

to give an unambiguous and accurate percept of the world around us. 

Previously the question of how colour and luminance cues are 

combined has been considered using behavioural, physiological and neuro-

imaging techniques. The research suggests that colour, like luminance, is 

represented throughout the cortex as evidenced by neurons in the early 

visual areas that are selective for both colour and other form attributes 

(orientation, edges). Psychophysical data suggest that colour and luminance 

are not combined linearly and may be subject to specific priors under specific 

conditions.   

This introduction will review current knowledge of the colour 

pathways and areas in the visual system, focusing on whether these areas are 

segregated from those processing luminance information. We will then 

consider models of cue combination and how they can be applied to the 
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current research. Following this existing research into how colour and 

luminance are combined will be reviewed. Finally, the aims of the current 

thesis will be outlined. 

1.1. The colour pathways 

The perception of colour begins with the absorption of light in the 

retinal cone photoreceptors; this is converted into electrical voltages that are 

then converted into action potentials by the cells in the retina. The 

information from the retinal ganglion cells is then sent to the lateral 

geniculate nucleus (LGN) and then on to the visual cortex (see Gegenfurtner & 

Kiper, 2003 for a review of colour vision). See Figure 1.1 for a schematic of the 

visual hierarchy. 
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of the light increases and becomes brighter or a combination of both of these 

things. As a result of this the colour of a stimulus can only be determined by 

comparing the output signals of the three cone classes. This comparison is 

performed by the horizontal and ganglion cells in the retina. The axons of the 

retinal ganglion cells in the optic nerve then pass this information to the LGN 

(in the thalamus) and the superior colliculus. 

There is very little variation in the peak sensitivities of the three cone 

classes across all Old World primate species (Jacobs & Deegan, 1999), 

potentially indicating that they are tuned to the wavelengths of light in the 

natural environment and that this is an evolutionary adaptation. However, 

these cone spectral sensitivity curves do not provide the maximum possible 

amount of colour information. If L-cones were sensitive to even longer 

wavelengths a significant increase in colour information could be achieved, 

but this would be at the expense of spatial acuity, due to increased diffraction 

and chromatic aberration (Lewis & Zhaoping, 2006). It is therefore likely that 

human cone sensitivities represent a compromise between maximising colour 

information and maximising spatial information. 

There are three major subclass of retinal ganglion cell; parasol, midget 

and bistratified. These cells project via three pathways to separate layers in 

the LGN, each of which contains a different type of cell, respectively; 

magnocellular (M-), parvocellular (P-) and koniocellular (K-) cells. These cells 

have a classic centre-surround organisation and can be described as either 

ON-centre or OFF-centre, the firing rate of an ON-centre cell increases when 



Introduction 
 

5 
 

light hits the centre and decreases when light hits the surround and OFF-

centre is the reverse. The areas that fire in response to light are the cells’ 

receptive fields. A receptive field can be defined as the region in visual space 

where a specific type of visual stimulus can drive electrical responses. 

The geniculate M-cells are sensitive to luminance stimuli but exhibit 

null responses to some L-M combinations (Shapley & Hawken, 2002). For this 

reason the M-pathway is considered to largely convey achromatic (L+M) 

information about motion. The P-pathway receives inputs from L- and M-

cones and is considered to convey information about colour and edges. P-cells 

respond well to high-spatial frequency achromatic gratings and low-spatial 

frequency chromatic gratings (Ingling & Martinezuriegas, 1983). The K-

pathway predominantly carries signals from the S-cones and appears to 

convey information about colour (Casagrande, 1994). The three pathways 

terminate in different layers of V1 (Callaway, 1998).  

In the cortex, LGN luminance inputs are combined to create simple 

cells with orientation tuned receptive fields (Figure 1.2). Simple cells are 

phase sensitive and their response changes dependent on where a stimulus 

bar is in their receptive field.  
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linearly and linear combination principles can be used to model them (Lennie, 

Krauskopf, & Sclar, 1990). In V2 a greater percentage of cells are more 

selective i.e. respond to a narrower range of colours, than would be predicted 

by a linear combination model and a non-linear stage is necessary (Kiper, 

Fenstemaker, & Gegenfurtner, 1997).  

There are, however, V1 cells that do not combine cone signals linearly. 

Horwitz and colleague (2005) excited V1 neurons in awake macaques with 

dynamic randomly coloured stimuli and analysed the stimulus sequences that 

preceded spikes in two steps. First they computed the average stimulus that 

preceded the spike, identifying a group of S-cone dominated colour opponent 

neurons. If these neurons had combined cone signals linearly this would have 

characterised the colour tuning. However, the second stage of their analysis 

showed that approximately half of neurons received a rectified non-opponent 

signal from the L- and M-cones that was combined with the opponent signal. 

The result is a receptive field structure that might respond to both a 

luminance edge and the presence of chromatic contrast.  

It was initially believed that colour and form were physiologically and 

functionally segregated within the visual system. Hubel and Livingstone 

(1987) posited that colour and form sensitive cells were physically separated, 

with colour sensitive cells confined to the cytochrome oxidase (CO) blobs. 

However, more recent electrophysiology work has found that there are not 

discrete regions for orientation/direction and colour and that in the upper 

layers of V1, neurons that are colour sensitive are orientation selective as 
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often as those that were not sensitive to colour (Leventhal, Thompson, Liu, 

Zhou, & Ault, 1995). In V2 there is a tendency for colour selective cells to be 

found in the thin CO stripes, but they are still frequently found in the thick 

and inter stripe areas. There is also not a relationship between colour 

selectivity and selectivity for other attributes in V2 and many cells can encode 

information along more than one dimension (Gegenfurtner, et al., 1996), this 

has led to the suggestion that V2 integrates information about different 

attributes. 

Evidence from psychophysical and fMRI studies suggest that, whilst 

there may be some segregation, the relationship between colour and 

luminance in the cortex is more complicated than originally thought. 

Curvature integration functions in the same fashion for achromatic, (L-M)- 

and S-defined stimuli, however the mechanisms underlying this seem to be 

separate as integration is disrupted when the components are chromatically 

different (McIlhagga & Mullen, 1996; Mullen, Beaudot, & McIlhagga, 2000). 

fMRI work has found selectivity in V1, V2 and V3 for chromatically defined 

orientation signals and it is possible to discriminate between luminance, L-M 

and S defined stimuli based on the activity patterns (Sumner, Anderson, 

Sylvester, Haynes, & Rees, 2008). This also suggests that whilst there are 

neurons which are jointly selective for orientation and colour there may be 

some segregation in processing streams if not in physical location. 

V4 has been suggested as the ‘colour centre’ of the monkey brain 

(Zeki, 1983a, 1983b), however, there may not be a single area responsible for 
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colour processing. Neurophysiological studies in monkeys show that lesions of 

V4 lead to mild colour vision deficits but, problematically, they also lead to a 

variety of other deficits (Schiller, 1993; Walsh, Kulikowski, Butler, & Carden, 

1992). In macaques, lesions of the infero-temporal (IT) cortex, the next 

processing stage, produce effects similar to cerebral achromatopsia (acquired 

colour-blindness caused by damage to the cortex). However the entire IT area 

must be removed for this to occur which once again has a dramatic effect on 

other areas of vision (Heywood, Gaffan, & Cowey, 1995).  

There are colour sensitive neurons throughout the early visual cortex 

with spectral sensitivities no narrower than those found in V4 (de Monasterio 

& Schein, 1982). Therefore, it may be that V4 is involved in higher order 

processing of colour information such as colour constancy (Kulikowski, Walsh, 

McKeefry, Butler, & Carden, 1994) or illuminant discounting (Bartels & Zeki, 

2000) with lower level processing of colour occurring throughout earlier 

areas. In support of this argument, V4 is involved with the ratio-taking 

operations necessary for illuminant discounting (Bartels & Zeki, 2000). 

Evidence from fMRI demonstrates how colour is represented 

differently throughout the visual system. Brouwer & Heeger (2009) were able 

to decode stimulus colour from activity in human V1, V2, V3, V4 and VO1 but 

not LO1, LO2, V3A/B or MT+. They found that in areas V4 and VO1 responses 

were similar to colour perception; perceptually similar colours evoked similar 

responses. In contrast, V1 responses appear to be organised according to a 

cone-opponency model, demonstrating that colour representation changes 



Introduction 
 

10 
 

through the visual system; transforming from a cone-opponency pattern into 

perceptual colour space.  

Spatial sensitivities are different for chromatic and luminance stimuli. 

Chromatic contrast sensitivity is low-pass whereas achromatic contrast 

sensitivity is band-pass. This means that high-spatial frequency chromatic 

stimuli are not resolvable by the visual system but high-spatial frequency 

achromatic stimuli are. There are also differences in chromatic and luminance 

processing in the periphery. Chromatic sensitivity falls off more quickly than 

achromatic in the periphery and, more specifically, sensitivity for green 

stimuli decreases faster than for red (Newton & Eskew, 2003). It has been 

suggested that there may be proportionally fewer M-cones in the periphery, 

leading to a weaker ‘green’ response, however this does not appear to be the 

case (Newton & Eskew, 2003). Currently it is believed that there are post-

receptoral limitations on peripheral colour resolution, potentially based in the 

double opponent cells of the cortex (Anderson, Mullen, & Hess, 1991). 

1.2. Chromatic and spatial selectivity 

In Figure 1.3 the left side of the receptive field has more L-cones and 

the right has more M-cones. Let us consider how a neuron might use these 

cones as potential inputs depending on various different functional roles. If 

maximum sensitivity to changes in colour is required, then the L-cones should 

be subtracted from M-cones at all points in the space. This is non-spatially 

selective and will only give information about the chromaticity. If maximum 

spatial selectivity is required, the responses from all the cones in the left 
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receptive field should be subtracted from the right. The imbalance in the cone 

distribution will result in this neuron having a chromatic preference, in this 

case a slight preference for changes from red to green across the receptive 

field. If spatial selectivity based only on luminance information is required, 

then the number of L- and M-cones in each receptive field need to be 

balanced and so some must be disregarded. This would lead to lower 

sensitivity, meaning that the inclusion of some chromatic information 

improves spatial selectivity. Maximum sensitivity to chromatic change and 

maximum spatial selectivity are mutually exclusive (Peirce, et al., 2008) and so 

if the task requires both chromatic and spatial information then the receptive 

field will be less sensitive. 
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We can only infer the state of the world based on sensory neural 

activity which is corrupted by noise, so the brain is forced to create our 

perceptions of the world under conditions of uncertainty. Perception is an ill-

posed ‘inverse problem’ i.e. an image on the retina can be caused by an 

infinite number of physical realities, this means that a computational strategy 

must be employed to allow us to perceive the world unambiguously. We can 

model potential strategies that the visual system may use to combine colour 

and luminance and test these models against psychophysical findings to infer 

the way cue combination may occur. 

There are demonstrations that are suggestive of how colour and 

luminance signals are combined to form edges. The Spanish castle and 

Boynton illusions (see Section 1.5 for more details, Kaiser, 1996; Sadowski, 

2006) both show luminance information appearing to constrain the spread of 

chromatic information. This suggests that luminance edge information is 

more important to the visual system for edge localisation and that chromatic 

edge information is effectively ignored.  

This could be explained by a ‘winner takes all’ cue combination 

strategy. If this method is employed the ‘best’ cue is selected and everything 

else is disregarded. The difficulty comes in determining which cue is ‘best’. 

There could be a general over-arching rule; luminance has a higher effective 

contrast in natural scenes so is always the ‘best’ cue. However, it could also 

be defined on a case-by-case basis; of two cues we might select the one with 

the least variability over a specified time period. 
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It is unclear how conflicting colour and luminance edges are combined 

in edge localisation (see Chapter 5). If a ‘winner takes all’ strategy as 

described above is used, one of the cues may be ignored. However, if both 

cues contribute to the perceived edge location there are two possible ways 

they could be combined. Firstly, colour and luminance edge cues could be 

combined using unweighted averaging. In this case both edges would have an 

equal contribution to perceived edge location, regardless of the cue ‘quality’, 

and the edge location would be judged to be equidistance between the 

individual cues. Alternatively, if observers do not always perceive the edge to 

be equidistant between the two cues this could suggest that the reliability of 

the two cues contributes to edge localisation. The brain could be performing 

some form of ‘maximum likelihood estimation’ (MLE) to estimate the edge 

location. In an MLE model the variability of the localisation judgements of 

each individual cue are used to generate weights; the contribution that each 

cue makes to the localisation judgement. A method of using MLE to generate 

cue combination predictions has been proposed by Hillis and colleagues 

(2004) and is described in detail below. 

If we have unbiased estimates of edge location based on colour ( መܵ) 
and luminance ( መܵ௨) cues with variances ߪଶ  and ߪ௨ଶ  respectively. The 

way to combine these two estimates to produce a prediction with the 

minimum variances is  

 

 መܵ ൌ ݓ  መܵ  ௨ݓ መܵ௨   

Equation 1.1 
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where the weights are 

 

and the reliabilities (ݎ and ݎ௨) are the inverse of the respective variances. 

The variance of the weighted average መܵ is lower than that for either of the 

individual cues and is given by 

 

 Equation 1.1 and Equation 1.3 can produce predictions of where a 

conflicting edge will be judged to be located and the variance of that 

judgement, respectively. 

There is increasing evidence that human perceptual computations are 

combined optimally according to Bayes Theorem. Bayes Theorem states that, 

when we try to determine the presence or absence of a signal, we should 

combine the perceptual data about whether that signal is present (the 

likelihood) with our previous expectation of whether that signal was going to 

be present (the prior).  The prior information might be formed in various 

ways, but is typically assumed to be generated from the statistical history of 

the signal events i.e. previously observed occurrences of the signal. The prior 

information is combined with sensory inputs to produce a posterior 

probability distribution.  The mean and variance of this distribution represent 

ݓ  ൌ  ା ಽೠ and ௨ݓ ൌ ಽೠಽೠା     

Equation 1.2 

ଶߪ      ൌ  ఙమ ఙಽೠమఙమ ା ఙಽೠమ      or    ݎ ൌ ݎ   ௨ݎ

Equation 1.3 
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what the most probable stimulus is and the probability that it is present 

respectively, and could represent the unambiguous percept that we actually 

see. The weight given to priors is likely to depend on the degree of ambiguity 

in the sensory inputs; in conditions of high perceptual uncertainty more 

weight is likely to be given to the prior information than the sensory inputs 

(Kersten & Yuille, 2003). 

In order to use this method the visual system needs to have an 

internal representation of current uncertainty that is always available and 

changes in response to new information. Psychophysical studies have shown 

that humans use continuous feedback from the hand to control pointing 

movements and the relative weights of the different signals are dependent on 

the expected sensory noise associated with those signals, as would be 

predicted by Bayesian theory (Saunders & Knill, 2004). The same researchers 

found that artificial noise can be used to manipulate observers’ reliance on 

the cues, demonstrating the system’s ability to adapt to changes in 

uncertainty in the environment. This adaptation is suggestive of an implicit 

model of uncertainty that is available at all times, which is also supported by 

Whiteley and Sahani (2008), who found that observers’ decisions were 

sensitive to current uncertainty even in conditions of minimal feedback. 

In a Bayesian system each level of computation maintains 

representations of all possible values of the parameters and their associated 

probabilities. This means that the information from different cues and 



Introduction 
 

17 
 

modalities can be integrated and propagated without the necessity of 

committing to a particular interpretation too early.  

The MLE as described above has ‘flat’ priors, this means that it is 

assumed that there is no existing or ‘prior’ information in the visual system 

that will affect the judgement or that the variance of the prior is so large as to 

have minimal influence. This means that the weights of the signals are solely 

determined by their variance and are not affected by the statistical history of 

events. However, Bayesian Theorem can be introduced to the above 

equations by simply adding a third component to represent the prior 

 

where 

 

and the reliabilities are calculated as before. 

The question remains as to how priors and sensory information are 

weighted; how the reliability would be measured in order for the visual 

system to calculate the appropriate weight. It may be that the final weighting 

is not static and is determined by the current reliability and availability of the 

cue dependent on location and time (McGraw, Whitaker, & Badcock, 2000). In 

 መܵ ൌ ݓ  መܵ  ௨ݓ መܵ௨  ݓ መܵ   

Equation 1.4 

ݓ ൌ ݎݎ   ௨ݎ   ݎ and ௨ݓ ൌ ݎ௨ݎ  ௨ݎ  ݎ  and  

ݓ ൌ  ುೝೝା ಽೠା ುೝೝ    

Equation 1.5 
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order to support this, the visual system must accommodate dynamic changes 

in cue weighting similar to the situation dependent models of uncertainty 

described above (Whiteley & Sahani, 2008). 

There are several physiologically plausible models that suggest 

neuronal representations to account for Bayes or MLE optimal behaviour. 

One possibility is a binary system, where there are two populations; ‘on’ and 

‘off’ and the proportional difference between them represents that 

probability distribution. This could also be achieved with a single population 

of neurons that responds proportionally creating a likelihood ratio (Knill & 

Pouget, 2004).  

Single cell recordings of the lateral intra-parietal (LIP) area provide 

evidence for both kinds of system. Platt and Glimcher (1999) found that when 

monkeys are trained to perform one of two possible saccades two sets of LIP 

neurons fire proportionally to the probability that the saccade ends in their 

receptive field. Conversely, Gold and Shadlen (2001) found that when 

monkeys are trained to distinguish between two possible motion directions a 

single set of LIP neurons respond by integrating information over time in a 

manner consistent with computing a likelihood function. 

These binary schemes are only suitable when there is a clear 

dichotomy, for continuous variables different systems must be considered. 

Convolution codes have been suggested as a way that continuous variables 

could be encoded, the likelihood functions for observed stimuli would be 

convolved by the prior distribution. This idea is based on the premise that a 
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probability density function can be represented by its values at a few points 

along the ordinate. Each neuron would compute the dot product between the 

probability density function and its Gaussian tuning curve. For example, to 

calculate location given colour and luminance position cues, one would 

multiply the likelihood functions for colour indicating the correct position 

given the position that is being indicated, luminance indicating the correct 

position given the position that is being indicated and a prior distribution over 

position. If there are neurons that represent samples of the likelihood 

functions and the prior distribution a point-by-point product operation is 

equivalent to multiplying the functions themselves (Zemel, Dayan, & Pouget, 

1998).  

It is also possible that the log of the probability density function is 

encoded, rather than the function itself. In this scenario the point-by-point 

product required when using convolution codes is replaced by a point-by-

point summation (because log(a)+log(b)=log(a.b)). This method is consistent 

with the evidence that LIP neurons integrate by summation (Gold & Shadlen, 

2001). 

An alternative to convolution coding is gain encoding (Pouget, Dayan, 

& Zemel, 2003), this uses the near-Poisson nature of neural noise (Tolhurst, 

Movshon, & Dean, 1983) to code simultaneously the mean and variance of 

the density function. For example, there are neurons in V1 that have bell-

shaped tuning curves for orientation (Hubel & Wiesel, 1968). If these are 

ranked by their preferred orientations it produces a ‘hill’ of activation and, for 
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any given stimulus trial, this activation is distorted by near-Poisson noise. A 

Bayesian decoder could translate this into a posterior distribution over 

orientation given the activation hill (Sanger, 1996). In this case the noisy 

activation hill would be a neuronal representation of the posterior; the 

position of the peak indicating the mean and gain (amplitude) being the 

variance. The gain can represent the variance in this scenario because for 

Poisson noise the variance of the spike count is proportional to the gain, 

therefore, a high gain indicates a high signal to noise ratio and a narrow 

distribution (Knill & Pouget, 2004). 

None of these possible coding schemes are mutually exclusive. The 

perceptual uncertainties that the brain is required to process can take many 

forms and so may use many encoding schemes (Knill & Pouget, 2004). Whilst 

there is evidence that observers use a Bayesian strategy in many scenarios, 

there may be other mechanisms that mimic Bayesian methodology but, do 

not require explicit probability representation. For example, probability 

matching, when participants are asked to make predictions about uncertain 

events, the probability of them choosing an event typically matches the 

probability of that event occurring. If the aim is to correctly predict which 

event will occur, this is a sub-optimal strategy. The optimal strategy would be 

to always predict the most probable event i.e. if event A occurs 70% of the 

time the optimal strategy would be to always predict that A will occur. 

However, participants actually only predict that event A will occur 70% of the 

time. This can be explained in a Bayesian manner by including the assumption 

that the sequence of trials contains predictable patterns (Wozny, Beierholm, 
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& Shams, 2010). However, a simple strategy of ‘win-stay, lose-shift’ can also 

explain participant behaviour. If participants stay with an option as long as it 

offers a reward and switch as soon as it ceases to offer a reward that also 

creates the pattern observed above. 

Bayesian models have been criticised for being so flexible that they 

can account for a wide range of outcomes and therefore successful 

predictions made by these models are insufficient to provide evidence that 

the mind operates in a Bayesian fashion (Bowers & Davis, 2012). Conversely, 

of course, it might be seen as a benefit that the Bayesian framework is a 

general model that can be used to conceptualise a large range of challenges, 

rather than one designed to answer ‘one-off’ questions (Griffiths, Chater, 

Norris, & Pouget, 2012). The Bayesian framework has been criticised for being 

unfalsifiable, but no theoretical framework is directly falsifiable. The success, 

or failure, or a framework can only be judged by its ability to generate 

successful models, which are falsifiable, and new lines of research (See 

Bowers & Davis, 2012; Griffiths, et al., 2012 for a more detailed discussion).  

For example, Hillis et al (2004) generated a falsifiable model within the 

Bayesian framework that successfully predicted participant behaviour in cue 

combination of texture and disparity in slant perception. This finding led to 

new lines of research including those reported in Chapters 4 and 5 of this 

thesis. Therefore, in this case the Bayesian framework is successful; a model 

based on the framework successfully predicted behaviour and led to new 

lines of research. 
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1.4. Combining colour and luminance in shape from shading and 

contrast detection tasks 

There has been much debate on the purpose of colour vision. It may 

be used to discriminate ripe fruit from foliage (Mollon, 1989), assist with 

recognition and memory (Gegenfurtner & Rieger, 2000), facilitate shadow 

recognition (Kingdom, Beauce, & Hunter, 2004) and perceive 3D shapes 

(Kingdom, 2003). Previously it was believed that colour information was 

represented and processed separately from other types of information, 

however, as seen above, it now seems more likely that colour is represented 

and processed together with other types of form information.  

Luminance signals provide ambiguous information about surfaces 

because these signals are a combination of reflectance and illumination. The 

ideal way to estimate the real world properties of a luminance signal is to 

combine the inputs to the visual system with prior knowledge about 

reflectance changes and non-uniform illumination. Kingdom (2008) 

considered that prior knowledge would be necessary to make these kinds of 

judgements and suggested a list of heuristics necessary to determine whether 

a luminance discontinuity is a change in reflectance or illumination.  

Colour vision is useful in distinguishing reflectance from illumination 

changes because chromatic changes typically occur at object, but not shadow, 

boundaries (Kingdom, et al., 2004). Shadows are important for perceiving the 

spatial arrangement of stimuli, and are processed within the confines of 

certain priors. In an illusion created by Mamassian and colleagues (1998) the 
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position of a shadow can cause a sphere to appear to roll to the bottom of a 

box or rise in a frontal plane. The shadow movements that led to this 

perception of depth could be caused by any combination of changes to 

viewpoint, light source, the object causing the shadow or the background 

surface, but it is reliably interpreted as movement in depth. This once again 

supports the idea that the visual system processes information not only on 

the basis of sensory information but also prior experience with the world. 

Chromatic changes that are aligned with shadow borders suppress the 

identification of shadows and those that are not aligned facilitate this process 

(Kingdom, et al., 2004). This supports the suggestion by Kingdom (2008) that 

there are prior assumptions about the meanings of the relationship between 

colour and luminance signals. In this case the prior would be that achromatic 

edges suggest inhomogeneous illumination whereas combined chromatic and 

luminance edges suggest surface changes. Chromatic variations can also 

‘unmask’ transparent achromatic targets (shadows) in densely variegated 

achromatic backgrounds (Kingdom & Kasrai, 2006). This could suggest that 

colour processing is suppressing luminance noise that is impairing detection 

of luminance-defined targets. 

When achromatic and chromatic gratings of different orientation are 

combined the resulting plaid appears to be three dimensional (an example of 

the shape from shading effect). Kingdom (2003) took advantage of this 

phenomenon to investigate how aligned chromatic and luminance 

discontinuities differ from their unaligned counterparts. He took a chromatic 
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plaid and added a luminance grating, of the same orientation as one of the 

chromatic gratings. When the luminance grating was not aligned with the 

chromatic grating there was an impression of depth. However, when the 

luminance grating was aligned with the chromatic grating the shape-from-

shading effect was suppressed, regardless of the colour direction of the 

chromatic component (Kingdom, Rangwala, & Hammamji, 2005a). This led to 

the proposal of a new role for colour vision in processing three-dimensional 

structures, where once again achromatic discontinuities represent changes in 

illumination and combined discontinuities represent object edges. In Bayesian 

terms this would mean that the visual system assigns each luminance 

discontinuity a probability that it arose from changes in illumination rather 

than reflectance and that this probability was constrained by a prior based on 

the spatial relationship between the achromatic and chromatic discontinuities 

(Kingdom, 2003). 

It is generally accepted that visual performance is impaired when 

tested using isoluminant stimuli, however this is not necessarily due to 

deficits in chromatic processing (see Cavanagh 1991 for a review). If colour 

and luminance information are not processed independently then 

isoluminant stimuli would not be suitable for isolating the chromatic system 

(Gur & Akri, 1992). It may be that colour vision is not only for encoding 

chromatic information but also enhancing luminance based processing, this 

would mean that chromatic processing cannot be fully investigated in the 

absence of luminance information.  
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In keeping with this idea, contrast sensitivity for combined colour and 

luminance targets is lower than would be predicted by the contrast sensitivity 

of either cue alone, this facilitation necessitates that the channels are 

integrated, not independent (Gur & Akri, 1992). Therefore, investigation using 

isoluminant stimuli alone may not tell us about how that information would 

be processed in the presence of luminance information. The ability to 

discriminate a circle and an ellipse is enhanced when both colour and 

luminance information is present, as opposed to either channel alone. This 

also supports the idea that one role of colour vision is to enhance luminance-

based vision and that luminance information must be present for ‘normal’ 

activation to occur in the colour system (Syrkin & Gur, 1997). 

Kingdom and colleagues (2010) investigated the comparative saliency 

of suprathreshold colour and luminance signals. They used lattices of circles in 

two conditions; separated (colour and luminance modulations were 

temporally separated) and combined (Figure 1.4). In the combined conditions 

48% more luminance contrast was required relative to when the cues were 

presented separately and subsequent experiments showed that this was 

caused by colour masking the luminance information. However, this only 

occurred when the colour and luminance information was present together 

within the circles of the lattices. If the components were segregated (each 

circle contained only one type of information), the reverse occurred with 

luminance masking colour information. It was suggested that chromatic 

masking occurred to facilitate segmentation by material by disregarding non-

uniform luminance changes.  
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Research into facilitation between colour and luminance in contrast 

detection highlights the complexities of the relationship between the two 

cues. Chromatic pedestals do not facilitate contrast detection of luminance 

targets although they do produce masking at higher contrasts, with very 

similar features to a luminance mask (K. K. De Valois & Switkes, 1983). 

Subthreshold luminance pedestals appear to be entirely discounted when 

combined with a chromatic test stimulus (Cole, Stromeyer, & Kronauer, 

 

Figure 1.4. Example stimuli from Kingdom et al (2010) (a) red-cyan, (b) black-white 

component patterns and (c) the two combined. Figure used with permission. 
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1990). However, a suprathreshold luminance pedestal combined with a 

chromatic test produces facilitation (Cole, et al., 1990; Switkes, Bradley, & De 

Valois, 1988). This facilitation also occurs when the pedestal is only a ‘ring’ 

rather than full field (Cole, et al., 1990), and is increased from a ~3-fold 

decrease in threshold to a ~7-fold decrease when low-spatial-frequency 

square-waves are used as opposed to spots (Gowdy, Stromeyer, & Kronauer, 

1999).  

Gowdy and colleagues (1999) suggested that this increase in 

facilitation may be due to the sharp pedestal edges promoting segmentation; 

the colour is spatially demarcated by the luminance edges, then integrated 

between the luminance edges and finally the colour difference is compared 

across the luminance edges. They suggested that this represented a change in 

the chromatic mechanism from a ‘blob’ detector, tuned to broad areas of 

chromatic information, to an ‘edge’ detector, tuned to chromatic boundaries 

delineated by luminance information. 

It has been argued that luminance plays a privileged role in edge 

detection when compared to colour. However it may be that luminance is not 

processed differently or given  different weight, merely that in natural scenes 

luminance gains a privileged role because it has higher effective contrast than 

chromaticity (Rivest & Cavanagh, 1996).  
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1.5. The dominance of luminance information in edge detection 

tasks 

It has been argued that pure isoluminant edges are rare in natural 

images, which would mean that in the majority of cases colour is not 

necessary for the detection of object edges (Zhou & Mel, 2008). However, 

whilst the majority of edges in natural scenes are a combination of colour and 

luminance, isoluminant edges are not in fact any rarer than achromatic edges, 

and the contrasts of the components of the combined edges have sufficient 

variation to be considered independent (Hansen & Gegenfurtner, 2009). This 

means that isoluminant edges are not inherently any less useful than 

luminance defined edges. Despite this there are many demonstrations of 

luminance information dominating chromatic information. 

Illusions offer striking examples of luminance information appearing to 

constrain the perceived location of chromatic edges. For example, in the 

Boynton illusion (Figure 1.5) straight chromatic edges appear to align with 

nearby irregular luminance edges; the edge location is determined by 

luminance information (Kaiser, 1996). 
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Chromatic filling-in also appears to be constrained by luminance 

information, as demonstrated by the watercolour effect (WCE, Figure 1.7), 

where colour appears to spread between luminance boundaries but does not 

cross them (Pinna, et al., 2001). The WCE could suggest that colour has a 

greater role in perception of surface properties as opposed to perception of 

edges. For example, colour constancy, specifically illuminant discounting and 

estimation, can be used to facilitate surface segmentation (see Foster, 2011 

for a review of colour constancy). Colour has also been shown to reduce 

luminance noise in complex displays, such that dark achromatic targets are 

unmasked by chromatic variation in the background (Kingdom & Kasrai, 

2006). This could be interpreted to mean that chromatic information can be 

used not only to segment chromatic variation but also facilitate segmentation 

of luminance information. 

 

  

Figure 1.6. An adaptation of the Spanish castle illusion (Sadowski, 2006). Visual 

adaptation to the negatively coloured image followed by viewing the achromatic image 

causes the achromatic image to appear normally coloured and maintains the sharp 

appearance of its edges. 
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asymmetries are present in cue combination of colour and luminance in edge 

detection. 

This thesis has three aims in order to gain a better understanding of 

how colour and luminance are combined in edge detection. 1) To determine 

whether presenting colour and luminance information together improves 

performance. 2) To investigate how the visual system resolves conflicts 

between colour and luminance edge information. 3) To explore whether 

colour and luminance edge information is always combined in the same way. 

Chapter 3 explores the masking of chromatic blur by sharp achromatic 

information in natural scenes. This phenomenon is well known and accepted, 

however, there is no previous research which quantifies this effect or 

investigates the mechanisms that may underlie it. It was found that blur 

discrimination thresholds for chromatic blur were poorer in general than 

those for achromatic blur. However, thresholds for chromatic blur combined 

with sharp luminance information were far higher than those for chromatic 

blur alone. Therefore, the phenomenon cannot be attributed to poorer acuity 

in chromatic processing. In Experiments 3.2 and 3.3 the underpinnings were 

further investigated and it was shown that the phenomenon could not be 

explained by either the lower effective contrast of chromatic information or 

statistical differences between the structure of colour and luminance 

information in natural scenes. This suggests that there is a mechanism that is 

prioritising luminance information regardless of the relative quality of 

chromatic information. 
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Chapter 4 investigates whether the presence of both colour and 

luminance information improves performance in an edge localisation task. 

Variability of edge localisation judgements was measured, using a staircase 

procedure, for isoluminant, achromatic and combined bipartite edges. The 

achromatic and isoluminant measurements were used to generate 

predictions for performance when both cues were available, according to 

three models; ‘winner takes all’, unweighted averaging and weighted 

averaging (MLE). The models were then compared to the behavioural data. 

Unfortunately, due to the small differences in model predictions it was not 

possible to discriminate between the performance of the three models. 

In Chapter 5, method of adjustment was used, as an alternative to a 

staircase procedure, to see if this could allow discrimination between model 

predictions for cue combination of colour and luminance in aligned edges. 

This methodology was also not sensitive enough to discriminate between the 

three models. How conflicting colour and luminance edges are localised was 

also investigated using method of adjustment. MLE was used to predict where 

the participants would judge the edge to be, and behavioural data showed 

that participants weighted chromatic information more heavily than was 

predicted. This may suggest a Bayesian prior promoting the chromatic 

information, which may be due to chromatic information having greater 

utility in object edge detection in natural scenes. 

A novel technique for investigating edge detection was introduced in 

Chapter 6; perturbation discrimination. Gratings were spatially perturbed and 
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participants were required to detect that perturbation in a 2IFC task. 

Experiment 6.1 was designed to determine whether the spatial arrangement 

(aligned or orthogonal) of chromatic and luminance components affected 

perturbation discrimination. No difference was found between perturbation 

thresholds for the perturbed grating alone or in combination with aligned or 

orthogonal cross-channel masks. This suggests that participants were able to 

disregard irrelevant information. 

Experiment 6.2 investigated whether the type of chromatic or 

luminance gratings presented affected processing. Perturbation thresholds 

were measured for both achromatic and isoluminant square-wave and line 

gratings in isolation. Perturbation thresholds were then measured for these 

stimuli when combined with a mask grating of the other type and other 

channel. For example, the perturbed achromatic square-wave grating was 

combined with an isoluminant line-grating mask. The effect of introducing a 

mask was determined by measuring the difference between the target grating 

alone and when combined with the mask.  

The introduction of a chromatic square-wave mask facilitated 

perturbation discrimination for luminance lines; the introduction of a 

chromatic square-wave mask improved perturbation discrimination. However, 

the introduction of an achromatic square-wave mask had little effect on 

perturbation discrimination for isoluminant lines. This asymmetric 

relationship demonstrates the complexity of cue combination of colour and 
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luminance and supports the idea that chromatic information can become 

‘tied’ to luminance information. 

In the final experimental chapter the conflicting results of Chapters 3 

and 5 were investigated. Chapter 3 showed luminance information 

dominating chromatic information and Chapter 5 showed the reverse. This 

could have been due to differences in the stimuli used (natural scenes versus 

bipartite edges) or the task (blur discrimination versus edge localisation), 

therefore the method used in Chapter 3 was used to measure blur 

discrimination thresholds for bipartite edges. Despite the greatly simplified 

stimuli the results exactly replicated those found in Chapter 3. This suggests 

that whilst luminance information dominates in blur discrimination tasks, 

regardless of stimulus type, this dominance does not translate to edge 

localisation tasks. 
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2. General methods 

The following describes the major methods and approaches used in 

this thesis. There are variations across the experiments and therefore 

specifics are given in the relevant methods sections.  

2.1. Participants 

All participants had normal or corrected-to-normal vision, were not 

colour anomalous and gave their informed consent to participate in the 

studies. All procedures were approved by the School of Psychology Ethics 

Committee, University of Nottingham, UK and were in accordance with the 

Helsinki Declaration. 

2.2. Apparatus 

Unless otherwise specified the following apparatus was used. A 

computer-controlled cathode-ray-tube (CRT) monitor was used to present 

stimuli. The monitor used was a 19-in Vision Master Pro 454 (Iiyama) with 

resolution of 1024 x 768, running at a refresh rate of 85 Hz. Stimuli were 

presented and data collected using PsychoPy (Peirce, 2007). All data 

collection occurred within a darkened room with a chin rest to ensure that 

the participant viewed the stimuli from a constant distance. 

2.3. Bits ++ Digital Video Processor 

A standard graphics card has a dynamic range of 8 bits for each of its 3 

output channels (R, G and B). Where a higher luminance resolution was 

required (for example, to measure contrast detection thresholds) this was 
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increased to 14 bits by a 14-bit Digital to Analog Converter (DAC) system 

(Bits++, Cambridge Research Systems, Cambridge, UK). This allows the 

monitor to display a much larger range of contrasts, which in turn allows 

more precise stimulus presentation. 

2.4. Gamma Correction 

Gamma correction was performed on all monitors used in this thesis. 

A photospectrometer (PR655, Photo Research, Chatsworth, CA, USA) was 

used to measure the luminance of 64 test patches. The gun outputs of these 

patches were evenly distributed from gun values of 0 to 255 and the process 

was carried out for each gun (red, green and blue) independently. These 

measurements were used to generate a set of gamma functions using 

Equation 2.1.  

 

Where ܮ is the final luminance value, ܸ is the required intensity (from 

0 to 1),  ܽ is the minimum luminance measured, ܾ is the range of luminance 

measured and ߛ is the gamma value. The inverse values were then calculated 

using Equation 2.2 and used to build a look-up table (LUT) with linear 

luminance outputs. 

 

ሺܸሻܮ ൌ ܽ  ሺܾ  ܸ݇ሻఊ 

Equation 2.1 

ሺܸሻܷܶܮ ൌ ሺሺ1 െ ܸሻܾఊ  ܸሺܾ  ݇ሻఊሻଵఊ െ  ܾ݇  

Equation 2.2 
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(Derrington, Krauskopf, & Lennie, 1984). MB-DKL space is a combination of 

the colour coordinates system introduced by MacLeod and Boynton (1979) 

and the cardinal colour directions determined by Krauskopf and colleagues 

(1982). Colour is represented in three-dimensional spherical space, luminance 

information as elevation (-90° to +90°) and chromaticity across the azimuth. 

The axis along which only L-M information changes runs along 0°-180° with an 

orthogonal axis sensitive to changes in the S-(L+M) signal running along 90°-

270°. In this space any light can be described in terms of azimuth, elevation 

and contrast (Figure 2.2). 

 

The cardinal axes were determined after a series of experiments 

showed that detection thresholds for chromatic changes were raised 

 

Figure 2.2. A graphical representation of MB-DKL space that allows representation 

of lights in terms of L-M, S-(L+M) and luminance information (Figure modified from Peirce, 

Solomon, Forte and Lennie (2008) with permission). 
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following adaptation, but that this effect was highly selective (Krauskopf, et 

al., 1982). There is no cross adaptation between yellow-blue, red-green or 

luminance defined stimuli and this selectivity is not found for intermediate 

directions. Therefore there are three directions that a light can be described 

in L-M (red-green), S-(L+M) (blue-yellow) and luminance, each representing a 

different visual pathway. 

MB-DKL space is a useful way to describe image properties as it allows 

the creation of stimuli that specifically activate the different channels. This 

allows us to compare responses from the chromatic channels to responses 

from the luminance channel. Investigating the differences and similarities of 

these responses can be used to make inferences about how the signals may 

be combined. This principle underlies all the experiments described in this 

thesis. 

2.6. Generating isoluminant stimuli 

Isoluminant stimuli were generated in two ways in this thesis; using 

photometric measurements and using psychophysical measurements. When 

generating isoluminant stimuli using photometric measurements a PR655 

spectroradiometer (Photoresearch Inc., Chatsworth, CA.) was used. The 

power spectrum for each gun of the monitor is measured and then converted 

from RGB to MB-DKL space using Smith and Pokorny (1975) cone 

fundamentals.  

When isoluminant stimuli were created based on psychophysical 

measurements a minimum motion paradigm was used to measure individual 
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subjective isoluminant points (Anstis & Cavanagh, 1983). This technique is 

based on the principle that colour and luminance are not integrated 

temporally and so if there is no luminance component in the chromatic 

Gabors no clear direction of motion will be perceivable. 

All Gabors were of size 2.0°, spatial frequency 2.0 cpd and were 

presented for 4 frames. The achromatic Gabors were presented at 0.1 

Michelson contrast and chromatic Gabors were presented at full contrast. For 

half the trials an achromatic Gabor of phase 0.0 was followed by a chromatic 

Gabor of phase 0.25, then an achromatic Gabor of phase 0.5 and a chromatic 

Gabor of phase 0.75. For the remaining half the phases were reversed such 

that the initial achromatic grating had phase 0.75. Participants were required 

to indicate the direction the grating appeared to be drifting in. The elevation 

of the chromatic gratings was varied using a staircase procedure designed to 

find the 50% correct point i.e. the point where no consistent direction of 

motion was perceived. The elevations generated using this procedure were 

then applied as deviations from photometric isoluminance in MB-DKL space. 

Across all participants (n=8) deviations from photometric isoluminance 

ranged from 0.185° to -5.901°, the mean deviation was -2.774°. This 

represents deviations between 0.17% and 5.31% of the maximum possible 

deviation from photometric isoluminance (45°). 

One participant (RJS) had their LM isoluminant point measured twice, 

four months apart, elevations of -3.478° and -3.743° were recorded. This 

demonstrates the reliability of the measurement and subsequently all other 
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participants only had their subjective isoluminant point measured on one 

occasion. 

An individual’s isoluminant point varies over time, spatial frequency 

and across the retina (Logothetis & Charles 1990). Therefore, there is always a 

risk that an isoluminant stimulus may contain luminance information. 

However, in this thesis the presence of a luminance artefact would only 

decrease the effects that we are investigating (see also Section 3.4). 

2.7. Defining contrast 

Luminance contrast can be defined in terms of Michelson contrast 

(Equation 2.3) or root mean square (RMS) contrast (Equation 2.4). Michelson 

contrast is based on the highest (ܫ௫) and lowest (ܫ) luminance values 

present in the stimulus. RMS contrast is based on the standard deviation of 

the luminance values present in the stimulus, where intensities ܫ are the i-th 

j-th element of a stimulus of size M by N and ܫ ̅is the mean luminance value. 

 

For chromatic contrast in DKL space, values are typically specified as 

fractions of the maximal amplitude of modulation along each of the cardinal 

௫ܫ െ ௫ܫܫ   ܫ

ඩ  ܰܯ1  ሺܫ െ ܫሻ̅ଶெିଵ
ୀ

ேିଵ
ୀ  

Equation 2.3 

Equation 2.4 
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axes. For instance, a contrast of 1.0 along the L-M axis represents the 

maximum modulation along that axis, permitted by the gamut of the monitor. 

For the luminance axis, the maximal modulation would be identical to 

Michelson contrast if the monitor were able to produce a ‘black’ of zero 

luminance. In our case, the luminance range of the monitor was 0.724 – 

219.20 cd/m2, giving a maximum Michelson contrast of 0.993. Therefore, our 

luminance contrast values are, to all intents and purposes, identical to the 

Michelson values and will be referred to as such (the reader can simply 

multiply any luminance contrast by 0.993 in order to obtain the ‘true’ 

Michelson contrast). 

It should be remembered throughout this thesis that, in this colour 

space, the contrast values between axes are entirely arbitrary and are 

governed only by the gamut of the monitor. 

2.8. Adaptive staircase procedures 

Adaptive staircases allow adjustment of stimulus parameter until the 

feature being tested is just discriminable or the stimulus is just detectable. 

The intensity of the feature being tested is determined by the participant’s 

previous responses. Initially the task is easy and then becomes more difficult 

until the participant gives an incorrect response (one-up) at which point the 

staircase reverses and the task becomes easier until the participant gives the 

correct response, a specified number of times (n-down), when the staircase 

will reverse again. This allows measurements to be taken across the 

psychometric function focusing on a particular percentage correct. 
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In this thesis, the step size is large initially gradually getting smaller to 

converge on the desired percentage correct and staircases are aborted after 

50 trials. We use one-up, one-down staircases (designed to converge on the 

50% correct point) to measure detection thresholds and one-up, three-down 

staircases (designed to converge on the 79.4% correct point) to measure 

discrimination thresholds.  

2.9. Method of adjustment 

Method of adjustment simply involves participants adjusting the 

stimuli until it meets some criteria. All the experiments in this thesis that use 

method of adjustment require the participant to use the mouse to move an 

edge until it is aligned with a marker.  Method of adjustment produces a 

histogram of responses and so, unlike adaptive staircases, can detect 

bimodality of responses. 

2.10. Curve fitting 

Data collected using an adaptive staircase procedure can be fit to a 

curve using a Weibull function of the form 
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Where y is the probability of giving a correct response as a function of 

variable of interest(x). α corresponds to the value of the variable of interest at 

the desired percentage correct point and β corresponds to the slope of the 

psychometric function. Thresholds can be derived from this fit as the point at 

which the observer was at the desired percentage probability of responding 

correctly (Figure 2.3). 

ݔ ൌ ߙ  ቆെ݈݃ ൬ 1 െ 1ݕ െ ݄ܿܽ݊ܿ݁൰ቇଵఉ
 

ݕ  ൌ ݄ܿܽ݊ܿ݁  ሺ1 െ ݄ܿܽ݊ܿ݁ሻ ൬1 െ exp െ ቀ௫ఈቁఉ  ൨൰ 

Equation 2.5. 

with the inverse: 

Equation 2.6. 
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as a function of the curve fit parameters, becomes noisy and contains several 

local minima (Figure 2.5). Furthermore, extreme values can cause the slope of 

the function to become too shallow and threshold estimates to become 

inaccurate. In the data shown in the lower panel of Figure 2.4 and Figure 2.5 

the function estimates the threshold to be 0.571, but visual inspection 

suggests it should be closer to 0.4. 

In these cases a more reliable method to calculate threshold is to take 

the mean of the last six reversals (see Section 2.8 for details of when reversals 

occur). In the case of the data presented in the lower panel of Figure 2.4 and 

Figure 2.5, the mean of the last six reversals is 0.405. This appears to be a 

better representation of the true threshold than was generated by the fitting 

procedure.  

This method will be used when a fitting procedure generates 

threshold values that are outside the theoretically possible range of values for 

the task in question. For example, in a contrast detection task, possible 

contrast values range between zero and one. Therefore, threshold values 

must also be between zero and one, if this was found not to be the case after 

a fitting procedure, the mean of the last six reversals would be used as a 

measure of threshold. 
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be easily calculated by sorting the values in the population. This analysis can 

be used for any statistical feature of the sample. 

In this thesis, when bootstrapping was performed, 5000 resamples 

were taken for each data set. The exact way bootstrapping is used for each 

technique is outlined in the relevant methods section. 
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3. Luminance information constrains chromatic blur discrimination in 

natural scene stimuli 

Introducing blur into the chromatic component of a natural scene has 

very little effect on its percept, whereas blur in the luminance component is 

very noticeable (Wandell, 1995, Figure 7). In this chapter the dominance of 

luminance information in blur discrimination is quantified and several 

potential causes of the effect are examined.  

In addition to the phenomenon described by Wandell (1995, Figure 7) 

there are several more illusions that demonstrate the dominance of 

luminance information and how it appears to constrain luminance 

information, including the Boynton illusion (Kaiser, 1996), the Spanish castle 

illusion (Sadowski, 2006) and the water colour effect (Pinna, et al., 2001). For 

a detailed discussion of these and other examples please see Section 1.5. 

Despite the number of examples of luminance constraining chromatic 

information it is not clear why this should occur. Specifically, it is unclear 

whether it is due to a mechanism that gives precedence to luminance 

information or whether it is due to other factors. For example, chromatic blur 

may not be visible, simply due to poorer spatial resolution in the processing of 

chromatic information (Mullen, 1985). It has been demonstrated that 

performance is poorer for several visual tasks, when isoluminant stimuli are 

used, including stereopsis (Krauskopf & Forte, 2002), global shape 

discrimination (Mullen & Beaudot, 2002) and, importantly, blur discrimination 

(Wuerger, Morgan, Westland, & Owens, 2000; Wuerger, Owens, & Westland, 
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2001). Blur discrimination, however, is only poorer for blue-yellow modulated 

stimuli; red-green modulated stimuli elicit similar thresholds to achromatic 

stimuli. Chromatic performance is not poorer for Vernier acuity when 

luminance and chromatic cues are presented in equal multiples of detection 

threshold (Krauskopf & Forte, 2002), and so it is not clear whether poorer 

chromatic acuity is a sufficient explanation for the masking of chromatic blur 

by sharp luminance information. 

In the illusions mentioned above, and in natural scenes, luminance 

typically has a higher effective contrast than chromatic information (Rivest & 

Cavanagh, 1996). This could mean that luminance is not dominant due to a 

neural mechanism, but rather, because it is simply more visible.  

Chromatic and luminance information in natural scenes may have 

different statistical regularities that could affect how blur is perceived. For 

example, if the luminance channel contained more high spatial frequency 

information it would be more susceptible to the blurring process. Chromatic 

and luminance information have some similar features in natural scenes: 

there is no significant difference in the number of isoluminant and achromatic 

edges in natural scenes (Hansen & Gegenfurtner, 2009) and both chromatic 

and luminance information have 1/ƒ amplitude spectra (Parraga, Brelstaff, 

Troscianko, & Moorehead, 1998). However, the two types of information may 

differ in other ways, for example, the number of range discontinuities or the 

distribution of spatial frequencies. 
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This chapter will investigate the interaction between sharp luminance 

information and blurred chromatic information in natural scenes. The effect 

will be quantified and the potential causes outlined above will be investigated 

to determine whether there is evidence for a neural mechanism with a bias 

toward luminance information. 

3.1. Blur discrimination 

The fact that blur is more obvious when applied to the luminance 

channel might simply be due to poorer blur discrimination for chromatic 

information. To test if this was the case we examined blur discrimination for 

chromatic information alone and in combination with sharp luminance 

information. 

3.1.1. Methods 

Participants 

One male and four female volunteers (including the author), aged 

between 23 and 29, participated in the study.  Four of the participants (one 

male) were naive to the purpose of the study.  

Stimulus Generation 

The natural images were selected from the McGill Calibrated Colour 

Image Database (Olmos & Kingdom, 2004). The images were from the 

categories; flowers, animals, foliage and fruits. The images selected were the 

first in each category that was entirely in focus (with no obvious depth cues), 

well lit (not predominantly comprised of silhouettes or large areas of 
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darkness), and did not contain text. The central 512x512 pixels were then 

cropped from each image, leading to four equally sized natural images (Figure 

3.2A and Figure 3.2B). 

Stimuli were then converted into MB-DKL colour space (Derrington, et 

al., 1984; Macleod & Boynton, 1979). There are two potential issues that 

could introduce luminance artefacts into the chromatic information. First, the 

colour space transformations were not adjusted to individual subjects’ 

isoluminance planes. Second, cone adaptation levels can potentially vary 

across the extent of a natural scene, meaning that using fixed-cone 

sensitivities (that are implicitly assumed in the MB-DKL space) could introduce 

luminance artefacts into the colour channels (A. P. Johnson, Kingdom, & 

Baker, 2005). However, if any luminance artefacts were present they would 

only serve to reduce the effect as demonstrated in Experiment 3.4. 

All channels were scaled down in contrast by 50% in order to ensure 

that the images remained within the gamut of the monitor after chromatic 

manipulations. At low contrasts reducing the contrast further can increase 

blur discrimination thresholds, but this does not occur at the high contrasts 

used in this study (Watson & Ahumada 2011). 

Blurring was performed by filtering the relevant channel(s) with a 

circular Gaussian whose width was varied with a staircase procedure 

according to the experimental condition. Either the luminance channel alone 

was blurred or both the isoluminant channels (by the same degree). To 

present the luminance channel alone, the contrast of both chromatic 
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channels were set to zero and, equivalently, to present only chromatic 

information the luminance contrast was set to zero. After the manipulations 

had been made the stimuli were converted back to RGB space, for 

presentation on the monitor.  

Stimuli were presented with a size of 10° of visual angle along each 

edge, with a grey background and were viewed from a constant 52 cm 

distance.  

Procedure 

A two-interval forced-choice (2IFC) design was employed. Participants 

were presented with the two images (foil and target) for 300 ms separated by 

a 500 ms interstimulus interval (ISI) and asked which appeared more blurred. 

The presentation order of the target and foil was randomised. 

In each condition the minimal degree of blur that could be detected, 

the blur threshold, was measured. The blur thresholds for luminance 

information combined with sharp chromatic information and for chromatic 

information combined with sharp luminance information were measured. 

Furthermore, to determine whether any differences between the chromatic 

and luminance thresholds are simply caused by poorer blur discrimination, 

the thresholds for each form of information alone were measured. See Figure 

3.1 for examples of the stimuli in the four conditions. 

The blur threshold in each condition was determined using a one-up, 

thee-down staircase procedure. The staircases controlled the amount of blur 

in the target images; a different staircase was implemented for each image 
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Data Analysis 

Participants’ responses were averaged for each blur intensity level 

presented in the staircase procedure. A Weibull function was then fit to this 

data to determine the threshold at the 80% correct point (See Section 2.10. 

for details). 

3.1.2. Results 

The group data are shown in Figure 3.3. A two-way ANOVA showed 

that observers had higher blur discrimination thresholds for chromatic than 

for luminance information (main effect of channel type; F(1, 76) = 95.664, p < 

0.001, MSchannel = 1300.679). Critically, the elevated thresholds for chromatic 

blur were more pronounced in the presence of sharp luminance information 

(interaction between channel and combination; F(1, 76) = 14.548, p < 0.001, 

MSinteraction = 197.804). 

Whilst the blur discrimination thresholds for the isoluminant stimuli 

are higher than for the luminance conditions, the thresholds when blurred 

chromatic information is combined with sharp luminance information were 

significantly higher again. For luminance defined blur, on the other hand, the 

presence of sharp chromatic information had no masking effect. 

Lower acuity, potentially caused by the relative sparsity of S-cones 

(Wald, 1967), or the low-pass nature of colour vision (Mullen, 1985; Parraga, 

et al., 1998), may explain the generally higher thresholds for chromatic blur 

detection. If these factors were the source of the specific masking effect we 

found, there would be no difference in the blur discrimination thresholds of 
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to be a more effective mask. To test whether this explains the effect found in 

Experiment 3.1 the contrast of the channels was equated according to 

individual observers’ discrimination thresholds. 

3.2.1. Methods 

Participants 

The same participants were used as for Experiment 3.1. 

Stimulus Generation 

The stimuli were initially generated in the same manner as for 

Experiment 3.1. In addition, discrimination thresholds were measured for the 

luminance and the combined isoluminant channels for each participant for 

each image using a 2IFC task. The contrast was varied using a one-up, three-

down staircase procedures and the contrast detection thresholds was 

extracted by fitting a Weibull function to the data from these staircases. 

Rather than scaling the contrast of each channel by a uniform amount 

(50%) as in 3.1, the channels were each scaled independently for every image 

and every observer to a contrast that was five times the corresponding 

detection threshold for that stimulus component (Figure 3.2C). 

Procedure 

The same procedure was used as for Experiment 3.1. 
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Data Analysis 

The same data analysis was used as for Experiment 3.1. However, as a 

result of the lower overall contrast 13 (6.25%) staircases had to be excluded 

as they did not converge; three from the isoluminant condition and 10 from 

the blurred chromatic information combined with the sharp luminance 

information condition. 

3.2.2. Results 

The main effect of channel (F(1, 67) = 103.112, p < 0.001, MSchannel = 

1503.064, and interaction between channel and combination (F(1, 67) = 14.985, 

p < 0.001, MSinteraction = 218.418, were entirely undiminished (Figure 3.4); the 

luminance advantage is not caused by the higher effective contrast of 

luminance information in natural scenes. 
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changes and vice versa. If the effect were caused by any difference in the 

statistics of the information in these natural scenes the effect should also be 

reversed, causing luminance blur to be masked by sharp chromatic 

information. 

3.3.1. Method 

Participants 

Ten volunteers, aged between 18 and 29, who had not participated in 

previous studies, with the exception of the author, took part in this study. 

Apparatus 

A 22-in Vision Master Pro 513 (Iiyama) was used, running at 1280 x 

1024, with an 85 Hz refresh rate.  

Stimulus Generation 

Stimuli were generated in the same manner as for Experiment 3.1. 

However, after conversion into MB-DKL space (Derrington, et al., 1984; 

Macleod & Boynton, 1979), the information in the LM and S channels was 

replaced with the luminance information and information in the luminance 

channel was replaced with half of the sum of the LM and S information 

(Figure 3.2D). 
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Procedure 

The same procedure was used as for Experiment 3.1. Each participant 

collected two staircases for each condition, leading to a total of 80 staircases 

per condition (320 staircases in total). 

Data Analysis 

The method of averaging data and fitting a Weibull function could not 

be performed for all data in this set due to the poor performance levels in the 

condition combining blurred colour and sharp luminance information. For this 

reason, the simpler method of averaging the final six reversals from the 

staircase was used (see Section 2.11). Even then, 31 (9.69%) staircases had to 

be excluded from the analysis because the subjects’ performance was so poor 

that the staircases did not converge. Of these, four came from the sharp 

chromatic information combined with blurred luminance condition and 27 

came from the sharp luminance information combined with blurred 

chromatic information condition. 

3.3.2. Results 

The difference in blur thresholds between the chromatic- and 

luminance-only conditions was substantially reduced (Figure 3.5), to the point 

that it was no longer statistically significant (Fisher’s least significant 

difference, p = 0.448). However, chromatic blur thresholds remained poor in 

the presence of sharp luminance information, interaction between channel 

and combination (F(1, 285) = 83.743, p < 0.0001, MSinteraction = 1932.375). Clearly 
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was repeated with isoluminance determined psychophysically and with a 

deliberately introduced luminance artefact. If the effect had been caused by 

luminance artefacts then it would be reduced when we control for the 

individual subject’s isoluminant plane and it would be increased when we add 

a large artificial artefact. 

3.4.1. Method 

Participants 

One male participant, aged 26, took part in the study, who was naive 

to the purposes of the study. 

Apparatus 

The same apparatus was used as for Experiment 3.3. 

Stimulus Generation 

The participant’s psychophysical isoluminant axis was measured for 

the L-M and S-cone channels separately using a minimum motion procedure 

as described in Section 2.6. 

Procedure 

The same procedure was used as for Experiment 3.1. The experiment 

was run twice; once with the elevation values determined by the motion 

nulling procedure and once with a luminance artefact of 5.0° of elevation. 
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Data Analysis 

The same data analysis was used as for Experiment 3.1. Data 

previously collected for Experiment 3.1 were used for the photometrically 

determined isoluminant condition. One staircase was excluded from the 

sharp luminance information combined with blurred chromatic information 

condition in the photometric isoluminance data and one was excluded from 

the same condition in the luminance artefact data because they did not 

converge.  

5000 within-subject bootstrap resamples were taken for each 

condition to produce a new set of psychometric curves. These data were 

them used to calculate the standard error for each condition. 

3.4.2. Results 

The motion nulling procedure revealed small differences between 

photometric and psychophysical isoluminance for the participant. 

Psychophysical isoluminance was at -0.185° of elevation for the LM channel 

and -2.767° of elevation for the S channel. 

Stimuli generated using psychophysically determined isoluminance 

had slightly increased thresholds for both the isoluminant blur and chromatic 

blur combined with sharp luminance information conditions. Introducing a 

luminance artefact also slightly increased the blur threshold for isoluminant 

stimuli, but importantly reduced the threshold of the chromatic blur 

combined with sharp luminance conditions (from 11.182° in the photometric 

isoluminant condition to 9.580° in the luminance artefact condition, see 
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we quantified that dominance using a blur-discrimination task with 

naturalistic stimuli and tested a number of candidate explanations for it, 

namely whether the effect could be explained by poorer chromatic acuity, 

lower effective contrast, or differences in scene statistics. We found that 

none of these factors were able to explain the fact that subjects were unable 

to detect chromatic blur in the presence of sharp luminance information. 

First we showed that differences in acuity are not sufficient to explain 

the data. Subjects were generally worse at detecting blur in the isoluminant 

stimuli which might be ascribed to poorer chromatic acuity, but they were 

very much worse at the task only when sharp luminance information was 

combined with the chromatic blur. Even in Experiment 3.3, for which the 

modifications to the images resulted in equal blur discrimination thresholds 

for isoluminant stimuli and achromatic stimuli, when the information was 

combined the chromatic blur became imperceptible.  

Second, we demonstrated that the effect is not due to the higher 

effective contrast of luminance information in natural scenes; equating the 

effective contrast of the channels did not diminish the effect.  

Third, the effect is not caused by differences in the statistical structure 

of the colour and luminance information; reversing the channels, and 

therefore the statistical properties of the luminance and chromatic 

information did not cause the effect to be reversed or even reduced. 

The fact that chromatic blur alone is harder to detect than luminance 

blur alone is entirely consistent with previous findings. For instance, studies 
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have shown that blur thresholds for S-cone isolating stimuli are approximately 

twice as high as those for the other two channels even when cone contrast is 

taken into consideration (Wuerger, et al., 2000; Wuerger, et al., 2001). This 

may be due to reduced spatial sampling of chromatic information leading to a 

lower precision in chromatic processing (Peirce, et al., 2008). This reduced 

sampling may, in turn, be a consequence of chromatic aberration; the visual 

hardware may reflect the lack of spatial precision in the chromatic signals 

themselves (R. L. De Valois & De Valois, 1988). As a result, luminance may be 

used for tasks requiring high spatial precision. Conversely, colour may be used 

predominantly to process surface properties and to facilitate segmentation 

and grouping, with only a secondary role in edge detection and localisation 

(Mollon, 1989). If colour is mainly used to process surface properties this 

could explain why it appears to be discounted as a cue to edge perception 

when luminance information is present. 

It is surprising that equating the effective contrast of the colour and 

luminance channels did not reduce the effect. Rivest and Cavanagh (1996) 

found that luminance does not play a privileged role in a contour localisation 

task if the luminance and chromatic channels are equated to have similar 

localisation thresholds when presented alone. Those authors suggested that 

the reason luminance appears privileged in natural scenes is due to its greater 

effective contrast which, at least for the perception of blur, appears not to be 

the case. 
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Colour information and luminance information in natural scenes are 

statistically similar in their 1/ƒ amplitude spectra (Parraga, et al., 1998) and in 

the numbers of achromatic and isoluminant edge that they contain (Hansen & 

Gegenfurtner, 2009). There might, however, be other statistical differences 

between the chromatic and luminance information in natural scenes, for 

example, in the fine structure. Even if natural scenes are not different in 

general, it might have been the case that the particular images used in this 

chapter had different image statistics in the two channels. To ensure that no 

such statistical artefacts could have caused the effects measured we swapped 

the information in the luminance and chromatic channels and repeated the 

experiment. The fact that this removed the advantage for the luminance 

channel presented alone indicates that there may have been some effect of 

differential statistics. However, these differences were clearly not responsible 

for the luminance dominance; when the reversed channels were combined 

subjects still gave preference to the luminance channel, even though it now 

contained no more information than the chromatic channel. Therefore the 

dominance of sharp luminance information over blurred chromatic 

information is not related to the statistical structure of natural scenes. At this 

point the evidence appears to indicate a mechanism giving active preference 

to luminance signals in the discrimination of blur. 

It is clear from these data that the signals from chromatic and 

luminance information are not combined in a simple linear fashion such that 

it is not sufficient to consider either chromatic or luminance cues in isolation. 

In the current study we would not have been able to predict the masking 
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effect caused by combining blurred chromatic information and sharp 

luminance information from either the achromatic or isoluminant conditions. 

The masking effect could only be revealed by testing colour and luminance 

information in combination. 

Similarly, the phase of a luminance grating overlaid on a chromatic 

plaid changes the appearance of the plaid (Kingdom, 2003). If the luminance 

grating is out of phase the plaid has a three-dimensional appearance (an 

example of the shape-from-shading effect). However, if the luminance grating 

is in phase with the chromatic information the impression of depth is 

suppressed. 

The masking effect could indicate that chromatic blur is being 

bounded by the sharp luminance information, i.e. the chromatic blur does not 

appear to cross luminance boundaries. When reticles (thin, low-contrast, 

achromatic lines) are superimposed on the zero crossings of isoluminant 

gratings this can improve chromatic contrast sensitivity (Montag, 1997). This 

could be another circumstance where a chromatic gradient is bounded by 

luminance information. The facilitation effect caused by the reticles may be at 

the expense of spatial acuity of the chromatic information i.e. the chromatic 

information becomes tied to the luminance information (see Chapter 6 for 

further details). This would mean that the chromatic information would 

appear aligned with the luminance edges, as seen in the Boynton Illusion 

(Kaiser, 1996) and the results in this chapter.  
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There are existing accounts of edge detection such as scale space 

models (Georgeson, May, Freeman, & Hesse, 2007) and relative phase models 

(Burr, Morrone, & Spinelli, 1989). However, these do not currently attempt to 

incorporate the multiple channels (chromatic and luminance information) 

that would be necessary to model the current data. 

In conclusion, the data in this chapter show that the process of 

combining luminance and chromatic signals is not simple linear summation. 

When chromatic blur is combined with sharp luminance information, 

chromatic blur discrimination thresholds are significantly poorer than when 

presented alone. The converse effect does not occur; blurred luminance 

information cannot be masked by sharp chromatic information. The 

luminance masking effect is not caused by poor acuity in the colour channels, 

higher contrast of luminance information or differences in the statistical 

properties of the information provided to each channel. This indicates an 

underlying mechanism that gives precedence to luminance edge information 

even when more precise chromatic information is available.
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4. Cue combination of colour and luminance in aligned synthetic edges 

In this chapter synthetic edges will be used to investigate whether 

edge localisation is improved when both colour and luminance cues are 

present, compared to either in isolation. Observed data will be compared 

with predictions based on measurements of each cue alone. In the previous 

chapter, we used natural scene stimuli but, this limits the way that stimuli can 

be manipulated and so, in this chapter we will be using bipartite edges. This 

will allow us to investigate a) whether having both colour and luminance cues 

present improves localisation judgements and b) how the two cues might be 

combined. 

Gur and Akri (1992) suggest that colour vision evolved not only to 

encode colour, but to enhance luminance processing. In support of this idea, 

it was found that the ability to discriminate between a circle and an ellipse is 

enhanced when both colour and luminance information is present, compared 

to either alone (Syrkin & Gur, 1997). However, contrast detection tasks show 

asymmetric facilitation between colour and luminance (for further details see 

Section 1.4). Chromatic pedestals do not facilitate detection of luminance 

targets (K. K. De Valois & Switkes, 1983), but luminance pedestals do facilitate 

detection of chromatic targets (Cole, et al., 1990; Switkes, et al., 1988). These 

results suggest that performance is improved by the presence of both cues for 

some tasks. It is not clear whether improvement will occur in an edge 

localisation task and, if it does, how much improvement will occur. 
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It may be that chromatic information is simply discounted or a ‘winner 

takes all’ strategy is being used. In this case combining the cues would not 

improve performance beyond the most reliable cue available. If information 

from both cues is combined, performance may be predicted using an 

unweighted averaging model, where each cue has equal influence. 

Alternatively a weighted averaging model, such as maximum likelihood 

estimation (MLE), where the cues have different amounts of influence may 

predict performance. See Section 1.2 for full descriptions of all three models.  

One way to quantify performance is to measure variability. Here we 

will use a staircase procedure to generate a psychometric function and the 

corresponding just noticeable difference (JND). The JND is a measure of 

variability; the greater the spread of responses the larger the JND.  Increased 

variability is indicative of poor performance. If a participant is performing well 

at a localisation task they are more likely to give consistently similar 

responses, if they are bad at a task there will be less consistency in their 

responses. JNDs will be measured for the cues in isolation and then in 

combination. The combined JNDs will then be compared to model predictions 

generated from the individual components. 

In this chapter Vernier acuity (alignment) tasks will be used to 

investigate how colour and luminance cues are combined in an edge 

localisation task. The human visual system is very good at making Vernier 

judgements with both colour- and luminance-defined stimuli (Krauskopf & 

Forte, 2002) and so there is very little variability in performance in these types 
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of judgements. In order to test the efficacy of the three models we need to 

increase variation in performance and prevent ceiling effects. In particular, if 

there is no significant difference in performance between isoluminant and 

achromatic conditions there will be less difference between model 

predictions. For example, if both the achromatic and isoluminant conditions 

have a JND of 1 arc min, both ‘winner takes all’ and unweighted averaging 

models will predict a JND of 1 arc min (MLE would predict a JND of 0.5 arc 

min). 

4.1. The effect of Gaussian white noise 

This preliminary experiment aims to test whether JNDs generated by a 

staircase procedure can be used to represent performance in an edge 

localisation task. In order to test the models fully we need to be able to 

control performance for the cues in isolation and generate a variety of 

predictions. One way that variability could be increased, and performance 

controlled, is by introducing Gaussian white noise.  

4.1.1. Methods 

Participants 

Two males and one female volunteer (including the author), aged 

between 25 and 29, participated in the study. Two participants (both male) 

were naive to the purposes of the study. 



Aligned synthetic edges 
 

77 
 

Apparatus 

A chin rest was used to ensure participants viewed the stimuli from a 

constant 114cm distance, giving a viewable area that subtended 17.95° of 

visual angle.  

Stimulus Generation 

Three bipartite edges were created in MB-DKL space (Derrington, et 

al., 1984; Macleod & Boynton, 1979) and presented at photometric 

isoluminance, one for each channel (L+M, L-M and S-(L+M)). In this instance a 

bipartite edge refers to a transition from one contrast polarity to the other, 

see Figure 4.1 for examples. The edges were Gaussian blurred (σ = 1°). The 

edges were 10° x 2° in size and were presented with a neutral grey 

background. In order to create the combined conditions (LM + Lum, S + Lum 

and LM + S) the relevant component edges were summed together. The 

single edges were presented at a Michelson contrast of 0.1, meaning that the 

combined edges were presented at a Michelson contrast of 0.2. A vertical 

marker was presented immediately below the edge. The position of the 

marker was randomised for each trial.  

The Gaussian filter applied to the white noise had a standard deviation 

of 0.1° and the noise was presented at a Michelson contrast of 0.2. In the 

combined conditions white noise for both channels was added together 

leading to a total noise contrast of 0.4. In order to reduce loading time for the 

stimuli, 100 noise patterns were pre-generated. The noise pattern for each 

trial in the staircase was randomly selected from these patterns, such that 
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participants could not learn a particular pattern. Noise was not correlated 

across channels. See Figure 4.1 for example stimuli. 

 

Procedure 

A two alternative forced choice (2AFC) design was employed. 

Participants were presented with the edge and marker for 300ms and asked 

whether the edge appeared to the left or right of the marker. Their response 

was followed by a 300ms inter-stimulus interval (ISI) before the start of the 

next trial.  

The offset between the edge and marker was controlled by one-up, 

one-down staircase procedures, designed to converge on the point where 

participants were equally likely to judge the edge to be on the left or right of 

the marker. Each participant collected 10 staircases of 50 trials for each 

     

A         B             C 

     

D      E          F 

Figure 4.1. Example stimuli. A and D are the luminance alone conditions, B and E 

are the L-M alone conditions, C and F are the combined conditions. A-C are the stimuli 

without noise. D-F are the stimuli with noise. 
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condition. The presentation order of the six conditions was randomised, but 

the staircases were not interleaved but run sequentially. 

4.1.2. Results 

A logistic function was fit to the data and the just noticeable 

difference (JND) was calculated as the difference between the edge position 

where participants responded ‘left’ 75% of the time and the position where 

participants responded ‘left’ 25% of the time  (Figure 4.2 and Figure 4.3). 5000 

bootstrap resamples were taken for each condition, for each participant. 

Logistic functions were also fit to 5000 within-subject bootstrap resamples for 

each condition, for each participant. These were used to derive the standard 

error of the JND. 
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The presence of noise was expected to decrease the JND values in 

general and prevent ceiling effects. However, as can be seen in Figure 4.5, 

noise had little impact on the performance of subjects in the task, and 

therefore cannot be used to manipulate performance. 

 

Figure 4.4. JND values for all participants and all conditions with no noise present 

in the stimuli. The achromatic and isoluminant conditions alone are shown in the left panel 

and the combined conditions in the right panel. There is no systematic difference between 

any of the conditions. Error bars represent ± 1 standard error of the mean for each 
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4.2. The effect of increasing viewing distance 

In Experiment 4.1 the viewing distance was relatively short (114cm) 

and consequently the pixel size was quite large (68.21 arc sec). Note that 

participant JNDs are only slightly larger than this (Figure 4.4 and Figure 4.5). 

We therefore wanted to test whether pixel size was actually the limiting 

factor of the measurement, rather than the psychophysical performance of 

the subjects. In order to address this, the viewing distance was increased and 

the experiment repeated. 

 

Figure 4.5. JND values for all participants and all conditions with noise present in 

the stimuli. The achromatic and isoluminant conditions alone are shown in the left panel 

and the combined conditions in the right panel. There is no systematic difference between 

any of the conditions. Error bars represent ± 1 standard error of the mean.  
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4.2.1. Methods 

Participants 

Three male and four female volunteers (including the author), aged 

between 19 and 30, participated in the study. Six of the volunteers (three 

male) were naive to the purposes of the study. 

Apparatus 

A chin rest was used to ensure that participants viewed the stimuli 

from a constant 367cm distance, giving a viewable area that subtended 5.62° 

of visual angle. This decreased the pixel size to 21.19 arc seconds (compared 

to 68.21 in Experiment 4.1). 

Stimulus Generation 

Stimuli were generated in the same manner as for Experiment 4.1 and 

presented at a size of 4.5° x 1° with a Gaussian blur of 0.135°. 

Procedure 

The same procedure was used as for Experiment 4.1. In addition the 

luminance conditions were repeated with Michelson contrasts of 0.0225 and 

0.02. 

4.2.2. Results 

Data analysis was performed in the same manner as for Experiment 

4.1. Systematic differences are clearly visible, with luminance having a smaller 

JND than either L-M or S conditions. This suggests that the task is now 
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measuring edge localisation sensitivity and is no longer limited by pixel size 

(Figure 4.6). 

 

JNDs were measured for the three conditions that had a luminance 

component (luminance alone, luminance combined with L-M and luminance 

combined with S-(L+M)) at three Michelson contrasts (0.1, 0.0225 and 0.02). 

Reducing luminance contrast was found to increase the JND when the 

luminance edge was presented alone and for the S+Lum when luminance 

contrast was increased from 0.02 to 0.1 (Figure 4.7). Non-significant increases 

 

Figure 4.6. JND values for Experiment 4.2 for all participants, shown in grey and 

combined across participants, shown in black. The achromatic and isoluminant conditions 

alone are shown in the left panel and the combined conditions in the right panel. All cues 

were presented at a contrast of 0.1. A clear systematic difference is shown between 

luminance, LM and S conditions. Error bars represent ±1 standard error of the mean.  
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were found in all other conditions tested. This demonstrates that contrast can 

be used to manipulate performance in this task. 

 

Model Comparisons 

There is no significant difference between the performance of the 

three models. There are large errors and, more importantly, the model 

predictions are not sufficiently different (Figure 4.8). Together these factors 

mean that no conclusions can be drawn. It appears that this methodology is 

not sensitive enough to differentiate between the three models. 

 

Figure 4.7. JND values collapsed across participants for the three luminance 

contrasts tested in Experiment 2. Decreasing the luminance contrast increases the JND for 

all conditions. Error bars represent ±1 standard error of the mean.  
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It should be also noted that, whilst the data for S-(L+M)-combined-

with-luminance is similar to those for L-M-combined-with-luminance, the 

errors are even larger and there is less consistency across participants. For 

this reason future experiments will be focused on modelling performance for 

L-M combined with luminance information. 
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4.3. Discussion 

In this chapter it has been demonstrated that: Gaussian white noise 

does not affect performance in the edge localisation task, a long viewing 

distance is necessary to prevent ceiling effects from pixel size and that 

contrast can be used to manipulate participants’ performance. However, 

despite the improvements from using a longer viewing distance the staircase 

procedure was not sufficiently sensitive to differentiate between weighted 

averaging, unweighted averaging or ‘winner takes all’ strategies. 

Experiment 4.1 shows that Gaussian white noise has little impact on 

participants’ Vernier judgements and cannot be used to manipulate 

performance. This is surprising as, generally, noise limits perception causing 

performance to decrease (Pelli & Farell, 1999). It has been suggested that the 

global features of a stimulus are used in Vernier judgements; line-feature 

primitives are extracted before localisation takes place (Meer & Zeevi, 1986). 

Meer and Zeevi (1986) created a Vernier task using dots to create a vertical 

line, they then perturbed this line of dots into a Gaussian distribution. They 

found that perturbation only increased Vernier thresholds by a small amount, 

far less than they had predicted. They attributed this lack of effect to global 

information being used to overcome interference in the local information. 

This could explain why the introduction of Gaussian white noise had no effect 

on performance in Experiment 4.1. If the global form of the line was extracted 

prior to localisation this would have attenuated the effect of noise and 
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prevented deficits in performance. This also suggests that the use of a 

different type of noise e.g. 1/f would have no effect on thresholds. 

Experiment 4.2 shows that increasing contrast reduces the JNDs for 

edge localisation judgements and so can be used to modulate performance. It 

is, however, unclear whether performance will continue to improve as 

contrast increases or whether it will plateau. Orientation and spatial-

frequency discrimination thresholds can be reduced by increasing contrast, 

but only for a limited range of contrasts, after which no further decrease in 

threshold is observed (Skottun, Bradley, Sclar, Ohzawa, & Freeman, 1987). 

However, Vernier acuity may be affected by a larger range of contrasts. 

Krauskopf and Forte (1991) demonstrated that increasing contrast reduced 

Vernier offset thresholds, for both chromatic- and luminance-defined stimuli, 

to up to ~50 multiples of detection threshold.  

The predictions generated by the three models were not sufficiently 

different to allow them to be compared. The differences in the JNDs for 

isoluminant and achromatic stimuli, introduced by varying contrast, were not 

sufficient to allow the three predictions to be distinguished. In the future, in 

order to distinguish between the three models, the performance difference 

between the chromatic and luminance edges in isolation must be increased. 
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5. Cue combination of conflicting colour and luminance edges 

In the previous chapter we attempted to study the way that 

information about chromatic and luminance cues to edge location are 

combined when they agree, whether or not combining them enhances 

sensitivity, tested with a staircase procedure. In this chapter we will replicate 

that experiment using method of adjustment and also investigate how the 

two cues are combined when they disagree.  

Replication of Experiment 4.2 will ensure that method of adjustment is 

suitable for measuring edge localisation performance. This is important as, 

unlike staircase procedures, method of adjustment allows analysis of the 

distribution of judgements as well as their variability. When the two cues 

conflict it may be that the visual system employs a form of the ‘winner takes 

all’ model, where the cue used to localise the edge changes between trials; 

sometimes luminance determines the perceived edge location and sometimes 

L-M. Switching between the two cues in this manner would lead to a bimodal 

distribution of edge localisation judgements. If we only measured localisation 

judgements using a staircase procedure we would not be able to detect this 

bimodality, but the use of method of adjustment will allow us to check for this 

possibility.  

We will also investigate the range of contrasts necessary to increase 

the difference between the predictions from the three models. As discussed 

in the previous chapter, it is not clear what range of contrast values can be 

used to modulate performance in an edge localisation task. In order to 
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determine this, measurements will be taken for the achromatic and 

isoluminant stimuli over a range of contrasts and each contrast will be used to 

generate a new set of model predictions. The spread of contrasts that allow 

for the greatest range of model predictions will then be used when measuring 

edge localisation performance when the cues agree and when they disagree. 

When colour and luminance cues conflict there are several possible 

ways that edge location could be determined as both chromatic and 

luminance information can be used to make edge localisation judgements. 

When contrast is equated in multiples of detection threshold, Vernier 

thresholds are not significantly different for isoluminant and achromatic 

stimuli (Krauskopf & Forte, 2002) and luminance is not privileged in edge 

localisation when performance is equated (Rivest & Cavanagh, 1996). 

Therefore, if the cues are equated, there is no inherent reason why one 

should have more influence than the other. Chapter 3 showed that chromatic 

blur is masked by sharp luminance information. However, luminance variation 

can be masked by chromatic information when the cues are orthogonal 

(Kingdom, et al., 2010). Therefore, either luminance or chromatic information 

can dominate depending on the circumstance. In the case of localisation of 

conflicting edges it is unclear whether the cues will exert equal influence or 

whether one will have more influence than the other. 

In summary, Experiment 4.2 will be replicated with this alternative 

method. Specifically, we will check that performance on luminance, L-M and 

S-(L+M) conditions can be differentiated (Experiment 5.1). Measurements will 
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be taken for isoluminant and achromatic stimuli, in order to determine the 

best range of contrasts to allow for model differentiation when the cues 

agree (Experiment 5.2). Those stimulus contrasts will then be used, in a 

separate experiment, measuring edge localisation performance when the 

colour and luminance cues agree (Experiment 5.3). The same range of 

contrasts will then be used to investigate edge localisation judgements when 

colour and luminance cues disagree (Experiment 5.4). 

5.1. Piloting method of adjustment 

This experiment tests whether the results found in Experiment 4.2, 

using a staircase procedure, can be replicated using method of adjustment. In 

particular we are aiming to determine whether method of adjustment is 

sensitive enough to differentiate between the achromatic and isoluminant 

conditions and whether contrast can be used to modulate performance. If the 

results of Experiment 4.2 are replicated this will allow us to use method of 

adjustment to investigate how colour and luminance edges are combined 

when they agree and this may improve differentiation between model 

performance. More importantly, it will allow us to use method of adjustment 

to investigate how colour and luminance edges are combined when they 

disagree; particularly, allowing us to consider the possibility of a bimodal 

distribution of responses.  
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5.1.1. Methods 

Participant 

The author, aged 30, participated in this study. 

Apparatus 

A chin rest was used to ensure that the participant viewed the stimuli 

from a constant 367cm distance, giving a viewable area that subtended 5.62° 

of visual angle. This viewing distance was used for the remainder of the 

experiments in this chapter. 

Stimulus Generation 

Two bipartite edges (L+M and L-M) were created in the same manner 

as for Experiment 4.1. These edges were Gaussian blurred (σ = 0.1°). Stimuli 

were 4.5° x 1° in size and presented with a neutral grey background. A vertical 

marker, with a width of one pixel, was presented immediately below the 

edge. The initial position of the marker was randomised for each trial. 

The isoluminant edge was presented at a contrast of 0.1 and the 

achromatic edge was presented at Michelson contrasts of 0.1 and 0.02. The 

contrast of the combined conditions was the sum of the two component 

edges. There were three ‘alone’ conditions; L-M with a contrast of 0.1, 

luminance with a Michelson contrast of 0.1 and luminance with a contrast of 

0.02 and subsequently two combined conditions.  
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Procedure 

The participant was presented with the edge and marker, and used 

the mouse to move the edge until they were satisfied that the two were 

aligned. There was no limit to the presentation time and the subject’s 

response triggered the next trial, following a 300ms ISI. Presentation order of 

the conditions was randomised and 40 trials were collected per condition.  

Data Analysis 

The absolute distance between the participant’s judgement and the 

edge was calculated. When using method of adjustment there is a possibility 

of participants accidentally submitting a judgement before they are satisfied 

that the edge and marker are aligned. These ‘mis-clicks’ can skew the 

resulting distribution. Therefore, outliers were removed, defined as having a 

z-score greater than 3.0 or less than -3.0. This resulted in 7 trials (3.89%) 

being excluded. The standard deviation of the responses for each condition 

was calculated and used as a measure of performance; the more precise a 

participant’s judgement the less variability there will be in their responses.  

5.1.2. Results 

The results replicate those found in Experiment 4.2, showing the 

systematic differences between channel and luminance contrasts (Figure 5.1). 

The exception to this is the luminance-combined-with-L-M condition when 

luminance had a Michelson contrast of 0.02. This condition had a lower 

variance than would be expected from Experiment 4.2; this may have been 

due to the small number of trials for each condition.  
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between model predictions. As shown previously, contrast can be used to 

increase or decrease the variance of edge judgements. In the following 

experiment, contrast was modulated in an effort to find the point where each 

cue was equally weighted, in accordance with MLE. 

5.2.1. Methods 

Participants 

The author, aged 30, participated in this study. 

Stimulus Generation 

The stimuli were generated in the same manner as for Experiments 

4.2, however, isoluminance was determined psychophysically (Section 2.6). 

‘Flipped’ versions of the stimuli were also added in order to remove any side 

bias, leading to two luminance defined arrangements and two L-M defined 

arrangements.  

Procedure 

The same method-of-adjustment procedure was used as for 

Experiment 5.1; participants used the mouse to move the edge until they 

were satisfied that it was aligned with the marker. In an effort to find the 

point where performance was equivalent for the two cues measurements 

were taken for several luminance contrasts (0.02, 0.04 and 0.06 Michelson 

contrast) and L-M contrasts (0.1, 0.2, 0.3, 0.4, 0.6 and 0.9).  

The aim of this experiment was to determine the contrast necessary 

to both equate the two cues, the point where they are predicted to make an 
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equal contribution to edge location, and maximise the difference between 

model predictions. Therefore, only achromatic and isoluminant conditions 

were tested; there were no combined conditions. 

Data Analysis 

The same data analysis procedures were used as for Experiment 5.1. 

Furthermore, the mean difference between the flipped and non-flipped 

conditions was calculated and half of this was then added/subtracted from 

the raw values to remove any side bias.  

In addition, the judgements from the achromatic and isoluminant 

edges were used to calculate the weights predicted by MLE. The following 

combinations were considered: luminance contrast of 0.02 in combination 

with L-M contrasts of 0.1, 0.2 and 0.3.; luminance contrast of 0.04 in 

combination with L-M contrasts of 0.2, 0.4 and 0.6; luminance contrast of 

0.06 in combination with L-M contrasts of 0.3, 0.6 and 0.9.  

5.2.2. Results 

The predicted weights were closest to being equal when the 

luminance contrast was 0.04. However, modulations of L-M contrast had very 

little effect and the weights no longer varied; participant performance was 

approximately the same at this luminance contrast regardless of changes in 

the L-M contrast. The greatest range of weights occurred when luminance 

contrast was 0.02, although the weights were no longer equated (Figure 5.2).  
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The aims of this experiment were a) to determine the contrast values 

that would equate the cues and b) to maximise the difference between model 

predictions. However, in order to differentiate between weighted and 

unweighted averaging we must also test conditions where they are not equal; 

when the weights are the same, both produce the same prediction. If the 

weights are the same, they must both be 0.5 and this will predict that the 

edge will be perceived as equidistant between the two cues, this is the same 

as if the mean of the two edge locations was taken. Although the luminance 

contrast of 0.04 most closely equated the cues, it failed to generate 

differential model predictions. There was also very little variation in the 

predicted weights when the luminance contrast was 0.06. When the 

luminance contrast was 0.02 the weights were reasonably equated, but with 

greater variation in the predictions, allowing the models to be differentiated. 

Therefore, in the following experiments the luminance edge will be presented 

at a contrast of 0.02 and the L-M edges will be presented at contrast of 0.1, 

0.2 and 0.3. 
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5.3.1. Methods 

Participants 

Three male and two female participants (including the author), aged 

between 20 and 31, participated in this study. Four of the participants (three 

male) were naive to the aims of the study. 

Stimulus Generation 

The component edges were the same as those used in Experiment 5.2; 

two luminance defined arrangements and two L-M defined arrangements 

(‘flipped’ and ‘non-flipped’). In the combined conditions all possible 

combinations were presented to prevent bias: dark to light combined with 

red to green; dark to light combined with green to red; light to dark combined 

with red to green and light to dark combined with green to red.   

Procedure 

The same procedure was used as for Experiment 5.1. The participant 

was presented with the edge and marker and moved the edge, using the 

mouse, until they were satisfied that the two were aligned. There was no limit 

to the presentation time and there was a 300ms ISI between trials. 

Presentation order of the conditions was randomised and 40 trials were 

collected per condition.  

Luminance information was presented at a Michelson contrast of 0.02 

and chromatic information at contrasts of 0.1, 0.2 and 0.3. 
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Data Analysis 

The data were analysed in the same manner as for Experiment 5.2. 

The standard deviation was measured for the component edges alone 

(luminance at a contrast of 0.02 and L-M at contrasts of 0.1, 0.2 and 0.3) and 

for the three combined edges (luminance contrast of 0.02 combined with 

each of the three L-M contrasts). The standard deviations from the 

component edges were used to calculate predictions for the three models. 

5.3.2. Results 

The data are very similar to those recorded in Experiment 4.2 and 

there is no significant difference between the performance of the three 

models. As in that experiment there are large errors and the model 

predictions are not sufficiently different (Figure 5.3). There appears to be a 

trend away from weighted averaging (MLE), but this is not statistically 

significant. Once again no conclusions can be drawn as this methodology is 

not sensitive enough to differentiate between the three models. 
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5.4. Edge localisation with conflicting stimuli 

It is not only important to understand how colour and luminance are 

combined when the edges are aligned but also when they conflict. In this 

experiment we will investigate participants’ edge localisation judgements 

when the cues conflict and are not spatially aligned. 

5.4.1. Method 

Participants 

Three male and two female volunteers (including the author), aged 

between 20 and 30, participated in the study. Four participants (three male) 

were naive to the aims of the study. 

Apparatus 

A chin rest was used to ensure that participants viewed the stimuli 

from a constant 367cm distance, giving a viewable area that subtended 5.62° 

of visual angle.  

Stimulus Generation 

The component edges were the same as those used in Experiment 5.3. 

In the combined conditions there was a gap of 3 arc min between the 

achromatic and L-M edges. There were four starting combined configurations; 

the achromatic edge central and the L-M edge a +3 arc min (Figure 5.4A) and 

the mirror of this (Figure 5.4B) and the L-M edge central and the achromatic 
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Data Analysis 

As in Experiment 5.2, the standard deviation was measured for the 

component edges alone (luminance at a contrast of 0.02 and L-M at contrasts 

of 0.1, 0.2 and 0.3) and for the three combined edges (luminance contrast of 

0.02 combined with each of the three L-M contrasts).  

5.4.2. Results 

MLE was used to generate predictions of edge localisation judgements 

based on participant performance with achromatic and isoluminant stimuli.  

In Experiment 5.2, a luminance component with contrast of 0.02 

combined with chromatic components of contrast 0.1, 0.2 and 0.3 showed 

variation between the L-M contrasts but did not equate the cues. However, in 

this experiment this combination of contrasts did equate the cues and as such 

judgements were predicted to be centred around the midpoint between the 

two edges. Experiment 5.2 only had a sample size of one, versus five in the 

current experiment, and so it is likely that the findings of the current 

experiment are more representative. 

Surprisingly, participants’ edge judgements were far closer to the 

chromatic edge than was predicted (Figure 5.5). This suggests that 

participants are weighting chromatic information more heavily than MLE 

would predict. 
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When considering conflicting edges, chromatic cues are weighted 

surprisingly strongly in edge localisation under the conditions tested, given 

their relative reliability in isolation. MLE accurately predicted the pattern of 

results across contrasts. However, under these particular conditions it 

consistently over-estimated the relative importance of the luminance cue. 

This that could be accounted for by a simple scale factor. 

The results show that the weights generated from measurements of 

each component in isolation are not sufficient to predict edge localisation in 

conflicting conditions. The chromatic component requires a higher weight 

than would be predicted by MLE. At contrasts for which the component cues 

are equally reliable for localising the edge, the visual system gives more 

weight to the chromatic information. The weights generated using MLE 

represent the optimal combination of the signals based on their Bayesian 

likelihood functions. The fact that the predictions did not match the 

behaviour of participants suggests either that the system is failing to combine 

the signals in an optimal manner, or that it is optimal but is using additional 

information. In this case it may be that there is a Bayesian prior increasing the 

weight of the chromatic component, perhaps reflecting the utility of 

chromatic edge information in natural scenes.  

Luminance has higher effective contrast in natural scenes (Rivest & 

Cavanagh, 1996) and is more reliable in most natural viewing conditions. Yet, 

it appears to be chromatic information that has the greater influence over 

perceived edge location when the cues are equated for reliability. This may be 
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because chromatic information is a more reliable cue for detecting object 

borders (McGraw, Whitaker, Badcock, & Skillen, 2003; Ruderman, Cronin, & 

Chiao, 1998). In natural scenes, achromatic information can represent 

variations in lighting, rather than object borders. For example, in areas of 

dappled shade the majority of achromatic discontinuities will represent 

shadows, making luminance information less useful than chromatic 

information for detecting object boundaries. 

Hansen and Gegenfurtner (2013) compared human-labelled edges 

with computationally detected edges in natural scenes. The presence of 

chromatic (both L-M and S-cone) information in the stimuli improved 

performance by about 3% on average compared to luminance information 

alone, but reached up to 11% for some images.  This type of experiment could 

represent a starting point not only to explain why chromatic information is 

weighted more heavily than is predicted by MLE, but also predict how much 

the weights need to be scaled.  

In order to determine whether the Bayesian prior suggested above is 

based on image statistics, we would need to determine the relative 

proportions of discontinuities in each domain that represent object 

boundaries. If achromatic and isoluminant edges are detected using a 

computer algorithm, observers could then label these edges as representing 

edges of objects or other types of edges e.g. shadows. The percentage of 

edges that represent object boundaries could then be calculated for each cue. 

These values could then be used to scale the chromatic and luminance 
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weights. For example, if 100% of isoluminant edges represented object 

borders but only 70% of achromatic edges represented object borders, this 

would mean that the luminance weight should be scaled to 70% of its original 

value. If this procedure were carried out for a large natural image database it 

would allow us to calculate the mean factor that each cue should be scaled 

by. These mean values could then be compared to participant performance in 

the current task.  

In conclusion, chromatic information is used more than would be 

predicted by weighted averaging in an edge localisation task. This may be 

because luminance edges in natural scenes often represent changes in 

illumination rather than object edges, meaning that chromatic information 

can have higher utility in identifying object edges. 
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6. Detection of perturbation in chromatic and luminance stimuli is 

modulated by context. 

There is conflicting evidence as to which of luminance or chromatic 

edges is the more salient. One possibility is that each can be dominant under 

different circumstances. Findings presented earlier in this thesis and in the 

existing literature suggest that context i.e. the composition of the stimulus, 

may determine which is utilised more by the visual system.  

The ‘colour-shading effect’ (Kingdom, 2003) occurs when a chromatic 

grating is added to a differently oriented luminance grating such that there is 

an impression of depth. This perceived depth can be suppressed by the 

addition of a second chromatic grating of the same orientation and spatial 

phase as the luminance grating. This supports the suggestion that the visual 

system has ‘built-in’ assumptions (Kingdom, 2008), in this case that aligned 

colour and luminance changes represent the edges of objects (hence are 

perceived as flat), whereas achromatic edges are perceived as changes in 

illumination, such as cast shadows (hence the perception of corrugation). It 

seems that the mere presence or absence of cues is insufficient to study 

interactions between colour and luminance, the spatial relationships of those 

cues must also be taken into account. 

Chapter 3 demonstrated that chromatic blur can be masked by sharp 

luminance information. Similarly the Boynton illusion (Kaiser, 1996) shows 

how chromatic boundaries can appear shifted to align with luminance edges. 

These effects may be due to the luminance information constraining the 
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chromatic information and that can only occur when the edges are aligned. 

On the other hand, Kingdom and colleagues (2010) found that chromatic 

variations can suppress luminance variations, suggesting that chromatic 

information is dominant. This is also supported by the findings of Chapter 5, 

where chromatic information had more influence than predicted. However, 

Kingdom et al (2010) only demonstrated this effect when the chromatic and 

luminance edges were orthogonal. In Chapter 5 the edges were parallel but 

no longer spatially aligned. Therefore, it may be that when edges are aligned 

luminance is dominant, but when they are spatially separated chromatic 

information is dominant. 

Another possible explanation for the differences in cue dominance is 

differences in the type of task used. Luminance dominance was found in a 

blur discrimination task whereas chromaticity had more influence in an edge 

localisation task and a saliency task. It may be that luminance dominance is 

restricted to blur discrimination tasks.  

In order to determine whether cue dominance is determined by the 

spatial arrangement of the cues or the type of task, we will investigate 

whether there are differences between aligned and orthogonal conditions. If 

there are differences between these conditions that will indicate that 

dominance is determined by the spatial arrangement. If there is no difference 

between the two conditions that will suggest that dominance is task 

dependent. 
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In addition to the spatial relationship between colour and luminance 

information, the nature of that information may affect how it is combined; 

different types of grating combinations may have different effects. For 

example, there is increased facilitation for chromatic contrast sensitivity by a 

luminance pedestal for square-wave gratings versus sine-wave gratings 

(Gowdy, et al., 1999). This may be due to sharp edges promoting 

segmentation, suggesting that square-wave gratings may be combined 

differently to sine-wave gratings. In the same vein, luminance lines, which 

have sharp edges similar to those created by square-wave gratings, seem to 

have a facilitatory relationship with low spatial-frequency chromatic 

information. For example, reticles (thin, low contrast, achromatic lines) 

improve contrast sensitivity for chromatic gratings when they are aligned with 

the zero crossings (Montag, 1997). Furthermore, a thin luminance ring 

surrounding a uniform chromatic test facilitates contrast detection as much 

as a uniform luminance pedestal (Cole, et al., 1990). These effects may be 

based on processes similar to those that underlie the gap effect, where a gap 

or contour between two chromatic fields improves chromatic discrimination 

(Boynton, Hayhoe, & Macleod, 1977). These findings suggest that luminance-

defined lines improve contrast detection of chromatic stimuli by improving 

segmentation. Therefore, it may be that the introduction of luminance lines 

could also improve performance in edge detection tasks.  

A novel approach will be employed; spatial perturbation detection. 

Gratings will be sinusoidally perturbed in space and subjects will be asked to 

detect which of two stimuli is not straight. The paradigm aims to measure the 
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point at which the perturbation is just noticeable; the detection threshold for 

the perturbation. This technique can investigate whether one type of 

information is masked by another and whether there is interaction between 

the two cues. For example, if chromatic perturbation is harder to detect in the 

presence of luminance information i.e. it is masked by it, then this is evidence 

for luminance being prioritised above colour.  

To test whether the spatial arrangement of gratings changes the way 

that chromatic and luminance information is combined, perturbation 

thresholds will be measured for chromatic and luminance gratings alone and 

in aligned and orthogonal combinations (Experiment 6.1). If cue dominance is 

determined by their spatial arrangement we will expect luminance 

information to mask detection of chromatic perturbation in the aligned 

conditions and chromatic information to mask detection of luminance 

perturbation in the orthogonal conditions. On the other hand, if luminance 

dominance is restricted to blur discrimination tasks we will not expect to see 

luminance dominance in any condition.  

In addition to the question of whether the spatial relationship is 

critical in determining which cue is dominant, it might also be that the type of 

grating affects the way that chromatic and luminance information is 

combined. Therefore perturbation thresholds will also be measured for line 

and square-wave gratings alone and in combination (Experiment 6.2). If 

luminance-defined lines improve contrast detection of chromatic stimuli by 

improving segmentation we should expect the presence of a straight 
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chromatic square-wave to facilitate perturbation detection in luminance 

defined lines. However, if this is not the case we would expect the 

introduction of a straight grating to cause masking in all cases. 

6.1. Aligned and orthogonal stimuli. 

6.1.1. Method 

Participants 

Two male and two female volunteers (including the author), aged 

between 19 and 35, participated in the study. Two of the participants (one 

male) were naive to the aims of the study. 

Apparatus 

A chin rest was used to ensure that participants viewed the stimuli 

from a constant 367cm distance, giving a viewable area that subtended 5.62° 

of visual angle.  

Stimulus Generation 

Isoluminance was determined psychophysically for each observer. 

Three grating types were created; square-wave, sine-wave and line. All stimuli 

were presented with a raised cosine mask with a fringe width of 0.4° (Figure 

6.1). Stimuli were presented at a size of 2°, spatial frequency of 0.5 cpd. 

Perturbed (target) gratings were presented at an orientation of 90° 

(horizontal) and straight (masking) gratings were presented at 0° (vertical) for 

the orthogonal condition and 90° for the aligned condition. 
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In order to equate the contrasts of the component gratings, contrast 

detection thresholds for the straight gratings alone were measured using a 

2IFC, staircase procedure. Stimuli were presented at five times these 

detection thresholds. Two participants (BLW and RJS) had contrast detection 

thresholds above 0.2 for the isoluminant line stimuli and so it was not 

possible to present them at five times threshold (because this would be 

beyond the gamut of the monitor). In these cases the isoluminant component 

was presented at maximum contrast and the luminance component was 

scaled, such that the ratio was the same as if the chromatic component had 

been presented at five times threshold.  

For the remainder of this chapter gratings that have been spatially 

perturbed will be referred to as the target and gratings with no perturbation 

will be referred to as the mask.  

In all cases subjects were required to determine which stimulus 

contained the perturbation, and they were always aware whether the 

perturbation would be in the chromatic or luminance component (see 

Procedure for details). For each of the grating types (square-wave, line and 

sine-wave gratings) the signal channel was presented either with no mask 

(Figure 6.1A), with an aligned mask (Figure 6.1B) or with an orthogonal mask 

(Figure 6.1B), where this mask was always in the other channel. For example, 

the luminance perturbation threshold was measured with no mask, with an 

aligned chromatic mask and with an orthogonal chromatic mask. 
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Procedure 

A 2IFC design was employed. Participants were presented with two 

stimuli (target and foil) for 500ms separated by a 500ms ISI and asked which 

appeared to have been spatially perturbed. The presentation order of the 

target and foil was randomised. 

In each condition we measured the minimal amount of spatial 

perturbation that could be detected; the perturbation threshold as the 

amplitude of the sinusoidal modulation in arc minutes of visual angle. We 

measured the perturbation threshold for each grating alone as a baseline. We 

then measured the threshold for the colour target combined with luminance 

mask and luminance target combined with colour mask in both aligned and 

orthogonal combinations, in order to determine whether there was any 

masking present and, if so, whether it was dependent on the relationship 

between the component gratings. 

The perturbation threshold for each condition was determined using a 

one-up, three-down staircase procedure. The staircases controlled the 

amount of spatial perturbation in the target stimulus. A different staircase 

was implemented for each condition and these staircases ran sequentially; 

staircases were not interleaved but the order of the conditions was 

randomised. As a result, participants were aware on each trial of which 

component would contain the perturbation and could attend accordingly. The 

staircases were designed to converge on the 79% perturbation discrimination 

threshold for each condition and aborted after 50 trials. Each participant 
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collected five staircases for each of the six conditions (Figure 6.1), for each of 

the three grating types (90 staircases in total); 360 staircases in total across 

participants. 

Data Analysis 

Due to variability across the staircases it was not possible perform a 

fitting procedure on the data (see Section 2.11 for details). Instead, the mean 

of the last six reversals for each staircase was taken as a measure of 

perturbation threshold. The mean of these thresholds was then taken to give 

one value per participant, per condition i.e. 24 values overall. 

6.1.2. Results 

Two-way ANOVAs were performed for each participant for each 

grating type. Pairwise comparisons were corrected for the three comparisons 

within each ANOVA and across the four participants (comparisons = 12). 

Bonferroni correction was not performed across grating type as the data were 

not directly compared in this way.  

There was more variation between participants than might generally 

be expected in a psychophysical study. As a result, data analyses are 

presented for each individual. This allows us to investigate whether there is a 

pattern of differences between the participants. For example, if half the 

participants showed one pattern and the other half another, this could 

suggest that there is more than one strategy that could be used to undertake 

the task. The details of the variations between participants and the potential 
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reasons for them are explored below and data is presented graphically in 

Figure 6.2. 

Square-wave Grating 

There was a main effect of chromaticity for all participants, apart from 

AJB; thresholds were significantly higher for L-M than luminance defined 

targets (BLW: F(1,24) = 5.123, p=0.033, MScolour = 107.751, JAF: F(1,24) = 60.316, 

p<0.001, MScolour = 258.596, RJS: F(1,24) = 75.185, p<0.001, MScolour = 92.278).  

A main effect of condition was found for two participants (JAF: F(2,24) = 

8.119, p=0.002, MScondition = 69.621, RJS: F(2,24) = 17.884, p<0.001, MScondition = 

44.376). Pair-wise comparisons showed a significant difference between 

alone and aligned conditions for both participants (JAF: p=0.008, RJS: 

p=0.004) and alone and orthogonal for RJS (p=0.004); where alone thresholds 

were lower than those for combined conditions.  

An interaction effect was found for participant JAF, reflecting an 

elevated threshold for the L-M aligned condition (F(2,24) = 18.351, p = 0.026, 

MSinteraction = 36.702). 

Line Grating 

Two participants showed a main effect of chromaticity; thresholds 

were significantly higher for L-M than luminance defined targets (JAF: F(1,24) = 

61.285, p<0.001, MScolour = 276.751, RJS: F(1,24) = 44.542, p<0.001, MScolour = 

232.19). 
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Participant JAF showed a main effect of condition (F(2,24) = 3.785, 

p=0.037, MScondition = 34.181) but pair-wise comparisons revealed no specific 

differences. No other participants showed an effect of condition. 

No participants showed an interaction effect. 

Sine-wave Grating 

All participants showed a main effect of chromaticity; thresholds were 

significantly higher for L-M than luminance defined targets (AJB: F(1,24) = 

25.758, p<0.001, MScolour = 147.973, BLW: F(1,24) = 36.219, p<0.001, MScolour = 

145.125, JAF: F(1,24) = 169.447, p<0.001, MScolour = 1682.487, RJS: F(1,24) = 

15.047, p<0.001, MScolour = 40.644). 

One participant (BLW) showed a main effect of condition (F(2,24) = 

5.758, p = 0.009, MScondition = 46.144) and pair-wise comparisons showed a 

significantly lower threshold for the alone versus orthogonal condition (p = 

0.036). 

Interaction effects were present for two participants (BLW: F(2,24) = 

6.335, p=0.006, MSinteraction = 50.765, JAF: F(2,24) = 11.566, p<0.001, MSinteraction 

= 229.678). JAF once again showed an elevated threshold for the L-M aligned 

condition and BLW had an elevated threshold for the L-M orthogonal 

condition. 
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Summary 

There is a clear pattern of L-M defined targets having higher 

thresholds than luminance defined targets. This is surprising, given that the 

gratings were equated for contrast detection thresholds. Chromatic 

aberration and the low-pass nature of chromatic processing can limit 

chromatic acuity and could explain this difference. However, this may not be 

sufficient explanation, as Krauskopf and Forte (2002) showed that Vernier 

thresholds are not affected by chromaticity when they are equated for 

contrast, and this is consistent across a large range of multiples of threshold. 

Instead, there may be a cortical mechanism that restricts chromatic 

processing of perturbation. It should be noted that this effect is much more 

consistent for the sine- and square-wave gratings than for line gratings. 

The main effect of condition and interaction effects are less consistent 

than the chromaticity effect. For a majority of participants there was no 

significant difference between the three conditions (alone, aligned and 

orthogonal) and no interaction. Variability between participants may have 

been due to the use of cognitive strategies. Debriefing revealed that as the 

staircases were not interleaved, two of the participants (BLW and AJB) were 

selecting small areas of the stimuli that gave the maximum amount of 

information about perturbation, effectively ignoring the straight grating. As a 

result the above data may not give a true reflection of perturbation 

thresholds in the presence of straight gratings. 
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It appears that the straight gratings are being disregarded, but this 

may be an artefact created by the use of cognitive strategies. Previous work 

using flankers in edge localisation judgements suggests that, in these types of 

judgements, irrelevant stimuli are processed involuntarily (Rivest & Cavanagh, 

1996) but in the case of this experiment the conditions might have allowed 

that not to be the case. In order to determine whether the use of cognitive 

strategies is causing the lack of a masking effect it would be necessary to 

repeat the experiment but interleave the staircases and randomise the phase 

(of the perturbation) in the target gratings. However, there were no 

consistent significant differences between conditions for the two participants 

that did not report using cognitive strategies. This suggests that, whilst 

interleaving the staircases may reduce the variability across participants, it is 

unlikely to introduce significant differences between the alone, aligned and 

orthogonal conditions. However, variability of participant responses may 

underlie the main effect of chromaticity. There is more variability in the 

thresholds for L-M targets and if this is reduced the difference between L-M 

and luminance targets may also be reduced, eliminating the effect. This will 

be tested for the line and square-wave stimuli in Experiment 6.2. If the effect 

is not replicated there this will demonstrate that is likely an artefact created 

by the blocking of conditions. 

6.2. Square-wave and line stimuli. 

It may be that the type of gratings (e.g. square-wave, sine-wave, etc.) 

presented affect how colour and luminance are combined. In particular, as 
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discussed in the introduction the presence of a straight chromatic square-

wave may not mask perturbation in luminance lines but instead produce 

facilitation. However, this facilitation would not be expected in any other 

combination of lines and square-waves. In this experiment we will be testing 

different combinations of line and square-wave gratings to determine 

whether the type of combination affects perturbation thresholds.  

Experiment 6.1 found no difference between aligned and orthogonal 

masks when the target and mask were of the same grating type, meaning that 

testing both of these conditions is redundant. Using aligned combinations will 

allow us to test whether chromatic perturbation can be constrained by 

straight luminance gratings, in a similar manner to chromatic blur in Chapter 3 

or chromatic information in the Boynton illusion (Kaiser, 1996). For these 

reasons only aligned combinations will be tested in this study. 

6.2.1. Method 

Participants 

Two male and three female volunteers (including the author), aged 

between 22 and 35, participated in the study. Three of the participants (two 

male) were naive to the purposes of the study. 

Apparatus 

The same apparatus was used as for Experiment 6.1. 
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Stimulus Generation 

The gratings were generated in the same manner as for Experiment 

6.1. Gratings were presented vertically to prevent any perceptual learning 

carrying over from Experiment 6.1, for those participants who took part in 

both experiments (Fahle & Edelman, 1993). Eight conditions were created, 

four component gratings and four combinations: chromatic-line target alone 

and when combined with a luminance-square-wave mask (Figure 6.3A), 

luminance-line target alone and when combined with a chromatic-square-

wave mask (Figure 6.3B), chromatic-square-wave target alone and when 

combined with a luminance-line mask (Figure 6.3C) and luminance-square-

wave target alone and when combined with a chromatic-line mask (Figure 

6.3D). 
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Procedure 

The same procedure was used as in Experiment 6.1 with the following 

adjustments. Staircases were interleaved, and the absolute phase of the 

gratings and the phase of the spatial perturbation were randomised for each 

trial. These adjustments were made in an effort to avoid the possibility of 

participants using cognitive strategies to inform their judgements. The 

randomisations coupled with interleaving the staircases meant that 

participants could not predict which cue would be perturbed or which area of 

the stimulus would contain the most information about the perturbation. In 

the combined conditions the absolute phase of the pair of gratings was kept 

the same, to preserve the alignment at the zero crossing point; ensuring that 

lines are spatially aligned with the edges in the square-wave.  

Data Analysis 

Due to variability across the staircases it was not possible perform a 

fitting procedure on the data (see Section 2.11 for details). Instead, the mean 

of the last six reversals for each staircase was taken as a measure of 

perturbation threshold. The mean of these thresholds was then take to give 

one value per participant, per conditions i.e. 40 values overall.  

Difference values were then calculated for four pairings as illustrated 

in Figure 6.3, each was designed to see the effect of adding a straight grating 

of the other type to the perturbed grating. For ease of exposition the four 

conditions will be referred to by the following letters the remainder of this 

chapter: 
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A) The difference in thresholds between a chromatic-line target alone 

and a chromatic-line target combined with a luminance-square-

wave mask. 

B) The difference in thresholds between a luminance-line grating 

target and a luminance-line target combined with a chromatic-

square-wave mask. 

C) The difference in thresholds between a chromatic-square-wave 

target alone and a chromatic-square-wave target combined with a 

luminance-line mask. 

D) The difference in thresholds between a luminance-square-wave 

target alone and a luminance-square-wave target combined with a 

chromatic-line mask. 

6.2.2. Results 

Three staircases were excluded from all analysis as they did not 

converge; two from the combined chromatic-line target and luminance-

square-wave mask condition and one from the combined luminance-line 

target and chromatic-square-wave mask condition. 

Planned comparisons to test for an effect of chromaticity 

Four planned comparisons were performed on the raw threshold 

values to determine if the main effect of colour found in Experiment 6.1 was 

replicated. The data were collapsed in four different ways: across grating type 

when the target was presented alone; across all data and for each grating 
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type (square-wave and line) when the target was presented alone. P-values 

were Bonferroni corrected across t-tests and participants (comparisons = 20). 

For the first planned comparison, the data were collapsed across 

grating type when the target was presented alone. Independent samples t-

tests were then performed for each participant to determine whether there 

was a significant difference between the thresholds for L-M defined targets 

and luminance defined targets; the thresholds for L-M targets alone were 

compared to the thresholds for luminance targets alone. A significant 

difference was found for only one participant (RJS: t18 = 3.728, p = 0.04). 

For the second planned comparison, the data were collapsed across all 

conditions and grating types. Independent samples t-tests were then 

performed for each participant to determine whether there was a significant 

difference between the thresholds for L-M defined targets and luminance 

defined targets. The thresholds for all L-M targets, both alone and combined, 

were compared to all the thresholds for luminance targets, both alone and 

combined. Significant differences were found for two participants (RJS: t37 = 

3.701, p = 0.02; BLW: t37 = 4.326, p = 0.02).  

For the third and fourth planned comparisons, the data were 

collapsed across conditions for each grating type when the target was 

presented alone. Independent samples t-tests were performed for each 

participant to determine whether there was a significant difference between 

the thresholds for L-M defined targets and luminance defined targets. For 

each of the two grating types (square-wave and line) thresholds for L-M 
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targets alone were compared to thresholds for luminance targets alone. A 

significant difference was found for only one participant for the square-wave 

gratings (RJS: t8 = 2.831, p = 0.02) but no significant differences were found 

for the line gratings.  

In summary, for a majority of participants there was no significant 

difference between perturbation thresholds for L-M and luminance defined 

targets in any of the four comparisons performed. Therefore, it was 

concluded that the significant main effect of chromaticity found in 

Experiment 6.1 was not replicated here. It appears that the effect found in 

Experiment 6.1 was an artefact caused by the conditions being presented 

sequentially rather than in an interleaved manner. 

Individual participant results 

Analyses were conducted for each participant. A two-way ANOVA was 

performed for each participant to determine whether there were significant 

differences between the four difference values. Main effects were Bonferroni 

corrected across participants (comparisons = 5) and pairwise comparisons 

were Bonferroni corrected within each ANOVA and across participants 

(comparisons = 30). 

 As in Experiment 6.1 there was variability between participants 

(Figure 6.4). Notably participant DJH did not show a main effect of condition 

and demonstrated generally attenuated differences. This suggests that DJH 

may have a greater capacity for disregarding irrelevant information than the 

other participants. 
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The other four participants all showed a main effect of condition (ATA: 

F(3,16) = 16.064, p=0.005, MScondition = 1133.457, BLW: F(3,15) = 18.516, p=0.005, 

MScondition = 196.952, DS: F(3,15) = 20.879, p=0.005, MScondition = 777.233, RJS: 

F(3,15) = 27.539, p=0.005, MScondition = 1731.04).  

Pair-wise comparisons showed significant differences between 

conditions B and C for four participants (ATA: p=0.005, BLW: p=0.005, DS: 

p=0.005, RJS: p=0.01); luminance lines have a greater masking effect than a 

chromatic square-wave.  

Pair-wise comparisons also showed significant differences between 

conditions B and D for four participants (ATA: p=0.005, BLW: p=0.005, DS: 

p=0.005, RJS: p=0.005); chromatic lines have a greater masking effect than a 

chromatic square-wave. 

Significant differences were also found for three participants between 

conditions A and D (ATA: p=0.005, DS: p = 0.015, RJS: p=0.005); chromatic 

lines have a greater masking effect than an achromatic square-wave. 

There was no significant difference for any of the participants 

between conditions A and C. Each of the remaining pair-wise comparisons 

only revealed significant differences for one participant; a different 

participant in each case: A and B for participant BLW (p = 0.025) and C and D 

for participant RJS (p = 0.045).  
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Group results 

The data were pooled across participants and one-sample t-tests were 

performed to determine whether the difference value for each condition was 

significantly different for zero; a difference value of zero would mean that the 

mask had no effect on perturbation thresholds. Significance values were 

Bonferroni corrected (comparisons=4). 

Condition A was not significantly different from zero. Achromatic 

square-wave gratings do not mask, or facilitate, perturbation detection for 

chromatic line targets. 

Condition B was significantly different from zero (t(23) = -5.584, p = 

0.004). Chromatic square-wave gratings significantly facilitate perturbation 

detection for luminance line targets. 

Condition C was significantly different from zero (t(24) = 7.216, p = 

0.004). Luminance lines significantly mask perturbation detection for 

chromatic square-wave targets. 

Condition D was significantly different from zero (t(24) = 6.846, p = 

0.004). Chromatic lines significantly mask perturbation detection for 

luminance square-wave targets. 
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6.3. Discussion 

In summary, Experiment 6.1 did not show differences in perturbation 

threshold between the alone, aligned and orthogonal conditions. Thresholds 

for L-M targets were found to be significantly higher than those for luminance 

targets in a majority of cases. However, this was not replicated in Experiment 

6.2. It is likely that the effect of chromaticity in Experiment 6.1 was an 

artefact created by variability between participants, particularly for L-M 

targets. Interleaving the staircases in Experiment 6.2 reduced variability 

overall, potentially explaining the lack of replication and supporting the idea 

that the difference found in Experiment 6.1 was an artefact. 

The key findings of Experiment 6.2 are that the introduction of a L-M 

defined square-wave mask improves perception of perturbation in luminance 

lines, but the introduction of a luminance defined square-wave mask has little 

effect on perturbation thresholds for chromatic lines. This demonstrates that 

it is not merely the combination of cross-channel square-wave and line 

gratings that produces facilitation of perturbation thresholds, but the specific 

combination of luminance-line target and chromatic-square-wave mask. In 

the other cases tested the introduction of a line mask increased thresholds 

and produced a masking effect. 

In Experiment 6.1 there was considerable variation between 

participants. This is similar to findings by Clery et al (2013).They measured the 

perceived depth of combinations of sine- and square-wave gratings in three 

conditions. In the first the gratings were orthogonal and the contrast of the 
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luminance grating was varied, this produced data consistent with Kingdom’s 

previous findings (Kingdom, 2003; Kingdom, et al., 2005a). In the other two 

conditions the chromatic contrast was varied and the gratings were presented 

in aligned or orthogonal arrangements. These conditions elicited substantial 

individual differences and most of the participants did not produce the 

expected pattern of data.  

One of their possible explanations for this variation is individual 

differences in perceived chromatic contrast. However, in Experiment 6.1 we 

equated contrast detection thresholds and so this could not be the case. 

Another possible explanation is that the heuristics suggested by Kingdom 

(2008), such as achromatic edges always being interpreted as shadows, may 

be more idiosyncratic than previously thought. Clery et al (2013) suggest that 

the visual system may be more flexible than previously thought and individual 

biases could develop based on past experience. It is also possible, as 

discussed above, that participants used cognitive strategies to discount the 

irrelevant gratings by focussing on particular narrow regions of the stimulus.  

The lack of effect of condition or interaction between condition and 

colour in Experiment 6.1 is particularly surprising in light of the contrast 

detection literature (see Section 1.4 for a more in-depth discussion).  

Suprathreshold chromatic pedestals produce a masking effect when 

combined with a luminance test (K. K. De Valois & Switkes, 1983), but 

suprathreshold luminance pedestals produce facilitation of a chromatic test 

(Cole, et al., 1990; K. K. De Valois & Switkes, 1983). This would suggest that 
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the presence of any mask should change the perturbation thresholds, 

whether by masking or facilitation. 

It seems most likely that colour and luminance are not simply 

combined in the same way for perturbation detection as for contrast 

detection. A recurring theme throughout this thesis is that colour and 

luminance seem to not always be combined in the same way. In this case it 

may be that the visual system is processing the two components separately, 

and is not compelled to combine them, and the participant is, therefore, able 

to discount the irrelevant information at will. This would be advantageous for 

the visual system as it could allow the effortless separation of shadows and 

changes in surface material.  

The results from Experiment 6.2 show that chromatic and luminance 

lines tend to mask perturbation in colour and luminance square-wave targets 

by a similar amount (conditions C and D). However, the introduction of a 

square-wave mask has no effect of perception of perturbation in chromatic 

lines (condition A) and produces facilitation for luminance lines (condition B). 

The greater masking effect of lines on perturbation thresholds suggests that 

they are a more salient stimulus for edge detection and so have a greater 

ability to disrupt perception of edges. 

When a luminance line is presented with a chromatic edge, such as 

the chromatic boundaries in a square-wave grating, it appears that the 

chromatic information becomes ‘tied’ to the luminance information; the 

perceived location of the chromatic edge is determined by the location of the 
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seem to demonstrate that there is a specific and important relationship 

between chromatic edges and luminance lines.  

If chromatic edges and luminance lines are perceived as being in the 

same location this could have two effects. Firstly, as described above, the 

addition of chromatic information could improve localisation of the 

luminance contour. Secondly, separating two chromatic surfaces with a 

luminance contour improves colour discrimination (Boynton, et al., 1977). 

This improved colour discrimination could aid image segmentation by making 

similarly coloured surfaces easier to differentiate. This is in keeping with the 

idea that colour is primarily used to process surface properties and to 

facilitate segmentation and grouping (Mollon, 1989), whereas luminance is 

used for tasks requiring high spatial precision (Peirce, et al., 2008), such as 

edge localisation. 

In conclusion, the introduction of aligned or orthogonal straight 

gratings of the same type as the perturbed grating does not affect 

perturbation thresholds; the irrelevant grating is disregarded. This may help 

to distinguish between shadows and changes in surface in natural scenes. 

Conversely, chromatic edges appear to become tied to luminance lines which 

may serve to improve chromatic discrimination and segmentation. 
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7. Luminance information constrains chromatic blur in bipartite edges 

In Chapter 3 we saw that chromatic blur is constrained by sharp 

luminance information in natural scenes, suggesting that luminance 

dominates chromatic cues. However, in Chapter 5 chromatic information was 

shown to have more influence than expected in synthetic conflicting edges. 

There are two possible reasons for these contradictory results; they may be 

due to differences in the types of stimuli used or they may be due to 

differences in the task. 

Chapter 3 uses natural scene stimuli, whereas Chapter 5 uses synthetic 

stimuli and it may be that this difference could explain the conflicting results. 

The complexity of natural scenes can elicit findings not predicted by simple 

synthetic stimuli (Felsen & Dan, 2005). However, the details of this complexity 

are poorly understood and difficult to control for (Rust & Movshon, 2005). For 

example, in Experiment 3.3 it was shown that reversing the colour and 

luminance channels eliminated the main effect of chromaticity; isoluminant 

blur discrimination was no longer poorer than achromatic blur discrimination. 

This suggests that there is a difference in the statistical regularities of the two 

types of information, however, as natural scenes contain such a wealth of 

information it is very difficult to determine the source of this difference. It 

may be that a statistical feature of natural scenes, that is absent in the 

bipartite edges in Chapter 5, is driving the luminance dominance found in 

Chapter 3. 



Blur discrimination in bipartite edges 
 

142 
 

Chapters 3 and 5 also used different tasks; blur discrimination and 

edge localisation respectively. These tasks may differ in the mechanisms they 

use; blur information and edge localisation information may be encoded 

differently. If this is the case then both the sensitivity of low-level 

mechanisms and the existence of high-level representations may differ across 

the domains e.g. there may be an explicit representation of chromatic edges 

but not chromatic blur. F.A.A. Kingdom (personal communication, 16 May 

2013) investigated the contribution of chromatic information to blur 

appearance. He found that when two textures differ in both colour and 

luminance blur, the perception of blur is driven by the luminance component. 

These results were interpreted to mean that, whilst chromatic blur can be 

detected nearly as well as luminance blur (Wuerger, et al., 2000; Wuerger, et 

al., 2001), we have a very limited ‘sense’ of colour blur; we do not have an 

explicit representation of chromatic blur (F.A.A. Kingdom, personal 

communication, 16 May 2013).  

To know whether it is plausible that blur encoding is processed 

differently for chromatic and luminance channels it is worth considering the 

current dominant model for blur detection. Scale-space analysis (Georgeson, 

et al., 2007) uses two stages of spatial filtering; an odd symmetric Gaussian 

first order derivative filter (similar to a simple cell) and a third order derivative 

filter (similar to a complex cell). The outputs of these are half-wave rectified 

before feeding forward, producing a response sensitive to one edge polarity 

and removing ‘phantom edges’ (Georgeson, et al., 2007). This process creates 

a scale-space response map, on which the position and scale of peaks 
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represent the location and blur of edges. This model has been found to 

accurately predict human perception for a variety of luminance profiles, but 

has not been tested on chromatic information. This model suggests that edge 

location and blur are jointly encoded for luminance information. If chromatic 

information is also encoded in this way we should expect that the differences 

in the results of Chapters 3 and 5 to be driven by differences in the stimuli, 

not differences in the task; edges and blur should be processed in the same 

way.  

In order to investigate the cause of the luminance dominance found in 

Chapter 3, the blur discrimination task from that chapter will be replicated 

using bipartite edges similar to those used in Chapter 5. If the luminance 

dominance was caused by the visual structure of the natural scenes stimuli 

then luminance dominance will not be replicated with bipartite edge stimuli. 

However, if the differences between Chapters 3 and 5 are caused by different 

task demands, the luminance dominance will persist. 

7.1. Method 

Participants 

One male and four female volunteers (including the author), aged 

between 22 and 35, participated in the study. Three participants (one male) 

were naive to the purposes of the study. 
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Apparatus 

A chin rest was used to ensure that participants viewed the stimuli 

from a constant 367cm distance, giving a viewable area that subtended 5.62° 

of visual angle.  

Stimulus Generation 

Two bipartite edges were created in MB-DKL space (Derrington, et al., 

1984; Macleod & Boynton, 1979), luminance and L-M defined; the L-M 

defined edges were presented at psychophysical isoluminance. The stimuli 

were 2° x 2° in size and presented with a neutral grey background.  

In Experiment 3.2 equating contrast was shown not to diminish the 

masking of chromatic blur by sharp luminance information, therefore contrast 

was not equated here. Each component edge was presented at a contrast of 

0.25 meaning that the combined edges had a total contrast of 0.5.  

In order to prevent bias, the polarity of the edges was randomised. In 

addition, randomisation of the chromatic edge polarity was independent of 

the randomisation of the luminance edge. Therefore the combined edges had 

four possible combinations; light–to-dark combined with red–to-green, light–

to-dark combined with green-to-red, dark-to-light combined with red-to-

green and dark-to-light combined with green to red. 

There were four conditions; achromatic, isoluminant, sharp-

achromatic combined with blurred-isoluminant and sharp-isoluminant 

combined with blurred-luminance (Figure 7.1). Blurring and stimulus 
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presentation was performed in the same manner as Chapter 3. Sharp edges 

were not blurred to any extent. 

 

Procedure 

A 2IFC design was employed, participants were presented with the 

two images (foil and target) for 300ms separated by a 500ms ISI and asked 

A     B 

  

C     D 

  

Figure 7.1. Example stimuli, all contain Gaussian blur (σ = 0.1°). The top row 

represents the two alone conditions; achromatic (A) and isoluminant (B). The bottom row 

represents the two combined conditions; luminance blur combined with sharp chromatic 

information (C) and chromatic blur combined with sharp luminance information (D). 
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which appeared more blurred. The presentation order of the target and foil 

was randomised and the staircases were interleaved. 

The staircase procedures used to measure blur threshold for each 

condition were the same as those used in Chapter 3. Each participant 

collected five staircases for each condition. 

7.2. Results 

Due to variability across the staircases it was not possible perform a 

fitting procedure on the data (see Section 2.11 for details). Instead, the mean 

of the last six reversals for each staircase was taken as a measure of 

perturbation threshold. The mean of these thresholds was then take to give 

one value per participant, per conditions i.e. 20 values overall.  

The group data shown in Figure 7.2 exactly replicate the findings of 

Chapter 3. A two-way ANOVA showed that observers had higher blur 

discrimination thresholds for chromatic than for luminance information, main 

effect of channel type (F(1, 96) = 73.118, p<0.001, MSchannel = 0.018). The 

elevated thresholds for chromatic blur were once again more pronounced in 

the presence of sharp luminance information (interaction between channel 

and combination; F(1, 96) = 34.845, p<0.001, MSinteraction = 0.009). 
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7.3. Discussion 

The results clearly replicate the findings of Chapter 3 where chromatic 

blur is masked by sharp luminance information. Therefore, the masking effect 

found in Chapter 3 is not a feature of natural scenes; it can also be generated 

using bipartite edges. This suggests that the difference in the findings of 

Chapters 3 and 5 are caused by differences between the blur discrimination 

and edge localisation tasks. 

F.A.A. Kingdom (personal communication, 16 May 2013) suggests that 

we do not have a ‘sense’ of blur, but that blur discrimination can be achieved 

using low-level mechanisms sensitive to spatial-frequency content or edge-

width. The current findings suggest that this low-level chromatic blur 

mechanism is modulated by luminance information; chromatic blur can be 

detected in isolation, but when sharp luminance information is present this 

dominates the percept.  

The current results may be explained by distinguishing between edge 

localisation and blur discrimination tasks. Chapter 5 suggests that chromatic 

information has more influence in edge localisation tasks and the current 

results suggest that luminance information dominates in blur discrimination 

tasks. Similarly, the results of Chapter 5 suggest that we do have an explicit 

representation of chromatic edges but, Kingdom’s (personal communication, 

16 May 2013) results suggests that we do not have an explicit representation 

of chromatic blur. 
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Blur can change how size and distance are perceived and direct 

attention to certain areas of an image. Held and colleagues (Held, Cooper, 

O'Brien, & Banks, 2010) found that, whilst neither blur nor perspective cues 

alone are sufficient to estimate distance, they are effective depth cues when 

considered together. It may be therefore, that blur is generally used by the 

visual system as a cue for depth rather than edges. This could explain why 

colour is represented differently in these tasks; colour may be used differently 

in depth perception tasks than edge localisation tasks. 

Scale-space analysis suggests that edge and blur information are 

jointly encoded. However, the current results suggest that this is not the case 

for chromatic information. The scale-space analysis concept relies on a 

spatially low-pass filter and a derivative (spatially-opponent) filter. Both types 

of filter are known to exist responding to achromatic stimuli. For colour 

processing, however, only the low-pass (spatially non-specific) filter is known 

to exist. The double-opponent (chromatic and spatially opponent) V1 cell 

reported by some groups is rarely tuned to the elevations close to the 

isoluminant plane and might not be actively involved in the percept of colour 

(see Shapley & Hawken, 2011 for a review). If it is the case that chromatic 

channels are not processed in a derivative manner, as required by 

Georgeson’s scale-space analysis, then this might well explain why the blur 

percept in chromatic channels is poor and, potentially, resulting from an 

entirely different computation. Alternatively, scale-space analysis may be 

applied to chromatic signals, but the blur information generated from this 

may not be used for edge localisation. In order to investigate these 
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possibilities, predictions using the scale-space model should be tested on 

isoluminant profiles, in the same way that they have been for achromatic 

profiles. 

In conclusion, chromatic blur is constrained by sharp luminance 

information not only in natural scenes but also bipartite edges. This 

demonstrates that the luminance dominance found in Chapter 3 is not caused 

by the structure of natural scenes. However, luminance dominance was not 

found in the edge localisation tasks used in Chapter 5, suggesting that it is 

specific to blur discrimination tasks. 
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8. General Discussion 

This thesis has investigated cue combination of colour and luminance 

in edge detection using a series of psychophysical experiments. Cue 

combination of colour and luminance is a fundamental part of vision and due 

to different physiological and ecological constraints it is not clear how this 

combination occurs.  

As discussed in Section 1.2, it is theoretically impossible for a cortical 

mechanism to perform both precise spatial sampling and precise chromatic 

sampling and this may explain poor performance in chromatic stereopsis 

tasks (Peirce, et al., 2008). Peirce et al (2008) suggest that binocular depth 

perception and binocular chromatic surface perception are controlled by 

different mechanisms. Similarly, it might be that, in form processing, edge 

detection and surface perception are performed by different mechanisms. If 

so then chromatic information could be less useful for edge localisation tasks 

and so luminance information should dominate. 

However, it is not simply constraints from the visual system that must 

be considered when combining colour and luminance. In natural scenes, most 

purely achromatic edges represent shadows which do not offer information 

about the edges of objects, but are potentially more easily detectable by the 

visual system. In this case it would seem advantageous predominantly to use 

chromatic information in identifying and locating edges. 

The experiments in this thesis have been designed to try and 

understand how these conflicting potential pressures interact and how the 
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visual system combines colour and luminance in different types of edge 

detection and localisation tasks. 

8.1. Summary of findings 

Chapter 3 investigated why chromatic blur is virtually imperceptible in 

the presence of sharp luminance information, despite being detectable in 

isolation. We tested various candidate sources of such effects and found that 

they cannot be attributed to poorer acuity of the chromatic channels, nor to 

the higher effective contrast of luminance information in natural scenes, nor 

to differences in the natural scene statistics of colour and luminance 

information. It appears that there is a mechanism actively promoting 

luminance information. 

Chapter 4 considered whether the presence of both colour and 

luminance information improved edge localisation performance. This chapter 

used a staircase procedure to determine the just noticeable difference of 

edge localisation judgements and this was used as a measurement of 

performance. The small differences between edge localisation performance 

for isoluminant and achromatic edges meant that model predictions were not 

sufficiently different and the models could not be distinguished. 

Chapter 5 also tried to address the question of whether the presence 

of both colour and luminance improves edge localisation performance, this 

time using a method of adjustment. Unfortunately, this method was also not 

sensitive enough to differentiate the models. However, this method also 

allowed us to measure edge localisation judgements in a new case; when the 
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colour and luminance edges conflicted. Chromatic information was found to 

be more heavily weighted by participants in the task than would be predicted 

by maximum likelihood estimation, suggesting a Bayesian prior actively 

promoting chromatic information. 

It may be that the spatial relationship between colour and luminance 

affects how they are combined. Chapter 6 addressed this question using 

perturbation detection tasks. In Experiment 6.1 the introduction of a 

chromatic mask to a luminance target or a luminance mask to a chromatic 

target, in either aligned or orthogonal orientations was found to have no 

effect on the perception of perturbation. This suggests that in this task 

irrelevant information can be disregarded. In Experiment 6.2, when 

combinations of lines and square-waves were investigated it was found that 

the introduction of a chromatic-square-wave mask improved perturbation 

discrimination in luminance-lines. This suggests that the type of information 

and the spatial relationship between channels can both change how colour 

and luminance are combined. 

The conflicting findings of Chapters 3 and 5 led to the question of 

whether this was driven by task differences or differences in stimuli. In 

Chapter 7, the blur discrimination task from Chapter 3 was performed on 

bipartite edges similar to those used in Chapters 4 and 5. Chromatic blur was 

still masked by sharp luminance information even with the far simpler stimuli. 

This demonstrates that this effect is not confined to natural scenes and 
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suggests mechanisms for blur discrimination preferentially use luminance 

information. 

8.2. Implications of findings 

Chromatic blur is constrained by sharp luminance information, but as 

suggested in Chapter 7, blur detection is not necessarily related to edge 

localisation. Another way to consider the constraint of chromatic blur by 

sharp luminance information is in terms of whether chromatic information 

can become ‘tied’ to luminance information such that it appears to follow the 

same contours as the luminance information, and fill in between them. 

Experiment 6.2 suggests that in the case of chromatic edges and luminance 

lines this is exactly what happens. This is in keeping with the fact that 

luminance outlines (Cole, et al., 1990) or reticles (Montag, 1997) facilitate 

detection of a chromatic target.  

This suggests an underlying mechanism that links luminance lines and 

chromatic edges. It may be that this process occurs very early in the visual 

system leading the two pieces of information to remain tied as they progress 

through the different processing streams. It could potentially serve to 

increase the perceived contrast of chromatic information under these 

circumstances; improving perception of surface information. Horwitz et al 

(2005) found V1 neurons in macaques that responded to opposite-sign input 

from the S-cones and a rectified non-opponent signal from the L- and M-

cones.  These non-linear receptive fields responded most strongly to sharp 
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edges, relatively low spatial-frequency chromatic information and relatively 

high spatial-frequency luminance information (Horwitz, et al., 2005).  

Whilst aspects of Experiment 6.2 support the idea of the perceived 

location of chromatic edges becoming tied to the location of luminance lines, 

other aspects suggest that chromatic information can have a greater 

influence on the perception of luminance information than vice versa. The 

introduction of a luminance-square-wave mask to a chromatic-line target had 

a smaller masking effect than introducing a chromatic-line mask to a 

luminance-square-wave target for the majority of participants. This might 

mean that chromatic information has more influence on perception of edge 

location, when the contrasts have been equated.  

Blur discrimination tasks do not directly address edge localisation; 

they do not ask ‘where is the edge?’. This could be why the findings in 

Experiment 5.4 show a different pattern to that described above, where 

chromatic information has more influence than would be predicted by its 

reliability. However, luminance information has a higher effective contrast in 

natural scenes and it is likely to drive perception in most circumstances. 

It seems clear that the manner in which colour and luminance 

information is combined is task dependent. In blur discrimination tasks 

luminance dominates, even when contrast is equated. In edge localisation 

tasks chromatic information has more influence than would be predicted by 

cue reliability. In perturbation discrimination tasks there is a more 



General Discussion 
 

156 
 

complicated relationship based on how the chromatic and luminance 

information is presented. 

8.3. Relationship to previous literature 

8.3.1. Task Dependency 

Traditionally luminance has been considered dominant for processing 

of lines, edges, shape and motion, with colour being more important for 

image segmentation (e.g. Martinovic, Mordal, & Wuerger, 2011). Evidence for 

this comes, in particular, from poor performance in chromatic stereopsis tasks 

(e.g. Krauskopf & Forte, 2002). Chromatic processing has also been found to 

be coarser for orientation and spatial frequency discrimination (Webster, De 

Valois, & Switkes, 1990).  

However, chromatic performance is not poorer than luminance for all 

tasks. Krauskopf and Forte (2002) compared the influence of chromaticity on 

Vernier and stereo acuity using the same stimuli and apparatus. They found 

the expected deficits in chromatic stereo processing, but they found that 

Vernier thresholds were approximately equal for isoluminant and achromatic 

targets, if they were equated for spatial frequency content and contrast. This 

clearly shows that the utility of chromatic information is task dependent. 

In this thesis chromatic blur discrimination has been shown to be 

poorer than luminance blur discrimination (Chapter 3) and in accordance with 

previous work Vernier thresholds are not poorer (Chapters 4 and 5). The 

thresholds for perturbation discrimination are less clear as a significant effect 

of chromaticity was found in Experiment 6.1 but not Experiment 6.2. It seems 



General Discussion 
 

157 
 

most likely that the effect of chromaticity found in Experiment 6.1 was an 

artefact driven by the variability between participants, particularly for L-M 

targets. Interleaving the staircases in Experiment 6.2 reduced variability 

overall and the effect of chromaticity was no longer found, supporting the 

idea that the difference found in Experiment 6.1 was an artefact. If it is an 

artefact, chromatic performance in perturbation detection is not poorer than 

luminance. 

Vernier acuity tasks, and therefore edge localisation seem to be 

subserved by a different chromatic mechanism than other spatial tasks. This 

may be related to the manner in which information coming from the 

randomly-arranged cone mosaic is processed by the early visual system. As 

described in Section 1.2 the maximum spatial sensitivity required for edge 

localisation can be achieved by subtracting the response of the cones to the 

left of a boundary from the response of the cones to the right of a boundary. 

The random arrangement of the cones means that there will be different 

numbers of L- and M-cones on either side. Therefore, subtracting one area 

from another will produce not only spatial information but also chromatic 

information. The additional availability of chromatic information may explain 

why Vernier acuity is not poorer for isoluminant targets. 

Chromatic information is a more reliable indicator of object edges 

than luminance information (K. K. De Valois & Switkes, 1983; Kingdom, 2003; 

Kingdom, et al., 2004; McGraw, et al., 2003; Parraga, Troscianko, & Tolhurst, 

2002; Ruderman, et al., 1998; Switkes, et al., 1988). The reason for this 
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becomes clear when considering a woodland floor where the luminance 

information is dominated by variations in illumination, which becomes ‘noise’ 

when performing an object edge localisation task. Colour can also unmask 

dark targets in complex displays (Kingdom & Kasrai, 2006) and facilitate 

shadow identification (Kingdom, et al., 2004). This suggests that chromatic 

information is not simply more useful for object edge localisation but also aids 

detection and discrimination of shadows. This is important as, whilst shadows 

act as ‘noise’ for object edge localisation, they are useful for other visual tasks 

(for a review see Dee & Santos, 2011) and in order for them to be used as 

cues they must be segmented from the background and labelled (Mamassian, 

et al., 1998). 

It has been suggested that the use of colour variations to help identify 

lighting variations is based on the heuristic that achromatic edges are 

shadows and combined colour and luminance edges are object edges 

(Cavanagh, 1991; Kingdom, 2008). This identification then allows the 

chromatic information to suppress the luminance noise (Kingdom & Kasrai, 

2006). It is unlikely that colour vision evolved primarily for this purpose and 

may be a secondary use of the chromatic system (Kingdom, et al., 2004). 

8.3.2. Specific combinatorial rules 

The relationship between colour and luminance is complex. In cross-

channel contrast detection experiments there is a clear asymmetry in how the 

pedestal affects perception of the test; luminance pedestals, including only a 

luminance ring, facilitate detection of a chromatic test but chromatic 
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pedestals do not facilitate detection of luminance tests (Chen, Foley, & 

Brainard, 2000; Cole, et al., 1990, see Section 1.3 for more details). Similarly in 

cross-channel masking experiments, luminance gratings do not mask 

chromatic gratings but, chromatic gratings mask luminance gratings to a 

degree similar to that of luminance-luminance masking (K. K. De Valois & 

Switkes, 1983); also demonstrating the asymmetry of colour and luminance 

interactions. 

The colour-shading effect offers an elegant example of the 

complexities of colour and luminance interactions. This illusory depth effect is 

triggered when non-aligned colour and luminance gratings are combined, 

however, it is suppressed when the cues are aligned (Kingdom, 2003); an 

effect of spatial arrangement. However, an attempt to replicate this illusion of 

depth failed for most participants, as there were large and inconsistent 

individual differences (Clery, et al., 2013). This challenges Kingdom’s (2008) 

suggestion that the visual system uses a universal set of heuristics to 

distinguish light versus material changes and determine how colour and 

luminance information should be combined. In particular the idea that 

achromatic edges should be treated as changes in illumination and combined 

colour and luminance edges should be treated as changes in reflectance. Clery 

et al (2013) suggested that observers may use idiosyncratic heuristics formed 

on the basis of individual experience. This idea could add a new level of 

complexity to understanding cue combination of colour and luminance. 
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8.4. Unanswered questions 

8.4.1. Can natural scene statistics be used inform models of edge 

localisation? 

There is a growing body of research into the statistics of natural 

images and the same is true for cue combination. It would be nice to see 

more research that combines these two areas. For example, the findings of 

Experiment 5.4 show that colour is weighted more than would be predicted 

by maximum likelihood estimation, which might be explained by natural 

scenes statistics. If this were the case one might be able to model it by 

calculating the number of luminance edges that are edges of objects, versus 

the number of chromatic edges that are edges of objects. This ratio could 

then be used to scale the weights, which might form the ideal Bayesian prior 

for the higher weighting of chromatic edge information. 

It will be necessary to differentiate between different categories to 

take account of different statistical features of different natural scenes. For 

example, images of man-made structures may contain more horizontal and 

vertical edges than images of flowers. 

8.4.2. Can cue weights be changed through perceptual learning? 

As previously discussed in blur discrimination tasks luminance appears 

to dominate and edge localisation tasks chromatic information has more of an 

influence than predicted by cue reliability. Are these differences ‘hard-wired’ 

into the visual system or are they learnt from exposure to the natural world? 

If they are learnt can they be changed through perceptual learning? The ‘light 
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from above’ prior can be modified through training (Adams, Graf & Ernst 

2004), which may suggest that the relative weights of chromatic and 

luminance edges can also be modified. 

One way to investigate this would be to manipulate the statistics of 

stimuli such that luminance is more reliable than chromatic information. If 

perceptual learning occurred and exposure to this type of stimulus causes 

changes in cue weightings this would suggest that the weightings found in 

Experiment 5.4 are learnt. A slightly different approach would be to see if 

participants can be trained to disregard an irrelevant cue. For example, can 

the masking effects found in Experiment 6.2 be reduced or extinguished with 

practice? 

8.4.3. When do aligned and orthogonal arrangements of colour and 

luminance cause perceptual changes? 

It also remains unclear what causes the conflicting findings of 

Kingdom’s lab (2003; 2010; 2005b), Clery and colleagues (2013) and 

Experiment 6.1 of this thesis, as regards the effect of aligned versus 

orthogonal arrangements of colour and luminance. It could be that the 

differences in findings are due to individual differences. However, there are 

significant methodological differences between the experiments that could 

also offer an explanation. As we have seen, colour and luminance 

combinations can be very sensitive to changes in task or stimulus parameters 

and establishing the source of the conflicting findings could offer new insight 

into combinatorial rules. 
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Another approach to the question of whether orthogonal edges are 

processed differently to aligned edges would be to perform the blur 

discrimination task on natural scenes where either the chromatic or 

luminance layer has been rotated 90°. In natural scenes a majority of edges 

are comprised of combined (aligned) colour and luminance information 

(Hansen & Gegenfurtner, 2009) meaning that in the experiments in Chapter 3, 

a majority of edges are aligned and as discussed in that chapter it is likely this 

is crucial to the constraint of chromatic blur by luminance information. If a 

layer were rotated this relationship would no longer exist and if Kingdom’s 

(2008) heuristics are correct the masking effect would disappear or be 

reversed. This would help to determine whether the alignment of edges is 

important not just for edge localisation tasks but also blur discrimination 

tasks. 

8.4.4. What is the S-(L+M) channel used for? 

In this thesis, and a considerable amount of the literature, the 

research focus is on the L-M channel rather than the S-(L+M) channel. The L-

M system appears to be optimised for detecting reddish objects against a 

background of foliage and eliminates the dappled background of leaves, 

however the S-(L+M) system does not allow this discounting of lighting 

information (Parraga, et al., 2002). However, the questions remain as to what 

the S-(L+M) channel is optimised for and whether the limits in its 

performance are due to constraints such as sparse representation in the cone 

mosaic or chromatic aberration. 
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The sparseness of S-cones in the retina should mean that acuity is 

always lower for this type of stimulus. However, performance is not 

significantly different from L-M defined stimuli in supra-threshold orientation 

discrimination, spatial frequency discrimination or Vernier judgements 

(Krauskopf & Farell, 1991; Webster, et al., 1990). Blur thresholds, on the other 

hand, are approximately twice as high for blue-yellow gratings than red-green 

or luminance gratings (Wuerger, et al., 2001). Interestingly, Wuerger et al. 

(2001) found that red-green and luminance gratings had very similar blur 

discrimination thresholds. This may mean that the higher thresholds for 

chromatic stimuli found in Chapter 3 were driven by the inclusion of S-cone 

stimulating information. 

8.5. Conclusion 

The relationship between colour and luminance is complex. There is 

no single rule that can predict how the two cues will be combined. Cue 

combination of colour and luminance is task dependent and modulated by 

the form the cues take and their spatial arrangements.  

Knowing how colour and luminance are combined is fundamental to 

understanding visual processing of form. It is essential to understand this 

relationship before plausible models of higher-level processes can be created. 

Colour and luminance research can also inform computer vision models, 

allowing improved detection of features by allowing inclusion of colour and 

heterogeneous illumination. 
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