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Abstract

In Indirect Field Orientation (IFO) of induction motors, the interest for parameters

identification has increased rapidly due to the great demand for high performance

drives and more sophisticated control systems that have been made possible by

the development of very powerful processors, such as floating point DSPs.

Accurate knowledge of the machine electrical parameters is also required to

ensure correct alignment of the stator current vector relative to the rotor flux

vector, to decouple the flux - and torque - producing currents and to tune the

current control loops. The accuracy and general robustness of the machine is

dependant on this model.

Artificial intelligent technologies have been tested in the field of electro

mechanics like neural networks, fuzzy logic, simulated annealing and genetic

algorithms. These methods are increasingly being utilised in solving electric

machine problems.

This thesis addresses a novel non - intrusive approach for identifying induction

motor equivalent circuit parameters based on experimental transient

measurements from a vector controlled Induction Motor (I.M.) drive and using an

off line Genetic Algorithm (GA) routine with a linear machine model. The

evaluation of the electrical motor parameters at rated flux operation is achieved by

minimising the error between experimental responses (speed or current) measured

on a motor drive and the respective ones obtained by a simulation model based on

the same control structure as the experimental rig. An accurate and fast estimation

of the electrical motor parameters is so achieved. Results are verified through a

comparison of speed, torque and line current responses between the experimental

1Mdrive and a Matlab - Simulink model.

The second part of the research work introduces a new approach based on

heuristic optimisation for identifying induction motor electrical parameters under

different operating conditions such as different load and flux levels. Results show

via interpolation test the effect of the most important electrical parameters, the
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magnetising inductance Lm and rotor resistance R; at each different operating

condition.
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Chapter 1

Introduction

1.1 Background

In 1888, Nikola Tesla developed the first induction machine and a couple of years

later he succeeded to advance the operation of an electrical machine as it didn't

require brushes. The result of this was a radical change in electrical engineering,

and so the widespread use of polyphase generation and distribution systems

become a fact.

The most common industrial motors that are often referred as the workhorse of

the industry are the AC induction motor drives with cage - type machines for

variable - speed applications, covering in a wide power range. These applications

include industrial and domestic environments. As more than 65% of all the

electrical energy generated in the world is used by cage induction motors, the

energy - saving aspect of variable - frequency drives is getting a lot of attention.

Generally, induction machines have been mostly used at fixed speed for many

years, while DC machines have been used for variable speed applications using

1



Chapter 1: Introduction

the Ward - Leonard controller. However, this kind of controller uses 3 machines,

an AC induction motor driven at a fixed speed from the main supply, driving a

DC generator which in turn powers a shunt wound DC motor. Therefore, it is

clear that this method is expensive and requires careful maintenance.

The rapid developments in the field of power electronics gave a new inspiration

and challenge to variable speed applications of both DC and AC machines. So,

DC machines use thyristor controlled rectifiers to provide high performance

torque, speed and flux control while variable speed induction motor drives use

mainly PWM techniques to generate a polyphase supply of a given frequency.

The majority of the induction motor drives are performed better under a constant

flux in the machine and this can be achieved by keeping a constant

voltage/frequency (VIf) ratio. Even if the control of V/f drives is comparably

simple, the flux and torque dynamic performance is extremely poor. As a result,

many applications that need precise torque and speed control still use DC motors.

The problem of poor dynamic performance can be solved by vector or field -

oriented control. The invention of field - oriented control by Blaschke in 1972

was probably the biggest progress in the development of induction motor drives as

the principle behind it is that the machine flux and torque are controlled

independently like a separately excited DC motor. Instantaneous stator currents

are transformed to a rotating reference frame aligned with the rotor, stator or air-

gap flux vectors, to produce-a d axis component of current (flux producing) and a

q axis component of current (torque producing) [Gimenez, 1995].

Two possible approaches of field orientation control for induction motor drives

were identified. Direct Field Orientation (DFO) control and Indirect Field

Orientation (IFO) control as mentioned by Bose, 2002. The former one is

achieved by direct calculation of the motor flux using measured voltages and

currents (Hall sensors mounted in the air gap) with some known parameters of the

machine. However, the drawback of this approach is its poor performance due to

machine parameter dependency and the use of pure integration for the flux

calculation [Karanayil, 2005], as well as the fragility of the Hall sensors devaluate

the inherent robustness of an induction machine.

2



Chapter 1: Introduction

On the other hand, in IFO induction motor drives, field orientation is achieved by

a feedforward slip control derived from the rotor dynamic equations. In addition,

the operation of IFO needs precise alignment of the dq reference frame with the

rotor flux vector. The achievement of this, plus the accuracy of the slip calculation

used in Rotor Flux Oriented Control (RFOC), depends mainly on the accurate

knowledge on the rotor time contact T, of the machine, which change due to

temperature and the load of the machine.

Even though the poor dynamic performance can be solved by IFO Control,

however this will not lead to the achievement of perfect control of these drives.

Therefore, control engineers need to have more information available regarding

the motor characteristic. More specific, engineers should be able to identify

accurate motor parameters and so to properly find accurate controller parameters

of the vector control model. The consequence of having incorrect parameter

values used in vector control and thus used in the controllers will create an error

in both flux and torque, resulting in a change in dynamics. To overcome these

problems, various methods (such as optimisation techniques) in control systems

theory have been applied to improve the robustness of a motor.

Initially, conventional optimisation techniques (like linear programming models)

had been introduced to solve the above problem. However, their applications were

not successful as a result of the problem of convergence to a local minimum

instead of global one. Another drawback of these optimisation techniques is that

the optimum identified parameter values depends substantially on the initial guess

of the parameter. This means that if the initial parameter will change slightly then

the algorithm will converge to a totally different solution. All these disadvantages

gave the inspiration to researchers to investigate alternative optimisation

techniques.

Hence, scientists proposed the use of soft computational methods such as Neural

Networks (ANNs) and Fuzzy Logic and also the use of Genetic Algorithms (GAs)

in order to be able to identify and control nonlinear dynamic systems including

induction machines. The main reason of using the above methods is to make the

3
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resulting system of controller and plant intelligent, which is to make a self -

adjusting system to changes in environment and system parameters. In this thesis,

the selected optimisation method is based on a GA. In the future, there is the

possibility to have a fully automatic control system using an intelligent technique

like GAs, which will be possible to identify the required parameters in different

operating conditions, decide on the control strategy and self - commissioning the

drive.

1.2 Literature Review

The interest for parameter identification in the field orientation control (FOe)

drives has increased in the past few years. Moreover, it is well known that the

method of vector control in an induction motor drive allows high - performance

control of torque and speed and it can be achieved only if both the electrical and

mechanical parameters of the machine and load drive are accurately known in all

operating conditions [Leonard, 1997]. It is clear that the precise knowledge of all

1M parameters is very important for indirect rotor field oriented control (IRFO).

However, this is hard to achieve due to the variation of parameters at different

machine operating points such as the temperature, flux level, torque level and the

nonlinearities caused by skin effect and saturation.

There are many different ways to identify I.M. parameters. Traditional ways were

used to identify the resistance and inductance of both rotor and stator by

performing the locked - rotor and no - load tests [Fitzgerald, 2003], [Hughes,

2006], [SIemon, 1981]. Nevertheless, one main disadvantage of this method is that

the motor has to be locked mechanically and the temperatures of the stator winding

and rotor cage have to be measured [Despalatovic, 2005]. These tests also seem to

be inaccurate and not appropriate for the synthesis of high dynamic performance

systems. The main reason for that comes from the hypothesis that the parameters

remain the same regardless the operating conditions.
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Many researchers have discussed the estimation of the machine parameters while

the motor is at standstill. Willis et al. (1989) proposed a frequency domain test to

determine the machine parameters. Seok et al. (1997) proposed a parameter

identification procedure to determine the rotor resistance Rn the rotor time constant

T; and the stator resistance Rs, by using several tests implemented with a pulse

width modulated (PWM) inverter controlled by the indirect rotor flux oriented

control technique. In the beginning, an initial estimate of some parameters is

calculated from the nameplate data and then by using a nonlinear technique the

identification of the rotor time constant is determined. The advantage of this test is

that it can be performed regardless the mechanical load of the machine and it is

also achievable to apply an inverter to any induction machine for rotor flux

oriented control even though both electrical and mechanical parameters are

unknown [Seok, 1997]. It is also possible to integrate these types of tests within

standard commissioning tests where these would be automatically performed

rather than needing a trained engineer. Ribeiro et al. (1997) suggested a linear least

- squares approach to estimate R; R, and T; An attractive way is to develop the

estimation method from the transfer function of the I.M. model at standstill. The

continuous transfer function or the discrete function of an I.M. at standstill has

been utilized. Peixoto et al. (2000) developed a recursive least (RLS) estimating

method from the continuous transfer function, while Michalik et al. (1998) and

Barrero et al. (1999) derived a RLS method from the discrete transfer function.

The continuous transfer function was also used by Couto (1998) to develop a step

- response model fitting method. Fang et al. (2005) presented an on - line

estimator to determine stator resistor, rotor resistor, stator inductance and mutual

inductance which also requires the transfer function of the motor at standstill. Most

of these strategies have been shown to work effectively under steady state

conditions (constant torque and constant flux). However, as mentioned in the

previous paragraph, the major drawback associated with all these techniques

becomes from the fact that the motor has to be locked.

Moons (1995) suggested a parameter identification method to identify all electric

parameters simultaneously. This is a time - varying linear model and Moons' idea

is based on filtering the current, voltage and speed signals of the motor so that the

set of obtained signals are related by simple linear equations. In this case, two
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estimation methods are applied. The first one is the General Total Least Squares

(TLS) method which proved to be sensitive to noise. The second method uses TLS

but with extra constraints and its performance was better under high - noise

conditions. However, the drawback of this method is the occurrence of pole - zero

cancellations and non - persistency of excitation.

Cirrincione (2003) presented a new experimental approach to the parameter

estimation of induction motors with least - squares techniques. In particular, it

exploits the robustness of total least - squares (TLS) techniques in noisy

environments by using a new neuron, the TLS EXIN (a new ANN technique),

which is easily implemented online. The TLS EXIN neuron is applied numerically

and experimentally for retrieving the parameters of an induction motor by means

of a test bench. Moreover, for the case of very noisy data, a refinement of the TLS

estimation has been obtained by the application of a nonlinear constrained

optimisation algorithm. This method proved to be well performed under high -

noise conditions. However, some interesting phenomena may occur like pole -

zero cancellations and non - persistency of excitation.

Generally, the parameters of 1M. have an intensely change during the start - up of

the motor (transient response) rather than at steady state conditions. This is due to

the fact that large currents incur during the start - up of the motor resulting in an

increase of the temperature and this may cause large changes in the motor

parameters. Hence, the majerity of the research work in this field is focusing on

this interval since the free - acceleration response data gives more information on

machine nonlinearity and so it is more appropriate for parameter identification.

The work of this research work is mainly based on this time duration and it is

especially applied for the parameters' estimation in different operating conditions.

Shaw (1997) describes three methods for estimating the model parameters of an

induction motor using startup transient data. The first method proposed applies

simple models with limited temporal domains of validity and obtains parameter

estimates by extrapolating the model error bias to zero. However, this method is

only applied as a means of finding a good initial guess and does not minimize any

specific error criterion for a conventional iterative maximum -likelihood or least -
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squares estimator. The second method proposed minimizes equation errors in the

induction motor model in the least - square sense using a Levenburg - Marquardt

iteration. Finally, the third method which is a continuation of the Levenburg -

Marquardt method, minimizes errors in the observations in the least - squared

sense and is therefore a maximum - likelihood estimator under appropriate

conditions of normality. The drawback of the mentioned techniques is that the

determination of the parameter can be bad if the initial guesses are far away from

the best values.

Conventional gradient techniques are generally fast and efficient methods for

finding the minima of functions. However, these techniques face a major drawback

with functions that include noisy experimental data such as the ones found in

induction motors. This problem linked to the limited value when several local

minima exist. Therefore, researchers thought of finding new different algorithm

techniques for solving this problem. Genetic Algorithms (GAs) and Artificial

Neural Networks (ANNs) have been gained recognition as an optimisation

technique because of their inherent robustness. They can also be used for curve

fitting with experimental data as they can find the global minimum even if many

local minima exist. In the next paragraphs a wide attention of induction motor

parameter estimation is covered by applying these techniques, presented from

various perspectives.

Moon (1999) suggested a new approach to identify the nonlinear model of an

induction machine. Krause (2002) used the same nonlinear model for the

simulation study. Applying the three - phase AC power to a 5 hp induction motor

while it is in standstill condition without mechanical load, the measurements of the

stator voltages, stator currents and rotor angular velocity can be obtained. As input

to the simulation model the measured stator voltages and rotor angular speed are

used and the stator currents are simulated as output. Feed - Forward Neural

Networks (FNNs) models are utilized to represent the nonlinear parameters as

functions of operating conditions. The purpose of the FNN is to estimate the

nonlinear functional relationship between input and output patterns. In this

technique, the whole free acceleration test data set is divided into subsets (time

intervals of 0.05s) and it is supposed that in each subset the parameter values are
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constant. As the operating condition changes, the input pattern changes as well and

the FNN model determines the parameter values, which correspond to the

operating condition. The maximum likelihood (ML) algorithm is used to estimate

the parameter values from each subset of data. These estimated parameter sets

represent the nonlinear model parameter values for different operating conditions.

Wishart (1995) presented a technique to identify and control induction machine

using Artificial Neural Networks (ANNs). In this case, two systems are presented.

The first one is a system to adaptively control the stator currents through

identification of the electrical dynamics and the second one is a system to

adaptively control the rotor speed through identification of the mechanical and

current - fed system dynamics. ANN is introduced in both systems and observable

forms of the models are described. Finally, the performances of these controlling

schemes are compared with the standard vector control scheme.

In practice ANNs do not always work well because they experience problems

associated with the accuracy of prediction [Krose, 1996]. The problem of

premature convergence (will be discussed in detail in sub - section 3.1.3) is also

critical for ANNs.

Karanayil (2005) proposed the application of ANNs and fuzzy logic for the on _

line rotor time constant / rotor resistance adaptation. Fuzzy logic is simple to

implement and estimators using fuzzy logic have no convergence issues. On the

other hand, the ANN estimator has the advantages of faster execution speed and

fault tolerant characteristics compared to the estimators implemented in a DSP

based system. They have the attributes of estimating parameters of a non - linear

system with good accuracy and fast response. The above benefits of using an ANN

for parameter identification have been utilized to adapt the rotor resistance in a

rotor flux oriented induction motor drive. However, this method is only applied for

the identification of the rotor resistance and not for the rest of the electrical

parameters of induction motors such as the magnetizing inductance which will be

proved in this thesis that is a crucial parameter for a vector controlled drive.
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Ursem and Vadstrup (2004) compared eight stochastic optimisation algorithms

with respect to parameter identification of two induction motors. The eight

algorithms represent four main groups of stochastic optimisation algorithms used

today (local search (LS), evolution strategies (ESs), generational EAs, and particle

swarm optimizers (PSOs». From each group they included a simple and an

advanced algorithm. Comparison of the algorithms showed that the two LS

techniques had the worst performance of all eight algorithms. The simple

population - based approaches had rather good performance, while the advanced

algorithms had the best performance. Of the advanced techniques, the diversity -

guided EA illustrated the best average performance for both motors and it seems to

be a promising direction for future studies. However more precise parameter

values can be achieved by improving the performance of the advanced techniques.

Bishop and Richards (1990) were one of the pioneers in the applicability of genetic

algorithms (GAs) to the problem of the motor parameter determination. They used

a simplified steady state model of an induction machine for parameter

identification from load test data. The objective is to determine the values of the

induction motor equivalent circuit except the stator resistance and rotor reactance

which are found from other tests or handbook data and may be considered known.

The motor load tests consist of measurement of motor terminal complex

impedance, Zm, at rated voltage for at least two different values of slip SI and S2. A

measurement of electrical torque, Tm, is also made at each of the test speeds. The

GA is now used to find a set of parameters such as to minimise the error function.

The error is a function of Zm and Tm at each different slip. If the test is to be

repeated at several slips, the error will be the sum of all errors at each

corresponding slip. This method has proved that GA can be used to parameter

identification problems and experience indicates that it is robust and may find

results under condition of noisy and inconsistent test data.

Nangsue et al. (1999) suggested motor parameter identification by using steady

state models of approximate equivalent circuits, exact equivalent circuits and a

deep bar circuits. In this case the fitness function is defined as the error between

the input motor torques and the calculated ones using the circuit equations. The

input torques are the full load, the locked rotor and the breakdown torques obtained
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from real manufacturer's data. The objective of these models is the minimization

of the fitness function errors. GA is then applied to determine suitably accurate

parameters. In this determination problem, motor parameters are assumed to be

constant, mostly because the intension is to use the parameters for system level

studies where extreme precision is unnecessary. Higher accuracy may be obtained

by letting the leakage reactances vary as a function of the current. This approach

shows that the performance of GAs can be affected by numerical values of

constants needed in implementation such as mutation or crossover rate. The

outcome of the results indicates that the use of the approximate equivalent circuit

prevents the GAs from determining the motor parameters accurately. As example

given is the case of a 5 HP machine, since the error between the full load torque

and the calculated one was 20% while for the deep bar model it reduces to 3%.

Results showed that the deep bar model is a more accurate model representation in

the motor parameter determination as gave better results, and particularly covering

a wide speed range. This became a very important issue in modeling and

controlling the induction machine and much investigation in selecting the accurate

model of induction machine has been done. The drawback in this case is the

calculations of the full load, locked rotor and breakdown torques from real

manufacturer's data.

Alonge et al. (1999) and (2001) considered a nonlinear dynamic model of an

induction machine for solving the problem of parameter identification. In this

model it is assumed L/r = Lis and so there are four electrical parameters to be found

and also the mechanical system parameters such as inertia and friction of an

inverter - fed 1M.An experimental test is carried out consisting of a transient from

standstill to certain speed and a mathematical model with the desired structure is

implemented with the aim of simulation of the experimental test. In this method

the GA's cost function is computed as a weighted sum of either square or absolute

differences of the output stator currents acquired experimentally and those

computed by simulation at the same instant. Analytical Least Squared Technique is

applied to identify the parameters and a comparison is made with GAs with the

aim to select the identification method, which gives the best results.
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Huang et al. (1999) proposed a parameter identification of induction motor via

GAs. The technique was undertaken using the starting performance with four

different levels of measurement noise. For variable speed applications, the motor's

general mathematical model based upon Kron's voltage equations is employed to

estimate the parameters, and the motor's start - up performance is used as the

measurement during the identification process. For comparison, the results of a

Simple Random Search (SRS) method under the same condition are also given. It

is concluded that GAs gives much better results than that of the SRS technique.

Chung et al. (2000) presented a parameter identification method for induction

machines based on enhanced genetic algorithm that operates on real - valued

parameter sets. The induction motor model used is similar to the nonlinear one

proposed by Krause (2002). This model is discretized and the stator voltages and

the speed of the rotor are used as the inputs to the model. Fourth order Runge Kutta

method is employed to determine the states of induction motor model as for

example rotor flux linkages and stator currents. Chung recommended, since

simulating the machine in the whole transient response is computationally

expensive, to study the effects of smaller time intervals for the given machine

excitation so that computational cost of calculating fitness is reduced while still

maintaining acceptable parameter estimates. The GA is run several times for each

interval and the best parameter sets obtained are averaged, thus assuming the same

parameters during transient period of machine. Concluding, some time intervals

provided better estimation results (while comparing estimated stator currents and

currents measured by exciting the induction motor under no load) suggesting that

the conditions right after machine start - up are favorable for parameter estimation

since at steady state the errors are always relatively high as the current values are

small and thus there is insufficient information to estimate the electrical

parameters. Even if the computational time applying GA at several times for each

interval has been reduced enough, it was still high for this GA application real -

valued parameter sets.

A universal drive should be applicable to different types of motors for various

applications with unknown motor parameters and load characteristics. In order to

meet the high performance dynamic requirements often demanded from electrical
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drives, it is essential to develop controllers that overcome the influence of varying

motor parameters, the influence of load variation and keeps the performance of

the overall system unchanged. Therefore, self - commissioning control of electric

drives was originally proposed by Jotten [Jotten, 1987] and Schierling [Schierling,

1988a], [Schierling, 1988b] and then has been developed for the control of

induction drives [Khambadkone, 1991] and [Sumner, 1993]. Khambadkone and

Sumner used the standard techniques for self - commissioning which consist of

specific sequences of tests to measure electrical and mechanical parameters of the

motor. In the electric drives market, there are two basic requirements for a

universal drive: self - commissioning and auto - tuning. The first one concerns

the initialization and starting of the electrical drive when it is connected to a new

servo motor with some unknown parameters while the second one concerns the

tuning of the control parameters when the electric drive is connected to a new

mechanical load with unknown dynamic load dynamics [Tzou, 1997], Some self -

commissioning tests have been developed with regards to the magnetizing

inductance which is usually identified at the rated flux [Boussak, 1988],

[Bertoluzzo, 1997]. When the flux differs from the rated level, the magnetizing

inductance changes due to the nonlinear behaviour of the iron core.

Cascella et al [2005] proposed an on - line auto - tuning based on a hybrid

genetic algorithm for a vector - controlled PMSM drive. This method can be

simply embedded as a fully - automated tool for industrial drives, or based on a

PC which can access control data through an industrial communication protocol

and it provides better performance with higher reliability than that obtained with

accurate hand - calibrations. One of the drawbacks of this technique is that the on

- line evolution of the control system may need many tests, and the controlled

process can be critically stressed by poorly performing solutions. Lastly, a model

- based design can be adopted in order to achieve a stable control system in a

short time. Although only a sub -- optimal tuning is achieved because the issues

concerning the multiple inputs, system nonlinearities and uncertainties of the

model- based design remain unaddressed.

Drive manufacturers (such as ABB and Control Techniques), are providing three

types of ID autotune - runs for the machine parameters identification in closed
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loop vector mode. These are a stationary/standstill test, a rotating/normal/full test

and an inertia measurement test. The first will give moderate performance,

whereas a rotating autotune will give improved performance as it measures the

actual values of the motor parameters required by the drive. Lastly, an inertia

measurement test should be performed separately to a standstill or rotating

autotune.

1. Stationary/Standstill autotune test: This test can be used when the motor is

loaded and it is not possible to remove the load from the motor shaft. In

practise, this mode is selected if a) motor cannot be decoupled from the

driven equipment or load; b) if flux reduction is not allowed while the

motor is running (i.e. in case of a motor with an integrated brake supplied

from the motor terminals). The stationary test measures the stator

resistance and transient inductance of the motor. These parameters are

mainly used to calculate the current loop gains.

ii. Rotating/NormallFull autotune test: This test should only be used if the

motor is unloaded. Firstly, it performs a stationary autotune before rotating

the motor at 2/3 of motor rated frequency in the direction selected for

approximately 30s. During the rotating autotune the stator inductance and

the motor saturation breakpoints are modified by the drive.

iii. Inertia measurement test: This test can measure the total inertia of the load

and the motor. This is. used to set the speed loop gains and to provide

torque feed - forwards when required during acceleration.

The drive accelerates the motor in the direction selected up to 3/4 x rated

load rpm and then back to standstill. In this case, the drive uses rated

torque/le, but if the motor cannot be accelerated to the required speed then

the drive increases the torque progressively to xl/S, xl/4, xl/2, xl rated

torque. Therefore the acceleration and deceleration times are used to

calculate the motor and load inertia.

Naturally, there are certain drive limit settings need to be applied before the ID run,

Upon the completion of ID run, the limit values are then set back to as required by

the specific application.
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The idea for the selection of the performance index for GAs implementation in this

work comes from Trentin et al. (2006). Trentin proposed a new heuristic approach

based on GAs to estimate mechanical and electrical parameters of an induction

motor (1M) in all operative conditions using only speed transient measurements.

The basic proposal is to use a GA routine off - line to optimize the motor

parameters in a simulation model by recursively running the simulation and trying

to minimise the error between the real measured speed response and the simulated

one under the same experimental conditions. The validity of the proposed approach

has been proven as the match between simulation and experimental test is very

good.

The additional aspect in this thesis regarding Trentin's work is that it is emphasize

the variation of the magnetizing inductance not only as a function of the field

producing current but as well of the load current and without the need of any

loading mechanism. It will be also shown that this variation is giving us valuable

information at low field current levels.

1.3 Project Objectives

The primary objective in this thesis is the identification of induction motor

electrical parameters in all operating conditions. The strategy of this work is

developed using genetic algorithms (GAs), a heuristic optimisation technique

based on Darwin's theory of natural selection and survival of the fittest. More

specific, this thesis addresses the below distinct objectives:

• Design, develop and Simulink Implementation of an Induction Machine

Model.

• Achieve evaluation of Electrical Parameter of Induction Motors.

• Analysing Parameter Sensitivity and Adaptation.

Improve Control Performance of Induction Motors by Using a Genetic

Algorithms Optimization Technique.
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• Modify GA strategy based on migration and artificial selection (MGAMAS) in

order to improve the accuracy and computational time.

Improve Genetic Algorithm for Structural Identification via the Search Space

Reduction Method (SSRM) in order to reduce the search space for those

parameters that converge quickly.

• Applying GAs to Vector Controlled Drives for Average Parameter

Identification.

• Develop a novel approach for identifying induction motor electrical parameters

under different operating conditions (different flux - and torque - producing

reference currents, ls/ and i;respectively).
• Analysis and Sensitivity of the Estimated Parameters.

• Validation of parameter estimation.

1.4 Thesis Overview

The thesis has been structured in the following manner:

Chapter 2 introduces the vector control theory of 1M drives. The Field - Oriented

control is discussed with focused on the Indirect Vector Control technique as this

control scheme is being used in this thesis. Fully description of the system is

given with a block diagram illustrating the indirect vector control scheme without

field weakening. The PI controller design of both dq current and speed control is

given. Finally, the last section of this chapter will be focused on the effects of

parameter sensitivity and adaptation.

The strategy developed in this thesis is based on genetic algorithms. Hence,

Chapter 3 is dedicated to describing the key features of a classical genetic

algorithm and how GA theory is able to account for the ability of algorithms to

converge to good solutions. It also highlights the reason why GAs is the preferred

choice. In this chapter the proposed identification strategy is also presented. The

strategy consists of a Search Space Reduction Method (SSRM) which uses a
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Modified GA based on Migration and Artificial Selection (MGAMAS) as the

main search engine. The method is designed to provide accurate and reliable

identification results for dynamic problems. The strategy includes some new

operators and procedures and the motivation behind these is explained.

Chapter 4 presents the practical hardware and software requirements and

implementations. The description of the experimental setup will be presented

which was used to develop and test the vector control algorithms. As a first step

the squirrel-cage 4kW induction machine is introduced. Finally, it will be

discussed the dSPACE DS1104 controller card, and the Digital Signal Processor

to Motor Drive Interface System.

Chapter 5 presents an accurate non - intrusive and fast method for evaluation of

the electrical induction motor parameters. The motor used for this research is a 4

kW, 4 - pole I.M. A Matlab model was utilised within the heuristic GA based

identification routine. The evaluation of the average electrical motor parameters

can be achieved by minimising, using a GAs approach the error between the

experimental response (speed or current) and the respective one obtained by a

Matlab - Simulink model. Discuss and analysis of the results is verified through a

comparison of speed and current response. Finally the sensitivity of the GA

estimated parameters were effectively used so as to find the influence of each

parameter to the optimisation's fitness function.

In Chapter 6, a non - intrusive approach for identifying induction motor

equivalent circuit parameters in function of varying load and flux levels is

represented. More specifically, the variation of the magnetising inductance (Lm) as

a function of flux and load levels will be demonstrated and results will be

analytically explained.

Chapter 7 presents the main conclusions of this work. This thesis concludes with a

series of suggestions for further investigation.
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Chapter 2

Vector Controlled
1MDrives

2.1 Introduction

It was mentioned in the first chapter that the main disadvantage of an induction

motor was that it could not be controlled easily as a DC machine. So, a

sophisticated technique called Vector Control de - couples the vectors of field

current and armature flux so that they may be controlled independently to provide

fast transient response. In this chapter, we will present the fundamentals of vector

control of an induction motor.

Firstly, a DC drive analogy to an Induction Motor Drive will be analysed. In that

way, it will be shown how the DC machine - like performance can be extended to

an induction motor and this can be achieved only if the machine control is

considered in a synchronously rotating reference frame, where the sinusoidal

variables appear as dc quantities in steady state.
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Then, a brief explanation of the flux angle A. will be introduced as the angle

between one of the stator phases and the rotor flux.

In a later section, the idea of Field - Oriented Control is widely discussed with

focus on the Indirect Vector Control as this control scheme is being used in this

thesis. Fully description of the system is given, within a block diagram illustrating

the indirect vector control scheme without field weakening. The estimation of

both dq current and speed control (PI controllers) is presented. The complete

simplified block diagrams of both control loops will be also displayed.

Finally, the last section of this chapter will be focused on the effects of parameter

sensitivity and adaptation. In high - performance drives, a priori knowledge of the

machine parameters is required, which makes the indirect vector control scheme

machine parameter dependent. The importance of parameter adaptation is

discussed and categorized based on the extent of use of the induction motor

parameters.

2.2 DC Drive Analogy to an Induction Motor Drive

As mentioned above, a vector controlled motor drive operates like a separately

excited de motor drive. Figure 2.1 shows the analogy between them.

---+If

Lf If

+--la

'PfDecoupled

(a)
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q axis circuit

d axis circuit

ISQ

Isd /rOe
\{ir

(b)

Figure 2.1: (a) Separately excited de motor, (b) Vector - Controlled I.M.

In a de machine, the developed torque is given by:

(2.1)

Where I/fj is the field flux, '!la is the armature flux, I a is the armature current, If is

the field current and Kt. Kt / are constant values. It can be seen from the figure

2.1(a.) that the field flux I/fj produced by the current If is perpendicular to the

armature flux '!la which is produced by the armature current la. These space
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vectors which are stationary in space are decoupled or orthogonal in nature [Bose,

2002]. As a consequence of this, the field flux IfIJ is not influenced when torque is

controlled (by controlling the current Ia) and therefore fast transient torque and

current response is achieved. Due to decoupling, the field flux IfIJ is affected when

the field current If is controlled, while the armature flux lfIa remains the same. In

most cases an induction motor cannot give such fast response as in DC motors

because of the inherent coupling problem.

The same methodology can be applied to an induction motor drive if the machine

control is considered in a synchronously rotating reference frame (dq). In figure

2.1 (b), the control current inputs (dand (q (asterisk is used in symbols to show

command or reference quantities) are representing the direct and quadrature axis

component of the stator current, respectively, in a synchronously rotating

reference frame. Therefore, the rotor flux vector IfIr of 1M is analogous to the

field flux IfIJ of de machine, I"d is analogous to field current If and I"q is

analogous to armature current Ia of a de machine.

I.e Is

Is. 'lJr

ISb IStator I
Figure 2.2: Vectors inside an induction motor

In order the analogy of the currents to be more understandable, consider that a

three - phase supply will produce a current vector Is that rotates at the supply
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frequency CVe• If this current is supplied to the spatially distributed winding of an

induction motor, then a rotating magnetic field 'If, that rotates at the supply

frequency will be produced. Figure 2.2 shows these two vectors that rotate at the

same speed, but with a phase difference ofO (see Figure 2.3).

In vector control theory, Is is resolved into two components I'd and Isq in a

rotating co - ordinate axis. The rotor flux vector 'If, is aligned with d - axis so that

there is no relative rotation between the vectors 'If, and I'd as shown in figure 2.3.

q

~We

Figure 2.3: Resolving I, into two components in a rotating frame

As a result, Isd and Isq are called the field and torque producing currents

respectively if the coordinate axis (the dq - axis) lies on '!fr.

The torque can be expressed as:

"A IT, = Kt .'If,. sq (2.2)

or

(2.3)

where ljI,= absolute 'If, is the peak value of the sinusoidal space vector and Kt ':

Kt m are constant values. This de - machine like performance is only possible if
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the system field orientated (on the rotor flux) and this can be achieved when the d

- axis of the co - ordinate reference frame lies in the direction of rotor flux 1jI,.

and ISq is established perpendicular to it. Consequently, when r; is controlled, it

affects the actual Isq current only but not the rotor flux 1jI,. In the same way, when

(d is controlled, it can change the flux (field producing current) but not the 1M

torque current.

2.3 The flux Angle A

The angle A is defined as the angle between one of the stator phases (e.g. the (J.

axis) and the rotor flux vector ljI,as indicates figure 2.4.

Figure 2.4: The rotor flux angle A

The dq frame which is aligned along the rotor flux vector rotates at instantaneous

frequency roe.

d
me(t)=-A(t)

dt

A(t) = Jme(t)dt
(2.4)

(2.5)

It is important that the flux angle A(t) is known at every instant in time, both

during steady - state and motor transient operation (i.e. roe changing). This angle

can be obtained by both Direct and Indirect Vector Control.
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2.4 Field - Oriented Control

So far, we have discussed that the discovery of vector control in the beginning of

1970's by Blaschke brought a reawakening in the high performance control of Ae

drives. Vector control is also known as decoupling, transvector or orthogonal

control because of the de machine - like performance. Blaschke examined how

field orientation happens naturally in a separately excited de motor in which the

field flux 'I'J produced by the field current If is perpendicular to the armature flux

'!lawhich is produced by the armature current Ja.In an induction machine a related

situation can be formed with appropriate control of stator currents in the

synchronously rotating frame of reference.

Field - oriented control (FOe) provides independent (decoupling) control for the

two components of stator current, one producing the torque and the other

producing the flux. This independent control takes place for both transient and

steady state conditions. It was mentioned that in FOe, the stator phase currents

are transformed into a synchronously rotating reference frame and field

orientation is achieved by aligning the rotor flux vector along the d - axis.

q

Isa a

Figure 2.5: Stator current space vector and its component in (a,fJ) and in the dq
rotating reference frame
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Figure 2.5 shows the stator current space vector and its component in (a.,~)and in

the dq rotating reference frame. The dq - axis model of the induction motor with

the reference axes rotating at synchronous speed OJe is given by Bose [Bose, 2002].

The idea of field orientation indicates that the current components supplied to the

machine should be oriented in phase (flux component) and in quadrature (torque

component) to the rotor flux vector IPr such that the rotor flux is aligned to the d -

axis. This results to the mathematical constraint If! rq = O.

This control scheme is usually referred to as Rotor Flux Oriented Control (RFOC)

as the control is performed on quantities obtained in the synchronous reference

frame and when the rotor flux vector is chosen for decoupling. One of the basic

schemes of field orientation is the Indirect Field Oriented control (IFO) that will

be examined analytically in the next sub - section.

2.4.1 Indirect Vector Control

In Direct Rotor Flux Orientation (DRFO), the field angle is calculated by using

terminal voltages (using equation 2.6) and current or Hall sensors or flux sense

windings. It also requires a Luenberger flux observer algorithm to determine the

amplitude and phase angle of the stator flux vector [Lyra, 1995]. However, the

main drawback of these DRFO control schemes is that due to the inevitable errors

in the voltage measurement and stator resistance estimate the required integration

of signals tend to become erroneous at low speed.

rps = ICVs - Rs ·IJdt (2.6)

As a simplification of this, Indirect Vector Control scheme is based in voltage

vector orientation, as it is illustrated by its phasor diagram shown in Figure 2.6.

The ap axis is fixed on the stator and is stationary, while the (aXp) axis which

is fixed on the rotor is moving at speed OJr •
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q

Rotor
axis

Figure 2.6: Indirect vector control phasor diagram

Synchronously rotating axis dq is rotating ahead of the (aXp) axis by the positive

slip angle A.st corresponding to slip frequency mst' Since the rotor pole is directed

on the d axis and me = mr + mst' then:

(2.7)

In Appendix D it is shown that the two "vector control equations" are:

t; d I I - I
-- mrd + mrd - sds, dt (2.8)

which is used to derive the magnetising current and in the control of flux and:

(2.9)

where, the rotor time constant t can be defined as:r
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Lt' =_r
r R

r
(2.10)

Equation (2.7) is used to derive the flux angle A. Placing equation (2.9) to the

equation (2.7), the flux angle Acan be rewritten as:

A = J(mr + ~sq Jdt
t, Imrd

(2.11)

Figure 2.7 illustrates the vector control scheme block diagram of the Indirect

Rotor Flux Orientation.

Isd
Isq

Isq
r--

159 G>51· ~ G>e J~ Tr Imrd + '<;>'
+

1mI'd '--r-

1 A
srr+t
t e-j1 Isa

Is[3

1mI'd

Figure 2.7: Indirect Rotor Flux Orientation

However, in this thesis the IRFO control is operating without field weakening and

then figure 2.7 can be simplified, replacing Imrd by Isd •

(2.12)

Substituting the above equation (2.12) to equations (2.9) and (2.11), we get:

1m =--1si I sq
t'r sd

(2.13)

(2.14)

The torque developed by the induction motor is given by:
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(2.15)

Because of decoupled control (Ietting e'., = 0), equation (2.l5) is written as

follows:

T -'l:P_ Ie - 3 2 'l'rd rq (2.16)

From Appendix B, equation B9 can be written as:

(2.17)

Using equation 2.17 to replace Irq in 2.16 and letting'l'rq == 0, it follows:

T - 'l: p Lm IIf I
e-32LTrdsq

r

(2.18)

Figure 2.8 shows how the rotor flux position can be obtained by integrating the

sum of the rotor speed and the command slip frequency calculated using equation

2.13.

Concluding, it can be said that Field Orientation occurs according to the following

argument:

. .
• WIth fast current loop, assume Isq == Isq

• (Oe is being forced on machine via PWM generator

• (Or is measured (Le. real)

• (Osl in controller == real slip in the machine

• if 'tr is correct, slip gain is right

• the below equation is true only if machine is field orientated

i;
OJs/ = -- = K' Isq<t:

• I.sq ( == t.; )must be the real q axis current in the machine

• therefore the machine is field orientated and A must be correct
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2.5 Controller Design and System Bandwidths

For estimating the PI controllers of the Indirect Vector Control Scheme it is

necessary to know the electrical and mechanical parameters of the induction

motor as well as few other parameters depending on the needs of the model. The

motor used in this thesis is a 4kW, 4 - pole induction motor which is coupled to a

IOkW DC machine. The nameplate data of the examined motor are: U=415 V, ~

connection, 1=8.4 A and n= 1420 rpm. Using the traditional methods (see

Appendix C) based on "no-load" and "locked rotor" tests the induction motor

equivalent circuit parameters can be identified. The values of them are: Stator

resistance R, = 5.250, Rotor resistance R, = 3.760, Magnetizing inductance

Lm = 0.5343H, Stator leakage inductance Lis = O.04H and Rotor leakage

inductance Llr = 0.033H. In addition, the mechanical parameters should be

known for evaluating the PI speed controller. Therefore, the moment of inertia J

and the friction B of the whole system (induction motor and DC machine) is

J=0.152Kgm2 and B=0.0147Nms correspondingly (found by deceleration test).

2.5.1 dq current control loop

Consider the design of the Isq controller within the Isq loop shown in figure 2.9.

The Isd loop will be identical. All the dynamics or delays between the controller

output Vs: and the feedback signal Isq need to be determined so that the PI

controller terms can be calculated.

Controller
(to be designed) Machine

Isq* Vsq* Isqki(s+ai) 1/Rs
S STs+1 r

Figure 2.9: Block diagram of the current control loop
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Figure 2.9 demonstrates the block diagram of the dq current control loop. From

the machine block diagram, t, is called the effective armature time constant

where:

f = aL"
S R

s
(2.19)

and

LL I3oi. = r s m
s L,. (2.20)

where o is the leakage coefficient.

After calculations from equation 2.20, it gives:

ol; = 0.07108

Substituting the values of oi; and R, to equation 2.19, it gives:

0.07108
r,= => t: =0.0135sec, 5.25 ~

Thus, the machine transfer function will be:

l/R 1/5.25 14.11__ s_ = = _
sr, + 1 0.0135s + 1 s + 74.07

Then,

G(s)

Isq ki(s+ai) 14,11 Isq
s s+74,07 ...

Figure 2.10: Simplified block diagram a/the current control loop
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The closed loop transfer function will be:

14.11kj(s + a)
s(s + 74.07) nominator= = =

1+G(s) s(s + 74.07) + 14.11kj(s +a) S2 + 74.07 s+14.11k;s + 14.11kjaj
s(s+74.07)

nominator

G(s)

=~~~~--------~------
S2 + (74.07 + 14.11kj)s + 14.11kjaj

The desired closed loop denominator have roots where chosen to be with ill" =

100Hz = 628.32rad/sec and s=0.707.

The second order form is: or

S2 + 888.44s + 394786.0224 (2.21)

Hence, the denominator from the closed loop transfer function is:

i + (74.07 + 14.11kj)s + 14.11kjaj (2.22)

From the equations 2.21 and 2.22:

{
74.07 + 14.11k. = 888.44}
14 11k ' <=> after calculations we get:

. jaj = 394786.0224

{
kj =57.71 }
aj =484.774

Hence, the block diagram of the PI current controller can be designed as:

+

+

Figure 2.11: PI dq current controller
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2.5.2 Speed Control Loop

The speed control loop takes the speed error (OJ; - OJ,) and outputs torque demand

which is proportional to an (q demand.

Delays are:

• Delay of (q loop (same as l,q loop)

• The mechanical dynamics: assume first order delay fm

• Possible filter for speed measurements

As there is no field weakening, the torque is proportional only to ISq • The control

loop is shown in figure 2.12.

Controller
(to be d esiglled)

CUr

ki(s+ai)
s

1/8 CUr
ST111+1

Figure 2.12: Block diagram of the speed control loop

where:

J
f =-
m B (2.23)

and K = 'l:_1!.. L!. t:
T 32L sd

r

(2.24)

After calculations, equation (2.23) will give: fm = 10.63

From equation (2.24) the only unknown parameter is the current l:d
From no - load test, (d can be calculated using the equivalent circuit of figure

2.13.
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Rs Lis

Lm1
415

Figure 2.13: Equivalent circuit

The current Illird is equal to:
415

I =-;====
mrd ~(RY +X~

where: XL = 21C' (L,s + Lm) . f => after calculations

=> XL = 178.132Q

_ 415 I =232AThen,1m,.d - ~ => mrd •
5.252 +178.1322

At no - load condition, Isq '" 0 and because II",rd 1= ~ r: + l;d then

1* =l ~= l t: 1* = 4 9A
sd 21"m,"l/2 2 2.32"1/2 => sd • ,

Where 'lJ2 is the called "one and a half - times Peak Convention".
2

Therefore, substituting the above value to equation (2.24) we will get:

KT'" 3.288

Then the simplified control loop can be represented as shown in figure 2.14.

G(s)
I

Wr* I ki(s+ai) 21.04 I Wr
I.....
I S s+ 0.094 I

A I II ___________________ J

Wr

--------------------
I

Figure 2.14: Simplified block diagram of the speed control loop
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So, the closed loop transfer function will be:

21.04k;(s + a)

= s(s+0.094) = nominator =
1+ G(s) 1+ 21.04k;(s + a) S2 + 0.094s + 21.04k;s + 21.04k;a;

s(s+0.094)

nominator=~----------------------
S2 + (0.094 + 21.04k)s + 21.04k;a;

G(s)

The desired closed loop denominator have roots with IDn = 10 rad/sec and s=0.707.

The second order form is: or

S2 + 14.14s + 100 (2.25)

Hence, the denominator from the closed loop transfer function is:

S2 + (0.094 + 21.04k;)s + 21.04k;aj (2.26)

From the equations (2.25) and (2.26) above:

{
0.094+ 21.04k. = 14.14}
2 I ~ after calculations we get:
l.04k;aj = 100

{
kj =0.66}
aj = 7.12

Therefore, the block diagram of the PI speed controller can be designed as the

below figure 2.15.

+

Figure 2.15: PI speed controller
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2.5.3 Voltage Compensation

Voltage compensation is used in our model to improve the performance of the dq

control loops. Consider the two stator equations Dl and D2 (Appendix D) in field

- orientated co - ordinates (IfIrq = 0) .

(2.27)

d _, I t;u - R I + _, - I + OJ UL + OJ - liEsq - s sq ULs dt sq e r= s sd e L ."rd
r

(2.28)

If we had:

d
u =RI +aL-I
sd s sd s dt sd (2.29)

d
u -RI +aL-Isq - s sq s dt sq (2.30)

voltage compensation
L~d _. I------------~--I"L,. dt '

control
variables OJl'L,i~ f-----------+

+
+

PI
+

Figure 2.16: Voltage compensation
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Then we have a linear dynamic equation between the dq voltages and the dq

currents. This makes for an easy and linear design of the dq current loops.

This is achieved by adding the extra terms in equations (2.27) and (2.28) as feed -

forward or compensations terms. Figure 2.16 shows the block diagram of the

voltage compensation and the additional blocks. As it can be seen, the command

values of I and I d are used in order to have smoother inputs without too much
sq s

noisy responses.

2.6 Parameter Sensitivity and Adaptation

It is needless to mention that the machine parameters in the equivalent circuit

(Appendix A) changes during different operating conditions. In high -

performance drives with induction motors, the accurate information of electrical

parameters is of high importance. Variations in the machine's parameters detune

both steady - state and dynamic operation of induction motor drives. However,

the precise knowledge of these parameters is extremely difficult to find as they are

not constant and change with temperature, magnetic saturation and slip

frequencies (due to skin effect). Both rotor and stator resistances change linearly

(increase) due to temperature and depend mainly on the temperature coefficient of

the resistance of the material. In addition, rotor resistance can change significantly

with rotor frequency due to skew/proximity effecting machines with double -

cage and deep - bar rotors. The skin effect also causes an increase of resistance

but a decrease of leakage inductance. The magnetising inductance is subjected to

saturation with higher magnetising current. Saturation at higher currents can be

caused in both the stator and rotor leakage inductances [Bose, 2002].

In motors with indirect field orientation control, it is very important to have an

accurate representation of the rotor time constant (z;.) of the machine as control

errors resulting from inaccurate knowledge of (z;.) spoil the orientation, producing

steady - state errors and transient oscillations of the flux and torque

[Trzynadlowski, 2001]. To be more precise, the slip relation given in equation
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(2.13) depends mainly on the value of the rotor time constant and is employed to

obtain the correct subdivision of the stator current into the flux and torque

components, Isd and l,q correspondingly. It is clear then that if the rotor time

constant is not correctly known, this subdivision will not be correctly achieved

and as a result the controller will be detuned due to the loss of correct field

orientation.

Besides, there is a load torque disturbance effect. It is reported by Sumner &

Asher [1991] and [1993] that there is indication for change of direct axis

inductance and rotor time constant (-z;.) with load. There is no doubt that -z;.

changes with load current due to heating. However, Sumner and Asher evidence

an instantaneous change in -z;. with load current which is not related to the thermal

effect as this can take long time to indicate. It was identified thus that -z;. changes

with load current as a result of cross -: coupling due to rotor skewing [Gerada,

2003]. In addition to the above, it is worthy to mention that the identifying rotor

time constant schemes are also based on the constant parameter induction

machine model. These hypotheses can lead to highly inaccurate results using these

adaptive methods rather than a fixed 1", [Sokola, 2000]. Hence, for the correctly

determination of the resistance variation, the vector control system should take

into account other machine non - linearities and compensate for them [Sokola,

2000], [Levi, 1996a], [Levi, 1996b] and [Levi, 1994]. For example, Levi has

looked at the effect of double - cage and deep - bar structures [1996a] and core

losses [1996b] on IRFO. However, these modifications are rarely used in

commercial drives.

Researchers found various methods to minimise the consequences of parameter

sensitivity in indirect vector control schemes. These parameter adaptation

schemes are classified as direct by direct monitoring the alignment of the flux and

torque [Gabriel, 1982], and as indirect by measurement and estimation of rotor

flux [Ohtani, 1983], [Ishihara, 1983], [Nagase, 1983], deviation of the field angle

[Schumacher, 1983], or a combination of the rotor flux and torque - producing

component of the stator current [Akamatsu, 1981], [Krishnan, 1987]. Both of

these direct and indirect schemes for parameter adaptation algorithm present
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different kind of disadvantages depending on their use of additional transducers or

on their dependency on the motor parameters [Krishnan, 1991].

In the next sub - sections will be discussed the variation effects of machine

parameters on the steady state and dynamic performance of an indirect vector

controlled induction motor drive. However, before that it is desirable to give an

explanation about the detuned operation through the vector (phasor) diagram.

2.6.1 DetunedOperation

From figure 2.8, it can be illustrated that the two current components 1* and
sq

r: that represent torque and flux demands respectively, are the input values. For

steady state, the rotor loop equation from the conventional equivalent circuit can

be written as:

(2.31)

Solving equation 2.31 for Ir :

I = - JOJ.:L,./s
r R, + JOJ;Lr (2.32)

where OJ: is the calculated value of slip frequency using equation 2.l3 as the slip

calculator. For steady state condition, equation 2.32 can be rewritten in terms of d

- q variables, as the currents I, and Is can be replaced by the vector d - q currents

Irdq and l\'dq respectively. Hence:

. *L 1*I = - JOJs m .l'dq

rdq Rr + J OJ: t; (2.33)

Figure 2.17 illustrates the vector (phasor) diagram for IFOC with correct value of

slip calculator time constant [Nordin, 1985]. From that figure, the phase angle of

the rotor self - impedance () locates the position of the rotor current Irdq' The
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phase angle depends on the calculated value of slip frequency and the rotor time

constant:

I~ I~

-jco~LmIsdq Isd

Lrlrdq

Figure 2.17: Vector (phasor) diagramfor !Foe with correct
value of slip calculator time constant

Correct field orientation is achieved when the rotor current will be exactly in

opposition to the torque command current (q and this is applied if the reference

time constant -r; is equal to the actual rotor time constant r.. In this case, the rotor

flux VIr' which is orthogonal to the rotor current Irdq in the steady state, will be

aligned with Isd in the d - axis [Novotny, 1996].

Isq

-jro*sLmIsdq
Isd

Figure 2.18: Vector (phasor) diagramfor !FOe with slip
calculator time constant too large (OJ.~too small)
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Detuned operation takes place with an incorrect slip OJ;, because of an incorrect

slip calculator time constant 1';as shown in figure 2.18. Assuming the slip is too

small, then comparison between figure 2.17 and 2.18 shows that the phasor

- jOJ;LJ'dq is shorter but has the same position as before. The angle Bis smaller

as the slip is smaller and as a result, the rotor current Irq doesn't lie in the q - axis.

This means that the rotor flux 'fir in no longer lie in the d - axis and is shifted by

an angle 6 so as to maintain orthogonality with the rotor currentlrq • Clearly, it

can be noted that the magnitude of the rotor flux is larger than the value

corresponding to the correct slip, meaning that the torque will also be incorrect

and will not correspond properly to the torque commandlsq •

The effect of this mismatch of the rotor flux and torque under steady state and

dynamic conditions are going to be described next.

2.6.2 Variation Effect for Steady - state

Several researchers examined the effect of errors in the slip calculator for steady

state performance and several conditions of operation. Nordin (1985) investigated

and plotted the steady state performance curves in terms of rotor flux and output

torque against the ratio of actual to predicted rotor time constant t,/1'; for

different cases. In the next sub - chapters, a brief explanation of the steady - state

effects will be given and the importance of the accurate knowledge of the motor

parameter will be shown.

2.6.2.1 Constant Flux and Torque Commands

In the first case, it is assumed that both torque (/;s) and flux (/;s ) commands are

constant values and also the saturation effect is neglected. The flux curve [Nordin,

1985] shows that the flux 'fir increases from its correct value as the predicted time

constant in the slip calculator gets larger compared to the actual one
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(t,I r; < 1.0). However, the torque output decreases. In contrast, while the ratio

t,I<is bigger than 1 (rJ r; > 1.0), both the rotor flux and the torque output

decrease with increase in error. Hence:

~ When t, J, then v. i and T J,

~ When t,i then If/r J, and T J,

Or else, from the equation 2.13, the predicted slip frequency (J): gets smaller than

its correct value through an increase in rotor flux and vice versa.

It can be noticed that during the steady state operation the output torque

characteristic always decreases whenever the predicted time constant or slip

changes from its correct value. This has also been proved by the torque

mathematical equation in Nordin's paper (1985) as:

(2.35)

This is a general behavior of both rotor flux and torque for steady - state

operation in any induction motor. Differences can happen in the quantities of the

changes. This means that for a larger machine, the magnetising inductance will be

larger and so the flux will experience a larger change than a small machine.

However, for large machines (e.g. 100 - hp), the torque curve can be qualitatively

different. This can happen whe~ the ratio of actual to predicted time constant is

between 0.4 and 1.0 (0.4 < t,I r; <1.0) in which the torque will increase rather

than decrease as for a small machine. Actually, this result is more typical of

induction machines and displays that the slip for maximum torque with current

excitation (maximum torque per ampere) is usually much smaller than the rated

slip [Nordin, 1985]. This increase in torque is basically proportional to the flux

increase. Nevertheless, at large errors of t,I r; , with values smaller than 0.4, the

rotor impedance angle becomes sufficiently small and so the sin B term in

equation (2.35) overcomes the flux increase. Hence, the torque starts to decrease

again.

41



Chapter 2: Vector Controlled 1MDrives

2.6.2.2 Saturation effects

The large increases in rotor flux shown in [Nordin, 1985], will lead to saturation

of the main flux path in the machine. Saturation of the machine can be also

viewed as reducing the value of the magnetising inductance and thus increasing

the required magnetising current [Lorenz, 1990]. This means that the ratio

l,q IIsd (corresponds to field orientation) will decrease and hence saturation will

always reduce the sensitivity to detuning. In general, saturation is analogous to the

temperature. Therefore, an increase of the temperature will cause an increase to

the rotor resistance x, and this will lead to subsequent changes to (decrease) to the

rotor time constantz.. Having said this, the saturation depends mainly on the

physical characteristics of the machine used and its operating conditions.

2.6.3 Adaptation Effects

Methods of overcoming the problem of detuning effect, mainly due to the

mismatch of the rotor time constant t,in the motor and IFOC have been a major

research goal for a number of years. Numerous parameter adaptation schemes

have been reported in the literature.

The on -line methods of rotor resistance identification can be categorized as:

.:. Spectral analysis techniques

.:. Observer based techniques

.:. Model reference adaptive systems based techniques (MRAS)

.:. Heuristic methods

2.6.3.1 Spectral analysis techniques

This technique is based on the measurement of parameters by injecting an external

signal. In the case of spectral analysis, a disturbance signal is used because under
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no load conditions of the induction motor, the motor parameters cannot be

estimated as the rotor induced currents and voltages become zero and so slip

frequency becomes also zero [Karanayil, 2005]. There are systems that the

disturbance is provided by injecting negative sequence components [Matsuo,

1985], [Toliyat, 1993]. Another method proposed is the detection of misalignment

between the actual motor flux and the rotor flux given by the model [Gabriel,

1982]. In the scheme proposed in [Sugimoto, 1987], a sinusoidal perturbation is

injected into the flux producing stator current component. In general, this spectral

analysis technique can estimate the value of the rotor resistance under any load

and speed condition, however due to the installation of two search coils, the cost

is high and will not be applicable to any off - the shelf induction motor.

2.6.3.2 Observer based techniques

The scheme proposed in [Lai, 1992] uses Extended Kalman Filter (EKF) to detect

the inverse rotor time constant, by considering it as an extra state variable along

with the stator and rotor currents. In this method, as perturbation is used the wide

band harmonics contained in the PWM inverter output voltage. The disadvantage

is the assumption that all other parameters are known and the magnetising

inductance can cause large errors into the rotor time constant estimation.

2.6.3.3 Model reference adaptive system based techniques

This method of on - line rotor resistance identification is based on principles of

model reference adaptive control. This approach is well - known by many

researchers due to its relatively simple implementation requirements. The main

idea is to calculate certain states from two different directions [Karanayil, 2005],

The first one should be calculated using states of the controller and the other is to

estimate the same states using measured signals. One of these estimates should be

independent of rotor resistance and then the error between them will provide the

correction to the rotor resistance. This can be done using an adaptive mechanism

such as a proportional - integral (PI) controller. The accuracy of these methods
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depends mainly on the accuracy of the machine model used. The most frequently

applied approach is the method which uses reactive power and is dependent on

stator resistance [Rowan, 1991].

2.6.3.4 Heuristic methods

A new method for rotor resistance identification using a new coordinate axes

selection has been proposed by Chan & Wand (1990). They set a new reference

frame which was coincident with the stator current vector. They measured the

steady - state stator voltage, current and motor speed and obtained the stationary

reference frame components by using a three phase to two phase transformation.

Finally, they derived an equation in which the rotor resistance was then calculated

algebraically. This is a method that is valid only for steady - state operation of the

motor.

Artificial intelligence such as artificial neural networks (ANN) and fuzzy logic

(FL) were recently applied to the on - line rotor time constant I rotor resistance

adaptation and there was a great interest of many researchers [Bose, 2002],

[Karanayil, 2005]. Even though the results and the methods employed were

elegant, the drawback of these methods is that none of them supported their

modeling work by experimental data, and few of them had limited data file in the

modeling.

2.7 Chapter summary

This chapter extensively introduced the Indirect Field Oriented control technique

for cage - type induction motor drives. This class of drives is widely used in

various industrial applications and their technology is increasingly developed.

The invention of vector control in the beginning of 1970s was a revolution in the

high - performance control of ac drives as it could be controlled like a separately
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excited de motor. Because of that, vector control is also known as decoupling

control.

The controller design of the dq current and speed control loop was implemented.

For this, it was necessary to know the induction motor parameters and the

estimation of them was initially based on the traditional methods.

Finally, the last section of this chapter was the study of parameter sensitivity in

high - performance IFOC induction motor drives. This was achieved by analyzing

the flux and torque deviations from the command value in a steady - state

operating condition, both due to variations or mismatch in parameter values. In

order to overcome the undesirable effects of parameter sensitivity, parameter

adaptation is essential and methods of doing that was analytically explained.

In general, small low - efficiency machines are much less affected by detuning

than large high - efficiency machines. It was proved that it is possible to operate

low power drives without the need of parameter adaptation as small machines

have low sensitivity to parameter detuning.

In the next chapter will be introduced Genetic Algorithms as one innovative

parameter adaptation technique to overcome the effects of detuning in an IFOC

system.
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I.M Parameter
Identiticatio,n

3.1 Introduction to Optimisation - Heuristic Strategies

Nowadays computers are used to solve extraordinarily complex problems and are

usually the perfect tool for optimisation as long as an engineer's or scientist's idea

can be input in electronic format. So, the computer can be fed some data and get

back the solution. Even though it seems that the idea will be realised, there is still

a tough question to be answered. Is this the only solution? If not, is it the best

one? Optimisation is the math tool that we rely on to get these answers [Haupt,

2004].

The definition "best" solution that it was referred above, means that in a complex

problem there is more than one solution and these ones are not of equal value.

Therefore, the terminology of "best" is relative and it depends of the problem at

hand and its method of solution. Accordingly, the optimal solution depends on the

person formulating the problem [Haupt, 2004].
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As long as humankind exists, we endeavour for perfection and as a consequence

for optimisation in many areas. As simple examples we can use the following

questions. What is the best route to work? Which project do we confront first? We

always want to reach a maximum degree of happiness with the least amount of

effort. Hence, when designing something, the main goal of that is to minimise the

cost or maximise the appeal of a product. Therefore, "optimisation is the process

of adjusting the inputs or characteristics of a device, mathematical process or

experiment to find the minimum or maximum output or result" (Figure 3.1). For

this reason many researchers believe that optimisation is one of the oldest sciences

which even extends into daily life [Neumaier, 2006], [Haupt, 2004]. From figure

3.1, it can be seen that as an input consists of variables, the function is known as

the objective function or fitness function and the output is the cost or fitness.

Since in this thesis the optimisation target is to minimise an error, optimisation

becomes minimisation.

input
or

variables

output
or
cost

Figure 3.1: Diagram of a function or process that is to be optimised.
Optimisation varies the input to achieve a desired output.

In general it can be said that if "Somethingis important and has to be optimised,

there is always a mathematical discipline dealing with it. So, Global optimisation

is the branch of applied mathematics and numerical analysis that focuses on to the

optimisation of a function to a set of criteria [Weise, 2009]. As we referred above

these criteria are expressed in a fitness function. Hence, the main aim of the global

optimisation is to find such a set of inputs for which these fitness functions will

return the optimal values [Passimo, 2006], [Okaeme, 2008]. The algorithms used

to achieve these optimal values are termed Optimisation Algorithms.
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Optimisation algorithms can be classified according to different optimisation

techniques into two groups: deterministic and probabilistic algorithms.

A deterministic algorithm is an algorithm which behaves predictably and it is

usually used if there is an obvious and not too complicated relation between a

solution candidate and its "fitness". Otherwise the problem is really hard to be

solved deterministically and the same applies if the dimensionality of the search

space is too high. Then, probabilistic algorithms come to employ a degree of

randomness as part of its logic. In other words probabilistic algorithms violate the

constraint of determinism. Deterministic algorithms guarantee that the results

obtained using them are correct for a shorter runtime but they may not be the

global optima. Finally, as far as these two optimisation algorithms are concerned,

it is preferable to have a slightly inferior solution to the optimal one than one

which takes many years to be found [Weise, 2009].

Heuristics used in global optimisation are functions that help decide which one of

a set of possible solution candidate should be tested next or how the next

individual can be produced. In other words heuristic is an algorithm that is able to

produce an acceptable solution to a problem in many practical scenarios without

any guarantee of its correctness. If there is no known method to find an optimal

solution to a given problem, under the given constraints of time or space, then the

best algorithm to be used is a heuristic algorithm [Weise, 2009], [Michalewicz,

2004], [Pearl, 1984].

3.1.1 What is an optimum?

It has been mentioned in the previous section that global optimisation is used to

find the best possible solutions to a given problem. So, what makes a possible

solution to be optimal? In the case of optimising an objective function J, an

optimum is either its minimum or maximum, depending on what we are searching

for. In mathematics, maxima and minima are the largest values (maximum) or

smallest value (minimum) that a function takes in a point either within a given
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neighbourhood (local extremum) or on the function domain in its entirety (global

extremum). Figure 3.2 shows the local and global maxima and minima for a

random functionj(x) = COS(3ffx)lx for O.l-SX'Sl.l.

-2
local minimum

-4 ,
global minimum

1.2o 0.2 0.4 O.G 0.8

Figure 3.2: Local and global maxima and minima

Additionally, the exact meaning of optimal is problem dependent. In single _

objective optimisation it either means minimum or maximum. In multi - objective

optimisation minimum or maximum concepts are rather applied to sets F

consisting of n = IFI objective functions Ii, each representing one criterion to be

optimised [Kalyanmoy, 2001].

F = {Ii :X ~ Y, : 0 < i ~ n, Y, ~ R }

3.1.2 Optimisation Algorithms - Overview

(3.1)

To begin with, it has to be mentioned the main principles of traditional search

algorithms. The simplest one is called exhaustive search as it tries all possible

solutions from a predetermined set and then it chooses the best one.

Another well known traditional search algorithm is the local search. Local search

is a version of exhaustive search but with limited search space. The technique is

very simple. First an initial solution is randomly generated, and then the solutions

in the neighbour of the current one are examined. When a better solution is found,
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the current solution is immediately replaced with that one. If no solution that

improves the current one is found then the current solution can be considered as a

local optimal solution. Popular hill - climbing techniques belong to this class

[Kokash, 2005], [Goldberg, 1989].

Divide and conquer (D&C) algorithms try to break down a problem into two or

more sub-problems of the same type that are easier to be solved recursively.

Followed by, the solutions of the sub-problems must be combinable to give a

solution to the original problem. Even though this technique is the basis of

efficient algorithms for any kind of problems, the drawback is that it takes time to

understand and design D&C and there are also not a great number of problems

that can be easily partitioned and combined in such way [Cormen, 2000].

Branch - and - bound is another technique that is implemented for finding the

optimal solutions of various optimisation problems. It consists of a critical

enumeration of all candidate solutions by using partition, sampling, and

subsequent lower and upper bounding procedures [Kokash, 2005], [Goldberg,

1989].

Dynamic programming is an exhaustive search method for efficiently solving a

wide range of search and optimisation problems which display the characteristics

of overlapping sub problems (e.g., broken down into sub-problems which are

reused multiple times) and optimal substructure (e.g., globally optimal solution

can be constructed from locally optimal solutions to sub-problems). This is

closely related to recursion [Bertsekas, 2000], [Goldberg, 1989].

Last but not least, another traditional algorithm that is perhaps the most

straightforward and powerful one from those mentioned is called greedy

algorithm. The idea is that always takes the best (local) solution while finding the

global optimum for some optimisation problems, hoping that this choice will lead

to a global optimum solution [Cormen, 2000], [Goldberg, 1989].

So, the most important differences between Evolutionary Algorithms (EAs) and

traditional search and optimisation methods are:
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• EAs, search a population of candidate solutions and not a single

point.

• EAs don't require derivative information or other auxiliary

knowledge (domain knowledge); only an objective function and the

corresponding fitness levels influence the directions of search.

• EAs are stochastic methods, i.e., use probabilistic transition rules in

comparison with the traditional methods that use deterministic ones.

• EAs work on an encoding of the parameter set rather than the

parameter set itself (except in where real - valued individuals are

used).

• Applies to a variety of problems and doesn't work in a restricted

domain.

• Multiple solutions can be obtained without extra effort.

• EAs can be implemented on parallel machines.

• EAs are quite successful in locating the regions containing optimal

solution(s), if not the optimum solution itself.

Evolutionary algorithms provides a number of potential solutions to a given

problem and every time the user has to choose according to the desirable result

that he is expecting, the final solution of the problem. On the assumption that a

particular problem does not have one only solution, such as in multi objective

optimization and scheduling problems, then the EA is potentially useful for

identifying these alternative solutions simultaneously [Chipperfield, 1994a],

[Chipperfield, 1994b], [Mitchell, 1996].

Figures 3.3 and 3.4 shows the classification of optimisation algorithms discussed

in section 3.1 enumerating a wide variety of optimisation algorithms. The most

important and best known of them are the Evolutionary Algorithms (EAs) which

are population - based metaheuristic optimisation algorithms that use biology -

inspired mechanisms like mutation, crossover, natural selection and survival of

the fittest in order to refine a set of solution candidates iteratively. [Back, 1996].

They belong to a class of evolutionary computation (EC) methods [Weise, 2009],

[Hussain, 1997] which in their turn they are also an essential class of probabilistic
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algorithms. The following describes the more popular evolutionary computation

techniques: genetic algorithms (GA), evolutionary programming (EP), evolution

strategies (ES), and genetic programming (GP).

Figure 3.3: Classification of Deterministic Optimisation Algorithms.

Pl"O b IIb illsti c

Memettc
Algorithms

Harmomc
Selll'dl (HS)

Ant Colony
Optimisation (ACO)

Particle Swann
Optilnisation (PSO)

Figure 3.4: Classification of Probabilistic Optimisation Algorithms

Genetic Algorithms: GAs are a particular class of evolutionary algorithms which

are implemented in a computer simulation in which a population of abstract

representations (called chromosomes) of candidate solutions (called individuals)
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to an optimisation problem evolves toward better solutions. More details in this

evolutionary approach is provided in section 3.3.

Evolutionary Programming: EP was first used by Fogel in 1960 in order to use

simulated evolution as a learning process. EP involves populations of solutions

with primarily mutation and selection and arbitrary (no fixed) representations in

comparison with the rest of the major evolutionary algorithms [Burgin, 2007].

They use self-adaptation to adjust parameters, and can include other variation

operations such as combining information from multiple parents. Generally, it is

hard to distinguish EP from GAs, ES, and GP.

Evolution Strategy: ES is an optimisation technique based on the ideas of

adaptation and evolution. They usually use vectors of real numbers as solution

candidates, meaning that the search and the problem space are fixed - length

strings of floating point numbers. Mutation and selection are the primary

operators and recombination is less common. As far as real-valued search spaces

are concerned, mutation is normally performed by adding a normally distributed

random value to each vector component. The step size or mutation strength (i.e.

the standard deviation of the normal distribution) is often governed by self-

adaptation [Weise, 2009].

Genetic Programming: GP is an evolutionary algorithm - based methodology

stimulated by biological evolution to find computer programs that perform a user

- defined task. In other words, GP is a specialisation of GAs where each

individual is a computer program, which is often represented as a tree (program

tree) to represent the computer programs for adaptation instead of the list

structures typical of genetic algorithms [Hussain, 1997]. Hence, its aim is to find a

global optimal solution by breeding populations of computer programs in terms

evolution and principle of natural selection [Walker, 2001],[Okaeme, 2008].

So why is this variety (of optimisation algorithms) needed? One reasonable

answer would be that there are so many different kinds of optimisation tasks

presenting diverse characteristics and so there is a need for different approaches.
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3.1.3 Premature Convergence

One of the most common problems that may be encountered during optimisation

is premature convergence. An optimisation process has prematurely converged to

a local optimum if it is no longer able to explore other parts of the search space

than the area currently being examined and there exists another region that

contains a superior solution [Ursem, 2003], [Schaffer, 1990]. Figure 3.5 shows

examples for premature convergence. One cause of that is loss of diversity. This

means that there is a state (convergence) where all the solution candidates are

similar to each other under investigation. Maintenance of diversity is associated

with sustaining a good balance between exploration and exploitation [Weise,

2009]. Exploration is used to investigate new and unknown areas in the search

space, and exploitation to make use of knowledge found at points previously

visited to help find better points [Holland, 1975], [Whitely, 1993]. More details on

how we can avoid the problem of premature convergence will be discussed in a

later section of this chapter.

global optimum

Figure 3.5.a: Maximisation Figure 3.5.b: Minimisation

Figure 3.5: Premature convergence in the objective space
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3.2 Why Evolutionary Algorithms?

Evolutionary computation is a recognised field from many researchers and it is

very attractive because of the many successful application and also the huge

number of publications in this field so far.

Evolution can be seen as an optimisation process as for any particular problem

and it has the ability to adapt well to its environment due to the most recent

feedback from it, hence [Back, 1997]: "it is quite natural, therefore, to seek to

describe evolution in terms of an algorithm that can be used to solve difficult

engineering optimisation problems. The classic techniques of gradient descent,

deterministic hill - climbing, and purely random search (with no heredity) have

been generally unsatisfactory when applied to nonlinear optimisation problems,

especially those with stochastic, temporal, or chaotic components. But these are

the problems that nature has seemingly solved so very well. Evolution provides

inspiration for computing the solutions to problems that have previously appeared

intractable. " In other words, the above quote place emphasis to the advantages of

evolutionary computation methods concerning with problems within the field of

science and engineering. However it can be difficult if not impossible to offer

hard facts or evidence about why evolutionary algorithms are better than classical

optimisation methods. In the next paragraphs will be analytically discussed why

evolutionary algorithms are the most used optimisation techniques.

Standard - deterministic or classical methods are characterised by a gradient -

based (e.g., non - linear least squared method), or approximation - based (e.g.,

direct and statistical methods). These optimisation techniques are more efficient in

solving linear, quadratic, and other special problems [Back, 1997]. Hence, all

classical methods find only one individual solution in a single run.

However most of the real - problems, have unconventional response surfaces such

as discontinuous, non differentiable, noisy nature of the problem, uncertainty

within the problem domain, etc. In this case, a logical approach would be an

exhaustive (point - to - point) search of the solutions domain [Okaeme, 2008].

This can be efficiently done by applying Evolutionary algorithms (EA). As EA
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are stochastic optimisation methods population - based stimulated by natural

selection, they are capable to find various solutions in a single run. Hence, EA are

suited to such extreme environments, highlighting one of the advantages they do

have to standard - deterministic methods for real- world problems.

Another advantage showing that EAs are more efficient than standard _

deterministic methods is the size of the search space. So, for most real - world

problems the size of the search space of solution domain is usually too large to

consider exhaustive search. In order this to be more understandable an example

will be given, representing the following problem by Michalewicz [1997]:

optimise

wherefis very complex and Xi is 0 or 1. The size of the search space is 2100 ,., 1030•

The importance of the size can be understood, considering the case when 1000

potential solutions have to be examined within one second. In the case of the

previous search space, this will require more than 1019 years of calculations.

Therefore, for such large search spaces, modem heuristic search methods (above

all evolutionary computation) are of great importance.

Without any doubt, in order to solve a problem, it is quite important to understand

and characterise the behaviour of it. For example, in control design optimisation,

the first step before searching the controller parameters for a system, would be to

model the system to be controlled. As a result, if the model is known, then the

final controller for the system can be achieved accurately [Okaeme, 2008]. Hence,

there are two approaches to de~ive a model for a real- world non - linear system:

• linearization (or simplification).

• a more complex (faithful) model.

Through the first procedure there are some relatively simple methods based on

simple optimisation techniques and often not even meet up optimisation with

which the global optimum can be obtained. When using a more complex and

detailed model, optimal solution can be found by adopting EA strategy while

standard - deterministic techniques often fails. However, most of the experimental
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evidence [Schwefel, 1997] indicate that a globally optimal solution for a

simplified model may be of a largely inferior quality to that of an approximate

optimal solution for a real problem. This is a strong argument about the usefulness

of evolutionary algorithms, which are an ideal tool in the scientist's hand as they

are perfect in finding approximated near - optimum solutions.

During the initialisation for the EA, it is required to set a number of parameters

such as the maximum number of generation, the population size, the values of

mutation and crossover rates (they will be defined and discussed in a later section)

etc. However, many researchers from time to time criticise the EA techniques, and

their argument is that EA will fail to find the optimal solution(s) of a problem if

the above mentioned number of parameters are wrong. But, EA are known about

their robustness, meaning that even wrongly defined parameters could still give

reasonably good results [Michalewicz, 1997]. Besides that, one of the most

important areas of research towards BAs is the possibility of designing a self _

adaptation algorithm of some internal parameters as it will tune the algorithm to

the problem while solving the problem.

Lastly, another application that places EAs in the first choice of an optimisation

problem is the temporal optimisation which is applied in many real - world

problems. As the real world is always changing, these kinds of problems are more

challenging and then the role of temporal optimisation is to seek the best

behavioural strategy considering the most updated feedback regarding the

performance of the current strategy. EA are efficiently adapted to changes in the

problem domain and this is .the reason that they are fitted so well in such

applications. On the other hand, the disadvantage of the standard - deterministic

approaches in such cases (difficulty in adapting to the changing instantaneous

conditions) requires from the system to restart the procedure [Michalewicz, 1997],

[Schwefel, 1997].

In this research work, Genetic Algorithm was used among EAs, as according to

Davis [Davis, 1989]: "It has seemed true to me for some time that we cannot

handle most real - world problems with binary representations and an operator

set consisting only of binary crossover and binary mutation. One reason for this is
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that nearly every real - world domain has associated domain knowledge that is of

use when one is considering a transformation of a solution in the domain. I

believe that genetic algorithms are the appropriate algorithms to use in a great

many real - world applications. I also believe that one should incorporate real _

world knowledge in one's algorithm by adding it to one's decoder or by

expanding one's operator set". These hybrid/non - standard systems are very

popular in the evolutionary computation community. In the next sections, there is

a fully description of Genetic Algorithms and their usefulness towards other

traditional search algorithms.

3.3 The Genetic Algorithm

Genetic algorithms (GAs) are stochastic global search techniques used in

computer science to find approximate solutions to optimisation and search

problems. A genetic or evolutionary algorithm applies the principles of evolution

found in nature to the problem of finding an optimal solution to a Solver problem.

In a genetic algorithm, the problem is encoded in a series of "genes" (e.g., bit

strings) that are manipulated by the algorithm. These bit strings are coded

representations of input variables. The basic concept of GAs is designed to

simulate processes in natural system necessary for evolution, specifically those

that follow the principles first laid down by Charles Darwin of survival of the

fittest [Chipperfield, 1994a], [Chipperfield, 1994b], [Mitchell, 1996], [Goldberg,

1989].

GAs were invented by John Holland in the 1960s and were developed by Holland

and his students and colleagues at the University of Michigan in the 1960s and the

I970s. GAs have also been widely studied, experimented and applied in many

fields in the engineering world. In the next sections it will be given a detailed

introduction to Genetic Algorithms and their applications in system identification

problems will be presented.
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3.3.1 Genetic Algorithms Procedure

As it was referred earlier, generally, Genetic Algorithms operate on a population

of potential solutions applying the principle of survival of the fittest to produce

better and better approximations to a solution. At each generation, a new set of

approximations is created by the process of selecting individuals (each possible

solution is called an individual) according to their level of fitness in the problem

domain and breeding them together using operators borrowed from natural

genetics. This process leads to the evolution of populations of individuals that are

better suited to their environment than the individuals that they were created from,

just as in natural adaptation.

A typical genetic algorithm requires two main things to be defined:

~ A genetic representation of solutions

~ A fitness function to evaluate them

The standard representation is an array of bits. For the reason that these genetic

representations are easily changed due to their fixed size, it makes them to be very

convenient and also the crossover operation is very simple. The only case that the

crossover implementation is more complex is that when variable length

representations were used.

On the other hand, the fitness function is defined over the genetic representation

and measures the quality of. the represented solution. The fitness function is

always problem dependent. An ideal fitness function is connecting closely with

the algorithm's goal and yet may be evaluated quickly because as a usual genetic

algorithm must be repeated many times in order to achieve the desirable result and

for a problem the speed of execution is very important. In some cases, it is hard to

define the fitness function, so it is used an interactive genetic algorithm that uses

human evaluation.

If both of the genetic representation and the fitness function are defined, GA

proceeds to initialize a population of solutions randomly, and then improve it
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through repetitive application of mutation, crossover and selection operators

[Goldberg,1989], [Michalewicz, 1999], [Mitchell, 1996].

Figure 3.6 shows the main loop of genetic algorithms. The first step is to generate

the initial population, and then to evaluate the fitness value using fitness or

objective function. The next step is to perform competitive selection and apply the

genetic operators in order to generate new solutions. Finally, evaluate the

solutions into the population and start again the procedure from the performance

of competitive selection and repeat until some convergence criteria are satisfied.

Are
Optimisation
Criteria met?
tMax. No of
Generations,

Evaluate
Fitness Value
(Using Fitness

Function)

YesRandomly
Genercte Initial ~

Population
.......-~ Belt Individuals

Result

population r l
ICrossover I

." No.......................... , , :

!selection!

Generate
New [~

I------J Mutationl
. .
: :

Figure 3.6: The basic cycle of genetic algorithms

3.3.2 Fundamental Elements of the Genetic Algorithm

Goldberg (1989) described the simple genetic algorithm (SGA) that involves

nothing more complex than copying strings and swapping partial strings. When

using the SGA there are some major issues to take into consideration. These major

elements are:
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~ Representation of the individuals

~ Initialisation function

~ Selection methods:

• Roulette wheel selection

• Tournament selection

• Rank selection

~ Fitness I Evaluation functions

~ Genetic operators

• Mutation: change alleles inside the genes of the chromosome

• Crossover: produces two offspring from two parents

~ Termination Function

The three most important foundation of using genetic algorithms are:

• Identification of the goal

• Representation and description of the individuals

• Description and functioning of the genetic operators

GAMain

t= 0

initialise population P(O)

evaluate population P(O)

while(!(terrnination condition» {

t = HI

select population P'(t) from P(t - 1)

create population P(t) from P'(t)

evaluate population P(t)

Figure 3.7: A Simple Genetic Algorithm
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Concerning the implementation of GAs there is a variety in population Structures

and genetic operators. However GAs have an initialisation phase followed by a

repetitious phase. Figure 3.7 illustrates the pseudo code of a simple Genetic

Algorithm.

3.3.2.1 Population Representation and Initialisation

As mentioned previously genetic algorithms operate on a number of potential

solutions, called individuals, consisting of some encoding of the parameter set

simultaneously. The individuals are pumped into a population. Usually, a

population is composed of between 30 and 100 individuals, but it can be large in

size according to the problem [Chipperfield, 1995].

The presentation scheme determines how the problem is structured in the GA and

also determines the genetic operators used. The most frequently used

representation of chromosomes in the GA is the ones of a single - level binary

string that linked together to form an individual. The use of Gray coding (which is

a binary numeral system where two successive values differ in only one bit) has

been recommended as a method to defeat the hidden representational bias in

conventional binary representation.

Despite the fact that binary - coded GAs are most usually used, there is an

countable amount of people that are interested in dissimilar encoding strategies

such as integer and real - valued representations, above all to solve engineering

design problems.

According to Wright (1991) the use of real - valued genes in GAs provides

several advantages in numerical function optimisation over binary encodings.

Considering that it is not necessary to convert chromosomes to phenotypes (the

decision variables, or phenotypes, in the GA are obtained by applying some

mapping from the chromosome representation into the decision variable space)

before each function evaluation, genetic algorithms becomes more efficient

because less memory is required, there is no loss in precision and there is greater
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freedom to use different genetic operators. Figure 3.8 demonstrates an example of

individual representation.

Gene

~

\ I
\

Individual

10110101 (Allele)

Figure 3.8: Example of individual representation

The starting point of the search is to create a group of individuals to form a

population. This is called the initial population and can be created in a number of

ways according to figure 3.9. The most common setup begins by generating the

required number of individuals using a random number generator that uniformly

distributes numbers in the desired range. As an example, if there is a binary

population of Nind individuals whose chromosomes are Lind bits long, then Nind

x Lind random numbers uniformly distributed from the set {O, I} would be

produced. The main aim is to create a population with a good coverage of the

search space and as a consequence having a gene pool with good potential for

breeding better solutions. Otherwise, genomes can be spread out to the whole

search space according to a regular grid-layout. Nevertheless, an entirely new

selection of starting points can be the advantage to a random setup while runs are

repeated. Another approach is that experts typically can estimate what a

reasonably solution should be 'to a specific problem. By inserting this solution as

one of the starting individuals, then the remaining individuals could be randomly

arranged in a grid close to the best known solution. So, a problem with such an

initialisation can achieve to have a search area near the special (best) solution.

In conclusion, the choice of initialisation methods depends on the problem itself

and the approach it is going to be used. However, for real - world applications,

experts' knowledge plays an important role in initialisation as in some

circumstances there is the possibility to specify the initial search space positions
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based on specific knowledge about the objective function [Chipperfield, 1995],

[Ursem,2003].

• • •
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Figure 3.9: Examples of initialisation methods.

(d) knowledge-based grid initialisation

3.3.2.2 The Objective and Fitness Function

Once a population of solutions is created, each of the chromosomes in the

population must be evaluated to see how well they solve the problem at hand.

This is achieved with the objective function which decodes the chromosome,

evaluates it and returns the performance to the genetic algorithm.

In case that the optimisation method has to be used as a minimisation problem, the

fittest individuals will have the lowest numerical value of the associated objective

function. This numerical value is used to figure out the relative performance of

individuals in a GA. In order to transform the objective function value into a
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measure of relative fitness, another function, called fitness junction, is used [De

Jong, 1975], so that:

F(x) = gc/ex»~ (3.2)

where j is the objective function, g transforms the value of the objective function

to a non negative number and F is the resulting relative fitness. There are a lot of

cases where the fitness function value is set in a way that corresponds to the

number of offspring that an individual can expect to produce in the next

generation. In this case, another transformation is usually used (see below) in

which the individual fitness, F(x;), of each individual is calculated as the

individual's raw performance.jix.), relative to the whole population:

I(x;)
F(x;) = -N"':'ind--'---

L/(X)
;=1

(3.3)

where Nind is the population size and Xi is the phenotypic value of individual i.

However one of the drawbacks of this fitness function is that it fails to account for

negative objective function values because it make sure that each individual has a

probability of reproducing according to its relative fitness.

Then, a linear transformation which offsets the objective function is often used to

ensure that the resulting fitness values are non negative. The function used is

illustrated below:

F(x) = a· j(x) +b (3.4)

where a is a positive factor if the optimisation has to be maximised and negative if

it has to be minimised. The offset b is the one that compensates to the non

negative results.
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Figure 3.10 shows how the fitness of the best individual improves over time and

the fitness value approaches gradually the zero point towards the end of the run.

2Wr---.---,----r---,---,----,---,---,----r---,
SimpleEA --

200c-
Bco
~ 150

~i 100
Q).e
LL

50

o L_ __ L-__~ __~ __~ __~ __~ __~ __~ __~ __~

o 100 200 300 400 500 600 700 800 900 100
Generation

Figure 3.10: Gradualfitness improvement during the run (minimisation)

3.3.2.3 Selection

When the evaluation procedure of all of the possible solutions has been

completed, two or more must be selected to be parents and to create offspring for

the next generation. The selection process is usually a random process of

determining the number of times, or trials, a particular individual is chosen for

reproduction and consequently the number of offspring that an individual will

produce. The main goal is to create a new generation of individuals that are

potentially better solutions than their parents. In the selection, a string with a high

fitness value has more chances to be selected as one of the parents than a string

with a low fitness value. The selection of individuals can be analysed as two

separate processes:

~ Determination of the number of times an individual can expect to be

chosen, and

~ Conversion of the expected number of times an individual expects to

be chosen into a discrete number of offspring.
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The selection process is related with the fitness assignment of each individual. In

other words, each individual is examined and evaluated using the fitness function

and the output value will quantify the fitness of each individual. There are a

number of ways to implement the selection. Some of the most popular and well _

studied of them are:

• Roulette Wheel Selection Method

• Tournament Selection

• Stochastic Universal Sampling

3.3.2.3.1 Roulette Wheel Selection Method

Roulette wheel selection method is a genetic operator used in genetic algorithms

for selecting potentially useful solutions for recombination based on some

measure of their performance. In this method the fitness level is used to associate

a probability of selection with each individual chromosome [Hussain, 1997].

The analogy to a roulette wheel can be predicted by imagining a roulette wheel in

which each candidate solution represents a part on the wheel. The size of the parts

represents an individual's fitness relative to the other individuals and is

proportionate to the probability of selection of the solution. For example, selecting

N chromosomes from the population is equivalent to playing N games on the

roulette wheel, as each candidate is drawn independently [Abraham, 2005].

It is obviously that larger areas of the wheel will have higher fitness value and a

better chance to be selected. Figure 3.11 shows the perimeter of the roulette wheel

that is the sum of all six individual's fitness values.

From the below figure 3.11, it can be seen that the individual 5 is the fittest

individual and having the largest part, it is obvious that it will have a better chance

to be selected more than once, while individuals 4 and 6 are the least fit and have

correspondingly a smaller part within the roulette wheel. This method is repeated
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as many times as required until the desired numbers of individuals have been

selected (called mating population) [Chipperfield, 1994a].

Wheel is rotated

Selection
point

Fittest individual-
bette,' chance to
be selected

Figure 3.11: Roulette Wheel Selection

Another graphic example of the roulette wheel selection process is illustrated in

figure 3.12 with the individuals of Table 1, which shows the selection probability

for 11 individuals, linear ranking and selective pressure together with the fitness

value.

Number of 1 2 3 4 5 6 7 8 9 10 11individuals

Fitness 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0value

Selection 0.18 0.16 0.15 0.13 0.11 0.09 0.07 0.06 0.03 0.02 0.0probability

Table 3.1: Selection probability and fitness value
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0.18 0.34

trial 5 trial 1 trial 3

11· ,11'18 ~ r
0.62 0.73 0.82 0.95 1.0

trial4

Individual 11 1

0.0 0.49

Figure 3.12:Roulette Wheel Selection

The process is exactly the same of the one of figure 3.11. Individual I is the fittest

individual and occupies the largest interval, whereas individual 10 as the second

least fit individual has the smallest interval on the line. Individual 11, the least fit

interval, has a fitness value of 0 and get no chance for reproduction.

For selecting the mating population an appropriate number of uniformly

distributed random numbers (uniform distributed between 0.0 and 1.0) is

independently generated. In figure 3.12, it is shown the selection process of the

individuals for trials of 6 random numbers: 0.81,0.32,0.96,0.01,0.65 and 0.42.

The roulette - wheel selection algorithm provides a zero bias (bias is the absolute

difference between an individual's actual and expected selection probability) but

does not guarantee minimum spread (spread is the range in the possible number of

trials that an individual may achieve).

3.3.2.3.2 Tournament Selection

Tournament selection is one of the most popular and effective selection

mechanisms commonly used by genetic algorithms. Tournament selection selects

a group of krs individuals randomly from the population, where krs < k, (ks is the

total number of individuals in the population). The performance of the selected krs

individuals is compared and the best individual from this group is selected and

returned by the operator. For crossover with two parents, tournament selection is

done twice, once for the selection of each parent [Engelbrecht, 2007]. If k,s = ks,

the best individuals will always be selected, resulting in a very high selective
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pressure (see below paragraph). On the other hand, if kts = 1, random selection is

obtained.

Tournament selection is increasingly being used as it satisfies the criteria of being

an ideal selection method. These ideal criteria would be simple to code and

efficient for both non - parallel and parallel architectures (parallel architecture is a

form of computation in which many calculations are carried out simultaneously,

operating on the principle that large problems can often be divided into smaller

ones, which are then solved "in parallel"). In addition, tournament selection can

also adjust the selection pressure to adapt to different domain and so for example

the tournament size can be increased by increasing the tournament selection

pressure. The higher tournament size, the more the better individuals are favoured

to be selected and vice versa [Miller, 1995].

Not only does the selection pressure Improve the population fitness of the GAs,

but it also plays an important role regarding its convergence rate. More detailed,

higher selection pressure results in higher convergence rates. Genetic Algorithms

are able to identify optimal solutions under a wide range of selection pressure

[Goldberg, 1993]. However, if the selection pressure is too low, the convergence

rate will be very slow, and GAs will need more time than normal to find the

optimal solution. On the other hand, if the selection pressure is too high, the

convergence rate will be incredibly fast and then there is more chances to have a

prematurely convergence that will lead to an inaccurate solution.

To conclude, the winner of the tournament will be the individual with the highest

fitness of the entire participants and it will be inserted into the mating pool. The

mating pool, being full of tournament winners has a higher average fitness than

the average population fitness. This fitness difference provides the selection

pressure, which forces the GA to improve the fitness of each succeeding

generation [Miller, 1995].

70



Chapter 3: 1MParameter Identification

3.3.2.3.3 Stochastic Universal Sampling

Stochastic universal sampling (SUS) is a development of roulette - wheel

selection with minimum spread and zero bias. The individuals are mapped to

adjacent part of a line, such that each individual's part is equal in size to its fitness

exactly as in roulette - wheel selection. In this case, depending on the number of

individuals to be selected, the same number of equally spaced pointers is placed

over the line. Consider N-Pointer the number of individuals to be selected, then

the distance between the pointers is ·J/N-Pointer and the position of the first

pointer is given by a randomly generated number in the range [0, J/NPointerj.

pointer 1 pointer 2 pointer 3 pointer 4 pointer 5 pointer 6

Individual 1f--J-+-1 _2!-+-13_!-;1_4 -!+-I 5-+-1J-+61_7~1.J~rrr
0.0 I 0.49 0.62 0.73 0.820.340.18 0.95 1.0

random number

Figure 3.13: Stochastic universal sampling

Figure 3.l3 shows the selection of the choice of 6 individuals where the distance

between the pointers is 116= 0.167. Sample of 1 random number in the range [0,

0.167] : 0.1.

After selection, the mating population consists of the individuals: 1, 2, 3,4, 6 and

8. Stochastic universal sampling ensures a selection of offspring which is closer to

what is deserved than roulette wheel selection [Chipperfield, 1994a].

3.3.2.4 Genetic Operators

The genetic operators are separated in two categories:

.:. Crossover (or recombination)

.:. Mutation
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Mutation is usually used in GAs to generate diversity while crossover to combine

existing solutions into others. The main difference between them is that mutation

operates on one chromosome while crossover on two different chromosomes.

3.3.2.4.1 Crossover (Recombination)

Crossover is one of the basic operators for reproducing new chromosomes in the

genetic algorithm. Crossover produces new individuals that have some

characteristics of parent strings. The recombination operator is used to exchange

genetic information between pairs of individuals and produce offspring for the

next generation. Two strings are selected randomly from the mating pool. The

crossover probability Pe will determine if crossover should take place and how

often, within any generation, the crossover function is carried out on pairs of

individuals. This value is usually chosen to be in the range 0.5 - 1.0 [Srinivas,

1994]. The simplest recombination operator is the single - point crossover,

although there are some other variations of crossover such as multi - point

crossover, uniform crossover, intermediate recombination and line recombination.

The difference between them is the generated crossover point. In this section the

simple - point crossover will be described.

Consider the two parent binary strings:

o 0
o 1

o 0, and

o 0 o.

As referred above, if crossover does take place, then two new offspring strings are

produced. An integer point, i, is selected randomly between 1 and the string

length, I, minus one [1, I-I], hence, the genetic information is exchanged between

the individuals about this point, i. The two offspring from the below figure 3.l4a

are produced when the crossover point i=5 is selected:
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Parents Offspring

2 3 4 5 6 7 8
1

Chrom 1: 1 0 0 1 0' 1
0)

Chrom'1: 1 0 0 1 0 0 0 01
1

Chrom 2: 1 0 1 l' 0 0 0 Chrom' 2: 1 0 1 1 1 1 1 01
I .

/

Swap genetic
inform ation

Crossover
point

(b) Binary representation

2 3 4 5 6 7 8
1

Two randomly 6 4 9 1 3
'
7 5 8) 6 4 9 1 3 9 5 4

selected
I offspringsI

individuals 2 6 1 3 719 5 4 2 6 1 3 7 7 5 8
I

Crossover point
at position S

Single - Point Crossover

t I

Two randomly 6 4 9
'
1 3 7 I - 8) 6 4 9 3 7 9 5 8

selected 1 ,~
offsprings1 1

individuals 2 6 113 7 91 5 4 2 6 1 1 3 7 5 4
I I

Crossover point between
position 3 and 6

Multi - Point Crossover

(b) Real- valued representation

Figure 3.14: Producing offspring using crossover operator

This crossover operator is not necessarily performed on all strings III the

population. Instead, it is applied with a probability Pc when the pairs are chosen

for breeding [Chipperfield, 1994aJ.

Figure 3.l4b illustrates the crossover for real valued representation of individuals

for single and multi - point crossover. In this case, during the simulation of the

single - point crossover, the two individuals selected randomly for reproduction

are paired off. The crossover point is selected at 5 and all the digits of one
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individual to the right of the crossover point are exchange with those of the other.

For the multi - point crossover, initially, two crossover points are selected and the

area between these two points serve as the crossover site. The digits of the first

individual within the crossover site are swapped with the corresponding digits of

the second individual. The resulting individuals, termed offspring, form the

individual of the population of the new generation.

3.3.2.4.2 Mutation

A further genetic operator, called mutation is a random process where one allele

of a gene is replaced by another to produce a new genetic structure and is applied

to the new chromosomes with a set probability, Pm· The mutation operation does

not occur as frequently as the crossover function and it is applied generally by

using a low probability, usually in the range 0.005 - 0.05 [Srinivas, 1994]. As a

result of this, the role of mutation is often seen as providing a guarantee that the

probability of searching any given string will never be zero and acting as a safety

net to recover good genetic material that may be lost through the action of

selection and crossover [Goldberg, 1989]. Mutation causes the individual genetic

representation to be changed according to some probabilistic rule. So, if I is the

length of the chromosome then a number between 1 and I is selected randomly as

the mutation point. In the binary string representation, mutation will cause a single

bit to change its state, 0 ~ 1 or 1 ~ O. The binary mutation process is

demonstrated in Figure 3.15a.

As it can be seen the mutation point is on bit three of the individual and so the

binary mutation flips the value of the bit. Given that mutation is generally applied

uniformly to an entire population of strings, it is possible that a given binary string

may be mutated at more than one point.

Figure 3.15b illustrates the mutation for real valued representation of individuals.

The application of mutation in this case includes randomly choosing a position to

perform the operation and then changing the figure in that position to any of its
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complementary values. For the decimal population, any figure (in any position)

would have nine complementary values.

mutation point

/
Original string: 1

O~1
0 1 1 0

Mutated string: 1 011 0 1 1 0

(a) Binary representation

00000000
li00000[2]00
IT 6 is the randomly chosen possibility

Mutation occurring
at position 3

i-ttY0-[~yttr[tr0Ifj0-0i
__________________ ~ J

The nine possibilities
(complements)

(b) Real - valued representation

Figure 3.15: Mutation operator

3.3.2.5 Reinsertion

Once the offspring have been produced by selection, recombination and mutation

of individuals from the old population, the fitness of the offspring may be
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determined. In case that fewer offspring are produced than the size of the original

population then the offspring have to be reinserted into the old population in order

to keep the size of the original one. The difference between the new and old

population sizes is called as generation gap. In the same way, if more offspring

are generated than the size of the old population then a reinsertion scheme must be

used to determine which individuals are to exist in the new population

[Chipperfield, 1994a].

The used selection method determines the reinsertion scheme: local reinsertion for

local selection and global reinsertion for all other selection methods. Global

reinsertion can divided in four different schemes:

.:. Pure reinsertion: produce as many offspring as parents and replace

all parents by the offspring

.:. Uniform reinsertion: produce less offspring than parents and replace

parents uniformly at random

.:. Elitist reinsertion: produce less offspring than parents and replace

worst parents

.:. Fitness - based reinsertion: produce more offspring than needed for

reinsertion and reinsert only the best offspring

On the other hand, in local selection individuals are selected in a bounded

neighbourhood and so the reinsertion of offspring takes place in the same

neighbourhood. The used structures are the same as in global selection and are the

follows:

.:. Insert every offspring and replace individuals in neighbourhood

uniformly at random,

.:. Insert every offspring and replace weakest individuals in

neighbourhood,

.:. Insert offspring fitter than weakest individual in neighbourhood and

replace weakest individuals in neighbourhood,

.:. Insert offspring fitter than weakest individual in neighbourhood and

replace parent,
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.:. Insert offspring fitter than weakest individual in neighbourhood and

replace individuals in neighbourhood uniformly at random,

.:. Insert offspring fitter than parent and replace parent.

3.3.2.6 Termination of the GA

Because the GA is a stochastic search method, it is difficult to specify

convergence criteria. The application of conventional termination criteria becomes

problematic as the fitness of a population may remain static for a number of

generations before a better individual is found. A normal procedure is to terminate

the GA after a pre - specified number of generations and afterwards the best

members of the population can be tested (usually test the quality) against the

problem definition. At the end, the GA may be restarted if no satisfactory

solutions are found.

In conclusion, it can be understandable that the most common terminating

conditions are:

• A solution is found that satisfies minimum criteria

• An upper limit on the number of generations is reached

• Allocated computation time reached

• The highest ranking solution's fitness is reaching or has reached a

plateau such that successive iterations no longer produce better

results

• The absolute global optimum value

• Manual inspection

When these criteria are met, the elite chromosome is returned as the best solution

found so far.
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3.3.3 Applying GAs in Systems Identification

The area of system identification has received extreme interest over the last three

decades as many problems in control engineering, signal processing and machine

learning can be viewed as a system identification problem. System identification

can be defined as "the process of developing or improving a mathematical model

of a physical system using experimental data to describe the input, output or

response, and noise relationship" [luang, 1994]. Generally, a system identification

problem can be formulated into two optimisation tasks. The first one is structural

identification of the equations and the second one is an estimation of the model's

parameters.

GAs can be applied in systems identification if each individual in the population

represent a model of the plant and the objective becomes a quality measure of the

model, by evaluating its capacity of predicting the evolution of the measured

outputs [Vladu, 2003], [Abonyi, 2004]. The measured output predictions are

compared with the real plant's measurements.

An example of the estimation of a plant model parameters by using GAs is shown

in Figure 3.16.

Adjustable
p eram eters
(from GAs)

Plant y(t)...------.

Model

Comparing the
outputs and

computing the
performance

yllu(t)

Establishing
the Fitness

..... _fi_u_nc_h_·OI_l_..I(to GAs)

Fitness,

Figure 3.16: The principle scheme for parameters estimation
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From the above figure, it can be seen that the principle scheme uses the Plant

(Physical system), measured outputs yet) (experimental) as a reference (starting)

point. Then, these yet) outputs are compared with the model's outputs Ym;(t)

(adjustable parameters) and a measure of the performance is obtained. Depending

on the quality of the performance, the individual i has assigned the Fitness;

function.

Even if research of linear system identification have been tried and tested

successfully for more than three decades, in practice most real - world systems

are kind of, non -linear. Non -linear characteristics such as saturation, dead-zone

are embedded in the very structure of many real systems. Techniques for the

selection of structure and for non - linear in the parameters estimation are still the

subject of ongoing research and development [Fleming, 2002], [Chipperfield,

1994b].

3.4 Improving Hybrid Genetic Algorithms for System

Identification - HGASI

The need for a hybrid Genetic Algorithm (GA) approach starts from the

insufficiency of linear programming and rule based (heuristic) systems in solving

complex scheduling problems [Murata, 1996]. This is a strong argument if we

take into consideration that we need a search algorithm which is independent of

the nature of the solution domain. The main reason of using hybridisation is based

on the balance of the global and the local exploitation. The first one can be found

among population performed by GA and the latter one can be found around a

candidate solution conducted by heuristic methods [Chainate, 2007]. Hybrid GA

has been widely applied to combinational optimisation problems [Kido, 1993],

[Murata, 1996], [Roach, 1996].

It has been generally proved that GA is a robust and efficient search technique for

many optimisation problems. However, due to complexity of some problems and
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as the number of variables involved increases, conventional GAs face some

difficulties such as long computational time in finding the optimal solution, and

premature convergence that can be subdued through variations of operations such

as crossover and mutation. In the next sub - sections a novel method is introduced

to overcome these difficulties. A Hybrid Genetic Algorithm including some

dedicated features to adopt it to the problem of System Identification (HGASI)

has been developed for this work. At the fundamental level, a Modified GA based

on Migration and Artificial Selection (MGAMAS) is used to identify the system

based on a given set of search space limits. Afterwards, the results of the

MGAMAS are used from a Search Space Reduction Method (SSRM) to reduce

the search space, delivering the new limits back to the MGAMAS for use in the

next identification cycle. The main idea behind this technique is that for GAs, the

accuracy and reliability of identification plus the convergence rate depends mainly

on the size of the search space. As a consequence, the more the limits of the

search space are reduced, the more accurate and efficient identification is possible.

Another variation included in the HGASI and presented in sub - section 3.4.3 is

the cataclysmic mutation. It is usually activated if population prematurely

converges and starts producing the same strings. As a result of this, all strings are

significantly mutated unless they are the best ones. Cataclysmic mutation is a part

of the well known and studied CHC algorithm developed by Larry Eshelman

(1991). The technique is based on collecting the best strings found so far and

stands for Cross generational elitist selection, Heterogeneous recombination and

Cataclysmic mutation.

Finally, the sub - section 3.4.4 discusses the sigma truncation scaling method,

another feature used in the HGASI. This method is one of the current scaling

procedures presented in Forrest [1985] and is used to improve linear scaling both

to deal with negative values and to incorporate the problem - dependent

information into the mapping.
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3.4.1 Search Space Reduction Method (SSRM)

In this section the technique used for reducing the search space for the HGASI is

presented. The aim of this SSRM is to increase the accuracy and reliability of

identification by reducing the search space during the algorithm operation. The

SSRM is shown in figure 3.17 while the MGAMAS will be extendedly explained

in section 3.4.2.

MGAMAS

of runs enough to
eva ln ate limits?

Yes

Calculate mean and
standard deviation
for each variable

Satisfactory
convergence
is achieved?

No

Redefine search space

new Limits=mean+l-window*SD

but not wider than previous limits

No

No
Total runs
completed?

Yes

Output Results

Figure 3.17: Search Space Reduction Method
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This approach can efficiently eliminate search - space regions with low

probability of containing a global optimum. The main idea of SSRM is simple;

Let the search space reduce for those parameters that converge quickly in order

to reduce computational effort spent looking far outside the area where the

optimal solution lies [Perry, 2006]. This is achieved by accomplishing several

initial runs of the MGAMAS and using a traditional genetic algorithm with elitist

selection. From the identified parameters, the mean and standard deviation are

then computed. The standard deviation gives us an indication of the uncertainty

of the identified parameters and hence the search space can be reduced

accordingly.

In case the value of the standard deviation is very small, it is probable the mean is

close to the optimal value and the search limits can be reduced. On the contrary,

large standard deviation indicates to continue searching that parameter broadly.

Finally, the SSRM succeeds to reduce the number of unknown parameters and

those remaining can be identified more easily [Perry, 2006], [Potts, 1994].

In the next sub-sections, the main parameters that define the SSRM will be

discussed in more details. These are the number of runs to be used for evaluation

of the search space, the total runs to be executed and the width of the reduced

search space window.

3.4.1.1 Number of runs for evaluation of search limits

It is common sense that the number of runs to be used for evaluation of the search

space limits plays an important role such that the SSRM technique is enough

efficient to improve the operation of GAs. Therefore the most important points in

choosing them are:

• In order to get a reasonable approximation for the mean parameter value,

there must be a satisfactory number of runs.
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• A large number of runs will consume a significant amount of time until

GAs will terminate, and so it delays the time until the new limits of the

identified parameters will be found. Additionally, large number of runs

includes very old results that may slow the convergence down. On the

other hand if the number of results is very small then it is likely to have

premature convergence to local optima.

To conclude, the number of runs must be chosen carefully as large number of runs

will make the system more robust, but convergence will be slow and therefore the

computational time will be increased [Perry, 2006].

3.4.1.2 Total runs

Both systems' accuracy required and computational time allowed are the main

factors to decide the total number of runs to be used. In theory, the results become

more precise as the search space is reduced after each additional run. In reality,

however, accuracy will be limited due to noise and after a time no further

improvement in accuracy is possible.

Some other factors should also be taken into account. Many studies have been

previously carried out on achieving the right balance of GA parameters using

various combinations of them. It is interesting to note that large population sizes

are preferred to classical GA (e.g. SGA), whereas SSRM is likely to work better

with a small population. The .mutation rate is also different, so for the SSRM,

large mutation rates are preferred compared to small rates for SGA. A typical

example of this, using a total number of 20 runs and 50 generations per run will

result in the same computational time as would 10 runs and 100 generations per

run. Therefore, the total runs should also consider some of the GA parameters like

the population size and the number of generations.
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3.4.1.3 Width of window

The width of window is an important parameter used in equations 3.5 and defines

how quickly the search space is reduced for each variable to optimise.

Search space = Mean ± window x standard deviation (3.5a)

or else

Search space = Il ± window x o (3.5b)

This parameter can be explained by the three - sigma or empirical rule. This states

that for a normal distribution, almost all values lie within 3 to 4 standard

. deviations of the mean, see figure 3.18. The empirical rule also tells how tight or

loose a process is. Therefore:

~ Approximately 68% of the values fall within 1 standard deviation

of the mean: Il ± cr.

~ Approximately 95% of the values fall within 2 standard deviation

of the mean: Il ± 2cr.

~ Approximately 99.7% of the values fall within 3 standard

deviation of the mean: Il ± so.

'LValues

1960 - -:- _-'-
1

1 '0

The
Normal

Distribution

99" 1 of cllves
Probablnty of Ctl~(>~

in portions of the curve On}14 • 0 i'>9 o ')5~ an '14

Standard Deviations
-40From The Mean -30 -20 -to +10 +20 +30 +40

(umufatlw% 0,1% 159% 841% 97,7'," 99.9""

Figure 3.18: Diagram of empirical rule within three
standard deviations of the mean
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Furthermore, choosing the value of the window is a critical decision as it is wise

to select a small value that will encourage convergence but big enough so the

global solution has big chances to lie within the new, reduced, search space. In

addition to this, a small value will be used for a simple problem where the results

are expected to be consistent and a large one for a more complicated problem with

uncertain results.

Like the total runs, the width of window will also depend on other GA parameters

as well as the nature of the problem. In this thesis a value of window width of

about 4 has been proven to give good performance.

3.4.2 Modified GAs based on migration and artificial selection

(MGAMAS)

MGAMAS is an improved genetic algorithm whose architecture is particularly

designed to alleviate the problem of premature convergence. This is the heart of

SSRM and it is based on the fundamental GAMAS by Potts et al (1994) with the

difference that uses a floating - point representation and contains new operators

and techniques so to improve both the accuracy and the speed of identification.

Figure 3.19 illustrates the MAGAMAS architecture and the key components

behind it.

The basic distinguishing idea behind GAMAS is its expansion of a simple genetic

algorithm (SGA). Therefore, GAMAS's concept is to include fitness scaling of

each chromosome within the species, the creation and evolution of multiple

parallel populations or species, migration of chromosomes between species,

artificial selection of highly fit chromosomes from the species and their

reintroduction back into the evolution process and lastly the species recycling.

The structures of GAMAS and MGAMAS algorithms is similar, with the

difference focused on two main issues. In the first one, while GAMAS is a binary

coded GA using standard genetic operators, MGAMAS suggested real encoding

of variables using non - uniform mutation operators. This means the search will
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vary not only across species but also over time. The second issue targets on a new

tagging procedure and a reduced data length procedure which is designed for

dynamic problems.

Random generadon of Initial populadon

SPECIES II SPECIES III

EIploration species Exploration and
eapleltatlcn species

MotatlooU
(High value) Mutation III

Crossover II Crossover III

SPECIES I

Most highly lit
chromosomes

SPECIES IV

Exploitation species

Mutation IV
(low value)

Crossover IV

Figure 3.19: MGAMAS architecture

3.4.2.1 Floating - point representation

This representation method is applied to a population of individuals using floating

- point numbers in a vector form. This means that each parameter is represented

by a single value and the vector of all parameters makes up an individual. It is
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argued that real - valued individuals offer a number of advantages in numerical

function optimisation over binary individuals. If a real - valued individual is used,

it is easier to see how the algorithm is converging. In addition, the direct

representation of the floating - point numbers allows the design of mutation and

crossover operators that are based on arithmetic operators and stochastic

distributions [Ursen, 2003] with some of them being more difficult or impossible

to implement in a binary system such as the non - uniform mutation operator

introduced by Michalewicz (1999).

3.4.2.2 Multiple Species

One of the main advantages in using GAMAS and MGAMAS is the creation of

multiple population or species. In the evolution process of the genetic search there

are two important issues: exploration and exploitation. One of the main drawbacks

of GAs has always been the trade off between exploration and exploitation.

Exploration is the creation of population diversity by exploring the search space;

exploitation is the reduction of the diversity by focusing on the individuals of

higher fitness, or exploiting the fitness information represented within the

population [Hansheng, 1999]. These factors are strongly connected as an increase

in the exploitation decreases the diversity of the population or the exploration and

vice versa. To be more specific, strong exploitation encourages premature

convergence but has excellent ability to tune solutions when they are close to the

optimum. On the other hand; weak exploitation can make the genetic search

unsuccessful due to the limitation of exploration to improve the solution quality.

Therefore, by splitting the population into multiple species the problem of finding

a good balance between exploration and exploitation is greatly reduced.

Instead of generating a single population as in SGA, MGAMAS uses more

populations (species), in the following example: SPECIES I, SPECIES II,

SPECIES III, and SPECIES IV. Each ofthem is unique in its purpose. MGAMAS

initially creates SPECIES II, SPECIES III, and SPECIES IV and tben it generates

SPECIES I after the artificial selection process to store the best results. So, in
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order to eliminate the trade - off problem, one of the SPECIES's population is

applied a high mutation rate (for exploration), one is applied a low mutation rate

(for exploitation) and the last one is applied a mutation rate which lies between

the other two [Potts, 1994].

SPECIES II is used as the exploration species. As a result of this, a high mutation

rate is applied to the population and so more of the search space will be evaluated

providing a better chance of deriving the global optimal.

SPECIES IV is a subpopulation used for exploitation. In this case, a low mutation

rate is assigned so it attempts to achieve high exploitation by using a low mutation

probability.

SPECIES III is an exploration and exploitation subpopulation. This way, it

improves the performance of MGAMAS by providing an additional area of search

and allowing for a third rate of mutation.

Finally, MGAMAS artificially selects the best individuals produced from species

II, III and IV and presents them into SPECIES I whenever those are better than

the elements in this subpopulation. The purpose of SPECIES I is then to preserve

the best chromosomes appearing in the other species. Artificial selection carries

on with each predetermined generations by replacing chromosomes in SPECIES I

with chromosomes produced in the other three species if they are found to be

highly fit. Additionally, the chromosomes in SPECIES I are reintroduced into

SPECIES IV by replacing all of the current elements in the exploitation species

and the artificial selection process continue until the number of maximum

generations.

To further improve the evolution process, MGAMAS incorporate the idea of

migration of randomly selected chromosomes between SPECIES II, III and IV.

This allows MGAMAS to generate as many various chromosomes as possible

during early and slows subsequent generations. So, all the highly fit chromosomes

will be captured by artificial selection and this will further improve the solution

exploration.
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3.4.2.3 Fitness scaling

As it was mentioned in the beginning of section 3.4, one advantage GAMAS has

in comparison to SGA is the fitness scaling of each chromosome within the

multiple species. There are many cases in which chromosomes contained in the

same generation, display very close numerical fitness values. These cause

difficulties during the selection of chromosomes for reproduction. Occasionally,

more highly fit chromosomes are left to die out while chromosomes which are

weaker in fitness are selected. For that reason MGAMAS scales the fitness values

of each chromosome linearly, providing a wider spread between these fitness

values and ensuring that the most highly fit chromosomes are selected for mating.

This scaling applies to the fitness values before the selection for reproduction

begins.

3.4.2.4 Mutation Operators

One of the advantages of using multiple species and floating - point

representation is the possibility to have different mutation operators. In our case,

three different mutation operators are used for the species II, III and IV, as species

I is held in isolation and so the chromosomes are not allowed to reproduce or

mutate. The mutation operators are formed in such a way to give each species a

different weight point so they can be beneficial to the enhancement of GA

performance and on balancing the trade off between exploration and exploitation.

Additionally, the mutation rate determines the probability of a chromosome to be

mutated [Perry, 2006]. As the mutation rate is increased, mutation becomes more

disruptive until the exploitative effects of selection are completely overwhelmed.

Hence, high value of mutation rate allows the algorithm to explore different

hyperplanes, while low mutation rate allows only the exploitation of a particular

hyperplane.

One mutation operator is used for real - valued individuals and helps to increase

the accuracy and convergence rate in optimisation problems it is named cyclic non

- uniform mutation (Michalewicz, 1999). The main concept of this mutation is: let
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the average size of the mutations to be decreased gradually within each

regeneration cycle as the solution develop and let it increase again after the

regeneration so it is desirable to search broadly again for new possibilities (Perry,

2006).

3.4.2.5 Crossover Operators

In the MGAMAS identification strategy, two crossover operators are used. The

first one is the simple crossover and the second one is the multipoint crossover

operator.

The simple crossover is similar to the one explained in the first part of this chapter

with the only difference that the unknown parameters are represented by real

numbers. As a result of this, the crossover operators do not change the values of

individual parameters but recombine parameters from different individuals using

the recombination method. The probability (Pc) of an individual in the crossover is

given by the crossover rate. The value of Pe can vary widely from GA to GA and

problem to problem.

The advantage of multipoint crossover instead of simple crossover is that it

appears to encourage the exploration of the search space, rather than favouring the

convergence to highly fit individuals early in search, so making the search more

robust. The number of individuals involved in crossover for a given generation is

again controlled by the crossover rate and pairs of individuals are randomly

selected for crossover. The .:nultipoint crossover also uses multi - switching

points, and so recombination of parameters can be achieved from any position in

the individuals.

A random number in the range [0 1] is generated and crossover of the parameter is

performed when a value greater than 0.5 is restored. Figure 3.20 displays an

example of this recombination method where the random numbers generated are:

0.43, 0.87, 0.69, 0.32, 0.11, 0.06, 0.72, 0.48, 0.25, and 0.97. It is clear that the

multipoint crossover is happening at the 2nd, 3"\ 7th and 10th parameters.
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Figure 3.20: Multipoint crossover operator

In the MGAMAS both forms of crossover are used and are applied one after the

other and so the total crossover rate should be considered as follows:

~.,=1-(1- ~s)(l- ~m) (3.6)

where, Pct is the total crossover, Pes is the simple crossover and Pem is the

multipoint crossover.

3.4.2.6 Fitness Evaluation

For the identification problem studied in this thesis, the MGAMAS fitness is

evaluated as the sum of the integral of the absolute value on both the speed and /sq

current error as shown in the below equation 3.7.
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Fitness Function = f~speed error!+ !lsq current error!) (3.7)

where, speed error is the difference between the reference speed response of the

experimental induction motor set - up and that of the Simulink model with

parameters to be optimised. Similarly, lsq current error is equal to the difference

between the reference current 'fq and the one derived from the Simulink model.

It is obvious that this is a minimisation problem, and the accuracy of the

identification of the induction motor parameters improves as the fitness function

(FF) is approaching to zero.

After fitness evaluation, selection would be carried out by allocating a selection

probability to each individual based on its fitness. However, the selection

procedure becomes almost random, since during the identification process, many

individuals may have very similar fitness values. A solution to this problem is to

determine the selection probabilities by using a ranking procedure. So, the worst

individuals are assigned a rank of 1 and the best a rank equal to the population

size. Then, through the roulette - wheel selection method discussed later,

reproduction is carried out.

Finally, the survival of the best results over all species and generations is

guaranteed by the artificial selection procedure. For this to be perfectly achieved,

it is important that the original fitness values must be also used for the artificial

selection to ensure valid comparisons of individuals across different species.

3.4.2.7 Tagging

In the subsection 3.4.2.2, we have seen that artificial selection is crucial to the

functioning of MGAMAS as stores in SPECIES I the fittest individuals generated

so far. However, if the same individuals are selected many times then it is likely

the SPECIES I to be saturated. In order to avoid this problem and guarantee the
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diversity is maintained, a new idea by blocking multiple selections of the

solutions is proposed. The tagging procedure is achieved as follows:

• All individuals are initially assigned a tag of 0

• All individual selected to species I, change its tag to 1

• If an individual is changed due to mutation or crossover its tag will be

swapped to 0 and so it will be ready again for selection to species I.

• The tag follows the individual through the whole genetic algorithm

procedure: migration, selection, reintroduction etc.

3.4.3 Cataclysmic Mutation

Cataclysmic mutation is the final part of the non-traditional genetic algorithm

CHC created by Eshelman (1991). CHC is a combination of both the genetic

algorithm and the (Il+A.)evolution strategy (contemporary derivatives of evolution

strategy often use a population of 11parents and also recombination as an

additional operator, called (Il+A.)-ES).This is believed to make them less prone to

get stuck in local optima) using the reproduction operations, from Il parent

individuals A.;?: Il offspring are created. After recombination, only the N fittest

individuals from both the parents and offspring population are kept to create the

next generation. Duplicates are also removed from the population. This kind of

selection is known as truncation selection and so parents can be paired randomly

for recombination, but only those string pairs which differ from each other by

some number of bits (i.e., a mating threshold) are allowed to reproduce [Whitely,

1993]. CHC is typically run using small population sizes (e.g. 60) and at this point

it uses cataclysmic mutation. Cataclysmic mutation is introduced only when the

population has converged or there have been several generations without any new

offspring accepted into the parent population. To be more precise, the population

is reinitialised by using the best individuals as a template. This is done when the

reproduction - recombination cycle reaches its termination criterion. However, the

new population includes only one part of the template string as the remainder of

the population is generated by mutating some percentage of bits (e.g. 35%) in the
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template string. Therefore, one part of the best individual is added unchanged to

the new population and in this way it is guaranteed that the next search cannot

converge to a worse individual. This reinitialisation cycle is repeated until some

termination circumstances are met like a fixed number of reinitialisations.

3.4.4 Sigma Truncation ScalingMethod

At the start of GA runs, during the selection process, it is normal to have few

superindividuals to take over a significant proportion of the finite population in a

single generation. This is unwanted because it will lead the population to a

premature convergence and therefore the termination of genetic algorithm. As the

run matures, and the population is mainly converged, competition among

population members is less strong and the procedure is likely to move about at

random in the searching area. In both cases, fitness scaling can help. For example

in the first case, objective function values (OFV) must be scaled back to prevent

takeover of the population by the superindividuals and in the latter one OFV must

be scaled up to point up differences between population members to continue to

reward the best performers. In order to achieve these, a fundamental scaling

procedure is used, which called linear scaling method that translates objective

functions to fitness values as follows:

f'=a·f+b (3.8)

where f is the raw fitness, i' is the scaled fitness and the coefficients a, bare

chosen in such a way as the average scaled fitness f~vg to be equal to the average

raw fitness favg. This happens because subsequent use of the selection procedure

will secure that each average population member contributes one expected

offspring to the next generation [Goldberg, 1989]. It is possible to control the

number of offspring given to the population member with maximum raw fitness,

with equation 3.9:

f~ax=Cmu1t •i; (3.9)
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where emult is the number of expected copies desired for the best population

member and its value is usually between 1.2 and 2 for small populations of 50 _

100 individuals. However, linear scaling becomes more complicated from the

existence of negative objective scores. This is a problem that appears later in a run

when most population members are highly fit but a few lethal have a very low

value. To overcome this dilemma, sigma truncation scaling method is applied, in

which a constant value is subtracted from raw fitness values as follows:

f' =f -ltaVg -eXa) (3.10)

where hvg and (J are the average and standard deviation of the objective function

for the population. The constant c is chosen as a reasonable multiple of the

population standard deviation and for extremely high-quality individuals varies

between 1 and 3. In case of poor individuals with a value of c below the average

and negative fitness values, these individuals are assigned a fitness of zero.

3.5 Chaptersummary

This chapter mainly focuses on two parts. The first part introduced the GAs and

the second one tried to explain various solutions that improved the 1M parameter

identification through GAs in our work.

Firstly, the current chapter has introduced the foundation for understanding

genetic algorithms, their power, their mechanics and their weaknesses. As a

starting point, it focused on the terminology of "Optimisation", that is the process

of making something better. It also analysed the classification of optimisation

algorithms according to different optimisation techniques, highlighting their

importance. Next, problems of optimisations were mentioned and a schematic

example of them was presented. Then, Genetic Algorithms have been introduced

and analysed as a stochastic global search technique. The basic concept of GAs is

designed to simulate processes in natural system necessary for evolution,
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specifically those that follow the principles of survival of the fittest. GA differ

from traditional search algorithms in that they (1) work on an encoding of the

parameter set rather than the parameter set itself, (2) search from a population of

points, not a single point, (3) use an objective function rather than derivative

information or other auxiliary knowledge and (4) work based on probabilistic

rather than deterministic rules.

The chapter has also presented the detailed mechanics of a simple, two - operator

genetic algorithm. Genetic algorithms operate on a number of strings, with the

string coded to represent some fundamental parameter set. The most frequently

used representation of chromosomes in the GA is the ones of a single - level

binary string that linked together to form a chromosome.

Next, the starting point of the search is to create a group of individuals to form an

initial population. Once a population of solutions is created, each of the

chromosomes in the population must be evaluated to see how well they solve the

problem at hand. This is achieved with the objective function which decodes the

chromosome, evaluates it and returns the performance to the genetic algorithm.

Therefore, when the evaluation procedure of all of the solutions has been

completed, two or more must be selected to be parents and to create offspring for

the next generation. In the selection process, a string with a high fitness value has

more chances to be selected as one of the parents than a string with a low fitness

value. One of the most popular ways to implement the selection is (1) the Roulette

Wheel Selection Method, (2) Tournament Selection and (3) Stochastic Universal

Sampling.

Furthermore, genetic operators are usually used in GAs to generate diversity

(mutation) and to combine existing solutions into others (crossover). Both

crossover and mutation are applied to create new string populations. Lastly, when

all the above mentioned criteria are met, the elite chromosome is returned as the

best solution found so far.
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The last section of GA's description presented an approach of GAs for systems

identification. Generally, a system identification problem can be formulated as an

optimisation task where the objective is to find a model and a set of parameters

that minimise the prediction error between the plan outputs (measured data) and

the model output.

The second largest part of this chapter has initially presented a new GA

identification strategy applied to our model. The strategy uses a two - tier

approach techniques whereby the first one is a search space reduction method

(SSRM) and the second one is a modified GA based on migration and artificial

selection (MGAMAS). The concept is that the SSRM uses the results of the

MGAMAS to reduce the search space and return new search limits to the

MGAMAS for further identification. However, the MGAMAS is the heart of the

method as provides a robust search that simultaneously explores the search space

and tries to preserve and improve the fittest individuals.

The applied MGAMAS includes a multiple species population, with fitness

scaling and appropriate mutation and crossover operators as well as other features

that are capable of improving the computational performance, in terms of

identification accuracy and computational speed by controlling the search

direction.

Another technique that is described in this chapter is called cataclysmic mutation.

This algorithm introduces a new diversity into the population via a form of restart

the search when the population starts to converge. Cataclysmic mutation uses the

best individual in the population as a template to re-initialise the population.

Finally, the sigma truncation scaling method has been discussed. This method was

designed as an improvement of linear scaling to deal with the negative evaluation

values that appear in a run when most population members are highly fit but few

of them have a very low value.
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To conclude, we can finally assert that, Genetic algorithms are a very powerful

tool for systems identification in searching for model parameters that best suit a

real system characteristics.
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Chapter 4

Experimental
Implementation

4.1 Introduction

This chapter will briefly describe the experimental setup that was used to develop

and test the vector control algorithms and parameter identification schemes. In

this research work, the experimental responses speed and Isq current will be used

as a comparison with the modelled ones to obtain the fitness function error,

presented in the following chapters. The rig was originally used in projects by

Sumner [1990] and Blasco [1996] and developed by Leonardo Cascella. However,

more recently, the same rig used by Jasim [2009], who set up all the different

experimental systems in this work.

The test rig is based on a squirrel-cage 4kW induction machine and a 7.5kW

IGBT inverter. The induction machine is coupled to a DC machine, with

associated converter of higher power rating, and these act as loading devices. The

DC load machine is rated at 10kW and fed by a Eurotherm 4-quadrant converter.
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The IGBT inverter is modified to allow access to the gate drive circuitry of the

power devices. The gate drive circuitry is interfaced to current mirror card and

this circuit is itself interfaced to a PC via a DS 1104 card using the PWM signals

and running motor control code. The processing hardware can be connected to the

motor drive by signal - acquisition, signal - conditioning and digital input -

output circuits.

Processing capability is provided by using the DS1104 controller card, which is

placed into the PCI slot of the personal computer. The DS 1104 card contains all

necessary peripherals (ADC, DAC, counters, timers, PWM etc.) and computing

power (offered by the MPC8240 PowerPC 603e master-processor and

TMS320F240 slave-DSP) for implementation of complex drives structures. This

card is working with MatLab/Simulink environment. The software associated to

the card provides the control for the implementation process from simulation up to

real time experiment.

In the next sub - sections the experimental system and the motor drive will be

described and the specifications of the Induction Motor used in this project will be

presented. Finally, it will be discussed in more detail the dSPACE DSI104

controller card, and the Digital Signal Processor to Motor Drive Interface System.

4.2 Experimental System

Figure 4.1 represents the structure of the experimental rig. The external circuits

include an inverter interface board, and a transducer board that were built by Turl

[2002], while a filter/amplification board, and a current mirror board were used in

other development work within the PEMC group at Nottingham University.

The developed system is capable of running what would be considered high

performance AC motor control and the DSP and host PC set-up is such as to

provide a highly flexible experimental research platform.
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Figure 4.1: Structure of the experimental drive rig

4.3 Motor Drive

Figure 4.2 shows the motor test bed. The motor drive rig consists of a delta (Ll)

connected, 4-pole, 4kW, closed and skewed slot, squirrel cage induction motor,

manufactured by Asea. This machine is fed by a 7.SkW FK1 Industrial Drives

IGBT inverter and fitted with the 2,SOO-lineencoder. The inverter has an integral

dynamic braking resistor fitted suitable to dissipate energy due to deceleration.

Information about the motor, such as the number of rotor slots is known from the

works of Blasco [1996] and Sumner [1990], The specifications of the motor are

presented in Table 4.1.

The DC drive is configured to operate under its own control and is set-up to

provide variable torque demands. An external control box varies the torque
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demand to the dri ve by varying a fed back reference voltage.

Induction Machine Coupling DC Machine

Figure 4.2: Drive rig

Rated Power 4kW

Rated Speed 1420rpm

Rated Torque 26.9Nm

Rated Voltage 415V

Rated Current 8.4A

No. Poles 4

Rated Phase I,q 9A

Rated Phase I,d 4.9A

No. Rotor Slots 28

Table 4.1: Specification of the Induction Machine

4.4 The dSPACE DSl104 Controller Board

The OS1104 controller card controls all the subsystems of the experimental

equipment via the PC. The computing power is provided by the MPC8240

PowerPC 603e processor and TMS320F240 OSP on the card and it is necessary

for real time control tasks. The communication between the processors and
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peripherals takes place on the internal 24 bit wide bus. An efficient interrupt

system is provided for this card to improve its performance. The dSPACE system

consists of three components:

.:. The DS 1104 controller board .

•:. A breakout panel for connecting signal lines to the DS1104 controller

board .

•:. Software tools for operating the DS1104 board through the SIMULINK

block diagram environment.

Figure 4.3 shows a block diagram of the DSl104 controller board.

r------------------
I

I'Cllnterface

Interrupt Control
Unit

Timers

Figure 4.3: Block diagram a/the DSII04 controller board

From the above Figure 4.3, it can be seen that the DS 1104 controller card has

eight, 16 - bit DIA converters each with an output range of ±1OV. It also contains

eight AID channels. The first four channels share a single 16-bit AID converter

through an analogue multiplexer. Each of the remaining four channels has a

dedicated 12-bit AID converter, allowing the simultaneous sampling of four

analogue input signals. The input range for all eight channels is ±1O V. The

103



Chapter 4: Experimental Implementation

OS 1104 card also accommodate a 20-bit parallel digital 110, two PWM ports, and

two incremental encoder channels to picks up the encoder signal of the motor to

measure the rotor speed.

The external devices include all necessary interfaces and measurement hardware

required to control the motor drives and they are connected to the DSI104 R&D

Controller Board via the breakout panel. Figure 4.4 displays the breakout panel

for the dSPACE DSII04 R&D Controller Board. For further details about the

OS 1104 controller card, please refer to [dSPACE, 2004].

Figure 4.4: The breakout panel of the dSPACE DSII04
R&D Controller Board

A powerful software environment is provided for this card to support all phases of

the development of an application from the simulation to physical measurements.

As MatLab - Simulink is a compatible software, the simulation files may be

completed with RTI block elements which are provided within this card, in such a

way that realising the connection to the hardware. The resulted Simulink

structures are compiled automatically yielding the real time program code

executable on the controller card's processors [Jasim, 2009].

4.5 DSP to Motor Drive Interface System

This part focuses on the connection of the motor drive to the OS 1104 controller

card through the external devices. Specifications for the development of

equipment interfaced to the DSll04 R&D controller card are contained in the
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dSPACE Control Desk Experiment Guide [dSPACE, 2004]. The component parts

of this hardware interface are outlined in the following sub - sections.

4.5.1 Inverter Interface - Incorporating Dead - time Protection

The output from the PWM port on the controller board is fed to the inverter

interface as 3-channel corresponding to the three motor phases, current level gate

drive signals (by using current mirror board). This has higher noise immunity, in

what is quite an electrically noisy environment. Sending voltage level signals, the

signals are highly suited to driving opto-coupler inputs (necessary isolation for

safety). The signals are not suitable to directly drive the power devices and must

first be separated into six channels for the inclusion of dead-time delays. In this

work the dead-time delay was set at Susec. The minimum and maximum pulse

time were set to be IOusec and Ll Susec [Turl 2002].

Figure 4.5: Interface card a/the FKI industrial drive inverter

Protection functionality is necessary and is included by the interface circuit.

Figure 4.S shows the board fitted to the FKl inverter. A manual trip button is

added to prevent the operation of the inverter and it is useful when the control of

the system is lost. [Jasim, 2009], [Turl, 2002].
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4.5.2 Voltage and Current Measurement

Line-to-line voltages and line currents are measured, in the motor rig, by suitable

transducers placed between the inverter output and the motor input terminals.

Current measurement is required for the current controllers in vector control and

for drive protection in commercial products. The transducers used are LEM hall-

effect devices.

Voltage measurement is not always used in commercial projects. As the inverter

can be considered a voltage source, sometimes reference value of the voltages will

be used if it is needed. In this work, similarly to the currents, all three voltages are

measured, as these will be used to improve the estimation of the electrical

parameters in the last chapter.

The outputs of the transducers are passed through necessary signal conditioning

circuit (amplifiers with gain and offset adjustment). Connection is made to the

breakout panel of the DSl104 controller card using screened cable and BNC type

connections.

4.5.3 Analogue Filtering

The outputs of the current transducers are passed, via the screened cable, through

filters and on to the connection of the AID converters in the breakout panel of the

DS 1104 control board. The filters are 2nd order low-pass butterworth type, with a

cut-off frequency of around l.3kHz, and are used to prevent anti-alias effects

associated with a digitally sampled system [Balmer, 1991].

4.6 Implementing the Drive Structures

There are four steps in order to perform the implementation of a drive structure on

OS 1104 based experimental equipment. These steps are listed as:
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• Creation the working simulation model of the desired drive structure

through Simulink I MatLab, its extension with Real-Time Interface (RTI)

blocks;

• Defining the sampling unit;

• Implementation of the software measuring, protection and command

subsystem;

• Implementation of the virtual control panel;

Real- Time Interface (RT!) blocks is the link between dSPACE's real-time

hardware and the MATLAB/Simulink development software from The

MathWorks. It extends the C code generator Real-Time Workshop so the

Simulink models can be implemented very easily on dSPACE real-time hardware.

DS I I04SLA VE PWMINT-

DS II 04SLA VE
PWM -Interrupt

Trigger
MechanicalEncoder
Variable

Triggered
i",ib,icDate Acquisition Electrical

Control Structure
& Variable

Protection Unit

Enable Control
Variable

Figure 4.6: Structure of an implemented drive system

Figure 4.6 indicates the general structure of an implemented drive system. For a

different drive system, the implementation of the measurement, protection and

command block and the control structure block will be changed according to the

requested task. The block DSl104SLA VE_PWMINT represents the RTI block

which connects the simulation structure to the real PWM interrupt of the DS 1104

card. More details about the implementation of the software measuring, protection
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and command subsystem as well as the implementation of the virtual control

panel can be found at Incze [Incze, 2005].

4.7 Implementing the Control Systems

The control system in the experimental rig is implemented as in the simulation

model. The speed and current PI controllers in the experimental rig are in z _

domain while in the simulation model are in s - domain. Hence, a transformation

from s - domain to z - domain using bilinear method was necessary in order to

find the PI controller parameters for the experimental rig. When designing the

speed loop, dynamics of the current loop has been neglected, being much faster

than the speed one. The sampling frequency of the current and speed control loops

as well as the PWM frequency is set at 4kHz.

There are few aspects of the experimental rig that we have neglected in the

simulation model without affecting the average behaviour of the overall system

and making the simulation time and hence the GA identification time much faster,

such as:

• PWM (Pulse Width Modulation)

• Machine nonlinearities such as :

.:. Space harmonics

.:. Rotor slotting effects

• Data acquisition systems

• Transducer delays

The presence of the PWM, slotting and space harmonics affects in the simulation

model would result in high frequencies which in fact would not affect the average

behavior of the overall system. Saturation is being accounted for the reason that

we vary the field and torque producing currents for the identification of the motor

parameters in different working conditions.
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It is worthy to mention that a simulation model using z - domain PI controllers

has been tested for identification. The results obtained, both as regards the vector

control's behaviour and the estimation of the parameters are coincident with s-

domain simulation.

4.8 AccuracylResolution of the experimental data

In the paragraphs below, a discussion concerning the expected accuracy and

resolution of the identification will be addressed.

The resolution, which represents the smallest difference between two output

levels of the converter is 20v/i6 = 0.305mV. That is, the output voltage of the

0/A converter can be varied from -10V to +1OVin 0.305mV steps. The resolution

of the 16-bit channels is 0.305mV, while the resolution for the 12-bit AID

converters is 20V/212 = 4.9mV.

Two incremental encoder channels (used as speed transducers) are used to pick up

the encoder signal of the motor to measure the rotor speed. The actual rotor speed

is calculated using 3000 pulses per revolution encoder which results in high

measurement accuracies better than 0.010 mechanical (1.0 arc minutes) from one

cycle to any other cycle.

Line to line voltages and line currents are measured by suitable transducers placed

between the inverter output and the motor input terminals. These are called LEM

Hall - effect devices. In fact the errors between nominal value and measured

values generally result from the associate temperature changes of Hall - effect

sensors. The reasonable work range of Hall sensors is up to 20 kHz. Once the

switching frequency is higher than 20 kHz, the error is significant and cannot be

omitted. However, in the experimental setup used for this thesis, the switching

frequency is 4 kHz and therefore the effect caused by temperature can be

neglected and the measurement accuracy is high [Yeong, 2004]. The current

transducers used were made by TELCON and the overall accuracy is 0.5% of its

nominal primary current.
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The effect on the resolution and accuracy of the measured quantities will not

significantly influence the estimated I.M. parameters.

4.9 Chapter Summary

In this chapter a briefly explanation of the experimental setup has been

introduced. The built DSII04 controller card based experimental equipment is a

very useful tool in research and development of high performance AC electrical

drives.

The overall structure of the experimental system has been shown and description

of all the hardware equipment was given. The system can be operated over the full

rated speed and flux range of the induction machine and both the speed and

current demand can be instantaneously varied. Fitting of speed encoders and

current and voltage transducers, allows these measurements to be readily

developed, tested, compared and used to the Genetic Algorithm code.

The implementation of a drive structure on DS 1104 based experimental

equipment is accomplished according to the principle 'from simple to complex'.

This offers the most reliable way regarding the fail - safe operation of the

hardware.

Lastly, the implementation of the control system is represented and aspects of the

experimental rig that have been neglected in the simulation model are introduced.
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Applying GAs to Vector
Controlled Drives at

Rated Operation
Parameter Identification

5.1 Introduction

This chapter describes a novel, accurate and non - intrusive approach for

identifying induction motor equivalent circuit parameters based on experimental

transient measurements and using an off line Genetic Algorithm (GA) routine to

tune a linear machine model.

Transient measurements of current and speed can be taken in a non - intrusive

way directly on the drive in which the motor is installed for its normal operation.

Therefore precise knowledge of the electrical parameters will determine enhanced

control of the drive.
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The motor used for this research is a 4 kW, 4 - pole I.M., in a vector controlled

drive while a Matlab Simulink model was utilised within the heuristic GA based

identification routine. As it was mentioned in the 2nd chapter, vector control in an

induction motor drive allows high - performance control of torque and speed only

if both the electrical and mechanical parameters of the machine are accurately

known in all operating conditions.

The basic idea of this research work is that the evaluation of the electrical motor

parameters can be achieved by minimising, using a GAs approach, the error

between the experimental response (speed or current) measured on the

experimental motor drive and the respective one obtained by a Matlab - Simulink

model implementing the same structure and control of the experimental rig, but

with varying electrical parameters [Trentin, 2006].

Experimental Induction
Motor Drive

Experimental Speed

Experrmental Isq

Simulink Model of
the 1M Drive

Vector
Control

Stn'llililt~d I.q

+ sunulated Speed

...

Genetic
Algoritlun

+

+

Figure 5.1: Block diagram representing the experiment.
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5.2 Description of the system

Figure 5.1 represents the optimisation experimental set - up. Measurements of

experimental transient responses of speed and current from the vector controlled

electrical drive test rig are stored and used as reference signals for the

optimisation. A fitness function based on the integral of the absolute error

between these reference signals and the ones produced by the simulation model

reproducing the experimental rig, are evaluated by the GAs intelligent search

technique which will find the correct system electrical parameters that minimise

it. [Kampisios, 2008b).

5.2.1 Experimental Induction Motor Drive

In the identification experiment the mechanical parameters, moment of inertia and

friction (identified using a deceleration test [Trentin, 2006]), as well as the

resistance of the stator (easy to measure) are supposed to be known - the rest of the

electrical parameters have to be identified.
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Figure 5.2: Speed and lsqcurrent response of the
experimentall.M. drive without load.

Table 5.1 presents some of the most important characteristics from the

Experimental vector controlled Induction Motor which are also used in the

simulation model. The speed and current (f,q) transient responses used as reference

signals in the GAs optimisation are shown in figures 5.2 (without load). In figure
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5.3 the same transient responses are represented but with an applied load torque

(15.5Nm) at 6.5sec. They represent the system response to a speed (rated) demand

of 250 rad/sec and '''I current (rated) demand of 9A and within a constant (rated)

flux of 4.9A.
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Figure 5.3: Speed and ',q current response of the
experimental/.M. Drive with load.

Vector Control Parameters Induction Motor Parameters

Ksp = 0.66 Inertia J 0.152
Speed

controller
K; = 5 Friction 0.0147

Kcp = 57.70 Stator Resistance 5.25 n
Current
controller

Kc; = 28000 Number of poles 4

Speed reference 250 rad/sec Power 4kW

t., reference 4.9A Line voltage 415 V

Rotor time constant 0.1508 Frequency 50 Hz

Current limits 9A

Voltage limits wooV

Table 5.1: Experimental vector controlled I.M. parameters
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5.2.2 Simulated Induction Motor Drive

The induction machine is modeled using a traditional dynamic model in abc

reference frame where the vector control parameters are the same experimental

ones shown in table 5.1 and the simulation is implemented in Matlab-Simulink.

The simplified equivalent circuit of an induction machine is shown in the below

figure 5.4.

Ris XIs XII' Rlr

Rlr(1-s)
s

Figure 5.4: Simplified equivalent circuit of an I.M.

The equivalent steady state circuit of a three-phase Induction Motor can be

represented by a combination of resistance and inductance from both the stator

and the rotor. So, from the equivalent circuit, the rotor current and the torque

equations can be described in the equations below:

Vs
I,= 2

(RI.,+ ;r) +(Xls +XIY
(5.1)

(5.2)

The nameplate data of the examined motor are: P = 4kW, U = 415V, Ll

connection, I = 8.4 A, n = 1420 rpm. Using the traditional Induction Machine

parameters identification based on "no - load" and "locked - rotor" tests the

following electrical parameters can be obtained: stator resistance R, = 5.25.0.,

rotor resistance R, = 3.76.0, magnetising inductance Lm = 0.5343H, stator
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leakage inductance Lis =O.04H and rotor leakage inductance L
"
= O.033H . In

the following, these values will be referred as "standard parameters". A

comparison between the modelled and measured time responses is shown in the

below in figures 5.5, 5.6 and 5.7. In these figures a constant (rated) flux is applied

at Osee while a rated speed response is applied at approximately 2.4see. In Figures

5.6 and 5.7 a load torque (l5.5Nm) is also applied at 6.5see.
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Figure 5.5: Measured and modelled Speed (a) and Isq current (b)
responses: no load and standard parameters.
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As it can be noted there is an evident mismatch between the modelled and

experimental responses indicating a difference between the experimental and

estimated parameters. The results illustrate that this mismatch takes place only

during transient response behaviour while at steady state the error between the

responses is zero.
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Figure 5.6: Measured and modelled Speed (a) and [Iq current (b)
responses: with load (15.5Nm) and standard parameters.
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Figures 5.6 and 5.7 shows a small mismatch while a load torque is applied but this

mismatch occurs only during the peak time of the responses.
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Figure 5.7: Zoom of Speed and current response of in Figure 5.6
at the time in which load (15.5Nm) is applied.

In fact, from figures 5.6b and 5.7b, there appears to be a steady state error on Isq.

This is because the drive was used for the DC machine is only exciting the
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armature current while the field current is being supplied by external voltage

supply with a rectifier circuit to provide the field of the DC machine. When we

switch the field we slightly break the motor due to induced rotor currents and this

is a reason why there is a steady error on ',.q.
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Figure 5.8: Speed (a) and current (b) error between measured and modelled
(standard parameters) speed and current responses
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Figure 5.8 represents the speed (a) and Isq current (b) error between the

experimental and modelled response using standard parameters (error between the

two responses in figure 5.6(a) and figure 5.6(b». It can be seen that in both graphs

an error appears during the transient response period while in steady state and

loaded condition the error is zero. Hence, during transient response the need of

very accurate parameters is of great importance.

It has also to be noted that all the experimental results shown on the previous

figures have switching noise which is proportional to speed/frequency. One

reason can be the fact that as speed increases the high frequency current

components end up outside the bandwidth of the current controller.

5.3 GAs Experimental Parameter Identification

The diagram shown in figure 5.9 explains a GAs search procedure. The fitness

function (FF) plays an important role to the GA optimisation procedure as it

measures the quality of the represented solution. The fitness function is always

problem dependent. An ideal fitness function connects closely with the

algorithm's goal and yet may be evaluated quickly because usually a genetic

algorithm must be repeated many times in order to achieve the desirable result and

the speed of execution might be a very important factor. In some cases, it is even

hard to define a fitness function, so an interactive genetic algorithm is used that

uses human evaluation. In our problem, the fitness function used is the sum of the

integral of the absolute value on both the speed and Isq current error as shown in

equation (5.3). The choice for using only these 2 variables is that as the flux is

constant, the only variables which will give a transient response are the speed and

the Isq current.

FF = f~speed errof + IIsqcurrent erro~) (5.3)

where, "speed error" is the difference between the reference speed response of the

experimental induction motor drive and that of the Simulink model. Similarly "I, sq

current error" is equal to the difference between the reference current I and thesq

one derived from the Simulink model.
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------------------------------~..................... ,
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I Shut I Generate

New
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-------------------------------
Figure 5.9: Block diagram representing the GAs routine

It is clear that this is a minimisation problem, whereby the accuracy of the

identification of the electrical motor parameters improves as the fitness function

(FP) approaches zero.

As previously mentioned the unknown electrical parameters of the motor are the

rotor resistance (Rr), the magnetizing inductance (Lm), the leakage inductance of

the stator (Lis) and of the rotor (Llr)' Given a wide range of industrial I.M. the

bounds for the GA search were considered in a way to create intervals which

encompasses most practical parameter values (5.4):

1 Q 75RR 7510 Q

0.1 H 75t; 751 H
0.005 H 75Lis 750.1 H
0.005 H 75t; 750.1 H

(5.4)

The range of parameter values for different manufactured 4kW induction motors

will mainly depend on the pole numbers. In addition, the rotor resistance can be

varied for the same motor power but with different torque/speed characteristics

[Wildi, 2006]. As an example, for designing a squirrel - cage motor, the rotor
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resistance can be set over a wide range by using copper, aluminum, or other

metals in the rotor bars and endings. Therefore, induction motor manufacturers

can set the rotor resistance according to the torque/speed characteristic and to the

purpose of the motor use.

Table 5.2 below shows the electrical parameters of a 4kW, 4 - pole 1M

manufactured by ABB, AEG and Leroy Somer.

ABB-4kW - AEG-4kW - Leroy Somer - 4kW -
4 pole 4 pole 4 pole

Y- connected Y- connected Y- connected
/ squirrel cage / slip ring / squirrel cage

Rotor Resiatnce 2.70 3.20 4.40
(Rr)

Stator 3.90 5.1 0 6.20
Resistance (Rs)

Magnetizing 0.85H 0.48H 0.35H
Inductance (Lm)

Rotor 0.799H 0.452H 0.331H
Inductance (L)

Stator 0.818H 0.452H 0.331H
Inductance (L)

Table 5.2: Electrical Parameters from different 4kW - 4 pole motor
manufacturers.

It is evident from the Table above that the expected range of parameter values for

a 4kW / 4 pole I.M. will be as follows:

20~Rr~80

0.2H ~ Lm s 0.9H

0.15H ~ Lm~ 0.85H

0.15H sLm~ 0.85H

It is also well known that hand tuning of the vector control parameter can be a

difficult task to do. On the other hand the optimal GA parameter settings (such as

mutation, crossover rate, initial population, maximum generation) have been the

subject of numerous studies in the GA literature. Most people use what has

worked well in previously reported cases as there is no conclusive agreement on
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what is best; For the identification of any induction motor parameters through

GAs, it can be said that a given range of GA parameters which will give accurate

estimation are as follows:

0.009:S Mutation S 0.15

0.7 :SCrossover S 0.99

25 :SInitial population :S50

60 :SMaximum generation :S100

5.3.1 Application of the SSRM

It has been found by experience that, above all in identification problems, it would

be desirable that the GA routine could restrict the parameters search ranges during

its optimisation. In order to minimize the bounds of the electrical parameters, an

identification strategy involving a search space reduction method (SSRM) is

applied. The aim of this method has been analytically explained in chapter 3 and it

is used to increase the accuracy and reliability of identification by reducing the

search space during the algorithm operation. The idea is to reduce the search space

for those parameters that converge quickly and thus reduce convergence time

[Perry, 2006a).

In order to achieve this, a specified number of shorter initial runs is performed by

the algorithm and the different results stored by the program; mean "m," and

standard deviation "crt are then estimated for each parameter to identify.

Generally, the number of runs should be chosen as a compromise between the

estimation accuracy of mean and standard deviation and the total optimisation

time. At the end of these initial runs the search space is redefined for each

parameter according to (5.5):

Bounds parameter i= m, ± W (Ji (5.5)
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where W, width of the window, defines how much the search space is reduced, but

it has to ensure that the new bounds are not wider than the original limits.

Practically it is found that a value of window width of about 4 gives good

performance for all parameters. Five initial runs are performed in this case using a

traditional genetic algorithm with elitist selection. Each GA run contains of 30

individuals and maximum 30 generations. The number of generations has been

chosen empirically as it was noted that in this application and with this specific

fitness function, over 30 generations the value of the error stabilizes and only

seldom keeps decreasing further. In this case, it is assumed that genetic algorithms

found the best (sub - optimal) solutions to the system as the error stays the same,

and therefore, it will be probably wasting time if we set a bigger number of

maximum generations.

From figure 5.8, it has been noticed that the biggest error in both the speed and the

lsq current response, appears during transients. During steady state condition, the

error in both graphs is zero and so it would be more consistent to try to estimate the

motor parameters during the transient period as less simulation time will be lead to

less computational time. However, as a starting point, we will focus on the rated

estimation of the electrical parameters and then the next step will be the

improvement of these parameters or else a faster computational time.

As a first step, the inputs for the simulation model are the lsd • reference current and

the reference speed l4" (see Figure 5.2). These values will be the rated ones and so

the motor will run with rated (full) flux (lsd" = 4.9A) and with l4* = 250rad/sec.

The flux will be applied at simulation time of 0 sec while the speed reference at

2.3838sec. The PI speed and current controllers are exactly the same in both the

experimental and simulation system and the rotor time constant is also the same

and stable Tr=0.15087. The simulation (identification) time will start few

milliseconds before the speed reference is applied and it will be from 2.2496 to

4.8628sec with a maximum step size of 0.2msec that covers both transient and

steady state response.

The obtained results are shown in the below Table 5.3.
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Electrical Parameters I st run 2nd run 3rd run 4thrun 5th run

Rotor Resistance (R) 4.1111 n 4.1111 n 4.1375 n 4.1397 n 4.1488 n

Magnetizing Inductance 0.5476H 0.5462 H 0.5453 H 0.5453 H 0.5448 H
(Lm)

Leakage inductance of 0.0568 H 0.0250 H 0.0429 H 0.0297 H 0.0297 H
stator (Lis)

Leakage inductance of 0.0557 H 0.0557 H 0.0558 H 0.0558 H 0.0558 H
rotor (Llr)

Best Objective Value 0.9032 0.8794 0.8524 0.8511 0.8499

Table 5.3: Genetic Algorithm Estimated Motor Parameters in the Initial Runs

From the results it can be seen that all runs produce similar parameters estimations

except for the stator inductance. The optimisation routine applies then the search

space reduction method (SSRM) in order to estimate the new bounds for the

parameters. From equation (5.5) it can be found that the new limits for the

electrical parameters are given as in (5.6). The GAs optimisation settings selected

are shown in Table 5.4.

4.0672 .Q ~ RR s4.1920 .Q

0.54188 H ~ t; s 0.54979 H

0.01354 H ~ LIs s0.06010 H

0.05556 H s LIT ~ 0.05595 H

(5.6)
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GAs parameters

Species I Species II Species III Species IV

Crossover rate 0.85 0.9 0.95 0.99

Mutation rate 0.15 0.1 0.05 0.009

Generation Gap 0.9

Maximum 30
Generations

Initial runs
Number of 30
Individuals

Maximum 50
Generations

Final run
Number of 40
Individuals

Table 5.4: Genetic Algorithm Characteristics

5.4 Results

Finally, applying the last wider genetic algorithms optimisation including the new

parameters bounds we obtain the final estimation of our I.M. electrical parameters

shown in Table 5.5.

Electrical Parameters

Rotor Resistance (Rr) 4.1636.Q

Magnetizing Inductance (Lm) 0.5435 H

Leakage inductance of stator (Lis) 0.0291 H

Leakage inductance of rotor (Llr) 0.0556 H

Best Objective Value 0.84901

Table 5.5: Final Genetic Algorithm Estimated Motor Parameters
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From Table 5.3 and 5.5 can be noted that the new SSRM method gives very good

reliable identification results in a reasonable time. It can also be seen that the best

objective value in Table 5.5 is smaller compared to the ones in Table 5.3 and so the

identification accuracy has also been improved. I could also consider reducing the

number of decimal points and using more realistic numbers as the 3rd or 4th decimal

point is not influencing the accuracy of the results.

In the next sub - sections a comparison of the speed and l.l'q current responses

between the experimental induction motor drive performance and the Simulink

model using the new parameters will give us a clear view of the accuracy of the

estimated parameters.

5.4.1 Comparison of Speed Response

Figure 5.10 represents the speed response between the experimental and the

Simulink modeled response with the new GA evaluated electrical parameters.
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Figure 5.10: Measured and GAs (modelled) Speed
responses with no load.

The same results, but in the case in which a 15.5 Nm load torque is applied at time

t = 6.5sec are shown in the below figures 5.11 and 5.12.
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Figure 5.11:Measured and GAs (modelled) Speed
responses with a load torque of 15.5Nm.
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Figure 5.12: Zoom of speed response of infigure 5.11
at the time that the load is applied.

5.4.2 Comparison of Isq Current Response

Figure 5.13 represents the lsq current response between the experimental and the

Simulink modeled response behavior with the new GA evaluated electrical

parameters.
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Isq current vs time
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Figure 5.13: Measured and GAs (modelled) f<C1 current
responses with no load.

The same results, but in the case in which a 15.5 Nm load torque is applied at time

t = 6.5sec are shown in the below figures 5.14 and 5.15.

lsq current vs time
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Figure 5.14: Measured and GAs (modelled) Isq current
responses with a load torque of 15.5Nm.
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lsq current vs time
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Figure 5.15: Zoom of I_,q current response of infigure 5.14

at the time that the load is applied.

5.4.3 Discuss and Analysis of the Results

It can be clearly noticed that the system dynamic behavior simulated using the new

proposed GA parameters estimation perfectly match the experimental measures

and show a significant improvement compared with the model obtained using the

standard identification methods, see figures 5.10, 5.13 . It is to be noticed that in

this work, it is assumed that the machine resistances remain constant since the tests

simulation is kept to a maxi.mum value of 10 seconds and so the temperature

variation will not affect the value of the resistance.

It can also be noted that the identification is mainly done at high speed. However I

would expect to work better at low speed as most of the harmonics will be

eliminated by the current controller. In this case, the current controller will work

as a low - pass filter to eliminate and reduce the consequence of the existence of

the low harmonics in the winding currents and voltages.
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5.4.3.1 Speed and Jsq current error

Figure 5.16 represents the speed error between the experimental and modeled

response behavior with the new GA evaluated electrical parameters (error between

the two responses in figure 5.10) while figure 5.17 represents the I.~qcurrent error
(error between the two responses in figure 5.13) correspondingly. These figures

also ilJustrate an error during transient operation but smalJer compare with the one

showed in figure 5.8.
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Figure 5.16: Speed error between measured and GAs
speed response (error from figure 5.10)
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Figure 5.18 shows the difference between the speed errors from both figure S.8(a)

and figure 5.16. Figure 5.19 illustrates the difference between the /sq current errors

from both figure S.8(b) and figure 5.17. It can be obviously seen that GAs give us

reduced speed and /sq current error compared with standard methods, which means

more accurate and reliable identification of electrical parameters.
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Table 5.6 also shows the error introduced by standard estimation methods. From

this table, it is noticeable that the smallest error appeared in the magnetising

inductance (Lm) while the biggest one was introduced in the leakage rotor

inductance (LIT). However, the importance of the parameters' error and their

influence on the speed and /.,q current response will be shown in a later sub _

section. In addition, it will be proved that the leakage inductances do not affect

much the optimisation's fitness function.

Traditional GAs %errorMethods

Rotor Resistance (Rr) 3.760 4.16360 10.7

MagnetizingInductance(Lm) 0.5343 H 0.5435 H 1.72

Leakage inductanceof stator O.04H 0.0291 H 27.25(Lis)

Leakage inductanceof rotor 0.033 H 0.0556 H 68.48(Lie)

Table 5.6: Comparison between the new GA estimated motor
parameters and the traditional ones

5.5 Sensitivity of the Parameters Estimation

A sensitivity analysis of the identification results with respect to parameters

variations is of prime importance. It is used to compute the sensitivity of

performance measures with ·(espect to design variables. Based on the design

sensitivity results, an engineer can decide on the direction and amount of design

change needed to improve the performance measures [Kyung, 2004]. Each

parameter sensitivity in this thesis is defined as the ratio of the percentage change

in the system objective function (fitness function) to the percentage change of the

estimated parameter, defined as:

(5.7)

where P is the estimated parameter, and F the fitness function of the system.
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In the following sections the system sensitivity will be calculated for a small

variation of the estimated parameters, keeping the motor parameters used in the

controller unaltered. Then the influence of this alteration will be shown in the

speed and Isq current response.

5.5.1 Variation of Rotor Resistance

It is known that the rotor resistance variation is affected by change in rotor

temperature. In case that the rotor resistance is increased by 10% of the GA

estimated one (R,=4.1636Q) then its new value will be R,.::4.57996Q=1.1xR,..

This theoretically small variation can change one of the most important vector

control parameter and this is the rotor time constant T,.. The calculated slip

frequency is also incorrect and the flux angle is no longer appropriate for field

orientation. As a result of this, instantaneous errors emerge in both flux and

torque.
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Figure 5.20: Difference between speed responses with 10% increase of RI"

Figures 5.20 and 5.21 shows the effect of the 10% increase of RI"in the speed and

Isq current response correspondingly. From these figures, it can be seen that there
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is a significant error during the transient response III both speed and current.

During steady state condition, both the !.Iq current and speed responses have not

been affected from the change in the rotor temperature.

Isq current vs time
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Figure 5.21: Difference between Isq current responses with 10% increase of RI'

The sensitivity of this case can be calculated from equation 5.7. It is obvious then

that it is necessary first to calculate the new fitness function with the increased

rotor resistance RI" Using equation 5.3, the new fitness function will

be FF' = 3.1053 while its ambient value is FF = 0.84901. It means that FF' IS

3.65 times bigger than FF. Then from equation 5.7 we get:

s= dFjp =dFXP = (O.84901-3.1053)x4.l636 ~
Mjp FxM O.84901x(4.1636-4.57996)

After calculations: S = 2657

The same evaluation has to be done with the other parameters, after that we can

analyze which of them are more sensitive and which ones does not affect too

much the vector control of the motor.
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5.5.2 Variation of Magnetising Inductance (Lm)

On the assumption that the magnetising inductance LI1l increases by 10% of its

ambient value (Lm=0.5435H) then its new value will be L", ~l.lXLI11=0.59785H.

Applying the new value of L",' and the new fitness function (FFs'7.1674=

8.44xFF) to the equation 5.7, the sensitivity of the system can be found. After

calculations, the sensitivity value is S = 74.42.

Figures 5.22 and 5.23 below shows the effect of the 10% increase of LI11in the

speed and Isq current response correspondingly.
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Figure 5.23: Difference between Isq current responses with 10% increase of Lm
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From figures 5.22 and 5.23, it can be noticed that there is a considerable error

during the transient response in both speed and [sq current while during the steady

state condition, both the r,q current and speed responses have a zero error.

5.5.3 Variation of Stator Leakage Inductance (Lts)

If the value of the stator leakage inductance is increased by 10%, then its new

value will be LI, ;"'0.0320 IH and the new fitness function will be slightly increased

by FF~0.84906=1.000058xFF. In this case the sensitivity is equal

to S = 5.89 X 10-4. At first glance the sensitivity of the stator leakage inductance is

very small in comparison with the sensitivity of the magnetising inductance and

the rotor resistance. This means that a small variation of the stator leakage

inductance will not affect the speed and current responses unlike with a small

variation of rotor resistance and magnetising inductance.

The speed and [sq current responses between the GA estimated parameters and the

ones by a 10% increase of LI, are illustrated in Figures 5.24 and 5.25 respectively.

It is quite obvious that the responses in both graphs are exactly the same for the

whole simulation (transient and steady state) time.

Speed vs time

250 .. -----~-------------~--------------i--------------;-- --:-:--~--~---::-:--:;-:~--:::--~--=-----~--_ _;__J
I , , ' ,

I , ' ':: :
.' ..' ..' '

-;; 200 - - - - - -- r------------r-------------(------------:--------------i - - - - - - -- - - - --; - - - - -- - -- -- - -~-- - --
~ 150::;;
.;.

: _- Speed response by GA estimated i
...... -------

2.6 2.8 3
time (sec)

3.2 3.4

."

:: 100a.
II>

50

2.4 3.6
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Isq current vs time
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5.5.4 Variation of Rotor Leakage Inductance (Llr)

While the stator leakage inductance presented an insignificant sensitivity to Our

system, it is quite interesting to see how the system behaves within the same

variation of a 10% increase of the rotor leakage inductance. In this case the new

value of L,,. will be 0.06116H and the new fitness function will be 1.96 times

greater than its initial one, FF~1.6662. Then, using the equation 5.7 the

sensitivity of the system can be caIculatedand it has been found equal to S=9.62.

This value is much greater than the one in the previous sub - section (5.5.3) but

smaller enough compared with the sensitivity of the rotor resistance and

magnetising inductance.

Figures 5.26 and 5.27 shows the effect of the 10% increase of L; in the speed and

(Iq current response correspondingly. From both speed and /.,q current responses, it

can be seen that there is a small error during the transient period while in the

steady state condition the error between the two responses is zero.
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Speed vs time
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Figure 5.26: Difference between speed responses with 10% increase of Llr
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Figure 5.27: Difference between Isq current responses with 10% increase of Llr

5.5.5 Variation of Stator Resistance (Rs)

The stator resistance of an induction motor is easy to measure (see Appendix C),

and so in this thesis it will not be included in the GA electrical estimated

parameters. This will reduce the electrical parameters to four (4) and so the GA

will have less computational burden and it will give more accurate results.
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However it is necessary the knowledge of the sensitivity of the stator resistance to

the system in order to see the influence on it.

Including an increase of 10%, the new R, value will be equal to R, '=5.7750. and

the new fitness function will be slightly decreased by FF~0.84859=0.99950xFF.

From equation 5.7, the sensitivity has been found equal to S=4.95xlO-3. This value

is very small compared with the sensitivity of Rr, L/I1 and Li; This means that the

decision of not including R, in the optimisation procedure is correct. In fact even

if its value is largely changed, it will not give substantial variation in the

responses.
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The effect of the 10% increase of R, in the speed and Isq current response are

illustrated in Figures 5.28 and 5.29 respectively. It is very clear that in both

figures, the error between the responses is zero for the whole simulation (transient

and steady state period) time. This supports the decision of not including R, in the

optimisation procedure.

5.5.6 Discussion and Analysis of the Parameters' Sensitivity

Of all the parameters, the magnetising inductance L; is found to have the highest

sensitivity and therefore its variations will influence the system largely. On the

other hand, the stator leakage inductance Lis has the less influence on the system

behaviour, having lower sensitivity. Table 5.7 shows the new fitness function and

the sensitivity of all parameters, according to the test variation of 10% in the GA

estimated parameters.

Variationof GA NewFitnessFunction
Sensitivityestimatedparameters (FF)of the system

Lm 7.1674 74.42

Rr 3.1053 26.57

10% u; 1.6662 9.62
variation

Lis 0.84906 5.89xIO·4

Rs 0.84859 4.95xlO·3

Table 5.7: Sensitivity of the estimated GA parameters

From Table 5.7 is easy to understand that the most important parameters that

affect the vector control I.M. drive and can influence the dynamic behaviour of

the system within a relatively small variation is the magnetising inductance Lm

and the rotor resistance R: The rest of them can influence the performance of the

system only if the variation is large enough.
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The sensitivity analysis also demonstrates that it is worth running the GA

optimisation only for R, and Lm. In this particular motor L; is much larger than Llr

and then it will not affect relevantly the rotor time constant. This is classified by

the following test. The whole idea is to find for the same fitness variation of

function, the percentage of the variation of each of the electrical parameters. For

example, from Table 5.7, let us use the first value of the fitness function which

corresponds to an alteration of 10% increase of Lm. It is possible to calculate that

to obtain the same value of FF, R, has to be increased by 35% and Llr by 65%

respectively. For the other two parameters, Lis and R; we need a tremendous

change of the rated estimated GA value to achieve such a FP variation.

5.6 Accurate knowledge of moment of Inertia J

It was noted that one of the limitations of this work is that the use of GAs for the

identification of electrical parameters, requires accurate knowledge of the

mechanical parameter moment of inertia 1. The first reason of this conclusion is

that GAs gives very different results from the estimated ones when trying to

identify both electrical and mechanical parameters. It was also noted that the

estimated parameters changed significantly when the value of inertia was

increased or decreased by 10% from its true value. So, an increase of the inertia I

by 10% caused an increase of the magnetizing inductance Lm by 10.05% and an

increase of I by 20% caused an increase of L; by 18.6%. This proves that the

mechanical parameters are very influential for the accurate estimation of the

electrical parameters through: GAs.

A potential solution to this limitation of the Genetic Algorithms is probably the

further modification of the Fitness Function (FF). In other words, a more

analytical investigation of the fitness function including other parameters (which

will be affected by the mechanical parameters) could solve this problem.

There are a couple of methods to accurately estimate the mechanical parameter.

One method which is used to calculate the inertia without knowing any of the

electrical parameters is presented in Appendix F.
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5.7 Parameter Identification under Poorly Tuned Vector Control

System

In this PhD thesis, the identification of the 1M parameters was successfully

achieved while all the experimental data (current, speed and voltage) were taken

under a well tuned vector controller. However, it would be interesting to

determine whether the GA can still accurately identify the parameters when the

experimental data come from a drive with poorly designed control parameters.

One way to do that is to change the rotor time constant in the vector controller.

Therefore, increasing the rotor time constant by 20% of the value which has been

found using the estimated parameters of Table 5.6 (T,.=0.1438), the increased

value will be equal to T,=0.1726. The new estimated parameters under rated

operating conditions will then be:

R,=4.1264n

Lm=O.5257H

A comparison of the above values with the ones from Table 5.6 for rated

operating conditions has to be made. Results show that both the resistance of the

rotor and the magnetizing inductance are almost the same. The rotor time constant

based on the new estimated values is equal to T,=0.141. This value is almost the

same with the one for the well tuned vector controller. This means that GAs is

robust and gives us accurate parameters in the case that the experimental data are

taken under a detuned vector controller.

5.8 Average Lm and R, for Varying Flux Levels

Given the nature of the optimisation and of the general transient measurements

used, the parameters estimation performed has identified a sort of average

parameters set. It would be interesting to be able to identify machine parameters

variations in function of some relevant quantities. A good exercise to verify this
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possibility is to apply the same methodology for example to estimate the

parameters under different flux levels. The results are a set of electrical parameters

for each specific operating condition, from which it is possible to extrapolate their

behavior in function of the flux level.

Figure 5.30 shows the behavior of the magnetising inductance L; in function of

the Isd*(flux level); as it can be seen the value of L", decreases as the flux increases

and in low flux level (below 50%) the value of L", is almost constant as it is

expected. This fact has also been previously experienced by Gerada et al. (2003)

and Sumner et al. (1993) for the same motor. This confirms the validity of the

proposed identification approach.
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Figure 5.30: Values of L", in function of the Is/' (different flux levels)
found by GA optimisation

Figure 5.31 shows the behaviour of rotor resistance R, in function of the motor d -

axes current r,/ (flux level); it can be noticed that the value of R, changes slightly

with different flux levels and this is due to either numerical errors or variation of

rotor temperature while the pilot experimental measures were taken.
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Rr vs Isd"
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Jound by GA optimisation

5.9 Chapter Summary

This chapter has presented an intelligent approach to estimate the Induction

Machine electrical parameters in a motor drive based on a Genetic Algorithm

heuristic optimisation approach, a simulation model and experimental transient

measurements. Based on both the simulation and experimental measured results it

is concluded that the use of the proposed strategy is an effective and reliable

method for induction motor parameter identification and for accurately modelling

the behaviour of the drive system. The total processing time for the PC was used

(conventional PC) was around 2 Y2 hours.

The sensitivity of the GA estimated parameters were effectively used so as to find

the influence of each parameter in the optimisation's fitness function. Results

were also verified through comparison of speed and Is,! current response within a

variation of 10% variation in each parameter. It was found that the magnetising
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inductance Lm and the rotor resistance R; appeared to have a large sensitivity to

our GA optimisation while the rotor leakage inductance Llr has a considerable

influence on it. The rest of the parameters, stator resistance R" and stator leakage

inductance Lis, present a limited importance in both speed and /sq current response.

The reliability of this technique in estimating the machine parameters behaviour

in function of different operating conditions (flux level) has been presented

successfully. The proposed method gives also the basis for an optimized and high

performance control design. Having proved this, it is possible in the same way to

estimate the motor parameters in function of other relevant variables and therefore

to have a better estimation of the electrical parameters for any operating condition.

In the next chapter, it will be introduced the methodology and the estimation of

the motor parameters for a vector control induction motor drive without speed

control as a function of load current for different magnetic loadings . Results will

give us important information about the values of the electrical parameters for

different working condition.
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Chapter 6

Electrical Parameter
Id ·f' ti c V ·':entl'lca :lon lor .arylng

Load and Flux Levels

6.1 Introduction

This chapter introduces a new non - intrusive approach for identifying induction

motor equivalent circuit parameters in function of varying load and flux levels and

based on heuristic optimisation. This strategy for parameter identification, just

need transient measurements of speed, current and voltage and can be applied to

motors already in service, like for example in a drive. In our case we use a vector

controlled Induction Motor (l.M.) drive and we also use an off line Genetic

Algorithm (GA) routine to tune a linear machine model.

The electrical parameters assumed to be known are the stator resistor, and the

stator and rotor leakage inductances. As already mentioned in the previous

chapter, the first one is easy to be measured, while the leakage inductances found
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to have a low sensitivity to the optimisation's fitness function (5th Chapter).

Therefore the only parameters which will be identified for varying motor

operating conditions are the magnetising inductance (LIIl) and the rotor resistance

(Rr).

For the experimental tests and the simulations, the implementation of the vector

control scheme has been slightly changed from the work done so far, as there is no

use of speed control. This implies the fact that one of the inputs of the vector

control is the lsq* reference current. The idea behind this is the use of different

torque producing currents (lsq*) and so having different load levels without

loading the machine.

The main idea of this chapter is to find, a relationship between the estimated

electrical parameters and the field torque producing currents. Therefore, the

precise estimation of the motor parameters under different operating conditions

will be very useful when designing the best values for the speed and current

controllers as well as the most acurate value for the rotor time constant T;

Experimental Induction
Motor Drive

Experimenral Isq

Experimental Sp~~d

+

Simulated Speed

EXl)el"iln~lItal Voltage V.

Simuliuk Model of
the IIV1DriveSimulat erl hq

+

+ Simulated Voltag~ V.

Isq error

Figure 6.1: Block diagram representing the optimisation set - up.
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6.2 Description of the Updated System

Figure 6.1 displays the optimisation set - up of the genetic algorithm system used

in this chapter. A comparison between the figures 5.1 and 6.1 shows the different

fitness functions of the two examined cases. This last case includes an additional

measurement of experimental transient response of the reference amplitude Vs

voltage (see section 6.2.1 for more details) from the controlled electrical drive test

rig which is also stored and used as reference signal for the optimisation. The Vv
was not actually calibrated against the actual measured voltage but the voltage

transducers have been calibrated before taking the experimental results. Equation

6.1 presents the new fitness function (FF) which becomes equal to:

FF = J{Wv ·IVsVoltage errorl +Ws ·lspeederrorl+W/ 'IIsq currenterrorl) (6.1)

where Wv, Ws, WI, are the weights of voltage, speed and current errors

correspondingly. The fitness function is displayed as the sum of 3 weighted

vectors (errors) which is the same as using normalized error. The purpose of using

these weights is to give to some elements in the sum more "weight" or influence

on the resulting fitness function. The values of these weights will be found based

on rated 'vq' and 'vd' reference current responses and they will be fixed in each

different operating condition. In order to design the values of these weights an

initial comparison of the voltage, speed and current error is necessary. In this way,

the largest error will always give a weight of '1' for simplification, while the other

two weights will be equal to the ratio between the largest error over its

corresponding one. For example, in case that the voltage error is the largest one

then:
voltage weight: Wv = 1

. h W voltage errorspeed werg t: s = -___::;:___--
speed error

. voltage errorcurrent weight: WI = ---'''-----
current error

(6.2)

To set the values of these weights before starting the optimisation, it is essential to
find at least an approximate estimation of these element errors. However, how this

can be done as the electrical parameters of the simulation model are unknown?
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The idea is to use the electrical parameters found in the 5th chapter in the

simulation model. Then each error can be calculated as the sum of the absolute

value between experimental and simulation model response as it is shown in

equation 6.3.

error = sum (abs(experimental response - simulation model response)) (6.3)

As a result of this, applying equation 6.2, it is easy to estimate the weights for

rated flux and torque producing currents (lsd *, Isq *). For this operating condition, it

was found that the voltage weight Wv is '1' as the voltage error is the largest one

in the vector controlled induction motor drive. The rest of the weights are: Ws =
15 and W, = 200. This also means that the current error of the absolute value

between experimental and simulation model response is the smallest one.

Applying these values to equation 6.1, the final fitness function is displayed as:

FF= J(lvs Voltage errorl+15'lspeed errorl+200'IIsq currenterrorl) (6.4)

Therefore, a comparable contribution of all elements to the fitness function will be

achieved.

6.2.1 Fitness Function

The new fitness function has been introduced in the above equation 6.4. It

contains one more element from the one presented in the 5th Chapter (equation

5.3). This new element is the error of the reference voltage amplitude Vs

calculated between experimental and simulation model responses. Generally, the

reference voltage amplitude Vs for the PWM modulation is equal to:

(6.5)

where VSq and Vsd are the output voltages of the PI current controllers from the
vector control diagram shown in the following figure 6.2.
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Vsq

Vsd

Isq
Isq

Isd

Rotor Time
constantTr

Figure 6.2: Vector Control Motor Drive without speed control.

However, in the experimental rig, it is not feasible to measure the voltages Vsq and

Vsd. The only voltages that can be measured through voltage transducers are the

Va, Vb. and Vc, input voltages for the induction motor. Through the 3-phase to dq

transformation, both Vsq and Y,d can then be calculated, stored and used as

reference signal for the genetic algorithm's fitness function. These signals are the

output of the PWM inverter and therefore have high frequency harmonics. On the

other hand, the simulation model does not include the PWM as the simulation

time will be too long and the GA optimisation will never end. However, the

average behaviour will be the same in both experimental and simulation model.

The main reason for using this extra element in the fitness function (voltage error

Vs) can be explained through an example which is shown in figures 6.3 and 6.4.

Figure 6.3 represents a tuned vector control load drive system in which the inputs

are the Isq * and (,d" reference currents. Typically PI controllers are used to control

these currents to their reference values. The outputs of the PI controllers are the d

_ q components of the voltage reference vector for the stator. These are the Y,d

and Y,q voltages which are used in equation 6.3. The values of these voltages are

calculated based on the rated Isq* and (,,'* reference currents. Since the system is

tuned the orientation considered of being ideal.
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Motor
Il1odell----l

4901

9003

Figure 6.3: Tuned Vector Control Motor Drive.

On the other hand, figure 6.4 presents a detuned vector control system with the

same inputs as in figure 6.3. In order to detune the system the rotor time constant

was increased by 30%. The three - phase output currents from the motor model

are determined as the measured ones and they are compared (after transformation

from 3 - phase to dq) with the input reference currents (desired ones). Analysing

both figures 6.3 and 6.4, it is noticeable that even if the measured and input

reference currents are the same, the V,q and V,d voltages are different. This means

that these voltages can give us significant information about the variation of the

parameters while the Field Oriented Control is detuned. So, this is a good reason

of including these voltages as an extra element in the fitness function.

Detuned system

Motor
modell----I

4.901

9.003

Figure 6.4: Detuned Vector Control Motor Drive.
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6.2.2 Identified Parameters

The electrical parameters which are going to be identified in this chapter for

different operating conditions (load and flux level) are the magnetising inductance

(Lm) and the rotor resistance (Rr). The choice of estimating only these two

parameters is due to the extensive parameters' sensitivity analysis offered in the

5th chapter.

6.2.3 Simulation Model Characteristics

It was previously mentioned that the inputs for the simulation model are the I.~d*
and Isq' reference currents. The flux (lsd *) will always be applied at simulation time

of 0 sec while the Isq' reference step current will be imposed when the flux is

settled down. The PI speed and current controllers are the same in both

experimental and simulation system and their values are the ones given in the 2nd

chapter. The rotor time constant inside the vector control algorithm will be the

same at all times in all operating conditions and its value is the one calculated from

the standard parameters (T,.=0.15087). Finally, the simulation (identification) time

will start a few milliseconds before the Isq' reference current is applied to the

system and will cover only the transient response.

6.2.4 GAs Characteristics

The method of minimizing the bounds of the electrical parameters through the

search space reduction method (SSRM) is also applied in this identification

approach. Consequently, five initial runs are performed using a traditional genetic

algorithm with elitist selection. Each run consists of 30 numbers of individuals and

30 maximum generations. The reason for this, which has been already explained

previously, is that beyond 30 maximum generations, the value of the fitness

function's error decreases with a very slow rate, showing an affect of

"convergence" .
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In this case the GAs optimisation settings selected are exactly the same of the ones

presented in the previous Chapter (see Table 5.3).

6.3 Results - Comparison

Before presenting the results, it is worth to mention the different sets of operating

conditions which will be used in the GAs optimisation set up. The I,d * current

response (which represents the flux level) will consist of 4 different sets (5.88A,

4.9A = rated value, 3.92A and 2.94A), while the lsq * current response will consist

of 5 different sets (l0.5A, 9A = rated value, 7.5A, 6A and 4.5A). The identification

of the parameters for these 20 different operating conditions will give us essential

information about the exact motor parameters in a wide range and therefore an

accurate design of the PI controllers and the rotor time constant T,will be possible.

As a starting point, these values will be set to the rated ones and so the motor will

run with a rated flux level (lsd' = 4.9A) and with lsq' = 9A. Therefore:

The obtained results are shown in the below Table 6.1.

Identified Motor Parameters through GAs

Electrical Parameters 1strun 2nd run 3rdrun 4thrun 5th run

Rotor Resistance (Rr) 4.2013 4.2051 4.2054 4.2052 4.2062 n

Magnetizing Inductance (Lm) 0.5358 0.5329 0.5321 0.5319 0.5319 H

Best Objective Value 2.5869 2.5753 2.5716 2.5713 2.5713

Table 6.1: GA Estimated Motor Parameters for lsd' = 4.9A and lsq * = 9A

Table 6.2 shows the final results after the Search Space Reduction Method

(SSRM) is applied and including the new parameter bounds.
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Final Parameters

RotorResistance(R,) 4.1984Q

MagnetizingInductance (Lm) 0.5313 H

Best ObjectiveValue 2.5711

Table 6.2: Final GA Estimated Motor Parameters
jar lsd' = 4.9A and Isq' = 9A

Figure 6.5 represents the [,q experimental current response together with the one

simulated the new GAs evaluated electrical parameters and the one obtained with

the GAs electrical parameters from the 5th chapter.

Isdk=4.9A - Isq*=9A
"Isq current vs time"
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Figure 6.5: Experimental, new GAs and GAs (5th Chapter)
[,q responses for 1.1,/=4.9A and Isq* = 9A

From figures 6.5 and 6.6, it can be seen the Isq current response behaviour with the

new GA evaluated electrical parameters present a slightly better match of the

experimental curve. This indicates that the GAs with the new fitness function,

give accurate and reliable identified parameters which are a closer representation

of the real ones for this particular operating condition.
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Figure 6.6: Zoom of Isq responses of figure 6.5

Figure 6.7 illustrates the experimental speed response plotted with the one

simulated using the new GAs evaluated electrical parameters and the one obtained

with the GAs electrical parameters from the s" chapter
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Figure 6.7: Experimental, new GAs and GAs (5th Chapter)
speed responses for I,d' = 4.9A and Isq' = 9A
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Figure 6.8: Zoom of speed responses of figure 6.5

Figures 6.7 and 6.8, shows that the simulated speed responses using the GA

identified parameters (5th Chapter) and the ones with the improved FP, present

both a really good match of the experimental curve. This shows the validity of the

two applied GA identification techniques.

Finally, figure 6.9 shows the Vs voltage responses in the same cases.
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From figure 6.9, it is obvious that the new GAs identified parameters present a

much better match from those obtained from the 5th chapter. This also shows the

effectiveness of the new proposed fitness function, counting these voltages as an

extra element in the fitness function.

Generally, the above figures verify that the proposed GA identification technique

with the new fitness function (equation 6.1) is a very precise and effective method

for identifying L; and R, in all operating conditions. The results obtained in all the

other 19 cases have not been included here for brevity.

Table 6.3 illustrates a matrix of the identified parameters for different field -

torque producing current variations. From this table it can be seen that the rotor

resistance is almost constant for all different conditions as it is expected. It can be

also observed that this value is approximately the same to the one identified in the

previous chapter and this difference can be due to numerical errors or variation of

rotor temperature or due to the improved fitness function. Analytical explanation

about the behaviour of the magnetising inductance will be displayed in the next

sub - section.

Isq= 10.5A
Isq= 9A Isq= 7.5A Isq= 6A Isq= 4.5A(rated)

Rr=4.2147 Q Rr=4.1986 Q Rr=4.1938 Q Rr=4.2254Q Rr=4.2078 Q
Isd= 5.88A Lm=0.4694 H Lm=0.4797 H Lm=0.4895 H Lm=0.4954 H Lm=0.5070 H

1.,d= 4.9A
Rr=4.2012 Q ~r=4.1984 Q Rr=4.2107 Q Rr=4.1896 Q Rr=4.1832 Q

(rated) Lm=0.5152 H Lm=0.5313 H Lm=0.5400 H Lm=0.5526 H Lm=0.5726H

Rr=4.2215 Q Rr=4.2201 Q Rr=4.2302 Q Rr=4.2156 Q Rr=4.2237 Q
Isd= 3.92A Lm=0.5486H Lm=0.5693 H Lm=0.5818 H Lm=0.5996 H Lm=0.6186H

Rr=4.1998 Q Rr=4.2156 Q Rr=4.2214 Q Rr=4.2064Q Rr=4.1925 Q
Ie= 2.94A Lm=0.5681 H Lm=0.5890 H Lm=0.6071 H Lm=0.6272 H L",=0.6412 H

Table 6.3: Final GA Estimated Motor Parameters
for all operating conditions
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6.3.1 Variation of Magnetising Inductance (Lm) for different operating

conditions.

Figure 6.10 presents the magnetising inductance (Lm) variation as a function of Isd

and Isq found through the current step response method detailed in this chapter. As

it can be observed, the value of LIIl decreases as the flux producing current

increases irrespective of the load current level. This is an expected behaviour due

to saturation of the main magnetising flux path, the same behaviour observed in

figure 5.30. It is also worth noting that the value of LIIl decreases as the Isq current

increases. This shows cross coupling between the d- and q-axis current

components possibly as a result of cross - saturation. This phenomenon has been

previously experienced by Gerada et al. (2003). They demonstrated through

simulation and experimental measurements a variation of the main flux as a

function of load current caused by cross saturation effects in IRP'O induction
machlnes arising from skew I~akage flux The r~sults are similar howey l' th
method proposed in this thesis has the distinct advantage of not needing a load

machines.

Lm vs Isd
with different Isq step current
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Figure 6.10: Magnetising Inductance vs Isd step responses
with variable Isq current responses
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Another important thing to note is the amount of inductance variation with load

current for different magnetic loadings. The results illustrate that when the

machine is operated with rated field current, and hence with the magnetic circuit

operating at the onset of saturation, the amount of variation of Lm with the load

current is considerably less than if operating at less than rated values Machine

operation in this region is often desirable to either extend the speed range or to

improve drive efficiency. The results presented indicate that the magnetising

inductance value is relatively sensitive to the load applied and appropriate

compensation within the control system would be needed if correct orientation is

to be maintained.

6.3.2 Improvement of the vector controlled drive

The improvement that can be achieved on a vector controlled drive by using the

results of the GA tuning (Table 6.3) will be demonstrated in the figures below. In

this case, a look - up table including all the results from table 6.3 has been used in

the experimental model to represent the rotor time constant and therefore for each

different operating condition (different flux and load level) the rotor time constant

will change accordingJy. Figure 6.11 illustrates the schematic diagram of the

vector control model which was used in the experimental simulation model.

Figure 6.11: Vector Control block diagram with look - up table.
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Figure 6.12 represents the magnitude of the fundamental current for both a fixed

and an auto tuning (through the look - up table) rotor time constant (Tr) while the

flux is changing (decreasing) and the load is constant. As it can be seen the

current with the auto tuning t; is smaller than the one with the fixed T; meaning

that the performance of the vector controlled drive has been improved. As in a

vector controlled drive, the best tuned system will give maximum

Torque/Ampere, this proves the effectiveness and improvement of this method.

Therefore GAs can be a suitable method for achieving a high performance of

electrical servo drives. Finally, Figure 6.13 shows the value for both the fixed and

the auto tuning rotor time constant (Tr), while figure 6.14 illustrates the change in

the lsdr and lsqr currents.
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Rotor time constant vs time
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6.4 Chapter Summary

This chapter has presented a novel Induction Machine electrical parameter

estimation method in a vector control drive as a function of varying load and flux

levels, based on a GA optimisation approach. The main benefit of the proposed

approach is its ability to estimate these parameters through the current responses

to step demands without the need of any loading mechanism. This can be

potentially a very useful method for drive self-commissioning and for machines

where a loading mechanism does not exist. This chapter also highlighted the fact

that the variation of the magnetising inductance is not only a function of the field

producing current but as well of the load current. It was also shown that this

variation was particularly pronounced at low field current levels. Optimal drive

operation would require an adaption of the slip calculator as a function of field

and torque currents to ensure the highest torque per ampere.

The implementation of the vector control scheme has been altered from the work

done so far as there is no use of speed control. This is due to the fact that lsq step

current response used as input in the vector control scheme. In this work, there is

also a change in the fitness function as it contains one more element (reference

voltage amplitude for the PWM modulation) from the one introduced in the 5th

Chapter. Weights are also used as a comparable contribution of all elements to the

fitness function. Their design was achieved by evaluating and comparing all the

element errors of the fitness function during rated flux and load level.

The reliability of this identification strategy was successfully demonstrated by

comparing the simulations obtained with a GA tuned model and the experimental

measured results in the same conditions. In particular, the quantities which have

been shown are the speed, lsq current and Vs voltage responses. The error between

the simulated and experimental responses has been minimised.
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Chapter 7

Conclusions and
Future Work

7.1 Conclusions

This thesis reports the results of a detailed investigation about the application of

Genetic Algorithms to identify the electrical parameters of an induction motor

under different operating conditions non - intrusively, when it is already inserted

for example in a rotor flux. oriented motor drive. Genetic Algorithms (GA) has

been chosen as system identification method, it works on the basis of natural

selection and uses only forward analysis. Hence, GA can readily be applied to a

wide range of problems without the need for reformulation of equations or

auxiliary information such as gradients required by some classical techniques. In

addition to this, GA is less prone to premature convergence to local optima as

searches in a global sense.

A literature review on different identification methods of I.M. parameters was

included in Chapter 1. The application of intelligent methods was also introduced
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and the importance of using more advanced algorithms on real - world problems

was underlined.

An extensive analysis of the Indirect Field Oriented control technique for cage _

type induction motor drives was presented in chapter 2. The design of the dq

current and speed loop for the drive vector control was also explained. This

chapter also included a study of parameter sensitivity in high - performance IFOC

induction motor drives and parameter adaptation methods were analytically

explained in order to overcome the effects of parameter sensitivity.

The foundation for understanding genetic algorithms, their power, their mechanics

and their weaknesses was introduced in Chapter 3. A classification of optimisation

algorithms according to the different approaches and techniques, highlighting

their importance was also presented. In this chapter, Genetic Algorithms have

been introduced and analysed as a stochastic global search technique. The basic

concept of GAs is to simulate processes in evaluation of natural systems,

specifically those that follow the principles of survival of the fittest. An analytical

explanation of the differences between GA and other traditional search algorithms

was also given.

The development of a robust and efficient identification strategy based on GA was

also presented. The two - tier strategy proposed in this thesis has been designed

primarily for structural identification problems but is robust enough to be applied

to a range of problems. At the first tier a modified GA based on migration and

artificial selection (MGAMA.s) is used to identify the motor parameters within

some given parameter search limits. An upper tier, the search space reduction

method (SSRM) uses the results from the MGAMAS to assess the extent to which

the parameters have converged and reduces the search space accordingly. The

MGAMAS then searches within the reduced limits resulting in a more efficient

and accurate estimation of the parameters. The MGAMAS provides robustness to

the search strategy, simultaneously allowing for broad search while preserving

and improving the most promising individuals. In this case, the population is split

into multiple species, with real value encoding of variables and appropriate

mutation operators, controlling the search direction in each species. Rank based
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selection is used to maintain a constant selective pressure, while a tagging

procedure guarantees diversity in the pool of best solutions.

Another technique that was presented in this thesis for improving GA is called

cataclysmic mutation. This algorithm introduces a new diversity into the

population via a form of restart the search when the population starts to converge.

Cataclysmic mutation uses the best individual in the population as a template to

re-initialise the population.

Sigma truncation scaling method has been also described. This method was

designed as an improvement of linear scaling to deal with the negative evaluation

values that appear in a run when most population members are highly fit but few

of them have a very low value.

The experimental setup that was used to develop and test this new machine

parameters identification method was briefly introduced in chapter 4. The overall

structure of the experimental system has been shown and a detailed description of

the hardware equipment is given. The test rig utilise a squirrel-cage 4kW

induction machine and a 7.5kW IGBT inverter. The induction machine is coupled

to a DC machine (act as loading devices), which is rated at IOkW and fed by a 4-

quadrant converter.

Chapters 5 and 6 presented the core of this work, where the non - intrusive novel

Induction Machine electrical parameters estimation method has been described

and tested. The strategy based on a Genetic Algorithm heuristic optimisation

approach, a simulation model and experimental transient measurements is able to

identify the machine parameters directly in a motor drive. Based on both

simulation and experimental investigations it is concluded that the use of the

proposed strategy is an effective and reliable method for induction motor

parameter identification. The reliability of this technique in estimating the

machine parameters both in an average set and in function of different operating

conditions (flux levels) has been presented successfully. This method gives also

the basis for an optimised and high performance control design.
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Finally, the identified parameters' behaviour in function of flux (Isd *) and torque

(Isq *) level has been re - constructed using the new proposed fitness function.

Results from figure 6.10 illustrate that the value of L; decreases as the flux

producing current increases irrespective of the load current level. On the other

hand, the value of R, remains almost the same for all operating conditions.

7.2 Future Work

The proposed GA strategy has proved to be an accurate off line algorithm and it is

a novel approach for identifying the electrical I.M. parameters if appropriate

measurement and objective functions are available. It can be further improved by:

» Incorporating more advanced GA techniques to increase the convergence

speed and accuracy of the proposed method.

» Studying different performance indices in order to select the best objective

function to this type of problem.

Generally, application to real systems depends heavily on how well the

mathematical model is able to reproduce the response of the actual system. For

GA for example, when using more complex models, it may unnecessarily increase

the computational time and make convergence difficult. Hence, an improvement

is to use models which have a good physical connection to the actual system but

are simple enough that simulations can be carried out in a reasonable time. This

research would involve for example looking into different types of finite element

models or various time - history integration schemes to determine how the system

response can be properly modelled in a simple way.

The next step would be to have an on - line system identification using genetic

algorithms being applied to the drive experimental rig. In this case a very robust

system identification scheme would be in place. If anything changed in the system

thereafter, such as heating on the motor resulting in a increase of the rotor

resistance, this scheme of system identification should still be able to produce

167



Chapter 7: Conclusions and Future Work

accurate models. However, the main argument of this idea is how to find a way to

reduce the computational time as the system will be too slow.

Genetic algorithms could also be used in designing the PI controllers and hence

producing a truly self - tuning system. If a change in the system occurred, the

identification procedure would automatically produce a different model. The

controller would then adapt to this new model without the need of engineer

intervention.
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Appendix A

A. Induction Motor Equivalent Circuit

The simplified equivalent circuit for an induction machine is shown in the below

Figure A.I:

Figure A.I: Simplified Equivalent Circuit for an Induction Machine

The equivalent circuit can be represented the steady state behaviour of a three-

phase Induction Motor. So, the equivalent circuit parameters are:

• Rs: stator resistance

• Rr: rotor resistance

• LIs: stator reactance

• LIr: rotor reactance

• Lm: magnetising reactance

and the outputs of the equivalent circuit are:

• Is: stator phase current

• Ir: rotor phase current

• 1m:magnetising current
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• Te: developed torque

• Pout: output power

From the above equivalent circuit it can be assumed that:

ZI = R, + j .me . Lis
Z2 = j .We . Lm

The stator phase current is given by:

I = V
s

ZI + z,
and the rotor phase current:

I = I Z2
r s so, the magnetising current is:

Z2 + Z3 + Z4

The electrical torque is given by:

3 p I; Rr OJ -(j)re = ·2·-. - and because the slip is equal to S= e r then:
s ~ ~

~ For the starting conditions the slip is equal to 1, s = 1

~ For pull - out conditions we have to find the slip at the maximum torque,

so it is :

dT =0,
ds

_ Rr
spull out - ~ 2

- Rth + (X r +X til) 2
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A.I Thevenin theorem of the equivalent circuit of Induction Motor

Thevenin's theorem states that it is possible to simplify any linear circuit, no

matter how complex, to an equivalent circuit with just a single voltage source and

series resistance connected to a load.

Thevenin's theorem is especially useful in analyzing power systems and other

circuits where one particular resistor in the circuit (called the "load" resistor) is

subject to change, and re - calculation of the circuit is necessary with each trial

value of load resistance, to determine voltage across it and current through it.

Figure A.2 represents the Thevenin's theorem equivalent circuit.

Figure A.2: Thevenin's Theorem Equivalent Circuit
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From the above circuits it can be found that:

and

oi ·L2 ·RR - ems
rh - R2 + (m L + m L )2'

s e Is e m
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AppendixB

B. Simulink Implementation of Induction Machine Model

The advantage of Simulink over circuit simulators is the ease in modelling the

transients of electrical machines and drives and to include drive controls in the

simulation. As the equations are known any drive or control algorithm can be

modelled in Simulink.

B.1 InductionMotorModel

One of the most popular induction motor models derived from the below dynamic

equivalent circuit (Figure Bl) is Krause's model.

According to his model, the modelling equations in flux linkage form are as

follows:

«: [ OJ R ]_. =OJ v __ eF +_s (F -F)
dt b qs ds X mq qs

OJb . Is
(B I)

dF [ OJ R ]_!l!_=OJ V' +_eF +_s (F -F)dt b ds (j) qs X md ds
b Is

(B2)

dFqr = m [v _(me - mr) F + Rr (F - F )]
db qr dr X mq qr
t {JJb Ir

(B3)

dFdr [ (me - mr) F s, (F ]_- = mb Vdr + qr +- md - Fdr)~ ~ X~ (B4)
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(a)

(b)

Figure B1: Dynamic or d - q equivalent circuit of an induction machine

. [Fq, Fq,]
F =X -+- (B5)mq ml

Xis xlr

F · [Fm Fd,]md =»: -+- (B6)
Xis x..

iqs = _1_(Fqs - Fmq) (B7)
Xis

ids = _I (Fds - F md ) (B8)
Xis

t; = _1_(Fqr - F mq) (B9)
Xlr

idr =_1 (Fdr-Fmd) (BIO)
x..
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where

Appendix B: Simulink Implementation of Induction Machine Model

(BII)

( 2J dio,T-T=J--
e L p dt (BI2)

• d: direct axis,

q: quadrature axis,

s: stator variable,

r: rotor variable,

Fij is the flux linkage ( i=q or d and j=s or r),

Vqs. Vds: q and d - axis stator voltages,

vqr, Vdr: q and d - axis rotor voltages,

Fmq,Fmd: q and d axis magnetizing flux linkages,

R, : rotor resistance,

R, : stator resistance,

XIs: stator leakage reactance ( WeLls),

Xlr : rotor leakage reactance ( WeLlr),

•
•
•
•
•
•
•
•
•
•
•
•

• iqs, ids: q and d - axis stator currents,

iqr, idr : q and d - axis rotor currents,•
• p: number of poles,

• J: moment of inertia,

• Te: electrical output torque,

• Tdor Ti): load torque,

• We:stator angular electrical frequency,

• Wb:stator angular electrical base frequency, and

• o,: rotor angular electrical speed.

In our case, we are using a squirrel cage induction machine so Vqrand Vdrin (B3)

and (B4) are set to zero.
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The five differential equations that represents an induction machine model can be

solved by rearranging them in state - space form, .x = Ax +b where x=[FqsFdsFqr

Fdrffir]Tis the state vector. Note that Fij= 'Vijffib, where 'Vijis the flux.

As a consequently, state - space form can be achieved by inserting (B5) and (B6)

in (BI - B4) and collecting the similar terms together so that each state derivative

is a function of only other state variables and model inputs. Then, the modelling

equations (Bl - B4 and B12) of a squirrel cage induction motor in state - space

become:

dFqs = 0) [ _ OJe F + Rs (X:I F +(X:I -lJF )]
db Vqs ds X X qr X qs
t OJb Is Ir Is

(Bl3)

dFd [ OJe s, (X:I F (X:I J )]z:»: =0) v +-F +- -- +---1 F
db ds qs X X dr X dst OJb Is Ir Is

(BI4)

dFqr =W [- (we -aJr) F + Rr (X:I F +(X/:I -1)F Jl
b dr X X qs X qrdt aJb Ir Is Ir

dFdr =(j)[(We-Wr) F + Rr (X:I F +(X/:/_l)F Jl
b qr X X ds X drdt Wb Ir Is Ir

(B15)

(BI6)

dOlr ::: (L)CT - T )
dt 2J e L

(BI7)

B.2 Simulink Implementation

The inputs of a squirrel cage induction machine are the three - phase voltages,

their fundamental frequency and the load torque. On the other hand, the outputs

are the three - phase currents, the electrical torque and the rotor speed.

The d - q model requires that all the three - phase variables have to be

transformed to the two - phase synchronously rotating frame. So, the induction
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Appendix B: Simulink Implementation of Induction Machine Model

machine model will have blocks transforming the three - phase voltages to the d -

q frame and the d - q currents back to the three - phase.

The induction machine model implemented in this paper is shown in figure B2

below. As it can be seen, it consists of four major blocks: abc - syn conversion,

syn - abc conversion, unit vector calculation and the induction machine d - q

model blocks. There is actually another block, the 0 - n conversion block that is

required for an isolated neutral system, otherwise it can be bypassed.

step

sin(thet ••• )'I-+-L.--------------I1-J

COJ(th.t •• )'!-+---------------I

iqS.t-----+!iqS

icis.t-----+!I ••

Induction Motor
d-q model

!a,ib, le

Figure B2: The complete induction machine Simulink model

B.2.1 Unit vector calculation block

Unit vectors cosu, and singe are used in vector rotation blocks, "abc - syn

conversion block" and "syn - abc conversion block". The angle, Se is calculated

directly by integrating the frequency of the input three - phase voltages, We.

Be = fmedt (BI8)

The unit vectors are obtained simply by taking the sine and cosine of Se. This

block can be shown at the below figure B3:
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theta-e

Constant Integrator Trigonometric
Function

Trigonometric
Function1

Figure B3: Unit vector calculation block

B.2.2 Induction Machine d - q model block

The inside of this block can be shown from the below figure B4 where each

equation from the induction machine model is implemented in a different block.

Column 1

Fdr

Column 2 CoJumn3 Column4

Fmd

iqr

idr

4~-+----------------------------------------------------~
TI

Figure B4: Induction machine dynamic model implementation in Simulink
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Appendix B: Simulink Implementation of Induction Machine Model

The first column consists of four blocks that each of those represents the flux

linkage state equations where these equations could be implemented using

Simulink "State - space" block. Figure BS shows what is inside of the block

solving the equation (Bl). All the other blocks in column are similar to this block.

The blocks in column 2 solve the equations (BS) and (B6). Equations (B7-BI0)

use the flux linkages to solve for the stator and rotor d and q currents. The fourth

and the last column include the electrical torque calculation from (B11) and the

rotor speed calculation using the last state equation (BI2). The rotor speed

information is required for the calculation of the rotor flux linkages in column 1.

2
Vqs

4 )--------+1
wo

rds

(Xm"/Xls)1

Figure B5: Implementation of(B/) in Simulink

The resulting model is modular and easy to follow. Any variable can be easily

traced using the Simulink "Scope" blocks. The two blocks on column 4 calculate

the torque and the speed of the induction machine, which can be used in torque

control or speed control loops. These two variables can also be used to calculate

the output power of the machine.
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c. No - Load Test

To simulate the open - circuit test we need to run the motor with a slip of zero, so

in this case the referred resistance of the rotor (R2/ s) will be infinite and then the

rotor current will be zero. In order to be able to achieve zero slip we have to drive

the motor from another source such as a synchronous motor. We have also to run

the test at rated frequency and with balanced 3 - phase voltages applied to the

stator terminal. The measurements that are available from the no - load test if we

suppose that the motor is operating at rated electrical frequency fr are:

VNL = line - to - neutral stator voltage [V]

1NL= line current [A]

PNL = 3 - phase electrical input power [W]

In order to estimate the line - to - neutral voltage we have to measure the line _ to

-line voltage and then to divide by .J3 (for a 3 - phase motor).

At no - load, we need a small value current (rotor) such as to overcome the

friction and the windage losses that are linked to the rotation by producing an

adequate torque. As a consequence, the value of rotor loss eR is insignificant

small. Even though the tests are used to obtain the equivalent circuit parameters of

an induction motor are almost the same as for the transformer, in an induction

motor the magnetizing path includes an air gap which plays an important role to

the equivalent circuit because it increases the exciting current. Moreover, we have

to think that the value of the no - load stator eR loss will be considerable because

of the significant increase of the exciting current.
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When the motor is running it is possible to find the rotational loss Prot by

subtracting the stator eR losses from the no - load input power (the rotor eR

losses are neglecting).

(Cl)

For the reason that the value of the stator resistance Rs depends on the stator -

winding temperature then we have to use the correct value to the equation (Cl) of

. the no - load test.

It can be seen from the previous paragraphs that the core-loss as well the core -

loss resistance are neglected and the entire no - load losses to friction and

windage losses are assigned. There are many ways to separate the friction and

windage losses from the core losses. As an example is that when the motor is not

connected to the supply energy then an external motor can be used to drive the

rotor to the no - load speed and the rotational loss will be the same to the output

power.

In a different way, if the motor is running at no load and rated speed and if it is

not connected to the power supply, the decrease in motor speed will be measured

by the rotational loss as:

dm ProtJ __ m =-T
rotdt mm

Where: J is the rotor inertia, Prot is the rotational loss

The rotational loss at any speed ltlm is:

(C2)

(C3)

In addition, the rotational losses at rated speed can be calculated by equation (C3)

as the motor stop working when it is operating at rated speed.

Then the core losses can be determined as:

~ore = Pnl - P,ot - 3I;'n1Rs (C4)

The voltage drop across the stator resistance and leakage reactance can be ignored

under no - load conditions because the stator current has very small value. So, in
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this case the voltage across the core - loss resistance will be the same to the no _

load line - to - neutral voltage and the core - loss resistance can be determined as:

3VS
2
nlR = '

c ~ore
(C5)

In order to make the equivalent circuit simpler than before and for the cause that

the motor is working under the rated speed and the rated voltage, then the core _

loss resistance will be unimportant in the equivalent circuit so, it is obviously that

the core - loss resistance can be ignored and to simply include the core losses

with the rotational losses.

At no - load, the motor slip Snl is very small and as a consequently the rotor

resistance R2/Snl is very large. The parallel combination of rotor and magnetizing

branches then becomes jXm shunted by the rotor leakage reactance X2 in series

with a very high resistance, and the reactance of this parallel combination is equal

to Xm. As a result the reactance Xnl measured at the stator terminals at no load is

equal to XI+Xm, which is the self reactance Xll of the stator.

(C6)

So, the self - reactance of the stator can be determined from the no - load

measurements. The reactive power at no load Qnl can be determined as:

(C7)

where

(C8)

is obviously the total power input at no load.

The no -load reactance Xnl can be calculated as:

x = Qnl
nl 3.]2

I,nl
(C9)

At no -load the power factor is small because the reactive power is much larger

than the total input power ( Qnl »Pnl ) so the no -load reactance is almost equal

to the no - load impedance.
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(ClO)

Blocked - Rotor Test

The blocked - rotor test will take place when the rotor shaft is clamped so the

rotor remains stationary (hence the slip is equal to unity) with the rotor terminals

short - circuited for a wound - rotor machine. Then we apply a reduced

electromotive force (emf) to the stator terminals such as the full - load current

flows in the stator windings.

With the rotor locked the input power, voltage and current are measured at a

fraction of rated voltage to limit the input current and prevent overheating.

The measurements that are available from the blocked - rotor test are:

• Vl,bl = The line - to - neutral voltage [V]

• Il,bl = The line current [A]

• Pbl = The total 3 - phase electrical input power [Wi

• fbi = Thefrequency of the blocked - rotor test [Hz]

The equivalent circuit for blocked - rotor conditions are very similar to that of a

short - circuited transformer. The blocked rotor leakage impedance of an

induction motor may be affected by magnetic saturation of the leakage - flux

paths, by rotor frequency and by rotor position but the affection of the last one is

small with squirrel - cage rotors.

The performance conditions of the blocked - rotor test such as the current and

rotor frequency are approximately the same as those when the motor is running

under operating conditions. As an example if we take into consideration the motor

characteristics during starting condition then the slip is very close to unity and the

blocked - rotor test should be taken at normal frequency and with currents

approximately the same as came across in starting. On the other hand, in normal

running conditions of the motor, the blocked - rotor test should be taken at a

reduced voltage and frequency, since the values of rotor effective resistance and

leakage inductance at the low rotor frequencies that means the values of slip will
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be small as well, may be considerably different from their values at normal

frequency, especially with double - cage or deep - bar rotors.

According to the blocked - rotor measurements, the blocked - rotor reactance can

be found from the blocked rotor reactive power:

Qb/ = ~S;/ - Pb; (Cll)

where

s; = 3·VI,bl • Il,bl (C12)

is the total blocked - rotor apparent power. The blocked - rotor reactance, at rated

frequency is:

x _(LJ.( Qbl J
bl - fbi 3· ]l~bl (C13)

The blocked - rotor resistance can be calculated from the blocked - rotor input

power as:

R = PbI
bl 3.]2

l,hl
(C14)

Once these parameters have been determined, the equivalent circuit parameters

can be determined. From the below figure Cl and under blocked - rotor

conditions can be determined the stator input impedance with slip equal to unity

(s=1) as:

(C15)
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RI XI a X2

1 , ••11 b

!1m R2
V'I Zf -S

\ x,

b

Figure Cl: Equivalent circuit with the core <loss resistance R; neglected

If we assume that R2 « Xm then the equation C15 is converted as:

(C16)

From the above equation C 16 the apparent resistance and reactance under blocked

- rotor conditions are given by:

(CI7)

and

(CI8)

From equations C17 and C 18, the rotor leakage reactance X2 and resistance R2

can be found as:

(CI9)

and

(C20)

As referred on the no - load test, the stator resistance RI varies with stator _

winding temperature so, when applying equation C20, care should be taken to use

the value corresponding to the temperature of the blocked - rotor test.
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Substituting for Xm from equation C6 into equation Cl9 gives the rotor leakage

reactance X2 in terms of the measured quantities Xnl and Xbl and the unknown

stator leakage reactance XI.

( )(Xnl-Xl]X2= Xbl-Xl·
Xnl-Xbl

As it can be seen from the equation C21 it is mathematically impossible to find an

(C21)

equation in which we can determine the quantities X, and X2 separately so, if the

motor class is unknown, it is very usual to assume that XI and X2 are equal.

In this case, from equation C21 the quantities XI and X2 can be determined and

then from equation C6 can be determined the magnetizing reactance Xm as:

(C22)

Eventually, knowing the values of Xm and X2 as well as the value of the known

stator resistance, from equation C20 can be determined the rotor resistance R2•

Stator Winding Resistance

As the windings are hot after the blocked - rotor test, the resistance between each

pair of stator terminals can be measured by means of a bridge. Half of the average

of the three resistance measurements gives the per - phase resistance of the stator

windings, in case of that they are wye - connected.

Squirrel- Cage Motor Ca~culations

The most important equivalent - circuit parameters may be calculated from the

results of both no -load and locked - rotor test as follows:

On no - load the slip s is equal to zero so that in figure C2,

R' .
~»!Rs + jXL!s n (C23)
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Rs jXL R'R
la I'A Sr- --+

1M!

Va jXM

Figure C2: Equivalent circuit employed/or analysis

As a result, the equivalent circuit under these conditions may be shown in figure

C3(a).

In regarding the circuit of figure C2 we have neglected the core losses in the

machine. However, core losses may be taken into consideration by a resistance

connected across the stator terminals and it must be combined with the parallel

resistance R' s / s to give a resistance Rtor, which accounts for the rotational losses

of the motor due to friction, windage and core loss. The resulting circuit is shown

in figure C3(b).

1NL I'A 1NL Irot

1 • --+ 1 • --+1M! 1M!
VNL/(3 jXM R'Rls VNL/(3 jXM Rrot

(a) (b)

Irot
1It---,.- .....,-------+ VNl/{3,,,

I,,,
1NL
(c)

Figure C3: Induction motor no - load test.
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The combined resistance Rrot is greater than the magnetizing reactance of the

motor, which operates on no - load at a low power factor. The phase diagram for

this condition of operation is shown in figure C3(c), where

p
cos¢'= NL (C24).J3 .VNL • 1NL

I rot = 1NL cos¢'(A) (C25)

IM = 1NL sin¢(A) (C26)

Then

VX = NL (Q)
M Ist; (C27)

In most machines, 1M »Iroh so that the magnetizing reactance is very little greater

than the no - load impedance as seen from the stator terminals. That is,
. V

X - Z - NL (A)
M = NL - r:::; olot.-n .1NL (C28)

Under locked - rotor conditions the slip is equal to unity (s=I). For most

induction machines,

(C29)

Thus the branch XM may be considered an open circuit and the effective

equivalent circuit is that shown in the below figure C4

Rs jXt R'R

Figure C4: Induction motor locked - rotor test
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Locked - rotor resistance is:

(C30)

Locked - rotor impedance is:

(C31)

Locked - rotor reactance is:

(C32)

and to a close approximation,

(C33)

All the above parameters were calculated according to the squirrel - cage motors.

If a wound - rotor motor is to be employed, it will try to set up an external rotor

circuit resistance for the purpose of starting and/or speed control. For this reason it

is very important to know the effective turns ratio, the factor k and the actual rotor

_ circuit resistance.

Ratios of Terminal Potential Difference to Induced Electromotive Force

Clamp the rotor. Open circuit the rotor terminals and apply rated electromotive

force (emf) to the stator terminals. Measure the electromotive force appearing at

the rotor terminals. As may be seen from the below figure CS, this will give the

ratio VaiEmA'
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Pmal PmA I
I •
I
I

Nre I jwsLlr Rr

rv.
Rs Nse

Phase "an Phase "An

Figure CS: Per - phase equivalent circuit of the stationary motor

Open circuit the stator terminals and apply rated rotor potential difference (emf) to

the rotor terminals, From figure C5, this will give the ratio EmaNA.

Normally,

(C34)

and

(C35)

Since

X ms = OJsLms (.0) (C36)

then

Va = Nse Va ::::Nse (XIS + Xms J
EmA Nre Ema Nre X ms (C37)

Similarly

(C38)

For a wound - rotor motor, on the basis of symmetry of the leakage flux paths, it

may be supposed that

Xis = X;r (C39)

Then, from Eqs. (C37) and (C38), the turns ratio is given by
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Nse = [~ Ema ]112
n; EmA VA

The factor k may also be obtained from Eqs. (C37) and (C38) as:

(C40)

(C41)

so

k = _X_..:;..::ms_ = [Ema EmA ]112
x ; + Xis VA Va (C42)

Rotor Winding Resistance

The actual winding resistance Rr· is measured in the same way as the stator

winding resistance, but it can be under consideration that the measurements must

be made between the slip rings (not between rotor terminals, since this would

cause an additional resistance into the measurements according to the brush

contact resistance). Then

. R'R =_r
R k2

This value should correspond closely with that obtained from Eq. (C33).

(C43)
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D. Dynamic Equations of the Induction Motor

The dynamic equations of an induction machine are always written for the equivalent

2 - coil system. They can be written in:

• stationary or stator up frame

• a frame rotating at Ole - the dq frame

• (a frame rotating at Olr - fixed to the rotor)

The four equations governing the behaviour of the induction motor 10 the dq

(arbitrary) frame are:

a. stator equations:

(D1)

(D2)

b. rotor equations:

0- Rr IIF +'!!:_IIF - LmRi - OJ 'If- L '!' rd dt '!' rd L r sd si'!' rq
r r

(D3)

(D4)

It can be noticed from equations D1 - D4 that there are 4 state variables:

i i vr d "' • These equations can also be written with different stages e gsd r sq r't' r 'T rq ••

i iii but there will always be four equations, two for the 2 - phase stator coilssd r sq' rd ? rq

and two for the 2 - phase coils.
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The field orientation equations can be written by taking the equation 01 - 04 and

placingw., = o.

(05)

(06)

ORr d i; R·
=-L v: +d If/rd - T rlsd

r t r

(07)

(08)

where (1is the leakage coefficient:

LsLr-L~a =___::'---'--~
LsLr

From equations 05 to 08, the only interesting ones are the rotor equations (07, 08).

(09)

The stator equations are not very useful and so they can be omitted. Therefore, letting

If/rd = L)mrd (where imrd is called the "equivalent magnetising current") then

equations 07 and 08 becomes:

L, d I I - I
_- mrd + mrd - sds, dt (010)

R
OJ - r Isi - sq

L,Imrd
(011)

Equations 010 and 011 are called vector field equation and vector constraint equation

correspondingly and often termed as "vector control equations".
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E. ReferenceFrames

Vector control involves controlling the Induction Motor in field oriented co _

ordinates (using Vsd, Vsq, lsd, Isq, If/rd)'

However, in vector control there are three different reference frames as it can be

seen in figure E.l. These frames are:

• The stator frame a.~which is stationary

• The rotor frame (a.~) which rotates at the rotor frequency wr with respect

to the stator frame

• The synchronous frame dq which rotates at the excitation frequency

We with respect to the stator frame.

(13)

q

We d
Synchronous frame

( Cl)
OOr ,,6

-.....;.>' Rotor frame
Asi ...............'
"

Cl

Stator frame

Figure E.I: Vector Control of 1M reference frames
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From figure E.l, Arepresents the angles between different reference frames and ID

represents the angular frequencies. The relationship between them is shown in

equation E.l.

dA- dA- dA-m =_r m =_e m = _s_1 =m - m
r «' e «' si dt e r

(E.l)

Where OJ"I is called the slip frequency.

E.1 Transform to Field Orientation

We must transform the 3 - phase stator quantities in 2 - axis dq quantities. This

can be achieved within the transformation from "3 - phase to (l~" and then from

"(l~ to dq". It is known that:

(E.2)

.21r Air
. J- J-

I = I eJo + I e 3 + I e 3r b y (E.3)

E.1.1 Transformation to up (from rby to uP)

Figure E.2 shows the block diagram from the 3 - phase stator currents to 2 - axis

dq currents.

I ~

IsrIso : 3/2 IsbIsjl Isy

Figure E.2: Block diagram of a 312 transformation

Figure E.3 represents the geometrical transformation from 3 - phase to 2 - phase

stator currents:
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Isr

la

Isy

Figure E.3: Geometry of a 3/2 transformation

So, from figure E.3, it can be easily calculated that:

{
I a = I,,. - I,), cos 60° - I,,, cos 60

o
} ~

I j3 = Is), cos 30° - l"b cos 30°

(EA)

Moreover, from the balance condition:

t; + Isb + l; = 0 (E.S)

From the equations E.4 and E.S, it can be found the following equations E.6 and

E.7 that are showing the conversion from 3-phase currents to I anda

Ij3 components.

I = 'iIa 2 SI'
(E.6)
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/ =J3/ _J3/
P 2 sy 2 sb

(E.7)

E.1.2 Transformation to dq (from (l~ to dq)

If the angle A between the a~ stationary frame and the dq synchronously rotating

frame is known, the transformation can be represented as shown in figure EA.

Isd

Isq

-jAe
....-

r A

Isa

ISI3

Figure E.4: Block diagram of a af3 /dq transformation

From figure E.S, the flux and torque components of the current vector are

determined by the following equations:

{

lsd(t) = /sa(t)COSA+ lsp (t) sin A }

1,q(t) = -l,a (t) sin A + l,p (t) cos A

q

Isa a

Figure E.5: Stator current space vector and its component in (a,f3) and in the dq
rotating reference frame
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The symbol e-jA is used since:

I sdq = I sd + jISq = I sape - jA_ is the vector form of relating the dq currents to the

up current.

E.2 Transform FROM Field Orientated

The inverse transformations are also required.

E.2.1 Transformation from dq to up

Figure E.6 shows the block diagram of a dq to up transformation. It is worthy to

mention again that it is necessary to know the angle A. between these two frames.

ISf! ejA
,

lA

ISd

Isq
Isa

Figure E.6: Block diagram of a dq/ afJ transformation

The transformation terms are:

{
Isa(t) = Isd(t)COSA-Isq(t)SinA}

Isp (t) = I sd (t) sin A + Isq (t) cos A

E.2.2 Transformation from up to 3 - phase

Figure E.7 represents the block diagram from up co - ordinates to 3 - phase

transformation.
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2/3
I

Figure E.7: Block diagram of a 2/3 transformation

The transformations terms are given by:

2
Isr(t) =3Isa(t)

1 1
t;(t) = -3I sa (t) + ..fj /.,p (t)

1 1
ISY(t) = -?/sa(t) - ..fj Isp(t)

The same transforms hold for the voltages and fluxes.
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F. Estimation of mechanical parameters J and B

_ (2)dW,
From equation B12 is known that: T, - TL - J p Tt +B .w, , and if the

load torque is equal to zero then

(
2)dOJ PNL J(2)dOJ,.T =J - -' +B·OJ =>-= - -+B·OJ. ed' OJ p dt rpt,

During no - load test and running the motor at different speed rates (etc. 005, 004,

(F1)

003, (02), the power losses can be measured [Bose, 2002] for each of these speed

d dOJr2 dOJ,3 dOJ 4 dOJ
rates (see Figure Fl). In stea y state, _d ,--,-'-and-,-5 are equal to

t dt dt dt

p
zero. Then from equation Fl: ;L = B· W,and solving as for B (viscous friction

r

coefficient), B can be calculated for any speed rates (005, 004, 003, (02).

To perform the free deceleration test, the induction motor is disconnected of the

three phase ac power and the free deceleration speed characteristic is obtained

(Figure F2). From figure F2, all the components doo.ldtfor each speed rate (005, 004,

003, (02), doos/dt, dooJdt, doo-3/dt, d002/dt, can be found. Then, from equation Fl,

solving as J:

J = PNL P 1 - B . OJ
OJ, 2 dOJ,I dt r

The value of J is calculated for all different speed rates. Hence the moment of

inertia can be estimated as the average value of each J:
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PNL (05 •••••••••••••••••••••••••••••••••

PNL (04 ..........................

CO2 C03 C04 COs
Figure F1: No -load Power losses vs speed

COr

COs
dC05-dt

C04

dC04
k'dt dC03

~dt dC02

~dtC03
CO2

t
Figure F2: Deceleration speed
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