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ABSTRACT

This thesis presents an account of an investigation info the use of information theory measures in pattern
recognition problems. The objectives were firstly to determine the information content of the set of representations
of an input image which are found at the output of an array of sensors, secondly 1o assess the information which
may be used to allocate different pattems to appropriate classes in order to provide a means of recognition; and
thirdly fo assess the recognition capability of pattern recognition systems and their efficiency of utilization of
information. Information assessment techniques were developed using fundamental principles of information
theory. These techniques were used fo assess the information associaled with atiributes, such as orlentation and
location, of a variety of input images. The fechniques were extended fo permit the assessment of recognition
capability and to provide a measure of the efficiency with which patiem recognition systems use the information

available.



Acknowledgements

My sincere thanks go to Professor R.L. Beurle for his invaluable guidance and advice over the
years of this project. Gratitude is also due to R.S.R.E. for funding part of the investigation. My
thanks also to Dr. Richard J. Petheram for his help and contributions. | would also like to thank
my family for their support and encouragement. This thesis is dedicated to my brother, Mr.

Farhad Daemi without whom all this would not have been possible.

Farhang Daemi



CHAPTER 1 - INTRODUCTION

1.1. Objective

This is an account of an investigation into the use of information theory measures in pattem
recognition problems. The objective is to determine the information content of a set of
representations of a given pattern, to assess the information which may be used to allocate
ditferent patterns to appropriate classes in order to provide a means of recognition, and to

assess the recognition capability and efficiency of utilization of information of pattem

recognition systems.

Pattem recognition situations can vary greatly, primarily because of the nature of patterns
under investigation [1][2]. Patterns may be one dimensional (e.g. waveforms), or multi-
dimensional (e.g. 2-dimensional images or 3-dimensional solid shapes, or indeed
relationships between many variables). Consequently many different techniques are used
which are usually problem dependent [3][4]. However there are certain considerations which
apply to almost all pattem recognition problems. The most common difficulty is usually the
vast\amoum of information which has to be dealt with. For example a pattern in the form of
a two-dimensional half tone image in a"array of 1024x102"% pixels, each of which may record
one of 256 grey levels, contains over 8 Mega-bits of information. The analysis of the pattern

without any foreknowledge would constitute a formidable task [5).

It is evidently advantageous if one can reduce this massive information into manageable
proportions by isolating and extracting just that part of the information which is relevant for
the recognition process, from the mass of irrelevant information which often accompanies

it. The definition, identification, assessment and analysis of this useful information is the main

concern of this investigation.



1.2. The Concept

By making an estimate of the information content of a two dimensional image picked up on
an array of light sensitive pixels, one can assess the limitations necessarily imposed on any

pattern recognition system which seeks to make use of this information.

In order to meet the objectives of this investigation, various sets of two-dimensional, two
state (binary) input images were chosen for study. These patterns range from simple square
and rectangular shapes in earlier work (as described in chapters 3 and 5), to somewhat

more detailed silhouettes of aircraft shapes viewed from different angles (chapters 5 and 6).

These patterns were deemed to be adequate for the purpose of this work since, as already
mentioned, the main emphasis is placed on developing methods of assessment of the useful
information in a pattern. Moreover, most recognition processes involve thresholding,
segmentation and extraction of the edges of grey scale images at an early stage
[6)[7][8])[9]{10]). This effectively results in patterns of the type under study here. It may be
argued that by artificially defining such patterns some  useful information  has been

eliminated. This is desirable because the work is concerned with investigation of fundamental

principles.

1.3. Previous work In this area

The current investigation commenced with an extensive literature survey. This showed that
little significant work has been undertaken into the implementation of fundamental information
theory principles in pattern recognition problems. It was found that most investigations in this

area used information theory methods in tasks such as statistical pattem analysis, or image



coding and data compression which are similar to the long established uses of information
theory in communications. Chapter 2 describes some of the work i this area as well as the

theory of the techniques used in the current investigation.

1.3 The Thesis

This thesis is a presentation of the concepts and methods developed during the course of
this work. The results obtained, and the conclusions drawn are discussed with particular

reference to the potential of the process for further development and refinement.

Chapter 2 is dedicated to further introduction of common pattem recognition techniques and
information theory concepts. In the case of pattem recognition theory the references cited
enable the interested reader to further explore this area. A brief historical account of
information theory is then given, which is followed by some basic theoretical treatment of the
subject. Reference is made to previous attempts to apply information theory to pattern

recognition, and the major differences from the approach adopted in this work are

highlighted.

Chapter 3 deals with some of the preliminary work which ams to establish a better
appreciation of the principles of information assessment. Simple two-dimensional binary
patterns are considered here, and the results illustrate some of the potential uses of
information assessment techniques in thecontext of pattern recognition. In particular, this
chapter shows how specific information related to certain attributes of a pattern, such as its
position and orientation (referred to as translational and rotational information) may be

determined, and how it relates to the task of recognition.

Chapter 4 is concemed with implementation on a computer of the methods derived in



chapter 3. This results in the development of automated procedures applicable to realistic

patterns. Various practical considerations are discussed in this chapter.

Chapter 5 turther expands the investigation, by detailed algorithmically-based assessment
of rotational, translational and total information content of patterns of a more general nature,
such as aircraft silhouettes. The relationship between shape and the information content
associated with each pattern is scrutinised in some detail.
of

Chapter 6 describes the assessmen)(lhat part of the information content of a sensor array
output pattern which enables different input images to be distinguished from one another.
it shows how this may be used in assessing the recognition capability and efficiency of
utilization of information of pattern recognition systems. Comparison is also made with a

proposed practical pattern recognition system [12].

Chapter 7 draws conclusions from the results presented, and highlights the prospects for
further use of the proposed methods and their potentials for further development and

refinement.



CHAPTER 2 - PATTERN RECOGNITION AND THEORY OF
INFORMATION ASSESSMENT

2.1. Pattern Recognition

Pattern Recognition (PR) has been with us for a long time, and yet it is still one of the fastest
growing scientific areas with applications across a wide variety of disciplines. These
applications range from industrial application such as automatic inspection [20][14], bio-medical
applications such as abnormality detection [15][16], remote sensing [17], Power Engineering

such as fast fault detection on transmission lines [18], and communication [13][19).

The tasks of pattern recognition are basically to remove the need for a trained operator to
perform the recognition, or to enable recognition to be performed that would otherwise be
impossible [12]. In examining a pattem one is very often interested only in extracting from it a
description of what it depicts. The desired description may be merely a classification of the
pattern into one of a small set of pre-specified classes; or it may involve properties of, and

relationships among features that appear in the pattern [8].

2.1.1. Approaches to Pattern Recognition

There are many methods

proposed for designing a pattern

recognition system [31][29][32].

Decision-Making
N Pattern Pattern Classification
These methods can primarily be and/or
e method p y e Sndoor

Analysis Description

grouped into three approaches
[20); namely, témplate matching

[21], decision-theoretic or

discriminant  approach [22][23],

Figure 2.1. A general pattern recognition system (source:
and syntactic and structural reference [20]).



approach [24]. A brief description of each of these three PR approaches is given below,
additionally Figure 2.1 shows a block diagram of a pattern recognition system which is

generally based in terms of pattern representation and decision making.

2.1.1.1. Template-Matching

in the template matching approach, a set of templates or prototypes, one for each pattern
class, is stored in the machine. The input pattern with unknown classification is matched or
compared with the template of each class, and the classification is based on a pre-selected
matching criterion or similarity measure (eg. correlation). The template matching approach has

been used in some existing printed-character recognizers and bank-cheque readers.

2.1.1.2. Decislon-Theoretic Approach

In the decision-theoretic approach, a pattem is represented by a set of N features or N-
dimensional feature vector, and the decision making process is based on a similarity measure

which, in turn, is expressed in terms of a distance measure or discrimination function.

Statistical methods are commonly
used in this approach for the Extracti Classification  —stogten
pumpose of taking noise and
necoennonf
distortion into consideration. }------~----f----------—co—meme e
ANALYSIS ‘
Furthermore statistical techniques
E:',,‘,,'r.. Feature
such as fuzzy sets [25] are used Selection Learning
for characterization of each pattern

class, which lead to classification Figure 2.2. Block diagram of a decision-theoretic pattern
recognition system (source: reference [20]).

of patterns (decision making).
More recently significant interest has been shown in use of information theoretic approaches

to PR problems [11){26]. This is examined in more detail later in this chapter.



A block diagram of a decision-theoretic pattem recognition system is given in Figure 2.2.
Applications of a decision-theoretic pattern recognition include character recognition, biomedical
data analysis and diagnostics, remote sensing, target detection and identification, machine

parts recognition and inspection in automation of manufacturing processes.

2.1.1.3. Structural and syntactic roach

In the structural and syntactic approach, a
Patiemn Representation
pattern is often represented as a string, @ L1 [ceopeme ey oars | Clmtcaten
. = (and Retution -‘z: ————
tree or a graph of pattern primitives and their
_________ MOOQIT!’J
relations [4][6][27]. The decision making | | T[T wave |
process is in general a syntax analysis or . ——— Seuched w
Sulaclien nierenes
parsing procedure. Special cases include

Figure 2.3. Block diagram of a
structural/syntactic pattern recognition system
(source: reference [34]).

use of similarity (or distance) measures
between two strings, two trees, or two

graphs. A block diagram of structural/syntactic pattem recognition system is given in Figure 2.3.

Applications of syntactic pattern recognition include character recognition analysis, automatic

inspection, speech recognition, geological data processing and remote sensing to name a few.

2.1.2. Pattern Recognition techniques and relation with other disciplines

The preceding sections have shown that techniques used in pattem recognition are numerous
and can be extremely diverse. Figure 2.4 shows a family tree representation of PR techniques
which may be regarded as a tentative attempt to put some of the PR techniques and their

relationships into perspective.
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The relationship between PR and

mathematics
other disciplines is the subject of . :
many publications, as seen in i
pattern

references [28], [29, [30] and [31].
Figure 2.5 (which is quoted from apphed physice
reference [28]) illustrates an Sabetce

artficial intelligence picture processing

indication of relations between INFORMATION THEORY

automatic PR and a number of Figure 2.5. Global indication of relations between
automatic pattern recognition and a number of disciplines

other disciplines. A detailed study in the world of mathematics, physics, technique, etc.
(source: reference [28]).

most of these relations is beyond
the scope of this work. However, we shall focus on the topic of information theory and its

application in Pattern Recognition.

2.2. Information Theory

Information theory, which may be regarded as " a branch of mathematical theory of probability
and statistics” [11], is a discipline centred around a common mathematical approach to the
study of the collection and manipulation of information [35]. It provides a theoretic basis for
such activities as observation, measurement, data compression, data storage, decision making

and pattern recognition.

Information theory provides a guide for development of information transmission systems based o
a study of the possibilities and limitations inherent in natural law [35]. It is the study of how
laws of probability, and of mathematics in general imply limits on the design of information
transmission systems. The nature of information theory enables it to be applied to any
probabilistic or statistical system of observations [11]. It is the application of information theory

in pattern recognition which is of interest in this thesis.



Information theory attempts to answer a number of very basic question [35]:

1. What is information? That is, how do we measure it?

2. What are the fundamental kimits on the transmission of information?

3. What are the fundamental limits on the extraction of information from the
environment?

4, What are the fundamental kmits on the compression and refinement of
information?

5. How shouid devices be designed to approach limits?

6. How closely do existing devices approach these limits?

Although these questions may initially appear vague and unscientific, in a theoretical sense
information theory has been spectacularly successful in interpretation of answers to such
questions. In a practical sense, information theory has affected the design and development
of many systems. It provides guidance to those who are searching for new, more advanced
systems [35]). The work presented in this thesis is an illustration of the power and flexibility of

information theory in application to pattern recognition situations.

2.2.1. A brief history of information theory

Claud Shannon is universally known as the father of information theory. in 1948 he published
his classic paper "A mathematical theory of communication® [36] in which he created a
completely new branch of applied mathematics. Earlier attempts to define a measure of
information were made by the communication theorists Nyquist in 1924 [37] and Hartley in
1928 [38], and by statistician Fisher in 1925 [30]. In addition to these, in 1946 Gabor [45]
arrived at the idea of a logon or unit of information, which really related to Nyquist’s work on
signalling speed and was nonstatistical in nature [46]. However the subject did not take its

present shape until publication of Shannon's work [36]. Wiener [40] and Kotel'nikov [41] also

10



published in this area at around the same time, but failed to create the same depth and impact

asShannon's work.

Shannon gave mathematical definition of the information rate or entropy of a source and the
capacity of a communication channel, noiseless or noisy. This ‘led to significantly improved
redesign and new design of communication systems; and aiso to development of numerous
other important techniques such as further development of coding theory for design of error-

correcting codes [42).

During the decade of 1970s, related topics in decision and estimation theory were under
development. Kulback in 1959 [1 1] took the position that these topics were a part of information
theory. He introduced a function that he called the discrimination and developed its relationship
to the study of statistics. This function is of great importance since it serves as means of

expressing the links between statistics and information theory [35].

2.2.2. Information Content and Entropy

The essence of Shannon's theory can be summed up as follows:

Suppose X is a discrete random variable, that is, one whose range R={x,,x,,...} is finite or

countable. Let p, = P{X=x]} (where P is the probability measure). The information content is
defined by [43)[44]:

Ix) = LogF&.‘). (2.1)

The function | can be interpreted as the amount of information provided by the event {X=x}, as
shown in Figure 2.6. According to this interpretation, the less probable an event is, the more

information we receive when it occurs. A certain event (one that occurs with probability 1)

11



provides no information, whereas
an unlikely event provides a very - 4

X
large amount of information [44].

In the spirit of Shannon’s theory, it

may be said that .information » -
Pp=x}
content of an event should be

described in such terms that it Figure 2.6. The Function I(x).
monotonically decreases with increasing probability and goes to zero for a probability of

unity [44].

Entropy, which is the average information per message, may be obtained by taking the various
symbols used to transmit the message and weight each by the fraction of time that we expect
that particular message to occur (ie. its probability of occurrence). Thus, given n messages x,

through x,, the entropy is defined by:

-y 1) = 3 pix) log)_ 2.2
H(X) §P(X:) (x) %:P(X) log o0 (2.2)

Entropy can be used to measure the prior uncertainty in the outcome of a random experiment,
or equivalently, to measure the information obtained when the outcome is observed [35]. In
other words, entropy can be thought of as a measure of the following things [44):

(a) The amount of information provided by an observation X.

(b) Our prior uncertainty about X which is reduced by making the observation.

(c) The randomness of X.

The descriptions given above help to clarify the common confusion about what is meant when
entropy is referred to as negative information in some texts. One may simply think of entropy

as a measure of uncertainty about an event before it is observed (thus the term negati\ia

12



information or lack of information). Thus the information received on the occurrence of the

event can be thought of as negative entropy, because it has reduced the uncertainty.

The base of the logarithm is H(X)

usually 2 when applying entropy in

Loga2
discrete (digital) problems, the
units in this case are bits (binary

digits). However, sometimes base-

e is used in which case units are

called nats (natural digits) [44]. ° 12 1 p(x))

Figure 2.7. Response of the binary entropy function.

For a binary system where the message is made up of two possible symbols x, and x, and

probabilities p(x,) = 1-p(x;), the entropy is given by:

1

HOX) = P 108, + [1-plx)] log [r—] (2.3)

L
1-p(x,)

Figure 2.7. illustrates the response of binary entropy function

2.3 Information theory in ern recognition

The preceding sections of this chapter have dealt with pattern recognition and information
theory mostly as independent concepts. Let us now consider how information theory may be
used in solution of pattern recognition problems, and survey the developments and trend of

work.,

The most significant impact of information theory has been in the field of communications. As

13



Shannon's theorems were digested by the mathematical/engineering community, it became
clear that he had created a brand-new science, and many others began to make contributions
of their own [44]. However the majorty of the subsequent work was focused around
communications applications [47]. t was not until 1970s that work on decision and estimation
theory was under further consideration and development that information theory was first

considered seriously in pattern recognition applications [48][53] (see aiso section 2.2.1).

A majority of work since then has been concemed with enhancement of statistical (or
stochastic) methods used commonly in pattern recognition by exploitation of similarities with
information theory. These include work on pattern texture analysis [6]55), pattern classification
[49][50][51][54][21); image enhancement using techniques such as fuzzy sets [25)[52] and

maximization of entropy [56][57]{62]; and coding [7].

More recently, there has been some interest in critical examinasion of pattern recognition
systems using information theory [58][59){60])[61]. it may appear somewhat surprising that
researchers have until now neglected use of information theory principles in their simplest form
to pattern recognition situations. However, the concept of pattemn recognition was not so far
advanced nor so universally of importance as for communication theory at the time of
publication of Shannon’s paper. It may be that as interest in patiem recognition developed,
researchers were slow to realise the possibility of using principles of information theory in
reviewing the performance of pattern recognition systems and techniques. The work presented
in this thesis may be considered as an ensembie of critical applications of simple information
theory principles to pattern recognition systems, in the belief that simplest approaches are often

the best!

14



CHAPTER 3 - BASIC INFORMATION ASSESSMENT -
PRELIMINARY INVESTIGATION

This chapter describes some of the initial work on the information content of simple artificial
images. The objective of this work was to provide practical experience of information
assessment techniques. This initial work paved the way for the application of information

assessment techniques to more realistic digitized images described in later chapters.

3.1. Information Assessment of Simple Binary Patterns

A series of experiments in measurement of information content of a set of simple, binary,

artificial images were carried out by applying the fundamental formulae for entropy.

Images of one, two and three black pixeis against a white background were considered in
various positions and orientations and the amount of the information conveyed by each pattern
was assessed using both the non-conditional and the conditional entropy formulae. The non-
conditional entropy assessment was used as an independent check on the validity of the

measurements made using conditional entropy.

3.1.1. The Concept

As discussed in chapter 2, Entropy which is the average information per message may be
obtained by taking'the information content associated with each message weighted by the
fraction of time we can expect that particular message to occur (ie. its probability of

occurrence)[35}[40]

15



Thus, given n messages, x, to x, , the entropy is -

defined by:
H(x)-znj p{x)l(x) (3.1)
1
“ 1
HX=X plx) log, e (3.2)

This reflects the fact that an event which is certain ( one with probability 1) provides no
information, whereas an unlikely event provides very large amount of information when it does

occur.

Conditional Entropy ( or equivocation) for a pair of random variables x, and x, ,is the entropy

of x, givenx, , H(x,|x, ), and is defined by:

1
Hix, 1 x)=3_ p(x,.x,) log, ——— 3.3
X, 1%‘2 11X2 2p(x2|x1) (3.3)
but since
pix, | x,)= X ) (from Bays' theorem)
P,
and total entropy is
H(x) = H(x,) + H(x, | x,)
we have
1 ) 1
H(x)=) { lo x, | x)p(x,) log, ——_ } 3.4
(x) x{:‘ pix,)log, p(x1)+P( L 1 x)p(x,) log, X, ' %) (3.4)

16



3.1.2. Method In detall

Three simple shapes were considered during this part of the investigation which is described

in detail as an introduction to more sophisticated methods used later.
(i) One single black pixel against a white background,
(i) Two black pixels against a white background,

(iii) Three black pixels arranged in L-shape against a white background.

Figures 3.1, 3.2, and 3.3 demonstrate the shapes described above.

Figure 3.1. The single black pixel. Figure 3.2. The two black pixels.

Each shape considered was assumed to be

defined by binary levels, ie. black against a

noise-free white background. It was further

assumed that the shapes occupied an integral

number of pixels, and that no part of the

shapes lay outside the grid.
Figure 3.3. The L-shape.

For most cases a 4 by 4 grid was considered, however a 5 by 5 grid was also considered in

the case of the 3 pixel L-shape in order to further establish the validity of the techniques used.

17



Both entropy formulae were used during these investigations. For patterns of two or more black
pixels the first, non-conditional entropy formula was found to be a useful test to check the
validity of the calculations made using the conditional entropy formula and vice-versa. The

formulae are shown in equations 3.2 and 34

Thus by non-conditional entropy the single black pixel may occupy any one of 16 positions for
each of which therefore p, = 1/16. Summed over the 16 positions this gives Log, 16. See

section A1.1 of Appendix | for details.

The calculation for a pair of black pixels follows similar principles. For the first black pixel on
its own the information is assessed in terms of entropy as H(x,). Then, given this information,
the possible positions of the second black pixel are considered and the conditional entropy H(x,
| x,) is assessed. The sum gives the total entropy. Details are given in section/‘.a and for three

pixels section A1.3 of Appendix A1.

3.1.3. Resuits

The results obtained are summarised in table 3.1. Further details of the calculations in each

case are given in Appendix 1.

1 single pixel 4x4 Log, 16 (=4.0) -

2 two pixels 4x4 Log, 24(=4.5850) Log, 24(=4.5850)
(rectangle)

3 three pixels 4x4 Log, 36(=5.1699) log, 36(=5.1699)
(L-shape)

4 three pixels 5x5 Log, 64(=6.0) Log, 64(=6.0)
(L-Shape)

Table 3.1. Summary of the results

18



It must be noted that the numerical values of the results shown above are, as might be
expected, dependent on the size of the grid that contains the object and the background.

However, the relative values may be used for comparative purposes under similar conditions.

3.1.4. Analysis of the Results

The resuits confirm that the information measured by the non-conditional entropy method
on
agrees with that measured using the conditional entropy. This is both a checl;(validity of the

results obtained by both methods and is of interest when more complex images are considered.

Furthermore, it may be noted that the measured values convey the information refated to both
the position and the orientation of the object under study. For example, in the 4x4 grid as
shown in Appendix 1 (section A1.3.), the L-shape may have 4 possible orientations and occupy

9 different positions; thus giving 36 possibilities in the sample set. Therefore,

Positional information = log, 9 = 3.17 binary digits

Orientational information =l0g,4 =2  binary digits

Total information = log, 9 + log 4
=log,9x4
= log, 36 binary digits, in agreement with the previous
--------- calculations.

These results encouraged the idea that the concept of entropy could be used successfully for

measurement of the information content of images. This measured information may then be

19



used to ascertain the efficiency of pattem recognition processes. In particular, splitting the
information into two parts related to the position and the orientation of the object has been of

great value in considering more complex shapes as has the notion of conditional entropy.

In view of these findings, it was decided that further investigation of the positional and the
orientational information content of simple binary images would be beneficial, to provide a
better appreciation of the underlying concepts and the practical difficulties before considering

more complicated real images.

3.2. Basic Rotational and Translational information Assessment

This section describes the assessment of the information content associated with rotational and
translational movements of simple artificial images in which the components of the image were

no longer restricted to the area of integral pixels.

A series of experiments in measurement of rotational and transiational information content of
a set of simple, binary, artificial images was carried out by applying the fundamental formulae
of entropy. Black rectangles, of dimensions 4 by 2 pixels, against a white background are
considered in various positions and orientations relative to a rectangular matrix of pixels. The

average rotational and translational information conveyed by the pixel outputs is then assessed.

3.2.1. Rotational Information Assessment

In this part of the investigation, a simple rectangular image was placed with its centre of gravity

in a fixed position in relation to the matrix of sensors. The image was progressively rotated
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through a total of 180 degrees about its centre of gravity, and the set of output patterns
produced on the sensors was examined and assessed for entropy. This was done for each of

the four positions of centre of gravity shown in Figure 3.4(i).

An assumption had to be made regarding the response of the sensor situated in each pixel.

Two alternative assumptions are:

(i) The sensor is uniformly sensitive over the whole pixel area and will switch from 0 to
1 when more than half pixel is covered

(i) The sensor is at the centre of the pixel

Depending on the nature of the actual sensors used, a real array of sensors may be anywhere
between these two extremes. As in the previous section (section 3.1) the sensors are assumed
to have a binary response, thus returning a zero or a one for each pixel. The two cases may
be referred to as area detection and point detection respectively.

In these experiments determination of the exact area of each pixel covered (in accordance with
the first assumption) as the image is rotated was found to be practically difficult, particularly at
the edges of the image. Other possible assumptions regarding the response of the pixels were
therefore considered. It was found that the use of point sensors, situated at the centre of the
pixels ( the second assumption ) simplified calculations, and it was hoped that this would give
acceptable results. That the point sensor results are equally indicative of the nature of the
problem is demonstrated in the two results quoted for set IA in the results given in Table 3.2.
It is interesting to note that the point detectors actually convey siightly more information. The

other sets IB, IC and ID were analyzed using the point detection assumption alone.
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3.2.1.1. Technique of calculation

Each pattem produced on the sensors, as the image of the rectangular shape rotates over
them, persists over a range R, of angular positions of the image. it is these sensor output
patterns that carry the information regarding image position, which is what we are attempting
to assess. If we assume that all angles of the rectangular input image are equally probable,
then we may assess the probability p(x) of any one sensor output pattem occurring, and hence
the information H(x) carried on average by this output pattern or symbol. Sensor output
patterns that occur only fieetingly as the angle is changed, carry more information when they
do occur, because when they occur they define very precisely the angular position of the
image which has caused them. Thus the information per unit range of angle H(x)/R, is high for
patterns that occur fleetingly. However, because they are less likely to occur, the overall
information they carry is less when information is integrated with respect to the angle of the

image.
3.2.1.2. Resuits

Figure 3.4(ii) shows a typical set of successive positions of the 4x2 rectangular image as it is
rotated through 180 degrees about its centre of gravity at (a) in Figure 3.4(i). Figure 3.4(ii) also
shows, for point detectors, the corresponding pixel sensor output pattems (set IA) from which

the information content is assessed.

The third column in Table 3.2. gives the rotational information content assessed for each of the
sample sets whose centre of gravity is defined in ng. 3.4(i). Appendix 2 gives the tabulated
details of the calculations, and diagrams in this Appendix show all the sensor output response
patterns arising from each position of the centre of graVity. The assessment of the information
carried by each sensor pattern, and the summation of the information content of all response

patterns arising from each set of images is tabulated in Appendix 2.
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Figure 3.4(i) Position of centre of gravity of Figure 3.4 (il) The 4x2 rectangular image
each sample set (each square represents in case IA as it is rotated through 180
one pixel). degrees and the corresponding pixel sensor
(a): Sample set 1A output patterns.

(b): Sample set 1B
(c): Sample set IC
(d): Sample set ID

A 4.0000 3.3803 2.2879 I
1B 3.8074 3.2353 2.1059 l
Ic 3.0000 2.5850 2.5850 ]
ID 4.3219 3.8634 2.4148 ]

" Set A for area detector

Table 3.2. Summary of the assessment of Rotational Information content.

The tabulated results for point detectors for the four sets of images are shown in graphical form
in figures 3.5, 3.6, 3.7 and 3.8. These histograms have ordinate heights which represent the
“information per unit range" plotted against angle of rotation for each set of images. It can
clearly be seen that sensor patterns restricted to a narrow angle convey a greater amount of
information per unit range than other sensor patterns which persist through a greater angular
range. However the contribution of each sensor pattern to the total amount of information
conveyed, corresponds to the area under the corresponding histogram bar section. This is
smallest for sensor patterns with a low probability of occurrence, as expected. This

characteristic may be used to obtain maximal and minimal limits of information.
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3.2.1.3. Maximal and Minimal limits of rotational information

The third column in Table 3.2 represents the total number of binary digits required to represent

the information conveyed by each set of sensor patterns. This is arrived at in Appendix Il by

summing the information H(X) conveyed by each of the separate sensor patterns that occur

as the image is rotated. The whole process of deriving this sum for even a simple two by four

element image i§ somewhat laborious, and could be excessively so for more extensive

patterns. A method was therefore sought which would enable upper and lower limits for the

information content to be estimated more easily.



A maximal measure of information may be obtained by considering optimum information
transfer. That is assuming that all possible sensor patterns arising from the image set occupy

an equal angular interval. This corresponds to a base-two logarithm of the total number of

sample points.

A minimal measure of information may be obtained if the worst case resolution is taken as
characterising the whole of each sample set. The worst resolution comresponds to the sensor
pattern occupying the widest angular range. This in tum corresponds to the shortest and the
widest bar on the histogram for the set, if exfended over the whole of the angular range; or,
in Appendix Il the lowest value for H(X)/R obtained for any sensor pattern when multiplied by

the angular range which is in these examples 180 degrees.

The maximal measure of information may be used to obtain a quick estimate of the order of
magnitude of the information content expected in each case. The minimal information is not as
easily obtained, as a more detailed examination of the sample set is needed before this value
can be evaluated. However, it sets a lower limit and is still easier than making a precise
calculation of the information conveyed, and it is in some ways a more practically useful
concept, as it represents the minimal accuracy of angular measurement of which the system

is capable. Both maximal and minimal values are shown in Tabie 3.2. for comparison with the

actual information.
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3.2.2. Translational Information Assessment

This section considers the information associated with sideways translation of the centre of
gravity of the input images iimited to a distance equal to the spacing between pixels. Once
again, the 4 x 2 rectangular shape was used as the test object. The image was considered at
a number of pre-specified orientations (ie. at fixed inclinations to the pixel array) and at each
orientation it was subjected to transiation in directions perpendicular to the axis of the viewing
system. The set of sensor patterns arising from point detectors positioned at the centre of each

pixel, was examined. The relevant information assessment was made as for rotating images.

Owing to the complexity of the calculations, an assessment was only made for images inclined
at zero degrees, 30 degrees, 45 degrees, and 90 degrees. The results are labelled sets IIA,

lIB, IIC and lIE respectively in Table 3.3. The 60 degree case has been deduced from the 30

degree by symmetry and is labelled as set IID.

3.2.2.1. Coarse and Fine Translation Information

A clear distinction must be made here between the detection of image movement in increments
equal to the pixel spacing, and the detection of changes of position of less than this magnitude.
if, for example, on a rectangular array of sensors, the image moves in either coordinate
direction by exactly one pixel, then the sensor pattern produced will be identical in shape but
will also have moved to a different set of sensors displaced by one pixel spacing.‘ Thus it is
always possible fo locate an image with the degree of accuracy corresponding to one pixel
spacing, and this will be referred to as coarse translation information. However with many
images, as they move through a distance not exceeding one pixel spacing, a sequence of

different sensor patterns is produced as a result of individual sensors switching on or off at
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different times. This enables the position of the image to be determined more accurately as
though with a vernier gauge. The information carried by this sequence of patterns is referred

to as fine translation information.

The coarse translation information tends to log, N, where N is the number of pixels, as the
array becomes larger relative to the image and the boundary effects less important. The fine
translation information is the subject of the present study and is assessed in Appendix 2 by
examining the detailed sequence of the sensor patterns produced as an image is moved

through one pixel spacing in either coordinate direction.

3.2.2.2. Resuits

The fourth column in Table 3.3. gives the translational information content assessed for each
set of sensor patterns. Appendix 2 gives the details of the calculations in each case. Diagrams
in this Appendix show the successive areas occupied by each sample pattern as the respective
4x2 rectangular image when subjected to translation in either direction. The assessment of the

information content for each pixel output pattemn, and the summation of this is tabulated in

Appendix 2.

Table 3.3. Summary of the assessment of Translational information content.
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3.2.2.2.1. Sets IIA and lIE - Images inclined precisely at zero or 90 degrees

In these two cases, there can be only one sensor output pattern associated with each
pixel with a probability of one. This is because the probability of occurrence of other
sensor patterns is zero. Therefore the measure of the fine transiation information is
zero as expected. Further information about these two cases is given in sections

A2.2.1 and A2.2.4 of Appendix 2.

3.2.2.2.2. Sets lIB and liD - Images inclined precisely at 30 or 60 degrees

In these two cases there are 29 different sensor pattems attributed to each pixel. Each
sensor pattern occurs within a limited area of movement of the centre of gravity, and
a ﬁmap may be drawn, as in Figure 3.9, showing the domain associated with each of
the 29 patterns. The information conveyed by this set of sensor patterns is summarised
in Table 3.3. and further details about the set IIB are shown in section A2.2.2 of
Appendix 2. The results for set IID are identical and were deduced by symmetry from
set 11B. The tabulated results for these two cases are shown in graphical form in
Figure 3.10. This histogram representation has ordinate heights which for each sensor
pattern represent the information per unit range plotted against the fraction of one pixel

area over which the pattern occurs.

As in the rotational information assessment case, it can clearly be seen that infrequent
sensor patterns convey a greater amount of information per unit range than other
sensor patterns having a higher probability. However the contribution of each sensor
pattern to the total amoum of information oonvéyed corresponds to the area under the
corresponding histogram bar section. This is smallest for sensor patterns with a low

~ probability of occurrence, as expected. This characteristic again may be used to obtain
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maximal and minimal limits of information. These have been calculated following the
principles used in section 3.1 and are given in table 3.3. for comparison with the actual

information.
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Figure 3.10. Histogram representation of the information per unit range [H(x)/R] vs. unit area
for cases IIB and IID.



3.2.2.2.3. Set IIC - Object inclined precisely at 45 degrees

The number of sensor patterns in this case which are attributable to each pixel is 8.
The information conveyed in this case is summarized in Table 3.3. together with
maximal and minimal values. It is shown in graphical representation in Fig. 3.11, and
Figure 12 shows the area domain plot for this case. Further details of this case can be

found in section A2.2.3 of Appendix 2.

° 1 I n 1 1 I n 1
° .1 02 03 04 o8 os 07 o8 [ 2] 1

Fracton of unit area

Figure 3.11 Histogram representation of the
information per unit range [H{(x)/R] vs. unit
area for case lIiC. .

at 45°,

3.2. 3. Further Consideration of the Results

It has been shown possible, though laborious to measure rotational and fine transiational

information associated with simple binary images by using entropy assessment methods.

The image used ifi this work was in the form of a black rectangle, measuring 4 by 2 pixel
spacing, against a white background. The response of the sensors in each pixel was assumed
to be that of a point detector, which permitted some simplification of calculations while returning

realistic results. Separate tests were carried out for assessment of the rotational and the
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translational information content. In the former case the object was rotated about its centre of
gravity while keeping the position of the centre of gravity fixed in relation to the pixel array, and
in the latter case translation of the object was achieved while maintaining a fixed inclination to
the pixel array. Each distinct sensor pattern resulting from the rotation or translation of the

object was then examined in turn and its contribution of information was calculated.

For each complete set of sensor patterns, the total amount of rotational or translational
information was assessed by summing the information calculated for each sensor pattern in
that particular set. The' rotational information content of the object was found to be between
2.5850 and 3.8634 binary digits, depénding on the position of the centre of gravity of the object
in relation to the pixel grid. The translational information content of the object was found to be
between zero and 4.4381 binary bits, depending on the inclination of the object to the pixel

array.

Furthermore, maximal and minimal measures of information in each case were obtained. These
relate to the information conveyed by considering the optimum information transfer in case of
a maximal measure and the worst case resolution for a minimal measure, as described in
sections 3.1. and 3.2. These values were found to differ from the actual value of the information
measured by at most about one binary digit. The maximal and minimal measures of information

may be used to obtain a quick estimate of the order of magnitude of the information content

expected in each case.

The information assessment techniques developed in this work may in principle be extended
to a wide range of images. The principal difficulty even with a simple 4x2 pixel rectangle has
been the complexity of the calculations, which is why the rotational assessment was restricted
to four positions of centre of gravity and the fine translatibnal assessment to five angles, in two

of which symmetry was used to deduce the results.
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The next chapter describes how this technique may be applied to more practical cases, and
to avoid being so restricted by the time consuming complexity it was necessary to seek
extensive computing facilities so that a comprehensive analysis of the combined effect of

continuous rotation and fine translation could be achieved
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Chapter 4 - Automatic Information Assessment of Patterns

This chapter describes computerisation of the information assessment methods established in
the preliminary investigations. This was necessary so that a comprehensive analysis of the
combined effect of continuous rotation and fine translation could be achieved for more realistic

patterns.

Various algorithms were developed to simulate the information assessment methods. Owing
to the volume of calculation involved in these algorithms extensive computing facilities were
necessary. The major part of the work was carried out using an ICL 3900 series mainframe
computer as well as other powerful workstations such as a RISC architecture MIPS machine.

The following sections briefly describe the development of these aigorithms.

4.1. The algorithms in detall

The objective was to superimpose the binary image on a mosaic of pixels (the pixel grid), and
then to rotate or translate the image in order to assess the rotational and fine translational
information by identifying each unique sensor output pattern produced and measuring its

probability of occurrence as the image passes over the pixels in the grid.

4.1.1. Definition of the pixel grid and the image under investigation

The first stage involved establishment of the pixel grid, and definition of the image within it. A
32 by 32 pixel grid was chosen, as it conveys adequate accuracy when a 15 bit word is used
to denote positions across the full width of the grid. Thus with 2'° (=1024) increments for each
single pixe! width this allowed for an accuracy of 2'° (=32768) increments for the complete 32

pixel width.
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calculations regarding the location of the image may be carried out up to 1/1024th pixel width
accuracy. In this investigation an approximately central pixel (16th puei from the top left hand
corner in horizontal and the vertical directions) was used as the pivotal pixel about which the
images under study were generally located. All the major calculatons are based upon the
orientation and fine location of the image about this pivotal pixel and its neighbouring pixels.

The size of the pixel grid ultimately limits the size of the image which can be analyzed.

The image may be set up by

defining points on the boundary of 1

the image with respect fo its

centre of gravity (ie. by contour

Bosvsna

description). The image may then

be rotated as necessary and its y 4 3
centre of gravity appropriately I . ég

located on the pixel grid. This Figure 4.2. The 4x2 rectangular image.

i

procedure may be demonstrated by considering a 4 by 2 rectangular image as shown in

Figure 4.2.



The boundaries of this image may be defined with respect to its centre of gravity as:
(xyy) = (-2,1) (Y2 = (2,1) (X3.Ys) = (2,-1) (XeYd) = (-2,-1)
The image may then be rotated , if necessary, to an angle by using the equations 4.1 and 4.2.

X, = X, cOSO - y, sin@ (4.1)
Y, = X, 8ind + y, cosé (4.2)

The points may then be scaled by 1024 to take into account the pixel widths. Positioning of the

image may then be achieved using the relationship shown in equation 4.3 and 4.4.

X, = cgx + [ x, cos® - y, sin® | x 1024 (4.3)
Yo = cgy + [ x, sin@ + y, cosd ] x 1024 (4.4)

Where cgx and cgy are location of the centre of gravity of the image.

4.1.2. Identlification of sensor output patterns

The next stage of the aigorithm is concerned with identification of the pixels which are covered
by the image, ie the pixels that are on. This facilitates tabulation of the various unique sensor
output patterns together with their respective probability of occurrence which in turn leads to

information assessment.

Starting from the top left hand corner, each pixel is taken in tum and tested to establish
whether it lies horizontally in line with the image. This may be achieved by shifting the origin
to the centre of the pixel under test. The °y’ coordinates of the boundary points describing the
image are then listed sequentially in a clockwise direction. If a change of sign of y is
encountered between two sequential points then the pixel under test is horizontally in line with
the image. The type of the sign change (ie. positive to negative or negative to positive) is noted

at this point. Figure 4.3. illustrates this procedure.
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between the centre of the pixel

are measured using the

relationship shown in equation 4.5. Figure 4.4. shows how this equation relates to physical

distances.
g-eh "%l (4.5)
y1 - .Vz
where: d = horizontal distance from the pixel centre

Xy, = coordinates of the first boundary point

X,.y, = coordinates of the second boundary point

The image boundary may cross a

horizontal line through the pixel
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. -~ WY,
image boundary XY,
distances are of" interest here g

since they indicate the nearest Figure 4.4. Caiculation of the horizontal distance between
the pixel under test and the image boundary.
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boundary to the pixel under test. For a pixel to lie inside the image the following relationship
must be true:
(dxpn > 1) and ( dxnp </1)
where:
dxpn = horizontal distance of the nearest positive to negative going boundary from the
pixel centre
dxnp = horizontal distance of the nearest negative to positive going boundary from the

pixel centre.

In other words, for a pixel to be inside the image it must have a positive to negative transition
of boundary points to its right and a negative to positive transition to its left. Figure 4.5.
illustrates this principle. The magnitudes of dxpn and dxnp are also important. A set of these
values is obtained for all the on pixels for a given position of the centre of gravity of the image,

and the minimum magnitude in each set is found for future use.
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Figure 4.5. lllustration of discovering the ON pixels. In this example all the pixels which have
a n-p boundary transition on the |eft and a p-n transition on the right are ON.
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Once all the pixels are examined, the complete sensor output pattern of on pixels may be
constructed, which may then be used to identify other positions of the centre of gravity of the
image for which this particular sensor output patiern occurs. This in turn may be used in

assessing the information content relevant to fine translation or rotation as follows.

4.2. Fine translational Information assessment

One can imagine a map which shows the whole area within which the centre of gravity of the
image may move without any change occurring. . in the sensor output pattern. Such
a map was shown in Figure 3.9 in chapter 3. Figure 4.6 shows such a map generated by
computer. This stage of calculations is concemed with evaluating the area attributable to each
individual sensor pattern. The first step in evaluating the area for a particular pattem is to
identify the extent of horizontal displacement which the centre of gravity of the image may

undergo without changing the sensor output pattern.
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Figure 4.7. Initial position of the image for
fine translational information assessment.

Figure 4.6. Computer generated sensor

output pattern area domain for the 4x2

rectangle oriented at 30°.

The fine translational information associated with each unique sensor output pattern is
assessed by summing for each pattern all the horizontal elemental area slices defined in this
way. This is done by firstly placing the centre of gravity of the image at the top left comer of

the pivotal pixel [pixel at position (16,16)] as shown in Figure 4.7. The sensor output pattern
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is then calculated using the algorithms described in the previous section. The minimum
magnitudes found in each set of horizontal distance values dxpn and dxnp indicate how far the
centre of gravity of the image may move to left or right before the sensor output pattem
changes. Therefore the sum of magnitudes of the minimum values of dxpn and dxnp forms the

first elemental area slice to be attributed to the first sensor pixel pattern.

The image is then translated horizontally by moving its centre of gravity to the right by the
lesser of the two values dxpn+1 and dxnp+1 . This position will produce a different sensor output pattern which
may be worked out using the fore-mentioned algorithms, together with its respective first
elemental area. The whole procedure may then be repeated; each time a horizontal transiation
is imposed and a hew sensor output pattern is found, it is compared with all the existing known
output patterns. In case of a match the elemental area is added to the area already
accumulated for the matched pattern. If no match is found, the sensor output pattern is labelled
as a new unique pattern. lis record is added to the list of the unique pattems and its first

elemental area slice is stored in a register in which later slices will be accumulated.

Following a horizontal translation, if the position of the centre of gravity of the object reaches
or goes beyond the right edge of the pivotal pixel, the centre of gravity is moved vertically down

by one increment and re-positioned on the left edge of the pivotal pixel.

This process is then repeated until the whole area of the pivotal pixel has been covered. It is
then possible to list all the unique sensor output patterns with their respective contribution to
the tot4l area. Accordingly the fine translational information may be assessed as before, using

the relationships described in chapter 3. Appendix 4 describes in detail these calculations with

aid of an examplé.
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4.3. Rotational information assessment

Rotational information is assessed
’ = 4-0-0-0-0-0-9-04 pivotal pixel
in a similar manner to that used EE R undary
600000 0cs 0o ,,/’
for assessment of the translational + e 1
f o ® 0 0 0 0 0 0 o
information. The centre of gravity feescocccce
boeo oo 00 0o
of the image is placed at one EEEEEEREEE
‘ ® 0 00 0 00 0 0
hundred equally spaced locations + e 0000000 0
within the pivotal pixel, ten » = sampling point

locations per row as shown in Figure 4.8. Location of centre of gravity of the image
(sampling points) around the pivotal pixel for rotational

Figure 4.8. The image is then information assessment.

rotated in 0.1 degree increments and the sensor output patterns are found and classified in
unique patterns as before. The angular range (or ranges) over which a sensor output pattern
remains unchanged is used to calculate the respective probability of occurrence and

subsequently the rotational information of the image under study, again using the relationships

from chapter 3.

The results obtained using such automated methods are presented for a variety of images in

the following chapter.
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Chapter 5 - Assessment of Translational, Rotational and
overall information content of two dimensional patterns

This chapter describes the' results obtained from analysis of the information content of two-
dimensional patterns. Section 5.1 outlines the relationship between the transiational, rotational
and overall information content of patterns. Section 5.2 is concerned with simple binary patterns
such as squares and rectangles of varying sizes. Translational, rotational and overall
information related to these patterns are evaluated and discussed in detail. Comparisons are
also made between some of these results and the results obtained in preliminary investigations

described in chapter 3.

Section 5.3 describes rotational and overall information assessment of more detailed patterns
such as cross and aircraft shapes. The relationship between the shape of a pattern and its

information content are discussed.

5.1. Translational, rotational and overall information

Fine translational and rotational information content of patterns under test may be calculated
using the techniques described in chapter 4. For a given pattern these values may be
combined to obtain the overall information of the pattern. The overall information is the
information associated with a particular input pattern considering all its possible orientations
and locations within the pivotal pixel and is not necessarily equal to the sum of translational
and rotational information. We have already seen how a domain map may show the range of
positions of centre of gravity of an input pattern for which a given sensor output pattern will
arise. A similar domain map may show the range not only of position of centre of Qravity. but
also of orientation for which a given sensor output pattern will arise. Figure 5.1 is an example,
and illustrates an interesting class of sensor output pattern for which there is correlation

between the position and orientation of the input pattern from which it arises. This particular
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sensor output pattem may either arise when the input pattern is in one location, A in Figure 5.1
or it may arise when input pattern is in location B. Thus when such a sensor output pattem
arises, the information it provides is ambiguous, in that one cannot tell whether the input
pattern is within the confined region at location A, or within the confined region at location B.
It one knows that the orientation is, for example at A, then the position is known to be within

the area A. Likewise if the orientation is at location B the position must be within the area B.

When the overall information is i
A

measured, the value obtained @

includes this correlated,

ambiguous or shared information

which will be denoted by (s). It @

also ihcludes straightforward

Orientation
w

Y

unambiguous net information Position

about orientation (a) and position Figure 5.1. The occurrence of similar sensor output
patterns in two different orientations and

(t) conveyed by sensor output locations.

pattern domains which correspond

to single unambiguous locations. When measuring average rotational information (A) as
described in Chapter 3 it was assumed that the position was known, so that the information
measured therefore included ambiguous information (s) as well as unambiguous net rotational

information (o). Similarty, when average translational information (T) was measured on the

assumption that the angle was known, the result included (s) as well as net translational

information (t).
So we have the relationship:-

. T=1+s (5.1)
and A=0+s (5.2)
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and overall information

I =0 +71T+5s (5.3)
or I =A+T-35 (5.4

Thus by measuring A and T as in Chapter 3, and by measuring I which is now possible with

the calculating power of a computer, we may find the value of the shared information (s).
Appendix 3 describes in detail the theory behind these relationships. it will be seen later that

(s) has been measured for a few patterns and has a significant but not large value around 1

binary digit or 10% to 15% of the overall information /.

5.2. Information assessment of simple binary Images

5.2.1. Patterns under study

A number of simple binary patterns were considered in this part of the investigation. These
patterns were mainly in the form of squares and rectangles measuring from 1 up to 8 pixels

in each dimension. Figures 5.1. and 5.2. illustrate the pattems used.

Figure 5.2. The square patterns under study.
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Figure 5.3. The rectangular patterns under study.

The translational and rotational information content of these pattems was calculated using the
techniques described in chapter 4. It must be noted that results for the 8x8 square pattern are

not as accurate as other results because a 10x10 window was used during information content

assessment.

5.2.2. Translational Information assessment

A selected number of patterns were assessed for translational information; namely the 4x2, 8x2
and 8xY rectangles, and the 4x4 square. In the first instant, each pattern was considered in a
horizontal orientation. The fine translational information of the pattern in this orientation was
assessed using the method described in section 4.2 of chapter 4 and in more detail in
Appendix 4. The pattern was then rotated through one degree and its fine translational
information at the new orientation was assessed in the same manner. This procedure was
repeated for orientations up to 45 degrees in one degree increments. Since the patterns used

were symmetrical about both horizontal and vertical axes, it was sufficient to terminate the
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process at 45 degrees. Orientations beyond this point merely repeat the results obtained
between 0 degrees and 45 degrees and thus produce no additional information. Clearly the
average fine translational information may be calculated by taking the average of all the values

obtained up to 45 degrees.

5.2.2.1. The 4x2 rectangular pattern

The 4x2 rectangular pattern was considered in the preliminary investigations described in
Chapter 3, where the fine translational information content of this patiem at orientations of 0>
30°, 45° and 90° were calculated using analytical methods. Table 5.1. compares the results

obtained by the analytical methods of Chapter 3 and the computational methods of Chapter 4.

Table 5.1. Comparison of the analytical and computed results for the 4x2 rectangle.

It can be seen that the computed results and the analytical results agree very closely.
Furthermore, the computed area domains for sensor output pattems within the pivotal pixel
were found to be the same as those plotted analytically. Figures 5.4 and 5.5 illustrate two

typical area domain maps, which convey identical information to that shown in Figures 3.9 and

3.12 in Chapter 3
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Figure 5.4. Sensor output pattern area Figure 5.5. Sensor output pattern area
domains for the 4x2 domains for the 4x2
rectangle oriented at 30°. rectangle oriented at 45°.

5.2.2.2. Other patterns

The fine transiational information assessed for all four patterns at all orientations from 0 to 45
degrees is tabulated in Appendix 4, and the results are illustrated graphically in Figure 5.6. The
average fine translational information content for each pattem (as described in Appendix 4) is

shown in Table 5.2.

4x2 rectangle
4x4 square

8x2 rectangle

8x4 rectangle

Table 5.2. Translational information results

Considering Figure 5.6, it can be seen that the value of the fine translational information dips
at certain orientations such as at approximately 0°, 27°, 37° and 45°. This effect may be
explained by considering interactions between the boundaries of the pattem under test and the

pixel centres. At certain orientations the straight line boundaries of the pattern may be inclined
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Translational Information (bits)

0 5 10 15 20 25 30 35 40 45
Orientation (degrees)
Figure 5.6. Translational information of simple patterns vs. orientation.

so that as they translate sideways they cross more than one pixel centre simultaneously. This
leads to sudden major changes in the sensor output pattern but also to a reduction in number
of different output sensor patterns. A direct consequence of fewer sensor output patterns each
covering a larger area domain is that the assessed information is reduced. Appendix 5

describes this significant effect in detail and incorporates clear illustrations of the way in which

this occurs.
5.2.3. Rotatlonal Information assessment

The rotational information content was evaluated for a larger set of input pattems. This was
partly because this could be readily done as a by-product of the calculation of overall
information. The method described in section 4.3. of chapter 4 was used for the purpose of
these analysis. One hundred samples of rotational information content were obtained within the
pivotal pixel. The average information content was calculated by taking the average of these
values. For darity the results for square and rectangular patterns are shown separately in

table 5.3.and Figures 5.7 and 5.8.
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Figure 5.7. Average rotational Figure 5.8. Average rotational
information content of information content of
square patterns rectangular patterns.

| I
l 3x3 2.8827 70 I ax2 4.1410 320
4x4 3.8428 415 I 4x3 4.4512 523
5x5 4.3382 851 I 5x4 5.1861 1205 I
6x6 5.0686 2135 l 6x4 5.5960 2205
7x7 5.5067 3367 I 8x2 6.0273 2501
8x8 5.7016 4004 u 8x4 6.2511 5018
- ==

Table 5.3. Average rotational information content

It can readily be seen that the amount of rotational information increases significantly with the
size of the pattern under study. Furthermore it is interesting to note how the number of unique
output sensor patterns increases sharply as the area of the input pattern and the length of its
boundary increases. In Figure 5.9 information is plotted against the length of the longest side
of the pattern and one may conclude:

(i) That the length of the longest side is the most influential parameter in

détermining the information
(ii) That, starting from a square, shortening one side by one pixel gives a gain in

information of more than 15%
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Figure 5.9. Variation of the average rotational information with change in the length of the
boundaries.

(iii) Further shortening of the one side relative to the other reduces the gain in

information.

This outcome is not really surprising because a rectangle, having ditferent lengths of sides is
a more effective angular indicator or pointerthan a square since the difference in length of side
eliminates ambiguities. Nor is it surprising that a further reduction in width of the rectangle,
which is normally accompanied by a reduction in the number of unique output sensor patterns

should reduce the gain.

5.2.4. Overall information assessment

The concept of overall information content was discussed earkier in section 5.1 of this chapter.
Calculation of overall information was based on results obtained in evaluation of the rotational
information, were used in these calculations since the 100 sample points used were found to

produce adequate accuracy.
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The overall probability volume of each unique sensor output pattem (see Appendix 4) was
using these probability volumes as described in Appendix 4. Table 54!2. and Figures 5.10 and

calculated by summing the probability values associated with each unique sensor output
pattern over every one of the 100 sample points. The overall information was then calculated

5.11 show the results obtained for patterns under study.

Inpul Patiems

Overall information content
of rectangular patterns.

cccccccccccccc

ccccccccccc
‘.

9,0.0.0.0.0.0.0

Se% %0000 0202 %02

R

J1.

M I P P P P P Y

" w - - ~ - o - L] ~N - -2
() wogpwIOp PO

Figure 5

m T S S
[
e ©
18
. Eg JREEHE
Lc
b —
90
! £=
% cE®
oa
1{Ee 3| 2
= Tl © -3
A= (3 p-y ~ % -
118 2 mummwue
X R ol vl ~| o] @] 21 2
i O%
'
.-
E W ol v v of ~n| @
P | 8] 3| 8| 8| R| &
sl a gt tebat o ladal, |~
3
""..7‘.‘3-"0 g
Q) wopmwIORy MO H
R

Table 5.:9 Overall information content.
As for rotational information it is interesting to note the increase in the overall information in line
50

with the length of the longest side of the pattern. This effect is illustrated in Figure 5.12.
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Figure 5.12. Variation of the overall information with change in the length of the boundaries.

In interpreting these results one must recall that the influence of the effects which were noted
for rotational information have been diluted by the addition of translational information. Thus
one may conclude:

()] That the length of the longest side is still an influential parameter for
translational and for overall information.

(i) That the gain in rotational information when one side is shortened by one pixel,
is largely cancelled and sometimes reversed by the loss of information of at
least 10% - which the shortening must be causing in translational information.

(i)  Thus, for translational information the length of both sides must contribute to

the information. In fact, the difference between overall information I and

average rotational information A which was defined as net translational

information () is roughly proportional to the peripheral length of the pattern as
shown in Figure 5.13.
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Figure 5.13. Variation of the net translational information with the peripheral length.

5.2.5. Shared Information (s)

We are now in a position to examine the value of shared information for the few patterns for

which average translational information T has been assessed as well as average rotational

information A and overall information /. The value of s may be readily deduced from equation
5.4 as:
s=A+T-1 (6]

Table 5.5 shows the values of s calculated for the four input pattems.

ax2
rectangle

4x4 square

8x2
rectangle

rectangle

Table 5.5 values of shared information
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5.3. Information assessment of more detalled patterns

5.3.1. Patterns under study

The aim of this part of the investigation was to apply the information assessment methods to
patterns with more detail which resemble some of the common types of patterns which one
might encounter in general pattern recognition situations. However due to considerable volume
of the computation involved if was necessary to economize in the size and complexities of the

patterns used.

The patterns used may be divided into three groups. Group 1 was chosen to represent a
somewhat gradual progress from simple cross to aircraft shape as shown in Figure 5.14.
Group 2 consists of a total of 17 aircraft patterns, each of which has a different wing rake as
a result of the wing tip moving with respect to the fuselage. The overall movement of the wing

tip amounts to 2 pixel spacing units and three examples of these patterns are shown in

Figure 5.14.
i
o CIOs$-4x
O
wing
¢ e8

Group:.

0

ak -take0i5:..\.L.i. rake 1.0

Figure 5.14. Two groups of patterns used. Group 1 consists of six pattemns. Group 2
consists of 17 aircraft patterns with variations in rake of the wings; three
examples are shown here.

0
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The third group may be regarded as the oblique set and consists of ten two-dimensional views
of a three dimensional aircraft shape at various roll and pitch inclinations as shown in
Figure 5.15. For purpose of simplicity the dimensions of the 3-D shape were chosen to
correspond with the pattems used in Group 2. For example, pattern roll 0 (or pitch 0) of this
set is the same as pattern rake1.0 from Group 2. Furthermore, the dimensions of the tail fin

of the aircraft were chosen to be the same as those of its tail plane.

roli&pitch 22.5_  roll o\ /itch 0

roll 22.5

g

Figure 5.15. lllustration of how oblique set pattems in Group 3 were obtained by viewing
the 3-D pattern at ten different roll and pitch positions.

roll 90 pitch 90

The following sections describe the results obtained for the above-mentioned patterns. Only
the rotational and overall information were considered because of large computing time
involved with each of the tests. As before the rotational information results were used as the

basis for calculation of overall information in each case. The results for each group of patterns

are given separately.



5.3.2. Group 1

Results for the six patterns in Group 1 are shown in Table 5.6. and Figures 5.16 and 5.17.

6.9093
cross 6x1 4.8167 8.9820 4.1653 1703
cross 6x2 4.9268 9.1734 4.2466 1969
wing1 6.4558 10.1663 3.7105 3601
I tail1 6.9871 11.4971 4.5100 9031
I tip1 7.3083 11.6408 4.3325 8496

Table 5.6. Rotational, overall and net translational results for éroub 1 patterns.
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Figure 5.16. Average rotational information
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Figure 5.17. Overall information for
Group 1.

The results are generally in line with the conclusions reached for squares and rectangles but

it is evident that when the tips of the cross shaped figures are distinguished from each other

as inwingt1, tail1 and especially tip1, the rotational information increases, as might be expected

by 1 to 2 bits. At the same time the net translational information decreases by up to 1 bit,

presumably due to a loss of area in the more tenuous structure of the thin crosses.
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5.3.3. Group 2
Results for group 2 are shown in Table 5.7. and Figures 5.18 and 5.19.

rake 0.0 7.3083 11.7469 4.4306 8406
rake 0.26 7.3513 11.8113 4.4600 8675
rake 0.5 7.3775 11.8712 4.4937 8711
rake 0.75 7.3581 11.8712 4.5121 8683
rake 1.0 7.4066 11.8738 4.4672 8510
rake 1.05 7.4096 11.8243 4.4147 8644
rake 1.1 7.4068 11.8343 4.4277 8588
rake 1,15 7.4190 11.8314 4.4124 8576
rake 1.2 7.4008 11.8309 4.4213 8511
rake 1.25 7.4188 11.8285 4.4090 8495
rake 1.3 7.4248 11.8270 4.4021 8444
rake 1.35 7.4304 11.8049 4.3745 8423
rake 1.4 7.4268 11.7941 43673 8483
rake 1.45 7.4324 11.7919 4.3595 8448
rake 1.5 7.5249 11.7855 4.2606 8409
rake 1.75 7.4397 11.7627 4.3230 8566
rake 2.0 7.4204 11.6642 4.2348 8573

Table 5.7. Rotational, overall and net transiational results for group 2 patterns.
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Figure 5.18. Average Rotational Information Figure 5.19. Owerall Information for

for Group 2. Group 2.

Again the results are in line with previous conclusions and show that Group 2 is a consistent

set which will be analyzed in more detail in Chapter 6.
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5.3.4. Group 3

Results for group 3 patterns are shown in Table 5.2. and Figures 5.20 and 5.21.

¢ roll 0 pitch 0

roll 22.5

roll 45 6.9503 11.0824
roll 67.5 8.7747 10.3616
rolt 80 7.7178 9.5480
pitch 225 7.0719 11.5733
pitch 45 6.9076 10.4921
pitch 87.5 5.7947 7.8088
pitch 90 5.0768 5.2043

I roli&pitch 22.5 6.9954 11.3804
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Figure 5.20. Average Rotational Information Figure 5.21. Overall information for

for Group 3. Group 3.

Again the results are consistent with previous findings. The high figure for rotational information
for roll 90 where the aircraft fuselage is seen sideways on is no doubt due to the fact that a
long thin shape with head and tail distinguished acts like an arrow and forms a good angular

pointer.
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Chapter 6 - Analysis of Information Distinquishing
Between Patterns

Previous chapters have assessed the information regarding position and orientation which may
be obtained when an input image is placed in an arbitrary location on an array of sensors. This
chapter is concerned with assessing that part of the information content of the sensor array
output which enables different input images to be distinguished from one another. The principle
adopted is to measure the increase in information in the sensor outputs when two or more
patterns are presented in succession as the input image. The increase is measured by
subtracting the average information measured for each image separately, from the combined
information measured for the images when they are input in succession. The method is

described in section 6.1.

To start this investigation a sequence of input images was required with one parameter
changing progressively throughout. This was the purpose of creating the Group 2 patterns as
described in Chapter 5. These are aircraft silhouettes for which only one attribute, the rake of
the wings with respect to the fuselage, is changed from one pattemn to the next, and their

analysis is described in section 6.2.

A few input images were generated with other small variations in dimensions, such as change
in width of wing of the aircraft silhouette. Section 6.3 shows that the information increment

obtained is very much in line with the results described in section 6.2.

Section 6.4 of this chapter extends the investigation to the two-dimensional images which are
represemations“of a three-dimensional aircraft shape, which were described in Chapter 5 as

Group 3 patterns.



6.1. The comparison method

Preceding Chapters indicated that when assessing the information content of an input image,
all the unique sensor output patterns associated with it were recorded, together with their
respective probability of occurrence. The combined information for two or more input images
is based on combining the relevant output pattern sets, to give a new set of unique sensor
output patterns including all the output patterns for the separate sets. New values of probability
of occurrence are evaluated for each output pattern in this combined set. For example, when
combining the sets for two input images, the probability value for a sensor output pattern which
exists only in one set will be divided by 2 to represent a true probability value for a sensor
output pattern which now occurs within a combined set twice the size of the original set. For
a sensor output pattern which exits in both sets, the new probability value is the sum of values

from the two separate sets divided by 2.

Once a new combined set has been established, the information associated with it may be
evaluated using similar techniques to those described in Chapter 4 andin Appendix 4. The total
value of information in the combined set may be compared with the average value of the
original sets, and the difference may be described as an information increment measuring the
potential for distinguishing between input images. For example when comparing two input
images, the value of information increment will be between 0 and 1. The lower limit represents

a complete inability to distinguish them and the upper limit complete certainty of identification.

The information increment is a measure of the practicability of using sensor output pattems to
identify the image that has been presented at the input by selecting it from a number of
alternatives. The ‘humber of such distinguishable patterns is given by simply taking 2 to the
power of the information increment. For example, when examining the sensor output patterns
produced by two input images, if the incremental information increase is found to be equal to

0.95, the distinguishable patterns value is 2°% = 1.632, indicating that the two input images
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cannot be distinguished with certainty.

6.2. Accuracy of Discrimination between Patterns

The patterns in Group 2 as described in Chapter 5 were devised for this study so that only one
attribute, namely rake of the wings with respect to the fuselage of the aircraft, is varied from
one pattern to another. Owing to the extensive computing involved in evaluation of the
information content of each pattern, it was necessary to be selective about the rake of wings
chosen for these patterns. Wing rake is measured, for each input image, by the axial distance
by which the wing tip lies aft of the position of the wing root at zero rake, measured in pixel
spacing units. Nine patterns were chosen with the wing tip position ranging from 0.0 to 2.0 in
0.25 pixel steps. Eight more patterns were also studied so as to cover the range 1.0to 1.5in
0.05 pixel steps. This gave 17 patterns in total, and provided sufficient patterns for studies at
different separations. Separation , for a set of input images is the difference in wing-tip position

for the extreme members of the set.

6.2.1. Combining two input images

The first stage of this part of the

work involved combining pairs of a: - . - -

input images at different 2: [: =::§ z

separations from 0.05 to 2.0 pixel E :: : _é: i

spacing, and assessing the value g :: : :-'---

of the information increment | .. :..'E

associated with that separation. 0 A
Separaton

Figure 6.1 shows a scatter Figure 6.1. Scatter diagram of the information increment
when combining two input images.
diagram of the values obtained for

this part, and Figure 6.2 summarizes the results by providing a plot of average values of
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information increment as a function of separation.

Two points are of interest, Firstly,
1
the information appears roughly | os |- . *
Eos [ *
proportional to separation when or | o
- *
06 *
the separation is small. Thisis not |gos [ *
oe - »*
so surprising. Secondly the |2, _ ‘,'
02 -~
information becomes asymptoticto |, |
L *
L. S NS WP NP WY SEPUN NP S SR 2
the value 1 bit for large 0 az B4 08 8 1 12 e e a2
Separaien

separations. Since there are only Figure 6.2. Plot of average information increment when
combining two input images.

two patterns, and 1 bit serves to

distinguish precisely two patterns, it is not surprising that the information measured in the

output never exceeds 1 bit.
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Figure 6.3. Plot of Distinguishable patterns against separation for two input images (A smooth
curve has been fitted to assist further comparisons).
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it was noted in section 6.1 that each value of information increment implies an ability to select
one from a number of distinguishable patterns. Figure 6.3 illustrates the results in terms of this
number. A smooth curve (a second order exponential) has been fitted to these values as guide

of the trend of the results for use in future comparisons.

Again in this graph one may note that the number of distinguishable patterns rises
approximately but not precisely linearly for small separations, and that it approaches 2 for large
separations as might be expected. Since it cannot exceed 2 it is immediately evident that a pair
of input images does not provide a good test for the information transmitting capability of the
sensor array for large separations. To examine the full potential of the array it is necessary to
have an input of larger groups of slightly differing input images as the separation increases. For

each separation there is an optimum number of patterns in the input group.

6.2.2. Combining multiple input images

The comparison technique described in section 6.1 of this chapter may be used for combining
any number of patterns. Table 6.1 shows some of the empirical resuks obtained when three,
five and nine input images are combined. Figure 6.4 illustrates these results graphically. A very
tentative attempt to derive a theoretical response for multiple input images from the results
obtained for pairs of images was explored, and the predicted responses are plotted as fitted

curves in Figure 6.4.
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Table 6.1. Summary of Empirical results.

In interpreting these results it can be seen that for small separations one may pick up the
greatest amount of information by examining two input images at extreme sides of the
separation range. For example, considering separations of up to 0.6, combining two input
images prodbces the greatest value for distinguishable patterns. The values for combining
three's and five's are somewhat smaller. In other words for small separations, two input
patterns lying on the outer edges of the separation range produce sensor output patterns which
are as dissimilar as possible. Considering more positions within this range of separation

obscures the information available, and reduces the information increment assessment.

For larger separations the trend is somewhat different; the results show that one can increase
the information by combining input images not only at the exireme positions, but also in
between where further dissimilar output patterns may then be detected and used. This means
that the information transmitting capability of a sensor array should be tested both at the edges
and at the centre of the separation range. In Figure 6.4, three input images appear optimum
between 0.7 and 1.2 separation, and five from 1.3 onwards. No doubt nine should be found

optimum somewhere above a separation of 2 if results were available.

Considering the curves shown in Figure 6.4, one may see they may all be contained within an
envelope which is the best measure of the information transmitting potential of the array. One

may find a value for the slope of this envelope which has dimensions of distinguishable
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patterns per separation, or more importantly the inverse of this slope gives separation (in units
of pixel spacing) per distinguishable pattern. For the empirical results shown here, this value
is approximately 1.2 pixel spacings per distinguishable pattern. In other words, this recognition
system is capable of a high degree of discrimination between pairs of input images in which
the wing tip has moved by at least 1.2 pixe! units, and also some discrimination between triplets
with the same separation. This result clearly illustrates the power of this technique in
assessment of the ultimate limits of the recognition capability of any pattern recognition system
based on the use of a sensor array. Thus, by comparing the overall performance of a pattern

recognition system with this upper limit an efficiency may be assessed for the system.

6.3. Comparing very similar patterns

The results for wing tip movement that have just been examined in detail, provide a yardstick
by which the results of other simple changes in shape can be judged. Figure 6.5 illustrates an
example of three patterns studied here which are aimost identical but for a small variation of
0.2 and 0.5 pixel units in the width of their wing tips shown in solid, dotted and dashed lines.
Applying the information increment technique to these patterns gives the results shown in

Table 6.2.

) Table 6.2. Results for comparing very similar patterns.

It is interesting to note that similar results are obtained in Figure 6.3 and 6.4 for wing tip

movement separation which is again 0.2 and 0.5 pixel units. This suggests that the separation
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per distinguishable pattern for wing tip width may likewise be around 1.2 pixel spacing units.

In this case of course separation refers to a change in wing tip width.
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Figure 6.5. Small variation in the widths of wing tips.

6.4. Pitch and roll information carried by aircraft silhouettes

Group 3 pattems, as described in section 5.3.1 of Chapter 5, consist of two-dimensional
sithouettes of a three-dimensional aircraft model viewed at various angles. The viewing
positions were chosen, as shown in Figure 5.15, so that 5 side projections and 5 rear
projections of the aircraft were obtained at equal angular separations (denoted by roll 0 to
roll 90 and pitch 0 to pitch 90 respectively). In addition, another two-dimensional sithouette was

obtained by viewing the aircraft at an oblique angle of 22.5° (denoted by roll & pitch 22.5).

It was found advantageous earlier in this chapter to use a comparison technique based on
distinguishable patterns to assess the information available for discrimination between different
positions of the wing tip. The first step in analyzing the pitch and roll images in Group 3 was

therefore to apply this same technique in order to assess the information which permits
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discrimination of pitch and roll angles. Appropriate silhouettes were combined in groups of
twos, and where possible in threes and fives with angular separations ranging from 22.5° to
90°. Table 6.3 summarizes the results obtained, and Figures 6.6 and 6.7 illustrate the response
of the recognition system in the form of plots of distinguishable patterns against angular

separation derived as before.

Table 6.3. Summary of results for Group 3 pattems.

By analyzing the empirical results )

ars [ . Twos
here in a similar manner to that :; - o o e
shown in section 6.2.2 of this f 2| . . . O Fwe

178 -
chapter, the discrimination “; - .
capabilty of the recognition M; g
system here may be assessed in ;: :

[\] [ N 1 " 1 N J . 1

hange in roll and 0 25 - os %
terms of the chang

pitch angle per distinguishable Figure 6.6. Empirical results for side views (roll set).

pattern. This may be derived by taking the reciprocal of the slope of the envelope in the graphs
of Figures 6.6 and 6.7. In these graphs the envelope is not as clearly defined as in Figure 6.4
but it has been taken to mean a straight line through the uppermost points irrespective of

whether they relate to two, three or five input images. For the roll set, this leads to a value of
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degrees per distinguishable Figure 6.7. Empirical results for rear views (pitch set).

pattern.

The discrimination appears slightly poorer with regard to roll. f we examine the separate results
trorh which the averages in Table 6.3 were obtained, we find that this is partly due to the roll
discrimination being very poor between 0° and 22.5°. Details are given in Tables 6.4, 6.5 and
6.6. This means that we are not dealing with a relatively homogeneous set of data as in the
wing-tip analysis. Between 22.5° and 90° of roll, the discrimination improves to between 31° and
36°. In these circumstances the only really sound method of summing the roll and pitch
information over the whole hemisphere shown in Figure 5.15 would be to carry out massive
further analysis covering all possible combinations of pitch and roll. However, with the data at
present available, there remains an uncertainty about the angular discrimination in the as yet
unexplored areas of the hemisphere in Figure 5.15. if one assumes that the angular
discrimination generally lies between the limits of 31° and 51.5°, one may estimate the number
of distinguishable patterns over the whole hemisphere as between 27 and 10. The
corresponding information available for angular discrimination in roll and pitch taken together,
(with yaw also present in the side-view aspects) then lies between 4.7 bits and 3.3 bits. One
further point that needs 1o be borne in mind is that for imited roll or pitch seen from directly
above, roll to starboard and roll to port produce the séme changes in the silhouette. So does
a limited pitch in either nose-up or nose-down directions. The ambiguity thus introduced could

reduce the information by a fraction of a binary digit.
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0 225 225 0.1523 1111 202.7
225 | 45 225 0.7902 1.729 30.9
45 | 675 225 0.7029 1.628 358
675 | 90 225 0.7797 1.717 314
0 225 225 0.3759 1.208 755
225 ] 45 225 0.7378 1.668 33.7
45 | 675 22.5 0.7033 1.628 35.8
675 | 90 225 0.4581 1.374 60.2

o r—r— g

Table 6.4. Detailed resulits for combining two input images.

0 225 | 45 45 0.6024 1.518 86.9
45 1.2021 2.301 34.6
RAShENS E—. .
45 0.9587 1.944 47.7
45 0.9698 1.959 48.9

Table 6.5. Detailed results for combining three input images.

Table 6.6. Detailed results for combining five input images.

6.5. Comparison with a proposed pattern recognition method

One aim of the present study was to provide a standard against which the performance of
actual pattern recognition methods couid be tested for their efficiency of utilisation of the
available information. To illustrate the way in which a comparison may be made, the conclusion

regarding a pattern recognition method described by R.J. Petheram [12] may be quoted. This
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method was tested on aircraft silhouettes with pitch and roll, and it was estimated that 5 bits
of infformation regarding these angles were retained at the final output. This may be compared
with the range of 3.3 to 4.7 bits estimated above. However, for a pair comparison one must
also allow for the fact that the silhouettes studied here spanned about 7 pixel units in length

and width, whereas the span of Petheram'’s was around 21.

Now it appeared that with the simple shapes studied in Chapter 5, the information picked up
by a sensor array was proportional to the linear dimensions of the image rather than the area.
If this also applies to aircraft silhouettes, then Petheram's method must have been using
between 40% and 100% of the information available, depending on whether we regard 4.7 bits
or 3.3 bits as more authentic. A more extensive study of silhouettes subject to pitch and roll

is needed to confirm the appropriate value.

This comparison has necessarily been very tentative, and the assumptions that have been
made need to be checked carefully. Nevertheless it does illustrate the potential value of being
able to measure the information associated with a group of images forming the input to an

array of sensors.
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CHAPTER 7 - CONCLUSIONS AND FURTHER
CONSIDERATIONS

7.1. Summary of the conclusions

The work described in the thesis was concerned with the use of information theory techniques
in pattemn recognition problems. Information content related to certain attributes, such as
location and orientation, of a variety of input images was identified and assessed for the
purpose of recognition and classification. Methods were also developed for assessment of the

performance of pattemn recognition systems.

7.1.1. Preliminary Investigation

Chapter 3 outlined the preliminary investigation into basic information assessment methods.
It initially examined application of non-conditional and conditional entropy principles to simple
binary patterns, in the form of a singie black pixel and of two black pixels, as shown in
Figures 3.1 and 3.2. Identical results were obtained using both non-conditional and conditional
methods (4.0 bits and 4.5 bits of information for each pattem respectively). An L-shaped pattern
of three pixels, as shown in Figure 3.3, was also considered. Again both methods resulted in
the same value of information (5.12 bits). This means théboth non-conditional and conditional
entropy methods may be used for such basic assessments. Further considerations of this
pattern indicated that information related to position and orientation of patterns may be
evaluated separately (see section 3.1.4. and Appendix 1 for further detail). This led to further

investigation of the positional (or translational) and orientational (or rotational) information

content of images.

The second section of chapter 3 described how these information assessment techniques were
further developed for evaluation of basic rotational and translational information content of a

4x2 réctangular image after it is input to a sensor array. The rotational information content of
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the sensor array output patterns was found to be between 2.59 and 3.86 bits, depending on
the position of the centre of gravity of the image within the pivotal pixel. The translational
information content of the input image was found to be between zero and 4.44 bits, depending
on the inclination of the image with respect to the pivotal pixel. Additionally the concept of
maximal and minimal limits of information was discussed this provide a quick estimate of the

order of magnitude of the information content of an input image.

The preliminary investigation showed that it was possible, though laborious to measure the
rotational and translational information associated with simple binary patterns. It was then
decided to extend this work to a wider range of images by seeking extensive computing
facilities. This led to more advanced information assessment work the results of which are

summarized in the next section.

7.1.2. Advanced Information assessment

7.1.2.1. Summary of the resuits

Chapter 4 described in detail the procedure of development of aigorithms of the information
assessment techniques established in Chapter 3. This facilitated more comprehensive studies

to be carried out using the processing power of mainframe computers.

Chapter 5 described the investigation into assessment of information content of two-
dimensional patterns. Distinctions between net translational, net rotational and overall
information with consideration of the shared information were discussed in section 5.1 and in

more detail in Abpendix 3.

Section 5.2 of chapter 5 considered information assessment of simple binary images such as

squares and rectangles as shown in Figures 5.2 and 5.3. Translational information content
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results in the case of the 4x2 rectangle were found to be very close with those obtained in the
prefiminary investigation (maximum error was found to be around 0.02 bits). A few other
patterns were also examined for translational information content with average values between

3.68 bits to 5.54 bits.

In case of rotational information, the values varied from 0.33 bits for a 1x1 square to 5.70 for
an 8x8 square. Further analysis of the results showed that the length of the longest side of the
input image is the most influential parameter in determining the rotational information content

(see section 5.2.3.).

Assessment of the overall information revealed 0.91 bits for the 1x1 square to 10.62 bits for
the 8x8 square. The value of the shared information for a few pattems was also caiculated to

be around 1 bit or 10% to 15% of the overall information, as shown in Table 5.4.

More detailed patterns were also studied in three major groups shown in Figures 5.14 and
5.15. Group 1 consisted of six patterns showing a gradual change from a cross to aircraft
shape. Rotational information values for these patterns were found between 3.74 bits and 7.31

bits, and the overall information values were found to be between 691 to 11.64 bits.

Group 2 consisted of 17 aircraft patterns for which only one attribute, rake of the wings with
respect to the fuselage of the aircraft, varied from one pattem to another. The values of
information content were found to be consistent, with average rotational information value of

7.41 bits and average overall information value of 11.81 bits.

Group 3 patterns were two-dimensional views of a three-dimensional aircraft shape at various
pitch and roll inclinations. it was found that both rotational and overall information values for
the pitch views dropped more rapidly as the angle of viewing (measured from apex) was

increased (rotational information value were between 7.41 bits to 5.08 bits compared with 7.41
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bits to 5.79 bits for roll; overall information value were between 11.82 bits to 5.2 bits compared
with 11.82 bits to 9.55 bits for roll). This may be explained when considering that the pitch

views show a reduction in the length of the input image as the angle of viewing is increased.

7.1.2.2 Discussion and further conclusions

The computerization of the information assessment techniques produced accurate and reliable
results. This facilitated detailed analysis of a variety of input images. Furthermore, the value
of the earlier preliminary work was proved since it provided a useful check on the accuracy of

the computer calculations.

The theoretical treatment of the net translational, net rotationa!l, overall and shared information

(section 5.1 and Appendix 3), and the empirical results were found to agree.

An interesting reiationship between the dips in the translational information response and the
sensor output pattern area domains were noted in section 5.2.2.2(and Appendix 5), which
agreed with the basic principles of information theory. That is, large area domains introduce
uncertainty about the locations of the centre of gravity of the pattern within the pivotal pixel, and
consequently this leads to a drop in the assessed information. Figures 5.6 and AS5.1 illustrate

this point.

Considering the results for the rotational and overall information assessment of the simple
binary patterns (section 5.2.3 and 5.2.4), it was noted that the length of the longest side of the
input image is the most influential parameter in determining both rotational and overall
information. It was also shown that the net translational information is roughly proportional to
the peripheral length of the pattern, since length of both sides of the pattem contribute to this

information | (see figure 5.13).
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Analysis of the more detailed patterns (section 5.3) illustrated the power of the automated
algorithms used. Data compression techniques were used for comparison and storage of the
large number of the global sets discovered in these cases, which increased the speed of

execution and reduced computer storage.

Results obtained for Group 1 patterns were found to be generally in §ne with the conclusions
reached for squares and rectangles. Results for Group 2 patterns showed an expected
consistency and were used later in further analysis of performance assessment of pattern
recognition systems. Results for Group 3 patterns were largely in fine with expectations given

the shape of the input patterns produced at each viewing angle.

7.1.3. Assessment of performance of pattern recognition systems

Chapter 6 was concerned with the use of information assessment techniques to assess the

recognition capability and efficiency of utilization of information of patern recognition systems.

In the case of patterns with varying wing rakes (Group 2 patterns), it was found that the system
under test was capable of a high degree of discrimination between pairs of input images in
which the wing tip has moved by at least 1.2 pixel spacing units. Small variations in the width
of the wing tip were also considered and the result was found to be generally in line with the

previous findings.

In case of pitch and roll patterns (Group 3 pattems), it must be noted that a further study of
combinations of pitch and roll would be desirable before drawing firm conclusions. However the
data available at the present time was analyzed as well as could be managed to obtain an

indication of what might be expected when more data becomes available.
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The pattern recognition system under study in this case was found to be capable of
distinguishing between patterns separated by 51.5° for roll and 47.7° for pitch views.
Furthermore, considering a system as a hemisphere which contains roll, pitch and yaw views
of the three-dimensional shape (as shown in Figure 5.15), it was estimated that the angular
discrimination limits of 31° and 51.5° give rise to between 27 and 10 distinguishable patterns
over the whole hemisphere. It was also estimated that the corresponding information available
for angular discrimination in roll and pitch (and also yaw) taken together lies between 4.7 and

3.3 bits.

A comparison was also made with a proposed pattern recognition method by Petheram [12).
it was noted that Petheram’s method which tested aircraft silhouettes with pitch and roll was
estimated to retain 5 bits of information, which may be compared to the range of 3.3 bits t0 4.7
bits estimated using the information assessment techniques. When considering that Petheram’s
input images were three times larger than those in Group 3, it may be estimated that
Petheram’s method uses between 40% and 100% of the information available. These results
illustrate, although rather tentatively, the potential value of being able to measure the

information associated with a group of images forming the input to an array of sensors.

7.2. Further development of the Investigation

It was already mentioned that the algorithms used were very computer intensive. This is partly
due to the nature of the algorithms, which mainly involve manipulation of large arrays, and
partly because'éome of the routines have evolved from an earlier part of the investigation and
are rather less efficient when used for more complex tasks. Further refinement and
improvement of the algorithms and programs would be possible and desirable. Efficient

implementation of the algorithms on high performance parallel processors and workstations
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would also be of great value to facilitate further investigation.

Considering the results of combining patterns (Chapter 6), further exploration of the theoretical
link between pairs and multiple input patterns woukd be beneficial. Obtaining additional

empirical results would also aid in substantiating any theoretical treatment.

Furthermore, considering the pairs curve in Figure 6.3, one can readily notice a low siope for
small separation values (between 0.05 and 0.4 pixel units separation). One possible
explanation of this effect may be due to the shared information between translation and wing-tip
position. One could start by using only the rotational information for combining patterns in pairs.
If the effect does not occur it may be argued that the effect has been due to the transiational

component of the shared information.

As mentioned . earlier in this chapter and also in Chapter 6, information content results related
to roll, pitch (and yaw) need to be assessed more thoroughly. It is envisaged that further
refinement and implementationof the algorithms on a powerful workstation will facilitate more

data of this kind to be obtained more rapidly.

7.3. Wider implications of information assessment methods

The feasibility, and the power of infformation assessment techniques in analysis of performance
of pattern recognition systems has been demonstrated. Further work is needed in order to
enhance the cth:rrent algorithms to be more robust and flexible, so that they may be used in
assessing the performance of various pattern recognition systems used in practical applications

such as visual inspection and industrial automation.



It is also interesting to consider the possibility of using the global sets assembled in this study
as a basis for a pattem recognition method in its own right. One possible realization may be
through the use of parallel processing. Despite the computing cost of this method,
implementation will be possible using parallel high performance processors that use sub-micron
CMOS or GaAs technologies. This is made possible by the highly parallel nature of the
algorithm, whereby one processor can be used for assessment of information at each sample
point, and also rotational ranges within each sample points. Parallel implementation promises

to be an exciting and chalienging subject for future work.
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Appendix 1 - Detailed Calculations of the Information
Contents of Simple Binary Images

This Appendix explains the details of calculation of the information content of simple binary

images described in Chapter 3.

A1.1. Single black pixel on white background

The first case considered was the image of a single black pixel in a 4 by 4 grid of white

background as shown in Figure A1.1. The following assumptions were made about this case:

Assumptions

1. The image is binary and no noise is present.
2. The black square occupies an integral pixel.
3. No part of the image lies outside the grid.

4, The image can appear in any of the 16 possible positions with equal probability.

Figure A1.1. The single black pixel.



For this simple case, it can readily be seen that the size of the sample set is 16 which is the

number of the possibilities of the black square appearing in any of the positions on the grid.

The information conveyed by detection of the black square in a position may be measured by

simply applying the basic entropy formula as shown in equation Al.1:

-y 1 (AL1)
where, p(x)=1/16, and n=16
therefore, H(x) = 16 x 1/16 log, 16
H(x) = log, 16
H(x) = 4

Obviously, the conditional entropy formulae are not applicable in this case as there is only one

black pixel present.

1.2. Two black pixels

In this case, two black pixels were considered on a 4 by 4 noise-free grid as shown in

Figure A1.2. The assumptions are similar to those of the first case:

Assumptions

1. The image is binary and no noise is present.

2. The image occupies integral number of pixels.

3. No part.of the image lies outside the 4 by 4 grid.

4, The 2 black pixels forming the image can lie in both horizontal and vertical orientation

as well as at any position within the grid with equal probabilities.
5. The size of the sample set is 24, with 12 possibilities in horizontal and 12 possibilities

in vertical orientation, resulting  a probability of p(x )=1/24 for any sample sez.



Scanning of the image is performed in a similar manner to that of a raster scan, le.
starting from top left hand pixel, from left to right and top to bottom.

For purpose of application of conditional entropy formulae, we call the upper most or
the left hand side black pixel x, , and the other black pixel x, . This means that the
first black pixel discovered by virtue of the scanning algorithm described in 6 above is

termed x, (see Figure A1.3).

Figure A1.2. The two black pixels.

(a) (b)

Figure A1.3. Identification of the first scanned black
pixel as x, and the other as x, - (a) left-hand side
case, (b) upper-most case.



The basic entropy measurement formula (equation A1.1) can easily be implemented. As
already mentioned, p(x) = 1/24 in this case, therefore,
H(X) = 24 x 1/24 log, 24

H(X) = log, 24 = 4.5850

In this case the conditional entropy formula can be applied to assess the information conveyed
by discovering the first pixel and then the second pixel given the position of the first pixel. In

notation this can be described as:

HX) = Hx) + Hoxglx)

HX = X 1 px,) log,
kG

oy PR ) oge T ]

P(x;|x,)

It is imperative to avoid duplication of the measurements, which is an easy mistake to make
it a record of the number of the possibilities (or samples) that have been considered for a
defined set of measurements is not kept. In order {0 avoid this problem a simple scanning
algorithm may be adppted which uses the usual raster scan to detect the first pixel, then it
considers the two positions to the right or below the first pixel for the second pixel; and never

%,
looks at the positions to the 4¢f¢ or below the first pixel.

Figure A1.4 shows the possibilities which exist when the above mentioned scanning algorithm

is used.

Figure A1.4. Number of x, positions possible
for any x, when using » below scanning
algorithm for the positiori of x,.



Clearly it can be seen that there are 9 x, positions for which two possibilities of x, exist; and
6 positions for which only one x, position is possible. Therefore in the former case, probability

of occurrence of x, given x, ,ie p(x, |x, ) = 1/2 ; and in the latter case p(x, |x, ) = 1.

The calculation of the information contents by the conditional entropy method are as follows:

9 positions 6 positions
{ 2 x, Mo 1x )

H(X)= { 9 X 2/24 X log, 12 }+{ 6 X 1/24 X log, 24 }
HOXG IX, )= { 9 X2 X 2/24 X 1/2log, 2 }+{6 X1 X124 X 1log, 1 }

3/4 log, 12 + 1/4 Iog, 24

3/4 log, 2 + 0

3/4 log, 24 + 1/4 log, 24

= log, 24

Clearly the calculation of the information contents in both conditional and non-conditional cases

agree.

A1.3. Three black pixels in L-shape

A1.3.1. The 4 by 4 grid

In this case three black pixels were arranged such that they formed an L-shape in a 4 by 4 grid

as shown in Figure A1.5.

Figure A1.5. The L-Shape.



Assumptions

1. The image is binary and no noise is present.

2. The image occupies integral number of pixels.

3. No part of the image lies outside the 4 x 4 grid.

4, The L-shape image can lie in any position and orientation within the grid with equal

probabilities, thus resulting in @ sample size of 36 and sample point probability of 1/36.
5. Initial raster scan is performed to detect the first pixel of the L-shape which is then

termed as x,.Clearly, this will then be the top left hand pixel of the L-shape.

The independent test may be performed easily by considering the possible 36 positions and
orientations of the L-shape:

n=36;p(x) = 1/36

therefore, H(X) = 36 x 1/36 log, 36
H(X) = log, 36
or, H(X) = 5.17

Figure A1.6. Demonstration of the 36
possible positions and orientations of the L-
shape.

The conditional entropy technique may also be used to measure the information conveyed by

the L-shape. However scanning the grid is still important so that duplication may be avoided.

By taking into account the information from left to right scan, when a black pixel is discovered

it could obviously be the top left hand pixel.



Fig A.7. shows the possibilities for x Aiéns = given each x positions. It can be seen that the

total number is 36.

Ol Wl W] w
Ol |
Ol &l & &
O| ~b| =a| =

Figure A1.7. Number of possibilities of x,
given x, in a 4x4 grid.

The calculations using the conditional entropy are as follows:

3 positions 6 positions 3 positions
{ 3 x, MW 4x M 1x }
TOTAL { 9 I 24 o 3 }
= 36
For x,
H(X,)= {3 X 3/36 log, 12 H 6 X 4/36 log, 9 }+{ 3 X 1/36 log, 36}
= { 1/4 log, 12 M 2/3 log, 9 HH 112log, 36 }
For x, & X,
HO%) = {9X3/36X1/3Xlog 12  }+ 24X4/36X1/4log 4 }+{ 3X1/36X1 log 1}
= { 1/4 log, 3 H 23 log, 9 o 1/12log, 36 }
Therefore,

H(X) = H(X,) + H(X)
= log, 36
= 5.1699

Clearly, this result agrees with the independent measure of information.

A1.3.2 The 5 by 5 grid

In order to show that the foregoing was not a coincidence, let's consider the same L-shape in

a5by5 grid, where we have p(x; ) =1/64.
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Non-Conditional entropy

H(X) =64 x 1/64 log, 64
= log, 64
=6

Conditional entropy

As seen in Figure A1.8;

Ol W W] W| W
O|djdlan
Ojd| bl &
O|la|s|l &l
O =] | | =

Figure A1.8. Number of possibilities of x,
given x, in a 5x5 grid.

}

4 positions 12 positions 4 positions
{ 3 x, el 4x, I 1x, }
{ 12 H o 48 H 4 }
= 64 possibilities
For x,
H(X,) = {4 X 3/64 log, 64/3 M 12 X 4/64log, 16 }+{ 4 X 1/64 log, 64 }
= {3/16 log, 64/3 M 3/4 log, 16 1 1/16 log, 64 }
= 4.2028
For x,
H(X) = { 12X3/64X1/3 log, 3  }+{ 48X4/64X1/4 log, 4 }+{ 4X1/64X1 log, 1
= {3/16 log, 3 M  3dlog, 4 M 0 }
= 1.7971
Therefore,

H(X) = H(X,) + H(X,)
H(X) = 6
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APPENDIX 2 - Details of Calculation of Basic Rotational
and Translational Information Content

This Appendix is a detailed explanation of calculation of rotational and translational information
content of a simple, two level (binary) 4x2 rectangular input image which was used in the

preliminary investigation described in Chapter 3.

A2.1. Calculation of rotational information content.

In this section detailed calculations of information content associated with rotation of the
rectangular input image are shown. There were four cases considered when the input image
was rotated about its centre of gravity while keeping the position of the centre of gravity fixed

in relation to the pixel array. These are labelled as Set IA, IB, IC, and ID as shown in Figure

A2.1,
T T |- - _‘—l_—f__f__""——"'—_l-‘—""-‘l
I I I | I | I I l P | i I
I ] ! i I | I | | P [ I I
r- =TT T
] | | { | ]
L_ wd L B
i | I I I
| | | | |
(- -_———+ +-—9
| | | I I
1 ! I I _
r— i R o T
! I I I ]
L— —d__1 d-
I i I ! 1
I i I i |
F— ——4——+- 9t ——1q
| I | N | |
b _d b {1__)
r T T il I
| I | | ]
}— —J__f— Lo (dy ) *_—‘
| |
I 1 | | .(dx i ! |
r— —ﬂ-—T——P—ﬂ--f—-h—T——1
| |
I I I ]

Figure A2.1. Position of centre of gravity of each sample set (each square represents
one pixel).

(a): Sample set IA

(b): Sample set IB

(c): Sample set IC

(d): Sample set ID
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For each of the four cases considered in this section, two figures and one table are shown. The
first figure shows the rectangular input image as it is subjected to rotation through 180 degrees
and the respective sensor output patterns (sensor response) at the specified intervals. The
second figure shows the complete set of uniquely numbered sensor output patterns, and the
respective range of angles over which each sensor pattermn exists. The table for each case,

shows the steps taken in calculation of the rotational information content for each case.

A2.1.1. Set 1A

In Set 1A, two types of calculations were made, one assuming that the sensor array behaves
like a éet of area detectors, and the other assuming that the sensors array behaves like a set
of point detectors. The results obtained when area detectors were used are shown in Figures
A2.1(a), A2.2(a), and Table A2.1(a). The results obtained when point detectors were used are

shown in Figures A2.1(b), A2.2(b), and Table A2.1(b).

OB Q| O B~ e O ®Ee Q@ ) H|~Q i
‘ogﬂﬂu0$m$%‘nmm wDEEuO@mQ@MDm
OB QB m| OB IECRom
O e [ B | QO 2O e [J B = QOB

QO e B |« Q% « O e [ B QB

O FN B Q™ O @B |-

Figure A2.1(a). Case IA - response of the Figure A2.1(b). Case IA - Response of
area sensor array. point sensor array.

1(a) 2 3 1(e) 2 s 4 5 ) ;
A SEEEEE
P 5 6 7 s ° 10 1 12" "
E m@a “‘fi‘%”' ..Eéj uc.tg: nﬁléu.n |E 'E m%ﬂa
] 8 1(b) 13 14 15 18 1(b)
H | ® | @ & | @ | by | B | o

12 0-U7 8 147.08-198.20 1992180

1] reseram| \om s 0 W82 | 199218197 | 10157100

Figure A2.2(a). Set IA - The set of sensor Figure A2.2(b). Set |A - The set of sensor
output patterns produced using area output patterns using point deteclors.
sensors.
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H(X ) =
i
1 1
x Range R P(x ) log ------- p{x )log ------ H(X ) / R
i |(degrees) i 2 pilx ) 1 2 p(x ) i
i
+S====§8========§=I38..BB+E==!!III=IB‘II‘=8=I=ISI=I=====!=-‘==I=:=========0
X 41.6 0.2311 2.1134 0.4884 0.0117
1
x 11.54 0.0641 3.9635 0.2541 0.0220
2
x 25.32 0.1403 2.8334 0.3975 0.0157
3
x 11.54 0.0641 3.9635 0.2541 0.0220
4
X o 41.6 0.2311 2.1134 0.4884 0.0117
5
x 11.54 0.0641 3.9635 0.2541 0.0220
6
X 25.32 0.1403 2.8334 0.3975 0.0157
7 .
X 11.54 0.0641 3.9635 0.2541 0.0220
8
4o L il fmm s $om e L R SR P e s +
fror. | 180 | 1.0000 | - 2.7882 -
+=====§=========+====B===+======IB===.3!#========IB====:.==§=======:======¢
+ Table A2-1(a)- Case IA - Rotational Information Assessment Results
When Area Detectors Are Used.
#8’:8-#===ﬁ=!3=l+l='l.:l.+.IEI..I...I---’I-II-II..SSSS8==’03.===I==l=====§
| H(X ) =
i
1 1
x Range R Pi{x ) log ------- pi(x )log —-=-c-- H(X ) / R
i |(degrees) i 2 pix ) 2 p(x )} i
#8====§3==It.===+.==IS..IQ.II:I...-.--IIQ-I’I.II.'.SB'IIIB:#BIB’I=S=BSSS=!+
x 36.86 0.2048 2,2879 0.4686 0.0127
1
x 2.37 0.0132 6.2433 0.0824 0.0348
2
X 4.73 0.0263 5.2488 0.1380 0.0292
3
x 6.81 0.0378 4.7255 0.1786 0.0262
4
x 25.32 0.1407 2.8293 0.3981 0.0157
5
x 6.81 0.0378 4.7255 0.1786 0.0262
6
X 4,73 0.0263 5.2488 0.1380 0.0292
7
x 3.93 0.0218 5.5195 0.1203 0.0306
8
x 33.74 0.1874 2.4158 0.4527 0.0134
9
x 3.93 0.0218 5.5195 0.1203 0.0306
10
x 4.73 0.0263 5.2488 0.1380 0.0292
11
x %.81 0.0378 4.7255% 0.1786 0.0262
12
x 25.32 0.1407 2,8293 0.3981 0.0157
13
x 6.81 0.0378 4,7255 0.1786 0.0262
14 . .
x : 4.73 0.0263 5.2488 0.1380 0.0292
15
x 2.37 0.0132 6.2433 0.0824 0.0348
16
- D Sttt o ——— b daduindaindeinb i il bl bd St i L bbb EL L L Bl T +
JTor. | 180 | 1.0000 | - | 3.3893 | - |

4-::---4---llss:a#.l.ut...{n--------------+n-l--a:.--::a::=:4:-:=:l-ss=====+

Table A2.1(b). case IA - Rotational Information Assessment results

When Point Detectors are used.,
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A2.1.2, Set 1B

Results for this set are shown in Figures A2.3, A2.4 and Table A2.2.
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Figure A2.3. Case IB - Response of point sensor array.

1(a) 2 1(b) 3 4 5
. F= r— "
[ [T R ]
) 1 ( |
| L
0 0-14.98 14.98-22.62 | 22.62-28.08 | 28.08-36.86 | 36.86-43.06
6 7 8 9 10 11
H E EH ,
]
43.06-48.19 48.19-90 90 90-131.81 131.81-136.94| 136.94-143.14
12 13 1(c) 14 1(d)
[ Z
HH |dHF | HH
143.14-151.92| 151.92-157.38{ 157.38-162.02{ 162.02-180 180

Figure A2.4. Case IB - The set of sensor output patterns.
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H(X ) =
i
1 1
x Range R P(x ) log ~-e---- pi{x )log ~----- H(X ) / R
i |(degrees) i 2 pi(x) 1 2 p(x ) i
i i
-0-:::-:+======-:=+=ns=a-.n+s==:n:-----n--#--=:=========s===9=33:===213====+
x 15.289 0.0849 3.5581 0.3021 0.0198
1 .
x 14.98 0.0832 3.5873 0.2985 0.0199
2 s
x 5.46 0.0303 5.0445 0.1528 0.0280
3
x 8.78 0.0488 4.3570 0.2126 0.0242
4
X 6.2 0.0344 4.8614 0.1672 0.0270
5
x 5.13 0.0285 5.1329 0.1463 0.0285
6 .
X 41.81 0.2323 2,1089 0.4892 0.0117
7
x 0 0 - - -
8 .
x 41.81 0.2323 2.1059 0.4892 0.0117
9 .
x 5.13 0.0285 5.1329 0.1463 0.0285
10
x 6.2 0.0344 4.8614 0.1672 0.0270
11
x 8.78 0.0488 4.3570 0.2126 0.0242
12
x 5.46 0.0303 5.0445 0.1528 0.0280
13
x 14.98 7| 0.0832 3.5873 0.2985 0.0199
14 .
tom——— e o —— PR E e e e L L LR s e m e ——— +
jror. | 180 | 1.0000 | - | 3.2353 i - |

+ RS ISR AN R4 A R S RN R4 AR I S I N N E N S} B A E R R E I EE S AT I RIS+ S STSTTITII=BIR TSNS

Table A2.2. Case IB - Rotational Information Assessment results
When Point Detectors Are Used.



A2.1.3. Set IC

Results for this set are shown in Figures A2.5, A2.6, and Table A2.3.
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Figure A2.5. Case IC - response of point sensors array.
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Figure A2.6. Set IE - The set of sensor output pattems.
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H(X ) =
i
1 1
x Range R P(x )} | log =--=-ea pi(x )log «-=--- H(X ) /R
i |(degrees) i 2 pix ) 1 2 pl(x } i
i i
PR RN T IS E R S IR 4 T I I T EE I T4 S S S I R I N R R E NN R4 I T I BT I LSS I IR TSI SSIRT SIS S IS¢
x 0 0 - - -
1
x 30 1/6 2.5850 0.4308 0.0144
2
x 30 1/6 2.5850 0.4308 0.0144
3
x 30 1/6 2,5850 0.4308 0.0144
4
x 0 0 - - -
5
x 30 1/6 2.5850 0.4308 0.0144
6
b d 30 1/6 2.5850 0.4308 0.0144
7
X 30 1/6 2,5850 0.4308 0.0144
8
R P LT BT LTy S S dommmcne e +
|ToT. | 180 | 1.0000 | - | 2,5850 | - !
R E R IS I S R R4 TR I AN N E S N R I I I E R R S A NS X E S SN IR IR B AR R4 IIITTCSIRES=SS $

Table A2.3. Case IC - Rotational Information Assessment results
When Point Detectors Are Used.
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A2.1.4. Set ID

The results for this set are presented in Figures A2.7, A2.8 and Table A2.4.

input output input output input output input output
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Figure A2.7. Set ID - response of point sensor array.
| 1(a) 2 3 4 5~ 6
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7 8 9 10 11 12
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[ ] ] ]
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97.96-107.1 | 107.1-123.78 | 123.78-132.12| 132.12-138.95| 138.95-152.34| 152.34-154.1
19 20 1(b)
|
0 | | HH
154.1-160.04 | 160.04-163.16| 163.16-180

‘Figure A2.8. Set ID - The set of sensor output patterns.

Xvi-
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Table A2.4.

H(X ) =
i
1 1
x Range R P(x ) log wwace-- p(x )log ~~---- H{X ) /R
i {(degrees) i 2 pix ) 1 2 plx } i
i
4:====+-==:=====+====I===+=l=x=a=s==:=:n+:=s==============+==========:===¢
X 33.68 0.1871 2.4181 0.4525 0.0134
1
X 3.12 0.0173 5.8503 0.1012 0.0324
2
X 5.94 0.0330 4.9214 0.1624 0.0273
3
X 1.76 0.0098 6.6763 0.0654 0.0372
4
X 13.39 0.0744 3.7488 0.2789 0.0208
5
b3 6.83 0.0379 4.7200 0.1789 0.0262
6
X 8.35 0.0464 4.4301 0.2056 0.0246
7
X 16.67 0.0926 3.4327 0.3179 0.0191
8
x 9.14 0.0508 4.2997 0.2184 0.0239
9
x 0.67 0.0037 8.0696 0.0299 0.0446
10
x 14.58 0.0810 3.6259 0.2937 0.0201
1
b 0.67 0.0037 8.0696 0.0299 0.0446
12
x 9.14 0.0508 4.2997 0.2184 0.0239
13
X 16.67 0.0926 ° 3.4327 0.3179 0.0191
14
x 8.35 0.0464 4.4301 0.2056 0.0246
15 .
x 6.83 0.0379 4.7200 0.1789 0.0262
16
x 13.39 0.0744 3.7488 0.2789 0.0208
17 .
x 1.76 0.0098 6.6763 0.0654 0.0372
18
x 5.94 0.0330 4.9214 0.1624 0.0273
19
x 3.12 0.0173 5.8503 0.1012 0.0324
20
B Sadedndednh dhadadededuindedeabel edededebed b bl Btbe B L Rl Rt e P, e - Ll +
|'ro'r. | 180.00 | 1.0000 | - 3.8634 ] - |
+=:==-+=::======+====-==a+-==:ss=l=--==e+::======s========4}==============+

Case ID - Rotational Information Assessment Results
When Point Detectors Are Used.
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A.2.2. Calculation of Translational information Content

In this section details of assessment of information content associated with transiation of the
rectangular input image is presented. There were five cases considered when the input image
was translated within the pivotal pixel while maintaining a fixed inclination to the pixel array.
Input images inclined at 0 degrees, 30 degrees, 45 degrees, and 90 degrees were considered.
The results are labelled as Set lIA, 1IB, IC and IIE respectively. The 60 degree case was
deduced from the 30 degree set by symmetry and is labelled as set 11D, but not shown in

detail here.

.2.1 - Set llA: object Iinclined at 0 degrees

In this case there can only be one sensor pattern associated with each pivotal pixel with a
probability of one. This is because the probability of occurrence of other sensor patterns is
zero. Therefore the measure of the fine translation information is zero. This is the expected
result, as no information is conveyed by the occurrence of a certain event. Figure A2.9. shows

the set of sensor output patterns and their respective areas of occurrence in the pixel array.
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A2.2.2 - Case 1IB: object inclined at 30 degrees

In this case there are 29 different sensor patterns attributed to each pixel. Figure A2.10. shows
the uniquely numbered set of sensor output patterns, and their respective areas of occurrence
in the pixel array. The detailed calculations of the translational information content are shown

in Table A2.5.
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H(X ) =
i
1 1
x Range R pix ) log ==em--- p(x )log --~--- H(X ) / R
i (unit i 2 pix ) i 2 plx }
area) i i
4SS+ IR AT TSI I RNIRNEC TR EASTAZTIESEIRAT IS ARIBTAIITIBLIIIIITSIIITSIIAIIINIRATIIIE 4
x 0.0048 0.0048 7.6999 0.0370 7.6999
1
x 0.0035 0.0035 8.1499 0.0287 8.1499
2
X 0.0048 0.0048 7.6999 0.0370 7.6999
3
x 0.0048 0.0048 7.6999 0.0370 7.6999
4 .
x 0.0048 0.0048 7.6999 0.0370 7.6999
5
X 0.0035 0.0035 8.1499 0.0287 8.1499
6
x 0.0048 0.0048 7.6999 0.0370 7.6999
7
X 0.0131 0.0131 6.2499 0.0821 6.2499
8
x 0.0096 0.0096 6.6999 0.0644 6.6999
9
x 0.0131 0.0131 6.2499 0.0821 6.2499
10 '
x 0.0490 0.0490. 4.3500 0.2133 4,3500
1
x 0.0538 0.0538 4.2150 0.2270 4.2150
12
X 0.0131 0.0131 6.2499 0.0821 6.2499
13
X 0.0490 0.0490 4.3500 0.2133 4.3500
14
X 0.0490 0.0490 4.3500 0.2133 4.3500
15
x 0.0933 0.0933 3.4225 0.3192 3.4225
16
x 0.0490 0.0490 4,3500 0.2133 4.3500
17
X 0.0490 0.0490 4.3500 0.2133 4.3500
18
x 0.0587 0.0587 4.0916 0.2400 4.0916
19
x 0.0359 0.0359 4.7999 0.1723 4.7999
20 '
x 0.0538 0.0538 4.2150 0.2270 4.2150
21
x 0.0622 0.0622 4.0075 0.2492 4.0075
22
x 0.0490 0.0490 4.3500 0.2133 4.3500
x23 0.0490 0.0490 4.350v 0.2133 4.3500
24
x 0.0622 0.0622 4.0075 0.2492 4,0075
25
x 0.0359 0.0359 4.7999 0.1723 4.7999
26
X 0.0587 0.0587 4.0916 0.2400 4.0916
27 v :
X 0.0490 0.0490 4.3500 0.2133 4.3500
28
X 0.0131 0.0131 6.2499 0.0821 6.2499
29
PR oo m————— PR R ekt foemrd e n .- - o, e b - +
|Tor. { 1.0000 | 1.0000 | - | 4.4381 | - |
¢====:+=========+==u===:n=+=slzssaaaaasa:+=================+=============+
Table A2.5. Case IIB - Translational Information Assessment

Results When Point Detectors Are Used.
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A2.2.3 - Case liC: object inclined at 45 degrees

In this case the number of sensor patterns which are attributable to each pixel is 8.
Figure A2.11 shows the uniquely numbered set of sensor output patterns and their respective
areas of occurrence in the pixel array. Table A2.6. shows the detailed calculations of the

translational information content in this case.
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Figure A2.11. CaseIIC - Rectangular image subjected to translation and
the sensor patterns arising when point sensors are used.

Each square with broken line represents one pixel, the
solid 1lines denote the enclosed areas 1in which a
specific sensor pattern occurs. The sensor patterns
are shown within the enclosed area in which they
occur . The number shown against each sensor pattern
identifies it as a unique sensor pattern attributable
to the central pixel.
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4SS SR 4ZITIE S EE IS4 S R SRS S 4 SRS A IR IIAITR4TEZISTBRIIS=SS=S=SS=T
H(X ) =
i
1 1
X Range R P(x ) log ~-e-==-- (x )log -~----
i (unit i 2 pix ) 1 2 pi{x )
area) i
4 E IR S 4SS EE RS R T D4 S S S S C T4 I S E R SRR I SRR S4B SRR IESSS XSRS
x6 0.1458 0.1454 2.7821 0.4045
x2 0.2670 0.2663 1.9087 0.5083
xq} 0.2670 0.2663 1.9087 0.5083
xg 0.0313 0.0312 5.0036 0.1561
xs 0.0313 0.0312 5.0036 0.1561
x3 0.0573 0.0571 4.1302 0.2358
x.1 0.0573 0.0571 4.1302 0.2358
x; 0.1458 0.1454 2.7821 0.4045
- toemrmm e~ o ——— L Sadatd R LoD Ll Dt Ll Pormm e -
|ToT. | 1.0028 | 1.0000 | - 2.6094

R4 I I IS IS B4 RS SIS NN $ AN TR E I ER SRS T4 I SIS

Table A2.6.

4STT=ZZZ=ZTZ=== == 4

i
I

H(X ) / R
i

2.7706
1.9037
1.9037
5.0359
5.0359
4.1375
4.1375
2.7706

Case IIC - Translational Information Assessment

Results When Point Detectors Are Used.
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A2.2.4. - Case lID: object inclined at 90 degrees

As for case llA, in this case there can only be one sensor pattern associated with each pixel
with a probability of one. This is because the probability of occurrence of other sensor patterns
is zero. Therefore the measure of the fine translation information is zero. This is the expected
result, as no information is conveyed by the occurrence of a certain event. Figure A2.12. shows

the set of sensor output patterns and their respective areas of occurrence in the pixel array.
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Figure A2.12.
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CasellE - Rectangular image subjected to translation and

the sensor patterns arising when point sensors are used.

Each square with broken line represents one pixel, the
solid lines denote the enclosed areas in which a
specific sensor pattern occurs. The sensor patterns

are shown within the enclosed area in which they
occure.
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APPENDIX 3 - Translation, Rotation Total Information
(Private Communication from Professor R.L. Beurle)

This Appendix describes in detail the theory behind translation, rotation and total
information content as described in Chapter S.

1. Fig4al is a map of pixel output patterns vs position denoted by axis Z and angle €.
The scales Z and © are made up of m and n elements respectively, corresponding to
the positions and angles for which the output patterns have been determined and
their extent. (Z may represent a co—ordinate x + iy in two dimensions).

2. AB & C show three out of many possible shapes denoting the areas occupied by
individual patterns. The scales are chosen so that equal area denotes equal
probability of occurrence.

)
3. Translation Information is assessed by summing p; Log 7 for all patterns for a
given value of O (i.e. along a horizontal line). To find the mean value for all g,
the result is then summed vertically and divided by n.

Thus, the contribution of pattern A or pattern B to the mean is

q p m _ pgq _
n m Log p N (Log m - Log p)

Log m

B e

For pattern C, the assessed contribution is ﬁ
4. For Rotation Information we have likewise

2 -
For A or B nn (Log n - Log q)
For C, — Log n
mn
5. For overall Information we sum p; Log% over the whole area giving

For Aor B B4 Log X
mn pq

For C

Log mﬁ

-u
mn

6. The excess of Translation + Rotation Information over overall Information
is

For A or B 24 (Log m + Log n - Log p ~ Log q)

mn
- i—g (Logm+Logn-Logp—Logq)
= 0
u_ u ’
For C — (Log m + Log n) - — (?m-ﬁ/gn_é’a)
- Log u

mn
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8.

mn

Conditional Entropy Explanation

The conditional entropy of Z, given that C is known, represents the remaining
uncertainty about Z which may be resolved if O is also given. Thus, one of the u
possible values of Z is selected by the knowledge of the true value of 8 (out of u
possibilities), taken in conjunction with the configuration of the area C on the pixel
pattern map and

p(Z/C) -

1
u
=

But p(C) ~ o

Therefore H(Z/.) = Z <;n-§ 1 Log u)- ﬁ Log u
u terms

An_Alternative

Another way of showing that the result obtained in 6. represents the information
provided by a knowledge of A which enables Z to be defined more precisely is to
argue:-

When pattern C occurs, which it does with a frequency of ;u;; , a knowledge of the
value of D allows the selection of the true value of Z from the u possible values.
This uses Log u bits of information. Since this only occurs with a frequency of;'—;- ’

the contribution that this correlation between @ and Z makes to the overall average
information is

~u
mn Log u

This also applies if it is the value of Z which is known and is used to identify &
more precisely.

Accuracy of determination of Z without a knowledge of 8 (or vice versa)

The knowledge provided by the configuration of C is only Mseful if we know either &
to enable us to pinpoint Z more precisely, or Z enabling us to identify & more
precisely. Without this information we are no better off than we would be with a
square map area for C. Then the useful overa//information provided by C would be

Log 22 . This is equal to the overat/ information less the result in 6.
u
_u mn _ _u _ - mp
mn l:og u mn Log u mn Log ul
0V¢va//lnformation Result in 6 Useful or "net" component

of overs/4 Information

X XIX



‘_THUS: _
u u ar S

‘If we write the sum of such terms as —=

Net overall information + 8
Gross Translation Information T
+ Gross Angular Information A

Gross Overall Informatiori

-s
therefore,
Net overall information = (T - 8) [ = Net translation Information 7 1
+ (A - s) [ = Net Angular Information o ]

P -g—Uu P

Figure A3.1.
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Appendlx 4 - Computer Calculation of Fine Translational
Information Content

This Appendix describes details of the procedure used in computing fine translational

information content of images shown in chapter 5.

A4.1. Details of calculations

As a typical example, consider the 4x2 rectangular pattern when it is oriented at 30 degrees.
Using the technique described in Chapter 4 (section 4.2) all the unique sensor oulput patterns
discovered are classified and labelled by comparing them with the set of unique sensor output
patterns | discovered in other orientations. Figure A4.1 shows the sensor output patterns
found in this example, the number next to each sensor output pattem in this Figure being the

label (i) used by the computer for purpose of identifying each unique sensor output pattem.

N N N
H | | | P
[ C l
52 46 — 53 = 48 'y 51
— — — .
] ) ] ]
l l [
] ] (] ] =
54 43 56 65 57 58
] ] ]
I [ | l [ |
|| L l [ ]
8 66 11 13 67 14
T B T
) ] . ]
L1 L] l {
12 15 17 16 70 60
) — e e —
] ] ] ] ]
1] L C
a1 21 71 ~ 7 62

Figure A4.1. Sensor output patterns for 4x2 rectangle oriented at 30 degrees.
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The area of the domain occupied by each unique sensor output pattern is also evaluated using
the method desébed in Chapter 4. The second column in Table A4.1 lists the areas found in
this example. The probability of occurrence of each unique sensor output pattern p(x) may then
be calculated by dividing its respective domain area by the total area of the pivotal pixel, which
is 1,048,576 (=1024x1024). Clearly the sum of these probabilities will be 1 as shown in the
third column of Table A4.1. The information associated with each unique sensor output pattern
may then be calculated using the standard relationship shown in equation A4.1.

Hx) = px) Log, p(_‘x; (A4.1)

Consequently the total information at 30 ° may be calculated by summing all these individual

information values using equation A4.2.

n 1
- ) 1 ks i A4.2
H(X) ,,.2,: p(x) Log, 3 (A4.2)

This is the fine translational information content of the 4x2 rectangular pattern when oriented

at 30 degrees as shown in the fourth coumn of Table A4.1, which in this case is 4.4381.

Serser

Pavern L Py oy
o

52 10087.0830 0.0008 0584
“ 378422081 Lo wn
59 $1420.3008 0040 iy
“ 514198018 [T wnx
“ 5043.7508 [T 1) wmn
51 $1420.3584 (V) wnn
54 $1410.9197 0400 wn
L] 37841.3308 (70 wm
“ 15776 9874 an [V ]
[0} 5043.2632 e amn
7 st 0400 e
% s1em.en 540 (S
. 13778.5290 [TIH] (¥
“ 30010827 00035 mer
" 56463.6218 [Tt amn
(] §1506.5030 00887 2400
(Y 5043.2632 (V71 smn
1 §5198.4488 sz (221
12 s 2% (T2 e
15 €5108.8075 [V (3]
17 564638704 0.05% wzn
" 61506 8848 onse7 02400
7 ) 5042.3087 00048 emn
0 $1418.4350 8.0400 any
0 51420.9584 00400 wnm
2 137775037 as131 o2
7 . 36000473 00035 amer
n 5042.3887 o0 wmn
. 13777.5057 oy oo
Tow! 1048572.6456 1.0000 was

Table A4.1. Translational information results for 4x2 pattern at 30°.
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A4.2. Summary of the results

Table A4.2 shows the results obtained for the 4x2, 8x2 and 8x2 rectangles, and the 4x4

squares. These are the values used for plotting Figure 5.6 in Chapter 5.

Pattern—  4x2 4x4 8x2 x4
Orientation

A

0 0.0112 0.0204 0.0112 00112
1 0.5290 0.7928 1.0632 1.2480
? 0.9777 14710 1.8868 24163
3 1.3852 20818 28145 3.3730
4 1.7708 28556 3.2518 4.2254
5 21362 3.1931 9.7042 4.9829
[} 24800 3.6925 4.2249 5.5619
7 2.8034 4.1507 4.5018 5.9878
8 3.1021 4.5642 4.5855 6.1398
9 3.3750 4.9200 4.7613 6.2085
10 3.8202 5.2448 4.8955 8.3914
1 3.8354 5.5050 4.8041 8.4508
12 40177 5.707¢ 5.0585 64703
13 4.1631 5.8473 82112 6.3743
14 4.2634 59148 4.4582 5.3333
15 4.2082 5.8860 6.1002 6.3531
16 4.4068 5.6837 5.6534 8.1138
17 44524 5.8779 5.4908 6.6558
18 4.4122 5,5048 5.3148 8.1856
19 4.4635 5.5550 54379 6.3406
20 4.49089 5.6870 s.85688 6.55456
21 4.3704 5.7473 5.2768 6.5198

44529 8.6148 6.1190 82680
4.4615 59154 5.2223 6.2834
4.4676 4.8410 5.3467 6.1801
4.2760 4.1343 5.4540 5.3060
39116 3.4688 4.8380 4.2801
3.8428 3.3696 4.6744 4.0306
4.1376 Nz 5.4085 4.8618
4.3832 4.5407 5.4035 5.0008
4.4381 8.1374 4.8587 8.3564
4.5208 5.5460 5.0055 8.2480
4.4285 $.7870 5.1529 6.4887
4.4797 §.8309 5.02890 6.4003
4.5154 §.7848 4.7567 6.0817
4.5252 5.7819 5.2584 0.3612
4.4056 544235 4.9699 6.2212
4.2084 4.8537 41124 5.0078
4.3585 5.5308 §.1682 8.4605
4.3823 6.7520 §.2147 6.5872
4.3382 5.6522 5.6008 6.4853
4.1396 5.5004 5.5161 8.4323
3.8539 5.2078 8.0170 0.2560
.6765 4.8582 4.6058 8.0110
3.3268 4.1478 4.0692 §.0538
25891 2.8558 2.5587 2.8252

SEBRAZBEBUBEBLBB8YBURRRYN

TOTAL 169.503 2143089 211.5088 254.7913
AVERAGE 3.684847  4.658845 4.599973  5.537638

Table AS5.2. Summary of transiational information results.

The probability voiume of each un

bility v igue sensor output pattern m i
the probabilities in each orientatio > the o of ofomaens) Um0

n, and dividing by the total range of orientations.
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Appendix 5 - Translational Information Dips
in Simple Images

It was noted in Chapter 5 (section 5.2.2.) that when assessing fine translational information,
at certain orientations dips in values of the information were encountered, as shown in
figure 5.6. This effect may be attributed to interaction between the boundaries of the pattern
under test and the pixel centres. In most orientations, as the pattem is translated horizontally
its boundaries cross one pixel centre at any one time. This leads to a gradual change in the
sensor output patterns since they change by one pixel only when the of the pattern moves

from one area domain to the next.

However, at certain orientations, the boundary (or boundaries) of the pattern may be inclined
so that as the pattern is translated horizontally, the boundary crosses two or more pixel centres
simultaneously. This means that the sensor output pattern changes by more than one pixel
as the centre of gravity of the pattern moves from one area domain to the next. In such a
case, when the whole area of the pivotal pixel is considered, fewer sensor output patterns are

encountered, and on average each sensor output pattern spans a larger area domain.

These large area domains introduce uncertainty about the locations of the centre of gravity of
the pattern within the pivotal pixel, and consequently this leads to a drop in the assessed

information.

This effect may be observed by considering the computer generated area domain maps shown
in figure A5.1. This shows the results obtained for the 4 x 2 rectangular pattern as its
orientation passes through 45°. It can clearly be seen that the lines defining the boundaries
between area domains move close to each other until they touch at 45° inclination and form

8 unique large area domains.
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Figure A5.1. Area Domain maps for the 4x2 rectangle inclined at
(a) 43 degrees
{b) 44 degrees
{c) 45 degrees
(d) 46 degrees

A5.1 Calculation of critical Inclinations and lengths boundaries

By considering Figure A5.2, the angles at which an inclined boundary crosses more than one
pixel centre simultaneously may be calculated together with the minimum length of the

boundary required for each case to occur. Table A5.1 summarizes this information.



From these values one

may expect to see o = pixel centre °
y —-rt:put pattern boundary

'dips’ in the values of
the information for the
patterns that meet the
requirements. For
instance, in the case of

8 x 2 and 8 x 4

Figure A5.2. Interaction between the pixel centres and the pattern
boundary.

rectangular patterns,
one expects to see
dips at the angles listed in table A5.1. Figure AS5.3 confirms this theory. One may also expect
dips at angles at which opposite sides of a rectangle cross pixel centres simultaneously. An
example is that for sides separated by two or four pixel units 36.87° is a critical angle with an

equivalent minimum length of only one or two units.

1/5
1/4
13
2/5
172
3/5
2/3
3/4
4/5
11

Table A5.1 Critical inclinations and lengths of boundaries.

W lo N & W I [

[y
o

Dips at 0°, 26.57°, 36.27° and 45° are more prominent since more than two pixel centres are
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Figure A5.3. Translational Information dips for 8x2 and 8x4 rectangles.

crossed by the patterns’ boundaries simultaneously. Similarly, when considering the 4 x 2 and

4 x 4 pattems as shown in Figures A5.4, dips present at 0°, 26.57°, 36.87° and 45° are

explicable in terms of either single sides or opposite sides crossing pixel centres.

Translational Information (bits)

7

Orientation (degrees)
Figure A5.4. Translational information dips for 4x2 rectangle and 4x4 square.
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